WorldWideScience

Sample records for underlying mechanisms proposed

  1. Mechanical properties of cork under contact stresses

    International Nuclear Information System (INIS)

    Parralejo, A. D.; Guiberteau, F.; Fortes, M. A.; Rosa, M. E.

    2001-01-01

    In this work our interest is focussed on the mechanical behaviour of natural cork under contact stresses. Many of the applications of this curious material are related with its mechanical response under such a stress field, however this topic has not been still sufficiently considered in the scientific literature. For this purpose, we proposed the use of Hertzian indentation tests. By using this mythology we have investigated the cork structure influence on the corresponding mechanical properties. Our results reveal a clear mechanical anisotropy effect. Moreover, the elastic modulus corresponding to specific directions have been estimated. Several are the main advantages of this specific test mythology versus traditional uniaxial compression tests, specially simplicity and local character. (Author) 9 refs

  2. Control of a perturbed under-actuated mechanical system

    KAUST Repository

    Zayane, Chadia; Laleg-Kirati, Taous-Meriem; Chemori, Ahmed

    2015-01-01

    In this work, the trajectory tracking problem for an under-actuated mechanical system in presence of unknown input disturbances is addressed. The studied inertia wheel inverted pendulum falls in the class of non minimum phase systems. The proposed

  3. Control of a perturbed under-actuated mechanical system

    KAUST Repository

    Zayane, Chadia

    2015-11-05

    In this work, the trajectory tracking problem for an under-actuated mechanical system in presence of unknown input disturbances is addressed. The studied inertia wheel inverted pendulum falls in the class of non minimum phase systems. The proposed high order sliding mode control architecture including a controller and differentiator allows to track accurately the predefined trajectory and to stabilize the internal dynamics. The robustness of the proposed approach is illustrated through different perturbation and output noise configurations.

  4. Crack assessment of pipe under combined thermal and mechanical load

    International Nuclear Information System (INIS)

    Song, Tae Kwang; Kim, Yun Jae

    2009-01-01

    In this paper, J-integral and transient C(t)-integral, which were key parameters in low temperature and high temperature fracture mechanics, under combined thermal and mechanical load were estimated via 3-dimensional finite element analyses. Various type of thermal and mechanical load, material hardening were considered to decrease conservatism in existing solutions. As a results, V-factor and redistribution time for combined thermal and mechanical load were proposed to calculate J-integral and C(t)-integral, respectively.

  5. Amount of fear extinction changes its underlying mechanisms.

    Science.gov (United States)

    An, Bobae; Kim, Jihye; Park, Kyungjoon; Lee, Sukwon; Song, Sukwoon; Choi, Sukwoo

    2017-07-03

    There has been a longstanding debate on whether original fear memory is inhibited or erased after extinction. One possibility that reconciles this uncertainty is that the inhibition and erasure mechanisms are engaged in different phases (early or late) of extinction. In this study, using single-session extinction training and its repetition (multiple-session extinction training), we investigated the inhibition and erasure mechanisms in the prefrontal cortex and amygdala of rats, where neural circuits underlying extinction reside. The inhibition mechanism was prevalent with single-session extinction training but faded when single-session extinction training was repeated. In contrast, the erasure mechanism became prevalent when single-session extinction training was repeated. Moreover, ablating the intercalated neurons of amygdala, which are responsible for maintaining extinction-induced inhibition, was no longer effective in multiple-session extinction training. We propose that the inhibition mechanism operates primarily in the early phase of extinction training, and the erasure mechanism takes over after that.

  6. Proposal of New Rewritable Printing Media Using Electrophoresis and Confirmation of Its Mechanism

    Science.gov (United States)

    Hoshino, Yasushi; Ogura, Masahiro; Sano, Takayuki

    2004-10-01

    A new rewritable printing media using electrophoresis and selective heating is proposed to contribute to the reduction in paper consumption by printers. The mechanism is that when a heated part of the rewritable media is melted, white particles in that part of the media are able to move by electrophoresis. The media is initialized by heating its entire surface under the condition of voltage application and imaging is carried out by selective heating under the condition of an applied reversed-polarity voltage. Using a mixture system of carnauba wax and particles coated with titanium oxide (TiO2), the feasibility of the mechanism is confirmed.

  7. Exact solution for stresses/displacements in a multilayered hollow cylinder under thermo-mechanical loading

    International Nuclear Information System (INIS)

    Yeo, W.H.; Purbolaksono, J.; Aliabadi, M.H.; Ramesh, S.; Liew, H.L.

    2017-01-01

    In this study, a new analytical solution by the recursive method for evaluating stresses/displacements in multilayered hollow cylinder under thermo-mechanical loading was developed. The results for temperature distribution, displacements and stresses obtained by using the proposed solution were shown to be in good agreement with the FEM results. The proposed analytical solution was also found to produce more accurate results than those by the analytical solution reported in literature. - Highlights: • A new analytical solution for evaluating stresses in multilayered hollow cylinder under thermo-mechanical loading. • A simple computational procedure using a recursive method. • A promising technique for evaluating the operating axial and hoop stresses in pressurized composite vessels.

  8. Peripheral Receptor Mechanisms Underlying Orofacial Muscle Pain and Hyperalgesia

    Science.gov (United States)

    Saloman, Jami L.

    Musculoskeletal pain conditions, particularly those associated with temporomandibular joint and muscle disorders (TMD) are severely debilitating and affect approximately 12% of the population. Identifying peripheral nociceptive mechanisms underlying mechanical hyperalgesia, a prominent feature of persistent muscle pain, could contribute to the development of new treatment strategies for the management of TMD and other muscle pain conditions. This study provides evidence of functional interactions between ligand-gated channels, P2X3 and TRPV1/TRPA1, in trigeminal sensory neurons, and proposes that these interactions underlie the development of mechanical hyperalgesia. In the masseter muscle, direct P2X3 activation, via the selective agonist αβmeATP, induced a dose- and time-dependent hyperalgesia. Importantly, the αβmeATP-induced hyperalgesia was prevented by pretreatment of the muscle with a TRPV1 antagonist, AMG9810, or the TRPA1 antagonist, AP18. P2X3 was co-expressed with both TRPV1 and TRPA1 in masseter muscle afferents confirming the possibility for intracellular interactions. Moreover, in a subpopulation of P2X3 /TRPV1 positive neurons, capsaicin-induced Ca2+ transients were significantly potentiated following P2X3 activation. Inhibition of Ca2+-dependent kinases, PKC and CaMKII, prevented P2X3-mechanical hyperalgesia whereas blockade of Ca2+-independent PKA did not. Finally, activation of P2X3 induced phosphorylation of serine, but not threonine, residues in TRPV1 in trigeminal sensory neurons. Significant phosphorylation was observed at 15 minutes, the time point at which behavioral hyperalgesia was prominent. Similar data were obtained regarding another nonselective cation channel, the NMDA receptor (NMDAR). Our data propose P2X3 and NMDARs interact with TRPV1 in a facilitatory manner, which could contribute to the peripheral sensitization underlying masseter hyperalgesia. This study offers novel mechanisms by which individual pro-nociceptive ligand

  9. Damage mechanisms in PBT-GF30 under thermo-mechanical cyclic loading

    International Nuclear Information System (INIS)

    Schaaf, A.; De Monte, M.; Hoffmann, C.; Vormwald, M.; Quaresimin, M.

    2014-01-01

    The scope of this paper is the investigation of damage mechanisms at microscopic scale on a short glass fiber reinforced polybutylene terephthalate (PBT-GF30) under thermo-mechanical cyclic loading. In addition the principal mechanisms are verified through micro mechanical FE models. In order to investigate the fatigue behavior of the material both isothermal strain controlled fatigue (ISCF) tests at three different temperatures and thermo-mechanical fatigue (TMF) tests were conducted on plain and notched specimens, manufactured by injection molding. The goal of the work is to determine the damage mechanisms occurring under TMF conditions and to compare them with the mechanisms occurring under ISCF. For this reason fracture surfaces of TMF and ISCF samples loaded at different temperature levels were analyzed using scanning electron microscopy. Furthermore, specimens that failed under TMF were examined on microsections revealing insight into both crack initiation and crack propagation. The findings of this investigation give valuable information about the main damage mechanisms of PBT-GF30 under TMF loading and serve as basis for the development of a TMF life estimation methodology

  10. The Mediated MIMIC Model for Understanding the Underlying Mechanism of DIF

    Science.gov (United States)

    Cheng, Ying; Shao, Can; Lathrop, Quinn N.

    2016-01-01

    Due to its flexibility, the multiple-indicator, multiple-causes (MIMIC) model has become an increasingly popular method for the detection of differential item functioning (DIF). In this article, we propose the mediated MIMIC model method to uncover the underlying mechanism of DIF. This method extends the usual MIMIC model by including one variable…

  11. Simulation of fatigue damage in ferroelectric polycrystals under mechanical/electrical loading

    Science.gov (United States)

    Kozinov, S.; Kuna, M.

    2018-07-01

    The reliability of smart-structures made of ferroelectric ceramics is essentially reduced by the formation of cracks under the action of external electrical and/or mechanical loading. In the current research a numerical model for low-cycle fatigue in ferroelectric mesostructures is proposed. In the finite element simulations a combination of two user element routines is utilized. The first one is used to model a micromechanical ferroelectric domain switching behavior inside the grains. The second one is used to simulate fatigue damage of grain boundaries by a cohesive zone model (EMCCZM) based on an electromechanical cyclic traction-separation law (TSL). For numerical simulations a scanning electron microscope image of the ceramic's grain structure was digitalized and meshed. The response of this mesostructure to cyclic electrical or mechanical loading is systematically analyzed. As a result of the simulations, the distribution of electric potential, field, displacement and polarization as well as mechanical stresses and deformations inside the grains are obtained. At the grain boundaries, the formation and evolution of damage are analyzed until final failure and induced degradation of electric permittivity. It is found that the proposed model correctly mimics polycrystalline behavior during poling processes and progressive damage under cyclic electromechanical loading. To the authors' knowledge, it is the first model and numerical analysis of ferroelectric polycrystals taking into account both domain reorientation and cohesive modeling of intergranular fracture. It can help to understand failure mechanisms taking place in ferroelectrics during fatigue processes.

  12. Progressive damage analysis of carbon/epoxy laminates under couple laser and mechanical loading

    Directory of Open Access Journals (Sweden)

    Wanlei Liu

    Full Text Available A multiscale model based bridge theory is proposed for the progressive damage analysis of carbon/epoxy laminates under couple laser and mechanical loading. The ablation model is adopted to calculate ablation temperature changing and ablation surface degradation. The polynomial strengthening model of matrix is used to improve bridging model for reducing parameter input. Stiffness degradation methods of bridging model are also improved in order to analyze the stress redistribution more accurately when the damage occurs. Thermal-mechanical analyses of the composite plate are performed using the ABAQUS/Explicit program with the developed model implemented in the VUMAT. The simulation results show that this model can be used to proclaim the mesoscale damage mechanism of composite laminates under coupled loading. Keywords: Laser irradiation, Multiscale analysis, Bridge model, Thermal-mechanical

  13. Detecting method for crude oil price fluctuation mechanism under different periodic time series

    International Nuclear Information System (INIS)

    Gao, Xiangyun; Fang, Wei; An, Feng; Wang, Yue

    2017-01-01

    Highlights: • We proposed the concept of autoregressive modes to indicate the fluctuation patterns. • We constructed transmission networks for studying the fluctuation mechanism. • There are different fluctuation mechanism under different periodic time series. • Only a few types of autoregressive modes control the fluctuations in crude oil price. • There are cluster effects during the fluctuation mechanism of autoregressive modes. - Abstract: Current existing literatures can characterize the long-term fluctuation of crude oil price time series, however, it is difficult to detect the fluctuation mechanism specifically under short term. Because each fluctuation pattern for one short period contained in a long-term crude oil price time series have dynamic characteristics of diversity; in other words, there exhibit various fluctuation patterns in different short periods and transmit to each other, which reflects the reputedly complicate and chaotic oil market. Thus, we proposed an incorporated method to detect the fluctuation mechanism, which is the evolution of the different fluctuation patterns over time from the complex network perspective. We divided crude oil price time series into segments using sliding time windows, and defined autoregressive modes based on regression models to indicate the fluctuation patterns of each segment. Hence, the transmissions between different types of autoregressive modes over time form a transmission network that contains rich dynamic information. We then capture transmission characteristics of autoregressive modes under different periodic time series through the structure features of the transmission networks. The results indicate that there are various autoregressive modes with significantly different statistical characteristics under different periodic time series. However, only a few types of autoregressive modes and transmission patterns play a major role in the fluctuation mechanism of the crude oil price, and these

  14. Optimal Contract Design for Cooperative Relay Incentive Mechanism under Moral Hazard

    Directory of Open Access Journals (Sweden)

    Nan Zhao

    2015-01-01

    Full Text Available Cooperative relay can effectively improve spectrum efficiency by exploiting the spatial diversity in the wireless networks. However, wireless nodes may acquire different network information with various users’ location and mobility, channels’ conditions, and other factors, which results in asymmetric information between the source and the relay nodes (RNs. In this paper, the relay incentive mechanism between relay nodes and the source is investigated under the asymmetric information. By modelling multiuser cooperative relay as a labour market, a contract model with moral hazard for relay incentive is proposed. To effectively incentivize the potential RNs to participate in cooperative relay, the optimization problems are formulated to maximize the source’s utility while meeting the feasible conditions under both symmetric and asymmetric information scenarios. Numerical simulation results demonstrate the effectiveness of the proposed contract design scheme for cooperative relay.

  15. Kinetic theory approach to modeling of cellular repair mechanisms under genome stress.

    Directory of Open Access Journals (Sweden)

    Jinpeng Qi

    Full Text Available Under acute perturbations from outer environment, a normal cell can trigger cellular self-defense mechanism in response to genome stress. To investigate the kinetics of cellular self-repair process at single cell level further, a model of DNA damage generating and repair is proposed under acute Ion Radiation (IR by using mathematical framework of kinetic theory of active particles (KTAP. Firstly, we focus on illustrating the profile of Cellular Repair System (CRS instituted by two sub-populations, each of which is made up of the active particles with different discrete states. Then, we implement the mathematical framework of cellular self-repair mechanism, and illustrate the dynamic processes of Double Strand Breaks (DSBs and Repair Protein (RP generating, DSB-protein complexes (DSBCs synthesizing, and toxins accumulating. Finally, we roughly analyze the capability of cellular self-repair mechanism, cellular activity of transferring DNA damage, and genome stability, especially the different fates of a certain cell before and after the time thresholds of IR perturbations that a cell can tolerate maximally under different IR perturbation circumstances.

  16. Kinetic theory approach to modeling of cellular repair mechanisms under genome stress.

    Science.gov (United States)

    Qi, Jinpeng; Ding, Yongsheng; Zhu, Ying; Wu, Yizhi

    2011-01-01

    Under acute perturbations from outer environment, a normal cell can trigger cellular self-defense mechanism in response to genome stress. To investigate the kinetics of cellular self-repair process at single cell level further, a model of DNA damage generating and repair is proposed under acute Ion Radiation (IR) by using mathematical framework of kinetic theory of active particles (KTAP). Firstly, we focus on illustrating the profile of Cellular Repair System (CRS) instituted by two sub-populations, each of which is made up of the active particles with different discrete states. Then, we implement the mathematical framework of cellular self-repair mechanism, and illustrate the dynamic processes of Double Strand Breaks (DSBs) and Repair Protein (RP) generating, DSB-protein complexes (DSBCs) synthesizing, and toxins accumulating. Finally, we roughly analyze the capability of cellular self-repair mechanism, cellular activity of transferring DNA damage, and genome stability, especially the different fates of a certain cell before and after the time thresholds of IR perturbations that a cell can tolerate maximally under different IR perturbation circumstances.

  17. Mechanical Behavior of Shale Rock under Uniaxial Cyclic Loading and Unloading Condition

    Directory of Open Access Journals (Sweden)

    Baoyun Zhao

    2018-01-01

    Full Text Available In order to investigate the mechanical behavior of shale rock under cyclic loading and unloading condition, two kinds of incremental cyclic loading tests were conducted. Based on the result of the short-term uniaxial incremental cyclic loading test, the permanent residual strain, modulus, and damage evolution were analyzed firstly. Results showed that the relationship between the residual strains and the cycle number can be expressed by an exponential function. The deformation modulus E50 and elastic modulus ES first increased and then decreased with the peak stress under the loading condition, and both of them increased approximately linearly with the peak stress under the unloading condition. On the basis of the energy dissipation, the damage variables showed an exponential increasing with the strain at peak stress. The creep behavior of the shale rock was also analyzed. Results showed that there are obvious instantaneous strain, decay creep, and steady creep under each stress level and the specimen appears the accelerated creep stage under the 4th stress of 51.16 MPa. Based on the characteristics of the Burgers creep model, a viscoelastic-plastic creep model was proposed through viscoplastic mechanics, which agrees very well with the experimental results and can better describe the creep behavior of shale rock better than the Burgers creep model. Results can provide some mechanics reference evidence for shale gas development.

  18. Carbon Footprint Management of Road Freight Transport under the Carbon Emission Trading Mechanism

    Directory of Open Access Journals (Sweden)

    Jin Li

    2015-01-01

    Full Text Available Growing concern over environmental issues has considerably increased the number of regulations and legislation that aim to curb carbon emissions. Carbon emission trading mechanism, which is one of the most effective means, has been broadly adopted by several countries. This paper presents a road truck routing problem under the carbon emission trading mechanism. By introducing a calculation method of carbon emissions that considers the load and speed of the vehicle among other factors, a road truck routing optimizing model under the cap and trade mechanism based on the Travelling Salesman Problem (TSP is described. Compared with the classical TSP model that only considers the economic cost, this model suggests that the truck routing decision under the cap and trade mechanism is more effective in reducing carbon emissions. A modified tabu search algorithm is also proposed to obtain solutions within a reasonable amount of computation time. We theoretically and numerically examine the impacts of carbon trading, carbon cap, and carbon price on truck routing decision, carbon emissions, and total cost. From the results of numerical experiments, we derive interesting observations about how to control the total cost and reduce carbon emissions.

  19. Understanding and imitating unfamiliar actions: distinct underlying mechanisms.

    Directory of Open Access Journals (Sweden)

    Joana C Carmo

    Full Text Available The human "mirror neuron system" has been proposed to be the neural substrate that underlies understanding and, possibly, imitating actions. However, since the brain activity with mirror properties seems insufficient to provide a good description for imitation of actions outside one's own repertoire, the existence of supplementary processes has been proposed. Moreover, it is unclear whether action observation requires the same neural mechanisms as the explicit access to their meaning. The aim of this study was two-fold as we investigated whether action observation requires different processes depending on 1 whether the ultimate goal is to imitate or understand the presented actions and 2 whether the to-be-imitated actions are familiar or unfamiliar to the subject. Participants were presented with both meaningful familiar actions and meaningless unfamiliar actions that they had to either imitate or discriminate later. Event-related Potentials were used as differences in brain activity could have been masked by the use of other techniques with lower temporal resolution. In the imitation task, a sustained left frontal negativity was more pronounced for meaningless actions than for meaningful ones, starting from an early time-window. Conversely, observing unfamiliar versus familiar actions with the intention of discriminating them led to marked differences over right centro-posterior scalp regions, in both middle and latest time-windows. These findings suggest that action imitation and action understanding may be sustained by dissociable mechanisms: while imitation of unfamiliar actions activates left frontal processes, that are likely to be related to learning mechanisms, action understanding involves dedicated operations which probably require right posterior regions, consistent with their involvement in social interactions.

