WorldWideScience

Sample records for underlying neural systems

  1. Parallel and interrelated neural systems underlying adaptive navigation.

    Science.gov (United States)

    Mizumori, Sheri J Y; Canfield, James G; Yeshenko, Oksana

    2005-06-01

    The ability to process in parallel multiple forms of sensory information, and link sensory-sensory associations to behavior, presumably allows for the opportunistic use of the most reliable and predictive sensory modalities in diverse behavioral contexts. Evolutionary considerations indicate that such processing may represent a fundamental operating principle underlying complex sensory associations and sensory-motor integration. Here, we suggest that animal navigation is a particularly useful model of such opportunistic use of sensory and motor information because it is possible to study directly the effects of memory on neural system functions. First, comparative evidence for parallel processing across multiple brain structures during navigation is provided from the literatures on fish and rodent navigation. Then, based on neurophysiological evidence of coordinated, multiregional processing, we provide a neurobiological explanation of learning and memory effects on neural circuitry mediating navigation.

  2. Dimensions of childhood adversity have distinct associations with neural systems underlying executive functioning.

    Science.gov (United States)

    Sheridan, Margaret A; Peverill, Matthew; Finn, Amy S; McLaughlin, Katie A

    2017-12-01

    Childhood adversity is associated with increased risk for psychopathology. Neurodevelopmental pathways underlying this risk remain poorly understood. A recent conceptual model posits that childhood adversity can be deconstructed into at least two underlying dimensions, deprivation and threat, that are associated with distinct neurocognitive consequences. This model argues that deprivation (i.e., a lack of cognitive stimulation and learning opportunities) is associated with poor executive function (EF), whereas threat is not. We examine this hypothesis in two studies measuring EF at multiple levels: performance on EF tasks, neural recruitment during EF, and problems with EF in daily life. In Study 1, deprivation (low parental education and child neglect) was associated with greater parent-reported problems with EF in adolescents (N = 169; 13-17 years) after adjustment for levels of threat (community violence and abuse), which were unrelated to EF. In Study 2, low parental education was associated with poor working memory (WM) performance and inefficient neural recruitment in the parietal and prefrontal cortex during high WM load among adolescents (N = 51, 13-20 years) after adjusting for abuse, which was unrelated to WM task performance and neural recruitment during WM. These findings constitute strong preliminary evidence for a novel model of the neurodevelopmental consequences of childhood adversity.

  3. Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system

    OpenAIRE

    Aronov, Dmitriy; Tank, David W.

    2014-01-01

    Virtual reality (VR) enables precise control of an animal’s environment and otherwise impossible experimental manipulations. Neural activity in navigating rodents has been studied on virtual linear tracks. However, the spatial navigation system’s engagement in complete two-dimensional environments has not been shown. We describe a VR setup for rats, including control software and a large-scale electrophysiology system, which supports 2D navigation by allowing animals to rotate and walk in any...

  4. Neural Systems Underlying Perceptual Adjustment to Non-Standard Speech Tokens.

    Science.gov (United States)

    Myers, Emily B; Mesite, Laura M

    2014-10-01

    It has long been noted that listeners use top-down information from context to guide perception of speech sounds. A recent line of work employing a phenomenon termed 'perceptual learning for speech' shows that listeners use top-down information to not only resolve the identity of perceptually ambiguous speech sounds, but also to adjust perceptual boundaries in subsequent processing of speech from the same talker. Even so, the neural mechanisms that underlie this process are not well understood. Of particular interest is whether this type of adjustment comes about because of a retuning of sensitivities to phonetic category structure early in the neural processing stream or whether the boundary shift results from decision-related or attentional mechanisms further downstream. In the current study, neural activation was measured using fMRI as participants categorized speech sounds that were perceptually shifted as a result of exposure to these sounds in lexically-unambiguous contexts. Sensitivity to lexically-mediated shifts in phonetic categorization emerged in right hemisphere frontal and middle temporal regions, suggesting that the perceptual learning for speech phenomenon relies on the adjustment of perceptual criteria downstream from primary auditory cortex. By the end of the session, this same sensitivity was seen in left superior temporal areas, which suggests that a rapidly-adapting system may be accompanied by more slowly evolving shifts in regions of the brain related to phonetic processing.

  5. Neural Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — As part of the Electrical and Computer Engineering Department and The Institute for System Research, the Neural Systems Laboratory studies the functionality of the...

  6. Neural systems underlying aversive conditioning in humans with primary and secondary reinforcers

    Directory of Open Access Journals (Sweden)

    Mauricio R Delgado

    2011-05-01

    Full Text Available Money is a secondary reinforcer commonly used across a range of disciplines in experimental paradigms investigating reward learning and decision-making. The effectiveness of monetary reinforcers during aversive learning and its neural basis, however, remains a topic of debate. Specifically, it is unclear if the initial acquisition of aversive representations of monetary losses depends on similar neural systems as more traditional aversive conditioning that involves primary reinforcers. This study contrasts the efficacy of a biologically defined primary reinforcer (shock and a socially defined secondary reinforcer (money during aversive learning and its associated neural circuitry. During a two-part experiment, participants first played a gambling game where wins and losses were based on performance to gain an experimental bank. Participants were then exposed to two separate aversive conditioning sessions. In one session, a primary reinforcer (mild shock served as an unconditioned stimulus (US and was paired with one of two colored squares, the conditioned stimuli (CS+ and CS-, respectively. In another session, a secondary reinforcer (loss of money served as the US and was paired with one of two different CS. Skin conductance responses were greater for CS+ compared to CS- trials irrespective of type of reinforcer. Neuroimaging results revealed that the striatum, a region typically linked with reward-related processing, was found to be involved in the acquisition of aversive conditioned response irrespective of reinforcer type. In contrast, the amygdala was involved during aversive conditioning with primary reinforcers, as suggested by both an exploratory fMRI analysis and a follow-up case study with a patient with bilateral amygdala damage. Taken together, these results suggest that learning about potential monetary losses may depend on reinforcement learning related systems, rather than on typical structures involved in more biologically based

  7. Evolvable Neural Software System

    Science.gov (United States)

    Curtis, Steven A.

    2009-01-01

    The Evolvable Neural Software System (ENSS) is composed of sets of Neural Basis Functions (NBFs), which can be totally autonomously created and removed according to the changing needs and requirements of the software system. The resulting structure is both hierarchical and self-similar in that a given set of NBFs may have a ruler NBF, which in turn communicates with other sets of NBFs. These sets of NBFs may function as nodes to a ruler node, which are also NBF constructs. In this manner, the synthetic neural system can exhibit the complexity, three-dimensional connectivity, and adaptability of biological neural systems. An added advantage of ENSS over a natural neural system is its ability to modify its core genetic code in response to environmental changes as reflected in needs and requirements. The neural system is fully adaptive and evolvable and is trainable before release. It continues to rewire itself while on the job. The NBF is a unique, bilevel intelligence neural system composed of a higher-level heuristic neural system (HNS) and a lower-level, autonomic neural system (ANS). Taken together, the HNS and the ANS give each NBF the complete capabilities of a biological neural system to match sensory inputs to actions. Another feature of the NBF is the Evolvable Neural Interface (ENI), which links the HNS and ANS. The ENI solves the interface problem between these two systems by actively adapting and evolving from a primitive initial state (a Neural Thread) to a complicated, operational ENI and successfully adapting to a training sequence of sensory input. This simulates the adaptation of a biological neural system in a developmental phase. Within the greater multi-NBF and multi-node ENSS, self-similar ENI s provide the basis for inter-NBF and inter-node connectivity.

  8. Bad and worse: neural systems underlying reappraisal of high- and low-intensity negative emotions.

    Science.gov (United States)

    Silvers, Jennifer A; Weber, Jochen; Wager, Tor D; Ochsner, Kevin N

    2015-02-01

    One of the most effective strategies for regulating emotional responses is cognitive reappraisal. While prior work has made great strides in characterizing reappraisal's neural mechanisms and behavioral outcomes, the key issue of how regulation varies as a function of emotional intensity remains unaddressed. We compared the behavioral and neural correlates of reappraisal of high- and low-intensity emotional responses using functional magnetic resonance imaging (fMRI). We found that successful reappraisal of both high- and low-intensity emotions depends upon recruitment of dorsomedial (dmPFC) as well as left dorsolateral (dlPFC) and ventrolateral (vlPFC) prefrontal cortex. However, reappraisal of high-intensity emotions more strongly activated left dlPFC, and in addition, activated right lateral and dorsomedial PFC regions not recruited by low-intensity reappraisal. No brain regions were more strongly recruited during reappraisal of low when compared with high-intensity emotions. Taken together, these results suggest that reappraisal of high-intensity emotion requires greater cognitive resources as evidenced by quantitative and qualitative differences in prefrontal recruitment. These data have implications for understanding how and when specific PFC systems are needed to regulate different types of emotional responses. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  9. What ethologically based models have taught us about the neural systems underlying fear and anxiety

    Directory of Open Access Journals (Sweden)

    N.S. Canteras

    2012-04-01

    Full Text Available Classical Pavlovian fear conditioning to painful stimuli has provided the generally accepted view of a core system centered in the central amygdala to organize fear responses. Ethologically based models using other sources of threat likely to be expected in a natural environment, such as predators or aggressive dominant conspecifics, have challenged this concept of a unitary core circuit for fear processing. We discuss here what the ethologically based models have told us about the neural systems organizing fear responses. We explored the concept that parallel paths process different classes of threats, and that these different paths influence distinct regions in the periaqueductal gray - a critical element for the organization of all kinds of fear responses. Despite this parallel processing of different kinds of threats, we have discussed an interesting emerging view that common cortical-hippocampal-amygdalar paths seem to be engaged in fear conditioning to painful stimuli, to predators and, perhaps, to aggressive dominant conspecifics as well. Overall, the aim of this review is to bring into focus a more global and comprehensive view of the systems organizing fear responses.

  10. Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system

    Science.gov (United States)

    Aronov, Dmitriy; Tank, David W.

    2015-01-01

    SUMMARY Virtual reality (VR) enables precise control of an animal’s environment and otherwise impossible experimental manipulations. Neural activity in navigating rodents has been studied on virtual linear tracks. However, the spatial navigation system’s engagement in complete two-dimensional environments has not been shown. We describe a VR setup for rats, including control software and a large-scale electrophysiology system, which supports 2D navigation by allowing animals to rotate and walk in any direction. The entorhinal-hippocampal circuit, including place cells, grid cells, head direction cells and border cells, showed 2D activity patterns in VR similar to those in the real world. Hippocampal neurons exhibited various remapping responses to changes in the appearance or the shape of the virtual environment, including a novel form in which a VR-induced cue conflict caused remapping to lock to geometry rather than salient cues. These results suggest a general-purpose tool for novel types of experimental manipulations in navigating rats. PMID:25374363

  11. Violence exposure and neural systems underlying working memory for emotional stimuli in youth.

    Science.gov (United States)

    Jenness, Jessica L; Rosen, Maya L; Sambrook, Kelly A; Dennison, Meg J; Lambert, Hilary K; Sheridan, Margaret A; McLaughlin, Katie A

    2017-11-16

    Violence exposure during childhood is common and associated with poor cognitive and academic functioning. However, little is known about how violence exposure influences cognitive processes that might contribute to these disparities, such as working memory, or their neural underpinnings, particularly for cognitive processes that occur in emotionally salient contexts. We address this gap in a sample of 54 participants aged 8 to 19 years (50% female), half with exposure to interpersonal violence. Participants completed a delayed match to sample task for emotional faces while undergoing functional magnetic resonance imaging scanning. Violence-exposed youth performed worse than controls on happy and neutral, but not angry, trials. In whole-brain analysis, violence-exposed youth had reduced activation in the left middle frontal gyrus and right intraparietal sulcus during encoding and the left superior temporal sulcus and temporal-parietal junction during retrieval compared to control youth. Reduced activation in the left middle frontal gyrus during encoding and the left superior temporal sulcus during retrieval mediated the association between violence exposure and task performance. Violence exposure influences the frontoparietal network that supports working memory as well as regions involved in facial processing during working memory for emotional stimuli. Reduced neural recruitment in these regions may explain atypical patterns of cognitive processing seen among violence-exposed youth, particularly within emotional contexts.

  12. Neural Expert Systems

    Czech Academy of Sciences Publication Activity Database

    Šíma, Jiří

    1995-01-01

    Roč. 8, č. 2 (1995), s. 261-271 ISSN 0893-6080 R&D Projects: GA ČR GA201/95/0976 Keywords : expert system * knowledge representation * multilayered neural network * back propagation * interval neuron function * incomplete information * explanation Impact factor: 1.262, year: 1995

  13. Deciphering the Cognitive and Neural Mechanisms Underlying ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Deciphering the Cognitive and Neural Mechanisms Underlying Auditory Learning. This project seeks to understand the brain mechanisms necessary for people to learn to perceive sounds. Neural circuits and learning. The research team will test people with and without musical training to evaluate their capacity to learn ...

  14. Neural Flight Control System

    Science.gov (United States)

    Gundy-Burlet, Karen

    2003-01-01

    The Neural Flight Control System (NFCS) was developed to address the need for control systems that can be produced and tested at lower cost, easily adapted to prototype vehicles and for flight systems that can accommodate damaged control surfaces or changes to aircraft stability and control characteristics resulting from failures or accidents. NFCS utilizes on a neural network-based flight control algorithm which automatically compensates for a broad spectrum of unanticipated damage or failures of an aircraft in flight. Pilot stick and rudder pedal inputs are fed into a reference model which produces pitch, roll and yaw rate commands. The reference model frequencies and gains can be set to provide handling quality characteristics suitable for the aircraft of interest. The rate commands are used in conjunction with estimates of the aircraft s stability and control (S&C) derivatives by a simplified Dynamic Inverse controller to produce virtual elevator, aileron and rudder commands. These virtual surface deflection commands are optimally distributed across the aircraft s available control surfaces using linear programming theory. Sensor data is compared with the reference model rate commands to produce an error signal. A Proportional/Integral (PI) error controller "winds up" on the error signal and adds an augmented command to the reference model output with the effect of zeroing the error signal. In order to provide more consistent handling qualities for the pilot, neural networks learn the behavior of the error controller and add in the augmented command before the integrator winds up. In the case of damage sufficient to affect the handling qualities of the aircraft, an Adaptive Critic is utilized to reduce the reference model frequencies and gains to stay within a flyable envelope of the aircraft.

  15. Neural dynamics underlying emotional transmissions between individuals.

    Science.gov (United States)

    Golland, Yulia; Levit-Binnun, Nava; Hendler, Talma; Lerner, Yulia

    2017-08-01

    Emotional experiences are frequently shaped by the emotional responses of co-present others. Research has shown that people constantly monitor and adapt to the incoming social-emotional signals, even without face-to-face interaction. And yet, the neural processes underlying such emotional transmissions have not been directly studied. Here, we investigated how the human brain processes emotional cues which arrive from another, co-attending individual. We presented continuous emotional feedback to participants who viewed a movie in the scanner. Participants in the social group (but not in the control group) believed that the feedback was coming from another person who was co-viewing the same movie. We found that social-emotional feedback significantly affected the neural dynamics both in the core affect and in the medial pre-frontal regions. Specifically, the response time-courses in those regions exhibited increased similarity across recipients and increased neural alignment with the timeline of the feedback in the social compared with control group. Taken in conjunction with previous research, this study suggests that emotional cues from others shape the neural dynamics across the whole neural continuum of emotional processing in the brain. Moreover, it demonstrates that interpersonal neural alignment can serve as a neural mechanism through which affective information is conveyed between individuals. © The Author (2017). Published by Oxford University Press.

  16. neural control system

    International Nuclear Information System (INIS)

    Elshazly, A.A.E.

    2002-01-01

    Automatic power stabilization control is the desired objective for any reactor operation , especially, nuclear power plants. A major problem in this area is inevitable gap between a real plant ant the theory of conventional analysis and the synthesis of linear time invariant systems. in particular, the trajectory tracking control of a nonlinear plant is a class of problems in which the classical linear transfer function methods break down because no transfer function can represent the system over the entire operating region . there is a considerable amount of research on the model-inverse approach using feedback linearization technique. however, this method requires a prices plant model to implement the exact linearizing feedback, for nuclear reactor systems, this approach is not an easy task because of the uncertainty in the plant parameters and un-measurable state variables . therefore, artificial neural network (ANN) is used either in self-tuning control or in improving the conventional rule-based exper system.the main objective of this thesis is to suggest an ANN, based self-learning controller structure . this method is capable of on-line reinforcement learning and control for a nuclear reactor with a totally unknown dynamics model. previously, researches are based on back- propagation algorithm . back -propagation (BP), fast back -propagation (FBP), and levenberg-marquardt (LM), algorithms are discussed and compared for reinforcement learning. it is found that, LM algorithm is quite superior

  17. Neural dynamics underlying emotional transmissions between individuals

    OpenAIRE

    Golland, Yulia; Levit-Binnun, Nava; Hendler, Talma; Lerner, Yulia

    2017-01-01

    Abstract Emotional experiences are frequently shaped by the emotional responses of co-present others. Research has shown that people constantly monitor and adapt to the incoming social–emotional signals, even without face-to-face interaction. And yet, the neural processes underlying such emotional transmissions have not been directly studied. Here, we investigated how the human brain processes emotional cues which arrive from another, co-attending individual. We presented continuous emotional...

  18. Neural Circuitry and Plasticity Mechanisms Underlying Delay Eyeblink Conditioning

    Science.gov (United States)

    Freeman, John H.; Steinmetz, Adam B.

    2011-01-01

    Pavlovian eyeblink conditioning has been used extensively as a model system for examining the neural mechanisms underlying associative learning. Delay eyeblink conditioning depends on the intermediate cerebellum ipsilateral to the conditioned eye. Evidence favors a two-site plasticity model within the cerebellum with long-term depression of…

  19. Neural systems for control

    National Research Council Canada - National Science Library

    Omidvar, Omid; Elliott, David L

    1997-01-01

    ... is reprinted with permission from A. Barto, "Reinforcement Learning," Handbook of Brain Theory and Neural Networks, M.A. Arbib, ed.. The MIT Press, Cambridge, MA, pp. 804-809, 1995. Chapter 4, Figures 4-5 and 7-9 and Tables 2-5, are reprinted with permission, from S. Cho, "Map Formation in Proprioceptive Cortex," International Jour...

  20. Integrated Neural Flight and Propulsion Control System

    Science.gov (United States)

    Kaneshige, John; Gundy-Burlet, Karen; Norvig, Peter (Technical Monitor)

    2001-01-01

    This paper describes an integrated neural flight and propulsion control system. which uses a neural network based approach for applying alternate sources of control power in the presence of damage or failures. Under normal operating conditions, the system utilizes conventional flight control surfaces. Neural networks are used to provide consistent handling qualities across flight conditions and for different aircraft configurations. Under damage or failure conditions, the system may utilize unconventional flight control surface allocations, along with integrated propulsion control, when additional control power is necessary for achieving desired flight control performance. In this case, neural networks are used to adapt to changes in aircraft dynamics and control allocation schemes. Of significant importance here is the fact that this system can operate without emergency or backup flight control mode operations. An additional advantage is that this system can utilize, but does not require, fault detection and isolation information or explicit parameter identification. Piloted simulation studies were performed on a commercial transport aircraft simulator. Subjects included both NASA test pilots and commercial airline crews. Results demonstrate the potential for improving handing qualities and significantly increasing survivability rates under various simulated failure conditions.

  1. Neural mechanisms underlying morphine withdrawal in addicted patients: a review

    Directory of Open Access Journals (Sweden)

    Nima Babhadiashar

    2015-06-01

    Full Text Available Morphine is one of the most potent alkaloid in opium, which has substantial medical uses and needs and it is the first active principle purified from herbal source. Morphine has commonly been used for relief of moderate to severe pain as it acts directly on the central nervous system; nonetheless, its chronic abuse increases tolerance and physical dependence, which is commonly known as opiate addiction. Morphine withdrawal syndrome is physiological and behavioral symptoms that stem from prolonged exposure to morphine. A majority of brain regions are hypofunctional over prolonged abstinence and acute morphine withdrawal. Furthermore, several neural mechanisms are likely to contribute to morphine withdrawal. The present review summarizes the literature pertaining to neural mechanisms underlying morphine withdrawal. Despite the fact that morphine withdrawal is a complex process, it is suggested that neural mechanisms play key roles in morphine withdrawal.

  2. Neural Population Dynamics Underlying Motor Learning Transfer.

    Science.gov (United States)

    Vyas, Saurabh; Even-Chen, Nir; Stavisky, Sergey D; Ryu, Stephen I; Nuyujukian, Paul; Shenoy, Krishna V

    2018-03-07

    Covert motor learning can sometimes transfer to overt behavior. We investigated the neural mechanism underlying transfer by constructing a two-context paradigm. Subjects performed cursor movements either overtly using arm movements, or covertly via a brain-machine interface that moves the cursor based on motor cortical activity (in lieu of arm movement). These tasks helped evaluate whether and how cortical changes resulting from "covert rehearsal" affect overt performance. We found that covert learning indeed transfers to overt performance and is accompanied by systematic population-level changes in motor preparatory activity. Current models of motor cortical function ascribe motor preparation to achieving initial conditions favorable for subsequent movement-period neural dynamics. We found that covert and overt contexts share these initial conditions, and covert rehearsal manipulates them in a manner that persists across context changes, thus facilitating overt motor learning. This transfer learning mechanism might provide new insights into other covert processes like mental rehearsal. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Neural mechanisms and models underlying joint action.

    Science.gov (United States)

    Chersi, Fabian

    2011-06-01

    Humans, in particular, and to a lesser extent also other species of animals, possess the impressive capability of smoothly coordinating their actions with those of others. The great amount of work done in recent years in neuroscience has provided new insights into the processes involved in joint action, intention understanding, and task sharing. In particular, the discovery of mirror neurons, which fire both when animals execute actions and when they observe the same actions done by other individuals, has shed light on the intimate relationship between perception and action elucidating the direct contribution of motor knowledge to action understanding. Up to date, however, a detailed description of the neural processes involved in these phenomena is still mostly lacking. Building upon data from single neuron recordings in monkeys observing the actions of a demonstrator and then executing the same or a complementary action, this paper describes the functioning of a biologically constraint neural network model of the motor and mirror systems during joint action. In this model, motor sequences are encoded as independent neuronal chains that represent concatenations of elementary motor acts leading to a specific goal. Action execution and recognition are achieved through the propagation of activity within specific chains. Due to the dual property of mirror neurons, the same architecture is capable of smoothly integrating and switching between observed and self-generated action sequences, thus allowing to evaluate multiple hypotheses simultaneously, understand actions done by others, and to respond in an appropriate way.

  4. Neural correlates underlying micrographia in Parkinson's disease.

    Science.gov (United States)

    Wu, Tao; Zhang, Jiarong; Hallett, Mark; Feng, Tao; Hou, Yanan; Chan, Piu

    2016-01-01

    Micrographia is a common symptom in Parkinson's disease, which manifests as either a consistent or progressive reduction in the size of handwriting or both. Neural correlates underlying micrographia remain unclear. We used functional magnetic resonance imaging to investigate micrographia-related neural activity and connectivity modulations. In addition, the effect of attention and dopaminergic administration on micrographia was examined. We found that consistent micrographia was associated with decreased activity and connectivity in the basal ganglia motor circuit; while progressive micrographia was related to the dysfunction of basal ganglia motor circuit together with disconnections between the rostral supplementary motor area, rostral cingulate motor area and cerebellum. Attention significantly improved both consistent and progressive micrographia, accompanied by recruitment of anterior putamen and dorsolateral prefrontal cortex. Levodopa improved consistent micrographia accompanied by increased activity and connectivity in the basal ganglia motor circuit, but had no effect on progressive micrographia. Our findings suggest that consistent micrographia is related to dysfunction of the basal ganglia motor circuit; while dysfunction of the basal ganglia motor circuit and disconnection between the rostral supplementary motor area, rostral cingulate motor area and cerebellum likely contributes to progressive micrographia. Attention improves both types of micrographia by recruiting additional brain networks. Levodopa improves consistent micrographia by restoring the function of the basal ganglia motor circuit, but does not improve progressive micrographia, probably because of failure to repair the disconnected networks. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Two distinct neural mechanisms underlying indirect reciprocity.

    Science.gov (United States)

    Watanabe, Takamitsu; Takezawa, Masanori; Nakawake, Yo; Kunimatsu, Akira; Yamasue, Hidenori; Nakamura, Mitsuhiro; Miyashita, Yasushi; Masuda, Naoki

    2014-03-18

    Cooperation is a hallmark of human society. Humans often cooperate with strangers even if they will not meet each other again. This so-called indirect reciprocity enables large-scale cooperation among nonkin and can occur based on a reputation mechanism or as a succession of pay-it-forward behavior. Here, we provide the functional and anatomical neural evidence for two distinct mechanisms governing the two types of indirect reciprocity. Cooperation occurring as reputation-based reciprocity specifically recruited the precuneus, a region associated with self-centered cognition. During such cooperative behavior, the precuneus was functionally connected with the caudate, a region linking rewards to behavior. Furthermore, the precuneus of a cooperative subject had a strong resting-state functional connectivity (rsFC) with the caudate and a large gray matter volume. In contrast, pay-it-forward reciprocity recruited the anterior insula (AI), a brain region associated with affective empathy. The AI was functionally connected with the caudate during cooperation occurring as pay-it-forward reciprocity, and its gray matter volume and rsFC with the caudate predicted the tendency of such cooperation. The revealed difference is consistent with the existing results of evolutionary game theory: although reputation-based indirect reciprocity robustly evolves as a self-interested behavior in theory, pay-it-forward indirect reciprocity does not on its own. The present study provides neural mechanisms underlying indirect reciprocity and suggests that pay-it-forward reciprocity may not occur as myopic profit maximization but elicit emotional rewards.

  6. The LILARTI neural network system

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J.D. Jr.; Schell, F.M.; Dodd, C.V.

    1992-10-01

    The material of this Technical Memorandum is intended to provide the reader with conceptual and technical background information on the LILARTI neural network system of detail sufficient to confer an understanding of the LILARTI method as it is presently allied and to facilitate application of the method to problems beyond the scope of this document. Of particular importance in this regard are the descriptive sections and the Appendices which include operating instructions, partial listings of program output and data files, and network construction information.

  7. Adaptive neural network motion control for aircraft under uncertainty conditions

    Science.gov (United States)

    Efremov, A. V.; Tiaglik, M. S.; Tiumentsev, Yu V.

    2018-02-01

    We need to provide motion control of modern and advanced aircraft under diverse uncertainty conditions. This problem can be solved by using adaptive control laws. We carry out an analysis of the capabilities of these laws for such adaptive systems as MRAC (Model Reference Adaptive Control) and MPC (Model Predictive Control). In the case of a nonlinear control object, the most efficient solution to the adaptive control problem is the use of neural network technologies. These technologies are suitable for the development of both a control object model and a control law for the object. The approximate nature of the ANN model was taken into account by introducing additional compensating feedback into the control system. The capabilities of adaptive control laws under uncertainty in the source data are considered. We also conduct simulations to assess the contribution of adaptivity to the behavior of the system.

  8. Neural correlates underlying musical semantic memory.

    Science.gov (United States)

    Groussard, M; Viader, F; Landeau, B; Desgranges, B; Eustache, F; Platel, H

    2009-07-01

    Numerous functional imaging studies have examined the neural basis of semantic memory mainly using verbal and visuospatial materials. Musical material also allows an original way to explore semantic memory processes. We used PET imaging to determine the neural substrates that underlie musical semantic memory using different tasks and stimuli. The results of three PET studies revealed a greater involvement of the anterior part of the temporal lobe. Concerning clinical observations and our neuroimaging data, the musical lexicon (and most widely musical semantic memory) appears to be sustained by a temporo-prefrontal cerebral network involving right and left cerebral regions.

  9. Learning in Artificial Neural Systems

    Science.gov (United States)

    Matheus, Christopher J.; Hohensee, William E.

    1987-01-01

    This paper presents an overview and analysis of learning in Artificial Neural Systems (ANS's). It begins with a general introduction to neural networks and connectionist approaches to information processing. The basis for learning in ANS's is then described, and compared with classical Machine learning. While similar in some ways, ANS learning deviates from tradition in its dependence on the modification of individual weights to bring about changes in a knowledge representation distributed across connections in a network. This unique form of learning is analyzed from two aspects: the selection of an appropriate network architecture for representing the problem, and the choice of a suitable learning rule capable of reproducing the desired function within the given network. The various network architectures are classified, and then identified with explicit restrictions on the types of functions they are capable of representing. The learning rules, i.e., algorithms that specify how the network weights are modified, are similarly taxonomized, and where possible, the limitations inherent to specific classes of rules are outlined.

  10. Ontogeny of neural circuits underlying spatial memory in the rat

    Directory of Open Access Journals (Sweden)

    James Alexander Ainge

    2012-03-01

    Full Text Available Spatial memory is a well characterised psychological function in both humans and rodents. The combined computations of a network of systems including place cells in the hippocampus, grid cells in the medial entorhinal cortex and head direction cells found in numerous structures in the brain have been suggested to form the neural instantiation of the cognitive map as first described by Tolman in 1948. However, while our understanding of the neural mechanisms underlying spatial representations in adults is relatively sophisticated, we know substantially less about how this network develops in young animals. In this article we review studies examining the developmental timescale that these systems follow. Electrophysiological recordings from very young rats show that directional information is at adult levels at the outset of navigational experience. The systems supporting allocentric memory, however, take longer to mature. This is consistent with behavioural studies of young rats which show that spatial memory based on head direction develops very early but that allocentric spatial memory takes longer to mature. We go on to report new data demonstrating that memory for associations between objects and their spatial locations is slower to develop than memory for objects alone. This is again consistent with previous reports suggesting that adult like spatial representations have a protracted development in rats and also suggests that the systems involved in processing non-spatial stimuli come online earlier.

  11. Neural network based system for equipment surveillance

    Science.gov (United States)

    Vilim, R.B.; Gross, K.C.; Wegerich, S.W.

    1998-04-28

    A method and system are disclosed for performing surveillance of transient signals of an industrial device to ascertain the operating state. The method and system involves the steps of reading into a memory training data, determining neural network weighting values until achieving target outputs close to the neural network output. If the target outputs are inadequate, wavelet parameters are determined to yield neural network outputs close to the desired set of target outputs and then providing signals characteristic of an industrial process and comparing the neural network output to the industrial process signals to evaluate the operating state of the industrial process. 33 figs.

  12. Neural Control of the Immune System

    Science.gov (United States)

    Sundman, Eva; Olofsson, Peder S.

    2014-01-01

    Neural reflexes support homeostasis by modulating the function of organ systems. Recent advances in neuroscience and immunology have revealed that neural reflexes also regulate the immune system. Activation of the vagus nerve modulates leukocyte cytokine production and alleviates experimental shock and autoimmune disease, and recent data have…

  13. Short-term synaptic plasticity and heterogeneity in neural systems

    Science.gov (United States)

    Mejias, J. F.; Kappen, H. J.; Longtin, A.; Torres, J. J.

    2013-01-01

    We review some recent results on neural dynamics and information processing which arise when considering several biophysical factors of interest, in particular, short-term synaptic plasticity and neural heterogeneity. The inclusion of short-term synaptic plasticity leads to enhanced long-term memory capacities, a higher robustness of memory to noise, and irregularity in the duration of the so-called up cortical states. On the other hand, considering some level of neural heterogeneity in neuron models allows neural systems to optimize information transmission in rate coding and temporal coding, two strategies commonly used by neurons to codify information in many brain areas. In all these studies, analytical approximations can be made to explain the underlying dynamics of these neural systems.

  14. Neural mechanisms underlying melodic perception and memory for pitch.

    Science.gov (United States)

    Zatorre, R J; Evans, A C; Meyer, E

    1994-04-01

    The neural correlates of music perception were studied by measuring cerebral blood flow (CBF) changes with positron emission tomography (PET). Twelve volunteers were scanned using the bolus water method under four separate conditions: (1) listening to a sequence of noise bursts, (2) listening to unfamiliar tonal melodies, (3) comparing the pitch of the first two notes of the same set of melodies, and (4) comparing the pitch of the first and last notes of the melodies. The latter two conditions were designed to investigate short-term pitch retention under low or high memory load, respectively. Subtraction of the obtained PET images, superimposed on matched MRI scans, provides anatomical localization of CBF changes associated with specific cognitive functions. Listening to melodies, relative to acoustically matched noise sequences, resulted in CBF increases in the right superior temporal and right occipital cortices. Pitch judgments of the first two notes of each melody, relative to passive listening to the same stimuli, resulted in right frontal-lobe activation. Analysis of the high memory load condition relative to passive listening revealed the participation of a number of cortical and subcortical regions, notably in the right frontal and right temporal lobes, as well as in parietal and insular cortex. Both pitch judgment conditions also revealed CBF decreases within the left primary auditory cortex. We conclude that specialized neural systems in the right superior temporal cortex participate in perceptual analysis of melodies; pitch comparisons are effected via a neural network that includes right prefrontal cortex, but active retention of pitch involves the interaction of right temporal and frontal cortices.

  15. Review of the Neural Oscillations Underlying Meditation

    Directory of Open Access Journals (Sweden)

    Darrin J. Lee

    2018-03-01

    Full Text Available Objective: Meditation is one type of mental training that has been shown to produce many cognitive benefits. Meditation practice is associated with improvement in concentration and reduction of stress, depression, and anxiety symptoms. Furthermore, different forms of meditation training are now being used as interventions for a variety of psychological and somatic illnesses. These benefits are thought to occur as a result of neurophysiologic changes. The most commonly studied specific meditation practices are focused attention (FA, open-monitoring (OM, as well as transcendental meditation (TM, and loving-kindness (LK meditation. In this review, we compare the neural oscillatory patterns during these forms of meditation.Method: We performed a systematic review of neural oscillations during FA, OM, TM, and LK meditation practices, comparing meditators to meditation-naïve adults.Results: FA, OM, TM, and LK meditation are associated with global increases in oscillatory activity in meditators compared to meditation-naïve adults, with larger changes occurring as the length of meditation training increases. While FA and OM are related to increases in anterior theta activity, only FA is associated with changes in posterior theta oscillations. Alpha activity increases in posterior brain regions during both FA and OM. In anterior regions, FA shows a bilateral increase in alpha power, while OM shows a decrease only in left-sided power. Gamma activity in these meditation practices is similar in frontal regions, but increases are variable in parietal and occipital regions.Conclusions: The current literature suggests distinct differences in neural oscillatory activity among FA, OM, TM, and LK meditation practices. Further characterizing these oscillatory changes may better elucidate the cognitive and therapeutic effects of specific meditation practices, and potentially lead to the development of novel neuromodulation targets to take advantage of their

  16. Learning control of inverted pendulum system by neural network driven fuzzy reasoning: The learning function of NN-driven fuzzy reasoning under changes of reasoning environment

    Science.gov (United States)

    Hayashi, Isao; Nomura, Hiroyoshi; Wakami, Noboru

    1991-01-01

    Whereas conventional fuzzy reasonings are associated with tuning problems, which are lack of membership functions and inference rule designs, a neural network driven fuzzy reasoning (NDF) capable of determining membership functions by neural network is formulated. In the antecedent parts of the neural network driven fuzzy reasoning, the optimum membership function is determined by a neural network, while in the consequent parts, an amount of control for each rule is determined by other plural neural networks. By introducing an algorithm of neural network driven fuzzy reasoning, inference rules for making a pendulum stand up from its lowest suspended point are determined for verifying the usefulness of the algorithm.

  17. Spiking Neural P Systems With Scheduled Synapses.

    Science.gov (United States)

    Cabarle, Francis George C; Adorna, Henry N; Jiang, Min; Zeng, Xiangxiang

    2017-12-01

    Spiking neural P systems (SN P systems) are models of computation inspired by biological spiking neurons. SN P systems have neurons as spike processors, which are placed on the nodes of a directed and static graph (the edges in the graph are the synapses). In this paper, we introduce a variant called SN P systems with scheduled synapses (SSN P systems). SSN P systems are inspired and motivated by the structural dynamism of biological synapses, while incorporating ideas from nonstatic (i.e., dynamic) graphs and networks. In particular, synapses in SSN P systems are available only at specific durations according to their schedules. The SSN P systems model is a response to the problem of introducing durations to synapses of SN P systems. Since SN P systems are in essence static graphs, it is natural to consider them for dynamic graphs also. We introduce local and global schedule types, also taking inspiration from the above-mentioned sources. We prove that SSN P systems are computationally universal as number generators and acceptors for both schedule types, under a normal form (i.e., a simplifying set of restrictions). The introduction of synapse schedules for either schedule type proves useful in programming the system, despite restrictions in the normal form.

  18. Echoes in correlated neural systems

    International Nuclear Information System (INIS)

    Helias, M; Tetzlaff, T; Diesmann, M

    2013-01-01

    Correlations are employed in modern physics to explain microscopic and macroscopic phenomena, like the fractional quantum Hall effect and the Mott insulator state in high temperature superconductors and ultracold atoms. Simultaneously probed neurons in the intact brain reveal correlations between their activity, an important measure to study information processing in the brain that also influences the macroscopic signals of neural activity, like the electroencephalogram (EEG). Networks of spiking neurons differ from most physical systems: the interaction between elements is directed, time delayed, mediated by short pulses and each neuron receives events from thousands of neurons. Even the stationary state of the network cannot be described by equilibrium statistical mechanics. Here we develop a quantitative theory of pairwise correlations in finite-sized random networks of spiking neurons. We derive explicit analytic expressions for the population-averaged cross correlation functions. Our theory explains why the intuitive mean field description fails, how the echo of single action potentials causes an apparent lag of inhibition with respect to excitation and how the size of the network can be scaled while maintaining its dynamical state. Finally, we derive a new criterion for the emergence of collective oscillations from the spectrum of the time-evolution propagator. (paper)

  19. Antagonistic neural networks underlying differentiated leadership roles

    Science.gov (United States)

    Boyatzis, Richard E.; Rochford, Kylie; Jack, Anthony I.

    2014-01-01

    The emergence of two distinct leadership roles, the task leader and the socio-emotional leader, has been documented in the leadership literature since the 1950s. Recent research in neuroscience suggests that the division between task-oriented and socio-emotional-oriented roles derives from a fundamental feature of our neurobiology: an antagonistic relationship between two large-scale cortical networks – the task-positive network (TPN) and the default mode network (DMN). Neural activity in TPN tends to inhibit activity in the DMN, and vice versa. The TPN is important for problem solving, focusing of attention, making decisions, and control of action. The DMN plays a central role in emotional self-awareness, social cognition, and ethical decision making. It is also strongly linked to creativity and openness to new ideas. Because activation of the TPN tends to suppress activity in the DMN, an over-emphasis on task-oriented leadership may prove deleterious to social and emotional aspects of leadership. Similarly, an overemphasis on the DMN would result in difficulty focusing attention, making decisions, and solving known problems. In this paper, we will review major streams of theory and research on leadership roles in the context of recent findings from neuroscience and psychology. We conclude by suggesting that emerging research challenges the assumption that role differentiation is both natural and necessary, in particular when openness to new ideas, people, emotions, and ethical concerns are important to success. PMID:24624074

  20. Antagonistic Neural Networks Underlying Differentiated Leadership Roles

    Directory of Open Access Journals (Sweden)

    Richard Eleftherios Boyatzis

    2014-03-01

    Full Text Available The emergence of two distinct leadership roles, the task leader and the socio-emotional leader, has been documented in the leadership literature since the 1950’s. Recent research in neuroscience suggests that the division between task oriented and socio-emotional oriented roles derives from a fundamental feature of our neurobiology: an antagonistic relationship between two large-scale cortical networks -- the Task Positive Network (TPN and the Default Mode Network (DMN. Neural activity in TPN tends to inhibit activity in the DMN, and vice versa. The TPN is important for problem solving, focusing of attention, making decisions, and control of action. The DMN plays a central role in emotional self-awareness, social cognition, and ethical decision making. It is also strongly linked to creativity and openness to new ideas. Because activation of the TPN tends to suppress activity in the DMN, an over-emphasis on task oriented leadership may prove deleterious to social and emotional aspects of leadership. Similarly, an overemphasis on the DMN would result in difficulty focusing attention, making decisions and solving known problems. In this paper, we will review major streams of theory and research on leadership roles in the context of recent findings from neuroscience and psychology. We conclude by suggesting that emerging research challenges the assumption that role differentiation is both natural and necessary, in particular when openness to new ideas, people, emotions, and ethical concerns are important to success.

  1. Antagonistic neural networks underlying differentiated leadership roles.

    Science.gov (United States)

    Boyatzis, Richard E; Rochford, Kylie; Jack, Anthony I

    2014-01-01

    The emergence of two distinct leadership roles, the task leader and the socio-emotional leader, has been documented in the leadership literature since the 1950s. Recent research in neuroscience suggests that the division between task-oriented and socio-emotional-oriented roles derives from a fundamental feature of our neurobiology: an antagonistic relationship between two large-scale cortical networks - the task-positive network (TPN) and the default mode network (DMN). Neural activity in TPN tends to inhibit activity in the DMN, and vice versa. The TPN is important for problem solving, focusing of attention, making decisions, and control of action. The DMN plays a central role in emotional self-awareness, social cognition, and ethical decision making. It is also strongly linked to creativity and openness to new ideas. Because activation of the TPN tends to suppress activity in the DMN, an over-emphasis on task-oriented leadership may prove deleterious to social and emotional aspects of leadership. Similarly, an overemphasis on the DMN would result in difficulty focusing attention, making decisions, and solving known problems. In this paper, we will review major streams of theory and research on leadership roles in the context of recent findings from neuroscience and psychology. We conclude by suggesting that emerging research challenges the assumption that role differentiation is both natural and necessary, in particular when openness to new ideas, people, emotions, and ethical concerns are important to success.

  2. Stable Neural Control of Uncertain Multivariable Systems

    National Research Council Canada - National Science Library

    Mears, Mark

    2001-01-01

    ... that the trajectories remain bonded. Lyapunov analysis is used to derive equations for the sliding mode control, neural network training, and to show uniform ultimate boundedness of the closed loop systems...

  3. Neural mechanisms underlying context-dependent shifts in risk preferences

    NARCIS (Netherlands)

    Losecaat Vermeer, A.B.; Boksem, M.A.S.; Sanfey, A.G.

    2014-01-01

    Studies of risky decision-making have demonstrated that humans typically prefer risky options after incurring a financial loss, while generally preferring safer options after a monetary gain. Here, we examined the neural processes underlying these inconsistent risk preferences by investigating the

  4. Neural Global Pattern Similarity Underlies True and False Memories.

    Science.gov (United States)

    Ye, Zhifang; Zhu, Bi; Zhuang, Liping; Lu, Zhonglin; Chen, Chuansheng; Xue, Gui

    2016-06-22

    The neural processes giving rise to human memory strength signals remain poorly understood. Inspired by formal computational models that posit a central role of global matching in memory strength, we tested a novel hypothesis that the strengths of both true and false memories arise from the global similarity of an item's neural activation pattern during retrieval to that of all the studied items during encoding (i.e., the encoding-retrieval neural global pattern similarity [ER-nGPS]). We revealed multiple ER-nGPS signals that carried distinct information and contributed differentially to true and false memories: Whereas the ER-nGPS in the parietal regions reflected semantic similarity and was scaled with the recognition strengths of both true and false memories, ER-nGPS in the visual cortex contributed solely to true memory. Moreover, ER-nGPS differences between the parietal and visual cortices were correlated with frontal monitoring processes. By combining computational and neuroimaging approaches, our results advance a mechanistic understanding of memory strength in recognition. What neural processes give rise to memory strength signals, and lead to our conscious feelings of familiarity? Using fMRI, we found that the memory strength of a given item depends not only on how it was encoded during learning, but also on the similarity of its neural representation with other studied items. The global neural matching signal, mainly in the parietal lobule, could account for the memory strengths of both studied and unstudied items. Interestingly, a different global matching signal, originated from the visual cortex, could distinguish true from false memories. The findings reveal multiple neural mechanisms underlying the memory strengths of events registered in the brain. Copyright © 2016 the authors 0270-6474/16/366792-11$15.00/0.

  5. Application of neural networks in CRM systems

    Directory of Open Access Journals (Sweden)

    Bojanowska Agnieszka

    2017-01-01

    Full Text Available The central aim of this study is to investigate how to apply artificial neural networks in Customer Relationship Management (CRM. The paper presents several business applications of neural networks in software systems designed to aid CRM, e.g. in deciding on the profitability of building a relationship with a given customer. Furthermore, a framework for a neural-network based CRM software tool is developed. Building beneficial relationships with customers is generating considerable interest among various businesses, and is often mentioned as one of the crucial objectives of enterprises, next to their key aim: to bring satisfactory profit. There is a growing tendency among businesses to invest in CRM systems, which together with an organisational culture of a company aid managing customer relationships. It is the sheer amount of gathered data as well as the need for constant updating and analysis of this breadth of information that may imply the suitability of neural networks for the application in question. Neural networks exhibit considerably higher computational capabilities than sequential calculations because the solution to a problem is obtained without the need for developing a special algorithm. In the majority of presented CRM applications neural networks constitute and are presented as a managerial decision-taking optimisation tool.

  6. Nonlinear signal processing using neural networks: Prediction and system modelling

    Energy Technology Data Exchange (ETDEWEB)

    Lapedes, A.; Farber, R.

    1987-06-01

    The backpropagation learning algorithm for neural networks is developed into a formalism for nonlinear signal processing. We illustrate the method by selecting two common topics in signal processing, prediction and system modelling, and show that nonlinear applications can be handled extremely well by using neural networks. The formalism is a natural, nonlinear extension of the linear Least Mean Squares algorithm commonly used in adaptive signal processing. Simulations are presented that document the additional performance achieved by using nonlinear neural networks. First, we demonstrate that the formalism may be used to predict points in a highly chaotic time series with orders of magnitude increase in accuracy over conventional methods including the Linear Predictive Method and the Gabor-Volterra-Weiner Polynomial Method. Deterministic chaos is thought to be involved in many physical situations including the onset of turbulence in fluids, chemical reactions and plasma physics. Secondly, we demonstrate the use of the formalism in nonlinear system modelling by providing a graphic example in which it is clear that the neural network has accurately modelled the nonlinear transfer function. It is interesting to note that the formalism provides explicit, analytic, global, approximations to the nonlinear maps underlying the various time series. Furthermore, the neural net seems to be extremely parsimonious in its requirements for data points from the time series. We show that the neural net is able to perform well because it globally approximates the relevant maps by performing a kind of generalized mode decomposition of the maps. 24 refs., 13 figs.

  7. Kannada character recognition system using neural network

    Science.gov (United States)

    Kumar, Suresh D. S.; Kamalapuram, Srinivasa K.; Kumar, Ajay B. R.

    2013-03-01

    Handwriting recognition has been one of the active and challenging research areas in the field of pattern recognition. It has numerous applications which include, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. As there is no sufficient number of works on Indian language character recognition especially Kannada script among 15 major scripts in India. In this paper an attempt is made to recognize handwritten Kannada characters using Feed Forward neural networks. A handwritten Kannada character is resized into 20x30 Pixel. The resized character is used for training the neural network. Once the training process is completed the same character is given as input to the neural network with different set of neurons in hidden layer and their recognition accuracy rate for different Kannada characters has been calculated and compared. The results show that the proposed system yields good recognition accuracy rates comparable to that of other handwritten character recognition systems.

  8. Neural mechanisms underlying neurooptometric rehabilitation following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Hudac CM

    2012-01-01

    Full Text Available Caitlin M Hudac1, Srinivas Kota1, James L Nedrow2, Dennis L Molfese1,31Department of Psychology, University of Nebraska-Lincoln, 2Oculi Vision Rehabilitation, 3Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, NEAbstract: Mild to severe traumatic brain injuries have lasting effects on everyday functioning. Issues relating to sensory problems are often overlooked or not addressed until well after the onset of the injury. In particular, vision problems related to ambient vision and the magnocellular pathway often result in posttrauma vision syndrome or visual midline shift syndrome. Symptoms from these syndromes are not restricted to the visual domain. Patients commonly experience proprioceptive, kinesthetic, vestibular, cognitive, and language problems. Neurooptometric rehabilitation often entails the use of corrective lenses, prisms, and binasal occlusion to accommodate the unstable magnocellular system. However, little is known regarding the neural mechanisms engaged during neurooptometric rehabilitation, nor how these mechanisms impact other domains. Event-related potentials from noninvasive electrophysiological recordings can be used to assess rehabilitation progress in patients. In this case report, high-density visual event-related potentials were recorded from one patient with posttrauma vision syndrome and secondary visual midline shift syndrome during a pattern reversal task, both with and without prisms. Results indicate that two factors occurring during the end portion of the P148 component (168–256 milliseconds poststimulus onset map onto two separate neural systems that were engaged with and without neurooptometric rehabilitation. Without prisms, neural sources within somatosensory, language, and executive brain regions engage inefficient magnocellular system processing. However, when corrective prisms were worn, primary visual areas were appropriately engaged. The impact of using early

  9. A neural systems analysis of adaptive navigation.

    Science.gov (United States)

    Mizumori, S J; Cooper, B G; Leutgeb, S; Pratt, W E

    2000-01-01

    In the field of the neurobiology of learning, significant emphasis has been placed on understanding neural plasticity within a single structure (or synapse type) as it relates to a particular type of learning mediated by a particular brain area. To appreciate fully the breadth of the plasticity responsible for complex learning phenomena, it is imperative that we also examine the neural mechanisms of the behavioral instantiation of learned information, how motivational systems interact, and how past memories affect the learning process. To address this issue, we describe a model of complex learning (rodent adaptive navigation) that could be used to study dynamically interactive neural systems. Adaptive navigation depends on the efficient integration of external and internal sensory information with motivational systems to arrive at the most effective cognitive and/or behavioral strategies. We present evidence consistent with the view that during navigation: 1) the limbic thalamus and limbic cortex is primarily responsible for the integration of current and expected sensory information, 2) the hippocampal-septal-hypothalamic system provides a mechanism whereby motivational perspectives bias sensory processing, and 3) the amygdala-prefrontal-striatal circuit allows animals to evaluate the expected reinforcement consequences of context-dependent behavioral responses. Although much remains to be determined regarding the nature of the interactions among neural systems, new insights have emerged regarding the mechanisms that underlie flexible and adaptive behavioral responses.

  10. Neural processes underlying cultural differences in cognitive persistence.

    Science.gov (United States)

    Telzer, Eva H; Qu, Yang; Lin, Lynda C

    2017-08-01

    Self-improvement motivation, which occurs when individuals seek to improve upon their competence by gaining new knowledge and improving upon their skills, is critical for cognitive, social, and educational adjustment. While many studies have delineated the neural mechanisms supporting extrinsic motivation induced by monetary rewards, less work has examined the neural processes that support intrinsically motivated behaviors, such as self-improvement motivation. Because cultural groups traditionally vary in terms of their self-improvement motivation, we examined cultural differences in the behavioral and neural processes underlying motivated behaviors during cognitive persistence in the absence of extrinsic rewards. In Study 1, 71 American (47 females, M=19.68 years) and 68 Chinese (38 females, M=19.37 years) students completed a behavioral cognitive control task that required cognitive persistence across time. In Study 2, 14 American and 15 Chinese students completed the same cognitive persistence task during an fMRI scan. Across both studies, American students showed significant declines in cognitive performance across time, whereas Chinese participants demonstrated effective cognitive persistence. These behavioral effects were explained by cultural differences in self-improvement motivation and paralleled by increasing activation and functional coupling between the inferior frontal gyrus (IFG) and ventral striatum (VS) across the task among Chinese participants, neural activation and coupling that remained low in American participants. These findings suggest a potential neural mechanism by which the VS and IFG work in concert to promote cognitive persistence in the absence of extrinsic rewards. Thus, frontostriatal circuitry may be a neurobiological signal representing intrinsic motivation for self-improvement that serves an adaptive function, increasing Chinese students' motivation to engage in cognitive persistence. Copyright © 2017 Elsevier Inc. All rights

  11. System and method for determining stability of a neural system

    Science.gov (United States)

    Curtis, Steven A. (Inventor)

    2011-01-01

    Disclosed are methods, systems, and computer-readable media for determining stability of a neural system. The method includes tracking a function world line of an N element neural system within at least one behavioral space, determining whether the tracking function world line is approaching a psychological stability surface, and implementing a quantitative solution that corrects instability if the tracked function world line is approaching the psychological stability surface.

  12. Correntropy-Based Evolving Fuzzy Neural System

    OpenAIRE

    Bao, Rongjing; Rong, Haijun; Angelov, Plamen Parvanov; Chen, Badong; Wong, Pak Kin

    2017-01-01

    In this paper, a correntropy-based evolving fuzzy neural system (correntropy-EFNS) is proposed for approximation of nonlinear systems. Different from the commonly used meansquare error criterion, correntropy has a strong outliers rejection ability through capturing the higher moments of the error distribution. Considering the merits of correntropy, this paper brings contributions to build EFNS based on the correntropy concept to achieve a more stable evolution of the rule base and update of t...

  13. Analysis of complex systems using neural networks

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1992-01-01

    The application of neural networks, alone or in conjunction with other advanced technologies (expert systems, fuzzy logic, and/or genetic algorithms), to some of the problems of complex engineering systems has the potential to enhance the safety, reliability, and operability of these systems. Typically, the measured variables from the systems are analog variables that must be sampled and normalized to expected peak values before they are introduced into neural networks. Often data must be processed to put it into a form more acceptable to the neural network (e.g., a fast Fourier transformation of the time-series data to produce a spectral plot of the data). Specific applications described include: (1) Diagnostics: State of the Plant (2) Hybrid System for Transient Identification, (3) Sensor Validation, (4) Plant-Wide Monitoring, (5) Monitoring of Performance and Efficiency, and (6) Analysis of Vibrations. Although specific examples described deal with nuclear power plants or their subsystems, the techniques described can be applied to a wide variety of complex engineering systems

  14. Neural changes underlying early stages of L2 vocabulary acquisition.

    Science.gov (United States)

    Pu, He; Holcomb, Phillip J; Midgley, Katherine J

    2016-11-01

    Research has shown neural changes following second language (L2) acquisition after weeks or months of instruction. But are such changes detectable even earlier than previously shown? The present study examines the electrophysiological changes underlying the earliest stages of second language vocabulary acquisition by recording event-related potentials (ERPs) within the first week of learning. Adult native English speakers with no previous Spanish experience completed less than four hours of Spanish vocabulary training, with pre- and post-training ERPs recorded to a backward translation task. Results indicate that beginning L2 learners show rapid neural changes following learning, manifested in changes to the N400 - an ERP component sensitive to lexicosemantic processing and degree of L2 proficiency. Specifically, learners in early stages of L2 acquisition show growth in N400 amplitude to L2 words following learning as well as a backward translation N400 priming effect that was absent pre-training. These results were shown within days of minimal L2 training, suggesting that the neural changes captured during adult second language acquisition are more rapid than previously shown. Such findings are consistent with models of early stages of bilingualism in adult learners of L2 ( e.g. Kroll and Stewart's RHM) and reinforce the use of ERP measures to assess L2 learning.

  15. Neural network model for evaluation of seedling vigour under clinostated conditions

    Science.gov (United States)

    Zaidi, M.; Murase, H.

    A hierarchical neural net can be applied to simulate nonlinear phenomena found in biological systems. The learning process of the hierarchical neural net can be used as an algorithm for nonlinear multivariate analysis. The non- invasive technique for monitoring the plant's growth stage is one part of the required technology of the bio-response feedback control system. The stage of a plant's growth can be identified or quantified by measuring physical indices. Automated monitoring is also necessary in the clinostat experiment and neural networks are used for the calibration of lettuce plant growth. A back propagation neural network was trained to evaluate the plant growth in terms of plant growth characteristics, with a network consisting of 4, 8 and 1 processing units in the input, hidden and output layers, respectively. Sixteen sets of training data were used. The training was terminated after 800 times of iterative calculations at the RMS error value equal to 3.35x10-3 . Four sets of validation data were used to calculate the prediction error. The ability of the neural network models to predict the required information is very accurate. As a result, there is potential for the present technique to be applied to seedling vigour evaluating system under the clinostated conditions.

  16. System Identification of X-33 Neural Network

    Science.gov (United States)

    Aggarwal, Shiv

    2003-01-01

    present attempt, as a start, focuses only on the entry phase. Since the main engine remains cut off in this phase, there is no thrust acting on the system. This considerably simplifies the equations of motion. We introduce another simplification by assuming the system to be linear after some non-linearities are removed analytically from our consideration. Under these assumptions, the problem could be solved by Classical Statistics by employing the least sum of squares approach. Instead we chose to use the Neural Network method. This method has many advantages. It is modern, more efficient, can be adapted to work even when the assumptions are diluted. In fact, Neural Networks try to model the human brain and are capable of pattern recognition.

  17. IMPLEMENTATION OF NEURAL - CRYPTOGRAPHIC SYSTEM USING FPGA

    Directory of Open Access Journals (Sweden)

    KARAM M. Z. OTHMAN

    2011-08-01

    Full Text Available Modern cryptography techniques are virtually unbreakable. As the Internet and other forms of electronic communication become more prevalent, electronic security is becoming increasingly important. Cryptography is used to protect e-mail messages, credit card information, and corporate data. The design of the cryptography system is a conventional cryptography that uses one key for encryption and decryption process. The chosen cryptography algorithm is stream cipher algorithm that encrypt one bit at a time. The central problem in the stream-cipher cryptography is the difficulty of generating a long unpredictable sequence of binary signals from short and random key. Pseudo random number generators (PRNG have been widely used to construct this key sequence. The pseudo random number generator was designed using the Artificial Neural Networks (ANN. The Artificial Neural Networks (ANN providing the required nonlinearity properties that increases the randomness statistical properties of the pseudo random generator. The learning algorithm of this neural network is backpropagation learning algorithm. The learning process was done by software program in Matlab (software implementation to get the efficient weights. Then, the learned neural network was implemented using field programmable gate array (FPGA.

  18. Simulating neural systems with Xyce.

    Energy Technology Data Exchange (ETDEWEB)

    Schiek, Richard Louis; Thornquist, Heidi K.; Mei, Ting; Warrender, Christina E.; Aimone, James Bradley; Teeter, Corinne; Duda, Alex M.

    2012-12-01

    Sandias parallel circuit simulator, Xyce, can address large scale neuron simulations in a new way extending the range within which one can perform high-fidelity, multi-compartment neuron simulations. This report documents the implementation of neuron devices in Xyce, their use in simulation and analysis of neuron systems.

  19. Distributed Adaptive Neural Control for Stochastic Nonlinear Multiagent Systems.

    Science.gov (United States)

    Wang, Fang; Chen, Bing; Lin, Chong; Li, Xuehua

    2016-11-14

    In this paper, a consensus tracking problem of nonlinear multiagent systems is investigated under a directed communication topology. All the followers are modeled by stochastic nonlinear systems in nonstrict feedback form, where nonlinearities and stochastic disturbance terms are totally unknown. Based on the structural characteristic of neural networks (in Lemma 4), a novel distributed adaptive neural control scheme is put forward. The raised control method not only effectively handles unknown nonlinearities in nonstrict feedback systems, but also copes with the interactions among agents and coupling terms. Based on the stochastic Lyapunov functional method, it is indicated that all the signals of the closed-loop system are bounded in probability and all followers' outputs are convergent to a neighborhood of the output of leader. At last, the efficiency of the control method is testified by a numerical example.

  20. Studies of Neuronal Gene Regulation Controlling the Molecular Mechanisms Underlying Neural Plasticity.

    Science.gov (United States)

    Fukuchi, Mamoru

    2017-01-01

    The regulation of the development and function of the nervous system is not preprogramed but responds to environmental stimuli to change neural development and function flexibly. This neural plasticity is a characteristic property of the nervous system. For example, strong synaptic activation evoked by environmental stimuli leads to changes in synaptic functions (known as synaptic plasticity). Long-lasting synaptic plasticity is one of the molecular mechanisms underlying long-term learning and memory. Since discovering the role of the transcription factor cAMP-response element-binding protein in learning and memory, it has been widely accepted that gene regulation in neurons contributes to long-lasting changes in neural functions. However, it remains unclear how synaptic activation is converted into gene regulation that results in long-lasting neural functions like long-term memory. We continue to address this question. This review introduces our recent findings on the gene regulation of brain-derived neurotrophic factor and discusses how regulation of the gene participates in long-lasting changes in neural functions.

  1. Neural network based facial recognition system

    Science.gov (United States)

    Luebbers, Paul G.; Uwechue, Okechukwu A.; Pandya, Abhijit S.

    1994-03-01

    Researchers have for many years tried to develop machine recognition systems using video images of the human face as the input, with limited success. This paper presents a technique for recognizing individuals based on facial features using a novel multi-layer neural network architecture called `PWRNET'. We envision a real-time version of this technique to be used for high security applications. Two systems are proposed. One involves taking a grayscale video image and using it directly, the other involves decomposing the grayscale image into a series of binary images using the isodensity regions of the image. Isodensity regions are the areas within an image where the intensity is within a certain range. The binary image is produced by setting the pixels inside this intensity range to one, and the rest of the pixels in the image to zero. Features based on moments are subsequently extracted from these grayscale images. These features are then used for classification of the image. The classification is accomplished using an artificial neural network called `PWRNET', which produces a polynomial expression of the trained network. There is one neural network for each individual to be identified, with an output value which is either positive or negative identification. A detailed development of the design is presented, and identification for small population of individuals is presented. It is shown that the system is effective for variations in both scale and translation, which are considered to be reasonable variations for this type of facial identification.

  2. An Artificial Neural Network Controller for Intelligent Transportation Systems Applications

    Science.gov (United States)

    1996-01-01

    An Autonomous Intelligent Cruise Control (AICC) has been designed using a feedforward artificial neural network, as an example for utilizing artificial neural networks for nonlinear control problems arising in intelligent transportation systems appli...

  3. Hybrid LQG-Neural Controller for Inverted Pendulum System

    OpenAIRE

    Sazonov, E. S.; Klinkhachorn, P.; Klein, R. L.

    2003-01-01

    The paper presents a hybrid system controller, incorporating a neural and an LQG controller. The neural controller has been optimized by genetic algorithms directly on the inverted pendulum system. The failure free optimization process stipulated a relatively small region of the asymptotic stability of the neural controller, which is concentrated around the regulation point. The presented hybrid controller combines benefits of a genetically optimized neural controller and an LQG controller in...

  4. Non-Linear Systems Identification Using Neural Networks

    OpenAIRE

    Chen, S.; Billings, S.A.; Grant, P.M.

    1989-01-01

    Multi-layered neural networks offer an exciting alternative for modelling complex non-linear systems. This paper investigates the identification of discrete-time non-linear systems using neural networks with a single hidden layer. New parameter estimation algorithms are derived for the neural network model based on a prediction error formulation and the application to both simulated and real data is included to demonstrate the effectiveness of the neural network approach.

  5. Nonlinear behavior in small neural systems

    Science.gov (United States)

    Wheeler, Diek Winters

    This work addresses the nonlinear behavior of one or two model neurons under the influence of different stimuli, whether they be forms of chaos control or varieties of added noise. This is a step towards the ultimate objective of exploring the notion that a neural system might utilize a mechanism such as a memory-searching chaotic attractor to locate and retrieve stable-memory limit cycles. The biological realism of the Hopfield neuron models is discussed, and the concept of an ``effective'' neuron is introduced. The dynamical effects of adding inertial/inductance terms to an effective-neuron system are presented along with arguments for the biological relevance of such terms. A two neuron system with one or two inertial terms added is shown to exhibit chaos. The chaos is confirmed by Lyapunov exponents, power spectra, and phase-space plots. The effects of multiplicative and additive noise on the dynamics of a two effective-neuron system are investigated. One of the neurons possesses an added inertial term so the system is able to generate chaotic dynamics. The multiplicative noise is added to the connection parameter J 11, and the additive noise is added to the equation for U 2 like an external driving force. Using J11 as a bifurcation parameter, the system is examined as it passes from limit cycle dynamics to chaotic dynamics. Both types of noise are found to lower the bifurcation point with respect to its deterministic value, and both cause the dynamics to expand in phase space. For equivalent levels of noise, additive noise is found to have a stronger effect on the dynamics than multiplicative noise. The bifurcation points are explored by means of ensembles of the largest Lyapunov exponents derived from the stochastic dynamics. A brief overview is presented of the current state of control theory in chaotic systems. One control method, Hübler's [74] technique of using aperiodic forces to drive nonlinear oscillators to resonance, is analyzed. The technique is

  6. Olfactory instruction for fear: neural system analysis.

    Directory of Open Access Journals (Sweden)

    Newton Sabino Canteras

    2015-08-01

    Full Text Available Studies using cat odor have led to detailed mapping of neural sites engaged in innate and contextual fear responses. Here, we reviewed three lines of work examining the dynamics of the neural systems that organize innate and learned fear responses to cat odor. In the first, we explored the neural systems involved in innate fear responses and in the different stages of fear conditioning to cat odor (i.e., acquisition and expression, with a particular emphasis on the role of the dorsal premammillary nucleus (PMd and the dorsolateral periaqueductal gray (PAGdl as key sites that influence innate and contextual conditioning. In the second line of studies, we reviewed how chemical stimulation of these sites (i.e., the PMd and PAGdl may serve as a useful unconditioned stimulus in an olfactory fear conditioning paradigm; these experiments provide an interesting perspective for the understanding of learned fear to predator odor. Finally, in the third line of studies, we explored the fact that neutral odors that acquire an aversive valence in a shock-paired conditioning paradigm may mimic predator odor and mobilize elements of the hypothalamic predator-responsive circuit.

