WorldWideScience

Sample records for underlying pathogenic microbe

  1. Microbes versus microbes: control of pathogens in the food chain.

    Science.gov (United States)

    Jordan, Kieran; Dalmasso, Marion; Zentek, Juergen; Mader, Anneluise; Bruggeman, Geert; Wallace, John; De Medici, Dario; Fiore, Alfonsina; Prukner-Radovcic, Estella; Lukac, Maja; Axelsson, Lars; Holck, Askild; Ingmer, Hanne; Malakauskas, Mindaugas

    2014-12-01

    Foodborne illness continues as a considerable threat to public health. Despite improved hygiene management systems and increased regulation, pathogenic bacteria still contaminate food, causing sporadic cases of illness and disease outbreaks worldwide. For many centuries, microbial antagonism has been used in food processing to improve food safety. An understanding of the mode of action of this microbial antagonism has been gained in recent years and potential applications in food and feed safety are now being explored. This review focuses on the potential opportunities presented, and the limitations, of using microbial antagonism as a biocontrol mechanism to reduce contamination along the food chain; including animal feed as its first link. © 2014 Society of Chemical Industry. © 2014 Society of Chemical Industry.

  2. Nanoparticles: Alternatives Against Drug-Resistant Pathogenic Microbes

    Directory of Open Access Journals (Sweden)

    Gudepalya Renukaiah Rudramurthy

    2016-06-01

    Full Text Available Antimicrobial substances may be synthetic, semisynthetic, or of natural origin (i.e., from plants and animals. Antimicrobials are considered “miracle drugs” and can determine if an infected patient/animal recovers or dies. However, the misuse of antimicrobials has led to the development of multi-drug-resistant bacteria, which is one of the greatest challenges for healthcare practitioners and is a significant global threat. The major concern with the development of antimicrobial resistance is the spread of resistant organisms. The replacement of conventional antimicrobials by new technology to counteract antimicrobial resistance is ongoing. Nanotechnology-driven innovations provide hope for patients and practitioners in overcoming the problem of drug resistance. Nanomaterials have tremendous potential in both the medical and veterinary fields. Several nanostructures comprising metallic particles have been developed to counteract microbial pathogens. The effectiveness of nanoparticles (NPs depends on the interaction between the microorganism and the NPs. The development of effective nanomaterials requires in-depth knowledge of the physicochemical properties of NPs and the biological aspects of microorganisms. However, the risks associated with using NPs in healthcare need to be addressed. The present review highlights the antimicrobial effects of various nanomaterials and their potential advantages, drawbacks, or side effects. In addition, this comprehensive information may be useful in the discovery of broad-spectrum antimicrobial drugs for use against multi-drug-resistant microbial pathogens in the near future.

  3. Aminoacid composition of wheat grain gluten under microbe impact

    Directory of Open Access Journals (Sweden)

    Sokolova М. G.

    2012-11-01

    Full Text Available The study was focused on characteristics of gluten, protein and aminoacids content in wheat grain under the impact of microbe preparations including bacteria of Azotobacter and Bacillus geni, which inhabit plant rhizosphere. The increase of aminoacids leveland particularly the level of essential aminoacids in wheat grain under bacterization was demonstrated, this fact accounting for the quality of grain as an important protein source. Increase of aminoacids content with the use of biopreparations on low-fertile soil ensures acquisition of biologically valuable grain with the decrease of mineral fertilizers dosage and emphasizes the role of biopreparations in the production of ecologically pure high quality products. The latter is due to introdcution of environmentally safe agricultural methods.

  4. In vitro effects of copper nanoparticles on plant pathogens, beneficial microbes and crop plants

    Energy Technology Data Exchange (ETDEWEB)

    Banik, S.; Pérez-de-Luque, A.

    2017-07-01

    Copper-based chemicals are effectively used as antimicrobials in agriculture. However, with respect to its nanoparticulate form there has been limited number of studies. In this investigation, in vitro tests on effect of copper nanoparticles (CuNPs) against plant pathogenic fungi, oomycete, bacteria, beneficial microbes Trichoderma harzianum and Rhizobium spp., and wheat seeds were conducted. Integration of CuNPs with non-nano copper like copper oxychloride (CoC) at 50 mg/L concentration each recorded 76% growth inhibition of the oomycete Phytophthora cinnamomi in vitro compared to the control. CuNPs also showed synergistic inhibitory effect with CoC on mycelial growth and sporulation of A. alternata. Pseudomonas syringae was inhibited at 200 mg/L of CuNPs. CuNPs were not significantly biocidal against Rhizobium spp. and Trichoderma harzianum compared to CoC. Evaluation of the effect of CuNP on wheat revealed that rate of germination of wheat seeds was higher in presence of CuNPs and CoC compared to control. Germination vigor index, root length, shoot dry weight and seed metabolic efficiency of wheat were negatively affected. At low concentration, CuNPs promoted the growth of the plant pathogenic fungi Botrytis fabae, Fusarium oxysporum f.sp. ciceris, F.oxysporum f.sp. melonis, Alternaria alternate and P. syringae, and sporulation of T. harzianum. Synergistic effect of CuNPs and CoC in inhibiting P. cinnamomi offers a possibility of developing new fungicide formulation for better control of the oomycetes. Non-biocidal effect of CuNPs against beneficial microbes indicates its potential use in the agri-ecosystem.

  5. In vitro effects of copper nanoparticles on plant pathogens, beneficial microbes and crop plants

    International Nuclear Information System (INIS)

    Banik, S.; Pérez-de-Luque, A.

    2017-01-01

    Copper-based chemicals are effectively used as antimicrobials in agriculture. However, with respect to its nanoparticulate form there has been limited number of studies. In this investigation, in vitro tests on effect of copper nanoparticles (CuNPs) against plant pathogenic fungi, oomycete, bacteria, beneficial microbes Trichoderma harzianum and Rhizobium spp., and wheat seeds were conducted. Integration of CuNPs with non-nano copper like copper oxychloride (CoC) at 50 mg/L concentration each recorded 76% growth inhibition of the oomycete Phytophthora cinnamomi in vitro compared to the control. CuNPs also showed synergistic inhibitory effect with CoC on mycelial growth and sporulation of A. alternata. Pseudomonas syringae was inhibited at 200 mg/L of CuNPs. CuNPs were not significantly biocidal against Rhizobium spp. and Trichoderma harzianum compared to CoC. Evaluation of the effect of CuNP on wheat revealed that rate of germination of wheat seeds was higher in presence of CuNPs and CoC compared to control. Germination vigor index, root length, shoot dry weight and seed metabolic efficiency of wheat were negatively affected. At low concentration, CuNPs promoted the growth of the plant pathogenic fungi Botrytis fabae, Fusarium oxysporum f.sp. ciceris, F.oxysporum f.sp. melonis, Alternaria alternate and P. syringae, and sporulation of T. harzianum. Synergistic effect of CuNPs and CoC in inhibiting P. cinnamomi offers a possibility of developing new fungicide formulation for better control of the oomycetes. Non-biocidal effect of CuNPs against beneficial microbes indicates its potential use in the agri-ecosystem.

  6. Corruption of host seven-transmembrane proteins by pathogenic microbes: a common theme in animals and plants?

    Science.gov (United States)

    Panstruga, Ralph; Schulze-Lefert, Paul

    2003-04-01

    Human diseases like AIDS, malaria, and pneumonia are caused by pathogens that corrupt host chemokine G-protein coupled receptors for molecular docking. Comparatively, little is known about plant host factors that are required for pathogenesis and that may serve as receptors for the entry of pathogenic microbes. Here, we review potential analogies between human chemokine receptors and the plant seven-transmembrane MLO protein, a candidate serving a dual role as docking molecule and defence modulator for the phytopathogenic powdery mildew fungus.

  7. Natural Pathogen Control Chemistry to Replace Toxic Treatment of Microbes and Biofilm in Cooling Towers

    Science.gov (United States)

    Brouse, Lon; Brouse, Richard; Brouse, Daniel

    2017-01-01

    Application of toxic antibacterial agents is considered necessary to control prevalent fresh water microorganisms that grow in evaporative cooling water systems, but can adversely affect the environment and human health. However, natural antibacterial water chemistry has been applied in industrial cooling water systems for over 10 years to inhibit microorganisms with excellent results. The water chemistry method concentrates natural minerals in highly-softened water to produce elevated pH and dissolved solids, while maintaining low calcium and magnesium content. The method provides further benefits in water conservation, and generates a small volume of non-toxic natural salt concentrate for cost efficient separation and disposal if required. This report describes the antimicrobial effects of these chemistry modifications in the cooling water environment and the resultant collective inhibition of microbes, biofilm, and pathogen growth. This article also presents a novel perspective of parasitic microbiome functional relationships, including “Trojan Protozoans” and biofilms, and the function of polyvalent metal ions in the formation and inhibition of biofilms. Reducing global dependence on toxic antibacterial agents discharged to the environment is an emerging concern due to their impact on the natural microbiome, plants, animals and humans. Concurrently, scientists have concluded that discharge of antibacterial agents plays a key role in development of pathogen resistance to antimicrobials as well as antibiotics. Use of natural antibacterial chemistry can play a key role in managing the cooling water environment in a more ecologically sustainable manner. PMID:28420074

  8. Plant-microbe rhizosphere interactions mediated by Rehmannia glutinosa root exudates under consecutive monoculture

    Science.gov (United States)

    Wu, Linkun; Wang, Juanying; Huang, Weimin; Wu, Hongmiao; Chen, Jun; Yang, Yanqiu; Zhang, Zhongyi; Lin, Wenxiong

    2015-10-01

    Under consecutive monoculture, the biomass and quality of Rehmannia glutinosa declines significantly. Consecutive monoculture of R. glutinosa in a four-year field trial led to significant growth inhibition. Most phenolic acids in root exudates had cumulative effects over time under sterile conditions, but these effects were not observed in the rhizosphere under monoculture conditions. It suggested soil microbes might be involved in the degradation and conversion of phenolic acids from the monocultured plants. T-RFLP and qPCR analysis demonstrated differences in both soil bacterial and fungal communities during monoculture. Prolonged monoculture significantly increased levels of Fusarium oxysporum, but decreased levels of Pseudomonas spp. Abundance of beneficial Pseudomonas spp. with antagonistic activity against F. oxysporum was lower in extended monoculture soils. Phenolic acid mixture at a ratio similar to that found in the rhizosphere could promote mycelial growth, sporulation, and toxin (3-Acetyldeoxynivalenol, 15-O-Acetyl-4-deoxynivalenol) production of pathogenic F. oxysporum while inhibiting growth of the beneficial Pseudomonas sp. W12. This study demonstrates that extended monoculture can alter the microbial community of the rhizosphere, leading to relatively fewer beneficial microorganisms and relatively more pathogenic and toxin-producing microorganisms, which is mediated by the root exudates.

  9. The Road to Infection: Host-Microbe Interactions Defining the Pathogenicity of Streptococcus bovis/Streptococcus equinus Complex Members

    Directory of Open Access Journals (Sweden)

    Christoph Jans

    2018-04-01

    system activation and collagen-I-binding on damaged heart valves. Only SGG carrying complete pilus loci seem to have highest IE potential in humans with significant links between SGG bacteremia/IE and underlying diseases including CRC. Other SBSEC host-microbe combinations might rely on currently unknown mechanisms. Comparative genome data of blood, commensal and food isolates are limited but required to elucidate the role of pili and other virulence factors, understand pathogenicity mechanisms, host specificity and estimate health risks for animals, humans and food alike.

  10. The Road to Infection: Host-Microbe Interactions Defining the Pathogenicity of Streptococcus bovis/Streptococcus equinus Complex Members

    Science.gov (United States)

    Jans, Christoph; Boleij, Annemarie

    2018-01-01

    activation and collagen-I-binding on damaged heart valves. Only SGG carrying complete pilus loci seem to have highest IE potential in humans with significant links between SGG bacteremia/IE and underlying diseases including CRC. Other SBSEC host-microbe combinations might rely on currently unknown mechanisms. Comparative genome data of blood, commensal and food isolates are limited but required to elucidate the role of pili and other virulence factors, understand pathogenicity mechanisms, host specificity and estimate health risks for animals, humans and food alike. PMID:29692760

  11. Effectiveness of beneficial plant-microbe interactions under hypobaric and hypoxic conditions in an advanced life support system

    Science.gov (United States)

    MacIntyre, Olathe; Stasiak, Michael; Cottenie, Karl; Trevors, Jack; Dixon, Mike

    An assembled microbial community in the hydroponics solution of an advanced life support system may improve plant performance and productivity in three ways: (1) exclusion of plant pathogens from the initial community, (2) resistance to infection, and (3) plant-growth promotion. However, the plant production area is likely to have a hypobaric (low pressure) and hypoxic (low oxygen) atmosphere to reduce structural mass and atmosphere leakage, and these conditions may alter plant-microbe interactions. Plant performance and productivity of radish (Raphanus sativus L. cv. Cherry Bomb II) grown under hypobaric and hypoxic conditions were investigated at the University of Guelph's Controlled Environment Systems Research Facility. Changes in the microbial communities that routinely colonized the re-circulated nutrient solution, roots, and leaves of radishes in these experiments were quantified in terms of similarity in community composition, abundance of bacteria, and community diversity before and after exposure to hypobaric and hypoxic conditions relative to communities maintained at ambient growth conditions. The microbial succession was affected by extreme hypoxia (2 kPa oxygen partial pressure) while hypobaria as low as 10 kPa total pressure had little effect on microbial ecology. There were no correlations found between the physiological profile of these unintentional microbial communities and radish growth. The effects of hypobaric and hypoxic conditions on specific plant-microbe interactions need to be determined before beneficial gnotobiotic communities can be developed for use in space. The bacterial strains Tal 629 of Bradyrhizobium japonicum and WCS417 of Pseudomonas fluorescens, and the plant pathogen Fusarium oxysporum f. sp. raphani will be used in future experiments. B. japonicum Tal 629 promotes radish growth in hydroponics systems and P. fluorescens WCS417 induces systemic resistance to fusarium wilt (F. oxysporum f. sp. raphani) in radish under ambient

  12. Antimicrobial blue light: a drug-free approach for inactivating pathogenic microbes

    Science.gov (United States)

    Wang, Ying; Dai, Tianhong

    2018-02-01

    Due to the growing global threat of antibiotic resistance, there is a critical need for the development of alternative therapeutics for infectious diseases. Antimicrobial blue light (aBL), as an innovative non-antibiotic approach, has attracted increasing attention. This paper discussed the basic concepts of aBL and recent findings in the studies of aBL. It is commonly hypothesized that the antimicrobial property of aBL is attributed to the presence of endogenous photosensitizing chromophores in microbial cells, which produce cytotoxic reactive oxygen species upon light irradiation. A wide range of important microbes are found to be susceptible to aBL inactivation. Studies have also shown there exist therapeutic windows where microbes are selectively inactivated by aBL while host cells are preserved. The combination of aBL with some other agents result in synergistically improved antimicrobial efficacy. Future efforts should be exerted on the standardization of study design for evaluating aBL efficacy, further elucidation of the mechanism of action, optimization of the technical parameters, and translation of this technique to clinic.

  13. Money for microbes-Pathogen avoidance and out-group helping behaviour.

    Science.gov (United States)

    Laakasuo, Michael; Köbis, Nils; Palomäki, Jussi; Jokela, Markus

    2017-02-23

    Humans have evolved various adaptations against pathogens, including the physiological immune system. However, not all of these adaptations are physiological: the cognitive mechanisms whereby we avoid potential sources of pathogens-for example, disgust elicited by uncleanliness-can be considered as parts of a behavioural immune system (BIS). The mechanisms of BIS extend also to inter-group relations: Pathogen cues have been shown to increase xenophobia/ethnocentrism, as people prefer to keep their societal in-group norms unaltered and "clean." Nonetheless, little is known how pathogen cues influence people's willingness to provide humanitarian aid to out-group members. We examined how pathogen cues affected decisions of providing humanitarian aid in either instrumental (sending money) or non-instrumental form (sending personnel to help, or accepting refugees), and whether these effects were moderated by individual differences in BIS sensitivity. Data were collected in two online studies (Ns: 188 and 210). When the hypothetical humanitarian crisis involved a clear risk of infection, participants with high BIS sensitivity preferred to send money rather than personnel or to accept refugees. The results suggest that pathogen cues influence BIS-sensitive individuals' willingness to provide humanitarian aid when there is a risk of contamination to in-group members. © 2017 International Union of Psychological Science.

  14. Migrating microbes: what pathogens can tell us about population movements and human evolution.

    Science.gov (United States)

    Houldcroft, Charlotte J; Ramond, Jean-Baptiste; Rifkin, Riaan F; Underdown, Simon J

    2017-08-01

    The biology of human migration can be observed from the co-evolutionary relationship with infectious diseases. While many pathogens are brief, unpleasant visitors to human bodies, others have the ability to become life-long human passengers. The story of a pathogen's genetic code may, therefore, provide insight into the history of its human host. The evolution and distribution of disease in Africa is of particular interest, because of the deep history of human evolution in Africa, the presence of a variety of non-human primates, and tropical reservoirs of emerging infectious diseases. This study explores which pathogens leave traces in the archaeological record, and whether there are realistic prospects that these pathogens can be recovered from sub-Saharan African archaeological contexts. Three stories are then presented of germs on a journey. The first is the story of HIV's spread on the back of colonialism and the railway networks over the last 150 years. The second involves the spread of Schistosoma mansoni, a parasite which shares its history with the trans-Atlantic slave trade and the origins of fresh-water fishing. Finally, we discuss the tantalising hints of hominin migration and interaction found in the genome of human herpes simplex virus 2. Evidence from modern African pathogen genomes can provide data on human behaviour and migration in deep time and contribute to the improvement of human quality-of-life and longevity.

  15. Protein interaction networks at the host-microbe interface in Diaphorina citri, the insect vector of the citrus greening pathogen.

    Science.gov (United States)

    Ramsey, J S; Chavez, J D; Johnson, R; Hosseinzadeh, S; Mahoney, J E; Mohr, J P; Robison, F; Zhong, X; Hall, D G; MacCoss, M; Bruce, J; Cilia, M

    2017-02-01

    The Asian citrus psyllid ( Diaphorina citri) is the insect vector responsible for the worldwide spread of ' Candidatus Liberibacter asiaticus' (CLas), the bacterial pathogen associated with citrus greening disease. Developmental changes in the insect vector impact pathogen transmission, such that D. citri transmission of CLas is more efficient when bacteria are acquired by nymphs when compared with adults. We hypothesize that expression changes in the D. citri immune system and commensal microbiota occur during development and regulate vector competency. In support of this hypothesis, more proteins, with greater fold changes, were differentially expressed in response to CLas in adults when compared with nymphs, including insect proteins involved in bacterial adhesion and immunity. Compared with nymphs, adult insects had a higher titre of CLas and the bacterial endosymbionts Wolbachia, Profftella and Carsonella. All Wolbachia and Profftella proteins differentially expressed between nymphs and adults are upregulated in adults, while most differentially expressed Carsonella proteins are upregulated in nymphs. Discovery of protein interaction networks has broad applicability to the study of host-microbe relationships. Using protein interaction reporter technology, a D. citri haemocyanin protein highly upregulated in response to CLas was found to physically interact with the CLas coenzyme A (CoA) biosynthesis enzyme phosphopantothenoylcysteine synthetase/decarboxylase. CLas pantothenate kinase, which catalyses the rate-limiting step of CoA biosynthesis, was found to interact with a D. citri myosin protein. Two Carsonella enzymes involved in histidine and tryptophan biosynthesis were found to physically interact with D. citri proteins. These co-evolved protein interaction networks at the host-microbe interface are highly specific targets for controlling the insect vector responsible for the spread of citrus greening.

  16. Genotype specificity among hosts, pathogens, and beneficial microbes influences the strength of symbiont-mediated protection

    Czech Academy of Sciences Publication Activity Database

    Parker, B. J.; Hrček, Jan; McLean, A. H. C.; Godfray, H. C. J.

    2017-01-01

    Roč. 71, č. 5 (2017), s. 1222-1231 ISSN 0014-3820 Institutional support: RVO:60077344 Keywords : coevolution * endosymbiont * fungal pathogens Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 4.201, year: 2016 http://onlinelibrary.wiley.com/doi/10.1111/evo.13216/full

  17. Metabolites produced by antagonistic microbes inhibit the principal avocado pathogens in vitro

    Directory of Open Access Journals (Sweden)

    Sara Ramírez R.

    2015-04-01

    Full Text Available The demand for Hass avocado in the global market exceeds the supply by over 50%. Colombia has a remarkable advantage as a producer in the region due to its high yields. However, the productivity of this crop can be seriously affected by diseases such as root rot, caused by Phytophthora cinnamomi, postharvest body rot and stem end rot, caused by Colletotrichum sp. and Phomopsis sp., respectively. The potential of 76 bacterial isolates obtained from avocado rhizosphere to produce inhibitory metabolites against avocado's pathogens was evaluated. The antagonistic effect of the rhizobacteria against P. cinnamomi, Colletotrichum sp. and Phomopsis sp. was tested through dual cultures. Thirty-six percent of the tested isolates presented inhibition halos against P. cinnamomi, 36% against Colletotrichum sp. and 67% against Phomopsis sp. Additionally, three isolates were selected for fermentation tests using different broth cultures. The extracts obtained from fermentations in the minimal medium of isolates ARP5.1 and AED06 showed inhibitory activity against the evaluated pathogens, but this effect was not observed with the AED26 extract. The media supplemented with copper chloride did not enhance activity of the extracts. These results suggest that using microbial metabolic extracts is a viable alternative for controlling avocado pathogens in vitro.

  18. Microbes and masculinity: Does exposure to pathogenic cues alter women’s preferences for male facial masculinity and beardedness?

    Science.gov (United States)

    McIntosh, Toneya L.; Lee, Anthony J.; Sidari, Morgan J.; Stower, Rebecca E.; Sherlock, James M.

    2017-01-01

    Women’s preferences for men’s androgen dependent secondary sexual traits are proposed to be phenotypically plastic in response to exposure to pathogens and pathogen disgust. While previous studies report that masculinity in facial shape is more attractive to women who have recently been exposed to pathogenic cues and who are high in self-reported pathogen disgust, facial hair may reduce male attractiveness under conditions of high pathogens as beards are a possible breeding ground for disease carrying ectoparasites. In the present study, we test whether women’s preferences for beardedness and facial masculinity vary due to exposure to different pathogenic cues. Participants (N = 688, mean age + 1SD = 31.94 years, SD = 6.69, range = 18–67) rated the attractiveness of facial composite stimuli of men when they were clean-shaven or fully bearded. These stimuli were also manipulated in order to vary sexual dimorphism by ±50%. Ratings were conducted before and after exposure to one of four experimental treatments in which participants were primed to either high pathogens (e.g. infected cuts), ectoparasites (e.g. body lice), a mixture of pathogens and ectoparasites, or a control condition (e.g. innocuous liquids). Participants then completed the three-domain disgust scale measuring attitudes to moral, sexual and pathogen disgust. We predicted that women would prefer facial masculinity following exposure to pathogenic cues, but would show reduced preferences for facial hair following exposure to ectoparasites. Women preferred full beards over clean-shaven faces and masculinised over feminised faces. However, none of the experimental treatments influenced the direction of preferences for facial masculinity or beardedness. We also found no association between women’s self-reported pathogen disgust and their preferences for facial masculinity. However, there was a weak positive association between moral disgust scores and preferences for facial masculinity, which

  19. Conserved Patterns of Microbial Immune Escape: Pathogenic Microbes of Diverse Origin Target the Human Terminal Complement Inhibitor Vitronectin via a Single Common Motif.

    Directory of Open Access Journals (Sweden)

    Teresia Hallström

    Full Text Available Pathogenicity of many microbes relies on their capacity to resist innate immunity, and to survive and persist in an immunocompetent human host microbes have developed highly efficient and sophisticated complement evasion strategies. Here we show that different human pathogens including Gram-negative and Gram-positive bacteria, as well as the fungal pathogen Candida albicans, acquire the human terminal complement regulator vitronectin to their surface. By using truncated vitronectin fragments we found that all analyzed microbial pathogens (n = 13 bound human vitronectin via the same C-terminal heparin-binding domain (amino acids 352-374. This specific interaction leaves the terminal complement complex (TCC regulatory region of vitronectin accessible, allowing inhibition of C5b-7 membrane insertion and C9 polymerization. Vitronectin complexed with the various microbes and corresponding proteins was thus functionally active and inhibited complement-mediated C5b-9 deposition. Taken together, diverse microbial pathogens expressing different structurally unrelated vitronectin-binding molecules interact with host vitronectin via the same conserved region to allow versatile control of the host innate immune response.

  20. Life under the Microscope: Children's Ideas about Microbes

    Science.gov (United States)

    Allen, Michael; Bridle, Georgina; Briten, Elizabeth

    2015-01-01

    Microbes (by definition) are tiny living things that are only visible through a microscope and include bacteria, viruses, fungi, and protoctists (mainly single-celled life forms such as amoebae and algae). Although people are familiar with the effects of microbes, such as infectious disease and food spoilage, because of their lack of visibility,…

  1. Molecular mechanisms underlying the emergence of bacterial pathogens: an ecological perspective.

    Science.gov (United States)

    Bartoli, Claudia; Roux, Fabrice; Lamichhane, Jay Ram

    2016-02-01

    The rapid emergence of new bacterial diseases negatively affects both human health and agricultural productivity. Although the molecular mechanisms underlying these disease emergences are shared between human- and plant-pathogenic bacteria, not much effort has been made to date to understand disease emergences caused by plant-pathogenic bacteria. In particular, there is a paucity of information in the literature on the role of environmental habitats in which plant-pathogenic bacteria evolve and on the stress factors to which these microbes are unceasingly exposed. In this microreview, we focus on three molecular mechanisms underlying pathogenicity in bacteria, namely mutations, genomic rearrangements and the acquisition of new DNA sequences through horizontal gene transfer (HGT). We briefly discuss the role of these mechanisms in bacterial disease emergence and elucidate how the environment can influence the occurrence and regulation of these molecular mechanisms by directly impacting disease emergence. The understanding of such molecular evolutionary mechanisms and their environmental drivers will represent an important step towards predicting bacterial disease emergence and developing sustainable management strategies for crops. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  2. Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2

    Science.gov (United States)

    Benjamin N. Sulman; Richard P. Phillips; A. Christopher Oishi; Elena Shevliakova; Stephen W. Pacala

    2014-01-01

    The sensitivity of soil organic carbon (SOC) to changing environmental conditions represents a critical uncertainty in coupled carbon cycle–climate models1.Much of this uncertainty arises from our limited understanding of the extent to which root–microbe interactions induce SOC losses (through accelerated decomposition or ‘priming’2) or indirectly promote SOC gains (...

  3. Host-microbe and microbe-microbe interactions in the evolution of obligate plant parasitism.

    Science.gov (United States)

    Kemen, Ariane C; Agler, Matthew T; Kemen, Eric

    2015-06-01

    Research on obligate biotrophic plant parasites, which reproduce only on living hosts, has revealed a broad diversity of filamentous microbes that have independently acquired complex morphological structures, such as haustoria. Genome studies have also demonstrated a concerted loss of genes for metabolism and lytic enzymes, and gain of diversity of genes coding for effectors involved in host defense suppression. So far, these traits converge in all known obligate biotrophic parasites, but unexpected genome plasticity remains. This plasticity is manifested as transposable element (TE)-driven increases in genome size, observed to be associated with the diversification of virulence genes under selection pressure. Genome expansion could result from the governing of the pathogen response to ecological selection pressures, such as host or nutrient availability, or to microbial interactions, such as competition, hyperparasitism and beneficial cooperations. Expansion is balanced by alternating sexual and asexual cycles, as well as selfing and outcrossing, which operate to control transposon activity in populations. In turn, the prevalence of these balancing mechanisms seems to be correlated with external biotic factors, suggesting a complex, interconnected evolutionary network in host-pathogen-microbe interactions. Therefore, the next phase of obligate biotrophic pathogen research will need to uncover how this network, including multitrophic interactions, shapes the evolution and diversity of pathogens. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  4. Metagenomic analysis of medicinal Cannabis samples; pathogenic bacteria, toxigenic fungi, and beneficial microbes grow in culture-based yeast and mold tests.

    Science.gov (United States)

    McKernan, Kevin; Spangler, Jessica; Helbert, Yvonne; Lynch, Ryan C; Devitt-Lee, Adrian; Zhang, Lei; Orphe, Wendell; Warner, Jason; Foss, Theodore; Hudalla, Christopher J; Silva, Matthew; Smith, Douglas R

    2016-01-01

    Background : The presence of bacteria and fungi in medicinal or recreational Cannabis poses a potential threat to consumers if those microbes include pathogenic or toxigenic species. This study evaluated two widely used culture-based platforms for total yeast and mold (TYM) testing marketed by 3M Corporation and Biomérieux, in comparison with a quantitative PCR (qPCR) approach marketed by Medicinal Genomics Corporation. Methods : A set of 15 medicinal Cannabis samples were analyzed using 3M and Biomérieux culture-based platforms and by qPCR to quantify microbial DNA. All samples were then subjected to next-generation sequencing and metagenomics analysis to enumerate the bacteria and fungi present before and after growth on culture-based media. Results : Several pathogenic or toxigenic bacterial and fungal species were identified in proportions of >5% of classified reads on the samples, including Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa, Ralstonia pickettii, Salmonella enterica, Stenotrophomonas maltophilia, Aspergillus ostianus, Aspergillus sydowii, Penicillium citrinum and Penicillium steckii. Samples subjected to culture showed substantial shifts in the number and diversity of species present, including the failure of Aspergillus species to grow well on either platform. Substantial growth of Clostridium botulinum and other bacteria were frequently observed on one or both of the culture-based TYM platforms. The presence of plant growth promoting (beneficial) fungal species further influenced the differential growth of species in the microbiome of each sample. Conclusions : These findings have important implications for the Cannabis and food safety testing industries.

  5. Microbes versus microbes

    DEFF Research Database (Denmark)

    Jordan, Kieran; Dalmasso, Marion; Zentek, Juergen

    2014-01-01

    been used in food processing to improve food safety. An understanding of the mode of action of this microbial antagonism has been gained in recent years and potential applications in food and feed safety are now being explored. This review focuses on the potential opportunities presented......Foodborne illness continues as a considerable threat to public health. Despite improved hygiene management systems and increased regulation, pathogenic bacteria still contaminate food, causing sporadic cases of illness and disease outbreaks worldwide. For many centuries, microbial antagonism has......, and the limitations, of using microbial antagonism as a biocontrol mechanism to reduce contamination along the food chain; including animal feed as its first link. © 2014 Society of Chemical Industry....

  6. Two-way plant mediated interactions between root-associated microbes and insects: from ecology to mechanisms

    Directory of Open Access Journals (Sweden)

    Nurmi ePangesti

    2013-10-01

    Full Text Available Plants are members of complex communities and function as a link between above- and below-ground organisms. Associations between plants and soil-borne microbes commonly occur and have often been found beneficial for plant fitness. Root-associated microbes may trigger physiological changes in the host plant that influence interactions between plants and aboveground insects at several trophic levels. Aboveground, plants are under continuous attack by insect herbivores and mount multiple responses that also have systemic effects on belowground microbes. Until recently, both ecological and mechanistic studies have mostly focused on exploring these below- and above-ground interactions using simplified systems involving both single microbe and herbivore species, which is far from the naturally occurring interactions. Increasing the complexity of the systems studied is required to increase our understanding of microbe - plant - insect interactions and to gain more benefit from the use of non-pathogenic microbes in agriculture. In this review, we explore how colonization by either single non-pathogenic microbe species or a community of such microbes belowground affects plant growth and defense and how this affects the interactions of plants with aboveground insects at different trophic levels. Moreover, we review how plant responses to foliar herbivory by insects belonging to different feeding guilds affect interactions of plants with non-pathogenic soil-borne microbes. The role of phytohormones in coordinating plant growth, plant defenses against foliar herbivores while simultaneously establishing associations with non-pathogenic soil microbes is discussed.

  7. Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2

    Science.gov (United States)

    Sulman, Benjamin N.; Phillips, Richard P.; Oishi, A. Christopher; Shevliakova, Elena; Pacala, Stephen W.

    2014-12-01

    The sensitivity of soil organic carbon (SOC) to changing environmental conditions represents a critical uncertainty in coupled carbon cycle-climate models. Much of this uncertainty arises from our limited understanding of the extent to which root-microbe interactions induce SOC losses (through accelerated decomposition or `priming') or indirectly promote SOC gains (via `protection' through interactions with mineral particles). We developed a new SOC model to examine priming and protection responses to rising atmospheric CO2. The model captured disparate SOC responses at two temperate free-air CO2 enrichment (FACE) experiments. We show that stabilization of `new' carbon in protected SOC pools may equal or exceed microbial priming of `old' SOC in ecosystems with readily decomposable litter and high clay content (for example, Oak Ridge). In contrast, carbon losses induced through priming dominate the net SOC response in ecosystems with more resistant litters and lower clay content (for example, Duke). The SOC model was fully integrated into a global terrestrial carbon cycle model to run global simulations of elevated CO2 effects. Although protected carbon provides an important constraint on priming effects, priming nonetheless reduced SOC storage in the majority of terrestrial areas, partially counterbalancing SOC gains from enhanced ecosystem productivity.

  8. Nucleic acid purification from plants, animals and microbes in under 30 seconds.

    Directory of Open Access Journals (Sweden)

    Yiping Zou

    2017-11-01

    Full Text Available Nucleic acid amplification is a powerful molecular biology tool, although its use outside the modern laboratory environment is limited due to the relatively cumbersome methods required to extract nucleic acids from biological samples. To address this issue, we investigated a variety of materials for their suitability for nucleic acid capture and purification. We report here that untreated cellulose-based paper can rapidly capture nucleic acids within seconds and retain them during a single washing step, while contaminants present in complex biological samples are quickly removed. Building on this knowledge, we have successfully created an equipment-free nucleic acid extraction dipstick methodology that can obtain amplification-ready DNA and RNA from plants, animals, and microbes from difficult biological samples such as blood and leaves from adult trees in less than 30 seconds. The simplicity and speed of this method as well as the low cost and availability of suitable materials (e.g., common paper towelling, means that nucleic acid extraction is now more accessible and affordable for researchers and the broader community. Furthermore, when combined with recent advancements in isothermal amplification and naked eye DNA visualization techniques, the dipstick extraction technology makes performing molecular diagnostic assays achievable in limited resource settings including university and high school classrooms, field-based environments, and developing countries.

  9. Preliminary geochemical, microbiological, and epidemiological investigations into possible linkages between lignite aquifers, pathogenic microbes, and kidney disease in northwestern Louisiana

    Science.gov (United States)

    Bunnell, Joseph E.; Bushon, Rebecca N.; Stoeckel, Donald M.; Gifford, Amie M.; Beck, Marisa; Lerch, Harry E.; Shi, Runhua; McGee, Benton; Hanson, Bradford C.; Kolak, Jonathan; Warwick, Peter D.

    2003-01-01

    In May 2002, 15 wells and four surface water sites were sampled, and in September 2002, those same wells and sites plus four additional surface sites were sampled in five parishes of northwestern Louisiana. A geographic information system (GIS) was used to select residential water wells for sampling. Well water samples were analyzed for pH, conductivity, organic compounds, and nutrient and anion concentrations. All samples were further tested for presence of fungi (maintained for up to 28 days and colonies counted and identified microscopically), and metal and trace element concentration by inductively-coupled plasma mass spectrometry and atomic emission spectrometry. Surface water samples were tested for dissolved oxygen and evidence of leptospiral bacterial presence. A polymerase chain reaction protocol was optimized for detection of pathogenic leptospires, and the sensitivity of the assay was determined. The Spearman correlation method was used to assess the association between the endpoints for these field/laboratory analyses and the incidence of cancer of the renal pelvis obtained from the Louisiana Tumor Registry. Significant associations were revealed between the cancer rate and the overall number of organic compounds, the fungi Zygomycetes, the nutrients PO4 and NH3, and thirteen chemical elements (As, B, Br, Cl, Cr, F, Li, Na, P, Rb, Se, Sr, W) from the well water as compared to the controls. Among the species of fungi from the total of 136 isolates were 12 Penicillium spp., at least two Aspergillus spp., a number of other genera (Alternaria sp., Eupenicillium lapidosum, Cladosporium sp., Epicoccum sp., Trichoderma sp., Paecilomyces sp., Chrysosporium sp., Chloridium sp.), and Zygomycetes, and Coelmycetes -- some of which are known mycotoxin producers. The two control wells yielded a mean of 6.5 (SD = 3.5355) individual isolates, while the mean number of isolates from all other sites was 7.6 (SD = 4.4866). Presence of human pathogenic leptospires was

  10. In vitro antimicrobial efficacy of Rhynchostegium vagans A. Jaeger (moss against commonly occurring pathogenic microbes of Indian sub-tropics

    Directory of Open Access Journals (Sweden)

    Kavita Negi*

    2016-01-01

    Full Text Available Objective: To study the antimicrobial effect of organic extracts with a standard dose of Rhynchostegium vagans (R. vagans on pathogenic bacteria and fungi. Methods: R. vagans was extracted in solvents (ethanol and acetone and the extracts were evaluated for antimicrobial activity by using disc diffusion assay. Minimum inhibitory concentration and minimum bactericidal/fungicidal concentration was observed by employing micro broth dilution method. Mode of inhibition of ethanolic extract against Aspergillus flavus var. columnaris (A. flavus var. columnaris was assessed by scanning electron microscopy. Results: It was found that the ethanolic extract of R. vagans was the most potent with lowest minimum inhibitory concentration (3.91 to 61.25 µg/mL and minimum bactericidal/fungicidal concentration (3.91 to 500 µg/mL, respectively. Significant morphological and ultrastructural alterations were seen in A. flavus var. columnaris. Among microorganisms, Gram negative bacteria (Escherichia coli, Erwinia chrysanthemi and Salmonella enterica and fungi (A. flavus var. columnaris and Aspergillus parasiticus var. globosus were found more sensitive. Ethanolic extract was found superior over the antibiotics (chloramphenicol and fluconazole. Conclusions: R. vagans exhibited effective antimicrobial activity against all the microorganisms. The moss can be used as a broad spectrum herbal antimicrobial agent in pharmaceutics.

  11. Principles of Plant-Microbe Interactions - Microbes for Sustainable Agriculture

    Science.gov (United States)

    Crops lack resistance to many soilborne pathogens and rely on antagonistic microbes recruited from the soil microbiome to protect their roots. Disease-suppressive soils, the best examples of microbial-based defense, are soils in which a pathogen does not establish or persist, establishes but causes ...

  12. Conditionally Pathogenic Gut Microbes Promote Larval Growth by Increasing Redox-Dependent Fat Storage in High-Sugar Diet-Fed Drosophila.

    Science.gov (United States)

    Whon, Tae Woong; Shin, Na-Ri; Jung, Mi-Ja; Hyun, Dong-Wook; Kim, Hyun Sik; Kim, Pil Soo; Bae, Jin-Woo

    2017-12-01

    Changes in the composition of the gut microbiota contribute to the development of obesity and subsequent complications that are associated with metabolic syndrome. However, the role of increased numbers of certain bacterial species during the progress of obesity and factor(s) controlling the community structure of gut microbiota remain unclear. Here, we demonstrate the inter-relationship between Drosophila melanogaster and their resident gut microbiota under chronic high-sugar diet (HSD) conditions. Chronic feeding of an HSD to Drosophila resulted in a predominance of resident uracil-secreting bacteria in the gut. Axenic insects mono-associated with uracil-secreting bacteria or supplemented with uracil under HSD conditions promoted larval development. Redox signaling induced by bacterial uracil promoted larval growth by regulating sugar and lipid metabolism via activation of p38a mitogen-activated protein kinase. The present study identified a new redox-dependent mechanism by which uracil-secreting bacteria (previously regarded as opportunistic pathobionts) protect the host from metabolic perturbation under chronic HSD conditions. These results illustrate how Drosophila and gut microbes form a symbiotic relationship under stress conditions, and changes in the gut microbiota play an important role in alleviating deleterious diet-derived effects such as hyperglycemia. Antioxid. Redox Signal. 27, 1361-1380.

  13. Alterations in the health of hibernating bats under pathogen pressure.

    Science.gov (United States)

    Bandouchova, Hana; Bartonička, Tomáš; Berkova, Hana; Brichta, Jiri; Kokurewicz, Tomasz; Kovacova, Veronika; Linhart, Petr; Piacek, Vladimir; Pikula, Jiri; Zahradníková, Alexandra; Zukal, Jan

    2018-04-17

    In underground hibernacula temperate northern hemisphere bats are exposed to Pseudogymnoascus destructans, the fungal agent of white-nose syndrome. While pathological and epidemiological data suggest that Palearctic bats tolerate this infection, we lack knowledge about bat health under pathogen pressure. Here we report blood profiles, along with body mass index (BMI), infection intensity and hibernation temperature, in greater mouse-eared bats (Myotis myotis). We sampled three European hibernacula that differ in geomorphology and microclimatic conditions. Skin lesion counts differed between contralateral wings of a bat, suggesting variable exposure to the fungus. Analysis of blood parameters suggests a threshold of ca. 300 skin lesions on both wings, combined with poor hibernation conditions, may distinguish healthy bats from those with homeostatic disruption. Physiological effects manifested as mild metabolic acidosis, decreased glucose and peripheral blood eosinophilia which were strongly locality-dependent. Hibernating bats displaying blood homeostasis disruption had 2 °C lower body surface temperatures. A shallow BMI loss slope with increasing pathogen load suggested a high degree of infection tolerance. European greater mouse-eared bats generally survive P. destructans invasion, despite some health deterioration at higher infection intensities (dependant on hibernation conditions). Conservation measures should minimise additional stressors to conserve constrained body reserves of bats during hibernation.

  14. Correlation of soil microbes and soil micro-environment under long-term safflower (Carthamus tinctorius L.) plantation in China.

    Science.gov (United States)

    Lu, Shuang; Quan, Wang; Wang, Shao-Ming; Liu, Hong-Ling; Tan, Yong; Zeng, Guang-Ping; Zhang, Xia

    2013-04-01

    Microbial community structure and ecological functions are influenced by interactions between above and belowground biota. There is an urgent need for intensive monitoring of microbes feedback of soil micro-ecosystem for setting up a good agricultural practice. Recent researches have revealed that many soils characteristic can effect microbial community structure. In the present study factors affecting microbial community structure and soil in Carthamus tinctorius plantations in arid agricultural ecosystem of northern Xinjiang, China were identified. The result of the study revealed that soil type was the key factor in safflower yield; Unscientific field management resulted high fertility level (bacteria dominant) of soil to turn to low fertility level (fungi dominant), and Detruded Canonical Correspondence Analysis (DCCA) showed that soil water content, organic matter, available N, P and K were the dominant factors affecting distribution of microbial community. Soil water content showed a significant positive correlation with soil microbes quantity (P soil microbe quantity (P < 0.05).

  15. NetCooperate: a network-based tool for inferring host-microbe and microbe-microbe cooperation

    OpenAIRE

    Levy, Roie; Carr, Rogan; Kreimer, Anat; Freilich, Shiri; Borenstein, Elhanan

    2015-01-01

    Background Host-microbe and microbe-microbe interactions are often governed by the complex exchange of metabolites. Such interactions play a key role in determining the way pathogenic and commensal species impact their host and in the assembly of complex microbial communities. Recently, several studies have demonstrated how such interactions are reflected in the organization of the metabolic networks of the interacting species, and introduced various graph theory-based methods to predict host...

  16. Transfer of Nickel from Polluted Soil to Pisum sativum L. and Raphanus sativus L. under Composted Green Amendment and Native Soil Microbes

    Directory of Open Access Journals (Sweden)

    Nafady Nivien Allam

    2017-08-01

    Full Text Available The effect of compost, inoculation with native soil microbes and their residual effects on bioavailability of nickel by peas (Pisum sativum L. and radish (Raphanus sativus L. grown on polluted soil were investigated in pot experiments. Plants were amendment with different compost levels (0, 0.2, 0.4, 0.6% of soil dry weight and inoculated with different native soil microbes (4 fungal species, one bacterial species, 4 species of arbuscular mycorrhizal fungi isolated from the polluted soil under study. Significant increases in the biomass of pea and radish plants were observed as a result of amendment application and their residual effects. The mycorrhizal dependency (MD of pea plants was lower than of radish plants. The highest reductions of Ni levels in both plants were observed by the simultaneous applications of compost with microbes or mycorrhizal fungi to polluted soils. Soil pH increased significantly (p < 0.05 as a result of applying native microbes especially with arbuscular mycorrhizal fungi (AMF alone or combined with compost. The DTPA extractability of soil Ni was significantly decreased with increasing soil pH (p < 0.05. The minimum transfer factor of Ni from polluted soil were 0.067 and 0.089 for pea and radish plants, respectively which were attained as a result of applying compost (0.6% of soil weight inoculated with mycorrhizal fungi. From the results, we can conclude that the use of compost and native soil microbes as a soil remediate could be an effective strategy for soil remediation.

  17. Gut symbiotic microbes imprint intestinal immune cells with the innate receptor SLAMF4 which contributes to gut immune protection against enteric pathogens.

    Science.gov (United States)

    Cabinian, Allison; Sinsimer, Daniel; Tang, May; Jang, Youngsoon; Choi, Bongkum; Laouar, Yasmina; Laouar, Amale

    2018-05-01

    Interactions between host immune cells and gut microbiota are crucial for the integrity and function of the intestine. How these interactions regulate immune cell responses in the intestine remains a major gap in the field. We have identified the signalling lymphocyte activation molecule family member 4 (SLAMF4) as an immunomodulator of the intestinal immunity. The aim is to determine how SLAMF4 is acquired in the gut and what its contribution to intestinal immunity is. Expression of SLAMF4 was assessed in mice and humans. The mechanism of induction was studied using GFP tg bone marrow chimaera mice, lymphotoxin α and TNLG8A-deficient mice, as well as gnotobiotic mice. Role in immune protection was revealed using oral infection with Listeria monocytogenes and Cytobacter rodentium . SLAMF4 is a selective marker of intestinal immune cells of mice and humans. SLAMF4 induction occurs directly in the intestinal mucosa without the involvement of the gut-associated lymphoid tissue. Gut bacterial products, particularly those of gut anaerobes, and gut-resident antigen-presenting cell (APC) TNLG8A are key contributors of SLAMF4 induction in the intestine. Importantly, lack of SLAMF4 expression leads the increased susceptibility of mice to infection by oral pathogens culminating in their premature death. SLAMF4 is a marker of intestinal immune cells which contributes to the protection against enteric pathogens and whose expression is dependent on the presence of the gut microbiota. This discovery provides a possible mechanism for answering the long-standing question of how the intertwining of the host and gut microbial biology regulates immune cell responses in the gut. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  18. Honey Bee Health: The Potential Role of Microbes

    Science.gov (United States)

    Microbes, are a diverse group of unicellular organisms that include bacteria, fungi, archaea, protists, and sometimes viruses. Bees carry a diverse assemblage of microbes (mostly bacteria and fungi). Very few are pathogenic; most microbes are likely commensal or even beneficial to the colony. Mic...

  19. Forest pathogens and diseases under changing climate-A review

    International Nuclear Information System (INIS)

    Raza, M. M.; Khan, M. A.; Aslam, H. M. U.; Riaz, K.

    2015-01-01

    Changing climate threatens tree health by affecting the likelihood, frequency of occurrence, types and severity of forest diseases caused by diverse pests, resultantly altering the forest ecosystems. The present review covers the relationship between climate and diverse cases of forest diseases and potential shocks of climate change on pathogens and diseases. Biotic diseases, cankers, decays, declines, foliar diseases, root diseases and stem rust of pine have been reviewed with some illustrations of potential disease effects with predicted changing climate. The impact of changing climate on host, pathogen, and their interaction will have frequent and mostly unsympathetic outcomes to forest ecosystems. By employing the proactive and modern scientific management strategies like monitoring, modeling prediction, risk rating, planning, genetic diversity and facilitated migration, genetic protection and breeding for disease resistance and relating results to forest policy, planning as well as decision making, the suspicions innate to climate change effects can be minimized. (author)

  20. Radiation induced pesticidal microbes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Yup; Lee, Y. K.; Kim, J. S.; Kim, J. K.; Lee, S. J.; Lim, D. S

    2001-01-01

    To isolate pesticidal microbes against plant pathogenic fungi, 4 strains of bacteria(K1. K3, K4, YS1) were isolated from mushroom compost and hot spring. K4, K1, K3, YS1 strain showed wide antifungal spectrum and high antifungal activities against 12 kinds of fungi. Specific proteins and the specific transcribed genes were found from the YS1 and its radiation-induced mutants. And knock-out mutants of antifungal activity were derived by transposon mutagenesis. From these knock-out mutants, the antifungal activity related genes and its modification by gamma-ray radiation are going to be studied. These results suggested that radiation could be an useful tool for the induction of functional mutants.

  1. Radiation induced pesticidal microbes

    International Nuclear Information System (INIS)

    Kim, Ki Yup; Lee, Y. K.; Kim, J. S.; Kim, J. K.; Lee, S. J.; Lim, D. S.

    2001-01-01

    To isolate pesticidal microbes against plant pathogenic fungi, 4 strains of bacteria(K1. K3, K4, YS1) were isolated from mushroom compost and hot spring. K4, K1, K3, YS1 strain showed wide antifungal spectrum and high antifungal activities against 12 kinds of fungi. Specific proteins and the specific transcribed genes were found from the YS1 and its radiation-induced mutants. And knock-out mutants of antifungal activity were derived by transposon mutagenesis. From these knock-out mutants, the antifungal activity related genes and its modification by gamma-ray radiation are going to be studied. These results suggested that radiation could be an useful tool for the induction of functional mutants

  2. NetCooperate: a network-based tool for inferring host-microbe and microbe-microbe cooperation.

    Science.gov (United States)

    Levy, Roie; Carr, Rogan; Kreimer, Anat; Freilich, Shiri; Borenstein, Elhanan

    2015-05-17

    Host-microbe and microbe-microbe interactions are often governed by the complex exchange of metabolites. Such interactions play a key role in determining the way pathogenic and commensal species impact their host and in the assembly of complex microbial communities. Recently, several studies have demonstrated how such interactions are reflected in the organization of the metabolic networks of the interacting species, and introduced various graph theory-based methods to predict host-microbe and microbe-microbe interactions directly from network topology. Using these methods, such studies have revealed evolutionary and ecological processes that shape species interactions and community assembly, highlighting the potential of this reverse-ecology research paradigm. NetCooperate is a web-based tool and a software package for determining host-microbe and microbe-microbe cooperative potential. It specifically calculates two previously developed and validated metrics for species interaction: the Biosynthetic Support Score which quantifies the ability of a host species to supply the nutritional requirements of a parasitic or a commensal species, and the Metabolic Complementarity Index which quantifies the complementarity of a pair of microbial organisms' niches. NetCooperate takes as input a pair of metabolic networks, and returns the pairwise metrics as well as a list of potential syntrophic metabolic compounds. The Biosynthetic Support Score and Metabolic Complementarity Index provide insight into host-microbe and microbe-microbe metabolic interactions. NetCooperate determines these interaction indices from metabolic network topology, and can be used for small- or large-scale analyses. NetCooperate is provided as both a web-based tool and an open-source Python module; both are freely available online at http://elbo.gs.washington.edu/software_netcooperate.html.

  3. The microbe-free plant: fact or artefact?

    Directory of Open Access Journals (Sweden)

    Laila P. Pamela Partida-Martinez

    2011-12-01

    Full Text Available Plant-microbe interactions are ubiquitous. Plants are often colonized by pathogens but even more commonly engaged in neutral or mutualistic interactions with microbes: below-ground microbial plant associates are mycorrhizal fungi, Rhizobia and rhizosphere bacteria, above-ground plant parts are colonized by bacterial and fungal endophytes and by microbes in the phyllosphere. We emphasize here that a completely microbe-free plant is an exotic exception rather than the biologically relevant rule. The complex interplay of such microbial communities with the host plant affects plant nutrition, growth rate, resistance to biotic and abiotic stress, and plant survival and distribution. The mechanisms involved reach from nutrient acquisition, the production of plant hormones or direct antibiosis to effects on host resistance genes or interactions at higher trophic levels. Plant-associated microbes are heterotrophic and cause costs to their host plant, whereas the benefits depend on the environment. Thus, the outcome of the interaction is highly context-dependent. Considering the microbe-free plant as the ‘normal’ or control stage significantly impairs research into important phenomena such as (1 phenotypic and epigenetic plasticity, (2 the ‘normal’ ecological outcome of a given interaction and (3 the evolution of plants. For the future, we suggest cultivation-independent screening methods using direct PCR from plant tissue of more than one fungal and bacterial gene to collect data on the true microbial diversity in wild plants. The patterns found could be correlated to host species and environmental conditions, in order to formulate testable hypotheses on the biological roles of plant endophytes in nature. Experimental approaches should compare different host-endophyte combinations under various environmental conditions and study at the genetic, transcriptional and physiological level the parameters that shift the interaction along the mutualism

  4. Effect of feed to microbe ratios on anaerobic digestion of Chinese cabbage waste under mesophilic and thermophilic conditions: biogas potential and kinetic study.

    Science.gov (United States)

    Kafle, Gopi Krishna; Bhattarai, Sujala; Kim, Sang Hun; Chen, Lide

    2014-01-15

    The objective of this study was to investigate the effect of the feed-to-microbe (F/M) ratios on anaerobic digestion of Chinese cabbage waste (CCW) generated from a kimchi factory. The batch test was conducted for 96 days under mesophilic (36.5 °C) (Experiment I) and thermophilic (55 °C) conditions (Experiment II) at F/M ratios of 0.5, 1.0 and 2.0. The first-order kinetic model was evaluated for methane yield. The biogas yield in terms of volatile solids (VS) added increased from 591 to 677 mL/g VS under mesophilic conditions and 434 to 639 mL/g VS under thermophilic conditions when the F/M ratio increased from 0.5 to 2.0. Similarly, the volumetric biogas production increased from 1.479 to 6.771 L/L under mesophilic conditions and from 1.086 to 6.384 L/L under thermophilic conditions when F/M ratio increased from 0.5 to 2.0. The VS removal increased from 59.4 to 75.6% under mesophilic conditions and from 63.5 to 78.3% under thermophilic conditions when the F/M ratio increased from 0.5 to 2.0. The first-order kinetic constant (k, 1/day) decreased under the mesophilic temperature conditions and increased under thermophilic conditions when the F/M ratio increased from 0.5 to 2.0. The difference between the experimental and predicted methane yield was in the range of 3.4-14.5% under mesophilic conditions and in the range of 1.1-3.0% under thermophilic conditions. The predicted methane yield derived from the first-order kinetic model was in good agreement with the experimental results. Published by Elsevier Ltd.

  5. A COMPARATIVE STUDY OF EXTRACT OF SUCCULENT LEAVES OF LIVING PLANT WITH METHANOLIC AND AQUEOUS EXTRACT OF BERLERIA LUPULINA LINDL. AGAINST PATHOGENIC MICROBES BY DISC DIFFUSION AND SPECTROPHOTOMETRY

    Directory of Open Access Journals (Sweden)

    Shibabrata Pattanayak

    2014-12-01

    Full Text Available Berleria lupulina Lindl. was evaluated for its reported antimicrobial activity in a novel way. The extract of succulent leaves collected from living plant was studied along with conventional methanolic and watery extracts made from the dry leaves of the plant. The extracts were tested on three pathogenic bacteria and the antimicrobial activity was tested both by conventional single disc diffusion method and a novel Spectrophotometric method. In disc diffusion study, it was found that the methanolic extract (100 mg/ml. and 200 mg/ ml. diluted in 70% of methanol and extract of succulent leaves can induce 12 mm, 13 mm and 14 mm diameter zone of inhibition comparable with 24 mm of Ceftriaxone against Escherichia coli. The zone of inhibition against Staphylococcus aureus were 13 mm, 14 mm, 15 mm and 25 mm and against Salmonella enteritides were 12 mm, 14 mm, 15 mm and 28 mm correspondingly. The watery extract made from the dry plant and the methanolic extract diluted in water failed to induce any inhibition in growth of the organisms. In spectrophotometric study, the methanolic extract showed antimicrobial efficacy in the concentration of 10 mg/ml. or above against Salmonella enteritides and Staphylococcus aureus. But against Escherichia coli, effective control was found in 20 mg/ml concentration. The fresh extract of the plant showed antimicrobial efficacy in the concentration of 16.5%. The anti microbial efficacy above that concentration cannot be detected in the available spectrophotometrical method for presence of color material in that fresh extract.

  6. Metagenomic analysis of medicinal Cannabis samples; pathogenic bacteria, toxigenic fungi, and beneficial microbes grow in culture-based yeast and mold tests [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Kevin McKernan

    2016-10-01

    Full Text Available Background: The presence of bacteria and fungi in medicinal or recreational Cannabis poses a potential threat to consumers if those microbes include pathogenic or toxigenic species. This study evaluated two widely used culture-based platforms for total yeast and mold (TYM testing marketed by 3M Corporation and Biomérieux, in comparison with a quantitative PCR (qPCR approach marketed by Medicinal Genomics Corporation. Methods: A set of 15 medicinal Cannabis samples were analyzed using 3M and Biomérieux culture-based platforms and by qPCR to quantify microbial DNA. All samples were then subjected to next-generation sequencing and metagenomics analysis to enumerate the bacteria and fungi present before and after growth on culture-based media. Results: Several pathogenic or toxigenic bacterial and fungal species were identified in proportions of >5% of classified reads on the samples, including Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa, Ralstonia pickettii, Salmonella enterica, Stenotrophomonas maltophilia, Aspergillus ostianus, Aspergillus sydowii, Penicillium citrinum and Penicillium steckii. Samples subjected to culture showed substantial shifts in the number and diversity of species present, including the failure of Aspergillus species to grow well on either platform. Substantial growth of Clostridium botulinum and other bacteria were frequently observed on one or both of the culture-based TYM platforms. The presence of plant growth promoting (beneficial fungal species further influenced the differential growth of species in the microbiome of each sample. Conclusions: These findings have important implications for the Cannabis and food safety testing industries.

  7. IL-1β promotes the differentiation of polyfunctional human CCR6+CXCR3+ Th1/17 cells that are specific for pathogenic and commensal microbes1

    Science.gov (United States)

    Duhen, Thomas; Campbell, Daniel J

    2014-01-01

    In humans, Th1/17 cells, identified by co-expression of the chemokine receptors CCR6 and CXCR3, have been proposed to be highly pathogenic in several autoimmune disorders due in part to their expression of the pro-inflammatory cytokines IL-17, IFN-γ and GM-CSF. However, their developmental requirements, relationship with “classic” Th17 and Th1 cells and physiological role in normal immune responses are not well understood. Here, we examined CCR6+CXCR3+ Th1/17 cells from healthy individuals, and found that ex vivo those cells produced the effector cytokines IL-17, IL-22 and IFN-γ in all possible combinations, and were highly responsive to both IL-12 and IL-23. Moreover, although the antigen specificity of CCR6+CXCR3+ Th1/17 cells showed substantial overlap with that of Th1 and Th17 cells, this population was enriched in cells recognizing certain extracellular bacteria and expressing the intestinal homing receptor integrin β7. Finally, we identified IL-1β as a key cytokine that renders Th17 cells sensitive to IL-12, and both cytokines together potently induced the differentiation of cells that produce IL-17, IFN-γ and GM-CSF. Therefore, interfering with IL-1β and IL-12 signaling in Th17 cells during inflammation may be a promising therapeutic approach to reduce their differentiation into “pathogenic” CCR6+CXCR3+ Th1/17 cells in patients with autoimmune diseases. PMID:24890729

  8. Appraisal of Microbial Evolution to Commensalism and Pathogenicity in Humans

    Directory of Open Access Journals (Sweden)

    Asit Ranjan Ghosh

    2013-01-01

    Full Text Available The human body is host to a number of microbes occurring in various forms of host-microbe associations, such as commensals, mutualists, pathogens and opportunistic symbionts. While this association with microbes in certain cases is beneficial to the host, in many other cases it seems to offer no evident benefit or motive. The emergence and re-emergence of newer varieties of infectious diseases with causative agents being strains that were once living in the human system makes it necessary to study the environment and the dynamics under which this host microbe relationship thrives. The present discussion examines this interaction while tracing the origins of this association, and attempts to hypothesize a possible framework of selective pressures that could have lead microbes to inhabit mammalian host systems.

  9. The plant pathogen Pseudomonas syringae pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity.

    Directory of Open Access Journals (Sweden)

    Rongman Cai

    2011-08-01

    Full Text Available Recently, genome sequencing of many isolates of genetically monomorphic bacterial human pathogens has given new insights into pathogen microevolution and phylogeography. Here, we report a genome-based micro-evolutionary study of a bacterial plant pathogen, Pseudomonas syringae pv. tomato. Only 267 mutations were identified between five sequenced isolates in 3,543,009 nt of analyzed genome sequence, which suggests a recent evolutionary origin of this pathogen. Further analysis with genome-derived markers of 89 world-wide isolates showed that several genotypes exist in North America and in Europe indicating frequent pathogen movement between these world regions. Genome-derived markers and molecular analyses of key pathogen loci important for virulence and motility both suggest ongoing adaptation to the tomato host. A mutational hotspot was found in the type III-secreted effector gene hopM1. These mutations abolish the cell death triggering activity of the full-length protein indicating strong selection for loss of function of this effector, which was previously considered a virulence factor. Two non-synonymous mutations in the flagellin-encoding gene fliC allowed identifying a new microbe associated molecular pattern (MAMP in a region distinct from the known MAMP flg22. Interestingly, the ancestral allele of this MAMP induces a stronger tomato immune response than the derived alleles. The ancestral allele has largely disappeared from today's Pto populations suggesting that flagellin-triggered immunity limits pathogen fitness even in highly virulent pathogens. An additional non-synonymous mutation was identified in flg22 in South American isolates. Therefore, MAMPs are more variable than expected differing even between otherwise almost identical isolates of the same pathogen strain.

  10. Survival of pathogenic bacteria under nutrient starvation conditions. [aboard orbiting space stations

    Science.gov (United States)

    Boyle, Michael; Ford, Tim; Mitchell, Ralph; Maki, James

    1990-01-01

    The survival of opportunistic pathogenic microorganisms in water, under nutrient-limiting conditions, has been investigated in order to ascertain whether human pathogens can survive within a water-distribution system of the kind proposed for the NASA Space Station. Cultures of a strain of pseudomonas aeruginosa and two strains of staphylococcus aureus were incubated at 10, 25, or 37 C, and samples at 1 day, 1 week, 1 month, and six weeks. While neither of the staphylococcus strains tested were detected after 1 week of starvation, the pseudomonas strain can survive in deionized water at all three temperatures.

  11. Application of RNA-seq and Bioimaging Methods to Study Microbe-Microbe Interactions and Their Effects on Biofilm Formation and Gene Expression

    DEFF Research Database (Denmark)

    Amador Hierro, Cristina Isabel; Sternberg, Claus; Jelsbak, Lars

    2017-01-01

    Complex interactions between pathogenic bacteria, the microbiota, and the host can modify pathogen physiology and behavior. We describe two different experimental approaches to study microbe-microbe interactions in in vitro systems containing surface-associated microbial populations. One method i...

  12. Survival of viral pathogens in animal feed ingredients under transboundary shipping models

    Science.gov (United States)

    Bauermann, Fernando V.; Niederwerder, Megan C.; Singrey, Aaron; Clement, Travis; de Lima, Marcelo; Long, Craig; Patterson, Gilbert; Sheahan, Maureen A.; Stoian, Ana M. M.; Petrovan, Vlad; Jones, Cassandra K.; De Jong, Jon; Ji, Ju; Spronk, Gordon D.; Minion, Luke; Christopher-Hennings, Jane; Zimmerman, Jeff J.; Rowland, Raymond R. R.; Nelson, Eric; Sundberg, Paul; Diel, Diego G.

    2018-01-01

    The goal of this study was to evaluate survival of important viral pathogens of livestock in animal feed ingredients imported daily into the United States under simulated transboundary conditions. Eleven viruses were selected based on global significance and impact to the livestock industry, including Foot and Mouth Disease Virus (FMDV), Classical Swine Fever Virus (CSFV), African Swine Fever Virus (ASFV), Influenza A Virus of Swine (IAV-S), Pseudorabies virus (PRV), Nipah Virus (NiV), Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), Swine Vesicular Disease Virus (SVDV), Vesicular Stomatitis Virus (VSV), Porcine Circovirus Type 2 (PCV2) and Vesicular Exanthema of Swine Virus (VESV). Surrogate viruses with similar genetic and physical properties were used for 6 viruses. Surrogates belonged to the same virus families as target pathogens, and included Senecavirus A (SVA) for FMDV, Bovine Viral Diarrhea Virus (BVDV) for CSFV, Bovine Herpesvirus Type 1 (BHV-1) for PRV, Canine Distemper Virus (CDV) for NiV, Porcine Sapelovirus (PSV) for SVDV and Feline Calicivirus (FCV) for VESV. For the remaining target viruses, actual pathogens were used. Virus survival was evaluated using Trans-Pacific or Trans-Atlantic transboundary models involving representative feed ingredients, transport times and environmental conditions, with samples tested by PCR, VI and/or swine bioassay. SVA (representing FMDV), FCV (representing VESV), BHV-1 (representing PRV), PRRSV, PSV (representing SVDV), ASFV and PCV2 maintained infectivity during transport, while BVDV (representing CSFV), VSV, CDV (representing NiV) and IAV-S did not. Notably, more viruses survived in conventional soybean meal, lysine hydrochloride, choline chloride, vitamin D and pork sausage casings. These results support published data on transboundary risk of PEDV in feed, demonstrate survival of certain viruses in specific feed ingredients (“high-risk combinations”) under conditions simulating transport between

  13. Microbial antagonism as a potential solution for controlling selected root pathogens of crops

    Science.gov (United States)

    Cooper, Sarah; Agnew, Linda; Pereg, Lily

    2016-04-01

    Root pathogens of crops can cause large reduction in yield, however, there is a limited range of effective methods to control such pathogens. Soilborne pathogens that infect roots often need to survive in the rhizosphere, where there is high competition from other organisms. In such hot spots of microbial activity and growth, supported by root exudates, microbes have evolved antagonistic mechanisms that give them competitive advantages in winning the limited resources. Among these mechanisms is antibiosis, with production of some significant antifungal compounds including, antibiotics, volatile organic compounds, hydrogen cyanide and lytic enzymes. Some of these mechanisms may suppress disease through controlling the growth of root pathogens. In this project we isolated various fungi and bacteria that suppress the growth of cotton pathogens in vitro. The pathogen-suppressive microbes were isolated from cotton production soils that are under different management strategies, with and without the use of organic amendments. The potential of pathogen-suppressing microbes for controlling the black root rot disease, caused by the soilborne pathogen Thielaviopsis basicola, was confirmed using soil assays. We identified isolates with potential use as inoculant for cotton production in Australia. Having isolated a diverse group of antagonistic microbes enhances the probability that some would survive well in the soil and provide an alternative approach to address the problem of root disease affecting agricultural crops.

  14. Rapid screening for entry inhibitors of highly pathogenic viruses under low-level biocontainment.

    Directory of Open Access Journals (Sweden)

    Aparna Talekar

    Full Text Available Emerging viruses including Nipah, Hendra, Lujo, and Junin viruses have enormous potential to spread rapidly. Nipah virus, after emerging as a zoonosis, has also evolved the capacity for human-to-human transmission. Most of the diseases caused by these pathogens are untreatable and require high biocontainment conditions. Universal methods for rapidly identifying and screening candidate antivirals are urgently needed. We have developed a modular antiviral platform strategy that relies on simple bioinformatic and genetic information about each pathogen. Central to this platform is the use of envelope glycoprotein cDNAs to establish multi-cycle replication systems under BSL2 conditions for viral pathogens that normally require BSL3 and BSL4 facilities. We generated monoclonal antibodies against Nipah G by cDNA immunization in rats, and we showed that these antibodies neutralize both Nipah and Hendra live viruses. We then used these effective Henipavirus inhibitors to validate our screening strategy. Our proposed strategy should contribute to the response capability for emerging infectious diseases, providing a way to initiate antiviral development immediately upon identifying novel viruses.

  15. MEMS and the microbe

    NARCIS (Netherlands)

    Ingham, C.J.; Vlieg, J.E.T.V.H.

    2008-01-01

    In recent years, relatively simple MEMS fabrications have helped accelerate our knowledge of the microbial cell. Current progress and challenges in the application of lab-on-a-chip devices to the viable microbe are reviewed. Furthermore, the degree to which microbiologists are becoming the engineers

  16. Meet the Microbes through the Microbe World Activities with Microbe the Magnificent and Mighty Microbe.

    Science.gov (United States)

    Frame, Kathy, Ed.; Ryan, Karen, Ed.

    The activities presented in this book are the product of the Community Outreach Initiative of the Microbial Literacy Collaborative (MLC). This activity book presents a balanced view of microbes, their benefits, and the diseases they cause. Each activity starts with an interesting introductory statement and includes goals, activity time, time to…

  17. A metasystem of framework model organisms to study emergence of new host-microbe adaptations.

    Science.gov (United States)

    Gopalan, Suresh; Ausubel, Frederick M

    2008-01-01

    An unintended consequence of global industrialization and associated societal rearrangements is new interactions of microbes and potential hosts (especially mammals and plants), providing an opportunity for the rapid emergence of host-microbe adaptation and eventual establishment of new microbe-related diseases. We describe a new model system comprising the model plant Arabidopsis thaliana and several microbes, each representing different modes of interaction, to study such "maladaptations". The model microbes include human and agricultural pathogens and microbes that are commonly considered innocuous. The system has a large knowledge base corresponding to each component organism and is amenable to high-throughput automation assisted perturbation screens for identifying components that modulate host-pathogen interactions. This would aid in the study of emergence and progression of host-microbe maladaptations in a controlled environment.

  18. Molecular ecology of aquatic microbes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Abstracts of reports are presented from a meeting on Molecular Ecology of Aquatic Microbes. Topics included: opportunities offered to aquatic ecology by molecular biology; the role of aquatic microbes in biogeochemical cycles; characterization of the microbial community; the effect of the environment on aquatic microbes; and the targeting of specific biological processes.

  19. Endogenous System Microbes as Treatment Process ...

    Science.gov (United States)

    Monitoring the efficacy of treatment strategies to remove pathogens in decentralized systems remains a challenge. Evaluating log reduction targets by measuring pathogen levels is hampered by their sporadic and low occurrence rates. Fecal indicator bacteria are used in centralized systems to indicate the presence of fecal pathogens, but are ineffective decentralized treatment process indicators as they generally occur at levels too low to assess log reduction targets. System challenge testing by spiking with high loads of fecal indicator organisms, like MS2 coliphage, has limitations, especially for large systems. Microbes that are endogenous to the decentralized system, occur in high abundances and mimic removal rates of bacterial, viral and/or parasitic protozoan pathogens during treatment could serve as alternative treatment process indicators to verify log reduction targets. To identify abundant microbes in wastewater, the bacterial and viral communities were examined using deep sequencing. Building infrastructure-associated bacteria, like Zoogloea, were observed as dominant members of the bacterial community in graywater. In blackwater, bacteriophage of the order Caudovirales constituted the majority of contiguous sequences from the viral community. This study identifies candidate treatment process indicators in decentralized systems that could be used to verify log removal during treatment. The association of the presence of treatment process indic

  20. Textiles and Microbes

    Science.gov (United States)

    Freney, Jean; Renaud, François N. R.

    Microbes can be carried by and even multiply on textiles. The first real, premeditated, microbiological warfare happened in 1763, during the Anglo-French wars in North America, when Native American emissaries were given blankets or handkerchiefs contaminated with smallpox. Thus, a small epidemic started and spread rapidly, causing considerable damage to the rank and file of the Native Americans. Nowadays, it could be said that textiles could be vectors of infections in hospitals or communities. The making of antimicrobial textiles could prevent them from becoming a reservoir of microbes in the transmission of infections and in cases of voluntary contamination in a terrorist threat for example. However, methods have to show that textiles are really active and do not attack the cutaneous flora they are in contact with. In this chapter, the role of textiles in the transmission of infections is summarized and the main characteristics of antimicrobial textiles are described.

  1. TrpA1 Regulates Defecation of Food-Borne Pathogens under the Control of the Duox Pathway.

    Directory of Open Access Journals (Sweden)

    Eun Jo Du

    2016-01-01

    Full Text Available Pathogen expulsion from the gut is an important defense strategy against infection, but little is known about how interaction between the intestinal microbiome and host immunity modulates defecation. In Drosophila melanogaster, dual oxidase (Duox kills pathogenic microbes by generating the microbicidal reactive oxygen species (ROS, hypochlorous acid (HOCl in response to bacterially excreted uracil. The physiological function of enzymatically generated HOCl in the gut is, however, unknown aside from its anti-microbial activity. Drosophila TRPA1 is an evolutionarily conserved receptor for reactive chemicals like HOCl, but a role for this molecule in mediating responses to gut microbial content has not been described. Here we identify a molecular mechanism through which bacteria-produced uracil facilitates pathogen-clearing defecation. Ingestion of uracil increases defecation frequency, requiring the Duox pathway and TrpA1. The TrpA1(A transcript spliced with exon10b (TrpA1(A10b that is present in a subset of midgut enteroendocrine cells (EECs is critical for uracil-dependent defecation. TRPA1(A10b heterologously expressed in Xenopus oocytes is an excellent HOCl receptor characterized with elevated sensitivity and fast activation kinetics of macroscopic HOCl-evoked currents compared to those of the alternative TRPA1(A10a isoform. Consistent with TrpA1's role in defecation, uracil-excreting Erwinia carotovora showed higher persistence in TrpA1-deficient guts. Taken together, our results propose that the uracil/Duox pathway promotes bacteria expulsion from the gut through the HOCl-sensitive receptor, TRPA1(A10b, thereby minimizing the chances that bacteria adapt to survive host defense systems.