  20. Temporomandibular disorders and painful comorbidities: clinical association and underlying mechanisms.

    Science.gov (United States)

    Costa, Yuri Martins; Conti, Paulo César Rodrigues; de Faria, Flavio Augusto Cardoso; Bonjardim, Leonardo Rigoldi

    2017-03-01

    The association between temporomandibular disorders (TMDs) and headaches, cervical spine dysfunction, and fibromyalgia is not artefactual. The aim of this review is to describe the comorbid relationship between TMD and these three major painful conditions and to discuss the clinical implications and the underlying pain mechanisms involved in these relationships. Common neuronal pathways and central sensitization processes are acknowledged as the main factors for the association between TMD and primary headaches, although the establishment of cause-effect mechanisms requires further clarification and characterization. The biomechanical aspects are not the main factors involved in the comorbid relationship between TMD and cervical spine dysfunction, which can be better explained by the neuronal convergence of the trigeminal and cervical spine sensory pathways as well as by central sensitization processes. The association between TMD and fibromyalgia also has supporting evidence in the literature, and the proposed main mechanism underlying this relationship is the impairment of the descending pain inhibitory system. In this particular scenario, a cause-effect relationship is more likely to occur in one direction, that is, fibromyalgia as a risk factor for TMD. Therefore, clinical awareness of the association between TMD and painful comorbidities and the support of multidisciplinary approaches are required to recognize these related conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Contact force and mechanical loss of multistage cable under tension and bending

    Science.gov (United States)

    Ru, Yanyun; Yong, Huadong; Zhou, Youhe

    2016-10-01

    A theoretical model for calculating the stress and strain states of cabling structures with different loadings has been developed in this paper. We solve the problem for the first- and second-stage cable with tensile or bending strain. The contact and friction forces between the strands are presented by two-dimensional contact model. Several theoretical models have been proposed to verify the results when the triplet subjected to the tensile strain, including contact force, contact stresses, and mechanical loss. It is found that loadings will affect the friction force and the mechanical loss of the triplet. The results show that the contact force and mechanical loss are dependent on the twist pitch. A shorter twist pitch can lead to higher contact force, while the trend of mechanical loss with twist pitch is complicated. The mechanical loss may be reduced by adjusting the twist pitch reasonably. The present model provides a simple analysis method to investigate the mechanical behaviors in multistage-structures under different loads.

  2. Analysis of a proposed crucial test of quantum mechanics

    International Nuclear Information System (INIS)

    Collett, M.J.; Loudon, R.

    1987-01-01

    An experiment based on an extension of the Einstein-Podolsky-Rosen argument has been proposed by Popper as a crucial test of the Copenhagen interpretation of quantum mechanics. Here the authors show, by a slightly more complete version of Popper's analysis, although still at a relatively primitive level of sophistication, that the proposed experiment does not in fact provide such a test. (author)

  3. Experimental Investigation into Corrosion Effect on Mechanical Properties of High Strength Steel Bars under Dynamic Loadings

    Directory of Open Access Journals (Sweden)

    Hui Chen

    2018-01-01

    Full Text Available The tensile behaviors of corroded steel bars are important in the capacity evaluation of corroded reinforced concrete structures. The present paper studies the mechanical behavior of the corroded high strength reinforcing steel bars under static and dynamic loading. High strength reinforcing steel bars were corroded by using accelerated corrosion methods and the tensile tests were carried out under different strain rates. The results showed that the mechanical properties of corroded high strength steel bars were strain rate dependent, and the strain rate effect decreased with the increase of corrosion degree. The decreased nominal yield and ultimate strengths were mainly caused by the reduction of cross-sectional areas, and the decreased ultimate deformation and the shortened yield plateau resulted from the intensified stress concentration at the nonuniform reduction. Based on the test results, reduction factors were proposed to relate the tensile behaviors with the corrosion degree and strain rate for corroded bars. A modified Johnson-Cook strength model of corroded high strength steel bars under dynamic loading was proposed by taking into account the influence of corrosion degree. Comparison between the model and test results showed that proposed model properly describes the dynamic response of the corroded high strength rebars.

  4. Mechanical Behavior of BFRP-Steel Composite Plate under Axial Tension

    Directory of Open Access Journals (Sweden)

    Yunyu Li

    2014-06-01

    Full Text Available Combining the advantages of basalt fiber-reinforced polymer (BFRP material and steel material, a novel BFRP-steel composite plate (BSP is proposed, where a steel plate is sandwiched between two outer BFRP laminates. The main purpose of this research is to investigate the mechanical behavior of the proposed BSP under uniaxial tension and cyclic tension. Four groups of BSP specimens with four different BFRP layers and one control group of steel plate specimens were prepared. A uniaxial tensile test and a cyclic tensile test were conducted to determine the initial elastic modulus, postyield stiffness, yield strength, ultimate bearing capacity and residual deformation. Test results indicated that the stress-strain curve of the BSP specimen was bilinear prior to the fracture of the outer BFRP, and the BSP specimen had stable postyield stiffness and small residual deformation after the yielding of the inner steel plate. The postyield modulus of BSP specimens increased almost linearly with the increasing number of outer BFRP layers, as well as the ultimate bearing capacity. Moreover, the predicted results from the selected models under both monotonic tension and cyclic tension were in good agreement with the experimental data.

  5. Neuro-cognitive mechanisms underlying the emotional modulation of word reading

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A novel neural model for emotional modulation of word reading is proposed. This model has four principal hypotheses: the dominant activation region hypothesis, the emotional modulation hypothesis, the attentional level hypothesis, and the interaction hypothesis. Four lines of research were reviewed to provide evidence for these hypotheses: (1) neuro-cognitive studies on the mechanisms of word reading (i.e., neural networks for reading); (2) studies on the influence of words' emotional valence on word reading; (3) studies of the effect of attention on word reading; and (4) studies on emotional modulation of word reading under different attentional levels.

  6. Dynamic Response and Failure Mechanism of Brittle Rocks Under Combined Compression-Shear Loading Experiments

    Science.gov (United States)

    Xu, Yuan; Dai, Feng

    2018-03-01

    A novel method is developed for characterizing the mechanical response and failure mechanism of brittle rocks under dynamic compression-shear loading: an inclined cylinder specimen using a modified split Hopkinson pressure bar (SHPB) system. With the specimen axis inclining to the loading direction of SHPB, a shear component can be introduced into the specimen. Both static and dynamic experiments are conducted on sandstone specimens. Given carefully pulse shaping, the dynamic equilibrium of the inclined specimens can be satisfied, and thus the quasi-static data reduction is employed. The normal and shear stress-strain relationships of specimens are subsequently established. The progressive failure process of the specimen illustrated via high-speed photographs manifests a mixed failure mode accommodating both the shear-dominated failure and the localized tensile damage. The elastic and shear moduli exhibit certain loading-path dependence under quasi-static loading but loading-path insensitivity under high loading rates. Loading rate dependence is evidently demonstrated through the failure characteristics involving fragmentation, compression and shear strength and failure surfaces based on Drucker-Prager criterion. Our proposed method is convenient and reliable to study the dynamic response and failure mechanism of rocks under combined compression-shear loading.

  7. Surface Damage Mechanism of Monocrystalline Si Under Mechanical Loading

    Science.gov (United States)

    Zhao, Qingliang; Zhang, Quanli; To, Suet; Guo, Bing

    2017-03-01

    Single-point diamond scratching and nanoindentation on monocrystalline silicon wafer were performed to investigate the surface damage mechanism of Si under the contact loading. The results showed that three typical stages of material removal appeared during dynamic scratching, and a chemical reaction of Si with the diamond indenter and oxygen occurred under the high temperature. In addition, the Raman spectra of the various points in the scratching groove indicated that the Si-I to β-Sn structure (Si-II) and the following β-Sn structure (Si-II) to amorphous Si transformation appeared under the rapid loading/unloading condition of the diamond grit, and the volume change induced by the phase transformation resulted in a critical depth (ductile-brittle transition) of cut (˜60 nm ± 15 nm) much lower than the theoretical calculated results (˜387 nm). Moreover, it also led to abnormal load-displacement curves in the nanoindentation tests, resulting in the appearance of elbow and pop-out effects (˜270 nm at 20 s, 50 mN), which were highly dependent on the loading/unloading conditions. In summary, phase transformation of Si promoted surface deformation and fracture under both static and dynamic mechanical loading.

  8. A proposed new mechanism for research and development co-operation

    International Nuclear Information System (INIS)

    Dolan, T.

    2001-01-01

    Scientists in developing countries sometimes lack knowledge of recent developments, co-operation with advanced countries, and government appreciation of the importance and quality of their work. The present IAEA mechanisms like CRPs and TC projects are very helpful but do not fully meet R and D co-operation needs of these scientists. A new complementary mechanism of co-operation among the Member States is proposed that would utilize IAEA services through a suitable agreement. The IAEA could help to evaluate joint R and D proposals, to provide an example legal agreement, to monitor progress, to disseminate the results, and, in some cases, to administer joint funds. This new mechanism would be similar to ITER, but on a smaller scale, and applicable to all fields of nuclear R and D. (author)

  9. micro-mechanical experimental investigation and modelling of strain and damage of argillaceous rocks under combined hydric and mechanical loads

    International Nuclear Information System (INIS)

    Wang, L.

    2012-01-01

    The hydro-mechanical behavior of argillaceous rocks, which are possible host rocks for underground radioactive nuclear waste storage, is investigated by means of micro-mechanical experimental investigations and modellings. Strain fields at the micrometric scale of the composite structure of this rock, are measured by the combination of environmental scanning electron microscopy, in situ testing and digital image correlation technique. The evolution of argillaceous rocks under pure hydric loading is first investigated. The strain field is strongly heterogeneous and manifests anisotropy. The observed nonlinear deformation at high relative humidity (RH) is related not only to damage, but also to the nonlinear swelling of the clay mineral itself, controlled by different local mechanisms depending on RH. Irreversible deformations are observed during hydric cycles, as well as a network of microcracks located in the bulk of the clay matrix and/or at the inclusion-matrix interface. Second, the local deformation field of the material under combined hydric and mechanical loadings is quantified. Three types of deformation bands are evidenced under mechanical loading, either normal to stress direction (compaction), parallel (microcracking) or inclined (shear). Moreover, they are strongly controlled by the water content of the material: shear bands are in particular prone to appear at high RH states. In view of understanding the mechanical interactions a local scale, the material is modeled as a composite made of non-swelling elastic inclusions embedded in an elastic swelling clay matrix. The internal stress field induced by swelling strain incompatibilities between inclusions and matrix, as well as the overall deformation, is numerically computed at equilibrium but also during the transient stage associated with a moisture gradient. An analytical micro-mechanical model based on Eshelby's solution is proposed. In addition, 2D finite element computations are performed. Results

  10. A proposal for operator team behavior model and operator's thinking mechanism

    International Nuclear Information System (INIS)

    Yoshimura, Seiichi; Takano, Kenichi; Sasou, Kunihide

    1995-01-01

    Operating environment in huge systems like nuclear power plants or airplanes is changing rapidly with the advance of computer technology. It is necessary to elucidate thinking process of operators and decision-making process of an operator team in abnormal situations, in order to prevent human errors under such environment. The Central Research Institute of Electric Power Industry is promoting a research project to establish human error prevention countermeasures by modeling and simulating the thinking process of operators and decision-making process of an operator team. In the previous paper, application of multilevel flow modeling was proposed to a mental model which conducts future prediction and cause identification, and the characteristics were verified by experienced plant operators. In this paper, an operator team behavior model and a fundamental operator's thinking mechanism especially 'situation understanding' are proposed, and the proposals are evaluated by experiments using a full-scale simulator. The results reveal that some assumptions such as 'communication is done between a leader and a follower' are almost appropriate and that the situation understanding can be represented by 'probable candidates for cause, determination of a parameter which changes when an event occurs, determination of parameters which are influenced by the change of the previous parameter, determination of a principal parameter and future prediction of the principal parameter'. (author)

  11. Giant panda׳s tooth enamel: Structure, mechanical behavior and toughening mechanisms under indentation.

    Science.gov (United States)

    Weng, Z Y; Liu, Z Q; Ritchie, R O; Jiao, D; Li, D S; Wu, H L; Deng, L H; Zhang, Z F

    2016-12-01

    The giant panda׳s teeth possess remarkable load-bearing capacity and damage resistance for masticating bamboos. In this study, the hierarchical structure and mechanical behavior of the giant panda׳s tooth enamel were investigated under indentation. The effects of loading orientation and location on mechanical properties of the enamel were clarified and the evolution of damage in the enamel under increasing load evaluated. The nature of the damage, both at and beneath the indentation surfaces, and the underlying toughening mechanisms were explored. Indentation cracks invariably were seen to propagate along the internal interfaces, specifically the sheaths between enamel rods, and multiple extrinsic toughening mechanisms, e.g., crack deflection/twisting and uncracked-ligament bridging, were active to shield the tips of cracks from the applied stress. The giant panda׳s tooth enamel is analogous to human enamel in its mechanical properties, yet it has superior hardness and Young׳s modulus but inferior toughness as compared to the bamboo that pandas primarily feed on, highlighting the critical roles of the integration of underlying tissues in the entire tooth and the highly hydrated state of bamboo foods. Our objective is that this study can aid the understanding of the structure-mechanical property relations in the tooth enamel of mammals and further provide some insight on the food habits of the giant pandas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Peeling mechanism of tomato under infrared heating

    Science.gov (United States)

    Critical behaviors of peeling tomatoes using infrared heat are thermally induced peel loosening and subsequent cracking. However, the mechanism of peel loosening and cracking due to infrared heating remains unclear. This study aimed at investigating the mechanism of peeling tomatoes under infrared h...

  13. Deciphering the Cognitive and Neural Mechanisms Underlying ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Deciphering the Cognitive and Neural Mechanisms Underlying Auditory Learning. This project seeks to understand the brain mechanisms necessary for people to learn to perceive sounds. Neural circuits and learning. The research team will test people with and without musical training to evaluate their capacity to learn ...

  14. Mechanical behavior of glass/epoxy composite laminate with varying amount of MWCNTs under different loadings

    Science.gov (United States)

    Singh, K. K.; Rawat, Prashant

    2018-05-01

    This paper investigates the mechanical response of three phased (glass/MWCNTs/epoxy) composite laminate under three different loadings. Flexural strength, short beam strength and low-velocity impact (LVI) testing are performed to find an optimum doping percentage value for maximum enhancement in mechanical properties. In this work, MWCNTs were used as secondary reinforcement for three-phased composite plate. MWCNT doping was done in a range of 0–4 wt% of the thermosetting matrix system. Symmetrical design eight layered glass/epoxy laminate with zero bending extension coupling laminate was fabricated using a hybrid method i.e. hand lay-up technique followed by vacuum bagging method. Ranging analysis of MWCNT mixing highlighted the enhancement in flexural, short beam strength and improvement in damage tolerance under LVI loading. While at higher doping wt%, agglomeration of MWCNTs are observed. Results of mechanical testing proposed an optimized doping value for maximum strength and damage resistance of the laminate.

  15. Gas Bubble Dynamics under Mechanical Vibrations

    Science.gov (United States)

    Mohagheghian, Shahrouz; Elbing, Brian

    2017-11-01

    The scientific community has a limited understanding of the bubble dynamics under mechanical oscillations due to over simplification of Navier-Stockes equation by neglecting the shear stress tensor and not accounting for body forces when calculating the acoustic radiation force. The current work experimental investigates bubble dynamics under mechanical vibration and resulting acoustic field by measuring the bubble size and velocity using high-speed imaging. The experimental setup consists of a custom-designed shaker table, cast acrylic bubble column, compressed air injection manifold and an optical imaging system. The mechanical vibrations resulted in accelerations between 0.25 to 10 times gravitational acceleration corresponding to frequency and amplitude range of 8 - 22Hz and 1 - 10mm respectively. Throughout testing the void fraction was limited to <5%. The bubble size is larger than resonance size and smaller than acoustic wavelength. The amplitude of acoustic pressure wave was estimated using the definition of Bjerknes force in combination with Rayleigh-Plesset equation. Physical behavior of the system was capture and classified. Bubble size, velocity as well as size and spatial distribution will be presented.

  16. Genomic interrogation of mechanism(s) underlying cellular responses to toxicants

    International Nuclear Information System (INIS)

    Amin, Rupesh P.; Hamadeh, Hisham K.; Bushel, Pierre R.; Bennett, Lee; Afshari, Cynthia A.; Paules, Richard S.

    2002-01-01

    Assessment of the impact of xenobiotic exposure on human health and disease progression is complex. Knowledge of mode(s) of action, including mechanism(s) contributing to toxicity and disease progression, is valuable for evaluating compounds. Toxicogenomics, the subdiscipline which merges genomics with toxicology, holds the promise to contributing significantly toward the goal of elucidating mechanism(s) by studying genome-wide effects of xenobiotics. Global gene expression profiling, revolutionized by microarray technology and a crucial aspect of a toxicogenomic study, allows measuring transcriptional modulation of thousands of genes following exposure to a xenobiotic. We use our results from previous studies on compounds representing two different classes of xenobiotics (barbiturate and peroxisome proliferator) to discuss the application of computational approaches for analyzing microarray data to elucidate mechanism(s) underlying cellular responses to toxicants. In particular, our laboratory demonstrated that chemical-specific patterns of gene expression can be revealed using cDNA microarrays. Transcript profiling provides discrimination between classes of toxicants, as well as, genome-wide insight into mechanism(s) of toxicity and disease progression. Ultimately, the expectation is that novel approaches for predicting xenobiotic toxicity in humans will emerge from such information

  17. 77 FR 1434 - Proposed Confidentiality Determinations for Data Elements Under the Mandatory Reporting of...

    Science.gov (United States)

    2012-01-10

    ... Fluorinated Gas Production....... 325120 Industrial gases manufacturing facilities. Electrical Equipment Use... Proposed Confidentiality Determinations for Data Elements Under the Mandatory Reporting of Greenhouse Gases...-proposes confidentiality determinations for the data elements under the Mandatory Greenhouse Gas Reporting...