  7. Hearing loss impacts neural alpha oscillations under adverse listening conditions

    Directory of Open Access Journals (Sweden)

    Eline Borch Petersen

    2015-02-01

    Full Text Available Degradations in external, acoustic stimulation have long been suspected to increase the load on working memory. One neural signature of working memory load is enhanced power of alpha oscillations (6 ‒ 12 Hz. However, it is unknown to what extent common internal, auditory degradation, that is, hearing impairment, affects the neural mechanisms of working memory when audibility has been ensured via amplification. Using an adapted auditory Sternberg paradigm, we varied the orthogonal factors memory load and background noise level, while the electroencephalogram (EEG was recorded. In each trial, participants were presented with 2, 4, or 6 spoken digits embedded in one of three different levels of background noise. After a stimulus-free delay interval, participants indicated whether a probe digit had appeared in the sequence of digits. Participants were healthy older adults (62 – 86 years, with normal to moderately impaired hearing. Importantly, the background noise levels were individually adjusted and participants were wearing hearing aids to equalize audibility across participants. Irrespective of hearing loss, behavioral performance improved with lower memory load and also with lower levels of background noise. Interestingly, the alpha power in the stimulus-free delay interval was dependent on the interplay between task demands (memory load and noise level and hearing loss; while alpha power increased with hearing loss during low and intermediate levels of memory load and background noise, it dropped for participants with the relatively most severe hearing loss under the highest memory load and background noise level. These findings suggest that adaptive neural mechanisms for coping with adverse listening conditions break down for higher degrees of hearing loss, even when adequate hearing aid amplification is in place.

  8. Cognitive training for impaired neural systems in neuropsychiatric illness.

    Science.gov (United States)

    Vinogradov, Sophia; Fisher, Melissa; de Villers-Sidani, Etienne

    2012-01-01

    Neuropsychiatric illnesses are associated with dysfunction in distributed prefrontal neural systems that underlie perception, cognition, social interactions, emotion regulation, and motivation. The high degree of learning-dependent plasticity in these networks-combined with the availability of advanced computerized technology-suggests that we should be able to engineer very specific training programs that drive meaningful and enduring improvements in impaired neural systems relevant to neuropsychiatric illness. However, cognitive training approaches for mental and addictive disorders must take into account possible inherent limitations in the underlying brain 'learning machinery' due to pathophysiology, must grapple with the presence of complex overlearned maladaptive patterns of neural functioning, and must find a way to ally with developmental and psychosocial factors that influence response to illness and to treatment. In this review, we briefly examine the current state of knowledge from studies of cognitive remediation in psychiatry and we highlight open questions. We then present a systems neuroscience rationale for successful cognitive training for neuropsychiatric illnesses, one that emphasizes the distributed nature of neural assemblies that support cognitive and affective processing, as well as their plasticity. It is based on the notion that, during successful learning, the brain represents the relevant perceptual and cognitive/affective inputs and action outputs with disproportionately larger and more coordinated populations of neurons that are distributed (and that are interacting) across multiple levels of processing and throughout multiple brain regions. This approach allows us to address limitations found in earlier research and to introduce important principles for the design and evaluation of the next generation of cognitive training for impaired neural systems. We summarize work to date using such neuroscience-informed methods and indicate some

  9. Neural correlates underlying micrographia in Parkinson’s disease

    Science.gov (United States)

    Zhang, Jiarong; Hallett, Mark; Feng, Tao; Hou, Yanan; Chan, Piu

    2016-01-01

    Micrographia is a common symptom in Parkinson’s disease, which manifests as either a consistent or progressive reduction in the size of handwriting or both. Neural correlates underlying micrographia remain unclear. We used functional magnetic resonance imaging to investigate micrographia-related neural activity and connectivity modulations. In addition, the effect of attention and dopaminergic administration on micrographia was examined. We found that consistent micrographia was associated with decreased activity and connectivity in the basal ganglia motor circuit; while progressive micrographia was related to the dysfunction of basal ganglia motor circuit together with disconnections between the rostral supplementary motor area, rostral cingulate motor area and cerebellum. Attention significantly improved both consistent and progressive micrographia, accompanied by recruitment of anterior putamen and dorsolateral prefrontal cortex. Levodopa improved consistent micrographia accompanied by increased activity and connectivity in the basal ganglia motor circuit, but had no effect on progressive micrographia. Our findings suggest that consistent micrographia is related to dysfunction of the basal ganglia motor circuit; while dysfunction of the basal ganglia motor circuit and disconnection between the rostral supplementary motor area, rostral cingulate motor area and cerebellum likely contributes to progressive micrographia. Attention improves both types of micrographia by recruiting additional brain networks. Levodopa improves consistent micrographia by restoring the function of the basal ganglia motor circuit, but does not improve progressive micrographia, probably because of failure to repair the disconnected networks. PMID:26525918

  10. Neural basis of increased costly norm enforcement under adversity.

    Science.gov (United States)

    Wu, Yan; Yu, Hongbo; Shen, Bo; Yu, Rongjun; Zhou, Zhiheng; Zhang, Guoping; Jiang, Yushi; Zhou, Xiaolin

    2014-12-01

    Humans are willing to punish norm violations even at a substantial personal cost. Using fMRI and a variant of the ultimatum game and functional magnetic resonance imaging, we investigated how the brain differentially responds to fairness in loss and gain domains. Participants (responders) received offers from anonymous partners indicating a division of an amount of monetary gain or loss. If they accept, both get their shares according to the division; if they reject, both get nothing or lose the entire stake. We used a computational model to derive perceived fairness of offers and participant-specific inequity aversion. Behaviorally, participants were more likely to reject unfair offers in the loss (vs gain) domain. Neurally, the positive correlation between fairness and activation in ventral striatum was reduced, whereas the negative correlations between fairness and activations in dorsolateral prefrontal cortex were enhanced in the loss domain. Moreover, rejection-related dorsal striatum activation was higher in the loss domain. Furthermore, the gain-loss domain modulates costly punishment only when unfair behavior was directed toward the participants and not when it was directed toward others. These findings provide neural and computational accounts of increased costly norm enforcement under adversity and advanced our understanding of the context-dependent nature of fairness preference. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  11. Neural System Prediction and Identification Challenge

    Directory of Open Access Journals (Sweden)

    Ioannis eVlachos

    2013-12-01

    Full Text Available Can we infer the function of a biological neural network (BNN if we know the connectivity and activity of all its constituent neurons? This question is at the core of neuroscience and, accordingly, various methods have been developed to record the activity and connectivity of as many neurons as possible. Surprisingly, there is no theoretical or computational demonstration that neuronal activity and connectivity are indeed sufficient to infer the function of a BNN. Therefore, we pose the Neural Systems Identification and Prediction Challenge (nuSPIC. We provide the connectivity and activity of all neurons and invite participants (i to infer the functions implemented (hard-wired in spiking neural networks (SNNs by stimulating and recording the activity of neurons and, (ii to implement predefined mathematical/biological functions using SNNs. The nuSPICs can be accessed via a web-interface to the NEST simulator and the user is not required to know any specific programming language. Furthermore, the nuSPICs can be used as a teaching tool. Finally, nuSPICs use the crowd-sourcing model to address scientific issues. With this computational approach we aim to identify which functions can be inferred by systematic recordings of neuronal activity and connectivity. In addition, nuSPICs will help the design and application of new experimental paradigms based on the structure of the SNN and the presumed function which is to be discovered.

  12. Neural system prediction and identification challenge.

    Science.gov (United States)

    Vlachos, Ioannis; Zaytsev, Yury V; Spreizer, Sebastian; Aertsen, Ad; Kumar, Arvind

    2013-01-01

    Can we infer the function of a biological neural network (BNN) if we know the connectivity and activity of all its constituent neurons?This question is at the core of neuroscience and, accordingly, various methods have been developed to record the activity and connectivity of as many neurons as possible. Surprisingly, there is no theoretical or computational demonstration that neuronal activity and connectivity are indeed sufficient to infer the function of a BNN. Therefore, we pose the Neural Systems Identification and Prediction Challenge (nuSPIC). We provide the connectivity and activity of all neurons and invite participants (1) to infer the functions implemented (hard-wired) in spiking neural networks (SNNs) by stimulating and recording the activity of neurons and, (2) to implement predefined mathematical/biological functions using SNNs. The nuSPICs can be accessed via a web-interface to the NEST simulator and the user is not required to know any specific programming language. Furthermore, the nuSPICs can be used as a teaching tool. Finally, nuSPICs use the crowd-sourcing model to address scientific issues. With this computational approach we aim to identify which functions can be inferred by systematic recordings of neuronal activity and connectivity. In addition, nuSPICs will help the design and application of new experimental paradigms based on the structure of the SNN and the presumed function which is to be discovered.

  13. Evolutionary Computation and Its Applications in Neural and Fuzzy Systems

    Directory of Open Access Journals (Sweden)

    Biaobiao Zhang

    2011-01-01

    Full Text Available Neural networks and fuzzy systems are two soft-computing paradigms for system modelling. Adapting a neural or fuzzy system requires to solve two optimization problems: structural optimization and parametric optimization. Structural optimization is a discrete optimization problem which is very hard to solve using conventional optimization techniques. Parametric optimization can be solved using conventional optimization techniques, but the solution may be easily trapped at a bad local optimum. Evolutionary computation is a general-purpose stochastic global optimization approach under the universally accepted neo-Darwinian paradigm, which is a combination of the classical Darwinian evolutionary theory, the selectionism of Weismann, and the genetics of Mendel. Evolutionary algorithms are a major approach to adaptation and optimization. In this paper, we first introduce evolutionary algorithms with emphasis on genetic algorithms and evolutionary strategies. Other evolutionary algorithms such as genetic programming, evolutionary programming, particle swarm optimization, immune algorithm, and ant colony optimization are also described. Some topics pertaining to evolutionary algorithms are also discussed, and a comparison between evolutionary algorithms and simulated annealing is made. Finally, the application of EAs to the learning of neural networks as well as to the structural and parametric adaptations of fuzzy systems is also detailed.

  14. Neural Mechanisms and Information Processing in Recognition Systems

    Directory of Open Access Journals (Sweden)

    Mamiko Ozaki

    2014-10-01

    Full Text Available Nestmate recognition is a hallmark of social insects. It is based on the match/mismatch of an identity signal carried by members of the society with that of the perceiving individual. While the behavioral response, amicable or aggressive, is very clear, the neural systems underlying recognition are not fully understood. Here we contrast two alternative hypotheses for the neural mechanisms that are responsible for the perception and information processing in recognition. We focus on recognition via chemical signals, as the common modality in social insects. The first, classical, hypothesis states that upon perception of recognition cues by the sensory system the information is passed as is to the antennal lobes and to higher brain centers where the information is deciphered and compared to a neural template. Match or mismatch information is then transferred to some behavior-generating centers where the appropriate response is elicited. An alternative hypothesis, that of “pre-filter mechanism”, posits that the decision as to whether to pass on the information to the central nervous system takes place in the peripheral sensory system. We suggest that, through sensory adaptation, only alien signals are passed on to the brain, specifically to an “aggressive-behavior-switching center”, where the response is generated if the signal is above a certain threshold.

  15. Neural mechanisms underlying cognitive inflexibility in Parkinson's disease.

    Science.gov (United States)

    Lange, Florian; Seer, Caroline; Loens, Sebastian; Wegner, Florian; Schrader, Christoph; Dressler, Dirk; Dengler, Reinhard; Kopp, Bruno

    2016-12-01

    Cognitive inflexibility is a hallmark of executive dysfunction in Parkinson's disease (PD). This deficit consistently manifests itself in a PD-related increase in the number of perseverative errors committed on the Wisconsin Card Sorting Test (WCST). However, the neural processes underlying perseverative WCST performance in PD are still largely unknown. The present study is the first to investigate the event-related potential (ERP) correlates of cognitive inflexibility on the WCST in PD patients. Thirty-two PD patients and 35 matched control participants completed a computerized version of the WCST while the electroencephalogram (EEG) was recorded. Behavioral results revealed the expected increase in perseverative errors in patients with PD. ERP analysis focused on two established indicators of executive processes: the fronto-central P3a as an index of attentional orienting and the sustained parietal positivity (SPP) as an index of set-shifting processes. In comparison to controls, P3a amplitudes were significantly attenuated in PD patients. Regression analysis further revealed that P3a and SPP amplitudes interactively contributed to the prediction of perseverative errors in PD patients: The number of perseverative errors was only increased when both ERP amplitudes were attenuated. Notably, the two ERP markers of executive processes accounted for more than 40% of the variance in perseverative errors in PD patients. We conclude that cognitive inflexibility in PD occurs when the neural bases of multiple executive processes are affected by the pathophysiology of PD. The combined measurement of P3a and SPP might yield an electrophysiological marker of cognitive inflexibility in PD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Neural processes underlying the orienting of attention without awareness.

    Science.gov (United States)

    Giattino, Charles M; Alam, Zaynah M; Woldorff, Marty G

    2017-07-22

    Despite long being of interest to both philosophers and scientists, the relationship between attention and perceptual awareness is not well understood, especially to what extent they are even dissociable. Previous studies have shown that stimuli of which we are unaware can orient spatial attention and affect behavior. Yet, relatively little is understood about the neural processes underlying such unconscious orienting of attention, and how they compare to conscious orienting. To directly compare the cascade of attentional processes with and without awareness of the orienting stimulus, we employed a spatial-cueing paradigm and used object-substitution masking to manipulate subjects' awareness of the cues. We recorded EEG during the task, from which we extracted hallmark event-related-potential (ERP) indices of attention. Behaviorally, there was a 61 ms validity effect (invalidly minus validly cued target RTs) on cue-aware trials. On cue-unaware trials, subjects also had a robust validity effect of 20 ms, despite being unaware of the cue. An N2pc to the cue, a hallmark ERP index of the lateralized orienting of attention, was observed for cue-aware but not cue-unaware trials, despite the latter showing a clear behavioral validity effect. Finally, the P1 sensory-ERP response to the targets was larger when validly versus invalidly cued, even when subjects were unaware of the preceding cue, demonstrating enhanced sensory processing of targets following subliminal cues. These results suggest that subliminal stimuli can orient attention and lead to subsequent enhancements to both stimulus sensory processing and behavior, but through different neural mechanisms (such as via a subcortical pathway) than stimuli we perceive. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Neural Mechanisms Underlying Hyperphagia in Prader-Willi Syndrome

    Science.gov (United States)

    Holsen, Laura M.; Zarcone, Jennifer R.; Brooks, William M.; Butler, Merlin G.; Thompson, Travis I.; Ahluwalia, Jasjit S.; Nollen, Nicole L.; Savage, Cary R.

    2006-01-01

    Objective Prader-Willi syndrome (PWS) is a genetic disorder associated with developmental delay, obesity, and obsessive behavior related to food consumption. The most striking symptom of PWS is hyperphagia; as such, PWS may provide important insights into factors leading to overeating and obesity in the general population. We used functional magnetic resonance imaging to study the neural mechanisms underlying responses to visual food stimuli, before and after eating, in individuals with PWS and a healthy weight control (HWC) group. Research Methods and Procedures Participants were scanned once before (pre-meal) and once after (post-meal) eating a standardized meal. Pictures of food, animals, and blurred control images were presented in a block design format during acquisition of functional magnetic resonance imaging data. Results Statistical contrasts in the HWC group showed greater activation to food pictures in the pre-meal condition compared with the post-meal condition in the amygdala, orbitofrontal cortex, medial prefrontal cortex (medial PFC), and frontal operculum. In comparison, the PWS group exhibited greater activation to food pictures in the post-meal condition compared with the pre-meal condition in the orbitofrontal cortex, medial PFC, insula, hippocampus, and parahippocampal gyrus. Between-group contrasts in the pre- and post-meal conditions confirmed group differences, with the PWS group showing greater activation than the HWC group after the meal in food motivation networks. Discussion Results point to distinct neural mechanisms associated with hyperphagia in PWS. After eating a meal, the PWS group showed hyperfunction in limbic and para-limbic regions that drive eating behavior (e.g., the amygdala) and in regions that suppress food intake (e.g., the medial PFC). PMID:16861608

  18. Neural mechanisms underlying hyperphagia in Prader-Willi syndrome.

    Science.gov (United States)

    Holsen, Laura M; Zarcone, Jennifer R; Brooks, William M; Butler, Merlin G; Thompson, Travis I; Ahluwalia, Jasjit S; Nollen, Nicole L; Savage, Cary R

    2006-06-01

    Prader-Willi syndrome (PWS) is a genetic disorder associated with developmental delay, obesity, and obsessive behavior related to food consumption. The most striking symptom of PWS is hyperphagia; as such, PWS may provide important insights into factors leading to overeating and obesity in the general population. We used functional magnetic resonance imaging to study the neural mechanisms underlying responses to visual food stimuli, before and after eating, in individuals with PWS and a healthy weight control (HWC) group. Participants were scanned once before (pre-meal) and once after (post-meal) eating a standardized meal. Pictures of food, animals, and blurred control images were presented in a block design format during acquisition of functional magnetic resonance imaging data. Statistical contrasts in the HWC group showed greater activation to food pictures in the pre-meal condition compared with the post-meal condition in the amygdala, orbitofrontal cortex, medial prefrontal cortex (medial PFC), and frontal operculum. In comparison, the PWS group exhibited greater activation to food pictures in the post-meal condition compared with the pre-meal condition in the orbitofrontal cortex, medial PFC, insula, hippocampus, and parahippocampal gyrus. Between-group contrasts in the pre- and post-meal conditions confirmed group differences, with the PWS group showing greater activation than the HWC group after the meal in food motivation networks. Results point to distinct neural mechanisms associated with hyperphagia in PWS. After eating a meal, the PWS group showed hyperfunction in limbic and paralimbic regions that drive eating behavior (e.g., the amygdala) and in regions that suppress food intake (e.g., the medial PFC).

  19. Artificial Neural Network for Location Estimation in Wireless Communication Systems

    Directory of Open Access Journals (Sweden)

    Chien-Sheng Chen

    2012-03-01

    Full Text Available In a wireless communication system, wireless location is the technique used to estimate the location of a mobile station (MS. To enhance the accuracy of MS location prediction, we propose a novel algorithm that utilizes time of arrival (TOA measurements and the angle of arrival (AOA information to locate MS when three base stations (BSs are available. Artificial neural networks (ANN are widely used techniques in various areas to overcome the problem of exclusive and nonlinear relationships. When the MS is heard by only three BSs, the proposed algorithm utilizes the intersections of three TOA circles (and the AOA line, based on various neural networks, to estimate the MS location in non-line-of-sight (NLOS environments. Simulations were conducted to evaluate the performance of the algorithm for different NLOS error distributions. The numerical analysis and simulation results show that the proposed algorithms can obtain more precise location estimation under different NLOS environments.

  20. Artificial neural network for location estimation in wireless communication systems.

    Science.gov (United States)

    Chen, Chien-Sheng

    2012-01-01

    In a wireless communication system, wireless location is the technique used to estimate the location of a mobile station (MS). To enhance the accuracy of MS location prediction, we propose a novel algorithm that utilizes time of arrival (TOA) measurements and the angle of arrival (AOA) information to locate MS when three base stations (BSs) are available. Artificial neural networks (ANN) are widely used techniques in various areas to overcome the problem of exclusive and nonlinear relationships. When the MS is heard by only three BSs, the proposed algorithm utilizes the intersections of three TOA circles (and the AOA line), based on various neural networks, to estimate the MS location in non-line-of-sight (NLOS) environments. Simulations were conducted to evaluate the performance of the algorithm for different NLOS error distributions. The numerical analysis and simulation results show that the proposed algorithms can obtain more precise location estimation under different NLOS environments.

  1. Motivation alters impression formation and related neural systems

    Science.gov (United States)

    Zaki, Jamil; Ambady, Nalini

    2017-01-01

    Abstract Observers frequently form impressions of other people based on complex or conflicting information. Rather than being objective, these impressions are often biased by observers’ motives. For instance, observers often downplay negative information they learn about ingroup members. Here, we characterize the neural systems associated with biased impression formation. Participants learned positive and negative information about ingroup and outgroup social targets. Following this information, participants worsened their impressions of outgroup, but not ingroup, targets. This tendency was associated with a failure to engage neural structures including lateral prefrontal cortex, dorsal anterior cingulate cortex, temporoparietal junction, Insula and Precuneus when processing negative information about ingroup (but not outgroup) targets. To the extent that participants engaged these regions while learning negative information about ingroup members, they exhibited less ingroup bias in their impressions. These data are consistent with a model of ‘effortless bias’, under which perceivers fail to process goal-inconsistent information in order to maintain desired conclusions. PMID:27798250

  2. Convergent evolution of neural systems in ctenophores.

    Science.gov (United States)

    Moroz, Leonid L

    2015-02-15

    Neurons are defined as polarized secretory cells specializing in directional propagation of electrical signals leading to the release of extracellular messengers - features that enable them to transmit information, primarily chemical in nature, beyond their immediate neighbors without affecting all intervening cells en route. Multiple origins of neurons and synapses from different classes of ancestral secretory cells might have occurred more than once during ~600 million years of animal evolution with independent events of nervous system centralization from a common bilaterian/cnidarian ancestor without the bona fide central nervous system. Ctenophores, or comb jellies, represent an example of extensive parallel evolution in neural systems. First, recent genome analyses place ctenophores as a sister group to other animals. Second, ctenophores have a smaller complement of pan-animal genes controlling canonical neurogenic, synaptic, muscle and immune systems, and developmental pathways than most other metazoans. However, comb jellies are carnivorous marine animals with a complex neuromuscular organization and sophisticated patterns of behavior. To sustain these functions, they have evolved a number of unique molecular innovations supporting the hypothesis of massive homoplasies in the organization of integrative and locomotory systems. Third, many bilaterian/cnidarian neuron-specific genes and 'classical' neurotransmitter pathways are either absent or, if present, not expressed in ctenophore neurons (e.g. the bilaterian/cnidarian neurotransmitter, γ-amino butyric acid or GABA, is localized in muscles and presumed bilaterian neuron-specific RNA-binding protein Elav is found in non-neuronal cells). Finally, metabolomic and pharmacological data failed to detect either the presence or any physiological action of serotonin, dopamine, noradrenaline, adrenaline, octopamine, acetylcholine or histamine - consistent with the hypothesis that ctenophore neural systems evolved

  3. Design of an adaptive neural network based power system stabilizer.

    Science.gov (United States)

    Liu, Wenxin; Venayagamoorthy, Ganesh K; Wunsch, Donald C

    2003-01-01

    Power system stabilizers (PSS) are used to generate supplementary control signals for the excitation system in order to damp the low frequency power system oscillations. To overcome the drawbacks of conventional PSS (CPSS), numerous techniques have been proposed in the literature. Based on the analysis of existing techniques, this paper presents an indirect adaptive neural network based power system stabilizer (IDNC) design. The proposed IDNC consists of a neuro-controller, which is used to generate a supplementary control signal to the excitation system, and a neuro-identifier, which is used to model the dynamics of the power system and to adapt the neuro-controller parameters. The proposed method has the features of a simple structure, adaptivity and fast response. The proposed IDNC is evaluated on a single machine infinite bus power system under different operating conditions and disturbances to demonstrate its effectiveness and robustness.

  4. Spacecraft Neural Network Control System Design using FPGA

    OpenAIRE

    Hanaa T. El-Madany; Faten H. Fahmy; Ninet M. A. El-Rahman; Hassen T. Dorrah

    2011-01-01

    Designing and implementing intelligent systems has become a crucial factor for the innovation and development of better products of space technologies. A neural network is a parallel system, capable of resolving paradigms that linear computing cannot. Field programmable gate array (FPGA) is a digital device that owns reprogrammable properties and robust flexibility. For the neural network based instrument prototype in real time application, conventional specific VLSI neural chip design suffer...

  5. Engineering neural systems for high-level problem solving.

    Science.gov (United States)

    Sylvester, Jared; Reggia, James

    2016-07-01

    There is a long-standing, sometimes contentious debate in AI concerning the relative merits of a symbolic, top-down approach vs. a neural, bottom-up approach to engineering intelligent machine behaviors. While neurocomputational methods excel at lower-level cognitive tasks (incremental learning for pattern classification, low-level sensorimotor control, fault tolerance and processing of noisy data, etc.), they are largely non-competitive with top-down symbolic methods for tasks involving high-level cognitive problem solving (goal-directed reasoning, metacognition, planning, etc.). Here we take a step towards addressing this limitation by developing a purely neural framework named galis. Our goal in this work is to integrate top-down (non-symbolic) control of a neural network system with more traditional bottom-up neural computations. galis is based on attractor networks that can be "programmed" with temporal sequences of hand-crafted instructions that control problem solving by gating the activity retention of, communication between, and learning done by other neural networks. We demonstrate the effectiveness of this approach by showing that it can be applied successfully to solve sequential card matching problems, using both human performance and a top-down symbolic algorithm as experimental controls. Solving this kind of problem makes use of top-down attention control and the binding together of visual features in ways that are easy for symbolic AI systems but not for neural networks to achieve. Our model can not only be instructed on how to solve card matching problems successfully, but its performance also qualitatively (and sometimes quantitatively) matches the performance of both human subjects that we had perform the same task and the top-down symbolic algorithm that we used as an experimental control. We conclude that the core principles underlying the galis framework provide a promising approach to engineering purely neurocomputational systems for problem

  6. Theory of Neural Information Processing Systems

    International Nuclear Information System (INIS)

    Galla, Tobias

    2006-01-01

    It is difficult not to be amazed by the ability of the human brain to process, to structure and to memorize information. Even by the toughest standards the behaviour of this network of about 10 11 neurons qualifies as complex, and both the scientific community and the public take great interest in the growing field of neuroscience. The scientific endeavour to learn more about the function of the brain as an information processing system is here a truly interdisciplinary one, with important contributions from biology, computer science, physics, engineering and mathematics as the authors quite rightly point out in the introduction of their book. The role of the theoretical disciplines here is to provide mathematical models of information processing systems and the tools to study them. These models and tools are at the centre of the material covered in the book by Coolen, Kuehn and Sollich. The book is divided into five parts, providing basic introductory material on neural network models as well as the details of advanced techniques to study them. A mathematical appendix complements the main text. The range of topics is extremely broad, still the presentation is concise and the book well arranged. To stress the breadth of the book let me just mention a few keywords here: the material ranges from the basics of perceptrons and recurrent network architectures to more advanced aspects such as Bayesian learning and support vector machines; Shannon's theory of information and the definition of entropy are discussed, and a chapter on Amari's information geometry is not missing either. Finally the statistical mechanics chapters cover Gardner theory and the replica analysis of the Hopfield model, not without being preceded by a brief introduction of the basic concepts of equilibrium statistical physics. The book also contains a part on effective theories of the macroscopic dynamics of neural networks. Many dynamical aspects of neural networks are usually hard to find in the

  7. Neural mechanisms underlying the induction and relief of perceptual curiosity

    Directory of Open Access Journals (Sweden)

    Marieke eJepma

    2012-02-01

    Full Text Available Curiosity is one of the most basic biological drives in both animals and humans, and has been identified as a key motive for learning and discovery. Despite the importance of curiosity and related behaviors, the topic has been largely neglected in human neuroscience; hence little is known about the neurobiological mechanisms underlying curiosity. We used functional magnetic resonance imaging (fMRI to investigate what happens in our brain during the induction and subsequent relief of perceptual curiosity. Our core findings were that (i the induction of perceptual curiosity, through the presentation of ambiguous visual input, activated the anterior insula and anterior cingulate cortex, brain regions sensitive to conflict and arousal; (ii the relief of perceptual curiosity, through visual disambiguation, activated regions of the striatum that have been related to reward processing; and (iii the relief of perceptual curiosity was associated with hippocampal activation and enhanced incidental memory. These findings provide the first demonstration of the neural basis of human perceptual curiosity. Our results provide neurobiological support for a classic psychological theory of curiosity, which holds that curiosity is an aversive condition of increased arousal whose termination is rewarding and facilitates memory.

  8. Neural mechanism underlying autobiographical memory modulated by remoteness and emotion

    Science.gov (United States)

    Ge, Ruiyang; Fu, Yan; Wang, DaHua; Yao, Li; Long, Zhiying

    2012-03-01

    Autobiographical memory is the ability to recollect past events from one's own life. Both emotional tone and memory remoteness can influence autobiographical memory retrieval along the time axis of one's life. Although numerous studies have been performed to investigate brain regions involved in retrieving processes of autobiographical memory, the effect of emotional tone and memory age on autobiographical memory retrieval remains to be clarified. Moreover, whether the involvement of hippocampus in consolidation of autobiographical events is time dependent or independent has been controversial. In this study, we investigated the effect of memory remoteness (factor1: recent and remote) and emotional valence (factor2: positive and negative) on neural correlates underlying autobiographical memory by using functional magnetic resonance imaging (fMRI) technique. Although all four conditions activated some common regions known as "core" regions in autobiographical memory retrieval, there are some other regions showing significantly different activation for recent versus remote and positive versus negative memories. In particular, we found that bilateral hippocampal regions were activated in the four conditions regardless of memory remoteness and emotional valence. Thus, our study confirmed some findings of previous studies and provided further evidence to support the multi-trace theory which believes that the role of hippocampus involved in autobiographical memory retrieval is time-independent and permanent in memory consolidation.

  9. NEURAL NETWORK SYSTEM FOR DIAGNOSTICS OF AVIATION DESIGNATION PRODUCTS

    Directory of Open Access Journals (Sweden)

    В. Єременко

    2011-02-01

    Full Text Available In the article for solving the classification problem of the technical state of the  object, proposed to use a hybrid neural network with a Kohonen layer and multilayer perceptron. The information-measuring system can be used for standardless diagnostics, cluster analysis and to classify the products which made from composite materials. The advantage of this architecture is flexibility, high performance, ability to use different methods for collecting diagnostic information about unit under test, high reliability of information processing

  10. Analytic Treatment of Deep Neural Networks Under Additive Gaussian Noise

    KAUST Repository

    Alfadly, Modar M.

    2018-04-12

    Despite the impressive performance of deep neural networks (DNNs) on numerous vision tasks, they still exhibit yet-to-understand uncouth behaviours. One puzzling behaviour is the reaction of DNNs to various noise attacks, where it has been shown that there exist small adversarial noise that can result in a severe degradation in the performance of DNNs. To rigorously treat this, we derive exact analytic expressions for the first and second moments (mean and variance) of a small piecewise linear (PL) network with a single rectified linear unit (ReLU) layer subject to general Gaussian input. We experimentally show that these expressions are tight under simple linearizations of deeper PL-DNNs, especially popular architectures in the literature (e.g. LeNet and AlexNet). Extensive experiments on image classification show that these expressions can be used to study the behaviour of the output mean of the logits for each class, the inter-class confusion and the pixel-level spatial noise sensitivity of the network. Moreover, we show how these expressions can be used to systematically construct targeted and non-targeted adversarial attacks. Then, we proposed a special estimator DNN, named mixture of linearizations (MoL), and derived the analytic expressions for its output mean and variance, as well. We employed these expressions to train the model to be particularly robust against Gaussian attacks without the need for data augmentation. Upon training this network on a loss that is consolidated with the derived output probabilistic moments, the network is not only robust under very high variance Gaussian attacks but is also as robust as networks that are trained with 20 fold data augmentation.

  11. Neural Network for Optimization of Existing Control Systems

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    1995-01-01

    The purpose of this paper is to develop methods to use Neural Network based Controllers (NNC) as an optimization tool for existing control systems.......The purpose of this paper is to develop methods to use Neural Network based Controllers (NNC) as an optimization tool for existing control systems....

  12. The neural underpinnings of music listening under different attention conditions.

    Science.gov (United States)

    Jäncke, Lutz; Leipold, Simon; Burkhard, Anja

    2018-05-02

    Most studies examining the neural underpinnings of music listening have no specific instruction on how to process the presented musical pieces. In this study, we explicitly manipulated the participants' focus of attention while they listened to the musical pieces. We used an ecologically valid experimental setting by presenting the musical stimuli simultaneously with naturalistic film sequences. In one condition, the participants were instructed to focus their attention on the musical piece (attentive listening), whereas in the second condition, the participants directed their attention to the film sequence (passive listening). We used two instrumental musical pieces: an electronic pop song, which was a major hit at the time of testing, and a classical musical piece. During music presentation, we measured electroencephalographic oscillations and responses from the autonomic nervous system (heart rate and high-frequency heart rate variability). During passive listening to the pop song, we found strong event-related synchronizations in all analyzed frequency bands (theta, lower alpha, upper alpha, lower beta, and upper beta). The neurophysiological responses during attentive listening to the pop song were similar to those of the classical musical piece during both listening conditions. Thus, the focus of attention had a strong influence on the neurophysiological responses to the pop song, but not on the responses to the classical musical piece. The electroencephalographic responses during passive listening to the pop song are interpreted as a neurophysiological and psychological state typically observed when the participants are 'drawn into the music'.

  13. Neural correlates underlying change in state self-esteem.

    Science.gov (United States)

    Kawamichi, Hiroaki; Sugawara, Sho K; Hamano, Yuki H; Kitada, Ryo; Nakagawa, Eri; Kochiyama, Takanori; Sadato, Norihiro

    2018-01-29

    State self-esteem, the momentary feeling of self-worth, functions as a sociometer involved in maintenance of interpersonal relations. How others' appraisal is subjectively interpreted to change state self-esteem is unknown, and the neural underpinnings of this process remain to be elucidated. We hypothesized that changes in state self-esteem are represented by the mentalizing network, which is modulated by interactions with regions involved in the subjective interpretation of others' appraisal. To test this hypothesis, we conducted task-based and resting-state fMRI. Participants were repeatedly presented with their reputations, and then rated their pleasantness and reported their state self-esteem. To evaluate the individual sensitivity of the change in state self-esteem based on pleasantness (i.e., the subjective interpretation of reputation), we calculated evaluation sensitivity as the rate of change in state self-esteem per unit pleasantness. Evaluation sensitivity varied across participants, and was positively correlated with precuneus activity evoked by reputation rating. Resting-state fMRI revealed that evaluation sensitivity was positively correlated with functional connectivity of the precuneus with areas activated by negative reputation, but negatively correlated with areas activated by positive reputation. Thus, the precuneus, as the part of the mentalizing system, serves as a gateway for translating the subjective interpretation of reputation into state self-esteem.

  14. Hearing loss impacts neural alpha oscillations under adverse listening conditions

    OpenAIRE

    Petersen, Eline B.; Wöstmann, Malte; Obleser, Jonas; Stenfelt, Stefan; Lunner, Thomas

    2015-01-01

    Degradations in external, acoustic stimulation have long been suspected to increase the load on working memory (WM). One neural signature of WM load is enhanced power of alpha oscillations (6–12 Hz). However, it is unknown to what extent common internal, auditory degradation, that is, hearing impairment, affects the neural mechanisms of WM when audibility has been ensured via amplification. Using an adapted auditory Sternberg paradigm, we varied the orthogonal factors memory load and backgrou...

  15. The Effects of GABAergic Polarity Changes on Episodic Neural Network Activity in Developing Neural Systems

    Directory of Open Access Journals (Sweden)

    Wilfredo Blanco

    2017-09-01

    Full Text Available Early in development, neural systems have primarily excitatory coupling, where even GABAergic synapses are excitatory. Many of these systems exhibit spontaneous episodes of activity that have been characterized through both experimental and computational studies. As development progress the neural system goes through many changes, including synaptic remodeling, intrinsic plasticity in the ion channel expression, and a transformation of GABAergic synapses from excitatory to inhibitory. What effect each of these, and other, changes have on the network behavior is hard to know from experimental studies since they all happen in parallel. One advantage of a computational approach is that one has the ability to study developmental changes in isolation. Here, we examine the effects of GABAergic synapse polarity change on the spontaneous activity of both a mean field and a neural network model that has both glutamatergic and GABAergic coupling, representative of a developing neural network. We find some intuitive behavioral changes as the GABAergic neurons go from excitatory to inhibitory, shared by both models, such as a decrease in the duration of episodes. We also find some paradoxical changes in the activity that are only present in the neural network model. In particular, we find that during early development the inter-episode durations become longer on average, while later in development they become shorter. In addressing this unexpected finding, we uncover a priming effect that is particularly important for a small subset of neurons, called the “intermediate neurons.” We characterize these neurons and demonstrate why they are crucial to episode initiation, and why the paradoxical behavioral change result from priming of these neurons. The study illustrates how even arguably the simplest of developmental changes that occurs in neural systems can present non-intuitive behaviors. It also makes predictions about neural network behavioral changes

  16. Neural Network Based Intelligent Sootblowing System

    Energy Technology Data Exchange (ETDEWEB)

    Mark Rhode

    2005-04-01

    . Due to the composition of coal, particulate matter is also a by-product of coal combustion. Modern day utility boilers are usually fitted with electrostatic precipitators to aid in the collection of particulate matter. Although extremely efficient, these devices are sensitive to rapid changes in inlet mass concentration as well as total mass loading. Traditionally, utility boilers are equipped with devices known as sootblowers, which use, steam, water or air to dislodge and clean the surfaces within the boiler and are operated based upon established rule or operator's judgment. Poor sootblowing regimes can influence particulate mass loading to the electrostatic precipitators. The project applied a neural network intelligent sootblowing system in conjunction with state-of-the-art controls and instruments to optimize the operation of a utility boiler and systematically control boiler slagging/fouling. This optimization process targeted reduction of NOx of 30%, improved efficiency of 2% and a reduction in opacity of 5%. The neural network system proved to be a non-invasive system which can readily be adapted to virtually any utility boiler. Specific conclusions from this neural network application are listed below. These conclusions should be used in conjunction with the specific details provided in the technical discussions of this report to develop a thorough understanding of the process.

  17. Study Under AC Stimulation on Excitement Properties of Weighted Small-World Biological Neural Networks with Side-Restrain Mechanism

    International Nuclear Information System (INIS)

    Yuan Wujie; Luo Xiaoshu; Jiang Pinqun

    2007-01-01

    In this paper, we propose a new model of weighted small-world biological neural networks based on biophysical Hodgkin-Huxley neurons with side-restrain mechanism. Then we study excitement properties of the model under alternating current (AC) stimulation. The study shows that the excitement properties in the networks are preferably consistent with the behavior properties of a brain nervous system under different AC stimuli, such as refractory period and the brain neural excitement response induced by different intensities of noise and coupling. The results of the study have reference worthiness for the brain nerve electrophysiology and epistemological science.

  18. Neural correlates underlying true and false associative memories.

    Science.gov (United States)

    Dennis, Nancy A; Johnson, Christina E; Peterson, Kristina M

    2014-07-01

    Despite the fact that associative memory studies produce a large number of false memories, neuroimaging analyses utilizing this paradigm typically focus only on neural activity mediating successful retrieval. The current study sought to expand on this prior research by examining the neural basis of both true and false associative memories. Though associative false memories are substantially different than those found in semantic or perceptual false memory paradigms, results suggest that associative false memories are mediated by similar neural mechanisms. Specifically, we found increased frontal activity that likely represents enhanced monitoring and evaluation compared to that needed for true memories and correct rejections. Results also indicated that true, and not false associative memories, are mediated by neural activity in the MTL, specifically the hippocampus. Finally, while activity in early visual cortex distinguished true from false memories, a lack of neural differences between hits and correct rejections failed to support previous findings suggesting that activity in early visual cortex represents sensory reactivation of encoding-related processing. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. The ctenophore genome and the evolutionary origins of neural systems

    NARCIS (Netherlands)

    Moroz, Leonid L.; Kocot, Kevin M.; Citarella, Mathew R.; Dosung, Sohn; Norekian, Tigran P.; Povolotskaya, Inna S.; Grigorenko, Anastasia P.; Dailey, Christopher; Berezikov, Eugene; Buckley, Katherine M.; Ptitsyn, Andrey; Reshetov, Denis; Mukherjee, Krishanu; Moroz, Tatiana P.; Bobkova, Yelena; Yu, Fahong; Kapitonov, Vladimir V.; Jurka, Jerzy; Bobkov, Yuri V.; Swore, Joshua J.; Girardo, David O.; Fodor, Alexander; Gusev, Fedor; Sanford, Rachel; Bruders, Rebecca; Kittler, Ellen; Mills, Claudia E.; Rast, Jonathan P.; Derelle, Romain; Solovyev, Victor V.; Kondrashov, Fyodor A.; Swalla, Billie J.; Sweedler, Jonathan V.; Rogaev, Evgeny I.; Halanych, Kenneth M.; Kohn, Andrea B.

    2014-01-01

    The origins of neural systems remain unresolved. In contrast to other basal metazoans, ctenophores (comb jellies) have both complex nervous and mesoderm-derived muscular systems. These holoplanktonic predators also have sophisticated ciliated locomotion, behaviour and distinct development. Here we

  20. Spiking Neural P Systems with Communication on Request.

    Science.gov (United States)

    Pan, Linqiang; Păun, Gheorghe; Zhang, Gexiang; Neri, Ferrante

    2017-12-01

    Spiking Neural [Formula: see text] Systems are Neural System models characterized by the fact that each neuron mimics a biological cell and the communication between neurons is based on spikes. In the Spiking Neural [Formula: see text] systems investigated so far, the application of evolution rules depends on the contents of a neuron (checked by means of a regular expression). In these [Formula: see text] systems, a specified number of spikes are consumed and a specified number of spikes are produced, and then sent to each of the neurons linked by a synapse to the evolving neuron. [Formula: see text]In the present work, a novel communication strategy among neurons of Spiking Neural [Formula: see text] Systems is proposed. In the resulting models, called Spiking Neural [Formula: see text] Systems with Communication on Request, the spikes are requested from neighboring neurons, depending on the contents of the neuron (still checked by means of a regular expression). Unlike the traditional Spiking Neural [Formula: see text] systems, no spikes are consumed or created: the spikes are only moved along synapses and replicated (when two or more neurons request the contents of the same neuron). [Formula: see text]The Spiking Neural [Formula: see text] Systems with Communication on Request are proved to be computationally universal, that is, equivalent with Turing machines as long as two types of spikes are used. Following this work, further research questions are listed to be open problems.

  1. System Identification for Nonlinear Control Using Neural Networks

    Science.gov (United States)

    Stengel, Robert F.; Linse, Dennis J.

    1990-01-01

    An approach to incorporating artificial neural networks in nonlinear, adaptive control systems is described. The controller contains three principal elements: a nonlinear inverse dynamic control law whose coefficients depend on a comprehensive model of the plant, a neural network that models system dynamics, and a state estimator whose outputs drive the control law and train the neural network. Attention is focused on the system identification task, which combines an extended Kalman filter with generalized spline function approximation. Continual learning is possible during normal operation, without taking the system off line for specialized training. Nonlinear inverse dynamic control requires smooth derivatives as well as function estimates, imposing stringent goals on the approximating technique.

  2. Neural networks for nonlinear dynamic system modelling and identification

    OpenAIRE

    Chen, S.; Billings, S. A.

    1992-01-01

    Many real-world systems exhibit complex non-linear characteristics and cannot be treated satisfactorily using linear systems theory. A neural network which has the ability to learn sophisticated non-linear relationships provides an ideal means of modelling complicated non-linear systems. This paper addresses the issues related to the identification of non-linear discrete-time dynamic systems using neural networks..........

  3. Identifying the Neural Correlates Underlying Social Pain: Implications for Developmental Processes

    Science.gov (United States)

    Eisenberger, Naomi I.

    2006-01-01

    Although the need for social connection is critical for early social development as well as for psychological well-being throughout the lifespan, relatively little is known about the neural processes involved in maintaining social connections. The following review summarizes what is known regarding the neural correlates underlying feeling of…

  4. Adaptive Neural Network Based Control of Noncanonical Nonlinear Systems.

    Science.gov (United States)

    Zhang, Yanjun; Tao, Gang; Chen, Mou

    2016-09-01

    This paper presents a new study on the adaptive neural network-based control of a class of noncanonical nonlinear systems with large parametric uncertainties. Unlike commonly studied canonical form nonlinear systems whose neural network approximation system models have explicit relative degree structures, which can directly be used to derive parameterized controllers for adaptation, noncanonical form nonlinear systems usually do not have explicit relative degrees, and thus their approximation system models are also in noncanonical forms. It is well-known that the adaptive control of noncanonical form nonlinear systems involves the parameterization of system dynamics. As demonstrated in this paper, it is also the case for noncanonical neural network approximation system models. Effective control of such systems is an open research problem, especially in the presence of uncertain parameters. This paper shows that it is necessary to reparameterize such neural network system models for adaptive control design, and that such reparameterization can be realized using a relative degree formulation, a concept yet to be studied for general neural network system models. This paper then derives the parameterized controllers that guarantee closed-loop stability and asymptotic output tracking for noncanonical form neural network system models. An illustrative example is presented with the simulation results to demonstrate the control design procedure, and to verify the effectiveness of such a new design method.

  5. Neural mechanisms underlying probalistic category learning in normal aging.

    NARCIS (Netherlands)

    Fera, F.; Weickert, T.W.; Goldberg, T.E.; Tessitore, A.; Hariri, A.; Das, S.; Lee, S.; Zoltick, B.; Meeter, M.; Gluck, M.A.; Weinberger, D.A.; Matta, V.S.

    2005-01-01

    Probabilistic category learning engages neural circuitry that includes the prefrontal cortex and caudate nucleus, two regions that show prominent changes with normal aging. However, the specific contributions of these brain regions are uncertain, and the effects of normal aging have not been

  6. Neural suppression of irrelevant information underlies optimal working memory performance.

    Science.gov (United States)

    Zanto, Theodore P; Gazzaley, Adam

    2009-03-11

    Our ability to focus attention on task-relevant information and ignore distractions is reflected by differential enhancement and suppression of neural activity in sensory cortex (i.e., top-down modulation). Such selective, goal-directed modulation of activity may be intimately related to memory, such that the focus of attention biases the likelihood of successfully maintaining relevant information by limiting interference from irrelevant stimuli. Despite recent studies elucidating the mechanistic overlap between attention and memory, the relationship between top-down modulation of visual processing during working memory (WM) encoding, and subsequent recognition performance has not yet been established. Here, we provide neurophysiological evidence in healthy, young adults that top-down modulation of early visual processing (performance, such that the likelihood of successfully remembering relevant information is associated with limiting interference from irrelevant stimuli. The consequences of a failure to ignore distractors on recognition performance was replicated for two types of feature-based memory, motion direction and color. Moreover, attention to irrelevant stimuli was reflected neurally during the WM maintenance period as an increased memory load. These results suggest that neural enhancement of relevant information is not the primary determinant of high-level performance, but rather optimal WM performance is dependent on effectively filtering irrelevant information through neural suppression to prevent overloading a limited memory capacity.

  7. Neural processing of reward magnitude under varying attentional demands.

    Science.gov (United States)

    Stoppel, Christian Michael; Boehler, Carsten Nicolas; Strumpf, Hendrik; Heinze, Hans-Jochen; Hopf, Jens-Max; Schoenfeld, Mircea Ariel

    2011-04-06

    Central to the organization of behavior is the ability to represent the magnitude of a prospective reward and the costs related to obtaining it. Therein, reward-related neural activations are discounted in dependence of the effort required to resolve a given task. Varying attentional demands of the task might however affect reward-related neural activations. Here we employed fMRI to investigate the neural representation of expected values during a monetary incentive delay task with varying attentional demands. Following a cue, indicating at the same time the difficulty (hard/easy) and the reward magnitude (high/low) of the upcoming trial, subjects performed an attention task and subsequently received feedback about their monetary reward. Consistent with previous results, activity in anterior-cingulate, insular/orbitofrontal and mesolimbic regions co-varied with the anticipated reward-magnitude, but also with the attentional requirements of the task. These activations occurred contingent on action-execution and resembled the response time pattern of the subjects. In contrast, cue-related activations, signaling the forthcoming task-requirements, were only observed within attentional control structures. These results suggest that anticipated reward-magnitude and task-related attentional demands are concurrently processed in partially overlapping neural networks of anterior-cingulate, insular/orbitofrontal, and mesolimbic regions. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Verification and Validation of Neural Networks for Aerospace Systems

    Science.gov (United States)

    Mackall, Dale; Nelson, Stacy; Schumann, Johann

    2002-01-01

    The Dryden Flight Research Center V&V working group and NASA Ames Research Center Automated Software Engineering (ASE) group collaborated to prepare this report. The purpose is to describe V&V processes and methods for certification of neural networks for aerospace applications, particularly adaptive flight control systems like Intelligent Flight Control Systems (IFCS) that use neural networks. This report is divided into the following two sections: Overview of Adaptive Systems and V&V Processes/Methods.

  9. Neurale Netwerken en Radarsystemen (Neural Networks and Radar Systems)

    Science.gov (United States)

    1989-08-01

    architectures that are currently in use, do not meet the requirements of future radar systems. Man and animals show very convincingly that real-time signal...antstaan wederom "ghost items", items die spontaan ontstaan door een vorm van Interferentie in bet gebeugen. Figuur 5.22 last zien hoe dit magelijk is

  10. At-risk for pathological gambling: imaging neural reward processing under chronic dopamine agonists.

    Science.gov (United States)

    Abler, Birgit; Hahlbrock, Roman; Unrath, Alexander; Grön, Georg; Kassubek, Jan

    2009-09-01

    Treatment with dopamine receptor agonists has been associated with impulse control disorders and pathological gambling (PG) secondary to medication in previously unaffected patients with Parkinson's disease or restless legs syndrome (RLS). In a within-subjects design, we investigated the underlying neurobiology in RLS patients using functional magnetic resonance imaging. We scanned 12 female RLS patients without a history of PG. All patients were scanned twice: once whilst taking their regular medication with low dose dopamine receptor agonists and once after a washout phase interval. They performed an established gambling game task involving expectation and receipt or omission of monetary rewards at different levels of probabilities. Upon expectation of rewards, reliable ventral striatal activation was detected only when patients were on, but not when patients were off medication. Upon receipt or omission of rewards, the observed ventral striatal signal under medication differed markedly from its predicted pattern which by contrast was apparent when patients were off medication. Orbitofrontal activation was not affected by medication. Chronic dopamine receptor agonist medication changed the neural signalling of reward expectation predisposing the dopaminergic reward system to mediate an increased appetitive drive. Even without manifest PG, chronic medication with dopamine receptor agonists led to markedly changed neural processing of negative consequences probably mediating dysfunctional learning of contingencies. Intact orbitofrontal functioning, potentially moderating impulse control, may explain why none of the patients actually developed PG. Our results support the notion of a general medication effect in patients under dopamine receptor agonists in terms of a sensitization towards impulse control disorders.

  11. Stability Analysis of Neural Networks-Based System Identification

    Directory of Open Access Journals (Sweden)

    Talel Korkobi

    2008-01-01

    Full Text Available This paper treats some problems related to nonlinear systems identification. A stability analysis neural network model for identifying nonlinear dynamic systems is presented. A constrained adaptive stable backpropagation updating law is presented and used in the proposed identification approach. The proposed backpropagation training algorithm is modified to obtain an adaptive learning rate guarantying convergence stability. The proposed learning rule is the backpropagation algorithm under the condition that the learning rate belongs to a specified range defining the stability domain. Satisfying such condition, unstable phenomena during the learning process are avoided. A Lyapunov analysis leads to the computation of the expression of a convenient adaptive learning rate verifying the convergence stability criteria. Finally, the elaborated training algorithm is applied in several simulations. The results confirm the effectiveness of the CSBP algorithm.

  12. Age-related neural correlates of cognitive task performance under increased postural load

    NARCIS (Netherlands)

    Van Impe, A; Bruijn, S M; Coxon, J P; Wenderoth, N; Sunaert, S; Duysens, J; Swinnen, S P

    2013-01-01

    Behavioral studies suggest that postural control requires increased cognitive control and visuospatial processing with aging. Consequently, performance can decline when concurrently performing a postural and a demanding cognitive task. We aimed to identify the neural substrate underlying this

  13. Neural Partial Differentiation for Aircraft Parameter Estimation Under Turbulent Atmospheric Conditions

    Science.gov (United States)

    Kuttieri, R. A.; Sinha, M.

    2012-07-01

    An approach based on neural partial differentiation is suggested for aircraft parameter estimation using the flight data gathered under turbulent atmospheric conditions. The classical methods such as output error and equation error methods suffer from severe convergence issues; resulting in biased, inaccurate, and inconsistent estimates. Though filter error method yields better estimates while dealing with the flight data having process noise, it has few demerits like computational overheads and it allows estimation of a single set of process noise distribution matrix. The proposed neural method does not face any such problem of the classical methods. Moreover, the neural method does not require parameter initialization and a priori knowledge of the model structure. The neural network maps the aircraft state and control variables into the output variables corresponding to aerodynamic forces and moments. The parameter estimation, pertaining to lateral-directional motion, of the research aircraft de Havilland DHC-2 with simulated process noise, is presented. The results obtained using the neural partial differentiation are compared with the nominal values given in literature and with the classical methods. The neural method yields the aerodynamic derivatives very close to the nominal values and having quite low standard deviation. The neural methodology is also validated by comparing actual output variables with the neural predicted and neural reconstructed variables.

  14. An online neural network triggering system for the Tile Calorimeter

    CERN Document Server

    Damazio, D O; Magacho, P V

    2002-01-01

    For the hadronic calorimeter of ATLAS, TileCal, neural processing is used to establish an efficient methodology for the online particle identification in beam tests of calorimeter prototypes. Although beam purity is usually very good for a selected particle type, background from wrong-type particles cannot be avoided and is routinely identified in the offline analysis. The proposed neural system is trained online to identify electrons, pions, and muons at different energy levels and it achieves more than 90% efficiency in terms of particle identification. The neural system is being implemented by integrating it to the readout drive (ROD) of the TileCal. (12 refs).

  15. Dopamine system: Manager of neural pathways

    Directory of Open Access Journals (Sweden)

    Simon eHong

    2013-12-01

    Full Text Available There are a growing number of roles that midbrain dopamine (DA neurons assume, such as, reward, aversion, alerting and vigor. Here I propose a theory that may be able to explain why the suggested functions of DA came about. It has been suggested that largely parallel cortico-basal ganglia-thalamo-cortico loops exist to control different aspects of behavior. I propose that (1 the midbrain DA system is organized in a similar manner, with different groups of DA neurons corresponding to these parallel neural pathways (NPs. The DA system can be viewed as the manager of these parallel NPs in that it recruits and activates only the task-relevant NPs when they are needed. It is likely that the functions of those NPs that have been consistently activated by the corresponding DA groups are facilitated. I also propose that (2 there are two levels of DA roles: the How and What roles. The How role is encoded in tonic and phasic DA neuron firing patterns and gives a directive to its target NP: how vigorously its function needs to be carried out. The tonic DA firing is to maintain a certain level of DA in the target NPs to support their expected behavioral and mental functions; it is only when a sudden unexpected boost or suppression of activity is required by the relevant target NP that DA neurons in the corresponding NP act in a phasic manner. The What role is the implementational aspect of the role of DA in the target NP, such as binding to D1 receptors to boost working memory. This What aspect of DA explains why DA seems to assume different functions depending on the region of the brain in which it is involved. In terms of the role of the lateral habenula (LHb, the LHb is expected to suppress maladaptive behaviors and mental processes by controlling the DA system. The demand-based smart management by the DA system may have given animals an edge in evolution with adaptive behaviors and a better survival rate in resource-scarce situations.

  16. The neural sociometer: brain mechanisms underlying state self-esteem.

    Science.gov (United States)

    Eisenberger, Naomi I; Inagaki, Tristen K; Muscatell, Keely A; Byrne Haltom, Kate E; Leary, Mark R

    2011-11-01

    On the basis of the importance of social connection for survival, humans may have evolved a "sociometer"-a mechanism that translates perceptions of rejection or acceptance into state self-esteem. Here, we explored the neural underpinnings of the sociometer by examining whether neural regions responsive to rejection or acceptance were associated with state self-esteem. Participants underwent fMRI while viewing feedback words ("interesting," "boring") ostensibly chosen by another individual (confederate) to describe the participant's previously recorded interview. Participants rated their state self-esteem in response to each feedback word. Results demonstrated that greater activity in rejection-related neural regions (dorsal ACC, anterior insula) and mentalizing regions was associated with lower-state self-esteem. Additionally, participants whose self-esteem decreased from prescan to postscan versus those whose self-esteem did not showed greater medial prefrontal cortical activity, previously associated with self-referential processing, in response to negative feedback. Together, the results inform our understanding of the origin and nature of our feelings about ourselves.

  17. Optical production systems using neural networks and symbolic substitution

    Science.gov (United States)

    Botha, Elizabeth; Casasent, David; Barnard, Etienne

    1988-01-01

    Two optical implementations of production systems are advanced. The production systems operate on a knowledge base where facts and rules are encoded as formulas in propositional calculus. The first implementation is a binary neural network. An analog neural network is used to include reasoning with uncertainties. The second implementation uses a new optical symbolic substitution correlator. This implementation is useful when a set of similar situations has to be handled in parallel on one processor.

  18. Diagnostic Neural Network Systems for the Electronic Circuits

    International Nuclear Information System (INIS)

    Mohamed, A.H.

    2014-01-01

    Neural Networks is one of the most important artificial intelligent approaches for solving the diagnostic processes. This research concerns with uses the neural networks for diagnosis of the electronic circuits. Modern electronic systems contain both the analog and digital circuits. But, diagnosis of the analog circuits suffers from great complexity due to their nonlinearity. To overcome this problem, the proposed system introduces a diagnostic system that uses the neural network to diagnose both the digital and analog circuits. So, it can face the new requirements for the modern electronic systems. A fault dictionary method was implemented in the system. Experimental results are presented on three electronic systems. They are: artificial kidney, wireless network and personal computer systems. The proposed system has improved the performance of the diagnostic systems when applied for these practical cases

  19. Vein matching using artificial neural network in vein authentication systems

    Science.gov (United States)

    Noori Hoshyar, Azadeh; Sulaiman, Riza

    2011-10-01

    Personal identification technology as security systems is developing rapidly. Traditional authentication modes like key; password; card are not safe enough because they could be stolen or easily forgotten. Biometric as developed technology has been applied to a wide range of systems. According to different researchers, vein biometric is a good candidate among other biometric traits such as fingerprint, hand geometry, voice, DNA and etc for authentication systems. Vein authentication systems can be designed by different methodologies. All the methodologies consist of matching stage which is too important for final verification of the system. Neural Network is an effective methodology for matching and recognizing individuals in authentication systems. Therefore, this paper explains and implements the Neural Network methodology for finger vein authentication system. Neural Network is trained in Matlab to match the vein features of authentication system. The Network simulation shows the quality of matching as 95% which is a good performance for authentication system matching.

  20. Logistics systems optimization under competition

    DEFF Research Database (Denmark)

    Choi, Tsan Ming; Govindan, Kannan; Ma, Lijun

    2015-01-01

    Nowadays, optimization on logistics and supply chain systems is a crucial and critical issue in industrial and systems engineering. Important areas of logistics and supply chain systems include transportation control, inventory management, and facility location planning. Under a competitive market...

  1. Neural map formation and sensory coding in the vomeronasal system.

    Science.gov (United States)

    Brignall, Alexandra C; Cloutier, Jean-François

    2015-12-01

    Sensory systems enable us to encode a clear representation of our environment in the nervous system by spatially organizing sensory stimuli being received. The organization of neural circuitry to form a map of sensory activation is critical for the interpretation of these sensory stimuli. In rodents, social communication relies strongly on the detection of chemosignals by the vomeronasal system, which regulates a wide array of behaviours, including mate recognition, reproduction, and aggression. The binding of these chemosignals to receptors on vomeronasal sensory neurons leads to activation of second-order neurons within glomeruli of the accessory olfactory bulb. Here, vomeronasal receptor activation by a stimulus is organized into maps of glomerular activation that represent phenotypic qualities of the stimuli detected. Genetic, electrophysiological and imaging studies have shed light on the principles underlying cell connectivity and sensory map formation in the vomeronasal system, and have revealed important differences in sensory coding between the vomeronasal and main olfactory system. In this review, we summarize the key factors and mechanisms that dictate circuit formation and sensory coding logic in the vomeronasal system, emphasizing differences with the main olfactory system. Furthermore, we discuss how detection of chemosignals by the vomeronasal system regulates social behaviour in mice, specifically aggression.

  2. Hybrid fault diagnosis of nonlinear systems using neural parameter estimators.

    Science.gov (United States)

    Sobhani-Tehrani, E; Talebi, H A; Khorasani, K

    2014-02-01

    This paper presents a novel integrated hybrid approach for fault diagnosis (FD) of nonlinear systems taking advantage of both the system's mathematical model and the adaptive nonlinear approximation capability of computational intelligence techniques. Unlike most FD techniques, the proposed solution simultaneously accomplishes fault detection, isolation, and identification (FDII) within a unified diagnostic module. At the core of this solution is a bank of adaptive neural parameter estimators (NPEs) associated with a set of single-parameter fault models. The NPEs continuously estimate unknown fault parameters (FPs) that are indicators of faults in the system. Two NPE structures, series-parallel and parallel, are developed with their exclusive set of desirable attributes. The parallel scheme is extremely robust to measurement noise and possesses a simpler, yet more solid, fault isolation logic. In contrast, the series-parallel scheme displays short FD delays and is robust to closed-loop system transients due to changes in control commands. Finally, a fault tolerant observer (FTO) is designed to extend the capability of the two NPEs that originally assumes full state measurements for systems that have only partial state measurements. The proposed FTO is a neural state estimator that can estimate unmeasured states even in the presence of faults. The estimated and the measured states then comprise the inputs to the two proposed FDII schemes. Simulation results for FDII of reaction wheels of a three-axis stabilized satellite in the presence of disturbances and noise demonstrate the effectiveness of the proposed FDII solutions under partial state measurements. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Use of neural networks in the analysis of complex systems

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1992-01-01

    The application of neural networks, alone or in conjunction with other advanced technologies (expert systems, fuzzy logic, and/or genetic algorithms) to some of the problems of complex engineering systems has the potential to enhance the safety reliability and operability of these systems. The work described here deals with complex systems or parts of such systems that can be isolated from the total system. Typically, the measured variables from the systems are analog variables that must be sampled and normalized to expected peak values before they are introduced into neural networks. Often data must be processed to put it into a form more acceptable to the neural network. The neural networks are usually simulated on modern high-speed computers that carry out the calculations serially. However, it is possible to implement neural networks using specially designed microchips where the network calculations are truly carried out in parallel, thereby providing virtually instantaneous outputs for each set of inputs. Specific applications described include: Diagnostics: State of the Plant; Hybrid System for Transient Identification; Detection of Change of Mode in Complex Systems; Sensor Validation; Plant-Wide Monitoring; Monitoring of Performance and Efficiency; and Analysis of Vibrations. Although the specific examples described deal with nuclear power plants or their subsystems, the techniques described can be applied to a wide variety of complex engineering systems

  4. The neural bases underlying social risk perception in purchase decisions.

    Science.gov (United States)

    Yokoyama, Ryoichi; Nozawa, Takayuki; Sugiura, Motoaki; Yomogida, Yukihito; Takeuchi, Hikaru; Akimoto, Yoritaka; Shibuya, Satoru; Kawashima, Ryuta

    2014-05-01

    Social considerations significantly influence daily purchase decisions, and the perception of social risk (i.e., the anticipated disapproval of others) is crucial in dissuading consumers from making purchases. However, the neural basis for consumers' perception of social risk remains undiscovered, and this novel study clarifies the relevant neural processes. A total of 26 volunteers were scanned while they evaluated purchase intention of products (purchase intention task) and their anticipation of others' disapproval for possessing a product (social risk task), using functional magnetic resonance imaging (fMRI). The fMRI data from the purchase intention task was used to identify the brain region associated with perception of social risk during purchase decision making by using subjective social risk ratings for a parametric modulation analysis. Furthermore, we aimed to explore if there was a difference between participants' purchase decisions and their explicit evaluations of social risk, with reference to the neural activity associated with social risk perception. For this, subjective social risk ratings were used for a parametric modulation analysis on fMRI data from the social risk task. Analysis of the purchase intention task revealed a significant positive correlation between ratings of social risk and activity in the anterior insula, an area of the brain that is known as part of the emotion-related network. Analysis of the social risk task revealed a significant positive correlation between ratings of social risk and activity in the temporal parietal junction and the medial prefrontal cortex, which are known as theory-of-mind regions. Our results suggest that the anterior insula processes consumers' social risk implicitly to prompt consumers not to buy socially unacceptable products, whereas ToM-related regions process such risk explicitly in considering the anticipated disapproval of others. These findings may prove helpful in understanding the mental

  5. Genetic learning in rule-based and neural systems

    Science.gov (United States)

    Smith, Robert E.