  2. Ecological suicide in microbes.

    Science.gov (United States)

    Ratzke, Christoph; Denk, Jonas; Gore, Jeff

    2018-05-01

    The growth and survival of organisms often depend on interactions between them. In many cases, these interactions are positive and caused by a cooperative modification of the environment. Examples are the cooperative breakdown of complex nutrients in microbes or the construction of elaborate architectures in social insects, in which the individual profits from the collective actions of her peers. However, organisms can similarly display negative interactions by changing the environment in ways that are detrimental for them, for example by resource depletion or the production of toxic byproducts. Here we find an extreme type of negative interactions, in which Paenibacillus sp. bacteria modify the environmental pH to such a degree that it leads to a rapid extinction of the whole population, a phenomenon that we call ecological suicide. Modification of the pH is more pronounced at higher population densities, and thus ecological suicide is more likely to occur with increasing bacterial density. Correspondingly, promoting bacterial growth can drive populations extinct whereas inhibiting bacterial growth by the addition of harmful substances-such as antibiotics-can rescue them. Moreover, ecological suicide can cause oscillatory dynamics, even in single-species populations. We found ecological suicide in a wide variety of microbes, suggesting that it could have an important role in microbial ecology and evolution.

  3. Biofuels: from microbes to molecules

    National Research Council Canada - National Science Library

    Lu, Xuefeng

    2014-01-01

    .... The production of different biofuel molecules including hydrogen, methane, ethanol, butanol, higher chain alcohols, isoprenoids and fatty acid derivatives, from genetically engineered microbes...

  4. Factors Affecting Pathogen Survival in Finished Dairy Compost with Different Particle Sizes Under Greenhouse Conditions.

    Science.gov (United States)

    Diao, Junshu; Chen, Zhao; Gong, Chao; Jiang, Xiuping

    2015-09-01

    This study investigated the survival of Escherichia coli O157:H7 and Salmonella Typhimurium in finished dairy compost with different particle sizes during storage as affected by moisture content and temperature under greenhouse conditions. The mixture of E. coli O157:H7 and S. Typhimurium strains was inoculated into the finished composts with moisture contents of 20, 30, and 40%, separately. The finished compost samples were then sieved into 3 different particle sizes (>1000, 500-1000, and 500 μm) and stored under greenhouse conditions. For compost samples with moisture contents of 20 and 30%, the average Salmonella reductions in compost samples with particle sizes of >1000, 500-1000, and 500 μm were 2.15, 2.27, and 2.47 log colony-forming units (CFU) g(-1) within 5 days of storage in summer, respectively, as compared with 1.60, 2.03, and 2.26 log CFU g(-1) in late fall, respectively, and 2.61, 3.33, and 3.67 log CFU g(-1) in winter, respectively. The average E. coli O157:H7 reductions in compost samples with particle sizes of >1000, 500-1000, and 500 μm were 1.98, 2.30, and 2.54 log CFU g(-1) within 5 days of storage in summer, respectively, as compared with 1.70, 2.56, and 2.90 log CFU g(-1) in winter, respectively. Our results revealed that both Salmonella and E. coli O157:H7 in compost samples with larger particle size survived better than those with smaller particle sizes, and the initial rapid moisture loss in compost may contribute to the fast inactivation of pathogens in the finished compost. For the same season, the pathogens in the compost samples with the same particle size survived much better at the initial moisture content of 20% compared to 40%.

  5. Prediction of pathogen growth on iceberg lettuce under real temperature history during distribution from farm to table.

    Science.gov (United States)

    Koseki, Shigenobu; Isobe, Seiichiro

    2005-10-25

    The growth of pathogenic bacteria Escherichia coli O157:H7, Salmonella spp., and Listeria monocytogenes on iceberg lettuce under constant and fluctuating temperatures was modelled in order to estimate the microbial safety of this vegetable during distribution from the farm to the table. Firstly, we examined pathogen growth on lettuce at constant temperatures, ranging from 5 to 25 degrees C, and then we obtained the growth kinetic parameters (lag time, maximum growth rate (micro(max)), and maximum population density (MPD)) using the Baranyi primary growth model. The parameters were similar to those predicted by the pathogen modelling program (PMP), with the exception of MPD. The MPD of each pathogen on lettuce was 2-4 log(10) CFU/g lower than that predicted by PMP. Furthermore, the MPD of pathogens decreased with decreasing temperature. The relationship between mu(max) and temperature was linear in accordance with Ratkowsky secondary model as was the relationship between the MPD and temperature. Predictions of pathogen growth under fluctuating temperature used the Baranyi primary microbial growth model along with the Ratkowsky secondary model and MPD equation. The fluctuating temperature profile used in this study was the real temperature history measured during distribution from the field at harvesting to the retail store. Overall predictions for each pathogen agreed well with observed viable counts in most cases. The bias and root mean square error (RMSE) of the prediction were small. The prediction in which mu(max) was based on PMP showed a trend of overestimation relative to prediction based on lettuce. However, the prediction concerning E. coli O157:H7 and Salmonella spp. on lettuce greatly overestimated growth in the case of a temperature history starting relatively high, such as 25 degrees C for 5 h. In contrast, the overall prediction of L. monocytogenes under the same circumstances agreed with the observed data.

  6. Microbe-microbe interactions in mixed culture food fermentations

    NARCIS (Netherlands)

    Smid, E.J.; Lacroix, C.

    2013-01-01

    Most known natural and industrial food fermentation processes are driven by either simple or complex communities of microorganisms. Obviously, these fermenting microbes will not only interact with the fermentable substrate but also with each other. These microbe–microbe interactions are complex but

  7. Mining with microbes

    International Nuclear Information System (INIS)

    Rawlings., D.E.; Silver, S.

    1995-01-01

    Microbes are playing increasingly important roles in commercial mining operations, where they are being used in the open-quotes bioleachingclose quotes of copper, uranium, and gold ores. Direct leaching is when microbial metabolism changes the redox state of the metal being harvested, rendering it more soluble. Indirect leaching includes redox chemistry of other metal cations that are then coupled in chemical oxidation or reduction of the harvested metal ion and microbial attack upon and solubilization of the mineral matrix in which the metal is physically embedded. In addition, bacterial cells are used to detoxify the waste cyanide solution from gold-mining operations and as open-quotes absorbantsclose quotes of the mineral cations. Bacterial cells may replace activated carbon or alternative biomass. With an increasing understanding of microbial physiology, biochemistry and molecular genetics, rational approaches to improving these microbial activities become possible. 40 refs., 3 figs

  8. Microbe Phobia and Kitchen Microbiology.

    Science.gov (United States)

    Williams, Robert P.; Gillen, Alan L.

    1991-01-01

    The authors present an exercise designed to help students overcome the misconception that most microbes make people sick. The activity helps students of all ages understand the important benefits of microbes such as in making bread, soy sauce, cheese, and wine. The role of microorganisms in processing cocoa and coffee and growing plants is also…

  9. The Microbe Directory: An annotated, searchable inventory of microbes' characteristics.

    Science.gov (United States)

    Shaaban, Heba; Westfall, David A; Mohammad, Rawhi; Danko, David; Bezdan, Daniela; Afshinnekoo, Ebrahim; Segata, Nicola; Mason, Christopher E

    2018-01-05

    The Microbe Directory is a collective research effort to profile and annotate more than 7,500 unique microbial species from the MetaPhlAn2 database that includes bacteria, archaea, viruses, fungi, and protozoa. By collecting and summarizing data on various microbes' characteristics, the project comprises a database that can be used downstream of large-scale metagenomic taxonomic analyses, allowing one to interpret and explore their taxonomic classifications to have a deeper understanding of the microbial ecosystem they are studying. Such characteristics include, but are not limited to: optimal pH, optimal temperature, Gram stain, biofilm-formation, spore-formation, antimicrobial resistance, and COGEM class risk rating. The database has been manually curated by trained student-researchers from Weill Cornell Medicine and CUNY-Hunter College, and its analysis remains an ongoing effort with open-source capabilities so others can contribute. Available in SQL, JSON, and CSV (i.e. Excel) formats, the Microbe Directory can be queried for the aforementioned parameters by a microorganism's taxonomy. In addition to the raw database, The Microbe Directory has an online counterpart ( https://microbe.directory/) that provides a user-friendly interface for storage, retrieval, and analysis into which other microbial database projects could be incorporated. The Microbe Directory was primarily designed to serve as a resource for researchers conducting metagenomic analyses, but its online web interface should also prove useful to any individual who wishes to learn more about any particular microbe.

  10. Biofuels from microbes

    Energy Technology Data Exchange (ETDEWEB)

    Antoni, D. [Technische Univ. Muenchen, Freising-Weihenstephan (Germany). Inst. of Resource and Energy Technology; Zverlov, V.V.; Schwarz, W.H. [Technische Univ. Muenchen, Freising-Weihenstephan (Germany). Dept. of Microbiology

    2007-11-15

    Today, biomass covers about 10% of the world's primary energy demand. Against a backdrop of rising crude oil prices, depletion of resources, political instability in producing countries and environmental challenges, besides efficiency and intelligent use, only biomass has the potential to replace the supply of an energy hungry civilisation. Plant biomass is an abundant and renewable source of energy-rich carbohydrates which can be efficiently converted by microbes into biofuels, of which, only bioethanol is produced on an industrial scale today. Biomethane is produced on a large scale, but is not yet utilised for transportation. Biobutanol is on the agenda of several companies and may be used in the near future as a supplement for gasoline, diesel and kerosene, as well as contributing to the partially biological production of butyl-t-butylether, BTBE as does bioethanol today with ETBE. Biohydrogen, biomethanol and microbially made biodiesel still require further development. This paper reviews microbially made biofuels which have potential to replace our present day fuels, either alone, by blending, or by chemical conversion. It also summarises the history of biofuels and provides insight into the actual production in various countries, reviewing their policies and adaptivity to the energy challenges of foreseeable future. (orig.)

  11. The Study of the Microbes Degraded Polystyrene

    Directory of Open Access Journals (Sweden)

    Zhi-Long Tang

    2017-01-01

    Full Text Available Under the observation that Tenebrio molitor and Zophobas morio could eat polystyrene (PS, we setup the platform to screen the gut microbes of these two worms. To take advantage of that Tenebrio molitor and Zophobas morio can eat and digest polystyrene as its diet, we analyzed these special microbes with PS plate and PS turbidity system with time courses. There were two strains TM1 and ZM1 which isolated from Tenebrio molitor and Zophobas morio, and were identified by 16S rDNA sequencing. The results showed that TM1 and ZM1 were cocci-like and short rod shape Gram-negative bacteria under microscope. The PS plate and turbidity assay showed that TM1 and ZM1 could utilize polystyrene as their carbon sources. The further study of PS degraded enzyme and cloning warrants our attention that this platform will be an excellent tools to explore and solve this problem.

  12. Host-microbe interactions in the gut of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Takayuki eKuraishi

    2013-12-01

    Full Text Available Many insect species subsist on decaying and contaminated matter and are thus exposed to large quantities of microorganisms. To control beneficial commensals and combat infectious pathogens, insects must be armed with efficient systems for microbial recognition, signaling pathways, and effector molecules. The molecular mechanisms regulating these host-microbe interactions in insects have been largely clarified in Drosophila melanogaster with its powerful genetic and genomic tools. Here we review recent advances in this field, focusing mainly on the relationships between microbes and epithelial cells in the intestinal tract where the host exposure to the external environment is most frequent.

  13. Genes under positive selection in a model plant pathogenic fungus, Botrytis.

    Science.gov (United States)

    Aguileta, Gabriela; Lengelle, Juliette; Chiapello, Hélène; Giraud, Tatiana; Viaud, Muriel; Fournier, Elisabeth; Rodolphe, François; Marthey, Sylvain; Ducasse, Aurélie; Gendrault, Annie; Poulain, Julie; Wincker, Patrick; Gout, Lilian

    2012-07-01

    The rapid evolution of particular genes is essential for the adaptation of pathogens to new hosts and new environments. Powerful methods have been developed for detecting targets of selection in the genome. Here we used divergence data to compare genes among four closely related fungal pathogens adapted to different hosts to elucidate the functions putatively involved in adaptive processes. For this goal, ESTs were sequenced in the specialist fungal pathogens Botrytis tulipae and Botrytis ficariarum, and compared with genome sequences of Botrytis cinerea and Sclerotinia sclerotiorum, responsible for diseases on over 200 plant species. A maximum likelihood-based analysis of 642 predicted orthologs detected 21 genes showing footprints of positive selection. These results were validated by resequencing nine of these genes in additional Botrytis species, showing they have also been rapidly evolving in other related species. Twenty of the 21 genes had not previously been identified as pathogenicity factors in B. cinerea, but some had functions related to plant-fungus interactions. The putative functions were involved in respiratory and energy metabolism, protein and RNA metabolism, signal transduction or virulence, similarly to what was detected in previous studies using the same approach in other pathogens. Mutants of B. cinerea were generated for four of these genes as a first attempt to elucidate their functions. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Economic values and expected effect of selection index for pathogen-specific mastitis under Danish conditions

    DEFF Research Database (Denmark)

    Sørensen, Lars Peter; Mark, Thomas; Sørensen, M.K.

    2010-01-01

    The objectives of this study were 1) to estimate costs related to 5 different pathogen-specific mastitis traits (susceptibility to different pathogens causing mastitis in dairy cattle) and unspecific mastitis, and 2) to compare selection differentials for an udder health index consisting of 5...... different pathogen-specific mastitis traits and lactation average somatic cell count from 5 to 170 d after first calving (LASCC170) with another index consisting of 1 unspecific mastitis trait and LASCC170. Economic values were estimated for mastitis caused by Staphylococcus aureus, Streptococcus...... dysgalactiae, Escherichia coli, coagulase-negative staphylococci, and Streptococcus uberis using a stochastic simulation model (SimHerd IV). Mastitis incidences for SimHerd IV were from incidences of mastitis treatments in primiparous Danish Holstein cows calving in 2007. Estimated costs ranged from 149 euro...

  15. The Interactomic Analysis Reveals Pathogenic Protein Networks in Phomopsis longicolla Underlying Seed Decay of Soybean

    Directory of Open Access Journals (Sweden)

    Shuxian Li

    2018-04-01

    Full Text Available Phomopsis longicolla T. W. Hobbs (syn. Diaporthe longicolla is the primary cause of Phomopsis seed decay (PSD in soybean, Glycine max (L. Merrill. This disease results in poor seed quality and is one of the most economically important seed diseases in soybean. The objectives of this study were to infer protein–protein interactions (PPI and to identify conserved global networks and pathogenicity subnetworks in P. longicolla including orthologous pathways for cell signaling and pathogenesis. The interlog method used in the study identified 215,255 unique PPIs among 3,868 proteins. There were 1,414 pathogenicity related genes in P. longicolla identified using the pathogen host interaction (PHI database. Additionally, 149 plant cell wall degrading enzymes (PCWDE were detected. The network captured five different classes of carbohydrate degrading enzymes, including the auxiliary activities, carbohydrate esterases, glycoside hydrolases, glycosyl transferases, and carbohydrate binding molecules. From the PPI analysis, novel interacting partners were determined for each of the PCWDE classes. The most predominant class of PCWDE was a group of 60 glycoside hydrolases proteins. The glycoside hydrolase subnetwork was found to be interacting with 1,442 proteins within the network and was among the largest clusters. The orthologous proteins FUS3, HOG, CYP1, SGE1, and the g5566t.1 gene identified in this study could play an important role in pathogenicity. Therefore, the P. longicolla protein interactome (PiPhom generated in this study can lead to a better understanding of PPIs in soybean pathogens. Furthermore, the PPI may aid in targeting of genes and proteins for further studies of the pathogenicity mechanisms.

  16. Modelling soil borne fungal pathogens of arable crops under climate change.

    Science.gov (United States)

    Manici, L M; Bregaglio, S; Fumagalli, D; Donatelli, M

    2014-12-01

    Soil-borne fungal plant pathogens, agents of crown and root rot, are seldom considered in studies on climate change and agriculture due both to the complexity of the soil system and to the incomplete knowledge of their response to environmental drivers. A controlled chamber set of experiments was carried out to quantify the response of six soil-borne fungi to temperature, and a species-generic model to simulate their response was developed. The model was linked to a soil temperature model inclusive of components able to simulate soil water content also as resulting from crop water uptake. Pathogen relative growth was simulated over Europe using the IPCC A1B emission scenario derived from the Hadley-CM3 global climate model. Climate scenarios of soil temperature in 2020 and 2030 were compared to the baseline centred in the year 2000. The general trend of the response of soil-borne pathogens shows increasing growth in the coldest areas of Europe; however, a larger rate of increase is shown from 2020 to 2030 compared to that of 2000 to 2020. Projections of pathogens of winter cereals indicate a marked increase of growth rate in the soils of northern European and Baltic states. Fungal pathogens of spring sowing crops show unchanged conditions for their growth in soils of the Mediterranean countries, whereas an increase of suitable conditions was estimated for the areals of central Europe which represent the coldest limit areas where the host crops are currently grown. Differences across fungal species are shown, indicating that crop-specific analyses should be ran.

  17. Towards a systems understanding of plant-microbe interactions

    Directory of Open Access Journals (Sweden)

    Akira eMine

    2014-08-01

    Full Text Available Plants are closely associated with microorganisms including pathogens and mutualists that influence plant fitness. Molecular genetic approaches have uncovered a number of signaling components from both plants and microbes and their mode of actions. However, signaling pathways are highly interconnected and influenced by diverse sets of environmental factors. Therefore, it is important to have systems views in order to understand the true nature of plant-microbe interactions. Indeed, systems biology approaches have revealed previously overlooked or misinterpreted properties of the plant immune signaling network. Experimental reconstruction of biological networks using exhaustive combinatorial mutants is particularly powerful to elucidate network structure and properties and relationships among network components. Recent advances in metagenomics of microbial communities associated with plants further point to the importance of systems approaches and open a research area of microbial community reconstruction. In this review, we highlight the importance of a systems understanding of plant-microbe interactions, with a special emphasis on reconstruction strategies.

  18. Biocontrol interventions for inactivation of foodborne pathogens on produce

    Science.gov (United States)

    Post-harvest interventions for control of foodborne pathogens on minimally processed foods are crucial for food safety. Biocontrol interventions have the primary objective of developing novel antagonists in combinations with physical and chemical interventions to inactivate pathogenic microbes. Ther...

  19. Response change in winter-wheat types to the pathogen complex under chronic gamma-irradiation

    International Nuclear Information System (INIS)

    Budanov, V.E.; Lysenkov, V.I.; Shcherbakov, V.K.

    1975-01-01

    Disease reactions in plants that have been gamma-irradiated are discussed. Damage to different types of soft winter wheat, due to pathogenic fungi, is evaluated. The Mironovski Jubilee variety showed high resistance to the leaf form of powdery mildew, along with the opposite phenomenon of a high susceptibility to the stem form of this disease. Chronic gamma irradiation of plants of this variety increased the susceptibility to this disease

  20. Hotspot autoimmune T cell receptor binding underlies pathogen and insulin peptide cross-reactivity

    Science.gov (United States)

    Cole, David K.; Bulek, Anna M.; Dolton, Garry; Schauenberg, Andrea J.; Szomolay, Barbara; Trimby, Andrew; Jothikumar, Prithiviraj; Fuller, Anna; Skowera, Ania; Rossjohn, Jamie; Zhu, Cheng; Miles, John J.; Wooldridge, Linda; Rizkallah, Pierre J.; Sewell, Andrew K.

    2016-01-01

    The cross-reactivity of T cells with pathogen- and self-derived peptides has been implicated as a pathway involved in the development of autoimmunity. However, the mechanisms that allow the clonal T cell antigen receptor (TCR) to functionally engage multiple peptide–major histocompatibility complexes (pMHC) are unclear. Here, we studied multiligand discrimination by a human, preproinsulin reactive, MHC class-I–restricted CD8+ T cell clone (1E6) that can recognize over 1 million different peptides. We generated high-resolution structures of the 1E6 TCR bound to 7 altered peptide ligands, including a pathogen-derived peptide that was an order of magnitude more potent than the natural self-peptide. Evaluation of these structures demonstrated that binding was stabilized through a conserved lock-and-key–like minimal binding footprint that enables 1E6 TCR to tolerate vast numbers of substitutions outside of this so-called hotspot. Highly potent antigens of the 1E6 TCR engaged with a strong antipathogen-like binding affinity; this engagement was governed though an energetic switch from an enthalpically to entropically driven interaction compared with the natural autoimmune ligand. Together, these data highlight how T cell cross-reactivity with pathogen-derived antigens might break self-tolerance to induce autoimmune disease. PMID:27183389

  1. Wired to the roots: impact of root-beneficial microbe interactions on aboveground plant physiology and protection.

    Science.gov (United States)

    Kumar, Amutha Sampath; Bais, Harsh P

    2012-12-01

    Often, plant-pathogenic microbe interactions are discussed in a host-microbe two-component system, however very little is known about how the diversity of rhizospheric microbes that associate with plants affect host performance against pathogens. There are various studies, which specially direct the importance of induced systemic defense (ISR) response in plants interacting with beneficial rhizobacteria, yet we don't know how rhizobacterial associations modulate plant physiology. In here, we highlight the many dimensions within which plant roots associate with beneficial microbes by regulating aboveground physiology. We review approaches to study the causes and consequences of plant root association with beneficial microbes on aboveground plant-pathogen interactions. The review provides the foundations for future investigations into the impact of the root beneficial microbial associations on plant performance and innate defense responses.

  2. Dual oxidase in mucosal immunity and host-microbe homeostasis.

    Science.gov (United States)

    Bae, Yun Soo; Choi, Myoung Kwon; Lee, Won-Jae

    2010-07-01

    Mucosal epithelia are in direct contact with microbes, which range from beneficial symbionts to pathogens. Accordingly, hosts must have a conflicting strategy to combat pathogens efficiently while tolerating symbionts. Recent progress has revealed that dual oxidase (DUOX) plays a key role in mucosal immunity in organisms that range from flies to humans. Information from the genetic model of Drosophila has advanced our understanding of the regulatory mechanism of DUOX and its role in mucosal immunity. Further investigations of DUOX regulation in response to symbiotic or non-symbiotic bacteria and the in vivo consequences in host physiology will give a novel insight into the microbe-controlling system of the mucosa. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Stimulation of growth of the human gastric pathogen Helicobacter pylori by atmospheric level of oxygen under high carbon dioxide tension

    Directory of Open Access Journals (Sweden)

    Lee Na

    2011-05-01

    Full Text Available Abstract Background Helicobacter pylori (Hp, a human pathogen that is associated with gastritis, peptic ulcer, and gastric cancer, has been considered a microaerophile, but there is no general consensus about its specific O2 requirements. A clear understanding of Hp physiology is needed to elucidate the pathogenic mechanism(s of Hp infection. Results We cultured Hp under a range of O2 levels with or without 10% CO2 and evaluated growth profiles, morphology, intracellular pH, and energy metabolism. We found that, in the presence of 10% CO2, the normal atmospheric level of O2 inhibited Hp growth at low density but stimulated growth at a higher density. Field emission scanning electron microscopy and fluorescence microscopy of Hp cells cultured under 20% O2 tension revealed live spiral-shaped bacteria with outer membrane vesicles on a rugged cell surface, which became smooth during the stationary phase. Fermentation products including acetate, lactate, and succinate were detected in cell culture media grown under microaerobic conditions, but not under the aerobic condition. CO2 deprivation for less than 24 h did not markedly change cytoplasmic or periplasmic pH, suggesting that cellular pH homeostasis alone cannot account for the capnophilic nature of Hp. Further, CO2 deprivation significantly increased intracellular levels of ppGpp and ATP but significantly decreased cellular mRNA levels, suggesting induction of the stringent response. Conclusions We conclude, unlike previous reports, that H. pylori may be a capnophilic aerobe whose growth is promoted by atmospheric oxygen levels in the presence of 10% CO2. Our data also suggest that buffering of intracellular pH alone cannot account for the CO2 requirement of H. pylori and that CO2 deprivation initiates the stringent response in H. pylori. Our findings may provide new insight into the physiology of this fastidious human pathogen.

  4. Research Regarding the Simultaneous Control of the Pathogens on Tomatoes Crops under High Plastic Tunnels

    Directory of Open Access Journals (Sweden)

    Gabriela ŞOVĂREL

    2017-05-01

    Full Text Available In Romania the most important pathogens on tomatoes crops are Alternaria porri f.sp. solani, Botrytis cinerea, Fulvia fulva, Phytophthora infestans and Erysiphe sp. During period of vegetation, the attack of mentioned pathogens are frequently overlapping. For simultaneously control of pathogenswere used some combination with different active substances (chlorothalonil 500g/l, iprodione 500 g/l, fenhexamid 500 g/l, thiophanate methyl 500g/l, metiram 80%, dimethomorph 9%, mancozeb 60%, difenoconazole 250 g/l , fenamidone 75g/l, propamocarb HCL 375 g/l. The best results for controlling Alternaria porri f.sp. solani, Botrytis cinerea and Fulvia fulva are metiram 80% 0.2% + thiophanate methyl 500g/l 0.14% with 93.5% efficacy. In the untreated check the degree of attack was 78.6% (44.3% A.solani, 7.0% B.cinerea and 27.3% F. Fulva. For controlling Phytophthora infestans, Erysiphe sp. and Fulvia fulva (fenamidone 75g/l + propamocarb HCL 375 g/l    0.2% +  difenoconazole 250 g/l 0.05% with 94.5% efficacy. In the untreated check the degree of attack is 81.2% (38.4% P. infestans, 27.4% Erysiphe sp. , 15.4% F. fulva.

  5. Pathogenic characteristics of yeasts isolated from vaginal secretion preserved under mineral oil

    Directory of Open Access Journals (Sweden)

    B Severo Gomes

    2011-01-01

    Full Text Available In order to evaluate the pathogenicity of yeasts isolated from vaginal secretion of pregnant and non-pregnant women - stored in mineral oil at the URM Mycology Collection, Department of Mycology, Federal University of Pernambuco - 30 samples belonging to the genera Candida, Rhodotorula, Trichosporon, and Kloeckera, were studied regarding their pathogenic characteristics, ability to grow at room temperature (28°C ± 1°C, 37°C, and 42°C for 72 hours, and production of both phospholipase and proteinase. Results showed that all 30 isolates (100% were able to grow at room temperature and 37°C, and that 17 samples (57% were able to grow at 42°C. Evaluation of enzymatic activity showed protease activity in only two isolates (7%, namely C. maritima and C. obtusa. Phospholipase activity was detected in 20 isolates (67% using soy lecithin as substrate at different temperatures. The characterization of yeasts isolated from vaginal secretion and determination of their enzymatic activity may contribute to understanding the epidemiology of vulvovaginitis and assist in the treatment of patients.

  6. Assessing the Consequences of Microbial Infection in Field Trials: Seen, Unseen, Beneficial, Parasitic and Pathogenic

    Directory of Open Access Journals (Sweden)

    Mark E. Looseley

    2014-06-01

    Full Text Available Microbial infections of crop plants present an ongoing threat to agricultural production. However, in recent years, we have developed a more nuanced understanding of the ecological role of microbes and how they interact with plants. This includes an appreciation of the influence of crop physiology and environmental conditions on the expression of disease symptoms, the importance of non-pathogenic microbes on host plants and pathogens, and the capacity for plants to act as hosts for human pathogens. Alongside this we now have a variety of tools available for the identification and quantification of microbial infections on crops grown under field conditions. This review summarises some of the consequences of microbial infections in crop plants, and discusses how new and established assessment tools can be used to understand these processes. It challenges our current assumptions in yield loss relationships and offers understanding of the potential for more resilient crops.

  7. Pathogenic adaptations to host-derived antibacterial copper

    Science.gov (United States)

    Chaturvedi, Kaveri S.; Henderson, Jeffrey P.

    2014-01-01

    Recent findings suggest that both host and pathogen manipulate copper content in infected host niches during infections. In this review, we summarize recent developments that implicate copper resistance as an important determinant of bacterial fitness at the host-pathogen interface. An essential mammalian nutrient, copper cycles between copper (I) (Cu+) in its reduced form and copper (II) (Cu2+) in its oxidized form under physiologic conditions. Cu+ is significantly more bactericidal than Cu2+ due to its ability to freely penetrate bacterial membranes and inactivate intracellular iron-sulfur clusters. Copper ions can also catalyze reactive oxygen species (ROS) generation, which may further contribute to their toxicity. Transporters, chaperones, redox proteins, receptors and transcription factors and even siderophores affect copper accumulation and distribution in both pathogenic microbes and their human hosts. This review will briefly cover evidence for copper as a mammalian antibacterial effector, the possible reasons for this toxicity, and pathogenic resistance mechanisms directed against it. PMID:24551598

  8. Microbes on a bottle: substrate, season and geography influence community composition of microbes colonizing marine plastic debris

    OpenAIRE

    Carter, Dee A.; Oberbeckmann, Sonja; Osborn, A. Mark; Duhaime, Melissa B.

    2016-01-01

    Plastic debris pervades in our oceans and freshwater systems and the potential ecosystem-level impacts of this anthropogenic litter require urgent evaluation. Microbes readily colonize aquatic plastic debris and members of these biofilm communities are speculated to include pathogenic, toxic, invasive or plastic degrading-species. The influence of plastic-colonizing microorganisms on the fate of plastic debris is largely unknown, as is the role of plastic in selecting for unique microbial com...

  9. Suitability of Commercial Transport Media for Biological Pathogens under Nonideal Conditions

    Directory of Open Access Journals (Sweden)

    Kyle Hubbard

    2011-01-01

    Full Text Available There is extensive data to support the use of commercial transport media as a stabilizer for known clinical samples; however, there is little information to support their use outside of controlled conditions specified by the manufacturer. Furthermore, there is no data to determine the suitability of said media for biological pathogens, specifically those of interest to the US military. This study evaluates commercial off-the-shelf (COTS transport media based on sample recovery, viability, and quality of nucleic acids and peptides for nonpathogenic strains of Bacillus anthracis, Yersinia pestis, and Venezuelan equine encephalitis virus, in addition to ricin toxin. Samples were stored in COTS, PBST, or no media at various temperatures over an extended test period. The results demonstrate that COTS media, although sufficient for the preservation of nucleic acid and proteinaceous material, are not capable of maintaining an accurate representation of biothreat agents at the time of collection.

  10. Combinations of biocontrol agents for management of plant-parasitic nematodes and soilborne plant-pathogenic fungi.

    Science.gov (United States)

    Meyer, Susan L F; Roberts, Daniel P

    2002-03-01

    Numerous microbes are antagonistic to plant-parasitic nematodes and soilborne plant-pathogenic fungi, but few of these organisms are commercially available for management of these pathogens. Inconsistent performance of applied biocontrol agents has proven to be a primary obstacle to the development of successful commercial products. One of the strategies for overcoming inconsistent performance is to combine the disease-suppressive activity of two (or more) beneficial microbes in a biocontrol preparation. Such combinations have potential for more extensive colonization of the rhizosphere, more consistent expression of beneficial traits under a broad range of soil conditions, and antagonism to a larger number of plant pests or pathogens than strains applied individually. Conversely, microbes applied in combination also may have antagonistic interactions with each other. Increased, decreased, and unaltered suppression of the target pathogen or pest has been observed when biocontrol microbes have been applied in combination. Unfortunately, the ecological basis for increased or decreased suppression has not been determined in many cases and needs further consideration. The complexity of interactions involved in the application of multiple organisms for biological control has slowed progress toward development of successful formulations. However, this approach has potential for overcoming some of the efficacy problems that occur with application of individual biocontrol agents.

  11. Evolution of microbial pathogens.

    OpenAIRE

    Morschhäuser, J; Köhler, G; Ziebuhr, W; Blum-Oehler, G; Dobrindt, U; Hacker, J

    2000-01-01

    Various genetic mechanisms including point mutations, genetic rearrangements and lateral gene transfer processes contribute to the evolution of microbes. Long-term processes leading to the development of new species or subspecies are termed macroevolution, and short-term developments, which occur during days or weeks, are considered as microevolution. Both processes, macro- and microevolution need horizontal gene transfer, which is particularly important for the development of pathogenic micr...

  12. Host-Microbe Interactions in Microgravity: Assessment and Implications

    Directory of Open Access Journals (Sweden)

    Jamie S. Foster

    2014-05-01

    Full Text Available Spaceflight imposes several unique stresses on biological life that together can have a profound impact on the homeostasis between eukaryotes and their associated microbes. One such stressor, microgravity, has been shown to alter host-microbe interactions at the genetic and physiological levels. Recent sequencing of the microbiomes associated with plants and animals have shown that these interactions are essential for maintaining host health through the regulation of several metabolic and immune responses. Disruptions to various environmental parameters or community characteristics may impact the resiliency of the microbiome, thus potentially driving host-microbe associations towards disease. In this review, we discuss our current understanding of host-microbe interactions in microgravity and assess the impact of this unique environmental stress on the normal physiological and genetic responses of both pathogenic and mutualistic associations. As humans move beyond our biosphere and undergo longer duration space flights, it will be essential to more fully understand microbial fitness in microgravity conditions in order to maintain a healthy homeostasis between humans, plants and their respective microbiomes.

  13. Host-microbe interactions in microgravity: assessment and implications.

    Science.gov (United States)

    Foster, Jamie S; Wheeler, Raymond M; Pamphile, Regine

    2014-05-26

    Spaceflight imposes several unique stresses on biological life that together can have a profound impact on the homeostasis between eukaryotes and their associated microbes. One such stressor, microgravity, has been shown to alter host-microbe interactions at the genetic and physiological levels. Recent sequencing of the microbiomes associated with plants and animals have shown that these interactions are essential for maintaining host health through the regulation of several metabolic and immune responses. Disruptions to various environmental parameters or community characteristics may impact the resiliency of the microbiome, thus potentially driving host-microbe associations towards disease. In this review, we discuss our current understanding of host-microbe interactions in microgravity and assess the impact of this unique environmental stress on the normal physiological and genetic responses of both pathogenic and mutualistic associations. As humans move beyond our biosphere and undergo longer duration space flights, it will be essential to more fully understand microbial fitness in microgravity conditions in order to maintain a healthy homeostasis between humans, plants and their respective microbiomes.

  14. Microbes in the coral holobiont: partners through evolution, development, and ecological interactions.

    Science.gov (United States)

    Thompson, Janelle R; Rivera, Hanny E; Closek, Collin J; Medina, Mónica

    2014-01-01

    In the last two decades, genetic and genomic studies have revealed the astonishing diversity and ubiquity of microorganisms. Emergence and expansion of the human microbiome project has reshaped our thinking about how microbes control host health-not only as pathogens, but also as symbionts. In coral reef environments, scientists have begun to examine the role that microorganisms play in coral life history. Herein, we review the current literature on coral-microbe interactions within the context of their role in evolution, development, and ecology. We ask the following questions, first posed by McFall-Ngai et al. (2013) in their review of animal evolution, with specific attention to how coral-microbial interactions may be affected under future environmental conditions: (1) How do corals and their microbiome affect each other's genomes? (2) How does coral development depend on microbial partners? (3) How is homeostasis maintained between corals and their microbial symbionts? (4) How can ecological approaches deepen our understanding of the multiple levels of coral-microbial interactions? Elucidating the role that microorganisms play in the structure and function of the holobiont is essential for understanding how corals maintain homeostasis and acclimate to changing environmental conditions.

  15. Nutrient-Dependent Impact of Microbes on Drosophila suzukii Development.

    Science.gov (United States)

    Bing, XiaoLi; Gerlach, Joseph; Loeb, Gregory; Buchon, Nicolas

    2018-03-20

    Drosophila suzukii Matsumura is an invasive species of vinegar fly that has become a prominent pest of berries and other soft-skinned fruits. Unlike most other Drosophila species, female D. suzukii flies lay their eggs in ripening and ripe fruits and larvae develop within the fruit. To understand how D. suzukii larvae utilize ripe and ripening fruits, which usually have low levels of protein, we investigated the microbiota of field-captured and laboratory-reared D. suzukii flies and further examined the combined influence of diet and microbes on host fitness. Field-captured flies were associated with diverse microbiota, which varied significantly with sampling location and season. In contrast, laboratory-reared flies possessed strikingly lower bacterial abundance and diversity. A comparison of conventionally reared (CR) and germ-free (GF) flies revealed that the microbiota of D. suzukii does not alter its development significantly but decreases its life span under conditions of a nutrient-sufficient diet. However, the microbiota is essential for D. suzukii development on strawberry-based or blueberry-based fruit diets. This developmental failure could be rescued by reassociation with single bacterial or fungal species or by the addition of a high quantity of heat-killed microbes. In addition, we found that proteins are limiting with respect to fly development on fruit-based diets and that GF flies show signs of protein starvation. Taken together, our study results demonstrate that the microbiota provides key proteins required for the development of D. suzukii reared on fresh fruit. Our work shows that the impact of microbes on fly fitness depends strongly on nutritional conditions. IMPORTANCE Animals are commonly associated with specific microbes, which play important roles in host development and fitness. However, little information about the function of microbes has been available for the important invasive pest Drosophila suzukii , also known as Spotted

  16. Bacteremia and resistant gram-negative pathogens among under-fives in Tanzania.

    Science.gov (United States)

    Christopher, Alexandra; Mshana, Stephen E; Kidenya, Benson R; Hokororo, Aldofineh; Morona, Domenica

    2013-05-08

    -trimoxazole (90%), tetracycline (90%), gentamicin (80%), augmentin (80%), chloramphenicol (65%), ceftriaxone (35%), cefotaxime (35%) ciprofloxacin (30%), amikacin (30%), ceftazidime (25%) and norfloxacine (10%). Multi-resistant gram-negative bacteria are the commonest cause of bacteremia in under-fives attending the Bugando Medical Centre, Mwanza, Tanzania. A high body temperature, a positive malaria slide and a high absolute neutrophils' count were all independent risk factors found to predict bacteremia. A higher mortality rate was observed in children with bacteraemia. Continuous epidemiological surveillance should be conducted so that a proper and effective antibiotics management can be instituted, especially in children with a high grade fever, a positive malaria slide and a high neutrophils' count.

  17. Plant pathogenic anaerobic bacteria use aromatic polyketides to access aerobic territory.

    Science.gov (United States)

    Shabuer, Gulimila; Ishida, Keishi; Pidot, Sacha J; Roth, Martin; Dahse, Hans-Martin; Hertweck, Christian

    2015-11-06

    Around 25% of vegetable food is lost worldwide because of infectious plant diseases, including microbe-induced decay of harvested crops. In wet seasons and under humid storage conditions, potato tubers are readily infected and decomposed by anaerobic bacteria (Clostridium puniceum). We found that these anaerobic plant pathogens harbor a gene locus (type II polyketide synthase) to produce unusual polyketide metabolites (clostrubins) with dual functions. The clostrubins, which act as antibiotics against other microbial plant pathogens, enable the anaerobic bacteria to survive an oxygen-rich plant environment. Copyright © 2015, American Association for the Advancement of Science.

  18. 78 FR 35155 - Establishing a List of Qualifying Pathogens Under the Food and Drug Administration Safety and...

    Science.gov (United States)

    2013-06-12

    ... is thought to be a chromosomally encoded mutation in the target enzyme, although alternative... of qualifying pathogens. E. Candida Species Candida species are fungi (specifically, yeast) that are...

  19. Algae as reservoirs for coral pathogens.

    Directory of Open Access Journals (Sweden)

    Michael J Sweet

    Full Text Available Benthic algae are associated with coral death in the form of stress and disease. It's been proposed that they release exudates, which facilitate invasion of potentially pathogenic microbes at the coral-algal interface, resulting in coral disease. However, the original source of these pathogens remains unknown. This study examined the ability of benthic algae to act as reservoirs of coral pathogens by characterizing surface associated microbes associated with major Caribbean and Indo-Pacific algal species/types and by comparing them to potential pathogens of two dominant coral diseases: White Syndrome (WS in the Indo-Pacific and Yellow Band Disease (YBD in the Caribbean. Coral and algal sampling was conducted simultaneously at the same sites to avoid spatial effects. Potential pathogens were defined as those absent or rare in healthy corals, increasing in abundance in healthy tissues adjacent to a disease lesion, and dominant in disease lesions. Potentially pathogenic bacteria were detected in both WS and YBD and were also present within the majority of algal species/types (54 and 100% for WS and YBD respectively. Pathogenic ciliates were associated only with WS and not YBD lesions and these were also present in 36% of the Indo-Pacific algal species. Although potential pathogens were associated with many algal species, their presence was inconsistent among replicate algal samples and detection rates were relatively low, suggestive of low density and occurrence. At the community level, coral-associated microbes irrespective of the health of their host differed from algal-associated microbes, supporting that algae and corals have distinctive microbial communities associated with their tissue. We conclude that benthic algae are common reservoirs for a variety of different potential coral pathogens. However, algal-associated microbes alone are unlikely to cause coral death. Initial damage or stress to the coral via other competitive mechanisms is

  20. Zinc oxide nanorod mediated visible light photoinactivation of model microbes in water

    Energy Technology Data Exchange (ETDEWEB)

    Sapkota, Ajaya; Anceno, Alfredo J; Dutta, Joydeep [Center of Excellence in Nanotechnology, Asian Institute of Technology, Klong Luang, Pathumthani 12120 (Thailand); Baruah, Sunandan; Shipin, Oleg V, E-mail: alfredo.anceno@cemagref.fr, E-mail: joy@ait.ac.th [Environmental Engineering and Management, Asian Institute of Technology, Klong Luang, Pathumthani 12120 (Thailand)

    2011-05-27

    The inactivation of model microbes in aqueous matrix by visible light photocatalysis as mediated by ZnO nanorods was investigated. ZnO nanorods were grown on glass substrate following a hydrothermal route and employed in the inactivation of gram-negative Escherichia coli and gram-positive Bacillus subtilis in MilliQ water. The concentration of Zn{sup 2+} ions in the aqueous matrix, bacterial cell membrane damage, and DNA degradation at post-exposure were also studied. The inactivation efficiencies for both organisms under light conditions were about two times higher than under dark conditions across the cell concentrations assayed. Anomalies in supernatant Zn{sup 2+} concentration were observed under both conditions as compared to control treatments, while cell membrane damage and DNA degradation were observed only under light conditions. Inactivation under dark conditions was hence attributed to the bactericidal effect of Zn{sup 2+} ions, while inactivation under light conditions was due to the combined effects of Zn{sup 2+} ions and photocatalytically mediated electron injection. The reduction of pathogenic bacterial densities by the photocatalytically active ZnO nanorods in the presence of visible light implies potential ex situ application in water decontamination at ambient conditions under sunlight.

  1. Drone Transport of Microbes in Blood and Sputum Laboratory Specimens.

    Science.gov (United States)

    Amukele, Timothy K; Street, Jeff; Carroll, Karen; Miller, Heather; Zhang, Sean X

    2016-10-01

    Unmanned aerial vehicles (UAVs) could potentially be used to transport microbiological specimens. To examine the impact of UAVs on microbiological specimens, blood and sputum culture specimens were seeded with usual pathogens and flown in a UAV for 30 ± 2 min. Times to recovery, colony counts, morphologies, and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS)-based identifications of the flown and stationary specimens were similar for all microbes studied. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. [Origin of the plague microbe Yersinia pestis: structure of the process of speciation].

    Science.gov (United States)

    Suntsov, V V

    2012-01-01

    The origin and evolution of the plague microbe Yersinia pestis are considered in the context of propositions of modern Darwinism. It was shown that the plague pathogen diverged from the pseudotuberculous microbe Yersinia pseudotuberculosis O:1b in the mountain steppe landscapes of Central Asia in the Sartan: 22000-15000 years ago. Speciation occurred in the tarbagan (Marmota sibirica)--flea (Oropsylla silantiewi) parasitic system. The structure of the speciation process included six stages: isolation, genetic drift, enhancement of intrapopulational polymorphism, the beginning of pesticin synthesis (genetic conflict and emergence of hiatus), specialization (stabilization of characteristics), and adaptive irradiation (transformation of the monotypic species Y. pestis tarbagani into a polytypic species). The scenario opens up wide prospects for construction of the molecular phylogeny of the plague microbe Y. pestis and for investigation of the biochemical and molecular-genetic aspects of "Darwinian" evolution of pathogens from many other nature-focal infections.

  3. Beneficial interactions between plants and soil microbes

    DEFF Research Database (Denmark)

    Ravnskov, S.

    2012-01-01

    with Arbuscular Mycorrhizal Fungi (AMF); thus the relation between root pathogens and most plants under field conditions is an interaction between AM and pathogens. The AM symbiosis has functionally been characterised as the reciprocal exchange of nutrients between the symbionts: the fungus is obligate biotrophic......The microbial community in the rhizosphere plays a key role in plant growth and -health, either directly by influencing plant nutrient uptake and by causing disease, or indirectly via microbial interactions in the rhizosphere. The majority of field grown crops (70-80 %) naturally form symbiosis...

  4. Viral pathogen discovery

    Science.gov (United States)

    Chiu, Charles Y

    2015-01-01

    Viral pathogen discovery is of critical importance to clinical microbiology, infectious diseases, and public health. Genomic approaches for pathogen discovery, including consensus polymerase chain reaction (PCR), microarrays, and unbiased next-generation sequencing (NGS), have the capacity to comprehensively identify novel microbes present in clinical samples. Although numerous challenges remain to be addressed, including the bioinformatics analysis and interpretation of large datasets, these technologies have been successful in rapidly identifying emerging outbreak threats, screening vaccines and other biological products for microbial contamination, and discovering novel viruses associated with both acute and chronic illnesses. Downstream studies such as genome assembly, epidemiologic screening, and a culture system or animal model of infection are necessary to establish an association of a candidate pathogen with disease. PMID:23725672

  5. Plant interactions with microbes and insects: from molecular mechanisms to ecology

    NARCIS (Netherlands)

    Pieterse, C.M.J.; Dicke, M.

    2007-01-01

    Plants are members of complex communities and interact both with antagonists and beneficial organisms. An important question in plant defense-signaling research is how plants integrate signals induced by pathogens, beneficial microbes and insects into the most appropriate adaptive response.

  6. Cooperation and cheating in microbes

    Science.gov (United States)

    Gore, Jeff

    2011-03-01

    Understanding the cooperative and competitive dynamics within and between species is a central challenge in evolutionary biology. Microbial model systems represent a unique opportunity to experimentally test fundamental theories regarding the evolution of cooperative behaviors. In this talk I will describe our experiments probing cooperation in microbes. In particular, I will compare the cooperative growth of yeast in sucrose and the cooperative inactivation of antibiotics by bacteria. In both cases we find that cheater strains---which don't contribute to the public welfare---are able to take advantage of the cooperator strains. However, this ability of cheaters to out-compete cooperators occurs only when cheaters are present at low frequency, thus leading to steady-state coexistence. These microbial experiments provide fresh insight into the evolutionary origin of cooperation.

  7. The effect of interactions between a bacterial strain isolated from drinking water and a pathogen surrogate on biofilms formation diverged under static vs flow conditions.

    Science.gov (United States)

    Dai, D; Raskin, L; Xi, C

    2017-12-01

    Interactions with water bacteria affect the incorporation of pathogens into biofilms and thus pathogen control in drinking water systems. This study was to examine the impact of static vs flow conditions on interactions between a pathogen and a water bacterium on pathogen biofilm formation under laboratory settings. A pathogen surrogate Escherichia coli and a drinking water isolate Stenotrophomonas maltophilia was selected for this study. Biofilm growth was examined under two distinct conditions, in flow cells with continuous medium supply vs in static microtitre plates with batch culture. E. coli biofilm was greatly stimulated (c. 2-1000 times faster) with the presence of S. maltophilia in flow cells, but surprisingly inhibited (c. 65-95% less biomass) in microtitre plates. These divergent effects were explained through various aspects including surface attachment, cellular growth, extracellular signals and autoaggregation. Interactions with the same water bacterium resulted in different effects on E. coli biofilm formation when culture conditions changed from static to flow. This study highlights the complexity of species interactions on biofilm formation and suggests that environmental conditions such as the flow regime can be taken into consideration for the management of microbial contamination in drinking water systems. © 2017 The Society for Applied Microbiology.

  8. Expanding Single Particle Mass Spectrometer Analyses for the Identification of Microbe Signatures in Sea Spray Aerosol.

    Science.gov (United States)

    Sultana, Camille M; Al-Mashat, Hashim; Prather, Kimberly A

    2017-10-03

    Ocean-derived microbes in sea spray aersosol (SSA) have the potential to influence climate and weather by acting as ice nucleating particles in clouds. Single particle mass spectrometers (SPMSs), which generate in situ single particle composition data, are excellent tools for characterizing aerosols under changing environmental conditions as they can provide high temporal resolution and require no sample preparation. While SPMSs have proven capable of detecting microbes, these instruments have never been utilized to definitively identify aerosolized microbes in ambient sea spray aersosol. In this study, an aerosol time-of-flight mass spectrometer was used to analyze laboratory generated SSA produced from natural seawater in a marine aerosol reference tank. We present the first description of a population of biological SSA mass spectra (BioSS), which closely match the ion signatures observed in previous terrestrial microbe studies. The fraction of BioSS dramatically increased in the largest supermicron particles, consistent with field and laboratory measurements of microbes ejected by bubble bursting, further supporting the assignment of BioSS mass spectra as microbes. Finally, as supported by analysis of inorganic ion signals, we propose that dry BioSS particles have heterogeneous structures, with microbes adhered to sodium chloride nodules surrounded by magnesium-enriched coatings. Consistent with this structure, chlorine-containing ion markers were ubiquitous in BioSS spectra and identified as possible tracers for distinguishing recently aerosolized marine from terrestrial microbes.

  9. Big Data Approaches To Coral-Microbe Symbiosis

    Science.gov (United States)

    Zaneveld, J.; Pollock, F. J.; McMinds, R.; Smith, S.; Payet, J.; Hanna, B.; Welsh, R.; Foster, A.; Ohdera, A.; Shantz, A. A.; Burkepile, D. E.; Maynard, J. A.; Medina, M.; Vega Thurber, R.

    2016-02-01

    Coral reefs face increasing challenges worldwide, threatened by overfishing and nutrient pollution, which drive growth of algal competitors of corals, and periods of extreme temperature, which drive mass coral bleaching. I will discuss two projects that examine how coral's complex relationships with microorganisms affect the response of coral colonies and coral species to environmental challenge. Microbiological studies have documented key roles for coral's microbial symbionts in energy harvest and defense against pathogens. However, the evolutionary history of corals and their microbes is little studied. As part of the Global Coral Microbiome Project, we are characterizing bacterial, archaeal, fungal, and Symbiodinium diversity across >1400 DNA samples from all major groups of corals, collected from 15 locations worldwide. This collection will allow us to ask how coral- microbe associations evolved over evolutionary time, and to determine whether microbial symbiosis helps predict the relative vulnerability of certain coral species to environmental stress. In the second project, we experimentally characterized how the long-term effects of human impacts such as overfishing and nutrient pollution influence coral-microbe symbiosis. We conducted a three-year field experiment in the Florida Keys applying nutrient pollution or simulated overfishing to reef plots, and traced the effects on reef communities, coral microbiomes, and coral health. The results show that extremes of temperature and algal competition destabilize coral microbiomes, increasing pathogen blooms, coral disease, and coral death. Surprisingly, these local stressors interacted strongly with thermal stress: the greatest microbiome disruption, and >80% of coral mortality happened in the hottest periods. Thus, overfishing and nutrient pollution may interact with increased climate-driven episodes of sub-bleaching thermal stress to increase coral mortality by disrupt reef communities down to microbial scales.

  10. Food microbe tracker: a web-based tool for storage and comparison of food-associated microbes.

    Science.gov (United States)

    Vangay, Pajau; Fugett, Eric B; Sun, Qi; Wiedmann, Martin

    2013-02-01

    Large amounts of molecular subtyping information are generated by the private sector, academia, and government agencies. However, use of subtype data is limited by a lack of effective data storage and sharing mechanisms that allow comparison of subtype data from multiple sources. Currently available subtype databases are generally limited in scope to a few data types (e.g., MLST. net) or are not publicly available (e.g., PulseNet). We describe the development and initial implementation of Food Microbe Tracker, a public Web-based database that allows archiving and exchange of a variety of molecular subtype data that can be cross-referenced with isolate source data, genetic data, and phenotypic characteristics. Data can be queried with a variety of search criteria, including DNA sequences and banding pattern data (e.g., ribotype or pulsed-field gel electrophoresis type). Food Microbe Tracker allows the deposition of data on any bacterial genus and species, bacteriophages, and other viruses. The bacterial genera and species that currently have the most entries in this database are Listeria monocytogenes, Salmonella, Streptococcus spp., Pseudomonas spp., Bacillus spp., and Paenibacillus spp., with over 40,000 isolates. The combination of pathogen and spoilage microorganism data in the database will facilitate source tracking and outbreak detection, improve discovery of emerging subtypes, and increase our understanding of transmission and ecology of these microbes. Continued addition of subtyping, genetic or phenotypic data for a variety of microbial species will broaden the database and facilitate large-scale studies on the diversity of food-associated microbes.

  11. Turning the table: plants consume microbes as a source of nutrients.

    Directory of Open Access Journals (Sweden)

    Chanyarat Paungfoo-Lonhienne

    Full Text Available Interactions between plants and microbes in soil, the final frontier of ecology, determine the availability of nutrients to plants and thereby primary production of terrestrial ecosystems. Nutrient cycling in soils is considered a battle between autotrophs and heterotrophs in which the latter usually outcompete the former, although recent studies have questioned the unconditional reign of microbes on nutrient cycles and the plants' dependence on microbes for breakdown of organic matter. Here we present evidence indicative of a more active role of plants in nutrient cycling than currently considered. Using fluorescent-labeled non-pathogenic and non-symbiotic strains of a bacterium and a fungus (Escherichia coli and Saccharomyces cerevisiae, respectively, we demonstrate that microbes enter root cells and are subsequently digested to release nitrogen that is used in shoots. Extensive modifications of root cell walls, as substantiated by cell wall outgrowth and induction of genes encoding cell wall synthesizing, loosening and degrading enzymes, may facilitate the uptake of microbes into root cells. Our study provides further evidence that the autotrophy of plants has a heterotrophic constituent which could explain the presence of root-inhabiting microbes of unknown ecological function. Our discovery has implications for soil ecology and applications including future sustainable agriculture with efficient nutrient cycles.

  12. Harnessing Insect-Microbe Chemical Communications To Control Insect Pests of Agricultural Systems.

    Science.gov (United States)

    Beck, John J; Vannette, Rachel L

    2017-01-11

    Insect pests cause serious economic, yield, and food safety problems to managed crops worldwide. Compounding these problems, insect pests often vector pathogenic or toxigenic microbes to plants. Previous work has considered plant-insect and plant-microbe interactions separately. Although insects are well-understood to use plant volatiles to locate hosts, microorganisms can produce distinct and abundant volatile compounds that in some cases strongly attract insects. In this paper, we focus on the microbial contribution to plant volatile blends, highlighting the compounds emitted and the potential for variation in microbial emission. We suggest that these aspects of microbial volatile emission may make these compounds ideal for use in agricultural applications, as they may be more specific or enhance methods currently used in insect control or monitoring. Our survey of microbial volatiles in insect-plant interactions suggests that these emissions not only signal host suitability but may indicate a distinctive time frame for optimal conditions for both insect and microbe. Exploitation of these host-specific microbe semiochemicals may provide important microbe- and host-based attractants and a basis for future plant-insect-microbe chemical ecology investigations.

  13. Pasteurization of milk: the heat inactivation kinetics of milk-borne dairy pathogens under commercial-type conditions of turbulent flow.

    Science.gov (United States)

    Pearce, L E; Smythe, B W; Crawford, R A; Oakley, E; Hathaway, S C; Shepherd, J M

    2012-01-01

    This is the first study to report kinetic data on the survival of a range of significant milk-borne pathogens under commercial-type pasteurization conditions. The most heat-resistant strain of each of the milk-borne pathogens Staphylococcus aureus, Yersinia enterocolitica, pathogenic Escherichia coli, Cronobacter sakazakii (formerly known as Enterobacter sakazakii), Listeria monocytogenes, and Salmonella was selected to obtain the worst-case scenario in heat inactivation trials using a pilot-plant-scale pasteurizer. Initially, approximately 30 of each species were screened using a submerged coil unit. Then, UHT milk was inoculated with the most heat-resistant pathogens at ~10(7)/mL and heat treated in a pilot-plant-scale pasteurizer under commercial-type conditions of turbulent flow for 15s over a temperature range from 56 to 66°C and at 72°C. Survivors were enumerated on nonselective media chosen for the highest efficiency of plating of heat-damaged bacteria of each of the chosen strains. The mean log(10) reductions and temperatures of inactivation of the 6 pathogens during a 15-s treatment were Staph. aureus >6.7 at 66.5°C, Y. enterocolitica >6.8 at 62.5°C, pathogenic E. coli >6.8 at 65°C, C. sakazakii >6.7 at 67.5°C, L. monocytogenes >6.9 at 65.5°C, and Salmonella ser. Typhimurium >6.9 at 61.5°C. The kinetic data from these experiments will be used by the New Zealand Ministry of Agriculture and Forestry to populate the quantitative risk assessment model being developed to investigate the risks to New Zealand consumers from pasteurized, compared with nonpasteurized, milk and milk products. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Combinatorial stresses kill pathogenic Candida species

    Science.gov (United States)

    Kaloriti, Despoina; Tillmann, Anna; Cook, Emily; Jacobsen, Mette; You, Tao; Lenardon, Megan; Ames, Lauren; Barahona, Mauricio; Chandrasekaran, Komelapriya; Coghill, George; Goodman, Daniel; Gow, Neil A. R.; Grebogi, Celso; Ho, Hsueh-Lui; Ingram, Piers; McDonagh, Andrew; De Moura, Alessandro P. S.; Pang, Wei; Puttnam, Melanie; Radmaneshfar, Elahe; Romano, Maria Carmen; Silk, Daniel; Stark, Jaroslav; Stumpf, Michael; Thiel, Marco; Thorne, Thomas; Usher, Jane; Yin, Zhikang; Haynes, Ken; Brown, Alistair J. P.

    2012-01-01

    Pathogenic microbes exist in dynamic niches and have evolved robust adaptive responses to promote survival in their hosts. The major fungal pathogens of humans, Candida albicans and Candida glabrata, are exposed to a range of environmental stresses in their hosts including osmotic, oxidative and nitrosative stresses. Significant efforts have been devoted to the characterization of the adaptive responses to each of these stresses. In the wild, cells are frequently exposed simultaneously to combinations of these stresses and yet the effects of such combinatorial stresses have not been explored. We have developed a common experimental platform to facilitate the comparison of combinatorial stress responses in C. glabrata and C. albicans. This platform is based on the growth of cells in buffered rich medium at 30°C, and was used to define relatively low, medium and high doses of osmotic (NaCl), oxidative (H 2O2) and nitrosative stresses (e.g., dipropylenetriamine (DPTA)-NONOate). The effects of combinatorial stresses were compared with the corresponding individual stresses under these growth conditions. We show for the first time that certain combinations of combinatorial stress are especially potent in terms of their ability to kill C. albicans and C. glabrata and/or inhibit their growth. This was the case for combinations of osmotic plus oxidative stress and for oxidative plus nitrosative stress. We predict that combinatorial stresses may be highly signif cant in host defences against these pathogenic yeasts. PMID:22463109

  15. Protein functional analysis data in support of comparative proteomics of the pathogenic black yeast Exophiala dermatitidis under different temperature conditions

    Directory of Open Access Journals (Sweden)

    Donatella Tesei

    2015-12-01

    Full Text Available In the current study a comparative proteomic approach was used to investigate the response of the human pathogen black yeast Exophiala dermatitidis toward temperature treatment. Protein functional analysis – based on cellular process GO terms – was performed on the 32 temperature-responsive identified proteins. The bioinformatics analyses and data presented here provided novel insights into the cellular pathways at the base of the fungus temperature tolerance. A detailed analysis and interpretation of the data can be found in “Proteome of tolerance fine-tuning in the human pathogen black yeast Exophiala dermatitidis” by Tesei et al. (2015 [1].

  16. Transcriptomic profiling of microbe-microbe interactions reveals the specific response of the biocontrol strain P. fluorescens In5 to the phytopathogen Rhizoctonia solani

    DEFF Research Database (Denmark)

    Hennessy, Rosanna Catherine; Glaring, Mikkel Andreas; Olsson, Stefan

    2017-01-01

    reads per sample. RESULTS: No significant changes in global gene expression were recorded during dual-culture of P. fluorescens In5 with any of the two pathogens but rather each pathogen appeared to induce expression of a specific set of genes. A particularly strong transcriptional response to R. solani...... and in particular the fungus R. solani. This highlights the importance of studying microbe-microbe interactions to gain a better understanding of how different systems function in vitro and ultimately in natural systems where biocontrol agents can be used for the sustainable management of plant diseases....

  17. Emerging microbial biocontrol strategies for plant pathogens.

    Science.gov (United States)

    Syed Ab Rahman, Sharifah Farhana; Singh, Eugenie; Pieterse, Corné M J; Schenk, Peer M

    2018-02-01

    To address food security, agricultural yields must increase to match the growing human population in the near future. There is now a strong push to develop low-input and more sustainable agricultural practices that include alternatives to chemicals for controlling pests and diseases, a major factor of heavy losses in agricultural production. Based on the adverse effects of some chemicals on human health, the environment and living organisms, researchers are focusing on potential biological control microbes as viable alternatives for the management of pests and plant pathogens. There is a growing body of evidence that demonstrates the potential of leaf and root-associated microbiomes to increase plant efficiency and yield in cropping systems. It is important to understand the role of these microbes in promoting growth and controlling diseases, and their application as biofertilizers and biopesticides whose success in the field is still inconsistent. This review focusses on how biocontrol microbes modulate plant defense mechanisms, deploy biocontrol actions in plants and offer new strategies to control plant pathogens. Apart from simply applying individual biocontrol microbes, there are now efforts to improve, facilitate and maintain long-term plant colonization. In particular, great hopes are associated with the new approaches of using "plant-optimized microbiomes" (microbiome engineering) and establishing the genetic basis of beneficial plant-microbe interactions to enable breeding of "microbe-optimized crops". Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Socializing, networking and development: a report from the second 'Young Microbiologists Symposium on Microbe Signalling, Organization and Pathogenesis'.

    Science.gov (United States)

    Caly, Delphine L; Coulthurst, Sarah J; Geoghegan, Joan A; Malone, Jacob G; Ryan, Robert P

    2012-11-01

    In mid-June, the second Young Microbiologists Symposium took place under the broad title of 'Microbe signalling, organization and pathogenesis' on the picturesque campus of University College Cork, Ireland. The symposium attracted 150 microbiologists from 15 different countries. The key feature of this meeting was that it was specifically aimed at providing a platform for junior scientists to present their work to a broad audience. The meeting was principally supported by Science Foundation Ireland with further backing from the Society for General Microbiology, the American Society for Microbiology and the European Molecular Biology Organization. Sessions focused on microbial gene expression, biogenesis, pathogenicity and host interaction. In this MicroMeeting report, we highlight some of the most significant advances and exciting developments reported during various talks and poster presentations given by the young and talented microbiologists. © 2012 Blackwell Publishing Ltd.

  19. Effects of microbes on the immune system

    National Research Council Canada - National Science Library

    Fujinami, Robert S; Cunningham, Madeleine W

    2000-01-01

    .... The book synthesizes recent discoveries on the various mechanisms by which microbes subvert the immune response and on the role of these immunologic mechanisms in the pathogenesis of infectious diseases...

  20. A global census of marine microbes

    Digital Repository Service at National Institute of Oceanography (India)

    Amaral-Zettler, L.; Artigas, L.F.; Baross, J.; LokaBharathi, P.A; Boetius, A; Chandramohan, D.; Herndl, G.; Kogure, K.; Neal, P.; Pedros-Alio, C.; Ramette, A; Schouten, S.; Stal, L.; Thessen, A; De Leeuw, J.; Sogin, M.

    In this chapter we provide a brief history of what is known about marine microbial diversity, summarize our achievements in performing a global census of marine microbes, and reflect on the questions and priorities for the future of the marine...

  1. Microbes safely, effectively bioremediate oil field pits

    International Nuclear Information System (INIS)

    Shaw, B.; Block, C.S.; Mills, C.H.

    1995-01-01

    Natural and augmented bioremediation provides a safe, environmental, fast, and effective solution for removing hydrocarbon stains from soil. In 1992, Amoco sponsored a study with six bioremediation companies, which evaluated 14 different techniques. From this study, Amoco continued using Environmental Protection Co.'s (EPC) microbes for bioremediating more than 145 sites near Farmington, NM. EPC's microbes proved effective on various types of hydrocarbon molecules found in petroleum stained soils from heavy crude and paraffin to volatiles such as BTEX (benzene, toluene, ethylbenzene, xylene) compounds. Controlled laboratory tests have shown that these microbes can digest the hydrocarbon molecules with or without free oxygen present. It is believed that this adaptation gives these microbes their resilience. The paper describes the bioremediation process, environmental advantages, in situ and ex situ bioremediation, goals of bioremediation, temperature effects, time, cost, and example sites that were treated

  2. Leaching of human pathogens in repacked soil lysimeters and contamination of potato tubers under subsurface drip irrigation in Denmark

    DEFF Research Database (Denmark)

    Forslund, Anita; Plauborg, Finn; Andersen, Mathias Neumann

    2011-01-01

    The risk for contamination of potatoes and groundwater through subsurface drip irrigation with low quality water was explored in 30 large-scale lysimeters containing repacked coarse sand and sandy loam soils. The human pathogens, Salmonella Senftenberg, Campylobacter jejuni and Escherichia coli O......, phage 28B was detected in low concentrations (2 pfu ml1) in leachate from both sandy loam soil and coarse sand lysimeters. After 27 days, phage 28B continued to be present in similar concentrations in leachate from lysimeters containing coarse sand, while no phage were found in lysimeters with sandy....... The findings of bacterial pathogens and phage 28 on all potato samples suggest that the main risk associated with subsurface drip irrigation with low quality water is faecal contamination of root crops, in particular those consumed raw....

  3. Surveillance of vector-borne pathogens under imperfect detection: lessons from Chagas disease risk (mis)measurement.

    Science.gov (United States)

    Minuzzi-Souza, Thaís Tâmara Castro; Nitz, Nadjar; Cuba, César Augusto Cuba; Hagström, Luciana; Hecht, Mariana Machado; Santana, Camila; Ribeiro, Marcelle; Vital, Tamires Emanuele; Santalucia, Marcelo; Knox, Monique; Obara, Marcos Takashi; Abad-Franch, Fernando; Gurgel-Gonçalves, Rodrigo

    2018-01-09

    Vector-borne pathogens threaten human health worldwide. Despite their critical role in disease prevention, routine surveillance systems often rely on low-complexity pathogen detection tests of uncertain accuracy. In Chagas disease surveillance, optical microscopy (OM) is routinely used for detecting Trypanosoma cruzi in its vectors. Here, we use replicate T. cruzi detection data and hierarchical site-occupancy models to assess the reliability of OM-based T. cruzi surveillance while explicitly accounting for false-negative and false-positive results. We investigated 841 triatomines with OM slides (1194 fresh, 1192 Giemsa-stained) plus conventional (cPCR, 841 assays) and quantitative PCR (qPCR, 1682 assays). Detections were considered unambiguous only when parasitologists unmistakably identified T. cruzi in Giemsa-stained slides. qPCR was >99% sensitive and specific, whereas cPCR was ~100% specific but only ~55% sensitive. In routine surveillance, examination of a single OM slide per vector missed ~50-75% of infections and wrongly scored as infected ~7% of the bugs. qPCR-based and model-based infection frequency estimates were nearly three times higher, on average, than OM-based indices. We conclude that the risk of vector-borne Chagas disease may be substantially higher than routine surveillance data suggest. The hierarchical modelling approach we illustrate can help enhance vector-borne disease surveillance systems when pathogen detection is imperfect.

  4. Plastic potential: how the phenotypes and adaptations of pathogens are influenced by microbial interactions within plants.

    Science.gov (United States)

    O'Keeffe, Kayleigh R; Carbone, Ignazio; Jones, Corbin D; Mitchell, Charles E

    2017-08-01

    Predicting the effects of plant-associated microbes on emergence, spread, and evolution of plant pathogens demands an understanding of how pathogens respond to these microbes at two levels of biological organization: that of an individual pathogen and that of a pathogen population across multiple individual plants. We first examine the plastic responses of individual plant pathogens to microbes within a shared host, as seen through changes in pathogen growth and multiplication. We then explore the limited understanding of how within-plant microbial interactions affect pathogen populations and discuss the need to incorporate population-level observations with population genomic techniques. Finally, we suggest that integrating across levels will further our understanding of the ecological and evolutionary impacts of within-plant microbial interactions on pathogens. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Evolution, human-microbe interactions, and life history plasticity.

    Science.gov (United States)

    Rook, Graham; Bäckhed, Fredrik; Levin, Bruce R; McFall-Ngai, Margaret J; McLean, Angela R

    2017-07-29

    A bacterium was once a component of the ancestor of all eukaryotic cells, and much of the human genome originated in microorganisms. Today, all vertebrates harbour large communities of microorganisms (microbiota), particularly in the gut, and at least 20% of the small molecules in human blood are products of the microbiota. Changing human lifestyles and medical practices are disturbing the content and diversity of the microbiota, while simultaneously reducing our exposures to the so-called old infections and to organisms from the natural environment with which human beings co-evolved. Meanwhile, population growth is increasing the exposure of human beings to novel pathogens, particularly the crowd infections that were not part of our evolutionary history. Thus some microbes have co-evolved with human beings and play crucial roles in our physiology and metabolism, whereas others are entirely intrusive. Human metabolism is therefore a tug-of-war between managing beneficial microbes, excluding detrimental ones, and channelling as much energy as is available into other essential functions (eg, growth, maintenance, reproduction). This tug-of-war shapes the passage of each individual through life history decision nodes (eg, how fast to grow, when to mature, and how long to live). Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Nitrilase enzymes and their role in plant–microbe interactions

    Science.gov (United States)

    Howden, Andrew J. M.; Preston, Gail M.

    2009-01-01

    Summary Nitrilase enzymes (nitrilases) catalyse the hydrolysis of nitrile compounds to the corresponding carboxylic acid and ammonia, and have a wide range of industrial and biotechnological applications, including the synthesis of industrially important carboxylic acids and bioremediation of cyanide and toxic nitriles. Nitrilases are produced by a wide range of organisms, including plants, bacteria and fungi, but despite their biotechnological importance, the role of these enzymes in living organisms is relatively underexplored. Current research suggests that nitrilases play important roles in a range of biological processes. In the context of plant–microbe interactions they may have roles in hormone synthesis, nutrient assimilation and detoxification of exogenous and endogenous nitriles. Nitrilases are produced by both plant pathogenic and plant growth‐promoting microorganisms, and their activities may have a significant impact on the outcome of plant–microbe interactions. In this paper we review current knowledge of the role of nitriles and nitrilases in plants and plant‐associated microorganisms, and discuss how greater understanding of the natural functions of nitrilases could be applied to benefit both industry and agriculture. PMID:21255276

  7. Fluorogenic Cell-Based Biosensors for Monitoring Microbes

    Science.gov (United States)

    Curtis, Theresa; Salazar, Noe; Tabb, Joel; Chase, Chris

    2010-01-01

    Fluorogenic cell-based sensor systems for detecting microbes (especially pathogenic ones) and some toxins and allergens are undergoing development. These systems harness the natural signaltransduction and amplification cascades that occur in mast cells upon activation with antigens. These systems include (1) fluidic biochips for automated containment of samples, reagents, and wastes and (2) sensitive, compact fluorometers for monitoring the fluorescent responses of mast cells engineered to contain fluorescent dyes. It should be possible to observe responses within minutes of adding immune complexes. The systems have been shown to work when utilizing either immunoglobulin E (IgE) antibodies or traditionally generated rat antibodies - a promising result in that it indicates that the systems could be developed to detect many target microbes. Chimeric IgE antibodies and rat immunoglobulin G (IgG) antibodies could be genetically engineered for recognizing biological and chemical warfare agents and airborne and food-borne allergens. Genetic engineering efforts thus far have yielded (1) CD14 chimeric antibodies that recognize both Grampositive and Gram-negative bacteria and bind to the surfaces of mast cells, eliciting a degranulation response and (2) rat IgG2a antibodies that act similarly in response to low levels of canine parvovirus.

  8. Nitrilase enzymes and their role in plant-microbe interactions.

    Science.gov (United States)

    Howden, Andrew J M; Preston, Gail M

    2009-07-01

    Nitrilase enzymes (nitrilases) catalyse the hydrolysis of nitrile compounds to the corresponding carboxylic acid and ammonia, and have a wide range of industrial and biotechnological applications, including the synthesis of industrially important carboxylic acids and bioremediation of cyanide and toxic nitriles. Nitrilases are produced by a wide range of organisms, including plants, bacteria and fungi, but despite their biotechnological importance, the role of these enzymes in living organisms is relatively underexplored. Current research suggests that nitrilases play important roles in a range of biological processes. In the context of plant-microbe interactions they may have roles in hormone synthesis, nutrient assimilation and detoxification of exogenous and endogenous nitriles. Nitrilases are produced by both plant pathogenic and plant growth-promoting microorganisms, and their activities may have a significant impact on the outcome of plant-microbe interactions. In this paper we review current knowledge of the role of nitriles and nitrilases in plants and plant-associated microorganisms, and discuss how greater understanding of the natural functions of nitrilases could be applied to benefit both industry and agriculture. © 2009 The Authors. Journal compilation © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.

  9. Carp erythrodermatitis : host defense-pathogen interaction

    NARCIS (Netherlands)

    Pourreau, C.N.