  18. Modeling of the mechanical behavior of austenitic stainless steels under pure fatigue and fatigue relaxation loadings

    International Nuclear Information System (INIS)

    Hajjaji-Rachdi, Fatima

    2015-01-01

    Austenitic stainless steels are potential candidates for structural components of sodium-cooled fast neutron reactors. Many of these components will be subjected to cyclic loadings including long hold times (1 month) under creep or relaxation at high temperature. These hold times are unattainable experimentally. The aim of the present study is to propose mechanical models which take into account the involved mechanisms and their interactions during such complex loadings. First, an experimental study of the pure fatigue and fatigue-relaxation behavior of 316L(N) at 500 C has been carried out with very long hold times (10 h and 50 h) compared with the ones studied in literature. Tensile tests at 600 C with different applied strain rates have been undertaken in order to study the dynamic strain ageing phenomenon. Before focusing on more complex loadings, the mean field homogenization approach has been used to predict the mechanical behavior of different FCC metals and alloys under low cycle fatigue at room temperature. Both Hill-Hutchinson and Kroener models have been used. Next, a physically-based model based on dislocation densities has been developed and its parameters measured. The model allows predictions in a qualitative agreement with experimental data for tensile loadings. Finally, this model has been enriched to take into account visco-plasticity, dislocation climb and interaction between dislocations and solute atoms, which are influent during creep-fatigue or fatigue relaxation at high temperature. The proposed model uses three adjustable parameters only and allows rather accurate prediction of the behavior of 316L(N) steel under tensile loading and relaxation. (author) [fr

  19. Using Drosophila to discover mechanisms underlying type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Ronald W. Alfa

    2016-04-01

    Full Text Available Mechanisms of glucose homeostasis are remarkably well conserved between the fruit fly Drosophila melanogaster and mammals. From the initial characterization of insulin signaling in the fly came the identification of downstream metabolic pathways for nutrient storage and utilization. Defects in these pathways lead to phenotypes that are analogous to diabetic states in mammals. These discoveries have stimulated interest in leveraging the fly to better understand the genetics of type 2 diabetes mellitus in humans. Type 2 diabetes results from insulin insufficiency in the context of ongoing insulin resistance. Although genetic susceptibility is thought to govern the propensity of individuals to develop type 2 diabetes mellitus under appropriate environmental conditions, many of the human genes associated with the disease in genome-wide association studies have not been functionally studied. Recent advances in the phenotyping of metabolic defects have positioned Drosophila as an excellent model for the functional characterization of large numbers of genes associated with type 2 diabetes mellitus. Here, we examine results from studies modeling metabolic disease in the fruit fly and compare findings to proposed mechanisms for diabetic phenotypes in mammals. We provide a systematic framework for assessing the contribution of gene candidates to insulin-secretion or insulin-resistance pathways relevant to diabetes pathogenesis.

  20. Deterioration of mechanical properties of high strength structural steel S460N under transient state fire condition

    International Nuclear Information System (INIS)

    Qiang, Xuhong; Bijlaard, Frans S.K.; Kolstein, Henk

    2012-01-01

    Highlights: ► Mechanical properties of S460N under transient state fire condition are obtained. ► Elevated-temperature mechanical properties of steels are dependent on steel grades. ► No design standard is applicable to HSS S460N under transient state fire condition. ► Specific statements on various HSS in fire should be proposed in design standards. ► Research results offer accurate material property for structural design engineers. -- Abstract: 911 World Trade Centre Tragedy put fire safety of constructional steel structures into question. Since then, more and more research attention has been paid to the elevated-temperature mechanical properties of structural steels, which is a critical basis of evaluating the fire performance of steel structures. In the literature the available mechanical properties of structural steels under fire conditions were mainly obtained from steady state test method, as steady state test method is easier to perform than transient state test method and offers stress–strain curves directly. However, the transient state fire condition is considered to be more realistic to represent the real condition when constructions are exposed to fire. In order to reveal the deterioration of mechanical properties of the commonly used high strength structural steel S460N under transient state fire condition, tensile tests were conducted under various constant stress levels up to 800 MPa. The reduction factors of elastic modulus, yield and ultimate strengths of S460N under transient state fire condition were obtained and compared with current leading design standards and available literature. The application of such accurate elevated-temperature mechanical properties reduction factors of S460N can ensure a safe fire-resistance design and evaluation of steel structures with high strength steel S460N under transient state fire condition. This experimental study also supports other relative research on fire performance of steel structures with

  1. A micromechanical study of the damage mechanics of acrylic particulate composites under thermomechanical loading

    Science.gov (United States)

    Nie, Shihua

    The main aim of this dissertation was to characterize the damage mechanism and fatigue behavior of the acrylic particulate composite. This dissertation also investigated how the failure mechanism is influenced by changes in certain parameters including the volume fraction of particle, the interfacial bonding strength, the stiffness and thickness of the interphase, and the CTE mismatch between the particle and the matrix. Monotonic uniaxial tensile and compressive testing under various temperatures and strain rates, isothermal low-cycle mechanical testing and thermal cycling of a plate with a cutout were performed. The influence of the interfacial bonding strength between the particle and the matrix on the failure mechanism of the ATH filled PMMA was investigated using in situ observations under uniaxial loading conditions. For composites with weak interfacial bonding, the debonding is the major damage mode. For composites with strong interfacial bonding, the breakage of the agglomerate of particles is the major damage mode. Experimental studies also demonstrated the significant influence of interfacial bonding strength on the fatigue life of the ATH filled PMMA. The damage was characterized in terms of the elastic modulus degradation, the load-drop parameter, the plastic strain range and the hysteresis dissipation. Identifying the internal state variables that quantify material degradation under thermomechanical loading is an active research field. In this dissertation, the entropy production, which is a measure of the irreversibility of the thermodynamic system, is used as the metric for damage. The close correlation between the damage measured in terms of elastic modulus degradation and that obtained from the finite element simulation results validates the entropy based damage evolution function. A micromechanical model for acrylic particulate composites with imperfect interfacial bonds was proposed. Acrylic particulate composites are treated as three

  2. Examination of a proposed phonon-coupling mechanism for cold fusion

    International Nuclear Information System (INIS)

    Crawford, O.H.

    1992-01-01

    In this paper the proposed nuclear energy in an atomic lattice (NEAL) mechanism for nuclear fusion in a cathode during electrolysis of D 2 O is examined. In this mechanism, coupled harmonic motion of deuterons is supposed to lead to a reduction in the width of the Coulomb barrier for proton-deuteron (p-d) fusion in palladium, thereby substantially increasing the fusion rate. Instead, it is argued that deuteron-deuteron coupling does not have an important effect and that interaction with phonons does not enhance the p-d fusion rate

  3. 48 CFR 52.214-23 - Late submissions, modifications, revisions, and withdrawals of technical proposals under two-step...

    Science.gov (United States)

    2010-10-01

    ..., modifications, revisions, and withdrawals of technical proposals under two-step sealed bidding. 52.214-23... Late submissions, modifications, revisions, and withdrawals of technical proposals under two-step..., Modifications, Revisions, and Withdrawals of Technical Proposals Under Two-Step Sealed Bidding (NOV 1999) (a...

  4. Computational study on the behaviors of granular materials under mechanical cycling

    International Nuclear Information System (INIS)

    Wang, Xiaoliang; Ye, Minyou; Chen, Hongli

    2015-01-01

    Considering that fusion pebble beds are probably subjected to the cyclic compression excitation in their future applications, we presented a computational study to report the effect of mechanical cycling on the behaviors of granular matter. The correctness of our numerical experiments was confirmed by a comparison with the effective medium theory. Under the cyclic loads, the fast granular compaction was observed to evolve in a stretched exponential law. Besides, the increasing stiffening in packing structure, especially the decreasing moduli pressure dependence due to granular consolidation, was also observed. For the force chains inside the pebble beds, both the internal force distribution and the spatial distribution of force chains would become increasingly uniform as the external force perturbation proceeded and therefore produced the stress relief on grains. In this case, the originally proposed 3-parameter Mueth function was found to fail to describe the internal force distribution. Thereby, its improved functional form with 4 parameters was proposed here and proved to better fit the data. These findings will provide more detailed information on the pebble beds for the relevant fusion design and analysis

  5. Dynamic analysis of composite beam with piezoelectric layers under thermo-mechanical load

    Science.gov (United States)

    Toudehdehghan, A.; Rahman, M. M.; Nagi, Farrukh

    2017-10-01

    In this paper, the control of composite beam vibrations with sensor and actuator connected layers is considered with consideration of the effect of thermal environment. The coupling relation between electrical field and mechanical deformation with uncoupled thermal impact are used. The mathematical model of shear deformation (Timoshenko’s theory) has been applied and basic equations for piezoelectric sensors and actuators have been proposed. The equation of motion for the beam structure is obtained by the Hamilton principle and analyzed by finite element method. The control algorithm is based on proportional velocity control. Hence, the purpose of this article is to investigate the direct and inverse effects of piezoelectric on control of simply supported beam vibration under uniform temperature.

  6. Mechanical strength of an ITER coil insulation system under static and dynamic load after reactor irradiation

    International Nuclear Information System (INIS)

    Bittner-Rohrhofer, K.; Humer, K.; Weber, H.W.; Hamada, K.; Sugimoto, M.; Okuno, K.

    2002-01-01

    The insulation system proposed by the Japanese Home Team for the ITER Toroidal Field coil (TF coil) is a T-glass-fiber/Kapton reinforced epoxy prepreg system. In order to assess the material performance under the actual operating conditions of the coils, the insulation system was irradiated in the TRIGA reactor (Vienna) to a fast neutron fluence of 2x10 22 m -2 (E>0.1 MeV). After measurements of swelling, all mechanical tests were carried out at 77 K. Tensile and short-beam-shear (SBS) tests were performed under static loading conditions. In addition, tension-tension fatigue experiments up to about 10 6 cycles were made. The laminate swells in the through-thickness direction by 0.86% at the highest dose level. The fatigue tests as well as the static tests do not show significant influences of the irradiation on the mechanical behavior of this composite

  7. Mechanical strength of an ITER coil insulation system under static and dynamic load after reactor irradiation

    Science.gov (United States)

    Bittner-Rohrhofer, K.; Humer, K.; Weber, H. W.; Hamada, K.; Sugimoto, M.; Okuno, K.

    2002-12-01

    The insulation system proposed by the Japanese Home Team for the ITER Toroidal Field coil (TF coil) is a T-glass-fiber/Kapton reinforced epoxy prepreg system. In order to assess the material performance under the actual operating conditions of the coils, the insulation system was irradiated in the TRIGA reactor (Vienna) to a fast neutron fluence of 2×10 22 m -2 ( E>0.1 MeV). After measurements of swelling, all mechanical tests were carried out at 77 K. Tensile and short-beam-shear (SBS) tests were performed under static loading conditions. In addition, tension-tension fatigue experiments up to about 10 6 cycles were made. The laminate swells in the through-thickness direction by 0.86% at the highest dose level. The fatigue tests as well as the static tests do not show significant influences of the irradiation on the mechanical behavior of this composite.

  8. Active joint mechanism driven by multiple actuators made of flexible bags: a proposal of dual structural actuator.

    Science.gov (United States)

    Kimura, Hitoshi; Matsuzaki, Takuya; Kataoka, Mokutaro; Inou, Norio

    2013-01-01

    An actuator is required to change its speed and force depending on the situation. Using multiple actuators for one driving axis is one of the possible solutions; however, there is an associated problem of output power matching. This study proposes a new active joint mechanism using multiple actuators. Because the actuator is made of a flexible bag, it does not interfere with other actuators when it is depressurized. The proposed joint achieved coordinated motion of multiple actuators. This report also discusses a new actuator which has dual cylindrical structure. The cylinders are composed of flexible bags with different diameters. The joint torque is estimated based on the following factors: empirical formula for the flexible actuator torque, geometric relationship between the joint and the actuator, and the principle of virtual work. The prototype joint mechanism achieves coordinated motion of multiple actuators for one axis. With this motion, small inner actuator contributes high speed motion, whereas large outer actuator generates high torque. The performance of the prototype joint is examined by speed and torque measurements. The joint showed about 30% efficiency at 2.0 Nm load torque under 0.15 MPa air input.

  9. The Commission's proposal for a Directive on Double Taxation Dispute Resolution Mechanisms:Overcoming the final hurdle of juridical double taxation within the European Union?

    OpenAIRE

    Cerioni, Luca

    2017-01-01

    This article examines the Commission’s proposal for a Directive on Double Taxation Dispute Resolution Mechanisms, by highlighting interpretative issues that its wording may arise and by discussing the conditions under which it could manage to lead to the elimination of (juridical) double taxation within the EU.

  10. A heuristic model linking yoga philosophy and self-reflection to examine underlying mechanisms of add-on yoga treatment in schizophrenia.

    Science.gov (United States)

    Rao, Naren; Menon, Sangeetha

    2016-06-01

    Preliminary evidence suggests efficacy of yoga as add-on treatment for schizophrenia, but the underlying mechanism by which yoga improves the symptoms of schizophrenia is not completely understood. Yoga improves self-reflection in healthy individuals, and self-reflection abnormalities are typically seen in schizophrenia. However, whether yoga treatment improves impairments in self-reflection typically seen in patients with schizophrenia is not examined. This paper discusses the potential mechanism of yoga in the treatment of schizophrenia and proposes a testable hypothesis for further empirical studies. It is proposed that self-reflection abnormalities in schizophrenia improve with yoga and the neurobiological changes associated with this can be examined using empirical behavioural measures and neuroimaging measures such as magnetic resonance imaging.

  11. Proposed new mechanism of traumatic aortic rupture

    International Nuclear Information System (INIS)

    Crass, J.R.; Cohen, A.M.; Motta, A.O.; Tomashefski, J.F.; Wiesen, E.

    1990-01-01

    The currently accepted mechanism to explain traumatic aortic rupture from rapid deceleration invokes a combination of traction, torsion, and hydrostatic forces. None of these forces individually is of adequate magnitude to result in aortic disruption. This paper proposes a theory, that aortic lacerations result from a pinch of the aorta between the spine and the anterior bony thorax during the chest compression caused by abrupt deceleration. Three sets of experiments were performed. Geometric analysis of CT images and compression of an articulated skeleton were performed to assess where the anterior and posterior osseous structures would contact if maximally compressed. Fresh dog aortas were pinched in a manner that would mimic the manubrium impacting the spine. Finally, attempts were made to tear an aorta via traction and torsion (whiplash)

  12. DNA under Force: Mechanics, Electrostatics, and Hydration

    Directory of Open Access Journals (Sweden)

    Jingqiang Li

    2015-02-01

    Full Text Available Quantifying the basic intra- and inter-molecular forces of DNA has helped us to better understand and further predict the behavior of DNA. Single molecule technique elucidates the mechanics of DNA under applied external forces, sometimes under extreme forces. On the other hand, ensemble studies of DNA molecular force allow us to extend our understanding of DNA molecules under other forces such as electrostatic and hydration forces. Using a variety of techniques, we can have a comprehensive understanding of DNA molecular forces, which is crucial in unraveling the complex DNA functions in living cells as well as in designing a system that utilizes the unique properties of DNA in nanotechnology.

  13. The underlying toxicological mechanism of chemical mixtures: A case study on mixture toxicity of cyanogenic toxicants and aldehydes to Photobacterium phosphoreum

    International Nuclear Information System (INIS)

    Tian, Dayong; Lin, Zhifen; Zhou, Xianghong; Yin, Daqiang

    2013-01-01

    Intracellular chemical reaction of chemical mixtures is one of the main reasons that cause synergistic or antagonistic effects. However, it still remains unclear what the influencing factors on the intracellular chemical reaction are, and how they influence on the toxicological mechanism of chemical mixtures. To reveal this underlying toxicological mechanism of chemical mixtures, a case study on mixture toxicity of cyanogenic toxicants and aldehydes to Photobacterium phosphoreum was employed, and both their joint effects and mixture toxicity were observed. Then series of two-step linear regressions were performed to describe the relationships between joint effects, the expected additive toxicities and descriptors of individual chemicals (including concentrations, binding affinity to receptors, octanol/water partition coefficients). Based on the quantitative relationships, the underlying joint toxicological mechanisms were revealed. The result shows that, for mixtures with their joint effects resulting from intracellular chemical reaction, their underlying toxicological mechanism depends on not only their interaction with target proteins, but also their transmembrane actions and their concentrations. In addition, two generic points of toxicological mechanism were proposed including the influencing factors on intracellular chemical reaction and the difference of the toxicological mechanism between single reactive chemicals and their mixtures. This study provided an insight into the understanding of the underlying toxicological mechanism for chemical mixtures with intracellular chemical reaction. - Highlights: • Joint effects of nitriles and aldehydes at non-equitoxic ratios were determined. • A novel descriptor, ligand–receptor interaction energy (E binding ), was employed. • Quantitative relationships for mixtures were developed based on a novel descriptor. • The underlying toxic mechanism was revealed based on quantitative relationships. • Two generic

  14. The underlying toxicological mechanism of chemical mixtures: A case study on mixture toxicity of cyanogenic toxicants and aldehydes to Photobacterium phosphoreum

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Dayong [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Department of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000 (China); Lin, Zhifen, E-mail: lzhifen@tongji.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Zhou, Xianghong [Department of Public Management, Tongji University, Shanghai 200092 (China); Yin, Daqiang [Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2013-10-15

    Intracellular chemical reaction of chemical mixtures is one of the main reasons that cause synergistic or antagonistic effects. However, it still remains unclear what the influencing factors on the intracellular chemical reaction are, and how they influence on the toxicological mechanism of chemical mixtures. To reveal this underlying toxicological mechanism of chemical mixtures, a case study on mixture toxicity of cyanogenic toxicants and aldehydes to Photobacterium phosphoreum was employed, and both their joint effects and mixture toxicity were observed. Then series of two-step linear regressions were performed to describe the relationships between joint effects, the expected additive toxicities and descriptors of individual chemicals (including concentrations, binding affinity to receptors, octanol/water partition coefficients). Based on the quantitative relationships, the underlying joint toxicological mechanisms were revealed. The result shows that, for mixtures with their joint effects resulting from intracellular chemical reaction, their underlying toxicological mechanism depends on not only their interaction with target proteins, but also their transmembrane actions and their concentrations. In addition, two generic points of toxicological mechanism were proposed including the influencing factors on intracellular chemical reaction and the difference of the toxicological mechanism between single reactive chemicals and their mixtures. This study provided an insight into the understanding of the underlying toxicological mechanism for chemical mixtures with intracellular chemical reaction. - Highlights: • Joint effects of nitriles and aldehydes at non-equitoxic ratios were determined. • A novel descriptor, ligand–receptor interaction energy (E{sub binding}), was employed. • Quantitative relationships for mixtures were developed based on a novel descriptor. • The underlying toxic mechanism was revealed based on quantitative relationships. • Two

  15. Kidney branching morphogenesis under the control of a ligand–receptor-based Turing mechanism

    International Nuclear Information System (INIS)

    Menshykau, Denis; Iber, Dagmar

    2013-01-01

    The main signalling proteins that control early kidney branching have been defined. Yet the underlying mechanism is still elusive. We have previously shown that a Schnakenberg-type Turing mechanism can recapitulate the branching and protein expression patterns in wild-type and mutant lungs, but it is unclear whether this mechanism would extend to other branched organs that are regulated by other proteins. Here, we show that the glial cell line-derived neurotrophic factor–RET regulatory interaction gives rise to a Schnakenberg-type Turing model that reproduces the observed budding of the ureteric bud from the Wolffian duct, its invasion into the mesenchyme and the observed branching pattern. The model also recapitulates all relevant protein expression patterns in wild-type and mutant mice. The lung and kidney models are both based on a particular receptor–ligand interaction and require (1) cooperative binding of ligand and receptor, (2) a lower diffusion coefficient for the receptor than for the ligand and (3) an increase in the receptor concentration in response to receptor–ligand binding (by enhanced transcription, more recycling or similar). These conditions are met also by other receptor–ligand systems. We propose that ligand–receptor-based Turing patterns represent a general mechanism to control branching morphogenesis and other developmental processes. (paper)

  16. Turing mechanism underlying a branching model for lung morphogenesis.

    Science.gov (United States)

    Xu, Hui; Sun, Mingzhu; Zhao, Xin

    2017-01-01

    The mammalian lung develops through branching morphogenesis. Two primary forms of branching, which occur in order, in the lung have been identified: tip bifurcation and side branching. However, the mechanisms of lung branching morphogenesis remain to be explored. In our previous study, a biological mechanism was presented for lung branching pattern formation through a branching model. Here, we provide a mathematical mechanism underlying the branching patterns. By decoupling the branching model, we demonstrated the existence of Turing instability. We performed Turing instability analysis to reveal the mathematical mechanism of the branching patterns. Our simulation results show that the Turing patterns underlying the branching patterns are spot patterns that exhibit high local morphogen concentration. The high local morphogen concentration induces the growth of branching. Furthermore, we found that the sparse spot patterns underlie the tip bifurcation patterns, while the dense spot patterns underlies the side branching patterns. The dispersion relation analysis shows that the Turing wavelength affects the branching structure. As the wavelength decreases, the spot patterns change from sparse to dense, the rate of tip bifurcation decreases and side branching eventually occurs instead. In the process of transformation, there may exists hybrid branching that mixes tip bifurcation and side branching. Since experimental studies have reported that branching mode switching from side branching to tip bifurcation in the lung is under genetic control, our simulation results suggest that genes control the switch of the branching mode by regulating the Turing wavelength. Our results provide a novel insight into and understanding of the formation of branching patterns in the lung and other biological systems.