    1993-01-01

    The design of neural networks and fuzzy systems can involve complex, nonlinear, and ill-conditioned optimization problems. Often, traditional optimization schemes are inadequate or inapplicable for such tasks. Genetic Algorithms (GA's) are a class of optimization procedures whose mechanics are based on those of natural genetics. Mathematical arguments show how GAs bring substantial computational leverage to search problems, without requiring the mathematical characteristics often necessary for traditional optimization schemes (e.g., modality, continuity, availability of derivative information, etc.). GA's have proven effective in a variety of search tasks that arise in neural networks and fuzzy systems. This presentation begins by introducing the mechanism and theoretical underpinnings of GA's. GA's are then related to a class of rule-based machine learning systems called learning classifier systems (LCS's). An LCS implements a low-level production-system that uses a GA as its primary rule discovery mechanism. This presentation illustrates how, despite its rule-based framework, an LCS can be thought of as a competitive neural network. Neural network simulator code for an LCS is presented. In this context, the GA is doing more than optimizing and objective function. It is searching for an ecology of hidden nodes with limited connectivity. The GA attempts to evolve this ecology such that effective neural network performance results. The GA is particularly well adapted to this task, given its naturally-inspired basis. The LCS/neural network analogy extends itself to other, more traditional neural networks. Conclusions to the presentation discuss the implications of using GA's in ecological search problems that arise in neural and fuzzy systems.

  6. Control systems under attack?

    CERN Document Server

    Lüders, Stefan

    2005-01-01

    The enormous growth of the Internet during the last decade offers new means to share and distribute both information and data. In Industry, this results in a rapprochement of the production facilities, i.e. their Process Control and Automation Systems, and the data warehouses. At CERN, the Internet opens the possibility to monitor and even control (parts of) the LHC and its four experiments remotely from anywhere in the world. However, the adoption of standard IT technologies to Distributed Process Control and Automation Systems exposes inherent vulnerabilities to the world. The Teststand On Control System Security at CERN (TOCSSiC) is dedicated to explore the vulnerabilities of arbitrary Commercial-Of-The-Shelf hardware devices connected to standard Ethernet. As such, TOCSSiC should discover their vulnerabilities, point out areas of lack of security, and address areas of improvement which can then be confidentially communicated to manufacturers. This paper points out risks of accessing the Control and Automa...

  7. Neural mechanisms underlying social conformity in an ultimatum game

    Directory of Open Access Journals (Sweden)

    Zhenyu eWei

    2013-12-01

    Full Text Available When individuals’ actions are incongruent with those of the group they belong to, they may change their initial behavior in order to conform to the group norm. This phenomenon is known as social conformity. In the present study, we used event-related functional magnetic resonance imaging (fMRI to investigate brain activity in response to group opinion during an ultimatum game. Results showed that participants changed their choices when these choices conflicted with the normative opinion of the group they were members of, especially in conditions of unfair treatment. The fMRI data revealed that a conflict with group norms activated the brain regions involved in norm violations and behavioral adjustment. Furthermore, in the reject-unfair condition, we observed that a conflict with group norms activated the medial frontal gyrus. These findings contribute to recent research examining neural mechanisms involved in detecting violations of social norms, and provide information regarding the neural representation of conformity behavior in an economic game.

  8. The behavioral and neural mechanisms underlying the tracking of expertise.

    Science.gov (United States)

    Boorman, Erie D; O'Doherty, John P; Adolphs, Ralph; Rangel, Antonio

    2013-12-18

    Evaluating the abilities of others is fundamental for successful economic and social behavior. We investigated the computational and neurobiological basis of ability tracking by designing an fMRI task that required participants to use and update estimates of both people and algorithms' expertise through observation of their predictions. Behaviorally, we find a model-based algorithm characterized subject predictions better than several alternative models. Notably, when the agent's prediction was concordant rather than discordant with the subject's own likely prediction, participants credited people more than algorithms for correct predictions and penalized them less for incorrect predictions. Neurally, many components of the mentalizing network-medial prefrontal cortex, anterior cingulate gyrus, temporoparietal junction, and precuneus-represented or updated expertise beliefs about both people and algorithms. Moreover, activity in lateral orbitofrontal and medial prefrontal cortex reflected behavioral differences in learning about people and algorithms. These findings provide basic insights into the neural basis of social learning. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  9. System Identification, Prediction, Simulation and Control with Neural Networks

    DEFF Research Database (Denmark)

    Sørensen, O.

    1997-01-01

    a Gauss-Newton search direction is applied. 3) Amongst numerous model types, often met in control applications, only the Non-linear ARMAX (NARMAX) model, representing input/output description, is examined. A simulated example confirms that a neural network has the potential to perform excellent System...... Identification, Prediction, Simulation and Control of a dynamic, non-linear and noisy process. Further, the difficulties to control a practical non-linear laboratory process in a satisfactory way by using a traditional controller are overcomed by using a trained neural network to perform non-linear System......The intention of this paper is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...

  10. The Criticality Hypothesis in Neural Systems

    Science.gov (United States)

    Karimipanah, Yahya

    There is mounting evidence that neural networks of the cerebral cortex exhibit scale invariant dynamics. At the larger scale, fMRI recordings have shown evidence for spatiotemporal long range correlations. On the other hand, at the smaller scales this scale invariance is marked by the power law distribution of the size and duration of spontaneous bursts of activity, which are referred as neuronal avalanches. The existence of such avalanches has been confirmed by several studies in vitro and in vivo, among different species and across multiple scales, from spatial scale of MEG and EEG down to single cell resolution. This prevalent scale free nature of cortical activity suggests the hypothesis that the cortex resides at a critical state between two phases of order (short-lasting activity) and disorder (long-lasting activity). In addition, it has been shown, both theoretically and experimentally, that being at criticality brings about certain functional advantages for information processing. However, despite the plenty of evidence and plausibility of the neural criticality hypothesis, still very little is known on how the brain may leverage such criticality to facilitate neural coding. Moreover, the emergent functions that may arise from critical dynamics is poorly understood. In the first part of this thesis, we review several pieces of evidence for the neural criticality hypothesis at different scales, as well as some of the most popular theories of self-organized criticality (SOC). Thereafter, we will focus on the most prominent evidence from small scales, namely neuronal avalanches. We will explore the effect of adaptation and how it can maintain scale free dynamics even at the presence of external stimuli. Using calcium imaging we also experimentally demonstrate the existence of scale free activity at the cellular resolution in vivo. Moreover, by exploring the subsampling issue in neural data, we will find some fundamental constraints of the conventional methods

  11. Anomaly detection in an automated safeguards system using neural networks

    International Nuclear Information System (INIS)

    Whiteson, R.; Howell, J.A.

    1992-01-01

    An automated safeguards system must be able to detect an anomalous event, identify the nature of the event, and recommend a corrective action. Neural networks represent a new way of thinking about basic computational mechanisms for intelligent information processing. In this paper, we discuss the issues involved in applying a neural network model to the first step of this process: anomaly detection in materials accounting systems. We extend our previous model to a 3-tank problem and compare different neural network architectures and algorithms. We evaluate the computational difficulties in training neural networks and explore how certain design principles affect the problems. The issues involved in building a neural network architecture include how the information flows, how the network is trained, how the neurons in a network are connected, how the neurons process information, and how the connections between neurons are modified. Our approach is based on the demonstrated ability of neural networks to model complex, nonlinear, real-time processes. By modeling the normal behavior of the processes, we can predict how a system should be behaving and, therefore, detect when an abnormality occurs

  12. Group Membership Modulates the Neural Circuitry Underlying Third Party Punishment.

    Science.gov (United States)

    Morese, Rosalba; Rabellino, Daniela; Sambataro, Fabio; Perussia, Felice; Valentini, Maria Consuelo; Bara, Bruno G; Bosco, Francesca M

    2016-01-01

    This research aims to explore the neural correlates involved in altruistic punishment, parochial altruism and anti-social punishment, using the Third-Party Punishment (TPP) game. In particular, this study considered these punishment behaviors in in-group vs. out-group game settings, to compare how people behave with members of their own national group and with members of another national group. The results showed that participants act altruistically to protect in-group members. This study indicates that norm violation in in-group (but not in out-group) settings results in increased activity in the medial prefrontal cortex and temporo-parietal junction, brain regions involved in the mentalizing network, as the third-party attempts to understand or justify in-group members' behavior. Finally, exploratory analysis during anti-social punishment behavior showed brain activation recruitment of the ventromedial prefrontal cortex, an area associated with altered regulation of emotions.

  13. Variable neural adaptive robust control: a switched system approach.

    Science.gov (United States)

    Lian, Jianming; Hu, Jianghai; Żak, Stanislaw H

    2015-05-01

    Variable neural adaptive robust control strategies are proposed for the output tracking control of a class of multiinput multioutput uncertain systems. The controllers incorporate a novel variable-structure radial basis function (RBF) network as the self-organizing approximator for unknown system dynamics. It can determine the network structure online dynamically by adding or removing RBFs according to the tracking performance. The structure variation is systematically considered in the stability analysis of the closed-loop system using a switched system approach with the piecewise quadratic Lyapunov function. The performance of the proposed variable neural adaptive robust controllers is illustrated with simulations.

  14. Stochastic Neural Field Theory and the System-Size Expansion

    KAUST Repository

    Bressloff, Paul C.

    2010-01-01

    We analyze a master equation formulation of stochastic neurodynamics for a network of synaptically coupled homogeneous neuronal populations each consisting of N identical neurons. The state of the network is specified by the fraction of active or spiking neurons in each population, and transition rates are chosen so that in the thermodynamic or deterministic limit (N → ∞) we recover standard activity-based or voltage-based rate models. We derive the lowest order corrections to these rate equations for large but finite N using two different approximation schemes, one based on the Van Kampen system-size expansion and the other based on path integral methods. Both methods yield the same series expansion of the moment equations, which at O(1/N) can be truncated to form a closed system of equations for the first-and second-order moments. Taking a continuum limit of the moment equations while keeping the system size N fixed generates a system of integrodifferential equations for the mean and covariance of the corresponding stochastic neural field model. We also show how the path integral approach can be used to study large deviation or rare event statistics underlying escape from the basin of attraction of a stable fixed point of the mean-field dynamics; such an analysis is not possible using the system-size expansion since the latter cannot accurately determine exponentially small transitions. © by SIAM.

  15. Neural network training by Kalman filtering in process system monitoring

    International Nuclear Information System (INIS)

    Ciftcioglu, Oe.

    1996-03-01

    Kalman filtering approach for neural network training is described. Its extended form is used as an adaptive filter in a nonlinear environment of the form a feedforward neural network. Kalman filtering approach generally provides fast training as well as avoiding excessive learning which results in enhanced generalization capability. The network is used in a process monitoring application where the inputs are measurement signals. Since the measurement errors are also modelled in Kalman filter the approach yields accurate training with the implication of accurate neural network model representing the input and output relationships in the application. As the process of concern is a dynamic system, the input source of information to neural network is time dependent so that the training algorithm presents an adaptive form for real-time operation for the monitoring task. (orig.)

  16. Tracting the neural basis of music: Deficient structural connectivity underlying acquired amusia.

    Science.gov (United States)

    Sihvonen, Aleksi J; Ripollés, Pablo; Särkämö, Teppo; Leo, Vera; Rodríguez-Fornells, Antoni; Saunavaara, Jani; Parkkola, Riitta; Soinila, Seppo

    2017-12-01

    Acquired amusia provides a unique opportunity to investigate the fundamental neural architectures of musical processing due to the transition from a functioning to defective music processing system. Yet, the white matter (WM) deficits in amusia remain systematically unexplored. To evaluate which WM structures form the neural basis for acquired amusia and its recovery, we studied 42 stroke patients longitudinally at acute, 3-month, and 6-month post-stroke stages using DTI [tract-based spatial statistics (TBSS) and deterministic tractography (DT)] and the Scale and Rhythm subtests of the Montreal Battery of Evaluation of Amusia (MBEA). Non-recovered amusia was associated with structural damage and subsequent degeneration in multiple WM tracts including the right inferior fronto-occipital fasciculus (IFOF), arcuate fasciculus (AF), inferior longitudinal fasciculus (ILF), uncinate fasciculus (UF), and frontal aslant tract (FAT), as well as in the corpus callosum (CC) and its posterior part (tapetum). In a linear regression analysis, the volume of the right IFOF was the main predictor of MBEA performance across time. Overall, our results provide a comprehensive picture of the large-scale deficits in intra- and interhemispheric structural connectivity underlying amusia, and conversely highlight which pathways are crucial for normal music perception. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. High speed digital interfacing for a neural data acquisition system

    Directory of Open Access Journals (Sweden)

    Bahr Andreas

    2016-09-01

    Full Text Available Diseases like schizophrenia and genetic epilepsy are supposed to be caused by disorders in the early development of the brain. For the further investigation of these relationships a custom designed application specific integrated circuit (ASIC was developed that is optimized for the recording from neonatal mice [Bahr A, Abu-Saleh L, Schroeder D, Krautschneider W. 16 Channel Neural Recording Integrated Circuit with SPI Interface and Error Correction Coding. Proc. 9th BIOSTEC 2016. Biodevices: Rome, Italy, 2016; 1: 263; Bahr A, Abu-Saleh L, Schroeder D, Krautschneider W. Development of a neural recording mixed signal integrated circuit for biomedical signal acquisition. Biomed Eng Biomed Tech Abstracts 2015; 60(S1: 298–299; Bahr A, Abu-Saleh L, Schroeder D, Krautschneider WH. 16 Channel Neural Recording Mixed Signal ASIC. CDNLive EMEA 2015 Conference Proceedings, 2015.]. To enable the live display of the neural signals a multichannel neural data acquisition system with live display functionality is presented. It implements a high speed data transmission from the ASIC to a computer with a live display functionality. The system has been successfully implemented and was used in a neural recording of a head-fixed mouse.

  18. Capacity of UWB wireless channel for neural recording systems.

    Science.gov (United States)

    El Khaled, Mohamad; Bahrami, Hadi; Fortier, Paul; Gosselin, Benoit; Rusch, Leslie Ann

    2014-01-01

    Ultra wide-band (UWB) short-range communication systems are valuable in medical technology, particularly for implanted devices, due to their low-power consumption, low cost, small size and high data rates. Monitoring of neural responses in the brain requires high data rate if we target a system supporting a large number of sensors. In this work, we are interested in the evaluation of the capacity of the ultra wide-band (UWB) channel that we could exploit using a realistic model of the biological channel. The channel characteristics are examined under two scenarios that are related to TX antenna placements. Using optimal power spectrum allocation (OPSA) at the transmitter side, we have computed this capacity by taking into account the fading characteristics of the channel. The results show the pertinence of the optimal power spectrum allocation for this type of channel. An improvement by a factor of 2 to 3 over a uniform power spectrum allocation (UPSA) when the SNR 40 dB, both approaches give similar results. Antennas placement is examined under two scenarios having contrasting power constraints.

  19. AN INTELLIGENT HYBRID NEURAL NETWORK MODEL IN RENEWABLE ENERGY SYSTEMS

    Directory of Open Access Journals (Sweden)

    K. Gnana Sheela

    2012-07-01

    Full Text Available This paper presents a hybrid neural network approach to predict wind speed automatically in renewable energy systems. Wind energy is one of the renewable energy systems with lowest cost of production of electricity with largest resources available. By the reason of the fluctuation and volatility in wind, the wind speed prediction provides the challenges in the stability of renewable energy system. The aim is to compute predicted wind speed based on hybrid model which integrates a Self Organizing Map (SOM and Back propagation (BP neural network. The simulation result shows that the proposed approach provides significant result of wind speed prediction with less error rates. Due to seasonality, single computing models have some disadvantages such as fluctuality, randomness and unstable. These disadvantages are rectified by using hybrid computing neural network models. Wind speed prediction is an important in the field of wind power plants.

  20. Role of neural network models for developing speech systems

    Indian Academy of Sciences (India)

    These prosody models are further examined for applications such as text to speech synthesis, speech recognition, speaker recognition and language identification. Neural network models in voice conversion system are explored for capturing the mapping functions between source and target speakers at source, system and ...

  1. Neural expert decision support system for stroke diagnosis

    Science.gov (United States)

    Kupershtein, Leonid M.; Martyniuk, Tatiana B.; Krencin, Myhail D.; Kozhemiako, Andriy V.; Bezsmertnyi, Yurii; Bezsmertna, Halyna; Kolimoldayev, Maksat; Smolarz, Andrzej; Weryńska-Bieniasz, RóŻa; Uvaysova, Svetlana

    2017-08-01

    In the work the hybrid expert system for stroke diagnosis was presented. The base of expert system consists of neural network and production rules. This program can quickly and accurately set to the patient preliminary and final diagnoses, get examination and treatment plans, print data of patient, analyze statistics data and perform parameterized search for patients.

  2. NNSYSID - toolbox for system identification with neural networks

    DEFF Research Database (Denmark)

    Norgaard, M.; Ravn, Ole; Poulsen, Niels Kjølstad

    2002-01-01

    The NNSYSID toolset for System Identification has been developed as an add on to MATLAB(R). The NNSYSID toolbox has been designed to assist identification of nonlinear dynamic systems. It contains a number of nonlinear model structures based on neural networks, effective training algorithms...

  3. Dissociable neural processes underlying risky decisions for self versus other

    Directory of Open Access Journals (Sweden)

    Daehyun eJung

    2013-03-01

    Full Text Available Previous neuroimaging studies on decision making have mainly focused on decisions on behalf of oneself. Considering that people often make decisions on behalf of others, it is intriguing that there is little neurobiological evidence on how decisions for others differ from those for self. Thus, the present study focused on the direct comparison between risky decisions for self and those for other using functional magnetic resonance imaging (fMRI. Participants (N = 23 were asked to perform a gambling task for themselves (decision-for-self condition or for another person (decision-for-other condition while in the scanner. Their task was to choose between a low-risk option (i.e., win or lose 10 points and a high-risk option (i.e., win or lose 90 points. The winning probabilities of each option varied from 17% to 83%. Compared to choices for others, choices for self were more risk-averse at lower winning probability and more risk-seeking at higher winning probability, perhaps due to stronger affective process during risky decision for self compared to other. The brain activation pattern changed according to the target of the decision, such that reward-related regions were more active in the decision-for-self condition than in the decision-for-other condition, whereas brain regions related to the theory of mind (ToM showed greater activation in the decision-for-other condition than in the decision-for-self condition. A parametric modulation analysis reflecting each individual’s decision model revealed that activation of the amygdala and the dorsomedial prefrontal cortex (DMPFC were associated with value computation for self and for other, respectively, during a risky financial decision. The present study suggests that decisions for self and other may recruit fundamentally distinctive neural processes, which can be mainly characterized by dominant affective/impulsive and cognitive/regulatory processes, respectively.

  4. Cortical Neural Activity Predicts Sensory Acuity Under Optogenetic Manipulation.

    Science.gov (United States)

    Briguglio, John J; Aizenberg, Mark; Balasubramanian, Vijay; Geffen, Maria N

    2018-02-21

    Excitatory and inhibitory neurons in the mammalian sensory cortex form interconnected circuits that control cortical stimulus selectivity and sensory acuity. Theoretical studies have predicted that suppression of inhibition in such excitatory-inhibitory networks can lead to either an increase or, paradoxically, a decrease in excitatory neuronal firing, with consequent effects on stimulus selectivity. We tested whether modulation of inhibition or excitation in the auditory cortex of male mice could evoke such a variety of effects in tone-evoked responses and in behavioral frequency discrimination acuity. We found that, indeed, the effects of optogenetic manipulation on stimulus selectivity and behavior varied in both magnitude and sign across subjects, possibly reflecting differences in circuitry or expression of optogenetic factors. Changes in neural population responses consistently predicted behavioral changes for individuals separately, including improvement and impairment in acuity. This correlation between cortical and behavioral change demonstrates that, despite the complex and varied effects that these manipulations can have on neuronal dynamics, the resulting changes in cortical activity account for accompanying changes in behavioral acuity. SIGNIFICANCE STATEMENT Excitatory and inhibitory interactions determine stimulus specificity and tuning in sensory cortex, thereby controlling perceptual discrimination acuity. Modeling has predicted that suppressing the activity of inhibitory neurons can lead to increased or, paradoxically, decreased excitatory activity depending on the architecture of the network. Here, we capitalized on differences between subjects to test whether suppressing/activating inhibition and excitation can in fact exhibit such paradoxical effects for both stimulus sensitivity and behavioral discriminability. Indeed, the same optogenetic manipulation in the auditory cortex of different mice could improve or impair frequency discrimination

  5. Classical Conditioning with Pulsed Integrated Neural Networks: Circuits and System

    DEFF Research Database (Denmark)

    Lehmann, Torsten

    1998-01-01

    In this paper we investigate on-chip learning for pulsed, integrated neural networks. We discuss the implementational problems the technology imposes on learning systems and we find that abiologically inspired approach using simple circuit structures is most likely to bring success. We develop...... a suitable learning algorithm -- a continuous-time version of a temporal differential Hebbian learning algorithm for pulsed neural systems with non-linear synapses -- as well as circuits for the electronic implementation. Measurements from an experimental CMOS chip are presented. Finally, we use our test...

  6. Reliability Modeling of Microelectromechanical Systems Using Neural Networks

    Science.gov (United States)

    Perera. J. Sebastian

    2000-01-01

    Microelectromechanical systems (MEMS) are a broad and rapidly expanding field that is currently receiving a great deal of attention because of the potential to significantly improve the ability to sense, analyze, and control a variety of processes, such as heating and ventilation systems, automobiles, medicine, aeronautical flight, military surveillance, weather forecasting, and space exploration. MEMS are very small and are a blend of electrical and mechanical components, with electrical and mechanical systems on one chip. This research establishes reliability estimation and prediction for MEMS devices at the conceptual design phase using neural networks. At the conceptual design phase, before devices are built and tested, traditional methods of quantifying reliability are inadequate because the device is not in existence and cannot be tested to establish the reliability distributions. A novel approach using neural networks is created to predict the overall reliability of a MEMS device based on its components and each component's attributes. The methodology begins with collecting attribute data (fabrication process, physical specifications, operating environment, property characteristics, packaging, etc.) and reliability data for many types of microengines. The data are partitioned into training data (the majority) and validation data (the remainder). A neural network is applied to the training data (both attribute and reliability); the attributes become the system inputs and reliability data (cycles to failure), the system output. After the neural network is trained with sufficient data. the validation data are used to verify the neural networks provided accurate reliability estimates. Now, the reliability of a new proposed MEMS device can be estimated by using the appropriate trained neural networks developed in this work.

  7. Neural connectivity patterns underlying symbolic number processing indicate mathematical achievement in children.

    Science.gov (United States)

    Park, Joonkoo; Li, Rosa; Brannon, Elizabeth M

    2014-03-01

    In early childhood, humans learn culturally specific symbols for number that allow them entry into the world of complex numerical thinking. Yet little is known about how the brain supports the development of the uniquely human symbolic number system. Here, we use functional magnetic resonance imaging along with an effective connectivity analysis to investigate the neural substrates for symbolic number processing in young children. We hypothesized that, as children solidify the mapping between symbols and underlying magnitudes, important developmental changes occur in the neural communication between the right parietal region, important for the representation of non-symbolic numerical magnitudes, and other brain regions known to be critical for processing numerical symbols. To test this hypothesis, we scanned children between 4 and 6 years of age while they performed a magnitude comparison task with Arabic numerals (numerical, symbolic), dot arrays (numerical, non-symbolic), and lines (non-numerical). We then identified the right parietal seed region that showed greater blood-oxygen-level-dependent signal in the numerical versus the non-numerical conditions. A psychophysiological interaction method was used to find patterns of effective connectivity arising from this parietal seed region specific to symbolic compared to non-symbolic number processing. Two brain regions, the left supramarginal gyrus and the right precentral gyrus, showed significant effective connectivity from the right parietal cortex. Moreover, the degree of this effective connectivity to the left supramarginal gyrus was correlated with age, and the degree of the connectivity to the right precentral gyrus predicted performance on a standardized symbolic math test. These findings suggest that effective connectivity underlying symbolic number processing may be critical as children master the associations between numerical symbols and magnitudes, and that these connectivity patterns may serve as an

  8. Multiple neural systems controlling food intake and body weight.

    Science.gov (United States)

    Berthoud, Hans-Rudolf

    2002-06-01

    Discovery of the leptin receptor and its downstream peptidergic pathways has reconfirmed the crucial role of the hypothalamus in the regulation of food intake and energy balance. Strategically located in the midst of the mammalian neuraxis, the hypothalamus receives at least three distinct types of relevant information via direct or indirect neural connections as well as hormone receptors and substrate sensors bestowed on hypothalamic neurons. First, the medial and to a lesser extent the lateral hypothalamus receive a rich mix of information pertaining to the internal state of relative energy repletion/depletion. Second, specific hypothalamic nuclei receive information about the behavioral state, such as diurnal clock, physical activity-level, reproductive cycle, developmental stage, as well as imminent (e.g. fight and flight) and chronic (e.g. infection) stressors, that can potentially impact on short-term availability of fuels and long-term energy balance. Third, the hypothalamus, particularly its lateral aspects, receives information from areas in the forebrain involved in the acquisition, storage, and retrieval of sensory representations of the external food space and internal food experience, as well as from the executive forebrain involved in behavior selection and initiation. In addition, rich intrahypothalamic connections facilitate further distribution of incoming information to various hypothalamic nuclei. On the other hand, the hypothalamus has widespread neural projections to the same cortical areas it receives inputs, and many hypothalamic neurons are one synapse away from most endocrine systems and from both sympathetic and parasympathetic effector organs involved in the flux, storage, mobilization, and utilization of fuels. It is argued that processing within cortico-limbic areas and communication with hypothalamic areas are particularly important in human food intake control that is more and more guided by cognitive rather than metabolic aspects in

  9. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    Science.gov (United States)

    Williams-Hayes, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.

  10. A NEURAL NETWORK BASED IRIS RECOGNITION SYSTEM FOR PERSONAL IDENTIFICATION

    Directory of Open Access Journals (Sweden)

    Usham Dias

    2010-10-01

    Full Text Available This paper presents biometric personal identification based on iris recognition using artificial neural networks. Personal identification system consists of localization of the iris region, normalization, enhancement and then iris pattern recognition using neural network. In this paper, through results obtained, we have shown that a person’s left and right eye are unique. In this paper, we also show that the network is sensitive to the initial weights and that over-training gives bad results. We also propose a fast algorithm for the localization of the inner and outer boundaries of the iris region. Results of simulations illustrate the effectiveness of the neural system in personal identification. Finally a hardware iris recognition model is proposed and implementation aspects are discussed.

  11. New Solutions to the Firing Squad Synchronization Problems for Neural and Hyperdag P Systems

    Directory of Open Access Journals (Sweden)

    Michael J. Dinneen

    2009-11-01

    Full Text Available We propose two uniform solutions to an open question: the Firing Squad Synchronization Problem (FSSP, for hyperdag and symmetric neural P systems, with anonymous cells. Our solutions take e_c+5 and 6e_c+7 steps, respectively, where e_c is the eccentricity of the commander cell of the dag or digraph underlying these P systems. The first and fast solution is based on a novel proposal, which dynamically extends P systems with mobile channels. The second solution is substantially longer, but is solely based on classical rules and static channels. In contrast to the previous solutions, which work for tree-based P systems, our solutions synchronize to any subset of the underlying digraph; and do not require membrane polarizations or conditional rules, but require states, as typically used in hyperdag and neural P systems.

  12. Optical neural network system for pose determination of spinning satellites

    Science.gov (United States)

    Lee, Andrew; Casasent, David

    1990-01-01

    An optical neural network architecture and algorithm based on a Hopfield optimization network are presented for multitarget tracking. This tracker utilizes a neuron for every possible target track, and a quadratic energy function of neural activities which is minimized using gradient descent neural evolution. The neural net tracker is demonstrated as part of a system for determining position and orientation (pose) of spinning satellites with respect to a robotic spacecraft. The input to the system is time sequence video from a single camera. Novelty detection and filtering are utilized to locate and segment novel regions from the input images. The neural net multitarget tracker determines the correspondences (or tracks) of the novel regions as a function of time, and hence the paths of object (satellite) parts. The path traced out by a given part or region is approximately elliptical in image space, and the position, shape and orientation of the ellipse are functions of the satellite geometry and its pose. Having a geometric model of the satellite, and the elliptical path of a part in image space, the three-dimensional pose of the satellite is determined. Digital simulation results using this algorithm are presented for various satellite poses and lighting conditions.

  13. Emergent latent symbol systems in recurrent neural networks

    Science.gov (United States)

    Monner, Derek; Reggia, James A.

    2012-12-01

    Fodor and Pylyshyn [(1988). Connectionism and cognitive architecture: A critical analysis. Cognition, 28(1-2), 3-71] famously argued that neural networks cannot behave systematically short of implementing a combinatorial symbol system. A recent response from Frank et al. [(2009). Connectionist semantic systematicity. Cognition, 110(3), 358-379] claimed to have trained a neural network to behave systematically without implementing a symbol system and without any in-built predisposition towards combinatorial representations. We believe systems like theirs may in fact implement a symbol system on a deeper and more interesting level: one where the symbols are latent - not visible at the level of network structure. In order to illustrate this possibility, we demonstrate our own recurrent neural network that learns to understand sentence-level language in terms of a scene. We demonstrate our model's learned understanding by testing it on novel sentences and scenes. By paring down our model into an architecturally minimal version, we demonstrate how it supports combinatorial computation over distributed representations by using the associative memory operations of Vector Symbolic Architectures. Knowledge of the model's memory scheme gives us tools to explain its errors and construct superior future models. We show how the model designs and manipulates a latent symbol system in which the combinatorial symbols are patterns of activation distributed across the layers of a neural network, instantiating a hybrid of classical symbolic and connectionist representations that combines advantages of both.

  14. Arabic morphology in the neural language system.

    Science.gov (United States)

    Boudelaa, Sami; Pulvermüller, Friedemann; Hauk, Olaf; Shtyrov, Yury; Marslen-Wilson, William

    2010-05-01

    There are two views about morphology, the aspect of language concerned with the internal structure of words. One view holds that morphology is a domain of knowledge with a specific type of neurocognitive representation supported by specific brain mechanisms lateralized to left fronto-temporal cortex. The alternate view characterizes morphological effects as being a by-product of the correlation between form and meaning and where no brain area is predicted to subserve morphological processing per se. Here we provided evidence from Arabic that morphemes do have specific memory traces, which differ as a function of their functional properties. In an MMN study, we showed that the abstract consonantal root, which conveys semantic meaning (similarly to monomorphemic content words in English), elicits an MMN starting from 160 msec after the deviation point, whereas the abstract vocalic word pattern, which plays a range of grammatical roles, elicits an MMN response starting from 250 msec after the deviation point. Topographically, the root MMN has a symmetric fronto-central distribution, whereas the word pattern MMN lateralizes significantly to the left, indicating stronger involvement of left peri-sylvian areas. In languages with rich morphologies, morphemic processing seems to be supported by distinct neural networks, thereby providing evidence for a specific neuronal basis for morphology as part of the cerebral language machinery.

  15. Using fuzzy logic to integrate neural networks and knowledge-based systems

    Science.gov (United States)

    Yen, John

    1991-01-01

    Outlined here is a novel hybrid architecture that uses fuzzy logic to integrate neural networks and knowledge-based systems. The author's approach offers important synergistic benefits to neural nets, approximate reasoning, and symbolic processing. Fuzzy inference rules extend symbolic systems with approximate reasoning capabilities, which are used for integrating and interpreting the outputs of neural networks. The symbolic system captures meta-level information about neural networks and defines its interaction with neural networks through a set of control tasks. Fuzzy action rules provide a robust mechanism for recognizing the situations in which neural networks require certain control actions. The neural nets, on the other hand, offer flexible classification and adaptive learning capabilities, which are crucial for dynamic and noisy environments. By combining neural nets and symbolic systems at their system levels through the use of fuzzy logic, the author's approach alleviates current difficulties in reconciling differences between low-level data processing mechanisms of neural nets and artificial intelligence systems.

  16. Neural network based system for script identification in Indian ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... The paper describes a neural network-based script identification system which can be used in the machine reading of documents written in English, Hindi and Kannada language scripts. Script identification is a basic requirement in automation of document processing, in multi-script, multi-lingual ...

  17. Classical Conditioning with Pulsed Integrated Neural Networks: Circuits and System

    DEFF Research Database (Denmark)

    Lehmann, Torsten

    1998-01-01

    In this paper we investigate on-chip learning for pulsed, integrated neural networks. We discuss the implementational problems the technology imposes on learning systems and we find that abiologically inspired approach using simple circuit structures is most likely to bring success. We develop a ...... chip to solve simple classical conditioning tasks, thus verifying the design methodologies put forward in the paper....

  18. Dissipative rendering and neural network control system design

    Science.gov (United States)

    Gonzalez, Oscar R.

    1995-01-01

    Model-based control system designs are limited by the accuracy of the models of the plant, plant uncertainty, and exogenous signals. Although better models can be obtained with system identification, the models and control designs still have limitations. One approach to reduce the dependency on particular models is to design a set of compensators that will guarantee robust stability to a set of plants. Optimization over the compensator parameters can then be used to get the desired performance. Conservativeness of this approach can be reduced by integrating fundamental properties of the plant models. This is the approach of dissipative control design. Dissipative control designs are based on several variations of the Passivity Theorem, which have been proven for nonlinear/linear and continuous-time/discrete-time systems. These theorems depend not on a specific model of a plant, but on its general dissipative properties. Dissipative control design has found wide applicability in flexible space structures and robotic systems that can be configured to be dissipative. Currently, there is ongoing research to improve the performance of dissipative control designs. For aircraft systems that are not dissipative active control may be used to make them dissipative and then a dissipative control design technique can be used. It is also possible that rendering a system dissipative and dissipative control design may be combined into one step. Furthermore, the transformation of a non-dissipative system to dissipative can be done robustly. One sequential design procedure for finite dimensional linear time-invariant systems has been developed. For nonlinear plants that cannot be controlled adequately with a single linear controller, model-based techniques have additional problems. Nonlinear system identification is still a research topic. Lacking analytical models for model-based design, artificial neural network algorithms have recently received considerable attention. Using

  19. Neural mechanisms of selective attention in the somatosensory system

    Science.gov (United States)

    Hysaj, Kristjana; Niebur, Ernst

    2016-01-01

    Selective attention allows organisms to extract behaviorally relevant information while ignoring distracting stimuli that compete for the limited resources of their central nervous systems. Attention is highly flexible, and it can be harnessed to select information based on sensory modality, within-modality feature(s), spatial location, object identity, and/or temporal properties. In this review, we discuss the body of work devoted to understanding mechanisms of selective attention in the somatosensory system. In particular, we describe the effects of attention on tactile behavior and corresponding neural activity in somatosensory cortex. Our focus is on neural mechanisms that select tactile stimuli based on their location on the body (somatotopic-based attention) or their sensory feature (feature-based attention). We highlight parallels between selection mechanisms in touch and other sensory systems and discuss several putative neural coding schemes employed by cortical populations to signal the behavioral relevance of sensory inputs. Specifically, we contrast the advantages and disadvantages of using a gain vs. spike-spike correlation code for representing attended sensory stimuli. We favor a neural network model of tactile attention that is composed of frontal, parietal, and subcortical areas that controls somatosensory cells encoding the relevant stimulus features to enable preferential processing throughout the somatosensory hierarchy. Our review is based on data from noninvasive electrophysiological and imaging data in humans as well as single-unit recordings in nonhuman primates. PMID:27334956

  20. Frequency-difference-dependent stochastic resonance in neural systems

    Science.gov (United States)

    Guo, Daqing; Perc, Matjaž; Zhang, Yangsong; Xu, Peng; Yao, Dezhong

    2017-08-01

    Biological neurons receive multiple noisy oscillatory signals, and their dynamical response to the superposition of these signals is of fundamental importance for information processing in the brain. Here we study the response of neural systems to the weak envelope modulation signal, which is superimposed by two periodic signals with different frequencies. We show that stochastic resonance occurs at the beat frequency in neural systems at the single-neuron as well as the population level. The performance of this frequency-difference-dependent stochastic resonance is influenced by both the beat frequency and the two forcing frequencies. Compared to a single neuron, a population of neurons is more efficient in detecting the information carried by the weak envelope modulation signal at the beat frequency. Furthermore, an appropriate fine-tuning of the excitation-inhibition balance can further optimize the response of a neural ensemble to the superimposed signal. Our results thus introduce and provide insights into the generation and modulation mechanism of the frequency-difference-dependent stochastic resonance in neural systems.

  1. Neural mechanisms of selective attention in the somatosensory system.

    Science.gov (United States)

    Gomez-Ramirez, Manuel; Hysaj, Kristjana; Niebur, Ernst

    2016-09-01

    Selective attention allows organisms to extract behaviorally relevant information while ignoring distracting stimuli that compete for the limited resources of their central nervous systems. Attention is highly flexible, and it can be harnessed to select information based on sensory modality, within-modality feature(s), spatial location, object identity, and/or temporal properties. In this review, we discuss the body of work devoted to understanding mechanisms of selective attention in the somatosensory system. In particular, we describe the effects of attention on tactile behavior and corresponding neural activity in somatosensory cortex. Our focus is on neural mechanisms that select tactile stimuli based on their location on the body (somatotopic-based attention) or their sensory feature (feature-based attention). We highlight parallels between selection mechanisms in touch and other sensory systems and discuss several putative neural coding schemes employed by cortical populations to signal the behavioral relevance of sensory inputs. Specifically, we contrast the advantages and disadvantages of using a gain vs. spike-spike correlation code for representing attended sensory stimuli. We favor a neural network model of tactile attention that is composed of frontal, parietal, and subcortical areas that controls somatosensory cells encoding the relevant stimulus features to enable preferential processing throughout the somatosensory hierarchy. Our review is based on data from noninvasive electrophysiological and imaging data in humans as well as single-unit recordings in nonhuman primates. Copyright © 2016 the American Physiological Society.

  2. Potential neural mechanisms underlying the effectiveness of early intervention for children with autism spectrum disorder

    Science.gov (United States)

    Sullivan, Katherine; Stone, Wendy L.; Dawson, Geraldine

    2014-01-01

    Although evidence supports the efficacy of early intervention for improving outcomes for children with autism spectrum disorder (ASD), the mechanisms underlying their effectiveness remain poorly understood. This paper reviews the research literature on the neural bases of the early core deficits in ASD and proposes three key features of early intervention related to the neural mechanisms that may contribute to its effectiveness in improving deficit areas. These features include (1) the early onset of intensive intervention which capitalizes on the experience-expectant plasticity of the immature brain, (2) the use of treatment strategies that address core deficits in social motivation through an emphasis on positive social engagement and arousal modulation, and (3) promotion of complex neural networks and connectivity through thematic, multi-sensory and multi-domain teaching approaches. Understanding the mechanisms of effective early intervention will enable us to identify common or foundational active ingredients for promoting optimal outcomes in children with ASD. PMID:25108609

  3. Computations Underlying Social Hierarchy Learning: Distinct Neural Mechanisms for Updating and Representing Self-Relevant Information.

    Science.gov (United States)

    Kumaran, Dharshan; Banino, Andrea; Blundell, Charles; Hassabis, Demis; Dayan, Peter

    2016-12-07

    Knowledge about social hierarchies organizes human behavior, yet we understand little about the underlying computations. Here we show that a Bayesian inference scheme, which tracks the power of individuals, better captures behavioral and neural data compared with a reinforcement learning model inspired by rating systems used in games such as chess. We provide evidence that the medial prefrontal cortex (MPFC) selectively mediates the updating of knowledge about one's own hierarchy, as opposed to that of another individual, a process that underpinned successful performance and involved functional interactions with the amygdala and hippocampus. In contrast, we observed domain-general coding of rank in the amygdala and hippocampus, even when the task did not require it. Our findings reveal the computations underlying a core aspect of social cognition and provide new evidence that self-relevant information may indeed be afforded a unique representational status in the brain. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Biological neural networks as model systems for designing future parallel processing computers

    Science.gov (United States)

    Ross, Muriel D.

    1991-01-01

    One of the more interesting debates of the present day centers on whether human intelligence can be simulated by computer. The author works under the premise that neurons individually are not smart at all. Rather, they are physical units which are impinged upon continuously by other matter that influences the direction of voltage shifts across the units membranes. It is only the action of a great many neurons, billions in the case of the human nervous system, that intelligent behavior emerges. What is required to understand even the simplest neural system is painstaking analysis, bit by bit, of the architecture and the physiological functioning of its various parts. The biological neural network studied, the vestibular utricular and saccular maculas of the inner ear, are among the most simple of the mammalian neural networks to understand and model. While there is still a long way to go to understand even this most simple neural network in sufficient detail for extrapolation to computers and robots, a start was made. Moreover, the insights obtained and the technologies developed help advance the understanding of the more complex neural networks that underlie human intelligence.

  5. Unified neural field theory of brain dynamics underlying oscillations in Parkinson's disease and generalized epilepsies.

    Science.gov (United States)

    Müller, E J; van Albada, S J; Kim, J W; Robinson, P A

    2017-09-07

    The mechanisms underlying pathologically synchronized neural oscillations in Parkinson's disease (PD) and generalized epilepsies are explored in parallel via a physiologically-based neural field model of the corticothalamic-basal ganglia (CTBG) system. The basal ganglia (BG) are approximated as a single effective population and their roles in the modulation of oscillatory dynamics of the corticothalamic (CT) system and vice versa are analyzed. In addition to normal EEG rhythms, enhanced activity around 4 Hz and 20 Hz exists in the model, consistent with the characteristic frequencies observed in PD. These rhythms result from resonances in loops formed between the BG and CT populations, analogous to those that underlie epileptic oscillations in a previous CT model, and which are still present in the combined CTBG system. Dopamine depletion is argued to weaken the dampening of these loop resonances in PD, and network connections then explain the significant coherence observed between BG, thalamic, and cortical population activity around 4-8 Hz and 20 Hz. Parallels between the afferent and efferent connection sites of the thalamic reticular nucleus (TRN) and BG predict low dopamine to correspond to a reduced likelihood of tonic-clonic (grand mal) seizures, which agrees with experimental findings. Furthermore, the model predicts an increased likelihood of absence (petit mal) seizure resulting from pathologically low dopamine levels in accordance with experimental observations. Suppression of absence seizure activity is demonstrated when afferent and efferent BG connections to the CT system are strengthened, which is consistent with other CTBG modeling studies. The BG are demonstrated to have a suppressive effect on activity of the CTBG system near tonic-clonic seizure states, which provides insight into the reported efficacy of current treatments in BG circuits. Sleep states of the TRN are also found to suppress pathological PD activity in accordance with

  6. Exponential synchronization of delayed neutral-type neural networks with Lévy noise under non-Lipschitz condition

    Science.gov (United States)

    Ma, Shuo; Kang, Yanmei

    2018-04-01

    In this paper, the exponential synchronization of stochastic neutral-type neural networks with time-varying delay and Lévy noise under non-Lipschitz condition is investigated for the first time. Using the general Itô's formula and the nonnegative semi-martingale convergence theorem, we derive general sufficient conditions of two kinds of exponential synchronization for the drive system and the response system with adaptive control. Numerical examples are presented to verify the effectiveness of the proposed criteria.

  7. Synthesis of recurrent neural networks for dynamical system simulation.

    Science.gov (United States)

    Trischler, Adam P; D'Eleuterio, Gabriele M T

    2016-08-01

    We review several of the most widely used techniques for training recurrent neural networks to approximate dynamical systems, then describe a novel algorithm for this task. The algorithm is based on an earlier theoretical result that guarantees the quality of the network approximation. We show that a feedforward neural network can be trained on the vector-field representation of a given dynamical system using backpropagation, then recast it as a recurrent network that replicates the original system's dynamics. After detailing this algorithm and its relation to earlier approaches, we present numerical examples that demonstrate its capabilities. One of the distinguishing features of our approach is that both the original dynamical systems and the recurrent networks that simulate them operate in continuous time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Three neural network based sensor systems for environmental monitoring

    International Nuclear Information System (INIS)

    Keller, P.E.; Kouzes, R.T.; Kangas, L.J.

    1994-05-01

    Compact, portable systems capable of quickly identifying contaminants in the field are of great importance when monitoring the environment. One of the missions of the Pacific Northwest Laboratory is to examine and develop new technologies for environmental restoration and waste management at the Hanford Site. In this paper, three prototype sensing systems are discussed. These prototypes are composed of sensing elements, data acquisition system, computer, and neural network implemented in software, and are capable of automatically identifying contaminants. The first system employs an array of tin-oxide gas sensors and is used to identify chemical vapors. The second system employs an array of optical sensors and is used to identify the composition of chemical dyes in liquids. The third system contains a portable gamma-ray spectrometer and is used to identify radioactive isotopes. In these systems, the neural network is used to identify the composition of the sensed contaminant. With a neural network, the intense computation takes place during the training process. Once the network is trained, operation consists of propagating the data through the network. Since the computation involved during operation consists of vector-matrix multiplication and application of look-up tables unknown samples can be rapidly identified in the field

  9. Communications and control for electric power systems: Power system stability applications of artificial neural networks

    Science.gov (United States)

    Toomarian, N.; Kirkham, Harold

    1994-01-01

    This report investigates the application of artificial neural networks to the problem of power system stability. The field of artificial intelligence, expert systems, and neural networks is reviewed. Power system operation is discussed with emphasis on stability considerations. Real-time system control has only recently been considered as applicable to stability, using conventional control methods. The report considers the use of artificial neural networks to improve the stability of the power system. The networks are considered as adjuncts and as replacements for existing controllers. The optimal kind of network to use as an adjunct to a generator exciter is discussed.

  10. Neural multigrid for gauge theories and other disordered systems

    International Nuclear Information System (INIS)

    Baeker, M.; Kalkreuter, T.; Mack, G.; Speh, M.

    1992-09-01

    We present evidence that multigrid works for wave equations in disordered systems, e.g. in the presence of gauge fields, no matter how strong the disorder, but one needs to introduce a 'neural computations' point of view into large scale simulations: First, the system must learn how to do the simulations efficiently, then do the simulation (fast). The method can also be used to provide smooth interpolation kernels which are needed in multigrid Monte Carlo updates. (orig.)

  11. Stochastic resonance in FitzHugh-Nagumo neural system driven by correlated non-Gaussian noise and Gaussian noise

    Science.gov (United States)

    Guo, Yong-Feng; Xi, Bei; Wei, Fang; Tan, Jian-Guo

    2017-12-01

    In this paper, the phenomenon of stochastic resonance in FitzHugh-Nagumo (FHN) neural system driven by correlated non-Gaussian noise and Gaussian white noise is investigated. First, the analytical expression of the stationary probability distribution is derived by using the path integral approach and the unified colored noise approximation. Then, we obtain the expression of signal-to-noise ratio (SNR) by applying the theory of two-state model. The results show that the phenomena of stochastic resonance and multiple stochastic resonance appear in FHN neural system under different values of parameters. The effects of the multiplicative noise intensity D and the additive noise intensity Q on the SNR are entirely different. In addition, the discharge behavior of FHN neural system is restrained when the value of Q is smaller. But, it is conducive to enhance signal response of FHN neural system when the values of Q and D are relatively larger.

  12. The role of automaticity and attention in neural processes underlying empathy for happiness, sadness, and anxiety

    Directory of Open Access Journals (Sweden)

    Sylvia A. Morelli

    2013-05-01

    Full Text Available Although many studies have examined the neural basis of experiencing empathy, relatively little is known about how empathic processes are affected by different attentional conditions. Thus, we examined whether instructions to empathize might amplify responses in empathy-related regions and whether cognitive load would diminish the involvement of these regions. 32 participants completed a functional magnetic resonance imaging session assessing empathic responses to individuals experiencing happy, sad, and anxious events. Stimuli were presented under three conditions: watching naturally, while instructed to empathize, and under cognitive load. Across analyses, we found evidence for a core set of neural regions that support empathic processes (dorsomedial prefrontal cortex, DMPFC; medial prefrontal cortex, MPFC; temporoparietal junction, TPJ; amygdala; ventral anterior insula, AI; septal area, SA. Two key regions – the ventral AI and SA – were consistently active across all attentional conditions, suggesting that they are automatically engaged during empathy. In addition, watching versus empathizing with targets was not markedly different and instead led to similar subjective and neural responses to others’ emotional experiences. In contrast, cognitive load reduced the subjective experience of empathy and diminished neural responses in several regions related to empathy (DMPFC, MPFC, TPJ, amygdala and social cognition. The current results reveal how attention impacts empathic processes and provides insight into how empathy may unfold in everyday interactions.

  13. Neural mechanisms underlying subsequent memory for personal beliefs:An fMRI study.

    Science.gov (United States)

    Wing, Erik A; Iyengar, Vijeth; Hess, Thomas M; LaBar, Kevin S; Huettel, Scott A; Cabeza, Roberto

    2018-04-01

    Many fMRI studies have examined the neural mechanisms supporting emotional memory for stimuli that generate emotion rather automatically (e.g., a picture of a dangerous animal or of appetizing food). However, far fewer studies have examined how memory is influenced by emotion related to social and political issues (e.g., a proposal for large changes in taxation policy), which clearly vary across individuals. In order to investigate the neural substrates of affective and mnemonic processes associated with personal opinions, we employed an fMRI task wherein participants rated the intensity of agreement/disagreement to sociopolitical belief statements paired with neural face pictures. Following the rating phase, participants performed an associative recognition test in which they distinguished identical versus recombined face-statement pairs. The study yielded three main findings: behaviorally, the intensity of agreement ratings was linked to greater subjective emotional arousal as well as enhanced high-confidence subsequent memory. Neurally, statements that elicited strong (vs. weak) agreement or disagreement were associated with greater activation of the amygdala. Finally, a subsequent memory analysis showed that the behavioral memory advantage for statements generating stronger ratings was dependent on the medial prefrontal cortex (mPFC). Together, these results both underscore consistencies in neural systems supporting emotional arousal and suggest a modulation of arousal-related encoding mechanisms when emotion is contingent on referencing personal beliefs.

  14. Parameter estimation in space systems using recurrent neural networks

    Science.gov (United States)

    Parlos, Alexander G.; Atiya, Amir F.; Sunkel, John W.

    1991-01-01

    The identification of time-varying parameters encountered in space systems is addressed, using artificial neural systems. A hybrid feedforward/feedback neural network, namely a recurrent multilayer perception, is used as the model structure in the nonlinear system identification. The feedforward portion of the network architecture provides its well-known interpolation property, while through recurrency and cross-talk, the local information feedback enables representation of temporal variations in the system nonlinearities. The standard back-propagation-learning algorithm is modified and it is used for both the off-line and on-line supervised training of the proposed hybrid network. The performance of recurrent multilayer perceptron networks in identifying parameters of nonlinear dynamic systems is investigated by estimating the mass properties of a representative large spacecraft. The changes in the spacecraft inertia are predicted using a trained neural network, during two configurations corresponding to the early and late stages of the spacecraft on-orbit assembly sequence. The proposed on-line mass properties estimation capability offers encouraging results, though, further research is warranted for training and testing the predictive capabilities of these networks beyond nominal spacecraft operations.

  15. Teaching artificial neural systems to drive: Manual training techniques for autonomous systems

    Science.gov (United States)

    Shepanski, J. F.; Macy, S. A.

    1987-01-01

    A methodology was developed for manually training autonomous control systems based on artificial neural systems (ANS). In applications where the rule set governing an expert's decisions is difficult to formulate, ANS can be used to extract rules by associating the information an expert receives with the actions taken. Properly constructed networks imitate rules of behavior that permits them to function autonomously when they are trained on the spanning set of possible situations. This training can be provided manually, either under the direct supervision of a system trainer, or indirectly using a background mode where the networks assimilates training data as the expert performs its day-to-day tasks. To demonstrate these methods, an ANS network was trained to drive a vehicle through simulated freeway traffic.

  16. Analysis of the DWPF glass pouring system using neural networks

    International Nuclear Information System (INIS)

    Calloway, T.B. Jr.; Jantzen, C.M.

    1997-01-01

    Neural networks were used to determine the sensitivity of 39 selected Melter/Melter Off Gas and Melter Feed System process parameters as related to the Defense Waste Processing Facility (DWPF) Melter Pour Spout Pressure during the overall analysis and resolution of the DWPF glass production and pouring issues. Two different commercial neural network software packages were used for this analysis. Models were developed and used to determine the critical parameters which accurately describe the DWPF Pour Spout Pressure. The model created using a low-end software package has a root mean square error of ± 0.35 inwc ( 2 = 0.77) with respect to the plant data used to validate and test the model. The model created using a high-end software package has a R 2 = 0.97 with respect to the plant data used to validate and test the model. The models developed for this application identified the key process parameters which contribute to the control of the DWPF Melter Pour Spout pressure during glass pouring operations. The relative contribution and ranking of the selected parameters was determined using the modeling software. Neural network computing software was determined to be a cost-effective software tool for process engineers performing troubleshooting and system performance monitoring activities. In remote high-level waste processing environments, neural network software is especially useful as a replacement for sensors which have failed and are costly to replace. The software can be used to accurately model critical remotely installed plant instrumentation. When the instrumentation fails, the software can be used to provide a soft sensor to replace the actual sensor, thereby decreasing the overall operating cost. Additionally, neural network software tools require very little training and are especially useful in mining or selecting critical variables from the vast amounts of data collected from process computers

  17. Adaptive Neural Tracking Control for Discrete-Time Switched Nonlinear Systems with Dead Zone Inputs

    Directory of Open Access Journals (Sweden)

    Jidong Wang

    2017-01-01

    Full Text Available In this paper, the adaptive neural controllers of subsystems are proposed for a class of discrete-time switched nonlinear systems with dead zone inputs under arbitrary switching signals. Due to the complicated framework of the discrete-time switched nonlinear systems and the existence of the dead zone, it brings about difficulties for controlling such a class of systems. In addition, the radial basis function neural networks are employed to approximate the unknown terms of each subsystem. Switched update laws are designed while the parameter estimation is invariable until its corresponding subsystem is active. Then, the closed-loop system is stable and all the signals are bounded. Finally, to illustrate the effectiveness of the proposed method, an example is employed.

  18. Neural network robust tracking control with adaptive critic framework for uncertain nonlinear systems.

    Science.gov (United States)

    Wang, Ding; Liu, Derong; Zhang, Yun; Li, Hongyi

    2018-01-01

    In this paper, we aim to tackle the neural robust tracking control problem for a class of nonlinear systems using the adaptive critic technique. The main contribution is that a neural-network-based robust tracking control scheme is established for nonlinear systems involving matched uncertainties. The augmented system considering the tracking error and the reference trajectory is formulated and then addressed under adaptive critic optimal control formulation, where the initial stabilizing controller is not needed. The approximate control law is derived via solving the Hamilton-Jacobi-Bellman equation related to the nominal augmented system, followed by closed-loop stability analysis. The robust tracking control performance is guaranteed theoretically via Lyapunov approach and also verified through simulation illustration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Combustion optimization using an expert system and neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Levy, E.; Pfahler, J.; Miles, J.; Keller, F.; Lee, P.; Woldehanna, S. [Lehigh Univ., Bethlehem, PA (United States). Energy Research Center; Williams, S. [Potomac Electric Power Co., Upper Marlboro, MD (United States)

    1996-12-31

    Lehigh University`s Energy Research Center and the Potomac Electric Power Company have been developing software for use by plant personnel in turning a pulverized coal-fired boiler to achieve optimized combustion. The software is based on the interactions of an expert system, neural network, and a mathematical optimization algorithm. It uses the expert system to safely guide the plant engineer through a series of parametric boiler tests and gather a data base which characterizes boiler operation over a wide range of conditions. The neural network portion develops non-linear mapping functions between the outputs of NO{sub x}, heat rate, LOI, opacity, and the controllable boiler input parameters. These mapping functions are then analyzed by the mathematical optimization algorithm and the optimal boiler operating conditions are identified. This paper describes the application of the software to corner-fired boilers with either conventional or low NO{sub x} burners and overfire air.

  20. Nonlinear dynamical system approaches towards neural prosthesis

    International Nuclear Information System (INIS)

    Torikai, Hiroyuki; Hashimoto, Sho

    2011-01-01

    An asynchronous discrete-state spiking neurons is a wired system of shift registers that can mimic nonlinear dynamics of an ODE-based neuron model. The control parameter of the neuron is the wiring pattern among the registers and thus they are suitable for on-chip learning. In this paper an asynchronous discrete-state spiking neuron is introduced and its typical nonlinear phenomena are demonstrated. Also, a learning algorithm for a set of neurons is presented and it is demonstrated that the algorithm enables the set of neurons to reconstruct nonlinear dynamics of another set of neurons with unknown parameter values. The learning function is validated by FPGA experiments.

  1. Artificial neural networks for control of a grid-connected rectifier/inverter under disturbance, dynamic and power converter switching conditions.

    Science.gov (United States)

    Li, Shuhui; Fairbank, Michael; Johnson, Cameron; Wunsch, Donald C; Alonso, Eduardo; Proaño, Julio L

    2014-04-01

    Three-phase grid-connected converters are widely used in renewable and electric power system applications. Traditionally, grid-connected converters are controlled with standard decoupled d-q vector control mechanisms. However, recent studies indicate that such mechanisms show limitations in their applicability to dynamic systems. This paper investigates how to mitigate such restrictions using a neural network to control a grid-connected rectifier/inverter. The neural network implements a dynamic programming algorithm and is trained by using back-propagation through time. To enhance performance and stability under disturbance, additional strategies are adopted, including the use of integrals of error signals to the network inputs and the introduction of grid disturbance voltage to the outputs of a well-trained network. The performance of the neural-network controller is studied under typical vector control conditions and compared against conventional vector control methods, which demonstrates that the neural vector control strategy proposed in this paper is effective. Even in dynamic and power converter switching environments, the neural vector controller shows strong ability to trace rapidly changing reference commands, tolerate system disturbances, and satisfy control requirements for a faulted power system.

  2. Generalized Predictive and Neural Generalized Predictive Control of Aerospace Systems

    Science.gov (United States)

    Kelkar, Atul G.

    2000-01-01

    The research work presented in this thesis addresses the problem of robust control of uncertain linear and nonlinear systems using Neural network-based Generalized Predictive Control (NGPC) methodology. A brief overview of predictive control and its comparison with Linear Quadratic (LQ) control is given to emphasize advantages and drawbacks of predictive control methods. It is shown that the Generalized Predictive Control (GPC) methodology overcomes the drawbacks associated with traditional LQ control as well as conventional predictive control methods. It is shown that in spite of the model-based nature of GPC it has good robustness properties being special case of receding horizon control. The conditions for choosing tuning parameters for GPC to ensure closed-loop stability are derived. A neural network-based GPC architecture is proposed for the control of linear and nonlinear uncertain systems. A methodology to account for parametric uncertainty in the system is proposed using on-line training capability of multi-layer neural network. Several simulation examples and results from real-time experiments are given to demonstrate the effectiveness of the proposed methodology.

  3. Concepts in context: processing mental state concepts with internal or external focus involves different neural systems

    NARCIS (Netherlands)

    Oosterwijk, S.; Mackey, S.; Wilson-Mendenhall, C.; Winkielman, P.; Paulus, M.P.

    2015-01-01

    According to embodied cognition theories, concepts are contextually situated and grounded in neural systems that produce experiential states. This view predicts that processing mental state concepts recruits neural regions associated with different aspects of experience depending on the context in

  4. Neural correlates underlying mental calculation in abacus experts: a functional magnetic resonance imaging study.

    Science.gov (United States)

    Hanakawa, Takashi; Honda, Manabu; Okada, Tomohisa; Fukuyama, Hidenao; Shibasaki, Hiroshi

    2003-06-01

    Experts of abacus operation demonstrate extraordinary ability in mental calculation. There is psychological evidence that abacus experts utilize a mental image of an abacus to remember and manipulate large numbers in solving problems; however, the neural correlates underlying this expertise are unknown. Using functional magnetic resonance imaging, we compared the neural correlates associated with three mental-operation tasks (numeral, spatial, verbal) among six experts in abacus operations and eight nonexperts. In general, there was more involvement of neural correlates for visuospatial processing (e.g., right premotor and parietal areas) for abacus experts during the numeral mental-operation task. Activity of these areas and the fusiform cortex was correlated with the size of numerals used in the numeral mental-operation task. Particularly, the posterior superior parietal cortex revealed significantly enhanced activity for experts compared with controls during the numeral mental-operation task. Comparison with the other mental-operation tasks indicated that activity in the posterior superior parietal cortex was relatively specific to computation in 2-dimensional space. In conclusion, mental calculation of abacus experts is likely associated with enhanced involvement of the neural resources for visuospatial information processing in 2-dimensional space.

  5. Anger under control: neural correlates of frustration as a function of trait aggression.

    Science.gov (United States)

    Pawliczek, Christina M; Derntl, Birgit; Kellermann, Thilo; Gur, Ruben C; Schneider, Frank; Habel, Ute

    2013-01-01

    Antisocial behavior and aggression are prominent symptoms in several psychiatric disorders including antisocial personality disorder. An established precursor to aggression is a frustrating event, which can elicit anger or exasperation, thereby prompting aggressive responses. While some studies have investigated the neural correlates of frustration and aggression, examination of their relation to trait aggression in healthy populations are rare. Based on a screening of 550 males, we formed two extreme groups, one including individuals reporting high (n=21) and one reporting low (n=18) trait aggression. Using functional magnetic resonance imaging (fMRI) at 3T, all participants were put through a frustration task comprising unsolvable anagrams of German nouns. Despite similar behavioral performance, males with high trait aggression reported higher ratings of negative affect and anger after the frustration task. Moreover, they showed relatively decreased activation in the frontal brain regions and the dorsal anterior cingulate cortex (dACC) as well as relatively less amygdala activation in response to frustration. Our findings indicate distinct frontal and limbic processing mechanisms following frustration modulated by trait aggression. In response to a frustrating event, HA individuals show some of the personality characteristics and neural processing patterns observed in abnormally aggressive populations. Highlighting the impact of aggressive traits on the behavioral and neural responses to frustration in non-psychiatric extreme groups can facilitate further characterization of neural dysfunctions underlying psychiatric disorders that involve abnormal frustration processing and aggression.

  6. Anger under control: neural correlates of frustration as a function of trait aggression.

    Directory of Open Access Journals (Sweden)

    Christina M Pawliczek

    Full Text Available Antisocial behavior and aggression are prominent symptoms in several psychiatric disorders including antisocial personality disorder. An established precursor to aggression is a frustrating event, which can elicit anger or exasperation, thereby prompting aggressive responses. While some studies have investigated the neural correlates of frustration and aggression, examination of their relation to trait aggression in healthy populations are rare. Based on a screening of 550 males, we formed two extreme groups, one including individuals reporting high (n=21 and one reporting low (n=18 trait aggression. Using functional magnetic resonance imaging (fMRI at 3T, all participants were put through a frustration task comprising unsolvable anagrams of German nouns. Despite similar behavioral performance, males with high trait aggression reported higher ratings of negative affect and anger after the frustration task. Moreover, they showed relatively decreased activation in the frontal brain regions and the dorsal anterior cingulate cortex (dACC as well as relatively less amygdala activation in response to frustration. Our findings indicate distinct frontal and limbic processing mechanisms following frustration modulated by trait aggression. In response to a frustrating event, HA individuals show some of the personality characteristics and neural processing patterns observed in abnormally aggressive populations. Highlighting the impact of aggressive traits on the behavioral and neural responses to frustration in non-psychiatric extreme groups can facilitate further characterization of neural dysfunctions underlying psychiatric disorders that involve abnormal frustration processing and aggression.

  7. Anger under Control: Neural Correlates of Frustration as a Function of Trait Aggression

    Science.gov (United States)

    Pawliczek, Christina M.; Derntl, Birgit; Kellermann, Thilo; Gur, Ruben C.; Schneider, Frank; Habel, Ute

    2013-01-01

    Antisocial behavior and aggression are prominent symptoms in several psychiatric disorders including antisocial personality disorder. An established precursor to aggression is a frustrating event, which can elicit anger or exasperation, thereby prompting aggressive responses. While some studies have investigated the neural correlates of frustration and aggression, examination of their relation to trait aggression in healthy populations are rare. Based on a screening of 550 males, we formed two extreme groups, one including individuals reporting high (n=21) and one reporting low (n=18) trait aggression. Using functional magnetic resonance imaging (fMRI) at 3T, all participants were put through a frustration task comprising unsolvable anagrams of German nouns. Despite similar behavioral performance, males with high trait aggression reported higher ratings of negative affect and anger after the frustration task. Moreover, they showed relatively decreased activation in the frontal brain regions and the dorsal anterior cingulate cortex (dACC) as well as relatively less amygdala activation in response to frustration. Our findings indicate distinct frontal and limbic processing mechanisms following frustration modulated by trait aggression. In response to a frustrating event, HA individuals show some of the personality characteristics and neural processing patterns observed in abnormally aggressive populations. Highlighting the impact of aggressive traits on the behavioral and neural responses to frustration in non-psychiatric extreme groups can facilitate further characterization of neural dysfunctions underlying psychiatric disorders that involve abnormal frustration processing and aggression. PMID:24205247

  8. Neural feedback linearization adaptive control for affine nonlinear systems based on neural network estimator

    Directory of Open Access Journals (Sweden)

    Bahita Mohamed

    2011-01-01

    Full Text Available In this work, we introduce an adaptive neural network controller for a class of nonlinear systems. The approach uses two Radial Basis Functions, RBF networks. The first RBF network is used to approximate the ideal control law which cannot be implemented since the dynamics of the system are unknown. The second RBF network is used for on-line estimating the control gain which is a nonlinear and unknown function of the states. The updating laws for the combined estimator and controller are derived through Lyapunov analysis. Asymptotic stability is established with the tracking errors converging to a neighborhood of the origin. Finally, the proposed method is applied to control and stabilize the inverted pendulum system.