    1990-01-01

    The outcome of a bacterial infection depends on the interaction between pathogen and host. The ability of the microbe to survive in the host depends on its invasive potential (i.e. spreading and multiplication), and its ability to obtain essential nutrients and to resist the

  10. Lung Homeostasis: Influence of Age, Microbes, and the Immune System.

    Science.gov (United States)

    Lloyd, Clare M; Marsland, Benjamin J

    2017-04-18

    Pulmonary immune homeostasis is maintained by a network of tissue-resident cells that continually monitor the external environment, and in health, instruct tolerance to innocuous inhaled particles while ensuring that efficient and rapid immune responses can be mounted against invading pathogens. Here we review the multiple pathways that underlie effective lung immunity in health, and discuss how these may be affected by external environmental factors and contribute to chronic inflammation during disease. In this context, we examine the current understanding of the impact of the microbiota in immune development and function and in the setting of the threshold for immune responses that maintains the balance between tolerance and chronic inflammation in the lung. We propose that host interactions with microbes are critical for establishing the immune landscape of the lungs. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Paramecium species ingest and kill the cells of the human pathogenic fungus Cryptococcus neoformans.

    Science.gov (United States)

    Frager, Shalom Z; Chrisman, Cara J; Shakked, Rachel; Casadevall, Arturo

    2010-08-01

    A fundamental question in the field of medical mycology is the origin of virulence in those fungal pathogens acquired directly from the environment. In recent years, it was proposed that the virulence of certain environmental animal-pathogenic microbes, such as Cryptococcus neoformans, originated from selection pressures caused by species-specific predation. In this study, we analyzed the interaction of C. neoformans with three Paramecium spp., all of which are ciliated mobile protists. In contrast to the interaction with amoebae, some Paramecium spp. rapidly ingested C. neoformans and killed the fungus. This study establishes yet another type of protist-fungal interaction supporting the notion that animal-pathogenic fungi in the environment are under constant selection by predation.

  12. Effcacy of different biological control agents against major postharvest pathogens of grapes under room temperature storage conditions

    Directory of Open Access Journals (Sweden)

    Ramu SENTHIL

    2011-05-01

    Full Text Available Normal 0 14 false false false IT ZH-TW X-NONE MicrosoftInternetExplorer4 Grapes were treated post harvest with a variety of biological agents to determine their effcacy in reducing yield loss. The agents Pseudomonas, Bacillus, Trichoderma and yeast isolates were individually screened against a number of postharvest pathogens including Aspergillus carbonarius, Penicillum expansum, and Fusarium moniliforme. B. subtilis strains EPC-8 and EPCO-16 showed high mycelial growth suppression of A. carbonarius and P. expansum  in vitro. The fungal antagonist Trichoderma viride strain (Tv Tvm was the most effective, inhibiting mycelial growth by 88.8 per cent. The biological control agents were tested in pre, post and combined inoculation studies against postharvest pathogens of grapes.  In the pre inoculation, B. subtilis (EPC-8 reduced the disease incidence of A. carbonarius causing rot, T. harzianum (Th Co was effective against P. expansum, and T. viride (Tv Tvm was effective against F. moniliforme. The same trend of effectiveness was also found in the post-inoculation and combined inoculation tests.

  13. MicrobeWorld Radio and Communications Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Barbara Hyde

    2006-11-22

    MicrobeWorld is a 90-second feature broadcast daily on more than 90 public radio stations and available from several sources as a podcast, including www.microbeworld.org. The feature has a strong focus on the use and adapatbility of microbes as alternative sources of energy, in bioremediation, their role in climate, and especially the many benefits and scientific advances that have resulting from decoding microbial genomes. These audio features are permanantly archived on an educational outreach site, microbeworld.org, where they are linked to the National Science Education Standards. They are also being used by instructors at all levels to introduce students to the multiple roles and potential of microbes, including a pilot curriculum program for middle-school students in New York.

  14. Disease susceptibiliy in the zig-zag model of host-microbe Interactions: only a consequence of immune suppression?

    OpenAIRE

    Keller, Harald; Boyer, Laurent; Abad, Pierre

    2016-01-01

    For almost ten years, the Zig-Zag model has provided a convenient framework for explaining the molecular bases of compatibility and incompatibility in plant-microbe interactions (Jones and Dangl, 2006). According to the Zig-Zag model, disease susceptibility is a consequence of the suppression of host immunity during the evolutionary arms race between plants and pathogens. The Zig-Zag model thus fits well with biotrophic interactions, but is less applicable to interactions involving pathogens ...

  15. The microbe, creator of the pathologist: an inter-related history of pathology, microbiology, and infectious disease.

    Science.gov (United States)

    Rosati, L A

    2001-06-01

    This brief historical review of pathology stresses the impact of microbial discovery on the development of pathology as a medical specialty. If, as it has been said, the microscope invented the pathologist, it was the microbe, especially the pathogenic bacterium, that gave him his name and made him clinically relevant.

  16. Cross-sectional point prevalence survey to study the environmental contamination of nosocomial pathogens in intensive care units under real-life conditions.

    Science.gov (United States)

    Wille, I; Mayr, A; Kreidl, P; Brühwasser, C; Hinterberger, G; Fritz, A; Posch, W; Fuchs, S; Obwegeser, A; Orth-Höller, D; Lass-Flörl, C

    2018-01-01

    In intensive care units (ICUs), inanimate surfaces and equipment may be contaminated by nosocomial pathogens, including multi-drug-resistant micro-organisms. To assess the degree of environmental contamination close to and distant from patients, and contamination of healthcare workers' (HCWs) hands with nosocomial pathogens under real-life conditions and to investigate potential transmission events. Over the course of three weeks, agar contact samples were taken close to and distant from patient areas and from HCWs' hands in eight ICUs of a tertiary care hospital in Innsbruck, Austria. Each ICU was visited once without announcement. Species identification and antimicrobial susceptibility testing were performed according to standard methods, and corresponding strains from patient, environment and hand samples were genotyped using pulsed-field gel electrophoresis. Among 523 samples, HCWs' hands were most frequently contaminated with potentially pathogenic bacteria (15.2%), followed by areas close to patients (10.9%) and areas distant from patients (9.1%). Gram-positive bacteria were identified most often (67.8%), with Enterococcus spp. being the most prevalent species (70% vancomycin sensitive and 30% vancomycin resistant) followed by Staphylococcus aureus, of which 64% were classified as meticillin-resistant Staphylococcus aureus. Molecular typing documented identical strains among patient, environment and hand isolates. This study found widespread contamination of the ICU environment with clinically relevant pathogens, including multi-drug-resistant micro-organisms, despite cleaning and disinfection. The bioburden might not be restricted to areas close to patients. The role of extended environmental disinfection of areas distant from patients in order to improve infection prevention needs further discussion. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  17. New trends in emerging pathogens.

    Science.gov (United States)

    Skovgaard, Niels

    2007-12-15

    The emergence of pathogens is the result of a number of impact in all parts of the food chain. The emerging technologies in food production explain how new pathogens can establish themselves in the food chain and compromise food safety. The impact of the food technology is analysed for several bacteria, such as Yersinia, Campylobacter, Arcobacter, Helicobacter pullorum, Enterobacter sakazakii, Mycobacterium avium spp. paratuberculosis, prions related to vCJD and others. The importance of the ability of many microbes to form VBNC forms is elaborated on. Research on culture independent methods may address this outstanding issue to the better understanding of emerging pathogens. The "demerging" of pathogens also occur, and examples of this are explained. The reaction of bacteria to stresses and sublethal treatments, and how exposure to one stress factor can confer resistance to other stresses, literally speaking causing contagious resistance, are explained. The implication of this e.g. in modern approaches of food preservation, such as Minimally processed Foods, is considerable. Intestinal colonization of EHEC may be regulated by Quorum sensing, and this ability of microbes plays an important role in the colonization of microbes in food and on food processing equipment, an important factor in the emergence of pathogens. The emergence of Saccharomyces cerevisiae, as an opportunistic human pathogen, used for centuries for food and production of alcoholic beverages, calls for research in molecular tools to distinguish between probiotic and clinical strains. Cyclospora cayetanensis and Norovirus outbreaks can no longer be designated as emerging pathogens, they share however one characteristic in the epidemiology of emerging nature, the importance of the hygiene in the primary production stage, including supply of potable water, and the application of GMP and the HACCP principles in the beginning of the food chain. Hepatitis E virus is a potential emerging food borne

  18. Natural products from microbes associated with insects

    DEFF Research Database (Denmark)

    Beemelmanns, Christine; Guo, Huijuan; Rischer, Maja

    2016-01-01

    Here we review discoveries of secondary metabolites from microbes associated with insects. We mainly focus on natural products, where the ecological role has been at least partially elucidated, and/or the pharmaceutical properties evaluated, and on compounds with unique structural features. We...

  19. MVP: a microbe-phage interaction database.

    Science.gov (United States)

    Gao, Na L; Zhang, Chengwei; Zhang, Zhanbing; Hu, Songnian; Lercher, Martin J; Zhao, Xing-Ming; Bork, Peer; Liu, Zhi; Chen, Wei-Hua

    2018-01-04

    Phages invade microbes, accomplish host lysis and are of vital importance in shaping the community structure of environmental microbiota. More importantly, most phages have very specific hosts; they are thus ideal tools to manipulate environmental microbiota at species-resolution. The main purpose of MVP (Microbe Versus Phage) is to provide a comprehensive catalog of phage-microbe interactions and assist users to select phage(s) that can target (and potentially to manipulate) specific microbes of interest. We first collected 50 782 viral sequences from various sources and clustered them into 33 097 unique viral clusters based on sequence similarity. We then identified 26 572 interactions between 18 608 viral clusters and 9245 prokaryotes (i.e. bacteria and archaea); we established these interactions based on 30 321 evidence entries that we collected from published datasets, public databases and re-analysis of genomic and metagenomic sequences. Based on these interactions, we calculated the host range for each of the phage clusters and accordingly grouped them into subgroups such as 'species-', 'genus-' and 'family-' specific phage clusters. MVP is equipped with a modern, responsive and intuitive interface, and is freely available at: http://mvp.medgenius.info. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. The mucosal firewalls against commensal intestinal microbes.

    Science.gov (United States)

    Macpherson, Andrew J; Slack, Emma; Geuking, Markus B; McCoy, Kathy D

    2009-07-01

    Mammals coexist with an extremely dense microbiota in the lower intestine. Despite the constant challenge of small numbers of microbes penetrating the intestinal surface epithelium, it is very unusual for these organisms to cause disease. In this review article, we present the different mucosal firewalls that contain and allow mutualism with the intestinal microbiota.

  1. Resistance development of cystic fibrosis respiratory pathogens when exposed to fosfomycin and tobramycin alone and in combination under aerobic and anaerobic conditions.

    Science.gov (United States)

    McCaughey, Gerard; Diamond, Paul; Elborn, J Stuart; McKevitt, Matt; Tunney, Michael M

    2013-01-01

    Although antibiotics from different classes are frequently prescribed in combination to prevent the development of resistance amongst Cystic Fibrosis (CF) respiratory pathogens, there is a lack of data as to the efficacy of this approach. We have previously shown that a 4:1 (w/w) combination of fosfomycin and tobramycin (F:T) has excellent activity against CF pathogens with increased activity under physiologically relevant anaerobic conditions. Therefore, the aim of this study was to determine whether F:T could delay or prevent the onset of resistance compared to either fosfomycin or tobramycin alone under aerobic and anaerobic conditions. The frequency of spontaneous mutants arising following exposure to fosfomycin, tobramycin and F:T was determined for clinical Pseudomonas aeruginosa and MRSA isolates under aerobic and anaerobic conditions. The effect of sub-inhibitory concentrations of fosfomycin, tobramycin and F:T on the induction of resistance was also investigated, with the stability of resistance and fitness cost associated with resistance assessed if it developed. P. aeruginosa and MRSA isolates had a lower frequency of spontaneous mutants to F:T compared to fosfomycin and tobramycin under both aerobic and anaerobic conditions. There was a maximum two-fold increase in F:T MICs when P. aeruginosa and MRSA isolates were passaged in sub-inhibitory F:T for 12 days. In contrast, sequential resistance to fosfomycin and tobramycin developed quickly (n = 3 days for both) after passage in sub-inhibitory concentrations. Once developed, both fosfomycin and tobramycin resistance was stable and not associated with a biological fitness cost to either P. aeruginosa or MRSA isolates. The results of this study suggest that F:T may prevent the development of resistance compared to fosfomycin or tobramycin alone under aerobic and physiologically relevant anaerobic conditions. F:T may be a potential treatment option in CF patients chronically colonised by MRSA and/or P

  2. [Anti-infective defence strategies and methods of escape from entomologic pathogens under immunologic control of insects].

    Science.gov (United States)

    Jarosz, J

    1996-01-01

    Insect immunity comprises a complex of several distinct systems, both haemocytic and humoral in nature, that cooperate together in a more or less coordinated way to provide protection of the body cavity from invading microorganisms. Insects can respond to infections by a selective synthesis of haemolymph immune proteins that are responsible for antibacterial immunity. Antibacterial activity of insect blood is attributable to innate compounds such as lysozome, and to induced polypeptides or small basic proteins absent in non-immunized insects. The cecropins and attacins in Lepidoptera, and diptericins in Diptera are the inducible antibacterial immune proteins well defined biochemically. Bacterial pathogens and some parasites of insects, preferably entomogenous rhabditid nematodes, have developed the mechanism by which they may counteract insect immunity. This phenomenon is realized either by escaping immune reactions or by degrading antimicrobial factors of haemolymph in an active process. Passive resistance of parasites to insect immunity is a result of a strong evolutionary pressure on parasites to develop mechanisms to escape insect immune reactions or to minimize their effectiveness through changes in the parasite itself. Active resistance to the insect non-self response system involves a partial or total destruction of immune proteins by extracellular proteinases released during parasitism.

  3. Th17 Polarization under Hypoxia Results in Increased IL-10 Production in a Pathogen-Independent Manner

    Directory of Open Access Journals (Sweden)

    Roman Volchenkov

    2017-06-01

    Full Text Available The IL-17-producing CD4+ T helper cell (Th17 differentiation is affected by stimulation of the aryl hydrocarbon receptor (AhR pathway and by hypoxia-inducible factor 1 alpha (HIF-1α. In some cases, Th17 become non-pathogenic and produce IL-10. However, the initiating events triggering this phenotype are yet to be fully understood. Here, we show that such cells may be differentiated at low oxygen and regardless of AhR ligand treatment such as cigarette smoke extract. Hypoxia led to marked alterations of the transcriptome of IL-10-producing Th17 cells affecting genes involved in metabolic, anti-apoptotic, cell cycle, and T cell functional pathways. Moreover, we show that oxygen regulates the expression of CD52, which is a cell surface protein that has been shown to suppress the activation of other T cells upon release. Taken together, these findings suggest a novel ability for Th17 cells to regulate immune responses in vivo in an oxygen-dependent fashion.

  4. The role of lipids in host microbe interactions.

    Science.gov (United States)

    Lang, Roland; Mattner, Jochen

    2017-06-01

    Lipids are one of the major subcellular constituents and serve as signal molecules, energy sources, metabolic precursors and structural membrane components in various organisms. The function of lipids can be modified by multiple biochemical processes such as (de-)phosphorylation or (de-)glycosylation, and the organization of fatty acids into distinct cellular pools and subcellular compartments plays a pivotal role for the morphology and function of various cell populations. Thus, lipids regulate, for example, phagosome formation and maturation within host cells and thus, are critical for the elimination of microbial pathogens. Vice versa, microbial pathogens can manipulate the lipid composition of phagosomal membranes in host cells, and thus avoid their delivery to phagolysosomes. Lipids of microbial origin belong also to the strongest and most versatile inducers of mammalian immune responses upon engagement of distinct receptors on myeloid and lymphoid cells. Furthermore, microbial lipid toxins can induce membrane injuries and cell death. Thus, we will review here selected examples for mutual host-microbe interactions within the broad and divergent universe of lipids in microbial defense, tissue injury and immune evasion.

  5. Designer cells programming quorum-sensing interference with microbes.

    Science.gov (United States)

    Sedlmayer, Ferdinand; Hell, Dennis; Müller, Marius; Ausländer, David; Fussenegger, Martin

    2018-05-08

    Quorum sensing is a promising target for next-generation anti-infectives designed to address evolving bacterial drug resistance. The autoinducer-2 (AI-2) is a key quorum-sensing signal molecule which regulates bacterial group behaviors and is recognized by many Gram-negative and Gram-positive bacteria. Here we report a synthetic mammalian cell-based microbial-control device that detects microbial chemotactic formyl peptides through a formyl peptide sensor (FPS) and responds by releasing AI-2. The microbial-control device was designed by rewiring an artificial receptor-based signaling cascade to a modular biosynthetic AI-2 production platform. Mammalian cells equipped with the microbial-control gene circuit detect formyl peptides secreted from various microbes with high sensitivity and respond with robust AI-2 production, resulting in control of quorum sensing-related behavior of pathogenic Vibrio harveyi and attenuation of biofilm formation by the human pathogen Candida albicans. The ability to manipulate mixed microbial populations through fine-tuning of AI-2 levels may provide opportunities for future anti-infective strategies.

  6. Induction of abiotic stress tolerance in plants by endophytic microbes.

    Science.gov (United States)

    Lata, R; Chowdhury, S; Gond, S K; White, J F

    2018-04-01

    Endophytes are micro-organisms including bacteria and fungi that survive within healthy plant tissues and promote plant growth under stress. This review focuses on the potential of endophytic microbes that induce abiotic stress tolerance in plants. How endophytes promote plant growth under stressful conditions, like drought and heat, high salinity and poor nutrient availability will be discussed. The molecular mechanisms for increasing stress tolerance in plants by endophytes include induction of plant stress genes as well as biomolecules like reactive oxygen species scavengers. This review may help in the development of biotechnological applications of endophytic microbes in plant growth promotion and crop improvement under abiotic stress conditions. Increasing human populations demand more crop yield for food security while crop production is adversely affected by abiotic stresses like drought, salinity and high temperature. Development of stress tolerance in plants is a strategy to cope with the negative effects of adverse environmental conditions. Endophytes are well recognized for plant growth promotion and production of natural compounds. The property of endophytes to induce stress tolerance in plants can be applied to increase crop yields. With this review, we intend to promote application of endophytes in biotechnology and genetic engineering for the development of stress-tolerant plants. © 2018 The Society for Applied Microbiology.

  7. Friend, foe or food? Recognition and the role of antimicrobial peptides in gut immunity and Drosophila-microbe interactions.

    Science.gov (United States)

    Broderick, Nichole A

    2016-05-26

    Drosophila melanogaster lives, breeds and feeds on fermenting fruit, an environment that supports a high density, and often a diversity, of microorganisms. This association with such dense microbe-rich environments has been proposed as a reason that D. melanogaster evolved a diverse and potent antimicrobial peptide (AMP) response to microorganisms, especially to combat potential pathogens that might occupy this niche. Yet, like most animals, D. melanogaster also lives in close association with the beneficial microbes that comprise its microbiota, or microbiome, and recent studies have shown that antimicrobial peptides (AMPs) of the epithelial immune response play an important role in dictating these interactions and controlling the host response to gut microbiota. Moreover, D. melanogaster also eats microbes for food, consuming fermentative microbes of decaying plant material and their by-products as both larvae and adults. The processes of nutrient acquisition and host defence are remarkably similar and use shared functions for microbe detection and response, an observation that has led to the proposal that the digestive and immune systems have a common evolutionary origin. In this manner, D. melanogaster provides a powerful model to understand how, and whether, hosts differentiate between the microbes they encounter across this spectrum of associations.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. © 2016 The Author(s).

  8. Friend, foe or food? Recognition and the role of antimicrobial peptides in gut immunity and Drosophila–microbe interactions

    Science.gov (United States)

    2016-01-01

    Drosophila melanogaster lives, breeds and feeds on fermenting fruit, an environment that supports a high density, and often a diversity, of microorganisms. This association with such dense microbe-rich environments has been proposed as a reason that D. melanogaster evolved a diverse and potent antimicrobial peptide (AMP) response to microorganisms, especially to combat potential pathogens that might occupy this niche. Yet, like most animals, D. melanogaster also lives in close association with the beneficial microbes that comprise its microbiota, or microbiome, and recent studies have shown that antimicrobial peptides (AMPs) of the epithelial immune response play an important role in dictating these interactions and controlling the host response to gut microbiota. Moreover, D. melanogaster also eats microbes for food, consuming fermentative microbes of decaying plant material and their by-products as both larvae and adults. The processes of nutrient acquisition and host defence are remarkably similar and use shared functions for microbe detection and response, an observation that has led to the proposal that the digestive and immune systems have a common evolutionary origin. In this manner, D. melanogaster provides a powerful model to understand how, and whether, hosts differentiate between the microbes they encounter across this spectrum of associations. This article is part of the themed issue ‘Evolutionary ecology of arthropod antimicrobial peptides’. PMID:27160597

  9. Assessment of pathogenic bacteria in water and sediment from a water reservoir under tropical conditions (Lake Ma Vallée), Kinshasa Democratic Republic of Congo.

    Science.gov (United States)

    Mwanamoki, Paola M; Devarajan, Naresh; Thevenon, Florian; Atibu, Emmanuel K; Tshibanda, Joseph B; Ngelinkoto, Patience; Mpiana, Pius T; Prabakar, Kandasamy; Mubedi, Josué I; Kabele, Christophe G; Wildi, Walter; Poté, John

    2014-10-01

    This study was conducted to assess potential human health risks presented by pathogenic bacteria in a protected multi-use lake-reservoir (Lake Ma Vallée) located in west of Kinshasa, Democratic Republic of Congo (DRC). Water and surface sediments from several points of the Lake were collected during summer. Microbial analysis was performed for Escherichia coli, Enterococcus (ENT), Pseudomonas species and heterotrophic plate counts. PCR amplification was performed for the confirmation of E. coli, ENT, Pseudomonas spp. and Pseudomonas aeruginosa isolated from samples. The results reveal low concentration of bacteria in water column of the lake, the bacterial quantification results observed in this study for the water column were below the recommended limits, according to WHO and the European Directive 2006/7/CE, for bathing water. However, high concentration of bacteria was observed in the sediment samples; the values of 2.65 × 10(3), 6.35 × 10(3), 3.27 × 10(3) and 3.60 × 10(8) CFU g(-1) of dry sediment for E. coli, ENT, Pseudomonas spp. and heterotrophic plate counts, respectively. The results of this study indicate that sediments of the Lake Ma Vallée can constitute a reservoir of pathogenic microorganisms which can persist in the lake. Possible resuspension of faecal indicator bacteria and pathogens would affect water quality and may increase health risks to the population during recreational activities. Our results indicate that the microbial sediment analysis provides complementary and important information for assessing sanitary quality of surface water under tropical conditions.

  10. Alterations in the antibacterial potential of Synechococcus spp. PCC7942 under the influence of UV-B radiations on skin pathogens

    Directory of Open Access Journals (Sweden)

    Nida Fatima

    2017-11-01

    Full Text Available Marine organisms are seen as a source of novel drugs and the discovery of new pharmaceutical is increasingly in demand. Cyanobacteria are regarded as a potential target for this as antibacterial, antiviral, antifungal, algicide and cytotoxic activities have been reported in these organisms. They have been identified as a new and rich source of bioactive compounds belonging to diversified groups. Radiation in the UV-B range interferes with various metabolic reactions by generating free radicals and active oxygen species. These deleterious compounds are inactivated by antioxidants. Among them are the carotenoids and phycocyanin which protect against photodynamic action in different ways. Stress plays an important role in the production of bioactive metabolites from organisms. Synechococcus spp. PCC7942 was studied for antibacterial activity against various pathogenic bacteria resistant to a number of available antibiotics after being exposed to UV-B radiation. The antibacterial activity of Synechococcus spp. PCC7942 was studied on five potent skin pathogens. The highest antibacterial activity was seen the methanol extracts of 24 h UV-B exposed cultures of Synechococcus spp. PCC7942. It can be concluded that there was moderate antibacterial activity. Results showed stress, solvent and dose-dependent activity. This antibacterial activity might be due to the enhanced synthesis of carotenoids and phycocyanin under UV-B stress. The purpose of the present study was to relate the inhibitory effects of the cyanobacterial compounds specifically on skin pathogens with exposure to UV-B radiation as UV protecting compounds are already reported in these organisms.

  11. Long-term monitoring of waterborne pathogens and microbial source tracking markers in paired agricultural watersheds under controlled and conventional tile drainage management.

    Science.gov (United States)

    Wilkes, Graham; Brassard, Julie; Edge, Thomas A; Gannon, Victor; Gottschall, Natalie; Jokinen, Cassandra C; Jones, Tineke H; Khan, Izhar U H; Marti, Romain; Sunohara, Mark D; Topp, Edward; Lapen, David R

    2014-06-01

    Surface waters from paired agricultural watersheds under controlled tile drainage (CTD) and uncontrolled tile drainage (UCTD) were monitored over 7 years in order to determine if there was an effect of CTD (imposed during the growing season) on occurrences and loadings of bacterial and viral pathogens, coliphages, and microbial source tracking markers. There were significantly lower occurrences of human, ruminant, and livestock (ruminant plus pig) Bacteroidales markers in the CTD watershed in relation to the UCTD watershed. As for pathogens, there were significantly lower occurrences of Salmonella spp. and Arcobacter spp. in the CTD watershed. There were no instances where there were significantly higher quantitative loadings of any microbial target in the CTD watershed, except for F-specific DNA (F-DNA) and F-RNA coliphages, perhaps as a result of fecal inputs from a hobby farm independent of the drainage practice treatments. There was lower loading of the ruminant marker in the CTD watershed in relation to the UCTD system, and results were significant at the level P = 0.06. The odds of Salmonella spp. occurring increased when a ruminant marker was present relative to when the ruminant marker was absent, yet for Arcobacter spp., the odds of this pathogen occurring significantly decreased when a ruminant marker was present relative to when the ruminant marker was absent (but increased when a wildlife marker was present relative to when the wildlife marker was absent). Interestingly, the odds of norovirus GII (associated with human and swine) occurring in water increased significantly when a ruminant marker was present relative to when a ruminant marker was absent. Overall, this study suggests that fecal pollution from tile-drained fields to stream could be reduced by CTD utilization. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  12. Long-Term Monitoring of Waterborne Pathogens and Microbial Source Tracking Markers in Paired Agricultural Watersheds under Controlled and Conventional Tile Drainage Management

    Science.gov (United States)

    Wilkes, Graham; Brassard, Julie; Edge, Thomas A.; Gannon, Victor; Gottschall, Natalie; Jokinen, Cassandra C.; Jones, Tineke H.; Khan, Izhar U. H.; Marti, Romain; Sunohara, Mark D.; Topp, Edward

    2014-01-01

    Surface waters from paired agricultural watersheds under controlled tile drainage (CTD) and uncontrolled tile drainage (UCTD) were monitored over 7 years in order to determine if there was an effect of CTD (imposed during the growing season) on occurrences and loadings of bacterial and viral pathogens, coliphages, and microbial source tracking markers. There were significantly lower occurrences of human, ruminant, and livestock (ruminant plus pig) Bacteroidales markers in the CTD watershed in relation to the UCTD watershed. As for pathogens, there were significantly lower occurrences of Salmonella spp. and Arcobacter spp. in the CTD watershed. There were no instances where there were significantly higher quantitative loadings of any microbial target in the CTD watershed, except for F-specific DNA (F-DNA) and F-RNA coliphages, perhaps as a result of fecal inputs from a hobby farm independent of the drainage practice treatments. There was lower loading of the ruminant marker in the CTD watershed in relation to the UCTD system, and results were significant at the level P = 0.06. The odds of Salmonella spp. occurring increased when a ruminant marker was present relative to when the ruminant marker was absent, yet for Arcobacter spp., the odds of this pathogen occurring significantly decreased when a ruminant marker was present relative to when the ruminant marker was absent (but increased when a wildlife marker was present relative to when the wildlife marker was absent). Interestingly, the odds of norovirus GII (associated with human and swine) occurring in water increased significantly when a ruminant marker was present relative to when a ruminant marker was absent. Overall, this study suggests that fecal pollution from tile-drained fields to stream could be reduced by CTD utilization. PMID:24727274

  13. Changes in the Aggressiveness and Fecundity of Hot Pepper Anthracnose Pathogen (Colletotricum acutatum under Elevated CO₂ and Temperature over 100 Infection Cycles

    Directory of Open Access Journals (Sweden)

    Tae-Hoon Koo

    2016-06-01

    Full Text Available We observed the changes in aggressiveness and fecundity of the anthracnose pathogen Colletotrichum acutatum on hot pepper, under the ambient and the twice-ambient treatments. Artificial infection was repeated over 100 cycles for ambient (25°C/400 ppm CO₂ and twice-ambient (30°C/700 ppm CO₂ growth chamber conditions, over 3 years. During repeated infection cycles (ICs on green-pepper fruits, the aggressiveness (incidence [% of diseased fruits among 20 inoculated fruits] and severity [lesion length in mm] of infection and fecundity (the average number of spores per five lesions of the pathogen were measured in each cycle and compared between the ambient and twice-ambient treatments, and also between the early (ICs 31–50 and late (ICs 81–100 generations. In summary, the pathogen’s aggressiveness and fecundity were significantly lower in the late generation. It is likely that aggressiveness and fecundity of C. acutatum may be reduced as global CO₂ and temperatures increase.

  14. Molecular and functional analyses of novel anti-lipopolysaccharide factors in giant river prawn (Macrobrachium rosenbergii, De Man) and their expression responses under pathogen and temperature exposure.

    Science.gov (United States)

    Srisapoome, Prapansak; Klongklaew, Nawanith; Areechon, Nontawith; Wongpanya, Ratree

    2018-06-15

    obtained in this study, novel ALF genes were clearly identified. Analyses of their responses under pathogenic and temperature stresses demonstrated the binding and antimicrobial activities of these ALFs and the consequent physiological effects, indicating their crucial functional roles in the prawn immune system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Engineering tailored nanoparticles with microbes: quo vadis?

    Science.gov (United States)

    Prasad, Ram; Pandey, Rishikesh; Barman, Ishan

    2016-01-01

    In the quest for less toxic and cleaner methods of nanomaterials production, recent developments in the biosynthesis of nanoparticles have underscored the important role of microorganisms. Their intrinsic ability to withstand variable extremes of temperature, pressure, and pH coupled with the minimal downstream processing requirements provide an attractive route for diverse applications. Yet, controlling the dispersity and facile tuning of the morphology of the nanoparticles of desired chemical compositions remains an ongoing challenge. In this Focus Review, we critically review the advances in nanoparticle synthesis using microbes, ranging from bacteria and fungi to viruses, and discuss new insights into the cellular mechanisms of such formation that may, in the near future, allow complete control over particle morphology and functionalization. In addition to serving as paradigms for cost-effective, biocompatible, and eco-friendly synthesis, microbes hold the promise for a unique template for synthesis of tailored nanoparticles targeted at therapeutic and diagnostic platform technologies. © 2015 Wiley Periodicals, Inc.

  16. Electrifying microbes for the production of chemicals

    Directory of Open Access Journals (Sweden)

    Pier-Luc eTremblay

    2015-03-01

    Full Text Available Powering microbes with electrical energy to produce valuable chemicals such as biofuels has recently gained traction as a biosustainable strategy to reduce our dependence on oil. Microbial electrosynthesis (MES is one of the bioelectrochemical approaches developed in the last decade that could have critical impact on the current methods of chemical synthesis. MES is a process in which electroautotrophic microbes use electrical current as electron source to reduce CO2 to multicarbon organics. Electricity necessary for MES can be harvested from renewable resources such as solar energy, wind turbine or wastewater treatment processes. The net outcome is that renewable energy is stored in the covalent bonds of organic compounds synthesized from greenhouse gas. This review will discuss the future of MES and the challenges that lie ahead for its development into a mature technology.

  17. Electrifying microbes for the production of chemicals

    DEFF Research Database (Denmark)

    Tremblay, Pier-Luc; Zhang, Tian

    2015-01-01

    have critical impact on the current methods of chemical synthesis. MES is a process in which electroautotrophic microbes use electrical current as electron source to reduce CO2 to multicarbon organics. Electricity necessary for MES can be harvested from renewable resources such as solar energy, wind......Powering microbes with electrical energy to produce valuable chemicals such as biofuels has recently gained traction as a biosustainable strategy to reduce our dependence on oil. Microbial electrosynthesis (MES) is one of the bioelectrochemical approaches developed in the last decade that could...... turbine, or wastewater treatment processes. The net outcome is that renewable energy is stored in the covalent bonds of organic compounds synthesized from greenhouse gas. This review will discuss the future of MES and the challenges that lie ahead for its development into a mature technology....

  18. Visualizing conserved gene location across microbe genomes

    Science.gov (United States)

    Shaw, Chris D.

    2009-01-01

    This paper introduces an analysis-based zoomable visualization technique for displaying the location of genes across many related species of microbes. The purpose of this visualizatiuon is to enable a biologist to examine the layout of genes in the organism of interest with respect to the gene organization of related organisms. During the genomic annotation process, the ability to observe gene organization in common with previously annotated genomes can help a biologist better confirm the structure and function of newly analyzed microbe DNA sequences. We have developed a visualization and analysis tool that enables the biologist to observe and examine gene organization among genomes, in the context of the primary sequence of interest. This paper describes the visualization and analysis steps, and presents a case study using a number of Rickettsia genomes.

  19. Nutrient-Dependent Impact of Microbes on Drosophila suzukii Development

    Directory of Open Access Journals (Sweden)

    XiaoLi Bing

    2018-03-01

    Full Text Available Drosophila suzukii Matsumura is an invasive species of vinegar fly that has become a prominent pest of berries and other soft-skinned fruits. Unlike most other Drosophila species, female D. suzukii flies lay their eggs in ripening and ripe fruits and larvae develop within the fruit. To understand how D. suzukii larvae utilize ripe and ripening fruits, which usually have low levels of protein, we investigated the microbiota of field-captured and laboratory-reared D. suzukii flies and further examined the combined influence of diet and microbes on host fitness. Field-captured flies were associated with diverse microbiota, which varied significantly with sampling location and season. In contrast, laboratory-reared flies possessed strikingly lower bacterial abundance and diversity. A comparison of conventionally reared (CR and germ-free (GF flies revealed that the microbiota of D. suzukii does not alter its development significantly but decreases its life span under conditions of a nutrient-sufficient diet. However, the microbiota is essential for D. suzukii development on strawberry-based or blueberry-based fruit diets. This developmental failure could be rescued by reassociation with single bacterial or fungal species or by the addition of a high quantity of heat-killed microbes. In addition, we found that proteins are limiting with respect to fly development on fruit-based diets and that GF flies show signs of protein starvation. Taken together, our study results demonstrate that the microbiota provides key proteins required for the development of D. suzukii reared on fresh fruit. Our work shows that the impact of microbes on fly fitness depends strongly on nutritional conditions.

  20. Nutrient-Dependent Impact of Microbes on Drosophila suzukii Development

    Science.gov (United States)

    Bing, XiaoLi; Gerlach, Joseph; Loeb, Gregory

    2018-01-01

    ABSTRACT Drosophila suzukii Matsumura is an invasive species of vinegar fly that has become a prominent pest of berries and other soft-skinned fruits. Unlike most other Drosophila species, female D. suzukii flies lay their eggs in ripening and ripe fruits and larvae develop within the fruit. To understand how D. suzukii larvae utilize ripe and ripening fruits, which usually have low levels of protein, we investigated the microbiota of field-captured and laboratory-reared D. suzukii flies and further examined the combined influence of diet and microbes on host fitness. Field-captured flies were associated with diverse microbiota, which varied significantly with sampling location and season. In contrast, laboratory-reared flies possessed strikingly lower bacterial abundance and diversity. A comparison of conventionally reared (CR) and germ-free (GF) flies revealed that the microbiota of D. suzukii does not alter its development significantly but decreases its life span under conditions of a nutrient-sufficient diet. However, the microbiota is essential for D. suzukii development on strawberry-based or blueberry-based fruit diets. This developmental failure could be rescued by reassociation with single bacterial or fungal species or by the addition of a high quantity of heat-killed microbes. In addition, we found that proteins are limiting with respect to fly development on fruit-based diets and that GF flies show signs of protein starvation. Taken together, our study results demonstrate that the microbiota provides key proteins required for the development of D. suzukii reared on fresh fruit. Our work shows that the impact of microbes on fly fitness depends strongly on nutritional conditions. PMID:29559576

  1. An Astrobiology Microbes Exhibit and Education Module

    Science.gov (United States)

    Lindstrom, Marilyn M.; Allen, Jaclyn S.; Stocco, Karen; Tobola, Kay; Olendzenski, Lorraine

    2001-01-01

    Telling the story of NASA-sponsored scientific research to the public in exhibits is best done by partnerships of scientists and museum professionals. Likewise, preparing classroom activities and training teachers to use them should be done by teams of teachers and scientists. Here we describe how we used such partnerships to develop a new astrobiology augmentation to the Microbes! traveling exhibit and a companion education module. "Additional information is contained in the original extended abstract."

  2. Uncharted Microbial World: Microbes and Their Activities in the Environment

    Energy Technology Data Exchange (ETDEWEB)

    Harwood, Caroline; Buckley, Merry

    2007-12-31

    Microbes are the foundation for all of life. From the air we breathe to the soil we rely on for farming to the water we drink, everything humans need to survive is intimately coupled with the activities of microbes. Major advances have been made in the understanding of disease and the use of microorganisms in the industrial production of drugs, food products and wastewater treatment. However, our understanding of many complicated microbial environments (the gut and teeth), soil fertility, and biogeochemical cycles of the elements is lagging behind due to their enormous complexity. Inadequate technology and limited resources have stymied many lines of investigation. Today, most environmental microorganisms have yet to be isolated and identified, let alone rigorously studied. The American Academy of Microbiology convened a colloquium in Seattle, Washington, in February 2007, to deliberate the way forward in the study of microorganisms and microbial activities in the environment. Researchers in microbiology, marine science, pathobiology, evolutionary biology, medicine, engineering, and other fields discussed ways to build on and extend recent successes in microbiology. The participants made specific recommendations for targeting future research, improving methodologies and techniques, and enhancing training and collaboration in the field. Microbiology has made a great deal of progress in the past 100 years, and the useful applications for these new discoveries are numerous. Microorganisms and microbial products are now used in industrial capacities ranging from bioremediation of toxic chemicals to probiotic therapies for humans and livestock. On the medical front, studies of microbial communities have revealed, among other things, new ways for controlling human pathogens. The immediate future for research in this field is extremely promising. In order to optimize the effectiveness of community research efforts in the future, scientists should include manageable

  3. Engineered microbes and methods for microbial oil production

    Energy Technology Data Exchange (ETDEWEB)

    Stephanopoulos, Gregory; Tai, Mitchell; Chakraborty, Sagar

    2018-01-09

    Some aspects of this invention provide engineered microbes for oil production. Methods for microbe engineering and for use of engineered microbes are also provided herein. In some embodiments, microbes are provided that are engineered to modulate a combination of rate-controlling steps of lipid synthesis, for example, a combination of a step generating metabolites, acetyl-CoA, ATP or NADPH for lipid synthesis (a push step), and a step sequestering a product or an intermediate of a lipid synthesis pathway that mediates feedback inhibition of lipid synthesis (a pull step). Such push-and-pull engineered microbes exhibit greatly enhanced conversion yields and TAG synthesis and storage properties.

  4. Engineered microbes and methods for microbial oil production

    Science.gov (United States)

    Stephanopoulos, Gregory; Tai, Mitchell; Chakraborty, Sagar

    2015-02-10

    Some aspects of this invention provide engineered microbes for oil production. Methods for microbe engineering and for use of engineered microbes are also provided herein. In some embodiments, microbes are provided that are engineered to modulate a combination of rate-controlling steps of lipid synthesis, for example, a combination of a step generating metabolites, acetyl-CoA, ATP or NADPH for lipid synthesis (a push step), and a step sequestering a product or an intermediate of a lipid synthesis pathway that mediates feedback inhibition of lipid synthesis (a pull step). Such push-and-pull engineered microbes exhibit greatly enhanced conversion yields and TAG synthesis and storage properties.

  5. Soil-Plant-Microbe Interactions in Stressed Agriculture Management: A Review

    Institute of Scientific and Technical Information of China (English)

    Shobhit Raj VIMAL; Jay Shankar SINGH; Naveen Kumar ARORA; Surendra SINGH

    2017-01-01

    The expected rise in temperature and decreased precipitation owing to climate change and unabated anthropogenic activities add complexity and uncertainty to agro-industry.The impact of soil nutrient imbalance,mismanaged use of chemicals,high temperature,flood or drought,soil salinity,and heavy metal pollutions,with regard to food security,is increasingly being explored worldwide.This review describes the role of soil-plant-microbe interactions along with organic manure in solving stressed agriculture problems.Beneficial microbes associated with plants are known to stimulate plant growth and enhance plant resistance to biotic (diseases) and abiotic (salinity,drought,pollutions,etc.) stresses.The plant growth-promoting rhizobacteria (PGPR) and mycorrhizae,a key component of soil microbiota,could play vital roles in the maintenance of plant fitness and soil health under stressed environments.The application of organic manure as a soil conditioner to stressed soils along with suitable microbial strains could further enhance the plant-microbe associations and increase the crop yield.A combination of plant,stress-tolerant microbe,and organic amendment represents the tripartite association to offer a favourable environment to the proliferation of beneficial rhizosphere microbes that in turn enhance the plant growth performance in disturbed agro-ecosystem.Agriculture land use patterns with the proper exploitation of plant-microbe associations,with compatible beneficial microbial agents,could be one of the most effective strategies in the management of the concerned agriculture lands owing to climate change resilience.However,the association of such microbes with plants for stressed agriculture management still needs to be explored in greater depth.

  6. Evaluation of a polymerase chain reaction assay for pathogen detection in septic patients under routine condition: an observational study.

    Directory of Open Access Journals (Sweden)

    Frank Bloos

    Full Text Available BACKGROUND: Treatment of septic shock relies on appropriate antimicrobial therapy. Current culture based methods deliver final results after days, which may delay potentially lifesaving adjustments in antimicrobial therapy. This study was undertaken to compare PCR with blood culture results under routine conditions regarding 1. impact on antimicrobial therapy, and 2. time to result, in patients with presumed sepsis. METHODOLOGY/PRINCIPAL FINDINGS: This was an observational study in a 50 beds ICU of a university hospital. In 245 patients with suspected sepsis, 311 concomitant blood cultures and blood for multiplex PCR (VYOO(® were obtained. 45 of 311 blood cultures (14.5% and 94 of 311 PCRs (30.1% were positive. However, blood culture or microbiological sampling from the presumed site of infection rarely confirmed PCR results and vice versa. Median time to positivity and interquartile range were 24.2 (18.0, 27.5 hours for the PCR and 68 (52.2, 88.5 hours for BC (p<0.01. PCR median time to result was dependent on technician availability (53.5 hours on Saturdays, 7.2 hours under optimal logistic conditions. PCR results showed good correlation with procalcitonin (p<0.001. In 34% of patients with positive PCRs antimicrobial therapy was considered inadequate according to assessment of clinical arbitrators including 5 patients with vancomycin-resistant enterococci (VRE, 3 cases with multiresistant staphylococci, and 4 patients with fungi. CONCLUSIONS: The results of this observational study support the hypothesis that PCR results are available faster, are more frequently positive, and may result in earlier adjustment of antimicrobial therapy. However, shorter time to result can only be fully exploited when the laboratory is adequately staffed for a 24 hour/7 day service, or when point of care/automated assay systems become available.

  7. Cell-autonomous defense, re-organization and trafficking of membranes in plant-microbe interactions.

    Science.gov (United States)

    Dörmann, Peter; Kim, Hyeran; Ott, Thomas; Schulze-Lefert, Paul; Trujillo, Marco; Wewer, Vera; Hückelhoven, Ralph

    2014-12-01

    Plant cells dynamically change their architecture and molecular composition following encounters with beneficial or parasitic microbes, a process referred to as host cell reprogramming. Cell-autonomous defense reactions are typically polarized to the plant cell periphery underneath microbial contact sites, including de novo cell wall biosynthesis. Alternatively, host cell reprogramming converges in the biogenesis of membrane-enveloped compartments for accommodation of beneficial bacteria or invasive infection structures of filamentous microbes. Recent advances have revealed that, in response to microbial encounters, plasma membrane symmetry is broken, membrane tethering and SNARE complexes are recruited, lipid composition changes and plasma membrane-to-cytoskeleton signaling is activated, either for pre-invasive defense or for microbial entry. We provide a critical appraisal on recent studies with a focus on how plant cells re-structure membranes and the associated cytoskeleton in interactions with microbial pathogens, nitrogen-fixing rhizobia and mycorrhiza fungi. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  8. Lipid droplets accumulation and other biochemical changes induced in the fungal pathogen Ustilago maydis under nitrogen-starvation.

    Science.gov (United States)

    Aguilar, Lucero Romero; Pardo, Juan Pablo; Lomelí, Mónica Montero; Bocardo, Oscar Ivan Luqueño; Juárez Oropeza, Marco A; Guerra Sánchez, Guadalupe

    2017-10-01

    In many organisms, the growth under nitrogen-deprivation or a poor nitrogen source impacts on the carbon flow distribution and causes accumulation of neutral lipids, which are stored as lipid droplets (LDs). Efforts are in progress to find the mechanism of LDs synthesis and degradation, and new organisms capable of accumulating large amounts of lipids for biotechnological applications. In this context, when Ustilago maydis was cultured in the absence of a nitrogen source, there was a large accumulation of lipid bodies containing mainly triacylglycerols. The most abundant fatty acids in lipid bodies at the stationary phase were palmitic, linoleic, and oleic acids, and they were synthesized de novo by the fatty-acid synthase. In regard to the production of NADPH for the synthesis of fatty acids, the cytosolic NADP + -dependent isocitrate dehydrogenase and the glucose-6-phosphate and 6-phosphogluconate dehydrogenases couple showed the highest specific activities, with a lower activity of the malic enzyme. The ATP-citrate lyase activity was not detected in any of the culture conditions, which points to a different mechanism for the transfer of acetyl-CoA into the cytosol. Protein and RNA contents decreased when U. maydis was grown without a nitrogen source. Due to the significant accumulation of triacylglycerols and the particular composition of fatty acids, U. maydis can be considered an alternative model for biotechnological applications.

  9. Do forest soil microbes have the potential to resist plant invasion? A case study in Dinghushan Biosphere Reserve (South China)

    Science.gov (United States)

    Chen, Bao-Ming; Li, Song; Liao, Hui-Xuan; Peng, Shao-Lin

    2017-05-01

    Successful invaders must overcome biotic resistance, which is defined as the reduction in invasion success caused by the resident community. Soil microbes are an important source of community resistance to plant invasions, and understanding their role in this process requires urgent investigation. Therefore, three forest communities along successional stages and four exotic invasive plant species were selected to test the role of soil microbes of three forest communities in resisting the exotic invasive plant. Our results showed that soil microbes from a monsoon evergreen broadleaf forest (MEBF) (late-successional stage) had the greatest resistance to the invasive plants. Only the invasive species Ipomoea triloba was not sensitive to the three successional forest soils. Mycorrhizal fungi in early successional forest Pinus massonina forest (PMF) or mid-successional forest pine-broadleaf mixed forest (PBMF) soil promoted the growth of Mikania micrantha and Eupatorium catarium, but mycorrhizal fungi in MEBF soil had no significant effects on their growth. Pathogens plus other non-mycorrhizal microbes in MEBF soil inhibited the growth of M. micrantha and E. catarium significantly, and only inhibited root growth of E. catarium when compared with those with mycorrhizal fungi addition. The study suggest that soil mycorrhizal fungi of early-mid-successional forests benefit invasive species M. micrantha and E. catarium, while soil pathogens of late-successional forest may play an important role in resisting M. micrantha and E. catarium. The benefit and resistance of the soil microbes are dependent on invasive species and related to forest succession. The study gives a possible clue to control invasive plants by regulating soil microbes of forest community to resist plant invasion.

  10. Loss and gain of function in SERPINB11: an example of a gene under selection on standing variation, with implications for host-pathogen interactions.

    Directory of Open Access Journals (Sweden)

    Susana Seixas

    Full Text Available Serine protease inhibitors (SERPINs are crucial in the regulation of diverse biological processes including inflammation and immune response. SERPINB11, located in the 18q21 gene cluster, is a polymorphic gene/pseudogene coding for a non-inhibitory SERPIN. In a genome-wide scan for recent selection, SERPINB11 was identified as a potential candidate gene for adaptive evolution in Yoruba. The present study sought a better understanding of the evolutionary history of SERPINB11, with special focus on evaluating its selective signature. Through the resequencing of coding and noncoding regions of SERPINB11 in 20 Yorubans and analyzing primate orthologous sequences, we identified a full-length SERPINB11 variant encoding a non-inhibitory SERPIN as the putative candidate of selection--probably driven to higher frequencies by an adaptive response using preexisting variation. In addition, we detected contrasting evolutionary features of SERPINB11 in primates: While primate phylogeny as a whole is under purifying selection, the human lineage shows evidence of positive selection in a few codons, all associated with the active SERPINB11. Comparative modeling studies suggest that positively selected codons reduce SERPINB11's ability to undergo the conformational changes typical of inhibitory SERPINs--suggesting that it is evolving towards a new non-inhibitory function in humans. Significant correlations between SERPINB11 variants and the environmental variables, pastoralism and pathogen richness, have led us to propose a selective advantage through host-pathogen interactions, possibly linked to an adaptive response combating the emergence of infectious diseases in recent human evolution. This work represents the first description of a resurrected gene in humans, and may well exemplify selection on standing variation triggered by drastic ecological shifts.

  11. Roles and Importance of Microbes in the Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    Baik, Min Hoon; Lee, Seung Yeop; Roh, Yeol

    2009-01-01

    Recently the importance and interest for the microbes has been increased because several important results for the effects of microbes on the radioactive waste disposal have been published continuously. In this study, research status and major results on the various roles and effects of microbes in the radioactive waste disposal have been investigated. We investigated and summarized the roles and major results of microbes in a multi-barrier system consisting of an engineered barrier and a natural barrier which is considered in radioactive waste disposal systems. For the engineered barrier, we discussed about the effects of microbes on the corrosion of a waste container and investigated the survival possibility and roles of microbes in a compacted bentonite buffer. For the natural barrier, the roles of microbes present in groundwaters and rocks were discussed and summarized with major results from natural analogue studies. Furthermore, we investigated and summarized the roles and various interactions processes of microbes and their effects on the radionuclide migration and retardation including recent research status. Therefore, it is expected that the effects and roles of microbes on the radioactive waste disposal can be rigorously evaluated if further researches are carried out for a long-term behavior of the disposal system in the deep geological environments and for the effects of microbes on the radionuclide migration through geological media.

  12. Carp erythrodermatitis : host defense-pathogen interaction

    OpenAIRE

    Pourreau, C.N.

    1990-01-01

    The outcome of a bacterial infection depends on the interaction between pathogen and host. The ability of the microbe to survive in the host depends on its invasive potential (i.e. spreading and multiplication), and its ability to obtain essential nutrients and to resist the host's defense system. On the other hand, the host's resistance to a bacterial attack depends on its physiological state, the intensity of the bacterial attack and the efficacy of the defense system to ...

  13. The microbe capture experiment in space: Fluorescence microscopic detection of microbes captured by aerogel

    Science.gov (United States)

    Sugino, Tomohiro; Yokobori, Shin-Ichi; Yang, Yinjie; Kawaguchi, Yuko; Okudaira, Kyoko; Tabata, Makoto; Kawai, Hideyuki; Hasegawa, Sunao; Yamagishi, Akihiko

    Microbes have been collected at the altitude up to about 70 km in the sampling experiment done by several groups[1]. We have also collected high altitude microbes, by using an airplane and balloons[2][3][4][5]. We collected new deinococcal strain (Deinococcus aetherius and Deinococ-cus aerius) and several strains of spore-forming bacilli from stratosphere[2][4][5]. However, microbe sampling in space has never been reported. On the other hand, "Panspermia" hy-pothesis, where terrestrial life is originated from outside of Earth, has been proposed[6][7][8][9]. Recent report suggesting existence of the possible microbe fossils in the meteorite of Mars origin opened the serious debate on the possibility of migration of life embedded in meteorites (and cosmic dusts)[10][11]. If we were able to find terrestrial microbes in space, it would suggest that the terrestrial life can travel between astronomical bodies. We proposed a mission "Tanpopo: Astrobiology Exposure and Micrometeoroid Capture Experiments" to examine possible inter-planetary migration of microbes, organic compounds and meteoroids on Japan Experimental Module of the International Space Station (ISS)[12]. Two of six sub themes in this mission are directly related to interplanetary migration of microbes. One is the direct capturing experi-ment of microbes (probably within the particles such as clay) in space by the exposed ultra-low density aerogel. Another is the exposure experiment to examine survivability of the microbes in harsh space environment. They will tell us the possibility of interplanetary migration of microbes (life) from Earth to outside of Earth (or vise versa). In this report, we will report whether aerogel that have been used for the collection of space debris and cosmic dusts can be used for microbe sampling in space. We will discuss how captured particles by aerogel can be detected with DNA-specific fluorescent dye, and how to distinguish microbes from other mate-rials (i.e. aerogel and

  14. Pathogen inactivation techniques.

    Science.gov (United States)

    Pelletier, J P R; Transue, S; Snyder, E L

    2006-01-01

    The desire to rid the blood supply of pathogens of all types has led to the development of many technologies aimed at the same goal--eradication of the pathogen(s) without harming the blood cells or generating toxic chemical agents. This is a very ambitious goal, and one that has yet to be achieved. One approach is to shun the 'one size fits all' concept and to target pathogen-reduction agents at the Individual component types. This permits the development of technologies that might be compatible with, for example, plasma products but that would be cytocidal and thus incompatible with platelet concentrates or red blood cell units. The technologies to be discussed include solvent detergent and methylene blue treatments--designed to inactivate plasma components and derivatives; psoralens (S-59--amotosalen) designed to pathogen-reduce units of platelets; and two products aimed at red blood cells, S-303 (a Frale--frangible anchor-linker effector compound) and Inactine (a binary ethyleneimine). A final pathogen-reduction material that might actually allow one material to inactivate all three blood components--riboflavin (vitamin B2)--is also under development. The sites of action of the amotosalen (S-59), the S-303 Frale, Inactine, and riboflavin are all localized in the nucleic acid part of the pathogen. Solvent detergent materials act by dissolving the plasma envelope, thus compromising the integrity of the pathogen membrane and rendering it non-infectious. By disrupting the pathogen's ability to replicate or survive, its infectivity is removed. The degree to which bacteria and viruses are affected by a particular pathogen-reducing technology relates to its Gram-positive or Gram-negative status, to the sporulation characteristics for bacteria, and the presence of lipid or protein envelopes for viruses. Concerns related to photoproducts and other breakdown products of these technologies remain, and the toxicology of pathogen-reduction treatments is a major ongoing area

  15. Metabolic engineering of volatile isoprenoids in plants and microbes.

    Science.gov (United States)

    Vickers, Claudia E; Bongers, Mareike; Liu, Qing; Delatte, Thierry; Bouwmeester, Harro

    2014-08-01

    The chemical properties and diversity of volatile isoprenoids lends them to a broad variety of biological roles. It also lends them to a host of biotechnological applications, both by taking advantage of their natural functions and by using them as industrial chemicals/chemical feedstocks. Natural functions include roles as insect attractants and repellents, abiotic stress protectants in pathogen defense, etc. Industrial applications include use as pharmaceuticals, flavours, fragrances, fuels, fuel additives, etc. Here we will examine the ways in which researchers have so far found to exploit volatile isoprenoids using biotechnology. Production and/or modification of volatiles using metabolic engineering in both plants and microorganisms are reviewed, including engineering through both mevalonate and methylerythritol diphosphate pathways. Recent advances are illustrated using several case studies (herbivores and bodyguards, isoprene, and monoterpene production in microbes). Systems and synthetic biology tools with particular utility for metabolic engineering are also reviewed. Finally, we discuss the practical realities of various applications in modern biotechnology, explore possible future applications, and examine the challenges of moving these technologies forward so that they can deliver tangible benefits. While this review focuses on volatile isoprenoids, many of the engineering approaches described here are also applicable to non-isoprenoid volatiles and to non-volatile isoprenoids. © 2014 John Wiley & Sons Ltd.

  16. Detoxification of Fusaric Acid by the Soil Microbe Mucor rouxii.

    Science.gov (United States)

    Crutcher, Frankie K; Puckhaber, Lorraine S; Bell, Alois A; Liu, Jinggao; Duke, Sara E; Stipanovic, Robert D; Nichols, Robert L

    2017-06-21

    Fusarium oxysporum f. sp. vasinfectum race 4 (VCG0114), which causes root rot and wilt of cotton (Gossypium hirsutum and G. barbadense), has been identified recently for the first time in the western hemisphere in certain fields in the San Joaquin Valley of California. This pathotype produces copious quantities of the plant toxin fusaric acid (5-butyl-2-pyridinecarboxylic acid) compared to other isolates of F. oxysporum f. sp. vasinfectum (Fov) that are indigenous to the United States. Fusaric acid is toxic to cotton plants and may help the pathogen compete with other microbes in the soil. We found that a laboratory strain of the fungus Mucor rouxii converts fusaric acid into a newly identified compound, 8-hydroxyfusaric acid. The latter compound is significantly less phytotoxic to cotton than the parent compound. On the basis of bioassays of hydroxylated analogues of fusaric acid, hydroxylation of the butyl side chain of fusaric acid may affect a general detoxification of fusaric acid. Genes that control this hydroxylation may be useful in developing biocontrol agents to manage Fov.

  17. Where the Wild Microbes Are: Education and Outreach on Sub-Seafloor Microbes

    Science.gov (United States)

    Cooper, S. K.; Kurtz, K.; Orcutt, B.; Strong, L.; Collins, J.; Feagan, A.

    2014-12-01

    Sub-seafloor microbiology has the power to spark the imaginations of children, students and the general public with its mysterious nature, cutting-edge research, and connections to the search for extraterrestrial life. These factors have been utilized to create a number of educational and outreach products to bring subsurface microbes to non-scientist audiences in creative and innovative ways. The Adopt a Microbe curriculum for middle school students provides hands-on activities and investigations for students to learn about microbes and the on-going research about them, and provides opportunities to connect with active expeditions. A new series of videos engages non-scientists with stories about research expeditions and the scientists themselves. A poster and associated activities explore the nature of science using a microbiologist and her research as examples. A new e-book for young children will engage them with age-appropriate text and illustrations. These projects are multidisciplinary, involve science and engineering practices, are available to all audiences and provide examples of high level and meaningful partnerships between scientists and educators and the kinds of products that can result. Subseafloor microbiology projects such as these, aimed at K-12 students and the general public, have the potential to entice the interest of the next generation of microbe scientists and increase general awareness of this important science.

  18. Using microbes as a key tool to unravel the mechanism of autophagy and the functions of the ATG proteins

    Directory of Open Access Journals (Sweden)

    Mario Mauthe

    2016-12-01

    Full Text Available The study of microbe infections has always been a very effective approach to unveil and dissect cellular pathways. Autophagy is not an exception. Although some of the breakthrough discoveries in the field were obtained using yeast, pathogens have been and still are a great tool to discover and characterize new molecular and functional aspects of autophagy. Research on pathogens has helped to acquire knowledge about selective types of autophagy and the assembly of the autophagy machinery, i.e the autophagy-related (ATG proteins, but also about alternative cellular roles of this pathway, such as secretion. Finally, microbes have also served to discover and characterize unconventional functions of the ATG proteins, which are uncoupled from their role in autophagy. In our recent study, we have taken advantage of viruses as a screening tool to determine the extent of the unconventional functions of the ATG proteome and characterize one of them.

  19. Toward design-based engineering of industrial microbes.

    Science.gov (United States)

    Tyo, Keith E J; Kocharin, Kanokarn; Nielsen, Jens

    2010-06-01

    Engineering industrial microbes has been hampered by incomplete knowledge of cell biology. Thus an iterative engineering cycle of modeling, implementation, and analysis has been used to increase knowledge of the underlying biology while achieving engineering goals. Recent advances in Systems Biology technologies have drastically improved the amount of information that can be collected in each iteration. As well, Synthetic Biology tools are melding modeling and molecular implementation. These advances promise to move microbial engineering from the iterative approach to a design-oriented paradigm, similar to electrical circuits and architectural design. Genome-scale metabolic models, new tools for controlling expression, and integrated -omics analysis are described as key contributors in moving the field toward Design-based Engineering. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Isolation and identification of microbes associated with mobile phones in Dammam in eastern Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Amira H.A Al-Abdalall

    2010-01-01

    Full Text Available Objective: This study was conducted to determine microbial contamination of mobile phones in the city of Dammam, in the eastern region of Saudi Arabia, and identify the most important microbial species associated with these phones in order to take the necessary remedial measures. Materials and Methods: The analysis of a total of 202 samples was done to identify fungal and pathogenic bacteria isolates. Sterile swabs were firmly passed on the handset, the buttons and the screens of mobile phones, then inoculated into media of bacteria and fungi. Frequency distribution of isolates were calculated. Results: There were 737 isolated of the following bacteria: Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Neisseria sicca, Micrococcus luteus, Proteus mirabilis, Bacillus subtilis, and Enterobacter aerogenes at the rate of 56.58, 13.57, 8.01, 7.73, 6.51, 3.66, 2.85 and 1.09% respectively. There were fungal isolates as follows: Alternaria alternata, Aspergillus niger, Cladosporium sp., Penicillium spp., Aspergillus flavus, Aspergillus fumigatus, Rhizopus stolonifer, Aspergillus ochraceus at the rate of 29.07, 26.74, 20.93, 10.47, 6.98, 2.33, 2.33, 1.16%, respectively. Conclusions: The study showed that all mobile phones under consideration were infected by several microbes, most of which belonged to the natural flora of the human body as well as airborne fungi and soil. This means that it is necessary to sterilize hands after contact with a phone since it is a source of disease transmission.

  1. Growth under visible light increases conidia and mucilage production and tolerance to UV-B radiation in the plant pathogenic fungus Colletotrichum acutatum.

    Science.gov (United States)

    de Menezes, Henrique D; Massola, Nelson S; Flint, Stephan D; Silva, Geraldo J; Bachmann, Luciano; Rangel, Drauzio E N; Braga, Gilberto U L

    2015-01-01

    Light conditions can influence fungal development. Some spectral wavebands can induce conidial production, whereas others can kill the conidia, reducing the population size and limiting dispersal. The plant pathogenic fungus Colletotrichum acutatum causes anthracnose in several crops. During the asexual stage on the host plant, Colletototrichum produces acervuli with abundant mucilage-embedded conidia. These conidia are responsible for fungal dispersal and host infection. This study examined the effect of visible light during C. acutatum growth on the production of conidia and mucilage and also on the UV tolerance of these conidia. Conidial tolerance to an environmentally realistic UV irradiance was determined both in conidia surrounded by mucilage on sporulating colonies and in conidial suspension. Exposures to visible light during fungal growth increased production of conidia and mucilage as well as conidial tolerance to UV. Colonies exposed to light produced 1.7 times more conidia than colonies grown in continuous darkness. The UV tolerances of conidia produced under light were at least two times higher than conidia produced in the dark. Conidia embedded in the mucilage on sporulating colonies were more tolerant of UV than conidia in suspension that were washed free of mucilage. Conidial tolerance to UV radiation varied among five selected isolates. © 2014 The American Society of Photobiology.

  2. An antifungal role of hydrogen sulfide on the postharvest pathogens Aspergillus niger and Penicillium italicum.

    Directory of Open Access Journals (Sweden)

    Liu-Hui Fu

    Full Text Available In this research, the antifungal role of hydrogen sulfide (H2S on the postharvest pathogens Aspergillus niger and Penicillium italicum growing on fruits and under culture conditions on defined media was investigated. Our results show that H2S, released by sodium hydrosulfide (NaHS effectively reduced the postharvest decay of fruits induced by A. niger and P. italicum. Furthermore, H2S inhibited spore germination, germ tube elongation, mycelial growth, and produced abnormal mycelial contractions when the fungi were grown on defined media in Petri plates. Further studies showed that H2S could cause an increase in intracellular reactive oxygen species (ROS in A. niger. In accordance with this observation we show that enzyme activities and the expression of superoxide dismutase (SOD and catalase (CAT genes in A. niger treated with H2S were lower than those in control. Moreover, H2S also significantly inhibited the growth of Saccharomyces cerevisiae, Rhizopus oryzae, the human pathogen Candida albicans, and several food-borne bacteria. We also found that short time exposure of H2S showed a microbicidal role rather than just inhibiting the growth of microbes. Taken together, this study suggests the potential value of H2S in reducing postharvest loss and food spoilage caused by microbe propagation.

  3. Dynamic intervention: pathogen disarmament of mitochondrial-based immune surveillance.

    Science.gov (United States)

    Holland, Robin L; Blanke, Steven R

    2014-11-12

    In this issue of Cell Host & Microbe, Suzuki et al. (2014) describe a Vibrio cholerae Type-III-secreted effector that targets mitochondrial dynamics to dampen host innate immune signaling. This suggests that mammalian hosts possess surveillance mechanisms to monitor pathogen-mediated alterations in the integrity of normal cellular processes and organelles. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Delivery of gene biotechnologies to plants: Pathogen and pest control

    Science.gov (United States)

    Treatment of oligonucleotides to plants for host delivered suppression of microbes and insect pests of citrus was successful. FANA_ASO, (2'-deoxy-2'-fluoro-D- arabinonucleic acid)_( antisense oligonucleotides- AUM LifeTech) designed to: Asian citrus psyllid; Citrus plant bacterial pathogen of citru...

  5. Th17 Cell Induction by Adhesion of Microbes to Intestinal Epithelial Cells.

    Science.gov (United States)

    Atarashi, Koji; Tanoue, Takeshi; Ando, Minoru; Kamada, Nobuhiko; Nagano, Yuji; Narushima, Seiko; Suda, Wataru; Imaoka, Akemi; Setoyama, Hiromi; Nagamori, Takashi; Ishikawa, Eiji; Shima, Tatsuichiro; Hara, Taeko; Kado, Shoichi; Jinnohara, Toshi; Ohno, Hiroshi; Kondo, Takashi; Toyooka, Kiminori; Watanabe, Eiichiro; Yokoyama, Shin-Ichiro; Tokoro, Shunji; Mori, Hiroshi; Noguchi, Yurika; Morita, Hidetoshi; Ivanov, Ivaylo I; Sugiyama, Tsuyoshi; Nuñez, Gabriel; Camp, J Gray; Hattori, Masahira; Umesaki, Yoshinori; Honda, Kenya

    2015-10-08

    Intestinal Th17 cells are induced and accumulate in response to colonization with a subgroup of intestinal microbes such as segmented filamentous bacteria (SFB) and certain extracellular pathogens. Here, we show that adhesion of microbes to intestinal epithelial cells (ECs) is a critical cue for Th17 induction. Upon monocolonization of germ-free mice or rats with SFB indigenous to mice (M-SFB) or rats (R-SFB), M-SFB and R-SFB showed host-specific adhesion to small intestinal ECs, accompanied by host-specific induction of Th17 cells. Citrobacter rodentium and Escherichia coli O157 triggered similar Th17 responses, whereas adhesion-defective mutants of these microbes failed to do so. Moreover, a mixture of 20 bacterial strains, which were selected and isolated from fecal samples of a patient with ulcerative colitis on the basis of their ability to cause a robust induction of Th17 cells in the mouse colon, also exhibited EC-adhesive characteristics. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Biofilm spatial organization by the emerging pathogen Campylobacter jejuni: comparison between NCTC 11168 and 81-176 strains under microaerobic and oxygen-enriched conditions.

    Science.gov (United States)

    Turonova, Hana; Briandet, Romain; Rodrigues, Ramila; Hernould, Mathieu; Hayek, Nabil; Stintzi, Alain; Pazlarova, Jarmila; Tresse, Odile

    2015-01-01

    During the last years, Campylobacter has emerged as the leading cause of bacterial foodborne infections in developed countries. Described as an obligate microaerophile, Campylobacter has puzzled scientists by surviving a wide range of environmental oxidative stresses on foods farm to retail, and thereafter intestinal transit and oxidative damage from macrophages to cause human infection. In this study, confocal laser scanning microscopy (CLSM) was used to explore the biofilm development of two well-described Campylobacter jejuni strains (NCTC 11168 and 81-176) prior to or during cultivation under oxygen-enriched conditions. Quantitative and qualitative appraisal indicated that C. jejuni formed finger-like biofilm structures with an open ultrastructure for 81-176 and a multilayer-like structure for NCTC 11168 under microaerobic conditions (MAC). The presence of motile cells within the biofilm confirmed the maturation of the C. jejuni 81-176 biofilm. Acclimation of cells to oxygen-enriched conditions led to significant enhancement of biofilm formation during the early stages of the process. Exposure to these conditions during biofilm cultivation induced an even greater biofilm development for both strains, indicating that oxygen demand for biofilm formation is higher than for planktonic growth counterparts. Overexpression of cosR in the poorer biofilm-forming strain, NCTC 11168, enhanced biofilm development dramatically by promoting an open ultrastructure similar to that observed for 81-176. Consequently, the regulator CosR is likely to be a key protein in the maturation of C. jejuni biofilm, although it is not linked to oxygen stimulation. These unexpected data advocate challenging studies by reconsidering the paradigm of fastidious requirements for C. jejuni growth when various subpopulations (from quiescent to motile cells) coexist in biofilms. These findings constitute a clear example of a survival strategy used by this emerging human pathogen.

  7. Biofilm spatial organization by the emerging pathogen Campylobacter jejuni: comparison between NCTC 11168 and 81-176 strains under microaerobic and oxygen-enriched conditions

    Directory of Open Access Journals (Sweden)

    Hana eTuronova

    2015-07-01

    Full Text Available During the last years, Campylobacter has emerged as the leading cause of bacterial foodborne infections in developed countries. Described as an obligate microaerophile, Campylobacter has puzzled scientists by surviving a wide range of environmental oxidative stresses on foods farm to retail, and thereafter intestinal transit and oxidative damage from macrophages to cause human infection. In this study, confocal laser scanning microscopy was used to explore the biofilm development of two well-described Campylobacter jejuni strains (NCTC 11168 and 81-176 prior to or during cultivation under oxygen-enriched conditions. Quantitative and qualitative appraisal indicated that C. jejuni formed finger-like biofilm structures with an open ultrastructure for 81-176 and a multilayer-like structure for NCTC 11168 under microaerobic conditions. The presence of motile cells within the biofilm confirmed the maturation of the C. jejuni 81-176 biofilm. Acclimation of cells to oxygen-enriched conditions led to significant enhancement of biofilm formation during the early stages of the process. Exposure to these conditions during biofilm cultivation induced an even greater biofilm development for both strains, indicating that oxygen demand for biofilm formation is higher than for planktonic growth counterparts. Overexpression of cosR in the poorer biofilm-forming strain, NCTC 11168, enhanced biofilm development dramatically by promoting an open ultrastructure similar to that observed for 81-176. Consequently, the regulator CosR is likely to be a key protein in the maturation of C. jejuni biofilm, although it is not linked to oxygen stimulation. These unexpected data advocate challenging studies by reconsidering the paradigm of fastidious requirements for C. jejuni growth when various subpopulations (from quiescent to motile cells coexist in biofilms. These findings constitute a clear example of a survival strategy used by this emerging human pathogen.

  8. Screening assays of termite gut microbes that potentially as probiotic for human to digest cellulose as new food source

    Science.gov (United States)

    Abdullah, R.; Ananda, K. R. T.; Wijanarka

    2018-05-01

    According to UN, earth population will increase approximately 7.3 billion people up to 11.2 billion from 2015 until 2100. On the other side, food needs are not balance with the availability of food on earth. People of the world need solution for a new food source. By cellulose digesting ability, people analyzed can consume cellulose as the new food source to get glucose. The aims of research is obtaining termite gut cellulase bacteria selected which is potential as probiotic to split cellulose. Method used was as follows; isolation of termite gut microbes, microbial cellulase purification by screening method and probiotic test includes microbial pathogenicity test and human stomach acid and salt osmotic concentration resistance test. The result shows, 3 pure isolates of termite gut microbes can break down cellulose in the medium 1% CMC and 0.1% congo red (indicator of cellulose degradation activity) and life at pH 2- 2.5 and osmotic salt condition. Two isolates show the activity of gamma hemolysis (non-pathogenic in terms of pathogenicity on human blood). In conclusion, there are isolated termite gut microbes can be used as probiotic candidate for human to digest cellulose of the new food source for global food scarcity era.

  9. Growth Rates of Microbes in the Oceans.

    Science.gov (United States)

    Kirchman, David L

    2016-01-01

    A microbe's growth rate helps to set its ecological success and its contribution to food web dynamics and biogeochemical processes. Growth rates at the community level are constrained by biomass and trophic interactions among bacteria, phytoplankton, and their grazers. Phytoplankton growth rates are approximately 1 d(-1), whereas most heterotrophic bacteria grow slowly, close to 0.1 d(-1); only a few taxa can grow ten times as fast. Data from 16S rRNA and other approaches are used to speculate about the growth rate and the life history strategy of SAR11, the most abundant clade of heterotrophic bacteria in the oceans. These strategies are also explored using genomic data. Although the methods and data are imperfect, the available data can be used to set limits on growth rates and thus on the timescale for changes in the composition and structure of microbial communities.

  10. Life Redefined: Microbes Built with Arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Sam (SLAC and Felisa Wolfe-Simon, NASA and U.S. Geological Survey)

    2011-03-22

    Life can survive in many harsh environments, from extreme heat to the presence of deadly chemicals. However, life as we know it has always been based on the same six elements -- carbon, oxygen, nitrogen, hydrogen, sulfur and phosphorus. Now it appears that even this rule has an exception. In the saline and poisonous environment of Mono Lake, researchers have found a bacterium that can grow by incorporating arsenic into its structure in place of phosphorus. X-ray images taken at SLAC's synchrotron light source reveal that this microbe may even use arsenic as a building block for DNA. Please join us as we describe this discovery, which rewrites the textbook description of how living cells work.