  17. On some mechanisms of the effect of thermal prehistory on the behavior of silicon parameters under irradiation

    International Nuclear Information System (INIS)

    Nejmash, V.B.; Sagan, T.R.; Tsmots', V.M.; Shakhovtsov, V.I.; Shindich, V.L.

    1991-01-01

    The effect of preliminary thermal treatment (TT) in 400-1200 degC temperature range on the behavior of Si monocrystal parameters under subsequent γ-, electron and neutron irradiation is investigated. Five mechanisms of Si thermal prehistory effect on its properties are proposed: 1) decomposition of solid solutions of impurities interacting with radiation defects (RD); 2) formation of electrically active thermal defects (TD) in concentrations wich are sufficient for a significant alteration of RD charged state; 3) origination of TD, which can efficiency as aresult of the redistribution of impurities under thermal treatment; 5) formation of clusters of electrically active TD, resulting in the disturbance of electric homogeneity of Si crystal

  18. Proposal of a high rigidity and high speed rotating mechanism using a new concept hydrodynamic bearing in X-ray tube for high speed computed tomography

    International Nuclear Information System (INIS)

    Hattori, Hitoshi; Fukushima, Harunobu; Yoshii, Yasuo; Nakamuta, Hironori; Iwase, Mitsuo; Kitade, Koichi

    2009-01-01

    In this paper, a high rigidity and high speed rotating mechanism using a new concept hydrodynamic bearing in X-ray tube for high speed computed tomography is proposed. In order to obtain both the stability and the high load carrying capacity, the hydrodynamic bearing lubricated by liquid metal (Gallium alloy), named as the hybrid hydrodynamic bearing generates the lubricating film by wedge effect on the plane region between the spiral grooves under high loading condition. The parallelism between the bearing and the rotating body can be secured by optimizing the rigidity distribution of stationary shaft in the proposed rotating mechanism. By carrying out the fundamental design by numerical analyses, it has been made clear that the hybrid hydrodynamic bearing and the rotating mechanism are suitable for the X-ray tube used in the CT with ever-increasingly scanning speed. (author)

  19. Macrocrack propagation in concrete specimens under sustained loading: Study of the physical mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Pierre, E-mail: pierre.rossi@lcpc.fr; Boulay, Claude; Tailhan, Jean-Louis; Martin, Eric; Desnoyers, Dominic

    2014-09-15

    This study presents a series of 4-point bending tests performed to describe the delayed behavior of unreinforced pre-cracked beams under low, moderate and high sustained loading levels. The deflection creep rate, the failure time and the load level were assessed. A linear relation, in a semi-log scale, was found for the deflection creep rate at high load levels. In addition, a linear relation, in a log–log scale, between the secondary deflection creep rate and failure time was observed. Besides, it was shown that the secondary creep deflection rate increases with the sustained loading level and the macrocrack propagation rate when macrocrack propagation occurs during the sustained loading. Physical mechanisms are proposed to explain these results and may be summarized as follows: the delayed behavior of an unreinforced cracked concrete specimen under sustained loading is mainly due to the cracking evolution, thus the creation of microcracks and/or the propagation of a macrocrack.

  20. Macrocrack propagation in concrete specimens under sustained loading: Study of the physical mechanisms

    International Nuclear Information System (INIS)

    Rossi, Pierre; Boulay, Claude; Tailhan, Jean-Louis; Martin, Eric; Desnoyers, Dominic

    2014-01-01

    This study presents a series of 4-point bending tests performed to describe the delayed behavior of unreinforced pre-cracked beams under low, moderate and high sustained loading levels. The deflection creep rate, the failure time and the load level were assessed. A linear relation, in a semi-log scale, was found for the deflection creep rate at high load levels. In addition, a linear relation, in a log–log scale, between the secondary deflection creep rate and failure time was observed. Besides, it was shown that the secondary creep deflection rate increases with the sustained loading level and the macrocrack propagation rate when macrocrack propagation occurs during the sustained loading. Physical mechanisms are proposed to explain these results and may be summarized as follows: the delayed behavior of an unreinforced cracked concrete specimen under sustained loading is mainly due to the cracking evolution, thus the creation of microcracks and/or the propagation of a macrocrack

  1. Study Under AC Stimulation on Excitement Properties of Weighted Small-World Biological Neural Networks with Side-Restrain Mechanism

    International Nuclear Information System (INIS)

    Yuan Wujie; Luo Xiaoshu; Jiang Pinqun

    2007-01-01

    In this paper, we propose a new model of weighted small-world biological neural networks based on biophysical Hodgkin-Huxley neurons with side-restrain mechanism. Then we study excitement properties of the model under alternating current (AC) stimulation. The study shows that the excitement properties in the networks are preferably consistent with the behavior properties of a brain nervous system under different AC stimuli, such as refractory period and the brain neural excitement response induced by different intensities of noise and coupling. The results of the study have reference worthiness for the brain nerve electrophysiology and epistemological science.

  2. Theoretical modeling of mechanical homeostasis of a mammalian cell under gravity-directed vector.

    Science.gov (United States)

    Zhou, Lüwen; Zhang, Chen; Zhang, Fan; Lü, Shouqin; Sun, Shujin; Lü, Dongyuan; Long, Mian

    2018-02-01

    Translocation of dense nucleus along gravity vector initiates mechanical remodeling of a eukaryotic cell. In our previous experiments, we quantified the impact of gravity vector on cell remodeling by placing an MC3T3-E1 cell onto upward (U)-, downward (D)-, or edge-on (E)- orientated substrate. Our experimental data demonstrate that orientation dependence of nucleus longitudinal translocation is positively correlated with cytoskeletal (CSK) remodeling of their expressions and structures and also is associated with rearrangement of focal adhesion complex (FAC). However, the underlying mechanism how CSK network and FACs are reorganized in a mammalian cell remains unclear. In this paper, we developed a theoretical biomechanical model to integrate the mechanosensing of nucleus translocation with CSK remodeling and FAC reorganization induced by a gravity vector. The cell was simplified as a nucleated tensegrity structure in the model. The cell and CSK filaments were considered to be symmetrical. All elements of CSK filaments and cytomembrane that support the nucleus were simplified as springs. FACs were simplified as an adhesion cluster of parallel bonds with shared force. Our model proposed that gravity vector-directed translocation of the cell nucleus is mechanically balanced by CSK remodeling and FAC reorganization induced by a gravitational force. Under gravity, dense nucleus tends to translocate and exert additional compressive or stretching force on the cytoskeleton. Finally, changes of the tension force acting on talin by microfilament alter the size of FACs. Results from our model are in qualitative agreement with those from experiments.

  3. Simulated airplane headache: a proxy towards identification of underlying mechanisms.

    Science.gov (United States)

    Bui, Sebastian Bao Dinh; Petersen, Torben; Poulsen, Jeppe Nørgaard; Gazerani, Parisa

    2017-12-01

    Airplane Headache (AH) occurs during flights and often appears as an intense, short lasting headache during take-off or landing. Reports are limited on pathological mechanisms underlying the occurrence of this headache. Proper diagnosis and treatments would benefit from identification of potential pathways involved in AH pathogenesis. This study aimed at providing a simulated airplane headache condition as a proxy towards identification of its underlying mechanisms. Fourteen participants including 7 volunteers suffering from AH and 7 healthy matched controls were recruited after meeting the diagnostic and safety criteria based on an approved study protocol. Simulation of AH was achieved by entering a pressure chamber with similar characteristics of an airplane flight. Selected potential biomarkers including salivary prostaglandin E 2 (PGE 2 ), cortisol, facial thermo-images, blood pressure, pulse, and saturation pulse oxygen (SPO) were defined and values were collected before, during and after flight simulation in the pressure chamber. Salivary samples were analyzed with ELISA techniques, while data analysis and statistical tests were handled with SPSS version 22.0. All participants in the AH-group experienced a headache attack similar to AH experience during flight. The non-AH-group did not experience any headaches. Our data showed that the values for PGE 2 , cortisol and SPO were significantly different in the AH-group in comparison with the non-AH-group during the flight simulation in the pressure chamber. The pressure chamber proved useful not only to provoke AH-like attack but also to study potential biomarkers for AH in this study. PGE 2 , and cortisol levels together with SPO presented dysregulation during the simulated AH-attack in affected individuals compared with healthy controls. Based on these findings we propose to use pressure chamber as a model to induce AH, and thus assess new potential biomarkers for AH in future studies.

  4. 75 FR 77614 - Proposed Foreign-Trade Zone-Terrebonne Parish, LA; Under Alternative Site Framework; Application...

    Science.gov (United States)

    2010-12-13

    ... proposal under the Louisiana Revised Statutes, Title 51, Sections 61-65. The proposed zone would be the... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [Docket 69-2010] Proposed Foreign-Trade Zone... to the Foreign-Trade Zones Board (the Board) by the Houma-Terrebonne Airport Commission to establish...

  5. Proposed design procedure for transmission shafting under fatigue loading

    Science.gov (United States)

    Loewenthal, S. H.

    1978-01-01

    The B106 American National Standards Committee is currently preparing a new standard for the design of transmission shafting. A design procedure, proposed for use in the new standard, for computing the diameter of rotating solid steel shafts under combined cyclic bending and steady torsion is presented. The formula is based on an elliptical variation of endurance strength with torque exhibited by combined stress fatigue data. Fatigue factors are cited to correct specimen bending endurance strength data for use in the shaft formula. A design example illustrates how the method is to be applied.

  6. Exploration of mechanisms underlying the strain-rate-dependent mechanical property of single chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Trung Dung; Gu, YuanTong, E-mail: yuantong.gu@qut.edu.au [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland (Australia)

    2014-05-05

    Based on the characterization by Atomic Force Microscopy, we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young's moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton and the intracellular fluid when the fixed chondrocytes are mainly governed by their intracellular fluid, which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic constitutive material model which can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.

  7. A novel approach to mechanical foot stimulation during human locomotion under body weight support.

    Science.gov (United States)

    Gravano, S; Ivanenko, Y P; Maccioni, G; Macellari, V; Poppele, R E; Lacquaniti, F

    2011-04-01

    Input from the foot plays an essential part in perceiving support surfaces and determining kinematic events in human walking. To simulate adequate tactile pressure inputs under body weight support (BWS) conditions that represent an effective form of locomotion training, we here developed a new method of phasic mechanical foot stimulation using light-weight pneumatic insoles placed inside the shoes (under the heel and metatarsus). To test the system, we asked healthy participants to walk on a treadmill with different levels of BWS. The pressure under the stimulated areas of the feet and subjective sensations were higher at high levels of BWS and when applied to the ball and toes rather than heels. Foot stimulation did not disturb significantly the normal motor pattern, and in all participants we evoked a reliable step-synchronized triggering of stimuli for each leg separately. This approach has been performed in a general framework looking for "afferent templates" of human locomotion that could be used for functional sensory stimulation. The proposed technique can be used to imitate or partially restore surrogate contact forces under body weight support conditions. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. A proposal of a novel DNA modification mechanism induced by irradiation

    International Nuclear Information System (INIS)

    Oka, Toshitaka

    2016-01-01

    This article depicts a proposal of a novel DNA modification mechanism induced by irradiation, and is written as an award work from Japanese Society of Radiation Chemistry. The mechanism of DNA modification induced by K-shell photoabsorption of nitrogen and oxygen atoms was investigated by electron paramagnetic resonance and x-ray absorption near edge structure measurements of calf thymus DNA film. The EPR intensities for DNA film were twofold times larger than those estimated based on the photoabsorption cross section. This suggests that the DNA film itself forms unpaired electron species through the excitation of enhanced electron recapturing, known as the postcollision interaction process. (author)

  9. Toward an understanding of the neural mechanisms underlying dual-task performance: Contribution of comparative approaches using animal models.

    Science.gov (United States)

    Watanabe, Kei; Funahashi, Shintaro

    2018-01-01

    The study of dual-task performance in human subjects has received considerable interest in cognitive neuroscience because it can provide detailed insights into the neural mechanisms underlying higher-order cognitive control. Despite many decades of research, our understanding of the neurobiological basis of dual-task performance is still limited, and some critical questions are still under debate. Recently, behavioral and neurophysiological studies of dual-task performance in animals have begun to provide intriguing evidence regarding how dual-task information is processed in the brain. In this review, we first summarize key evidence in neuroimaging and neuropsychological studies in humans and discuss possible reasons for discrepancies across studies. We then provide a comprehensive review of the literature on dual-task studies in animals and provide a novel working hypothesis that may reconcile the divergent results in human studies toward a unified view of the mechanisms underlying dual-task processing. Finally, we propose possible directions for future dual-task experiments in the framework of comparative cognitive neuroscience. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Deformation Mechanisms of Gum Metals Under Nanoindentation

    Science.gov (United States)

    Sankaran, Rohini Priya

    defect structures to applied loading, we perform ex-situ nanoindentation. Nanoindentation is a convenient method as the plastic deformation is localized and probes a nominally defect free volume of the material. We subsequently characterize the defect structures in these alloys with both conventional TEM and advanced techniques such as HAADF HRSTEM and nanoprobe diffraction. These advanced techniques allow for a more thorough understanding of the observed deformation features. The main findings from this investigation are as follows. As expected we observe that a non-equilibrium phase, o, is present in the leaner beta-stabilized alloy, ST Ref-1. We do not find any direct evidence of secondary phases in STGM, and we find the beta phase in CWGM, along with lath microstructure with subgrain structure consisting of dislocation cell networks. Upon nanoindentation, we find twinning accompanied by beta nucleation on the twin boundary in ST Ref-1 samples. This result is consistent with previous findings and is reasonable considering the alloy is unstable with respect to beta transformation. We find deformation nanotwinning in cold worked gum metals under nanoindentation, which is initially surprising. We argue that when viewed as a nanocrystalline material, such a deformation mechanism is consistent with previous work, and furthermore, a deformation nanotwinned structure does not preclude an ideal shear mechanism from operating in the alloy. Lastly, we observe continuous lattice rotations in STGM under nanoindentation via nanoprobe diffraction. With this technique, for the first time we can demonstrate that the lattice rotations are truly continuous at the nanoscale. We can quantify this lattice rotation, and find that even though the rotation is large, it may be mediated by a reasonable geometrically necessary dislocation density, and note that similar rotations are typically observed in other materials under nanoindentation. HRSTEM and conventional TEM data confirm the

  11. Problems for the Purported Cognitive Penetration of Perceptual Color Experience and Macpherson’s Proposed Mechanism

    Directory of Open Access Journals (Sweden)

    Steven Gross

    2014-12-01

    Full Text Available Fiona Macpherson (2012 argues that various experimental results provide strong evidence in favor of the cognitive penetration of perceptual color experience. Moreover, she proposes a mechanism for how such cognitive penetration occurs. We argue, first, that the results on which Macpherson relies do not provide strong grounds for her claim of cognitive penetrability; and, second, that, if the results do reflect cognitive penetrability, then time-course considerations raise worries for her proposed mechanism. We base our arguments in part on several of our own experiments, reported herein.

  12. Cell-Nonautonomous Mechanisms Underlying Cellular and Organismal Aging.

    Science.gov (United States)

    Medkour, Younes; Svistkova, Veronika; Titorenko, Vladimir I

    2016-01-01

    Cell-autonomous mechanisms underlying cellular and organismal aging in evolutionarily distant eukaryotes have been established; these mechanisms regulate longevity-defining processes within a single eukaryotic cell. Recent findings have provided valuable insight into cell-nonautonomous mechanisms modulating cellular and organismal aging in eukaryotes across phyla; these mechanisms involve a transmission of various longevity factors between different cells, tissues, and organisms. Herein, we review such cell-nonautonomous mechanisms of aging in eukaryotes. We discuss the following: (1) how low molecular weight transmissible longevity factors modulate aging and define longevity of cells in yeast populations cultured in liquid media or on solid surfaces, (2) how communications between proteostasis stress networks operating in neurons and nonneuronal somatic tissues define longevity of the nematode Caenorhabditis elegans by modulating the rates of aging in different tissues, and (3) how different bacterial species colonizing the gut lumen of C. elegans define nematode longevity by modulating the rate of organismal aging. Copyright © 2016. Published by Elsevier Inc.

  13. 75 FR 7627 - Notice of Lodging of Proposed Consent Decree Under the Federal Water Pollution Control Act

    Science.gov (United States)

    2010-02-22

    .... (``Defendants'') under the pre-treatment requirements of the Federal Water Pollution Control Act (Clean Water... DEPARTMENT OF JUSTICE Notice of Lodging of Proposed Consent Decree Under the Federal Water Pollution Control Act Notice is hereby given that on February 16, 2010, a proposed Consent Decree was filed...