  9. Robust Finite-Time Stabilization of Fractional-Order Neural Networks With Discontinuous and Continuous Activation Functions Under Uncertainty.

    Science.gov (United States)

    Ding, Zhixia; Zeng, Zhigang; Wang, Leimin

    2017-03-10

    This paper is concerned with robust finite-time stabilization for a class of fractional-order neural networks (FNNs) with two types of activation functions (i.e., discontinuous and continuous activation function) under uncertainty. It is worth noting that there exist few results about FNNs with discontinuous activation functions, which is mainly because classical solutions and theories of differential equations cannot be applied in this case. Especially, there is no relevant finite-time stabilization research for such system, and this paper makes up for the gap. The existence of global solution under the framework of Filippov for such system is guaranteed by limiting discontinuous activation functions. According to set-valued analysis and Kakutani's fixed point theorem, we obtain the existence of equilibrium point. In particular, based on differential inclusion theory and fractional Lyapunov stability theory, several new sufficient conditions are given to ensure finite-time stabilization via a novel discontinuous controller, and the upper bound of the settling time for stabilization is estimated. In addition, we analyze the finite-time stabilization of FNNs with Lipschitz-continuous activation functions under uncertainty. The results of this paper improve corresponding ones of integer-order neural networks with discontinuous and continuous activation functions. Finally, three numerical examples are given to show the effectiveness of the theoretical results.

  10. Control Strategy Based on Wavelet Transform and Neural Network for Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Y. D. Song

    2013-01-01

    Full Text Available This paper deals with an energy management of a hybrid power generation system. The proposed control strategy for the energy management is based on the combination of wavelet transform and neural network arithmetic. The hybrid system in this paper consists of an emulated wind turbine generator, PV panels, DC and AC loads, lithium ion battery, and super capacitor, which are all connected on a DC bus with unified DC voltage. The control strategy is responsible for compensating the difference between the generated power from the wind and solar generators and the demanded power by the loads. Wavelet transform decomposes the power difference into smoothed component and fast fluctuated component. In consideration of battery protection, the neural network is introduced to calculate the reference power of battery. Super capacitor (SC is controlled to regulate the DC bus voltage. The model of the hybrid system is developed in detail under Matlab/Simulink software environment.

  11. Comparative Study of Neural Network Frameworks for the Next Generation of Adaptive Optics Systems.

    Science.gov (United States)

    González-Gutiérrez, Carlos; Santos, Jesús Daniel; Martínez-Zarzuela, Mario; Basden, Alistair G; Osborn, James; Díaz-Pernas, Francisco Javier; De Cos Juez, Francisco Javier

    2017-06-02

    Many of the next generation of adaptive optics systems on large and extremely large telescopes require tomographic techniques in order to correct for atmospheric turbulence over a large field of view. Multi-object adaptive optics is one such technique. In this paper, different implementations of a tomographic reconstructor based on a machine learning architecture named "CARMEN" are presented. Basic concepts of adaptive optics are introduced first, with a short explanation of three different control systems used on real telescopes and the sensors utilised. The operation of the reconstructor, along with the three neural network frameworks used, and the developed CUDA code are detailed. Changes to the size of the reconstructor influence the training and execution time of the neural network. The native CUDA code turns out to be the best choice for all the systems, although some of the other frameworks offer good performance under certain circumstances.

  12. Dynamics of a neural system with a multiscale architecture

    Science.gov (United States)

    Breakspear, Michael; Stam, Cornelis J

    2005-01-01

    The architecture of the brain is characterized by a modular organization repeated across a hierarchy of spatial scales—neurons, minicolumns, cortical columns, functional brain regions, and so on. It is important to consider that the processes governing neural dynamics at any given scale are not only determined by the behaviour of other neural structures at that scale, but also by the emergent behaviour of smaller scales, and the constraining influence of activity at larger scales. In this paper, we introduce a theoretical framework for neural systems in which the dynamics are nested within a multiscale architecture. In essence, the dynamics at each scale are determined by a coupled ensemble of nonlinear oscillators, which embody the principle scale-specific neurobiological processes. The dynamics at larger scales are ‘slaved’ to the emergent behaviour of smaller scales through a coupling function that depends on a multiscale wavelet decomposition. The approach is first explicated mathematically. Numerical examples are then given to illustrate phenomena such as between-scale bifurcations, and how synchronization in small-scale structures influences the dynamics in larger structures in an intuitive manner that cannot be captured by existing modelling approaches. A framework for relating the dynamical behaviour of the system to measured observables is presented and further extensions to capture wave phenomena and mode coupling are suggested. PMID:16087448

  13. Intelligent systems II complete approximation by neural network operators

    CERN Document Server

    Anastassiou, George A

    2016-01-01

    This monograph is the continuation and completion of the monograph, “Intelligent Systems: Approximation by Artificial Neural Networks” written by the same author and published 2011 by Springer. The book you hold in hand presents the complete recent and original work of the author in approximation by neural networks. Chapters are written in a self-contained style and can be read independently. Advanced courses and seminars can be taught out of this brief book. All necessary background and motivations are given per chapter. A related list of references is given also per chapter. The book’s results are expected to find applications in many areas of applied mathematics, computer science and engineering. As such this monograph is suitable for researchers, graduate students, and seminars of the above subjects, also for all science and engineering libraries.  .

  14. Optogenetic dissection of neural circuit underlying locomotory decision-making in Caenorhabditis Elegans

    Science.gov (United States)

    Kocabas, Askin; Guo, Zengcai; Ramanathan, Sharad

    2011-03-01

    Despite the knowledge of the physical connectivity of the entire nervous system of C.elegans, we know little about how neuronal dynamics results in decision-making. Detailed understanding of functional and dynamic relations of the neural circuitry requires spatiotemporal control of the neuronal activity. Recent discoveries of light gated ion channels have allowed temporal optical control of neural activity. However, excitation of a specific neuron from among many expressing the channel has been a challenge. By combining optogenetic tools, micro mirror array technology and fast real time image processing, we have developed a technique to activate specific single or multiple neurons in an intact crawling animal while tracking its behavior. Using this setup we traced the neural pathway controlling the gradual turning of the animal during the locomotion. We found that the activity of a specific neuronal circuit that receives inputs from sensory neurons is coordinated with head movement. This coordination allows the animal to turn left or right based on the variation of sensory stimulus during head movement. By directly modulating the activity of the neural circuit, we can force the animal to turn in a specific direction independent of sensory stimuli. Human Frontier Science Program.

  15. Calibration of a portable cost-effective chemical residue detection system with adaptive neural net control

    Science.gov (United States)

    Tripp, Alan C.; Walker, James C.

    2003-07-01

    The Sensory Research Institute at the Florida State University has quantitatively characterized a chemical residue detection system with adaptive neural net data processing. Two separate configurations, "Stormy" and "Gaea", were trained by exposure to decreasing amounts of n-amyl acetate from chemical emitters randomly distributed among a collection of non-emitters. The concentration of chemical in the sampled air stream was controlled precisely. The detection threshold for "Stormy" was 1.14 ppt; that for "Gaea" was 1.9 ppt. Cycle time for sampling and chemical analysis of each sample port was on the order of seconds. Possible effects on the sensors of environmental factors such as ambient humidity, temperature, and air velocity were not considered. Besides processing individual air sample data, the neural nets can sense concentration gradients and track to chemical source. The adaptive neural nets are accessed by a voice recognition system and are capable of point testing or free-ranging search. The service life of the detectors, the neural net processors, and auxiliary packaging is approximately 8 years under normal field use. Maintenance requires a good quality kibble and an occasional romp in the park.

  16. Suppression of anomalous synchronization and nonstationary behavior of neural network under small-world topology

    Science.gov (United States)

    Boaretto, B. R. R.; Budzinski, R. C.; Prado, T. L.; Kurths, J.; Lopes, S. R.

    2018-05-01

    It is known that neural networks under small-world topology can present anomalous synchronization and nonstationary behavior for weak coupling regimes. Here, we propose methods to suppress the anomalous synchronization and also to diminish the nonstationary behavior occurring in weakly coupled neural network under small-world topology. We consider a network of 2000 thermally sensitive identical neurons, based on the model of Hodgkin-Huxley in a small-world topology, with the probability of adding non local connection equal to p = 0 . 001. Based on experimental protocols to suppress anomalous synchronization, as well as nonstationary behavior of the neural network dynamics, we make use of (i) external stimulus (pulsed current); (ii) biologic parameters changing (neuron membrane conductance changes); and (iii) body temperature changes. Quantification analysis to evaluate phase synchronization makes use of the Kuramoto's order parameter, while recurrence quantification analysis, particularly the determinism, computed over the easily accessible mean field of network, the local field potential (LFP), is used to evaluate nonstationary states. We show that the methods proposed can control the anomalous synchronization and nonstationarity occurring for weak coupling parameter without any effect on the individual neuron dynamics, neither in the expected asymptotic synchronized states occurring for large values of the coupling parameter.

  17. Regional cerebral glucose metabolic changes in oculopalatal myoclonus: implication for neural pathways, underlying the disorder

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Soo; Moon, So Young; Kim, Ji Soo; Kim, Sang Eun [College of Medicine, Seoul National University, Seoul (Korea, Republic of)

    2004-07-01

    Palatal myoclonus (PM) is characterized by rhythmic involuntary jerky movements of the soft palate of the throat. When associated with eye movements, it is called oculopalatal myoclonus (OPM). Ordinary PM is characterized by hypertrophic olivary degeneration, a trans-synaptic degeneration following loss of neuronal input to the inferior olivary nucleus due to an interruption of the Guillain-Mollaret triangle usually by a hemorrhage. However, the neural pathways underlying the disorder are uncertain. In an attempt to understand the pathologic neural pathways, we examined the metabolic correlates of this tremulous condition. Brain FDG PET scans were acquired in 8 patients with OPM (age, 49.9{+-}4.6 y: all males: 7 with pontine hemorrhage, 1 with diffuse brainstem infarction) and age-matched 50 healthy males (age, 50.7{+-} 9.0) and the regional glucose metabolism compared using SPM99. For group analysis, the hemispheres containing lesions were assigned to the right side of the brain. Patients with OPM had significant hypometabolism in the ipsilateral (to the lesion) brainstem and superior temporal and parahippocampal gyri (P < 0.05 corrected, k = 100). By contrast, there was significant hypermetabolism in the contralateral middle and inferior temporal gyri, thalamus, middle frontal gyrus and precuneus (P < 0.05 corrected, k=l00). Our data demonstrate the distinct metabolic changes between several ipsilateral and contralateral brain regions (hypometabolism vs. hypermetabolism) in patients with OPM. This may provide clues for understanding the neural pathways underlying the disorder.

  18. A simple mechanical system for studying adaptive oscillatory neural networks

    DEFF Research Database (Denmark)

    Jouffroy, Guillaume; Jouffroy, Jerome

    that the network oscillates in a suitable way, this tuning being a non trivial task. It also appears that the link with the physical body that these oscillatory entities control has a fundamental importance, and it seems that most bodies used for experimental validation in the literature (walking robots, lamprey...... model, etc.) might be too complex to study. In this paper, we use a comparatively simple mechanical system, the nonholonomic vehicle referred to as the Roller-Racer, as a means towards testing different learning strategies for an Recurrent Neural Network-based (RNN) controller/guidance system. After...

  19. A simple mechanical system for studying adaptive oscillatory neural networks

    DEFF Research Database (Denmark)

    Jouffroy, Guillaume; Jouffroy, Jerome

    model, etc.) might be too complex to study. In this paper, we use a comparatively simple mechanical system, the nonholonomic vehicle referred to as the Roller-Racer, as a means towards testing different learning strategies for an Recurrent Neural Network-based (RNN) controller/guidance system. After...... a brief description of the Roller-Racer, we present as a preliminary study an RNN-based feed-forward controller whose parameters are obtained through the well-known teacher forcing learning algorithm, extended to learn signals with a continuous component....

  20. Radial basis function (RBF) neural network control for mechanical systems design, analysis and Matlab simulation

    CERN Document Server

    Liu, Jinkun

    2013-01-01

    Radial Basis Function (RBF) Neural Network Control for Mechanical Systems is motivated by the need for systematic design approaches to stable adaptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design methods and MATLAB simulation of stable adaptive RBF neural control strategies. In this book, a broad range of implementable neural network control design methods for mechanical systems are presented, such as robot manipulators, inverted pendulums, single link flexible joint robots, motors, etc. Advanced neural network controller design methods and their stability analysis are explored. The book provides readers with the fundamentals of neural network control system design.   This book is intended for the researchers in the fields of neural adaptive control, mechanical systems, Matlab simulation, engineering design, robotics and automation. Jinkun Liu is a professor at Beijing University of Aeronautics and Astronauti...

  1. Neural network application to aircraft control system design

    Science.gov (United States)

    Troudet, Terry; Garg, Sanjay; Merrill, Walter C.

    1991-01-01

    The feasibility of using artificial neural network as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research identified to enhance the practical applicability of neural networks to flight control design.

  2. Neural Computations in a Dynamical System with Multiple Time Scales

    Directory of Open Access Journals (Sweden)

    Yuanyuan Mi

    2016-09-01

    Full Text Available Neural systems display rich short-term dynamics at various levels, e.g., spike-frequencyadaptation (SFA at single neurons, and short-term facilitation (STF and depression (STDat neuronal synapses. These dynamical features typically covers a broad range of time scalesand exhibit large diversity in different brain regions. It remains unclear what the computationalbenefit for the brain to have such variability in short-term dynamics is. In this study, we proposethat the brain can exploit such dynamical features to implement multiple seemingly contradictorycomputations in a single neural circuit. To demonstrate this idea, we use continuous attractorneural network (CANN as a working model and include STF, SFA and STD with increasing timeconstants in their dynamics. Three computational tasks are considered, which are persistent activity,adaptation, and anticipative tracking. These tasks require conflicting neural mechanisms, andhence cannot be implemented by a single dynamical feature or any combination with similar timeconstants. However, with properly coordinated STF, SFA and STD, we show that the network isable to implement the three computational tasks concurrently. We hope this study will shed lighton the understanding of how the brain orchestrates its rich dynamics at various levels to realizediverse cognitive functions.

  3. Neural Systems with Numerically Matched Input-Output Statistic: Isotonic Bivariate Statistical Modeling

    Directory of Open Access Journals (Sweden)

    Simone Fiori

    2007-07-01

    Full Text Available Bivariate statistical modeling from incomplete data is a useful statistical tool that allows to discover the model underlying two data sets when the data in the two sets do not correspond in size nor in ordering. Such situation may occur when the sizes of the two data sets do not match (i.e., there are “holes” in the data or when the data sets have been acquired independently. Also, statistical modeling is useful when the amount of available data is enough to show relevant statistical features of the phenomenon underlying the data. We propose to tackle the problem of statistical modeling via a neural (nonlinear system that is able to match its input-output statistic to the statistic of the available data sets. A key point of the new implementation proposed here is that it is based on look-up-table (LUT neural systems, which guarantee a computationally advantageous way of implementing neural systems. A number of numerical experiments, performed on both synthetic and real-world data sets, illustrate the features of the proposed modeling procedure.

  4. Neural Network Target Identification System for False Alarm Reduction

    Science.gov (United States)

    Ye, David; Edens, Weston; Lu, Thomas T.; Chao, Tien-Hsin

    2009-01-01

    A multi-stage automated target recognition (ATR) system has been designed to perform computer vision tasks with adequate proficiency in mimicking human vision. The system is able to detect, identify, and track targets of interest. Potential regions of interest (ROIs) are first identified by the detection stage using an Optimum Trade-off Maximum Average Correlation Height (OT-MACH) filter combined with a wavelet transform. False positives are then eliminated by the verification stage using feature extraction methods in conjunction with neural networks. Feature extraction transforms the ROIs using filtering and binning algorithms to create feature vectors. A feed forward back propagation neural network (NN) is then trained to classify each feature vector and remove false positives. This paper discusses the test of the system performance and parameter optimizations process which adapts the system to various targets and datasets. The test results show that the system was successful in substantially reducing the false positive rate when tested on a sonar image dataset.

  5. A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment.

    Science.gov (United States)

    Li, Yongcheng; Sun, Rong; Wang, Yuechao; Li, Hongyi; Zheng, Xiongfei

    2016-01-01

    We propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The mobile robot system characterized by a camera and two-wheeled robot was designed to execute the target-searching task. We modified a software architecture and developed a home-made stimulation generator to build a bi-directional connection between the biological and the artificial components via simple binomial coding/decoding schemes. In this paper, we utilized a specific hierarchical dissociated neural network for the first time as the neural controller. Based on our work, neural cultures were successfully employed to control an artificial agent resulting in high performance. Surprisingly, under the tetanus stimulus training, the robot performed better and better with the increasement of training cycle because of the short-term plasticity of neural network (a kind of reinforced learning). Comparing to the work previously reported, we adopted an effective experimental proposal (i.e. increasing the training cycle) to make sure of the occurrence of the short-term plasticity, and preliminarily demonstrated that the improvement of the robot's performance could be caused independently by the plasticity development of dissociated neural network. This new framework may provide some possible solutions for the learning abilities of intelligent robots by the engineering application of the plasticity processing of neural networks, also for the development of theoretical inspiration for the next generation neuro-prostheses on the basis of the bi-directional exchange of information within the hierarchical neural networks.

  6. A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment.

    Directory of Open Access Journals (Sweden)

    Yongcheng Li

    Full Text Available We propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The mobile robot system characterized by a camera and two-wheeled robot was designed to execute the target-searching task. We modified a software architecture and developed a home-made stimulation generator to build a bi-directional connection between the biological and the artificial components via simple binomial coding/decoding schemes. In this paper, we utilized a specific hierarchical dissociated neural network for the first time as the neural controller. Based on our work, neural cultures were successfully employed to control an artificial agent resulting in high performance. Surprisingly, under the tetanus stimulus training, the robot performed better and better with the increasement of training cycle because of the short-term plasticity of neural network (a kind of reinforced learning. Comparing to the work previously reported, we adopted an effective experimental proposal (i.e. increasing the training cycle to make sure of the occurrence of the short-term plasticity, and preliminarily demonstrated that the improvement of the robot's performance could be caused independently by the plasticity development of dissociated neural network. This new framework may provide some possible solutions for the learning abilities of intelligent robots by the engineering application of the plasticity processing of neural networks, also for the development of theoretical inspiration for the next generation neuro-prostheses on the basis of the bi-directional exchange of information within the hierarchical neural networks.

  7. Immature visual neural system in children reflected by contrast sensitivity with adaptive optics correction

    Science.gov (United States)

    Liu, Rong; Zhou, Jiawei; Zhao, Haoxin; Dai, Yun; Zhang, Yudong; Tang, Yong; Zhou, Yifeng

    2014-01-01

    This study aimed to explore the neural development status of the visual system of children (around 8 years old) using contrast sensitivity. We achieved this by eliminating the influence of higher order aberrations (HOAs) with adaptive optics correction. We measured HOAs, modulation transfer functions (MTFs) and contrast sensitivity functions (CSFs) of six children and five adults with both corrected and uncorrected HOAs. We found that when HOAs were corrected, children and adults both showed improvements in MTF and CSF. However, the CSF of children was still lower than the adult level, indicating the difference in contrast sensitivity between groups cannot be explained by differences in optical factors. Further study showed that the difference between the groups also could not be explained by differences in non-visual factors. With these results we concluded that the neural systems underlying vision in children of around 8 years old are still immature in contrast sensitivity. PMID:24732728

  8. A neural learning classifier system with self-adaptive constructivism for mobile robot control.

    Science.gov (United States)

    Hurst, Jacob; Bull, Larry

    2006-01-01

    For artificial entities to achieve true autonomy and display complex lifelike behavior, they will need to exploit appropriate adaptable learning algorithms. In this context adaptability implies flexibility guided by the environment at any given time and an open-ended ability to learn appropriate behaviors. This article examines the use of constructivism-inspired mechanisms within a neural learning classifier system architecture that exploits parameter self-adaptation as an approach to realize such behavior. The system uses a rule structure in which each rule is represented by an artificial neural network. It is shown that appropriate internal rule complexity emerges during learning at a rate controlled by the learner and that the structure indicates underlying features of the task. Results are presented in simulated mazes before moving to a mobile robot platform.

  9. Olfactory systems and neural circuits that modulate predator odor fear

    Directory of Open Access Journals (Sweden)

    Lorey K. Takahashi

    2014-03-01

    Full Text Available When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS and accessory olfactory systems (AOS detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray, paraventricular nucleus of the hypothalamus, and the medial amygdala appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal stress hormone secretion. The medial amygdala also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus appear prominently involve in predator odor fear behavior. The basolateral amygdala, medial hypothalamic nuclei, and medial prefrontal cortex are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator odors activate

  10. Olfactory systems and neural circuits that modulate predator odor fear.

    Science.gov (United States)

    Takahashi, Lorey K

    2014-01-01

    When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS) and accessory olfactory systems (AOS) detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray (DPAG), paraventricular nucleus (PVN) of the hypothalamus, and the medial amygdala (MeA) appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal (HPA) stress hormone secretion. The MeA also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus (VHC) appear prominently involved in predator odor fear behavior. The basolateral amygdala (BLA), medial hypothalamic nuclei, and medial prefrontal cortex (mPFC) are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator

  11. Adaptive Backstepping-Based Neural Tracking Control for MIMO Nonlinear Switched Systems Subject to Input Delays.

    Science.gov (United States)

    Niu, Ben; Li, Lu

    2017-04-17

    This brief proposes a new neural-network (NN)-based adaptive output tracking control scheme for a class of disturbed multiple-input multiple-output uncertain nonlinear switched systems with input delays. By combining the universal approximation ability of radial basis function NNs and adaptive backstepping recursive design with an improved multiple Lyapunov function (MLF) scheme, a novel adaptive neural output tracking controller design method is presented for the switched system. The feature of the developed design is that different coordinate transformations are adopted to overcome the conservativeness caused by adopting a common coordinate transformation for all subsystems. It is shown that all the variables of the resulting closed-loop system are semiglobally uniformly ultimately bounded under a class of switching signals in the presence of MLF and that the system output can follow the desired reference signal. To demonstrate the practicability of the obtained result, an adaptive neural output tracking controller is designed for a mass-spring-damper system.

  12. System identification of an unmanned quadcopter system using MRAN neural

    Science.gov (United States)

    Pairan, M. F.; Shamsudin, S. S.

    2017-12-01

    This project presents the performance analysis of the radial basis function neural network (RBF) trained with Minimal Resource Allocating Network (MRAN) algorithm for real-time identification of quadcopter. MRAN’s performance is compared with the RBF with Constant Trace algorithm for 2500 input-output pair data sampling. MRAN utilizes adding and pruning hidden neuron strategy to obtain optimum RBF structure, increase prediction accuracy and reduce training time. The results indicate that MRAN algorithm produces fast training time and more accurate prediction compared with standard RBF. The model proposed in this paper is capable of identifying and modelling a nonlinear representation of the quadcopter flight dynamics.

  13. Accurate Wavelet Neural Network for Efficient Controlling of an Active Magnetic Bearing System

    OpenAIRE

    Youssef Harkouss; Souhad Mcheik; Roger Achkar

    2010-01-01

    Problem statement: The synthesis of a command by the neural network has an excellent advantage over the classical one such as PID. This study presented a fast and accurate Wavelet Neural Network (WNN) approach for efficient controlling of an Active Magnetic Bearing (AMB) system. Approach: The proposed approach combined neural network with the wavelet theory. Wavelet theory may be exploited in deriving a good initialization for the neural network and thus improved conv...

  14. Autism and talent: the cognitive and neural basis of systemizing.

    Science.gov (United States)

    Baron-Cohen, Simon; Lombardo, Michael V

    2017-12-01

    In 2003, we proposed the hypersystemizing theory of autism. The theory proposes that the human mind possesses a systemizing mechanism (SM) that helps identify lawful regularities (often causal) that govern the input-operation-output workings of a system. The SM can be tuned to different levels, from low to high, with a normal distribution of individual differences in how strongly people search for such input-operation-out-put regularities in any data that is systemizable. Evidence suggests that people with autism are on average hypersystemizers, scoring higher than average on the systemizing quotient and on performance tests of systemizing. In this article, we consider the neural basis behind the SM, since there has been little consideration of the brain basis of systemizing. Finally, we discuss directions for future work in this field.

  15. Adaptive neural network control for a class of MIMO nonlinear systems with disturbances in discrete-time.

    Science.gov (United States)

    Ge, Shuzhi Sam; Zhang, Jin; Lee, Tong Heng

    2004-08-01

    In this paper, adaptive neural network (NN) control is investigated for a class of multiinput and multioutput (MIMO) nonlinear systems with unknown bounded disturbances in discrete-time domain. The MIMO system under study consists of several subsystems with each subsystem in strict feedback form. The inputs of the MIMO system are in triangular form. First, through a coordinate transformation, the MIMO system is transformed into a sequential decrease cascade form (SDCF). Then, by using high-order neural networks (HONN) as emulators of the desired controls, an effective neural network control scheme with adaptation laws is developed. Through embedded backstepping, stability of the closed-loop system is proved based on Lyapunov synthesis. The output tracking errors are guaranteed to converge to a residue whose size is adjustable. Simulation results show the effectiveness of the proposed control scheme.

  16. The ctenophore genome and the evolutionary origins of neural systems.

    Science.gov (United States)

    Moroz, Leonid L; Kocot, Kevin M; Citarella, Mathew R; Dosung, Sohn; Norekian, Tigran P; Povolotskaya, Inna S; Grigorenko, Anastasia P; Dailey, Christopher; Berezikov, Eugene; Buckley, Katherine M; Ptitsyn, Andrey; Reshetov, Denis; Mukherjee, Krishanu; Moroz, Tatiana P; Bobkova, Yelena; Yu, Fahong; Kapitonov, Vladimir V; Jurka, Jerzy; Bobkov, Yuri V; Swore, Joshua J; Girardo, David O; Fodor, Alexander; Gusev, Fedor; Sanford, Rachel; Bruders, Rebecca; Kittler, Ellen; Mills, Claudia E; Rast, Jonathan P; Derelle, Romain; Solovyev, Victor V; Kondrashov, Fyodor A; Swalla, Billie J; Sweedler, Jonathan V; Rogaev, Evgeny I; Halanych, Kenneth M; Kohn, Andrea B

    2014-06-05

    The origins of neural systems remain unresolved. In contrast to other basal metazoans, ctenophores (comb jellies) have both complex nervous and mesoderm-derived muscular systems. These holoplanktonic predators also have sophisticated ciliated locomotion, behaviour and distinct development. Here we present the draft genome of Pleurobrachia bachei, Pacific sea gooseberry, together with ten other ctenophore transcriptomes, and show that they are remarkably distinct from other animal genomes in their content of neurogenic, immune and developmental genes. Our integrative analyses place Ctenophora as the earliest lineage within Metazoa. This hypothesis is supported by comparative analysis of multiple gene families, including the apparent absence of HOX genes, canonical microRNA machinery, and reduced immune complement in ctenophores. Although two distinct nervous systems are well recognized in ctenophores, many bilaterian neuron-specific genes and genes of 'classical' neurotransmitter pathways either are absent or, if present, are not expressed in neurons. Our metabolomic and physiological data are consistent with the hypothesis that ctenophore neural systems, and possibly muscle specification, evolved independently from those in other animals.

  17. Neural mechanisms underlying transcranial direct current stimulation in aphasia: A feasibility study.

    Directory of Open Access Journals (Sweden)

    Lena eUlm

    2015-10-01

    Full Text Available Little is known about the neural mechanisms by which transcranial direct current stimulation (tDCS impacts on language processing in post-stroke aphasia. This was addressed in a proof-of-principle study that explored the effects of tDCS application in aphasia during simultaneous functional magnetic resonance imaging (fMRI. We employed a single subject, cross-over, sham-tDCS controlled design and the stimulation was administered to an individualized perilesional stimulation site that was identified by a baseline fMRI scan and a picture naming task. Peak activity during the baseline scan was located in the spared left inferior frontal gyrus (IFG and this area was stimulated during a subsequent cross-over phase. tDCS was successfully administered to the target region and anodal- vs. sham-tDCS resulted in selectively increased activity at the stimulation site. Our results thus demonstrate that it is feasible to precisely target an individualized stimulation site in aphasia patients during simultaneous fMRI which allows assessing the neural mechanisms underlying tDCS application. The functional imaging results of this case report highlight one possible mechanism that may have contributed to beneficial behavioural stimulation effects in previous clinical tDCS trials in aphasia. In the future, this approach will allow identifying distinct patterns of stimulation effects on neural processing in larger cohorts of patients. This may ultimately yield information about the variability of tDCS-effects on brain functions in aphasia.

  18. The impact of abacus training on working memory and underlying neural correlates in young adults.

    Science.gov (United States)

    Dong, Shanshan; Wang, Chunjie; Xie, Ye; Hu, Yuzheng; Weng, Jian; Chen, Feiyan

    2016-09-22

    Abacus-based mental calculation (AMC) activates the frontoparietal areas largely overlapping with the working memory (WM) network. Given the critical role of WM in cognition, how to improve WM capability has attracted intensive attention in past years. However, it is still unclear whether WM could be enhanced by AMC training. The current research thus explored the impact of AMC training on verbal and visuospatial WM, as well as the underlying neural basis. Participants were randomly assigned to an abacus group and a control group. Their verbal WM was evaluated by digit/letter memory span (DMS/LMS) tests, and visuospatial WM was assessed by a visuospatial n-back task. Neural activity during the n-back task was examined using functional MRI. Our results showed reliable improvements of both verbal and visuospatial WM in the abacus group after 20-day AMC training but not in the control. In addition, the n-back task-induced activations in the right frontoparietal circuitry and left occipitotemporal junction (OTJ) declined as a result of training. Notably, the decreases in activity were positively correlated with performance gains across trained participants. These results suggest AMC training not only improves calculating skills but also have the potential to promote individuals' WM capabilities, which is associated with the functional plasticity of the common neural substrates. Copyright © 2016 IBRO. All rights reserved.

  19. Spatially Nonlinear Interdependence of Alpha-Oscillatory Neural Networks under Chan Meditation

    Directory of Open Access Journals (Sweden)

    Pei-Chen Lo

    2013-01-01

    Full Text Available This paper reports the results of our investigation of the effects of Chan meditation on brain electrophysiological behaviors from the viewpoint of spatially nonlinear interdependence among regional neural networks. Particular emphasis is laid on the alpha-dominated EEG (electroencephalograph. Continuous-time wavelet transform was adopted to detect the epochs containing substantial alpha activities. Nonlinear interdependence quantified by similarity index S(X∣Y, the influence of source signal Y on sink signal X, was applied to the nonlinear dynamical model in phase space reconstructed from multichannel EEG. Experimental group involved ten experienced Chan-Meditation practitioners, while control group included ten healthy subjects within the same age range, yet, without any meditation experience. Nonlinear interdependence among various cortical regions was explored for five local neural-network regions, frontal, posterior, right-temporal, left-temporal, and central regions. In the experimental group, the inter-regional interaction was evaluated for the brain dynamics under three different stages, at rest (stage R, pre-meditation background recording, in Chan meditation (stage M, and the unique Chakra-focusing practice (stage C. Experimental group exhibits stronger interactions among various local neural networks at stages M and C compared with those at stage R. The intergroup comparison demonstrates that Chan-meditation brain possesses better cortical inter-regional interactions than the resting brain of control group.

  20. Phase transitions in glassy systems via convolutional neural networks

    Science.gov (United States)

    Fang, Chao

    Machine learning is a powerful approach commonplace in industry to tackle large data sets. Most recently, it has found its way into condensed matter physics, allowing for the first time the study of, e.g., topological phase transitions and strongly-correlated electron systems. The study of spin glasses is plagued by finite-size effects due to the long thermalization times needed. Here we use convolutional neural networks in an attempt to detect a phase transition in three-dimensional Ising spin glasses. Our results are compared to traditional approaches.

  1. Fault Tolerant Neural Network for ECG Signal Classification Systems

    Directory of Open Access Journals (Sweden)

    MERAH, M.

    2011-08-01

    Full Text Available The aim of this paper is to apply a new robust hardware Artificial Neural Network (ANN for ECG classification systems. This ANN includes a penalization criterion which makes the performances in terms of robustness. Specifically, in this method, the ANN weights are normalized using the auto-prune method. Simulations performed on the MIT ? BIH ECG signals, have shown that significant robustness improvements are obtained regarding potential hardware artificial neuron failures. Moreover, we show that the proposed design achieves better generalization performances, compared to the standard back-propagation algorithm.

  2. Optimizing Markovian modeling of chaotic systems with recurrent neural networks

    International Nuclear Information System (INIS)

    Cechin, Adelmo L.; Pechmann, Denise R.; Oliveira, Luiz P.L. de

    2008-01-01

    In this paper, we propose a methodology for optimizing the modeling of an one-dimensional chaotic time series with a Markov Chain. The model is extracted from a recurrent neural network trained for the attractor reconstructed from the data set. Each state of the obtained Markov Chain is a region of the reconstructed state space where the dynamics is approximated by a specific piecewise linear map, obtained from the network. The Markov Chain represents the dynamics of the time series in its statistical essence. An application to a time series resulted from Lorenz system is included

  3. Examination of neural systems sub-serving facebook "addiction".

    Science.gov (United States)

    Turel, Ofir; He, Qinghua; Xue, Gui; Xiao, Lin; Bechara, Antoine

    2014-12-01

    Because addictive behaviors typically result from violated homeostasis of the impulsive (amygdala-striatal) and inhibitory (prefrontal cortex) brain systems, this study examined whether these systems sub-serve a specific case of technology-related addiction, namely Facebook "addiction." Using a go/no-go paradigm in functional MRI settings, the study examined how these brain systems in 20 Facebook users (M age = 20.3 yr., SD = 1.3, range = 18-23) who completed a Facebook addiction questionnaire, responded to Facebook and less potent (traffic sign) stimuli. The findings indicated that at least at the examined levels of addiction-like symptoms, technology-related "addictions" share some neural features with substance and gambling addictions, but more importantly they also differ from such addictions in their brain etiology and possibly pathogenesis, as related to abnormal functioning of the inhibitory-control brain system.

  4. Neural network remodeling underlying motor map reorganization induced by rehabilitative training after ischemic stroke.

    Science.gov (United States)

    Okabe, Naohiko; Shiromoto, Takashi; Himi, Naoyuki; Lu, Feng; Maruyama-Nakamura, Emi; Narita, Kazuhiko; Iwachidou, Nobuhisa; Yagita, Yoshiki; Miyamoto, Osamu

    2016-12-17

    Motor map reorganization is believed to be one mechanism underlying rehabilitation-induced functional recovery. Although the ipsilesional secondary motor area has been known to reorganize motor maps and contribute to rehabilitation-induced functional recovery, it is unknown how the secondary motor area is reorganized by rehabilitative training. In the present study, using skilled forelimb reaching tasks, we investigated neural network remodeling in the rat rostral forelimb area (RFA) of the secondary motor area during 4weeks of rehabilitative training. Following photothrombotic stroke in the caudal forelimb area (CFA), rehabilitative training led to task-specific recovery and motor map reorganization in the RFA. A second injury to the RFA resulted in reappearance of motor deficits. Further, when both the CFA and RFA were destroyed simultaneously, rehabilitative training no longer improved task-specific recovery. In neural tracer studies, although rehabilitative training did not alter neural projection to the RFA from other brain areas, rehabilitative training increased neural projection from the RFA to the lower spinal cord, which innervates the muscles in the forelimb. Double retrograde tracer studies revealed that rehabilitative training increased the neurons projecting from the RFA to both the upper cervical cord, which innervates the muscles in the neck, trunk, and part of the proximal forelimb, and the lower cervical cord. These results suggest that neurons projecting to the upper cervical cord provide new connections to the denervated forelimb area of the spinal cord, and these new connections may contribute to rehabilitation-induced task-specific recovery and motor map reorganization in the secondary motor area. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Neural systems and hormones mediating attraction to infant and child faces.

    Science.gov (United States)

    Luo, Lizhu; Ma, Xiaole; Zheng, Xiaoxiao; Zhao, Weihua; Xu, Lei; Becker, Benjamin; Kendrick, Keith M

    2015-01-01

    We find infant faces highly attractive as a result of specific features which Konrad Lorenz termed "Kindchenschema" or "baby schema," and this is considered to be an important adaptive trait for promoting protective and caregiving behaviors in adults, thereby increasing the chances of infant survival. This review first examines the behavioral support for this effect and physical and behavioral factors which can influence it. It then provides details of the increasing number of neuroimaging and electrophysiological studies investigating the neural circuitry underlying this baby schema effect in parents and non-parents of both sexes. Next it considers potential hormonal contributions to the baby schema effect in both sexes and the neural effects associated with reduced responses to infant cues in post-partum depression, anxiety and drug taking. Overall the findings reviewed reveal a very extensive neural circuitry involved in our perception of cuteness in infant faces, with enhanced activation compared to adult faces being found in brain regions involved in face perception, attention, emotion, empathy, memory, reward and attachment, theory of mind and also control of motor responses. Both mothers and fathers also show evidence for enhanced responses in these same neural systems when viewing their own as opposed to another child. Furthermore, responses to infant cues in many of these neural systems are reduced in mothers with post-partum depression or anxiety or have taken addictive drugs throughout pregnancy. In general reproductively active women tend to rate infant faces as cuter than men, which may reflect both heightened attention to relevant cues and a stronger activation in their brain reward circuitry. Perception of infant cuteness may also be influenced by reproductive hormones with the hypothalamic neuropeptide oxytocin being most strongly associated to date with increased attention and attraction to infant cues in both sexes.

  6. Neural systems and hormones mediating attraction to infant and child faces

    Directory of Open Access Journals (Sweden)

    Lizhu eLuo

    2015-07-01

    Full Text Available We find infant faces highly attractive as a result of specific features which Konrad Lorenz termed Kindchenschema or baby schema, and this is considered to be an important adaptive trait for promoting protective and caregiving behaviors in adults, thereby increasing the chances of infant survival. This review first examines the behavioral support for this effect and physical and behavioral factors which can influence it. It next reviews the increasing number of neuroimaging and electrophysiological studies investigating the neural circuitry underlying this baby schema effect in both parents and non-parents of both sexes. Next it considers potential hormonal contributions to the baby schema effect in both sexes and then neural effects associated with reduced responses to infant cues in post-partum depression, anxiety and drug taking. Overall the findings reviewed reveal a very extensive neural circuitry involved in our perception of cutenessin infant faces with enhanced activation compared to adult faces being found in brain regions involved in face perception, attention, emotion, empathy, memory, reward and attachment, theory of mind and also control of motor responses.Both mothers and fathers also show evidence for enhanced responses in these same neural systems when viewing their own as opposed to another child. Furthermore, responses to infant cues in many of these neural systems are reduced in mothers with post-partum depression or anxiety or have taken addictive drugs throughout pregnancy. In general reproductively active women tend to rate infant faces as cuter than men, which may reflect both heightened attention to relevant cues and a stronger activation in their brain reward circuitry. Perception of infant cuteness may also be influenced by reproductive hormones with the hypothalamic neuropeptide oxytocin being most strongly associated to date with increased attention andattractionto infant cues in both sexes.

  7. Neural substrates underlying motor skill learning in chronic hemiparetic stroke patients

    Directory of Open Access Journals (Sweden)

    Stephanie eLefebvre

    2015-06-01

    Full Text Available Motor skill learning is critical in post-stroke motor recovery, but little is known about its underlying neural substrates. Recently, using a new visuomotor skill learning paradigm involving a speed/accuracy trade-off in healthy individuals we identified three subpopulations based on their behavioral trajectories: fitters (in whom improvement in speed or accuracy coincided with deterioration in the other parameter, shifters (in whom speed and/or accuracy improved without degradation of the other parameter, and non-learners. We aimed to identify the neural substrates underlying the first stages of motor skill learning in chronic hemiparetic stroke patients and to determine whether specific neural substrates were recruited in shifters versus fitters. During functional magnetic resonance imaging (fMRI, 23 patients learned the visuomotor skill with their paretic upper limb. In the whole-group analysis, correlation between activation and motor skill learning was restricted to the dorsal prefrontal cortex of the damaged hemisphere (DLPFCdamh: r=-0.82 and the dorsal premotor cortex (PMddamh: r=0.70; the correlations was much lesser (-0.160.25 in the other regions of interest. In a subgroup analysis, significant activation was restricted to bilateral posterior parietal cortices of the fitters and did not correlate with motor skill learning. Conversely, in shifters significant activation occurred in the primary sensorimotor cortexdamh and supplementary motor areadamh and in bilateral PMd where activation changes correlated significantly with motor skill learning (r=0.91. Finally, resting-state activity acquired before learning showed a higher functional connectivity in the salience network of shifters compared with fitters (qFDR<0.05. These data suggest a neuroplastic compensatory reorganization of brain activity underlying the first stages of motor skill learning with the paretic upper limb in chronic hemiparetic stroke patients, with a key role of

  8. A New Approach to Fault Diagnosis of Power Systems Using Fuzzy Reasoning Spiking Neural P Systems

    OpenAIRE

    Xiong, Guojiang; Shi, Dongyuan; Zhu, Lin; Duan, Xianzhong

    2013-01-01

    Fault diagnosis of power systems is an important task in power system operation. In this paper, fuzzy reasoning spiking neural P systems (FRSN P systems) are implemented for fault diagnosis of power systems for the first time. As a graphical modeling tool, FRSN P systems are able to represent fuzzy knowledge and perform fuzzy reasoning well. When the cause-effect relationship between candidate faulted section and protective devices is represented by the FRSN P systems, the diagnostic conclusi...

  9. Experimental study and artificial neural network modeling of tartrazine removal by photocatalytic process under solar light.

    Science.gov (United States)

    Sebti, Aicha; Souahi, Fatiha; Mohellebi, Faroudja; Igoud, Sadek

    2017-07-01

    This research focuses on the application of an artificial neural network (ANN) to predict the removal efficiency of tartrazine from simulated wastewater using a photocatalytic process under solar illumination. A program is developed in Matlab software to optimize the neural network architecture and select the suitable combination of training algorithm, activation function and hidden neurons number. The experimental results of a batch reactor operated under different conditions of pH, TiO 2 concentration, initial organic pollutant concentration and solar radiation intensity are used to train, validate and test the networks. While negligible mineralization is demonstrated, the experimental results show that under sunlight irradiation, 85% of tartrazine is removed after 300 min using only 0.3 g/L of TiO 2 powder. Therefore, irradiation time is prolonged and almost 66% of total organic carbon is reduced after 15 hours. ANN 5-8-1 with Bayesian regulation back-propagation algorithm and hyperbolic tangent sigmoid transfer function is found to be able to predict the response with high accuracy. In addition, the connection weights approach is used to assess the importance contribution of each input variable on the ANN model response. Among the five experimental parameters, the irradiation time has the greatest effect on the removal efficiency of tartrazine.

  10. Bridging the Gap: Towards a Cell-Type Specific Understanding of Neural Circuits Underlying Fear Behaviors

    Science.gov (United States)

    McCullough, KM; Morrison, FG; Ressler, KJ

    2016-01-01

    Fear and anxiety-related disorders are remarkably common and debilitating, and are often characterized by dysregulated fear responses. Rodent models of fear learning and memory have taken great strides towards elucidating the specific neuronal circuitries underlying the learning of fear responses. The present review addresses recent research utilizing optogenetic approaches to parse circuitries underlying fear behaviors. It also highlights the powerful advances made when optogenetic techniques are utilized in a genetically defined, cell-type specific, manner. The application of next-generation genetic and sequencing approaches in a cell-type specific context will be essential for a mechanistic understanding of the neural circuitry underlying fear behavior and for the rational design of targeted, circuit specific, pharmacologic interventions for the treatment and prevention of fear-related disorders. PMID:27470092

  11. Prediction of composite fatigue life under variable amplitude loading using artificial neural network trained by genetic algorithm

    Science.gov (United States)

    Rohman, Muhamad Nur; Hidayat, Mas Irfan P.; Purniawan, Agung

    2018-04-01

    Neural networks (NN) have been widely used in application of fatigue life prediction. In the use of fatigue life prediction for polymeric-base composite, development of NN model is necessary with respect to the limited fatigue data and applicable to be used to predict the fatigue life under varying stress amplitudes in the different stress ratios. In the present paper, Multilayer-Perceptrons (MLP) model of neural network is developed, and Genetic Algorithm was employed to optimize the respective weights of NN for prediction of polymeric-base composite materials under variable amplitude loading. From the simulation result obtained with two different composite systems, named E-glass fabrics/epoxy (layups [(±45)/(0)2]S), and E-glass/polyester (layups [90/0/±45/0]S), NN model were trained with fatigue data from two different stress ratios, which represent limited fatigue data, can be used to predict another four and seven stress ratios respectively, with high accuracy of fatigue life prediction. The accuracy of NN prediction were quantified with the small value of mean square error (MSE). When using 33% from the total fatigue data for training, the NN model able to produce high accuracy for all stress ratios. When using less fatigue data during training (22% from the total fatigue data), the NN model still able to produce high coefficient of determination between the prediction result compared with obtained by experiment.

  12. Recurrent Neural Network for Single Machine Power System Stabilizer

    Directory of Open Access Journals (Sweden)

    Widi Aribowo

    2010-04-01

    Full Text Available In this paper, recurrent neural network (RNN is used to design power system stabilizer (PSS due to its advantage on the dependence not only on present input but also on past condition. A RNN-PSS is able to capture the dynamic response of a system without any delays caused by external feedback, primarily by the internal feedback loop in recurrent neuron. In this paper, RNNPSS consists of a RNN-identifier and a RNN-controller. The RNN-Identifier functions as the tracker of dynamics characteristics of the plant, while the RNN-controller is used to damp the system’s low frequency oscillations. Simulation results using MATLAB demonstrate that the RNNPSS can successfully damp out oscillation and improve the performance of the system.

  13. A Gamma Memory Neural Network for System Identification

    Science.gov (United States)

    Motter, Mark A.; Principe, Jose C.

    1992-01-01

    A gamma neural network topology is investigated for a system identification application. A discrete gamma memory structure is used in the input layer, providing delayed values of both the control inputs and the network output to the input layer. The discrete gamma memory structure implements a tapped dispersive delay line, with the amount of dispersion regulated by a single, adaptable parameter. The network is trained using static back propagation, but captures significant features of the system dynamics. The system dynamics identified with the network are the Mach number dynamics of the 16 Foot Transonic Tunnel at NASA Langley Research Center, Hampton, Virginia. The training data spans an operating range of Mach numbers from 0.4 to 1.3.

  14. A Chinese Named Entity Recognition System with Neural Networks

    Directory of Open Access Journals (Sweden)

    Yi Hui-Kang

    2017-01-01

    Full Text Available Named entity recognition (NER is a typical sequential labeling problem that plays an important role in natural language processing (NLP systems. In this paper, we discussed the details of applying a comprehensive model aggregating neural networks and conditional random field (CRF on Chinese NER tasks, and how to discovery character level features when implement a NER system in word level. We compared the difference between Chinese and English when modeling the character embeddings. We developed a NER system based on our analysis, it works well on the ACE 2004 and SIGHAN bakeoff 2006 MSRA dataset, and doesn’t rely on any gazetteers or handcraft features. We obtained F1 score of 82.3% on MSRA 2006.

  15. Speaker diarization system using HXLPS and deep neural network

    Directory of Open Access Journals (Sweden)

    V. Subba Ramaiah

    2018-03-01

    Full Text Available In general, speaker diarization is defined as the process of segmenting the input speech signal and grouped the homogenous regions with regard to the speaker identity. The main idea behind this system is that it is able to discriminate the speaker signal by assigning the label of the each speaker signal. Due to rapid growth of broadcasting and meeting, the speaker diarization is burdensome to enhance the readability of the speech transcription. In order to solve this issue, Holoentropy with the eXtended Linear Prediction using autocorrelation Snapshot (HXLPS and deep neural network (DNN is proposed for the speaker diarization system. The HXLPS extraction method is newly developed by incorporating the Holoentropy with the XLPS. Once we attain the features, the speech and non-speech signals are detected by the Voice Activity Detection (VAD method. Then, i-vector representation of every segmented signal is obtained using Universal Background Model (UBM model. Consequently, DNN is utilized to assign the label for the speaker signal which is then clustered according to the speaker label. The performance is analysed using the evaluation metrics, such as tracking distance, false alarm rate and diarization error rate. The outcome of the proposed method ensures the better diarization performance by achieving the lower DER of 1.36% based on lambda value and DER of 2.23% depends on the frame length. Keywords: Speaker diarization, HXLPS feature extraction, Voice activity detection, Deep neural network, Speaker clustering, Diarization Error Rate (DER

  16. Switched-Observer-Based Adaptive Neural Control of MIMO Switched Nonlinear Systems With Unknown Control Gains.

    Science.gov (United States)

    Long, Lijun; Zhao, Jun

    2017-07-01

    In this paper, the problem of adaptive neural output-feedback control is addressed for a class of multi-input multioutput (MIMO) switched uncertain nonlinear systems with unknown control gains. Neural networks (NNs) are used to approximate unknown nonlinear functions. In order to avoid the conservativeness caused by adoption of a common observer for all subsystems, an MIMO NN switched observer is designed to estimate unmeasurable states. A new switched observer-based adaptive neural control technique for the problem studied is then provided by exploiting the classical average dwell time (ADT) method and the backstepping method and the Nussbaum gain technique. It effectively handles the obstacle about the coexistence of multiple Nussbaum-type function terms, and improves the classical ADT method, since the exponential decline property of Lyapunov functions for individual subsystems is no longer satisfied. It is shown that the technique proposed is able to guarantee semiglobal uniformly ultimately boundedness of all the signals in the closed-loop system under a class of switching signals with ADT, and the tracking errors converge to a small neighborhood of the origin. The effectiveness of the approach proposed is illustrated by its application to a two inverted pendulum system.

  17. Enhancement of Spike-Timing-Dependent Plasticity in Spiking Neural Systems with Noise.

    Science.gov (United States)

    Nobukawa, Sou; Nishimura, Haruhiko

    2016-08-01

    Synaptic plasticity is widely recognized to support adaptable information processing in the brain. Spike-timing-dependent plasticity, one subtype of plasticity, can lead to synchronous spike propagation with temporal spiking coding information. Recently, it was reported that in a noisy environment, like the actual brain, the spike-timing-dependent plasticity may be made efficient by the effect of stochastic resonance. In the stochastic resonance, the presence of noise helps a nonlinear system in amplifying a weak (under barrier) signal. However, previous studies have ignored the full variety of spiking patterns and many relevant factors in neural dynamics. Thus, in order to prove the physiological possibility for the enhancement of spike-timing-dependent plasticity by stochastic resonance, it is necessary to demonstrate that this stochastic resonance arises in realistic cortical neural systems. In this study, we evaluate this stochastic resonance phenomenon in the realistic cortical neural system described by the Izhikevich neuron model and compare the characteristics of typical spiking patterns of regular spiking, intrinsically bursting and chattering experimentally observed in the cortex.

  18. Abnormal neural activation patterns underlying working memory impairment in chronic phencyclidine-treated mice.

    Directory of Open Access Journals (Sweden)

    Yosefu Arime

    Full Text Available Working memory impairment is a hallmark feature of schizophrenia and is thought be caused by dysfunctions in the prefrontal cortex (PFC and associated brain regions. However, the neural circuit anomalies underlying this impairment are poorly understood. The aim of this study is to assess working memory performance in the chronic phencyclidine (PCP mouse model of schizophrenia, and to identify the neural substrates of working memory. To address this issue, we conducted the following experiments for mice after withdrawal from chronic administration (14 days of either saline or PCP (10 mg/kg: (1 a discrete paired-trial variable-delay task in T-maze to assess working memory, and (2 brain-wide c-Fos mapping to identify activated brain regions relevant to this task performance either 90 min or 0 min after the completion of the task, with each time point examined under working memory effort and basal conditions. Correct responses in the test phase of the task were significantly reduced across delays (5, 15, and 30 s in chronic PCP-treated mice compared with chronic saline-treated controls, suggesting delay-independent impairments in working memory in the PCP group. In layer 2-3 of the prelimbic cortex, the number of working memory effort-elicited c-Fos+ cells was significantly higher in the chronic PCP group than in the chronic saline group. The main effect of working memory effort relative to basal conditions was to induce significantly increased c-Fos+ cells in the other layers of prelimbic cortex and the anterior cingulate and infralimbic cortex regardless of the different chronic regimens. Conversely, this working memory effort had a negative effect (fewer c-Fos+ cells in the ventral hippocampus. These results shed light on some putative neural networks relevant to working memory impairments in mice chronically treated with PCP, and emphasize the importance of the layer 2-3 of the prelimbic cortex of the PFC.

  19. Neural Network Enhanced Structure Determination of Osteoporosis, Immune System, and Radiation Repair Proteins, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation will utilize self learning neural network technology to determine the structure of osteoporosis, immune system disease, and excess radiation...

  20. Hybrid case-neural network (CNN) diagnostic system

    International Nuclear Information System (INIS)

    Mohamed, A.H.

    2010-01-01

    recently, the mobile health care has a great attention for the researcher and people all over the world. Case based reasoning (CBR) systems have proved their performance as world wide web (WWW) medical diagnostic systems. They were preferred rather than different reasoning approaches due to their high performance and results' explanation. But, their operations require a complex knowledge acquisition and management processes. On the other hand, it is found that, artificial neural network (ANN) has a great acceptance as a classifier methodology using a little amount of knowledge. But, ANN lacks of an explanation capability .The present research introduces a new web-based hybrid diagnostic system that can use the ANN inside the CBR , cycle.It can provide higher performance for the web diagnostic systems. Besides, the proposed system can be used as a web diagnostic system. It can be applied for diagnosis different types of systems in several domains. It has been applied in diagnosis of the cancer diseases that has a great spreading in recent years as a case of study . However, the suggested system has proved its acceptance in the manner.

  1. Neural crest and placode interaction during the development of the cranial sensory system.

    Science.gov (United States)

    Steventon, Ben; Mayor, Roberto; Streit, Andrea

    2014-05-01

    In the vertebrate head, the peripheral components of the sensory nervous system are derived from two embryonic cell populations, the neural crest and cranial sensory placodes. Both arise in close proximity to each other at the border of the neural plate: neural crest precursors abut the future central nervous system, while placodes originate in a common preplacodal region slightly more lateral. During head morphogenesis, complex events organise these precursors into functional sensory structures, raising the question of how their development is coordinated. Here we review the evidence that neural crest and placode cells remain in close proximity throughout their development and interact repeatedly in a reciprocal manner. We also review recent controversies about the relative contribution of the neural crest and placodes to the otic and olfactory systems. We propose that a sequence of mutual interactions between the neural crest and placodes drives the coordinated morphogenesis that generates functional sensory systems within the head. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Neural networks as a possible architecture for the distributed control of space systems

    Science.gov (United States)

    Fiesler, E.; Choudry, A.

    1987-01-01

    Researchers attempted to identify the features essential for large, complex, multi-modular multi-functional systems possessing a high level of interconnectivity. These features were studied in the context of neural networks with the aim of arriving at a possible architecture of the distributed control system-specific features of the neural networks and their applicability in space systems.

  3. Stellar Image Interpretation System Using Artificial Neural Networks:

    Directory of Open Access Journals (Sweden)

    A. El-Bassuny Alawy

    2004-01-01

    Full Text Available A supervised Artificial Neural Network (ANN based system is being developed employing the Bi-polar function for identifying stellar images in CCD frames. It is based on feed-forward artificial neural networks with error back-propagation learning. It has been coded in C language. The learning process was performed on a 341 input pattern set, while a similar set was used for testing. The present approach has been applied on a CCD frame of the open star cluster M67. The results obtained have been discussed and compared with those derived in our previous work employing the Uni-polar function and by a package known in the astronomical community (DAOPHOT-II. Full agreement was found between the present approach, that of Elnagahy et al, and the standard astronomical data for the cluster. It has been shown that the developed technique resembles that of the Uni-Polar function, possessing a simple, much faster yet reliable approach. Moreover, neither prior knowledge on, nor initial data from, the frame to be analysed is required, as it is for DAOPHOT-II. 

  4. Application of neural networks to connectional expert system for identification of transients in nuclear power plants

    International Nuclear Information System (INIS)

    Cheon, Se Woo; Kim, Wan Joo; Chang, Soon Heung; Roh, Myung Sub

    1991-01-01

    The Back-propagation Neural Network (BPN) algorithm is applied to connectionist expert system for the identification of BWR transients. Several powerful features of neural network-based expert systems over traditional rule-based expert systems are described. The general mapping capability of the neural networks enables to identify transients easily. A number of case studies were performed with emphasis on the applicability of the neural networks to the diagnostic domain. It is revealed that the BPN algorithm can identify transients properly, even when incomplete or untrained symptoms are given. It is also shown that multiple transients are easily identified

  5. Identification of the non-linear systems using internal recurrent neural networks

    Directory of Open Access Journals (Sweden)

    Bogdan CODRES

    2006-12-01

    Full Text Available In the past years utilization of neural networks took a distinct ampleness because of the following properties: distributed representation of information, capacity of generalization in case of uncontained situation in training data set, tolerance to noise, resistance to partial destruction, parallel processing. Another major advantage of neural networks is that they allow us to obtain the model of the investigated system, systems that is not necessarily to be linear. In fact, the true value of neural networks is seen in the case of identification and control of nonlinear systems. In this paper there are presented some identification techniques using neural networks.

  6. BOOK REVIEW: Theory of Neural Information Processing Systems

    Science.gov (United States)

    Galla, Tobias

    2006-04-01

    It is difficult not to be amazed by the ability of the human brain to process, to structure and to memorize information. Even by the toughest standards the behaviour of this network of about 1011 neurons qualifies as complex, and both the scientific community and the public take great interest in the growing field of neuroscience. The scientific endeavour to learn more about the function of the brain as an information processing system is here a truly interdisciplinary one, with important contributions from biology, computer science, physics, engineering and mathematics as the authors quite rightly point out in the introduction of their book. The role of the theoretical disciplines here is to provide mathematical models of information processing systems and the tools to study them. These models and tools are at the centre of the material covered in the book by Coolen, Kühn and Sollich. The book is divided into five parts, providing basic introductory material on neural network models as well as the details of advanced techniques to study them. A mathematical appendix complements the main text. The range of topics is extremely broad, still the presentation is concise and the book well arranged. To stress the breadth of the book let me just mention a few keywords here: the material ranges from the basics of perceptrons and recurrent network architectures to more advanced aspects such as Bayesian learning and support vector machines; Shannon's theory of information and the definition of entropy are discussed, and a chapter on Amari's information geometry is not missing either. Finally the statistical mechanics chapters cover Gardner theory and the replica analysis of the Hopfield model, not without being preceded by a brief introduction of the basic concepts of equilibrium statistical physics. The book also contains a part on effective theories of the macroscopic dynamics of neural networks. Many dynamical aspects of neural networks are usually hard to find in the

  7. Neural mechanism of facilitation system during physical fatigue.

    Directory of Open Access Journals (Sweden)

    Masaaki Tanaka

    Full Text Available An enhanced facilitation system caused by motivational input plays an important role in supporting performance during physical fatigue. We tried to clarify the neural mechanisms of the facilitation system during physical fatigue using magnetoencephalography (MEG and a classical conditioning technique. Twelve right-handed volunteers participated in this study. Participants underwent MEG recording during the imagery of maximum grips of the right hand guided by metronome sounds for 10 min. Thereafter, fatigue-inducing maximum handgrip trials were performed for 10 min; the metronome sounds were started 5 min after the beginning of the handgrip trials. The metronome sounds were used as conditioned stimuli and maximum handgrip trials as unconditioned stimuli. The next day, they were randomly assigned to two groups in a single-blinded, two-crossover fashion to undergo two types of MEG recordings, that is, for the control and motivation sessions, during the imagery of maximum grips of the right hand guided by metronome sounds for 10 min. The alpha-band event-related desynchronizations (ERDs of the motivation session relative to the control session within the time windows of 500 to 700 and 800 to 900 ms after the onset of handgrip cue sounds were identified in the sensorimotor areas. In addition, the alpha-band ERD within the time window of 400 to 500 ms was identified in the right dorsolateral prefrontal cortex (Brodmann's area 46. The ERD level in the right dorsolateral prefrontal cortex was positively associated with that in the sensorimotor areas within the time window of 500 to 700 ms. These results suggest that the right dorsolateral prefrontal cortex is involved in the neural substrates of the facilitation system and activates the sensorimotor areas during physical fatigue.

  8. Optimal Workflow Scheduling in Critical Infrastructure Systems with Neural Networks

    Directory of Open Access Journals (Sweden)

    S. Vukmirović

    2012-04-01

    Full Text Available Critical infrastructure systems (CISs, such as power grids, transportation systems, communication networks and water systems are the backbone of a country’s national security and industrial prosperity. These CISs execute large numbers of workflows with very high resource requirements that can span through different systems and last for a long time. The proper functioning and synchronization of these workflows is essential since humanity’s well-being is connected to it. Because of this, the challenge of ensuring availability and reliability of these services in the face of a broad range of operating conditions is very complicated. This paper proposes an architecture which dynamically executes a scheduling algorithm using feedback about the current status of CIS nodes. Different artificial neural networks (ANNs were created in order to solve the scheduling problem. Their performances were compared and as the main result of this paper, an optimal ANN architecture for workflow scheduling in CISs is proposed. A case study is shown for a meter data management system with measurements from a power distribution management system in Serbia. Performance tests show that significant improvement of the overall execution time can be achieved by ANNs.

  9. Neural correlates and network connectivity underlying narrative production and comprehension: a combined fMRI and PET study.

    Science.gov (United States)

    AbdulSabur, Nuria Y; Xu, Yisheng; Liu, Siyuan; Chow, Ho Ming; Baxter, Miranda; Carson, Jessica; Braun, Allen R

    2014-08-01

    The neural correlates of narrative production and comprehension remain poorly understood. Here, using positron emission tomography (PET), functional magnetic resonance imaging (fMRI), contrast and functional network connectivity analyses we comprehensively characterize the neural mechanisms underlying these complex behaviors. Eighteen healthy subjects told and listened to fictional stories during scanning. In addition to traditional language areas (e.g., left inferior frontal and posterior middle temporal gyri), both narrative production and comprehension engaged regions associated with mentalizing and situation model construction (e.g., dorsomedial prefrontal cortex, precuneus and inferior parietal lobules) as well as neocortical premotor areas, such as the pre-supplementary motor area and left dorsal premotor cortex. Narrative comprehension alone showed marked bilaterality, activating right hemisphere homologs of perisylvian language areas. Narrative production remained predominantly left lateralized, uniquely activating executive and motor-related regions essential to language formulation and articulation. Connectivity analyses revealed strong associations between language areas and the superior and middle temporal gyri during both tasks. However, only during storytelling were these same language-related regions connected to cortical and subcortical motor regions. In contrast, during story comprehension alone, they were strongly linked to regions supporting mentalizing. Thus, when employed in a more complex, ecologically-valid context, language production and comprehension show both overlapping and idiosyncratic patterns of activation and functional connectivity. Importantly, in each case the language system is integrated with regions that support other cognitive and sensorimotor domains. Copyright © 2014. Published by Elsevier Ltd.