  11. Indoor Air '93. Particles, microbes, radon

    International Nuclear Information System (INIS)

    Kalliokoski, P.; Jantunen, M.; Seppaenen, O.

    1993-01-01

    The conference was held in Helsinki, Finland, July 4-8, 1993. The proceedings of the conference were published in 6 volumes. The main topics of the volume 5 are: (1) particles, fibers and dust - their concentrations and sources in buildings, (2) Health effects of particles, (3) Need of asbestos replacement and encapsulation, (4) Seasonal and temporal variation of fungal and bacterial concentration, (5) The evaluation of microbial contamination of buildings, (6) New methods and comparison of different methods for microbial sampling and evaluation, (7) Microbes in building materials and HVAC-systems, (8) Prevention of microbial contamination in buildings, (9) Dealing with house dust mites, (10) Radon measurements and surveys in different countries, (11) The identification of homes with high radon levels, (12) The measurement methods and prediction of radon levels in buildings, and (13) Prevention of radon penetration from the soil

  12. Pathogen intelligence

    Directory of Open Access Journals (Sweden)

    Michael eSteinert

    2014-01-01

    Full Text Available Different species inhabit different sensory worlds and thus have evolved diverse means of processing information, learning and memory. In the escalated arms race with host defense, each pathogenic bacterium not only has evolved its individual cellular sensing and behaviour, but also collective sensing, interbacterial communication, distributed information processing, joint decision making, dissociative behaviour, and the phenotypic and genotypic heterogeneity necessary for epidemiologic success. Moreover, pathogenic populations take advantage of dormancy strategies and rapid evolutionary speed, which allow them to save co-generated intelligent traits in a collective genomic memory. This review discusses how these mechanisms add further levels of complexity to bacterial pathogenicity and transmission, and how mining for these mechanisms could help to develop new anti-infective strategies.

  13. Microfluidic Experiments Studying Pore Scale Interactions of Microbes and Geochemistry

    Science.gov (United States)

    Chen, M.; Kocar, B. D.

    2016-12-01

    Understanding how physical phenomena, chemical reactions, and microbial behavior interact at the pore-scale is crucial to understanding larger scale trends in groundwater chemistry. Recent studies illustrate the utility of microfluidic devices for illuminating pore-scale physical-biogeochemical processes and their control(s) on the cycling of iron, uranium, and other important elements 1-3. These experimental systems are ideal for examining geochemical reactions mediated by microbes, which include processes governed by complex biological phenomenon (e.g. biofilm formation, etc.)4. We present results of microfluidic experiments using a model metal reducing bacteria and varying pore geometries, exploring the limitations of the microorganisms' ability to access tight pore spaces, and examining coupled biogeochemical-physical controls on the cycling of redox sensitive metals. Experimental results will provide an enhanced understanding of coupled physical-biogeochemical processes transpiring at the pore-scale, and will constrain and compliment continuum models used to predict and describe the subsurface cycling of redox-sensitive elements5. 1. Vrionis, H. A. et al. Microbiological and geochemical heterogeneity in an in situ uranium bioremediation field site. Appl. Environ. Microbiol. 71, 6308-6318 (2005). 2. Pearce, C. I. et al. Pore-scale characterization of biogeochemical controls on iron and uranium speciation under flow conditions. Environ. Sci. Technol. 46, 7992-8000 (2012). 3. Zhang, C., Liu, C. & Shi, Z. Micromodel investigation of transport effect on the kinetics of reductive dissolution of hematite. Environ. Sci. Technol. 47, 4131-4139 (2013). 4. Ginn, T. R. et al. Processes in microbial transport in the natural subsurface. Adv. Water Resour. 25, 1017-1042 (2002). 5. Scheibe, T. D. et al. Coupling a genome-scale metabolic model with a reactive transport model to describe in situ uranium bioremediation. Microb. Biotechnol. 2, 274-286 (2009).

  14. Irradiation of Microbes from Spent Nuclear Fuel Storage Pool Environments

    International Nuclear Information System (INIS)

    Breckenridge, C.R.; Watkins, C.S.; Bruhn, D.F.; Roberto, F.F.; Tsang, M.N.; Pinhero, P.J.; Brey, R.F.; Wright, R.N.; Windes, W.F.

    1999-01-01

    Microbes have been isolated and identified from spent nuclear fuel storage pools at the Idaho National Engineering and Environmental Laboratory (INEEL). Included among these are Corynebacterium aquaticum, Pseudomonas putida, Comamonas acidovorans, Gluconobacter cerinus, Micrococcus diversus, Rhodococcus rhodochrous, and two strains of sulfate-reducing bacteria (SRB). We examined the sensitivity of these microbes to a variety of total exposures of radiation generated by a 6-MeV linear accelerator (LINAC). The advantage of using a LINAC is that it provides a relatively quick screen of radiation tolerance. In the first set of experiments, we exposed each of the aforementioned microbes along with four additional microbes, pseudomonas aeruginosa, Micrococcus luteus, Escherchia coli, and Deinococcus radiodurans to exposures of 5 x 10 3 and 6 x 10 4 rad. All microbial specimens withstood the lower exposure with little or no reduction in cell population. Upon exposing the microbes to the larger dose of 6 x 10 4 rad, we observed two distinct groupings: microbes that demonstrate resistance to radiation, and microbes that display intolerance through a dramatic reduction from their initial population. Microbes in the radiation tolerant grouping were exposed to 1.1 x 10 5 rad to examine the extent of their resistance. We observe a correlation between radiation resistance and gram stain. The gram-positive species we examined seem to demonstrate a greater radiation resistance

  15. Why microbes will rule the world – and our industries

    DEFF Research Database (Denmark)

    Lykke, Anne Wärme; Palsson, Bernhard; Nielsen, Jens

    2017-01-01

    Microbes have ruled the world for approximately 4 billion years. But the future actually depends on their dominance, some would argue. Why? Because microbes, as well as mammalian cells, can be engineered into producing high-value chemicals and medicine. Therefore, scientists at The Novo Nordisk...... Foundation Center for Biosustainability are hard at work developing cell factories to benefit us all....

  16. Microbes as interesting source of novel insecticides: A review ...

    African Journals Online (AJOL)

    ... strains with good insecticidal properties can be identified, evaluated and utilized for pest control. This paper reviews the insecticidal properties of microbes and their potential utility in pest management. Keywords: Microbes, insecticides, metabolites, pest management. African Journal of Biotechnology, Vol 13(26) 2582- ...

  17. Irradiation of Microbes from Spent Nuclear Fuel Storage Pool Environments

    Energy Technology Data Exchange (ETDEWEB)

    Breckenridge, C.R.; Watkins, C.S.; Bruhn, D.F.; Roberto, F.F.; Tsang, M.N.; Pinhero, P.J. [INEEL (US); Brey, R.F. [ISU (US); Wright, R.N.; Windes, W.F.

    1999-09-03

    Microbes have been isolated and identified from spent nuclear fuel storage pools at the Idaho National Engineering and Environmental Laboratory (INEEL). Included among these are Corynebacterium aquaticum, Pseudomonas putida, Comamonas acidovorans, Gluconobacter cerinus, Micrococcus diversus, Rhodococcus rhodochrous, and two strains of sulfate-reducing bacteria (SRB). We examined the sensitivity of these microbes to a variety of total exposures of radiation generated by a 6-MeV linear accelerator (LINAC). The advantage of using a LINAC is that it provides a relatively quick screen of radiation tolerance. In the first set of experiments, we exposed each of the aforementioned microbes along with four additional microbes, pseudomonas aeruginosa, Micrococcus luteus, Escherchia coli, and Deinococcus radiodurans to exposures of 5 x 10{sup 3} and 6 x 10{sup 4} rad. All microbial specimens withstood the lower exposure with little or no reduction in cell population. Upon exposing the microbes to the larger dose of 6 x 10{sup 4} rad, we observed two distinct groupings: microbes that demonstrate resistance to radiation, and microbes that display intolerance through a dramatic reduction from their initial population. Microbes in the radiation tolerant grouping were exposed to 1.1 x 10{sup 5} rad to examine the extent of their resistance. We observe a correlation between radiation resistance and gram stain. The gram-positive species we examined seem to demonstrate a greater radiation resistance.

  18. [Effects of different amendments on contents of phenolic acids and specific microbes in rhizosphere of Pseudostellaria heterophylla.

    Science.gov (United States)

    Wu, Lin Kun; Wu, Hong Miao; Zhu, Quan; Chen, Jun; Wang, Juan Ying; Wu, Yan Hong; Lin, Sheng; Lin, Wen Xiong

    2016-11-18

    Pseudostellaria heterophylla is a perennial herbaceous plant in the family Caryophyllaceae. The tuberous roots of P. heterophylla are highly valued in traditional Chinese medicine and have a high market demand. However, extended monoculture of P. heterophylla results in a significant decline in the biomass and quality, and escalates disease and pest problems. Therefore, it is important to understand the underlying mechanism and biocontrol methods for consecutive monoculture problems. With "Zheshen 2" as an experimental material, the changes in the contents of main nutrients in soil, phenolic acids and specific microbes under monoculture and different amendments were analyzed by using high performance liquid chromatography (HPLC) and qPCR. The results showed that consecutive monoculture of P. heterophylla led to a decrease in yield by 43.5% while the microbial fertilizer treatment and the paddy-upland rotation could relieve the consecutive monoculture problems. Available nitrogen, available phosphorus, available potassium and total potassium were significantly higher in the consecutively monocultured soils than in the newly planted soils. But consecutive monoculture resulted in soil acidification. HPLC analysis showed that conse-cutive monoculture of this plant did not lead to a consistent accumulation of soil phenolic acids. At middle stage of root expansion and at harvest stage, most of phenolic acids were even higher in the newly planted soils than in the consecutively monocultured soils. Furthermore, qPCR analysis showed that the amounts of three specific pathogens identified previously (i.e. Fusarium oxysporum, Talaromyces helicus, Kosakonia sacchari) were significantly higher in the consecutively monocultured soils than in the newly planted soils. However, the microbial fertilizer treatment and the paddy-upland rotation resulted in a significant decline in the population of these specific pathogens and improved the soil environment. In conclusion, the

  19. Human pathogen avoidance adaptations

    NARCIS (Netherlands)

    Tybur, J.M.; Lieberman, D.

    2016-01-01

    Over the past few decades, researchers have become increasingly interested in the adaptations guiding the avoidance of disease-causing organisms. Here we discuss the latest developments in this area, including a recently developed information-processing model of the adaptations underlying pathogen

  20. Effect Of Spaceflight On Microbial Gene Expression And Virulence: Preliminary Results From Microbe Payload Flown On-Board STS-115

    Science.gov (United States)

    Wilson, J. W.; HonerzuBentrup, K,; Schurr, M. J.; Buchanan, K.; Morici, L.; Hammond, T.; Allen, P.; Baker, C.; Ott, C. M.; Nelman-Gonzalez M.; hide

    2007-01-01

    Human presence in space, whether permanent or temporary, is accompanied by the presence of microbes. However, the extent of microbial changes in response to spaceflight conditions and the corresponding changes to infectious disease risk is unclear. Previous studies have indicated that spaceflight weakens the immune system in humans and animals. In addition, preflight and in-flight monitoring of the International Space Station (ISS) and other spacecraft indicates the presence of opportunistic pathogens and the potential of obligate pathogens. Altered antibiotic resistance of microbes in flight has also been shown. As astronauts and cosmonauts live for longer periods in a closed environment, especially one using recycled water and air, there is an increased risk to crewmembers of infectious disease events occurring in-flight. Therefore, understanding how the space environment affects microorganisms and their disease potential is critically important for spaceflight missions and requires further study. The goal of this flight experiment, operationally called MICROBE, is to utilize three model microbial pathogens, Salmonella typhimurium, Pseudomonas aeruginosa, and Candida albicans to examine the global effects of spaceflight on microbial gene expression and virulence attributes. Specifically, the aims are (1) to perform microarray-mediated gene expression profiling of S. typhimurium, P. aeruginosa, and C. albicans, in response to spaceflight in comparison to ground controls and (2) to determine the effect of spaceflight on the virulence potential of these microorganisms immediately following their return from spaceflight using murine models. The model microorganisms were selected as they have been isolated from preflight or in-flight monitoring, represent different degrees of pathogenic behavior, are well characterized, and have sequenced genomes with available microarrays. In particular, extensive studies of S. typhimurium by the Principal Investigator, Dr. Nickerson

  1. Simulated microbe removal around finger rings using different hand sanitation methods.

    Science.gov (United States)

    Alur, Archana A; Rane, Madhavi J; Scheetz, James P; Lorenz, Douglas J; Gettleman, Lawrence

    2009-09-01

    It is our opinion that the CDC and the WHO have underestimated cross-contamination under examination gloves in dental clinics while wearing jewelry, such as finger rings. These agencies only "recommend" removing jewelry, and only washing hands for 15 seconds with soap and warm water before donning gloves. This study examined several washing procedures and finger rings using simulated microbes. A gloved rubber hand manikin was made and fitted with a fresh disposable vinyl glove. Four fingers were fitted with rings or no ring, dusted with simulated microbes, and washed with a scrub brush for 5, 15, and 25 seconds under 20 degrees C and 40 degrees C water alone, or with liquid hand soap. Light levels (in lux) of fluorescent powder before and after washing were measured and delta scores calculated for changes in light levels, equivalent to effectiveness of hand washing procedures. A full-factorial, 3-factor analysis of variance (ANOVA) was used to test for differences among levels of the three study factors-time, temperature, and soap use. Tukey's post hoc honestly significant difference (HSD) test was applied to significant factors to examine pair-wise differences between factor levels. It was found that the longer the hands with rings were washed with a scrub brush under flowing water, the more simulated microbes were removed. By 25 seconds, all methods were essentially the same. Simulated microbes were more difficult to remove from the palm compared to the back of the hand. The liquid hand soap used in this study was more effective with warm water than cold. When given a choice of washing with cold water up to 15 seconds, it would be preferable not to use soap to remove simulated microbes. Qualitatively, the outer surface of finger rings were more effectively cleaned than the crevice below the ring, and the ring with a stone setting appeared to accumulate and retain simulated microbes more than other rings. The most effective treatment was washing with warm water

  2. Non-pathogenic rhizobacteria interfere with the attraction of parasitoids to aphid-induced plant volatiles via jasmonic acid signalling.

    Science.gov (United States)

    Pineda, Ana; Soler, Roxina; Weldegergis, Berhane T; Shimwela, Mpoki M; VAN Loon, Joop J A; Dicke, Marcel

    2013-02-01

    Beneficial soil-borne microbes, such as mycorrhizal fungi or rhizobacteria, can affect the interactions of plants with aboveground insects at several trophic levels. While the mechanisms of interactions with herbivorous insects, that is, the second trophic level, are starting to be understood, it remains unknown how plants mediate the interactions between soil microbes and carnivorous insects, that is, the third trophic level. Using Arabidopsis thaliana Col-0 and the aphid Myzus persicae, we evaluate here the underlying mechanisms involved in the plant-mediated interaction between the non-pathogenic rhizobacterium Pseudomonas fluorescens and the parasitoid Diaeretiella rapae, by combining ecological, chemical and molecular approaches. Rhizobacterial colonization modifies the composition of the blend of herbivore-induced plant volatiles. The volatile blend from rhizobacteria-treated aphid-infested plants is less attractive to an aphid parasitoid, in terms of both olfactory preference behaviour and oviposition, than the volatile blend from aphid-infested plants without rhizobacteria. Importantly, the effect of rhizobacteria on both the emission of herbivore-induced volatiles and parasitoid response to aphid-infested plants is lost in an Arabidopsis mutant (aos/dde2-2) that is impaired in jasmonic acid production. By modifying the blend of herbivore-induced plant volatiles that depend on the jasmonic acid-signalling pathway, root-colonizing microbes interfere with the attraction of parasitoids of leaf herbivores. © 2012 Blackwell Publishing Ltd.

  3. [Non-gonococcal infectious urethritis : pathogen spectrum and management].

    Science.gov (United States)

    Lautenschlager, S

    2015-01-01

    For many years an increase in cases of urethritis has been observed in western Europe. In order to be able to combat this continuous rise, the perception of sexually transmitted diseases must be promoted, the clarification and screening must be intensified and therapy must be rapidly and correctly carried out. In addition to the commonest pathogens causing urethritis, namely chlamydia and gonococci, many other pathogenic microbes must be taken into consideration in the diagnostics. With respect to therapy, apart from the increasing resistance formation of Mycoplasma genitalium, the decreasing effectiveness of standard forms of treatment of other microbes must be emphasized. For chronic and recurrent urethritis in particular a broad clarification of the pathogen should be carried out to enable targeted treatment and also partner treatment. Priority must again be given to primary prevention.

  4. Gut-associated microbes of Drosophila melanogaster

    Science.gov (United States)

    Broderick, Nichole; Lemaitre, Bruno

    2012-01-01

    There is growing interest in using Drosophila melanogaster to elucidate mechanisms that underlie the complex relationships between a host and its microbiota. In addition to the many genetic resources and tools Drosophila provides, its associated microbiota is relatively simple (1–30 taxa), in contrast to the complex diversity associated with vertebrates (> 500 taxa). These attributes highlight the potential of this system to dissect the complex cellular and molecular interactions that occur between a host and its microbiota. In this review, we summarize what is known regarding the composition of gut-associated microbes of Drosophila and their impact on host physiology. We also discuss these interactions in the context of their natural history and ecology and describe some recent insights into mechanisms by which Drosophila and its gut microbiota interact. “Workers with Drosophila have been considered fortunate in that they deal with the first multicellular invertebrate to be cultured monoxenically (Delcourt and Guyenot, 1910); the first to be handled axenically on a semisynthetic diet (Guyenot, 1917); and the first to be grown on a defined diet (Schultz et al., 1946). This list of advantages is somewhat embarrassing, since it implies an interest in nutrition that, in reality, was only secondary. The very first studies were concerned with the reduction of variability in genetic experiments (Delcourt and Guyenot, 1910) and standardization of the nutritional environment.” -James Sang, 1959 Ann NY Acad 1 PMID:22572876

  5. Acetaldehyde production by major oral microbes.

    Science.gov (United States)

    Moritani, K; Takeshita, T; Shibata, Y; Ninomiya, T; Kiyohara, Y; Yamashita, Y

    2015-09-01

    To assess acetaldehyde (ACH) production by bacteria constituting the oral microbiota and the inhibitory effects of sugar alcohols on ACH production. The predominant bacterial components of the salivary microbiota of 166 orally healthy subjects were determined by barcoded pyrosequencing analysis of the 16S rRNA gene. Bacterial ACH production from ethanol or glucose was measured using gas chromatography. In addition, inhibition by four sugars and five sugar alcohols of ACH production was assayed. Forty-one species from 16 genera were selected as predominant and prevalent bacteria based on the following criteria: identification in ≥95% of the subjects, ≥1% of mean relative abundance or ≥5% of maximum relative abundance. All Neisseria species tested produced conspicuous amounts of ACH from ethanol, as did Rothia mucilaginosa, Streptococcus mitis and Prevotella histicola exhibited the ability to produce ACH. In addition, xylitol and sorbitol inhibited ACH production by Neisseria mucosa by more than 90%. The oral microbiota of orally healthy subjects comprises considerable amounts of bacteria possessing the ability to produce ACH, an oral carcinogen. Consumption of sugar alcohols may regulate ACH production by oral microbes. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Flowers and Wild Megachilid Bees Share Microbes.

    Science.gov (United States)

    McFrederick, Quinn S; Thomas, Jason M; Neff, John L; Vuong, Hoang Q; Russell, Kaleigh A; Hale, Amanda R; Mueller, Ulrich G

    2017-01-01

    Transmission pathways have fundamental influence on microbial symbiont persistence and evolution. For example, the core gut microbiome of honey bees is transmitted socially and via hive surfaces, but some non-core bacteria associated with honey bees are also found on flowers, and these bacteria may therefore be transmitted indirectly between bees via flowers. Here, we test whether multiple flower and wild megachilid bee species share microbes, which would suggest that flowers may act as hubs of microbial transmission. We sampled the microbiomes of flowers (either bagged to exclude bees or open to allow bee visitation), adults, and larvae of seven megachilid bee species and their pollen provisions. We found a Lactobacillus operational taxonomic unit (OTU) in all samples but in the highest relative and absolute abundances in adult and larval bee guts and pollen provisions. The presence of the same bacterial types in open and bagged flowers, pollen provisions, and bees supports the hypothesis that flowers act as hubs of transmission of these bacteria between bees. The presence of bee-associated bacteria in flowers that have not been visited by bees suggests that these bacteria may also be transmitted to flowers via plant surfaces, the air, or minute insect vectors such as thrips. Phylogenetic analyses of nearly full-length 16S rRNA gene sequences indicated that the Lactobacillus OTU dominating in flower- and megachilid-associated microbiomes is monophyletic, and we propose the name Lactobacillus micheneri sp. nov. for this bacterium.

  7. Microbes on a Bottle: Substrate, Season and Geography Influence Community Composition of Microbes Colonizing Marine Plastic Debris.

    Science.gov (United States)

    Oberbeckmann, Sonja; Osborn, A Mark; Duhaime, Melissa B

    2016-01-01

    Plastic debris pervades in our oceans and freshwater systems and the potential ecosystem-level impacts of this anthropogenic litter require urgent evaluation. Microbes readily colonize aquatic plastic debris and members of these biofilm communities are speculated to include pathogenic, toxic, invasive or plastic degrading-species. The influence of plastic-colonizing microorganisms on the fate of plastic debris is largely unknown, as is the role of plastic in selecting for unique microbial communities. This work aimed to characterize microbial biofilm communities colonizing single-use poly(ethylene terephthalate) (PET) drinking bottles, determine their plastic-specificity in contrast with seawater and glass-colonizing communities, and identify seasonal and geographical influences on the communities. A substrate recruitment experiment was established in which PET bottles were deployed for 5-6 weeks at three stations in the North Sea in three different seasons. The structure and composition of the PET-colonizing bacterial/archaeal and eukaryotic communities varied with season and station. Abundant PET-colonizing taxa belonged to the phylum Bacteroidetes (e.g. Flavobacteriaceae, Cryomorphaceae, Saprospiraceae-all known to degrade complex carbon substrates) and diatoms (e.g. Coscinodiscophytina, Bacillariophytina). The PET-colonizing microbial communities differed significantly from free-living communities, but from particle-associated (>3 μm) communities or those inhabiting glass substrates. These data suggest that microbial community assembly on plastics is driven by conventional marine biofilm processes, with the plastic surface serving as raft for attachment, rather than selecting for recruitment of plastic-specific microbial colonizers. A small proportion of taxa, notably, members of the Cryomorphaceae and Alcanivoraceae, were significantly discriminant of PET but not glass surfaces, conjuring the possibility that these groups may directly interact with the PET

  8. Microbes on a Bottle: Substrate, Season and Geography Influence Community Composition of Microbes Colonizing Marine Plastic Debris

    Science.gov (United States)

    Osborn, A. Mark

    2016-01-01

    Plastic debris pervades in our oceans and freshwater systems and the potential ecosystem-level impacts of this anthropogenic litter require urgent evaluation. Microbes readily colonize aquatic plastic debris and members of these biofilm communities are speculated to include pathogenic, toxic, invasive or plastic degrading-species. The influence of plastic-colonizing microorganisms on the fate of plastic debris is largely unknown, as is the role of plastic in selecting for unique microbial communities. This work aimed to characterize microbial biofilm communities colonizing single-use poly(ethylene terephthalate) (PET) drinking bottles, determine their plastic-specificity in contrast with seawater and glass-colonizing communities, and identify seasonal and geographical influences on the communities. A substrate recruitment experiment was established in which PET bottles were deployed for 5–6 weeks at three stations in the North Sea in three different seasons. The structure and composition of the PET-colonizing bacterial/archaeal and eukaryotic communities varied with season and station. Abundant PET-colonizing taxa belonged to the phylum Bacteroidetes (e.g. Flavobacteriaceae, Cryomorphaceae, Saprospiraceae—all known to degrade complex carbon substrates) and diatoms (e.g. Coscinodiscophytina, Bacillariophytina). The PET-colonizing microbial communities differed significantly from free-living communities, but from particle-associated (>3 μm) communities or those inhabiting glass substrates. These data suggest that microbial community assembly on plastics is driven by conventional marine biofilm processes, with the plastic surface serving as raft for attachment, rather than selecting for recruitment of plastic-specific microbial colonizers. A small proportion of taxa, notably, members of the Cryomorphaceae and Alcanivoraceae, were significantly discriminant of PET but not glass surfaces, conjuring the possibility that these groups may directly interact with the

  9. Microbes on a Bottle: Substrate, Season and Geography Influence Community Composition of Microbes Colonizing Marine Plastic Debris.

    Directory of Open Access Journals (Sweden)

    Sonja Oberbeckmann

    Full Text Available Plastic debris pervades in our oceans and freshwater systems and the potential ecosystem-level impacts of this anthropogenic litter require urgent evaluation. Microbes readily colonize aquatic plastic debris and members of these biofilm communities are speculated to include pathogenic, toxic, invasive or plastic degrading-species. The influence of plastic-colonizing microorganisms on the fate of plastic debris is largely unknown, as is the role of plastic in selecting for unique microbial communities. This work aimed to characterize microbial biofilm communities colonizing single-use poly(ethylene terephthalate (PET drinking bottles, determine their plastic-specificity in contrast with seawater and glass-colonizing communities, and identify seasonal and geographical influences on the communities. A substrate recruitment experiment was established in which PET bottles were deployed for 5-6 weeks at three stations in the North Sea in three different seasons. The structure and composition of the PET-colonizing bacterial/archaeal and eukaryotic communities varied with season and station. Abundant PET-colonizing taxa belonged to the phylum Bacteroidetes (e.g. Flavobacteriaceae, Cryomorphaceae, Saprospiraceae-all known to degrade complex carbon substrates and diatoms (e.g. Coscinodiscophytina, Bacillariophytina. The PET-colonizing microbial communities differed significantly from free-living communities, but from particle-associated (>3 μm communities or those inhabiting glass substrates. These data suggest that microbial community assembly on plastics is driven by conventional marine biofilm processes, with the plastic surface serving as raft for attachment, rather than selecting for recruitment of plastic-specific microbial colonizers. A small proportion of taxa, notably, members of the Cryomorphaceae and Alcanivoraceae, were significantly discriminant of PET but not glass surfaces, conjuring the possibility that these groups may directly interact

  10. Subversion of inflammasome activation and pyroptosis by pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Larissa D Cunha

    2013-11-01

    Full Text Available Activation of the inflammasome occurs in response to a notably high number of pathogenic microbes and is a broad innate immune response that effectively contributes to restriction of pathogen replication and generation of adaptive immunity. Activation of these platforms leads to caspase-1- and/or caspase-11-dependent secretion of proteins, including cytokines, and induction of a specific form of cell death called pyroptosis, which directly or indirectly contribute for restriction of pathogen replication. Not surprisingly, bona fide intracellular pathogens developed strategies for manipulation of cell death to guarantee intracellular replication. In this sense, the remarkable advances in the knowledge of the inflammasome field have been accompanied by several reports characterizing the inhibition of this platform by several pathogenic bacteria. Herein, we review some processes used by pathogenic bacteria, including Yersinia spp., Pseudomonas aeruginosa, Vibrio parahaemolyticus, Chlamydia trachomatis, Francisella tularensis, Shigella flexneri, Legionella pneumophila and Coxiella burnetii to evade the activation of the inflammasome and the induction of pyroptosis.

  11. Comparative Radiosensitivity of Pathogenic Bacteria and Viruses

    International Nuclear Information System (INIS)

    Ghys, R.; Vandergoten, R.; Paquette, J.-C.; Fredette, V.; Plante, C.; Pavilanis, V.; Gilker, J.-C.

    1967-01-01

    The authors exposed to gamma rays from a MCo source (''Gammacell 220'' from Atomic Energy of Canada, Ltd.) various pathogenic micro-organisms: a slow-growing aerobic bacterium (Mycobacterium tuberculosis, 10 varieties of the strain B. C. G.), a fast-growing anaerobic bacterium (Clostridium perfringens, strain SWG-121) and 4 strains of influenza virus (2 from group A and 2 from group B). In the case of B. C. G., an LD 90 of 29 ± 1 kR is reported for bacilli irradiated immediately before subculture and subsequently cultivated for at most 14 days. If the microbes are cultivated for 28 days, the yield from cultures after exposures of up to 50 kR is at least equal to that of control specimens; it then decreases rapidly, and a dose of 140 kR inhibits bacterial growth completely. It is reported that the LD 90 of the strain of Cl. perfringens used in the study is very much dependent on die culture conditions and die conditions under which die microbe growth measurements are made; 24 h after irradiation it is at least 1 MR. Although no spores are seen in the microscope, this would seem to demonstrate the presence in the cultures of extremely radioresistant sporulated individuals. Group A influenza viruses are found to be more radioresistant than those of group B. The LD 90 of relatively low radiation doses varies between 75 and 100 kR, and is higher if irradiation is performed at -78.5°C. It is very difficult to inactivate the last virus particles; multiplicity reactivation seems to occur in certain experimental conditions. Haemagglutinant activity does not vary, even after die highest exposures used (4 MR). Two important practical conclusions are drawn: (1) The use of a single dose (e. g. 2.5 Mrad) for radiosterilization gives an exposure which is unnecessarily high in some cases and insufficient in others, and (2) Selective radiosterilization is sometimes possible: the viability of a micro-organism used, for example, to produce a vaccine may not be

  12. Chemical signaling involved in plant-microbe interactions.

    Science.gov (United States)

    Chagas, Fernanda Oliveira; Pessotti, Rita de Cassia; Caraballo-Rodríguez, Andrés Mauricio; Pupo, Mônica Tallarico

    2018-03-05

    Microorganisms are found everywhere, and they are closely associated with plants. Because the establishment of any plant-microbe association involves chemical communication, understanding crosstalk processes is fundamental to defining the type of relationship. Although several metabolites from plants and microbes have been fully characterized, their roles in the chemical interplay between these partners are not well understood in most cases, and they require further investigation. In this review, we describe different plant-microbe associations from colonization to microbial establishment processes in plants along with future prospects, including agricultural benefits.

  13. Linking plant nutritional status to plant-microbe interactions.

    Science.gov (United States)

    Carvalhais, Lilia C; Dennis, Paul G; Fan, Ben; Fedoseyenko, Dmitri; Kierul, Kinga; Becker, Anke; von Wiren, Nicolaus; Borriss, Rainer

    2013-01-01

    Plants have developed a wide-range of adaptations to overcome nutrient limitation, including changes to the quantity and composition of carbon-containing compounds released by roots. Root-associated bacteria are largely influenced by these compounds which can be perceived as signals or substrates. Here, we evaluate the effect of root exudates collected from maize plants grown under nitrogen (N), phosphate (P), iron (Fe) and potassium (K) deficiencies on the transcriptome of the plant growth promoting rhizobacterium (PGPR) Bacillus amyloliquefaciens FZB42. The largest shifts in gene expression patterns were observed in cells exposed to exudates from N-, followed by P-deficient plants. Exudates from N-deprived maize triggered a general stress response in FZB42 in the exponential growth phase, which was evidenced by the suppression of numerous genes involved in protein synthesis. Exudates from P-deficient plants induced bacterial genes involved in chemotaxis and motility whilst exudates released by Fe and K deficient plants did not cause dramatic changes in the bacterial transcriptome during exponential growth phase. Global transcriptional changes in bacteria elicited by nutrient deficient maize exudates were significantly correlated with concentrations of the amino acids aspartate, valine and glutamate in root exudates suggesting that transcriptional profiling of FZB42 associated with metabolomics of N, P, Fe and K-deficient maize root exudates is a powerful approach to better understand plant-microbe interactions under conditions of nutritional stress.

  14. Quantitative studies of lymphoid organs, blood and lymph in inbred athymic and euthymic LEW rats under germfree and specified-pathogen-free conditions

    DEFF Research Database (Denmark)

    Klausen, B; Hougen, H P

    1987-01-01

    Four groups of inbred male LEW rats were examined: A, germfree athymic; B, specified pathogen free (SPF) athymic; C, germfree euthymic; D, SPF euthymic. All animals were killed at 18 weeks and compared with respect to body weight, histological appearance and cell density of the lymphoid organs, h...

  15. ENVIRONMENTAL REGULATIONS AND TECHNOLOGY: CONTROL OF PATHOGENS AND VECTOR ATTRACTION IN SEWAGE SLUDGE (INCLUDING DOMESTIC SEWAGE) UNDER 40 CFR PART 503

    Science.gov (United States)

    This document describes the federal requirements concerning pathogens in sewage sludge applied to land or placed on a surface disposal site, and it provides guidance concerning those requirements. The document is intended for: (1) Owners and operators of treatment works treati...

  16. Environmental restoration using plant-microbe bioaugmentation

    International Nuclear Information System (INIS)

    Kingsley, M.T.; Fredrickson, J.K.; Metting, F.B.; Seidler, R.J.

    1993-04-01

    Land farming, for the purpose of bioremediation, refers traditionally to the spreading of contaminated soil, sediments, or other material over land; mechanically mixing it; incorporating various amendments, such as fertilizer or mulch; and sometimes inoculating with degradative microorganisms. Populations of bacteria added to soils often decline rapidly and become metabolically inactive. To efficiently degrade contaminants, microorganisms must be metabolically active. Thus, a significant obstacle to the successful use of microorganisms for environmental applications is their long-term survival and the expression of their degradative genes in situ. Rhizosphere microorganisms are known to be more metabolically active than those in bulk soil, because they obtain carbon and energy from root exudates and decaying root matter. Rhizosphere populations are also more abundant, often containing 10 8 or more culturable bacteria per gram of soil, and bacterial populations on the rhizoplane can exceed 10 9 /g root. Many of the critical parameters that influence the competitive ability of rhizosphere bacteria have not been identified, but microorganisms have frequently been introduced into soil (bioaugmentation) as part of routine or novel agronomic practices. However, the use of rhizosphere bacteria and their in situ stimulation by plant roots for degrading organic contaminants has received little attention. Published studies have demonstrated the feasibility of using rhizobacteria (Pseudomonas putida) for the rapid removal of chlorinated pesticides from contaminated soil, and to promote germination of radish seeds in the presence of otherwise phytotoxic levels of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), and phenoxyacetic acid (PAA). The present investigation was undertaken to determine if these strains (Pseudomonas putida PPO301/pRO101 and PPO301/pRO103) could be used to bioremediate 2,4-D-amended soil via plant-microbe bioaugmentation

  17. Sphingomonads in Microbe-Assisted Phytoremediation: Tackling Soil Pollution.

    Science.gov (United States)

    Gatheru Waigi, Michael; Sun, Kai; Gao, Yanzheng

    2017-09-01

    Soil pollution has become a major concern in various terrestrial ecosystems worldwide. One in situ soil bioremediation strategy that has gained popularity recently is microbe-assisted phytoremediation, which is promising for remediating pollutants. Sphingomonads, a versatile bacteria group comprising four well-known genera, are ubiquitous in vegetation grown in contaminated soils. These Gram-negative microbes have been investigated for their ability to induce innate plant growth-promoting (PGP) traits, including the formation of phytohormones, siderophores, and chelators, in addition to their evolutionary adaptations enabling biodegradation and microbe-assisted removal of contaminants. However, their capacity for bacterial-assisted phytoremediation has to date been undervalued. Here, we highlight the specific features, roles, advantages, and challenges associated with using sphingomonads in plant-microbe interactions, from the perspective of future phytotechnologies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Scientists discover how deadly fungal microbes enter host cells

    OpenAIRE

    Whyte, Barry James

    2010-01-01

    A research team led by scientists at the Virginia Bioinformatics Institute at Virginia Tech has discovered a fundamental entry mechanism that allows dangerous fungal microbes to infect plants and cause disease.

  19. Volume 10 No. 11 November 2010 4340 SOIL MICROBE ...

    African Journals Online (AJOL)

    user

    2010-11-11

    Nov 11, 2010 ... SOIL MICROBE MEDIATED ZINC UPTAKE IN SOY BEAN: A REVIEW. Jefwa JM. 1* .... Porg, lipid Plp, high-energetic~P, sugar. Psuc and .... encouragement to prepare this presentation. ... Enviroquest Ltd Ontario, Canada.

  20. Anti-radiation microbe separated from traditional Chinese medicine

    International Nuclear Information System (INIS)

    Zou Zhaohui; Zhao Junqi; Deng Gangqiao; Wang Qian; Li Wenge; Peng Ling; Luo Zhiping

    2007-01-01

    One batch of Jinsuo pills, a kind of Chinese herbal medicine, treated by standardized irradiation process but failed to meet the sanitation requirement. Radiation resistant microbe was separated from the pills sample and the Gram stain showed positive, the colony of the microbe is milky white and concentric circle shape. It is observed as one of bacillus by microscope, its D 10 values in physiological saline and filter paper are 6.75 and 7.18 kGy, respectively. (authors)

  1. A Molecular Study of Microbe Transfer between Distant Environments

    OpenAIRE

    Hooper, Sean D.; Raes, Jeroen; Foerstner, Konrad U.; Harrington, Eoghan D.; Dalevi, Daniel; Bork, Peer

    2008-01-01

    BACKGROUND: Environments and their organic content are generally not static and isolated, but in a constant state of exchange and interaction with each other. Through physical or biological processes, organisms, especially microbes, may be transferred between environments whose characteristics may be quite different. The transferred microbes may not survive in their new environment, but their DNA will be deposited. In this study, we compare two environmental sequencing projects to find molecu...

  2. The Microbe Directory: An annotated, searchable inventory of microbes’ characteristics

    Science.gov (United States)

    Mohammad, Rawhi; Danko, David; Bezdan, Daniela; Afshinnekoo, Ebrahim; Segata, Nicola; Mason, Christopher E.

    2018-01-01

    The Microbe Directory is a collective research effort to profile and annotate more than 7,500 unique microbial species from the MetaPhlAn2 database that includes bacteria, archaea, viruses, fungi, and protozoa. By collecting and summarizing data on various microbes’ characteristics, the project comprises a database that can be used downstream of large-scale metagenomic taxonomic analyses, allowing one to interpret and explore their taxonomic classifications to have a deeper understanding of the microbial ecosystem they are studying. Such characteristics include, but are not limited to: optimal pH, optimal temperature, Gram stain, biofilm-formation, spore-formation, antimicrobial resistance, and COGEM class risk rating. The database has been manually curated by trained student-researchers from Weill Cornell Medicine and CUNY—Hunter College, and its analysis remains an ongoing effort with open-source capabilities so others can contribute. Available in SQL, JSON, and CSV (i.e. Excel) formats, the Microbe Directory can be queried for the aforementioned parameters by a microorganism’s taxonomy. In addition to the raw database, The Microbe Directory has an online counterpart ( https://microbe.directory/) that provides a user-friendly interface for storage, retrieval, and analysis into which other microbial database projects could be incorporated. The Microbe Directory was primarily designed to serve as a resource for researchers conducting metagenomic analyses, but its online web interface should also prove useful to any individual who wishes to learn more about any particular microbe. PMID:29630066

  3. [Development of a microenvironment test chamber for airborne microbe research].

    Science.gov (United States)

    Zhan, Ningbo; Chen, Feng; Du, Yaohua; Cheng, Zhi; Li, Chenyu; Wu, Jinlong; Wu, Taihu

    2017-10-01

    One of the most important environmental cleanliness indicators is airborne microbe. However, the particularity of clean operating environment and controlled experimental environment often leads to the limitation of the airborne microbe research. This paper designed and implemented a microenvironment test chamber for airborne microbe research in normal test conditions. Numerical simulation by Fluent showed that airborne microbes were evenly dispersed in the upper part of test chamber, and had a bottom-up concentration growth distribution. According to the simulation results, the verification experiment was carried out by selecting 5 sampling points in different space positions in the test chamber. Experimental results showed that average particle concentrations of all sampling points reached 10 7 counts/m 3 after 5 minutes' distributing of Staphylococcus aureus , and all sampling points showed the accordant mapping of concentration distribution. The concentration of airborne microbe in the upper chamber was slightly higher than that in the middle chamber, and that was also slightly higher than that in the bottom chamber. It is consistent with the results of numerical simulation, and it proves that the system can be well used for airborne microbe research.

  4. Foodborne pathogens

    Directory of Open Access Journals (Sweden)

    Thomas Bintsis

    2017-06-01

    Full Text Available Foodborne pathogens are causing a great number of diseases with significant effects on human health and economy. The characteristics of the most common pathogenic bacteria (Bacillus cereus, Campylobacter jejuni, Clostridium botulinum, Clostridium perfringens, Cronobacter sakazakii, Esherichia coli, Listeria monocytogenes, Salmonella spp., Shigella spp., Staphylococccus aureus, Vibrio spp. and Yersinia enterocolitica, viruses (Hepatitis A and Noroviruses and parasites (Cyclospora cayetanensis, Toxoplasma gondii and Trichinella spiralis, together with some important outbreaks, are reviewed. Food safety management systems based on to classical hazard-based approach has been proved to be inefficient, and risk-based food safety approach is now suggested from leading researchers and organizations. In this context, a food safety management system should be designed in a way to estimate the risks to human health from food consumption and to identify, select and implement mitigation strategies in order to control and reduce these risks. In addition, the application of suitable food safety education programs for all involved people in the production and consumption of foods is suggested.

  5. Microbes Characteristics in Groundwater Flow System in Mountainous Area

    Science.gov (United States)

    Yamamoto, Chisato; Tsujimura, Maki; Kato, Kenji; Sakakibara, Koichi; Ogawa, Mahiro; Sugiyama, Ayumi; Nagaosa, Kazuyo

    2017-04-01

    We focus on a possibility of microbes as a tracer for groundwater flow investigation. Some previous papers showed that the total number of prokaryotes in groundwater has correlation with depth and geology (Parkes et al., 1994; Griebler et al., 2009; Kato et al., 2012). However, there are few studies investigating both microbe characteristics and groundwater flow system. Therefore, we investigated a relationship between the total number of prokaryotes and age of spring water and groundwater. Intensive field survey was conducted at four mountainous areas, namely Mt. Fuji (volcano), a headwater at Mt. Setohachi, a headwater at River Oi and a headwater at River Nagano underlain by volcanic lava at Mt. Fuji, granite at Mt. Setohachi and sedimentary rock at River Oi and River Nagano. We collected totally 40 spring water/ groundwater samples in these mountainous areas in October 2015, August, October and November 2016 and analyzed concentration of inorganic ions, the stable isotopes of oxygen - 18, deuterium, CFCs and SF6. Also, we counted prokaryotic cells under the epifluorescence microscopy after fixation and filteration. The total number of prokaryotes in the spring water/ groundwater ranged from 1.0×102 to 7.0×103cells mL-1 at the Mt. Fuji, 1.3×104 to 2.7×105cells mL-1 at Mt. Setohachi, 3.1×104cells mL-1 at River Oi and 1.8×105 to 3.2×106cells mL-1 at River Nagano. The SF6 age of the spring water/ groundwater ranged from 8 to 64 years at Mt. Fuji, 2 to 32.5 years at Mt. Setohachi, 2.5 years at River Oi and 15 to 16 years at River Nagano. The total number of prokaryotes showed a clear negative correlation with residence time of spring water/ groundwater in all regions. Especially the prokaryotes number increased in the order of 102 cells mL-1 with decreasing of residence time in approximately 10 years in the groundwater and spring water with the age less than 15 years.

  6. Recent Research Status on the Microbes in the Radioactive Waste Disposal and Identification of Aerobic Microbes in a Groundwater Sampled from the KAERI Underground Research Tunnel(KURT)

    International Nuclear Information System (INIS)

    Baik, Min Hoon; Lee, Seung Yeop; Cho, Won Jin

    2006-11-01

    In this report, a comprehensive review on the research results and status for the various effects of microbes in the radioactive waste disposal including definition and classification of microbes, and researches related with the waste containers, engineered barriers, natural barriers, natural analogue studies, and radionuclide migration and retardation. Cultivation, isolation, and classification of aerobic microbes found in a groundwater sampled from the KAERI Underground Research Tunnel (KURT) located in the KAERI site have carried out and over 20 microbes were found to be present in the groundwater. Microbial identification by a 16S rDNA genetic analysis of the selected major 10 aerobic microbes was performed and the identified microbes were characterized

  7. Microbe-surface interactions in biofouling and biocorrosion processes.

    Science.gov (United States)

    Beech, Iwona B; Sunner, Jan A; Hiraoka, Kenzo

    2005-09-01

    The presence of microorganisms on material surfaces can have a profound effect on materials performance. Surface-associated microbial growth, i.e. a biofilm, is known to instigate biofouling. The presence of biofilms may promote interfacial physico-chemical reactions that are not favored under abiotic conditions. In the case of metallic materials, undesirable changes in material properties due to a biofilm (or a biofouling layer) are referred to as biocorrosion or microbially influenced corrosion (MIC). Biofouling and biocorrosion occur in aquatic and terrestrial habitats varying in nutrient content, temperature, pressure and pH. Interfacial chemistry in such systems reflects a wide variety of physiological activities carried out by diverse microbial populations thriving within biofilms. Biocorrosion can be viewed as a consequence of coupled biological and abiotic electron-transfer reactions, i.e. redox reactions of metals, enabled by microbial ecology. Microbially produced extracellular polymeric substances (EPS), which comprise different macromolecules, mediate initial cell adhesion to the material surface and constitute a biofilm matrix. Despite their unquestionable importance in biofilm development, the extent to which EPS contribute to biocorrosion is not well-understood. This review offers a current perspective on material/microbe interactions pertinent to biocorrosion and biofouling, with EPS as a focal point, while emphasizing the role atomic force spectroscopy and mass spectrometry techniques can play in elucidating such interactions.

  8. Of genes and microbes: solving the intricacies in host genomes.

    Science.gov (United States)

    Wang, Jun; Chen, Liang; Zhao, Na; Xu, Xizhan; Xu, Yakun; Zhu, Baoli

    2018-05-01

    Microbiome research is a quickly developing field in biomedical research, and we have witnessed its potential in understanding the physiology, metabolism and immunology, its critical role in understanding the health and disease of the host, and its vast capacity in disease prediction, intervention and treatment. However, many of the fundamental questions still need to be addressed, including the shaping forces of microbial diversity between individuals and across time. Microbiome research falls into the classical nature vs. nurture scenario, such that host genetics shape part of the microbiome, while environmental influences change the original course of microbiome development. In this review, we focus on the nature, i.e., the genetic part of the equation, and summarize the recent efforts in understanding which parts of the genome, especially the human and mouse genome, play important roles in determining the composition and functions of microbial communities, primarily in the gut but also on the skin. We aim to present an overview of different approaches in studying the intricate relationships between host genetic variations and microbes, its underlying philosophy and methodology, and we aim to highlight a few key discoveries along this exploration, as well as current pitfalls. More evidence and results will surely appear in upcoming studies, and the accumulating knowledge will lead to a deeper understanding of what we could finally term a "hologenome", that is, the organized, closely interacting genome of the host and the microbiome.

  9. Does plant-Microbe interaction confer stress tolerance in plants: A review?

    Science.gov (United States)

    Kumar, Akhilesh; Verma, Jay Prakash

    2018-03-01

    The biotic and abiotic stresses are major constraints for crop yield, food quality and global food security. A number of parameters such as physiological, biochemical, molecular of plants are affected under stress condition. Since the use of inorganic fertilizers and pesticides in agriculture practices cause degradation of soil fertility and environmental pollutions. Hence it is necessary to develop safer and sustainable means for agriculture production. The application of plant growth promoting microbes (PGPM) and mycorrhizal fungi enhance plant growth, under such conditions. It offers an economically fascinating and ecologically sound ways for protecting plants against stress condition. PGPM may promote plant growth by regulating plant hormones, improve nutrition acquisition, siderophore production and enhance the antioxidant system. While acquired systemic resistance (ASR) and induced systemic resistance (ISR) effectively deal with biotic stress. Arbuscular mycorrhiza (AM) enhance the supply of nutrients and water during stress condition and increase tolerance to stress. This plant-microbe interaction is vital for sustainable agriculture and industrial purpose, because it depends on biological processes and replaces conventional agriculture practices. Therefore, microbes may play a key role as an ecological engineer to solve environmental stress problems. So, it is a feasible and potential technology in future to feed global population at available resources with reduced impact on environmental quality. In this review, we have attempted to explore about abiotic and biotic stress tolerant beneficial microorganisms and their modes of action to enhance the sustainable agricultural production. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. [Effects of different organic fertilizers on the microbes in rhizospheric soil of flue-cured tobacco].

    Science.gov (United States)

    Zhang, Yun-Wei; Xu, Zhi; Tang, Li; Li, Yan-Hong; Song, Jian-Qun; Xu, Jian-Qin

    2013-09-01

    A field experiment was conducted to study the effects of applying different organic fertilizers (refined organic fertilizer and bio-organic fertilizer) and their combination with 20% reduced chemical fertilizers on the microbes in rhizospheric soil of flue-cured tobacco, the resistance of the tobacco against bacterial wilt, and the tobacco yield and quality. As compared with conventional chemical fertilization (CK), applying refined organic fertilizer (ROF) or bio-organic fertilizer (BIO) in combining with 20% reduced chemical fertilization increased the bacterial number and the total microbial number in the rhizospheric soil significantly. Applying BIO in combining with 20% reduced chemical fertilization also increased the actinomyces number in the rhizospheric soil significantly, with an increment of 44.3% as compared with that under the application of ROF in combining with 20% reduced chemical fertilization, but decreased the fungal number. As compared with CK, the ROF and BIO increased the carbon use capacity of rhizospheric microbes significantly, and the BIO also increased the capacity of rhizospheric microbes in using phenols significantly. Under the application of ROF and BIO, the disease incidence and the disease index of bacterial wilt were decreased by 4% and 8%, and 23% and 15.9%, and the proportions of high grade tobacco leaves increased significantly by 10.5% and 9.7%, respectively, as compared with those in CK. BIO increased the tobacco yield and its output value by 17.1% and 18.9% , respectively, as compared with ROF.

  11. Tools for Genomic and Transcriptomic Analysis of Microbes at Single-Cell Level

    Directory of Open Access Journals (Sweden)

    Zixi Chen

    2017-09-01

    Full Text Available Microbiologists traditionally study population rather than individual cells, as it is generally assumed that the status of individual cells will be similar to that observed in the population. However, the recent studies have shown that the individual behavior of each single cell could be quite different from that of the whole population, suggesting the importance of extending traditional microbiology studies to single-cell level. With recent technological advances, such as flow cytometry, next-generation sequencing (NGS, and microspectroscopy, single-cell microbiology has greatly enhanced the understanding of individuality and heterogeneity of microbes in many biological systems. Notably, the application of multiple ‘omics’ in single-cell analysis has shed light on how individual cells perceive, respond, and adapt to the environment, how heterogeneity arises under external stress and finally determines the fate of the whole population, and how microbes survive under natural conditions. As single-cell analysis involves no axenic cultivation of target microorganism, it has also been demonstrated as a valuable tool for dissecting the microbial ‘dark matter.’ In this review, current state-of-the-art tools and methods for genomic and transcriptomic analysis of microbes at single-cell level were critically summarized, including single-cell isolation methods and experimental strategies of single-cell analysis with NGS. In addition, perspectives on the future trends of technology development in the field of single-cell analysis was also presented.

  12. Plant-microbe interaction in aquatic system and their role in the management of water quality: a review

    Science.gov (United States)

    Srivastava, Jatin K.; Chandra, Harish; Kalra, Swinder J. S.; Mishra, Pratibha; Khan, Hena; Yadav, Poonam

    2017-06-01

    Microbial assemblage as biofilm around the aquatic plant forms a firm association that largely depends upon the mutual supplies of nutrients, e.g., microbes interact with plants in an aquatic system most likely for organic carbon and oxygen, whereas plants receive defensive immunity and mineral exchange. Apart from the mutual benefits, plant-microbe interactions also influence the water quality especially at rhizosphere providing inherent ability to the aquatic system for the mitigation of pollution from the water column. The review presents and in-depth information along with certain research advancements made in the field of ecological and bio/chemical aspects of plant-microbe interactions and the underlying potential to improve water quality.

  13. Bacterial Communities of Diverse Drosophila Species: Ecological Context of a Host–Microbe Model System

    Science.gov (United States)

    Bhatnagar, Srijak; Eisen, Jonathan A.; Kopp, Artyom

    2011-01-01

    Drosophila melanogaster is emerging as an important model of non-pathogenic host–microbe interactions. The genetic and experimental tractability of Drosophila has led to significant gains in our understanding of animal–microbial symbiosis. However, the full implications of these results cannot be appreciated without the knowledge of the microbial communities associated with natural Drosophila populations. In particular, it is not clear whether laboratory cultures can serve as an accurate model of host–microbe interactions that occur in the wild, or those that have occurred over evolutionary time. To fill this gap, we characterized natural bacterial communities associated with 14 species of Drosophila and related genera collected from distant geographic locations. To represent the ecological diversity of Drosophilids, examined species included fruit-, flower-, mushroom-, and cactus-feeders. In parallel, wild host populations were compared to laboratory strains, and controlled experiments were performed to assess the importance of host species and diet in shaping bacterial microbiome composition. We find that Drosophilid flies have taxonomically restricted bacterial communities, with 85% of the natural bacterial microbiome composed of only four bacterial families. The dominant bacterial taxa are widespread and found in many different host species despite the taxonomic, ecological, and geographic diversity of their hosts. Both natural surveys and laboratory experiments indicate that host diet plays a major role in shaping the Drosophila bacterial microbiome. Despite this, the internal bacterial microbiome represents only a highly reduced subset of the external bacterial communities, suggesting that the host exercises some level of control over the bacteria that inhabit its digestive tract. Finally, we show that laboratory strains provide only a limited model of natural host–microbe interactions. Bacterial taxa used in experimental studies are rare or absent in

  14. Plant innate immunity against human bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Maeli eMelotto

    2014-08-01

    Full Text Available Certain human bacterial pathogens such as the enterohemorrhagic Escherichia coli and Salmonella enterica are not proven to be plant pathogens yet. Nonetheless, under certain conditions they can survive on, penetrate into, and colonize internal plant tissues causing serious food borne disease outbreaks. In this review, we highlight current understanding on the molecular mechanisms of plant responses against human bacterial pathogens and discuss salient common and contrasting themes of plant interactions with phytopathogens or human pathogens.

  15. Biological Screening of Eichornia crassipes against Different Pathogenic Microbes: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Rubina Rehman

    2016-09-01

    Full Text Available The present research is a biological screening of Eichornia crassipes (Pontederiaceae. Dichloromethane and methanol extracts of the whole plant were investigated for their antibacterial, antifungal, phytotoxic, and cytotoxic activities. The antibacterial activity was evaluated using agar well-diffusion method against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Shigella flexneri, Pseudomonas aeruginosa, and Salmonella typhi. The antifungal activity was evaluated using the agar tube–dilution method against Candida albicans, Candida glabrata, Aspergillus flavus, Microsporum canis, and Fusarium solani. The phytotoxicity activity was determined using Lemna bioassay against Lemna minor. Brine shrimp–cytotoxicity assay was determined against brine-shrimp larvae. Dichloromethane extract exhibited significant phytotoxicity (100% growth regulation at 1,000 µg/ml concentration against Lemna minor whereas methanolic extracts showed moderate (75% growth regulation phytotoxicity at the same concentration. Methanolic extract showed cytotoxicity at the highest level of dose whereas dichloromethane extract showed no activity having Etoposide as standard drug. Both of the extracts have nonsignificant antifungal and antibacterial activity.

  16. Ecological fitness, genomic islands and bacterial pathogenicity: A Darwinian view of the evolution of microbes

    OpenAIRE

    Hacker, Jörg; Carniel, Elisabeth

    2001-01-01

    The compositions of bacterial genomes can be changed rapidly and dramatically through a variety of processes including horizontal gene transfer. This form of change is key to bacterial evolution, as it leads to ‘evolution in quantum leaps’. Horizontal gene transfer entails the incorporation of genetic elements transferred from another organism—perhaps in an earlier generation—directly into the genome, where they form ‘genomic islands’, i.e. blocks of DNA with signatures of mobile genetic elem...

  17. Application of slightly acidic electrolyzed water for inactivating microbes in a layer breeding house.

    Science.gov (United States)

    Hao, X X; Li, B M; Wang, C Y; Zhang, Q; Cao, W

    2013-10-01

    Lots of microorganisms exist in layer houses can cause bird diseases and worker health concerns. Spraying chemical disinfectants is an effective way to decontaminate pathogenic microorganisms in the air and on surfaces in poultry houses. Slightly acidic electrolyzed water (SAEW, pH 5.0-6.5) is an ideal, environmentally friendly broad-spectrum disinfectant to prevent and control bacterial or viral infection in layer farms. The purpose of this work was to investigate the cleaning effectiveness of SAEW for inactivating the microbes in layer houses. The effect of SAEW was evaluated by solid materials and surface disinfection in a hen house. Results indicate that SAEW with an available chlorine concentration of 250 mg/L, pH value of 6.19, and oxygen reduction potential of 974 mV inactivated 100% of bacteria and fungi in solid materials (dusts, feces, feather, and feed), which is more efficient than common chemical disinfectant such as benzalkonium chloride solution (1:1,000 vol/vol) and povidone-iodine solution (1:1,000 vol/vol). Also, it significantly reduced the microbes on the equipment or facility surfaces (P < 0.05), including floor, wall, feed trough, and water pipe surfaces. Moreover, SAEW effectively decreased the survival rates of Salmonella and Escherichia coli by 21 and 16 percentage points. In addition, spraying the target with tap water before disinfection plays an important role in spray disinfection.

  18. A Vavilovian approach to discovering crop-associated microbes with potential to enhance plant immunity

    Directory of Open Access Journals (Sweden)

    Iago Lowe Hale

    2014-09-01

    Full Text Available Through active associations with a diverse community of largely non-pathogenic microbes, a plant may be thought of as possessing an extended genotype, an interactive cross-organismal genome with potential, exploitable implications for plant immunity. The successful enrichment of plant microbiomes with beneficial species has led to numerous commercial applications, and the hunt for new biocontrol organisms continues. Increasingly flexible and affordable sequencing technologies, supported by increasingly comprehensive taxonomic databases, make the characterization of non-model crop-associated microbiomes a widely accessible research method toward this end; and such studies are becoming more frequent. A summary of this emerging literature reveals, however, the need for a more systematic research lens in the face of what is already a metagenomics data deluge. Considering the processes and consequences of crop evolution and domestication, we assert that the judicious integration of in situ crop wild relatives into phytobiome research efforts presents a singularly powerful tool for separating signal from noise, thereby facilitating a more efficient means of identifying candidate plant-associated microbes with the potential for enhanci

  19. Structure and function of complex carbohydrates active in regulating plant-microbe interactions

    Energy Technology Data Exchange (ETDEWEB)

    Albersheim, P; Darvill, A G; McNeil, M

    1981-01-01

    A key regulatory role of complex carbohydrates in the interactions between plants and microbes has been established. The complex carbohydrates act as regulatory molecules or hormones in that the carbohydrates induce de novo protein synthesis in receptive cells. The first complex carbohydrate recognized to possess such regulatory properties is a polysaccharide (PS) present in the walls of fungi. Hormonal concentrations of this PS elicit plant cells to accumulate phytoalexins (antibiotics). More recently we have recognized that a PS in the walls of growing plant cells also elicits phytoalexin accumulation; microbes and viruses may cause the release of active fragments of this endogenous elicitor. Another PS in plant cell walls is the Proteinase Inhibitor Inducing Factor (PIIF). This hormone appears to protect plants by inducing synthesis in plants of proteins which specifically inhibit digestive enzymes of insects and bacteria. Glycoproteins secreted by incompatible races (races that do not infect the plant) of a fungal pathogen of soybeans protect seedlings from attack by compatible races. Glycoproteins from compatible races do not protect the seedlings. The acidic PS secreted by the nitrogen-fixing rhizobia appear to function in the infection of legumes by the rhizobia. W.D. Bauer and his co-workers have evidence that these PS are required for the development of root hairs capable of being infected by symbiont rhizobia. Current knowledge of the structures of these biologically active complex carbohydrates will be presented.

  20. Entomopathogenic Fungi: New Insights into Host-Pathogen Interactions.

    Science.gov (United States)

    Butt, T M; Coates, C J; Dubovskiy, I M; Ratcliffe, N A

    2016-01-01

    Although many insects successfully live in dangerous environments exposed to diverse communities of microbes, they are often exploited and killed by specialist pathogens. Studies of host-pathogen interactions (HPI) provide valuable insights into the dynamics of the highly aggressive coevolutionary arms race between entomopathogenic fungi (EPF) and their arthropod hosts. The host defenses are designed to exclude the pathogen or mitigate the damage inflicted while the pathogen responds with immune evasion and utilization of host resources. EPF neutralize their immediate surroundings on the insect integument and benefit from the physiochemical properties of the cuticle and its compounds that exclude competing microbes. EPF also exhibit adaptations aimed at minimizing trauma that can be deleterious to both host and pathogen (eg, melanization of hemolymph), form narrow penetration pegs that alleviate host dehydration and produce blastospores that lack immunogenic sugars/enzymes but facilitate rapid assimilation of hemolymph nutrients. In response, insects deploy an extensive armory of hemocytes and macromolecules, such as lectins and phenoloxidase, that repel, immobilize, and kill EPF. New evidence suggests that immune bioactives work synergistically (eg, lysozyme with antimicrobial peptides) to combat infections. Some proteins, including transferrin and apolipophorin III, also demonstrate multifunctional properties, participating in metabolism, homeostasis, and pathogen recognition. This review discusses the molecular intricacies of these HPI, highlighting the interplay between immunity, stress management, and metabolism. Increased knowledge in this area could enhance the efficacy of EPF, ensuring their future in integrated pest management programs. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Explorative analysis of microbes, colloids and gases

    Energy Technology Data Exchange (ETDEWEB)

    Hallbeck, Lotta; Pedersen, Karsten (Microbial Analytics Sweden AB, Goeteborg (Sweden))

    2008-08-15

    The overall objectives of the hydrogeochemical description for Forsmark are to establish a detailed understanding of the hydrogeochemical conditions at the site and to develop models that fulfil the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and pore water and their evolution with time. In this report, part of the final hydrogeochemical evaluation work of the site investigation at the Forsmark site, is presented. The work was conducted by SKB's hydrogeochemical project group, ChemNet, which consists of independent consultants and Univ. researchers with expertise in geochemistry, hydrochemistry, hydrogeochemistry, microbiology, geomicrobiology, analytical chemistry etc. The resulting site descriptive model version, mainly based on 2.2 data and complementary 2.3 data, was carried out during September 2006 to December 2007. This report focuses on microbiology, colloids and gases: - Microbes (Chapter 1): Several methods must be used to characterize active microbial communities in groundwater. Microbial parameters of interest are the total number of cells (TNC) and the presence of various metabolic groups of microorganisms. Different microbial groups influence the environment in different ways, depending on what metabolic group is dominant. Typically, the following redox couples are utilized by bacteria in granitic groundwater: H{sub 2}O/O{sub 2}, NO{sub 3}-/N{sub 2}, Mn2+/Mn(IV), Fe2+/Fe(III), S2-/SO{sub 4}2-, CH{sub 4}/CO{sub 2}, CH{sub 3}COOH/CO{sub 2}, and H{sub 2}/H+. The data will indicate the activity of specific microbial populations at particular sites and how they may affect the geochemistry. - Colloids (Chapter 2): Particles in the size range from 1 to 1x10-3 mum are regarded as colloids. Their small size prohibits them from settling, which gives them the

  2. Explorative analysis of microbes, colloids and gases

    International Nuclear Information System (INIS)

    Hallbeck, Lotta; Pedersen, Karsten

    2008-08-01

    The overall objectives of the hydrogeochemical description for Forsmark are to establish a detailed understanding of the hydrogeochemical conditions at the site and to develop models that fulfil the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and pore water and their evolution with time. In this report, part of the final hydrogeochemical evaluation work of the site investigation at the Forsmark site, is presented. The work was conducted by SKB's hydrogeochemical project group, ChemNet, which consists of independent consultants and Univ. researchers with expertise in geochemistry, hydrochemistry, hydrogeochemistry, microbiology, geomicrobiology, analytical chemistry etc. The resulting site descriptive model version, mainly based on 2.2 data and complementary 2.3 data, was carried out during September 2006 to December 2007. This report focuses on microbiology, colloids and gases: - Microbes (Chapter 1): Several methods must be used to characterize active microbial communities in groundwater. Microbial parameters of interest are the total number of cells (TNC) and the presence of various metabolic groups of microorganisms. Different microbial groups influence the environment in different ways, depending on what metabolic group is dominant. Typically, the following redox couples are utilized by bacteria in granitic groundwater: H 2 O/O 2 , NO 3 - /N 2 , Mn 2+ /Mn(IV), Fe 2+ /Fe(III), S 2- /SO 4 2- , CH 4 /CO 2 , CH 3 COOH/CO 2 , and H 2 /H + . The data will indicate the activity of specific microbial populations at particular sites and how they may affect the geochemistry. - Colloids (Chapter 2): Particles in the size range from 1 to 1x10 -3 μm are regarded as colloids. Their small size prohibits them from settling, which gives them the potential to transport

  3. Evolutionary adaptation in three-way interactions between plants, microbes and arthropods

    OpenAIRE

    Biere, A.; Tack, A.J.M.

    2013-01-01

    Evolutionary adaptations in interactions between plants, microbes and arthropods are generally studied in interactions that involve only two of these groups, that is, plants and microbes, plants and arthropods or arthropods and microbes. We review the accumulating evidence from a wide variety of systems, including plant- and arthropod-associated microbes, and symbionts as well as antagonists, that selection and adaptation in seemingly two-way interactions between plants and microbes, plants a...

  4. Membrane trafficking pathways and their roles in plant-microbe interactions.

    Science.gov (United States)

    Inada, Noriko; Ueda, Takashi

    2014-04-01

    Membrane trafficking functions in the delivery of proteins that are newly synthesized in the endoplasmic reticulum (ER) to their final destinations, such as the plasma membrane (PM) and the vacuole, and in the internalization of extracellular components or PM-associated proteins for recycling or degradative regulation. These trafficking pathways play pivotal roles in the rapid responses to environmental stimuli such as challenges by microorganisms. In this review, we provide an overview of the current knowledge of plant membrane trafficking and its roles in plant-microbe interactions. Although there is little information regarding the mechanism of pathogenic modulation of plant membrane trafficking thus far, recent research has identified many membrane trafficking factors as possible targets of microbial modulation.

  5. Plasma membrane protein trafficking in plant-microbe interactions: a plant cell point of view

    Directory of Open Access Journals (Sweden)

    Nathalie eLeborgne-Castel

    2014-12-01

    Full Text Available In order to ensure their physiological and cellular functions, plasma membrane (PM proteins must be properly conveyed from their site of synthesis, i.e. the endoplasmic reticulum, to their final destination, the PM, through the secretory pathway. PM protein homeostasis also relies on recycling and/or degradation, two processes that are initiated by endocytosis. Vesicular membrane trafficking events to and from the PM have been shown to be altered when plant cells are exposed to mutualistic or pathogenic microbes. In this review, we will describe the fine-tune regulation of such alterations, and their consequence in PM protein activity. We will consider the formation of intracellular perimicrobial compartments, the PM protein trafficking machinery of the host, and the delivery or retrieval of signaling and transport proteins such as pattern-recognition receptors, producers of reactive oxygen species, and sugar transporters.

  6. Effects of different microbes on fermenting feed for sea cucumber ( Apostichopus japonicus)

    Science.gov (United States)

    Jiang, Yan; Wang, Yingeng; Mai, Kangsen; Zhang, Zheng; Liao, Meijie; Rong, Xiaojun

    2015-10-01

    The effects of different microbes on fermenting feed for sea cucumber ( Apostichopus japonicus) were compared to select the optimal fermentation strain in this study. Saccharomgces cerevisae, Candida utilis, Bacillus subtilis and Geotrichum candidum were independently added into the experimental compound feed, while only saline was mixed with the control feed. The fermentation treatments were inoculated with 10% seed solution under the condition of 25°C and 70% water content, which lasted for 5 days to elucidate the optimal microbe strain for fermenting effect. Physicochemical indexes and sensorial characteristics were measured per day during the fermentation. The indexes included dry matter recovery (DMR), crude protein (CP), the percentage of amino acid nitrogen to total nitrogen (AA-N/tN), the percentage of ammonia nitrogen to total nitrogen (NH3-N/tN), and the ratio of fermentation strains and vibrios to the total microbes, color, smell and viscosity. The results showed that DMR, CP and AA-N/tN of the S. cerevisae group reached the highest level on day 3, but the ratio of fermentation strain was second to C. utilis group. In addition, its NH3-N/tN and the ratio of vibrios were maintained at low levels, and the sensory evaluation score including smell, color and viscosity was the highest in S. cerevisae group on day 3. Therefore, S. cerevisae could be the optimal strain for the feed fermentation for sea cucumber. This research developed a new production method of fermentation feed for sea cucumber.

  7. A molecular study of microbe transfer between distant environments.

    Science.gov (United States)

    Hooper, Sean D; Raes, Jeroen; Foerstner, Konrad U; Harrington, Eoghan D; Dalevi, Daniel; Bork, Peer

    2008-07-09

    Environments and their organic content are generally not static and isolated, but in a constant state of exchange and interaction with each other. Through physical or biological processes, organisms, especially microbes, may be transferred between environments whose characteristics may be quite different. The transferred microbes may not survive in their new environment, but their DNA will be deposited. In this study, we compare two environmental sequencing projects to find molecular evidence of transfer of microbes over vast geographical distances. By studying synonymous nucleotide composition, oligomer frequency and orthology between predicted genes in metagenomics data from two environments, terrestrial and aquatic, and by correlating with phylogenetic mappings, we find that both environments are likely to contain trace amounts of microbes which have been far removed from their original habitat. We also suggest a bias in direction from soil to sea, which is consistent with the cycles of planetary wind and water. Our findings support the Baas-Becking hypothesis formulated in 1934, which states that due to dispersion and population sizes, microbes are likely to be found in widely disparate environments. Furthermore, the availability of genetic material from distant environments is a possible font of novel gene functions for lateral gene transfer.

  8. A molecular study of microbe transfer between distant environments.

    Directory of Open Access Journals (Sweden)

    Sean D Hooper

    Full Text Available BACKGROUND: Environments and their organic content are generally not static and isolated, but in a constant state of exchange and interaction with each other. Through physical or biological processes, organisms, especially microbes, may be transferred between environments whose characteristics may be quite different. The transferred microbes may not survive in their new environment, but their DNA will be deposited. In this study, we compare two environmental sequencing projects to find molecular evidence of transfer of microbes over vast geographical distances. METHODOLOGY: By studying synonymous nucleotide composition, oligomer frequency and orthology between predicted genes in metagenomics data from two environments, terrestrial and aquatic, and by correlating with phylogenetic mappings, we find that both environments are likely to contain trace amounts of microbes which have been far removed from their original habitat. We also suggest a bias in direction from soil to sea, which is consistent with the cycles of planetary wind and water. CONCLUSIONS: Our findings support the Baas-Becking hypothesis formulated in 1934, which states that due to dispersion and population sizes, microbes are likely to be found in widely disparate environments. Furthermore, the availability of genetic material from distant environments is a possible font of novel gene functions for lateral gene transfer.

  9. TANPOPO: Microbe and micrometeoroid capture experiments on International Space Station.

    Science.gov (United States)

    Yamagishi, Akihiko; Kobayashi, Kensei; Yano, Hajime; Yokobori, Shinichi; Hashimoto, Hirofumi; Kawai, Hideyuki; Yamashita, Masamichi

    There is a long history of the microbe-collection experiments at high altitude. Microbes have been collected using balloons, aircraft and meteorological rockets from 1936 to 1976. Spore forming fungi and Bacilli, and Micrococci have been isolated in these experiments. It is not clear how high do microbes go up. If the microbes might have been present even at higher altitudes, the fact would endorse the possibility of interplanetary migration of life. TANPOPO, dandelion, is the name of a grass whose seeds with floss are spread by the wind. We propose the analyses of interplanetary migration of microbes, organic compounds and meteoroids on Japan Experimental Module (JEM) of the International Space Station (ISS). Ultra low-density aerogel will be used to capture micrometeoroid and debris. Particles captured by aerogel will be used for several analyses after the initial inspection of the gel and tracks. Careful analysis of the tracks in the aerogel will provide the size and velocity dependence of debris flux. The particles will be analyzed for mineralogical, organic and microbiological characteristics. Aerogels are ready for production in Japan. Aerogels and trays are space proven. All the analytical techniques are ready. The Tanpopo mission was accepted as a candidate experiments on Exposed Facility of ISS-JEM.

  10. Microfabricated microbial fuel cell arrays reveal electrochemically active microbes.

    Directory of Open Access Journals (Sweden)

    Huijie Hou

    Full Text Available Microbial fuel cells (MFCs are remarkable "green energy" devices that exploit microbes to generate electricity from organic compounds. MFC devices currently being used and studied do not generate sufficient power to support widespread and cost-effective applications. Hence, research has focused on strategies to enhance the power output of the MFC devices, including exploring more electrochemically active microbes to expand the few already known electricigen families. However, most of the MFC devices are not compatible with high throughput screening for finding microbes with higher electricity generation capabilities. Here, we describe the development of a microfabricated MFC array, a compact and user-friendly platform for the identification and characterization of electrochemically active microbes. The MFC array consists of 24 integrated anode and cathode chambers, which function as 24 independent miniature MFCs and support direct and parallel comparisons of microbial electrochemical activities. The electricity generation profiles of spatially distinct MFC chambers on the array loaded with Shewanella oneidensis MR-1 differed by less than 8%. A screen of environmental microbes using the array identified an isolate that was related to Shewanella putrefaciens IR-1 and Shewanella sp. MR-7, and displayed 2.3-fold higher power output than the S. oneidensis MR-1 reference strain. Therefore, the utility of the MFC array was demonstrated.