  14. An Overview on the Proposed Mechanisms of Antithyroid Drugs-Induced Liver Injury

    Directory of Open Access Journals (Sweden)

    Reza Heidari

    2015-03-01

    Full Text Available Drug-induced liver injury (DILI is a major problem for pharmaceutical industry and drug development. Mechanisms of DILI are many and varied. Elucidating the mechanisms of DILI will allow clinicians to prevent liver failure, need for liver transplantation, and death induced by drugs. Methimazole and propylthiouracil (PTU are two convenient antithyroid agents which their administration is accompanied by hepatotoxicity as a deleterious side effect. Although several cases of antithyroid drugs-induced liver injury are reported, there is no clear idea about the mechanism(s of hepatotoxicity induced by these medications. Different mechanisms such as reactive metabolites formation, oxidative stress induction, intracellular targets dysfunction, and immune-mediated toxicity are postulated to be involved in antithyroid agents-induced hepatic damage. Due to the idiosyncratic nature of antithyroid drugs-induced hepatotoxicity, it is impossible to draw a specific conclusion about the mechanisms of liver injury. However, it seems that reactive metabolite formation and immune-mediated toxicity have a great role in antithyroids liver toxicity, especially those caused by methimazole. This review attempted to discuss different mechanisms proposed to be involved in the hepatic injury induced by antithyroid drugs.

  15. Mechanism of crack initiation and crack growth under thermal and mechanical fatigue loading

    Energy Technology Data Exchange (ETDEWEB)

    Utz, S.; Soppa, E.; Silcher, H.; Kohler, C. [Stuttgart Univ. (Germany). Materials Testing Inst.

    2013-07-01

    The present contribution is focused on the experimental investigations and numerical simulations of the deformation behaviour and crack development in the austenitic stainless steel X6CrNiNb18-10 under thermal and mechanical cyclic loading in HCF and LCF regimes. The main objective of this research is the understanding of the basic mechanisms of fatigue damage and the development of simulation methods, which can be applied further in safety evaluations of nuclear power plant components. In this context the modelling of crack initiation and crack growth inside the material structure induced by varying thermal or mechanical loads are of particular interest. The mechanisms of crack initiation depend among other things on the type of loading, microstructure, material properties and temperature. The Nb-stabilized austenitic stainless steel in the solution-annealed condition was chosen for the investigations. Experiments with two kinds of cyclic loading - pure thermal and pure mechanical - were carried out and simulated. The fatigue behaviour of the steel X6CrNiNb18-10 under thermal loading was studied within the framework of the joint research project [4]. Interrupted thermal cyclic tests in the temperature range of 150 C to 300 C combined with non-destructive residual stress measurements (XRD) and various microscopic investigations, e.g. in SEM (Scanning Electron Microscope), were used to study the effects of thermal cyclic loading on the material. This thermal cyclic loading leads to thermal induced stresses and strains. As a result intrusions and extrusions appear inside the grains (at the surface), at which microcracks arise and evolve to a dominant crack. Finally, these microcracks cause a continuous and significant decrease of residual stresses. The fatigue behaviour of the steel X6CrNiNb18-10 under mechanical loading at room temperature was studied within the framework of the research project [5], [8]. With a combination of interrupted LCF tests and EBSD

  16. Mechanism of crack initiation and crack growth under thermal and mechanical fatigue loading

    International Nuclear Information System (INIS)

    Utz, S.; Soppa, E.; Silcher, H.; Kohler, C.

    2013-01-01

    The present contribution is focused on the experimental investigations and numerical simulations of the deformation behaviour and crack development in the austenitic stainless steel X6CrNiNb18-10 under thermal and mechanical cyclic loading in HCF and LCF regimes. The main objective of this research is the understanding of the basic mechanisms of fatigue damage and the development of simulation methods, which can be applied further in safety evaluations of nuclear power plant components. In this context the modelling of crack initiation and crack growth inside the material structure induced by varying thermal or mechanical loads are of particular interest. The mechanisms of crack initiation depend among other things on the type of loading, microstructure, material properties and temperature. The Nb-stabilized austenitic stainless steel in the solution-annealed condition was chosen for the investigations. Experiments with two kinds of cyclic loading - pure thermal and pure mechanical - were carried out and simulated. The fatigue behaviour of the steel X6CrNiNb18-10 under thermal loading was studied within the framework of the joint research project [4]. Interrupted thermal cyclic tests in the temperature range of 150 C to 300 C combined with non-destructive residual stress measurements (XRD) and various microscopic investigations, e.g. in SEM (Scanning Electron Microscope), were used to study the effects of thermal cyclic loading on the material. This thermal cyclic loading leads to thermal induced stresses and strains. As a result intrusions and extrusions appear inside the grains (at the surface), at which microcracks arise and evolve to a dominant crack. Finally, these microcracks cause a continuous and significant decrease of residual stresses. The fatigue behaviour of the steel X6CrNiNb18-10 under mechanical loading at room temperature was studied within the framework of the research project [5], [8]. With a combination of interrupted LCF tests and EBSD

  17. Fracture mechanics of hydroxyapatite single crystals under geometric confinement.

    Science.gov (United States)

    Libonati, Flavia; Nair, Arun K; Vergani, Laura; Buehler, Markus J

    2013-04-01

    Geometric confinement to the nanoscale, a concept that refers to the characteristic dimensions of structural features of materials at this length scale, has been shown to control the mechanical behavior of many biological materials or their building blocks, and such effects have also been suggested to play a crucial role in enhancing the strength and toughness of bone. Here we study the effect of geometric confinement on the fracture mechanism of hydroxyapatite (HAP) crystals that form the mineralized phase in bone. We report a series of molecular simulations of HAP crystals with an edge crack on the (001) plane under tensile loading, and we systematically vary the sample height whilst keeping the sample and the crack length constant. We find that by decreasing the sample height the stress concentration at the tip of the crack disappears for samples with a height smaller than 4.15nm, below which the material shows a different failure mode characterized by a more ductile mechanism with much larger failure strains, and the strength approaching that of a flaw-less crystal. This study directly confirms an earlier suggestion of a flaw-tolerant state that appears under geometric confinement and may explain the mechanical stability of the reinforcing HAP platelets in bone. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Believing versus interacting: Behavioural and neural mechanisms underlying interpersonal coordination

    DEFF Research Database (Denmark)

    Konvalinka, Ivana; Bauer, Markus; Kilner, James

    When two people engage in a bidirectional interaction with each other, they use both bottom-up sensorimotor mechanisms such as monitoring and adapting to the behaviour of the other, as well as top-down cognitive processes, modulating their beliefs and allowing them to make decisions. Most research...... in joint action has investigated only one of these mechanisms at a time – low-level processes underlying joint coordination, or high-level cognitive mechanisms that give insight into how people think about another. In real interactions, interplay between these two mechanisms modulates how we interact...

  19. Mechanical behavior of silicon carbide nanoparticles under uniaxial compression

    Energy Technology Data Exchange (ETDEWEB)

    He, Qiuxiang; Fei, Jing; Tang, Chao; Zhong, Jianxin; Meng, Lijun, E-mail: ljmeng@xtu.edu.cn [Xiangtan University, Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Faculty of School of Physics and Optoelectronics (China)

    2016-03-15

    The mechanical behavior of SiC nanoparticles under uniaxial compression was investigated using an atomic-level compression simulation technique. The results revealed that the mechanical deformation of SiC nanocrystals is highly dependent on compression orientation, particle size, and temperature. A structural transformation from the original zinc-blende to a rock-salt phase is identified for SiC nanoparticles compressed along the [001] direction at low temperature. However, the rock-salt phase is not observed for SiC nanoparticles compressed along the [110] and [111] directions irrespective of size and temperature. The high-pressure-generated rock-salt phase strongly affects the mechanical behavior of the nanoparticles, including their hardness and deformation process. The hardness of [001]-compressed nanoparticles decreases monotonically as their size increases, different from that of [110] and [111]-compressed nanoparticles, which reaches a maximal value at a critical size and then decreases. Additionally, a temperature-dependent mechanical response was observed for all simulated SiC nanoparticles regardless of compression orientation and size. Interestingly, the hardness of SiC nanocrystals with a diameter of 8 nm compressed in [001]-orientation undergoes a steep decrease at 0.1–200 K and then a gradual decline from 250 to 1500 K. This trend can be attributed to different deformation mechanisms related to phase transformation and dislocations. Our results will be useful for practical applications of SiC nanoparticles under high pressure.

  20. 78 FR 44599 - Notice of Lodging of Proposed Consent Decree Under the Clean Water Act

    Science.gov (United States)

    2013-07-24

    ... DEPARTMENT OF JUSTICE Notice of Lodging of Proposed Consent Decree Under the Clean Water Act On... seeking permanent injunctive relief and civil penalties under the Clean Water Act (``CWA''), 33 U.S.C..., manganese, potassium, sodium, strontium, bromide, chloride, [[Page 44600

  1. Nonlinear Mechanics of MEMS Rectangular Microplates under Electrostatic Actuation

    KAUST Repository

    Saghir, Shahid

    2016-01-01

    The first objective of the dissertation is to develop a suitable reduced order model capable of investigating the nonlinear mechanical behavior of von-Karman plates under electrostatic actuation. The second objective is to investigate the nonlinear

  2. Coral bleaching under thermal stress: putative involvement of host/symbiont recognition mechanisms.

    Science.gov (United States)

    Vidal-Dupiol, Jeremie; Adjeroud, Mehdi; Roger, Emmanuel; Foure, Laurent; Duval, David; Mone, Yves; Ferrier-Pages, Christine; Tambutte, Eric; Tambutte, Sylvie; Zoccola, Didier; Allemand, Denis; Mitta, Guillaume

    2009-08-04

    Coral bleaching can be defined as the loss of symbiotic zooxanthellae and/or their photosynthetic pigments from their cnidarian host. This major disturbance of reef ecosystems is principally induced by increases in water temperature. Since the beginning of the 1980s and the onset of global climate change, this phenomenon has been occurring at increasing rates and scales, and with increasing severity. Several studies have been undertaken in the last few years to better understand the cellular and molecular mechanisms of coral bleaching but the jigsaw puzzle is far from being complete, especially concerning the early events leading to symbiosis breakdown. The aim of the present study was to find molecular actors involved early in the mechanism leading to symbiosis collapse. In our experimental procedure, one set of Pocillopora damicornis nubbins was subjected to a gradual increase of water temperature from 28 degrees C to 32 degrees C over 15 days. A second control set kept at constant temperature (28 degrees C). The differentially expressed mRNA between the stressed states (sampled just before the onset of bleaching) and the non stressed states (control) were isolated by Suppression Subtractive Hybridization. Transcription rates of the most interesting genes (considering their putative function) were quantified by Q-RT-PCR, which revealed a significant decrease in transcription of two candidates six days before bleaching. RACE-PCR experiments showed that one of them (PdC-Lectin) contained a C-Type-Lectin domain specific for mannose. Immunolocalisation demonstrated that this host gene mediates molecular interactions between the host and the symbionts suggesting a putative role in zooxanthellae acquisition and/or sequestration. The second gene corresponds to a gene putatively involved in calcification processes (Pdcyst-rich). Its down-regulation could reflect a trade-off mechanism leading to the arrest of the mineralization process under stress. Under thermal stress

  3. Study on Mechanical Characteristics of Fully Grouted Rock Bolts for Underground Caverns under Seismic Loads

    Directory of Open Access Journals (Sweden)

    Guoqing Liu

    2017-01-01

    Full Text Available This study establishes an analytical model for the interaction between the bolt and surrounding rock based on the bearing mechanism of fully grouted rock bolts. The corresponding controlled differential equation for load transfer is deduced. The stress distributions of the anchorage body are obtained by solving the equations. A dynamic algorithm for the bolt considering shear damage on the anchoring interface is proposed based on the dynamic finite element method. The rationality of the algorithm is verified by a pull-out test and excavation simulation of a rounded tunnel. Then, a case study on the mechanical characteristics of the bolts in underground caverns under seismic loads is conducted. The results indicate that the seismic load may lead to stress originating from the bolts and damage on the anchoring interface. The key positions of the antiseismic support can be determined using the numerical simulation. The calculated results can serve as a reference for the antiseismic optimal design of bolts in underground caverns.

  4. Proposing and Planning the Rehabilitation Works of Mechanical Utility System in Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Jusnan Hasim; Mohamad Suhaimi Yahaya; Abdul Razak Hashim

    2015-01-01

    Nuclear Malaysia has 2 complex located in Bangi and Jalan Dengkil. The utility in Nuclear Malaysia consists of civil, mechanical and electrical system that has been managed by Bahagian Kejuruteraan (BKJ). The mechanical utilities system has been divided to three main groups which are the main system, supporting system and safety equipment's. The objectives of this paper are to propose and plan the rehabilitation works of mechanical utility system in Nuclear Malaysia and also to explain working procedures in maintaining and repairing the mechanical utility system. The study suggest the rehabilitation works on the mechanical utilities system especially on Thermal Energy Storage (TES) and domestic water system needs to be done which involve process of design, procurement, installation and commissioning. (author)

  5. 78 FR 1251 - Notice of Lodging of Proposed Consent Decree Under the Oil Pollution Act

    Science.gov (United States)

    2013-01-08

    ... DEPARTMENT OF JUSTICE Notice of Lodging of Proposed Consent Decree Under the Oil Pollution Act On December 21, 2012, the Department of Justice lodged a proposed consent decree with the United States... Oil Pollution Act, 33 U.S.C. 2702, 2706, and Section 128D of the Hawaii Environmental Response law...

  6. 76 FR 44050 - Information Collection Requests Under OMB Review; Proposed Collection of Information

    Science.gov (United States)

    2011-07-22

    ... for Peace Corps Response assignments to provide basic information concerning technical and language... PEACE CORPS Information Collection Requests Under OMB Review; Proposed Collection of Information AGENCY: Peace Corps. ACTION: Submission for Office of Management and Budget (OMB) review; comment request...

  7. Teaching the foundations of quantum mechanics in secondary school: a proposed conceptual structure

    Directory of Open Access Journals (Sweden)

    Maria de los Angeles Fanaro

    2009-03-01

    Full Text Available This paper is part of a doctoral thesis that investigates Basic Quantum Mechanics (QM teaching in high school. A Conceptual Structure of Reference (CSR based on the Path Integral Method of Feynman (1965 was rebuilt and a Proposed Conceptual Structure for Teaching (PCST (Otero, 2006, 2007 the basics of Quantum Mechanics at secondary school was designed, analysed and carried out. This PCST does not follow the historical route and it is complementary to the canonical formalism. The concepts: probability distribution, quantum system, x(t alternative, amplitude of probability, sum of probability amplitude, action, Planck's constant, and classic-quantum transition were rebuilt with the students. Mathematical formalism was avoided by using simulation software assistance. The Proposed Conceptual Structure for Teaching (PCST is described and some results from the test carried out by the class group are discussed. This information allows the analysis of the Conceptual Structure Effectively Reconstructed (CSER to be initiated with the students.

  8. Underlying mechanisms of improving physical activity behavior after rehabilitation

    NARCIS (Netherlands)

    van der Ploeg, H.P.; Streppel, K.R.; van der Beek, A.J.; van der Woude, L.H.V.; van Harten, W.H.; van Mechelen, W.

    2008-01-01

    Background: Regular physical activity is beneficial for the health and functioning of people with a disability. Effective components of successful physical activity promotion interventions should be identified and disseminated. Purpose: To study the underlying mechanisms of the combined sport

  9. Underlying Mechanisms of Improving Physical Activity Behavior after Rehabilitation

    NARCIS (Netherlands)

    van der Ploeg, Hidde P.; Streppel, Kitty R.M.; van der Beek, Allard J.; Woude, Luc H.V.; van Harten, Willem H.; Vollenbroek-Hutten, Miriam Marie Rosé; van Mechelen, Willem

    2008-01-01

    Background: Regular physical activity is beneficial for the health and functioning of people with a disability. Effective components of successful physical activity promotion interventions should be identified and disseminated. Purpose: To study the underlying mechanisms of the combined sport

  10. An integrative view of mechanisms underlying generalized spike-and-wave epileptic seizures and its implication on optimal therapeutic treatments.

    Directory of Open Access Journals (Sweden)

    Boyuan Yan

    Full Text Available Many types of epileptic seizures are characterized by generalized spike-and-wave discharges. In the past, notable effort has been devoted to understanding seizure dynamics and various hypotheses have been proposed to explain the underlying mechanisms. In this paper, by taking an integrative view of the underlying mechanisms, we demonstrate that epileptic seizures can be generated by many different combinations of synaptic strengths and intrinsic membrane properties. This integrative view has important medical implications: the specific state of a patient characterized by a set of biophysical characteristics ultimately determines the optimal therapeutic treatment. Through the same view, we further demonstrate the potentiation effect of rational polypharmacy in the treatment of epilepsy and provide a new angle to resolve the debate on polypharmacy. Our results underscore the need for personalized medicine and demonstrate that computer modeling and simulation may play an important role in assisting the clinicians in selecting the optimal treatment on an individual basis.

  11. 78 FR 69875 - Notice of Lodging of Proposed Consent Decree Under the Oil Pollution Act

    Science.gov (United States)

    2013-11-21

    ... DEPARTMENT OF JUSTICE Notice of Lodging of Proposed Consent Decree Under the Oil Pollution Act On November 15, 2013, the Department of Justice lodged a proposed consent decree with the United States... against Suncor (U.S.A.) Inc. (``Suncor'') pursuant to the Oil Pollution Act, 33 U.S.C. 2701-2762. The...

  12. On the dynamic mechanical property and deformation mechanism of as-extruded Mg-Sn-Ca alloys under tension

    International Nuclear Information System (INIS)

    Huang, Qiuyan; Pan, Hucheng; Tang, Aitao; Ren, Yuping; Song, Bo; Qin, Gaowu; Zhang, Mingxing; Pan, Fusheng

    2016-01-01

    To further understand the deformation mechanism of magnesium alloys and expand their applications under dynamic conditions, the newly developed Mg-2Sn-1Ca alloy (TX21) is selected as the representative sample and tested under wide loading rate ranging from quasi-static to dynamic level (10"−"3–500/s). Both ultimate tensile strength and elongation of the as-extruded TX21 alloys increase with strain rate. Although twinning is accompanied due to the enhanced activity at higher strain rate, the preferential activation of dislocations is readily clarified and confirmed as the dominant deformation modes. Active interactions of pyramidal dislocations result in the higher strain hardening ability and could be correlated to the obviously positive strain-rate sensitivity for mechanical properties. Moreover, it is observed that the larger grain size and higher content of solute atoms dissolved in matrix would lead to the more active dislocations and twinning formations. The present results would provide insight into further understanding the deformation mechanism under dynamic rate loading and designing Mg alloy suitable for impact conditions.

  13. On the dynamic mechanical property and deformation mechanism of as-extruded Mg-Sn-Ca alloys under tension

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qiuyan [National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Pan, Hucheng [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Tang, Aitao, E-mail: tat@cqu.edu.cn [National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Ren, Yuping [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Song, Bo [Faculty of Materials and Energy, Southwest University, Chongqing 400715 (China); Qin, Gaowu, E-mail: qingw@smm.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Zhang, Mingxing [School of Mechanical and Mining Engineering, University of Queensland, St Lucia, QLD 4072 (Australia); Pan, Fusheng [National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China)

    2016-05-10

    To further understand the deformation mechanism of magnesium alloys and expand their applications under dynamic conditions, the newly developed Mg-2Sn-1Ca alloy (TX21) is selected as the representative sample and tested under wide loading rate ranging from quasi-static to dynamic level (10{sup −3}–500/s). Both ultimate tensile strength and elongation of the as-extruded TX21 alloys increase with strain rate. Although twinning is accompanied due to the enhanced activity at higher strain rate, the preferential activation of dislocations is readily clarified and confirmed as the dominant deformation modes. Active interactions of pyramidal dislocations result in the higher strain hardening ability and could be correlated to the obviously positive strain-rate sensitivity for mechanical properties. Moreover, it is observed that the larger grain size and higher content of solute atoms dissolved in matrix would lead to the more active dislocations and twinning formations. The present results would provide insight into further understanding the deformation mechanism under dynamic rate loading and designing Mg alloy suitable for impact conditions.