  10. Neural and Behavioral Correlates of Alcohol-Induced Aggression Under Provocation.

    Science.gov (United States)

    Gan, Gabriela; Sterzer, Philipp; Marxen, Michael; Zimmermann, Ulrich S; Smolka, Michael N

    2015-12-01

    Although alcohol consumption is linked to increased aggression, its neural correlates have not directly been studied in humans so far. Based on a comprehensive neurobiological model of alcohol-induced aggression, we hypothesized that alcohol-induced aggression would go along with increased amygdala and ventral striatum reactivity and impaired functioning of the prefrontal cortex (PFC) under alcohol. We measured neural and behavioral correlates of alcohol-induced aggression in a provoking vs non-provoking condition with a variant of the Taylor aggression paradigm (TAP) allowing to differentiate between reactive (provoked) and proactive (unprovoked) aggression. In a placebo-controlled cross-over design with moderate alcohol intoxication (~0.6 g/kg), 35 young healthy adults performed the TAP during functional magnetic resonance imaging (fMRI). Analyses revealed that provoking vs non-provoking conditions and alcohol vs placebo increased aggression and decreased brain responses in the anterior cingulate cortex/dorso-medial PFC (provokingalcoholalcohol specifically increased proactive (unprovoked) but not reactive (provoked) aggression (alcohol × provocation interaction). However, investigation of inter-individual differences revealed (1) that pronounced alcohol-induced proactive aggression was linked to higher levels of aggression under placebo, and (2) that pronounced alcohol-induced reactive aggression was related to increased amygdala and ventral striatum reactivity under alcohol, providing evidence for their role in human alcohol-induced reactive aggression. Our findings suggest that in healthy young adults a liability for alcohol-induced aggression in a non-provoking context might depend on overall high levels of aggression, but on alcohol-induced increased striatal and amygdala reactivity when triggered by provocation.

  11. A neural network underlying intentional emotional facial expression in neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Kelly A. Gola

    2017-01-01

    Full Text Available Intentional facial expression of emotion is critical to healthy social interactions. Patients with neurodegenerative disease, particularly those with right temporal or prefrontal atrophy, show dramatic socioemotional impairment. This was an exploratory study examining the neural and behavioral correlates of intentional facial expression of emotion in neurodegenerative disease patients and healthy controls. One hundred and thirty three participants (45 Alzheimer's disease, 16 behavioral variant frontotemporal dementia, 8 non-fluent primary progressive aphasia, 10 progressive supranuclear palsy, 11 right-temporal frontotemporal dementia, 9 semantic variant primary progressive aphasia patients and 34 healthy controls were video recorded while imitating static images of emotional faces and producing emotional expressions based on verbal command; the accuracy of their expression was rated by blinded raters. Participants also underwent face-to-face socioemotional testing and informants described participants' typical socioemotional behavior. Patients' performance on emotion expression tasks was correlated with gray matter volume using voxel-based morphometry (VBM across the entire sample. We found that intentional emotional imitation scores were related to fundamental socioemotional deficits; patients with known socioemotional deficits performed worse than controls on intentional emotion imitation; and intentional emotional expression predicted caregiver ratings of empathy and interpersonal warmth. Whole brain VBMs revealed a rightward cortical atrophy pattern homologous to the left lateralized speech production network was associated with intentional emotional imitation deficits. Results point to a possible neural mechanisms underlying complex socioemotional communication deficits in neurodegenerative disease patients.

  12. Genetic dyslexia risk variant is related to neural connectivity patterns underlying phonological awareness in children.

    Science.gov (United States)

    Skeide, Michael A; Kirsten, Holger; Kraft, Indra; Schaadt, Gesa; Müller, Bent; Neef, Nicole; Brauer, Jens; Wilcke, Arndt; Emmrich, Frank; Boltze, Johannes; Friederici, Angela D

    2015-09-01

    Phonological awareness is the best-validated predictor of reading and spelling skill and therefore highly relevant for developmental dyslexia. Prior imaging genetics studies link several dyslexia risk genes to either brain-functional or brain-structural factors of phonological deficits. However, coherent evidence for genetic associations with both functional and structural neural phenotypes underlying variation in phonological awareness has not yet been provided. Here we demonstrate that rs11100040, a reported modifier of SLC2A3, is related to the functional connectivity of left fronto-temporal phonological processing areas at resting state in a sample of 9- to 12-year-old children. Furthermore, we provide evidence that rs11100040 is related to the fractional anisotropy of the arcuate fasciculus, which forms the structural connection between these areas. This structural connectivity phenotype is associated with phonological awareness, which is in turn associated with the individual retrospective risk scores in an early dyslexia screening as well as to spelling. These results suggest a link between a dyslexia risk genotype and a functional as well as a structural neural phenotype, which is associated with a phonological awareness phenotype. The present study goes beyond previous work by integrating genetic, brain-functional and brain-structural aspects of phonological awareness within a single approach. These combined findings might be another step towards a multimodal biomarker for developmental dyslexia. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. A neural network underlying intentional emotional facial expression in neurodegenerative disease.

    Science.gov (United States)

    Gola, Kelly A; Shany-Ur, Tal; Pressman, Peter; Sulman, Isa; Galeana, Eduardo; Paulsen, Hillary; Nguyen, Lauren; Wu, Teresa; Adhimoolam, Babu; Poorzand, Pardis; Miller, Bruce L; Rankin, Katherine P

    2017-01-01

    Intentional facial expression of emotion is critical to healthy social interactions. Patients with neurodegenerative disease, particularly those with right temporal or prefrontal atrophy, show dramatic socioemotional impairment. This was an exploratory study examining the neural and behavioral correlates of intentional facial expression of emotion in neurodegenerative disease patients and healthy controls. One hundred and thirty three participants (45 Alzheimer's disease, 16 behavioral variant frontotemporal dementia, 8 non-fluent primary progressive aphasia, 10 progressive supranuclear palsy, 11 right-temporal frontotemporal dementia, 9 semantic variant primary progressive aphasia patients and 34 healthy controls) were video recorded while imitating static images of emotional faces and producing emotional expressions based on verbal command; the accuracy of their expression was rated by blinded raters. Participants also underwent face-to-face socioemotional testing and informants described participants' typical socioemotional behavior. Patients' performance on emotion expression tasks was correlated with gray matter volume using voxel-based morphometry (VBM) across the entire sample. We found that intentional emotional imitation scores were related to fundamental socioemotional deficits; patients with known socioemotional deficits performed worse than controls on intentional emotion imitation; and intentional emotional expression predicted caregiver ratings of empathy and interpersonal warmth. Whole brain VBMs revealed a rightward cortical atrophy pattern homologous to the left lateralized speech production network was associated with intentional emotional imitation deficits. Results point to a possible neural mechanisms underlying complex socioemotional communication deficits in neurodegenerative disease patients.

  14. Neural mechanisms underlying contextual dependency of subjective values: converging evidence from monkeys and humans.

    Science.gov (United States)

    Abitbol, Raphaëlle; Lebreton, Maël; Hollard, Guillaume; Richmond, Barry J; Bouret, Sébastien; Pessiglione, Mathias

    2015-02-04

    A major challenge for decision theory is to account for the instability of expressed preferences across time and context. Such variability could arise from specific properties of the brain system used to assign subjective values. Growing evidence has identified the ventromedial prefrontal cortex (VMPFC) as a key node of the human brain valuation system. Here, we first replicate this observation with an fMRI study in humans showing that subjective values of painting pictures, as expressed in explicit pleasantness ratings, are specifically encoded in the VMPFC. We then establish a bridge with monkey electrophysiology, by comparing single-unit activity evoked by visual cues between the VMPFC and the orbitofrontal cortex. At the neural population level, expected reward magnitude was only encoded in the VMPFC, which also reflected subjective cue values, as expressed in Pavlovian appetitive responses. In addition, we demonstrate in both species that the additive effect of prestimulus activity on evoked activity has a significant impact on subjective values. In monkeys, the factor dominating prestimulus VMPFC activity was trial number, which likely indexed variations in internal dispositions related to fatigue or satiety. In humans, prestimulus VMPFC activity was externally manipulated through changes in the musical context, which induced a systematic bias in subjective values. Thus, the apparent stochasticity of preferences might relate to the VMPFC automatically aggregating the values of contextual features, which would bias subsequent valuation because of temporal autocorrelation in neural activity. Copyright © 2015 the authors 0270-6474/15/352308-13$15.00/0.

  15. Tuning to the significant: neural and genetic processes underlying affective enhancement of visual perception and memory.

    Science.gov (United States)

    Markovic, Jelena; Anderson, Adam K; Todd, Rebecca M

    2014-02-01

    Emotionally arousing events reach awareness more easily and evoke greater visual cortex activation than more mundane events. Recent studies have shown that they are also perceived more vividly and that emotionally enhanced perceptual vividness predicts memory vividness. We propose that affect-biased attention (ABA) - selective attention to emotionally salient events - is an endogenous attentional system tuned by an individual's history of reward and punishment. We present the Biased Attention via Norepinephrine (BANE) model, which unifies genetic, neuromodulatory, neural and behavioural evidence to account for ABA. We review evidence supporting BANE's proposal that a key mechanism of ABA is locus coeruleus-norepinephrine (LC-NE) activity, which interacts with activity in hubs of affective salience networks to modulate visual cortex activation and heighten the subjective vividness of emotionally salient stimuli. We further review literature on biased competition and look at initial evidence for its potential as a neural mechanism behind ABA. We also review evidence supporting the role of the LC-NE system as a driving force of ABA. Finally, we review individual differences in ABA and memory including differences in sensitivity to stimulus category and valence. We focus on differences arising from a variant of the ADRA2b gene, which codes for the alpha2b adrenoreceptor as a way of investigating influences of NE availability on ABA in humans. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Neural systems language: a formal modeling language for the systematic description, unambiguous communication, and automated digital curation of neural connectivity.

    Science.gov (United States)

    Brown, Ramsay A; Swanson, Larry W

    2013-09-01

    Systematic description and the unambiguous communication of findings and models remain among the unresolved fundamental challenges in systems neuroscience. No common descriptive frameworks exist to describe systematically the connective architecture of the nervous system, even at the grossest level of observation. Furthermore, the accelerating volume of novel data generated on neural connectivity outpaces the rate at which this data is curated into neuroinformatics databases to synthesize digitally systems-level insights from disjointed reports and observations. To help address these challenges, we propose the Neural Systems Language (NSyL). NSyL is a modeling language to be used by investigators to encode and communicate systematically reports of neural connectivity from neuroanatomy and brain imaging. NSyL engenders systematic description and communication of connectivity irrespective of the animal taxon described, experimental or observational technique implemented, or nomenclature referenced. As a language, NSyL is internally consistent, concise, and comprehensible to both humans and computers. NSyL is a promising development for systematizing the representation of neural architecture, effectively managing the increasing volume of data on neural connectivity and streamlining systems neuroscience research. Here we present similar precedent systems, how NSyL extends existing frameworks, and the reasoning behind NSyL's development. We explore NSyL's potential for balancing robustness and consistency in representation by encoding previously reported assertions of connectivity from the literature as examples. Finally, we propose and discuss the implications of a framework for how NSyL will be digitally implemented in the future to streamline curation of experimental results and bridge the gaps among anatomists, imagers, and neuroinformatics databases. Copyright © 2013 Wiley Periodicals, Inc.

  17. A neural network architecture for implementation of expert systems for real time monitoring

    Science.gov (United States)

    Ramamoorthy, P. A.

    1991-01-01

    Since neural networks have the advantages of massive parallelism and simple architecture, they are good tools for implementing real time expert systems. In a rule based expert system, the antecedents of rules are in the conjunctive or disjunctive form. We constructed a multilayer feedforward type network in which neurons represent AND or OR operations of rules. Further, we developed a translator which can automatically map a given rule base into the network. Also, we proposed a new and powerful yet flexible architecture that combines the advantages of both fuzzy expert systems and neural networks. This architecture uses the fuzzy logic concepts to separate input data domains into several smaller and overlapped regions. Rule-based expert systems for time critical applications using neural networks, the automated implementation of rule-based expert systems with neural nets, and fuzzy expert systems vs. neural nets are covered.

  18. Modulation of neural circuits underlying temporal production by facial expressions of pain.

    Directory of Open Access Journals (Sweden)

    Daniela Ballotta

    Full Text Available According to the Scalar Expectancy Theory, humans are equipped with a biological internal clock, possibly modulated by attention and arousal. Both emotions and pain are arousing and can absorb attentional resources, thus causing distortions of temporal perception. The aims of the present single-event fMRI study were to investigate: a whether observation of facial expressions of pain interferes with time production; and b the neural network subserving this kind of temporal distortions. Thirty healthy volunteers took part in the study. Subjects were asked to perform a temporal production task and a concurrent gender discrimination task, while viewing faces of unknown people with either pain-related or neutral expressions. Behavioural data showed temporal underestimation (i.e., longer produced intervals during implicit pain expression processing; this was accompanied by increased activity of right middle temporal gyrus, a region known to be active during the perception of emotional and painful faces. Psycho-Physiological Interaction analyses showed that: 1 the activity of middle temporal gyrus was positively related to that of areas previously reported to play a role in timing: left primary motor cortex, middle cingulate cortex, supplementary motor area, right anterior insula, inferior frontal gyrus, bilateral cerebellum and basal ganglia; 2 the functional connectivity of supplementary motor area with several frontal regions, anterior cingulate cortex and right angular gyrus was correlated to the produced interval during painful expression processing. Our data support the hypothesis that observing emotional expressions distorts subjective time perception through the interaction of the neural network subserving processing of facial expressions with the brain network involved in timing. Within this frame, middle temporal gyrus appears to be the key region of the interplay between the two neural systems.

  19. Modulation of neural circuits underlying temporal production by facial expressions of pain

    Science.gov (United States)

    Lui, Fausta; Porro, Carlo Adolfo; Nichelli, Paolo Frigio; Benuzzi, Francesca

    2018-01-01

    According to the Scalar Expectancy Theory, humans are equipped with a biological internal clock, possibly modulated by attention and arousal. Both emotions and pain are arousing and can absorb attentional resources, thus causing distortions of temporal perception. The aims of the present single-event fMRI study were to investigate: a) whether observation of facial expressions of pain interferes with time production; and b) the neural network subserving this kind of temporal distortions. Thirty healthy volunteers took part in the study. Subjects were asked to perform a temporal production task and a concurrent gender discrimination task, while viewing faces of unknown people with either pain-related or neutral expressions. Behavioural data showed temporal underestimation (i.e., longer produced intervals) during implicit pain expression processing; this was accompanied by increased activity of right middle temporal gyrus, a region known to be active during the perception of emotional and painful faces. Psycho-Physiological Interaction analyses showed that: 1) the activity of middle temporal gyrus was positively related to that of areas previously reported to play a role in timing: left primary motor cortex, middle cingulate cortex, supplementary motor area, right anterior insula, inferior frontal gyrus, bilateral cerebellum and basal ganglia; 2) the functional connectivity of supplementary motor area with several frontal regions, anterior cingulate cortex and right angular gyrus was correlated to the produced interval during painful expression processing. Our data support the hypothesis that observing emotional expressions distorts subjective time perception through the interaction of the neural network subserving processing of facial expressions with the brain network involved in timing. Within this frame, middle temporal gyrus appears to be the key region of the interplay between the two neural systems. PMID:29447256

  20. Biological channel modeling and implantable UWB antenna design for neural recording systems.

    Science.gov (United States)

    Bahrami, Hadi; Mirbozorgi, S Abdollah; Rusch, Leslie A; Gosselin, Benoit

    2015-01-01

    Ultrawideband (UWB) short-range communication systems have proved to be valuable in medical technology, particularly for implanted devices, due to their low-power consumption, low cost, small size, and high data rates. Neural activity monitoring in the brain requires high data rate (800 kb/s per neural sensor), and we target a system supporting a large number of sensors, in particular, aggregate transmission above 430 Mb/s (∼512 sensors). Knowledge of channel behavior is required to determine the maximum allowable power to 1) respect ANSI guidelines for avoiding tissue damage, and 2) respect FCC guidelines on unlicensed transmissions. We utilize a realistic model of the biological channel to inform the design of antennas for the implanted transmitter and the external receiver under these requirements. Antennas placement is examined under two scenarios having contrasting power constraints. Performance of the system within the biological tissues is examined via simulation and experiment. Our miniaturized antennas, 12 mm ×12 mm, need worst-case receiver sensitivities of -38 and -30.5 dBm for the first and second scenarios, respectively. These sensitivities allow us to successfully detect signals transmitted through tissues in the 3.1-10.6-GHz UWB band.

  1. Diagonal recurrent neural network based adaptive control of nonlinear dynamical systems using lyapunov stability criterion.

    Science.gov (United States)

    Kumar, Rajesh; Srivastava, Smriti; Gupta, J R P

    2017-03-01

    In this paper adaptive control of nonlinear dynamical systems using diagonal recurrent neural network (DRNN) is proposed. The structure of DRNN is a modification of fully connected recurrent neural network (FCRNN). Presence of self-recurrent neurons in the hidden layer of DRNN gives it an ability to capture the dynamic behaviour of the nonlinear plant under consideration (to be controlled). To ensure stability, update rules are developed using lyapunov stability criterion. These rules are then used for adjusting the various parameters of DRNN. The responses of plants obtained with DRNN are compared with those obtained when multi-layer feed forward neural network (MLFFNN) is used as a controller. Also, in example 4, FCRNN is also investigated and compared with DRNN and MLFFNN. Robustness of the proposed control scheme is also tested against parameter variations and disturbance signals. Four simulation examples including one-link robotic manipulator and inverted pendulum are considered on which the proposed controller is applied. The results so obtained show the superiority of DRNN over MLFFNN as a controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  2. NNETS - NEURAL NETWORK ENVIRONMENT ON A TRANSPUTER SYSTEM

    Science.gov (United States)

    Villarreal, J.

    1994-01-01

    The primary purpose of NNETS (Neural Network Environment on a Transputer System) is to provide users a high degree of flexibility in creating and manipulating a wide variety of neural network topologies at processing speeds not found in conventional computing environments. To accomplish this purpose, NNETS supports back propagation and back propagation related algorithms. The back propagation algorithm used is an implementation of Rumelhart's Generalized Delta Rule. NNETS was developed on the INMOS Transputer. NNETS predefines a Back Propagation Network, a Jordan Network, and a Reinforcement Network to assist users in learning and defining their own networks. The program also allows users to configure other neural network paradigms from the NNETS basic architecture. The Jordan network is basically a feed forward network that has the outputs connected to a pseudo input layer. The state of the network is dependent on the inputs from the environment plus the state of the network. The Reinforcement network learns via a scalar feedback signal called reinforcement. The network propagates forward randomly. The environment looks at the outputs of the network to produce a reinforcement signal that is fed back to the network. NNETS was written for the INMOS C compiler D711B version 1.3 or later (MS-DOS version). A small portion of the software was written in the OCCAM language to perform the communications routing between processors. NNETS is configured to operate on a 4 X 10 array of Transputers in sequence with a Transputer based graphics processor controlled by a master IBM PC 286 (or better) Transputer. A RGB monitor is required which must be capable of 512 X 512 resolution. It must be able to receive red, green, and blue signals via BNC connectors. NNETS is meant for experienced Transputer users only. The program is distributed on 5.25 inch 1.2Mb MS-DOS format diskettes. NNETS was developed in 1991. Transputer and OCCAM are registered trademarks of Inmos Corporation. MS

  3. The manipulative skill: Cognitive devices and their neural correlates underlying Machiavellian's decision making.

    Science.gov (United States)

    Bereczkei, Tamas

    2015-10-01

    Until now, Machiavellianism has mainly been studied in personality and social psychological framework, and little attention has been paid to the underlying cognitive and neural equipment. In light of recent findings, Machiavellian social skills are not limited to emotion regulation and "cold-mindedness" as many authors have recently stated, but linked to specific cognitive abilities. Although Machiavellians appear to have a relatively poor mindreading ability and emotional intelligence, they can efficiently exploit others which is likely to come from their flexible problem solving processes in changing environmental circumstances. The author proposed that Machiavellians have specialized cognitive domains of decision making, such as monitoring others' behavior, task orientation, reward seeking, inhibition of cooperative feelings, and choosing victims. He related the relevant aspects of cognitive functions to their neurological substrates, and argued why they make Machiavellians so successful in interpersonal relationships. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Neural mechanisms underlying paradoxical performance for monetary incentives are driven by loss aversion.

    Science.gov (United States)

    Chib, Vikram S; De Martino, Benedetto; Shimojo, Shinsuke; O'Doherty, John P

    2012-05-10

    Employers often make payment contingent on performance in order to motivate workers. We used fMRI with a novel incentivized skill task to examine the neural processes underlying behavioral responses to performance-based pay. We found that individuals' performance increased with increasing incentives; however, very high incentive levels led to the paradoxical consequence of worse performance. Between initial incentive presentation and task execution, striatal activity rapidly switched between activation and deactivation in response to increasing incentives. Critically, decrements in performance and striatal deactivations were directly predicted by an independent measure of behavioral loss aversion. These results suggest that incentives associated with successful task performance are initially encoded as a potential gain; however, when actually performing a task, individuals encode the potential loss that would arise from failure. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. PREDICTION OF SITE RESPONSE SPECTRUM UNDER EARTHQUAKE VIBRATION USING AN OPTIMIZED DEVELOPED ARTIFICIAL NEURAL NETWORK MODEL

    Directory of Open Access Journals (Sweden)

    Reza Esmaeilabadi

    2016-06-01

    Full Text Available Site response spectrum is one of the key factors to determine the maximum acceleration and displacement, as well as structure behavior analysis during earthquake vibrations. The main objective of this paper is to develop an optimized model based on artificial neural network (ANN using five different training algorithms to predict nonlinear site response spectrum subjected to Silakhor earthquake vibrations is. The model output was tested for a specified area in west of Iran. The performance and quality of optimized model under all training algorithms have been examined by various statistical, analytical and graph analyses criteria as well as a comparison with numerical methods. The observed adaptabilities in results indicate a feasible and satisfactory engineering alternative method for predicting the analysis of nonlinear site response.

  6. Adaptive Neural Control for a Class of Outputs Time-Delay Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Ruliang Wang

    2012-01-01

    Full Text Available This paper considers an adaptive neural control for a class of outputs time-delay nonlinear systems with perturbed or no. Based on RBF neural networks, the radius basis function (RBF neural networks is employed to estimate the unknown continuous functions. The proposed control guarantees that all closed-loop signals remain bounded. The simulation results demonstrate the effectiveness of the proposed control scheme.

  7. Predictive Control of Hydronic Floor Heating Systems using Neural Networks and Genetic Algorithms

    DEFF Research Database (Denmark)

    Vinther, Kasper; Green, Torben; Østergaard, Søren

    2017-01-01

    This paper presents the use a neural network and a micro genetic algorithm to optimize future set-points in existing hydronic floor heating systems for improved energy efficiency. The neural network can be trained to predict the impact of changes in set-points on future room temperatures. Additio...... space is not guaranteed. Evaluation of the performance of multiple neural networks is performed, using different levels of information, and optimization results are presented on a detailed house simulation model....

  8. Planning ATES systems under uncertainty

    Science.gov (United States)

    Jaxa-Rozen, Marc; Kwakkel, Jan; Bloemendal, Martin

    2015-04-01

    Aquifer Thermal Energy Storage (ATES) can contribute to significant reductions in energy use within the built environment, by providing seasonal energy storage in aquifers for the heating and cooling of buildings. ATES systems have experienced a rapid uptake over the last two decades; however, despite successful experiments at the individual level, the overall performance of ATES systems remains below expectations - largely due to suboptimal practices for the planning and operation of systems in urban areas. The interaction between ATES systems and underground aquifers can be interpreted as a common-pool resource problem, in which thermal imbalances or interference could eventually degrade the storage potential of the subsurface. Current planning approaches for ATES systems thus typically follow the precautionary principle. For instance, the permitting process in the Netherlands is intended to minimize thermal interference between ATES systems. However, as shown in recent studies (Sommer et al., 2015; Bakr et al., 2013), a controlled amount of interference may benefit the collective performance of ATES systems. An overly restrictive approach to permitting is instead likely to create an artificial scarcity of available space, limiting the potential of the technology in urban areas. In response, master plans - which take into account the collective arrangement of multiple systems - have emerged as an increasingly popular alternative. However, permits and master plans both take a static, ex ante view of ATES governance, making it difficult to predict the effect of evolving ATES use or climactic conditions on overall performance. In particular, the adoption of new systems by building operators is likely to be driven by the available subsurface space and by the performance of existing systems; these outcomes are themselves a function of planning parameters. From this perspective, the interactions between planning authorities, ATES operators, and subsurface conditions

  9. Algebraic and adaptive learning in neural control systems

    Science.gov (United States)

    Ferrari, Silvia

    A systematic approach is developed for designing adaptive and reconfigurable nonlinear control systems that are applicable to plants modeled by ordinary differential equations. The nonlinear controller comprising a network of neural networks is taught using a two-phase learning procedure realized through novel techniques for initialization, on-line training, and adaptive critic design. A critical observation is that the gradients of the functions defined by the neural networks must equal corresponding linear gain matrices at chosen operating points. On-line training is based on a dual heuristic adaptive critic architecture that improves control for large, coupled motions by accounting for actual plant dynamics and nonlinear effects. An action network computes the optimal control law; a critic network predicts the derivative of the cost-to-go with respect to the state. Both networks are algebraically initialized based on prior knowledge of satisfactory pointwise linear controllers and continue to adapt on line during full-scale simulations of the plant. On-line training takes place sequentially over discrete periods of time and involves several numerical procedures. A backpropagating algorithm called Resilient Backpropagation is modified and successfully implemented to meet these objectives, without excessive computational expense. This adaptive controller is as conservative as the linear designs and as effective as a global nonlinear controller. The method is successfully implemented for the full-envelope control of a six-degree-of-freedom aircraft simulation. The results show that the on-line adaptation brings about improved performance with respect to the initialization phase during aircraft maneuvers that involve large-angle and coupled dynamics, and parameter variations.

  10. TCSC Nonlinear Adaptive Damping Controller Design Based on RBF Neural Network to Enhance Power System Stability

    DEFF Research Database (Denmark)

    Yao, Wei; Fang, Jiakun; Zhao, Ping

    2013-01-01

    the characteristics of the conventional PID, but adjust the parameters of PID controller online using identified Jacobian information from RBFNN. Hence, it has strong adaptability to the variation of the system operating condition. The effectiveness of the proposed controller is tested on a two-machine five-bus power......In this paper, a nonlinear adaptive damping controller based on radial basis function neural network (RBFNN), which can infinitely approximate to nonlinear system, is proposed for thyristor controlled series capacitor (TCSC). The proposed TCSC adaptive damping controller can not only have...... system and a four-machine two-area power system under different operating conditions in comparison with the lead-lag damping controller tuned by evolutionary algorithm (EA). Simulation results show that the proposed damping controller achieves good robust performance for damping the low frequency...

  11. NNSYSID and NNCTRL Tools for system identification and control with neural networks

    DEFF Research Database (Denmark)

    Nørgaard, Magnus; Ravn, Ole; Poulsen, Niels Kjølstad

    2001-01-01

    choose among several designs such as direct inverse control, internal model control, nonlinear feedforward, feedback linearisation, optimal control, gain scheduling based on instantaneous linearisation of neural network models and nonlinear model predictive control. This article gives an overview......Two toolsets for use with MATLAB have been developed: the neural network based system identification toolbox (NNSYSID) and the neural network based control system design toolkit (NNCTRL). The NNSYSID toolbox has been designed to assist identification of nonlinear dynamic systems. It contains...... a number of nonlinear model structures based on neural networks, effective training algorithms and tools for model validation and model structure selection. The NNCTRL toolkit is an add-on to NNSYSID and provides tools for design and simulation of control systems based on neural networks. The user can...

  12. NNSYSID and NNCTRL Tools for system identification and control with neural networks

    DEFF Research Database (Denmark)

    Nørgaard, Magnus; Ravn, Ole; Poulsen, Niels Kjølstad

    2001-01-01

    Two toolsets for use with MATLAB have been developed: the neural network based system identification toolbox (NNSYSID) and the neural network based control system design toolkit (NNCTRL). The NNSYSID toolbox has been designed to assist identification of nonlinear dynamic systems. It contains...... a number of nonlinear model structures based on neural networks, effective training algorithms and tools for model validation and model structure selection. The NNCTRL toolkit is an add-on to NNSYSID and provides tools for design and simulation of control systems based on neural networks. The user can...... choose among several designs such as direct inverse control, internal model control, nonlinear feedforward, feedback linearisation, optimal control, gain scheduling based on instantaneous linearisation of neural network models and nonlinear model predictive control. This article gives an overview...

  13. Mapping Common Aphasia Assessments to Underlying Cognitive Processes and Their Neural Substrates.

    Science.gov (United States)

    Lacey, Elizabeth H; Skipper-Kallal, Laura M; Xing, Shihui; Fama, Mackenzie E; Turkeltaub, Peter E

    2017-05-01

    Understanding the relationships between clinical tests, the processes they measure, and the brain networks underlying them, is critical in order for clinicians to move beyond aphasia syndrome classification toward specification of individual language process impairments. To understand the cognitive, language, and neuroanatomical factors underlying scores of commonly used aphasia tests. Twenty-five behavioral tests were administered to a group of 38 chronic left hemisphere stroke survivors and a high-resolution magnetic resonance image was obtained. Test scores were entered into a principal components analysis to extract the latent variables (factors) measured by the tests. Multivariate lesion-symptom mapping was used to localize lesions associated with the factor scores. The principal components analysis yielded 4 dissociable factors, which we labeled Word Finding/Fluency, Comprehension, Phonology/Working Memory Capacity, and Executive Function. While many tests loaded onto the factors in predictable ways, some relied heavily on factors not commonly associated with the tests. Lesion symptom mapping demonstrated discrete brain structures associated with each factor, including frontal, temporal, and parietal areas extending beyond the classical language network. Specific functions mapped onto brain anatomy largely in correspondence with modern neural models of language processing. An extensive clinical aphasia assessment identifies 4 independent language functions, relying on discrete parts of the left middle cerebral artery territory. A better understanding of the processes underlying cognitive tests and the link between lesion and behavior may lead to improved aphasia diagnosis, and may yield treatments better targeted to an individual's specific pattern of deficits and preserved abilities.

  14. Robust Adaptive Control for Nonlinear Uncertain Systems Using Type-2 Fuzzy Neural Network System

    Directory of Open Access Journals (Sweden)

    Ching-Hung Lee

    2011-01-01

    Full Text Available This paper proposes a novel intelligent control scheme using type-2 fuzzy neural network (type-2 FNN system. The control scheme is developed using a type-2 FNN controller and an adaptive compensator. The type-2 FNN combines the type-2 fuzzy logic system (FLS, neural network, and its learning algorithm using the optimal learning algorithm. The properties of type-1 FNN system parallel computation scheme and parameter convergence are easily extended to type-2 FNN systems. In addition, a robust adaptive control scheme which combines the adaptive type-2 FNN controller and compensated controller is proposed for nonlinear uncertain systems. Simulation results are presented to illustrate the effectiveness of our approach.

  15. Neural computations underlying arbitration between model-based and model-free learning

    Science.gov (United States)

    Lee, Sang Wan; Shimojo, Shinsuke; O’Doherty, John P.

    2014-01-01

    SUMMARY There is accumulating neural evidence to support the existence of two distinct systems for guiding action-selection in the brain, a deliberative “model-based” and a reflexive “model-free” system. However, little is known about how the brain determines which of these systems controls behavior at one moment in time. We provide evidence for an arbitration mechanism that allocates the degree of control over behavior by model-based and model-free systems as a function of the reliability of their respective predictions. We show that inferior lateral prefrontal and frontopolar cortex encode both reliability signals and the output of a comparison between those signals, implicating these regions in the arbitration process. Moreover, connectivity between these regions and model-free valuation areas is negatively modulated by the degree of model-based control in the arbitrator, suggesting that arbitration may work through modulation of the model-free valuation system when the arbitrator deems that the model-based system should drive behavior. PMID:24507199

  16. Epigenetic mechanisms underlying nervous system diseases.

    Science.gov (United States)

    Qureshi, Irfan A; Mehler, Mark F

    2018-01-01

    Epigenetic mechanisms act as control systems for modulating genomic structure and activity in response to evolving profiles of cell-extrinsic, cell-cell, and cell-intrinsic signals. These dynamic processes are responsible for mediating cell- and tissue-specific gene expression and function and gene-gene and gene-environmental interactions. The major epigenetic mechanisms include DNA methylation and hydroxymethylation; histone protein posttranslational modifications, nucleosome remodeling/repositioning, and higher-order chromatin reorganization; noncoding RNA regulation; and RNA editing. These mechanisms are intimately involved in executing fundamental genomic programs, including gene transcription, posttranscriptional RNA processing and transport, translation, X-chromosome inactivation, genomic imprinting, retrotransposon regulation, DNA replication, and DNA repair and the maintenance of genomic stability. For the nervous system, epigenetics offers a novel and robust framework for explaining how brain development and aging occur, neural cellular diversity is generated, synaptic and neural network connectivity and plasticity are mediated, and complex cognitive and behavioral phenotypes are inherited transgenerationally. Epigenetic factors and processes are, not surprisingly, implicated in nervous system disease pathophysiology through several emerging paradigms - mutations and genetic variation in genes encoding epigenetic factors; impairments in epigenetic factor expression, localization, and function; epigenetic mechanisms modulating disease-associated factors and pathways; and the presence of deregulated epigenetic profiles in central and peripheral tissues. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Mechanisms underlying metabolic and neural defects in zebrafish and human multiple acyl-CoA dehydrogenase deficiency (MADD.

    Directory of Open Access Journals (Sweden)

    Yuanquan Song

    2009-12-01

    Full Text Available In humans, mutations in electron transfer flavoprotein (ETF or electron transfer flavoprotein dehydrogenase (ETFDH lead to MADD/glutaric aciduria type II, an autosomal recessively inherited disorder characterized by a broad spectrum of devastating neurological, systemic and metabolic symptoms. We show that a zebrafish mutant in ETFDH, xavier, and fibroblast cells from MADD patients demonstrate similar mitochondrial and metabolic abnormalities, including reduced oxidative phosphorylation, increased aerobic glycolysis, and upregulation of the PPARG-ERK pathway. This metabolic dysfunction is associated with aberrant neural proliferation in xav, in addition to other neural phenotypes and paralysis. Strikingly, a PPARG antagonist attenuates aberrant neural proliferation and alleviates paralysis in xav, while PPARG agonists increase neural proliferation in wild type embryos. These results show that mitochondrial dysfunction, leading to an increase in aerobic glycolysis, affects neurogenesis through the PPARG-ERK pathway, a potential target for therapeutic intervention.

  18. Neural response during the activation of the attachment system in patients with borderline personality disorder: An fMRI study

    Directory of Open Access Journals (Sweden)

    Anna Buchheim

    2016-08-01

    Full Text Available Individuals with borderline personality disorder (BPD are characterized by emotional instability, impaired emotion regulation and unresolved attachment patterns associated with abusive childhood experiences. We investigated the neural response during the activation of the attachment system in BPD patients compared to healthy controls using functional magnetic resonance imaging. Eleven female patients with BPD without posttraumatic stress disorder and seventeen healthy female controls matched for age and education were telling stories in the scanner in response to the Adult Attachment Projective Picture System, an eight-picture set assessment of adult attachment. The picture set includes theoretically-derived attachment scenes, such as separation, death, threat and potential abuse. The picture presentation order is designed to gradually increase the activation of the attachment system. Each picture stimulus was presented for two minutes. Analyses examine group differences in attachment classifications and neural activation patterns over the course of the task. Unresolved attachment was associated with increasing amygdala activation over the course of the attachment task in patients as well as controls. Unresolved controls, but not patients, showed activation in the right dorsolateral prefrontal cortex and the rostral cingulate zone. We interpret this as a neural signature of BPD patients’ inability to exert top-down control under conditions of attachment distress. These findings point to possible neural mechanisms for underlying affective dysregulation in BPD in the context of attachment trauma and fear.

  19. ANOMALY NETWORK INTRUSION DETECTION SYSTEM BASED ON DISTRIBUTED TIME-DELAY NEURAL NETWORK (DTDNN

    Directory of Open Access Journals (Sweden)

    LAHEEB MOHAMMAD IBRAHIM

    2010-12-01

    Full Text Available In this research, a hierarchical off-line anomaly network intrusion detection system based on Distributed Time-Delay Artificial Neural Network is introduced. This research aims to solve a hierarchical multi class problem in which the type of attack (DoS, U2R, R2L and Probe attack detected by dynamic neural network. The results indicate that dynamic neural nets (Distributed Time-Delay Artificial Neural Network can achieve a high detection rate, where the overall accuracy classification rate average is equal to 97.24%.

  20. Hybrid energy system evaluation in water supply system energy production: neural network approach

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Fabio V.; Ramos, Helena M. [Civil Engineering Department, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon (Portugal); Reis, Luisa Fernanda R. [Universidade de Sao Paulo, EESC/USP, Departamento de Hidraulica e Saneamento., Avenida do Trabalhador Saocarlense, 400, Sao Carlos-SP (Brazil)

    2010-07-01

    Water supply systems are large consumers of energy and the use of hybrid systems for green energy production is this new proposal. This work presents a computational model based on neural networks to determine the best configuration of a hybrid system to generate energy in water supply systems. In this study the energy sources to make this hybrid system can be the national power grid, micro-hydro and wind turbines. The artificial neural network is composed of six layers, trained to use data generated by a model of hybrid configuration and an economic simulator - CES. The reason for the development of an advanced model of forecasting based on neural networks is to allow rapid simulation and proper interaction with hydraulic and power model simulator - HPS. The results show that this computational model is useful as advanced decision support system in the design of configurations of hybrid power systems applied to water supply systems, improving the solutions in the development of its global energy efficiency.

  1. An alternative respiratory sounds classification system utilizing artificial neural networks

    Directory of Open Access Journals (Sweden)

    Rami J Oweis

    2015-04-01

    Full Text Available Background: Computerized lung sound analysis involves recording lung sound via an electronic device, followed by computer analysis and classification based on specific signal characteristics as non-linearity and nonstationarity caused by air turbulence. An automatic analysis is necessary to avoid dependence on expert skills. Methods: This work revolves around exploiting autocorrelation in the feature extraction stage. All process stages were implemented in MATLAB. The classification process was performed comparatively using both artificial neural networks (ANNs and adaptive neuro-fuzzy inference systems (ANFIS toolboxes. The methods have been applied to 10 different respiratory sounds for classification. Results: The ANN was superior to the ANFIS system and returned superior performance parameters. Its accuracy, specificity, and sensitivity were 98.6%, 100%, and 97.8%, respectively. The obtained parameters showed superiority to many recent approaches. Conclusions: The promising proposed method is an efficient fast tool for the intended purpose as manifested in the performance parameters, specifically, accuracy, specificity, and sensitivity. Furthermore, it may be added that utilizing the autocorrelation function in the feature extraction in such applications results in enhanced performance and avoids undesired computation complexities compared to other techniques.

  2. An alternative respiratory sounds classification system utilizing artificial neural networks.

    Science.gov (United States)

    Oweis, Rami J; Abdulhay, Enas W; Khayal, Amer; Awad, Areen

    2015-01-01

    Computerized lung sound analysis involves recording lung sound via an electronic device, followed by computer analysis and classification based on specific signal characteristics as non-linearity and nonstationarity caused by air turbulence. An automatic analysis is necessary to avoid dependence on expert skills. This work revolves around exploiting autocorrelation in the feature extraction stage. All process stages were implemented in MATLAB. The classification process was performed comparatively using both artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFIS) toolboxes. The methods have been applied to 10 different respiratory sounds for classification. The ANN was superior to the ANFIS system and returned superior performance parameters. Its accuracy, specificity, and sensitivity were 98.6%, 100%, and 97.8%, respectively. The obtained parameters showed superiority to many recent approaches. The promising proposed method is an efficient fast tool for the intended purpose as manifested in the performance parameters, specifically, accuracy, specificity, and sensitivity. Furthermore, it may be added that utilizing the autocorrelation function in the feature extraction in such applications results in enhanced performance and avoids undesired computation complexities compared to other techniques.

  3. Neural networks underlying language and social cognition during self-other processing in Autism spectrum disorders.

    Science.gov (United States)

    Kana, Rajesh K; Sartin, Emma B; Stevens, Carl; Deshpande, Hrishikesh D; Klein, Christopher; Klinger, Mark R; Klinger, Laura Grofer

    2017-07-28

    The social communication impairments defining autism spectrum disorders (ASD) may be built upon core deficits in perspective-taking, language processing, and self-other representation. Self-referential processing entails the ability to incorporate self-awareness, self-judgment, and self-memory in information processing. Very few studies have examined the neural bases of integrating self-other representation and semantic processing in individuals with ASD. The main objective of this functional MRI study is to examine the role of language and social brain networks in self-other processing in young adults with ASD. Nineteen high-functioning male adults with ASD and 19 age-sex-and-IQ-matched typically developing (TD) control participants made "yes" or "no" judgments of whether an adjective, presented visually, described them (self) or their favorite teacher (other). Both ASD and TD participants showed significantly increased activity in the medial prefrontal cortex (MPFC) during self and other processing relative to letter search. Analyses of group differences revealed significantly reduced activity in left inferior frontal gyrus (LIFG), and left inferior parietal lobule (LIPL) in ASD participants, relative to TD controls. ASD participants also showed significantly weaker functional connectivity of the anterior cingulate cortex (ACC) with several brain areas while processing self-related words. The LIFG and IPL are important regions functionally at the intersection of language and social roles; reduced recruitment of these regions in ASD participants may suggest poor level of semantic and social processing. In addition, poor connectivity of the ACC may suggest the difficulty in meeting the linguistic and social demands of this task in ASD. Overall, this study provides new evidence of the altered recruitment of the neural networks underlying language and social cognition in ASD. Published by Elsevier Ltd.

  4. Computational Assessment of Neural Probe and Brain Tissue Interface under Transient Motion

    Directory of Open Access Journals (Sweden)

    Michael Polanco

    2016-06-01

    Full Text Available The functional longevity of a neural probe is dependent upon its ability to minimize injury risk during the insertion and recording period in vivo, which could be related to motion-related strain between the probe and surrounding tissue. A series of finite element analyses was conducted to study the extent of the strain induced within the brain in an area around a neural probe. This study focuses on the transient behavior of neural probe and brain tissue interface with a viscoelastic model. Different stages of the interface from initial insertion of neural probe to full bonding of the probe by astro-glial sheath formation are simulated utilizing analytical tools to investigate the effects of relative motion between the neural probe and the brain while friction coefficients and kinematic frequencies are varied. The analyses can provide an in-depth look at the quantitative benefits behind using soft materials for neural probes.

  5. PERFORMANCE COMPARISON FOR INTRUSION DETECTION SYSTEM USING NEURAL NETWORK WITH KDD DATASET

    Directory of Open Access Journals (Sweden)

    S. Devaraju

    2014-04-01

    Full Text Available Intrusion Detection Systems are challenging task for finding the user as normal user or attack user in any organizational information systems or IT Industry. The Intrusion Detection System is an effective method to deal with the kinds of problem in networks. Different classifiers are used to detect the different kinds of attacks in networks. In this paper, the performance of intrusion detection is compared with various neural network classifiers. In the proposed research the four types of classifiers used are Feed Forward Neural Network (FFNN, Generalized Regression Neural Network (GRNN, Probabilistic Neural Network (PNN and Radial Basis Neural Network (RBNN. The performance of the full featured KDD Cup 1999 dataset is compared with that of the reduced featured KDD Cup 1999 dataset. The MATLAB software is used to train and test the dataset and the efficiency and False Alarm Rate is measured. It is proved that the reduced dataset is performing better than the full featured dataset.

  6. Neural Control System in Obstacle Avoidance in Mobile Robots Using Ultrasonic Sensors

    Directory of Open Access Journals (Sweden)

    A. Medina-Santiago

    2014-02-01

    Full Text Available This paper presents the development and implementation of neural control systems in mobile robots in obstacle avoidance in real time using ultrasonic sensors with complex strategies of decision-making in development (Matlab and Processing. An Arduino embedded platform is used to implement the neural control for field results.

  7. A neural network method for solving a system of linear variational inequalities

    International Nuclear Information System (INIS)

    Lan Hengyou; Cui Yishun

    2009-01-01

    In this paper, we transmute the solution for a new system of linear variational inequalities to an equilibrium point of neural networks, and by using analytic technique, some sufficient conditions are presented. Further, the estimation of the exponential convergence rates of the neural networks is investigated. The new and useful results obtained in this paper generalize and improve the corresponding results of recent works.

  8. Review: the role of neural crest cells in the endocrine system.

    Science.gov (United States)

    Adams, Meghan Sara; Bronner-Fraser, Marianne

    2009-01-01

    The neural crest is a pluripotent population of cells that arises at the junction of the neural tube and the dorsal ectoderm. These highly migratory cells form diverse derivatives including neurons and glia of the sensory, sympathetic, and enteric nervous systems, melanocytes, and the bones, cartilage, and connective tissues of the face. The neural crest has long been associated with the endocrine system, although not always correctly. According to current understanding, neural crest cells give rise to the chromaffin cells of the adrenal medulla, chief cells of the extra-adrenal paraganglia, and thyroid C cells. The endocrine tumors that correspond to these cell types are pheochromocytomas, extra-adrenal paragangliomas, and medullary thyroid carcinomas. Although controversies concerning embryological origin appear to have mostly been resolved, questions persist concerning the pathobiology of each tumor type and its basis in neural crest embryology. Here we present a brief history of the work on neural crest development, both in general and in application to the endocrine system. In particular, we present findings related to the plasticity and pluripotency of neural crest cells as well as a discussion of several different neural crest tumors in the endocrine system.

  9. Modeling of the height control system using artificial neural networks

    Directory of Open Access Journals (Sweden)

    A. R Tahavvor

    2016-09-01

    Full Text Available Introduction Automation of agricultural and machinery construction has generally been enhanced by intelligent control systems due to utility and efficiency rising, ease of use, profitability and upgrading according to market demand. A broad variety of industrial merchandise are now supplied with computerized control systems of earth moving processes to be performed by construction and agriculture field vehicle such as grader, backhoe, tractor and scraper machines. A height control machine which is used in measuring base thickness is consisted of two mechanical and electronic parts. The mechanical part is consisted of conveyor belt, main body, electrical engine and invertors while the electronic part is consisted of ultrasonic, wave transmitter and receiver sensor, electronic board, control set, and microcontroller. The main job of these controlling devices consists of the topographic surveying, cutting and filling of elevated and spotted low area, and these actions fundamentally dependent onthe machine's ability in elevation and thickness measurement and control. In this study, machine was first tested and then some experiments were conducted for data collection. Study of system modeling in artificial neural networks (ANN was done for measuring, controlling the height for bases by input variable input vectors such as sampling time, probe speed, conveyer speed, sound wave speed and speed sensor are finally the maximum and minimum probe output vector on various conditions. The result reveals the capability of this procedure for experimental recognition of sensors' behavior and improvement of field machine control systems. Inspection, calibration and response, diagnosis of the elevation control system in combination with machine function can also be evaluated by some extra development of this system. Materials and Methods Designing and manufacture of the planned apparatus classified in three dissimilar, mechanical and electronic module, courses of

  10. FGF Signaling Transforms Non-neural Ectoderm into Neural Crest

    OpenAIRE

    Yardley, Nathan; García-Castro, Martín I.

    2012-01-01

    The neural crest arises at the border between the neural plate and the adjacent non-neural ectoderm. It has been suggested that both neural and non-neural ectoderm can contribute to the neural crest. Several studies have examined the molecular mechanisms that regulate neural crest induction in neuralized tissues or the neural plate border. Here, using the chick as a model system, we address the molecular mechanisms by which non-neural ectoderm generates neural crest. We report that in respons...

  11. Modulating conscious movement intention by noninvasive brain stimulation and the underlying neural mechanisms.

    Science.gov (United States)

    Douglas, Zachary H; Maniscalco, Brian; Hallett, Mark; Wassermann, Eric M; He, Biyu J

    2015-05-06

    Conscious intention is a fundamental aspect of the human experience. Despite long-standing interest in the basis and implications of intention, its underlying neurobiological mechanisms remain poorly understood. Using high-definition transcranial DC stimulation (tDCS), we observed that enhancing spontaneous neuronal excitability in both the angular gyrus and the primary motor cortex caused the reported time of conscious movement intention to be ∼60-70 ms earlier. Slow brain waves recorded ∼2-3 s before movement onset, as well as hundreds of milliseconds after movement onset, independently correlated with the modulation of conscious intention by brain stimulation. These brain activities together accounted for 81% of interindividual variability in the modulation of movement intention by brain stimulation. A computational model using coupled leaky integrator units with biophysically plausible assumptions about the effect of tDCS captured the effects of stimulation on both neural activity and behavior. These results reveal a temporally extended brain process underlying conscious movement intention that spans seconds around movement commencement. Copyright © 2015 Douglas et al.

  12. Evoked EMG-based torque prediction under muscle fatigue in implanted neural stimulation

    Science.gov (United States)

    Hayashibe, Mitsuhiro; Zhang, Qin; Guiraud, David; Fattal, Charles

    2011-10-01

    In patients with complete spinal cord injury, fatigue occurs rapidly and there is no proprioceptive feedback regarding the current muscle condition. Therefore, it is essential to monitor the muscle state and assess the expected muscle response to improve the current FES system toward adaptive force/torque control in the presence of muscle fatigue. Our team implanted neural and epimysial electrodes in a complete paraplegic patient in 1999. We carried out a case study, in the specific case of implanted stimulation, in order to verify the corresponding torque prediction based on stimulus evoked EMG (eEMG) when muscle fatigue is occurring during electrical stimulation. Indeed, in implanted stimulation, the relationship between stimulation parameters and output torques is more stable than external stimulation in which the electrode location strongly affects the quality of the recruitment. Thus, the assumption that changes in the stimulation-torque relationship would be mainly due to muscle fatigue can be made reasonably. The eEMG was proved to be correlated to the generated torque during the continuous stimulation while the frequency of eEMG also decreased during fatigue. The median frequency showed a similar variation trend to the mean absolute value of eEMG. Torque prediction during fatigue-inducing tests was performed based on eEMG in model cross-validation where the model was identified using recruitment test data. The torque prediction, apart from the potentiation period, showed acceptable tracking performances that would enable us to perform adaptive closed-loop control through implanted neural stimulation in the future.

  13. Honey characterization using computer vision system and artificial neural networks.

    Science.gov (United States)

    Shafiee, Sahameh; Minaei, Saeid; Moghaddam-Charkari, Nasrollah; Barzegar, Mohsen

    2014-09-15

    This paper reports the development of a computer vision system (CVS) for non-destructive characterization of honey based on colour and its correlated chemical attributes including ash content (AC), antioxidant activity (AA), and total phenolic content (TPC). Artificial neural network (ANN) models were applied to transform RGB values of images to CIE L*a*b* colourimetric measurements and to predict AC, TPC and AA from colour features of images. The developed ANN models were able to convert RGB values to CIE L*a*b* colourimetric parameters with low generalization error of 1.01±0.99. In addition, the developed models for prediction of AC, TPC and AA showed high performance based on colour parameters of honey images, as the R(2) values for prediction were 0.99, 0.98, and 0.87, for AC, AA and TPC, respectively. The experimental results show the effectiveness and possibility of applying CVS for non-destructive honey characterization by the industry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Artificial Neural Network-Based System for PET Volume Segmentation

    Directory of Open Access Journals (Sweden)

    Mhd Saeed Sharif

    2010-01-01

    Full Text Available Tumour detection, classification, and quantification in positron emission tomography (PET imaging at early stage of disease are important issues for clinical diagnosis, assessment of response to treatment, and radiotherapy planning. Many techniques have been proposed for segmenting medical imaging data; however, some of the approaches have poor performance, large inaccuracy, and require substantial computation time for analysing large medical volumes. Artificial intelligence (AI approaches can provide improved accuracy and save decent amount of time. Artificial neural networks (ANNs, as one of the best AI techniques, have the capability to classify and quantify precisely lesions and model the clinical evaluation for a specific problem. This paper presents a novel application of ANNs in the wavelet domain for PET volume segmentation. ANN performance evaluation using different training algorithms in both spatial and wavelet domains with a different number of neurons in the hidden layer is also presented. The best number of neurons in the hidden layer is determined according to the experimental results, which is also stated Levenberg-Marquardt backpropagation training algorithm as the best training approach for the proposed application. The proposed intelligent system results are compared with those obtained using conventional techniques including thresholding and clustering based approaches. Experimental and Monte Carlo simulated PET phantom data sets and clinical PET volumes of nonsmall cell lung cancer patients were utilised to validate the proposed algorithm which has demonstrated promising results.

  15. Artificial Neural Network-Based System for PET Volume Segmentation.

    Science.gov (United States)

    Sharif, Mhd Saeed; Abbod, Maysam; Amira, Abbes; Zaidi, Habib

    2010-01-01

    Tumour detection, classification, and quantification in positron emission tomography (PET) imaging at early stage of disease are important issues for clinical diagnosis, assessment of response to treatment, and radiotherapy planning. Many techniques have been proposed for segmenting medical imaging data; however, some of the approaches have poor performance, large inaccuracy, and require substantial computation time for analysing large medical volumes. Artificial intelligence (AI) approaches can provide improved accuracy and save decent amount of time. Artificial neural networks (ANNs), as one of the best AI techniques, have the capability to classify and quantify precisely lesions and model the clinical evaluation for a specific problem. This paper presents a novel application of ANNs in the wavelet domain for PET volume segmentation. ANN performance evaluation using different training algorithms in both spatial and wavelet domains with a different number of neurons in the hidden layer is also presented. The best number of neurons in the hidden layer is determined according to the experimental results, which is also stated Levenberg-Marquardt backpropagation training algorithm as the best training approach for the proposed application. The proposed intelligent system results are compared with those obtained using conventional techniques including thresholding and clustering based approaches. Experimental and Monte Carlo simulated PET phantom data sets and clinical PET volumes of nonsmall cell lung cancer patients were utilised to validate the proposed algorithm which has demonstrated promising results.

  16. Radial basis function neural network for power system load-flow

    International Nuclear Information System (INIS)

    Karami, A.; Mohammadi, M.S.

    2008-01-01

    This paper presents a method for solving the load-flow problem of the electric power systems using radial basis function (RBF) neural network with a fast hybrid training method. The main idea is that some operating conditions (values) are needed to solve the set of non-linear algebraic equations of load-flow by employing an iterative numerical technique. Therefore, we may view the outputs of a load-flow program as functions of the operating conditions. Indeed, we are faced with a function approximation problem and this can be done by an RBF neural network. The proposed approach has been successfully applied to the 10-machine and 39-bus New England test system. In addition, this method has been compared with that of a multi-layer perceptron (MLP) neural network model. The simulation results show that the RBF neural network is a simpler method to implement and requires less training time to converge than the MLP neural network. (author)

  17. Compensating for Channel Fading in DS-CDMA Communication Systems Employing ICA Neural Network Detectors

    Directory of Open Access Journals (Sweden)

    David Overbye

    2005-06-01

    Full Text Available In this paper we examine the impact of channel fading on the bit error rate of a DS-CDMA communication system. The system employs detectors that incorporate neural networks effecting methods of independent component analysis (ICA, subspace estimation of channel noise, and Hopfield type neural networks. The Rayleigh fading channel model is used. When employed in a Rayleigh fading environment, the ICA neural network detectors that give superior performance in a flat fading channel did not retain this superior performance. We then present a new method of compensating for channel fading based on the incorporation of priors in the ICA neural network learning algorithms. When the ICA neural network detectors were compensated using the incorporation of priors, they give significantly better performance than the traditional detectors and the uncompensated ICA detectors. Keywords: CDMA, Multi-user Detection, Rayleigh Fading, Multipath Detection, Independent Component Analysis, Prior Probability Hebbian Learning, Natural Gradient

  18. Development of the disable software reporting system on the basis of the neural network

    Science.gov (United States)

    Gavrylenko, S.; Babenko, O.; Ignatova, E.

    2018-04-01

    The PE structure of malicious and secure software is analyzed, features are highlighted, binary sign vectors are obtained and used as inputs for training the neural network. A software model for detecting malware based on the ART-1 neural network was developed, optimal similarity coefficients were found, and testing was performed. The obtained research results showed the possibility of using the developed system of identifying malicious software in computer systems protection systems

  19. Integrating Artificial Immune, Neural and Endrocine Systems in Autonomous Sailing Robots

    Science.gov (United States)

    2010-09-24

    was to develop a combined neural-immune-endocrine system, but after staffing issues in the first year of the project, work was refocussed to focus on...system - Development of an adaptive hormone system capable of changing operation and control of the neural network depending on changing enviromental ...wide variety of differnt types of hormome, focussing on wider power management issues than was tackled with our previous work. For these experiments

  20. Research on architecture of intelligent design platform for artificial neural network expert system

    Science.gov (United States)

    Gu, Honghong

    2017-09-01

    Based on the review of the development and current situation of CAD technology, the necessity of combination of artificial neural network and expert system, and then present an intelligent design system based on artificial neural network. Moreover, it discussed the feasibility of realization of a design-oriented expert system development tools on the basis of above combination. In addition, knowledge representation strategy and method and the solving process are given in this paper.

  1. Neural Network Expert System in the Application of Tower Fault Diagnosis

    Science.gov (United States)

    Liu, Xiaoyang; Xia, Zhongwu; Tao, Zhiyong; Zhao, Zhenlian

    For the corresponding fuzzy relationship between the fault symptoms and the fault causes in the process of tower crane operation, this paper puts forward a kind of rapid new method of fast detection and diagnosis for common fault based on neural network expert system. This paper makes full use of expert system and neural network advantages, and briefly introduces the structure, function, algorithm and realization of the adopted system. Results show that the new algorithm is feasible and can achieve rapid faults diagnosis.

  2. Artificial neural network for prediction of the area under the disease progress curve of tomato late blight

    Directory of Open Access Journals (Sweden)

    Daniel Pedrosa Alves

    Full Text Available ABSTRACT: Artificial neural networks (ANN are computational models inspired by the neural systems of living beings capable of learning from examples and using them to solve problems such as non-linear prediction, and pattern recognition, in addition to several other applications. In this study, ANN were used to predict the value of the area under the disease progress curve (AUDPC for the tomato late blight pathosystem. The AUDPC is widely used by epidemiologic studies of polycyclic diseases, especially those regarding quantitative resistance of genotypes. However, a series of six evaluations over time is necessary to obtain the final area value for this pathosystem. This study aimed to investigate the utilization of ANN to construct an AUDPC in the tomato late blight pathosystem, using a reduced number of severity evaluations. For this, four independent experiments were performed giving a total of 1836 plants infected with Phytophthora infestans pathogen. They were assessed every three days, comprised six opportunities and AUDPC calculations were performed by the conventional method. After the ANN were created it was possible to predict the AUDPC with correlations of 0.97 and 0.84 when compared to conventional methods, using 50 % and 67 % of the genotype evaluations, respectively. When using the ANN created in an experiment to predict the AUDPC of the other experiments the average correlation was 0.94, with two evaluations, 0.96, with three evaluations, between the predicted values of the ANN and they were observed in six evaluations. We present in this study a new paradigm for the use of AUDPC information in tomato experiments faced with P. infestans. This new proposed paradigm might be adapted to different pathosystems.

  3. Statistical mechanics of complex neural systems and high dimensional data

    International Nuclear Information System (INIS)

    Advani, Madhu; Lahiri, Subhaneil; Ganguli, Surya

    2013-01-01

    Recent experimental advances in neuroscience have opened new vistas into the immense complexity of neuronal networks. This proliferation of data challenges us on two parallel fronts. First, how can we form adequate theoretical frameworks for understanding how dynamical network processes cooperate across widely disparate spatiotemporal scales to solve important computational problems? Second, how can we extract meaningful models of neuronal systems from high dimensional datasets? To aid in these challenges, we give a pedagogical review of a collection of ideas and theoretical methods arising at the intersection of statistical physics, computer science and neurobiology. We introduce the interrelated replica and cavity methods, which originated in statistical physics as powerful ways to quantitatively analyze large highly heterogeneous systems of many interacting degrees of freedom. We also introduce the closely related notion of message passing in graphical models, which originated in computer science as a distributed algorithm capable of solving large inference and optimization problems involving many coupled variables. We then show how both the statistical physics and computer science perspectives can be applied in a wide diversity of contexts to problems arising in theoretical neuroscience and data analysis. Along the way we discuss spin glasses, learning theory, illusions of structure in noise, random matrices, dimensionality reduction and compressed sensing, all within the unified formalism of the replica method. Moreover, we review recent conceptual connections between message passing in graphical models, and neural computation and learning. Overall, these ideas illustrate how statistical physics and computer science might provide a lens through which we can uncover emergent computational functions buried deep within the dynamical complexities of neuronal networks. (paper)

  4. A neural based intelligent flight control system for the NASA F-15 flight research aircraft

    Science.gov (United States)

    Urnes, James M.; Hoy, Stephen E.; Ladage, Robert N.; Stewart, James

    1993-01-01

    A flight control concept that can identify aircraft stability properties and continually optimize the aircraft flying qualities has been developed by McDonnell Aircraft Company under a contract with the NASA-Dryden Flight Research Facility. This flight concept, termed the Intelligent Flight Control System, utilizes Neural Network technology to identify the host aircraft stability and control properties during flight, and use this information to design on-line the control system feedback gains to provide continuous optimum flight response. This self-repairing capability can provide high performance flight maneuvering response throughout large flight envelopes, such as needed for the National Aerospace Plane. Moreover, achieving this response early in the vehicle's development schedule will save cost.

  5. Fault tolerance of artificial neural networks with applications in critical systems

    Science.gov (United States)

    Protzel, Peter W.; Palumbo, Daniel L.; Arras, Michael K.

    1992-01-01

    This paper investigates the fault tolerance characteristics of time continuous recurrent artificial neural networks (ANN) that can be used to solve optimization problems. The principle of operations and performance of these networks are first illustrated by using well-known model problems like the traveling salesman problem and the assignment problem. The ANNs are then subjected to 13 simultaneous 'stuck at 1' or 'stuck at 0' faults for network sizes of up to 900 'neurons'. The effects of these faults is demonstrated and the cause for the observed fault tolerance is discussed. An application is presented in which a network performs a critical task for a real-time distributed processing system by generating new task allocations during the reconfiguration of the system. The performance degradation of the ANN under the presence of faults is investigated by large-scale simulations, and the potential benefits of delegating a critical task to a fault tolerant network are discussed.

  6. Applying a Cerebellar Model Articulation Controller Neural Network to a Photovoltaic Power Generation System Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Kuei-Hsiang Chao

    2013-01-01

    Full Text Available This study employed a cerebellar model articulation controller (CMAC neural network to conduct fault diagnoses on photovoltaic power generation systems. We composed a module array using 9 series and 2 parallel connections of SHARP NT-R5E3E 175 W photovoltaic modules. In addition, we used data that were outputted under various fault conditions as the training samples for the CMAC and used this model to conduct the module array fault diagnosis after completing the training. The results of the training process and simulations indicate that the method proposed in this study requires fewer number of training times compared to other methods. In addition to significantly increasing the accuracy rate of the fault diagnosis, this model features a short training duration because the training process only tunes the weights of the exited memory addresses. Therefore, the fault diagnosis is rapid, and the detection tolerance of the diagnosis system is enhanced.

  7. An artificial neural network system to identify alleles in reference electropherograms.

    Science.gov (United States)

    Taylor, Duncan; Harrison, Ash; Powers, David

    2017-09-01

    Electropherograms are produced in great numbers in forensic DNA laboratories as part of everyday criminal casework. Before the results of these electropherograms can be used they must be scrutinised by analysts to determine what the identified data tells them about the underlying DNA sequences and what is purely an artefact of the DNA profiling process. This process of interpreting the electropherograms can be time consuming and is prone to subjective differences between analysts. Recently it was demonstrated that artificial neural networks could be used to classify information within an electropherogram as allelic (i.e. representative of a DNA fragment present in the DNA extract) or as one of several different categories of artefactual fluorescence that arise as a result of generating an electropherogram. We extend that work here to demonstrate a series of algorithms and artificial neural networks that can be used to identify peaks on an electropherogram and classify them. We demonstrate the functioning of the system on several profiles and compare the results to a leading commercial DNA profile reading system. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Neutron spectrometry and dosimetry by means of Bonner spheres system and artificial neural networks applying robust design of artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Martinez B, M.R.; Ortiz R, J.M.; Vega C, H.R. [UAZ, Av. Ramon Lopez Velarde No. 801, 98000 Zacatecas (Mexico)

    2006-07-01

    An Artificial Neural Network has been designed, trained and tested to unfold neutron spectra and simultaneously to calculate equivalent doses. A set of 187 neutron spectra compiled by the International Atomic Energy Agency and 13 equivalent doses were used in the artificial neural network designed, trained and tested. In order to design the neural network was used the robust design of artificial neural networks methodology, which assures that the quality of the neural networks takes into account from the design stage. Unless previous works, here, for first time a group of neural networks were designed and trained to unfold 187 neutron spectra and at the same time to calculate 13 equivalent doses, starting from the count rates coming from the Bonner spheres system by using a systematic and experimental strategy. (Author)

  9. Neutron spectrometry and dosimetry by means of Bonner spheres system and artificial neural networks applying robust design of artificial neural networks

    International Nuclear Information System (INIS)

    Martinez B, M.R.; Ortiz R, J.M.; Vega C, H.R.