  11. Two Volatile Organic Compounds Trigger Plant Self-Defense against a Bacterial Pathogen and a Sucking Insect in Cucumber under Open Field Conditions

    Directory of Open Access Journals (Sweden)

    Choong-Min Ryu

    2013-05-01

    Full Text Available Systemic acquired resistance (SAR is a plant self-defense mechanism against a broad-range of pathogens and insect pests. Among chemical SAR triggers, plant and bacterial volatiles are promising candidates for use in pest management, as these volatiles are highly effective, inexpensive, and can be employed at relatively low concentrations compared with agrochemicals. However, such volatiles have some drawbacks, including the high evaporation rate of these compounds after application in the open field, their negative effects on plant growth, and their inconsistent levels of effectiveness. Here, we demonstrate the effectiveness of volatile organic compound (VOC-mediated induced resistance against both the bacterial angular leaf spot pathogen, Pseudononas syringae pv. lachrymans, and the sucking insect aphid, Myzus persicae, in the open field. Using the VOCs 3-pentanol and 2-butanone where fruit yields increased gave unexpectedly, a significant increase in the number of ladybird beetles, Coccinella septempunctata, a natural enemy of aphids. The defense-related gene CsLOX was induced by VOC treatment, indicating that triggering the oxylipin pathway in response to the emission of green leaf volatiles can recruit the natural enemy of aphids. These results demonstrate that VOCs may help prevent plant disease and insect damage by eliciting induced resistance, even in open fields.

  12. Effects of Bacillus amyloliquefaciens FZB42 on lettuce growth and health under pathogen pressure and its impact on the rhizosphere bacterial community.

    Directory of Open Access Journals (Sweden)

    Soumitra Paul Chowdhury

    Full Text Available The soil-borne pathogen Rhizoctonia solani is responsible for crop losses on a wide range of important crops worldwide. The lack of effective control strategies and the increasing demand for organically grown food has stimulated research on biological control. The aim of the present study was to evaluate the rhizosphere competence of the commercially available inoculant Bacillus amyloliquefaciens FZB42 on lettuce growth and health together with its impact on the indigenous rhizosphere bacterial community in field and pot experiments. Results of both experiments demonstrated that FZB42 is able to effectively colonize the rhizosphere (7.45 to 6.61 Log 10 CFU g(-1 root dry mass within the growth period of lettuce in the field. The disease severity (DS of bottom rot on lettuce was significantly reduced from severe symptoms with DS category 5 to slight symptom expression with DS category 3 on average through treatment of young plants with FZB42 before and after planting. The 16S rRNA gene based fingerprinting method terminal restriction fragment length polymorphism (T-RFLP showed that the treatment with FZB42 did not have a major impact on the indigenous rhizosphere bacterial community. However, the bacterial community showed a clear temporal shift. The results also indicated that the pathogen R. solani AG1-IB affects the rhizosphere microbial community after inoculation. Thus, we revealed that the inoculant FZB42 could establish itself successfully in the rhizosphere without showing any durable effect on the rhizosphere bacterial community.

  13. Regulatory Proteolysis in Arabidopsis-Pathogen Interactions.

    Science.gov (United States)

    Pogány, Miklós; Dankó, Tamás; Kámán-Tóth, Evelin; Schwarczinger, Ildikó; Bozsó, Zoltán

    2015-09-24

    Approximately two and a half percent of protein coding genes in Arabidopsis encode enzymes with known or putative proteolytic activity. Proteases possess not only common housekeeping functions by recycling nonfunctional proteins. By irreversibly cleaving other proteins, they regulate crucial developmental processes and control responses to environmental changes. Regulatory proteolysis is also indispensable in interactions between plants and their microbial pathogens. Proteolytic cleavage is simultaneously used both by plant cells, to recognize and inactivate invading pathogens, and by microbes, to overcome the immune system of the plant and successfully colonize host cells. In this review, we present available results on the group of proteases in the model plant Arabidopsis thaliana whose functions in microbial pathogenesis were confirmed. Pathogen-derived proteolytic factors are also discussed when they are involved in the cleavage of host metabolites. Considering the wealth of review papers available in the field of the ubiquitin-26S proteasome system results on the ubiquitin cascade are not presented. Arabidopsis and its pathogens are conferred with abundant sets of proteases. This review compiles a list of those that are apparently involved in an interaction between the plant and its pathogens, also presenting their molecular partners when available.

  14. The microbes we eat: abundance and taxonomy of microbes consumed in a day's worth of meals for three diet types.

    Science.gov (United States)

    Lang, Jenna M; Eisen, Jonathan A; Zivkovic, Angela M

    2014-01-01

    Far more attention has been paid to the microbes in our feces than the microbes in our food. Research efforts dedicated to the microbes that we eat have historically been focused on a fairly narrow range of species, namely those which cause disease and those which are thought to confer some "probiotic" health benefit. Little is known about the effects of ingested microbial communities that are present in typical American diets, and even the basic questions of which microbes, how many of them, and how much they vary from diet to diet and meal to meal, have not been answered. We characterized the microbiota of three different dietary patterns in order to estimate: the average total amount of daily microbes ingested via food and beverages, and their composition in three daily meal plans representing three different dietary patterns. The three dietary patterns analyzed were: (1) the Average American (AMERICAN): focused on convenience foods, (2) USDA recommended (USDA): emphasizing fruits and vegetables, lean meat, dairy, and whole grains, and (3) Vegan (VEGAN): excluding all animal products. Meals were prepared in a home kitchen or purchased at restaurants and blended, followed by microbial analysis including aerobic, anaerobic, yeast and mold plate counts as well as 16S rRNA PCR survey analysis. Based on plate counts, the USDA meal plan had the highest total amount of microbes at 1.3 × 10(9) CFU per day, followed by the VEGAN meal plan and the AMERICAN meal plan at 6 × 10(6) and 1.4 × 10(6) CFU per day respectively. There was no significant difference in diversity among the three dietary patterns. Individual meals clustered based on taxonomic composition independent of dietary pattern. For example, meals that were abundant in Lactic Acid Bacteria were from all three dietary patterns. Some taxonomic groups were correlated with the nutritional content of the meals. Predictive metagenome analysis using PICRUSt indicated differences in some functional KEGG categories

  15. Microbial electrosynthesis: understanding and strengthening microbe-electrode interactions

    DEFF Research Database (Denmark)

    Tremblay, Pier-Luc; Höglund, Daniel; Ammam, Fariza

    2014-01-01

    in the last decade that could significantly change the current ways of synthesizing chemicals. MES is a process in which electroautotrophic microbes reduce CO2 to multicarbon organics using electrical current as a source of electron. Electricity necessary for MES can be harvested from renewable resources...... relying on co-cultures and investigating extracellular electron transfer from the cathode to the microbes are some of the strategies that we are implementing to transform MES into a commercially viable technology....... such as solar energy, wind turbine or wastewater treatment processes. The net outcome is that renewable energy get store in the covalent bonds of valuable chemicals synthesized from greenhouse gas. However, low electron transferrates from the electrode to microbes, poor adherence of cells on the electrode...

  16. Sequestered Alkaloid Defenses in the Dendrobatid Poison Frog Oophaga pumilio Provide Variable Protection from Microbial Pathogens.

    Science.gov (United States)

    Hovey, Kyle J; Seiter, Emily M; Johnson, Erin E; Saporito, Ralph A

    2018-03-01

    Most amphibians produce their own defensive chemicals; however, poison frogs sequester their alkaloid-based defenses from dietary arthropods. Alkaloids function as a defense against predators, and certain types appear to inhibit microbial growth. Alkaloid defenses vary considerably among populations of poison frogs, reflecting geographic differences in availability of dietary arthropods. Consequently, environmentally driven differences in frog defenses may have significant implications regarding their protection against pathogens. While natural alkaloid mixtures in dendrobatid poison frogs have recently been shown to inhibit growth of non-pathogenic microbes, no studies have examined the effectiveness of alkaloids against microbes that infect these frogs. Herein, we examined how alkaloid defenses in the dendrobatid poison frog, Oophaga pumilio, affect growth of the known anuran pathogens Aeromonas hydrophila and Klebsiella pneumoniae. Frogs were collected from five locations throughout Costa Rica that are known to vary in their alkaloid profiles. Alkaloids were isolated from individual skins, and extracts were assayed against both pathogens. Microbe subcultures were inoculated with extracted alkaloids to create dose-response curves. Subsequent spectrophotometry and cell counting assays were used to assess growth inhibition. GC-MS was used to characterize and quantify alkaloids in frog extracts, and our results suggest that variation in alkaloid defenses lead to differences in inhibition of these pathogens. The present study provides the first evidence that alkaloid variation in a dendrobatid poison frog is associated with differences in inhibition of anuran pathogens, and offers further support that alkaloid defenses in poison frogs confer protection against both pathogens and predators.

  17. Musing over Microbes in Microgravity: Microbial Physiology Flight Experiment

    Science.gov (United States)

    Schweickart, Randolph; McGinnis, Michael; Bloomberg, Jacob; Lee, Angie (Technical Monitor)

    2002-01-01

    New York City, the most populated city in the United States, is home to over 8 million humans. This means over 26,000 people per square mile! Imagine, though, what the view would be if you peeked into the world of microscopic organisms. Scientists estimate that a gram of soil may contain up to 1 billion of these microbes, which is as much as the entire human population of China! Scientists also know that the world of microbes is incredibly diverse-possibly 10,000 different species in one gram of soil - more than all the different types of mammals in the world. Microbes fill every niche in the world - from 20 miles below the Earth's surface to 20 miles above, and at temperatures from less than -20 C to hotter than water's boiling point. These organisms are ubiquitous because they can adapt quickly to changing environments, an effective strategy for survival. Although we may not realize it, microbes impact every aspect of our lives. Bacteria and fungi help us break down the food in our bodies, and they help clean the air and water around us. They can also cause the dark, filmy buildup on the shower curtain as well as, more seriously, illness and disease. Since humans and microbes share space on Earth, we can benefit tremendously from a better understanding of the workings and physiology of the microbes. This insight can help prevent any harmful effects on humans, on Earth and in space, as well as reap the benefits they provide. Space flight is a unique environment to study how microbes adapt to changing environmental conditions. To advance ground-based research in the field of microbiology, this STS-107 experiment will investigate how microgravity affects bacteria and fungi. Of particular interest are the growth rates and how they respond to certain antimicrobial substances that will be tested; the same tests will be conducted on Earth at the same times. Comparing the results obtained in flight to those on Earth, we will be able to examine how microgravity induces

  18. Scaling Soil Microbe-Water Interactions from Pores to Ecosystems

    Science.gov (United States)

    Manzoni, S.; Katul, G. G.

    2014-12-01

    The spatial scales relevant to soil microbial activity are much finer than scales relevant to whole-ecosystem function and biogeochemical cycling. On the one hand, how to link such different scales and develop scale-aware biogeochemical and ecohydrological models remains a major challenge. On the other hand, resolving these linkages is becoming necessary for testing ecological hypotheses and resolving data-theory inconsistencies. Here, the relation between microbial respiration and soil moisture expressed in water potential is explored. Such relation mediates the water availability effects on ecosystem-level heterotrophic respiration and is of paramount importance for understanding CO2 emissions under increasingly variable rainfall regimes. Respiration has been shown to decline as the soil dries in a remarkably consistent way across climates and soil types (open triangles in Figure). Empirical models based on these respiration-moisture relations are routinely used in Earth System Models to predict moisture effects on ecosystem respiration. It has been hypothesized that this consistency in microbial respiration decline is due to breakage of water film continuity causing in turn solute diffusion limitations in dry conditions. However, this hypothesis appears to be at odds with what is known about soil hydraulic properties. Water film continuity estimated from soil water retention (SWR) measurements at the 'Darcy' scale breaks at far less negative water potential (micro-level relevant to microbial activity. Such downscaling resolves the inconsistency between respiration thresholds and hydrological thresholds. This result, together with observations of residual microbial activity well below -15 MPa (dashed back curve in Figure), lends support to the hypothesis that soil microbes are substrate-limited in dry conditions.

  19. The bee microbiome: Impact on bee health and model for evolution and ecology of host-microbe interactions

    Science.gov (United States)

    Engel, Philipp; Kwong, Waldan K.; McFrederick, Quinn; Anderson, Kirk E.; Barribeau, Seth Michael; Chandler, James Angus; Cornman, Robert S.; Dainat, Jacques; de Miranda, Joachim R.; Doublet, Vincent; Emery, Olivier; Evans, Jay D.; Farinelli, Laurent; Flenniken, Michelle L.; Granberg, Fredrik; Grasis, Juris A.; Gauthier, Laurent; Hayer, Juliette; Koch, Hauke; Kocher, Sarah; Martinson, Vincent G.; Moran, Nancy; Munoz-Torres, Monica; Newton, Irene; Paxton, Robert J.; Powell, Eli; Sadd, Ben M.; Schmid-Hempel, Paul; Schmid-Hempel, Regula; Song, Se Jin; Schwarz, Ryan S.; vanEngelsdorp, Dennis; Dainat, Benjamin

    2016-01-01

    As pollinators, bees are cornerstones for terrestrial ecosystem stability and key components in agricultural productivity. All animals, including bees, are associated with a diverse community of microbes, commonly referred to as the microbiome. The bee microbiome is likely to be a crucial factor affecting host health. However, with the exception of a few pathogens, the impacts of most members of the bee microbiome on host health are poorly understood. Further, the evolutionary and ecological forces that shape and change the microbiome are unclear. Here, we discuss recent progress in our understanding of the bee microbiome, and we present challenges associated with its investigation. We conclude that global coordination of research efforts is needed to fully understand the complex and highly dynamic nature of the interplay between the bee microbiome, its host, and the environment. High-throughput sequencing technologies are ideal for exploring complex biological systems, including host-microbe interactions. To maximize their value and to improve assessment of the factors affecting bee health, sequence data should be archived, curated, and analyzed in ways that promote the synthesis of different studies. To this end, the BeeBiome consortium aims to develop an online database which would provide reference sequences, archive metadata, and host analytical resources. The goal would be to support applied and fundamental research on bees and their associated microbes and to provide a collaborative framework for sharing primary data from different research programs, thus furthering our understanding of the bee microbiome and its impact on pollinator health.

  20. United States Department of Agriculture-Agricultural Research Service research programs on microbes for management of plant-parasitic nematodes.

    Science.gov (United States)

    Meyer, Susan L F

    2003-01-01

    Restrictions on the use of conventional nematicides have increased the need for new methods of managing plant-parasitic nematodes. Consequently, nematode-antagonistic microbes, and active compounds produced by such organisms, are being explored as potential additions to management practices. Programs in this area at the USDA Agricultural Research Service investigate applied biocontrol agents, naturally occurring beneficial soil microbes and natural compounds. Specific research topics include use of plant growth-promoting rhizobacteria and cultural practices for management of root-knot and ring nematodes, determination of management strategies that enhance activity of naturally occurring Pasteuria species (bacterial obligate parasites of nematodes), studies on interactions between biocontrol bacteria and bacterial-feeding nematodes, and screening of microbes for compounds active against plant-parasitic nematodes. Some studies involve biocontrol agents that are active against nematodes and soil-borne plant-pathogenic fungi, or combinations of beneficial bacteria and fungi, to manage a spectrum of plant diseases or to increase efficacy over a broader range of environmental conditions. Effective methods or agents identified in the research programs are investigated as additions to existing management systems for plant-parasitic nematodes.

  1. Survey of Hawksbill Turtle (Eretmochelys imbricate Health Condition in Terms of Parasites and Microbes in Alas Purwo National Park, Indonesia

    Directory of Open Access Journals (Sweden)

    Qurrota A'yunin

    2017-07-01

    Full Text Available Indonesian waters have six types of turtles that can live, spawn and breed. Sea turtle conservation becomes an important and urgent program to be done in order to protect and save sea turtle population in Indonesia. One of the factors that most affect the turtle population is the cause of degradation of pathogenic factors. Alas Purwo National Park, East Java, there is some communities that have activities turtle conservation. Conservation is done by securing and protecting turtle eggs. Turtle eggs that have hatched are released into the sea once it is ready. This study aims was to determine the type of bacteria and fungi that infect hatchlings and environmental factors that influence. This research is descriptive method to Hawksbill turtle (Eretmochelys imbricate is by way of random sampling. Sampling of microbes in sea turtle was conducted using cotton swab method and then microbes was cultured and indentified in laboratory. The results showed The kind of parasites and microbes which were indentified in hatching and adult Hawksbill sea turtles were fungus with genus Aspergillus sp., Geotrichum sp., Fusarium sp., and Gliocladium sp. ; bacteria are Pseudomonas aeruginosa and Enterobacter cloaceae; and parasite is Chelonibia testudinaria barnacles.  The parameter average value of water in pond indicated 28.1 – 29.2°C for temperature, 32 - 34 ‰ for salinity, 7.78 – 8.2 for pH, and 3.86 – 4.21 mg/L for DO.

  2. The Bee Microbiome: Impact on Bee Health and Model for Evolution and Ecology of Host-Microbe Interactions

    Directory of Open Access Journals (Sweden)

    Philipp Engel

    2016-05-01

    Full Text Available As pollinators, bees are cornerstones for terrestrial ecosystem stability and key components in agricultural productivity. All animals, including bees, are associated with a diverse community of microbes, commonly referred to as the microbiome. The bee microbiome is likely to be a crucial factor affecting host health. However, with the exception of a few pathogens, the impacts of most members of the bee microbiome on host health are poorly understood. Further, the evolutionary and ecological forces that shape and change the microbiome are unclear. Here, we discuss recent progress in our understanding of the bee microbiome, and we present challenges associated with its investigation. We conclude that global coordination of research efforts is needed to fully understand the complex and highly dynamic nature of the interplay between the bee microbiome, its host, and the environment. High-throughput sequencing technologies are ideal for exploring complex biological systems, including host-microbe interactions. To maximize their value and to improve assessment of the factors affecting bee health, sequence data should be archived, curated, and analyzed in ways that promote the synthesis of different studies. To this end, the BeeBiome consortium aims to develop an online database which would provide reference sequences, archive metadata, and host analytical resources. The goal would be to support applied and fundamental research on bees and their associated microbes and to provide a collaborative framework for sharing primary data from different research programs, thus furthering our understanding of the bee microbiome and its impact on pollinator health.

  3. Synthetic biology of microbes synthesizing polyhydroxyalkanoates (PHA

    Directory of Open Access Journals (Sweden)

    Guo-Qiang Chen

    2016-12-01

    Full Text Available Microbial polyhydroxyalkanoates (PHA have been produced as bioplastics for various purposes. Under the support of China National Basic Research 973 Project, we developed synthetic biology methods to diversify the PHA structures into homo-, random, block polymers with improved properties to better meet various application requirements. At the same time, various pathways were assembled to produce various PHA from glucose as a simple carbon source. At the end, Halomonas bacteria were reconstructed to produce PHA in changing morphology for low cost production under unsterile and continuous conditions. The synthetic biology will advance the PHA into a bio- and material industry.

  4. Hemocytes from Pediculus humanus humanus are hosts for human bacterial pathogens.

    Directory of Open Access Journals (Sweden)

    Eric eGhigo

    2015-01-01

    Full Text Available Pediculus humanus humanus is an human ectoparasite which represents a serious public health threat because it is vector for pathogenic bacteria. It is important to understand and identify where bacteria reside in human body lice to define new strategies to counterstroke the capacity of vectorization of the bacterial pathogens by body lice. It is known that phagocytes from vertebrates can be hosts or reservoirs for several microbes. Therefore, we wondered if Pediculus humanus humanus phagocytes could hide pathogens. In this study, we characterized the phagocytes from Pediculus humanus humanus and evaluated their contribution as hosts for human pathogens such as Rickettsia prowazekii, Bartonella quintana and Acinetobacter baumannii.

  5. Emerging Pathogens Initiative (EPI)

    Data.gov (United States)

    Department of Veterans Affairs — The Emerging Pathogens Initiative (EPI) database contains emerging pathogens information from the local Veterans Affairs Medical Centers (VAMCs). The EPI software...

  6. Interaction of the tick immune system with transmitted pathogens

    Directory of Open Access Journals (Sweden)

    Ondrej eHajdusek

    2013-07-01

    Full Text Available Ticks are hematophagous arachnids transmitting a wide variety of pathogens including viruses, bacteria, and protozoans to their vertebrate hosts. The tick vector competence has to be intimately linked to the ability of transmitted pathogens to evade tick defense mechanisms encountered on their route through the tick body comprising midgut, hemolymph, salivary glands or ovaries. Tick innate immunity is, like in other invertebrates, based on an orchestrated action of humoral and cellular immune responses. The direct antimicrobial defense in ticks is accomplished by a variety of small molecules such as defensins, lysozymes or by tick-specific antimicrobial compounds such as microplusin/hebraein or 5.3-kDa family proteins. Phagocytosis of the invading microbes by tick hemocytes seems to be mediated by the primordial complement-like system composed of thioester-containing proteins, fibrinogen-related lectins and convertase-like factors. Moreover, an important role in survival of the ingested microbes seems to be played by host proteins and redox balance maintenance in the tick midgut. Here, we summarize recent knowledge about the major components of tick immune system and focus on their interaction with the relevant tick-transmitted pathogens, represented by spirochetes (Borrelia, rickettsiae (Anaplasma, and protozoans (Babesia. Availability of the tick genomic database and feasibility of functional genomics based on RNA interference greatly contribute to the understanding of molecular and cellular interplay at the tick-pathogen interface and may provide new targets for blocking the transmission of tick pathogens.

  7. A new early-warning system for stripe rust affecting wheat and triticale: Host-pathogen interactions under different environmental conditions

    DEFF Research Database (Denmark)

    Rodriguez Algaba, Julian; Justesen, Annemarie Fejer; Hovmøller, Mogens Støvring

    resistant it was susceptible under field conditions in March 2012. All Pst isolates from Tulus, obtained from multiple locations, were identified as the ‘Kranich’-race, and were avirulent on Tulus under experimental conditions. In May and June 2012 Tulus recovered on a country-wide scale and was resistant...

  8. Flavonoids and Strigolactones in Root Exudates as Signals in Symbiotic and Pathogenic Plant-Fungus Interactions

    Directory of Open Access Journals (Sweden)

    Horst Vierheilig

    2007-07-01

    Full Text Available Secondary plant compounds are important signals in several symbiotic and pathogenic plant-microbe interactions. The present review is limited to two groups of secondary plant compounds, flavonoids and strigolactones, which have been reported in root exudates. Data on flavonoids as signaling compounds are available from several symbiotic and pathogenic plant-microbe interactions, whereas only recently initial data on the role of strigolactones as plant signals in the arbuscular mycorrhizal symbiosis have been reported. Data from other plant-microbe interactions and strigolactones are not available yet. In the present article we are focusing on flavonoids in plant-fungalinteractions such as the arbuscular mycorrhizal (AM association and the signaling between different Fusarium species and plants. Moreover the role of strigolactones in the AM association is discussed and new data on the effect of strigolactones on fungi, apart from arbuscular mycorrhizal fungi (AMF, are provided.

  9. Terrestrial microbes in martian and chondritic meteorites

    Science.gov (United States)

    Airieau, S.; Picenco, Y.; Andersen, G.

    2007-08-01

    Bank sequences using the BLAST program. The closest matches were in the genus Microbacterium. Soil and plant isolates were close relatives by sequence comparison. Los Angeles. After 11 months of incubation in a fridge, a yellow colony grew at the center of a culture plate of Los Angeles dust grains (1:1000 R2A). There was no cell activity in the other agars. A DNA extraction yielded no usable results [7]. Sequencing was not performed because the culture plate became contaminated with outside organisms that overtook the colony of interest. Conclusions: The sequences for EET 87770 and Leoville were of a good quality and the sequence reads were long, so the data are clear that these are typical soil and/or plant-related bacteria commonly found in Earth habitats. Microbial species present in a dozen chondritic samples from isolates are not yet identified, and the contaminant in Los Angeles needs to be recovered. In addition, isotopic analyses of samples with various amounts of microbial contamination could help quantified isotopic impact of microbes on protoplanetary chemistry in these rocks. References : [1] Gounelle, M. and Zolensky M. LPS, (2001) LPS XXXII, Abstract #999. [2] Fries, M. et al. (2005) Meteoritical Society Meeting 68, Abstract # 5201. [3] Burckle, L. H. and Delaney, J. S (1999) Meteoritics & Planet. Sci., 32, 475-478. [4] Whitby, C. et al. (2000) ) LPS XXXI, Abstract #1732. [5] Airieau, S. A. et al (2005) Geochim. Cosmochim. Acta, 69, 4166-4171. [6] Unpublished data, with H. J. Cleaves, A. Aubrey, J. Bada (Scripps Institution of Oceanography), M. Thiemens (UC San Diego) and M. Fogel (Carnegie Institution of Washington). [7] Unpublished data, with A. Steele (CIW), and N. Wainwright (Marine Biological Laboratory). Acknowledgements: Lisa Welleberger for access to SNC samples at USNM; Ralph Harvey for organizing ANSMET; Denise C. Thiry and Andrew Steele for long term storage of samples, NormWainwright for LAL measurements. A small portion of this work was funded with a

  10. Inflammasome/IL-1β Responses to Streptococcal Pathogens

    Directory of Open Access Journals (Sweden)

    Christopher N. LaRock

    2015-10-01

    Full Text Available Inflammation mediated by the inflammasome and the cytokine IL-1β are some of the earliest and most important alarms to infection. These pathways are responsive to the virulence factors that pathogens use to subvert immune processes, and thus are typically activated only by microbes with potential to cause severe disease. Among the most serious human infections are those caused by the pathogenic streptococci, in part because these species numerous strategies for immune evasion. Since the virulence factor armament of each pathogen is unique, the role of IL-1β and the pathways leading to its activation varies for each infection. This review summarizes the role of IL-1β during infections caused by streptococcal pathogens, with emphasis on emergent mechanisms and concepts countering paradigms determined for other organisms.

  11. Population dynamics of soil microbes and diversity of Bacillus ...

    African Journals Online (AJOL)

    ONOS

    2010-01-25

    Jan 25, 2010 ... Population dynamics of soil microbes and diversity of ... 25.78, 25.78, 86.26, 24.73, 68.0, 26.8 and 26.8 kDa proteins and equivalent to Cyt, Cry5 and Cry2 toxins ..... Molecular weight (kDa) of protein fractions of the BT isolates.

  12. Comparative gut physiology symposium: The microbe-gut-brain axis

    Science.gov (United States)

    The Comparative Gut Physiology Symposium titled “The Microbe-Gut-Brain Axis” was held at the Joint Annual Meeting of the American Society of Animal Science and the American Dairy Science Association on Thursday, July 21, 2016, in Salt Lake City Utah. The goal of the symposium was to present basic r...

  13. Microbes, molecules, maladies and man | Duse | South African ...

    African Journals Online (AJOL)

    South African Medical Journal. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 92, No 3 (2002) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Microbes, molecules, maladies and man. AG Duse. Abstract.

  14. The high life: Transport of microbes in the atmosphere

    Science.gov (United States)

    Smith, David J.; Griffin, Dale W.; Jaffe, Daniel A.

    2011-07-01

    Microbes (bacteria, fungi, algae, and viruses) are the most successful types of life on Earth because of their ability to adapt to new environments, reproduce quickly, and disperse globally. Dispersal occurs through a number of vectors, such as migrating animals or the hydrological cycle, but transport by wind may be the most common way microbes spread. General awareness of airborne microbes predates the science of microbiology. People took advantage of wild airborne yeasts to cultivate lighter, more desirable bread as far back as ancient Egypt by simply leaving a mixture of grain and liquids near an open window. In 1862, Louis Pasteur's quest to disprove spontaneous generation resulted in the discovery that microbes were actually single-celled, living creatures, prevalent in the environment and easily killed with heat (pasteurization). His rudimentary experiments determined that any nutrient medium left open to the air would eventually teem with microbial life because of free-floating, colonizing cells. The same can happen in a kitchen: Opportunistic fungal and bacterial cells cause food items exposed to the air to eventually spoil.

  15. Preliminary biological screening of microbes isolated from cow dung ...

    African Journals Online (AJOL)

    Preliminary biological screening of microbes isolated from cow dung in Kampar. KC Teo, SM Teoh. Abstract. Five distinct morphologically and physiologically isolates were isolated from cow dung at Kampar, Perak, Malaysia and cultured on nutrient agar (NA) plates. Morphological studies including microscopic examination ...

  16. Microbes from raw milk for fermented dairy products

    NARCIS (Netherlands)

    Wouters, J.T.M.; Ayad, E.H.E.; Hugenholtz, J.; Smit, G.

    2002-01-01

    Milk has a high nutritive value, not only For the new-born mammal and for the human consumer, but also for microbes. Raw milk kept at roam temperature will be liable to microbial spoilage. After some days, the milk will spontaneously become sour. This is generally due to the activity of lactic acid

  17. A microbent fiber optic pH sensor

    NARCIS (Netherlands)

    Thomas Lee, S.; Aneeshkumar, B.N.; Radhakrishnan, P.; Vallabhan, C.P.G.; Nampoori, V.P.N.

    2002-01-01

    Optical fiber sensors developed for measuring pH values usually employ an unclad and unstrained section of the fiber. In this paper, we describe the design and fabrication of a microbent fiber optic sensor that can be used for pH sensing. In order to obtain the desired performance, a permanently

  18. Effects of bile salt deconjugation by probiotic strains on the survival of antibiotic-resistant foodborne pathogens under simulated gastric conditions.

    Science.gov (United States)

    He, Xinlong; Zou, Yunyun; Cho, Youngjae; Ahn, Juhee

    2012-06-01

    This study was designed to evaluate the effects of bile acid deconjugation by probiotic strains on the antibiotic susceptibility of antibiotic-sensitive and multiple antibiotic-resistant Salmonella Typhimurium and Staphylococcus aureus. Eight probiotic strains, Bifidobacterium longum B6, Lactobacillus acidophilus ADH, Lactobacillus brevis KACC 10553, Lactobacillus casei KACC 12413, Lactobacillus paracasei ATCC 25598, Lactobacillus rhamnosus GG, Leuconostoc mesenteroides KACC 12312, and Pediococcus acidilactici KACC 12307, were used to examine bile acid tolerance. The ability to deconjugate bile acids was evaluated using both thin-layer chromatography and high-performance liquid chromatography. The antibiotic susceptibility testing was carried out to determine the synergistic inhibitory activity of deconjugated bile acids. L. acidophilus, L. brevis, and P. acidilactici showed the most tolerance to the conjugated bile acids. P. acidilactici deconjugated glycocholic acid and glycodeoxycholate from 3.18 and 3.09 mM to the detection limits, respectively. The antibiotic susceptibility of selected foodborne pathogens was increased by increasing the concentration of deconjugated bile acids. The study results are useful for understanding the relationship between bile acid deconjugation by probiotic strains and antibiotic susceptibility in the presence of deconjugated bile acids, and they may be useful for designing new probiotic-antibiotic combination therapy based on bile acid deconjugation.

  19. Melanin as a virulence factor of Paracoccidioides brasiliensis and other dimorphic pathogenic fungi: a minireview

    OpenAIRE

    Taborda, Carlos P.; da Silva, Marcelo B.; Nosanchuk, Joshua D.; Travassos, Luiz R.

    2008-01-01

    Melanin pigments are substances produced by a broad variety of pathogenic microorganisms, including bacteria, fungi, and helminths. Microbes predominantly produce melanin pigment via tyrosinases, laccases, catecholases, and the polyketide synthase pathway. In fungi, melanin is deposited in the cell wall and cytoplasm, and melanin particles (“ghosts”) can be isolated from these fungi that have the same size and shape of the original cells. Melanin has been reported in several human pathogenic ...

  20. Internalisation of microbes in vegetables: microbial load of Ghanaian vegetables and the relationship with different water sources of irrigation.

    Science.gov (United States)

    Donkor, Eric S; Lanyo, R; Kayang, Boniface B; Quaye, Jonathan; Edoh, Dominic A

    2010-09-01

    The occurrence of pathogens in the internal parts of vegetables is usually associated with irrigation water or contaminated soil and could pose risk to consumers as the internalised pathogens are unaffected by external washing. This study was carried out to assess the rate of internalisation of microbes in common Ghanaian vegetables. Standard microbiological methods were employed in microbial enumeration of vegetables collected at the market and farm levels, as well as irrigation water and soil samples. The overall mean counts of vegetables were 4.0 x 10(3) cfu g(-1); 8.1 x 10(2) cfu g(-1); 2.0 x 10(2) cfu g(-1); 3.5 x 10(2) cfu g(-1) for total bacteria, coliform counts, faecal coliform counts and yeast counts, respectively. The rate of internalisation of coliforms in vegetables irrigated with stream/well water was 2.7 times higher than those irrigated with pipe water. The mean coliform counts (4.7 x 10(7) cfu g(-1)) and faecal coliform counts (1.8 x 10(6) cfu g(-1)) of soil samples were similar to those of stream water suggesting both sources exerted similar contamination rates on the vegetables. Generally, there were no significant variations between the rates of internalisation of microbes at the market and farm levels at p vegetables mainly occurred at the farm level. The study has shown that microbial contamination of vegetables in Ghana is not limited to the external surface, but internal vegetable parts could harbour high microbial loads and pose risk to consumers. Safety practices associated with the commodity should therefore not be limited to external washing only. There is the additional need of heating vegetables to eliminate microbes both externally and internally before consumption.

  1. Reactive Transport Modeling of Microbe-mediated Fe (II) Oxidation for Enhanced Oil Recovery

    Science.gov (United States)

    Surasani, V.; Li, L.

    2011-12-01

    Microbially Enhanced Oil Recovery (MEOR) aims to improve the recovery of entrapped heavy oil in depleted reservoirs using microbe-based technology. Reservoir ecosystems often contain diverse microbial communities those can interact with subsurface fluids and minerals through a network of nutrients and energy fluxes. Microbe-mediated reactions products include gases, biosurfactants, biopolymers those can alter the properties of oil and interfacial interactions between oil, brine, and rocks. In addition, the produced biomass and mineral precipitates can change the reservoir permeability profile and increase sweeping efficiency. Under subsurface conditions, the injection of nitrate and Fe (II) as the electron acceptor and donor allows bacteria to grow. The reaction products include minerals such as Fe(OH)3 and nitrogen containing gases. These reaction products can have large impact on oil and reservoir properties and can enhance the recovery of trapped oil. This work aims to understand the Fe(II) oxidation by nitrate under conditions relevant to MEOR. Reactive transport modeling is used to simulate the fluid flow, transport, and reactions involved in this process. Here we developed a complex reactive network for microbial mediated nitrate-dependent Fe (II) oxidation that involves both thermodynamic controlled aqueous reactions and kinetic controlled Fe (II) mineral reaction. Reactive transport modeling is used to understand and quantify the coupling between flow, transport, and reaction processes. Our results identify key parameter controls those are important for the alteration of permeability profile under field conditions.

  2. Microbes: uranium miners, money makers, problem solvers

    International Nuclear Information System (INIS)

    Williamson, A.L.; Payne, R.; Kerr, F.; Hall, S.; Spiers, G.A.

    2010-01-01

    Bioleaching, the microbial dissolution of minerals, is potentially useful in exploiting a variety of ore deposits, including the lower-grade uraniferous quartz-pebble conglomerate beds of the Quirke Syncline, Elliot Lake, Ontario. The metabolism of chemolithotropic bacterium Acidithiobacillus ferrooxidans is dependent on its ability to derive energy and reducing power from the oxidation of ferrous iron. The characteristics of this bacterium, in particular the ability to oxidize both iron and sulphur with an associated high tolerance of low acidity, allow the organism to contribute significantly to bioleaching processes. Under ideal conditions, A. ferrooxidans promotes the oxidation of iron-containing sulphide ore materials, breaking their crystal structure and promoting the dissolution of iron, base metals, as well as uranium, rare earth elements and associated elements of toxicological interest such as arsenic and selenium. The current study documents an overview of the recovery of uranium and rare earth elements to solution, plus investigates the acid generating potential of the solid residues from a series of environmentally controlled, biologically-mediated uranium ore extraction experiments. The findings will be used in the design of larger scale bioleaching experiments to further assess the potential for success of bioleaching as a metallurgical extraction technique potentially leading to minimum maintenance decommissioning strategies for the ore deposits of the Quirke Syncline. (author)

  3. The dual role of microbes in corrosion.

    Science.gov (United States)

    Kip, Nardy; van Veen, Johannes A

    2015-03-01

    Corrosion is the result of a series of chemical, physical and (micro) biological processes leading to the deterioration of materials such as steel and stone. It is a world-wide problem with great societal and economic consequences. Current corrosion control strategies based on chemically produced products are under increasing pressure of stringent environmental regulations. Furthermore, they are rather inefficient. Therefore, there is an urgent need for environmentally friendly and sustainable corrosion control strategies. The mechanisms of microbially influenced corrosion and microbially influenced corrosion inhibition are not completely understood, because they cannot be linked to a single biochemical reaction or specific microbial species or groups. Corrosion is influenced by the complex processes of different microorganisms performing different electrochemical reactions and secreting proteins and metabolites that can have secondary effects. Information on the identity and role of microbial communities that are related to corrosion and corrosion inhibition in different materials and in different environments is scarce. As some microorganisms are able to both cause and inhibit corrosion, we pay particular interest to their potential role as corrosion-controlling agents. We show interesting interfaces in which scientists from different disciplines such as microbiology, engineering and art conservation can collaborate to find solutions to the problems caused by corrosion.

  4. Microbes: uranium miners, money makers, problem solvers

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, A.L., E-mail: awilliamson@mirarco.org [MIRARCO, Sudbury, ON (Canada); Laurentian Univ., Sudbury, ON (Canada); Payne, R.; Kerr, F. [Pele Mountain Resources Inc., Toronto, ON (Canada); Hall, S. [Laurentian Univ., Sudbury, ON (Canada); Spiers, G.A. [MIRARCO, Sudbury, ON (Canada); Laurentian Univ., Sudbury, ON (Canada)

    2010-07-01

    Bioleaching, the microbial dissolution of minerals, is potentially useful in exploiting a variety of ore deposits, including the lower-grade uraniferous quartz-pebble conglomerate beds of the Quirke Syncline, Elliot Lake, Ontario. The metabolism of chemolithotropic bacterium Acidithiobacillus ferrooxidans is dependent on its ability to derive energy and reducing power from the oxidation of ferrous iron. The characteristics of this bacterium, in particular the ability to oxidize both iron and sulphur with an associated high tolerance of low acidity, allow the organism to contribute significantly to bioleaching processes. Under ideal conditions, A. ferrooxidans promotes the oxidation of iron-containing sulphide ore materials, breaking their crystal structure and promoting the dissolution of iron, base metals, as well as uranium, rare earth elements and associated elements of toxicological interest such as arsenic and selenium. The current study documents an overview of the recovery of uranium and rare earth elements to solution, plus investigates the acid generating potential of the solid residues from a series of environmentally controlled, biologically-mediated uranium ore extraction experiments. The findings will be used in the design of larger scale bioleaching experiments to further assess the potential for success of bioleaching as a metallurgical extraction technique potentially leading to minimum maintenance decommissioning strategies for the ore deposits of the Quirke Syncline. (author)

  5. The dual role of microbes in corrosion

    Science.gov (United States)

    Kip, Nardy; van Veen, Johannes A

    2015-01-01

    Corrosion is the result of a series of chemical, physical and (micro) biological processes leading to the deterioration of materials such as steel and stone. It is a world-wide problem with great societal and economic consequences. Current corrosion control strategies based on chemically produced products are under increasing pressure of stringent environmental regulations. Furthermore, they are rather inefficient. Therefore, there is an urgent need for environmentally friendly and sustainable corrosion control strategies. The mechanisms of microbially influenced corrosion and microbially influenced corrosion inhibition are not completely understood, because they cannot be linked to a single biochemical reaction or specific microbial species or groups. Corrosion is influenced by the complex processes of different microorganisms performing different electrochemical reactions and secreting proteins and metabolites that can have secondary effects. Information on the identity and role of microbial communities that are related to corrosion and corrosion inhibition in different materials and in different environments is scarce. As some microorganisms are able to both cause and inhibit corrosion, we pay particular interest to their potential role as corrosion-controlling agents. We show interesting interfaces in which scientists from different disciplines such as microbiology, engineering and art conservation can collaborate to find solutions to the problems caused by corrosion. PMID:25259571

  6. Spatial heterogeneity in soil microbes alters outcomes of plant competition.

    Directory of Open Access Journals (Sweden)

    Karen C Abbott

    Full Text Available Plant species vary greatly in their responsiveness to nutritional soil mutualists, such as mycorrhizal fungi and rhizobia, and this responsiveness is associated with a trade-off in allocation to root structures for resource uptake. As a result, the outcome of plant competition can change with the density of mutualists, with microbe-responsive plant species having high competitive ability when mutualists are abundant and non-responsive plants having high competitive ability with low densities of mutualists. When responsive plant species also allow mutualists to grow to greater densities, changes in mutualist density can generate a positive feedback, reinforcing an initial advantage to either plant type. We study a model of mutualist-mediated competition to understand outcomes of plant-plant interactions within a patchy environment. We find that a microbe-responsive plant can exclude a non-responsive plant from some initial conditions, but it must do so across the landscape including in the microbe-free areas where it is a poorer competitor. Otherwise, the non-responsive plant will persist in both mutualist-free and mutualist-rich regions. We apply our general findings to two different biological scenarios: invasion of a non-responsive plant into an established microbe-responsive native population, and successional replacement of non-responders by microbe-responsive species. We find that resistance to invasion is greatest when seed dispersal by the native plant is modest and dispersal by the invader is greater. Nonetheless, a native plant that relies on microbial mutualists for competitive dominance may be particularly vulnerable to invasion because any disturbance that temporarily reduces its density or that of the mutualist creates a window for a non-responsive invader to establish dominance. We further find that the positive feedbacks from associations with beneficial soil microbes create resistance to successional turnover. Our theoretical

  7. Spatial heterogeneity in soil microbes alters outcomes of plant competition.

    Science.gov (United States)

    Abbott, Karen C; Karst, Justine; Biederman, Lori A; Borrett, Stuart R; Hastings, Alan; Walsh, Vonda; Bever, James D

    2015-01-01

    Plant species vary greatly in their responsiveness to nutritional soil mutualists, such as mycorrhizal fungi and rhizobia, and this responsiveness is associated with a trade-off in allocation to root structures for resource uptake. As a result, the outcome of plant competition can change with the density of mutualists, with microbe-responsive plant species having high competitive ability when mutualists are abundant and non-responsive plants having high competitive ability with low densities of mutualists. When responsive plant species also allow mutualists to grow to greater densities, changes in mutualist density can generate a positive feedback, reinforcing an initial advantage to either plant type. We study a model of mutualist-mediated competition to understand outcomes of plant-plant interactions within a patchy environment. We find that a microbe-responsive plant can exclude a non-responsive plant from some initial conditions, but it must do so across the landscape including in the microbe-free areas where it is a poorer competitor. Otherwise, the non-responsive plant will persist in both mutualist-free and mutualist-rich regions. We apply our general findings to two different biological scenarios: invasion of a non-responsive plant into an established microbe-responsive native population, and successional replacement of non-responders by microbe-responsive species. We find that resistance to invasion is greatest when seed dispersal by the native plant is modest and dispersal by the invader is greater. Nonetheless, a native plant that relies on microbial mutualists for competitive dominance may be particularly vulnerable to invasion because any disturbance that temporarily reduces its density or that of the mutualist creates a window for a non-responsive invader to establish dominance. We further find that the positive feedbacks from associations with beneficial soil microbes create resistance to successional turnover. Our theoretical results constitute an

  8. Evolutionary adaptation in three-way interactions between plants, microbes and arthropods

    NARCIS (Netherlands)

    Biere, A.; Tack, A.J.M.

    2013-01-01

    Evolutionary adaptations in interactions between plants, microbes and arthropods are generally studied in interactions that involve only two of these groups, that is, plants and microbes, plants and arthropods or arthropods and microbes. We review the accumulating evidence from a wide variety of

  9. Ecosystem Fabrication (EcoFAB) Protocols for The Construction of Laboratory Ecosystems Designed to Study Plant-microbe Interactions.

    Science.gov (United States)

    Gao, Jian; Sasse, Joelle; Lewald, Kyle M; Zhalnina, Kateryna; Cornmesser, Lloyd T; Duncombe, Todd A; Yoshikuni, Yasuo; Vogel, John P; Firestone, Mary K; Northen, Trent R

    2018-04-10

    Beneficial plant-microbe interactions offer a sustainable biological solution with the potential to boost low-input food and bioenergy production. A better mechanistic understanding of these complex plant-microbe interactions will be crucial to improving plant production as well as performing basic ecological studies investigating plant-soil-microbe interactions. Here, a detailed description for ecosystem fabrication is presented, using widely available 3D printing technologies, to create controlled laboratory habitats (EcoFABs) for mechanistic studies of plant-microbe interactions within specific environmental conditions. Two sizes of EcoFABs are described that are suited for the investigation of microbial interactions with various plant species, including Arabidopsis thaliana, Brachypodium distachyon, and Panicum virgatum. These flow-through devices allow for controlled manipulation and sampling of root microbiomes, root chemistry as well as imaging of root morphology and microbial localization. This protocol includes the details for maintaining sterile conditions inside EcoFABs and mounting independent LED light systems onto EcoFABs. Detailed methods for addition of different forms of media, including soils, sand, and liquid growth media coupled to the characterization of these systems using imaging and metabolomics are described. Together, these systems enable dynamic and detailed investigation of plant and plant-microbial consortia including the manipulation of microbiome composition (including mutants), the monitoring of plant growth, root morphology, exudate composition, and microbial localization under controlled environmental conditions. We anticipate that these detailed protocols will serve as an important starting point for other researchers, ideally helping create standardized experimental systems for investigating plant-microbe interactions.

  10. Microbes in the Anthropocene: spillover of agriculturally selected bacteria and their impact on natural ecosystems.

    Science.gov (United States)

    Bell, Thomas; Tylianakis, Jason M

    2016-12-14

    Soil microbial communities are enormously diverse, with at least millions of species and trillions of genes unknown to science or poorly described. Soil microbial communities are key components of agriculture, for example, in provisioning nitrogen and protecting crops from pathogens, providing overall ecosystem services in excess of $1000bn per year. It is important to know how humans are affecting this hidden diversity. Much is known about the negative consequences of agricultural intensification on higher organisms, but almost nothing is known about how alterations to landscapes affect microbial diversity, distributions and processes. We review what is known about spatial flows of microbes and their response to land-use change, and outline nine hypotheses to advance research of microbiomes across landscapes. We hypothesize that intensified agriculture selects for certain taxa and genes, which then 'spill over' into adjacent unmodified areas and generate a halo of genetic differentiation around agricultural fields. Consequently, the spatial configuration and management intensity of different habitats combines with the dispersal ability of individual taxa to determine the extent of spillover, which can impact the functioning of adjacent unmodified habitats. When landscapes are heterogeneous and dispersal rates are high, this will select for large genomes that allow exploitation of multiple habitats, a process that may be accelerated through horizontal gene transfer. Continued expansion of agriculture will increase genotypic similarity, making microbial community functioning increasingly variable in human-dominated landscapes, potentially also impacting the consistent provisioning of ecosystem services. While the resulting economic costs have not been calculated, it is clear that dispersal dynamics of microbes should be taken into consideration to ensure that ecosystem functioning and services are maintained in agri-ecosystem mosaics. © 2016 The Authors.

  11. Multifaceted defense against antagonistic microbes in developing offspring of the parasitoid wasp Ampulex compressa (Hymenoptera, Ampulicidae.

    Directory of Open Access Journals (Sweden)

    Katharina Weiss

    Full Text Available Effective antimicrobial strategies are essential adaptations of insects to protect themselves, their offspring, and their foods from microbial pathogens and decomposers. Larvae of the emerald cockroach wasp, Ampulex compressa, sanitize their cockroach hosts, Periplaneta americana, with a cocktail of nine antimicrobials comprising mainly (R-(--mellein and micromolide. The blend of these antimicrobials has broad-spectrum antimicrobial activity. Here we explore the spatio-temporal pattern of deployment of antimicrobials during the development from egg to adult as well as their physico-chemical properties to assess how these aspects may contribute to the success of the antimicrobial strategy. Using gas chromatography/mass spectrometry (GC/MS we show that larvae start sanitizing their food as soon as they have entered their host to feed on its tissue. Subsequently, they impregnate the cockroach carcass with antimicrobials to create a hygienic substrate for cocoon spinning inside the host. Finally, the antimicrobials are incorporated into the cocoon. The antimicrobial profiles on cockroach and wasp cocoon differed markedly. While micromolide persisted on the cockroaches until emergence of the wasps, solid-phase microextraction sampling and GC/MS analysis revealed that (R-(--mellein vaporized from the cockroaches and accumulated in the enclosed nest. In microbial challenge assays (R-(--mellein in the headspace of parasitized cockroaches inhibited growth of entomopathogenic and opportunistic microbes (Serratia marcescens, Aspergillus sydowii, Metarhizium brunneum. We conclude that, in addition to food sanitation, A. compressa larvae enclose themselves in two defensive walls by impregnating the cocoon and the cockroach cuticle with antimicrobials. On top of that, they use vaporous (R-(--mellein to sanitize the nest by fumigation. This multifaceted antimicrobial defense strategy involving the spatially and temporally coordinated deployment of several

  12. Microbes in the Anthropocene: spillover of agriculturally selected bacteria and their impact on natural ecosystems

    Science.gov (United States)

    2016-01-01

    Soil microbial communities are enormously diverse, with at least millions of species and trillions of genes unknown to science or poorly described. Soil microbial communities are key components of agriculture, for example, in provisioning nitrogen and protecting crops from pathogens, providing overall ecosystem services in excess of $1000bn per year. It is important to know how humans are affecting this hidden diversity. Much is known about the negative consequences of agricultural intensification on higher organisms, but almost nothing is known about how alterations to landscapes affect microbial diversity, distributions and processes. We review what is known about spatial flows of microbes and their response to land-use change, and outline nine hypotheses to advance research of microbiomes across landscapes. We hypothesize that intensified agriculture selects for certain taxa and genes, which then ‘spill over’ into adjacent unmodified areas and generate a halo of genetic differentiation around agricultural fields. Consequently, the spatial configuration and management intensity of different habitats combines with the dispersal ability of individual taxa to determine the extent of spillover, which can impact the functioning of adjacent unmodified habitats. When landscapes are heterogeneous and dispersal rates are high, this will select for large genomes that allow exploitation of multiple habitats, a process that may be accelerated through horizontal gene transfer. Continued expansion of agriculture will increase genotypic similarity, making microbial community functioning increasingly variable in human-dominated landscapes, potentially also impacting the consistent provisioning of ecosystem services. While the resulting economic costs have not been calculated, it is clear that dispersal dynamics of microbes should be taken into consideration to ensure that ecosystem functioning and services are maintained in agri-ecosystem mosaics. PMID:27928044

  13. A versatile palindromic amphipathic repeat coding sequence horizontally distributed among diverse bacterial and eucaryotic microbes

    Directory of Open Access Journals (Sweden)

    Glass John I

    2010-07-01

    Full Text Available Abstract Background Intragenic tandem repeats occur throughout all domains of life and impart functional and structural variability to diverse translation products. Repeat proteins confer distinctive surface phenotypes to many unicellular organisms, including those with minimal genomes such as the wall-less bacterial monoderms, Mollicutes. One such repeat pattern in this clade is distributed in a manner suggesting its exchange by horizontal gene transfer (HGT. Expanding genome sequence databases reveal the pattern in a widening range of bacteria, and recently among eucaryotic microbes. We examined the genomic flux and consequences of the motif by determining its distribution, predicted structural features and association with membrane-targeted proteins. Results Using a refined hidden Markov model, we document a 25-residue protein sequence motif tandemly arrayed in variable-number repeats in ORFs lacking assigned functions. It appears sporadically in unicellular microbes from disparate bacterial and eucaryotic clades, representing diverse lifestyles and ecological niches that include host parasitic, marine and extreme environments. Tracts of the repeats predict a malleable configuration of recurring domains, with conserved hydrophobic residues forming an amphipathic secondary structure in which hydrophilic residues endow extensive sequence variation. Many ORFs with these domains also have membrane-targeting sequences that predict assorted topologies; others may comprise reservoirs of sequence variants. We demonstrate expressed variants among surface lipoproteins that distinguish closely related animal pathogens belonging to a subgroup of the Mollicutes. DNA sequences encoding the tandem domains display dyad symmetry. Moreover, in some taxa the domains occur in ORFs selectively associated with mobile elements. These features, a punctate phylogenetic distribution, and different patterns of dispersal in genomes of related taxa, suggest that the

  14. Comparison of procedures to evaluate the pathogenicity of ...

    African Journals Online (AJOL)

    Ceratocystis fimbriata sensu lato(s.l.) is an important pathogen of Eucalyptus. Pathogenicity of isolates has typically been evaluated by inoculating seedlings under greenhouse conditions. It is, however, not clear how accurately this reflects pathogenicity under field conditions. In this study, five techniques to potentially ...

  15. Macrophage–Microbe Interactions: Lessons from the Zebrafish Model

    Directory of Open Access Journals (Sweden)

    Nagisa Yoshida

    2017-12-01

    Full Text Available Macrophages provide front line defense against infections. The study of macrophage–microbe interplay is thus crucial for understanding pathogenesis and infection control. Zebrafish (Danio rerio larvae provide a unique platform to study macrophage–microbe interactions in vivo, from the level of the single cell to the whole organism. Studies using zebrafish allow non-invasive, real-time visualization of macrophage recruitment and phagocytosis. Furthermore, the chemical and genetic tractability of zebrafish has been central to decipher the complex role of macrophages during infection. Here, we discuss the latest developments using zebrafish models of bacterial and fungal infection. We also review novel aspects of macrophage biology revealed by zebrafish, which can potentiate development of new therapeutic strategies for humans.

  16. Deep-Sea Microbes: Linking Biogeochemical Rates to -Omics Approaches

    Science.gov (United States)

    Herndl, G. J.; Sintes, E.; Bayer, B.; Bergauer, K.; Amano, C.; Hansman, R.; Garcia, J.; Reinthaler, T.

    2016-02-01

    Over the past decade substantial progress has been made in determining deep ocean microbial activity and resolving some of the enigmas in understanding the deep ocean carbon flux. Also, metagenomics approaches have shed light onto the dark ocean's microbes but linking -omics approaches to biogeochemical rate measurements are generally rare in microbial oceanography and even more so for the deep ocean. In this presentation, we will show by combining metagenomics, -proteomics and biogeochemical rate measurements on the bulk and single-cell level that deep-sea microbes exhibit characteristics of generalists with a large genome repertoire, versatile in utilizing substrate as revealed by metaproteomics. This is in striking contrast with the apparently rather uniform dissolved organic matter pool in the deep ocean. Combining the different -omics approaches with metabolic rate measurements, we will highlight some major inconsistencies and enigmas in our understanding of the carbon cycling and microbial food web structure in the dark ocean.

  17. Nitrate storage and dissimilatory nitrate reduction by eukaryotic microbes

    DEFF Research Database (Denmark)

    Kamp, Anja; Høgslund, Signe; Risgaard-Petersen, Nils

    2015-01-01

    The microbial nitrogen cycle is one of the most complex and environmentally important element cycles on Earth and has long been thought to be mediated exclusively by prokaryotic microbes. Rather recently, it was discovered that certain eukaryotic microbes are able to store nitrate intracellularly......, suggesting that eukaryotes may rival prokaryotes in terms of dissimilatory nitrate reduction. Finally, this review article sketches some evolutionary perspectives of eukaryotic nitrate metabolism and identifies open questions that need to be addressed in future investigations....... and use it for dissimilatory nitrate reduction in the absence of oxygen. The paradigm shift that this entailed is ecologically significant because the eukaryotes in question comprise global players like diatoms, foraminifers, and fungi. This review article provides an unprecedented overview of nitrate...

  18. Tropical forest soil microbes and climate warming: An Andean-Amazon gradient and `SWELTR'

    Science.gov (United States)

    Nottingham, A.; Turner, B. L.; Fierer, N.; Whitaker, J.; Ostle, N. J.; McNamara, N. P.; Bardgett, R.; Silman, M.; Bååth, E.; Salinas, N.; Meir, P.

    2017-12-01

    Climate warming predicted for the tropics in the coming century will result in average temperatures under which no closed canopy forest exists today. There is, therefore, great uncertainty associated with the direction and magnitude of feedbacks between tropical forests and our future climate - especially relating to the response of soil microbes and the third of global soil carbon contained in tropical forests. While warming experiments are yet to be performed in tropical forests, natural temperature gradients are powerful tools to investigate temperature effects on soil microbes. Here we draw on studies from a 3.5 km elevation gradient - and 20oC mean annual temperature gradient - in Peruvian tropical forest, to investigate how temperature affects the structure of microbial communities, microbial metabolism, enzymatic activity and soil organic matter cycling. With decreased elevation, soil microbial diversity increased and community composition shifted, from taxa associated with oligotrophic towards copiotrophic traits. A key role for temperature in shaping these patterns was demonstrated by a soil translocation experiment, where temperature-manipulation altered the relative abundance of specific taxa. Functional implications of these community composition shifts were indicated by changes in enzyme activities, the temperature sensitivity of bacterial and fungal growth rates, and the presence of temperature-adapted iso-enzymes at different elevations. Studies from a Peruvian elevation transect indicated that soil microbial communities are adapted to long-term (differences with elevation) and short-term (translocation responses) temperature changes. These findings indicate the potential for adaptation of soil microbes in tropical soils to future climate warming. However, in order to evaluate the sensitivity of these processes to climate warming in lowland forests, in situ experimentation is required. Finally, we describe SWELTR (Soil Warming Experiment in Lowland

  19. Bioprospecting of South African Plants as a Unique Resource for Bioactive Endophytic Microbes

    Directory of Open Access Journals (Sweden)

    Muna Ali Abdalla

    2018-05-01

    Full Text Available South Africa has a long history and strong belief in traditional herbal medicines. Using ethnobotanical knowledge as a lead, a large number of South African medicinal plants have been discovered to possess a wide spectrum of pharmacological properties. In this review, bioprospecting of endophytes is highlighted by following the advantages of the ethnomedicinal approach together with identifying unique medicinal plants where biological activity may be due to endophytes. This review focuses on the current status of South African medicinal plants to motivate the research community to harness the benefits of ethnobotanical knowledge to investigate the presence of endophytic microbes from the most potent South African medicinal plants. The potential chemical diversity and subsequent putative medicinal value of endophytes is deserving of further research. A timely and comprehensive review of literature on recently isolated endophytes and their metabolites was conducted. Worldwide literature from the last 2 years demonstrating the importance of ethnobotanical knowledge as a useful approach to discover endophytic microbes was documented. Information was obtained from scientific databases such as Pubmed, Scopus, Scirus, Google Scholar, Dictionary of Natural Products, Chemical Abstracts Services, official websites, and scientific databases on ethnomedicines. Primary sources such as books, reports, dissertations, and thesises were accessed where available. Recently published information on isolated endophytes with promising bioactivity and their bioactive natural products worldwide (2015-2017 was summarized. The potential value of South African medicinal plants as sources of endophytes is discussed. The insights provided through this study indicate that medicinal plants in South Africa are highly under-investigated sources of potentially useful endophytic microbes. New approaches may be used by medicinal plant scientists for further exploration of natural

  20. Characteristics of the repair - deficient mutants 1435 plague microbe strain

    International Nuclear Information System (INIS)

    Temiralieva, G.A.

    1977-01-01

    Repair-deficient mutants 1435 A uvr - hcr - , 1435-17 uvr - hcr + and 1435-35 lon have been obtained from 1435 plague microbe strain, isolated from a large gerbil living in the Central Asian desert region. The mutants have the same cultural-morphological and enzymatic characteristics, the same need in growth factors and similar virulence determinants as the original strain, but they do not cause death of the experimental animals

  1. Do airborne microbes matter for atmospheric chemistry and cloud formation?

    Science.gov (United States)

    Konstantinidis, Konstantinos T

    2014-06-01

    The role of airborne microbial cells in the chemistry of the atmosphere and cloud formation remains essentially speculative. Recent studies have indicated that microbes might be more important than previously anticipated for atmospheric processes. However, more work and direct communication between microbiologists and atmospheric scientists and modellers are necessary to better understand and model bioaerosol-cloud-precipitation-climate interactions. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Effects of Gut Microbes on Nutrient Absorption and Energy Regulation

    OpenAIRE

    Krajmalnik-Brown, Rosa; Ilhan, Zehra-Esra; Kang, Dae-Wook; DiBaise, John K.

    2012-01-01

    Malnutrition may manifest as either obesity or undernutrition. Accumulating evidence suggests that the gut microbiota plays an important role in the harvest, storage, and expenditure of energy obtained from the diet. The composition of the gut microbiota has been shown to differ between lean and obese humans and mice; however, the specific roles that individual gut microbes play in energy harvest remain uncertain. The gut microbiota may also influence the development of conditions characteriz...

  3. Soil Microbes and soil microbial proteins: interactions with clay minerals

    International Nuclear Information System (INIS)

    Spence, A.; Kelleher, B. P.

    2009-01-01

    Bacterial enumeration in soil environments estimates that the population may reach approximately 10 1 0 g - 1 of soil and comprise up to 90% of the total soil microbial biomass. Bacteria are present in soils as single cells or multicell colonies and often strongly adsorb onto mineral surfaces such as sand and clay. The interactions of microbes and microbial biomolecules with these minerals have profound impacts on the physical, chemical and biological properties of soils. (Author)

  4. Three-dimensional optofluidic device for isolating microbes

    Science.gov (United States)

    Keloth, A.; Paterson, L.; Markx, G. H.; Kar, A. K.

    2015-03-01

    Development of efficient methods for isolation and manipulation of microorganisms is essential to study unidentified and yet-to-be cultured microbes originating from a variety of environments. The discovery of novel microbes and their products have the potential to contribute to the development of new medicines and other industrially important bioactive compounds. In this paper we describe the design, fabrication and validation of an optofluidic device capable of redirecting microbes within a flow using optical forces. The device holds promise to enable the high throughput isolation of single microbes for downstream culture and analysis. Optofluidic devices are widely used in clinical research, cell biology and biomedical engineering as they are capable of performing analytical functions such as controlled transportation, compact and rapid processing of nanolitres to millilitres of clinical or biological samples. We have designed and fabricated a three dimensional optofluidic device to control and manipulate microorganisms within a microfluidic channel. The device was fabricated in fused silica by ultrafast laser inscription (ULI) followed by selective chemical etching. The unique three-dimensional capability of ULI is utilized to integrate microfluidic channels and waveguides within the same substrate. The main microfluidic channel in the device constitutes the path of the sample. Optical waveguides are fabricated at right angles to the main microfluidic channel. The potential of the optical scattering force to control and manipulate microorganisms is discussed in this paper. A 980 nm continuous wave (CW) laser source, coupled to the waveguide, is used to exert radiation pressure on the particle and particle migrations at different flow velocities are recorded. As a first demonstration, device functionality is validated using fluorescent microbeads and initial trials with microalgae are presented.

  5. Selection rhizosphere-competent microbes for development of microbial products as biocontrol agents

    Science.gov (United States)

    Mashinistova, A. V.; Elchin, A. A.; Gorbunova, N. V.; Muratov, V. S.; Kydralieva, K. A.; Khudaibergenova, B. M.; Shabaev, V. P.; Jorobekova, Sh. J.

    2009-04-01

    Rhizosphere-borne microorganisms reintroduced to the soil-root interface can establish without inducing permanent disturbance in the microbial balance and effectively colonise the rhizosphere due to carbon sources of plant root exudates. A challenge for future development of microbial products for use in agriculture will be selection of rhizosphere-competent microbes that both protect the plant from pathogens and improve crop establishment and persistence. In this study screening, collection, identification and expression of stable and technological microbial strains living in soils and in the rhizosphere of abundant weed - couch-grass Elytrigia repens L. Nevski were conducted. A total of 98 bacteria isolated from the rhizosphere were assessed for biocontrol activity in vitro against phytopathogenic fungi including Fusarium culmorum, Fusarium heterosporum, Fusarium oxysporum, Drechslera teres, Bipolaris sorokiniana, Piricularia oryzae, Botrytis cinerea, Colletothrichum atramentarium and Cladosporium sp., Stagonospora nodorum. Biocontrol activity were performed by the following methods: radial and parallel streaks, "host - pathogen" on the cuts of wheat leaves. A culture collection comprising 64 potential biocontrol agents (BCA) against wheat and barley root diseases has been established. Of these, the most effective were 8 isolates inhibitory to at least 4 out of 5 phytopathogenic fungi tested. The remaining isolates inhibited at least 1 of 5 fungi tested. Growth stimulating activity of proposed rhizobacteria-based preparations was estimated using seedling and vegetative pot techniques. Seeds-inoculation and the tests in laboratory and field conditions were conducted for different agricultural crops - wheat and barley. Intact cells, liquid culture filtrates and crude extracts of the four beneficial bacterial strains isolated from the rhizosphere of weed were studied to stimulate plant growth. As a result, four bacterial strains selected from rhizosphere of weed

  6. Sterilization of microbes by using various plasma jets

    Energy Technology Data Exchange (ETDEWEB)

    Uhm, Han S.; Choi, Eun H.; Cho, Guang S. [Kwangwoon University, Seoul (Korea, Republic of); Hong, Yong C. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2012-03-15

    Sterilization of various microbes was carried out by using several plasma jets. Argon plasma jets penetrate deep into ambient air and create a path for oxygen radicals to sterilize microbes including spores. A sterilization experiment with bacterial endospores indicates that an argon-oxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby demonstrating its capability to clean surfaces and its usefulness for reinstating contaminated equipment as free from toxic biological agents. The key element of the sterilization is oxygen radicals. The penciltype configuration produces a long, cold plasma jet capable of reaching 3.5 cm and having various excited plasma species shown through the optical emission spectrum. Operation of an air plasma jet at 2 W in a pencil-type electrode provides an excellent opportunity for sterilization of microbes. An electron microscope was used to observe the effects of the plasma on bacterial cell morphology. Transmission electron micrographs showed morphological changes in E. coli cells treated with an atmospheric plasma at 75 W for 2 min. The treated cells had severe cytoplasmic deformations and leakage of bacterial chromosome. The chromosomal DNA was either attached to the bacterial cells or released freely into the surrounding medium. The results clearly explain the loss of viability of bacterial cells after plasma treatment.

  7. Rarity in aquatic microbes: placing protists on the map.

    Science.gov (United States)

    Logares, Ramiro; Mangot, Jean-François; Massana, Ramon

    2015-12-01

    Most microbial richness at any given time tends to be represented by low-abundance (rare) taxa, which are collectively referred to as the "rare biosphere". Here we review works on the rare biosphere using high-throughput sequencing (HTS), with a particular focus on unicellular eukaryotes or protists. Evidence thus far indicates that the rare biosphere encompasses dormant as well as metabolically active microbes that could potentially play key roles in ecosystem functioning. Rare microbes appear to have biogeography, and sometimes the observed patterns can be similar to what is observed among abundant taxa, suggesting similar community-structuring mechanisms. There is limited evidence indicating that the rare biosphere contains taxa that are phylogenetically distantly related to abundant counterparts; therefore, the rare biosphere may act as a reservoir of deep-branching phylogenetic diversity. The potential role of the rare biosphere as a bank of redundant functions that can help to maintain continuous ecosystem function following oscillations in taxonomic abundances is hypothesized as its main ecological role. Future studies focusing on rare microbes are crucial for advancing our knowledge of microbial ecology and evolution and unveiling their links with ecosystem function. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  8. Intrinsic disorder in pathogen effectors: protein flexibility as an evolutionary hallmark in a molecular arms race.

    Science.gov (United States)

    Marín, Macarena; Uversky, Vladimir N; Ott, Thomas

    2013-09-01

    Effector proteins represent a refined mechanism of bacterial pathogens to overcome plants' innate immune systems. These modular proteins often manipulate host physiology by directly interfering with immune signaling of plant cells. Even if host cells have developed efficient strategies to perceive the presence of pathogenic microbes and to recognize intracellular effector activity, it remains an open question why only few effectors are recognized directly by plant resistance proteins. Based on in-silico genome-wide surveys and a reevaluation of published structural data, we estimated that bacterial effectors of phytopathogens are highly enriched in long-disordered regions (>50 residues). These structurally flexible segments have no secondary structure under physiological conditions but can fold in a stimulus-dependent manner (e.g., during protein-protein interactions). The high abundance of intrinsic disorder in effectors strongly suggests positive evolutionary selection of this structural feature and highlights the dynamic nature of these proteins. We postulate that such structural flexibility may be essential for (1) effector translocation, (2) evasion of the innate immune system, and (3) host function mimicry. The study of these dynamical regions will greatly complement current structural approaches to understand the molecular mechanisms of these proteins and may help in the prediction of new effectors.

  9. Microbes and associated soluble and volatile chemicals on periodically wet household surfaces.

    Science.gov (United States)

    Adams, Rachel I; Lymperopoulou, Despoina S; Misztal, Pawel K; De Cassia Pessotti, Rita; Behie, Scott W; Tian, Yilin; Goldstein, Allen H; Lindow, Steven E; Nazaroff, William W; Taylor, John W; Traxler, Matt F; Bruns, Thomas D

    2017-09-26

    measurement, even against a broader background of VOCs in homes, some of which may originate from microbes in other locations within the home. A deeper understanding of the chemical interactions between microbes on household surfaces will require experimentation under relevant environmental conditions, with a finer temporal resolution, to build on the observational study results presented here.

  10. Characterization of the interaction between the human pathogen Listeria monocytogenes and the model host C. elegans

    DEFF Research Database (Denmark)

    Simonsen, Karina T.; Nielsen, Jesper S.; Hansen, Annie A.

    In nature, C. elegans lives in the soil and feeds on bacteria. This constant contact with soil-borne microbes suggests that nematodes must have evolved protective responses against pathogens which makes the worm an attractive host-pathogen model for exploring their innate immune response....... In addition, C. elegans is a promising model for the identification of novel virulence factors in various pathogens. A large number of human, animal, plant and insect pathogens have been shown to kill the worm, when C. elegans was allowed to feed on pathogens in stead of its normal laboratory diet [1......]. However, the mechanisms that lead to the shortened life span of the worm have been shown to be very different depending on the nature of the pathogen. Examples include Yersinia pestis, which forms a biofilm layer on the cuticle of C. elegans thus inhibiting feeding [2], enteropathogenic Escherichia coli...

  11. Quantitative proteomic view on secreted, cell surface-associated, and cytoplasmic proteins of the methicillin-resistant human pathogen Staphylococcus aureus under iron-limited conditions.

    Science.gov (United States)

    Hempel, Kristina; Herbst, Florian-Alexander; Moche, Martin; Hecker, Michael; Becher, Dörte

    2011-04-01

    Staphylococcus aureus is capable of colonizing and infecting humans by its arsenal of surface-exposed and secreted proteins. Iron-limited conditions in mammalian body fluids serve as a major environmental signal to bacteria to express virulence determinants. Here we present a comprehensive, gel-free, and GeLC-MS/MS-based quantitative proteome profiling of S. aureus under this infection-relevant situation. (14)N(15)N metabolic labeling and three complementing approaches were combined for relative quantitative analyses of surface-associated proteins. The surface-exposed and secreted proteome profiling approaches comprise trypsin shaving, biotinylation, and precipitation of the supernatant. By analysis of the outer subproteomic and cytoplasmic protein fraction, 1210 proteins could be identified including 221 surface-associated proteins. Thus, access was enabled to 70% of the predicted cell wall-associated proteins, 80% of the predicted sortase substrates, two/thirds of lipoproteins and more than 50% of secreted and cytoplasmic proteins. For iron-deficiency, 158 surface-associated proteins were quantified. Twenty-nine proteins were found in altered amounts showing particularly surface-exposed proteins strongly induced, such as the iron-regulated surface determinant proteins IsdA, IsdB, IsdC and IsdD as well as lipid-anchored iron compound-binding proteins. The work presents a crucial subject for understanding S. aureus pathophysiology by the use of methods that allow quantitative surface proteome profiling.

  12. AMPK in Pathogens

    OpenAIRE

    Mesquita, Inês Morais; Moreira, Diana; Marques, Belém Sampaio; Laforge, Mireille; Cordeiro-da-Silva, Anabela; Ludovico, Paula; Estaquier, Jérôme; Silvestre, Ricardo Jorge Leal

    2016-01-01

    During host–pathogen interactions, a complex web of events is crucial for the outcome of infection. Pathogen recognition triggers powerful cellular signaling events that is translated into the induction and maintenance of innate and adaptive host immunity against infection. In opposition, pathogens employ active mechanisms to manipulate host cell regulatory pathways toward their proliferation and survival. Among these, subversion of host cell energy metabolism by pathogens is currently recogn...

  13. The relative importance of rapid evolution for plant-microbe interactions depends on ecological context.

    Science.gov (United States)

    Terhorst, Casey P; Lennon, Jay T; Lau, Jennifer A

    2014-06-22

    Evolution can occur on ecological time-scales, affecting community and ecosystem processes. However, the importance of evolutionary change relative to ecological processes remains largely unknown. Here, we analyse data from a long-term experiment in which we allowed plant populations to evolve for three generations in dry or wet soils and used a reciprocal transplant to compare the ecological effect of drought and the effect of plant evolutionary responses to drought on soil microbial communities and nutrient availability. Plants that evolved under drought tended to support higher bacterial and fungal richness, and increased fungal : bacterial ratios in the soil. Overall, the magnitudes of ecological and evolutionary effects on microbial communities were similar; however, the strength and direction of these effects depended on the context in which they were measured. For example, plants that evolved in dry environments increased bacterial abundance in dry contemporary environments, but decreased bacterial abundance in wet contemporary environments. Our results suggest that interactions between recent evolutionary history and ecological context affect both the direction and magnitude of plant effects on soil microbes. Consequently, an eco-evolutionary perspective is required to fully understand plant-microbe interactions.