  14. Mechanics without mechanisms

    Science.gov (United States)

    Eisenthal, Joshua

    2018-05-01

    At the time of Heinrich Hertz's premature death in 1894, he was regarded as one of the leading scientists of his generation. However, the posthumous publication of his treatise in the foundations of physics, Principles of Mechanics, presents a curious historical situation. Although Hertz's book was widely praised and admired, it was also met with a general sense of dissatisfaction. Almost all of Hertz's contemporaries criticized Principles for the lack of any plausible way to construct a mechanism from the "hidden masses" that are particularly characteristic of Hertz's framework. This issue seemed especially glaring given the expectation that Hertz's work might lead to a model of the underlying workings of the ether. In this paper I seek an explanation for why Hertz seemed so unperturbed by the difficulties of constructing such a mechanism. In arriving at this explanation, I explore how the development of Hertz's image-theory of representation framed the project of Principles. The image-theory brings with it an austere view of the "essential content" of mechanics, only requiring a kind of structural isomorphism between symbolic representations and target phenomena. I argue that bringing this into view makes clear why Hertz felt no need to work out the kinds of mechanisms that many of his readers looked for. Furthermore, I argue that a crucial role of Hertz's hypothesis of hidden masses has been widely overlooked. Far from acting as a proposal for the underlying structure of the ether, I show that Hertz's hypothesis ruled out knowledge of such underlying structure.

  15. Animal behavior models of the mechanisms underlying antipsychotic atypicality.

    NARCIS (Netherlands)

    Geyer, M.A.; Ellenbroek, B.A.

    2003-01-01

    This review describes the animal behavior models that provide insight into the mechanisms underlying the critical differences between the actions of typical vs. atypical antipsychotic drugs. Although many of these models are capable of differentiating between antipsychotic and other psychotropic

  16. Damage and service life of nickel-base alloys under thermal-mechanical fatigue stress at different phase positions; Schaedigung und Lebensdauer von Nickelbasislegierungen unter thermisch-mechanischer Ermuedungsbeanspruchung bei verschiedenen Phasenlagen

    Energy Technology Data Exchange (ETDEWEB)

    Guth, Stefan

    2016-07-01

    This work considers the behaviour of two nickel-base alloys (NiCr22Co12Mo9 and MAR-M247 LC) under thermo-mechanical fatigue loading with varying phase angles between mechanical strain and temperature. The investigations focus on the characterisation of microstructures and damage mechanisms as a function of the phase angle. Based on the results, a life prediction model is proposed.

  17. Molecular mechanisms underlying the emergence of bacterial pathogens: an ecological perspective.

    Science.gov (United States)

    Bartoli, Claudia; Roux, Fabrice; Lamichhane, Jay Ram

    2016-02-01

    The rapid emergence of new bacterial diseases negatively affects both human health and agricultural productivity. Although the molecular mechanisms underlying these disease emergences are shared between human- and plant-pathogenic bacteria, not much effort has been made to date to understand disease emergences caused by plant-pathogenic bacteria. In particular, there is a paucity of information in the literature on the role of environmental habitats in which plant-pathogenic bacteria evolve and on the stress factors to which these microbes are unceasingly exposed. In this microreview, we focus on three molecular mechanisms underlying pathogenicity in bacteria, namely mutations, genomic rearrangements and the acquisition of new DNA sequences through horizontal gene transfer (HGT). We briefly discuss the role of these mechanisms in bacterial disease emergence and elucidate how the environment can influence the occurrence and regulation of these molecular mechanisms by directly impacting disease emergence. The understanding of such molecular evolutionary mechanisms and their environmental drivers will represent an important step towards predicting bacterial disease emergence and developing sustainable management strategies for crops. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  18. Corporate debts ad credit performance under the new mechanism of reorganization of the Russian banks

    Directory of Open Access Journals (Sweden)

    Sergey A. Andryushin

    2017-09-01

    Full Text Available Objective to explore the dynamics and factors of formation of corporate debts the characteristics of low credit activity of the Russian banks and regulation of liquidity deficit of enterprises under the new reorganization mechanism in the Russian banking sector. Methods systematic approach to the cognition of economic phenomena which allows to study them in their dynamic development taking into account the influence of various environmental factors. The systematic approach determined selection of specific research methods empirical logical comparative and statistical. Results the article is devoted to the problems of declining credit activity of commercial banks under the conditions of economic activity revival as well as to assessing the impact of the new reorganization mechanism on this process. It is shown that in the recent years the nonfinancial sector faces the trend of optimizing the corporate debts and the liquidity deficit which reduced the demand for loans and as a consequence decreased the banksrsquo credit activity. To analyze the dynamics of deficitsurplus of liquidity in the corporate sector a new classification of liquidity deficitsurplus levels was introduced. Based on the proposed classification the risk factors were identified that influenced the dynamics of indebtedness in the corporate sector. The article also analyses the modern monetary mechanism of money supply in the economy and its transformation. It was determined that the main limitation of credit issuance by commercial banks is their capital not the reserve multiplier. The new mechanism of credit institutionsrsquo financial recovery and its impact on the banksrsquo credit activity was estimated. The conditions of liquidity deficiency reduction in the Russian companies were analyzed in the medium term. Scientific novelty for the first time on the basis of system analysis methods the growth factors of the corporate debt load were identified the peculiarities of low

  19. Mechanical behavior of ultrafine-grained materials under combined static and dynamic loadings

    Directory of Open Access Journals (Sweden)

    Guo Y.Z.

    2015-01-01

    Full Text Available Ultrafine-grained (UFG materials have extensive prospects for engineering application due to their excellent mechanical properties. However, the grain size decrease reduces their strain hardening ability and makes UFG materials more susceptible to deformation instability such as shear localization. In most cases, critical shear strain is taken as the criterion for formation of shear localization under impact loading or adiabatic shear band (ASB. Recently, some researchers found that the formation of ASB was determined only by the dynamic loading process and had nothing to do with its static loading history. They proposed for coarse-grained metals a dynamic stored energy-based criterion for ASB and verified it by some experiments. In this study, we will focus on the shear localization behavior of UFG metals such as UFG titanium and magnesium alloy AZ31. Quasi-static loading and dynamic loading will be applied on the same specimen alternately. The shear localization behavior will be analyzed and the criterion of its formation will be evaluated.

  20. Determination of the mechanical characteristics of nanomaterials under tension and compression

    Science.gov (United States)

    Filippov, A. A.; Fomin, V. M.

    2018-04-01

    In this paper, new method for determining the mechanical characteristics of nanoparticles in a heterogeneous mixture is proposed. The heterogeneous mixture consists of a thermosetting epoxy resin and silicon dioxide powder of different dispersity. The mechanical characteristics of such a material at a constant concentration for nanopowder are experimentally determined. Using existing formulas for obtaining effective characteristics, the Lame coefficients for nanoparticles of various sizes are calculated. The dependence of the elastic characteristics on the particle size is obtained.

  1. 78 FR 28242 - Notice of Lodging of Proposed Consent Decree Under the Safe Drinking Water Act

    Science.gov (United States)

    2013-05-14

    ... Drinking Water Act (SDWA) and the Surface Water Treatment Rule, promulgated under the SDWA. Under the terms... public water system and to pay $8,000 into an escrow account to be used by the association for future... DEPARTMENT OF JUSTICE Notice of Lodging of Proposed Consent Decree Under the Safe Drinking Water...

  2. Mechanisms underlying cellular responses of cells from haemopoietic tissue to low

    Energy Technology Data Exchange (ETDEWEB)

    Kadhim, Munira A

    2012-08-22

    The above studies will provide fundamental mechanistic information relating genetic predisposition to important low dose phenomena, and will aid in the development of Department of Energy policy, as well as radiation risk policy for the public and the workplace. We believe the proposed studies accurately reflect the goals of the DOE low dose program. To accurately define the risks associated with human exposure to relevant environmental doses of low LET ionizing radiation, it is necessary to completely understand the biological effects at very low doses (i.e. less than 0.1 Gy), including the lowest possible dose, that of a single electron track traversal. At such low doses, a range of studies have shown responses in biological systems which are not related to the direct interaction of radiation tracks with DNA. The role of these "non-targeted responses in critical tissues is poorly understood and little is known regarding the underlying mechanisms. Although critical for dosimetry and risk assessment, the role of individual genetic susceptibility in radiation risk is not satisfactorily defined at present. The aim of the proposed grant is to critically evaluate non-targeted effects of ionizing radiation with a focus on the induction of genomic instability (GI) in key stem cell populations from haemopoietic tissue. Using stem cells from two mouse strains (CBA/CaH and C57BL/6J) known to differ in their susceptibility to radiation effects, we plan to carefully dissect the role of genetic predisposition in these models on genomic instability. We will specifically focus on the effects of low doses of low LET radiation, down to the dose of 10mGy (0.01Gy) X-rays. Using conventional X-ray and we will be able to assess the role of genetic variation under various conditions at a range of doses down to the very low dose of 0.01Gy. Irradiations will be carried out using facilities in routine operation for such studies. Mechanistic studies of instability in different cell

  3. Neural Mechanisms Underlying Cross-Modal Phonetic Encoding.

    Science.gov (United States)

    Shahin, Antoine J; Backer, Kristina C; Rosenblum, Lawrence D; Kerlin, Jess R

    2018-02-14

    Audiovisual (AV) integration is essential for speech comprehension, especially in adverse listening situations. Divergent, but not mutually exclusive, theories have been proposed to explain the neural mechanisms underlying AV integration. One theory advocates that this process occurs via interactions between the auditory and visual cortices, as opposed to fusion of AV percepts in a multisensory integrator. Building upon this idea, we proposed that AV integration in spoken language reflects visually induced weighting of phonetic representations at the auditory cortex. EEG was recorded while male and female human subjects watched and listened to videos of a speaker uttering consonant vowel (CV) syllables /ba/ and /fa/, presented in Auditory-only, AV congruent or incongruent contexts. Subjects reported whether they heard /ba/ or /fa/. We hypothesized that vision alters phonetic encoding by dynamically weighting which phonetic representation in the auditory cortex is strengthened or weakened. That is, when subjects are presented with visual /fa/ and acoustic /ba/ and hear /fa/ ( illusion-fa ), the visual input strengthens the weighting of the phone /f/ representation. When subjects are presented with visual /ba/ and acoustic /fa/ and hear /ba/ ( illusion-ba ), the visual input weakens the weighting of the phone /f/ representation. Indeed, we found an enlarged N1 auditory evoked potential when subjects perceived illusion-ba , and a reduced N1 when they perceived illusion-fa , mirroring the N1 behavior for /ba/ and /fa/ in Auditory-only settings. These effects were especially pronounced in individuals with more robust illusory perception. These findings provide evidence that visual speech modifies phonetic encoding at the auditory cortex. SIGNIFICANCE STATEMENT The current study presents evidence that audiovisual integration in spoken language occurs when one modality (vision) acts on representations of a second modality (audition). Using the McGurk illusion, we show

  4. Mechanisms underlying UV-induced immune suppression

    International Nuclear Information System (INIS)

    Ullrich, Stephen E.

    2005-01-01

    Skin cancer is the most prevalent form of human neoplasia. Estimates suggest that in excess of one million new cases of skin cancer will be diagnosed this year alone in the United States (www.cancer.org/statistics). Fortunately, because of their highly visible location, skin cancers are more rapidly diagnosed and more easily treated than other types of cancer. Be that as it may, approximately 10,000 Americans a year die from skin cancer. The cost of treating non-melanoma skin cancer is estimated to be in excess of US$ 650 million a year [J.G. Chen, A.B. Fleischer, E.D. Smith, C. Kancler, N.D. Goldman, P.M. Williford, S.R. Feldman, Cost of non-melanoma skin cancer treatment in the United States, Dermatol. Surg. 27 (2001) 1035-1038], and when melanoma is included, the estimated cost of treating skin cancer in the United States is estimated to rise to US$ 2.9 billion annually (www.cancer.org/statistics). Because the morbidity and mortality associated with skin cancer is a major public health problem, it is important to understand the mechanisms underlying skin cancer development. The primary cause of skin cancer is the ultraviolet (UV) radiation found in sunlight. In addition to its carcinogenic potential, UV radiation is also immune suppressive. In fact, data from studies with both experimental animals and biopsy proven skin cancer patients suggest that there is an association between the immune suppressive effects of UV radiation and its carcinogenic potential. The focus of this manuscript will be to review the mechanisms underlying the induction of immune suppression following UV exposure. Particular attention will be directed to the role of soluble mediators in activating immune suppression

  5. Mechanisms Underlying Stress Fracture and the Influence of Sex and Race/Ethnicity

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0652 TITLE: Mechanisms Underlying Stress Fracture and the Influence of Sex and Race/Ethnicity PRINCIPAL INVESTIGATOR...5a. CONTRACT NUMBER W81XWH-16-1-0652 Mechanisms Underlying Stress Fracture and the Influence of Sex and Race/Ethnicity 5b. GRANT NUMBER W81XWH...to stress fracture risk. In particular, in Study 1, we will perform advanced skeletal imaging along with gait-assessments in subjects with history of

  6. Common resting brain dynamics indicate a possible mechanism underlying zolpidem response in severe brain injury

    Science.gov (United States)

    Williams, Shawniqua T; Conte, Mary M; Goldfine, Andrew M; Noirhomme, Quentin; Gosseries, Olivia; Thonnard, Marie; Beattie, Bradley; Hersh, Jennifer; Katz, Douglas I; Victor, Jonathan D; Laureys, Steven; Schiff, Nicholas D

    2013-01-01

    Zolpidem produces paradoxical recovery of speech, cognitive and motor functions in select subjects with severe brain injury but underlying mechanisms remain unknown. In three diverse patients with known zolpidem responses we identify a distinctive pattern of EEG dynamics that suggests a mechanistic model. In the absence of zolpidem, all subjects show a strong low frequency oscillatory peak ∼6–10 Hz in the EEG power spectrum most prominent over frontocentral regions and with high coherence (∼0.7–0.8) within and between hemispheres. Zolpidem administration sharply reduces EEG power and coherence at these low frequencies. The ∼6–10 Hz activity is proposed to arise from intrinsic membrane properties of pyramidal neurons that are passively entrained across the cortex by locally-generated spontaneous activity. Activation by zolpidem is proposed to arise from a combination of initial direct drug effects on cortical, striatal, and thalamic populations and further activation of underactive brain regions induced by restoration of cognitively-mediated behaviors. DOI: http://dx.doi.org/10.7554/eLife.01157.001 PMID:24252875

  7. Failure Mechanisms of Brittle Rocks under Uniaxial Compression

    Science.gov (United States)

    Liu, Taoying; Cao, Ping

    2017-09-01

    The behaviour of a rock mass is determined not only by the properties of the rock matrix, but mostly by the presence and properties of discontinuities or fractures within the mass. The compression test on rock-like specimens with two prefabricated transfixion fissures, made by pulling out the embedded metal inserts in the pre-cured period was carried out on the servo control uniaxial loading tester. The influence of the geometry of pre-existing cracks on the cracking processes was analysed with reference to the experimental observation of crack initiation and propagation from pre-existing flaws. Based on the rock fracture mechanics and the stress-strain curves, the evolution failure mechanism of the fissure body was also analyzed on the basis of exploring the law of the compression-shear crack initiation, wing crack growth and rock bridge connection. Meanwhile, damage fracture mechanical models of a compression-shear rock mass are established when the rock bridge axial transfixion failure, tension-shear combined failure, or wing crack shear connection failure occurs on the specimen under axial compression. This research was of significance in studying the failure mechanism of fractured rock mass.

  8. A proposed abiotic reaction scheme for hydroxylamine and monochloramine under chloramination relevant drinking water conditions.

    Science.gov (United States)

    Wahman, David G; Speitel, Gerald E; Machavaram, Madhav V

    2014-09-01

    Drinking water monochloramine (NH2Cl) use may promote ammonia-oxidizing bacteria (AOB). AOB use (i) ammonia monooxygenase for biological ammonia (NH3) oxidation to hydroxylamine (NH2OH) and (ii) hydroxylamine oxidoreductase for NH2OH oxidation to nitrite. NH2Cl and NH2OH may react, providing AOB potential benefits and detriments. The NH2Cl/NH2OH reaction would benefit AOB by removing the disinfectant (NH2Cl) and releasing their growth substrate (NH3), but the NH2Cl/NH2OH reaction would also provide a possible additional inactivation mechanism besides direct NH2Cl reaction with cells. Because biological NH2OH oxidation supplies the electrons required for biological NH3 oxidation, the NH2Cl/NH2OH reaction provides a direct mechanism for NH2Cl to inhibit NH3 oxidation, starving the cell of reductant by preventing biological NH2OH oxidation. To investigate possible NH2Cl/NH2OH reaction implications on AOB, an understanding of the underlying abiotic reaction is first required. The present study conducted a detailed literature review and proposed an abiotic NH2Cl/NH2OH reaction scheme (RS) for chloramination relevant drinking water conditions (μM concentrations, air saturation, and pH 7-9). Next, RS literature based kinetics and end-products were evaluated experimentally between pHs 7.7 and 8.3, representing (i) the pH range for future experiments with AOB and (ii) mid-range pHs typically found in chloraminated drinking water. In addition, a (15)N stable isotope experiment was conducted to verify nitrous oxide and nitrogen gas production and their nitrogen source. Finally, the RS was slightly refined using the experimental data and an AQUASIM implemented kinetic model. A chloraminated drinking water relevant RS is proposed and provides the abiotic reaction foundation for future AOB biotic experiments. Published by Elsevier Ltd.

  9. Coral bleaching under thermal stress: putative involvement of host/symbiont recognition mechanisms

    Directory of Open Access Journals (Sweden)

    Tambutte Sylvie

    2009-08-01

    . Conclusion Under thermal stress zooxanthellae photosynthesis leads to intense oxidative stress in the two partners. This endogenous stress can lead to the perception of the symbiont as a toxic partner for the host. Consequently, we propose that the bleaching process is due in part to a decrease in zooxanthellae acquisition and/or sequestration. In addition to a new hypothesis in coral bleaching mechanisms, this study provides promising biomarkers for monitoring coral health.