    2006-01-01

    An Artificial Neural Network has been designed, trained and tested to unfold neutron spectra and simultaneously to calculate equivalent doses. A set of 187 neutron spectra compiled by the International Atomic Energy Agency and 13 equivalent doses were used in the artificial neural network designed, trained and tested. In order to design the neural network was used the robust design of artificial neural networks methodology, which assures that the quality of the neural networks takes into account from the design stage. Unless previous works, here, for first time a group of neural networks were designed and trained to unfold 187 neutron spectra and at the same time to calculate 13 equivalent doses, starting from the count rates coming from the Bonner spheres system by using a systematic and experimental strategy. (Author)

  10. The insula: a critical neural substrate for craving and drug seeking under conflict and risk

    Science.gov (United States)

    Naqvi, Nasir H.; Gaznick, Natassia; Tranel, Daniel; Bechara, Antoine

    2014-01-01

    Drug addiction is characterized by the inability to control drug use when it results in negative consequences or conflicts with more adaptive goals. Our previous work showed that damage to the insula disrupted addiction to cigarette smoking—the first time that the insula was shown to be a critical neural substrate for addiction. Here, we review those findings, as well as more recent studies that corroborate and extend them, demonstrating the role of the insula in (1) incentive motivational processes that drive addictive behavior, (2) control processes that moderate or inhibit addictive behavior, and (3) interoceptive processes that represent bodily states associated with drug use. We then describe a theoretical framework that attempts to integrate these seemingly disparate findings. In this framework, the insula functions in the recall of interoceptive drug effects during craving and drug seeking under specific conditions where drug taking is perceived as risky and/or where there is conflict between drug taking and more adaptive goals. We describe this framework in an evolutionary context and discuss its implications for understanding the mechanisms of behavior change in addiction treatments. PMID:24690001

  11. Neural and computational processes underlying dynamic changes in self-esteem

    Science.gov (United States)

    Rutledge, Robb B; Moutoussis, Michael; Dolan, Raymond J

    2017-01-01

    Self-esteem is shaped by the appraisals we receive from others. Here, we characterize neural and computational mechanisms underlying this form of social influence. We introduce a computational model that captures fluctuations in self-esteem engendered by prediction errors that quantify the difference between expected and received social feedback. Using functional MRI, we show these social prediction errors correlate with activity in ventral striatum/subgenual anterior cingulate cortex, while updates in self-esteem resulting from these errors co-varied with activity in ventromedial prefrontal cortex (vmPFC). We linked computational parameters to psychiatric symptoms using canonical correlation analysis to identify an ‘interpersonal vulnerability’ dimension. Vulnerability modulated the expression of prediction error responses in anterior insula and insula-vmPFC connectivity during self-esteem updates. Our findings indicate that updating of self-evaluative beliefs relies on learning mechanisms akin to those used in learning about others. Enhanced insula-vmPFC connectivity during updating of those beliefs may represent a marker for psychiatric vulnerability. PMID:29061228

  12. Neural correlates underlying naloxone-induced amelioration of sexual behavior deterioration due to an alarm pheromone

    Directory of Open Access Journals (Sweden)

    Tatsuya eKobayashi

    2015-02-01

    Full Text Available Sexual behavior is suppressed by various types of stressors. We previously demonstrated that an alarm pheromone released by stressed male Wistar rats is a stressor to other rats, increases the number of mounts needed for ejaculation, and decreases the hit rate (described as the number of intromissions/sum of the mounts and intromissions. This deterioration in sexual behavior was ameliorated by pretreatment with the opioid receptor antagonist naloxone. However, the neural mechanism underlying this remains to be elucidated. Here, we examined Fos expression in 31 brain regions of pheromone-exposed rats and naloxone-pretreated pheromone-exposed rats 60 min after 10 intromissions. As previously reported, the alarm pheromone increased the number of mounts and decreased the hit rate. In addition, Fos expression was increases in the anterior medial division, anterior lateral division and posterior division of the bed nucleus of the stria terminalis, parvocellular part of the paraventricular nucleus of the hypothalamus, arcuate nucleus, dorsolateral and ventrolateral periaqueductal gray, and nucleus paragigantocellularis. Fos expression decreased in the magnocellular part of the paraventricular nucleus of the hypothalamus. Pretreatment with naloxone blocked the pheromone-induced changes in Fos expression in the magnocellular part of the paraventricular nucleus of the hypothalamus, ventrolateral periaqueductal gray, and nucleus paragigantocellularis. Based on these results, we hypothesize that the alarm pheromone deteriorated sexual behavior by activating the ventrolateral periaqueductal gray-nucleus paragigantocellularis cluster and suppressing the magnocellular part of the paraventricular nucleus of the hypothalamus via the opioidergic pathway.

  13. Feline Neural Progenitor Cells I: Long-Term Expansion under Defined Culture Conditions

    Directory of Open Access Journals (Sweden)

    Jing Yang

    2012-01-01

    Full Text Available Neural progenitor cells (NPCs of feline origin (cNPCs have demonstrated utility in transplantation experiments, yet are difficult to grow in culture beyond the 1 month time frame. Here we use an enriched, serum-free base medium (Ultraculture and report the successful long-term propagation of these cells. Primary cultures were derived from fetal brain tissue and passaged in DMEM/F12-based or Ultraculture-based proliferation media, both in the presence of EGF + bFGF. Cells in standard DMEM/F12-based medium ceased to proliferate by 1-month, whereas the cells in the Ultraculture-based medium continued to grow for at least 5 months (end of study with no evidence of senescence. The Ultraculture-based cultures expressed lower levels of progenitor and lineage-associated markers under proliferation conditions but retained multipotency as evidenced by the ability to differentiate into neurons and glia following growth factor removal in the presence of FBS. Importantly, later passage cNPCs did not develop chromosomal aberrations.

  14. Ear Detection under Uncontrolled Conditions with Multiple Scale Faster Region-Based Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2017-04-01

    Full Text Available Ear detection is an important step in ear recognition approaches. Most existing ear detection techniques are based on manually designing features or shallow learning algorithms. However, researchers found that the pose variation, occlusion, and imaging conditions provide a great challenge to the traditional ear detection methods under uncontrolled conditions. This paper proposes an efficient technique involving Multiple Scale Faster Region-based Convolutional Neural Networks (Faster R-CNN to detect ears from 2D profile images in natural images automatically. Firstly, three regions of different scales are detected to infer the information about the ear location context within the image. Then an ear region filtering approach is proposed to extract the correct ear region and eliminate the false positives automatically. In an experiment with a test set of 200 web images (with variable photographic conditions, 98% of ears were accurately detected. Experiments were likewise conducted on the Collection J2 of University of Notre Dame Biometrics Database (UND-J2 and University of Beira Interior Ear dataset (UBEAR, which contain large occlusion, scale, and pose variations. Detection rates of 100% and 98.22%, respectively, demonstrate the effectiveness of the proposed approach.

  15. The insula: a critical neural substrate for craving and drug seeking under conflict and risk.

    Science.gov (United States)

    Naqvi, Nasir H; Gaznick, Natassia; Tranel, Daniel; Bechara, Antoine

    2014-05-01

    Drug addiction is characterized by the inability to control drug use when it results in negative consequences or conflicts with more adaptive goals. Our previous work showed that damage to the insula disrupted addiction to cigarette smoking-the first time that the insula was shown to be a critical neural substrate for addiction. Here, we review those findings, as well as more recent studies that corroborate and extend them, demonstrating the role of the insula in (1) incentive motivational processes that drive addictive behavior, (2) control processes that moderate or inhibit addictive behavior, and (3) interoceptive processes that represent bodily states associated with drug use. We then describe a theoretical framework that attempts to integrate these seemingly disparate findings. In this framework, the insula functions in the recall of interoceptive drug effects during craving and drug seeking under specific conditions where drug taking is perceived as risky and/or where there is conflict between drug taking and more adaptive goals. We describe this framework in an evolutionary context and discuss its implications for understanding the mechanisms of behavior change in addiction treatments. © 2014 New York Academy of Sciences.

  16. Identification of Complex Dynamical Systems with Neural Networks (2/2)

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The identification and analysis of high dimensional nonlinear systems is obviously a challenging task. Neural networks have been proven to be universal approximators but this still leaves the identification task a hard one. To do it efficiently, we have to violate some of the rules of classical regression theory. Furthermore we should focus on the interpretation of the resulting model to overcome its black box character. First, we will discuss function approximation with 3 layer feedforward neural networks up to new developments in deep neural networks and deep learning. These nets are not only of interest in connection with image analysis but are a center point of the current artificial intelligence developments. Second, we will focus on the analysis of complex dynamical system in the form of state space models realized as recurrent neural networks. After the introduction of small open dynamical systems we will study dynamical systems on manifolds. Here manifold and dynamics have to be identified in parall...

  17. Identification of Complex Dynamical Systems with Neural Networks (1/2)

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The identification and analysis of high dimensional nonlinear systems is obviously a challenging task. Neural networks have been proven to be universal approximators but this still leaves the identification task a hard one. To do it efficiently, we have to violate some of the rules of classical regression theory. Furthermore we should focus on the interpretation of the resulting model to overcome its black box character. First, we will discuss function approximation with 3 layer feedforward neural networks up to new developments in deep neural networks and deep learning. These nets are not only of interest in connection with image analysis but are a center point of the current artificial intelligence developments. Second, we will focus on the analysis of complex dynamical system in the form of state space models realized as recurrent neural networks. After the introduction of small open dynamical systems we will study dynamical systems on manifolds. Here manifold and dynamics have to be identified in parall...

  18. Computational neural network regression model for Host based Intrusion Detection System

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Gautam

    2016-09-01

    Full Text Available The current scenario of information gathering and storing in secure system is a challenging task due to increasing cyber-attacks. There exists computational neural network techniques designed for intrusion detection system, which provide security to single machine and entire network's machine. In this paper, we have used two types of computational neural network models, namely, Generalized Regression Neural Network (GRNN model and Multilayer Perceptron Neural Network (MPNN model for Host based Intrusion Detection System using log files that are generated by a single personal computer. The simulation results show correctly classified percentage of normal and abnormal (intrusion class using confusion matrix. On the basis of results and discussion, we found that the Host based Intrusion Systems Model (HISM significantly improved the detection accuracy while retaining minimum false alarm rate.

  19. Simulation of Missile Autopilot with Two-Rate Hybrid Neural Network System

    Directory of Open Access Journals (Sweden)

    ASTROV, I.

    2007-04-01

    Full Text Available This paper proposes a two-rate hybrid neural network system, which consists of two artificial neural network subsystems. These neural network subsystems are used as the dynamic subsystems controllers.1 This is because such neuromorphic controllers are especially suitable to control complex systems. An illustrative example - two-rate neural network hybrid control of decomposed stochastic model of a rigid guided missile over different operating conditions - was carried out using the proposed two-rate state-space decomposition technique. This example demonstrates that this research technique results in simplified low-order autonomous control subsystems with various speeds of actuation, and shows the quality of the proposed technique. The obtained results show that the control tasks for the autonomous subsystems can be solved more qualitatively than for the original system. The simulation and animation results with use of software package Simulink demonstrate that this research technique would work for real-time stochastic systems.

  20. Neural Network Autopilot System for a Mathematical Model of the Boeing 747

    National Research Council Canada - National Science Library

    Cottrill, Gerald

    1998-01-01

    .... Five on-line learning neural network autopilot systems, trained with the Standard and Extended Back-Progagation algorithms, were applied to a six degree-of-freedom non-linear simulation of a Boeing 747-200...

  1. Adaptive Neural Control of Uncertain MIMO Nonlinear Systems With State and Input Constraints.

    Science.gov (United States)

    Chen, Ziting; Li, Zhijun; Chen, C L Philip

    2017-06-01

    An adaptive neural control strategy for multiple input multiple output nonlinear systems with various constraints is presented in this paper. To deal with the nonsymmetric input nonlinearity and the constrained states, the proposed adaptive neural control is combined with the backstepping method, radial basis function neural network, barrier Lyapunov function (BLF), and disturbance observer. By ensuring the boundedness of the BLF of the closed-loop system, it is demonstrated that the output tracking is achieved with all states remaining in the constraint sets and the general assumption on nonsingularity of unknown control coefficient matrices has been eliminated. The constructed adaptive neural control has been rigorously proved that it can guarantee the semiglobally uniformly ultimate boundedness of all signals in the closed-loop system. Finally, the simulation studies on a 2-DOF robotic manipulator system indicate that the designed adaptive control is effective.

  2. Mixed Stimulus-Induced Mode Selection in Neural Activity Driven by High and Low Frequency Current under Electromagnetic Radiation

    Directory of Open Access Journals (Sweden)

    Lulu Lu

    2017-01-01

    Full Text Available The electrical activities of neurons are dependent on the complex electrophysiological condition in neuronal system, the three-variable Hindmarsh-Rose (HR neuron model is improved to describe the dynamical behaviors of neuronal activities with electromagnetic induction being considered, and the mode transition of electrical activities in neuron is detected when external electromagnetic radiation is imposed on the neuron. In this paper, different types of electrical stimulus impended with a high-low frequency current are imposed on new HR neuron model, and mixed stimulus-induced mode selection in neural activity is discussed in detail. It is found that mode selection of electrical activities stimulated by high-low frequency current, which also changes the excitability of neuron, can be triggered owing to adding the Gaussian white noise. Meanwhile, the mode selection of the neuron electrical activity is much dependent on the amplitude B of the high frequency current under the same noise intensity, and the high frequency response is selected preferentially by applying appropriate parameters and noise intensity. Our results provide insights into the transmission of complex signals in nerve system, which is valuable in engineering prospective applications such as information encoding.

  3. Comparison of a spiking neural network and an MLP for robust identification of generator dynamics in a multimachine power system.

    Science.gov (United States)

    Johnson, Cameron; Venayagamoorthy, Ganesh Kumar; Mitra, Pinaki

    2009-01-01

    The application of a spiking neural network (SNN) and a multi-layer perceptron (MLP) for online identification of generator dynamics in a multimachine power system are compared in this paper. An integrate-and-fire model of an SNN which communicates information via the inter-spike interval is applied. The neural network identifiers are used to predict the speed and terminal voltage deviations one time-step ahead of generators in a multimachine power system. The SNN is developed in two steps: (i) neuron centers determined by offline k-means clustering and (ii) output weights obtained by online training. The sensitivity of the SNN to the neuron centers determined in the first step is evaluated on generators of different ratings and parameters. Performances of the SNN and MLP are compared to evaluate robustness on the identification of generator dynamics under small and large disturbances, and to illustrate that SNNs are capable of learning nonlinear dynamics of complex systems.

  4. Artificial Neural Network Application for Power Transfer Capability and Voltage Calculations in Multi-Area Power System

    Directory of Open Access Journals (Sweden)

    Palukuru NAGENDRA

    2010-12-01

    Full Text Available In this study, the use of artificial neural network (ANN based model, multi-layer perceptron (MLP network, to compute the transfer capabilities in a multi-area power system was explored. The input for the ANN is load status and the outputs are the transfer capability among the system areas, voltage magnitudes and voltage angles at concerned buses of the areas under consideration. The repeated power flow (RPF method is used in this paper for calculating the power transfer capability, voltage magnitudes and voltage angles necessary for the generation of input-output patterns for training the proposed MLP neural network. Preliminary investigations on a three area 30-bus system reveal that the proposed model is computationally faster than the conventional method.

  5. Neural systems of second language reading are shaped by native language.

    Science.gov (United States)

    Tan, Li Hai; Spinks, John A; Feng, Ching-Mei; Siok, Wai Ting; Perfetti, Charles A; Xiong, Jinhu; Fox, Peter T; Gao, Jia-Hong

    2003-03-01

    Reading in a second language (L2) is a complex task that entails an interaction between L2 and the native language (L1). To study the underlying mechanisms, we used functional magnetic resonance imaging (fMRI) to visualize Chinese-English bilinguals' brain activity in phonological processing of logographic Chinese and alphabetic English, two written languages with a sharp contrast in phonology and orthography. In Experiment 1, we found that phonological processing of Chinese characters recruits a neural system involving left middle frontal and posterior parietal gyri, cortical regions that are known to contribute to spatial information representation, spatial working memory, and coordination of cognitive resources as a central executive system. We assume that the peak activation of this system is relevant to the unique feature of Chinese that a logographic character has a square configuration that maps onto a monosyllabic unit of speech. Equally important, when our bilingual subjects performed a phonological task on English words, this neural system was most active, whereas brain areas mediating English monolinguals' fine-grained phonemic analysis, as demonstrated by Experiment 2, were only weakly activated. This suggests that our bilingual subjects were applying their L1 system to L2 reading and that the lack of letter-to-sound conversion rules in Chinese led Chinese readers to being less capable of processing English by recourse to an analytic reading system on which English monolinguals rely. Our brain imaging findings lend strongest support to the idea that language experience tunes the cortex. Copyright 2003 Wiley-Liss, Inc.

  6. SWANN: The Snow Water Artificial Neural Network Modelling System

    Science.gov (United States)

    Broxton, P. D.; van Leeuwen, W.; Biederman, J. A.

    2017-12-01

    Snowmelt from mountain forests is important for water supply and ecosystem health. Along Arizona's Mogollon Rim, snowmelt contributes to rivers and streams that provide a significant water supply for hydro-electric power generation, agriculture, and human consumption in central Arizona. In this project, we are building a snow monitoring system for the Salt River Project (SRP), which supplies water and power to millions of customers in the Phoenix metropolitan area. We are using process-based hydrological models and artificial neural networks (ANNs) to generate information about both snow water equivalent (SWE) and snow cover. The snow-cover data is generated with ANNs that are applied to Landsat and MODIS satellite reflectance data. The SWE data is generated using a combination of gridded SWE estimates generated by process-based snow models and ANNs that account for variations in topography, forest cover, and solar radiation. The models are trained and evaluated with snow data from SNOTEL stations as well as from aerial LiDAR and field data that we collected this past winter in northern Arizona, as well as with similar data from other sites in the Southwest US. These snow data are produced in near-real time, and we have built a prototype decision support tool to deliver them to SRP. This tool is designed to provide daily-to annual operational monitoring of spatial and temporal changes in SWE and snow cover conditions over the entire Salt River Watershed (covering 17,000 km2), and features advanced web mapping capabilities and watershed analytics displayed as graphical data.

  7. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning

    Science.gov (United States)

    Xu, Tao; Xiao, Na; Zhai, Xiaolong; Chan, Pak Kwan; Tin, Chung

    2018-02-01

    Objective. Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). Approach. The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. Main results. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. Significance. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.

  8. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning.

    Science.gov (United States)

    Xu, Tao; Xiao, Na; Zhai, Xiaolong; Kwan Chan, Pak; Tin, Chung

    2018-02-01

    Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.

  9. Identification and control of non-linear time-varying dynamical systems using artificial neural networks

    OpenAIRE

    Dror, Shahar

    1992-01-01

    Approved for public release; distribution is unlimited Identification and control of non-linear dynamical systems is a very complex task which requires new methods of approaching. This research addresses the problem of emulation and control via the use of distributed parallel processing, namely artificial neural networks. Four models for describing non-linear MIMO dynamical systems are presented. Based on these models a combined feedforward and recurrent neural networks are structured t...

  10. NMTPY: A Flexible Toolkit for Advanced Neural Machine Translation Systems

    Directory of Open Access Journals (Sweden)

    Caglayan Ozan

    2017-10-01

    Full Text Available In this paper, we present nmtpy, a flexible Python toolkit based on Theano for training Neural Machine Translation and other neural sequence-to-sequence architectures. nmtpy decouples the specification of a network from the training and inference utilities to simplify the addition of a new architecture and reduce the amount of boilerplate code to be written. nmtpy has been used for LIUM’s top-ranked submissions to WMT Multimodal Machine Translation and News Translation tasks in 2016 and 2017.

  11. Salmonella infections modelling in Mississippi using neural network and geographical information system (GIS).

    Science.gov (United States)

    Akil, Luma; Ahmad, H Anwar

    2016-03-03

    Mississippi (MS) is one of the southern states with high rates of foodborne infections. The objectives of this paper are to determine the extent of Salmonella and Escherichia coli infections in MS, and determine the Salmonella infections correlation with socioeconomic status using geographical information system (GIS) and neural network models. In this study, the relevant updated data of foodborne illness for southern states, from 2002 to 2011, were collected and used in the GIS and neural networks models. Data were collected from the Centers for Disease Control and Prevention (CDC), MS state Department of Health and the other states department of health. The correlation between low socioeconomic status and Salmonella infections were determined using models created by several software packages, including SAS, ArcGIS @RISK and NeuroShell. Results of this study showed a significant increase in Salmonella outbreaks in MS during the study period, with highest rates in 2011 (47.84 ± 24.41 cases/100,000; pGIS maps of Salmonella outbreaks in MS in 2010 and 2011 showed the districts with higher rates of Salmonella. Regression analysis and neural network models showed a moderate correlation between cases of Salmonella infections and low socioeconomic factors. Poverty was shown to have a negative correlation with Salmonella outbreaks (R(2)=0.152, p<0.05). Geographic location besides socioeconomic status may contribute to the high rates of Salmonella outbreaks in MS. Understanding the geographical and economic relationship with infectious diseases will help to determine effective methods to reduce outbreaks within low socioeconomic status communities. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  12. Automated implementation of rule-based expert systems with neural networks for time-critical applications

    Science.gov (United States)

    Ramamoorthy, P. A.; Huang, Song; Govind, Girish

    1991-01-01

    In fault diagnosis, control and real-time monitoring, both timing and accuracy are critical for operators or machines to reach proper solutions or appropriate actions. Expert systems are becoming more popular in the manufacturing community for dealing with such problems. In recent years, neural networks have revived and their applications have spread to many areas of science and engineering. A method of using neural networks to implement rule-based expert systems for time-critical applications is discussed here. This method can convert a given rule-based system into a neural network with fixed weights and thresholds. The rules governing the translation are presented along with some examples. We also present the results of automated machine implementation of such networks from the given rule-base. This significantly simplifies the translation process to neural network expert systems from conventional rule-based systems. Results comparing the performance of the proposed approach based on neural networks vs. the classical approach are given. The possibility of very large scale integration (VLSI) realization of such neural network expert systems is also discussed.

  13. Comparison of Fuzzy System with Neural Aggregation FSNA with Classical TSK Fuzzy System in Anti-Collision Problem of USV

    Directory of Open Access Journals (Sweden)

    Szymak Piotr

    2017-09-01

    Full Text Available The paper presents the research whose the main goal was to compare a new Fuzzy System with Neural Aggregation of fuzzy rules FSNA with a classical Takagi-Sugeno-Kanga TSK fuzzy system in an anti-collision problem of Unmanned Surface Vehicle USV. Both systems the FSNA and the TSK were learned by means of Cooperative Co-evolutionary Genetic Algorithm with Indirect Neural Encoding CCGA-INE.

  14. Fundamentals of computational intelligence neural networks, fuzzy systems, and evolutionary computation

    CERN Document Server

    Keller, James M; Fogel, David B

    2016-01-01

    This book covers the three fundamental topics that form the basis of computational intelligence: neural networks, fuzzy systems, and evolutionary computation. The text focuses on inspiration, design, theory, and practical aspects of implementing procedures to solve real-world problems. While other books in the three fields that comprise computational intelligence are written by specialists in one discipline, this book is co-written by current former Editor-in-Chief of IEEE Transactions on Neural Networks and Learning Systems, a former Editor-in-Chief of IEEE Transactions on Fuzzy Systems, and the founding Editor-in-Chief of IEEE Transactions on Evolutionary Computation. The coverage across the three topics is both uniform and consistent in style and notation. Discusses single-layer and multilayer neural networks, radial-basi function networks, and recurrent neural networks Covers fuzzy set theory, fuzzy relations, fuzzy logic interference, fuzzy clustering and classification, fuzzy measures and fuzz...

  15. Vibration control of uncertain multiple launch rocket system using radial basis function neural network

    Science.gov (United States)

    Li, Bo; Rui, Xiaoting

    2018-01-01

    Poor dispersion characteristics of rockets due to the vibration of Multiple Launch Rocket System (MLRS) have always restricted the MLRS development for several decades. Vibration control is a key technique to improve the dispersion characteristics of rockets. For a mechanical system such as MLRS, the major difficulty in designing an appropriate control strategy that can achieve the desired vibration control performance is to guarantee the robustness and stability of the control system under the occurrence of uncertainties and nonlinearities. To approach this problem, a computed torque controller integrated with a radial basis function neural network is proposed to achieve the high-precision vibration control for MLRS. In this paper, the vibration response of a computed torque controlled MLRS is described. The azimuth and elevation mechanisms of the MLRS are driven by permanent magnet synchronous motors and supposed to be rigid. First, the dynamic model of motor-mechanism coupling system is established using Lagrange method and field-oriented control theory. Then, in order to deal with the nonlinearities, a computed torque controller is designed to control the vibration of the MLRS when it is firing a salvo of rockets. Furthermore, to compensate for the lumped uncertainty due to parametric variations and un-modeled dynamics in the design of the computed torque controller, a radial basis function neural network estimator is developed to adapt the uncertainty based on Lyapunov stability theory. Finally, the simulated results demonstrate the effectiveness of the proposed control system and show that the proposed controller is robust with regard to the uncertainty.

  16. Prediction of a model enzymatic acidolysis system using neural networks

    Directory of Open Access Journals (Sweden)

    Güven, Aytaç

    2008-12-01

    Full Text Available A model for the acidolysis of trinolein and palmitic acid under the catalysis of immobilized sn-1,3 specific lipase was presented in this study. A neural networks (NN based model was developed for the prediction of the concentrations of the major reaction products of this reaction (1-palmitoyl-2,3-oleoyl-glycerol (POO 1,3-dipalmitoyl-2-oleoyl-glycerol (POP and triolein (OOO. Substrate ratio (SR, reaction temperature (T and reaction time (t were used as input parameters. The optimal architecture of the proposed NN model, which consists of one input layer with three inputs, one hidden layer with seven neurons and one output layer with three outputs, wass able to predict the reaction products concentration with a mean square error (MSE of less than 1.5 and R2 of 0.999. and explicit formulation of the proposed NN is presented. Considerable good performance is achieved in modeling the acidolysis reaction using neuronal networks.En este estudio se presenta un modelo para la acidólisis de la trilinoleina y el ácido palmítico mediante la catálisis con una lipasa específica sn-1,3 inmovilizada. Un modelo basado en redes neuronales (NN ha sido desarrollado para la predicción de la concentración de los principales productos de esta reacción (1-palmitoil-2,3-oleoil-glicerol (POO, 1,3-dipalmitoil-2-oleoil-glicerol (POP y trioleina (OOO. Se han usado como parámetros de entrada: la proporción del sustrato (SR, la temperatura de reacción (T y el tiempo de reacción (t. La arquitectura óptima del modelo de NN propuesto, que consiste en una capa de entrada con tres entradas, una capa oculta con siete neuronas y una capa de salida con tres salidas, fue capaz de predecir la concentración de los productos de reacción con un error cuadrático medio (MSE de menos de 1.5 y una R2 de 0.999 . Se presenta una formulación explícita del modelo NN propuesto. Se obtienen muy buenos resultados en la predicción de la reacciones de acidólisis mediante el uso de

  17. Neural network based system for script identification in Indian ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    With the recent emergence and widespread application of multimedia technologies, there is increasing demand to create a paperless ... implicit assumption that the language or script of the document to be processed is known beforehand. ... In order to take advantage of the learning and generalization abilities of the neural ...

  18. Computer simulation system of neural PID control on nuclear reactor

    International Nuclear Information System (INIS)

    Chen Yuzhong; Yang Kaijun; Shen Yongping

    2001-01-01

    Neural network proportional integral differential (PID) controller on nuclear reactor is designed, and the control process is simulated by computer. The simulation result show that neutral network PID controller can automatically adjust its parameter to ideal state, and good control result can be gotten in reactor control process

  19. Software implementation of artificial neural networks in automated intelligent systems

    Directory of Open Access Journals (Sweden)

    В.П. Харченко

    2009-02-01

    Full Text Available  Application of neural networks technologies effectively decides the task of synthesis of origin of accident risk and gives out the vector of managing signals of network on incomplete and distorted information about the phenomena, events and processes which influence on safety flights.

  20. Integrating resource defence theory with a neural nonapeptide pathway to explain territory-based mating systems.

    Science.gov (United States)

    Oldfield, Ronald G; Harris, Rayna M; Hofmann, Hans A

    2015-01-01

    The ultimate-level factors that drive the evolution of mating systems have been well studied, but an evolutionarily conserved neural mechanism involved in shaping behaviour and social organization across species has remained elusive. Here, we review studies that have investigated the role of neural arginine vasopressin (AVP), vasotocin (AVT), and their receptor V1a in mediating variation in territorial behaviour. First, we discuss how aggression and territoriality are a function of population density in an inverted-U relationship according to resource defence theory, and how territoriality influences some mating systems. Next, we find that neural AVP, AVT, and V1a expression, especially in one particular neural circuit involving the lateral septum of the forebrain, are associated with territorial behaviour in males of diverse species, most likely due to their role in enhancing social cognition. Then we review studies that examined multiple species and find that neural AVP, AVT, and V1a expression is associated with territory size in mammals and fishes. Because territoriality plays an important role in shaping mating systems in many species, we present the idea that neural AVP, AVT, and V1a expression that is selected to mediate territory size may also influence the evolution of different mating systems. Future research that interprets proximate-level neuro-molecular mechanisms in the context of ultimate-level ecological theory may provide deep insight into the brain-behaviour relationships that underlie the diversity of social organization and mating systems seen across the animal kingdom.

  1. Neural network underlying ictal pouting ("chapeau de gendarme") in frontal lobe epilepsy.

    Science.gov (United States)

    Souirti, Zouhayr; Landré, Elisabeth; Mellerio, Charles; Devaux, Bertrand; Chassoux, Francine

    2014-08-01

    In order to determine the anatomical neural network underlying ictal pouting (IP), with the mouth turned down like a "chapeau de gendarme", in frontal lobe epilepsy (FLE), we reviewed the video-EEG recordings of 36 patients with FLE who became seizure-free after surgery. We selected the cases presenting IP, defined as a symmetrical and sustained (>5s) lowering of labial commissures with contraction of chin, mimicking an expression of fear, disgust, or menace. Ictal pouting was identified in 11 patients (8 males; 16-48 years old). We analyzed the clinical semiology, imaging, and electrophysiological data associated with IP, including FDG-PET in 10 and SEEG in 9 cases. In 37 analyzed seizures (2-7/patient), IP was an early symptom, occurring during the first 10s in 9 cases. The main associated features consisted of fear, anguish, vegetative disturbances, behavioral disorders (sudden agitation, insults, and fighting), tonic posturing, and complex motor activities. The epileptogenic zone assessed by SEEG involved the mesial frontal areas, especially the anterior cingulate cortex (ACC) in 8 patients, whereas lateral frontal onset with an early spread to the ACC was seen in the other patient. Ictal pouting associated with emotional changes and hypermotor behavior had high localizing value for rostroventral "affective" ACC, whereas less intense facial expressions were related to the dorsal "cognitive" ACC. Fluorodeoxyglucose positron emission tomography demonstrated the involvement of both the ACC and lateral cortex including the anterior insula in all cases. We propose that IP is sustained by reciprocal mesial and lateral frontal interactions involved in emotional and cognitive processes, in which the ACC plays a pivotal role. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Neural mechanisms underlying migrating motor complex formation in mouse isolated colon

    Science.gov (United States)

    Brierley, Stuart M; Nichols, Kim; Grasby, Dallas J; Waterman, Sally A

    2001-01-01

    Little is known about the intrinsic enteric reflex pathways associated with migrating motor complex (MMC) formation. Acetylcholine (ACh) mediates the rapid component of the MMC, however a non-cholinergic component also exists. The present study investigated the possible role of endogenous tachykinins (TKs) in the formation of colonic MMCs and the relative roles of excitatory and inhibitory pathways.MMCs were recorded from the circular muscle at four sites (proximal, proximal-mid, mid-distal and distal) along the mouse colon using force transducers.The tachykinin (NK1 and NK2) receptor antagonists SR-140 333 (250 nM) and SR-48 968 (250 nM) reduced the amplitude of MMCs at all recording sites, preferentially abolishing the long duration contraction. Residual MMCs were abolished by the subsequent addition of atropine (1 μM).The neuronal nitric oxide synthase inhibitor, Nωnitro-L-arginine (L-NOARG, 100 μM), increased MMC amplitude in the distal region, whilst reducing the amplitude in the proximal region. In preparations where MMCs did not migrate to the distal colon, addition of L-NOARG resulted in the formation of MMCs. Subsequent addition of apamin (250 nM) or suramin (100 μM) further increased MMC amplitude in the distal region, whilst suramin increased MMC amplitude in the mid-distal region. Apamin but not suramin reduced MMC amplitude in the proximal region. Subsequent addition of SR-140 333 and SR-48 968 reduced MMC amplitude at all sites. Residual MMCs were abolished by atropine (1 μM).In conclusion, TKs, ACh, nitric oxide (NO) and ATP are involved in the neural mechanisms underlying the formation of MMCs in the mouse colon. Tachykinins mediate the long duration component of the MMC via NK1 and NK2 receptors. Inhibitory pathways may be involved in determining whether MMCs are formed. PMID:11159701

  3. Neural correlates of erotic stimulation under different levels of female sexual hormones.

    Directory of Open Access Journals (Sweden)

    Birgit Abler

    Full Text Available Previous studies have demonstrated variable influences of sexual hormonal states on female brain activation and the necessity to control for these in neuroimaging studies. However, systematic investigations of these influences, particularly those of hormonal contraceptives as compared to the physiological menstrual cycle are scarce. In the present study, we investigated the hormonal modulation of neural correlates of erotic processing in a group of females under hormonal contraceptives (C group; N = 12, and a different group of females (nC group; N = 12 not taking contraceptives during their mid-follicular and mid-luteal phases of the cycle. We used functional magnetic resonance imaging to measure hemodynamic responses as an estimate of brain activation during three different experimental conditions of visual erotic stimulation: dynamic videos, static erotic pictures, and expectation of erotic pictures. Plasma estrogen and progesterone levels were assessed in all subjects. No strong hormonally modulating effect was detected upon more direct and explicit stimulation (viewing of videos or pictures with significant activations in cortical and subcortical brain regions previously linked to erotic stimulation consistent across hormonal levels and stimulation type. Upon less direct and less explicit stimulation (expectation, activation patterns varied between the different hormonal conditions with various, predominantly frontal brain regions showing significant within- or between-group differences. Activation in the precentral gyrus during the follicular phase in the nC group was found elevated compared to the C group and positively correlated with estrogen levels. From the results we conclude that effects of hormonal influences on brain activation during erotic stimulation are weak if stimulation is direct and explicit but that female sexual hormones may modulate more subtle aspects of sexual arousal and behaviour as involved in sexual

  4. Neural activity changes underlying the working memory deficit in alpha-CaMKII heterozygous knockout mice

    Directory of Open Access Journals (Sweden)

    Naoki Matsuo

    2009-09-01

    Full Text Available The alpha-isoform of calcium/calmodulin-dependent protein kinase II (α-CaMKII is expressed abundantly in the forebrain and is considered to have an essential role in synaptic plasticity and cognitive function. Previously, we reported that mice heterozygous for a null mutation of α-CaMKII (α-CaMKII+/- have profoundly dysregulated behaviors including a severe working memory deficit, which is an endophenotype of schizophrenia and other psychiatric disorders. In addition, we found that almost all the neurons in the dentate gyrus (DG of the mutant mice failed to mature at molecular, morphological and electrophysiological levels. In the present study, to identify the brain substrates of the working memory deficit in the mutant mice, we examined the expression of the immediate early genes (IEGs, c-Fos and Arc, in the brain after a working memory version of the eight-arm radial maze test. c-Fos expression was abolished almost completely in the DG and was reduced significantly in neurons in the CA1 and CA3 areas of the hippocampus, central amygdala, and medial prefrontal cortex (mPFC. However, c-Fos expression was intact in the entorhinal and visual cortices. Immunohistochemical studies using arc promoter driven dVenus transgenic mice demonstrated that arc gene activation after the working memory task occurred in mature, but not immature neurons in the DG of wild-type mice. These results suggest crucial insights for the neural circuits underlying spatial mnemonic processing during a working memory task and suggest the involvement of α-CaMKII in the proper maturation and integration of DG neurons into these circuits.

  5. An adaptive fuzzy neural network for MIMO system model approximation in high-dimensional spaces.

    Science.gov (United States)

    Chak, C K; Feng, G; Ma, J

    1998-01-01

    An adaptive fuzzy system implemented within the framework of neural network is proposed. The integration of the fuzzy system into a neural network enables the new fuzzy system to have learning and adaptive capabilities. The proposed fuzzy neural network can locate its rules and optimize its membership functions by competitive learning, Kalman filter algorithm and extended Kalman filter algorithms. A key feature of the new architecture is that a high dimensional fuzzy system can be implemented with fewer number of rules than the Takagi-Sugeno fuzzy systems. A number of simulations are presented to demonstrate the performance of the proposed system including modeling nonlinear function, operator's control of chemical plant, stock prices and bioreactor (multioutput dynamical system).

  6. Mechanisms Underlying the Antiproliferative and Prodifferentiative Effects of Psoralen on Adult Neural Stem Cells via DNA Microarray

    Directory of Open Access Journals (Sweden)

    You Ning

    2013-01-01

    Full Text Available Adult neural stem cells (NSCs persist throughout life to replace mature cells that are lost during turnover, disease, or injury. The investigation of NSC creates novel treatments for central nervous system (CNS injuries and neurodegenerative disorders. The plasticity and reparative potential of NSC are regulated by different factors, which are critical for neurological regenerative medicine research. We investigated the effects of Psoralen, which is the mature fruit of Psoralea corylifolia L., on NSC behaviors and the underlying mechanisms. The self-renewal and proliferation of NSC were examined. We detected neuron- and/or astrocyte-specific markers using immunofluorescence and Western blotting, which could evaluate NSC differentiation. Psoralen treatment significantly inhibited neurosphere formation in a dose-dependent manner. Psoralen treatment increased the expression of the astrocyte-specific marker but decreased neuron-specific marker expression. These results suggested that Psoralen was a differentiation inducer in astrocyte. Differential gene expression following Psoralen treatment was screened using DNA microarray and confirmed by quantitative real-time PCR. Our microarray study demonstrated that Psoralen could effectively regulate the specific gene expression profile of NSC. The genes involved in the classification of cellular differentiation, proliferation, and metabolism, the transcription factors belonging to Ets family, and the hedgehog pathway may be closely related to the regulation.

  7. Noise-tolerant inverse analysis models for nondestructive evaluation of transportation infrastructure systems using neural networks

    Science.gov (United States)

    Ceylan, Halil; Gopalakrishnan, Kasthurirangan; Birkan Bayrak, Mustafa; Guclu, Alper

    2013-09-01

    The need to rapidly and cost-effectively evaluate the present condition of pavement infrastructure is a critical issue concerning the deterioration of ageing transportation infrastructure all around the world. Nondestructive testing (NDT) and evaluation methods are well-suited for characterising materials and determining structural integrity of pavement systems. The falling weight deflectometer (FWD) is a NDT equipment used to assess the structural condition of highway and airfield pavement systems and to determine the moduli of pavement layers. This involves static or dynamic inverse analysis (referred to as backcalculation) of FWD deflection profiles in the pavement surface under a simulated truck load. The main objective of this study was to employ biologically inspired computational systems to develop robust pavement layer moduli backcalculation algorithms that can tolerate noise or inaccuracies in the FWD deflection data collected in the field. Artificial neural systems, also known as artificial neural networks (ANNs), are valuable computational intelligence tools that are increasingly being used to solve resource-intensive complex engineering problems. Unlike the linear elastic layered theory commonly used in pavement layer backcalculation, non-linear unbound aggregate base and subgrade soil response models were used in an axisymmetric finite element structural analysis programme to generate synthetic database for training and testing the ANN models. In order to develop more robust networks that can tolerate the noisy or inaccurate pavement deflection patterns in the NDT data, several network architectures were trained with varying levels of noise in them. The trained ANN models were capable of rapidly predicting the pavement layer moduli and critical pavement responses (tensile strains at the bottom of the asphalt concrete layer, compressive strains on top of the subgrade layer and the deviator stresses on top of the subgrade layer), and also pavement

  8. Viewing pictures of a romantic partner reduces experimental pain: involvement of neural reward systems.

    Directory of Open Access Journals (Sweden)

    Jarred Younger

    2010-10-01

    Full Text Available The early stages of a new romantic relationship are characterized by intense feelings of euphoria, well-being, and preoccupation with the romantic partner. Neuroimaging research has linked those feelings to activation of reward systems in the human brain. The results of those studies may be relevant to pain management in humans, as basic animal research has shown that pharmacologic activation of reward systems can substantially reduce pain. Indeed, viewing pictures of a romantic partner was recently demonstrated to reduce experimental thermal pain. We hypothesized that pain relief evoked by viewing pictures of a romantic partner would be associated with neural activations in reward-processing centers. In this functional magnetic resonance imaging (fMRI study, we examined fifteen individuals in the first nine months of a new, romantic relationship. Participants completed three tasks under periods of moderate and high thermal pain: 1 viewing pictures of their romantic partner, 2 viewing pictures of an equally attractive and familiar acquaintance, and 3 a word-association distraction task previously demonstrated to reduce pain. The partner and distraction tasks both significantly reduced self-reported pain, although only the partner task was associated with activation of reward systems. Greater analgesia while viewing pictures of a romantic partner was associated with increased activity in several reward-processing regions, including the caudate head, nucleus accumbens, lateral orbitofrontal cortex, amygdala, and dorsolateral prefrontal cortex--regions not associated with distraction-induced analgesia. The results suggest that the activation of neural reward systems via non-pharmacologic means can reduce the experience of pain.

  9. Design of intelligent systems based on fuzzy logic, neural networks and nature-inspired optimization

    CERN Document Server

    Castillo, Oscar; Kacprzyk, Janusz

    2015-01-01

    This book presents recent advances on the design of intelligent systems based on fuzzy logic, neural networks and nature-inspired optimization and their application in areas such as, intelligent control and robotics, pattern recognition, time series prediction and optimization of complex problems. The book is organized in eight main parts, which contain a group of papers around a similar subject. The first part consists of papers with the main theme of theoretical aspects of fuzzy logic, which basically consists of papers that propose new concepts and algorithms based on fuzzy systems. The second part contains papers with the main theme of neural networks theory, which are basically papers dealing with new concepts and algorithms in neural networks. The third part contains papers describing applications of neural networks in diverse areas, such as time series prediction and pattern recognition. The fourth part contains papers describing new nature-inspired optimization algorithms. The fifth part presents div...

  10. Inductive differentiation of two neural lineages reconstituted in a microculture system from Xenopus early gastrula cells.

    Science.gov (United States)

    Mitani, S; Okamoto, H

    1991-05-01

    Neural induction of ectoderm cells has been reconstituted and examined in a microculture system derived from dissociated early gastrula cells of Xenopus laevis. We have used monoclonal antibodies as specific markers to monitor cellular differentiation from three distinct ectoderm lineages in culture (N1 for CNS neurons from neural tube, Me1 for melanophores from neural crest and E3 for skin epidermal cells from epidermal lineages). CNS neurons and melanophores differentiate when deep layer cells of the ventral ectoderm (VE, prospective epidermis region; 150 cells/culture) and an appropriate region of the marginal zone (MZ, prospective mesoderm region; 5-150 cells/culture) are co-cultured, but not in cultures of either cell type on their own; VE cells cultured alone yield epidermal cells as we have previously reported. The extent of inductive neural differentiation in the co-culture system strongly depends on the origin and number of MZ cells initially added to culture wells. The potency to induce CNS neurons is highest for dorsal MZ cells and sharply decreases as more ventrally located cells are used. The same dorsoventral distribution of potency is seen in the ability of MZ cells to inhibit epidermal differentiation. In contrast, the ability of MZ cells to induce melanophores shows the reverse polarity, ventral to dorsal. These data indicate that separate developmental mechanisms are used for the induction of neural tube and neural crest lineages. Co-differentiation of CNS neurons or melanophores with epidermal cells can be obtained in a single well of co-cultures of VE cells (150) and a wide range of numbers of MZ cells (5 to 100). Further, reproducible differentiation of both neural lineages requires intimate association between cells from the two gastrula regions; virtually no differentiation is obtained when cells from the VE and MZ are separated in a culture well. These results indicate that the inducing signals from MZ cells for both neural tube and neural

  11. Pedestrian tracking and navigation using an adaptive knowledge system based on neural networks

    Science.gov (United States)

    Grejner-Brzezinska, Dorota A.; Toth, Charles; Moafipoor, Shahram

    2007-11-01

    The primary objective of the research presented here is to develop theoretical foundations and implementation algorithms, which integrate the Global Positioning System (GPS), micro-electromechanical inertial measurement unit (MEMS IMU), digital barometer, electronic compass, and human pedometry to provide navigation and tracking of military and rescue ground personnel. This paper discusses the design, implementation and the performance analyses of the personal navigator prototype, with a special emphasis on dead-reckoning (DR) navigation supported by the human locomotion model. The adaptive knowledge system, based on the Artificial Neural Networks (ANN), is implemented to support this functionality. The knowledge system is trained during the GPS signal reception and is used to support navigation under GPS-denied conditions. The human locomotion parameters, step frequency (SF) and step length (SL), are extracted from GPS-timed impact switches (step frequency) and GPS/IMU data (step length), respectively, during the system calibration period. SL is correlated with several data types, such as acceleration, acceleration variation, SF, terrain slope, etc. that constitute the input parameters to the ANN-based knowledge system. The ANN-predicted SL, together with the heading information from the compass and gyro, support DR navigation. The current target accuracy of the system is 3-5 m CEP (circular error probable) 50%.

  12. Developing and using expert systems and neural networks in medicine: a review on benefits and challenges.

    Science.gov (United States)

    Sheikhtaheri, Abbas; Sadoughi, Farahnaz; Hashemi Dehaghi, Zahra

    2014-09-01

    Complicacy of clinical decisions justifies utilization of information systems such as artificial intelligence (e.g. expert systems and neural networks) to achieve better decisions, however, application of these systems in the medical domain faces some challenges. We aimed at to review the applications of these systems in the medical domain and discuss about such challenges. Following a brief introduction of expert systems and neural networks by representing few examples, the challenges of these systems in the medical domain are discussed. We found that the applications of expert systems and artificial neural networks have been increased in the medical domain. These systems have shown many advantages such as utilization of experts' knowledge, gaining rare knowledge, more time for assessment of the decision, more consistent decisions, and shorter decision-making process. In spite of all these advantages, there are challenges ahead of developing and using such systems including maintenance, required experts, inputting patients' data into the system, problems for knowledge acquisition, problems in modeling medical knowledge, evaluation and validation of system performance, wrong recommendations and responsibility, limited domains of such systems and necessity of integrating such systems into the routine work flows. We concluded that expert systems and neural networks can be successfully used in medicine; however, there are many concerns and questions to be answered through future studies and discussions.

  13. SYSTEM DESIGN AND BEHAVIOR OF PATTERN RECOGNITION OF CONTROL CHART USING NEURAL NETWORK

    OpenAIRE

    Justin Yulius Halim

    2003-01-01

    Recognition of unnatural patterns in control charts is important to get more understanding about the process problem. Shewhart control chart can recognize shift pattern only, while the others cannot be detected by this chart. Neural networks were proposed by many researchers to achieve the better recognition of the patterns. A system of neural networks needs to be fitted to this problem by realizing the behaviors of control charts. Each behavior will affect the development of each part of the...

  14. Embedded System Synthesis under Memory Constraints

    DEFF Research Database (Denmark)

    Madsen, Jan; Bjørn-Jørgensen, Peter

    1999-01-01

    This paper presents a genetic algorithm to solve the system synthesis problem of mapping a time constrained single-rate system specification onto a given heterogeneous architecture which may contain irregular interconnection structures. The synthesis is performed under memory constraints, that is......, the algorithm takes into account the memory size of processors and the size of interface buffers of communication links, and in particular the complicated interplay of these. The presented algorithm is implemented as part of the LY-COS cosynthesis system....

  15. Soft computing integrating evolutionary, neural, and fuzzy systems

    CERN Document Server

    Tettamanzi, Andrea

    2001-01-01

    Soft computing encompasses various computational methodologies, which, unlike conventional algorithms, are tolerant of imprecision, uncertainty, and partial truth. Soft computing technologies offer adaptability as a characteristic feature and thus permit the tracking of a problem through a changing environment. Besides some recent developments in areas like rough sets and probabilistic networks, fuzzy logic, evolutionary algorithms, and artificial neural networks are core ingredients of soft computing, which are all bio-inspired and can easily be combined synergetically. This book presents a well-balanced integration of fuzzy logic, evolutionary computing, and neural information processing. The three constituents are introduced to the reader systematically and brought together in differentiated combinations step by step. The text was developed from courses given by the authors and offers numerous illustrations as

  16. Neural systems for the expression of hypoalgesia during nonassociative fear.

    Science.gov (United States)

    Bellgowan, P S; Helmstetter, F J

    1996-08-01

    A single brief exposure to moderately intense while noise is sufficient to produce opioid-mediated antinociception in rats. This form of stress-induced hypoalgesia represents a response to unconditional fear or anxiety. Three experiments compared the neural circuits responsible for learned versus unlearned fear responses. Male rats received lesions of the medial geniculate nucleus, lateral or central nuclei of the amygdala, or the ventral, dorsal lateral, or dorsal medial periaqueductal gray (PAG). Controls showed a pronounced elevation in tail-flick latency following presentation of 90-dB white noise. All lesions, with the exception of dorsolateral and dorsomedial PAG, significantly blocked this response. These results support the idea that hypoalgesia produced by aversive auditory stimuli uses a common neural circuit regardless of whether the response is a product of associative learning or unconditional fear/anxiety.

  17. Neural mechanisms underlying catastrophic failure in human-machine interaction during aerial navigation

    Science.gov (United States)

    Saproo, Sameer; Shih, Victor; Jangraw, David C.; Sajda, Paul

    2016-12-01

    Objective. We investigated the neural correlates of workload buildup in a fine visuomotor task called the boundary avoidance task (BAT). The BAT has been known to induce naturally occurring failures of human-machine coupling in high performance aircraft that can potentially lead to a crash—these failures are termed pilot induced oscillations (PIOs). Approach. We recorded EEG and pupillometry data from human subjects engaged in a flight BAT simulated within a virtual 3D environment. Main results. We find that workload buildup in a BAT can be successfully decoded from oscillatory features in the electroencephalogram (EEG). Information in delta, theta, alpha, beta, and gamma spectral bands of the EEG all contribute to successful decoding, however gamma band activity with a lateralized somatosensory topography has the highest contribution, while theta band activity with a fronto-central topography has the most robust contribution in terms of real-world usability. We show that the output of the spectral decoder can be used to predict PIO susceptibility. We also find that workload buildup in the task induces pupil dilation, the magnitude of which is significantly correlated with the magnitude of the decoded EEG signals. These results suggest that PIOs may result from the dysregulation of cortical networks such as the locus coeruleus (LC)—anterior cingulate cortex (ACC) circuit. Significance. Our findings may generalize to similar control failures in other cases of tight man-machine coupling where gains and latencies in the control system must be inferred and compensated for by the human operators. A closed-loop intervention using neurophysiological decoding of workload buildup that targets the LC-ACC circuit may positively impact operator performance in such situations.

  18. Identification and adaptive neural network control of a DC motor system with dead-zone characteristics.

    Science.gov (United States)

    Peng, Jinzhu; Dubay, Rickey

    2011-10-01

    In this paper, an adaptive control approach based on the neural networks is presented to control a DC motor system with dead-zone characteristics (DZC), where two neural networks are proposed to formulate the traditional identification and control approaches. First, a Wiener-type neural network (WNN) is proposed to identify the motor DZC, which formulates the Wiener model with a linear dynamic block in cascade with a nonlinear static gain. Second, a feedforward neural network is proposed to formulate the traditional PID controller, termed as PID-type neural network (PIDNN), which is then used to control and compensate for the DZC. In this way, the DC motor system with DZC is identified by the WNN identifier, which provides model information to the PIDNN controller in order to make it adaptive. Back-propagation algorithms are used to train both neural networks. Also, stability and convergence analysis are conducted using the Lyapunov theorem. Finally, experiments on the DC motor system demonstrated accurate identification and good compensation for dead-zone with improved control performance over the conventional PID control. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  19. The neural basis of loss aversion in decision-making under risk.

    Science.gov (United States)

    Tom, Sabrina M; Fox, Craig R; Trepel, Christopher; Poldrack, Russell A

    2007-01-26

    People typically exhibit greater sensitivity to losses than to equivalent gains when making decisions. We investigated neural correlates of loss aversion while individuals decided whether to accept or reject gambles that offered a 50/50 chance of gaining or losing money. A broad set of areas (including midbrain dopaminergic regions and their targets) showed increasing activity as potential gains increased. Potential losses were represented by decreasing activity in several of these same gain-sensitive areas. Finally, individual differences in behavioral loss aversion were predicted by a measure of neural loss aversion in several regions, including the ventral striatum and prefrontal cortex.

  20. Prospects of application of artificial neural networks for forecasting of cargo transportation volume in transport systems

    Directory of Open Access Journals (Sweden)

    D. T. Yakupov

    2017-01-01

    Full Text Available The purpose of research – to identify the prospects for the use of neural network approach in relation to the tasks of economic forecasting of logistics performance, in particular of volume freight traffic in the transport system promiscuous regional freight traffic, as well as to substantiate the effectiveness of the use of artificial neural networks (ANN, as compared with the efficiency of traditional extrapolative methods of forecasting. The authors consider the possibility of forecasting to use ANN for these economic indicators not as an alternative to the traditional methods of statistical forecasting, but as one of the available simple means for solving complex problems.Materials and methods. When predicting the ANN, three methods of learning were used: 1 the Levenberg-Marquardt algorithm-network training stops when the generalization ceases to improve, which is shown by the increase in the mean square error of the output value; 2 Bayes regularization method - network training is stopped in accordance with the minimization of adaptive weights; 3 the method of scaled conjugate gradients, which is used to find the local extremum of a function on the basis of information about its values and gradient. The Neural Network Toolbox package is used for forecasting. The neural network model consists of a hidden layer of neurons with a sigmoidal activation function and an output neuron with a linear activation function, the input values of the dynamic time series, and the predicted value is removed from the output. For a more objective assessment of the prospects of the ANN application, the results of the forecast are presented in comparison with the results obtained in predicting the method of exponential smoothing.Results. When predicting the volumes of freight transportation by rail, satisfactory indicators of the verification of forecasting by both the method of exponential smoothing and ANN had been obtained, although the neural network

  1. Defecting and Fitting System for Multi-pattern Functions using Neural Network

    International Nuclear Information System (INIS)

    Sakuda, Takeshi; Katsuki, Satoshi; Nagadori, Nobuyuki; Fukawa, Gakuto

    2002-01-01

    This paper proposes a new neural network system which differentiates the multi-pattern mixed data into multiple pattern fitting functions, and its application for structural monitoring system to detect the change of structural characteristics. All parameters dominating cause of output monitoring signals are not necessarily monitored in real monitoring system. In such case, the relationship between output and input monitoring data are seemed to be relating to multiple functions controlled by hidden parameter. The proposed neural network systems can differentiate those data into multiple pattern-fitting functions, and can detect the appearance of new pattern of input-output relationship of structural monitoring data caused by a damage or deterioration

  2. Neuromorphic neural interfaces: from neurophysiological inspiration to biohybrid coupling with nervous systems

    Science.gov (United States)

    Broccard, Frédéric D.; Joshi, Siddharth; Wang, Jun; Cauwenberghs, Gert

    2017-08-01

    Objective. Computation in nervous systems operates with different computational primitives, and on different hardware, than traditional digital computation and is thus subjected to different constraints from its digital counterpart regarding the use of physical resources such as time, space and energy. In an effort to better understand neural computation on a physical medium with similar spatiotemporal and energetic constraints, the field of neuromorphic engineering aims to design and implement electronic systems that emulate in very large-scale integration (VLSI) hardware the organization and functions of neural systems at multiple levels of biological organization, from individual neurons up to large circuits and networks. Mixed analog/digital neuromorphic VLSI systems are compact, consume little power and operate in real time independently of the size and complexity of the model. Approach. This article highlights the current efforts to interface neuromorphic systems with neural systems at multiple levels of biological organization, from the synaptic to the system level, and discusses the prospects for future biohybrid systems with neuromorphic circuits of greater complexity. Main results. Single silicon neurons have been interfaced successfully with invertebrate and vertebrate neural networks. This approach allowed the investigation of neural properties that are inaccessible with traditional techniques while providing a realistic biological context not achievable with traditional numerical modeling methods. At the network level, populations of neurons are envisioned to communicate bidirectionally with neuromorphic processors of hundreds or thousands of silicon neurons. Recent work on brain-machine interfaces suggests that this is feasible with current neuromorphic technology. Significance. Biohybrid interfaces between biological neurons and VLSI neuromorphic systems of varying complexity have started to emerge in the literature. Primarily intended as a

  3. Neural network modeling to evaluate the dynamic flow stress of high strength armor steels under high strain rate compression

    Directory of Open Access Journals (Sweden)

    Ravindranadh Bobbili

    2014-12-01

    Full Text Available An artificial neural network (ANN constitutive model is developed for high strength armor steel tempered at 500 °C, 600 °C and 650 °C based on high strain rate data generated from split Hopkinson pressure bar (SHPB experiments. A new neural network configuration consisting of both training and validation is effectively employed to predict flow stress. Tempering temperature, strain rate and strain are considered as inputs, whereas flow stress is taken as output of the neural network. A comparative study on Johnson–Cook (J–C model and neural network model is performed. It was observed that the developed neural network model could predict flow stress under various strain rates and tempering temperatures. The experimental stress–strain data obtained from high strain rate compression tests using SHPB, over a range of tempering temperatures (500–650 °C, strains (0.05–0.2 and strain rates (1000–5500/s are employed to formulate J–C model to predict the high strain rate deformation behavior of high strength armor steels. The J-C model and the back-propagation ANN model were developed to predict the high strain rate deformation behavior of high strength armor steel and their predictability is evaluated in terms of correlation coefficient (R and average absolute relative error (AARE. R and AARE for the J–C model are found to be 0.7461 and 27.624%, respectively, while R and AARE for the ANN model are 0.9995 and 2.58%, respectively. It was observed that the predictions by ANN model are in consistence with the experimental data for all tempering temperatures.

  4. A Comparative Study of Neural Networks and Fuzzy Systems in Modeling of a Nonlinear Dynamic System

    Directory of Open Access Journals (Sweden)

    Metin Demirtas

    2011-07-01

    Full Text Available The aim of this paper is to compare the neural networks and fuzzy modeling approaches on a nonlinear system. We have taken Permanent Magnet Brushless Direct Current (PMBDC motor data and have generated models using both approaches. The predictive performance of both methods was compared on the data set for model configurations. The paper describes the results of these tests and discusses the effects of changing model parameters on predictive and practical performance. Modeling sensitivity was used to compare for two methods.

  5. Fault detection and classification in electrical power transmission system using artificial neural network.

    Science.gov (United States)

    Jamil, Majid; Sharma, Sanjeev Kumar; Singh, Rajveer

    2015-01-01

    This paper focuses on the detection and classification of the faults on electrical power transmission line using artificial neural networks. The three phase currents and voltages of one end are taken as inputs in the proposed scheme. The feed forward neural network along with back propagation algorithm has been employed for detection and classification of the fault for analysis of each of the three phases involved in the process. A detailed analysis with varying number of hidden layers has been performed to validate the choice of the neural network. The simulation results concluded that the present method based on the neural network is efficient in detecting and classifying the faults on transmission lines with satisfactory performances. The different faults are simulated with different parameters to check the versatility of the method. The proposed method can be extended to the Distribution network of the Power System. The various simulations and analysis of signals is done in the MATLAB(®) environment.

  6. Integrated Markov-neural reliability computation method: A case for multiple automated guided vehicle system

    International Nuclear Information System (INIS)

    Fazlollahtabar, Hamed; Saidi-Mehrabad, Mohammad; Balakrishnan, Jaydeep

    2015-01-01

    This paper proposes an integrated Markovian and back propagation neural network approaches to compute reliability of a system. While states of failure occurrences are significant elements for accurate reliability computation, Markovian based reliability assessment method is designed. Due to drawbacks shown by Markovian model for steady state reliability computations and neural network for initial training pattern, integration being called Markov-neural is developed and evaluated. To show efficiency of the proposed approach comparative analyses are performed. Also, for managerial implication purpose an application case for multiple automated guided vehicles (AGVs) in manufacturing networks is conducted. - Highlights: • Integrated Markovian and back propagation neural network approach to compute reliability. • Markovian based reliability assessment method. • Managerial implication is shown in an application case for multiple automated guided vehicles (AGVs) in manufacturing networks

  7. Developmental Pathway Genes and Neural Plasticity Underlying Emotional Learning and Stress-Related Disorders

    Science.gov (United States)

    Maheau, Marissa E.; Ressler, Kerry J.

    2017-01-01

    The manipulation of neural plasticity as a means of intervening in the onset and progression of stress-related disorders retains its appeal for many researchers, despite our limited success in translating such interventions from the laboratory to the clinic. Given the challenges of identifying individual genetic variants that confer increased risk…

  8. Adaptive Control of Nonlinear Discrete-Time Systems by Using OS-ELM Neural Networks

    Directory of Open Access Journals (Sweden)

    Xiao-Li Li

    2014-01-01

    Full Text Available As a kind of novel feedforward neural network with single hidden layer, ELM (extreme learning machine neural networks are studied for the identification and control of nonlinear dynamic systems. The property of simple structure and fast convergence of ELM can be shown clearly. In this paper, we are interested in adaptive control of nonlinear dynamic plants by using OS-ELM (online sequential extreme learning machine neural networks. Based on data scope division, the problem that training process of ELM neural network is sensitive to the initial training data is also solved. According to the output range of the controlled plant, the data corresponding to this range will be used to initialize ELM. Furthermore, due to the drawback of conventional adaptive control, when the OS-ELM neural network is used for adaptive control of the system with jumping parameters, the topological structure of the neural network can be adjusted dynamically by using multiple model switching strategy, and an MMAC (multiple model adaptive control will be used to improve the control performance. Simulation results are included to complement the theoretical results.

  9. Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems.

    Directory of Open Access Journals (Sweden)

    Marcus Kaiser

    2006-07-01

    Full Text Available It has been suggested that neural systems across several scales of organization show optimal component placement, in which any spatial rearrangement of the components would lead to an increase of total wiring. Using extensive connectivity datasets for diverse neural networks combined with spatial coordinates for network nodes, we applied an optimization algorithm to the network layouts, in order to search for wire-saving component rearrangements. We found that optimized component rearrangements could substantially reduce total wiring length in all tested neural networks. Specifically, total wiring among 95 primate (Macaque cortical areas could be decreased by 32%, and wiring of neuronal networks in the nematode Caenorhabditis elegans could be reduced by 48% on the global level, and by 49% for neurons within frontal ganglia. Wiring length reductions were possible due to the existence of long-distance projections in neural networks. We explored the role of these projections by comparing the original networks with minimally rewired networks of the same size, which possessed only the shortest possible connections. In the minimally rewired networks, the number of processing steps along the shortest paths between components was significantly increased compared to the original networks. Additional benchmark comparisons also indicated that neural networks are more similar to network layouts that minimize the length of processing paths, rather than wiring length. These findings suggest that neural systems are not exclusively optimized for minimal global wiring, but for a variety of factors including the minimization of processing steps.

  10. Neural Networks and other Techniques for Fault Identification and Isolation of Aircraft Systems

    Science.gov (United States)

    Innocenti, M.; Napolitano, M.

    2003-01-01

    Fault identification, isolation, and accomodation have become critical issues in the overall performance of advanced aircraft systems. Neural Networks have shown to be a very attractive alternative to classic adaptation methods for identification and control of non-linear dynamic systems. The purpose of this paper is to show the improvements in neural network applications achievable through the use of learning algorithms more efficient than the classic Back-Propagation, and through the implementation of the neural schemes in parallel hardware. The results of the analysis of a scheme for Sensor Failure, Detection, Identification and Accommodation (SFDIA) using experimental flight data of a research aircraft model are presented. Conventional approaches to the problem are based on observers and Kalman Filters while more recent methods are based on neural approximators. The work described in this paper is based on the use of neural networks (NNs) as on-line learning non-linear approximators. The performances of two different neural architectures were compared. The first architecture is based on a Multi Layer Perceptron (MLP) NN trained with the Extended Back Propagation algorithm (EBPA). The second architecture is based on a Radial Basis Function (RBF) NN trained with the Extended-MRAN (EMRAN) algorithms. In addition, alternative methods for communications links fault detection and accomodation are presented, relative to multiple unmanned aircraft applications.