  14. Diverse effects of arsenic on selected enzyme activities in soil-plant-microbe interactions.

    Science.gov (United States)

    Lyubun, Yelena V; Pleshakova, Ekaterina V; Mkandawire, Martin; Turkovskaya, Olga V

    2013-11-15

    Under the influence of pollutants, enzyme activities in plant-microbe-soil systems undergo changes of great importance in predicting soil-plant-microbe interactions, regulation of metal and nutrient uptake, and, ultimately, improvement of soil health and fertility. We evaluated the influence of As on soil enzyme activities and the effectiveness of five field crops for As phytoextraction. The initial As concentration in soil was 50mg As kg(-1) soil; planted clean soil, unplanted polluted soil, and unplanted clean soil served as controls. After 10 weeks, the growth of the plants elevated soil dehydrogenase activity relative to polluted but unplanted control soils by 2.4- and 2.5-fold for sorghum and sunflower (respectively), by 3-fold for ryegrass and sudangrass, and by 5.2-fold for spring rape. Soil peroxidase activity increased by 33% with ryegrass and rape, while soil phosphatase activity was directly correlated with residual As (correlation coefficient R(2)=0.7045). We conclude that soil enzyme activities should be taken into account when selecting plants for phytoremediation. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Plant-Microbe Interactions and Water Management in Arid and Saline Soils

    KAUST Repository

    Daffonchio, Daniele; Hirt, Heribert; Berg, Gabriele

    2014-01-01

    Drought and salinity are major factors limiting agriculture in many regions in the world, and their importance is predicted to even increase in the near future in parallel with the ongoing global warming and climate changes. Soil and rhizosphere microbes are potential resources for counteracting such abiotic stresses in plants. The knowledge on the roles of root microorganisms in retaining soil humidity and promoting plant growth under such abiotic stresses is analyzed in this chapter. The importance of microbial diversity in the rhizosphere for alleviating drought and salinity effects on the plant physiology is discussed in the light of “Desert Farming”, the general crop management practice that is frequently used in arid regions. The plant growth promoting functional services exerted by microorganisms within the rhizosphere in arid soils are presented in relation to the plant response under water stress.

  16. Plant-Microbe Interactions and Water Management in Arid and Saline Soils

    KAUST Repository

    Daffonchio, Daniele

    2014-12-05

    Drought and salinity are major factors limiting agriculture in many regions in the world, and their importance is predicted to even increase in the near future in parallel with the ongoing global warming and climate changes. Soil and rhizosphere microbes are potential resources for counteracting such abiotic stresses in plants. The knowledge on the roles of root microorganisms in retaining soil humidity and promoting plant growth under such abiotic stresses is analyzed in this chapter. The importance of microbial diversity in the rhizosphere for alleviating drought and salinity effects on the plant physiology is discussed in the light of “Desert Farming”, the general crop management practice that is frequently used in arid regions. The plant growth promoting functional services exerted by microorganisms within the rhizosphere in arid soils are presented in relation to the plant response under water stress.

  17. Survival of pathogens on soybean debris under no-tillage and conventional tillage systems Sobrevivência de patógenos em restos de cultura de soja mantidos em sistema de semeadura direta e convencional

    Directory of Open Access Journals (Sweden)

    Álvaro Manuel Rodrigues Almeida

    2001-10-01

    Full Text Available A study was conducted in the subtropical area of Southern Brazil to determine the survival of pathogens in soybean residues under conventional and no-tillage cultivation systems from March to September of 1998 and 1999. The pathogens most frequently isolated were Colletotrichum truncatum, Phomopsis spp., Cercospora kikuchii, Fusarium spp., Macrophomina phaseolina, and Rhizoctonia solani. Other fungi isolated were Myrothecium roridum, Penicillium sp., Chaetomium sp., Epicoccum sp., Corynespora cassiicola and Trichoderma sp. The percent of survival of each pathogen varied according to the month and the year. Survival of C. truncatum, Phomopsis spp. and C. kikuchii were significantly reduced (pAvaliou-se a sobrevivência de patógenos em restos de soja, em sistema de semeadura direta e convencional, entre março e setembro de 1998 e 1999, em Londrina, PR. Os patógenos mais freqüentemente isolados foram Colletotrichum truncatum, Phomopsis spp., Cercospora kikuchii, Fusarium spp., Macrophomina phaseolina e Rhizoctonia solani. Outros fungos isolados foram Myrothecium roridum, Penicillium sp., Chaetomium sp., Epicoccum sp., Corynespora cassiicola e Trichoderma sp. A porcentagem de sobrevivência variou com o mês e o ano. A sobrevivência de C. truncatum, Phomopsis spp. e C. kikuchii foi significativamente reduzida (P<0,05 entre a primeira e última avaliação nos resíduos mantidos sobre ou sob o solo. M. phaseolina e Fusarium spp. não foram afetados, ou foram favorecidos pelo enterro dos resíduos. A freqüência de isolamento de Fusarium spp. aumentou em resíduos enterrados no solo. A perda de biomassa mostrou redução de 44,4% no sistema convencional e 34,9% no sistema de semeadura direta, em 1998, quando a distribuição de chuvas foi mais regular. Em 1999, a redução foi de 48,2% e 39,0% para os sistemas convencional e de semeadura direta, respectivamente.

  18. Production of cross-kingdom oxylipins by pathogenic fungi: An update on their role in development and pathogenicity.

    Science.gov (United States)

    Fischer, Gregory J; Keller, Nancy P

    2016-03-01

    Oxylipins are a class of molecules derived from the incorporation of oxygen into polyunsaturated fatty acid substrates through the action of oxygenases. While extensively investigated in the context of mammalian immune responses, over the last decade it has become apparent that oxylipins are a common means of communication among and between plants, animals, and fungi to control development and alter host-microbe interactions. In fungi, some oxylipins are derived nonenzymatically while others are produced by lipoxygenases, cyclooxygenases, and monooxygenases with homology to plant and human enzymes. Recent investigations of numerous plant and human fungal pathogens have revealed oxylipins to be involved in the establishment and progression of disease. This review highlights oxylipin production by pathogenic fungi and their role in fungal development and pathogen/host interactions.

  19. The Bee Microbiome: Impact on Bee Health and Model for Evolution and Ecology of Host-Microbe Interactions.

    Science.gov (United States)

    Engel, Philipp; Kwong, Waldan K; McFrederick, Quinn; Anderson, Kirk E; Barribeau, Seth Michael; Chandler, James Angus; Cornman, R Scott; Dainat, Jacques; de Miranda, Joachim R; Doublet, Vincent; Emery, Olivier; Evans, Jay D; Farinelli, Laurent; Flenniken, Michelle L; Granberg, Fredrik; Grasis, Juris A; Gauthier, Laurent; Hayer, Juliette; Koch, Hauke; Kocher, Sarah; Martinson, Vincent G; Moran, Nancy; Munoz-Torres, Monica; Newton, Irene; Paxton, Robert J; Powell, Eli; Sadd, Ben M; Schmid-Hempel, Paul; Schmid-Hempel, Regula; Song, Se Jin; Schwarz, Ryan S; vanEngelsdorp, Dennis; Dainat, Benjamin

    2016-04-26

    As pollinators, bees are cornerstones for terrestrial ecosystem stability and key components in agricultural productivity. All animals, including bees, are associated with a diverse community of microbes, commonly referred to as the microbiome. The bee microbiome is likely to be a crucial factor affecting host health. However, with the exception of a few pathogens, the impacts of most members of the bee microbiome on host health are poorly understood. Further, the evolutionary and ecological forces that shape and change the microbiome are unclear. Here, we discuss recent progress in our understanding of the bee microbiome, and we present challenges associated with its investigation. We conclude that global coordination of research efforts is needed to fully understand the complex and highly dynamic nature of the interplay between the bee microbiome, its host, and the environment. High-throughput sequencing technologies are ideal for exploring complex biological systems, including host-microbe interactions. To maximize their value and to improve assessment of the factors affecting bee health, sequence data should be archived, curated, and analyzed in ways that promote the synthesis of different studies. To this end, the BeeBiome consortium aims to develop an online database which would provide reference sequences, archive metadata, and host analytical resources. The goal would be to support applied and fundamental research on bees and their associated microbes and to provide a collaborative framework for sharing primary data from different research programs, thus furthering our understanding of the bee microbiome and its impact on pollinator health. Copyright © 2016 Engel et al.

  20. Microbe participation in aroma production during soy sauce fermentation.

    Science.gov (United States)

    Harada, Risa; Yuzuki, Masanobu; Ito, Kotaro; Shiga, Kazuki; Bamba, Takeshi; Fukusaki, Eiichiro

    2018-06-01

    Soy sauce is a traditional Japanese fermented seasoning that contains various constituents such as amino acids, organic acids, and volatiles that are produced during the long fermentation process. Although studies regarding the correlation between microbes and aroma constituents have been performed, there are no reports about the influences of the microbial products, such as lactic acid, acetic acid, and ethanol, during fermentation. Because it is known that these compounds contribute to microbial growth and to changes in the constituent profile by altering the moromi environment, understanding the influence of these compounds is important. Metabolomics, the comprehensive study of low molecular weight metabolites, is a promising strategy for the deep understanding of constituent contributions to food characteristics. Therefore, the influences of microbes and their products such as lactic acid, acetic acid, and ethanol on aroma profiles were investigated using gas chromatography/mass spectrometry (GC/MS)-based metabolic profiling. The presence of aroma constituents influenced by microbes and chemically influenced by lactic acid, acetic acid, and ethanol were proposed. Most of the aroma constituents were not produced by adding ethanol alone, confirming the participation of yeast in aroma production. It was suggested that lactic acid bacterium relates to a key aromatic compound, 2,5-dimethyl-4-hydroxy-3(2H)-furanone. However, most of the measured aroma constituents changed similarly in both samples with lactic acid bacterium and acids. Thus, it was clear that the effect of lactic acid and acetic acid on the aroma profile was significant. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Gut microbes may facilitate insect herbivory of chemically defended plants.

    Science.gov (United States)

    Hammer, Tobin J; Bowers, M Deane

    2015-09-01

    The majority of insect species consume plants, many of which produce chemical toxins that defend their tissues from attack. How then are herbivorous insects able to develop on a potentially poisonous diet? While numerous studies have focused on the biochemical counter-adaptations to plant toxins rooted in the insect genome, a separate body of research has recently emphasized the role of microbial symbionts, particularly those inhabiting the gut, in plant-insect interactions. Here we outline the "gut microbial facilitation hypothesis," which proposes that variation among herbivores in their ability to consume chemically defended plants can be due, in part, to variation in their associated microbial communities. More specifically, different microbes may be differentially able to detoxify compounds toxic to the insect, or be differentially resistant to the potential antimicrobial effects of some compounds. Studies directly addressing this hypothesis are relatively few, but microbe-plant allelochemical interactions have been frequently documented from non-insect systems-such as soil and the human gut-and thus illustrate their potential importance for insect herbivory. We discuss the implications of this hypothesis for insect diversification and coevolution with plants; for example, evolutionary transitions to host plant groups with novel allelochemicals could be initiated by heritable changes to the insect microbiome. Furthermore, the ecological implications extend beyond the plant and insect herbivore to higher trophic levels. Although the hidden nature of microbes and plant allelochemicals make their interactions difficult to detect, recent molecular and experimental techniques should enable research on this neglected, but likely important, aspect of insect-plant biology.

  2. The ``Adopt A Microbe'' project: Web-based interactive education connected with scientific ocean drilling

    Science.gov (United States)

    Orcutt, B. N.; Bowman, D.; Turner, A.; Inderbitzen, K. E.; Fisher, A. T.; Peart, L. W.; Iodp Expedition 327 Shipboard Party

    2010-12-01

    We launched the "Adopt a Microbe" project as part of Integrated Ocean Drilling Program (IODP) Expedition 327 in Summer 2010. This eight-week-long education and outreach effort was run by shipboard scientists and educators from the research vessel JOIDES Resolution, using a web site (https://sites.google.com/site/adoptamicrobe) to engage students of all ages in an exploration of the deep biosphere inhabiting the upper ocean crust. Participants were initially introduced to a cast of microbes (residing within an ‘Adoption Center’ on the project website) that live in the dark ocean and asked to select and virtually ‘adopt’ a microbe. A new educational activity was offered each week to encourage learning about microbiology, using the adopted microbe as a focal point. Activities included reading information and asking questions about the adopted microbes (with subsequent responses from shipboard scientists), writing haiku about the adopted microbes, making balloon and fabric models of the adopted microbes, answering math questions related to the study of microbes in the ocean, growing cultures of microbes, and examining the gases produced by microbes. In addition, the website featured regular text, photo and video updates about the science of the expedition using a toy microbe as narrator, as well as stories written by shipboard scientists from the perspective of deep ocean microbes accompanied by watercolor illustrations prepared by a shipboard artist. Assessment methods for evaluating the effectiveness of the Adopt a Microbe project included participant feedback via email and online surveys, website traffic monitoring, and online video viewing rates. Quantitative metrics suggest that the “Adope A Microbe” project was successful in reaching target audiences and helping to encourage and maintain interest in topics related to IODP Expedition 327. The “Adopt A Microbe” project mdel can be adapted for future oceanographic expeditions to help connect the

  3. Turbidity and microbes removal from water using an electrochemical filter

    International Nuclear Information System (INIS)

    Venkateswaran, G.; Gokhale, B.K.; Belapurkar, A.D.; Kumbhar, A.G.; Balaji, V.

    2004-01-01

    An in-house designed and fabricated Electrochemical fibrous graphite filter (ECF) was used to remove turbidity and microbes. The filter was found to be effective in removing sub micron size indium turbidity from RAPS-1 moderator water, iron turbidity from Active Process Cooling Water (APCW) of Kaiga Generating Station and microbial reduction from process cooling water RAPS-2. Unlike conventional turbidity removal by addition of coagulants and biocide chemical additions for purification, ECF is a clean way to remove the turbidity without contaminating the system and is best suited for close loop systems

  4. Roles of Non-Coding RNA in Sugarcane-Microbe Interaction.

    Science.gov (United States)

    Thiebaut, Flávia; Rojas, Cristian A; Grativol, Clícia; Calixto, Edmundo P da R; Motta, Mariana R; Ballesteros, Helkin G F; Peixoto, Barbara; de Lima, Berenice N S; Vieira, Lucas M; Walter, Maria Emilia; de Armas, Elvismary M; Entenza, Júlio O P; Lifschitz, Sergio; Farinelli, Laurent; Hemerly, Adriana S; Ferreira, Paulo C G

    2017-12-20

    Studies have highlighted the importance of non-coding RNA regulation in plant-microbe interaction. However, the roles of sugarcane microRNAs (miRNAs) in the regulation of disease responses have not been investigated. Firstly, we screened the sRNA transcriptome of sugarcane infected with Acidovorax avenae . Conserved and novel miRNAs were identified. Additionally, small interfering RNAs (siRNAs) were aligned to differentially expressed sequences from the sugarcane transcriptome. Interestingly, many siRNAs aligned to a transcript encoding a copper-transporter gene whose expression was induced in the presence of A. avenae , while the siRNAs were repressed in the presence of A. avenae . Moreover, a long intergenic non-coding RNA was identified as a potential target or decoy of miR408. To extend the bioinformatics analysis, we carried out independent inoculations and the expression patterns of six miRNAs were validated by quantitative reverse transcription-PCR (qRT-PCR). Among these miRNAs, miR408-a copper-microRNA-was downregulated. The cleavage of a putative miR408 target, a laccase, was confirmed by a modified 5'RACE (rapid amplification of cDNA ends) assay. MiR408 was also downregulated in samples infected with other pathogens, but it was upregulated in the presence of a beneficial diazotrophic bacteria. Our results suggest that regulation by miR408 is important in sugarcane sensing whether microorganisms are either pathogenic or beneficial, triggering specific miRNA-mediated regulatory mechanisms accordingly.

  5. Roles of Non-Coding RNA in Sugarcane-Microbe Interaction

    Science.gov (United States)

    Grativol, Clícia; Motta, Mariana R.; Ballesteros, Helkin G. F.; Peixoto, Barbara; Vieira, Lucas M.; Walter, Maria Emilia; de Armas, Elvismary M.; Entenza, Júlio O. P.; Lifschitz, Sergio; Farinelli, Laurent; Hemerly, Adriana S.

    2017-01-01

    Studies have highlighted the importance of non-coding RNA regulation in plant-microbe interaction. However, the roles of sugarcane microRNAs (miRNAs) in the regulation of disease responses have not been investigated. Firstly, we screened the sRNA transcriptome of sugarcane infected with Acidovorax avenae. Conserved and novel miRNAs were identified. Additionally, small interfering RNAs (siRNAs) were aligned to differentially expressed sequences from the sugarcane transcriptome. Interestingly, many siRNAs aligned to a transcript encoding a copper-transporter gene whose expression was induced in the presence of A. avenae, while the siRNAs were repressed in the presence of A. avenae. Moreover, a long intergenic non-coding RNA was identified as a potential target or decoy of miR408. To extend the bioinformatics analysis, we carried out independent inoculations and the expression patterns of six miRNAs were validated by quantitative reverse transcription-PCR (qRT-PCR). Among these miRNAs, miR408—a copper-microRNA—was downregulated. The cleavage of a putative miR408 target, a laccase, was confirmed by a modified 5′RACE (rapid amplification of cDNA ends) assay. MiR408 was also downregulated in samples infected with other pathogens, but it was upregulated in the presence of a beneficial diazotrophic bacteria. Our results suggest that regulation by miR408 is important in sugarcane sensing whether microorganisms are either pathogenic or beneficial, triggering specific miRNA-mediated regulatory mechanisms accordingly. PMID:29657296

  6. Roles of Non-Coding RNA in Sugarcane-Microbe Interaction

    Directory of Open Access Journals (Sweden)

    Flávia Thiebaut

    2017-12-01

    Full Text Available Studies have highlighted the importance of non-coding RNA regulation in plant-microbe interaction. However, the roles of sugarcane microRNAs (miRNAs in the regulation of disease responses have not been investigated. Firstly, we screened the sRNA transcriptome of sugarcane infected with Acidovorax avenae. Conserved and novel miRNAs were identified. Additionally, small interfering RNAs (siRNAs were aligned to differentially expressed sequences from the sugarcane transcriptome. Interestingly, many siRNAs aligned to a transcript encoding a copper-transporter gene whose expression was induced in the presence of A. avenae, while the siRNAs were repressed in the presence of A. avenae. Moreover, a long intergenic non-coding RNA was identified as a potential target or decoy of miR408. To extend the bioinformatics analysis, we carried out independent inoculations and the expression patterns of six miRNAs were validated by quantitative reverse transcription-PCR (qRT-PCR. Among these miRNAs, miR408—a copper-microRNA—was downregulated. The cleavage of a putative miR408 target, a laccase, was confirmed by a modified 5′RACE (rapid amplification of cDNA ends assay. MiR408 was also downregulated in samples infected with other pathogens, but it was upregulated in the presence of a beneficial diazotrophic bacteria. Our results suggest that regulation by miR408 is important in sugarcane sensing whether microorganisms are either pathogenic or beneficial, triggering specific miRNA-mediated regulatory mechanisms accordingly.

  7. Modulation of Intestinal Paracellular Transport by Bacterial Pathogens.

    Science.gov (United States)

    Roxas, Jennifer Lising; Viswanathan, V K

    2018-03-25

    The passive and regulated movement of ions, solutes, and water via spaces between cells of the epithelial monolayer plays a critical role in the normal intestinal functioning. This paracellular pathway displays a high level of structural and functional specialization, with the membrane-spanning complexes of the tight junctions, adherens junctions, and desmosomes ensuring its integrity. Tight junction proteins, like occludin, tricellulin, and the claudin family isoforms, play prominent roles as barriers to unrestricted paracellular transport. The past decade has witnessed major advances in our understanding of the architecture and function of epithelial tight junctions. While it has been long appreciated that microbes, notably bacterial and viral pathogens, target and disrupt junctional complexes and alter paracellular permeability, the precise mechanisms remain to be defined. Notably, renewed efforts will be required to interpret the available data on pathogen-mediated barrier disruption in the context of the most recent findings on tight junction structure and function. While much of the focus has been on pathogen-induced dysregulation of junctional complexes, commensal microbiota and their products may influence paracellular permeability and contribute to the normal physiology of the gut. Finally, microbes and their products have become important tools in exploring host systems, including the junctional properties of epithelial cells. © 2018 American Physiological Society. Compr Physiol 8:823-842, 2018. Copyright © 2018 American Physiological Society. All rights reserved.

  8. The Metronome of Symbiosis: Interactions Between Microbes and the Host Circadian Clock.

    Science.gov (United States)

    Heath-Heckman, Elizabeth A C

    2016-11-01

    The entrainment of circadian rhythms, physiological cycles with a period of about 24 h, is regulated by a variety of mechanisms, including nonvisual photoreception. While circadian rhythms have been shown to be integral to many processes in multicellular organisms, including immune regulation, the effect of circadian rhythms on symbiosis, or host-microbe interactions, has only recently begun to be studied. This review summarizes recent work in the interactions of both pathogenic and mutualistic associations with host and symbiont circadian rhythms, focusing specifically on three mutualistic systems in which this phenomenon has been best studied. One important theme taken from these studies is the fact that mutualisms are profoundly affected by the circadian rhythms of the host, but that the microbial symbionts in these associations can, in turn, manipulate host rhythms. The interplay between circadian rhythms and symbiosis is a promising new field with effects that should be kept in mind when designing future studies across biology. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  9. Fungal Innate Immunity Induced by Bacterial Microbe-Associated Molecular Patterns (MAMPs

    Directory of Open Access Journals (Sweden)

    Simon Ipcho

    2016-06-01

    Full Text Available Plants and animals detect bacterial presence through Microbe-Associated Molecular Patterns (MAMPs which induce an innate immune response. The field of fungal–bacterial interaction at the molecular level is still in its infancy and little is known about MAMPs and their detection by fungi. Exposing Fusarium graminearum to bacterial MAMPs led to increased fungal membrane hyperpolarization, a putative defense response, and a range of transcriptional responses. The fungus reacted with a different transcript profile to each of the three tested MAMPs, although a core set of genes related to energy generation, transport, amino acid production, secondary metabolism, and especially iron uptake were detected for all three. Half of the genes related to iron uptake were predicted MirA type transporters that potentially take up bacterial siderophores. These quick responses can be viewed as a preparation for further interactions with beneficial or pathogenic bacteria, and constitute a fungal innate immune response with similarities to those of plants and animals.

  10. Reduction of nutrients, microbes, and personal care products in domestic wastewater by a benchtop electrocoagulation unit

    Science.gov (United States)

    Symonds, E. M.; Cook, M. M.; McQuaig, S. M.; Ulrich, R. M.; Schenck, R. O.; Lukasik, J. O.; van Vleet, E. S.; Breitbart, M.

    2015-03-01

    To preserve environmental and human health, improved treatment processes are needed to reduce nutrients, microbes, and emerging chemical contaminants from domestic wastewater prior to discharge into the environment. Electrocoagulation (EC) treatment is increasingly used to treat industrial wastewater; however, this technology has not yet been thoroughly assessed for its potential to reduce concentrations of nutrients, a variety of microbial surrogates, and personal care products found in domestic wastewater. This investigation's objective was to determine the efficiency of a benchtop EC unit with aluminum sacrificial electrodes to reduce concentrations of the aforementioned biological and chemical pollutants from raw and tertiary-treated domestic wastewater. EC treatment resulted in significant reductions (p < 0.05, α = 0.05) in phosphate, all microbial surrogates, and several personal care products from raw and tertiary-treated domestic wastewater. When wastewater was augmented with microbial surrogates representing bacterial, viral, and protozoan pathogens to measure the extent of reduction, EC treatment resulted in up to 7-log10 reduction of microbial surrogates. Future pilot and full-scale investigations are needed to optimize EC treatment for the following: reducing nitrogen species, personal care products, and energy consumption; elucidating the mechanisms behind microbial reductions; and performing life cycle analyses to determine the appropriateness of implementation.

  11. Analysis of Microbe-Associated Molecular Pattern-Responsive Synthetic Promoters with the Parsley Protoplast System.

    Science.gov (United States)

    Kanofsky, Konstantin; Lehmeyer, Mona; Schulze, Jutta; Hehl, Reinhard

    2016-01-01

    Plants recognize pathogens by microbe-associated molecular patterns (MAMPs) and subsequently induce an immune response. The regulation of gene expression during the immune response depends largely on cis-sequences conserved in promoters of MAMP-responsive genes. These cis-sequences can be analyzed by constructing synthetic promoters linked to a reporter gene and by testing these constructs in transient expression systems. Here, the use of the parsley (Petroselinum crispum) protoplast system for analyzing MAMP-responsive synthetic promoters is described. The synthetic promoter consists of four copies of a potential MAMP-responsive cis-sequence cloned upstream of a minimal promoter and the uidA reporter gene. The reporter plasmid contains a second reporter gene, which is constitutively expressed and hence eliminates the requirement of a second plasmid used as a transformation control. The reporter plasmid is transformed into parsley protoplasts that are elicited by the MAMP Pep25. The MAMP responsiveness is validated by comparing the reporter gene activity from MAMP-treated and untreated cells and by normalizing reporter gene activity using the constitutively expressed reporter gene.

  12. Impact of Microbes on the Pathogenesis of Primary Biliary Cirrhosis (PBC and Primary Sclerosing Cholangitis (PSC

    Directory of Open Access Journals (Sweden)

    Jochen Mattner

    2016-11-01

    Full Text Available Primary biliary cirrhosis (PBC and primary sclerosing cholangitis (PSC represent the major clinical entities of chronic cholestatic liver diseases. Both disorders are characterized by portal inflammation and slowly progress to obliterative fibrosis and eventually liver cirrhosis. Although immune-pathogenic mechanisms have been implicated in the pathogenesis of PBC and PSC, neither disorder is considered to be a classical autoimmune disease, as PSC and PBC patients do not respond to immune-suppressants. Furthermore, the decreased bile flow resulting from the immune-mediated tissue assault and the subsequent accumulation of toxic bile products in PBC and PSC not only perpetuates biliary epithelial damage, but also alters the composition of the intestinal and biliary microbiota and its mutual interactions with the host. Consistent with the close association of PSC and inflammatory bowel disease (IBD, the polyclonal hyper IgM response in PBC and (auto-antibodies which cross-react to microbial antigens in both diseases, an expansion of individual microbes leads to shifts in the composition of the intestinal or biliary microbiota and a subsequent altered integrity of epithelial layers, promoting microbial translocation. These changes have been implicated in the pathogenesis of both devastating disorders. Thus, we will discuss here these recent findings in the context of novel and alternative therapeutic options.

  13. Innate Immune Responses Activated in Arabidopsis Roots by Microbe-Associated Molecular Patterns[W][OA

    Science.gov (United States)

    Millet, Yves A.; Danna, Cristian H.; Clay, Nicole K.; Songnuan, Wisuwat; Simon, Matthew D.; Werck-Reichhart, Danièle; Ausubel, Frederick M.

    2010-01-01

    Despite the fact that roots are the organs most subject to microbial interactions, very little is known about the response of roots to microbe-associated molecular patterns (MAMPs). By monitoring transcriptional activation of β-glucuronidase reporters and MAMP-elicited callose deposition, we show that three MAMPs, the flagellar peptide Flg22, peptidoglycan, and chitin, trigger a strong tissue-specific response in Arabidopsis thaliana roots, either at the elongation zone for Flg22 and peptidoglycan or in the mature parts of the roots for chitin. Ethylene signaling, the 4-methoxy-indole-3-ylmethylglucosinolate biosynthetic pathway, and the PEN2 myrosinase, but not salicylic acid or jasmonic acid signaling, play major roles in this MAMP response. We also show that Flg22 induces the cytochrome P450 CYP71A12-dependent exudation of the phytoalexin camalexin by Arabidopsis roots. The phytotoxin coronatine, an Ile-jasmonic acid mimic produced by Pseudomonas syringae pathovars, suppresses MAMP-activated responses in the roots. This suppression requires the E3 ubiquitin ligase COI1 as well as the transcription factor JIN1/MYC2 but does not rely on salicylic acid–jasmonic acid antagonism. These experiments demonstrate the presence of highly orchestrated and tissue-specific MAMP responses in roots and potential pathogen-encoded mechanisms to block these MAMP-elicited signaling pathways. PMID:20348432

  14. Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns.

    Science.gov (United States)

    Millet, Yves A; Danna, Cristian H; Clay, Nicole K; Songnuan, Wisuwat; Simon, Matthew D; Werck-Reichhart, Danièle; Ausubel, Frederick M

    2010-03-01

    Despite the fact that roots are the organs most subject to microbial interactions, very little is known about the response of roots to microbe-associated molecular patterns (MAMPs). By monitoring transcriptional activation of beta-glucuronidase reporters and MAMP-elicited callose deposition, we show that three MAMPs, the flagellar peptide Flg22, peptidoglycan, and chitin, trigger a strong tissue-specific response in Arabidopsis thaliana roots, either at the elongation zone for Flg22 and peptidoglycan or in the mature parts of the roots for chitin. Ethylene signaling, the 4-methoxy-indole-3-ylmethylglucosinolate biosynthetic pathway, and the PEN2 myrosinase, but not salicylic acid or jasmonic acid signaling, play major roles in this MAMP response. We also show that Flg22 induces the cytochrome P450 CYP71A12-dependent exudation of the phytoalexin camalexin by Arabidopsis roots. The phytotoxin coronatine, an Ile-jasmonic acid mimic produced by Pseudomonas syringae pathovars, suppresses MAMP-activated responses in the roots. This suppression requires the E3 ubiquitin ligase COI1 as well as the transcription factor JIN1/MYC2 but does not rely on salicylic acid-jasmonic acid antagonism. These experiments demonstrate the presence of highly orchestrated and tissue-specific MAMP responses in roots and potential pathogen-encoded mechanisms to block these MAMP-elicited signaling pathways.

  15. Microbe Profile: Mycobacterium tuberculosis: Humanity's deadly microbial foe.

    Science.gov (United States)

    Gordon, Stephen V; Parish, Tanya

    2018-04-01

    Mycobacterium tuberculosis is an expert and deadly pathogen, causing the disease tuberculosis (TB) in humans. It has several notable features: the ability to enter non-replicating states for long periods and cause latent infection; metabolic remodelling during chronic infection; a thick, waxy cell wall; slow growth rate in culture; and intrinsic drug resistance and antibiotic tolerance. As a pathogen, M. tuberculosis has a complex relationship with its host, is able to replicate inside macrophages, and expresses diverse immunomodulatory molecules. M. tuberculosis currently causes over 1.8 million deaths a year, making it the world's most deadly human pathogen.

  16. Comparative genomic analysis of multiple strains of two unusual plant pathogens: Pseudomonas corrugata and Pseudomonas mediterranea

    Science.gov (United States)

    Trantas, Emmanouil A.; Licciardello, Grazia; Almeida, Nalvo F.; Witek, Kamil; Strano, Cinzia P.; Duxbury, Zane; Ververidis, Filippos; Goumas, Dimitrios E.; Jones, Jonathan D. G.; Guttman, David S.; Catara, Vittoria; Sarris, Panagiotis F.

    2015-01-01

    The non-fluorescent pseudomonads, Pseudomonas corrugata (Pcor) and P. mediterranea (Pmed), are closely related species that cause pith necrosis, a disease of tomato that causes severe crop losses. However, they also show strong antagonistic effects against economically important pathogens, demonstrating their potential for utilization as biological control agents. In addition, their metabolic versatility makes them attractive for the production of commercial biomolecules and bioremediation. An extensive comparative genomics study is required to dissect the mechanisms that Pcor and Pmed employ to cause disease, prevent disease caused by other pathogens, and to mine their genomes for genes that encode proteins involved in commercially important chemical pathways. Here, we present the draft genomes of nine Pcor and Pmed strains from different geographical locations. This analysis covered significant genetic heterogeneity and allowed in-depth genomic comparison. All examined strains were able to trigger symptoms in tomato plants but not all induced a hypersensitive-like response in Nicotiana benthamiana. Genome-mining revealed the absence of type III secretion system and known type III effector-encoding genes from all examined Pcor and Pmed strains. The lack of a type III secretion system appears to be unique among the plant pathogenic pseudomonads. Several gene clusters coding for type VI secretion system were detected in all genomes. Genome-mining also revealed the presence of gene clusters for biosynthesis of siderophores, polyketides, non-ribosomal peptides, and hydrogen cyanide. A highly conserved quorum sensing system was detected in all strains, although species specific differences were observed. Our study provides the basis for in-depth investigations regarding the molecular mechanisms underlying virulence strategies in the battle between plants and microbes. PMID:26300874

  17. Multidrug-resistant pathogens in the food supply.

    Science.gov (United States)

    Doyle, Marjorie E

    2015-04-01

    Antimicrobial resistance, including multidrug resistance (MDR), is an increasing problem globally. MDR bacteria are frequently detected in humans and animals from both more- and less-developed countries and pose a serious concern for human health. Infections caused by MDR microbes may increase morbidity and mortality and require use of expensive drugs and prolonged hospitalization. Humans may be exposed to MDR pathogens through exposure to environments at health-care facilities and farms, livestock and companion animals, human food, and exposure to other individuals carrying MDR microbes. The Centers for Disease Control and Prevention classifies drug-resistant foodborne bacteria, including Campylobacter, Salmonella Typhi, nontyphoidal salmonellae, and Shigella, as serious threats. MDR bacteria have been detected in both meat and fresh produce. Salmonellae carrying genes coding for resistance to multiple antibiotics have caused numerous foodborne MDR outbreaks. While there is some level of resistance to antimicrobials in environmental bacteria, the widespread use of antibiotics in medicine and agriculture has driven the selection of a great variety of microbes with resistance to multiple antimicrobials. MDR bacteria on meat may have originated in veterinary health-care settings or on farms where animals are given antibiotics in feed or to treat infections. Fresh produce may be contaminated by irrigation or wash water containing MDR bacteria. Livestock, fruits, and vegetables may also be contaminated by food handlers, farmers, and animal caretakers who carry MDR bacteria. All potential sources of MDR bacteria should be considered and strategies devised to reduce their presence in foods. Surveillance studies have documented increasing trends in MDR in many pathogens, although there are a few reports of the decline of certain multidrug pathogens. Better coordination of surveillance programs and strategies for controlling use of antimicrobials need to be implemented in

  18. Rethinking the Response to Emerging Microbes: Vaccines and Therapeutics in the Ebola Era--a Conference at Harvard Medical School.

    Science.gov (United States)

    Knipe, David M; Whelan, Sean P

    2015-08-01

    Harvard Medical School convened a meeting of biomedical and clinical experts on 5 March 2015 on the topic of "Rethinking the Response to Emerging Microbes: Vaccines and Therapeutics in the Ebola Era," with the goals of discussing the lessons from the recent Ebola outbreak and using those lessons as a case study to aid preparations for future emerging infections. The speakers and audience discussed the special challenges in combatting an infectious agent that causes sporadic outbreaks in resource-poor countries. The meeting led to a call for improved basic medical care for all and continued support of basic discovery research to provide the foundation for preparedness for future outbreaks in addition to the targeted emergency response to outbreaks and targeted research programs against Ebola virus and other specific emerging pathogens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes.

    Science.gov (United States)

    Li, Juan; Zou, Chenggang; Xu, Jianping; Ji, Xinglai; Niu, Xuemei; Yang, Jinkui; Huang, Xiaowei; Zhang, Ke-Qin

    2015-01-01

    Plant-parasitic nematodes cause significant damage to a broad range of vegetables and agricultural crops throughout the world. As the natural enemies of nematodes, nematophagous microorganisms offer a promising approach to control the nematode pests. Some of these microorganisms produce traps to capture and kill the worms from the outside. Others act as internal parasites to produce toxins and virulence factors to kill the nematodes from within. Understanding the molecular basis of microbe-nematode interactions provides crucial insights for developing effective biological control agents against plant-parasitic nematodes. Here, we review recent advances in our understanding of the interactions between nematodes and nematophagous microorganisms, with a focus on the molecular mechanisms by which nematophagous microorganisms infect nematodes and on the nematode defense against pathogenic attacks. We conclude by discussing several key areas for future research and development, including potential approaches to apply our recent understandings to develop effective biocontrol strategies.

  20. The influence of the growth conditions of the plague microbe vaccine strain colonies on the fractal dimension of biospeckles

    International Nuclear Information System (INIS)

    Ul'yanov, A S; Lyapina, A M; Ulianova, O V; Fedorova, V A; Uianov, S S

    2011-01-01

    Specific statistical characteristics of biospeckles, emerging under the diffraction of coherent beams on the bacterial colonies, are studied. The dependence of the fractal dimensions of biospeckles on the conditions of both illumination and growth of the colonies is studied theoretically and experimentally. Particular attention is paid to the fractal properties of biospeckles, emerging under the scattering of light by the colonies of the vaccinal strain of the plague microbe. The possibility in principle to classify the colonies of Yersinia pestis EV NIIEG using the fractal dimension analysis is demonstrated. (optical technologies in biophysics and medicine)

  1. Bioprospecting Sponge-Associated Microbes for Antimicrobial Compounds.

    Science.gov (United States)

    Indraningrat, Anak Agung Gede; Smidt, Hauke; Sipkema, Detmer

    2016-05-02

    Sponges are the most prolific marine organisms with respect to their arsenal of bioactive compounds including antimicrobials. However, the majority of these substances are probably not produced by the sponge itself, but rather by bacteria or fungi that are associated with their host. This review for the first time provides a comprehensive overview of antimicrobial compounds that are known to be produced by sponge-associated microbes. We discuss the current state-of-the-art by grouping the bioactive compounds produced by sponge-associated microorganisms in four categories: antiviral, antibacterial, antifungal and antiprotozoal compounds. Based on in vitro activity tests, identified targets of potent antimicrobial substances derived from sponge-associated microbes include: human immunodeficiency virus 1 (HIV-1) (2-undecyl-4-quinolone, sorbicillactone A and chartarutine B); influenza A (H1N1) virus (truncateol M); nosocomial Gram positive bacteria (thiopeptide YM-266183, YM-266184, mayamycin and kocurin); Escherichia coli (sydonic acid), Chlamydia trachomatis (naphthacene glycoside SF2446A2); Plasmodium spp. (manzamine A and quinolone 1); Leishmania donovani (manzamine A and valinomycin); Trypanosoma brucei (valinomycin and staurosporine); Candida albicans and dermatophytic fungi (saadamycin, 5,7-dimethoxy-4-p-methoxylphenylcoumarin and YM-202204). Thirty-five bacterial and 12 fungal genera associated with sponges that produce antimicrobials were identified, with Streptomyces, Pseudovibrio, Bacillus, Aspergillus and Penicillium as the prominent producers of antimicrobial compounds. Furthemore culture-independent approaches to more comprehensively exploit the genetic richness of antimicrobial compound-producing pathways from sponge-associated bacteria are addressed.

  2. Genetic engineering microbes for bioremediation/ biorecovery of uranium

    International Nuclear Information System (INIS)

    Apte, S.K.; Rao, A.S.; Appukuttan, D.; Nilgiriwala, K.S.; Acharya, C.

    2005-01-01

    Bioremediation (both bioremoval and biorecovery) of metals is considered a feasible, economic and eco-friendly alternative to chemical methods of metal extraction, particularly when the metal concentration is very low. Scanty distribution along with poor ore quality makes biomining of uranium an attractive preposition. Biosorption, bioprecipitation or bioaccumulation of uranium, aided by recombinant DNA technology, offer a promising technology for recovery of uranium from acidic or alkaline nuclear waste, tailings or from sea-water. Genetic engineering of bacteria, with a gene encoding an acid phosphatase, has yielded strains that can bioprecipitate uranium from very low concentrations at acidic-neutral pH, in a relatively short time. Organisms overproducing alkaline phosphatase have been selected for uranium precipitation from alkaline waste. Such abilities have now been transferred to the radioresistant microbe Deinococcus radiodurans to facilitate in situ bioremediation of nuclear waste, with some success. Sulfate-reducing bacteria are being characterized for bioremediation of uranium in tailings with the dual objective of uranium precipitation and reduction of sulfate to sulphide. Certain marine cyanobacteria have shown promise for uranium biosorption to extracellular polysaccharides, and intracellular accumulation involving metal sequestering metallothionin proteins. Future work is aimed at understanding the genetic basis of these abilities and to engineer them into suitable organisms subsequently. As photosynthetic, nitrogen-fixing microbes, which are considerably resistant to ionizing radiations, cyanobacteria hold considerable potential for bioremediation of nuclear waste. (author)

  3. Environmental bacteriophages : viruses of microbes in aquatic ecosystems

    Directory of Open Access Journals (Sweden)

    Télesphore eSIME - NGANDO

    2014-07-01

    Full Text Available Since the discovery 2-3 decades ago that viruses of microbes are abundant in marine ecosystems, viral ecology has grown increasingly to reach the status of a full scientific discipline in environmental sciences. A dedicated ISVM society, the International Society for Viruses of Microorganisms (http://www.isvm.org/, was recently launched. Increasing studies in viral ecology are sources of novel knowledge related to the biodiversity of living things, the functioning of ecosystems, and the evolution of the cellular world. This is because viruses are perhaps the most diverse, abundant, and ubiquitous biological entities in the biosphere, although local environmental conditions enrich for certain viral types through selective pressure. They exhibit various lifestyles that intimately depend on the deep-cellular mechanisms, and are ultimately replicated by members of all three domains of cellular life (Bacteria, Eukarya, Archaea, as well as by giant viruses of some eukaryotic cells. This establishes viral parasites as microbial killers but also as cell partners or metabolic manipulators in microbial ecology. The present chapter sought to review the literature on the diversity and functional roles of viruses of microbes in environmental microbiology, focusing primarily on prokaryotic viruses (i.e. phages in aquatic ecosystems, which form the bulk of our knowledge in modern environmental viral ecology.

  4. Utilizing thermophilic microbe in lignocelluloses based bioethanol production: Review

    Science.gov (United States)

    Sriharti, Agustina, Wawan; Ratnawati, Lia; Rahman, Taufik; Salim, Takiyah

    2017-01-01

    The utilization of thermophilic microbe has attracted many parties, particularly in producing an alternative fuel like ethanol. Bioethanol is one of the alternative energy sources substituting for earth oil in the future. The advantage of using bioethanol is that it can reduce pollution levels and global warming because the result of bioethanol burning doesn't bring in a net addition of CO2 into environment. Moreover, decrease in the reserves of earth oil globally has also contributed to the notion on searching renewable energy resources such as bioethanol. Indonesia has a high biomass potential and can be used as raw material for bioethanol. The utilization of these raw materials will reduce fears of competition foodstuffs for energy production. The enzymes that play a role in degrading lignocelluloses are cellulolytic, hemicellulolytic, and lignolytic in nature. The main enzyme with an important role in bioethanol production is a complex enzyme capable of degrading lignocelluloses. The enzyme can be produced by the thermophilik microbes of the groups of bacteria and fungi such as Trichoderma viride, Clostridium thermocellum, Bacillus sp. Bioethanol production is heavily affected by raw material composition, microorganism type, and the condition of fermentation used.

  5. Diet, gut microbes, and the pathogenesis of inflammatory bowel diseases.

    Science.gov (United States)

    Dolan, Kyle T; Chang, Eugene B

    2017-01-01

    The rising incidence of inflammatory bowel diseases in recent decades has notably paralleled changing lifestyle habits in Western nations, which are now making their way into more traditional societies. Diet plays a key role in IBD pathogenesis, and there is a growing appreciation that the interaction between diet and microbes in a susceptible person contributes significantly to the onset of disease. In this review, we examine what is known about dietary and microbial factors that promote IBD. We summarize recent findings regarding the effects of diet in IBD epidemiology from prospective population cohort studies, as well as new insights into IBD-associated dysbiosis. Microbial metabolism of dietary components can influence the epithelial barrier and the mucosal immune system, and understanding how these interactions generate or suppress inflammation will be a significant focus of IBD research. Our knowledge of dietary and microbial risk factors for IBD provides important considerations for developing therapeutic approaches through dietary modification or re-shaping the microbiota. We conclude by calling for increased sophistication in designing studies on the role of diet and microbes in IBD pathogenesis and disease resolution in order to accelerate progress in response to the growing challenge posed by these complex disorders. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Next-Generation Beneficial Microbes: The Case of Akkermansia muciniphila

    Directory of Open Access Journals (Sweden)

    Patrice D. Cani

    2017-09-01

    Full Text Available Metabolic disorders associated with obesity and cardiometabolic disorders are worldwide epidemic. Among the different environmental factors, the gut microbiota is now considered as a key player interfering with energy metabolism and host susceptibility to several non-communicable diseases. Among the next-generation beneficial microbes that have been identified, Akkermansia muciniphila is a promising candidate. Indeed, A. muciniphila is inversely associated with obesity, diabetes, cardiometabolic diseases and low-grade inflammation. Besides the numerous correlations observed, a large body of evidence has demonstrated the causal beneficial impact of this bacterium in a variety of preclinical models. Translating these exciting observations to human would be the next logic step and it now appears that several obstacles that would prevent the use of A. muciniphila administration in humans have been overcome. Moreover, several lines of evidence indicate that pasteurization of A. muciniphila not only increases its stability but more importantly increases its efficacy. This strongly positions A. muciniphila in the forefront of next-generation candidates for developing novel food or pharma supplements with beneficial effects. Finally, a specific protein present on the outer membrane of A. muciniphila, termed Amuc_1100, could be strong candidate for future drug development. In conclusion, as plants and its related knowledge, known as pharmacognosy, have been the source for designing drugs over the last century, we propose that microbes and microbiomegnosy, or knowledge of our gut microbiome, can become a novel source of future therapies.

  7. Minimizing mixing intensity to improve the performance of rice straw anaerobic digestion via enhanced development of microbe-substrate aggregates.

    Science.gov (United States)

    Kim, Moonkyung; Kim, Byung-Chul; Choi, Yongju; Nam, Kyoungphile

    2017-12-01

    The aim of this work was to study the effect of the differential development of microbe-substrate aggregates at different mixing intensities on the performance of anaerobic digestion of rice straw. Batch and semi-continuous reactors were operated for up to 50 and 300days, respectively, under different mixing intensities. In both batch and semi-continuous reactors, minimal mixing conditions exhibited maximum methane production and lignocellulose biodegradability, which both had strong correlations with the development of microbe-substrate aggregates. The results implied that the aggregated microorganisms on the particulate substrate played a key role in rice straw hydrolysis, determining the performance of anaerobic digestion. Increasing the mixing speed from 50 to 150rpm significantly reduced the methane production rate by disintegrating the microbe-substrate aggregates in the semi-continuous reactor. A temporary stress of high-speed mixing fundamentally affected the microbial communities, increasing the possibility of chronic reactor failure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Temporal variation selects for diet-microbe co-metabolic traits in the gut of Gorilla spp.

    Science.gov (United States)

    Gomez, Andres; Rothman, Jessica M; Petrzelkova, Klara; Yeoman, Carl J; Vlckova, Klara; Umaña, Juan D; Carr, Monica; Modry, David; Todd, Angelique; Torralba, Manolito; Nelson, Karen E; Stumpf, Rebecca M; Wilson, Brenda A; Blekhman, Ran; White, Bryan A; Leigh, Steven R

    2016-02-01

    Although the critical role that our gastrointestinal microbes play in host physiology is now well established, we know little about the factors that influenced the evolution of primate gut microbiomes. To further understand current gut microbiome configurations and diet-microbe co-metabolic fingerprints in primates, from an evolutionary perspective, we characterized fecal bacterial communities and metabolomic profiles in 228 fecal samples of lowland and mountain gorillas (G. g. gorilla and G. b. beringei, respectively), our closest evolutionary relatives after chimpanzees. Our results demonstrate that the gut microbiomes and metabolomes of these two species exhibit significantly different patterns. This is supported by increased abundance of metabolites and bacterial taxa associated with fiber metabolism in mountain gorillas, and enrichment of markers associated with simple sugar, lipid and sterol turnover in the lowland species. However, longitudinal sampling shows that both species' microbiomes and metabolomes converge when hosts face similar dietary constraints, associated with low fruit availability in their habitats. By showing differences and convergence of diet-microbe co-metabolic fingerprints in two geographically isolated primate species, under specific dietary stimuli, we suggest that dietary constraints triggered during their adaptive radiation were potential factors behind the species-specific microbiome patterns observed in primates today.

  9. Temporal variation selects for diet–microbe co-metabolic traits in the gut of Gorilla spp

    Science.gov (United States)

    Gomez, Andres; Rothman, Jessica M; Petrzelkova, Klara; Yeoman, Carl J; Vlckova, Klara; Umaña, Juan D; Carr, Monica; Modry, David; Todd, Angelique; Torralba, Manolito; Nelson, Karen E; Stumpf, Rebecca M; Wilson, Brenda A; Blekhman, Ran; White, Bryan A; Leigh, Steven R

    2016-01-01

    Although the critical role that our gastrointestinal microbes play in host physiology is now well established, we know little about the factors that influenced the evolution of primate gut microbiomes. To further understand current gut microbiome configurations and diet–microbe co-metabolic fingerprints in primates, from an evolutionary perspective, we characterized fecal bacterial communities and metabolomic profiles in 228 fecal samples of lowland and mountain gorillas (G. g. gorilla and G. b. beringei, respectively), our closest evolutionary relatives after chimpanzees. Our results demonstrate that the gut microbiomes and metabolomes of these two species exhibit significantly different patterns. This is supported by increased abundance of metabolites and bacterial taxa associated with fiber metabolism in mountain gorillas, and enrichment of markers associated with simple sugar, lipid and sterol turnover in the lowland species. However, longitudinal sampling shows that both species' microbiomes and metabolomes converge when hosts face similar dietary constraints, associated with low fruit availability in their habitats. By showing differences and convergence of diet–microbe co-metabolic fingerprints in two geographically isolated primate species, under specific dietary stimuli, we suggest that dietary constraints triggered during their adaptive radiation were potential factors behind the species-specific microbiome patterns observed in primates today. PMID:26315972

  10. Clinical laboratory evaluation of the Auto-Microbic system for rapid identification of Enterobacteriaceae.

    OpenAIRE

    Hasyn, J J; Cundy, K R; Dietz, C C; Wong, W

    1981-01-01

    The capability of the Auto-Microbic system (Vitek Systems, Inc., Hazelwood, Mo.) has been expanded to identify members of the family Enterobacteriaceae with the use of a sealed, disposable accessory card (the Enterobacteriaceae Biochemical Card) containing 26 biochemical tests. To judge the accuracy of the AutoMicrobic system's identification in a hospital laboratory, 933 Enterobacteriaceae isolates were studied. The AutoMicrobic system provided the correct identification for 905 of the isola...

  11. Synchrotron X-ray Investigations of Mineral-Microbe-Metal Interactions

    International Nuclear Information System (INIS)

    Kemner, Kenneth M.; O'Loughlin, Edward J.; Kelly, Shelly D.; Boyanov, Maxim I.

    2005-01-01

    Interactions between microbes and minerals can play an important role in metal transformations (i.e. changes to an element's valence state, coordination chemistry, or both), which can ultimately affect that element's mobility. Mineralogy affects microbial metabolism and ecology in a system; microbes, in turn, can affect the system's mineralogy. Increasingly, synchrotron-based X-ray experiments are in routine use for determining an element's valence state and coordination chemistry, as well as for examining the role of microbes in metal transformations.

  12. Humans as Superorganisms: How Microbes, Viruses, Imprinted Genes, and Other Selfish Entities Shape Our Behavior.

    Science.gov (United States)

    Kramer, Peter; Bressan, Paola

    2015-07-01

    Psychologists and psychiatrists tend to be little aware that (a) microbes in our brains and guts are capable of altering our behavior; (b) viral DNA that was incorporated into our DNA millions of years ago is implicated in mental disorders; (c) many of us carry the cells of another human in our brains; and (d) under the regulation of viruslike elements, the paternally inherited and maternally inherited copies of some genes compete for domination in the offspring, on whom they have opposite physical and behavioral effects. This article provides a broad overview, aimed at a wide readership, of the consequences of our coexistence with these selfish entities. The overarching message is that we are not unitary individuals but superorganisms, built out of both human and nonhuman elements; it is their interaction that determines who we are. © The Author(s) 2015.

  13. Probiotics as beneficial microbes in aquaculture: an update on their multiple modes of action: a review

    DEFF Research Database (Denmark)

    Zorriehzahra, Mohammad Jalil; Delshad, Somayeh Torabi; Adel, Milad

    2016-01-01

    Wide and discriminate use of antibiotics has resulted in serious biological and ecological concerns, especially the emergence of antibiotic resistance. Probiotics, known as beneficial microbes, are being proposed as an effective and eco-friendly alternative to antibiotics. They were first applied...... in aquaculture species more than three decades ago, but considerable attention had been given only in the early 2000s. Probiotics are defined as live or dead, or even a component of the microorganisms that act under different modes of action in conferring beneficial effects to the host or to its environment....... Several probiotics have been characterized and applied in fish and a number of them are of host origin. Unlike some disease control alternatives being adapted and proposed in aquaculture where actions are unilateral, the immense potential of probiotics lies on their multiple mechanisms in conferring...

  14. An ultrasonic method for separation of epiphytic microbes from freshwater submerged macrophytes.

    Science.gov (United States)

    Cai, Xianlei; Gao, Guang; Yang, Jing; Tang, Xiangming; Dai, Jiangyu; Chen, Dan; Song, Yuzhi

    2014-07-01

    Epiphytic microbes are common inhabitants of freshwater submerged macrophytes, which play an important role in aquatic ecosystems. An important precondition for studying the epiphytic microbes is having an effective method of separating the attached microbes from the host macrophytes. We developed an ultrasound-based method for separating epiphytic microbes from freshwater submerged macrophytes, optimized the conditions of ultrasonic separation with an orthogonal experimental design, and compared the optimized ultrasonic method with manual separation. This method can be particularly useful for freshwater submerged macrophytes having a complex morphology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. PGRP-LB homolog acts as a negative modulator of immunity in maintaining the gut-microbe symbiosis of red palm weevil, Rhynchophorus ferrugineus Olivier.

    Science.gov (United States)

    Dawadi, Bishnu; Wang, Xinghong; Xiao, Rong; Muhammad, Abrar; Hou, Youming; Shi, Zhanghong

    2018-09-01

    Many notorious insect pests live in the symbiotic associations with gut microbiota. However, the mechanisms underlying how they host their gut microbiota are unknown. Most gut bacteria can release peptidoglycan (PGN) which is an important antigen to activate the immune response. Therefore, how to keep the appropriate gut immune intensity to host commensals while to efficiently remove enteropathogens is vital for insect health. This study is aimed at elucidating the roles of an amidase PGRP, Rf PGRP-LB, in maintaining the gut-microbe symbiosis of Red palm weevil (RPW), Rhynchophorus ferrugineus Olivier. RfPGRP-LB is a secreted protein containing a typical PGRP domain. The existence of five conservative amino acid residues, being required for amidase activity, showed that RfPGRP-LB is a catalytic protein. Expression analysis revealed abundance of RfPGRP-LB transcripts in gut was dramatically higher than those in other tissues. RfPGRP-LB could be significantly induced against the infection of Escherichia coli. In vitro assays revealed that rRfPGRP-LB impaired the growth of E. coli and agglutinated bacteria cells obviously, suggesting RfPGRP-LB is a pathogen recognition receptor and bactericidal molecule. RfPGRP-LB knockdown reduced the persistence of E. coli in gut and load of indigenous gut microbiota significantly. Furthermore, the community structure of indigenous gut microbiota was also intensively altered by RfPGRP-LB silence. Higher levels of the antimicrobial peptide, attacin, were detected in guts of RfPGRP-LB silenced larvae than controls. Collectively, RfPGRP-LB plays multiple roles in modulating the homeostasis of RPW gut microbiota not only by acting as a negative regulator of mucosal immunity through PGN degradation but also as a bactericidal effector to prevent overgrowth of commensals and persistence of noncommensals. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis

    Science.gov (United States)

    Rohmer, Laurence; Hocquet, Didier; Miller, Samuel I.

    2011-01-01

    It is interesting to speculate that the evolutionary drive of microbes to develop pathogenic characteristics was to access the nutrient resources that animals provided. Environments in animals that pathogens colonize have also driven the evolution of new bacterial characteristics to maximize these new nutritional opportunities. This review focuses on genomic and functional aspects of pathogen metabolism that allow efficient utilization of nutrient resources provided by animals. Similar to genes encoding specific virulence traits, some genes encoding metabolic functions have been horizontally acquired by pathogens to provide a selective advantage in host tissues. Selective advantage in host tissues can also be gained in some circumstances by loss of function due to mutations that alter metabolic capabilities. Greater understanding of bacterial metabolism within host tissues should be important for increased understanding of host-pathogen interactions and the development of future therapeutic strategies. PMID:21600774

  17. Microbial issues pertaining to the canadian concept for the disposal of nuclear fuel waste. Questions a examiner quant aux microbes lors du developpement du concept canadien de stockage permanent des dechets de combustible nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Stroes-Gascoyne, S.; West, J.M.

    1994-01-01

    This report formulates a number of views and positions on microbiological factors that could influence the performance of a disposal vault in plutonic rock. Microbiological factors discussed include the presence and survival of microbes, biofilms, corrosion, biodegradation (of emplaced materials), gas production, geochemical changes, radionuclide migration, colloid formation, mutation, pathogens and methylation. Not all issues can be fully resolved with the current state of knowledge. Studies being performed to underscore and strengthen current knowledge are briefly discussed.

  18. Community structures and activity of denitrifying microbes in a forested catchment in central Japan: survey using nitrite reductase genes

    Science.gov (United States)

    Ohte, N.; Aoki, M.; Katsuyama, C.; Suwa, Y.; Tange, T.

    2012-12-01

    To elucidate the mechanisms of denitrification processes in the forested catchment, microbial ecological approaches have been applied in an experimental watershed that has previously investigated its hydrological processes. The study catchment is located in the Chiba prefecture in central Japan under the temperate Asian monsoon climate. Potential activities of denitrification of soil samples were measured by incubation experiments under anoxic condition associated with Na15NO3 addition. Existence and variety of microbes having nitrite reductase genes were investigated by PCR amplification, cloning and sequencings of nirK and nirS fragments after DNA extraction. Contrary to our early expectation that the potential denitrification activity was higher at deeper soil horizon with consistent groundwater residence than that in the surface soil, denitrification potential was higher in shallower soil horizons than deeper soils. This suggested that the deficiency of NO3- as a respiratory substrate for denitrifier occurred in deeper soils especially in the summer. However, high denitrification activity and presence of microbes having nirK and nirS in surface soils usually under aerobic condition was explainable by the fact that the majority of denitrifying bacteria have been recognized as a facultative anaerobic bacterium. This also suggests the possibility of that denitrification occurs even in the surface soils if the wet condition is provided by rainwater during and after a storm event. Community structures of microbes having nirK were different between near surface and deeper soil horizons, and ones having nirS was different between saturated zone (under groundwater table) and unsaturated soil horizons. These imply that microbial communities with nisK are sensitive to the concentration of soil organic matters and ones with nirS is sensitive to soil moisture contents.

  19. Occurrence of root parsley pathogens inhabiting seeds

    Directory of Open Access Journals (Sweden)

    Bogdan Nowicki

    2013-12-01

    Full Text Available The studies on root parsley pathogens inhabiting seeds were conducted during 1981-1988 and in 1993. Filter paper method with prefreezing and keeping under light was used. Each test sample comprised 500 seeds. Pathogenicity of collected fungal isolates was tested following two laboratory methods. 238 seed samples were studied. 18 fungal species were found but only 7 proved to be important pathogens of root parsley. The most common inhabitants of root parsley seeds were Alternaria spp. A.allernata occurred on 74,8% of seeds but only a few isolates showed to be slightly pathogenic while A.petroselini and A.radicina were higly pathogenic and inhabited 11,4 and 4,2% of seeds, respectively. The second group of important pathogens were species of Fusarium found on 3,9% of seeds. F.avenaceum dominated as it comprised 48% of Fusarium isolates, the next were as follow: F.culmorum - 20%, F.equiseti - 15%, F.solani - 8%, F.oxysporum - 7% and F.dimerum -2%. Some fungi like Botrytis cinerea, Septoria petroselini and Phoma spp. inhabited low number of seeds, respectively O,4; 0,5 and 0,8%, but they were highly pathogenic to root parsley. The fungi: Bipolaris sorokiniana, Drechslera biseptata, Stemphylium botryosum and Ulocludium consortiale showed slight pathogenicity. They were isolated from 3,8% of seeds.

  20. Arthropods vector grapevine trunk disease pathogens.

    Science.gov (United States)

    Moyo, P; Allsopp, E; Roets, F; Mostert, L; Halleen, F

    2014-10-01

    Arthropod-mediated dispersal of pathogens is known in many cropping systems but has never been demonstrated for grapevine trunk disease pathogens. Arthropods from vineyards were screened for the presence of pathogens associated with Petri disease and esca using cultural and molecular techniques. The ability of the most abundant pathogen-carrying species to inoculate healthy grapevine vascular tissues was also determined. Millipedes and ants were allowed to associate with a DsRed- Express-transformed Phaeomoniella chlamydospora, after which they were exposed to freshly pruned healthy grapevines under controlled conditions and wounds were monitored for subsequent infection. In addition, the possibility of millipede excreta, commonly found on pruning wounds in the field, to act as inoculum source was determined. A diverse arthropod fauna was associated with declining grapevines and many of these carried trunk disease pathogens. However, spiders, the ant Crematogaster peringueyi, and the millipede Ommattoiulus moreleti were the most abundant pathogen carriers. The ant and millipede species fed on pruning wound sap and effectively transmitted trunk disease pathogens. Millipede excreta contained viable spores of Phaeomoniella chlamydospora and may serve as an inoculum source. Numerous arthropods, including beneficial predators, are potential vectors of grapevine trunk disease pathogens. Our results highlight the need for an integrated approach, including targeted management of ants and millipedes at the time of pruning, to limit the spread of grapevine trunk diseases.

  1. Pathogens' toolbox to manipulate human complement.

    Science.gov (United States)

    Fernández, Francisco J; Gómez, Sara; Vega, M Cristina

    2017-12-14

    The surveillance and pathogen fighting functions of the complement system have evolved to protect mammals from life-threatening infections. In turn, pathogens have developed complex molecular mechanisms to subvert, divert and evade the effector functions of the complement. The study of complement immunoevasion by pathogens sheds light on their infection drivers, knowledge that is essential to implement therapies. At the same time, complement evasion also acts as a discovery ground that reveals important aspects of how complement works under physiological conditions. In recent years, complex interrelationships between infection insults and the onset of autoimmune and complement dysregulation diseases have led to propose that encounters with pathogens can act as triggering factors for disease. The correct management of these diseases involves the recognition of their triggering factors and the development and administration of complement-associated molecular therapies. Even more recently, unsuspected proteins from pathogens have been shown to possess moonlighting functions as virulence factors, raising the possibility that behind the first line of virulence factors there be many more pathogen proteins playing secondary, helping and supporting roles for the pathogen to successfully establish infections. In an era where antibiotics have a progressively reduced effect on the management and control of infectious diseases worldwide, knowledge on the mechanisms of pathogenic invasion and evasion look more necessary and pressing than ever. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A novel Arabidopsis CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1) mutant with enhanced pathogen-induced cell death and altered receptor processing.

    Science.gov (United States)

    Petutschnig, Elena K; Stolze, Marnie; Lipka, Ulrike; Kopischke, Michaela; Horlacher, Juliane; Valerius, Oliver; Rozhon, Wilfried; Gust, Andrea A; Kemmerling, Birgit; Poppenberger, Brigitte; Braus, Gerhard H; Nürnberger, Thorsten; Lipka, Volker

    2014-12-01

    Plants detect pathogens by sensing microbe-associated molecular patterns (MAMPs) through pattern recognition receptors. Pattern recognition receptor complexes also have roles in cell death control, but the underlying mechanisms are poorly understood. Here, we report isolation of cerk1-4, a novel mutant allele of the Arabidopsis chitin receptor CERK1 with enhanced defense responses. We identified cerk1-4 in a forward genetic screen with barley powdery mildew and consequently characterized it by pathogen assays, mutant crosses and analysis of defense pathways. CERK1 and CERK1-4 proteins were analyzed biochemically. The cerk1-4 mutation causes an amino acid exchange in the CERK1 ectodomain. Mutant plants maintain chitin signaling capacity but exhibit hyper-inducible salicylic acid concentrations and deregulated cell death upon pathogen challenge. In contrast to chitin signaling, the cerk1-4 phenotype does not require kinase activity and is conferred by the N-terminal part of the receptor. CERK1 undergoes ectodomain shedding, a well-known process in animal cell surface proteins. Wild-type plants contain the full-length CERK1 receptor protein as well as a soluble form of the CERK1 ectodomain, whereas cerk1-4 plants lack the N-terminal shedding product. Our work suggests that CERK1 may have a chitin-independent role in cell death control and is the first report of ectodomain shedding in plants. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  3. AMPK in Pathogens.

    Science.gov (United States)

    Mesquita, Inês; Moreira, Diana; Sampaio-Marques, Belém; Laforge, Mireille; Cordeiro-da-Silva, Anabela; Ludovico, Paula; Estaquier, Jérôme; Silvestre, Ricardo

    2016-01-01

    During host-pathogen interactions, a complex web of events is crucial for the outcome of infection. Pathogen recognition triggers powerful cellular signaling events that is translated into the induction and maintenance of innate and adaptive host immunity against infection. In opposition, pathogens employ active mechanisms to manipulate host cell regulatory pathways toward their proliferation and survival. Among these, subversion of host cell energy metabolism by pathogens is currently recognized to play an important role in microbial growth and persistence. Extensive studies have documented the role of AMP-activated protein kinase (AMPK) signaling, a central cellular hub involved in the regulation of energy homeostasis, in host-pathogen interactions. Here, we highlight the most recent advances detailing how pathogens hijack cellular metabolism by suppressing or increasing the activity of the host energy sensor AMPK. We also address the role of lower eukaryote AMPK orthologues in the adaptive process to the host microenvironment and their contribution for pathogen survival, differentiation, and growth. Finally, we review the effects of pharmacological or genetic AMPK modulation on pathogen growth and persistence.

  4. Potatoes, pathogens and pests

    NARCIS (Netherlands)

    Lazebnik, Jenny

    2017-01-01

    Currently, fungicides are necessary to protect potato crops against late blight, Phytophthora infestans, one of the world’s most damaging crop pathogens. The introgression of plant resistance genes from wild potato species targeted specifically to the late blight pathogen into

  5. Food-borne pathogens

    International Nuclear Information System (INIS)

    Niemand, J.G.

    1985-01-01

    The Salmonella scare reinforced the importance of never taking chances when it comes to controlling pathogens. The issue has been resolved by radurisation. The article deals with the various pathogens that can effect food and argues the case for radurisation in dealing with them. It also looks at some of the other food products that can be treated using this process

  6. The Battle for Iron between Humans and Microbes.

    Science.gov (United States)

    Carver, Peggy L

    2018-01-01

    Iron is an essential micronutrient for bacteria, fungi, and humans; as such, each has evolved specialized iron uptake systems to acquire iron from the extracellular environment. To describe complex 'tug of war' for iron that has evolved between human hosts and pathogenic microorganisms in the battle for this vital nutrient. A review of current literature was performed, to assess current approaches and controversies in iron therapy and chelation in humans. In humans, sequestration (hiding) of iron from invading pathogens is often successful; however, many pathogens have evolved mechanisms to circumvent this approach. Clinically, controversy continues whether iron overload or administration of iron results in an increased risk of infection. The administration of iron chelating agents and siderophore- conjugate drugs to infected hosts seems a biologically plausible approach as adjunctive therapy in the treatment of infections caused by pathogens dependent on host iron supply (e.g. tuberculosis, malaria, and many bacterial and fungal pathogens); however, thus far, studies in humans have proved unsuccessful. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Selecting the Best: Evolutionary Engineering of Chemical Production in Microbes

    DEFF Research Database (Denmark)

    Shepelin, Denis; Hansen, Anne Sofie Lærke; Lennen, Rebecca

    2018-01-01

    , we focus primarily on a more challenging problem-the use of evolutionary engineering for improving the production of chemicals in microbes directly. We describe recent developments in evolutionary engineering strategies, in general, and discuss, in detail, case studies where production of a chemical......Microbial cell factories have proven to be an economical means of production for many bulk, specialty, and fine chemical products. However, we still lack both a holistic understanding of organism physiology and the ability to predictively tune enzyme activities in vivo, thus slowing down rational...... engineering of industrially relevant strains. An alternative concept to rational engineering is to use evolution as the driving force to select for desired changes, an approach often described as evolutionary engineering. In evolutionary engineering, in vivo selections for a desired phenotype are combined...

  8. Arsenic-Microbe-Mineral Interactions in Mining-Affected Environments

    Directory of Open Access Journals (Sweden)

    Karen A. Hudson-Edwards

    2013-10-01

    Full Text Available The toxic element arsenic (As occurs widely in solid and liquid mine wastes. Aqueous forms of arsenic are taken up in As-bearing sulfides, arsenides, sulfosalts, oxides, oxyhydroxides, Fe-oxides, -hydroxides, -oxyhydroxides and -sulfates, and Fe-, Ca-Fe- and other arsenates. Although a considerable body of research has demonstrated that microbes play a significant role in the precipitation and dissolution of these As-bearing minerals, and in the alteration of the redox state of As, in natural and simulated mining environments, the molecular-scale mechanisms of these interactions are still not well understood. Further research is required using traditional and novel mineralogical, spectroscopic and microbiological techniques to further advance this field, and to help design remediation schemes.

  9. Busting dust: from cosmic grains to terrestrial microbes

    International Nuclear Information System (INIS)

    Mendis, D.A.

    2001-01-01

    Electrostatic charging can have important consequences for both the growth and disruption of microparticulates immersed in a plasma. In this topical review, my emphasis is on the latter process, while I extend the term microparticulates not only to include ordinary inanimate cosmic or terrestrial dust but also to include terrestrial microbes whose sizes range from tens of nanometers (viruses) to tens of micrometers (bacteria). Following a description of the basic mechanism of electrostatic disruption of a solid body, I will discuss the role of size, shape and surface irregularity on the process. I will also consider the mitigating role of electric field emission of electrons on the disruption process of a negatively charged grain as its size falls below a critical size. I will conclude by reviewing some early evidence for the electrostatic disruption of cosmic grains, and the very recent evidence for the electrostatic disruption of the bacterial cell membranes in terrestrial sterilization experiments. (orig.)

  10. New CRISPR-Cas systems from uncultivated microbes

    Science.gov (United States)

    Burstein, David; Harrington, Lucas B.; Strutt, Steven C.; Probst, Alexander J.; Anantharaman, Karthik; Thomas, Brian C.; Doudna, Jennifer A.; Banfield, Jillian F.

    2017-02-01

    CRISPR-Cas systems provide microbes with adaptive immunity by employing short DNA sequences, termed spacers, that guide Cas proteins to cleave foreign DNA. Class 2 CRISPR-Cas systems are streamlined versions, in which a single RNA-bound Cas protein recognizes and cleaves target sequences. The programmable nature of these minimal systems has enabled researchers to repurpose them into a versatile technology that is broadly revolutionizing biological and clinical research. However, current CRISPR-Cas technologies are based solely on systems from isolated bacteria, leaving the vast majority of enzymes from organisms that have not been cultured untapped. Metagenomics, the sequencing of DNA extracted directly from natural microbial communities, provides access to the genetic material of a huge array of uncultivated organisms. Here, using genome-resolved metagenomics, we identify a number of CRISPR-Cas systems, including the first reported Cas9 in the archaeal domain of life, to our knowledge. This divergent Cas9 protein was found in little-studied nanoarchaea as part of an active CRISPR-Cas system. In bacteria, we discovered two previously unknown systems, CRISPR-CasX and CRISPR-CasY, which are among the most compact systems yet discovered. Notably, all required functional components were identified by metagenomics, enabling validation of robust in vivo RNA-guided DNA interference activity in Escherichia coli. Interrogation of environmental microbial communities combined with in vivo experiments allows us to access an unprecedented diversity of genomes, the content of which will expand the repertoire of microbe-based biotechnologies.

  11. Functional metagenomics to decipher food-microbe-host crosstalk.

    Science.gov (United States)

    Larraufie, Pierre; de Wouters, Tomas; Potocki-Veronese, Gabrielle; Blottière, Hervé M; Doré, Joël

    2015-02-01

    The recent developments of metagenomics permit an extremely high-resolution molecular scan of the intestinal microbiota giving new insights and opening perspectives for clinical applications. Beyond the unprecedented vision of the intestinal microbiota given by large-scale quantitative metagenomics studies, such as the EU MetaHIT project, functional metagenomics tools allow the exploration of fine interactions between food constituents, microbiota and host, leading to the identification of signals and intimate mechanisms of crosstalk, especially between bacteria and human cells. Cloning of large genome fragments, either from complex intestinal communities or from selected bacteria, allows the screening of these biological resources for bioactivity towards complex plant polymers or functional food such as prebiotics. This permitted identification of novel carbohydrate-active enzyme families involved in dietary fibre and host glycan breakdown, and highlighted unsuspected bacterial players at the top of the intestinal microbial food chain. Similarly, exposure of fractions from genomic and metagenomic clones onto human cells engineered with reporter systems to track modulation of immune response, cell proliferation or cell metabolism has allowed the identification of bioactive clones modulating key cell signalling pathways or the induction of specific genes. This opens the possibility to decipher mechanisms by which commensal bacteria or candidate probiotics can modulate the activity of cells in the intestinal epithelium or even in distal organs such as the liver, adipose tissue or the brain. Hence, in spite of our inability to culture many of the dominant microbes of the human intestine, functional metagenomics open a new window for the exploration of food-microbe-host crosstalk.