  10. 77 FR 3844 - Agency Information Collection (Architect-Engineer Fee Proposal) Activity Under OMB Review

    Science.gov (United States)

    2012-01-25

    ... DEPARTMENT OF VETERANS AFFAIRS [OMB Control No. 2900-0208] Agency Information Collection (Architect--Engineer Fee Proposal) Activity Under OMB Review AGENCY: Veterans Health Administration... . Please refer to ``OMB Control No. 2900-0208.'' SUPPLEMENTARY INFORMATION: Titles: a. Architect--Engineer...

  11. Numerical modelling of crack initiation and propagation in concrete structure under hydro-mechanical loading

    International Nuclear Information System (INIS)

    Bian, H.B.; Jia, Y.; Shao, J.F.

    2012-01-01

    Document available in extended abstract form only. This subject is devoted to numerical analysis of crack initiation and propagation in concrete structures due to hydro-mechanical coupling processes. When the structures subjected to the variation in hydraulic conditions, fractures occur as a consequence of coalescence of diffuse damage. Consequently, the mechanical behaviour of concrete is described by an isotropic damage model. Once the damage reaches a critical value, a macroscopic crack is initiated. In the framework of extended Finite Element Method (XFEM), the propagation of localized crack is studied in this paper. Each crack is then considered as a discontinuity surface of displacement. According to the determination of crack propagation orientations, a tensile stress-based criterion is used. Furthermore, spatial variations of mechanical properties of concrete are also taken into account using the Weibull distribution function. Finally, the proposed model is applied to numerical analysis of a concrete liner in the context of feasibility studies for geological storage of radioactive wastes. The numerical results show that the proposed approach is capable to reproduce correctly the initiation and propagation crack process until the complete failure of concrete structures during hydro-mechanical loading. The concrete is most widely used construction material in many engineering applications. It is generally submitted to various environmental loading: such as the mechanical loading, the variation of relative humidity and the exposure to chemical risk, etc. In order to evaluate the safety and durability of concrete structures, it is necessary to get a good knowledge on the influence of loading path on the concrete behaviour. The objective of this paper is to study numerically the crack propagation in concrete structure under hydro-mechanical loading,.i.e. the mechanical behaviour of concrete subjected to drying process. The drying process leads to desiccation

  12. Deep Dyspareunia in Endometriosis: A Proposed Framework Based on Pain Mechanisms and Genito-Pelvic Pain Penetration Disorder.

    Science.gov (United States)

    Yong, Paul J

    2017-10-01

    Endometriosis is a common chronic disease affecting 1 in 10 women of reproductive age, with half of women with endometriosis experiencing deep dyspareunia. A review of research studies on endometriosis indicates a need for a validated question or questionnaire for deep dyspareunia. Moreover, placebo-controlled randomized trials have yet to demonstrate a clear benefit for traditional treatments of endometriosis for the outcome of deep dyspareunia. The reason some patients might not respond to traditional treatments is the multifactorial nature of deep dyspareunia in endometriosis, which can include comorbid conditions (eg, interstitial cystitis and bladder pain syndrome) and central sensitization underlying genito-pelvic pain penetration disorder. In general, there is a lack of a framework that integrates these multifactorial causes to provide a standardized approach to deep dyspareunia in endometriosis. To propose a clinical framework for deep dyspareunia based on a synthesis of pain mechanisms with genito-pelvic pain penetration disorder according to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. Narrative review after literature search with the terms (endometriosis AND dyspareunia) OR (dyspareunia AND deep) and after analysis of placebo-controlled randomized trials. Deep dyspareunia presence or absence or deep dyspareunia severity on a numeric rating scale or visual analog scale. Four types of deep dyspareunia are proposed in women with endometriosis: type I that is directly due to endometriosis; type II that is related to a comorbid condition; type III in which genito-pelvic pain penetration disorder is primary; and type IV that is secondary to a combination of types I to III. Four types of deep dyspareunia in endometriosis are proposed, which can be used as a framework in research studies and in clinical practice. Research trials could phenotype or stratify patients by each type. The framework also could give rise to more personalized

  13. Enhancement of radiation effect using beta-lapachone and underlying mechanism

    International Nuclear Information System (INIS)

    Ahn, Ki Jung; Lee, Hyung Sik; Bai, Se Kyung; Song, Chang Won

    2013-01-01

    Beta-lapachone (β-Lap; 3,4-dihydro-2, 2-dimethyl-2H-naphthol[1, 2-b]pyran-5,6-dione) is a novel anti-cancer drug under phase I/II clinical trials. (β-Lap has been demonstrated to cause apoptotic and necrotic death in a variety of human cancer cells in vitro and in vivo. The mechanisms underlying the (β-Lap toxicity against cancer cells has been controversial. The most recent view is that (β-Lap, which is a quinone compound, undergoes two-electron reduction to hydroquinone form utilizing NAD(P)H or NADH as electron source. This two-electron reduction of (β-Lap is mediated by NAD(P)H:quinone oxidoreductase (NQO1), which is known to mediate the reduction of many quinone compounds. The hydroquinone forms of (β-Lap then spontaneously oxidizes back to the original oxidized (β-Lap, creating futile cycling between the oxidized and reduced forms of (β-Lap. It is proposed that the futile recycling between oxidized and reduced forms of (β-Lap leads to two distinct cell death pathways. First one is that the two-electron reduced (β-Lap is converted first to one-electron reduced (β-Lap, i.e., semiquinone (β-Lap (SQ)- causing production of reactive oxygen species (ROS), which then causes apoptotic cell death. The second mechanism is that severe depletion of NAD(P)H and NADH as a result of futile cycling between the quinone and hydroquinone forms of β- p causes severe disturbance in cellular metabolism leading to apoptosis and necrosis. The relative importance of the aforementioned two mechanisms, i.e., generation of ROS or depletion of NAD(P)H/NADH, may vary depending on cell type and environment. Importantly, the NQO1 level in cancer cells has been found to be higher than that in normal cells indicating that β-Lap may be preferentially toxic to cancer cells relative to non-cancer cells. The cellular level of NQO1 has been found to be significantly increased by divergent physical and chemical stresses including ionizing radiation. Recent reports clearly demonstrated

  14. 76 FR 66034 - Proposed Foreign-Trade Zone-Ada and Canyon Counties, ID, Under Alternative Site Framework...

    Science.gov (United States)

    2011-10-25

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [Docket 65-2011] Proposed Foreign-Trade Zone--Ada... establish a general-purpose foreign-trade zone at sites in Ada and Canyon Counties, Idaho, adjacent to the... proposed service area under the ASF would be Ada and Canyon Counties, Idaho. If approved, the applicant...

  15. 78 FR 70088 - Agency Proposed Business Process Vision Under the Rehabilitation Act of 1973

    Science.gov (United States)

    2013-11-22

    ... site, Social Security Online, at http://www.socialsecurity.gov . SUPPLEMENTARY INFORMATION: Background... SOCIAL SECURITY ADMINISTRATION [Docket No. SSA-2013-0042] Agency Proposed Business Process Vision Under the Rehabilitation Act of 1973 AGENCY: Social Security Administration (SSA). ACTION: Notice of...

  16. The short-term stress response - Mother nature's mechanism for enhancing protection and performance under conditions of threat, challenge, and opportunity.

    Science.gov (United States)

    Dhabhar, Firdaus S

    2018-03-26

    Our group has proposed that in contrast to chronic stress that can have harmful effects, the short-term (fight-or-flight) stress response (lasting for minutes to hours) is nature's fundamental survival mechanism that enhances protection and performance under conditions involving threat/challenge/opportunity. Short-term stress enhances innate/primary, adaptive/secondary, vaccine-induced, and anti-tumor immune responses, and post-surgical recovery. Mechanisms and mediators include stress hormones, dendritic cell, neutrophil, macrophage, and lymphocyte trafficking/function and local/systemic chemokine and cytokine production. Short-term stress may also enhance mental/cognitive and physical performance through effects on brain, musculo-skeletal, and cardiovascular function, reappraisal of threat/anxiety, and training-induced stress-optimization. Therefore, short-term stress psychology/physiology could be harnessed to enhance immuno-protection, as well as mental and physical performance. This review aims to provide a conceptual framework and targets for further investigation of mechanisms and conditions under which the protective/adaptive aspects of short-term stress/exercise can be optimized/harnessed, and for developing pharmacological/biobehavioral interventions to enhance health/healing, and mental/cognitive/physical performance. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. GEOMETRIZATION OF NONHOLONOMIC MECHANICAL SYSTEMS AND THEIR SOLVABILITY

    Institute of Scientific and Technical Information of China (English)

    慕小武; 郭仲衡

    1990-01-01

    A new geometrization approach to nonholonomic mechanical systems is proposed and a series of solvability conditions under the proposed geometric frame are given. The proposed frame differs essentially from Hermann’s. The limitations of Hermann’s frame are also discussed. It is shown that a system under Hermann’s frame is solvable only if its constraints are given by natural conservation laws of the corresponding constraint-free system.

  18. Modeling of the cold work stress relieved Zircaloy-4 cladding tubes mechanical behavior under PWR operating conditions

    International Nuclear Information System (INIS)

    Richard, F.; Delobelle, P.; Leclercq, S.; Bouffioux, P.; Rousselier, G.

    2003-01-01

    This paper proposes a damaged viscoplastic model to simulate, for different isotherms (320, 350, 380, 400 and 420 degC), the out-of-flux anisotropic mechanical behavior of cold work stress relieved Zircaloy-4 cladding tubes over the fluence range 0-85.1024 nm -2 (E > 1 MeV). The model, identified from uni and biaxial tests conducted at 350 and 400 degC, is validated from tests performed at 320, 380 and 420 degC. This model is able to simulate strain hardening under internal pressure followed by a stress relaxation period (thermal creep), which is representative of a pellet cladding mechanical interaction occurring during a power transient (class 2 incidental condition). Both the integration of a scalar state variable, characterizing the damage caused by a bombardment with neutrons, and the modification of the static recovery law allowed us to simulate the fast neutron flux effect (irradiation creep). (author)

  19. Crack modelling for the assessment of stiffness loss of reinforced concrete structures under mechanical loading - determination of the permeability of the micro-cracked body

    International Nuclear Information System (INIS)

    Bongue Boma, M.

    2007-12-01

    We propose a model describing the evolution of mechanical and permeability properties of concrete under slow mechanical loading. Calling upon the theory of continua with microstructure, the kinematic of the domain is enriched by a variable characterising size and orientation of the crack field. We call upon configurational forces to deal with crack propagation and we determine the balance equations governing both strain and propagation. The geometry of the microstructure is representative of the porous media: the permeability is obtained from the resolution of Stokes equations in an elementary volume. An example has been treated: we considered simple assumptions (uniform crack field, application of linear fracture mechanics...) and we determined the behaviour of a body under tensile loading. Strain, crack propagation and stiffness loss are completely assessed. Finally the evolution of permeability is plotted: once activated, crack propagation is the main cause of water tightness loss. (author)

  20. Mechanisms Underlying the Antidepressant Response and Treatment Resistance

    Directory of Open Access Journals (Sweden)

    Marjorie Rose Levinstein

    2014-06-01

    Full Text Available Depression is a complex and heterogeneous disorder affecting millions of Americans. There are several different medications and other treatments that are available and effective for many patients with depression. However, a substantial percentage of patients fail to achieve remission with these currently available interventions, and relapse rates are high. Therefore, it is necessary to determine both the mechanisms underlying the antidepressant response and the differences between responders and non-responders to treatment. Delineation of these mechanisms largely relies on experiments that utilize animal models. Therefore, this review provides an overview of the various mouse models that are currently used to assess the antidepressant response, such as chronic mild stress, social defeat, and chronic corticosterone. We discuss how these mouse models can be used to advance our understanding of the differences between responders and non-responders to antidepressant treatment. We also provide an overview of experimental treatment modalities that are used for treatment-resistant depression, such as deep brain stimulation and ketamine administration. We will then review the various genetic polymorphisms and transgenic mice that display resistance to antidepressant treatment. Finally, we synthesize the published data to describe a potential neural circuit underlying the antidepressant response and treatment resistance.

  1. Depression and Chronic Liver Diseases: Are There Shared Underlying Mechanisms?

    Directory of Open Access Journals (Sweden)

    Xiaoqin Huang

    2017-05-01

    Full Text Available The occurrence of depression is higher in patients with chronic liver disease (CLD than that in the general population. The mechanism described in previous studies mainly focused on inflammation and stress, which not only exists in CLD, but also emerges in common chronic diseases, leaving the specific mechanism unknown. This review was to summarize the prevalence and risk factors of depression in CLD including chronic hepatitis B, chronic hepatitis, alcoholic liver disease, and non-alcoholic fatty liver disease, and to point out the possible underlying mechanism of this potential link. Clarifying the origins of this common comorbidity (depression and CLD may provide more information to understand both diseases.

  2. Vascular mechanisms underlying the hypotensive effect of Rumex acetosa.

    Science.gov (United States)

    Qamar, Hafiz Misbah-Ud-Din; Qayyum, Rahila; Salma, Umme; Khan, Shamim; Khan, Taous; Shah, Abdul Jabbar

    2018-12-01

    Rumex acetosa L. (Polygonaceae) is well known in traditional medicine for its therapeutic efficacy as an antihypertensive. The study investigates antihypertensive potential of crude methanol extract (Ra.Cr) and fractions of Rumex acetosa in normotensive and hypertensive rat models and probes the underlying vascular mechanisms. Ra.Cr and its fractions were tested in vivo on normotensive and hypertensive Sprague-Dawley rats under anaesthesia for blood pressure lowering effect. In vitro experiments on rat and Oryctolagus cuniculus rabbit aortae were employed to probe the underlying vasorelaxant mechanism. In normotensive rats under anaesthesia, Ra.Cr caused fall in MAP (40 mmHg) at 50 mg/kg with % fall of 27.88 ± 4.55. Among the fractions tested, aqueous fraction was more potent at the dose of 50 mg/kg with % fall of 45.63 ± 2.84. In hypertensive rats under similar conditions, extract and fractions showed antihypertensive effect at same doses while aqueous fraction being more potent, exhibited 68.53 ± 4.45% fall in MAP (70 mmHg). In isolated rat aortic rings precontracted with phenylephrine (PE), Ra.Cr and fractions induced endothelium-dependent vasorelaxation, which was partially blocked in presence of l-NAME, indomethacin and atropine. In isolated rabbit aortic rings pre-contracted with PE and K + -(80 mM), Ra.Cr induced vasorelaxation and shifted Ca 2+ concentration-response curves to the right and suppressed PE peak formation, similar to verapamil, in Ca 2+ -free medium. The data indicate that l-NAME and atropine-sensitive endothelial-derived NO and COX enzyme inhibitors and Ca 2+ entry blocking-mediated vasodilator effect of the extract explain its antihypertensive potential.

  3. Neurite, a finite difference large scale parallel program for the simulation of electrical signal propagation in neurites under mechanical loading.

    Directory of Open Access Journals (Sweden)

    Julián A García-Grajales

    Full Text Available With the growing body of research on traumatic brain injury and spinal cord injury, computational neuroscience has recently focused its modeling efforts on neuronal functional deficits following mechanical loading. However, in most of these efforts, cell damage is generally only characterized by purely mechanistic criteria, functions of quantities such as stress, strain or their corresponding rates. The modeling of functional deficits in neurites as a consequence of macroscopic mechanical insults has been rarely explored. In particular, a quantitative mechanically based model of electrophysiological impairment in neuronal cells, Neurite, has only very recently been proposed. In this paper, we present the implementation details of this model: a finite difference parallel program for simulating electrical signal propagation along neurites under mechanical loading. Following the application of a macroscopic strain at a given strain rate produced by a mechanical insult, Neurite is able to simulate the resulting neuronal electrical signal propagation, and thus the corresponding functional deficits. The simulation of the coupled mechanical and electrophysiological behaviors requires computational expensive calculations that increase in complexity as the network of the simulated cells grows. The solvers implemented in Neurite--explicit and implicit--were therefore parallelized using graphics processing units in order to reduce the burden of the simulation costs of large scale scenarios. Cable Theory and Hodgkin-Huxley models were implemented to account for the electrophysiological passive and active regions of a neurite, respectively, whereas a coupled mechanical model accounting for the neurite mechanical behavior within its surrounding medium was adopted as a link between electrophysiology and mechanics. This paper provides the details of the parallel implementation of Neurite, along with three different application examples: a long myelinated axon

  4. Working group inciting mechanisms

    International Nuclear Information System (INIS)

    Bureau, D.

    2001-01-01

    This document deals with the inciting mechanisms under consideration in the framework of the greenhouse effect fight. The advantages and disadvantages, the coherence of these mechanisms and their articulation with the taxation, have been specified. A whole evaluation of the various scenario, taking into account the implementing problems and the evolution in an international context, is proposed. (A.L.B.)

  5. A possible realization of Einstein's causal theory underlying quantum mechanics

    International Nuclear Information System (INIS)

    Yussouff, M.

    1979-06-01

    It is shown that a new microscopic mechanics formulated earlier can be looked upon as a possible causal theory underlying quantum mechanics, which removes Einstein's famous objections against quantum theory. This approach is free from objections raised against Bohm's hidden variable theory and leads to a clear physical picture in terms of familiar concepts, if self interactions are held responsible for deviations from classical behaviour. The new level of physics unfolded by this approach may reveal novel frontiers in high-energy physics. (author)

  6. Cognitive mechanisms underlying disorganization of thought in a genetic syndrome (47,XXY)

    NARCIS (Netherlands)

    Van Rijn, Sophie; Aleman, Andre; De Sonneville, Leo; Swaab, Hanna

    Because of the risk for development of psychopathology such as psychotic symptoms, it has been suggested that studying men with the XXY karyotype may help in the search for underlying cognitive, neural and genetic mechanisms. The aim of this study was to identify cognitive mechanisms that may

  7. First-principles investigation of mechanical and electronic properties of tetragonal NbAl3 under tension

    Science.gov (United States)

    Jiao, Zhen; Liu, Qi-Jun; Liu, Fu-Sheng; Tang, Bin

    2018-06-01

    Using the density functional theory calculations, the mechanical and electronic properties of NbAl3 under different tensile loads were investigated. The calculated lattice parameters, elastic constants and mechanical properties (bulk modulus, shear modulus, Young's modulus, Poisson's ratio, Pugh's criterion and Cauchy's pressure) indicated that our results were in agreement with the published experimental and theoretical data at zero tension. With respect to NbAl3 under tension in this paper, the crystal structure was changed from tetragonal to orthorhombic under tension along the [100] and [101] directions. The NbAl3 crystal has been classified as brittle material under tension from 0 to 20 GPa. The obtained Young's modulus and Debye temperature monotonically decreased with increasing tension stress. Combining with mechanical and electronic properties in detail, the decreased mechanical properties were mainly due to the weakening of covalency.

  8. Theoretical model for the mechanical behavior of prestressed beams under torsion

    Directory of Open Access Journals (Sweden)

    Sérgio M.R. Lopes

    2014-12-01

    Full Text Available In this article, a global theoretical model previously developed and validated by the authors for reinforced concrete beams under torsion is reviewed and corrected in order to predict the global behavior of beams under torsion with uniform longitudinal prestress. These corrections are based on the introduction of prestress factors and on the modification of the equilibrium equations in order to incorporate the contribution of the prestressing reinforcement. The theoretical results obtained with the new model are compared with some available results of prestressed concrete (PC beams under torsion found in the literature. The results obtained in this study validate the proposed computing procedure to predict the overall behavior of PC beams under torsion.