  11. Catheter-manometer system damped blood pressures detected by neural nets.

    Science.gov (United States)

    Prentza, A; Wesseling, K H

    1995-07-01

    Degraded catheter-manometer systems cause distortion of blood pressure waveforms, often leading to erroneously resonant or damped waveforms, requiring waveforms quality control. We have tried multilayer perceptron back-propagation trained neural nets of varying architecture to detect damping on sets of normal and artificially damped brachial arterial pressure waves. A second-order digital simulation of a catheter-manometer system is used to cause waveform distortion. Each beat in the waveforms is represented by an 11 parameter input vector. From a group of normotensive or (borderline) hypertensive subjects, pressure waves are used to statistically test and train the neural nets. For each patient and category 5-10 waves are available. The best neural nets correctly classify about 75-85% of the individual beats as either adequate or damped. Using a single majority vote classification per subject per damped or adequate situation, the best neural nets correctly classify at least 16 of the 18 situations in nine test subjects (binomial P = 0.001). More importantly, these neural nets can always detect damping before clinically relevant parameters such as systolic pressure and computed stroke volume are reduced by more than 2%. Neural nets seem remarkably well adapted to solving such subtle problems as detecting a slight damping of arterial pressure waves before it affects waveforms to a clinically relevant degree.

  12. Artificial frame filling using adaptive neural fuzzy inference system for particle image velocimetry dataset

    Science.gov (United States)

    Akdemir, Bayram; Doǧan, Sercan; Aksoy, Muharrem H.; Canli, Eyüp; Özgören, Muammer

    2015-03-01

    Liquid behaviors are very important for many areas especially for Mechanical Engineering. Fast camera is a way to observe and search the liquid behaviors. Camera traces the dust or colored markers travelling in the liquid and takes many pictures in a second as possible as. Every image has large data structure due to resolution. For fast liquid velocity, there is not easy to evaluate or make a fluent frame after the taken images. Artificial intelligence has much popularity in science to solve the nonlinear problems. Adaptive neural fuzzy inference system is a common artificial intelligence in literature. Any particle velocity in a liquid has two dimension speed and its derivatives. Adaptive Neural Fuzzy Inference System has been used to create an artificial frame between previous and post frames as offline. Adaptive neural fuzzy inference system uses velocities and vorticities to create a crossing point vector between previous and post points. In this study, Adaptive Neural Fuzzy Inference System has been used to fill virtual frames among the real frames in order to improve image continuity. So this evaluation makes the images much understandable at chaotic or vorticity points. After executed adaptive neural fuzzy inference system, the image dataset increase two times and has a sequence as virtual and real, respectively. The obtained success is evaluated using R2 testing and mean squared error. R2 testing has a statistical importance about similarity and 0.82, 0.81, 0.85 and 0.8 were obtained for velocities and derivatives, respectively.

  13. A Modular Neural Network Scheme Applied to Fault Diagnosis in Electric Power Systems

    Directory of Open Access Journals (Sweden)

    Agustín Flores

    2014-01-01

    Full Text Available This work proposes a new method for fault diagnosis in electric power systems based on neural modules. With this method the diagnosis is performed by assigning a neural module for each type of component comprising the electric power system, whether it is a transmission line, bus or transformer. The neural modules for buses and transformers comprise two diagnostic levels which take into consideration the logic states of switches and relays, both internal and back-up, with the exception of the neural module for transmission lines which also has a third diagnostic level which takes into account the oscillograms of fault voltages and currents as well as the frequency spectrums of these oscillograms, in order to verify if the transmission line had in fact been subjected to a fault. One important advantage of the diagnostic system proposed is that its implementation does not require the use of a network configurator for the system; it does not depend on the size of the power network nor does it require retraining of the neural modules if the power network increases in size, making its application possible to only one component, a specific area, or the whole context of the power system.

  14. A Modular Neural Network Scheme Applied to Fault Diagnosis in Electric Power Systems

    Science.gov (United States)

    Flores, Agustín; Morant, Francisco

    2014-01-01

    This work proposes a new method for fault diagnosis in electric power systems based on neural modules. With this method the diagnosis is performed by assigning a neural module for each type of component comprising the electric power system, whether it is a transmission line, bus or transformer. The neural modules for buses and transformers comprise two diagnostic levels which take into consideration the logic states of switches and relays, both internal and back-up, with the exception of the neural module for transmission lines which also has a third diagnostic level which takes into account the oscillograms of fault voltages and currents as well as the frequency spectrums of these oscillograms, in order to verify if the transmission line had in fact been subjected to a fault. One important advantage of the diagnostic system proposed is that its implementation does not require the use of a network configurator for the system; it does not depend on the size of the power network nor does it require retraining of the neural modules if the power network increases in size, making its application possible to only one component, a specific area, or the whole context of the power system. PMID:25610897

  15. A modular neural network scheme applied to fault diagnosis in electric power systems.

    Science.gov (United States)

    Flores, Agustín; Quiles, Eduardo; García, Emilio; Morant, Francisco; Correcher, Antonio

    2014-01-01

    This work proposes a new method for fault diagnosis in electric power systems based on neural modules. With this method the diagnosis is performed by assigning a neural module for each type of component comprising the electric power system, whether it is a transmission line, bus or transformer. The neural modules for buses and transformers comprise two diagnostic levels which take into consideration the logic states of switches and relays, both internal and back-up, with the exception of the neural module for transmission lines which also has a third diagnostic level which takes into account the oscillograms of fault voltages and currents as well as the frequency spectrums of these oscillograms, in order to verify if the transmission line had in fact been subjected to a fault. One important advantage of the diagnostic system proposed is that its implementation does not require the use of a network configurator for the system; it does not depend on the size of the power network nor does it require retraining of the neural modules if the power network increases in size, making its application possible to only one component, a specific area, or the whole context of the power system.

  16. SYNTHESIS OF NEURAL NETWORK MODEL REFERENCE CONTROLLER FOR AIMING AND STABILIZING SYSTEM

    Directory of Open Access Journals (Sweden)

    B.I. Kuznetsov

    2015-11-01

    Full Text Available The aim of this work is the synthesis of neural network reference model controller. The synthesis is performed in MATLAB for the problem of control of the aiming and stabilization system for the special equipment of moving objects. This paper presents the synthesis of the neural network reference model controller to meet the given performance characteristics of operation for the aiming and stabilization system for the special equipment of moving objects. Simulink tool in MATLAB is used to build the block diagram of double-loop neural network system of aiming and stabilization, where the reference model controller is put in the velocity loop and P-regulator is put in the position loop, with feedforward velocity control. Presented the method of synthesis of the neural network reference model controller that is implemented in the Neural Network Toolbox in MATLAB. System tests with the broad range of parameter values determined the key parameters defining the control quality. Optimal values of the key parameters were found to provide the highest control performance. System simulation and analysis of the obtained results is given.

  17. Imaging Neuronal Populations in Behaving Rodents: Paradigms for Studying Neural Circuits Underlying Behavior in the Mammalian Cortex

    Science.gov (United States)

    Andermann, Mark L.; Keck, Tara; Xu, Ning-Long; Ziv, Yaniv

    2013-01-01

    Understanding the neural correlates of behavior in the mammalian cortex requires measurements of activity in awake, behaving animals. Rodents have emerged as a powerful model for dissecting the cortical circuits underlying behavior attributable to the convergence of several methods. Genetically encoded calcium indicators combined with viral-mediated or transgenic tools enable chronic monitoring of calcium signals in neuronal populations and subcellular structures of identified cell types. Stable one- and two-photon imaging of neuronal activity in awake, behaving animals is now possible using new behavioral paradigms in head-fixed animals, or using novel miniature head-mounted microscopes in freely moving animals. This mini-symposium will highlight recent applications of these methods for studying sensorimotor integration, decision making, learning, and memory in cortical and subcortical brain areas. We will outline future prospects and challenges for identifying the neural underpinnings of task-dependent behavior using cellular imaging in rodents. PMID:24198355

  18. Fuzzy wavelet plus a quantum neural network as a design base for power system stability enhancement.

    Science.gov (United States)

    Ganjefar, Soheil; Tofighi, Morteza; Karami, Hamidreza

    2015-11-01

    In this study, we introduce an indirect adaptive fuzzy wavelet neural controller (IAFWNC) as a power system stabilizer to damp inter-area modes of oscillations in a multi-machine power system. Quantum computing is an efficient method for improving the computational efficiency of neural networks, so we developed an identifier based on a quantum neural network (QNN) to train the IAFWNC in the proposed scheme. All of the controller parameters are tuned online based on the Lyapunov stability theory to guarantee the closed-loop stability. A two-machine, two-area power system equipped with a static synchronous series compensator as a series flexible ac transmission system was used to demonstrate the effectiveness of the proposed controller. The simulation and experimental results demonstrated that the proposed IAFWNC scheme can achieve favorable control performance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. PID Control of Miniature Unmanned Helicopter Yaw System Based on RBF Neural Network

    Science.gov (United States)

    Pan, Yue; Song, Ping; Li, Kejie

    The yaw dynamics of a miniature unmanned helicopter exhibits a complex, nonlinear, time-varying and coupling dynamic behavior. In this paper, simplified yaw dynamics model of MUH in hovering or low-velocity flight mode is established. The SISO model of yaw dynamics is obtained by mechanism modeling and system identification modeling method. PID control based on RBF neural network method combines the advantages of traditional PID controller and neural network controller. It has fast response, good robustness and self-adapting ability. It is suitable to control the yaw system of MUH. Simulation results show that the control system works well with quick response, good robustness and self adaptation.

  20. Sign Language Recognition System using Neural Network for Digital Hardware Implementation

    International Nuclear Information System (INIS)

    Vargas, Lorena P; Barba, Leiner; Torres, C O; Mattos, L

    2011-01-01

    This work presents an image pattern recognition system using neural network for the identification of sign language to deaf people. The system has several stored image that show the specific symbol in this kind of language, which is employed to teach a multilayer neural network using a back propagation algorithm. Initially, the images are processed to adapt them and to improve the performance of discriminating of the network, including in this process of filtering, reduction and elimination noise algorithms as well as edge detection. The system is evaluated using the signs without including movement in their representation.

  1. On-line identification of hybrid systems using an adaptive growing and pruning RBF neural network

    DEFF Research Database (Denmark)

    Alizadeh, Tohid

    2008-01-01

    This paper introduces an adaptive growing and pruning radial basis function (GAP-RBF) neural network for on-line identification of hybrid systems. The main idea is to identify a global nonlinear model that can predict the continuous outputs of hybrid systems. In the proposed approach, GAP......-RBF neural network uses a modified unscented kalman filter (UKF) with forgetting factor scheme as the required on-line learning algorithm. The effectiveness of the resulting identification approach is tested and evaluated on a simulated benchmark hybrid system....

  2. A New Approach to Fault Diagnosis of Power Systems Using Fuzzy Reasoning Spiking Neural P Systems

    Directory of Open Access Journals (Sweden)

    Guojiang Xiong

    2013-01-01

    Full Text Available Fault diagnosis of power systems is an important task in power system operation. In this paper, fuzzy reasoning spiking neural P systems (FRSN P systems are implemented for fault diagnosis of power systems for the first time. As a graphical modeling tool, FRSN P systems are able to represent fuzzy knowledge and perform fuzzy reasoning well. When the cause-effect relationship between candidate faulted section and protective devices is represented by the FRSN P systems, the diagnostic conclusion can be drawn by means of a simple parallel matrix based reasoning algorithm. Three different power systems are used to demonstrate the feasibility and effectiveness of the proposed fault diagnosis approach. The simulations show that the developed FRSN P systems based diagnostic model has notable characteristics of easiness in implementation, rapidity in parallel reasoning, and capability in handling uncertainties. In addition, it is independent of the scale of power system and can be used as a reliable tool for fault diagnosis of power systems.

  3. Nonlinear Control of an Active Magnetic Bearing System Achieved Using a Fuzzy Control with Radial Basis Function Neural Network

    Directory of Open Access Journals (Sweden)

    Seng-Chi Chen

    2014-01-01

    Full Text Available Studies on active magnetic bearing (AMB systems are increasing in popularity and practical applications. Magnetic bearings cause less noise, friction, and vibration than the conventional mechanical bearings; however, the control of AMB systems requires further investigation. The magnetic force has a highly nonlinear relation to the control current and the air gap. This paper proposes an intelligent control method for positioning an AMB system that uses a neural fuzzy controller (NFC. The mathematical model of an AMB system comprises identification followed by collection of information from this system. A fuzzy logic controller (FLC, the parameters of which are adjusted using a radial basis function neural network (RBFNN, is applied to the unbalanced vibration in an AMB system. The AMB system exhibited a satisfactory control performance, with low overshoot, and produced improved transient and steady-state responses under various operating conditions. The NFC has been verified on a prototype AMB system. The proposed controller can be feasibly applied to AMB systems exposed to various external disturbances; demonstrating the effectiveness of the NFC with self-learning and self-improving capacities is proven.

  4. An intelligent sales forecasting system through integration of artificial neural networks and fuzzy neural networks with fuzzy weight elimination.

    Science.gov (United States)

    Kuo, R J; Wu, P; Wang, C P

    2002-09-01

    Sales forecasting plays a very prominent role in business strategy. Numerous investigations addressing this problem have generally employed statistical methods, such as regression or autoregressive and moving average (ARMA). However, sales forecasting is very complicated owing to influence by internal and external environments. Recently, artificial neural networks (ANNs) have also been applied in sales forecasting since their promising performances in the areas of control and pattern recognition. However, further improvement is still necessary since unique circumstances, e.g. promotion, cause a sudden change in the sales pattern. Thus, this study utilizes a proposed fuzzy neural network (FNN), which is able to eliminate the unimportant weights, for the sake of learning fuzzy IF-THEN rules obtained from the marketing experts with respect to promotion. The result from FNN is further integrated with the time series data through an ANN. Both the simulated and real-world problem results show that FNN with weight elimination can have lower training error compared with the regular FNN. Besides, real-world problem results also indicate that the proposed estimation system outperforms the conventional statistical method and single ANN in accuracy.

  5. Feasibility of Using Neural Network Models to Accelerate the Testing of Mechanical Systems

    Science.gov (United States)

    Fusaro, Robert L.

    1998-01-01

    Verification testing is an important aspect of the design process for mechanical mechanisms, and full-scale, full-length life testing is typically used to qualify any new component for use in space. However, as the required life specification is increased, full-length life tests become more costly and lengthen the development time. At the NASA Lewis Research Center, we theorized that neural network systems may be able to model the operation of a mechanical device. If so, the resulting neural network models could simulate long-term mechanical testing with data from a short-term test. This combination of computer modeling and short-term mechanical testing could then be used to verify the reliability of mechanical systems, thereby eliminating the costs associated with long-term testing. Neural network models could also enable designers to predict the performance of mechanisms at the conceptual design stage by entering the critical parameters as input and running the model to predict performance. The purpose of this study was to assess the potential of using neural networks to predict the performance and life of mechanical systems. To do this, we generated a neural network system to model wear obtained from three accelerated testing devices: 1) A pin-on-disk tribometer; 2) A line-contact rub-shoe tribometer; 3) A four-ball tribometer.

  6. Distributed neural system for emotional intelligence revealed by lesion mapping

    Science.gov (United States)

    Colom, Roberto; Grafman, Jordan

    2014-01-01

    Cognitive neuroscience has made considerable progress in understanding the neural architecture of human intelligence, identifying a broadly distributed network of frontal and parietal regions that support goal-directed, intelligent behavior. However, the contributions of this network to social and emotional aspects of intellectual function remain to be well characterized. Here we investigated the neural basis of emotional intelligence in 152 patients with focal brain injuries using voxel-based lesion-symptom mapping. Latent variable modeling was applied to obtain measures of emotional intelligence, general intelligence and personality from the Mayer, Salovey, Caruso Emotional Intelligence Test (MSCEIT), the Wechsler Adult Intelligence Scale and the Neuroticism-Extroversion-Openness Inventory, respectively. Regression analyses revealed that latent scores for measures of general intelligence and personality reliably predicted latent scores for emotional intelligence. Lesion mapping results further indicated that these convergent processes depend on a shared network of frontal, temporal and parietal brain regions. The results support an integrative framework for understanding the architecture of executive, social and emotional processes and make specific recommendations for the interpretation and application of the MSCEIT to the study of emotional intelligence in health and disease. PMID:23171618

  7. Distributed neural system for emotional intelligence revealed by lesion mapping.

    Science.gov (United States)

    Barbey, Aron K; Colom, Roberto; Grafman, Jordan

    2014-03-01

    Cognitive neuroscience has made considerable progress in understanding the neural architecture of human intelligence, identifying a broadly distributed network of frontal and parietal regions that support goal-directed, intelligent behavior. However, the contributions of this network to social and emotional aspects of intellectual function remain to be well characterized. Here we investigated the neural basis of emotional intelligence in 152 patients with focal brain injuries using voxel-based lesion-symptom mapping. Latent variable modeling was applied to obtain measures of emotional intelligence, general intelligence and personality from the Mayer, Salovey, Caruso Emotional Intelligence Test (MSCEIT), the Wechsler Adult Intelligence Scale and the Neuroticism-Extroversion-Openness Inventory, respectively. Regression analyses revealed that latent scores for measures of general intelligence and personality reliably predicted latent scores for emotional intelligence. Lesion mapping results further indicated that these convergent processes depend on a shared network of frontal, temporal and parietal brain regions. The results support an integrative framework for understanding the architecture of executive, social and emotional processes and make specific recommendations for the interpretation and application of the MSCEIT to the study of emotional intelligence in health and disease.

  8. Study of a transient identification system using a neural network for a PWR plant

    International Nuclear Information System (INIS)

    Ishihara, Yoshinao; Kasai, Masao; Kambara, Masayuki; Mitsuda, Hiromichi; Kurata, Toshikazu; Shirosaki, Hidekazu

    1996-01-01

    This paper presents the procedure and results of a system for identifying PWR plant abnormal events, which uses neural network techniques. The neural network recognizes the abnormal event from the patterns of the transient changes of analog data from plant parameters when they deport from their normal state. For the identification of abnormal events in this study, events that cause a reactor to scram during power operation were selected as the design base events. The test data were prepared by simulating the transients on a compact PWR simulator. The simulation data were analyzed to determine how the plant parameters respond after the occurrence of a transient. A method of converting the pattern of the transient changes into characteristic parameters by fitting the data to pre-determined functions was developed. These characteristic parameters were used as the input data to the neural network. The neural network learning procedure used a generalized delta rule, namely a back-propagation algorithm. The neural network can identify the type of an abnormal event from a limited set of events by using these characteristic parameters obtained from the pattern of the changes in the analog data. From the results of this application of a neural network, it was concluded that it would be possible to use the method to identify abnormal events in a nuclear power plant

  9. Modular Neural Networks and Type-2 Fuzzy Systems for Pattern Recognition

    CERN Document Server

    Melin, Patricia

    2012-01-01

    This book describes hybrid intelligent systems using type-2 fuzzy logic and modular neural networks for pattern recognition applications. Hybrid intelligent systems combine several intelligent computing paradigms, including fuzzy logic, neural networks, and bio-inspired optimization algorithms, which can be used to produce powerful pattern recognition systems. Type-2 fuzzy logic is an extension of traditional type-1 fuzzy logic that enables managing higher levels of uncertainty in complex real world problems, which are of particular importance in the area of pattern recognition. The book is organized in three main parts, each containing a group of chapters built around a similar subject. The first part consists of chapters with the main theme of theory and design algorithms, which are basically chapters that propose new models and concepts, which are the basis for achieving intelligent pattern recognition. The second part contains chapters with the main theme of using type-2 fuzzy models and modular neural ne...

  10. Absolute stability of nonlinear systems with time delays and applications to neural networks

    Directory of Open Access Journals (Sweden)

    Xinzhi Liu

    2001-01-01

    Full Text Available In this paper, absolute stability of nonlinear systems with time delays is investigated. Sufficient conditions on absolute stability are derived by using the comparison principle and differential inequalities. These conditions are simple and easy to check. In addition, exponential stability conditions for some special cases of nonlinear delay systems are discussed. Applications of those results to cellular neural networks are presented.

  11. Placebo-Activated Neural Systems are Linked to Antidepressant Responses

    Science.gov (United States)

    Peciña, Marta; Bohnert, Amy S. B.; Sikora, Magdalena; Avery, Erich T.; Langenecker, Scott A.; Mickey, Brian J.; Zubieta, Jon-Kar

    2016-01-01

    Importance High placebo responses have been observed across a wide range of pathologies, severely impacting drug development. Objective Here we examined neurochemical mechanisms underlying the formation of placebo effects in patients with Major Depressive Disorder (MDD). Participants Thirty-five medication-free MDD patients. Design and Intervention We performed a single-blinded two-week cross-over randomized controlled trial of two identical oral placebos (described as having either “active” or “inactive” fast-acting antidepressant-like effects) followed by a 10-week open-label treatment with a selective serotonin reuptake inhibitor (SSRI) or in some cases, another agent as clinically indicated. The volunteers were studied with PET and the μ-opioid receptor (MOR)-selective radiotracer [11C]carfentanil after each 1-week “inactive” and “active” oral placebo treatment. In addition, 1 mL of isotonic saline was administered intravenously (i.v.) within sight of the volunteer during PET scanning every 4 min over 20 min only after the 1-week active placebo treatment, with instructions that the compound may be associated with the activation of brain systems involved in mood improvement. This challenge stimulus was utilized to test the individual capacity to acutely activate endogenous opioid neurotransmision under expectations of antidepressant effect. Setting A University Health System. Main Outcomes and Measures Changes in depressive symptoms in response to “active” placebo and antidepressant. Baseline and activation measures of MOR binding. Results Higher baseline MOR binding in the nucleus accumbens (NAc) was associated with better response to antidepressant treatment (r=0.48; p=0.02). Reductions in depressive symptoms after 1-week of “active” placebo treatment, compared to the “inactive”, were associated with increased placebo-induced μ-opioid neurotransmission in a network of regions implicated in emotion, stress regulation, and the

  12. An Improved Recurrent Neural Network for Complex-Valued Systems of Linear Equation and Its Application to Robotic Motion Tracking.

    Science.gov (United States)

    Ding, Lei; Xiao, Lin; Liao, Bolin; Lu, Rongbo; Peng, Hua

    2017-01-01

    To obtain the online solution of complex-valued systems of linear equation in complex domain with higher precision and higher convergence rate, a new neural network based on Zhang neural network (ZNN) is investigated in this paper. First, this new neural network for complex-valued systems of linear equation in complex domain is proposed and theoretically proved to be convergent within finite time. Then, the illustrative results show that the new neural network model has the higher precision and the higher convergence rate, as compared with the gradient neural network (GNN) model and the ZNN model. Finally, the application for controlling the robot using the proposed method for the complex-valued systems of linear equation is realized, and the simulation results verify the effectiveness and superiorness of the new neural network for the complex-valued systems of linear equation.

  13. Cortical Neural Synchronization Underlies Primary Visual Consciousness of Qualia: Evidence from Event-Related Potentials

    OpenAIRE

    Babiloni, Claudio; Marzano, Nicola; Soricelli, Andrea; Cordone, Susanna; Mill?n-Calenti, Jos? Carlos; Del Percio, Claudio; Buj?n, Ana

    2016-01-01

    This article reviews three experiments on event-related potentials (ERPs) testing the hypothesis that primary visual consciousness (stimulus self-report) is related to enhanced cortical neural synchronization as a function of stimulus features. ERP peak latency and sources were compared between “seen” trials and “not seen” trials, respectively related and unrelated to the primary visual consciousness. Three salient features of visual stimuli were considered (visuospatial, emotional face expre...

  14. Anger under Control: Neural Correlates of Frustration as a Function of Trait Aggression

    OpenAIRE

    Pawliczek, Christina M.; Derntl, Birgit; Kellermann, Thilo; Gur, Ruben C.; Schneider, Frank; Habel, Ute

    2013-01-01

    Antisocial behavior and aggression are prominent symptoms in several psychiatric disorders including antisocial personality disorder. An established precursor to aggression is a frustrating event, which can elicit anger or exasperation, thereby prompting aggressive responses. While some studies have investigated the neural correlates of frustration and aggression, examination of their relation to trait aggression in healthy populations are rare. Based on a screening of 550 males, we formed tw...

  15. Strong geomagnetic activity forecast by neural networks under dominant southern orientation of the interplanetary magnetic field

    Czech Academy of Sciences Publication Activity Database

    Valach, F.; Bochníček, Josef; Hejda, Pavel; Revallo, M.

    2014-01-01

    Roč. 53, č. 4 (2014), s. 589-598 ISSN 0273-1177 R&D Projects: GA AV ČR(CZ) IAA300120608; GA MŠk OC09070 Institutional support: RVO:67985530 Keywords : geomagnetic activity * interplanetary magnetic field * artificial neural network * ejection of coronal mass * X-ray flares Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.358, year: 2014

  16. Neural Network Modeling of the Lithium/Thionyl Chloride Battery System

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, D.; Jungst, R.G.; O' Gorman, C.C.; Paez, T.L.

    1998-10-29

    Battery systems have traditionally relied on extensive build and test procedures for product realization. Analytical models have been developed to diminish this reliance, but have only been partially successful in consistently predicting the performance of battery systems. The complex set of interacting physical and chemical processes within battery systems has made the development of analytical models a significant challenge. Advanced simulation tools are needed to more accurately model battery systems which will reduce the time and cost required for product realization. Sandia has initiated an advanced model-based design strategy to battery systems, beginning with the performance of lithiumhhionyl chloride cells. As an alternative approach, we have begun development of cell performance modeling using non-phenomenological models for battery systems based on artificial neural networks (ANNs). ANNs are inductive models for simulating input/output mappings with certain advantages over phenomenological models, particularly for complex systems. Among these advantages is the ability to avoid making measurements of hard to determine physical parameters or having to understand cell processes sufficiently to write mathematical functions describing their behavior. For example, ANN models are also being studied for simulating complex physical processes within the Li/SOC12 cell, such as the time and temperature dependence of the anode interracial resistance. ANNs have been shown to provide a very robust and computationally efficient simulation tool for predicting voltage and capacity output for Li/SOC12 cells under a variety of operating conditions. The ANN modeling approach should be applicable to a wide variety of battery chemistries, including rechargeable systems.

  17. Neural mechanisms underlying sound-induced visual motion perception: An fMRI study.

    Science.gov (United States)

    Hidaka, Souta; Higuchi, Satomi; Teramoto, Wataru; Sugita, Yoichi

    2017-07-01

    Studies of crossmodal interactions in motion perception have reported activation in several brain areas, including those related to motion processing and/or sensory association, in response to multimodal (e.g., visual and auditory) stimuli that were both in motion. Recent studies have demonstrated that sounds can trigger illusory visual apparent motion to static visual stimuli (sound-induced visual motion: SIVM): A visual stimulus blinking at a fixed location is perceived to be moving laterally when an alternating left-right sound is also present. Here, we investigated brain activity related to the perception of SIVM using a 7T functional magnetic resonance imaging technique. Specifically, we focused on the patterns of neural activities in SIVM and visually induced visual apparent motion (VIVM). We observed shared activations in the middle occipital area (V5/hMT), which is thought to be involved in visual motion processing, for SIVM and VIVM. Moreover, as compared to VIVM, SIVM resulted in greater activation in the superior temporal area and dominant functional connectivity between the V5/hMT area and the areas related to auditory and crossmodal motion processing. These findings indicate that similar but partially different neural mechanisms could be involved in auditory-induced and visually-induced motion perception, and neural signals in auditory, visual, and, crossmodal motion processing areas closely and directly interact in the perception of SIVM. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Fractionating the neural correlates of individual working memory components underlying arithmetic problem solving skills in children.

    Science.gov (United States)

    Metcalfe, Arron W S; Ashkenazi, Sarit; Rosenberg-Lee, Miriam; Menon, Vinod

    2013-10-01

    Baddeley and Hitch's multi-component working memory (WM) model has played an enduring and influential role in our understanding of cognitive abilities. Very little is known, however, about the neural basis of this multi-component WM model and the differential role each component plays in mediating arithmetic problem solving abilities in children. Here, we investigate the neural basis of the central executive (CE), phonological (PL) and visuo-spatial (VS) components of WM during a demanding mental arithmetic task in 7-9 year old children (N=74). The VS component was the strongest predictor of math ability in children and was associated with increased arithmetic complexity-related responses in left dorsolateral and right ventrolateral prefrontal cortices as well as bilateral intra-parietal sulcus and supramarginal gyrus in posterior parietal cortex. Critically, VS, CE and PL abilities were associated with largely distinct patterns of brain response. Overlap between VS and CE components was observed in left supramarginal gyrus and no overlap was observed between VS and PL components. Our findings point to a central role of visuo-spatial WM during arithmetic problem-solving in young grade-school children and highlight the usefulness of the multi-component Baddeley and Hitch WM model in fractionating the neural correlates of arithmetic problem solving during development. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Efficient decoding with steady-state Kalman filter in neural interface systems.

    Science.gov (United States)

    Malik, Wasim Q; Truccolo, Wilson; Brown, Emery N; Hochberg, Leigh R

    2011-02-01

    The Kalman filter is commonly used in neural interface systems to decode neural activity and estimate the desired movement kinematics. We analyze a low-complexity Kalman filter implementation in which the filter gain is approximated by its steady-state form, computed offline before real-time decoding commences. We evaluate its performance using human motor cortical spike train data obtained from an intracortical recording array as part of an ongoing pilot clinical trial. We demonstrate that the standard Kalman filter gain converges to within 95% of the steady-state filter gain in 1.5±0.5 s (mean ±s.d.). The difference in the intended movement velocity decoded by the two filters vanishes within 5 s, with a correlation coefficient of 0.99 between the two decoded velocities over the session length. We also find that the steady-state Kalman filter reduces the computational load (algorithm execution time) for decoding the firing rates of 25±3 single units by a factor of 7.0±0.9. We expect that the gain in computational efficiency will be much higher in systems with larger neural ensembles. The steady-state filter can thus provide substantial runtime efficiency at little cost in terms of estimation accuracy. This far more efficient neural decoding approach will facilitate the practical implementation of future large-dimensional, multisignal neural interface systems.

  20. Modeling of a hybrid ejector air conditioning system using artificial neural networks

    International Nuclear Information System (INIS)

    Wang, Hao; Cai, Wenjian; Wang, Youyi

    2016-01-01

    Highlights: • We apply three different types of neural network for a hybrid system components modeling. • We vary the activation function, network structure and training testing ratio to find the most optimal combination. • We apply data-mining algorithm for parameter selection. • We choose the neural network with best performance to model the whole system. • The result shows a good agreement between predicted and measured value within ±10% error. - Abstract: In order to predict the performance of a hybrid ejector air conditioning system, neural network is chosen to model the proposed platform. First, three different types of neural networks, namely multi-layer perceptron (MLP), radial basis function (RBF) and support vector machine (SVM) are applied to model the component of a hybrid ejector air conditioning system. The MLP outperforms other two networks in this research and therefore it is selected to model the whole system. Since there is no formal criterion about input selection so far, a date-mining algorithm, boosting tree, is employed before system modeling to search the most significant parameters among the 19 input variables and the five most influential parameters of them are selected to be the final input of the system model. And the result shows a good agreement between predicted and measured value which indicates the excellent ability of MLP.

  1. SYSTEM DESIGN AND BEHAVIOR OF PATTERN RECOGNITION OF CONTROL CHART USING NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    Justin Yulius Halim

    2003-01-01

    Full Text Available Recognition of unnatural patterns in control charts is important to get more understanding about the process problem. Shewhart control chart can recognize shift pattern only, while the others cannot be detected by this chart. Neural networks were proposed by many researchers to achieve the better recognition of the patterns. A system of neural networks needs to be fitted to this problem by realizing the behaviors of control charts. Each behavior will affect the development of each part of the system. Some problem need to be pointed also when dealing with the patterns of the control chart.

  2. Neural adaptive observer-based sensor and actuator fault detection in nonlinear systems: Application in UAV.

    Science.gov (United States)

    Abbaspour, Alireza; Aboutalebi, Payam; Yen, Kang K; Sargolzaei, Arman

    2017-03-01

    A new online detection strategy is developed to detect faults in sensors and actuators of unmanned aerial vehicle (UAV) systems. In this design, the weighting parameters of the Neural Network (NN) are updated by using the Extended Kalman Filter (EKF). Online adaptation of these weighting parameters helps to detect abrupt, intermittent, and incipient faults accurately. We apply the proposed fault detection system to a nonlinear dynamic model of the WVU YF-22 unmanned aircraft for its evaluation. The simulation results show that the new method has better performance in comparison with conventional recurrent neural network-based fault detection strategies. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Development of Novel Gas Brand Anti-Piracy System based on BP Neural Networks

    International Nuclear Information System (INIS)

    Wang, L; Zhang, Y Y; Ding, L

    2006-01-01

    The Wireless-net Close-loop gas brand anti-piracy system introduced in this paper is a new type of brand piracy technical product based on BP neural network. It is composed by gas brand piracy label possessing gas exhalation resource, ARM embedded gas-detector, GPRS wireless module and data base of merchandise information. First, the system obtains the information on the special label through gas sensor array ,then the attained signals are transferred into ARM Embedded board and identified by artificial neural network, and finally turns back the outcome of data collection and identification to the manufactures with the help of GPRS module

  4. Development of Novel Gas Brand Anti-Piracy System based on BP Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L [School of Aeronautics and Astronautics, Tongji University, Shanghai (China); Zhang, Y Y [Chinese-German School of Postgraduate Studies, Tongji University (China); Ding, L [Chinese-German School of Postgraduate Studies, Tongji University (China)

    2006-10-15

    The Wireless-net Close-loop gas brand anti-piracy system introduced in this paper is a new type of brand piracy technical product based on BP neural network. It is composed by gas brand piracy label possessing gas exhalation resource, ARM embedded gas-detector, GPRS wireless module and data base of merchandise information. First, the system obtains the information on the special label through gas sensor array ,then the attained signals are transferred into ARM Embedded board and identified by artificial neural network, and finally turns back the outcome of data collection and identification to the manufactures with the help of GPRS module.

  5. Development of Novel Gas Brand Anti-Piracy System based on BP Neural Networks

    Science.gov (United States)

    Wang, L.; Zhang, Y. Y.; Ding, L.

    2006-10-01

    The Wireless-net Close-loop gas brand anti-piracy system introduced in this paper is a new type of brand piracy technical product based on BP neural network. It is composed by gas brand piracy label possessing gas exhalation resource, ARM embedded gas-detector, GPRS wireless module and data base of merchandise information. First, the system obtains the information on the special label through gas sensor array ,then the attained signals are transferred into ARM Embedded board and identified by artificial neural network, and finally turns back the outcome of data collection and identification to the manufactures with the help of GPRS module.

  6. Cortical Neural Synchronization Underlies Primary Visual Consciousness of Qualia: Evidence from Event-Related Potentials.

    Science.gov (United States)

    Babiloni, Claudio; Marzano, Nicola; Soricelli, Andrea; Cordone, Susanna; Millán-Calenti, José Carlos; Del Percio, Claudio; Buján, Ana

    2016-01-01

    This article reviews three experiments on event-related potentials (ERPs) testing the hypothesis that primary visual consciousness (stimulus self-report) is related to enhanced cortical neural synchronization as a function of stimulus features. ERP peak latency and sources were compared between "seen" trials and "not seen" trials, respectively related and unrelated to the primary visual consciousness. Three salient features of visual stimuli were considered (visuospatial, emotional face expression, and written words). Results showed the typical visual ERP components in both "seen" and "not seen" trials. There was no statistical difference in the ERP peak latencies between the "seen" and "not seen" trials, suggesting a similar timing of the cortical neural synchronization regardless the primary visual consciousness. In contrast, ERP sources showed differences between "seen" and "not seen" trials. For the visuospatial stimuli, the primary consciousness was related to higher activity in dorsal occipital and parietal sources at about 400 ms post-stimulus. For the emotional face expressions, there was greater activity in parietal and frontal sources at about 180 ms post-stimulus. For the written letters, there was higher activity in occipital, parietal and temporal sources at about 230 ms post-stimulus. These results hint that primary visual consciousness is associated with an enhanced cortical neural synchronization having entirely different spatiotemporal characteristics as a function of the features of the visual stimuli and possibly, the relative qualia (i.e., visuospatial, face expression, and words). In this framework, the dorsal visual stream may be synchronized in association with the primary consciousness of visuospatial and emotional face contents. Analogously, both dorsal and ventral visual streams may be synchronized in association with the primary consciousness of linguistic contents. In this line of reasoning, the ensemble of the cortical neural networks

  7. System Identification Using Multilayer Differential Neural Networks: A New Result

    Directory of Open Access Journals (Sweden)

    J. Humberto Pérez-Cruz

    2012-01-01

    Full Text Available In previous works, a learning law with a dead zone function was developed for multilayer differential neural networks. This scheme requires strictly a priori knowledge of an upper bound for the unmodeled dynamics. In this paper, the learning law is modified in such a way that this condition is relaxed. By this modification, the tuning process is simpler and the dead-zone function is not required anymore. On the basis of this modification and by using a Lyapunov-like analysis, a stronger result is here demonstrated: the exponential convergence of the identification error to a bounded zone. Besides, a value for upper bound of such zone is provided. The workability of this approach is tested by a simulation example.

  8. Neural networks

    International Nuclear Information System (INIS)

    Denby, Bruce; Lindsey, Clark; Lyons, Louis

    1992-01-01

    The 1980s saw a tremendous renewal of interest in 'neural' information processing systems, or 'artificial neural networks', among computer scientists and computational biologists studying cognition. Since then, the growth of interest in neural networks in high energy physics, fueled by the need for new information processing technologies for the next generation of high energy proton colliders, can only be described as explosive

  9. Sensorimotor Encoding by Synchronous Neural Ensemble Activity at Multiple Levels of the Somatosensory System

    Science.gov (United States)

    Nocolelis, Miguel A. L.; Baccala, Luiz A.; Lin, Rick C. S.; Chapin, John K.

    1995-06-01

    Neural ensemble processing of sensorimotor information during behavior was investigated by simultaneously recording up to 48 single neurons at multiple relays of the rat trigeminal somatosensory system. Cortical, thalamic, and brainstem neurons exhibited widespread 7- to 12-hertz synchronous oscillations, which began during attentive immobility and reliably predicted the imminent onset of rhythmic whisker twitching. Each oscillatory cycle began as a traveling wave of neural activity in the cortex that then spread to the thalamus. Just before the onset of rhythmic whisker twitching, the oscillations spread to the spinal trigeminal brainstem complex. Thereafter, the oscillations at all levels were synchronous with whisker protraction. Neural structures manifesting these rhythms also exhibited distributed spatiotemporal patterns of neuronal ensemble activity in response to tactile stimulation. Thus, multilevel synchronous activity in this system may encode not only sensory information but also the onset and temporal domain of tactile exploratory movements.

  10. Neural Stem Cells: Implications for the Conventional Radiotherapy of Central Nervous System Malignancies

    International Nuclear Information System (INIS)

    Barani, Igor J.; Benedict, Stanley H.; Lin, Peck-Sun

    2007-01-01

    Advances in basic neuroscience related to neural stem cells and their malignant counterparts are challenging traditional models of central nervous system tumorigenesis and intrinsic brain repair. Neurogenesis persists into adulthood predominantly in two neurogenic centers: subventricular zone and subgranular zone. Subventricular zone is situated adjacent to lateral ventricles and subgranular zone is confined to the dentate gyrus of the hippocampus. Neural stem cells not only self-renew and differentiate along multiple lineages in these regions, but also contribute to intrinsic brain plasticity and repair. Ionizing radiation can depopulate these exquisitely sensitive regions directly or impair in situ neurogenesis by indirect, dose-dependent and inflammation-mediated mechanisms, even at doses <2 Gy. This review discusses the fundamental neural stem cell concepts within the framework of cumulative clinical experience with the treatment of central nervous system malignancies using conventional radiotherapy

  11. Towards an Irritable Bowel Syndrome Control System Based on Artificial Neural Networks

    Science.gov (United States)

    Podolski, Ina; Rettberg, Achim

    To solve health problems with medical applications that use complex algorithms is a trend nowadays. It could also be a chance to help patients with critical problems caused from nerve irritations to overcome them and provide a better living situation. In this paper a system for monitoring and controlling the nerves from the intestine is described on a theoretical basis. The presented system could be applied to the irritable bowel syndrome. For control a neural network is used. The advantages for using a neural network for the control of irritable bowel syndrome are the adaptation and learning. These two aspects are important because the syndrome behavior varies from patient to patient and have also concerning the time a lot of variations with respect to each patient. The developed neural network is implemented and can be simulated. Therefore, it can be shown how the network monitor and control the nerves for individual input parameters.

  12. Neural Correlates of Choking Under Pressure: Athletes High in Sports Anxiety Monitor Errors More When Performance Is Being Evaluated.

    Science.gov (United States)

    Masaki, Hiroaki; Maruo, Yuya; Meyer, Alexandria; Hajcak, Greg

    2017-01-01

    We investigated the relationship between performance-related anxiety and the neural response to errors. Using the sport anxiety scale, we selected university athletes high in sports anxiety and low in sports anxiety. The two groups performed a spatial Stroop task while their performance was being evaluated by an experimenter and also during a control (i.e., no evaluation) condition. The error-related negativity was significantly larger during the evaluation than control condition among athletes who reported high performance-related anxiety. These results suggest that performance evaluation may make errors particularly aversive or salient for individuals who fail to perform well under pressure.

  13. Global neural dynamic surface tracking control of strict-feedback systems with application to hypersonic flight vehicle.

    Science.gov (United States)

    Xu, Bin; Yang, Chenguang; Pan, Yongping

    2015-10-01

    This paper studies both indirect and direct global neural control of strict-feedback systems in the presence of unknown dynamics, using the dynamic surface control (DSC) technique in a novel manner. A new switching mechanism is designed to combine an adaptive neural controller in the neural approximation domain, together with the robust controller that pulls the transient states back into the neural approximation domain from the outside. In comparison with the conventional control techniques, which could only achieve semiglobally uniformly ultimately bounded stability, the proposed control scheme guarantees all the signals in the closed-loop system are globally uniformly ultimately bounded, such that the conventional constraints on initial conditions of the neural control system can be relaxed. The simulation studies of hypersonic flight vehicle (HFV) are performed to demonstrate the effectiveness of the proposed global neural DSC design.

  14. Analyzing Technique of Power Systems Under Deregulation

    Science.gov (United States)

    Miyauchi, Hajime; Kita, Hiroyuki; Ishigame, Atsushi

    Deregulation of the electric utilities has been progressing. Even under the deregulation, the reliability should be the most important problem of power systems. However, according to the deregulation, operation and scheduling of power systems are changing and new techniques to analyze power systems are introducing. To evaluate reliability of power systems, adequacy and security are well employed recently. This paper presents the new analyzing technique which will be realized in near future from the viewpoint of adequacy and security. First, simulation tool to evaluate adequacy is described. As an example of this tool, MARS and other methods are mentioned. Next, to evaluate the security, security constrained unit commitment (SCUC) and security constrained optimal power flow (SCOPF) are mentioned. Finally, some topics concerning ancillary service are described.

  15. Estimating the behavior of RC beams strengthened with NSM system using artificial neural networks

    Directory of Open Access Journals (Sweden)

    Seyed Rohollah Hosseini Vaez

    2017-12-01

    Full Text Available In the last decade, conventional materials such as steel and concrete are being replaced by fiber reinforced polymer (FRP materials for the strengthening of concrete structures. Among the strengthening techniques based on Fiber Reinforced Polymer composites, the use of near-surface mounted (NSM FRP rods is emerging as a promising technology for increasing flexural and shear strength of deficient concrete, masonry and timber members. An artificial neural network is an information processing tool that is inspired by the way biological nervous systems (such as the brain process the information. The key element of this tool is the novel structure of the information processing system. In engineering applications, a neural network can be a vector mapper which maps an input vector to an output one. In the present study, a new approach is developed to predict the behavior of strengthened concrete beam using a large number of experimental data by applying artificial neural networks. Having parameters used as input nodes in ANN modeling such as elastic modulus of the FRP reinforcement, the ratio of the steel longitudinal reinforcement, dimensions of the beam section, the ratio of the NSM-FRP reinforcement and characteristics of concrete, the output node was the flexural strength of beams. The idealized neural network was employed to generate empirical charts and equations to be used in design. The aim of this study is to investigate the behavior of strengthened RC beam using artificial neural networks.

  16. Neural mirroring and social interaction: Motor system involvement during action observation relates to early peer cooperation

    Directory of Open Access Journals (Sweden)

    H.M. Endedijk

    2017-04-01

    Full Text Available Whether we hand over objects to someone, play a team sport, or make music together, social interaction often involves interpersonal action coordination, both during instances of cooperation and entrainment. Neural mirroring is thought to play a crucial role in processing other’s actions and is therefore considered important for social interaction. Still, to date, it is unknown whether interindividual differences in neural mirroring play a role in interpersonal coordination during different instances of social interaction. A relation between neural mirroring and interpersonal coordination has particularly relevant implications for early childhood, since successful early interaction with peers is predictive of a more favorable social development. We examined the relation between neural mirroring and children’s interpersonal coordination during peer interaction using EEG and longitudinal behavioral data. Results showed that 4-year-old children with higher levels of motor system involvement during action observation (as indicated by lower beta-power were more successful in early peer cooperation. This is the first evidence for a relation between motor system involvement during action observation and interpersonal coordination during other instances of social interaction. The findings suggest that interindividual differences in neural mirroring are related to interpersonal coordination and thus successful social interaction.

  17. Location Verification Systems Under Spatially Correlated Shadowing

    OpenAIRE

    Yan, Shihao; Nevat, Ido; Peters, Gareth W.; Malaney, Robert

    2014-01-01

    The verification of the location information utilized in wireless communication networks is a subject of growing importance. In this work we formally analyze, for the first time, the performance of a wireless Location Verification System (LVS) under the realistic setting of spatially correlated shadowing. Our analysis illustrates that anticipated levels of correlated shadowing can lead to a dramatic performance improvement of a Received Signal Strength (RSS)-based LVS. We also analyze the per...

  18. Lithofacies identification using multiple adaptive resonance theory neural networks and group decision expert system

    Science.gov (United States)

    Chang, H.-C.; Kopaska-Merkel, D. C.; Chen, H.-C.; Rocky, Durrans S.

    2000-01-01

    Lithofacies identification supplies qualitative information about rocks. Lithofacies represent rock textures and are important components of hydrocarbon reservoir description. Traditional techniques of lithofacies identification from core data are costly and different geologists may provide different interpretations. In this paper, we present a low-cost intelligent system consisting of three adaptive resonance theory neural networks and a rule-based expert system to consistently and objectively identify lithofacies from well-log data. The input data are altered into different forms representing different perspectives of observation of lithofacies. Each form of input is processed by a different adaptive resonance theory neural network. Among these three adaptive resonance theory neural networks, one neural network processes the raw continuous data, another processes categorial data, and the third processes fuzzy-set data. Outputs from these three networks are then combined by the expert system using fuzzy inference to determine to which facies the input data should be assigned. Rules are prioritized to emphasize the importance of firing order. This new approach combines the learning ability of neural networks, the adaptability of fuzzy logic, and the expertise of geologists to infer facies of the rocks. This approach is applied to the Appleton Field, an oil field located in Escambia County, Alabama. The hybrid intelligence system predicts lithofacies identity from log data with 87.6% accuracy. This prediction is more accurate than those of single adaptive resonance theory networks, 79.3%, 68.0% and 66.0%, using raw, fuzzy-set, and categorical data, respectively, and by an error-backpropagation neural network, 57.3%. (C) 2000 Published by Elsevier Science Ltd. All rights reserved.

  19. Temporal neural mechanisms underlying conscious access to different levels of facial stimulus contents.

    Science.gov (United States)

    Hsu, Shen-Mou; Yang, Yu-Fang

    2018-04-01

    An important issue facing the empirical study of consciousness concerns how the contents of incoming stimuli gain access to conscious processing. According to classic theories, facial stimuli are processed in a hierarchical manner. However, it remains unclear how the brain determines which level of stimulus content is consciously accessible when facing an incoming facial stimulus. Accordingly, with a magnetoencephalography technique, this study aims to investigate the temporal dynamics of the neural mechanism mediating which level of stimulus content is consciously accessible. Participants were instructed to view masked target faces at threshold so that, according to behavioral responses, their perceptual awareness alternated from consciously accessing facial identity in some trials to being able to consciously access facial configuration features but not facial identity in other trials. Conscious access at these two levels of facial contents were associated with a series of differential neural events. Before target presentation, different patterns of phase angle adjustment were observed between the two types of conscious access. This effect was followed by stronger phase clustering for awareness of facial identity immediately during stimulus presentation. After target onset, conscious access to facial identity, as opposed to facial configural features, was able to elicit more robust late positivity. In conclusion, we suggest that the stages of neural events, ranging from prestimulus to stimulus-related activities, may operate in combination to determine which level of stimulus contents is consciously accessed. Conscious access may thus be better construed as comprising various forms that depend on the level of stimulus contents accessed. NEW & NOTEWORTHY The present study investigates how the brain determines which level of stimulus contents is consciously accessible when facing an incoming facial stimulus. Using magnetoencephalography, we show that prestimulus

  20. Effect of abacus training on executive function development and underlying neural correlates in Chinese children.

    Science.gov (United States)

    Wang, Chunjie; Weng, Jian; Yao, Yuan; Dong, Shanshan; Liu, Yuqiu; Chen, Feiyan

    2017-10-01

    Executive function (EF) refers to a set of cognitive abilities involved in self-regulated behavior. Given the critical role of EF in cognition, strategies for improving EF have attracted intensive attention in recent years. Previous studies have explored the effects of abacus-based mental calculation (AMC) training on several cognitive abilities. However, it remains unclear whether AMC training affects EF and its neural correlates. In this study, participants were randomly assigned to AMC or control groups upon starting primary school. The AMC group received 2 h AMC training every week, while the control group did not have any abacus experience. Neural activity during an EF task was examined using functional MRI for both groups in their 4 th and 6 th grades. Our results showed that the AMC group performed better and faster than the control group in both grades. They also had lower activation in the frontoparietal reigons than the control group in the 6 th grade. From the 4 th to the 6 th grade, the AMC group showed activation decreases in the frontoparietal regions, while the control group exhibited an opposite pattern. Furthermore, voxel-wise regression analyses revealed that better performance was associated with lower task-relevant brain activity in the AMC group but associated with greater task-relevant brain activity in the control group. These results suggest that long-term AMC training, with calculation ability as its original target, may improve EF and enhance neural efficiency of the frontoparietal regions during development. Hum Brain Mapp 38:5234-5249, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Differences between otolith- and semicircular canal-activated neural circuitry in the vestibular system.

    Science.gov (United States)

    Uchino, Yoshio; Kushiro, Keisuke

    2011-12-01

    In the last two decades, we have focused on establishing a reliable technique for focal stimulation of vestibular receptors to evaluate neural connectivity. Here, we summarize the vestibular-related neuronal circuits for the vestibulo-ocular reflex, vestibulocollic reflex, and vestibulospinal reflex arcs. The focal stimulating technique also uncovered some hidden neural mechanisms. In the otolith system, we identified two hidden neural mechanisms that enhance otolith receptor sensitivity. The first is commissural inhibition, which boosts sensitivity by incorporating inputs from bilateral otolith receptors, the existence of which was in contradiction to the classical understanding of the otolith system but was observed in the utricular system. The second mechanism, cross-striolar inhibition, intensifies the sensitivity of inputs from both sides of receptive cells across the striola in a single otolith sensor. This was an entirely novel finding and is typically observed in the saccular system. We discuss the possible functional meaning of commissural and cross-striolar inhibition. Finally, our focal stimulating technique was applied to elucidate the different constructions of axonal projections from each vestibular receptor to the spinal cord. We also discuss the possible function of the unique neural connectivity observed in each vestibular receptor system. Copyright © 2011 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  2. Neural Network based Control of SG based Standalone Generating System with Energy Storage for Power Quality Enhancement

    Science.gov (United States)

    Nayar, Priya; Singh, Bhim; Mishra, Sukumar

    2017-08-01

    An artificial intelligence based control algorithm is used in solving power quality problems of a diesel engine driven synchronous generator with automatic voltage regulator and governor based standalone system. A voltage source converter integrated with a battery energy storage system is employed to mitigate the power quality problems. An adaptive neural network based signed regressor control algorithm is used for the estimation of the fundamental component of load currents for control of a standalone system with load leveling as an integral feature. The developed model of the system performs accurately under varying load conditions and provides good dynamic response to the step changes in loads. The real time performance is achieved using MATLAB along with simulink/simpower system toolboxes and results adhere to an IEEE-519 standard for power quality enhancement.

  3. Learning Efficiency of Consciousness System for Robot Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Osama Shoubaky

    2014-12-01

    Full Text Available This paper presents learning efficiency of a consciousness system for robot using artificial neural network. The proposed conscious system consists of reason system, feeling system and association system. The three systems are modeled using Module of Nerves for Advanced Dynamics (ModNAD. Artificial neural network of the type of supervised learning with the back propagation is used to train the ModNAD. The reason system imitates behaviour and represents self-condition and other-condition. The feeling system represents sensation and emotion. The association system represents behaviour of self and determines whether self is comfortable or not. A robot is asked to perform cognition and tasks using the consciousness system. Learning converges to about 0.01 within about 900 orders for imitation, pain, solitude and the association modules. It converges to about 0.01 within about 400 orders for the comfort and discomfort modules. It can be concluded that learning in the ModNAD completed after a relatively small number of times because the learning efficiency of the ModNAD artificial neural network is good. The results also show that each ModNAD has a function to imitate and cognize emotion. The consciousness system presented in this paper may be considered as a fundamental step for developing a robot having consciousness and feelings similar to humans.

  4. Stabilization of Neural-Network-Based Control Systems via Event-Triggered Control With Nonperiodic Sampled Data.

    Science.gov (United States)

    Hu, Songlin; Yue, Dong; Xie, Xiangpeng; Ma, Yong; Yin, Xiuxia

    2018-03-01

    This paper focuses on a problem of event-triggered stabilization for a class of nonuniformly sampled neural-network-based control systems (NNBCSs). First, a new event-triggered data transmission mechanism is designed based on the nonperiodic sampled data. Different from the previous works, the proposed triggering scheme enables the NNBCSs design to enjoy the advantages of both nonuniform and event-triggered sampling schemes. Second, under the nonperiodic event-triggered data transmission scheme, the nonperiodic sampled-data three-layer fully connected feedforward neural-network (TLFCFFNN)-based event-triggered controller is constructed, and the resulting closed-loop TLFCFFNN-based event-triggered control system is modeled as a state delay system based on time-delay system modeling approach. Then, the stability criteria for the closed-loop system is formulated using Lyapunov-Krasovskii functional approach. Third, the sufficient conditions for the codesign of the TLFCFFNN-based controller and triggering parameters are given in terms of solvability of matrix inequalities to guarantee the asymptotical stability of the closed-loop system and an upper bound on the given cost function while reducing the updates of the controller. Finally, three numerical examples are provided to illustrate the effectiveness and benefits of the proposed results.

  5. Artificial neural network modelling

    CERN Document Server

    Samarasinghe, Sandhya

    2016-01-01

    This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .

  6. Neural coding in the visual system of Drosophila melanogaster: How do small neural populations support visually guided behaviours?

    Science.gov (United States)

    Dewar, Alex D M; Wystrach, Antoine; Philippides, Andrew; Graham, Paul

    2017-10-01

    All organisms wishing to survive and reproduce must be able to respond adaptively to a complex, changing world. Yet the computational power available is constrained by biology and evolution, favouring mechanisms that are parsimonious yet robust. Here we investigate the information carried in small populations of visually responsive neurons in Drosophila melanogaster. These so-called 'ring neurons', projecting to the ellipsoid body of the central complex, are reported to be necessary for complex visual tasks such as pattern recognition and visual navigation. Recently the receptive fields of these neurons have been mapped, allowing us to investigate how well they can support such behaviours. For instance, in a simulation of classic pattern discrimination experiments, we show that the pattern of output from the ring neurons matches observed fly behaviour. However, performance of the neurons (as with flies) is not perfect and can be easily improved with the addition of extra neurons, suggesting the neurons' receptive fields are not optimised for recognising abstract shapes, a conclusion which casts doubt on cognitive explanations of fly behaviour in pattern recognition assays. Using artificial neural networks, we then assess how easy it is to decode more general information about stimulus shape from the ring neuron population codes. We show that these neurons are well suited for encoding information about size, position and orientation, which are more relevant behavioural parameters for a fly than abstract pattern properties. This leads us to suggest that in order to understand the properties of neural systems, one must consider how perceptual circuits put information at the service of behaviour.

  7. A Neural Networks Based Operation Guidance System for Procedure Presentation and Validation

    International Nuclear Information System (INIS)

    Seung, Kun Mo; Lee, Seung Jun; Seong, Poong Hyun

    2006-01-01

    In this paper, a neural network based operator support system is proposed to reduce operator's errors in abnormal situations in nuclear power plants (NPPs). There are many complicated situations, in which regular and suitable operations should be done by operators accordingly. In order to regulate and validate operators' operations, it is necessary to develop an operator support system which includes computer based procedures with the functions for operation validation. Many computerized procedures systems (CPS) have been recently developed. Focusing on the human machine interface (HMI) design and procedures' computerization, most of CPSs used various methodologies to enhance system's convenience, reliability and accessibility. Other than only showing procedures, the proposed system integrates a simple CPS and an operation validation system (OVS) by using artificial neural network (ANN) for operational permission and quantitative evaluation

  8. Identifying temporal and causal contributions of neural processes underlying the Implicit Association Test (IAT

    Directory of Open Access Journals (Sweden)

    Chad Edward Forbes

    2012-11-01

    Full Text Available The Implicit Association Test (IAT is a popular behavioral measure that assesses the associative strength between outgroup members and stereotypical and counterstereotypical traits. Less is known, however, about the degree to which the IAT reflects automatic processing. Two studies examined automatic processing contributions to a gender-IAT using a data driven, social neuroscience approach. Performance on congruent (e.g., categorizing male names with synonyms of strength and incongruent (e.g., categorizing female names with synonyms of strength IAT blocks were separately analyzed using EEG (event-related potentials, or ERPs, and coherence; Study 1 and lesion (Study 2 methodologies. Compared to incongruent blocks, performance on congruent IAT blocks was associated with more positive ERPs that manifested in frontal and occipital regions at automatic processing speeds, occipital regions at more controlled processing speeds and was compromised by volume loss in the anterior temporal lobe, insula and medial PFC. Performance on incongruent blocks was associated with volume loss in supplementary motor areas, cingulate gyrus and a region in medial PFC similar to that found for congruent blocks. Greater coherence was found between frontal and occipital regions to the extent individuals exhibited more bias. This suggests there are separable neural contributions to congruent and incongruent blocks of the IAT but there is also a surprising amount of overlap. Given the temporal and regional neural distinctions, these results provide converging evidence that stereotypic associative strength assessed by the IAT indexes automatic processing to a degree.

  9. Anything goes? Regulation of the neural processes underlying response inhibition in TBI patients.

    Science.gov (United States)

    Moreno-López, Laura; Manktelow, Anne E; Sahakian, Barbara J; Menon, David K; Stamatakis, Emmanuel A

    2017-02-01

    Despite evidence for beneficial use of methylphenidate in response inhibition, no studies so far have investigated the effects of this drug in the neurobiology of inhibitory control in traumatic brain injury (TBI), even though impulsive behaviours are frequently reported in this patient group. We investigated the neural basis of response inhibition in a group of TBI patients using functional magnetic resonance imaging and a stop-signal paradigm. In a randomised double-blinded crossover study, the patients received either a single 30mg dose of methylphenidate or placebo and performed the stop-signal task. Activation in the right inferior frontal gyrus (RIFG), an area associated with response inhibition, was significantly lower in patients compared to healthy controls. Poor response inhibition in this group was associated with greater connectivity between the RIFG and a set of regions considered to be part of the default mode network (DMN), a finding that suggests the interplay between DMN and frontal executive networks maybe compromised. A single dose of methylphenidate rendered activity and connectivity profiles of the patients RIFG near normal. The results of this study indicate that the neural circuitry involved in response inhibition in TBI patients may be partially restored with methylphenidate. Given the known mechanisms of action of methylphenidate, the effect we observed may be due to increased dopamine and noradrenaline levels. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  10. Gender Differences in Behavioral and Neural Responses to Unfairness Under Social Pressure.

    Science.gov (United States)

    Zheng, Li; Ning, Reipeng; Li, Lin; Wei, Chunli; Cheng, Xuemei; Zhou, Chu; Guo, Xiuyan

    2017-10-18

    Numerous studies have revealed the key role of social pressure on individuals' decision-making processes. However, the impact of social pressure on unfairness-related decision-making processes remains unclear. In the present study, we investigated how social pressure modulated men's and women's responses in an ultimatum game. Twenty women and eighteen men played the ultimatum game as responders in the scanner, where fair and unfair offers were tendered by proposers acting alone (low pressure) or by proposers endorsed by three supporters (high pressure). Results showed that men rejected more, whereas women accepted more unfair offers in the high versus low pressure context. Neurally, pregenual anterior cingulate cortex activation in women positively predicted their acceptance rate difference between contexts. In men, stronger right anterior insula activation and increased connectivity between right anterior insula and dorsal anterior cingulate cortex were observed when they receiving unfair offers in the high than low pressure context. Furthermore, more bilateral anterior insula and left dorsolateral prefrontal cortex activations were found when men rejected (relative to accepted) unfair offers in the high than low pressure context. These findings highlighted gender differences in the modulation of behavioral and neural responses to unfairness by social pressure.

  11. Neural dynamics underlying attentional orienting to auditory representations in short-term memory.

    Science.gov (United States)

    Backer, Kristina C; Binns, Malcolm A; Alain, Claude

    2015-01-21

    Sounds are ephemeral. Thus, coherent auditory perception depends on "hearing" back in time: retrospectively attending that which was lost externally but preserved in short-term memory (STM). Current theories of auditory attention assume that sound features are integrated into a perceptual object, that multiple objects can coexist in STM, and that attention can be deployed to an object in STM. Recording electroencephalography from humans, we tested these assumptions, elucidating feature-general and feature-specific neural correlates of auditory attention to STM. Alpha/beta oscillations and frontal and posterior event-related potentials indexed feature-general top-down attentional control to one of several coexisting auditory representations in STM. Particularly, task performance during attentional orienting was correlated with alpha/low-beta desynchronization (i.e., power suppression). However, attention to one feature could occur without simultaneous processing of the second feature of the representation. Therefore, auditory attention to memory relies on both feature-specific and feature-general neural dynamics. Copyright © 2015 the authors 0270-6474/15/351307-12$15.00/0.

  12. Engineering applications of fpgas chaotic systems, artificial neural networks, random number generators, and secure communication systems

    CERN Document Server

    Tlelo-Cuautle, Esteban; de la Fraga, Luis Gerardo

    2016-01-01

    This book offers readers a clear guide to implementing engineering applications with FPGAs, from the mathematical description to the hardware synthesis, including discussion of VHDL programming and co-simulation issues. Coverage includes FPGA realizations such as: chaos generators that are described from their mathematical models; artificial neural networks (ANNs) to predict chaotic time series, for which a discussion of different ANN topologies is included, with different learning techniques and activation functions; random number generators (RNGs) that are realized using different chaos generators, and discussions of their maximum Lyapunov exponent values and entropies. Finally, optimized chaotic oscillators are synchronized and realized to implement a secure communication system that processes black and white and grey-scale images. In each application, readers will find VHDL programming guidelines and computer arithmetic issues, along with co-simulation examples with Active-HDL and Simulink. Readers will b...

  13. Neural Systems Mediating Seasonal Breeding in the Ewe

    Science.gov (United States)

    Goodman, R. L.; Jansen, H.T.; Billings, H. J.; Coolen, L.M.; Lehman, M. N.

    2010-01-01

    Seasonal reproduction in ewes is caused by a dramatic increase in response to oestradiol (E2) negative feedback during the non-breeding (anoestrous) season. Considerable evidence supports the hypothesis that A15 dopaminergic (DA) neurones in the retrochiasmatic area (RCh) play a key role in these seasonal changes. These A15 neurones are stimulated by E2 and inhibit GnRH secretion in anoestrus, but not the breeding season. Because A15 neurones do not contain estrogen receptors-α (ERα), it is likely that E2-responsive afferents stimulate their activity when circulating E2 levels increase during anoestrus. Retrograde tract tracing studies identified a limited set of ERα-containing afferents primarily found in four areas (ventromedial preoptic area, RCh, ventromedial and arcuate [ARC] nuclei). Pharmacological and anatomical data are consistent with γ-aminobutyric acid (GABA)- and glutamate-containing afferents controlling A15 activity in anoestrus, with E2 inhibiting GABA and stimulating glutamate release at this time of year. Tract tracing demonstrated that A15 efferents project posteriorly to the median eminence and the ARC, suggesting possible direct actions on GnRH terminals or indirect actions via kisspeptin neurones in the ARC to inhibit GnRH in anoestrus. Identification of this neural circuitry sets the stage for development of specific hypotheses for morphological or transmitter/receptor expression changes that would account for seasonal breeding in ewes. PMID:20456601

  14. Directive Nanophysical Cues for Regenerative Neural Cell Systems

    Science.gov (United States)

    Ayres, Virginia; Tiryaki, Volkan Mujdat; Ahmed, Ijaz; Shreiber, David

    Until recently, implantables such as stents, probes, wafers and scaffolds have been viewed as passive vehicles for the delivery of physical, pharmacological and cellular interventions. Recent research, however, indicates that the physical environments that implantables present supply directive cues in their own right that work in conjunction with biochemical cues and produce a jointly-directed outcome. We will present our research in CNS repairs using advanced scanning probe microscopy, electron microscopies and contact angle measurements to quantitatively describe the nanoscale elasticity, surface roughness, work of adhesion and surface polarity for investigation of scaffold environments. We will also present our research using super-resolution immunocytochemistry and atomic force microscopy to evaluate neural cell morphological responses with associated micro filament, microtubule and intermediate filament expressions, along with results on how and which integrin-family receptors are possibly involved. Finally, we will present our novel application of k-means cluster analysis applied across multiple experimental modalities for quantification of synergistic scaffold properties and cell responses.