  12. Exploring the Optimal Strategy to Predict Essential Genes in Microbes

    Directory of Open Access Journals (Sweden)

    Yao Lu

    2011-12-01

    Full Text Available Accurately predicting essential genes is important in many aspects of biology, medicine and bioengineering. In previous research, we have developed a machine learning based integrative algorithm to predict essential genes in bacterial species. This algorithm lends itself to two approaches for predicting essential genes: learning the traits from known essential genes in the target organism, or transferring essential gene annotations from a closely related model organism. However, for an understudied microbe, each approach has its potential limitations. The first is constricted by the often small number of known essential genes. The second is limited by the availability of model organisms and by evolutionary distance. In this study, we aim to determine the optimal strategy for predicting essential genes by examining four microbes with well-characterized essential genes. Our results suggest that, unless the known essential genes are few, learning from the known essential genes in the target organism usually outperforms transferring essential gene annotations from a related model organism. In fact, the required number of known essential genes is surprisingly small to make accurate predictions. In prokaryotes, when the number of known essential genes is greater than 2% of total genes, this approach already comes close to its optimal performance. In eukaryotes, achieving the same best performance requires over 4% of total genes, reflecting the increased complexity of eukaryotic organisms. Combining the two approaches resulted in an increased performance when the known essential genes are few. Our investigation thus provides key information on accurately predicting essential genes and will greatly facilitate annotations of microbial genomes.

  13. Planetary protection protecting earth and planets against alien microbes

    International Nuclear Information System (INIS)

    Leys, N.

    2006-01-01

    Protecting Earth and planets against the invasion of 'alien life forms' is not military science fiction, but it is the peaceful daily job of engineers and scientists of space agencies. 'Planetary Protection' is preventing microbial contamination of both the target planet and the Earth when sending robots on interplanetary space mission. It is important to preserve the 'natural' conditions of other planets and to not bring with robots 'earthly microbes' (forward contamination) when looking for 'spores of extra terrestrial life'. The Earth and its biosphere must be protected from potential extraterrestrial biological contamination when returning samples of other planets to the Earth (backward contamination). The NASA-Caltech Laboratory for Planetary Protection of Dr. Kasthuri Venkateswaran at the Jet Propulsion Laboratory (JPL) (California, USA) routinely monitors and characterizes the microbes of NASA spacecraft assembly rooms and space robots prior to flight. They have repeatedly isolated Cupriavidus and Ralstonia strains pre-flight from spacecraft assembly rooms (floor and air) and surfaces of space robots such as the Mars Odyssey Orbiter (La Duc et al., 2003). Cupriavidus and Ralstonia strains have also been found in-flight, in ISS cooling water and Shuttle drinking water (Venkateswaran et al., Pyle et al., Ott et al., all unpublished). The main objective of this study is to characterise the Cupriavidus and Ralstonia strains isolated at JPL and compare them to the Cupriavidus metallidurans CH34T model strain, isolated from a Belgian contaminated soil and studied since 25 years at SCK-CEN and to enhance our knowledge by performing additional tests at JPL and gathering information regarding the environmental conditions and the cleaning and isolation methods used in such spacecraft assembling facilities

  14. Climate change driven plant-metal-microbe interactions.

    Science.gov (United States)

    Rajkumar, Mani; Prasad, Majeti Narasimha Vara; Swaminathan, Sandhya; Freitas, Helena

    2013-03-01

    Various biotic and abiotic stress factors affect the growth and productivity of crop plants. Particularly, the climatic and/or heavy metal stress influence various processes including growth, physiology, biochemistry, and yield of crops. Climatic changes particularly the elevated atmospheric CO₂ enhance the biomass production and metal accumulation in plants and help plants to support greater microbial populations and/or protect the microorganisms against the impacts of heavy metals. Besides, the indirect effects of climatic change (e.g., changes in the function and structure of plant roots and diversity and activity of rhizosphere microbes) would lead to altered metal bioavailability in soils and concomitantly affect plant growth. However, the effects of warming, drought or combined climatic stress on plant growth and metal accumulation vary substantially across physico-chemico-biological properties of the environment (e.g., soil pH, heavy metal type and its bio-available concentrations, microbial diversity, and interactive effects of climatic factors) and plant used. Overall, direct and/or indirect effects of climate change on heavy metal mobility in soils may further hinder the ability of plants to adapt and make them more susceptible to stress. Here, we review and discuss how the climatic parameters including atmospheric CO₂, temperature and drought influence the plant-metal interaction in polluted soils. Other aspects including the effects of climate change and heavy metals on plant-microbe interaction, heavy metal phytoremediation and safety of food and feed are also discussed. This review shows that predicting how plant-metal interaction responds to altering climatic change is critical to select suitable crop plants that would be able to produce more yields and tolerate multi-stress conditions without accumulating toxic heavy metals for future food security. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. A Systems Biology Approach to Infectious Disease Research: Innovating the Pathogen-Host Research Paradigm

    Energy Technology Data Exchange (ETDEWEB)

    Aderem, Alan; Adkins, Joshua N.; Ansong, Charles; Galagan, James; Kaiser, Shari; Korth, Marcus J.; Law, G. L.; McDermott, Jason E.; Proll, Sean; Rosenberger, Carrie; Schoolnik, Gary; Katze, Michael G.

    2011-02-01

    The 20th century was marked by extraordinary advances in our understanding of microbes and infectious disease, but pandemics remain, food and water borne illnesses are frequent, multi-drug resistant microbes are on the rise, and the needed drugs and vaccines have not been developed. The scientific approaches of the past—including the intense focus on individual genes and proteins typical of molecular biology—have not been sufficient to address these challenges. The first decade of the 21st century has seen remarkable innovations in technology and computational methods. These new tools provide nearly comprehensive views of complex biological systems and can provide a correspondingly deeper understanding of pathogen-host interactions. To take full advantage of these innovations, the National Institute of Allergy and Infectious Diseases recently initiated the Systems Biology Program for Infectious Disease Research. As participants of the Systems Biology Program we think that the time is at hand to redefine the pathogen-host research paradigm.

  16. Processes for managing pathogens.

    Science.gov (United States)

    Godfree, Alan; Farrell, Joseph

    2005-01-01

    Wastewater contains human, animal, and plant pathogens capable of causing viral, bacterial, or parasitic infections. There are several routes whereby sewage pathogens may affect human health, including direct contact, contamination of food crops, zoonoses, and vectors. The range and numbers of pathogens in municipal wastewater vary with the level of endemic disease in the community, discharges from commercial activities, and seasonal factors. Regulations to control pathogen risk in the United States and Europe arising from land application of biosolids are based on the concept of multiple barriers to the prevention of transmission. The barriers are (i) treatment to reduce pathogen content and vector attraction, (ii) restrictions on crops grown on land to which biosolids have been applied, and (iii) minimum intervals following application and grazing or harvesting. Wastewater treatment reduces number of pathogens in the wastewater by concentrating them with the solids in the sludge. Although some treatment processes are designed specifically to inactivate pathogens, many are not, and the actual mechanisms of microbial inactivation are not fully understood for all processes. Vector attraction is reduced by stabilization (reduction of readily biodegradable material) and/or incorporation immediately following application. Concerns about health risks have renewed interest in the effects of treatment (on pathogens) and advanced treatment methods, and work performed in the United States suggests that Class A pathogen reduction can be achieved less expensively than previously thought. Effective pathogen risk management requires control to the complete chain of sludge treatment, biosolids handling and application, and post-application activities. This may be achieved by adherence to quality management systems based on hazard analysis critical control point (HACCP) principles.

  17. Pathogen reduction of blood components.

    Science.gov (United States)

    Solheim, Bjarte G

    2008-08-01

    , but not licensed by the FDA), while the method of Riboflavin light treatment of plasma still is under development. In addition to pathogen reduction the methods, however, result in some reduction of coagulation factor activity. For platelets only Psoralen and Riboflavin light treatment have been implemented. Both are CE marked products in Europe but only approved for clinical trials in the USA. The methods affect platelet activity, but result in clinically acceptable platelets with only slightly reduced CCI and increased demand for platelet transfusions. Pathogen reduction of red blood cells with FRALE (S-303) or INACTINE (PEN110) has so far resulted in the formation of antibodies against neo-epitopes on red blood cells. A promising method for Riboflavin treatment of red blood cells is under development. This manuscript reviews the current experience and discusses future trends.

  18. Human pathogenic bacteria, fungi, and viruses in Drosophila

    Science.gov (United States)

    Panayidou, Stavria; Ioannidou, Eleni; Apidianakis, Yiorgos

    2014-01-01

    Drosophila has been the invertebrate model organism of choice for the study of innate immune responses during the past few decades. Many Drosophila–microbe interaction studies have helped to define innate immunity pathways, and significant effort has been made lately to decipher mechanisms of microbial pathogenesis. Here we catalog 68 bacterial, fungal, and viral species studied in flies, 43 of which are relevant to human health. We discuss studies of human pathogens in flies revealing not only the elicitation and avoidance of immune response but also mechanisms of tolerance, host tissue homeostasis, regeneration, and predisposition to cancer. Prominent among those is the emerging pattern of intestinal regeneration as a defense response induced by pathogenic and innocuous bacteria. Immunopathology mechanisms and many microbial virulence factors have been elucidated, but their relevance to human health conventionally necessitates validation in mammalian models of infection. PMID:24398387

  19. Nucleic acid probes in the diagnosis of human microbial pathogens

    International Nuclear Information System (INIS)

    Hyypia, T.; Huovinen, P.; Holmberg, M.; Pettersson, U.

    1989-01-01

    The development of effective vaccines and antimicrobial drugs against infectious diseases has been among the most successful achievements in modern medicine. The control of these diseases requires efficient diagnostic methods for the evaluation of the prevalence of diseases and for initiation of specific treatment. Virtually all known microbes can be specifically identified today but in many cases further development is needed for more accurate, rapid, easy-to-use, and inexpensive diagnostic assays. Cell culture facilities are needed for the isolation of viruses in clinical specimens. Any gene of any known microorganism can be cloned in a vector and produced in large amounts economically and then used in diagnostic assays for the identification of the pathogen. The application of the nucleic acid hybridization methods in detection of human pathogens has received considerable attention during the past few years. This paper presents examples of this application of gene technology

  20. Ortholog - MicrobeDB.jp | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us MicrobeDB.jp Ortholog Data detail Data name Ortholog DOI 10.18908/lsdba.nbdc01181-010.V002 V...814 triples - About This Database Database Description Download License Update History of This Database Site Policy | Contact Us Ortholog - MicrobeDB.jp | LSDB Archive ...

  1. Microbe-associated molecular pattern (MAMP) signatures, synergy, size and charge

    DEFF Research Database (Denmark)

    Aslam, Shazia N.; Erbs, Gitte; Morrissey, Kate L.

    2009-01-01

    Triggering of defences by microbes has mainly been investigated using single elicitors or microbe-associated molecular patterns (MAMPs), but MAMPs are released in planta as complex mixtures together with endogenous oligogalacturonan (OGA) elicitor. We investigated the early responses in Arabidops...

  2. Plant-microbe and plant-insect interactions meet common grounds

    NARCIS (Netherlands)

    Schenk, P.; McGrath, K.C.; Lorito, M.; Pieterse, C.M.J.

    2008-01-01

    Plant–microbe and plant–insect interactions are of global importance for agriculture and of high interest to many plant scientists, microbiologists and entomologists. Traditionally, plant–microbe and plant–insect interactions have been looked at as two separate issues, but in recent years it has

  3. Biogeographical diversity of plant associated microbes in arcto-alpine plants

    NARCIS (Netherlands)

    Kumar, Manoj Gopala Krishnan

    2016-01-01

    Terrestrial plants and microbes have co-evolved since the emergence of the former on Earth. Associations with microorganisms can be either beneficial or detrimental for plants. Microbes can be found in the soil surrounding the plant roots, but also in all plant tissues, including seeds. In

  4. Biofilms for Babies: Introducing Microbes and Biofilms to Preschool-Aged Children

    Directory of Open Access Journals (Sweden)

    Jillian M. Couto

    2017-05-01

    Full Text Available Microbes are beneficial to life on our planet as they facilitate natural processes such as global nutrient cycling in our environment. This article details a 30-minute activity to introduce pre-school children ranging from 3 to 5 years of age to microbes and biofilms in the natural environment.

  5. Coercion in the Evolution of Plant-Microbe Communication: A Perspective.

    Science.gov (United States)

    Rowe, S L; Norman, J S; Friesen, M L

    2018-06-06

    Plants and microbes are dependent on chemical signals as a means of interkingdom communication. There are two predicted paths for the evolution of these signals. Ritualization is the oft-assumed pathway for the evolution of plant-microbe communication systems. In this process, chemical signals, which benefit both receiver and sender, evolve from chemical cues, which benefit only the receiver. However, plant-microbe signaling may evolve from coercive interactions as well, a process known as sensory manipulation. Here, we aim to highlight the prevalence of coercive interactions and discuss sensory manipulation in the context of plant-microbe interactions. We present two examples of stabilized coercion: microbial coercion of plants via the release of phytohormones and plant coercion of microbes via manipulation of quorum-sensing compounds. Furthermore, we provide an evolutionary framework for the emergence of signaling from coercive plant-microbe interactions through the process of sensory manipulation. We hope that researchers will recognize the relevance of coercive interactions in plant-microbe systems and consider sensory manipulation as a plausible evolutionary trajectory for the emergence of plant-microbe signaling.

  6. Earthworms, Microbes and the Release of C and N in Biochar Amended Soil

    Science.gov (United States)

    Land application of biochar has the potential to increase soil fertility and sequester carbon. It is unclear how soil microbes and earthworms interact with biochar and affect release or retention of nutrients. In order to determine the effects and interactions among soil microbes, earthworms, and bi...

  7. Contamination of cell phones by pathogenic microorganisms: Comparison between hospital staff and college students

    OpenAIRE

    PURNIMA R. CHITLANGE

    2014-01-01

    Chitlange PR. 2014. Contamination of cell phones by pathogenic microorganisms: Comparison between hospital staff and college students. Nusantara Bioscience 6: 203-206. Cell phone (CP) is a long range portable electronic device. The cell phone is constantly exposed to arrays of micro organisms, making it a harbour and breeding ground for microbes especially those associated with skin. The adult human is covered with approximately 2m2 of skin with area supporting about 106 bacteria. To check wh...

  8. Antimicrobial peptides and the interplay between microbes and host

    NARCIS (Netherlands)

    Gaiser, Rogier A.

    2016-01-01

    The increasing prevalence of antibiotic resistance in pathogenic bacteria and the potential future implications for human and animal morbidity and mortality, health-care costs and economic losses pose an urgent worldwide problem. As a result, exploration of alternative strategies to combat

  9. Short chain and polyunsaturated fatty acids in host gut health and foodborne bacterial pathogen inhibition.

    Science.gov (United States)

    Peng, Mengfei; Biswas, Debabrata

    2017-12-12

    As a major source of microbes and their numerous beneficial effects, the gut microflora/microbiome is intimately linked to human health and disease. The exclusion of enteric pathogens by these commensal microbes partially depends upon the production of bioactive compounds such as short-chain fatty acids (SCFAs) and polyunsaturated fatty acids (PUFAs). These key intestinal microbial byproducts are crucial to the maintenance of a healthy gut microbial community. Moreover, SCFAs and PUFAs play multiple critical roles in host defense and immunity, including anti-cancer, anti-inflammation, and anti-oxidant activities, as well as out-competition of enteric bacterial pathogens. In this review article, we hereby aim to highlight the importance of SCFAs and PUFAs and the microbes involved in production of these beneficial intestinal components, and their biological functions, specifically as to their immunomodulation and interactions with enteric bacterial pathogens. Finally, we also advance potential applications of these fatty acids with regards to food safety and human gut health.

  10. Rapid identification and susceptibility testing of uropathogenic microbes via immunosorbent ATP-bioluminescence assay on a microfluidic simulator for antibiotic therapy.

    Science.gov (United States)

    Dong, Tao; Zhao, Xinyan

    2015-02-17

    The incorporation of pathogen identification with antimicrobial susceptibility testing (AST) was implemented on a concept microfluidic simulator, which is well suited for personalizing antibiotic treatment of urinary tract infections (UTIs). The microfluidic device employs a fiberglass membrane sandwiched between two polypropylene components, with capture antibodies immobilized on the membrane. The chambers in the microfluidic device share the same geometric distribution as the wells in a standard 384-well microplate, resulting in compatibility with common microplate readers. Thirteen types of common uropathogenic microbes were selected as the analytes in this study. The microbes can be specifically captured by various capture antibodies and then quantified via an ATP bioluminescence assay (ATP-BLA) either directly or after a variety of follow-up tests, including urine culture, antibiotic treatment, and personalized antibiotic therapy simulation. Owing to the design of the microfluidic device, as well as the antibody specificity and the ATP-BLA sensitivity, the simulator was proven to be able to identify UTI pathogen species in artificial urine samples within 20 min and to reliably and simultaneously verify the antiseptic effects of eight antibiotic drugs within 3-6 h. The measurement range of the device spreads from 1 × 10(3) to 1 × 10(5) cells/mL in urine samples. We envision that the medical simulator might be broadly employed in UTI treatment and could serve as a model for the diagnosis and treatment of other diseases.

  11. Comparative Radiosensitivity of Pathogenic Bacteria and Viruses; Radiosensibilite Comparee de Bacteries et Virus Pathogenes

    Energy Technology Data Exchange (ETDEWEB)

    Ghys, R.; Vandergoten, R.; Paquette, J. -C.; Fredette, V.; Plante, C.; Pavilanis, V.; Gilker, J. -C. [Institut de Microbiologie et d' Hygiene de l' Universite de Montreal, Laval, P.Q. (Canada)

    1967-09-15

    The authors exposed to gamma rays from a MCo source (''Gammacell 220'' from Atomic Energy of Canada, Ltd.) various pathogenic micro-organisms: a slow-growing aerobic bacterium (Mycobacterium tuberculosis, 10 varieties of the strain B. C. G.), a fast-growing anaerobic bacterium (Clostridium perfringens, strain SWG-121) and 4 strains of influenza virus (2 from group A and 2 from group B). In the case of B. C. G., an LD{sub 90} of 29 ± 1 kR is reported for bacilli irradiated immediately before subculture and subsequently cultivated for at most 14 days. If the microbes are cultivated for 28 days, the yield from cultures after exposures of up to 50 kR is at least equal to that of control specimens; it then decreases rapidly, and a dose of 140 kR inhibits bacterial growth completely. It is reported that the LD{sub 90} of the strain of Cl. perfringens used in the study is very much dependent on die culture conditions and die conditions under which die microbe growth measurements are made; 24 h after irradiation it is at least 1 MR. Although no spores are seen in the microscope, this would seem to demonstrate the presence in the cultures of extremely radioresistant sporulated individuals. Group A influenza viruses are found to be more radioresistant than those of group B. The LD{sub 90} of relatively low radiation doses varies between 75 and 100 kR, and is higher if irradiation is performed at -78.5°C. It is very difficult to inactivate the last virus particles; multiplicity reactivation seems to occur in certain experimental conditions. Haemagglutinant activity does not vary, even after die highest exposures used (4 MR). Two important practical conclusions are drawn: (1) The use of a single dose (e. g. 2.5 Mrad) for radiosterilization gives an exposure which is unnecessarily high in some cases and insufficient in others, and (2) Selective radiosterilization is sometimes possible: the viability of a micro-organism used, for example, to produce a vaccine may not be

  12. Saharan dust - a carrier of persistent organic pollutants, metals and microbes to the Caribbean?

    Directory of Open Access Journals (Sweden)

    V.H Garrison

    2006-12-01

    Full Text Available An international team of scientists from government agencies and universities in the United States, U.S. Virgin Islands (USVI, Trinidad & Tobago, the Republic of Cape Verde, and the Republic of Mali (West Africa is working together to elucidate the role Saharan dust may play in the degradation of Caribbean ecosystems. The first step has been to identify and quantify the persistent organic pollutants (POPs, trace metals, and viable microorganisms in the atmosphere in dust source areas of West Africa, and in dust episodes at downwind sites in the eastern Atlantic (Cape Verde and the Caribbean (USVI and Trinidad & Tobago. Preliminary findings show that air samples from Mali contain a greater number of pesticides, polychlorinated biphenyls (PCBs and polycyclic aromatic hydrocarbons (PAHs and in higher concentrations than the Caribbean sites. Overall, POP concentrations were similar in USVI and Trinidad samples. Trace metal concentrations were found to be similar to crustal composition with slight enrichment of lead in Mali. To date, hundreds of cultureable micro-organisms have been identified from Mali, Cape Verde, USVI, and Trinidad air samples. The sea fan pathogen, Aspergillus sydowii, has been identified in soil from Mali and in air samples from dust events in the Caribbean. We have shown that air samples from a dust-source region contain orders of magnitude more cultureable micro-organisms per volume than air samples from dust events in the Caribbean, which in turn contain 3-to 4-fold more cultureable microbes than during non-dust conditions. Rev. Biol. Trop. 54 (Suppl. 3: 9-21. Epub 2007 Jan. 15.

  13. Extracts against Various Pathogens

    Directory of Open Access Journals (Sweden)

    Ritika Chauhan

    2013-07-01

    The present study shows that tested lichen Parmotrema sp. extracts demonstrated a strong antimicrobial effect. That suggests the active components from methanol extracts of the investigated lichen Parmotrema sp. can be used as natural antimicrobial agent against pathogens.

  14. Evolution of microbial pathogens

    National Research Council Canada - National Science Library

    DiRita, Victor J; Seifert, H. Steven

    2006-01-01

    ... A. Hogan vvi ■ CONTENTS 8. Evolution of Pathogens in Soil Rachel Muir and Man-Wah Tan / 131 9. Experimental Models of Symbiotic Host-Microbial Relationships: Understanding the Underpinnings of ...

  15. Indicators for waterborne pathogens

    National Research Council Canada - National Science Library

    Committee on Indicators for Waterborne Pathogens, National Research Council

    2004-01-01

    ... not practical or feasible to monitor for the complete spectrum of microorganisms that may occur in water, and many known pathogens are difficult to detect directly and reliably in water samples.Â...

  16. Host–Pathogen Interactions

    NARCIS (Netherlands)

    Smits, M.A.; Schokker, D.J.

    2011-01-01

    The outcome of an infection is determined by numerous interactions between hosts and pathogens occurring at many different biological levels, ranging from molecule to population. To develop new control strategies for infectious diseases in livestock species, appropriate methodologies are needed

  17. Overexpression of Differentially Expressed Genes Identified in Non-pathogenic and Pathogenic Entamoeba histolytica Clones Allow Identification of New Pathogenicity Factors Involved in Amoebic Liver Abscess Formation.

    Directory of Open Access Journals (Sweden)

    Martin Meyer

    2016-08-01

    Full Text Available We here compared pathogenic (p and non-pathogenic (np isolates of Entamoeba histolytica to identify molecules involved in the ability of this parasite to induce amoebic liver abscess (ALA-like lesions in two rodent models for the disease. We performed a comprehensive analysis of 12 clones (A1-A12 derived from a non-pathogenic isolate HM-1:IMSS-A and 12 clones (B1-B12 derived from a pathogenic isolate HM-1:IMSS-B. "Non-pathogenicity" included the induction of small and quickly resolved lesions while "pathogenicity" comprised larger abscess development that overstayed day 7 post infection. All A-clones were designated as non-pathogenic, whereas 4 out of 12 B-clones lost their ability to induce ALAs in gerbils. No correlation between ALA formation and cysteine peptidase (CP activity, haemolytic activity, erythrophagocytosis, motility or cytopathic activity was found. To identify the molecular framework underlying different pathogenic phenotypes, three clones were selected for in-depth transcriptome analyses. Comparison of a non-pathogenic clone A1np with pathogenic clone B2p revealed 76 differentially expressed genes, whereas comparison of a non-pathogenic clone B8np with B2p revealed only 19 differentially expressed genes. Only six genes were found to be similarly regulated in the two non-pathogenic clones A1np and B8np in comparison with the pathogenic clone B2p. Based on these analyses, we chose 20 candidate genes and evaluated their roles in ALA formation using the respective gene-overexpressing transfectants. We conclude that different mechanisms lead to loss of pathogenicity. In total, we identified eight proteins, comprising a metallopeptidase, C2 domain proteins, alcohol dehydrogenases and hypothetical proteins, that affect the pathogenicity of E. histolytica.

  18. Overexpression of Differentially Expressed Genes Identified in Non-pathogenic and Pathogenic Entamoeba histolytica Clones Allow Identification of New Pathogenicity Factors Involved in Amoebic Liver Abscess Formation.

    Science.gov (United States)

    Meyer, Martin; Fehling, Helena; Matthiesen, Jenny; Lorenzen, Stephan; Schuldt, Kathrin; Bernin, Hannah; Zaruba, Mareen; Lender, Corinna; Ernst, Thomas; Ittrich, Harald; Roeder, Thomas; Tannich, Egbert; Lotter, Hannelore; Bruchhaus, Iris

    2016-08-01

    We here compared pathogenic (p) and non-pathogenic (np) isolates of Entamoeba histolytica to identify molecules involved in the ability of this parasite to induce amoebic liver abscess (ALA)-like lesions in two rodent models for the disease. We performed a comprehensive analysis of 12 clones (A1-A12) derived from a non-pathogenic isolate HM-1:IMSS-A and 12 clones (B1-B12) derived from a pathogenic isolate HM-1:IMSS-B. "Non-pathogenicity" included the induction of small and quickly resolved lesions while "pathogenicity" comprised larger abscess development that overstayed day 7 post infection. All A-clones were designated as non-pathogenic, whereas 4 out of 12 B-clones lost their ability to induce ALAs in gerbils. No correlation between ALA formation and cysteine peptidase (CP) activity, haemolytic activity, erythrophagocytosis, motility or cytopathic activity was found. To identify the molecular framework underlying different pathogenic phenotypes, three clones were selected for in-depth transcriptome analyses. Comparison of a non-pathogenic clone A1np with pathogenic clone B2p revealed 76 differentially expressed genes, whereas comparison of a non-pathogenic clone B8np with B2p revealed only 19 differentially expressed genes. Only six genes were found to be similarly regulated in the two non-pathogenic clones A1np and B8np in comparison with the pathogenic clone B2p. Based on these analyses, we chose 20 candidate genes and evaluated their roles in ALA formation using the respective gene-overexpressing transfectants. We conclude that different mechanisms lead to loss of pathogenicity. In total, we identified eight proteins, comprising a metallopeptidase, C2 domain proteins, alcohol dehydrogenases and hypothetical proteins, that affect the pathogenicity of E. histolytica.

  19. Effects of co-occurring Wolbachia and Spiroplasma endosymbionts on the Drosophila immune response against insect pathogenic and non-pathogenic bacteria.

    Science.gov (United States)

    Shokal, Upasana; Yadav, Shruti; Atri, Jaishri; Accetta, Julia; Kenney, Eric; Banks, Katherine; Katakam, Akash; Jaenike, John; Eleftherianos, Ioannis

    2016-02-09

    Symbiotic interactions between microbes and animals are common in nature. Symbiotic organisms are particularly common in insects and, in some cases, they may protect their hosts from pathogenic infections. Wolbachia and Spiroplasma endosymbionts naturally inhabit various insects including Drosophila melanogaster fruit flies. Therefore, this symbiotic association is considered an excellent model to investigate whether endosymbiotic bacteria participate in host immune processes against certain pathogens. Here we have investigated whether the presence of Wolbachia alone or together with Spiroplasma endosymbionts in D. melanogaster adult flies affects the immune response against the virulent insect pathogen Photorhabdus luminescens and against non-pathogenic Escherichia coli bacteria. We found that D. melanogaster flies carrying no endosymbionts, those carrying both Wolbachia and Spiroplasma, and those containing Wolbachia only had similar survival rates after infection with P. luminescens or Escherichia coli bacteria. However, flies carrying both endosymbionts or Wolbachia only contained higher numbers of E. coli cells at early time-points post infection than flies without endosymbiotic bacteria. Interestingly, flies containing Wolbachia only had lower titers of this endosymbiont upon infection with the pathogen P. luminescens than uninfected flies of the same strain. We further found that the presence of Wolbachia and Spiroplasma in D. melanogaster up-regulated certain immune-related genes upon infection with P. luminescens or E. coli bacteria, but it failed to alter the phagocytic ability of the flies toward E. coli inactive bioparticles. Our results suggest that the presence of Wolbachia and Spiroplasma in D. melanogaster can modulate immune signaling against infection by certain insect pathogenic and non-pathogenic bacteria. Results from such studies are important for understanding the molecular basis of the interactions between endosymbiotic bacteria of insects

  20. The microbes we eat: abundance and taxonomy of microbes consumed in a day’s worth of meals for three diet types

    Directory of Open Access Journals (Sweden)

    Jenna M. Lang

    2014-12-01

    Full Text Available Far more attention has been paid to the microbes in our feces than the microbes in our food. Research efforts dedicated to the microbes that we eat have historically been focused on a fairly narrow range of species, namely those which cause disease and those which are thought to confer some “probiotic” health benefit. Little is known about the effects of ingested microbial communities that are present in typical American diets, and even the basic questions of which microbes, how many of them, and how much they vary from diet to diet and meal to meal, have not been answered.We characterized the microbiota of three different dietary patterns in order to estimate: the average total amount of daily microbes ingested via food and beverages, and their composition in three daily meal plans representing three different dietary patterns. The three dietary patterns analyzed were: (1 the Average American (AMERICAN: focused on convenience foods, (2 USDA recommended (USDA: emphasizing fruits and vegetables, lean meat, dairy, and whole grains, and (3 Vegan (VEGAN: excluding all animal products. Meals were prepared in a home kitchen or purchased at restaurants and blended, followed by microbial analysis including aerobic, anaerobic, yeast and mold plate counts as well as 16S rRNA PCR survey analysis.Based on plate counts, the USDA meal plan had the highest total amount of microbes at 1.3 × 109 CFU per day, followed by the VEGAN meal plan and the AMERICAN meal plan at 6 × 106 and 1.4 × 106 CFU per day respectively. There was no significant difference in diversity among the three dietary patterns. Individual meals clustered based on taxonomic composition independent of dietary pattern. For example, meals that were abundant in Lactic Acid Bacteria were from all three dietary patterns. Some taxonomic groups were correlated with the nutritional content of the meals. Predictive metagenome analysis using PICRUSt indicated differences in some functional KEGG

  1. Selecting the Best: Evolutionary Engineering of Chemical Production in Microbes.

    Science.gov (United States)

    Shepelin, Denis; Hansen, Anne Sofie Lærke; Lennen, Rebecca; Luo, Hao; Herrgård, Markus J

    2018-05-11

    Microbial cell factories have proven to be an economical means of production for many bulk, specialty, and fine chemical products. However, we still lack both a holistic understanding of organism physiology and the ability to predictively tune enzyme activities in vivo, thus slowing down rational engineering of industrially relevant strains. An alternative concept to rational engineering is to use evolution as the driving force to select for desired changes, an approach often described as evolutionary engineering. In evolutionary engineering, in vivo selections for a desired phenotype are combined with either generation of spontaneous mutations or some form of targeted or random mutagenesis. Evolutionary engineering has been used to successfully engineer easily selectable phenotypes, such as utilization of a suboptimal nutrient source or tolerance to inhibitory substrates or products. In this review, we focus primarily on a more challenging problem-the use of evolutionary engineering for improving the production of chemicals in microbes directly. We describe recent developments in evolutionary engineering strategies, in general, and discuss, in detail, case studies where production of a chemical has been successfully achieved through evolutionary engineering by coupling production to cellular growth.

  2. Anaerobic Probiotics: The Key Microbes for Human Health.

    Science.gov (United States)

    El Enshasy, Hesham; Malik, Khairuddin; Malek, Roslinda Abd; Othman, Nor Zalina; Elsayed, Elsayed Ahmed; Wadaan, Mohammad

    Human gastrointestinal microbiota (HGIM) incorporate a large number of microbes from different species. Anaerobic bacteria are the dominant organisms in this microbial consortium and play a crucial role in human health. In addition to their functional role as the main source of many essential metabolites for human health, they are considered as biotherapeutic agents in the regulation of different human metabolites. They are also important in the prevention and in the treatment of different physical and mental diseases. Bifidobacteria are the dominant anaerobic bacteria in HGIM and are widely used in the development of probiotic products for infants, children and adults. To develop bifidobacteria-based bioproducts, therefore, it is necessary to develop a large-scale biomass production platform based on a good understanding of the ideal medium and bioprocessing parameters for their growth and viability. In addition, high cell viability should be maintained during downstream processing and storage of probiotic cell powder or the final formulated product. In this work we review the latest information about the biology, therapeutic activities, cultivation and industrial production of bifidobacteria.

  3. Diet, genes, and microbes: complexities of colon cancer prevention.

    Science.gov (United States)

    Birt, Diane F; Phillips, Gregory J

    2014-01-01

    Colorectal cancer is one of the leading causes of cancer-related deaths in the United States, and generally, as countries climb the economic ladder, their rates of colon cancer increase. Colon cancer was an early disease where key genetic mutations were identified as important in disease progression, and there is considerable interest in determining whether specific mutations sensitize the colon to cancer prevention strategies. Epidemiological studies have revealed that fiber- and vegetable-rich diets and physical activity are associated with reduced rates of colon cancer, while consumption of red and processed meat, or alcoholic beverages, and overconsumption as reflected in obesity are associated with increased rates. Animal studies have probed these effects and suggested directions for further refinement of diet in colon cancer prevention. Recently a central role for the microorganisms in the gastrointestinal tract in colon cancer development is being probed, and it is hypothesized that the microbes may integrate diet and host genetics in the etiology of the disease. This review provides background on dietary, genetic, and microbial impacts on colon cancer and describes an ongoing project using rodent models to assess the ability of digestion-resistant starch in the integration of these factors with the goal of furthering colon cancer prevention.

  4. Utilization of waste as biogas substrateby dominan microbes identified

    Science.gov (United States)

    Nurlina, E.; Sambasri, S.; Hartati, E.; Safitri, R.; Hodijat, A.

    2018-05-01

    Indonesia as the tropics have a source of biomass feedstock which is very large, so the waste biomass can be used optimally as an energy source in the form of biogas. This study was conducted to obtain alternative energy from domestic waste materials, given the limited availability of petroleum and natural gas sourced from fossil fuels. This methodology is an experimental method, the process conditions at room temperature 25-27 °C, pH adjusted to the growth of microbes to produce biogas, retention time 20-60 days, the bioreactor is operated with a batch system, the volume of waste in the bioreactor is made permanent, so that the production of biogas in large scale will increase the pressure inside the bioreactor. Biogas is formed accommodated then distributed to the stove. Factors that determine the formation of biogas is a microbial species capable methanogens convert acetate into biogas. From the results of microbial identification of the isolates in the bioreactor, has identified three types of bacteria methanogens namely Methanospirillum hungatei, Methanobacterium polustre and Methanolacinapoynteri. The results of this study, domestic waste can be utilized as a substrate in biogas production, with the highest methane composition reaches 50.79%. This result is expected to increase public knowledge to utilize the waste into biogas as a renewable energy to sufficient the energy needs of household, so it does not depend on the energy derived from fossil fuels.

  5. Chemotherapeutic Impact Of Natural Antioxidant Flavonoids Gallic Acid Rutin Quercetin And Mannitol On Pathogenic Microbes And Their Synergistic Effect

    Directory of Open Access Journals (Sweden)

    Ganesh Ghosh

    2015-08-01

    Full Text Available Several studies suggest that natural flavonoids with antioxidants and can influence the response to chemotherapy as well as the development of adverse side effects that results from treatment with antineoplastic agents and Its prevalence over Multi drug resistant bacterial strain revived interest on Flavonoids. Synergistic effect is defined as passive interaction arises when two agents combine and together they exert an inhibitory effect that is greater than the sum of individual effect The new Synergistic therapy so that antioxidant are more effective in combination on multi drug resistant bacterial strain. Interaction between natural antioxidants and topoisomerase enzyme can be seen through Quercetin as a potent antimicrobial compound alone and in combination with other natural antioxidant like rutin. MICMBC result show antibacterial activity of the flavonoids were enhanced when used in combination against Staphylococcus aureus Bacillus cereus Bacillus subtilis Klebsiella pneumonae Escherichia coli as the test bacteria. The combination of rutin and quercetin rutin and gallic acid mannitol and gallic acid were much more effective than either flavonoid alone. Furthermore Its gave a good relation between these antioxidant compound and antimicrobial activity. Flavonoids as a chemotherapeutic agent and its Synergistic effect can be solution for various microbial disease conditions.

  6. Studies on Bacterial Synthesis of Silver Nanoparticles Using Gamma Radiation and Their Activity against Some Pathogenic Microbes

    International Nuclear Information System (INIS)

    Hallol, M.M.A.M.A.

    2013-01-01

    Synthesis of nanoparticles as an emerging highlight of the intersection of nano technology and biotechnology has received increasing attention due to a growing need to develop environmentally-benign technologies in material synthesis. The metallic nanoparticles are the most promising as they show good antibacterial properties due to their large surface area to volume ratio, which is coming up as the current interest in research due to the growing microbial resistance against metal ions, antibiotics and the development of resistant strains (Fayaz et al., 2010). Silver has long been known to exhibit a strong toxicity to a wide range of 116 micro-organisms (Liau et al., 1997) for these reasons silver-based compounds have been used extensively in many bactericidal applications (Gupta et al., 1998 and Nomiya et al., 2004). Several salts of silver and their derivatives are commercially employed as antimicrobial agents. The bactericidal effect of silver ions on microorganisms is very well known; however, the bactericidal mechanism is only partially understood. It has been proposed that ionic silver strongly interacts with thiol groups of vital enzymes and inactivates them (Gupta et al., 1998). Experimental evidence suggests that DNA loses its replication ability once the bacteria have been treated with silver ions. Other studies have shown evidence of structural changes in the cell membrane as well as the formation of small electron-dense granules formed by silver and sulfur (Singh et al., 2008). Metal particles in the nanometer size range exhibit physical properties that are different from both the ion and the bulk material. This makes them exhibit remarkable properties such as increased catalytic activity due to morphologies with highly active facets (Singh et al., 2008). Microorganisms, such as bacteria and fungi, now play an important role in the remediation of toxic metals through the reduction of the metal ions (Kalishwaralal et al., 2008). Response surface methodology (RSM) is a collection of statistical and mathematical techniques useful for developing, improving and optimizing processes (Boyaci, 2005 and Myers and Montgomery, 2007). RSM is a well-known method applied in the optimization of medium constituents and other critical variables responsible for the production of biomolecules (Xiong et al., 2004 and Shin et al., 2004).inactivates them (Gupta et al., 1998). Experimental evidence suggests that DNA loses its replication ability once the bacteria have been treated with silver ions. Other studies have shown evidence of structural changes in the cell membrane as well as the formation of small electron-dense granules formed by silver and sulfur (Singh et al., 2008). Metal particles in the nanometer size range exhibit physical properties that are different from both the ion and the bulk material. This makes them exhibit remarkable properties such as increased catalytic activity due to morphologies with highly active facets (Singh et al., 2008). Microorganisms, such as bacteria and fungi, now play an important role in the remediation of toxic metals through the reduction of the metal ions (Kalishwaralal et al., 2008). Response surface methodology (RSM) is a collection of statistical and mathematical techniques useful for developing, improving and optimizing processes (Boyaci, 2005 and Myers and Montgomery, 2007). RSM is a well-known method applied in the optimization of medium constituents and other critical variables responsible for the production of biomolecules (Xiong et al., 2004 and Shin et al., 2004)

  7. Ecological and Clinical Consequences of Antibiotic Subsistence by Environmental Microbes

    DEFF Research Database (Denmark)

    Dantas, Gautam; Sommer, Morten Otto Alexander

    2011-01-01

    This chapter contains sections titled: Introduction Environmental Origins of Resistance: The Producer Hypothesis Resistome of other Soil Bacteria: Response to the Producers? Early Reports of Antibiotic Catabolism by Soil Bacteria The Antibiotic Subsistome: Who and how much? Antibiotic Subsistence...... as a Scavenger Phenotype Ecological Consequences of the Antibiotic Subsistome Investigating Connections Between Subsistomes and Resistomes Metagenomic Functional Selections for Discovering Genes Enabling Antibiotic Subsistence and Resistance Antibiotic Subsistence by Pathogenic Bacteria Concluding Remarks...

  8. Commensal microbes provide first line defense against Listeria monocytogenes infection

    Science.gov (United States)

    Littmann, Eric R.; Kim, Sohn G.; Morjaria, Sejal M.; Ling, Lilan; Gyaltshen, Yangtsho; Taur, Ying; Leiner, Ingrid M.

    2017-01-01

    Listeria monocytogenes is a foodborne pathogen that causes septicemia, meningitis and chorioamnionitis and is associated with high mortality. Immunocompetent humans and animals, however, can tolerate high doses of L. monocytogenes without developing systemic disease. The intestinal microbiota provides colonization resistance against many orally acquired pathogens, and antibiotic-mediated depletion of the microbiota reduces host resistance to infection. Here we show that a diverse microbiota markedly reduces Listeria monocytogenes colonization of the gut lumen and prevents systemic dissemination. Antibiotic administration to mice before low dose oral inoculation increases L. monocytogenes growth in the intestine. In immunodeficient or chemotherapy-treated mice, the intestinal microbiota provides nonredundant defense against lethal, disseminated infection. We have assembled a consortium of commensal bacteria belonging to the Clostridiales order, which exerts in vitro antilisterial activity and confers in vivo resistance upon transfer into germ free mice. Thus, we demonstrate a defensive role of the gut microbiota against Listeria monocytogenes infection and identify intestinal commensal species that, by enhancing resistance against this pathogen, represent potential probiotics. PMID:28588016

  9. How Do Small Things Make a Big Difference? Activities to Teach about Human-Microbe Interactions.

    Science.gov (United States)

    Jasti, Chandana; Hug, Barbara; Waters, Jillian L; Whitaker, Rachel J

    2014-11-01

    Recent scientific studies are providing increasing evidence for how microbes living in and on us are essential to our good health. However, many students still think of microbes only as germs that harm us. The classroom activities presented here are designed to shift student thinking on this topic. In these guided inquiry activities, students investigate human-microbe interactions as they work together to interpret and analyze authentic data from published articles and develop scientific models. Through the activities, students learn and apply ecological concepts as they come to see the human body as a fascinatingly complex ecosystem.

  10. How Do Small Things Make a Big Difference? Activities to Teach about Human–Microbe Interactions

    Science.gov (United States)

    JASTI, CHANDANA; HUG, BARBARA; WATERS, JILLIAN L.; WHITAKER, RACHEL J.

    2014-01-01

    Recent scientific studies are providing increasing evidence for how microbes living in and on us are essential to our good health. However, many students still think of microbes only as germs that harm us. The classroom activities presented here are designed to shift student thinking on this topic. In these guided inquiry activities, students investigate human–microbe interactions as they work together to interpret and analyze authentic data from published articles and develop scientific models. Through the activities, students learn and apply ecological concepts as they come to see the human body as a fascinatingly complex ecosystem. PMID:25520526

  11. Biosurfactant Producing Microbes from Oil Contaminated Soil - Isolation, Screening and Characterization

    OpenAIRE

    , A Pandey; , D Nandi; , N Prasad; , S Arora

    2016-01-01

    Th1s paper bas1cally deals W1th 1solat10n, productıon and characterızatıon of biosurfactant producing microbes from oil contaminated soil sample. In this paper, we are comparing and discussing different methods to screen & characterize microbes from soil which can degrade oil due to their biosurfactant producing activity which helps in reduction of surface tension of oil. Oils used to check the biosurfactant activity of microbes, were engine oil and vegetable oil. Further isolation of...

  12. The effects of packaging materials on microbe population in irradiated traditional herbal medicines

    International Nuclear Information System (INIS)

    Bagiawati, Sri; Hilmy, Nazly

    1983-01-01

    Microbial population and moisture content of traditional herbal medicines contaminated with 3 kinds of aerobic microbes, packed in 5 kinds of plastic packaging materials, followed by irradiation at minimum dose of 5 kGy and stored for 6 months were investigated. The highest reduction of microbial counts during storage was observed on samples packed in polyethylene bags. All of packaging materials used were found to be impermeable to microbes and water vapour. Radiation and packaging materials used acted synergistically to inactivate microbes durind storage. The microbial counts decreased as much as 2 to 4 log cycles during storage. (author)

  13. Top 10 plant pathogenic bacteria in molecular plant pathology.

    Science.gov (United States)

    Mansfield, John; Genin, Stephane; Magori, Shimpei; Citovsky, Vitaly; Sriariyanum, Malinee; Ronald, Pamela; Dow, Max; Verdier, Valérie; Beer, Steven V; Machado, Marcos A; Toth, Ian; Salmond, George; Foster, Gary D

    2012-08-01

    Many plant bacteriologists, if not all, feel that their particular microbe should appear in any list of the most important bacterial plant pathogens. However, to our knowledge, no such list exists. The aim of this review was to survey all bacterial pathologists with an association with the journal Molecular Plant Pathology and ask them to nominate the bacterial pathogens they would place in a 'Top 10' based on scientific/economic importance. The survey generated 458 votes from the international community, and allowed the construction of a Top 10 bacterial plant pathogen list. The list includes, in rank order: (1) Pseudomonas syringae pathovars; (2) Ralstonia solanacearum; (3) Agrobacterium tumefaciens; (4) Xanthomonas oryzae pv. oryzae; (5) Xanthomonas campestris pathovars; (6) Xanthomonas axonopodis pathovars; (7) Erwinia amylovora; (8) Xylella fastidiosa; (9) Dickeya (dadantii and solani); (10) Pectobacterium carotovorum (and Pectobacterium atrosepticum). Bacteria garnering honourable mentions for just missing out on the Top 10 include Clavibacter michiganensis (michiganensis and sepedonicus), Pseudomonas savastanoi and Candidatus Liberibacter asiaticus. This review article presents a short section on each bacterium in the Top 10 list and its importance, with the intention of initiating discussion and debate amongst the plant bacteriology community, as well as laying down a benchmark. It will be interesting to see, in future years, how perceptions change and which bacterial pathogens enter and leave the Top 10. © 2012 The Authors. Molecular Plant Pathology © 2012 BSPP and Blackwell Publishing Ltd.

  14. Plant Responses to Pathogen Attack: Small RNAs in Focus.

    Science.gov (United States)

    Islam, Waqar; Noman, Ali; Qasim, Muhammad; Wang, Liande

    2018-02-08

    Small RNAs (sRNA) are a significant group of gene expression regulators for multiple biological processes in eukaryotes. In plants, many sRNA silencing pathways produce extensive array of sRNAs with specialized roles. The evidence on record advocates for the functions of sRNAs during plant microbe interactions. Host sRNAs are reckoned as mandatory elements of plant defense. sRNAs involved in plant defense processes via different pathways include both short interfering RNA (siRNA) and microRNA (miRNA) that actively regulate immunity in response to pathogenic attack via tackling pathogen-associated molecular patterns (PAMPs) and other effectors. In response to pathogen attack, plants protect themselves with the help of sRNA-dependent immune systems. That sRNA-mediated plant defense responses play a role during infections is an established fact. However, the regulations of several sRNAs still need extensive research. In this review, we discussed the topical advancements and findings relevant to pathogen attack and plant defense mediated by sRNAs. We attempted to point out diverse sRNAs as key defenders in plant systems. It is hoped that sRNAs would be exploited as a mainstream player to achieve food security by tackling different plant diseases.

  15. Microbes at Surface-Air Interfaces: The Metabolic Harnessing of Relative Humidity, Surface Hygroscopicity, and Oligotrophy for Resilience

    Science.gov (United States)

    Stone, Wendy; Kroukamp, Otini; Korber, Darren R.; McKelvie, Jennifer; Wolfaardt, Gideon M.

    2016-01-01

    The human environment is predominantly not aqueous, and microbes are ubiquitous at the surface-air interfaces with which we interact. Yet microbial studies at surface-air interfaces are largely survival-oriented, whilst microbial metabolism has overwhelmingly been investigated from the perspective of liquid saturation. This study explored microbial survival and metabolism under desiccation, particularly the influence of relative humidity (RH), surface hygroscopicity, and nutrient availability on the interchange between these two phenomena. The combination of a hygroscopic matrix (i.e., clay or 4,000 MW polyethylene glycol) and high RH resulted in persistent measurable microbial metabolism during desiccation. In contrast, no microbial metabolism was detected at (a) hygroscopic interfaces at low RH, and (b) less hygroscopic interfaces (i.e., sand and plastic/glass) at high or low RH. Cell survival was conversely inhibited at high RH and promoted at low RH, irrespective of surface hygroscopicity. Based on this demonstration of metabolic persistence and survival inhibition at high RH, it was proposed that biofilm metabolic rates might inversely influence whole-biofilm resilience, with ‘resilience’ defined in this study as a biofilm’s capacity to recover from desiccation. The concept of whole-biofilm resilience being promoted by oligotrophy was supported in desiccation-tolerant Arthrobacter spp. biofilms, but not in desiccation-sensitive Pseudomonas aeruginosa biofilms. The ability of microbes to interact with surfaces to harness water vapor during desiccation was demonstrated, and potentially to harness oligotrophy (the most ubiquitous natural condition facing microbes) for adaptation to desiccation. PMID:27746774

  16. Plant response to biotic stress: Is there a common epigenetic response during plant-pathogenic and symbiotic interactions?

    Science.gov (United States)

    Zogli, Prince; Libault, Marc

    2017-10-01

    Plants constantly interact with pathogenic and symbiotic microorganisms. Recent studies have revealed several regulatory mechanisms controlling these interactions. Among them, the plant defense system is activated not only in response to pathogenic, but also in response to symbiotic microbes. Interestingly, shortly after symbiotic microbial recognition, the plant defense system is suppressed to promote plant infection by symbionts. Research studies have demonstrated the influence of the plant epigenome in modulating both pathogenic and symbiotic plant-microbe interactions, thereby influencing plant survival, adaptation and evolution of the plant response to microbial infections. It is however unclear if plant pathogenic and symbiotic responses share similar epigenomic profiles or if epigenomic changes differentially regulate plant-microbe symbiosis and pathogenesis. In this mini-review, we provide an update of the current knowledge of epigenomic control on plant immune responses and symbiosis, with a special attention being paid to knowledge gap and potential strategies to fill-in the missing links. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Respiratory microbes present in the nasopharynx of children hospitalised with suspected pulmonary tuberculosis in Cape Town, South Africa

    Directory of Open Access Journals (Sweden)

    Felix S. Dube

    2016-10-01

    Full Text Available Abstract Background Lower respiratory tract infection in children is increasingly thought to be polymicrobial in origin. Children with symptoms suggestive of pulmonary tuberculosis (PTB may have tuberculosis, other respiratory tract infections or co-infection with Mycobacterium tuberculosis and other pathogens. We aimed to identify the presence of potential respiratory pathogens in nasopharyngeal (NP samples from children with suspected PTB. Method NP samples collected from consecutive children presenting with suspected PTB at Red Cross Children’s Hospital (Cape Town, South Africa were tested by multiplex real-time RT-PCR. Mycobacterial liquid culture and Xpert MTB/RIF was performed on 2 induced sputa obtained from each participant. Children were categorised as definite-TB (culture or qPCR [Xpert MTB/RIF] confirmed, unlikely-TB (improvement of symptoms without TB treatment on follow-up and unconfirmed-TB (all other children. Results Amongst 214 children with a median age of 36 months (interquartile range, [IQR] 19–66 months, 34 (16 % had definite-TB, 86 (40 % had unconfirmed-TB and 94 (44 % were classified as unlikely-TB. Moraxella catarrhalis (64 %, Streptococcus pneumoniae (42 %, Haemophilus influenzae spp (29 % and Staphylococcus aureus (22 % were the most common bacteria detected in NP samples. Other bacteria detected included Mycoplasma pneumoniae (9 %, Bordetella pertussis (7 % and Chlamydophila pneumoniae (4 %. The most common viruses detected included metapneumovirus (19 %, rhinovirus (15 %, influenza virus C (9 %, adenovirus (7 %, cytomegalovirus (7 % and coronavirus O43 (5.6 %. Both bacteria and viruses were detected in 73, 55 and 56 % of the definite, unconfirmed and unlikely-TB groups, respectively. There were no significant differences in the distribution of respiratory microbes between children with and without TB. Using quadratic discriminant analysis, human metapneumovirus, C. pneumoniae, coronavirus 043

  18. Highly pathogenic avian influenza.

    Science.gov (United States)

    Swayne, D E; Suarez, D L

    2000-08-01

    Highly pathogenic (HP) avian influenza (AI) (HPAI) is an extremely contagious, multi-organ systemic disease of poultry leading to high mortality, and caused by some H5 and H7 subtypes of type A influenza virus, family Orthomyxoviridae. However, most AI virus strains are mildly pathogenic (MP) and produce either subclinical infections or respiratory and/or reproductive diseases in a variety of domestic and wild bird species. Highly pathogenic avian influenza is a List A disease of the Office International des Epizooties, while MPAI is neither a List A nor List B disease. Eighteen outbreaks of HPAI have been documented since the identification of AI virus as the cause of fowl plague in 1955. Mildly pathogenic avian influenza viruses are maintained in wild aquatic bird reservoirs, occasionally crossing over to domestic poultry and causing outbreaks of mild disease. Highly pathogenic avian influenza viruses do not have a recognised wild bird reservoir, but can occasionally be isolated from wild birds during outbreaks in domestic poultry. Highly pathogenic avian influenza viruses have been documented to arise from MPAI viruses through mutations in the haemagglutinin surface protein. Prevention of exposure to the virus and eradication are the accepted methods for dealing with HPAI. Control programmes, which imply allowing a low incidence of infection, are not an acceptable method for managing HPAI, but have been used during some outbreaks of MPAI. The components of a strategy to deal with MPAI or HPAI include surveillance and diagnosis, biosecurity, education, quarantine and depopulation. Vaccination has been used in some control and eradication programmes for AI.

  19. Small bugs, big business: the economic power of the microbe.

    Science.gov (United States)

    Demain, A L

    2000-10-01

    The versatility of microbial biosynthesis is enormous. The most industrially important primary metabolites are the amino acids, nucleotides, vitamins, solvents, and organic acids. Millions of tons of amino acids are produced each year with a total multibillion dollar market. Many synthetic vitamin production processes are being replaced by microbial fermentations. In addition to the multiple reaction sequences of fermentations, microorganisms are extremely useful in carrying out biotransformation processes. These are becoming essential to the fine chemical industry in the production of single-isomer intermediates. Microbially produced secondary metabolites are extremely important to our health and nutrition. As a group, they have tremendous economic importance. The antibiotic market amounts to almost 30 billion dollars and includes about 160 antibiotics and derivatives such as the beta-lactam peptide antibiotics, the macrolide polyketide erythromycin, tetracyclines, aminoglycosides and others. Other important pharmaceutical products produced by microrganisms are hypocholesterolemic agents, enzyme inhibitors, immunosuppressants and antitumor compounds, some having markets of over 1 billion dollars per year. Agriculturally important secondary metabolites include coccidiostats, animal growth promotants, antihelmintics and biopesticides. The modern biotechnology industry has made a major impact in the business world, biopharmaceuticals (recombinant protein drugs, vaccines and monoclonal antibodies) having a market of 15 billion dollars. Recombinant DNA technology has also produced a revolution in agriculture and has markedly increased markets for microbial enzymes. Molecular manipulations have been added to mutational techniques as means of increasing titers and yields of microbial procresses and in discovery of new drugs. Today, microbiology is a major participant in global industry. The best is yet to come as microbes move into the environmental and energy sectors.

  20. Insight and analysis problem solving in microbes to machines.

    Science.gov (United States)

    Clark, Kevin B

    2015-11-01

    A key feature for obtaining solutions to difficult problems, insight is oftentimes vaguely regarded as a special discontinuous intellectual process and/or a cognitive restructuring of problem representation or goal approach. However, this nearly century-old state of art devised by the Gestalt tradition to explain the non-analytical or non-trial-and-error, goal-seeking aptitude of primate mentality tends to neglect problem-solving capabilities of lower animal phyla, Kingdoms other than Animalia, and advancing smart computational technologies built from biological, artificial, and composite media. Attempting to provide an inclusive, precise definition of insight, two major criteria of insight, discontinuous processing and problem restructuring, are here reframed using terminology and statistical mechanical properties of computational complexity classes. Discontinuous processing becomes abrupt state transitions in algorithmic/heuristic outcomes or in types of algorithms/heuristics executed by agents using classical and/or quantum computational models. And problem restructuring becomes combinatorial reorganization of resources, problem-type substitution, and/or exchange of computational models. With insight bounded by computational complexity, humans, ciliated protozoa, and complex technological networks, for example, show insight when restructuring time requirements, combinatorial complexity, and problem type to solve polynomial and nondeterministic polynomial decision problems. Similar effects are expected from other problem types, supporting the idea that insight might be an epiphenomenon of analytical problem solving and consequently a larger information processing framework. Thus, this computational complexity definition of insight improves the power, external and internal validity, and reliability of operational parameters with which to classify, investigate, and produce the phenomenon for computational agents ranging from microbes to man-made devices. Copyright

  1. Universal ligation-detection-reaction microarray applied for compost microbes

    Directory of Open Access Journals (Sweden)

    Romantschuk Martin

    2008-12-01

    Full Text Available Abstract Background Composting is one of the methods utilised in recycling organic communal waste. The composting process is dependent on aerobic microbial activity and proceeds through a succession of different phases each dominated by certain microorganisms. In this study, a ligation-detection-reaction (LDR based microarray method was adapted for species-level detection of compost microbes characteristic of each stage of the composting process. LDR utilises the specificity of the ligase enzyme to covalently join two adjacently hybridised probes. A zip-oligo is attached to the 3'-end of one probe and fluorescent label to the 5'-end of the other probe. Upon ligation, the probes are combined in the same molecule and can be detected in a specific location on a universal microarray with complementary zip-oligos enabling equivalent hybridisation conditions for all probes. The method was applied to samples from Nordic composting facilities after testing and optimisation with fungal pure cultures and environmental clones. Results Probes targeted for fungi were able to detect 0.1 fmol of target ribosomal PCR product in an artificial reaction mixture containing 100 ng competing fungal ribosomal internal transcribed spacer (ITS area or herring sperm DNA. The detection level was therefore approximately 0.04% of total DNA. Clone libraries were constructed from eight compost samples. The LDR microarray results were in concordance with the clone library sequencing results. In addition a control probe was used to monitor the per-spot hybridisation efficiency on the array. Conclusion This study demonstrates that the LDR microarray method is capable of sensitive and accurate species-level detection from a complex microbial community. The method can detect key species from compost samples, making it a basis for a tool for compost process monitoring in industrial facilities.

  2. Deep RNA-Seq profile reveals biodiversity, plant-microbe interactions and a large family of NBS-LRR resistance genes in walnut (Juglans regia) tissues.

    Science.gov (United States)

    Chakraborty, Sandeep; Britton, Monica; Martínez-García, P J; Dandekar, Abhaya M

    2016-03-01

    Deep RNA-Seq profiling, a revolutionary method used for quantifying transcriptional levels, often includes non-specific transcripts from other co-existing organisms in spite of stringent protocols. Using the recently published walnut genome sequence as a filter, we present a broad analysis of the RNA-Seq derived transcriptome profiles obtained from twenty different tissues to extract the biodiversity and possible plant-microbe interactions in the walnut ecosystem in California. Since the residual nature of the transcripts being analyzed does not provide sufficient information to identify the exact strain, inferences made are constrained to the genus level. The presence of the pathogenic oomycete Phytophthora was detected in the root through the presence of a glyceraldehyde-3-phosphate dehydrogenase. Cryptococcus, the causal agent of cryptococcosis, was found in the catkins and vegetative buds, corroborating previous work indicating that the plant surface supported the sexual cycle of this human pathogen. The RNA-Seq profile revealed several species of the endophytic nitrogen fixing Actinobacteria. Another bacterial species implicated in aerobic biodegradation of methyl tert-butyl ether (Methylibium petroleiphilum) is also found in the root. RNA encoding proteins from the pea aphid were found in the leaves and vegetative buds, while a serine protease from mosquito with significant homology to a female reproductive tract protease from Drosophila mojavensis in the vegetative bud suggests egg-laying activities. The comprehensive analysis of RNA-seq data present also unraveled detailed, tissue-specific information of ~400 transcripts encoded by the largest family of resistance (R) genes (NBS-LRR), which possibly rationalizes the resistance of the specific walnut plant to the pathogens detected. Thus, we elucidate the biodiversity and possible plant-microbe interactions in several walnut (Juglans regia) tissues in California using deep RNA-Seq profiling.

  3. How do natural, uncultivated microbes interact with organic matter? Insights from single cell genomics and metagenomics

    DEFF Research Database (Denmark)

    Lloyd, Karen; Bird, Jordan; Schreiber, Lars

    Abstract Since most of the microbes in marine sediments remain uncultured, little is known about the mechanisms by which these natural communities degrade organic matter (OM). Likewise, little is known about the make-up of labile OM in marine sediments beyond general functional classes such as pr......Abstract Since most of the microbes in marine sediments remain uncultured, little is known about the mechanisms by which these natural communities degrade organic matter (OM). Likewise, little is known about the make-up of labile OM in marine sediments beyond general functional classes...... such as proteins, carbohydrates, and lipids, measured as monomers. However, microbes have complex interactions with specific polymers within these functional classes, which can be indicated by a microbe's enzymatic toolkit. We ...

  4. Biological invasions: economic and environmental costs of alien plant, animal, and microbe species

    National Research Council Canada - National Science Library

    Pimentel, David

    2011-01-01

    ...: Economic and Environmental Costs of Alien Plant, Animal, and Microbe Species, this reference discusses how non-native species invade new ecosystems and the subsequent economic and environmental effects of these species...

  5. Grow Plants the Organic Way: Give Them the Soil Microbes They Crave

    Directory of Open Access Journals (Sweden)

    Phil Mixter

    2013-03-01

    Full Text Available Review of: Teaming with Microbes: The Organic Gardener’s Guide to the Soil Food Web, revised ed.; Jeff Lowenfels and Wayne Lewis; (2010. Timber Press Inc., Portland, OR. 220 pages.

  6. Inhibition of in vitro growth of soil-borne pathogens by compost-inhabiting indigenous bacteria and fungi

    International Nuclear Information System (INIS)

    Ramzan, N.; Noreen, N.; Shahzad, S.

    2014-01-01

    During the present studies, compost-inhabiting microorganisms including 44 fungi and 15 bacteria isolated from different compost samples were evaluated for their in vitro efficacy against soil-borne pathogens viz., Fusarium solani, Macrophomina phaseolina, Pythium aphanidermatum, Rhizoctonia solani, and Sclerotium rolfsii. Compost inhabiting microbes like Trichoderma harzianum, T. virens, Bacillus cereus, B. pumilus, B. subtilis, Micrococcus varians and Pseudomonas fluorescens were found to inhibit all the test pathogens. Acrophialophora fusispora and Penicillium citrinum reduced the mycelial growth of all the test pathogens except Sclerotium rolfsii. Bacillus licheniformis and Bacillus megaterium showed biocontrol activity against all the pathogens except Rhizoctonia solani. Trichoderma harzianum parasitized mycelia of all the tested pathogens and produced coiling around the mycelium. (author)

  7. Pharmacological Targeting of the Host-Pathogen Interaction: Alternatives to Classical Antibiotics to Combat Drug-Resistant Superbugs.

    Science.gov (United States)

    Munguia, Jason; Nizet, Victor

    2017-05-01

    The rise of multidrug-resistant pathogens and the dearth of new antibiotic development place an existential strain on successful infectious disease therapy. Breakthrough strategies that go beyond classical antibiotic mechanisms are needed to combat this looming public health catastrophe. Reconceptualizing antibiotic therapy in the richer context of the host-pathogen interaction is required for innovative solutions. By defining specific virulence factors, the essence of a pathogen, and pharmacologically neutralizing their activities, one can block disease progression and sensitize microbes to immune clearance. Likewise, host-directed strategies to boost phagocyte bactericidal activity, enhance leukocyte recruitment, or reverse pathogen-induced immunosuppression seek to replicate the success of cancer immunotherapy in the field of infectious diseases. The answer to the threat of multidrug-resistant pathogens lies 'outside the box' of current antibiotic paradigms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Soil microbes and soil respiration of Mongolian Steppe soils under grazing stress.

    Science.gov (United States)

    Bölter, Manfred; Krümmelbein, Julia; Horn, Rainer; Möller, Rolf; Scheltz, Annette

    2012-04-01

    Soils of Northern China were analysed for their microbiological and soil physical properties with respect to different grazing stress. An important factor for this is soil compaction and related aeration due to pore size shifts. Bulk density increases significantly with increasing grazing intensity and soil carbon contents show decreasing values from top to depth. Organic carbon (LOI) concentrations decrease significantly with increasing grazing intensity. The data on LOI (2-5.8%) approximate 10-30 mg C, our data on glucose show values between 0.4-1.2 mg, i.e. approx. 4% of total carbon. Numbers and biomass of bacteria show generally a decreasing trend of those data at grazed and ungrazed sites, numbers range between 0.4 and 8.7 x10(8) g(-1) d.wt., bacterial biomass between 0.4 and 3.8 microg Cg(-1). This need to be recorded in relation to soil compaction and herewith-hampered aeration and nutrient flow. The temperature-respiration data also allow getting an idea of the Q10-values for soil respiration. The data are between 2.24 (5-15 degrees C) and 1.2 (25-35 degrees C). Our data are presented with a general review of biological properties of Mongolian Steppe soils.

  9. Soil microbes and fauna under Bt maize or an isogenic control, with and without additional insecticide

    DEFF Research Database (Denmark)

    Griffiths, B. S.; Birch, A. N. E.; Caul, S.

    The experiment described is a component of the EU-funded project entitled 'Soil ecological and economic evaluation of genetically modified crops' (ECOGEN, www.ecogen.dk). The overall project has an emphasis on maize genetically modified to express the Bacillus thuringiensis toxin (Bt maize...

  10. Nature, nurture, and microbes: The development of multiple sclerosis.

    Science.gov (United States)

    Wekerle, H

    2017-11-01

    This paper argues that multiple sclerosis (MS) is the result of an autoimmune attack against components of the central nervous system (CNS). The effector cells involved in the pathogenic process are CNS-autoreactive T cells present in the healthy immune system in a resting state. Upon activation, these cells cross the blood-brain barrier and attack the CNS target tissue. Recent evidence indicates that autoimmune activation may happen in the intestine, following an interaction of bacterial components of the gut flora with local CNS autoreactive T cells. The consequences of this concept are discussed. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Adaptive value of sex in microbial pathogens.

    Science.gov (United States)

    Michod, Richard E; Bernstein, Harris; Nedelcu, Aurora M

    2008-05-01

    Explaining the adaptive value of sex is one of the great outstanding problems in biology. The challenge comes from the difficulty in identifying the benefits provided by sex, which must outweigh the substantial costs of sex. Here, we consider the adaptive value of sex in viruses, bacteria and fungi, and particularly the information available on the adaptive role of sex in pathogenic microorganisms. Our general theme is that the varied aspects of sex in pathogens illustrate the varied issues surrounding the evolution of sex generally. These include, the benefits of sex (in the short- and long-term), as well as the costs of sex (both to the host and to the pathogen). For the benefits of sex (that is, its adaptive value), we consider three hypotheses: (i) sex provides for effective and efficient recombinational repair of DNA damages, (ii) sex provides DNA for food, and (iii) sex produces variation and reduces genetic associations among alleles under selection. Although the evolution of sex in microbial pathogens illustrates these general issues, our paper is not a general review of theories for the evolution of sex in all organisms. Rather, we focus on the adaptive value of sex in microbial pathogens and conclude that in terms of short-term benefits, the DNA repair hypothesis has the most support and is the most generally applicable hypothesis in this group. In particular, recombinational repair of DNA damages may substantially benefit pathogens when challenged by the oxidative defenses of the host. However, in the long-term, sex may help get rid of mutations, increase the rate of adaptation of the population, and, in pathogens, may infrequently create new infective strains. An additional general issue about sex illustrated by pathogens is that some of the most interesting consequences of sex are not necessarily the reasons for which sex evolved. For example, antibiotic resistance may be transferred by bacterial sex, but this transfer is probably not the reason sex

  12. The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: A review

    International Nuclear Information System (INIS)

    Xie, Yankai; Dong, Haoran; Zeng, Guangming; Tang, Lin; Jiang, Zhao; Zhang, Cong; Deng, Junmin; Zhang, Lihua; Zhang, Yi

    2017-01-01

    Highlights: • The interactions between various microbes and NZVI were summarized. • The adverse and positive effects of NZVI on the growth of microbes were reviewed. • The synergistic effects of NZVI and bacteria on pollutant removal were reviewed. • The effects of iron-reducing bacteria on the aged NZVI were reviewed. • Future challenges to study the interactions between NZVI and microbes are suggested. - Abstract: Nanoscale zero-valent iron (NZVI) particles, applied for in-situ subsurface remediation, are inevitable to interact with various microbes in the remediation sites directly or indirectly. This review summarizes their interactions, including the effects of NZVI on microbial activity and growth, the synergistic effect of NZVI and microbes on the contaminant removal, and the effects of microbes on the aging of NZVI. NZVI could exert either inhibitive or stimulative effects on the growth of microbes. The mechanisms of NZVI cytotoxicity (i.e., the inhibitive effect) include physical damage and biochemical destruction. The stimulative effects of NZVI on certain bacteria are associated with the creation of appropriate living environment, either through providing electron donor (e.g., H_2) or carbon sources (e.g., the engineered organic surface modifiers), or through eliminating the noxious substances that can cause bactericidal consequence. As a result of the positive interaction, the combination of NZVI and some microbes shows synergistic effect on contaminant removal. Additionally, the aged NZVI can be utilized by some iron-reducing bacteria, resulting in the transformation of Fe(III) to Fe(II), which can further contribute to the contaminant reduction. However, the Fe(III)-reduction process can probably induce environmental risks, such as environmental methylation and remobilization of the previously entrapped heavy metals.

  13. Research progress and application prospect of radiation-resistant prokaryotic microbe

    International Nuclear Information System (INIS)

    Wang Wei; Zhu Jing; Zhang Zhidong; Tang Qiyong; Chen Ming

    2013-01-01

    Radiation-resistant microbe is becoming the research hotspot because of its special life phenomenon and physiological mechanism. Radiation-resistant bacteria are one kind of the most studied radiation-resistant microbe. This article summarized some aspects of the research on radiation-resistant bacteria, including the radiation resistant bacteria resources, and discussed its potential application prospects in the environmental engineering, biotechnology, human health, military and space et al. (authors)

  14. The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: A review

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yankai [College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082 (China); Dong, Haoran, E-mail: dongh@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082 (China); Zeng, Guangming; Tang, Lin; Jiang, Zhao; Zhang, Cong; Deng, Junmin; Zhang, Lihua; Zhang, Yi [College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082 (China)

    2017-01-05

    Highlights: • The interactions between various microbes and NZVI were summarized. • The adverse and positive effects of NZVI on the growth of microbes were reviewed. • The synergistic effects of NZVI and bacteria on pollutant removal were reviewed. • The effects of iron-reducing bacteria on the aged NZVI were reviewed. • Future challenges to study the interactions between NZVI and microbes are suggested. - Abstract: Nanoscale zero-valent iron (NZVI) particles, applied for in-situ subsurface remediation, are inevitable to interact with various microbes in the remediation sites directly or indirectly. This review summarizes their interactions, including the effects of NZVI on microbial activity and growth, the synergistic effect of NZVI and microbes on the contaminant removal, and the effects of microbes on the aging of NZVI. NZVI could exert either inhibitive or stimulative effects on the growth of microbes. The mechanisms of NZVI cytotoxicity (i.e., the inhibitive effect) include physical damage and biochemical destruction. The stimulative effects of NZVI on certain bacteria are associated with the creation of appropriate living environment, either through providing electron donor (e.g., H{sub 2}) or carbon sources (e.g., the engineered organic surface modifiers), or through eliminating the noxious substances that can cause bactericidal consequence. As a result of the positive interaction, the combination of NZVI and some microbes shows synergistic effect on contaminant removal. Additionally, the aged NZVI can be utilized by some iron-reducing bacteria, resulting in the transformation of Fe(III) to Fe(II), which can further contribute to the contaminant reduction. However, the Fe(III)-reduction process can probably induce environmental risks, such as environmental methylation and remobilization of the previously entrapped heavy metals.

  15. Differential Signaling and Sugar Exchanges in Response to Avirulent Pathogen- and Symbiont-Derived Molecules in Tobacco Cells

    Directory of Open Access Journals (Sweden)

    Carole Pfister

    2017-11-01

    Full Text Available Plants interact with microbes whose ultimate aim is to exploit plant carbohydrates for their reproduction. Plant–microbe interactions (PMIs are classified according to the nature of their trophic exchanges: while mutualistic microbes trade nutrients with plants, pathogens unilaterally divert carbohydrates. The early responses following microbe recognition and the subsequent control of plant sugar distribution are still poorly understood. To further decipher PMI functionality, we used tobacco cells treated with microbial molecules mimicking pathogenic or mutualistic PMIs, namely cryptogein, a defense elicitor, and chitotetrasaccharide (CO4, which is secreted by mycorrhizal fungi. CO4 was perceived by tobacco cells and triggered widespread transient signaling components such as a sharp cytosolic Ca2+ elevation, NtrbohD-dependent H2O2 production, and MAP kinase activation. These CO4-induced events differed from those induced by cryptogein, i.e., sustained events leading to cell death. Furthermore, cryptogein treatment inhibited glucose and sucrose uptake but not fructose uptake, and promoted the expression of NtSUT and NtSWEET sugar transporters, whereas CO4 had no effect on sugar uptake and only a slight effect on NtSWEET2B expression. Our results suggest that microbial molecules induce different signaling responses that reflect microbial lifestyle and the subsequent outcome of the interaction.

  16. MicrobesOnline: an integrated portal for comparative and functional genomics

    Energy Technology Data Exchange (ETDEWEB)

    Dehal, Paramvir; Joachimiak, Marcin; Price, Morgan; Bates, John; Baumohl, Jason; Chivian, Dylan; Friedland, Greg; Huang, Kathleen; Keller, Keith; Novichkov, Pavel; Dubchak, Inna; Alm, Eric; Arkin, Adam

    2011-07-14

    Since 2003, MicrobesOnline (http://www.microbesonline.org) has been providing a community resource for comparative and functional genome analysis. The portal includes over 1000 complete genomes of bacteria, archaea and fungi and thousands of expression microarrays from diverse organisms ranging from model organisms such as Escherichia coli and Saccharomyces cerevisiae to environmental microbes such as Desulfovibrio vulgaris and Shewanella oneidensis. To assist in annotating genes and in reconstructing their evolutionary history, MicrobesOnline includes a comparative genome browser based on phylogenetic trees for every gene family as well as a species tree. To identify co-regulated genes, MicrobesOnline can search for genes based on their expression profile, and provides tools for identifying regulatory motifs and seeing if they are conserved. MicrobesOnline also includes fast phylogenetic profile searches, comparative views of metabolic pathways, operon predictions, a workbench for sequence analysis and integration with RegTransBase and other microbial genome resources. The next update of MicrobesOnline will contain significant new functionality, including comparative analysis of metagenomic sequence data. Programmatic access to the database, along with source code and documentation, is available at http://microbesonline.org/programmers.html.

  17. MicrobesOnline: an integrated portal for comparative and functional genomics

    Energy Technology Data Exchange (ETDEWEB)

    Dehal, Paramvir S.; Joachimiak, Marcin P.; Price, Morgan N.; Bates, John T.; Baumohl, Jason K.; Chivian, Dylan; Friedland, Greg D.; Huang, Katherine H.; Keller, Keith; Novichkov, Pavel S.; Dubchak, Inna L.; Alm, Eric J.; Arkin, Adam P.

    2009-09-17

    Since 2003, MicrobesOnline (http://www.microbesonline.org) has been providing a community resource for comparative and functional genome analysis. The portal includes over 1000 complete genomes of bacteria, archaea and fungi and thousands of expression microarrays from diverse organisms ranging from model organisms such as Escherichia coli and Saccharomyces cerevisiae to environmental microbes such as Desulfovibrio vulgaris and Shewanella oneidensis. To assist in annotating genes and in reconstructing their evolutionary history, MicrobesOnline includes a comparative genome browser based on phylogenetic trees for every gene family as well as a species tree. To identify co-regulated genes, MicrobesOnline can search for genes based on their expression profile, and provides tools for identifying regulatory motifs and seeing if they are conserved. MicrobesOnline also includes fast phylogenetic profile searches, comparative views of metabolic pathways, operon predictions, a workbench for sequence analysis and integration with RegTransBase and other microbial genome resources. The next update of MicrobesOnline will contain significant new functionality, including comparative analysis of metagenomic sequence data. Programmatic access to the database, along with source code and documentation, is available at http://microbesonline.org/programmers.html.

  18. The response of earthworms (Eisenia fetida) and soil microbes to the crumb rubber material used in artificial turf fields.

    Science.gov (United States)

    Pochron, Sharon T; Fiorenza, Andrew; Sperl, Cassandra; Ledda, Brianne; Lawrence Patterson, Charles; Tucker, Clara C; Tucker, Wade; Ho, Yuwan Lisa; Panico, Nicholas

    2017-04-01

    Municipalities have been replacing grass fields with artificial turf, which uses crumb rubber infill made from recycled tires. Crumb rubber contains hydrocarbons, organic compounds, and heavy metals. Water runoff from crumb rubber fields contains heavy metals. These components can damage the environment. We contaminated topsoil with new crumb rubber and measured its impact on earthworms and soil microbes. Specifically, we compared soil microbe activity and earthworm health, survivorship, and longevity in heat and light stress under two soil regimes: clean topsoil and clean topsoil contaminated with crumb rubber. We then characterized levels of metals, nutrients, and micronutrients of both soil treatments and compared those to published New York soil background levels and to levels set by the New York State Department of Environmental Conservation (DEC) as remediation goals. We found that: 1) contaminated soil did not inhibit microbial respiration rates, 2) earthworm survivorship was not impacted by exposure to contaminated soil, 3) earthworms' ability to cope with heat and light stress remained unchanged after living in contaminated soil, but 4) earthworms living in contaminated soil gained 14% less body weight than did earthworms living in uncontaminated soil. We also found that, with the exception of zinc, heavy metals in our contaminated soil did not exceed the background levels found throughout New York State or the remediation targets set by the DEC. Published by Elsevier Ltd.

  19. Microbes in Heavy Metal Remediation: A Review on Current Trends and Patents.

    Science.gov (United States)

    Mishra, Geetesh Kumar

    2017-01-01

    Heavy metal pollution in the environmental samples like soil, water and runoff water is a worldwide problem. Such contamination of environmental matrices by the heavy metals accumulates due to various activities involving human driven sources and industries, although agriculture and sewage disposal are the largest source for the heavy metal contamination. Disposal of heavy metals or waste products containing heavy metals in the environment postures a trivial threat to public safety and health. Heavy metals are persistence and they can also cause biomagnifications and accumulate in food chain. Microbial bioremediation of heavy metal is emerging as an effective technique. Microbial bioremediation is a highly efficient environmental friendly procedure which also reduces the cost of cleanup process associated with heavy metal contamination. New methods for removal of heavy metals from the environmental samples are under development and most recent advancements have been made in exploring the knowledge of metal-microbes interactions and its use for heavy metal remediation. This review paper will focus on the microbial bioremediation process and highlight some of the newly developed patented methods for microbial bioremediation of the heavy metals from the environmental samples using microbial populations. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Probiotics as beneficial microbes in aquaculture: an update on their multiple modes of action: a review.

    Science.gov (United States)

    Zorriehzahra, Mohammad Jalil; Delshad, Somayeh Torabi; Adel, Milad; Tiwari, Ruchi; Karthik, K; Dhama, Kuldeep; Lazado, Carlo C

    2016-12-01

    Wide and discriminate use of antibiotics has resulted in serious biological and ecological concerns, especially the emergence of antibiotic resistance. Probiotics, known as beneficial microbes, are being proposed as an effective and eco-friendly alternative to antibiotics. They were first applied in aquaculture species more than three decades ago, but considerable attention had been given only in the early 2000s. Probiotics are defined as live or dead, or even a component of the microorganisms that act under different modes of action in conferring beneficial effects to the host or to its environment. Several probiotics have been characterized and applied in fish and a number of them are of host origin. Unlike some disease control alternatives being adapted and proposed in aquaculture where actions are unilateral, the immense potential of probiotics lies on their multiple mechanisms in conferring benefits to the host fish and the rearing environment. The staggering number of probiotics papers in aquaculture highlights the multitude of advantages from these microorganisms and conspicuously position them in the dynamic search for health-promoting alternatives for cultured fish. This paper provides an update on the use of probiotics in finfish aquaculture, particularly focusing on their modes of action. It explores the contemporary understanding of their spatial and nutritional competitiveness, inhibitory metabolites, environmental modification capability, immunomodulatory potential and stress-alleviating mechanism. This timely update affirms the importance of probiotics in fostering sustainable approaches in aquaculture and provides avenues in furthering its research and development.

  1. [Effects of Different Reclaimed Scenarios on Soil Microbe and Enzyme Activities in Mining Areas].

    Science.gov (United States)

    Li, Jun-jian; Liu, Feng; Zhou, Xiao-mei

    2015-05-01

    Abstract: Ecological degradation in the mining areas is greatly aggravated in recent several decades, and ecological restoration has become the primary measure for the sustainable development. Soil microbe and enzyme activity are sensitive indices to evaluate soil quality. Ecological reconstruction was initiated in Antaibao mining area, and we tested soil physicochemical properties, microbial populations of azotobacteria, nitrifying-bacteria and denitrifying-bacteria, and enzyme activities (including sucrose, polyphenol oxidase, dehydrogenase and urease) under different regeneration scenarios. Regeneration scenarios had significant effects on soil physicochemical properties, microbial population and enzyme activities. Total nitrogen was strongly correlated with azotobacteria and nitrifying-bacteria, however, total nitrogen was not correlated with denitrifying-bacteria. Phenol oxidase activity was negatively correlated with soil organic carbon and total nitrogen, but other enzyme activities were positively correlated with soil organic carbon and total nitrogen. Principal Component Analysis ( PCA) was applied to analyze the integrated fertility index (IFI). The highest and lowest IFIs were in Robinia pseudoacacia-Pinus tabuliformis mixed forests and un-reclaimed area, respectively. R. pseudoacacia-P. tabuliformis mixed forests were feasible for reclaimed mining areas in semi-arid region Northwest Shanxi.

  2. Human Pathogens on Plants: Designing a Multidisciplinary Strategy for Research.

    Science.gov (United States)

    Fletcher, Jacqueline; Leach, Jan E; Eversole, Kellye; Tauxe, Robert

    2014-10-15

    Recent efforts to address concerns about microbial contamination of food plants and resulting foodborne illness have prompted new collaboration and interactions between the scientific communities of plant pathology and food safety. This article provides perspectives from scientists of both disciplines and presents selected research results and concepts that highlight existing and possible future synergisms for audiences of both disciplines. Plant pathology is a complex discipline that encompasses studies of the dissemination, colonization, and infection of plants by microbes such as bacteria, viruses, fungi, and oomycetes. Plant pathologists study plant diseases as well as host plant defense responses and disease management strategies with the goal of minimizing disease occurrences and impacts. Repeated outbreaks of human illness attributed to the contamination of fresh produce, nuts and seeds, and other plant-derived foods by human enteric pathogens such as Shiga toxin-producing Escherichia coli and Salmonella spp. have led some plant pathologists to broaden the application of their science in the past two decades, to address problems of human pathogens on plants (HPOPs). Food microbiology, which began with the study of microbes that spoil foods and those that are critical to produce food, now also focuses study on how foods become contaminated with pathogens and how this can be controlled or prevented. Thus, at the same time, public health researchers and food microbiologists have become more concerned about plant-microbe interactions before and after harvest. New collaborations are forming between members of the plant pathology and food safety communities, leading to enhanced research capacity and greater understanding of the issues for which research is needed. The two communities use somewhat different vocabularies and conceptual models. For example, traditional plant pathology concepts such as the disease triangle and the disease cycle can help to define

  3. Human pathogens on plants: designing a multidisciplinary strategy for research.

    Science.gov (United States)

    Fletcher, Jacqueline; Leach, Jan E; Eversole, Kellye; Tauxe, Robert

    2013-04-01

    Recent efforts to address concerns about microbial contamination of food plants and resulting foodborne illness have prompted new collaboration and interactions between the scientific communities of plant pathology and food safety. This article provides perspectives from scientists of both disciplines and presents selected research results and concepts that highlight existing and possible future synergisms for audiences of both disciplines. Plant pathology is a complex discipline that encompasses studies of the dissemination, colonization, and infection of plants by microbes such as bacteria, viruses, fungi, and oomycetes. Plant pathologists study plant diseases as well as host plant defense responses and disease management strategies with the goal of minimizing disease occurrences and impacts. Repeated outbreaks of human illness attributed to the contamination of fresh produce, nuts and seeds, and other plant-derived foods by human enteric pathogens such as Shiga toxin-producing Escherichia coli and Salmonella spp. have led some plant pathologists to broaden the application of their science in the past two decades, to address problems of human pathogens on plants (HPOPs). Food microbiology, which began with the study of microbes that spoil foods and those that are critical to produce food, now also focuses study on how foods become contaminated with pathogens and how this can be controlled or prevented. Thus, at the same time, public health researchers and food microbiologists have become more concerned about plant-microbe interactions before and after harvest. New collaborations are forming between members of the plant pathology and food safety communities, leading to enhanced research capacity and greater understanding of the issues for which research is needed. The two communities use somewhat different vocabularies and conceptual models. For example, traditional plant pathology concepts such as the disease triangle and the disease cycle can help to define

  4. Autophagy in plant pathogenic fungi.

    Science.gov (United States)

    Liu, Xiao-Hong; Xu, Fei; Snyder, John Hugh; Shi, Huan-Bin; Lu, Jian-Ping; Lin, Fu-Cheng

    2016-09-01

    Autophagy is a conserved cellular process that degrades cytoplasmic constituents in vacuoles. Plant pathogenic fungi develop special infection structures and/or secrete a range of enzymes to invade their plant hosts. It has been demonstrated that monitoring autophagy processes can be extremely useful in visualizing the sequence of events leading to pathogenicity of plant pathogenic fungi. In this review, we introduce the molecular mechanisms involved in autophagy. In addition, we explore the relationship between autophagy and pathogenicity in plant pathogenic fungi. Finally, we discuss the various experimental strategies available for use in the study of autophagy in plant pathogenic fungi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. [Macro- and microevolution as related to the problem of origin and global expansion of the plague pathogen Yersinia pestis].

    Science.gov (United States)

    Suntsov, V V; Suntsova, N I

    2008-01-01

    The ratio of macro- and microevolutionary processes is considered with reference to the ecological scenario of the origin of the plague pathogen and its subsequent natural and anthropogenic global expansion. The macroevolutionary transformation of the ancestral pseudotuberculosis microbe clone into the initial plague microbe Yersinia pestis tarbagani occurred in Central Asia at the end of the Late Pleistocene by a "vertical" Darwinian way in an inadaptive heterothermal continual intermediate environment--the Mongolian marmot Marmota sibirica-flea Oropsylla silantiewi system--via a sequence of unstable and currently extinct intermediate forms. Its natural geographic expansion on the "oil spot" principle in the postglacial time led to the microevolutionary formation of 20-30 hostal subspecies circulating in populations of the background species of burrowing rodents and pikas in arid areas of Eurasia. The intercontinental spread of the "marmot" and "rat" pathogen subspecies in the past few centuries has been exclusively anthropogenic, with the involvement of synanthropic (ship) rats.

  6. In-situ Monitoring of Plant-microbe Communication to Understand the Influence of Soil Properties on Symbiotic Biological Nitrogen Fixation

    Science.gov (United States)

    Webster, T.; Del Valle, I.; Cheng, H. Y.; Silberg, J. J.; Masiello, C. A.; Lehmann, J.

    2016-12-01

    Plant-microbe signaling is important for many symbiotic and pathogenic interactions. While this signaling often occurs in soils, very little research has evaluated the role that the soil mineral and organic matter matrix plays in plant-microbe communication. One hurdle to these studies is the lack of simple tools for evaluating how soil mineral phases and organic matter influence the availability of plant-produced flavonoids that initiate the symbiosis between nitrogen-fixing bacteria and legumes. Because of their range of hydrophobic and electrostatic properties, flavonoids represent an informative class of signaling molecules. In this presentation, we will describe studies examining the bioavailable concentrations of flavonoids in soils using traditional techniques, such as high-pressure liquid chromatography and fluorescent microbial biosensors. Additionally, we will describe our progress developing a Rhizobium leguminosarum reporter that can be deployed into soils to report on flavonoid levels. This new microbial reporter is designed so that Rhizobium only generates a volatile gas signal when it encounters a defined concentration of flavonoids. By monitoring the output of this biosensor using gas chromatography-mass spectrometry during real time during soil incubations, we are working to establish the impact of soil organic matter, pH, and mineral phases on the reception of these signaling molecules. We expect that the findings from these studies will be useful for recommending soil management strategies that can enhance the communication between legumes and nitrogen fixing bacteria. This research highlights the importance of studying the role of soil as a mediator of plant-microbe communication.

  7. Use of an Optical Trap for Study of Host-Pathogen Interactions for Dynamic Live Cell Imaging

    OpenAIRE

    Tam, Jenny M.; Castro, Carlos E.; Heath, Robert J. W.; Mansour, Michael K.; Cardenas, Michael L.; Xavier, Ramnik J.; Lang, Matthew J.; Vyas, Jatin M.

    2011-01-01

    Dynamic live cell imaging allows direct visualization of real-time interactions between cells of the immune system1, 2; however, the lack of spatial and temporal control between the phagocytic cell and microbe has rendered focused observations into the initial interactions of host response to pathogens difficult. Historically, intercellular contact events such as phagocytosis3 have been imaged by mixing two cell types, and then continuously scanning the field-of-view to find serendipitous int...

  8. Ecological and evolutionary dynamics of a model facultative pathogen: Agrobacterium and crown gall disease of plants.

    Science.gov (United States)

    Barton, Ian S; Fuqua, Clay; Platt, Thomas G

    2018-01-01

    Many important pathogens maintain significant populations in highly disparate disease and non-disease environments. The consequences of this environmental heterogeneity in shaping the ecological and evolutionary dynamics of these facultative pathogens are incompletely understood. Agrobacterium tumefaciens, the causative agent for crown gall disease of plants has proven a productive model for many aspects of interactions between pathogens and their hosts and with other microbes. In this review, we highlight how this past work provides valuable context for the use of this system to examine how heterogeneity and transitions between disease and non-disease environments influence the ecology and evolution of facultative pathogens. We focus on several features common among facultative pathogens, such as the physiological remodelling required to colonize hosts from environmental reservoirs and the consequences of competition with host and non-host associated microbiota. In addition, we discuss how the life history of facultative pathogens likely often results in ecological tradeoffs associated with performance in disease and non-disease environments. These pathogens may therefore have different competitive dynamics in disease and non-disease environments and are subject to shifting selective pressures that can result in pathoadaptation or the within-host spread of avirulent phenotypes. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Calcineurin plays key roles in the dimorphic transition and virulence of the human pathogenic zygomycete Mucor circinelloides.

    Science.gov (United States)

    Lee, Soo Chan; Li, Alicia; Calo, Silvia; Heitman, Joseph

    2013-01-01

    Many pathogenic fungi are dimorphic and switch between yeast and filamentous states. This switch alters host-microbe interactions and is critical for pathogenicity. However, in zygomycetes, whether dimorphism contributes to virulence is a central unanswered question. The pathogenic zygomycete Mucor circinelloides exhibits hyphal growth in aerobic conditions but switches to multi-budded yeast growth under anaerobic/high CO₂ conditions. We found that in the presence of the calcineurin inhibitor FK506, Mucor exhibits exclusively multi-budded yeast growth. We also found that M. circinelloides encodes three calcineurin catalytic A subunits (CnaA, CnaB, and CnaC) and one calcineurin regulatory B subunit (CnbR). Mutations in the latch region of CnbR and in the FKBP12-FK506 binding domain of CnaA result in hyphal growth of Mucor in the presence of FK506. Disruption of the cnbR gene encoding the sole calcineurin B subunit necessary for calcineurin activity yielded mutants locked in permanent yeast phase growth. These findings reveal that the calcineurin pathway plays key roles in the dimorphic transition from yeast to hyphae. The cnbR yeast-locked mutants are less virulent than the wild-type strain in a heterologous host system, providing evidence that hyphae or the yeast-hyphal transition are linked to virulence. Protein kinase A activity (PKA) is elevated during yeast growth under anaerobic conditions, in the presence of FK506, or in the yeast-locked cnbR mutants, suggesting a novel connection between PKA and calcineurin. cnaA mutants lacking the CnaA catalytic subunit are hypersensitive to calcineurin inhibitors, display a hyphal polarity defect, and produce a mixture of yeast and hyphae in aerobic culture. The cnaA mutants also produce spores that are larger than wild-type, and spore size is correlated with virulence potential. Our results demonstrate that the calcineurin pathway orchestrates the yeast-hyphal and spore size dimorphic transitions that contribute to

  10. Transport of Pathogen Surrogates in Soil Treatment Units: Numerical Modeling

    Directory of Open Access Journals (Sweden)

    Ivan Morales

    2014-04-01

    Full Text Available Segmented mesocosms (n = 3 packed with sand, sandy loam or clay loam soil were used to determine the effect of soil texture and depth on transport of two septic tank effluent (STE-borne microbial pathogen surrogates—green fluorescent protein-labeled E. coli (GFPE and MS-2 coliphage—in soil treatment units. HYDRUS 2D/3D software was used to model the transport of these microbes from the infiltrative surface. Mesocosms were spiked with GFPE and MS-2 coliphage at 105 cfu/mL STE and 105–106 pfu/mL STE, respectively. In all soils, removal rates were >99.99% at 25 cm. The transport simulation compared (1 optimization; and (2 trial-and-error modeling approaches. Only slight differences between the transport parameters were observed between these approaches. Treating both the die-off rates and attachment/detachment rates as variables resulted in an overall better model fit, particularly for the tailing phase of the experiments. Independent of the fitting procedure, attachment rates computed by the model were higher in sandy and sandy loam soils than clay, which was attributed to unsaturated flow conditions at lower water content in the coarser-textured soils. Early breakthrough of the bacteria and virus indicated the presence of preferential flow in the system in the structured clay loam soil, resulting in faster movement of water and microbes through the soil relative to a conservative tracer (bromide.

  11. Tailoring the Immune Response via Customization of Pathogen Gene Expression.

    Science.gov (United States)

    Runco, Lisa M; Stauft, Charles B; Coleman, J Robert

    2014-01-01

    The majority of studies focused on the construction and reengineering of bacterial pathogens have mainly relied on the knocking out of virulence factors or deletion/mutation of amino acid residues to then observe the microbe's phenotype and the resulting effect on the host immune response. These knockout bacterial strains have also been proposed as vaccines to combat bacterial disease. Theoretically, knockout strains would be unable to cause disease since their virulence factors have been removed, yet they could induce a protective memory response. While knockout strains have been valuable tools to discern the role of virulence factors in host immunity and bacterial pathogenesis, they have been unable to yield clinically relevant vaccines. The advent of synthetic biology and enhanced user-directed gene customization has altered this binary process of knockout, followed by observation. Recent studies have shown that a researcher can now tailor and customize a given microbe's gene expression to produce a desired immune response. In this commentary, we highlight these studies as a new avenue for controlling the inflammatory response as well as vaccine development.

  12. Comparative proteomic analysis in pea treated with microbial consortia of beneficial microbes reveals changes in the protein network to enhance resistance against Sclerotinia sclerotiorum.

    Science.gov (United States)

    Jain, Akansha; Singh, Akanksha; Singh, Surendra; Singh, Vinay; Singh, Harikesh Bahadur

    2015-06-15

    Microbial consortia may provide protection against pathogenic ingress via enhancing plant defense responses. Pseudomonas aeruginosa PJHU15, Trichoderma harzianum TNHU27 and Bacillus subtilis BHHU100 were used either singly or in consortia in the pea rhizosphere to observe proteome level changes upon Sclerotinia sclerotiorum challenge. Thirty proteins were found to increase or decrease differentially in 2-DE gels of pea leaves, out of which 25 were identified by MALDI-TOF MS or MS/MS. These proteins were classified into several functional categories including photosynthesis, respiration, phenylpropanoid metabolism, protein synthesis, stress regulation, carbohydrate and nitrogen metabolism and disease/defense-related processes. The respective homologue of each protein identified was trapped in Pisum sativum and a phylogenetic tree was constructed to check the ancestry. The proteomic view of the defense response to S. sclerotiorum in pea, in the presence of beneficial microbes, highlights the enhanced protection that can be provided by these microbes in challenged plants. Copyright © 2015 Elsevier GmbH. All rights reserved.

  13. Bacterial-derived uracil as a modulator of mucosal immunity and gut-microbe homeostasis in Drosophila.

    Science.gov (United States)

    Lee, Kyung-Ah; Kim, Sung-Hee; Kim, Eun-Kyoung; Ha, Eun-Mi; You, Hyejin; Kim, Boram; Kim, Min-Ji; Kwon, Youngjoo; Ryu, Ji-Hwan; Lee, Won-Jae

    2013-05-09

    All metazoan guts are subjected to immunologically unique conditions in which an efficient antimicrobial system operates to eliminate pathogens while tolerating symbiotic commensal microbiota. However, the molecular mechanisms controlling this process are only partially understood. Here, we show that bacterial-derived uracil acts as a ligand for dual oxidase (DUOX)-dependent reactive oxygen species generation in Drosophila gut and that the uracil production in bacteria causes inflammation in the gut. The acute and controlled uracil-induced immune response is required for efficient elimination of bacteria, intestinal cell repair, and host survival during infection of nonresident species. Among resident gut microbiota, uracil production is absent in symbionts, allowing harmonious colonization without DUOX activation, whereas uracil release from opportunistic pathobionts provokes chronic inflammation. These results reveal that bacteria with distinct abilities to activate uracil-induced gut inflammation, in terms of intensity and duration, act as critical factors that determine homeostasis or pathogenesis in gut-microbe interactions. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Mechanisms of antimicrobial resistance among hospital-associated pathogens.

    Science.gov (United States)

    Khan, Ayesha; Miller, William R; Arias, Cesar A

    2018-04-01

    The introduction of antibiotics revolutionized medicine in the 20th-century permitting the treatment of once incurable infections. Widespread use of antibiotics, however, has led to the development of resistant organisms, particularly in the healthcare setting. Today, the clinician is often faced with pathogens carrying a cadre of resistance determinants that severely limit therapeutic options. The genetic plasticity of microbes allows them to adapt to stressors via genetic mutations, acquisition or sharing of genetic material and modulation of genetic expression leading to resistance to virtually any antimicrobial used in clinical practice. Areas covered: This is a comprehensive review that outlines major mechanisms of resistance in the most common hospital-associated pathogens including bacteria and fungi. Expert commentary: Understanding the genetic and biochemical mechanisms of such antimicrobial adaptation is crucial to tackling the rapid spread of resistance, can expose unconventional therapeutic targets to combat multidrug resistant pathogens and lead to more accurate prediction of antimicrobial susceptibility using rapid molecular diagnostics. Clinicians making treatment decisions based on the molecular basis of resistance may design therapeutic strategies that include de-escalation of broad spectrum antimicrobial usage, more focused therapies or combination therapies. These strategies are likely to improve patient outcomes and decrease the risk of resistance in hospital settings.

  15. Computational analyses of ancient pathogen DNA from herbarium samples: challenges and prospects.

    Science.gov (United States)

    Yoshida, Kentaro; Sasaki, Eriko; Kamoun, Sophien

    2015-01-01

    The application of DNA sequencing technology to the study of ancient DNA has enabled the reconstruction of past epidemics from genomes of historically important plant-associated microbes. Recently, the genome sequences of the potato late blight pathogen Phytophthora infestans were analyzed from 19th century herbarium specimens. These herbarium samples originated from infected potatoes collected during and after the Irish potato famine. Herbaria have therefore great potential to help elucidate past epidemics of crops, date the emergence of pathogens, and inform about past pathogen population dynamics. DNA preservation in herbarium samples was unexpectedly good, raising the possibility of a whole new research area in plant and microbial genomics. However, the recovered DNA can be extremely fragmented resulting in specific challenges in reconstructing genome sequences. Here we review some of the challenges in computational analyses of ancient DNA from herbarium samples. We also applied the recently developed linkage method to haplotype reconstruction of diploid or polyploid genomes from fragmented ancient DNA.

  16. Evasion Mechanisms Used by Pathogens to Escape the Lectin Complement Pathway

    DEFF Research Database (Denmark)

    Rosbjerg, Anne; Genster, Ninette; Pilely, Katrine

    2017-01-01

    the level of activity. The result is a pro-inflammatory response meant to combat foreign microbes. Microbial elimination is, however, not a straight forward procedure; pathogens have adapted to their environment by evolving a collection of evasion mechanisms that circumvent the human complement system....... Complement evasion strategies features different ways of exploiting human complement proteins and moreover features different pathogen-derived proteins that interfere with the normal processes. Accumulated, these mechanisms target all three complement activation pathways as well as the final common part...... of the cascade. This review will cover the currently known lectin pathway evasion mechanisms and give examples of pathogens that operate these to increase their chance of invasion, survival and dissemination....

  17. Ecology and Genomic Insights into Plant-Pathogenic and Plant-Nonpathogenic Endophytes.

    Science.gov (United States)

    Brader, Günter; Compant, Stéphane; Vescio, Kathryn; Mitter, Birgit; Trognitz, Friederike; Ma, Li-Jun; Sessitsch, Angela

    2017-08-04

    Plants are colonized on their surfaces and in the rhizosphere and phyllosphere by a multitude of different microorganisms and are inhabited internally by endophytes. Most endophytes act as commensals without any known effect on their plant host, but multiple bacteria and fungi establish a mutualistic relationship with plants, and some act as pathogens. The outcome of these plant-microbe interactions depends on biotic and abiotic environmental factors and on the genotype of the host and the interacting microorganism. In addition, endophytic microbiota and the manifold interactions between members, including pathogens, have a profound influence on the function of the system plant and the development of pathobiomes. In this review, we elaborate on the differences and similarities between nonpathogenic and pathogenic endophytes in terms of host plant response, colonization strategy, and genome content. We furthermore discuss environmental effects and biotic interactions within plant microbiota that influence pathogenesis and the pathobiome.

  18. Evasion Mechanisms Used by Pathogens to Escape the Lectin Complement Pathway

    DEFF Research Database (Denmark)

    Rosbjerg, Anne; Genster, Ninette; Pilely, Katrine

    2017-01-01

    The complement system is a crucial defensive network that protects the host against invading pathogens. It is part of the innate immune system and can be initiated via three pathways: the lectin, classical and alternative activation pathway. Overall the network compiles a group of recognition...... the level of activity. The result is a pro-inflammatory response meant to combat foreign microbes. Microbial elimination is, however, not a straight forward procedure; pathogens have adapted to their environment by evolving a collection of evasion mechanisms that circumvent the human complement system....... Complement evasion strategies features different ways of exploiting human complement proteins and moreover features different pathogen-derived proteins that interfere with the normal processes. Accumulated, these mechanisms target all three complement activation pathways as well as the final common part...

  19. Polythene and Plastics-degrading microbes from the mangrove soil

    Directory of Open Access Journals (Sweden)

    K Kathiresan

    2003-09-01

    Full Text Available Biodegradation of polythene bags and plastic cups was analyzed after 2, 4, 6, and 9 months of incubation in the mangrove soil. The biodegradation of polythene bags was significantly higher (up to 4.21% in 9 months than that of plastic cups (up to 0.25% in 9 months. Microbial counts in the degrading materials were recorded up to 79.67 x 10 4 per gram for total heterotrophic bacteria, and up to 55.33 x 10 2 per gram for fungi. The microbial species found associated with the degrading materials were identified as five Gram positive and two Gram negative bacteria, and eight fungal species of Aspergillus. The species that were predominant were Streptococcus, Staphylococcus, Micrococcus (Gram +ve, Moraxella, and Pseudomonas (Gram -ve and two species of fungi (Aspergillus glaucus and A. niger. Efficacy of the microbial species in degradation of plastics and polythene was analyzed in shaker cultures. Among the bacteria, Pseudomonas species degraded 20.54% of polythene and 8.16% of plastics in one-month period. Among the fungal species, Aspergillus glaucus degraded 28.80% of polythene and 7.26% of plastics in one-month period. This work reveals that the mangrove soil is a good source of microbes capable of degrading polythene and plasticsLa biodegradación de las bolsas de polietileno y vasos de plástico fue analizada después de 2, 4, 6 y 9 meses de incubación en suelo de manglar. La biodegradación de las bolsas fue significativamente más alta (hasta 4.21% en 9 meses que los vasos plásticos (hasta 0.25% en 9 meses. Los conteos microbianos en los materiales degradados mostraron hasta 79.67 x 10(4 por gramo para las bacterias heterotroficas totales, y hasta 55.33 x 10² por gramo para los hongos. Se identificó 5 especies microbianas Gram positivas, 2 Gram negativas, y 8 especies de hongos del género Aspergillus en asociación con materiales degradados. Las especies predominantes fueron Streptococcus, Staphylococcus, Micrococcus (Gram +, Moraxella

  20. Deconstructing host-pathogen interactions in Drosophila

    Directory of Open Access Journals (Sweden)

    Ethan Bier

    2012-01-01

    Full Text Available Many of the cellular mechanisms underlying host responses to pathogens have been well conserved during evolution. As a result, Drosophila can be used to deconstruct many of the key events in host-pathogen interactions by using a wealth of well-developed molecular and genetic tools. In this review, we aim to emphasize the great leverage provided by the suite of genomic and classical genetic approaches available in flies for decoding details of host-pathogen interactions; these findings can then be applied to studies in higher organisms. We first briefly summarize the general strategies by which Drosophila resists and responds to pathogens. We then focus on how recently developed genome-wide RNA interference (RNAi screens conducted in cells and flies, combined with classical genetic methods, have provided molecular insight into host-pathogen interactions, covering examples of bacteria, fungi and viruses. Finally, we discuss novel strategies for how flies can be used as a tool to examine how specific isolated virulence factors act on an intact host.

  1. A network approach to predict pathogenic genes for Fusarium graminearum.

    Science.gov (United States)

    Liu, Xiaoping; Tang, Wei-Hua; Zhao, Xing-Ming; Chen, Luonan

    2010-10-04

    Fusarium graminearum is the pathogenic agent of Fusarium head blight (FHB), which is a destructive disease on wheat and barley, thereby causing huge economic loss and health problems to human by contaminating foods. Identifying pathogenic genes can shed light on pathogenesis underlying the interaction between F. graminearum and its plant host. However, it is difficult to detect pathogenic genes for this destructive pathogen by time-consuming and expensive molecular biological experiments in lab. On the other hand, computational methods provide an alternative way to solve this problem. Since pathogenesis is a complicated procedure that involves complex regulations and interactions, the molecular interaction network of F. graminearum can give clues to potential pathogenic genes. Furthermore, the gene expression data of F. graminearum before and after its invasion into plant host can also provide useful information. In this paper, a novel systems biology approach is presented to predict pathogenic genes of F. graminearum based on molecular interaction network and gene expression data. With a small number of known pathogenic genes as seed genes, a subnetwork that consists of potential pathogenic genes is identified from the protein-protein interaction network (PPIN) of F. graminearum, where the genes in the subnetwork are further required to be differentially expressed before and after the invasion of the pathogenic fungus. Therefore, the candidate genes in the subnetwork are expected to be involved in the same biological processes as seed genes, which imply that they are potential pathogenic genes. The prediction results show that most of the pathogenic genes of F. graminearum are enriched in two important signal transduction pathways, including G protein coupled receptor pathway and MAPK signaling pathway, which are known related to pathogenesis in other fungi. In addition, several pathogenic genes predicted by our method are verified in other pathogenic fungi, which

  2. Study on the interaction mechanism between the special geological environment and their extreme geo-microbes in Dagang Oilfield by combined methods

    Science.gov (United States)

    Yao, Jun

    2010-05-01

    Geo-microbes and their function were widespread ever since life appeared on the earth. Geo-microbiological process has left a rich and colorful material record in the geological body of earth, the most critical record of which is all sorts of organic hieroglyph and various forms of organic matter derived from bio-organisms, and oil field is the most ideal geological location to preserve these organic matters. It have already produced or might produce petroleum and natural gas sedimentary rocks under natural conditions, also known as olefiant (gas) rock or the parent rock, which is the product of the interaction between the life-system and earth environmental system in the specific geological conditions and integrate the whole microbial ecosystem in the geological time. The microbial community under extreme geological environment of Dagang Oilfield is relatively simple, therefore it is quite easy to investigate the special relationship between geo-microbes and biogeochemistry. We have mastered a large number of information related with the geological condition and biological species of Dagang Oilfield; what's more we also have isolated a number of archimycetes strains with different extremophiles capacity from the core samples collected in the Dagang oil field. At present, we are to proceed with the cooperative research at Environment School of Yale University and Institute of the Earth's biosphere using these strains. In the future, we will work together to carry out geological surveys in the field using international first-class equipment and methods and study the geological environment of Dagang Oilfield utilizing isotope techniques and mineral phase analysis method. Meanwhile we are going to undertake the on-line monitoring of the overall microbial activity of these collected geological samples, the specific metabolic activity of these extreme strains of microorganisms and the biomarkers produced during their metabolic processes under laboratory conditions

  3. Dipteran larvae and microbes facilitate nutrient sequestration in the Nepenthes gracilis pitcher plant host.

    Science.gov (United States)

    Lam, Weng Ngai; Chong, Kwek Yan; Anand, Ganesh S; Tan, Hugh Tiang Wah

    2017-03-01

    The fluid-containing traps of Nepenthes carnivorous pitcher plants (Nepenthaceae) are often inhabited by organisms known as inquilines. Dipteran larvae are key components of such communities and are thought to facilitate pitcher nitrogen sequestration by converting prey protein into inorganic nitrogen, although this has never been demonstrated in Nepenthes Pitcher fluids are also inhabited by microbes, although the relationship(s) between these and the plant is still unclear. In this study, we examined the hypothesis of digestive mutualism between N. gracilis pitchers and both dipteran larvae and fluid microbes. Using dipteran larvae, prey and fluid volumes mimicking in situ pitcher conditions, we conducted in vitro experiments and measured changes in available fluid nitrogen in response to dipteran larvae and microbe presence. We showed that the presence of dipteran larvae resulted in significantly higher and faster releases of ammonium and soluble protein into fluids in artificial pitchers, and that the presence of fluid microbes did likewise for ammonium. We showed also that niche segregation occurs between phorid and culicid larvae, with the former fragmenting prey carcasses and the latter suppressing fluid microbe levels. These results clarify the relationships between several key pitcher-dwelling organisms, and show that pitcher communities facilitate nutrient sequestration in their host. © 2017 The Author(s).

  4. The role of microbes in snowmelt and radiative forcing on an Alaskan icefield

    Science.gov (United States)

    Ganey, Gerard Q.; Loso, Michael G.; Burgess, Annie Bryant; Dial, Roman J.

    2017-10-01

    A lack of liquid water limits life on glaciers worldwide but specialized microbes still colonize these environments. These microbes reduce surface albedo, which, in turn, could lead to warming and enhanced glacier melt. Here we present results from a replicated, controlled field experiment to quantify the impact of microbes on snowmelt in red-snow communities. Addition of nitrogen-phosphorous-potassium fertilizer increased alga cell counts nearly fourfold, to levels similar to nitrogen-phosphorus-enriched lakes; water alone increased counts by half. The manipulated alga abundance explained a third of the observed variability in snowmelt. Using a normalized-difference spectral index we estimated alga abundance from satellite imagery and calculated microbial contribution to snowmelt on an icefield of 1,900 km2. The red-snow area extended over about 700 km2, and in this area we determined that microbial communities were responsible for 17% of the total snowmelt there. Our results support hypotheses that snow-dwelling microbes increase glacier melt directly in a bio-geophysical feedback by lowering albedo and indirectly by exposing low-albedo glacier ice. Radiative forcing due to perennial populations of microbes may match that of non-living particulates at high latitudes. Their contribution to climate warming is likely to grow with increased melt and nutrient input.

  5. Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation.

    Science.gov (United States)

    Chang, Cheng-Hsiung; Yang, Shang-Shyng

    2009-02-01

    In order to prepare the multi-functional biofertilizer, thermo-tolerant phosphate-solubilizing microbes including bacteria, actinomycetes, and fungi were isolated from different compost plants and biofertilizers. Except Streptomycesthermophilus J57 which lacked pectinase, all isolates possessed amylase, CMCase, chitinase, pectinase, protease, lipase, and nitrogenase activities. All isolates could solubilize calcium phosphate and Israel rock phosphate; various isolates could solubilize aluminum phosphate, iron phosphate, and hydroxyapatite. During composting, biofertilizers inoculated with the tested microbes had a significantly higher temperature, ash content, pH, total nitrogen, soluble phosphorus content, and germination rate than non-inoculated biofertilizer; total organic carbon and carbon-to-nitrogen ratio showed the opposite pattern. Adding these microbes can shorten the period of maturity, improve the quality, increase the soluble phosphorus content, and enhance the populations of phosphate-solubilizing and proteolytic microbes in biofertilizers. Therefore, inoculating thermo-tolerant phosphate-solubilizing microbes into agricultural and animal wastes represents a practical strategy for preparing multi-functional biofertilizer.

  6. The Queuine Micronutrient: Charting a Course from Microbe to Man

    Directory of Open Access Journals (Sweden)

    Claire Fergus

    2015-04-01

    Full Text Available Micronutrients from the diet and gut microbiota are essential to human health and wellbeing. Arguably, among the most intriguing and enigmatic of these micronutrients is queuine, an elaborate 7-deazaguanine derivative made exclusively by eubacteria and salvaged by animal, plant and fungal species. In eubacteria and eukaryotes, queuine is found as the sugar nucleotide queuosine within the anticodon loop of transfer RNA isoacceptors for the amino acids tyrosine, asparagine, aspartic acid and histidine. The physiological requirement for the ancient queuine molecule and queuosine modified transfer RNA has been the subject of varied scientific interrogations for over four decades, establishing relationships to development, proliferation, metabolism, cancer, and tyrosine biosynthesis in eukaryotes and to invasion and proliferation in pathogenic bacteria, in addition to ribosomal frameshifting in viruses. These varied effects may be rationalized by an important, if ill-defined, contribution to protein translation or may manifest from other presently unidentified mechanisms. This article will examine the current understanding of queuine uptake, tRNA incorporation and salvage by eukaryotic organisms and consider some of the physiological consequence arising from deficiency in this elusive and lesser-recognized micronutrient.

  7. Detergent Disposal into Our Environmentand Its Impact on Marine Microbes

    Science.gov (United States)

    Effendi, I.; Nedi, S.; Ellizal; Nursyirwani; Feliatra; Fikar; Tanjung; Pakpahan, R.; Pratama

    2017-12-01

    Detergents figure in an extensive array of industrial and home cleaning applications, released into the flow of wastewater coming from the home, can far-reaching environmental impacts. Microorganisms are crucial to nutrient recycling in ecosystems as they act as decomposers, pathogen, antibiotic producer, biodegradation of pollutants etc. The research is aimed to examine effect detergent disposal to bacterial population growth in marine environment both in vitro and in situ condition. Seawater samples were collected from Sungai Kayu Ara Village, and Dumai River estuary, Siak Regency and Dumai City, Riau Province. Experimental method with complete randomized design (RAL) 2 (two) factors; a detergent brand (a1: ATTACK, a2; RINSO and a3; SURF) and b concentration of detergent concentration with 5 (five) concentration level, b1 (0%) as control, b2 (0.3%), b3 (0.6%), b4 (0.9%) and b5 (1.2%) wass applied. The study showed that there was an effect of detergent addition, periode of exposure, and doses to the growth of bacterial population both in vitro and in situ conditions. The higher levels of detergent in the water column and the longer contamination duration, causing more and more depressed bacterial populations. It is suggested to run a further research on identification, and growth optimatioan of the species capable of degrading detergent.

  8. Identification of the microbes mediating Fe reduction in a deep saline aquifer and their influence during managed aquifer recharge.

    Science.gov (United States)

    Ko, Myoung-Soo; Cho, Kyungjin; Jeong, Dawoon; Lee, Seunghak

    2016-03-01

    In this study, indigenous microbes enabling Fe reduction under saline groundwater conditions were identified, and their potential contribution to Fe release from aquifer sediments during managed aquifer recharge (MAR) was evaluated. Sediment and groundwater samples were collected from a MAR feasibility test site in Korea, where adjacent river water will be injected into the confined aquifer. The residual groundwater had a high salinity over 26.0 psu, as well as strong reducing conditions (dissolved oxygen, DOaquifer were found to be Citrobacter sp. However, column experiments to simulate field operation scenarios indicated that additional Fe release would be limited during MAR, as the dominant microbial community in the sediment would shift from Citrobacter sp. to Pseudomonas sp. and Limnohabitans sp. as river water injection alters the pore water chemistry. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Quantitative Analysis of Microbes in Water Tank of G.A. Siwabessy Reactor

    International Nuclear Information System (INIS)

    Itjeu Karliana; Diah Dwiana Lestiani

    2003-01-01

    The quality of water in reactor system has an important role because it could effect the function as a coolant and the operation of reactor indirectly. The study of microbe analyzes has been carried out to detect the existence of microbes in water tank and quantitative analyzes of microbes also has been applied as a continuation of the previous study. The samples is taken out from the end side of reactor GA Siwabessy's tank, inoculated in TSA (Tripcase Soy Agar) medium, put in incubator at 30 - 35 o C for 4 days. The results of experiment show the reconfirmation for the existence of bacteria and the un-existence of yield. The quantitative analysis with TPC method show the growth rate of bacteria is twice in 24 hours. (author)

  10. Induction of Systemic Resistance against Insect Herbivores in Plants by Beneficial Soil Microbes

    Directory of Open Access Journals (Sweden)

    Md. Harun-Or Rashid

    2017-10-01

    Full Text Available Soil microorganisms with growth-promoting activities in plants, including rhizobacteria and rhizofungi, can improve plant health in a variety of different ways. These beneficial microbes may confer broad-spectrum resistance to insect herbivores. Here, we provide evidence that beneficial microbes modulate plant defenses against insect herbivores. Beneficial soil microorganisms can regulate hormone signaling including the jasmonic acid, ethylene and salicylic acid pathways, thereby leading to gene expression, biosynthesis of secondary metabolites, plant defensive proteins and different enzymes and volatile compounds, that may induce defenses against leaf-chewing as well as phloem-feeding insects. In this review, we discuss how beneficial microbes trigger induced systemic resistance against insects by promoting plant growth and highlight changes in plant molecular mechanisms and biochemical profiles.

  11. Wars between microbes on roots and fruits [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Ben Lugtenberg

    2017-03-01

    Full Text Available Microbes in nature often live in unfavorable conditions. To survive, they have to occupy niches close to food sources and efficiently utilize nutrients that are often present in very low concentrations. Moreover, they have to possess an arsenal of attack and defense mechanisms against competing bacteria. In this review, we will discuss strategies used by microbes to compete with each other in the rhizosphere and on fruits, with a focus on mechanisms of inter- and intra-species antagonism. Special attention will be paid to the recently discovered roles of volatile organic compounds. Several microbes with proven capabilities in the art of warfare are being applied in products used for the biological control of plant diseases, including post-harvest control of fruits and vegetables.

  12. Nonribosomal Peptides from Marine Microbes and Their Antimicrobial and Anticancer Potential

    Directory of Open Access Journals (Sweden)

    Shivankar Agrawal

    2017-11-01

    Full Text Available Marine environments are largely unexplored and can be a source of new molecules for the treatment of many diseases such as malaria, cancer, tuberculosis, HIV etc. The Marine environment is one of the untapped bioresource of getting pharmacologically active nonribosomal peptides (NRPs. Bioprospecting of marine microbes have achieved many remarkable milestones in pharmaceutics. Till date, more than 50% of drugs which are in clinical use belong to the nonribosomal peptide or mixed polyketide-nonribosomal peptide families of natural products isolated from marine bacteria, cyanobacteria and fungi. In recent years large numbers of nonribosomal have been discovered from marine microbes using multi-disciplinary approaches. The present review covers the NRPs discovered from marine microbes and their pharmacological potential along with role of genomics, proteomics and bioinformatics in discovery and development of nonribosomal peptides drugs.

  13. A fungal pathogen of amphibians, Batrachochytrium dendrobatidis, attenuates in pathogenicity with in vitro passages.

    Science.gov (United States)

    Langhammer, Penny F; Lips, Karen R; Burrowes, Patricia A; Tunstall, Tate; Palmer, Crystal M; Collins, James P

    2013-01-01

    Laboratory investigations into the amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), have accelerated recently, given the pathogen's role in causing the global decline and extinction of amphibians. Studies in which host animals were exposed to Bd have largely assumed that lab-maintained pathogen cultures retained the infective and pathogenic properties of wild isolates. Attenuated pathogenicity is common in artificially maintained cultures of other pathogenic fungi, but to date, it is unknown whether, and to what degree, Bd might change in culture. We compared zoospore production over time in two samples of a single Bd isolate having different passage histories: one maintained in artificial media for more than six years (JEL427-P39), and one recently thawed from cryopreserved stock (JEL427-P9). In a common garden experiment, we then exposed two different amphibian species, Eleutherodactylus coqui and Atelopus zeteki, to both cultures to test whether Bd attenuates in pathogenicity with in vitro passages. The culture with the shorter passage history, JEL427-P9, had significantly greater zoospore densities over time compared to JEL427-P39. This difference in zoospore production was associated with a difference in pathogenicity for a susceptible amphibian species, indicating that fecundity may be an important virulence factor for Bd. In the 130-day experiment, Atelopus zeteki frogs exposed to the JEL427-P9 culture experienced higher average infection intensity and 100% mortality, compared with 60% mortality for frogs exposed to JEL427-P39. This effect was not observed with Eleutherodactylus coqui, which was able to clear infection. We hypothesize that the differences in phenotypic performance observed with Atelopus zeteki are rooted in changes of the Bd genome. Future investigations enabled by this study will focus on the underlying mechanisms of Bd pathogenicity.

  14. A fungal pathogen of amphibians, Batrachochytrium dendrobatidis, attenuates in pathogenicity with in vitro passages.

    Directory of Open Access Journals (Sweden)

    Penny F Langhammer

    Full Text Available Laboratory investigations into the amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd, have accelerated recently, given the pathogen's role in causing the global decline and extinction of amphibians. Studies in which host animals were exposed to Bd have largely assumed that lab-maintained pathogen cultures retained the infective and pathogenic properties of wild isolates. Attenuated pathogenicity is common in artificially maintained cultures of other pathogenic fungi, but to date, it is unknown whether, and to what degree, Bd might change in culture. We compared zoospore production over time in two samples of a single Bd isolate having different passage histories: one maintained in artificial media for more than six years (JEL427-P39, and one recently thawed from cryopreserved stock (JEL427-P9. In a common garden experiment, we then exposed two different amphibian species, Eleutherodactylus coqui and Atelopus zeteki, to both cultures to test whether Bd attenuates in pathogenicity with in vitro passages. The culture with the shorter passage history, JEL427-P9, had significantly greater zoospore densities over time compared to JEL427-P39. This difference in zoospore production was associated with a difference in pathogenicity for a susceptible amphibian species, indicating that fecundity may be an important virulence factor for Bd. In the 130-day experiment, Atelopus zeteki frogs exposed to the JEL427-P9 culture experienced higher average infection intensity and 100% mortality, compared with 60% mortality for frogs exposed to JEL427-P39. This effect was not observed with Eleutherodactylus coqui, which was able to clear infection. We hypothesize that the differences in phenotypic performance observed with Atelopus zeteki are rooted in changes of the Bd genome. Future investigations enabled by this study will focus on the underlying mechanisms of Bd pathogenicity.

  15. Filthy lucre: A metagenomic pilot study of microbes found on circulating currency in New York City.

    Directory of Open Access Journals (Sweden)

    Julia M Maritz

    Full Text Available Paper currency by its very nature is frequently transferred from one person to another and represents an important medium for human contact with-and potential exchange of-microbes. In this pilot study, we swabbed circulating $1 bills obtained from a New York City bank in February (Winter and June (Summer 2013 and used shotgun metagenomic sequencing to profile the communities found on their surface. Using basic culture conditions, we also tested whether viable microbes could be recovered from bills.Shotgun metagenomics identified eukaryotes as the most abundant sequences on money, followed by bacteria, viruses and archaea. Eukaryotic assemblages were dominated by human, other metazoan and fungal taxa. The currency investigated harbored a diverse microbial population that was dominated by human skin and oral commensals, including Propionibacterium acnes, Staphylococcus epidermidis and Micrococcus luteus. Other taxa detected not associated with humans included Lactococcus lactis and Streptococcus thermophilus, microbes typically associated with dairy production and fermentation. Culturing results indicated that viable microbes can be isolated from paper currency.We conducted the first metagenomic characterization of the surface of paper money in the United States, establishing a baseline for microbes found on $1 bills circulating in New York City. Our results suggest that money amalgamates DNA from sources inhabiting the human microbiome, food, and other environmental inputs, some of which can be recovered as viable organisms. These monetary communities may be maintained through contact with human skin, and DNA obtained from money may provide a record of human behavior and health. Understanding these microbial profiles is especially relevant to public health as money could potentially mediate interpersonal transfer of microbes.

  16. Companion animals symposium: role of microbes in canine and feline health.

    Science.gov (United States)

    Kil, D Y; Swanson, K S

    2011-05-01

    Whether in an ocean reef, a landfill, or a gastrointestinal tract (GIT), invisible communities of highly active and adaptable microbes prosper. Over time, mammals have developed a symbiosis with microbes that are important inhabitants not only in the GIT, but also in the mouth, skin, and urogenital tract. In the GIT, the number of commensal microbes exceeds the total number of host cells by at least 10 times. The GIT microbes play a critical role in nutritional, developmental, defensive, and physiologic processes in the host. Recent evidence also suggests a role of GIT microbes in metabolic phenotype and disease risk (e.g., obesity, metabolic syndrome) of the host. Proper balance is a key to maintaining GIT health. Balanced microbial colonization is also important for other body regions such as the oral cavity, the region with the greatest prevalence of disease in dogs and cats. A significant obstruction to studying microbial populations has been the lack of tools to identify and quantify microbial communities accurately and efficiently. Most of the current knowledge of microbial populations has been established by traditional cultivation methods that are not only laborious, time-consuming, and often inaccurate, but also greatly limited in scope. However, recent advances in molecular-based techniques have resulted in a dramatic improvement in studying microbial communities. These DNA-based high-throughput technologies have enabled us to more clearly characterize the identity and metabolic activity of microbes living in the host and their association with health and diseases. Despite this recent progress, however, published data pertaining to microbial communities of dogs and cats are still lacking in comparison with data in humans and other animals. More research is required to provide a more detailed description of the canine and feline microbiome and its role in health and disease.

  17. Soil microbes and successful invasions of an exotic weed Eupatorium adenophorum

    International Nuclear Information System (INIS)

    Zhou, P.; Tang, T.; Zhao, P.; Chen, J.

    2016-01-01

    The effects of soil microbes collected from the two invasive species Eupatorium adenophorum and E. odoratum and the two native species E. japonicum and E. chinense on the growth and biomass of E. adenophorum was examined to explore a possible link between soil microbes and successful invasions of the weed species E. adenophorum. In most cases, plant height, stem diameter, root number and root length were significantly enhanced when E. adenophorum was grown in sterilized soils compared with those when one was grown in non-sterilized soils collected from the rhizosphere of E. adenophorum, E. japonicum and E. chinense. In contrast, the growth and biomass of E. adenophorum were apparently inhibited when grown in soils collected from the rhizosphere of E. odoratum. Plant height, stem diameter, leaf area per plant and root length of E. adenophorum was greater when it was grown in soils collected from the rhizosphere of E. adenophorum compared with those when it was grown in soils collected from the rhizosphere of E. odoratum, but the enhancement considerably greater when it was grown in soils collected from the rhizosphere of E. japonicum and E. chinense compared with those when it was grown in soils collected from the rhizosphere of E. adenophorum. In addition, the biomass allocation of E. adenophorum was not significantly affected by soil microbes and soil sources. These Results suggest that although the competitive advantage of the invasive weed E. adenophorum is not achieved solely by soil microbes, successful invasions of E. adenophorum may result partly from its release from the harmful soil microbes in its native range and the positive feedbacks of soil microbes from itself and the native species in its invading range. (author)

  18. Combined treatment of solar energy and gamma irradiation to eliminate pathogenic bacteria in dewatered sludge

    International Nuclear Information System (INIS)

    Hilmy, N.; Harsoyo, S.; Suwirma, S.

    1987-01-01

    Combined treatment of solar energy and gamma irradiation to eliminate pathogenic bacteria in dewatered sludge. A combined treatment of solar energy and gamma irradiation has been done to eliminate the pathogenic microbes contaminating dewatered sludge. Samples were collected during dry season, i.e. from June to September 1985. To reduce the water content from 70% to 20%, solar energy from sun rays was used, i.e. from 9 a.m. to 2 p.m. for 4 days. Total bacterial count coliform bacteria Escherichia coli, Fecal Streptococcus, Enterobacteriaceae, and Pseudomonas sp were found to be 7.4x10 8 per g, 4.1x10 3 per g, 4.5x10 2 per g, 3.1x10 5 per g, 3.6x10 4 per g, and 5.4x10 3 per g of samples respectively. The combined treatment could reduce the irradiation dose needed to eliminate the pathogenic microbes of samples investigated from 6 to 2 kGy. (author). 5 figs, 11 refs

  19. Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens

    Directory of Open Access Journals (Sweden)

    Roberto eSolano

    2013-04-01

    Full Text Available An extraordinary progress has been made over the last two decades on understanding the components and mechanisms governing plant innate immunity. After detection of a pathogen, effective plant resistance depends on the activation of a complex signaling network integrated by small signaling molecules and hormonal pathways, and the balance of these hormone systems determines resistance to particular pathogens. The discovery of new components of hormonal signaling pathways, including plant nuclear hormone receptors, is providing a picture of complex crosstalk and induced hormonal changes that modulate disease and resistance through several protein families that perceive hormones within the nucleus and lead to massive gene induction responses often achieved by de-repression. This review highlights recent advances in our understanding of positive and negative regulators of these hormones signaling pathways that are crucial regulatory targets of hormonal crosstalk in disease and defense. We focus on the most recent discoveries on the jasmonate and salicylate pathway components that explain their crosstalk with other hormonal pathways in the nucleus. We discuss how these components fine-tune defense responses to build a robust plant immune system against a great number of different microbes and, finally, we summarize recent discoveries on specific nuclear hormonal manipulation by microbes which exemplify the ingenious ways by which pathogens can take control over the plant’s hormone signaling network to promote disease.

  20. Current ecological understanding of fungal-like pathogens of fish: what lies beneath?

    Directory of Open Access Journals (Sweden)

    Rodolphe Elie Gozlan

    2014-02-01

    Full Text Available Despite increasingly sophisticated microbiological techniques, and long after the first discovery of microbes, basic knowledge is still lacking to fully appreciate the ecological importance of microbial parasites in fish. This is likely due to the nature of their habitats as many species of fish suffer from living beneath turbid water away from easy recording. However, fishes represent key ecosystem services for millions of people around the world and the absence of a functional ecological understanding of viruses, prokaryotes, and small eukaryotes in the maintenance of fish populations and of their diversity represents an inherent barrier to aquatic conservation and food security. Among recent emerging infectious diseases responsible for severe population declines in plant and animal taxa, fungal and fungal-like microbes have emerged as significant contributors. Here, we review the current knowledge gaps of fungal and fungal-like parasites and pathogens in fish and put them into an ecological perspective with direct implications for the monitoring of fungal fish pathogens in the wild, their phylogeography as well as their associated ecological impact on fish populations. With increasing fish movement around the world for farming, releases into the wild for sport fishing and human-driven habitat changes, it is expected, along with improved environmental monitoring of fungal and fungal-like infections, that the full extent of the impact of these pathogens on wild fish populations will soon emerge as a major threat to freshwater biodiversity.

  1. Microbes in biological processes for municipal landfill leachate treatment: Community, function and interaction

    DEFF Research Database (Denmark)

    Zhang, Duoying; Vahala, Riku; Wang, Yu

    2016-01-01

    Landfill leachate (LFL) contains high strength of ammonium and complex organic substances including biodegradable volatile fatty acids (VFAs), refractory aquatic humic substances (AHS) and micro-scale xenobiotic organic chemicals (XOCs), which promotes the diverse microbial community in LFL...... treatment bioreactors. These microbes cooperate to remove nitrogen, biodegrade organic matters, eliminate the toxicity of XOCs and produce energy. In these diverse microbes, some show dominant in the bioreactor and are prevalent in many kinds of LFL treatment bio-processes, such as Brocadia from the phylum...

  2. The Physical Microbe; An introduction to noise, control, and communication in the prokaryotic cell

    Science.gov (United States)

    Hagen, Stephen J.

    2017-10-01

    Physical biology is a fusion of biology and physics. This book narrows down the scope of physical biology by focusing on the microbial cell; exploring the physical phenomena of noise, feedback, and variability that arise in the cellular information-processing circuits used by bacteria. It looks at the microbe from a physics perspective, asking how the cell optimizes its function to live within the constraints of physics. It introduces a physical and information-based (as opposed to microbiological) perspective on communication and signalling between microbes.

  3. The Use of Stuffed Microbes in an Undergraduate Microbiology Course Increases Engagement and Student Learning

    Directory of Open Access Journals (Sweden)

    Ginny Webb

    2015-08-01

    Full Text Available Student engagement, attention, and attendance during a microbiology lecture are crucial for student learning.  In addition, it is challenging to cover a large number of infectious diseases during a one-semester introductory microbiology course.  The use of visual aids helps students retain the information presented during a lecture.  Here, I discuss the use of stuffed, plush microbes as visual aids during an introductory microbiology course.  The incorporation of these stuffed microbes during a microbiology lecture results in an increase in engagement, interest, attendance, and retention of material.

  4. Performance of duckweed and effective microbes in reducing arsenic in paddy and paddy soil

    Science.gov (United States)

    Ng, C. A.; Wong, L. Y.; Lo, P. K.; Bashir, M. J. K.; Chin, S. J.; Tan, S. P.; Chong, C. Y.; Yong, L. K.

    2017-04-01

    In this study phytoremediation plant (duckweed) and effective microbes were used to investigate their effectiveness in reducing arsenic concentration in paddy soil and paddy grain. The results show that using duckweed alone is a better choice as it could decrease the arsenic concentration in paddy by 27.697 % and 8.268 % in paddy grain and paddy husk respectively. The study also found out that the concentration of arsenic in soil would affect the performance of duckweed and also delayed the reproduction rate of duckweed. Using the mixture of effective microbes and duckweed together to decrease arsenic in paddy was noticed having the least potential in reducing the arsenic concentration in paddy.

  5. MECHANISMS OF MICROBE-HOST-INTERACTION IN CROHN'S DISEASE: DYSBIOSIS VS. PATHOBIONT SELECTION

    Directory of Open Access Journals (Sweden)

    Ludovica F. Buttó

    2015-11-01

    Full Text Available Crohn’s disease (CD is a systemic chronic inflammatory condition mainly characterized by discontinuous transmural pathology of the gastrointestinal tract and frequent extra-intestinal manifestations with intermittent episodes of remission and relapse. Genome-wide association studies identified a number of risk loci that, catalyzed by environmental triggers, result in the loss of tolerance towards commensal bacteria based on dysregulated innate effector functions and anti-microbial defense, leading to exacerbated adaptive immune responses responsible for chronic immune-mediated tissue damage. In this review, we discuss the interrelated role of changes in the intestinal microbiota, epithelial barrier integrity and immune cell functions on the pathogenesis of CD, describing the current approaches available to investigate the molecular mechanisms underlying the disease. Substantial effort has been dedicated to define disease-associated changes in the intestinal microbiota (dysbiosis and to link pathobionts to the aetiology of IBD. A cogent definition of dysbiosis is lacking, as well as an agreement of whether pathobionts or complex shifts in the microbiota trigger inflammation in the host. Among the rarely available animal models, SAMP/Yit and TNFdeltaARE mice are the best known displaying a transmural CD-like phenotype. New hypothesis-driven mouse models e.g. epithelial-specific Caspase8-/-, ATG16L1-/- and XBP-1-/- mice validate pathway-focused function of specific CD-associated risk genes highlighting the role of Paneth cells in antimicrobial defense. To study the causal role of bacteria in initiating inflammation in the host, the use of germfree mouse models is indispensable. Unraveling the interactions of genes, immune cells and microbes constitute a criterion for the development of safe, reliable and effective treatment options for CD.

  6. The arable plant ecosystem as battleground for emergence of human pathogens

    Directory of Open Access Journals (Sweden)

    Leo eVan Overbeek

    2014-03-01

    Full Text Available Disease incidences related to Escherichia coli and Salmonella enterica infections by consumption of (fresh vegetables, sprouts and occasionally fruits made clear that these pathogens are not only transmitted to humans via the ‘classical’ routes of meat, eggs and dairy products, but also can be transmitted to humans via plants or products derived from plants. Nowadays, it is of major concern that these human pathogens, especially the ones belonging to the taxonomical family of Enterobacteriaceae, become adapted to environmental habitats without losing their virulence to humans. Adaptation to the plant environment would lead to longer persistence in plants, increasing their chances on transmission to humans via consumption of plant-derived food. One of the mechanisms of adaptation to the plant environment in human pathogens, proposed in this paper, is horizontal transfer of genes from different microbial communities present in the arable ecosystem, like the ones originating from soil, animal digestive track systems (manure, water and plants themselves. Genes that would confer better adaptation to the phytosphere might be genes involved in plant colonization, stress resistance and nutrient acquisition and utilization. Because human pathogenic enterics often were prone to genetic exchanges via phages and conjugative plasmids, it was postulated that these genetic elements may be hold key responsible for horizontal gene transfers between human pathogens and indigenous microbes in agroproduction systems. In analogy to zoonosis, we coin the term phytonosis for a human pathogen that is transmitted via plants and not exclusively via animals.

  7. Host and microbe characteristics of pneumococcal colonization in elderly

    NARCIS (Netherlands)

    Krone, C.L.

    2013-01-01

    The focus of this thesis was to investigate various aspects of pneumococcal – host –commensal interactions in the respiratory tract of the elderly. Furthermore, we aimed to address the paucity of information regarding the underlying mechanisms of disease in this high risk group. Since Streptococcus

  8. Transposable Elements Direct The Coevolution between Plants and Microbes

    NARCIS (Netherlands)

    Seidl, Michael F.; Thomma, Bart P.H.J.

    2017-01-01

    Transposable elements are powerful drivers of genome evolution in many eukaryotes. Although they are mostly considered as 'selfish' genetic elements, increasing evidence suggests that they contribute to genetic variability; particularly under stress conditions. Over the past few years, the role of

  9. Pathogenic mycoflora on carrot seeds

    Directory of Open Access Journals (Sweden)

    Bogdan Nowicki

    2013-12-01

    Full Text Available Altogether 300 seed samples were collected during 9 years in 8 regions of Poland and the fungi Were isolated and their pathogenicity to carrot seedlings was examined. Alternaria rudicina provcd to be the most important pathogen although. A. alternata was more common. The other important pathogens were Fusarium spp., Phoma spp. and Botrytis cinerea. The infection of carrot seeds by A. radicina should be used as an important criterium in seed quality evaluation.

  10. Effect of exogenous carbon addition and the freeze-thaw cycle on soil microbes and mineral nitrogen pools1

    Science.gov (United States)

    Hu, Xia; Yin, Peng; Nong, Xiang; Liao, Jinhua

    2018-01-01

    To elucidate the alpine soil process in winter, the response mechanism of soil mineral nitrogen and soil microbes to exogenous carbon (0 mg C, 1 mg C, 2 mg C, 4 mg C and 8 mg C·g-1 dry soil) and the freeze-thaw cycle (-2 °C, -2 ∼ 2 °C, -20 ∼2°C) were studied by laboratory simulation. The freeze-thaw treatment had no significant effect on microbial biomass nitrogen and the number of bacteria. The soil mineral N pool, the number of fungi, and enzyme activities were obviously affected by the freeze-thaw cycle. A mild freeze-thaw cycle (-2∼2°C) significantly increased the number of fungi and catalase activity, while severe freeze-thaw cycle (-20∼2°C) obviously decreased invertase activity. The results suggested that both the freeze-thaw rate and freeze-thaw temperature amplitudes have a strong effect on soil microbial dynamics in the alpine zone in winter. The results showed that exogenous carbon addition significantly decreased soil NO3-N and NH4 +-N contents, increased soil microbial biomass, the number of microbes, and soil enzyme activities. The results showed that microbial growth in the eastern Tibetan Plateau was somewhat limited by available C. It may represent a larger potential pulse of soil nutrient for alpine plants in the next spring, and may be instrumental for plant community shifts under future climate change predictions due to the possible increased litter addition.

  11. Active and adaptive Legionella CRISPR-Cas reveals a recurrent challenge to the pathogen.

    Science.gov (United States)

    Rao, Chitong; Guyard, Cyril; Pelaz, Carmen; Wasserscheid, Jessica; Bondy-Denomy, Joseph; Dewar, Ken; Ensminger, Alexander W

    2016-10-01

    Clustered regularly interspaced short palindromic repeats with CRISPR-associated gene (CRISPR-Cas) systems are widely recognized as critical genome defense systems that protect microbes from external threats such as bacteriophage infection. Several isolates of the intracellular pathogen Legionella pneumophila possess multiple CRISPR-Cas systems (type I-C, type I-F and type II-B), yet the targets of these systems remain unknown. With the recent observation that at least one of these systems (II-B) plays a non-canonical role in supporting intracellular replication, the possibility remained that these systems are vestigial genome defense systems co-opted for other purposes. Our data indicate that this is not the case. Using an established plasmid transformation assay, we demonstrate that type I-C, I-F and II-B CRISPR-Cas provide protection against spacer targets. We observe efficient laboratory acquisition of new spacers under 'priming' conditions, in which initially incomplete target elimination leads to the generation of new spacers and ultimate loss of the invasive DNA. Critically, we identify the first known target of L. pneumophila CRISPR-Cas: a 30 kb episome of unknown function whose interbacterial transfer is guarded against by CRISPR-Cas. We provide evidence that the element can subvert CRISPR-Cas by mutating its targeted sequences - but that primed spacer acquisition may limit this mechanism of escape. Rather than generally impinging on bacterial fitness, this element drives a host specialization event - with improved fitness in Acanthamoeba but a reduced ability to replicate in other hosts and conditions. These observations add to a growing body of evidence that host range restriction can serve as an existential threat to L. pneumophila in the wild. © 2016 The Authors Cellular Microbiology Published by John Wiley & Sons Ltd.

  12. Two-way plant mediated interactions between root-associated microbes and insects: from ecology to mechanisms

    NARCIS (Netherlands)

    Pangesti, N.P.D.; Pineda Gomez, A.M.; Pieterse, C.M.J.; Dicke, M.; Loon, van J.J.A.

    2013-01-01

    Plants are members of complex communities and function as a link between above- and below-ground organisms. Associations between plants and soil-borne microbes commonly occur and have often been found beneficial for plant fitness. Root-associated microbes may trigger physiological changes in the

  13. Formation of a symbiotic host-microbe interface: the role of SNARE-mediated regulation of exocytosis

    NARCIS (Netherlands)

    Huisman, Rik

    2018-01-01

    At the heart of endosymbiosis microbes are hosted inside living cells in specialized membrane compartments that from a host-microbe interface, where nutrients and signal are efficiently exchanged. Such symbiotic interfaces include arbuscules produced by arbuscular mycorrhiza (AM) and

  14. Metagenomics, metaMicrobesOnline and Kbase Data Integration (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    Energy Technology Data Exchange (ETDEWEB)

    Dehal, Paramvir

    2011-10-12

    Berkeley Lab's Paramvir Dehal on "Managing and Storing large Datasets in MicrobesOnline, metaMicrobesOnline and the DOE Knowledgebase" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  15. Eavesdropping on plant-insect-microbe chemical communications in agricultural ecology: a virtual issue on semiochemicals

    Science.gov (United States)

    Studies of plant-insect interactions, and more recently the interactions among plants, insects, and microbes, have revealed that volatiles often facilitate insect movement, aggregation, and host location by herbivores, predators and parasitoids, all of which could be used to help protect agriculture...

  16. The Hsp90 Complex in Microbes and Man | Center for Cancer Research

    Science.gov (United States)

    Why would cancer researchers be interested in how a bacteria named Escherichia coli (E. coli) rebuilds its cellular proteins after they have been inactivated by environmental stress such as heat?  The answer lies in a protein remodeling mechanism that is shared by microbes and man.

  17. Microstructured Block Copolymer Surfaces for Control of Microbe Adhesion and Aggregation

    Directory of Open Access Journals (Sweden)

    Ryan R. Hansen

    2014-03-01

    Full Text Available The attachment and arrangement of microbes onto a substrate is influenced by both the biochemical and physical surface properties. In this report, we develop lectin-functionalized substrates containing patterned, three-dimensional polymeric structures of varied shapes and densities and use these to investigate the effects of topology and spatial confinement on lectin-mediated microbe immobilization. Films of poly(glycidyl methacrylate-block-4,4-dimethyl-2-vinylazlactone (PGMA-b-PVDMA were patterned on silicon surfaces into line arrays or square grid patterns with 5 μm wide features and varied pitch. The patterned films had three-dimensional geometries with 900 nm film thickness. After surface functionalization with wheat germ agglutinin, the size of Pseudomonas fluorescens aggregates immobilized was dependent on the pattern dimensions. Films patterned as parallel lines or square grids with a pitch of 10 μm or less led to the immobilization of individual microbes with minimal formation of aggregates. Both geometries allowed for incremental increases in aggregate size distribution with each increase in pitch. These engineered surfaces combine spatial confinement with affinity-based capture to control the extent of microbe adhesion and aggregation, and can also be used as a platform to investigate intercellular interactions and biofilm formation in microbial populations of controlled sizes.

  18. BRC - MicrobeDB.jp | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available switchLanguage; BLAST Search Image Search Home About Archive Update History Data ...table). Data file File name: brc.tar.gz File URL: ftp://ftp.biosciencedbc.jp/archive/microbedb/LATEST/brc.ta...rains in JCM. About This Database Database Description Download License Update History of This Database Site Policy | Contact Us BRC - MicrobeDB.jp | LSDB Archive ...

  19. SRA - MicrobeDB.jp | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available switchLanguage; BLAST Search Image Search Home About Archive Update History Data ...e following table). Data file File name: sra.tar.gz File URL: ftp://ftp.biosciencedbc.jp/archive/microbedb/L...t This Database Database Description Download License Update History of This Database Site Policy | Contact Us SRA - MicrobeDB.jp | LSDB Archive ...