  15. Animal Recognition System Based on Convolutional Neural Network

    Directory of Open Access Journals (Sweden)

    Tibor Trnovszky

    2017-01-01

    Full Text Available In this paper, the performances of well-known image recognition methods such as Principal Component Analysis (PCA, Linear Discriminant Analysis (LDA, Local Binary Patterns Histograms (LBPH and Support Vector Machine (SVM are tested and compared with proposed convolutional neural network (CNN for the recognition rate of the input animal images. In our experiments, the overall recognition accuracy of PCA, LDA, LBPH and SVM is demonstrated. Next, the time execution for animal recognition process is evaluated. The all experimental results on created animal database were conducted. This created animal database consist of 500 different subjects (5 classes/ 100 images for each class. The experimental result shows that the PCA features provide better results as LDA and LBPH for large training set. On the other hand, LBPH is better than PCA and LDA for small training data set. For proposed CNN we have obtained a recognition accuracy of 98%. The proposed method based on CNN outperforms the state of the art methods.

  16. Neural systemic impairment from whole-body vibration.

    Science.gov (United States)

    Yan, Ji-Geng; Zhang, Lin-ling; Agresti, Michael; LoGiudice, John; Sanger, James R; Matloub, Hani S; Havlik, Robert

    2015-05-01

    Insidious brain microinjury from motor vehicle-induced whole-body vibration (WBV) has not yet been investigated. For a long time we have believed that WBV would cause cumulative brain microinjury and impair cerebral function, which suggests an important risk factor for motor vehicle accidents and secondary cerebral vascular diseases. Fifty-six Sprague-Dawley rats were divided into seven groups (n = 8): 1) 2-week normal control group, 2) 2-week sham control group (restrained in the tube without vibration), 3) 2-week vibration group (exposed to whole-body vibration at 30 Hz and 0.5g acceleration for 4 hr/day, 5 days/week, for 2 weeks), 4) 4-week sham control group, 5) 4-week vibration group, 6) 8-week sham control group, and 7) 8-week vibration group. At the end point, all rats were evaluated in behavior, physiological, and brain histopathological studies. The cerebral injury from WBV is a cumulative process starting with vasospasm squeezing of the endothelial cells, followed by constriction of the cerebral arteries. After the 4-week vibration, brain neuron apoptosis started. After the 8-week vibration, vacuoles increased further in the brain arteries. Brain capillary walls thickened, mean neuron size was obviously reduced, neuron necrosis became prominent, and wide-ranging chronic cerebral edema was seen. These pathological findings are strongly correlated with neural functional impairments. © 2014 Wiley Periodicals, Inc.

  17. Heartbeat classification system based on neural networks and dimensionality reduction

    Directory of Open Access Journals (Sweden)

    Rodolfo de Figueiredo Dalvi

    Full Text Available Abstract Introduction This paper presents a complete approach for the automatic classification of heartbeats to assist experts in the diagnosis of typical arrhythmias, such as right bundle branch block, left bundle branch block, premature ventricular beats, premature atrial beats and paced beats. Methods A pre-processing step was performed on the electrocardiograms (ECG for baseline removal. Next, a QRS complex detection algorithm was implemented to detect the heartbeats, which contain the primary information that is employed in the classification approach. Next, ECG segmentation was performed, by which a set of features based on the RR interval and the beat waveform morphology were extracted from the ECG signal. The size of the feature vector was reduced by principal component analysis. Finally, the reduced feature vector was employed as the input to an artificial neural network. Results Our approach was tested on the Massachusetts Institute of Technology arrhythmia database. The classification performance on a test set of 18 ECG records of 30 min each achieved an accuracy of 96.97%, a sensitivity of 95.05%, a specificity of 90.88%, a positive predictive value of 95.11%, and a negative predictive value of 92.7%. Conclusion The proposed approach achieved high accuracy for classifying ECG heartbeats and could be used to assist cardiologists in telecardiology services. The main contribution of our classification strategy is in the feature selection step, which reduced classification complexity without major changes in the performance.

  18. An Implantable Wireless Neural Interface System for Simultaneous Recording and Stimulation of Peripheral Nerve with a Single Cuff Electrode

    Directory of Open Access Journals (Sweden)

    Ahnsei Shon

    2017-12-01

    Full Text Available Recently, implantable devices have become widely used in neural prostheses because they eliminate endemic drawbacks of conventional percutaneous neural interface systems. However, there are still several issues to be considered: low-efficiency wireless power transmission; wireless data communication over restricted operating distance with high power consumption; and limited functionality, working either as a neural signal recorder or as a stimulator. To overcome these issues, we suggest a novel implantable wireless neural interface system for simultaneous neural signal recording and stimulation using a single cuff electrode. By using widely available commercial off-the-shelf (COTS components, an easily reconfigurable implantable wireless neural interface system was implemented into one compact module. The implantable device includes a wireless power consortium (WPC-compliant power transmission circuit, a medical implant communication service (MICS-band-based radio link and a cuff-electrode path controller for simultaneous neural signal recording and stimulation. During in vivo experiments with rabbit models, the implantable device successfully recorded and stimulated the tibial and peroneal nerves while communicating with the external device. The proposed system can be modified for various implantable medical devices, especially such as closed-loop control based implantable neural prostheses requiring neural signal recording and stimulation at the same time.

  19. The use of neural networks in the D0 data acquisition system

    International Nuclear Information System (INIS)

    Cutts, D.; Hoftun, J.S.; Sornborger, A.; Astur, R.V.; Johnson, C.R.; Zeller, R.T.

    1989-01-01

    We discuss the possible application of algorithms derived from neural networks to the D0 experiment. The D0 data acquisition system is based on a large farm of MicroVAXes, each independently performing real-time event filtering. A new generation of multiport memories in each MicroVAX node will enable special function processors to have direct access to event data. We describe an exploratory study of back propagation neural networks, such as might be configured in the nodes, for more efficient event filtering. 9 refs., 3 figs., 1 tab

  20. Gapped sequence alignment using artificial neural networks: application to the MHC class I system

    DEFF Research Database (Denmark)

    Andreatta, Massimo; Nielsen, Morten

    2016-01-01

    . On this relatively simple system, we developed a sequence alignment method based on artificial neural networks that allows insertions and deletions in the alignment. Results: We show that prediction methods based on alignments that include insertions and deletions have significantly higher performance than methods...

  1. A New Method for Studying the Periodic System Based on a Kohonen Neural Network

    Science.gov (United States)

    Chen, David Zhekai

    2010-01-01

    A new method for studying the periodic system is described based on the combination of a Kohonen neural network and a set of chemical and physical properties. The classification results are directly shown in a two-dimensional map and easy to interpret. This is one of the major advantages of this approach over other methods reported in the…

  2. Comparable mechanisms for action and language: Neural systems behind intentions, goals and means

    NARCIS (Netherlands)

    Schie, H.T. van; Toni, I.; Bekkering, H.

    2006-01-01

    In this position paper we explore correspondence between neural systems for language and action starting from recent electrophysiological findings on the roles of posterior and frontal areas in goal-directed grasping actions. The paper compares the perceptual and motor organization for action and

  3. Image Classification System Based on Cortical Representations and Unsupervised Neural Network Learning

    NARCIS (Netherlands)

    Petkov, Nikolay

    1995-01-01

    A preprocessor based on a computational model of simple cells in the mammalian primary visual cortex is combined with a self-organising artificial neural network classifier. After learning with a sequence of input images, the output units of the system turn out to correspond to classes of input

  4. A Drone Remote Sensing for Virtual Reality Simulation System for Forest Fires: Semantic Neural Network Approach

    Science.gov (United States)

    Narasimha Rao, Gudikandhula; Jagadeeswara Rao, Peddada; Duvvuru, Rajesh

    2016-09-01

    Wild fires have significant impact on atmosphere and lives. The demand of predicting exact fire area in forest may help fire management team by using drone as a robot. These are flexible, inexpensive and elevated-motion remote sensing systems that use drones as platforms are important for substantial data gaps and supplementing the capabilities of manned aircraft and satellite remote sensing systems. In addition, powerful computational tools are essential for predicting certain burned area in the duration of a forest fire. The reason of this study is to built up a smart system based on semantic neural networking for the forecast of burned areas. The usage of virtual reality simulator is used to support the instruction process of fire fighters and all users for saving of surrounded wild lives by using a naive method Semantic Neural Network System (SNNS). Semantics are valuable initially to have a enhanced representation of the burned area prediction and better alteration of simulation situation to the users. In meticulous, consequences obtained with geometric semantic neural networking is extensively superior to other methods. This learning suggests that deeper investigation of neural networking in the field of forest fires prediction could be productive.

  5. Systematic Self-Regulation of the Neural System Essential for Peak Performance and Wellbeing.

    Science.gov (United States)

    Cassel, Russell N.

    1985-01-01

    Balance and harmony within one's neural system is dynamic and changing, and restoring that balance is essential for peak performance. With a minimum amount of training individuals are able to restore this delicate balance and thereby enhance their own wellbeing. Autogenic feedback training has been demonstrated to be an effective means for…

  6. Neural Fuzzy Inference System-Based Weather Prediction Model and Its Precipitation Predicting Experiment

    Directory of Open Access Journals (Sweden)

    Jing Lu

    2014-11-01

    Full Text Available We propose a weather prediction model in this article based on neural network and fuzzy inference system (NFIS-WPM, and then apply it to predict daily fuzzy precipitation given meteorological premises for testing. The model consists of two parts: the first part is the “fuzzy rule-based neural network”, which simulates sequential relations among fuzzy sets using artificial neural network; and the second part is the “neural fuzzy inference system”, which is based on the first part, but could learn new fuzzy rules from the previous ones according to the algorithm we proposed. NFIS-WPM (High Pro and NFIS-WPM (Ave are improved versions of this model. It is well known that the need for accurate weather prediction is apparent when considering the benefits. However, the excessive pursuit of accuracy in weather prediction makes some of the “accurate” prediction results meaningless and the numerical prediction model is often complex and time-consuming. By adapting this novel model to a precipitation prediction problem, we make the predicted outcomes of precipitation more accurate and the prediction methods simpler than by using the complex numerical forecasting model that would occupy large computation resources, be time-consuming and which has a low predictive accuracy rate. Accordingly, we achieve more accurate predictive precipitation results than by using traditional artificial neural networks that have low predictive accuracy.

  7. A 700mV low power low noise implantable neural recording system design.

    Science.gov (United States)

    An, Guanglei; Hutchens, Chriswell; Rennaker, Robert L

    2014-01-01

    A low power, low noise implantable neural recording interface for use in a Radio-Frequency Identification (RFID) is presented in this paper. A two stage neural amplifier and 8 bit Pipelined Analog to Digital Converter (ADC) are integrated in this system. The optimized number of amplifier stages demonstrates the minimum power and area consumption; The ADC utilizes a novel offset cancellation technique robust to device leakage to reduce the input offset voltage. The neural amplifier and ADC both utilize 700mV power supply. The midband gain of neural amplifier is 58.4dB with a 3dB bandwidth from 0.71 to 8.26 kHz. Measured input-referred noise and total power consumption are 20.7μVrms and 1.90 respectively. The ADC achieves 8 bit accuracy at 16Ksps with an input voltage of ±400mV. Combined simulation and measurement results demonstrate the neural recording interface's suitability for in situ neutral activity recording.

  8. A Low-Cost Maximum Power Point Tracking System Based on Neural Network Inverse Model Controller

    Directory of Open Access Journals (Sweden)

    Carlos Robles Algarín

    2018-01-01

    Full Text Available This work presents the design, modeling, and implementation of a neural network inverse model controller for tracking the maximum power point of a photovoltaic (PV module. A nonlinear autoregressive network with exogenous inputs (NARX was implemented in a serial-parallel architecture. The PV module mathematical modeling was developed, a buck converter was designed to operate in the continuous conduction mode with a switching frequency of 20 KHz, and the dynamic neural controller was designed using the Neural Network Toolbox from Matlab/Simulink (MathWorks, Natick, MA, USA, and it was implemented on an open-hardware Arduino Mega board. To obtain the reference signals for the NARX and determine the 65 W PV module behavior, a system made of a 0.8 W PV cell, a temperature sensor, a voltage sensor and a static neural network, was used. To evaluate performance a comparison with the P&O traditional algorithm was done in terms of response time and oscillations around the operating point. Simulation results demonstrated the superiority of neural controller over the P&O. Implementation results showed that approximately the same power is obtained with both controllers, but the P&O controller presents oscillations between 7 W and 10 W, in contrast to the inverse controller, which had oscillations between 1 W and 2 W.

  9. Language Learning Enhanced by Massive Multiple Online Role-Playing Games (MMORPGs) and the Underlying Behavioral and Neural Mechanisms.

    Science.gov (United States)

    Zhang, Yongjun; Song, Hongwen; Liu, Xiaoming; Tang, Dinghong; Chen, Yue-E; Zhang, Xiaochu

    2017-01-01

    Massive Multiple Online Role-Playing Games (MMORPGs) have increased in popularity among children, juveniles, and adults since MMORPGs' appearance in this digital age. MMORPGs can be applied to enhancing language learning, which is drawing researchers' attention from different fields and many studies have validated MMORPGs' positive effect on language learning. However, there are few studies on the underlying behavioral or neural mechanism of such effect. This paper reviews the educational application of the MMORPGs based on relevant macroscopic and microscopic studies, showing that gamers' overall language proficiency or some specific language skills can be enhanced by real-time online interaction with peers and game narratives or instructions embedded in the MMORPGs. Mechanisms underlying the educational assistant role of MMORPGs in second language learning are discussed from both behavioral and neural perspectives. We suggest that attentional bias makes gamers/learners allocate more cognitive resources toward task-related stimuli in a controlled or an automatic way. Moreover, with a moderating role played by activation of reward circuit, playing the MMORPGs may strengthen or increase functional connectivity from seed regions such as left anterior insular/frontal operculum (AI/FO) and visual word form area to other language-related brain areas.

  10. Language Learning Enhanced by Massive Multiple Online Role-Playing Games (MMORPGs) and the Underlying Behavioral and Neural Mechanisms

    Science.gov (United States)

    Zhang, Yongjun; Song, Hongwen; Liu, Xiaoming; Tang, Dinghong; Chen, Yue-e; Zhang, Xiaochu

    2017-01-01

    Massive Multiple Online Role-Playing Games (MMORPGs) have increased in popularity among children, juveniles, and adults since MMORPGs’ appearance in this digital age. MMORPGs can be applied to enhancing language learning, which is drawing researchers’ attention from different fields and many studies have validated MMORPGs’ positive effect on language learning. However, there are few studies on the underlying behavioral or neural mechanism of such effect. This paper reviews the educational application of the MMORPGs based on relevant macroscopic and microscopic studies, showing that gamers’ overall language proficiency or some specific language skills can be enhanced by real-time online interaction with peers and game narratives or instructions embedded in the MMORPGs. Mechanisms underlying the educational assistant role of MMORPGs in second language learning are discussed from both behavioral and neural perspectives. We suggest that attentional bias makes gamers/learners allocate more cognitive resources toward task-related stimuli in a controlled or an automatic way. Moreover, with a moderating role played by activation of reward circuit, playing the MMORPGs may strengthen or increase functional connectivity from seed regions such as left anterior insular/frontal operculum (AI/FO) and visual word form area to other language-related brain areas. PMID:28303097

  11. Design and Implementation of Behavior Recognition System Based on Convolutional Neural Network

    Directory of Open Access Journals (Sweden)

    Yu Bo

    2017-01-01

    Full Text Available We build a set of human behavior recognition system based on the convolution neural network constructed for the specific human behavior in public places. Firstly, video of human behavior data set will be segmented into images, then we process the images by the method of background subtraction to extract moving foreground characters of body. Secondly, the training data sets are trained into the designed convolution neural network, and the depth learning network is constructed by stochastic gradient descent. Finally, the various behaviors of samples are classified and identified with the obtained network model, and the recognition results are compared with the current mainstream methods. The result show that the convolution neural network can study human behavior model automatically and identify human’s behaviors without any manually annotated trainings.

  12. Fault Analysis of Space Station DC Power Systems-Using Neural Network Adaptive Wavelets to Detect Faults

    Science.gov (United States)

    Momoh, James A.; Wang, Yanchun; Dolce, James L.

    1997-01-01

    This paper describes the application of neural network adaptive wavelets for fault diagnosis of space station power system. The method combines wavelet transform with neural network by incorporating daughter wavelets into weights. Therefore, the wavelet transform and neural network training procedure become one stage, which avoids the complex computation of wavelet parameters and makes the procedure more straightforward. The simulation results show that the proposed method is very efficient for the identification of fault locations.

  13. A novel joint-processing adaptive nonlinear equalizer using a modular recurrent neural network for chaotic communication systems.

    Science.gov (United States)

    Zhao, Haiquan; Zeng, Xiangping; Zhang, Jiashu; Liu, Yangguang; Wang, Xiaomin; Li, Tianrui

    2011-01-01

    To eliminate nonlinear channel distortion in chaotic communication systems, a novel joint-processing adaptive nonlinear equalizer based on a pipelined recurrent neural network (JPRNN) is proposed, using a modified real-time recurrent learning (RTRL) algorithm. Furthermore, an adaptive amplitude RTRL algorithm is adopted to overcome the deteriorating effect introduced by the nesting process. Computer simulations illustrate that the proposed equalizer outperforms the pipelined recurrent neural network (PRNN) and recurrent neural network (RNN) equalizers. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Shades of grey; Assessing the contribution of the magno- and parvocellular systems to neural processing of the retinal input in the human visual system from the influence of neural population size and its discharge activity on the VEP.

    Science.gov (United States)

    Marcar, Valentine L; Baselgia, Silvana; Lüthi-Eisenegger, Barbara; Jäncke, Lutz

    2018-03-01

    Retinal input processing in the human visual system involves a phasic and tonic neural response. We investigated the role of the magno- and parvocellular systems by comparing the influence of the active neural population size and its discharge activity on the amplitude and latency of four VEP components. We recorded the scalp electric potential of 20 human volunteers viewing a series of dartboard images presented as a pattern reversing and pattern on-/offset stimulus. These patterns were designed to vary both neural population size coding the temporal- and spatial luminance contrast property and the discharge activity of the population involved in a systematic manner. When the VEP amplitude reflected the size of the neural population coding the temporal luminance contrast property of the image, the influence of luminance contrast followed the contrast response function of the parvocellular system. When the VEP amplitude reflected the size of the neural population responding to the spatial luminance contrast property the image, the influence of luminance contrast followed the contrast response function of the magnocellular system. The latencies of the VEP components examined exhibited the same behavior across our stimulus series. This investigation demonstrates the complex interplay of the magno- and parvocellular systems on the neural response as captured by the VEP. It also demonstrates a linear relationship between stimulus property, neural response, and the VEP and reveals the importance of feedback projections in modulating the ongoing neural response. In doing so, it corroborates the conclusions of our previous study.

  15. Neural Mechanisms Underlying Affective Theory of Mind in Violent Antisocial Personality Disorder and/or Schizophrenia.

    Science.gov (United States)

    Schiffer, Boris; Pawliczek, Christina; Müller, Bernhard W; Wiltfang, Jens; Brüne, Martin; Forsting, Michael; Gizewski, Elke R; Leygraf, Norbert; Hodgins, Sheilagh

    2017-10-21

    Among violent offenders with schizophrenia, there are 2 sub-groups, one with and one without, conduct disorder (CD) and antisocial personality disorder (ASPD), who differ as to treatment response and alterations of brain structure. The present study aimed to determine whether the 2 groups also differ in Theory of Mind and neural activations subsuming this task. Five groups of men were compared: 3 groups of violent offenders-schizophrenia plus CD/ASPD, schizophrenia with no history of antisocial behavior prior to illness onset, and CD/ASPD with no severe mental illness-and 2 groups of non-offenders, one with schizophrenia and one without (H). Participants completed diagnostic interviews, the Psychopathy Checklist Screening Version Interview, the Interpersonal Reactivity Index, authorized access to clinical and criminal files, and underwent functional magnetic resonance imaging while completing an adapted version of the Reading-the-Mind-in-the-Eyes Task (RMET). Relative to H, nonviolent and violent men with schizophrenia and not CD/ASPD performed more poorly on the RMET, while violent offenders with CD/ASPD, both those with and without schizophrenia, performed similarly. The 2 groups of violent offenders with CD/ASPD, both those with and without schizophrenia, relative to the other groups, displayed higher levels of activation in a network of prefrontal and temporal-parietal regions and reduced activation in the amygdala. Relative to men without CD/ASPD, both groups of violent offenders with CD/ASPD displayed a distinct pattern of neural responses during emotional/mental state attribution pointing to distinct and comparatively successful processing of social information. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Estimation of lost circulation amount occurs during under balanced drilling using drilling data and neural network

    Directory of Open Access Journals (Sweden)

    Pouria Behnoud far

    2017-09-01

    Full Text Available Lost circulation can cause an increase in time and cost of operation. Pipe sticking, formation damage and uncontrolled flow of oil and gas may be consequences of lost circulation. Dealing with this problem is a key factor to conduct a successful drilling operation. Estimation of lost circulation amount is necessary to find a solution. Lost circulation is influenced by different parameters such as mud weight, pump pressure, depth etc. Mud weight, pump pressure and flow rate of mud should be designed to prevent induced fractures and have the least amount of lost circulation. Artificial neural network is useful to find the relations of parameters with lost circulation. Genetic algorithm is applied on the achieved relations to determine the optimum mud weight, pump pressure, and flow rate. In an Iranian oil field, daily drilling reports of wells which are drilled using UBD technique are studied. Asmari formation is the most important oil reservoir of the studied field and UBD is used only in this interval. Three wells with the most, moderate and without lost circulation are chosen. In this article, the effect of mud weight, depth, pump pressure and flow rate of pump on lost circulation in UBD of Asmari formation in one of the Southwest Iranian fields is studied using drilling data and artificial neural network. In addition, the amount of lost circulation is predicted precisely with respect to two of the studied parameters using the presented correlations and the optimum mud weight, pump pressure and flow rate are calculated to minimize the lost circulation amount.

  17. Stochastic Oscillation in Self-Organized Critical States of Small Systems: Sensitive Resting State in Neural Systems.

    Science.gov (United States)

    Wang, Sheng-Jun; Ouyang, Guang; Guang, Jing; Zhang, Mingsha; Wong, K Y Michael; Zhou, Changsong

    2016-01-08

    Self-organized critical states (SOCs) and stochastic oscillations (SOs) are simultaneously observed in neural systems, which appears to be theoretically contradictory since SOCs are characterized by scale-free avalanche sizes but oscillations indicate typical scales. Here, we show that SOs can emerge in SOCs of small size systems due to temporal correlation between large avalanches at the finite-size cutoff, resulting from the accumulation-release process in SOCs. In contrast, the critical branching process without accumulation-release dynamics cannot exhibit oscillations. The reconciliation of SOCs and SOs is demonstrated both in the sandpile model and robustly in biologically plausible neuronal networks. The oscillations can be suppressed if external inputs eliminate the prominent slow accumulation process, providing a potential explanation of the widely studied Berger effect or event-related desynchronization in neural response. The features of neural oscillations and suppression are confirmed during task processing in monkey eye-movement experiments. Our results suggest that finite-size, columnar neural circuits may play an important role in generating neural oscillations around the critical states, potentially enabling functional advantages of both SOCs and oscillations for sensitive response to transient stimuli.

  18. Neural Network Training by Integration of Adjoint Systems of Equations Forward in Time

    Science.gov (United States)

    Toomarian, Nikzad (Inventor); Barhen, Jacob (Inventor)

    1999-01-01

    A method and apparatus for supervised neural learning of time dependent trajectories exploits the concepts of adjoint operators to enable computation of the gradient of an objective functional with respect to the various parameters of the network architecture in a highly efficient manner. Specifically. it combines the advantage of dramatic reductions in computational complexity inherent in adjoint methods with the ability to solve two adjoint systems of equations together forward in time. Not only is a large amount of computation and storage saved. but the handling of real-time applications becomes also possible. The invention has been applied it to two examples of representative complexity which have recently been analyzed in the open literature and demonstrated that a circular trajectory can be learned in approximately 200 iterations compared to the 12000 reported in the literature. A figure eight trajectory was achieved in under 500 iterations compared to 20000 previously required. Tbc trajectories computed using our new method are much closer to the target trajectories than was reported in previous studies.

  19. Identification of complex systems by artificial neural networks. Applications to mechanical frictions

    International Nuclear Information System (INIS)

    Dominguez, Manuel

    1998-01-01

    In the frame of complex systems modelization, we describe in this report the contribution of neural networks to mechanical friction modelization. This thesis is divided in three parts, each one corresponding to every stage of the realized work. The first part takes stock of the properties of neural networks by replacing them in the statistic frame of learning theory (particularly: non-linear and non-parametric regression models) and by showing the existing links with other more 'classic' techniques from automatics. We show then how identification models can be integrated in the neural networks description as a larger nonlinear model class. A methodology of neural networks use have been developed. We focused on validation techniques using correlation functions for non-linear systems, and on the use of regularization methods. The second part deals with the problematic of friction in mechanical systems. Particularly, we present the main current identified physical phenomena, which are integrated in advanced friction modelization. Characterization of these phenomena allows us to state a priori knowledge to be used in the identification stage. We expose some of the most well-known friction models: Dahl's model, Reset Integrator and Canuda's dynamical model, which are then used in simulation studies. The last part links the former one by illustrating a real-world application: an electric jack from SFIM-Industries, used in the Very Large Telescope (VLT) control scheme. This part begins with physical system presentation. The results are compared with more 'classic' methods. We finish using neural networks compensation scheme in closed-loop control. (author) [fr

  20. DEVELOPMENT OF A COMPUTER SYSTEM FOR IDENTITY AUTHENTICATION USING ARTIFICIAL NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Timur Kartbayev

    2017-03-01

    Full Text Available The aim of the study is to increase the effectiveness of automated face recognition to authenticate identity, considering features of change of the face parameters over time. The improvement of the recognition accuracy, as well as consideration of the features of temporal changes in a human face can be based on the methodology of artificial neural networks. Hybrid neural networks, combining the advantages of classical neural networks and fuzzy logic systems, allow using the network learnability along with the explanation of the findings. The structural scheme of intelligent system for identification based on artificial neural networks is proposed in this work. It realizes the principles of digital information processing and identity recognition taking into account the forecast of key characteristics’ changes over time (e.g., due to aging. The structural scheme has a three-tier architecture and implements preliminary processing, recognition and identification of images obtained as a result of monitoring. On the basis of expert knowledge, the fuzzy base of products is designed. It allows assessing possible changes in key characteristics, used to authenticate identity based on the image. To take this possibility into consideration, a neuro-fuzzy network of ANFIS type was used, which implements the algorithm of Tagaki-Sugeno. The conducted experiments showed high efficiency of the developed neural network and a low value of learning errors, which allows recommending this approach for practical implementation. Application of the developed system of fuzzy production rules that allow predicting changes in individuals over time, will improve the recognition accuracy, reduce the number of authentication failures and improve the efficiency of information processing and decision-making in applications, such as authentication of bank customers, users of mobile applications, or in video monitoring systems of sensitive sites.

  1. Robustness of a Neural Network Model for Power Peak Factor Estimation in Protection Systems

    International Nuclear Information System (INIS)

    Souza, Rose Mary G.P.; Moreira, Joao M.L.

    2006-01-01

    This work presents results of robustness verification of artificial neural network correlations that improve the real time prediction of the power peak factor for reactor protection systems. The input variables considered in the correlation are those available in the reactor protection systems, namely, the axial power differences obtained from measured ex-core detectors, and the position of control rods. The correlations, based on radial basis function (RBF) and multilayer perceptron (MLP) neural networks, estimate the power peak factor, without faulty signals, with average errors between 0.13%, 0.19% and 0.15%, and maximum relative error of 2.35%. The robustness verification was performed for three different neural network correlations. The results show that they are robust against signal degradation, producing results with faulty signals with a maximum error of 6.90%. The average error associated to faulty signals for the MLP network is about half of that of the RBF network, and the maximum error is about 1% smaller. These results demonstrate that MLP neural network correlation is more robust than the RBF neural network correlation. The results also show that the input variables present redundant information. The axial power difference signals compensate the faulty signal for the position of a given control rod, and improves the results by about 10%. The results show that the errors in the power peak factor estimation by these neural network correlations, even in faulty conditions, are smaller than the current PWR schemes which may have uncertainties as high as 8%. Considering the maximum relative error of 2.35%, these neural network correlations would allow decreasing the power peak factor safety margin by about 5%. Such a reduction could be used for operating the reactor with a higher power level or with more flexibility. The neural network correlation has to meet requirements of high integrity software that performs safety grade actions. It is shown that the

  2. Command Filtered Adaptive Fuzzy Neural Network Backstepping Control for Marine Power System

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2014-01-01

    Full Text Available In order to retrain chaotic oscillation of marine power system which is excited by periodic electromagnetism perturbation, a novel command-filtered adaptive fuzzy neural network backstepping control method is designed. First, the mathematical model of marine power system is established based on the two parallel nonlinear model. Then, main results of command-filtered adaptive fuzzy neural network backstepping control law are given. And the Lyapunov stability theory is applied to prove that the system can remain closed-loop asymptotically stable with this controller. Finally, simulation results indicate that the designed controller can suppress chaotic oscillation with fast convergence speed that makes the system return to the equilibrium point quickly; meanwhile, the parameter which induces chaotic oscillation can also be discriminated.

  3. Silicon synaptic transistor for hardware-based spiking neural network and neuromorphic system

    Science.gov (United States)

    Kim, Hyungjin; Hwang, Sungmin; Park, Jungjin; Park, Byung-Gook

    2017-10-01

    Brain-inspired neuromorphic systems have attracted much attention as new computing paradigms for power-efficient computation. Here, we report a silicon synaptic transistor with two electrically independent gates to realize a hardware-based neural network system without any switching components. The spike-timing dependent plasticity characteristics of the synaptic devices are measured and analyzed. With the help of the device model based on the measured data, the pattern recognition capability of the hardware-based spiking neural network systems is demonstrated using the modified national institute of standards and technology handwritten dataset. By comparing systems with and without inhibitory synapse part, it is confirmed that the inhibitory synapse part is an essential element in obtaining effective and high pattern classification capability.

  4. Constrained adaptive neural network control of an MIMO aeroelastic system with input nonlinearities

    Directory of Open Access Journals (Sweden)

    Yiyong Gou

    2017-04-01

    Full Text Available A constrained adaptive neural network control scheme is proposed for a multi-input and multi-output (MIMO aeroelastic system in the presence of wind gust, system uncertainties, and input nonlinearities consisting of input saturation and dead-zone. In regard to the input nonlinearities, the right inverse function block of the dead-zone is added before the input nonlinearities, which simplifies the input nonlinearities into an equivalent input saturation. To deal with the equivalent input saturation, an auxiliary error system is designed to compensate for the impact of the input saturation. Meanwhile, uncertainties in pitch stiffness, plunge stiffness, and pitch damping are all considered, and radial basis function neural networks (RBFNNs are applied to approximate the system uncertainties. In combination with the designed auxiliary error system and the backstepping control technique, a constrained adaptive neural network controller is designed, and it is proven that all the signals in the closed-loop system are semi-globally uniformly bounded via the Lyapunov stability analysis method. Finally, extensive digital simulation results demonstrate the effectiveness of the proposed control scheme towards flutter suppression in spite of the integrated effects of wind gust, system uncertainties, and input nonlinearities.

  5. Robust fault detection of wind energy conversion systems based on dynamic neural networks.

    Science.gov (United States)

    Talebi, Nasser; Sadrnia, Mohammad Ali; Darabi, Ahmad

    2014-01-01

    Occurrence of faults in wind energy conversion systems (WECSs) is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a fault detection system (FDS) is required. Recurrent neural networks (RNNs) have gained a noticeable position in FDSs and they have been widely used for modeling of complex dynamical systems. One method for designing an FDS is to prepare a dynamic neural model emulating the normal system behavior. By comparing the outputs of the real system and neural model, incidence of the faults can be identified. In this paper, by utilizing a comprehensive dynamic model which contains both mechanical and electrical components of the WECS, an FDS is suggested using dynamic RNNs. The presented FDS detects faults of the generator's angular velocity sensor, pitch angle sensors, and pitch actuators. Robustness of the FDS is achieved by employing an adaptive threshold. Simulation results show that the proposed scheme is capable to detect the faults shortly and it has very low false and missed alarms rate.

  6. Review of Data Preprocessing Methods for Sign Language Recognition Systems based on Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Zorins Aleksejs

    2016-12-01

    Full Text Available The article presents an introductory analysis of relevant research topic for Latvian deaf society, which is the development of the Latvian Sign Language Recognition System. More specifically the data preprocessing methods are discussed in the paper and several approaches are shown with a focus on systems based on artificial neural networks, which are one of the most successful solutions for sign language recognition task.

  7. A neural network approach to the study of internal energy flow in molecular systems

    International Nuclear Information System (INIS)

    Sumpter, B.G.; Getino, C.; Noid, D.W.

    1992-01-01

    Neural networks are used to develop a new technique for efficient analysis of data obtained from molecular-dynamics calculations and is applied to the study of mode energy flow in molecular systems. The methodology is based on teaching an appropriate neural network the relationship between phase-space points along a classical trajectory and mode energies for stretch, bend, and torsion vibrations. Results are discussed for reactive and nonreactive classical trajectories of hydrogen peroxide (H 2 O 2 ) on a semiempirical potential-energy surface. The neural-network approach is shown to produce reasonably accurate values for the mode energies, with average errors between 1% and 12%, and is applicable to any region within the 24-dimensional phase space of H 2 O 2 . In addition, the generic knowledge learned by the neural network allows calculations to be made for other molecular systems. Results are discussed for a series of tetratomic molecules: H 2 X 2 , X=C, N, O, Si, S, or Se, and preliminary results are given for energy flow predictions in macromolecules

  8. Integrated on-line plant monitoring system for HTTR using neural networks

    International Nuclear Information System (INIS)

    Nabeshima, Kunihiko; Subekti, Muhammad; Matsuishi, Tomomi; Makino, Jun; Ohno, Tomio; Kudo, Kazuhiko; Nakagawa, Shigeaki

    2007-01-01

    The neural networks have been utilized in on-line monitoring-system of High Temperature Engineering Tested Reactor (HTTR) with thermal power of 30 MW. In this system, several neural networks can independently model the plant dynamics with different architecture, input and output signals and learning algorithm. Monitoring task of each neural network is also different, respectively. Those parallel method applications require distributed architecture of computer network for performing real-time tasks. One of main task is real-time monitoring by Multi-Layer Perceptron (MLP) in auto-associative mode, which can model and estimate the whole plant dynamics by training normal operational data only. The basic principle of the anomaly detection is to monitor the difference between process signals measured from the actual plant and the corresponding values estimated by MLP. Other tasks are on-line reactivity prediction, reactivity and helium leak monitoring, respectively. From the on-line test results, each neural network shows good prediction and reliable detection performances. (author)

  9. Integrated on-line plant monitoring system for HTTR with neural networks

    International Nuclear Information System (INIS)

    Nabeshima, Kunihiko; Nakagawa, Shigeaki; Subekti, Muhammad; Matsuishi, Tomomi; Ohno, Tomio; Kudo, Kazuhiko

    2008-01-01

    The neural networks have been utilized in on-line monitoring-system of High Temperature Engineering Tested Reactor (HTTR) with thermal power of 30 MW. In this system, several neural networks can independently model the plant dynamics with different architecture, input and output signals and learning algorithm. Monitoring task of each neural network is also different, respectively. Those parallel method applications require distributed architecture of computer network for performing real-time tasks. One of main task is real-time plant monitoring by Multi-Layer Perceptron (MLP) in auto-associative mode, which can model and estimate the whole plant dynamics by training normal operational data only. The basic principle of the anomaly detection is to monitor the difference between process signals measured from the actual plant and the corresponding values estimated by MLP. Other tasks are on-line reactivity prediction, reactivity and helium leak monitoring, respectively. From the on-line monitoring results at the safety demonstration tests, each neural network shows good prediction and reliable detection performances. (author)

  10. Computation and dissipative dynamical systems in neural networks for classification

    NARCIS (Netherlands)

    van der Velde, Frank; van der Velde, Frank

    2015-01-01

    Foundational issues related to learning, processing and representation underlying pattern recognition have been discussed in history and in recent times. The scientific approach to pattern recognition could provide new tools to investigate these foundational issues, which in turn could inform the

  11. Central Neural Control of the Cardiovascular System: Current Perspectives

    Science.gov (United States)

    Dampney, Roger A. L.

    2016-01-01

    This brief review, which is based on a lecture presented at the American Physiological Society Teaching Refresher Course on the Brain and Systems Control as part of the Experimental Biology meeting in 2015, aims to summarize current concepts of the principal mechanisms in the brain that regulate the autonomic outflow to the cardiovascular system.…

  12. Plasticity and Neural Stem Cells in the Enteric Nervous System

    NARCIS (Netherlands)

    Schaefer, Karl-Herbert; Van Ginneken, Chris; Copray, Sjef

    2009-01-01

    The enteric nervous system (ENS) is a highly organized part of the autonomic nervous system, which innervates the whole gastrointestinal tract by several interconnected neuronal networks. The ENS changes during development and keeps throughout its lifespan a significant capacity to adapt to

  13. [Calculation of soil water erosion modulus based on RUSLE and its assessment under support of artificial neural network].

    Science.gov (United States)

    Li, Yuhuan; Wang, Jing; Zhang, Jixian

    2006-06-01

    With Hengshan County of Shanxi Province in the North Loess Plateau as an example, and by using ETM + and remote sensing data and RUSLE module, this paper quantitatively derived the soil and water loss in loess hilly region based on "3S" technology, and assessed the derivation results under the support of artificial neural network. The results showed that the annual average erosion modulus of Hengshan County was 103.23 t x hm(-2), and the gross erosion loss per year was 4. 38 x 10(7) t. The erosion was increased from northwest to southeast, and varied significantly with topographic position. A slight erosion or no erosion happened in walled basin, flat-headed mountain ridges and sandy area, which always suffered from dropping erosion, while strip erosion often happened on the upslope of mountain ridge and mountaintop flat. Moderate rill erosion always occurred on the middle and down slope of mountain ridge and mountaintop flat, and weighty rushing erosion occurred on the steep ravine and brink. The RUSLE model and artificial neural network technique were feasible and could be propagandized for drainage areas control and preserved practice.

  14. Neural sensitivity to statistical regularities as a fundamental biological process that underlies auditory learning: the role of musical practice.

    Science.gov (United States)

    François, Clément; Schön, Daniele

    2014-02-01

    There is increasing evidence that humans and other nonhuman mammals are sensitive to the statistical structure of auditory input. Indeed, neural sensitivity to statistical regularities seems to be a fundamental biological property underlying auditory learning. In the case of speech, statistical regularities play a crucial role in the acquisition of several linguistic features, from phonotactic to more complex rules such as morphosyntactic rules. Interestingly, a similar sensitivity has been shown with non-speech streams: sequences of sounds changing in frequency or timbre can be segmented on the sole basis of conditional probabilities between adjacent sounds. We recently ran a set of cross-sectional and longitudinal experiments showing that merging music and speech information in song facilitates stream segmentation and, further, that musical practice enhances sensitivity to statistical regularities in speech at both neural and behavioral levels. Based on recent findings showing the involvement of a fronto-temporal network in speech segmentation, we defend the idea that enhanced auditory learning observed in musicians originates via at least three distinct pathways: enhanced low-level auditory processing, enhanced phono-articulatory mapping via the left Inferior Frontal Gyrus and Pre-Motor cortex and increased functional connectivity within the audio-motor network. Finally, we discuss how these data predict a beneficial use of music for optimizing speech acquisition in both normal and impaired populations. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. A wireless transmission neural interface system for unconstrained non-human primates

    Science.gov (United States)

    Fernandez-Leon, Jose A.; Parajuli, Arun; Franklin, Robert; Sorenson, Michael; Felleman, Daniel J.; Hansen, Bryan J.; Hu, Ming; Dragoi, Valentin

    2015-10-01

    Objective. Studying the brain in large animal models in a restrained laboratory rig severely limits our capacity to examine brain circuits in experimental and clinical applications. Approach. To overcome these limitations, we developed a high-fidelity 96-channel wireless system to record extracellular spikes and local field potentials from the neocortex. A removable, external case of the wireless device is attached to a titanium pedestal placed in the animal skull. Broadband neural signals are amplified, multiplexed, and continuously transmitted as TCP/IP data at a sustained rate of 24 Mbps. A Xilinx Spartan 6 FPGA assembles the digital signals into serial data frames for transmission at 20 kHz though an 802.11n wireless data link on a frequency-shift key-modulated signal at 5.7-5.8 GHz to a receiver up to 10 m away. The system is powered by two CR123A, 3 V batteries for 2 h of operation. Main results. We implanted a multi-electrode array in visual area V4 of one anesthetized monkey (Macaca fascicularis) and in the dorsolateral prefrontal cortex (dlPFC) of a freely moving monkey (Macaca mulatta). The implanted recording arrays were electrically stable and delivered broadband neural data over a year of testing. For the first time, we compared dlPFC neuronal responses to the same set of stimuli (food reward) in restrained and freely moving conditions. Although we did not find differences in neuronal responses as a function of reward type in the restrained and unrestrained conditions, there were significant differences in correlated activity. This demonstrates that measuring neural responses in freely moving animals can capture phenomena that are absent in the traditional head-fixed paradigm. Significance. We implemented a wireless neural interface for multi-electrode recordings in freely moving non-human primates, which can potentially move systems neuroscience to a new direction by allowing one to record neural signals while animals interact with their environment.

  16. Application of hierarchical dissociated neural network in closed-loop hybrid system integrating biological and mechanical intelligence.

    Science.gov (United States)

    Li, Yongcheng; Sun, Rong; Zhang, Bin; Wang, Yuechao; Li, Hongyi

    2015-01-01

    Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including 'random' and '4Q' (cultured neurons artificially divided into four interconnected parts) neural network. Compared to the random cultures, the '4Q' cultures presented absolutely different activities, and the robot controlled by the '4Q' network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems.

  17. Application of hierarchical dissociated neural network in closed-loop hybrid system integrating biological and mechanical intelligence.

    Directory of Open Access Journals (Sweden)

    Yongcheng Li

    Full Text Available Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including 'random' and '4Q' (cultured neurons artificially divided into four interconnected parts neural network. Compared to the random cultures, the '4Q' cultures presented absolutely different activities, and the robot controlled by the '4Q' network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems.

  18. Reliability of dynamic systems under limited information.

    Energy Technology Data Exchange (ETDEWEB)

    Field, Richard V., Jr. (.,; .); Grigoriu, Mircea

    2006-09-01

    A method is developed for reliability analysis of dynamic systems under limited information. The available information includes one or more samples of the system output; any known information on features of the output can be used if available. The method is based on the theory of non-Gaussian translation processes and is shown to be particularly suitable for problems of practical interest. For illustration, we apply the proposed method to a series of simple example problems and compare with results given by traditional statistical estimators in order to establish the accuracy of the method. It is demonstrated that the method delivers accurate results for the case of linear and nonlinear dynamic systems, and can be applied to analyze experimental data and/or mathematical model outputs. Two complex applications of direct interest to Sandia are also considered. First, we apply the proposed method to assess design reliability of a MEMS inertial switch. Second, we consider re-entry body (RB) component vibration response during normal re-entry, where the objective is to estimate the time-dependent probability of component failure. This last application is directly relevant to re-entry random vibration analysis at Sandia, and may provide insights on test-based and/or model-based qualification of weapon components for random vibration environments.

  19. Artificial neural networks based estimation of optical parameters by diffuse reflectance imaging under in vitro conditions

    Directory of Open Access Journals (Sweden)

    Mahmut Ozan Gökkan

    2017-01-01

    Full Text Available Optical parameters (properties of tissue-mimicking phantoms are determined through noninvasive optical imaging. Objective of this study is to decompose obtained diffuse reflectance into these optical properties such as absorption and scattering coefficients. To do so, transmission spectroscopy is firstly used to measure the coefficients via an experimental setup. Next, the optical properties of each characterized phantom are input for Monte Carlo (MC simulations to get diffuse reflectance. Also, a surface image for each single phantom with its known optical properties is obliquely captured due to reflectance-based geometrical setup using CMOS camera that is positioned at 5∘ angle to the phantoms. For the illumination of light, a laser light source at 633nm wavelength is preferred, because optical properties of different components in a biological tissue on that wavelength are nonoverlapped. During in vitro measurements, we prepared 30 different mixture samples adding clinoleic intravenous lipid emulsion (CILE and evans blue (EB dye into a distilled water. Finally, all obtained diffuse reflectance values are used to estimate the optical coefficients by artificial neural networks (ANNs in inverse modeling. For a biological tissue it is found that the simulated and measured values in our results are in good agreement.

  20. Neural mechanisms underlying valence inferences to sound: The role of the right angular gyrus.

    Science.gov (United States)

    Bravo, Fernando; Cross, Ian; Hawkins, Sarah; Gonzalez, Nadia; Docampo, Jorge; Bruno, Claudio; Stamatakis, Emmanuel Andreas

    2017-07-28

    We frequently infer others' intentions based on non-verbal auditory cues. Although the brain underpinnings of social cognition have been extensively studied, no empirical work has yet examined the impact of musical structure manipulation on the neural processing of emotional valence during mental state inferences. We used a novel sound-based theory-of-mind paradigm in which participants categorized stimuli of different sensory dissonance level in terms of positive/negative valence. Whilst consistent with previous studies which propose facilitated encoding of consonances, our results demonstrated that distinct levels of consonance/dissonance elicited differential influences on the right angular gyrus, an area implicated in mental state attribution and attention reorienting processes. Functional and effective connectivity analyses further showed that consonances modulated a specific inhibitory interaction from associative memory to mental state attribution substrates. Following evidence suggesting that individuals with autism may process social affective cues differently, we assessed the relationship between participants' task performance and self-reported autistic traits in clinically typical adults. Higher scores on the social cognition scales of the AQ were associated with deficits in recognising positive valence in consonant sound cues. These findings are discussed with respect to Bayesian perspectives on autistic perception, which highlight a functional failure to optimize precision in relation to prior beliefs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Neural oscillatory mechanisms during novel grammar learning underlying language analytical abilities.

    Science.gov (United States)

    Kepinska, Olga; Pereda, Ernesto; Caspers, Johanneke; Schiller, Niels O

    2017-12-01

    The goal of the present study was to investigate the initial phases of novel grammar learning on a neural level, concentrating on mechanisms responsible for individual variability between learners. Two groups of participants, one with high and one with average language analytical abilities, performed an Artificial Grammar Learning (AGL) task consisting of learning and test phases. During the task, EEG signals from 32 cap-mounted electrodes were recorded and epochs corresponding to the learning phases were analysed. We investigated spectral power modulations over time, and functional connectivity patterns by means of a bivariate, frequency-specific index of phase synchronization termed Phase Locking Value (PLV). Behavioural data showed learning effects in both groups, with a steeper learning curve and higher ultimate attainment for the highly skilled learners. Moreover, we established that cortical connectivity patterns and profiles of spectral power modulations over time differentiated L2 learners with various levels of language analytical abilities. Over the course of the task, the learning process seemed to be driven by whole-brain functional connectivity between neuronal assemblies achieved by means of communication in the beta band frequency. On a shorter time-scale, increasing proficiency on the AGL task appeared to be supported by stronger local synchronisation within the right hemisphere regions. Finally, we observed that the highly skilled learners might have exerted less mental effort, or reduced attention for the task at hand once the learning was achieved, as evidenced by the higher alpha band power. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Neural correlates of exemplar novelty processing under different spatial attention conditions.

    Science.gov (United States)

    Stoppel, Christian Michael; Boehler, Carsten Nicolas; Strumpf, Hendrik; Heinze, Hans-Jochen; Hopf, Jens Max; Düzel, Emrah; Schoenfeld, Mircea Ariel

    2009-11-01

    The detection of novel events and their identification is a basic prerequisite in a rapidly changing environment. Recently, the processing of novelty has been shown to rely on the hippocampus and to be associated with activity in reward-related areas. The present study investigated the influence of spatial attention on neural processing of novel relative to frequently presented standard and target stimuli. Never-before-seen Mandelbrot-fractals absent of semantic content were employed as stimulus material. Consistent with current theories, novelty activated a widespread network of brain areas including the hippocampus. No activity, however, could be observed in reward-related areas with the novel stimuli absent of a semantic meaning employed here. In the perceptual part of the novelty-processing network a region in the lingual gyrus was found to specifically process novel events when they occurred outside the focus of spatial attention. These findings indicate that the initial detection of unexpected novel events generally occurs in specialized perceptual areas within the ventral visual stream, whereas activation of reward-related areas appears to be restricted to events that do possess a semantic content indicative of the biological relevance of the stimulus.

  3. Reduced Fidelity of Neural Representation Underlies Episodic Memory Decline in Normal Aging.

    Science.gov (United States)

    Zheng, Li; Gao, Zhiyao; Xiao, Xiaoqian; Ye, Zhifang; Chen, Chuansheng; Xue, Gui

    2017-06-07

    Emerging studies have emphasized the importance of the fidelity of cortical representation in forming enduring episodic memory. No study, however, has examined whether there are age-related reductions in representation fidelity that can explain memory declines in normal aging. Using functional MRI and multivariate pattern analysis, we found that older adults showed reduced representation fidelity in the visual cortex, which accounted for their decreased memory performance even after controlling for the contribution of reduced activation level. This reduced fidelity was specifically due to older adults' poorer item-specific representation, not due to their lower activation level and variance, greater variability in neuro-vascular coupling, or decreased selectivity of categorical representation (i.e., dedifferentiation). Older adults also showed an enhanced subsequent memory effect in the prefrontal cortex based on activation level, and their prefrontal activation was associated with greater fidelity of representation in the visual cortex and better memory performance. The fidelity of cortical representation thus may serve as a promising neural index for better mechanistic understanding of the memory declines and its compensation in normal aging. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. An automatic system for Turkish word recognition using Discrete Wavelet Neural Network based on adaptive entropy

    International Nuclear Information System (INIS)

    Avci, E.

    2007-01-01

    In this paper, an automatic system is presented for word recognition using real Turkish word signals. This paper especially deals with combination of the feature extraction and classification from real Turkish word signals. A Discrete Wavelet Neural Network (DWNN) model is used, which consists of two layers: discrete wavelet layer and multi-layer perceptron. The discrete wavelet layer is used for adaptive feature extraction in the time-frequency domain and is composed of Discrete Wavelet Transform (DWT) and wavelet entropy. The multi-layer perceptron used for classification is a feed-forward neural network. The performance of the used system is evaluated by using noisy Turkish word signals. Test results showing the effectiveness of the proposed automatic system are presented in this paper. The rate of correct recognition is about 92.5% for the sample speech signals. (author)

  5. Neural Network Inverse Model Control Strategy: Discrete-Time Stability Analysis for Relative Order Two Systems

    Directory of Open Access Journals (Sweden)

    M. A. Hussain

    2014-01-01

    Full Text Available This paper discusses the discrete-time stability analysis of a neural network inverse model control strategy for a relative order two nonlinear system. The analysis is done by representing the closed loop system in state space format and then analyzing the time derivative of the state trajectory using Lyapunov’s direct method. The analysis shows that the tracking output error of the states is confined to a ball in the neighborhood of the equilibrium point where the size of the ball is partly dependent on the accuracy of the neural network model acting as the controller. Simulation studies on the two-tank-in-series system were done to complement the stability analysis and to demonstrate some salient results of the study.

  6. Optimization of workflow scheduling in Utility Management System with hierarchical neural network

    Directory of Open Access Journals (Sweden)

    Srdjan Vukmirovic

    2011-08-01

    Full Text Available Grid computing could be the future computing paradigm for enterprise applications, one of its benefits being that it can be used for executing large scale applications. Utility Management Systems execute very large numbers of workflows with very high resource requirements. This paper proposes architecture for a new scheduling mechanism that dynamically executes a scheduling algorithm using feedback about the current status Grid nodes. Two Artificial Neural Networks were created in order to solve the scheduling problem. A case study is created for the Meter Data Management system with measurements from the Smart Metering system for the city of Novi Sad, Serbia. Performance tests show that significant improvement of overall execution time can be achieved by Hierarchical Artificial Neural Networks.

  7. Real-time expert system and neural network for the classification of remotely sensed data

    Science.gov (United States)

    Short, Nicholas, Jr.

    1991-01-01

    The paper examines software techniques for classifying remotely sensed data such that the number of computational steps and the amount of resources are bounded. The combination of both neural network and expert system methodology for classifying these data based on land use/land cover categories is examined. The method involves pipelining images through a neural net for initial classification and then through the expert system which resolves the ambiguous classifications. As with any pipeline, every component must have approximately equivalent run-times or otherwise a bottleneck will occur. If real-time is a requirement, each of the components must execute within a bounded number of steps. Attention is focused on the real-time system technique, which is argued to prevent a bottleneck for this data classification application.

  8. Vehicle Signal Analysis Using Artificial Neural Networks for a Bridge Weigh-in-Motion System

    Directory of Open Access Journals (Sweden)

    Min-Seok Park

    2009-10-01

    Full Text Available This paper describes the procedures for development of signal analysis algorithms using artificial neural networks for Bridge Weigh-in-Motion (B-WIM systems. Through the analysis procedure, the extraction of information concerning heavy traffic vehicles such as weight, speed, and number of axles from the time domain strain data of the B-WIM system was attempted. As one of the several possible pattern recognition techniques, an Artificial Neural Network (ANN was employed since it could effectively include dynamic effects and bridge-vehicle interactions. A number of vehicle traveling experiments with sufficient load cases were executed on two different types of bridges, a simply supported pre-stressed concrete girder bridge and a cable-stayed bridge. Different types of WIM systems such as high-speed WIM or low-speed WIM were also utilized during the experiments for cross-checking and to validate the performance of the developed algorithms.

  9. Neural computing for numeric-to-symbolic conversion in control systems

    Science.gov (United States)

    Passino, Kevin M.; Sartori, Michael A.; Antsaklis, Panos J.

    1989-01-01

    A type of neural network, the multilayer perceptron, is used to classify numeric data and assign appropriate symbols to various classes. This numeric-to-symbolic conversion results in a type of information extraction, which is similar to what is called data reduction in pattern recognition. The use of the neural network as a numeric-to-symbolic converter is introduced, its application in autonomous control is discussed, and several applications are studied. The perceptron is used as a numeric-to-symbolic converter for a discrete-event system controller supervising a continuous variable dynamic system. It is also shown how the perceptron can implement fault trees, which provide useful information (alarms) in a biological system and information for failure diagnosis and control purposes in an aircraft example.

  10. The prokineticin system: an interface between neural inflammation and pain.

    Science.gov (United States)

    Franchi, Silvia; Sacerdote, Paola; Panerai, Alberto

    2017-05-01

    Prokineticins (PK) 1 and 2 belong to a new family of chemokines capable to interact with two different G coupled receptors: Prokineticin receptor (PKR)1 and 2. Both prokineticins and their receptors are widely distributed in different tissues and regulate several biological functions. In particular, a role of the PK system in inflammation and nociception has been established. PKRs are expressed in regions of the nervous system associated with pain and in primary sensitive neurons they colocalize with transient potential receptor vanilloid-TRPV1 providing an anatomical interaction in nociceptor sensitization. Moreover, PKs are strongly upregulated in immune and glial cells and sustain a proinflammatory loop in inflamed tissues. Recent evidences indicate that the block of the PK system represents a promising strategy to contrast inflammation and pain.

  11. Modeling root length density of field grown potatoes under different irrigation strategies and soil textures using artificial neural networks

    DEFF Research Database (Denmark)

    Ahmadi, Seyed Hamid; Sepaskhah, Ali Reza; Andersen, Mathias Neumann

    2014-01-01

    Root length density (RLD) is a highly wanted parameter for use in crop growth modeling but difficult to measure under field conditions. Therefore, artificial neural networks (ANNs) were implemented to predict the RLD of field grown potatoes that were subject to three irrigation strategies and three...... soil textures with different soil water status and soil densities. The objectives of the study were to test whether soil textural information, soil water status, and soil density might be used by ANN to simulate RLD at harvest. In the study 63 data pairs were divided into data sets of training (80......) of the eight input variables: soil layer intervals (D), percentages of sand (Sa), silt (Si), and clay (Cl), bulk density of soil layers (Bd), weighted soil moisture deficit during the irrigation strategies period (SMD), geometric mean particle size diameter (dg), and geometric standard deviation (σg...

  12. Identification and prediction of dynamic systems using an interactively recurrent self-evolving fuzzy neural network.

    Science.gov (United States)

    Lin, Yang-Yin; Chang, Jyh-Yeong; Lin, Chin-Teng

    2013-02-01

    This paper presents a novel recurrent fuzzy neural network, called an interactively recurrent self-evolving fuzzy neural network (IRSFNN), for prediction and identification of dynamic systems. The recurrent structure in an IRSFNN is formed as an external loops and internal feedback by feeding the rule firing strength of each rule to others rules and itself. The consequent part in the IRSFNN is composed of a Takagi-Sugeno-Kang (TSK) or functional-link-based type. The proposed IRSFNN employs a functional link neural network (FLNN) to the consequent part of fuzzy rules for promoting the mapping ability. Unlike a TSK-type fuzzy neural network, the FLNN in the consequent part is a nonlinear function of input variables. An IRSFNNs learning starts with an empty rule base and all of the rules are generated and learned online through a simultaneous structure and parameter learning. An on-line clustering algorithm is effective in generating fuzzy rules. The consequent update parameters are derived by a variable-dimensional Kalman filter algorithm. The premise and recurrent parameters are learned through a gradient descent algorithm. We test the IRSFNN for the prediction and identification of dynamic plants and compare it to other well-known recurrent FNNs. The proposed model obtains enhanced performance results.

  13. Unstable Morse Code recognition system with back propagation neural network for person with disabilities.

    Science.gov (United States)

    Fuh, D T; Luo, C H

    2001-01-01

    A Morse code auto-recognition system is limited by stable typing speed and stable typing ratio from long to short intervals. For an unstable Morse code typing pattern, the auto-recognition algorithms in the literature are not good enough for applications. This paper adopted a neural network to recognize unstable Morse codes. From an experiment on a teenager with cerebral palsy, the neural network has an average recognition rate up to 93.2%. The recognition rate from an amputee aged 40, who used a prosthesis for typing, it is 97.2% on average. When we compare this to 99.2% for the recognition rate from a skilled expert, the result is quite promising. The neural network has successfully overcome the difficulty of analysing a severely unstable Morse code time series. Since the human typing speed is quite slow in comparison to signal processing by the computer, it also makes it possible to use a neural network for real-time signal recognition.

  14. System Control Device Electronics Smart Home Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Safarul Ilham

    2017-06-01

    Full Text Available The use of information technology is very useful for today’s life and the next, where the human facilitated in doing a variety of activities in the life day to day. By the development of the existing allows people no longer do a job with difficulty. For that, it takes a system safety home using system technology Web-based and complete video streaming CCTV (video streaming a person can see the condition of his home whenever and wherever by using handphone, laptops and other tools are connected to the Internet network. This tool can facilitate someone in the monitor at home and control equipment the House as open and close and the lock the gate, turning on and off the lights so homeowners are no longer have to visit their home and fear the state of the House because fully security and control in the House was handled by the system. based on the above problems Writer try to design work system a tool that can control the simulation tools home using two Microcontroller is Attiny 2313 and Atmega16.

  15. System control fuzzy neural sewage pumping stations using genetic algorithms

    Directory of Open Access Journals (Sweden)

    Владлен Николаевич Кузнецов

    2015-06-01

    Full Text Available It is considered the system of management of sewage pumping station with regulators based on a neuron network with fuzzy logic. Linguistic rules for the controller based on fuzzy logic, maintaining the level of effluent in the receiving tank within the prescribed limits are developed. The use of genetic algorithms for neuron network training is shown.

  16. Development of a hybrid system of artificial neural networks and ...

    African Journals Online (AJOL)

    Traditional models were of interest for many years and these methods were frequently used with the advent of artificial intelligence and machine learning systems. They could demonstrate very good results. In this study, it has been attempted to present a new method for the modeling and prediction of customer choice in the ...

  17. Neural substrates of cognitive control under the belief of getting neurofeedback training

    Directory of Open Access Journals (Sweden)

    Manuel eNinaus

    2013-12-01

    Full Text Available Learning to modulate one’s own brain activity is the fundament of neurofeedback (NF applications. Besides the neural networks directly involved in the generation and modulation of the neurophysiological parameter being specifically trained, more general determinants of NF efficacy such as self-referential processes and cognitive control have been frequently disregarded. Nonetheless, deeper insight into these cognitive mechanisms and their neuronal underpinnings sheds light on various open NF related questions concerning individual differences, brain-computer interface (BCI illiteracy as well as a more general model of NF learning. In this context, we investigated the neuronal substrate of these more general regulatory mechanisms that are engaged when participants believe that they are receiving NF. Twenty healthy participants (40-63 years, 10 female performed a sham NF paradigm during fMRI scanning. All participants were novices to NF-experiments and were instructed to voluntarily modulate their own brain activity based on a visual display of moving color bars. However, the bar depicted a recording and not the actual brain activity of participants. Reports collected at the end of the experiment indicate that participants were unaware of the sham feedback. In comparison to a passive watching condition, bilateral insula, anterior cingulate cortex and supplementary motor and dorsomedial and lateral prefrontal area were activated when participants actively tried to control the bar. In contrast, when merely watching moving bars, increased activation in the left angular gyrus was observed. These results show that the intention to control a moving bar is sufficient to engage a broad frontoparietal and cingulo-opercular network involved in cognitive control. The results of the present study indicate that tasks such as those generally employed in NF training recruit the neuronal correlates of cognitive control even when only sham NF is presented.

  18. Neural substrates of cognitive control under the belief of getting neurofeedback training.

    Science.gov (United States)

    Ninaus, Manuel; Kober, Silvia E; Witte, Matthias; Koschutnig, Karl; Stangl, Matthias; Neuper, Christa; Wood, Guilherme

    2013-01-01

    Learning to modulate one's own brain activity is the fundament of neurofeedback (NF) applications. Besides the neural networks directly involved in the generation and modulation of the neurophysiological parameter being specifically trained, more general determinants of NF efficacy such as self-referential processes and cognitive control have been frequently disregarded. Nonetheless, deeper insight into these cognitive mechanisms and their neuronal underpinnings sheds light on various open NF related questions concerning individual differences, brain-computer interface (BCI) illiteracy as well as a more general model of NF learning. In this context, we investigated the neuronal substrate of these more general regulatory mechanisms that are engaged when participants believe that they are receiving NF. Twenty healthy participants (40-63 years, 10 female) performed a sham NF paradigm during fMRI scanning. All participants were novices to NF-experiments and were instructed to voluntarily modulate their own brain activity based on a visual display of moving color bars. However, the bar depicted a recording and not the actual brain activity of participants. Reports collected at the end of the experiment indicate that participants were unaware of the sham feedback. In comparison to a passive watching condition, bilateral insula, anterior cingulate cortex and supplementary motor and dorsomedial and lateral prefrontal areas were activated when participants actively tried to control the bar. In contrast, when merely watching moving bars, increased activation in the left angular gyrus was observed. These results show that the intention to control a moving bar is sufficient to engage a broad frontoparietal and cingulo-opercular network involved in cognitive control. The results of the present study indicate that tasks such as those generally employed in NF training recruit the neuronal correlates of cognitive control even when only sham NF is presented.

  19. Revisiting the Neural Basis of Acquired Amusia: Lesion Patterns and Structural Changes Underlying Amusia Recovery

    Science.gov (United States)

    Sihvonen, Aleksi J.; Ripollés, Pablo; Rodríguez-Fornells, Antoni; Soinila, Seppo; Särkämö, Teppo

    2017-01-01

    Although, acquired amusia is a common deficit following stroke, relatively little is still known about its precise neural basis, let alone to its recovery. Recently, we performed a voxel-based lesion-symptom mapping (VLSM) and morphometry (VBM) study which revealed a right latera