  9. Mechanisms underlying astringency: introduction to an oral tribology approach

    Science.gov (United States)

    Upadhyay, Rutuja; Brossard, Natalia; Chen, Jianshe

    2016-03-01

    Astringency is one of the predominant factors in the sensory experience of many foods and beverages ranging from wine to nuts. The scientific community is discussing mechanisms that explain this complex phenomenon, since there are no conclusive results which correlate well with sensory astringency. Therefore, the mechanisms and perceptual characteristics of astringency warrant further discussion and investigation. This paper gives a brief introduction of the fundamentals of oral tribology forming a basis of the astringency mechanism. It discusses the current state of the literature on mechanisms underlying astringency describing the existing astringency models. The review discusses the crucial role of saliva and its physiology which contributes significantly in astringency perception in the mouth. It also provides an overview of research concerned with the physiological and psychophysical factors that mediate the perception of this sensation, establishing the ground for future research. Thus, the overall aim of the review is to establish the critical roles of oral friction (thin-film lubrication) in the sensation of astringency and possibly of some other specific sensory features.

  10. Study on Mechanical Properties of Barite Concrete under Impact Load

    Science.gov (United States)

    Chen, Z. F.; Cheng, K.; Wu, D.; Gan, Y. C.; Tao, Q. W.

    2018-03-01

    In order to research the mechanical properties of Barite concrete under impact load, a group of concrete compression tests was carried out under the impact load by using the drop test machine. A high-speed camera was used to record the failure process of the specimen during the impact process. The test results show that:with the increase of drop height, the loading rate, the peak load, the strain under peak load, the strain rate and the dynamic increase factor (DIF) all increase gradually. The ultimate tensile strain is close to each other, and the time of impact force decreases significantly, showing significant strain rate effect.

  11. An NMDA Receptor-Dependent Mechanism Underlies Inhibitory Synapse Development

    Directory of Open Access Journals (Sweden)

    Xinglong Gu

    2016-01-01

    Full Text Available In the mammalian brain, GABAergic synaptic transmission provides inhibitory balance to glutamatergic excitatory drive and controls neuronal output. The molecular mechanisms underlying the development of GABAergic synapses remain largely unclear. Here, we report that NMDA-type ionotropic glutamate receptors (NMDARs in individual immature neurons are the upstream signaling molecules essential for GABAergic synapse development, which requires signaling via Calmodulin binding motif in the C0 domain of the NMDAR GluN1 subunit. Interestingly, in neurons lacking NMDARs, whereas GABAergic synaptic transmission is strongly reduced, the tonic inhibition mediated by extrasynaptic GABAA receptors is increased, suggesting a compensatory mechanism for the lack of synaptic inhibition. These results demonstrate a crucial role for NMDARs in specifying the development of inhibitory synapses, and suggest an important mechanism for controlling the establishment of the balance between synaptic excitation and inhibition in the developing brain.

  12. Damage evolution of TBC system under in-phase thermo-mechanical tests

    International Nuclear Information System (INIS)

    Kitazawa, R.; Tanaka, M.; Kagawa, Y.; Liu, Y.F.

    2010-01-01

    In-phase thermo-mechanical tests (TMF) of EB-PVD Y 2 O 3 -ZrO 2 thermal barrier coating (TBC) system (8 wt% Y 2 O 3 -ZrO 2 /CoNiCrAlY/IN-738 substrate) were done under a through-the-thick-direction thermal gradient from TBC surface temperature at 1150 deg. C to substrate temperature at 1000 deg. C. Deformation and failure behaviors of the TBC system were observed at the macroscopic and microscopic scales and damage evolution of the system under in-phase thermo-mechanical test was discussed. Special attention was paid to TBC layer cracking, thermally grown oxide (TGO) layer formation and void formation in bond coat and substrate. Effect of TMF conditions on the damage evolution behaviors was also discussed.

  13. Expected utility violations evolve under status-based selection mechanisms.

    Science.gov (United States)

    Dickson, Eric S

    2008-10-07

    The expected utility theory of decision making under uncertainty, a cornerstone of modern economics, assumes that humans linearly weight "utilities" for different possible outcomes by the probabilities with which these outcomes occur. Despite the theory's intuitive appeal, both from normative and from evolutionary perspectives, many experiments demonstrate systematic, though poorly understood, patterns of deviation from EU predictions. This paper offers a novel theoretical account of such patterns of deviation by demonstrating that EU violations can emerge from evolutionary selection when individual "status" affects inclusive fitness. In humans, battles for resources and social standing involve high-stakes decision making, and assortative mating ensures that status matters for fitness outcomes. The paper therefore proposes grounding the study of decision making under uncertainty in an evolutionary game-theoretic framework.

  14. Mechanical properties of graphene nanoribbons under uniaxial tensile strain

    Science.gov (United States)

    Yoneyama, Kazufumi; Yamanaka, Ayaka; Okada, Susumu

    2018-03-01

    Based on the density functional theory with the generalized gradient approximation, we investigated the mechanical properties of graphene nanoribbons in terms of their edge shape under a uniaxial tensile strain. The nanoribbons with armchair and zigzag edges retain their structure under a large tensile strain, while the nanoribbons with chiral edges are fragile against the tensile strain compared with those with armchair and zigzag edges. The fracture started at the cove region, which corresponds to the border between the zigzag and armchair edges for the nanoribbons with chiral edges. For the nanoribbons with armchair edges, the fracture started at one of the cove regions at the edges. In contrast, the fracture started at the inner region of the nanoribbons with zigzag edges. The bond elongation under the tensile strain depends on the mutual arrangement of covalent bonds with respect to the strain direction.

  15. Mechanical Design of AM Fabricated Prismatic Rods under Torsion

    Directory of Open Access Journals (Sweden)

    Manzhirov Alexander V.

    2017-01-01

    Full Text Available We study the stress-strain state of viscoelastic prismatic rods fabricated or repaired by additive manufacturing technologies under torsion. An adequate description of the processes involved is given by methods of a new scientific field, mechanics of growing solids. Three main stages of the deformation process (before the beginning of growth, in the course of growth, and after the termination of growth are studied. Two versions of statement of two problems are given: (i given the torque, find the stresses, displacements, and torsion; (ii given the torsion, find the stresses, displacements, and torque. Solution methods using techniques of complex analysis are presented. The results can be used in mechanical and instrument engineering.

  16. 43 CFR 404.51 - Are proposed projects under the Rural Water Supply Program reviewed by the Administration?

    Science.gov (United States)

    2010-10-01

    ... Water Supply Program reviewed by the Administration? 404.51 Section 404.51 Public Lands: Interior... SUPPLY PROGRAM Feasibility Studies § 404.51 Are proposed projects under the Rural Water Supply Program... the Reclamation's Rural Water Supply Program. This includes review under Executive Order 12322 to...

  17. Assessment of proposed electromagnetic quantum vacuum energy extraction methods

    OpenAIRE

    Moddel, Garret

    2009-01-01

    In research articles and patents several methods have been proposed for the extraction of zero-point energy from the vacuum. None has been reliably demonstrated, but the proposals remain largely unchallenged. In this paper the feasibility of these methods is assessed in terms of underlying thermodynamics principles of equilibrium, detailed balance, and conservation laws. The methods are separated into three classes: nonlinear processing of the zero-point field, mechanical extraction using Cas...

  18. Mechanical and tribological behaviour of molten salt processed self-lubricated aluminium composite under different treatments

    Science.gov (United States)

    Kannan, C.; Ramanujam, R.

    2018-05-01

    The aim of this research work is to evaluate the mechanical and tribological behaviour of Al 7075 based self-lubricated hybrid nanocomposite under different treated conditions viz. as-cast, T6 and deep cryo treated. In order to overcome the drawbacks associated with conventional stir casting, a combinational approach that consists of molten salt processing, ultrasonic assistance and optimized mechanical stirring is adopted in this study to fabricate the nanocomposite. The mechanical characterisation tests carried out on this nanocomposite reveals an improvement of about 39% in hardness and 22% in ultimate tensile strength possible under T6 condition. Under specific conditions, the wear rate can be reduced to the extent of about 63% through the usage of self-lubricated hybrid nanocomposite under T6 condition.

  19. Molecular mechanics of silk nanostructures under varied mechanical loading.

    Science.gov (United States)

    Bratzel, Graham; Buehler, Markus J

    2012-06-01

    Spider dragline silk is a self-assembling tunable protein composite fiber that rivals many engineering fibers in tensile strength, extensibility, and toughness, making it one of the most versatile biocompatible materials and most inviting for synthetic mimicry. While experimental studies have shown that the peptide sequence and molecular structure of silk have a direct influence on the stiffness, toughness, and failure strength of silk, few molecular-level analyses of the nanostructure of silk assemblies, in particular, under variations of genetic sequences have been reported. In this study, atomistic-level structures of wildtype as well as modified MaSp1 protein from the Nephila clavipes spider dragline silk sequences, obtained using an in silico approach based on replica exchange molecular dynamics and explicit water molecular dynamics, are subjected to simulated nanomechanical testing using different force-control loading conditions including stretch, pull-out, and peel. The authors have explored the effects of the poly-alanine length of the N. clavipes MaSp1 peptide sequence and identify differences in nanomechanical loading conditions on the behavior of a unit cell of 15 strands with 840-990 total residues used to represent a cross-linking β-sheet crystal node in the network within a fibril of the dragline silk thread. The specific loading condition used, representing concepts derived from the protein network connectivity at larger scales, have a significant effect on the mechanical behavior. Our analysis incorporates stretching, pull-out, and peel testing to connect biochemical features to mechanical behavior. The method used in this study could find broad applications in de novo design of silk-like tunable materials for an array of applications. Copyright © 2011 Wiley Periodicals, Inc.

  20. Fracture mechanics analyses of ceramic/veneer interface under mixed-mode loading.

    Science.gov (United States)

    Wang, Gaoqi; Zhang, Song; Bian, Cuirong; Kong, Hui

    2014-11-01

    Few studies have focused on the interface fracture performance of zirconia/veneer bilayered structure, which plays an important role in dental all-ceramic restorations. The purpose of this study was to evaluate the fracture mechanics performance of zirconia/veneer interface in a wide range of mode-mixities (at phase angles ranging from 0° to 90°), and to examine the effect of mechanical properties of the materials and the interface on the fracture initiation and crack path of an interfacial crack. A modified sandwich test configuration with an oblique interfacial crack was proposed and calibrated to choose the appropriate geometry dimensions by means of finite element analysis. The specimens with different interface inclination angles were tested to failure under three-point bending configuration. Interface fracture parameters were obtained with finite element analyses. Based on the interfacial fracture mechanics, three fracture criteria for crack kinking were used to predict crack initiation and propagation. In addition, the effects of residual stresses due to coefficient of thermal expansion mismatch between zirconia and veneer on the crack behavior were evaluated. The crack initiation and propagation were well predicted by the three fracture criteria. For specimens at phase angle of 0, the cracks propagated in the interface; whereas for all the other specimens the cracks kinked into the veneer. Compressive residual stresses in the veneer can improve the toughness of the interface structure. The results suggest that, in zirconia/veneer bilayered structure the veneer is weaker than the interface, which can be used to explain the clinical phenomenon that veneer chipping rate is larger than interface delamination rate. Consequently, a veneer material with larger fracture toughness is needed to decrease the failure rate of all-ceramic restorations. And the coefficient of thermal expansion mismatch of the substrates can be larger to produce larger compressive

  1. Two distinct neural mechanisms underlying indirect reciprocity.

    Science.gov (United States)

    Watanabe, Takamitsu; Takezawa, Masanori; Nakawake, Yo; Kunimatsu, Akira; Yamasue, Hidenori; Nakamura, Mitsuhiro; Miyashita, Yasushi; Masuda, Naoki

    2014-03-18

    Cooperation is a hallmark of human society. Humans often cooperate with strangers even if they will not meet each other again. This so-called indirect reciprocity enables large-scale cooperation among nonkin and can occur based on a reputation mechanism or as a succession of pay-it-forward behavior. Here, we provide the functional and anatomical neural evidence for two distinct mechanisms governing the two types of indirect reciprocity. Cooperation occurring as reputation-based reciprocity specifically recruited the precuneus, a region associated with self-centered cognition. During such cooperative behavior, the precuneus was functionally connected with the caudate, a region linking rewards to behavior. Furthermore, the precuneus of a cooperative subject had a strong resting-state functional connectivity (rsFC) with the caudate and a large gray matter volume. In contrast, pay-it-forward reciprocity recruited the anterior insula (AI), a brain region associated with affective empathy. The AI was functionally connected with the caudate during cooperation occurring as pay-it-forward reciprocity, and its gray matter volume and rsFC with the caudate predicted the tendency of such cooperation. The revealed difference is consistent with the existing results of evolutionary game theory: although reputation-based indirect reciprocity robustly evolves as a self-interested behavior in theory, pay-it-forward indirect reciprocity does not on its own. The present study provides neural mechanisms underlying indirect reciprocity and suggests that pay-it-forward reciprocity may not occur as myopic profit maximization but elicit emotional rewards.

  2. Cavitation behavior observed in three monoleaflet mechanical heart valves under accelerated testing conditions.

    Science.gov (United States)

    Lo, Chi-Wen; Liu, Jia-Shing; Li, Chi-Pei; Lu, Po-Chien; Hwang, Ned H

    2008-01-01

    Accelerated testing provides a substantial amount of data on mechanical heart valve durability in a short period of time, but such conditions may not accurately reflect in vivo performance. Cavitation, which occurs during mechanical heart valve closure when local flow field pressure decreases below vapor pressure, is thought to play a role in valve damage under accelerated conditions. The underlying flow dynamics and mechanisms behind cavitation bubble formation are poorly understood. Under physiologic conditions, random perivalvular cavitation is difficult to capture. We applied accelerated testing at a pulse rate of 600 bpm and transvalvular pressure of 120 mm Hg, with synchronized videographs and high-frequency pressure measurements, to study cavitation of the Medtronic Hall Standard (MHS), Medtronic Hall D-16 (MHD), and Omni Carbon (OC) valves. Results showed cavitation bubbles between 340 and 360 micros after leaflet/housing impact of the MHS, MHD, and OC valves, intensified by significant leaflet rebound. Squeeze flow, Venturi, and water hammer effects each contributed to cavitation, depending on valve design.

  3. Mechanisms underlying KCNQ1channel cell volume sensitivity

    DEFF Research Database (Denmark)

    Hammami, Sofia

    Cells are constantly exposed to changes in cell volume during cell metabolism, nutrient uptake, cell proliferation, cell migration and salt and water transport. In order to cope with these perturbations, potassium channels in line with chloride channels have been shown to be likely contributors...... to the process of cell volume adjustments. A great diversity of potassium channels being members of either the 6TM, 4 TM or 2 TM K+ channel gene family have been shown to be strictly regulated by small, fast changes in cell volume. However, the precise mechanism underlying the K+ channel sensitivity to cell...... volume alterations is not yet fully understood. The KCNQ1 channel belonging to the voltage gated KCNQ family is considered a precise sensor of volume changes. The goal of this thesis was to elucidate the mechanism that induces cell volume sensitivity. Until now, a number of investigators have implicitly...

  4. Crack formation and crack propagation under multiaxial mechanical and thermal stresses. Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    The 25th meeting of the DV Fracture Group was held on 16/17 February 1993 at Karlsruhe Technical University. The main topic, ''Crack formation and crack propagation under multiaxial mechanical and thermal stresses'', was discussed by five invited papers (by K.J. Miller, D. Loehe, H.A. Richard, W. Brocks, A. Brueckner-Foit) and 23 short papers. The other 21 papers were devoted to various domains of fracture mechanics, with emphasis on elastoplastic fracture mechanics. (orig./MM) [de

  5. A mechanical deformation model of metallic fuel pin under steady state conditions

    International Nuclear Information System (INIS)

    Lee, D. W.; Lee, B. W.; Kim, Y. I.; Han, D. H.

    2004-01-01

    As a mechanical deformation model of the MACSIS code predicts the cladding deformation due to the simple thin shell theory, it is impossible to predict the FCMI(Fuel-Cladding Mechanical Interaction). Therefore, a mechanical deformation model used the generalized plane strain is developed. The DEFORM is a mechanical deformation routine which is used to analyze the stresses and strains in the fuel and cladding of a metallic fuel pin of LMRs. The accuracy of the program is demonstrated by comparison of the DEFORM predictions with the result of another code calculations or experimental results in literature. The stress/strain distributions of elastic part under free thermal expansion condition are completely matched with the results of ANSYS code. The swelling and creep solutions are reasonably well agreed with the simulations of ALFUS and LIFE-M codes, respectively. The predicted cladding strains are under estimated than experimental data at the range of high burnup. Therefore, it is recommended that the fine tuning of the DEFORM based on various range of experimental data

  6. Damage evolution of TBC system under in-phase thermo-mechanical tests

    Energy Technology Data Exchange (ETDEWEB)

    Kitazawa, R.; Tanaka, M.; Kagawa, Y. [Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan); Liu, Y.F., E-mail: yfliu@hyper.rcast.u-tokyo.ac.jp [Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan)

    2010-10-15

    In-phase thermo-mechanical tests (TMF) of EB-PVD Y{sub 2}O{sub 3}-ZrO{sub 2} thermal barrier coating (TBC) system (8 wt% Y{sub 2}O{sub 3}-ZrO{sub 2}/CoNiCrAlY/IN-738 substrate) were done under a through-the-thick-direction thermal gradient from TBC surface temperature at 1150 deg. C to substrate temperature at 1000 deg. C. Deformation and failure behaviors of the TBC system were observed at the macroscopic and microscopic scales and damage evolution of the system under in-phase thermo-mechanical test was discussed. Special attention was paid to TBC layer cracking, thermally grown oxide (TGO) layer formation and void formation in bond coat and substrate. Effect of TMF conditions on the damage evolution behaviors was also discussed.

  7. Temporal shifts in clinical presentation and underlying mechanisms of atherosclerotic disease.

    Science.gov (United States)

    Pasterkamp, Gerard; den Ruijter, Hester M; Libby, Peter

    2017-01-01

    The concept of the 'vulnerable plaque' originated from pathological observations in patients who died from acute coronary syndrome. This recognition spawned a generation of research that led to greater understanding of how complicated atherosclerotic plaques form and precipitate thrombotic events. In current practice, an increasing number of patients who survive their first event present with non-ST-segment elevation myocardial infarction (NSTEMI) rather than myocardial infarction (MI) with ST-segment elevation (STEMI). The culprit lesions that provide the pathological substrate for NSTEMI can vary considerably from the so-called 'vulnerable plaque'. The shift in clinical presentation of MI and stroke corresponds temporally to a progressive change in the characteristics of human plaques away from the supposed characteristics of vulnerability. These alterations in the structure and function of human atherosclerotic lesions might mirror the modifications that are produced in experimental plaques by lipid lowering, inspired by the vulnerable plaque construct. The shift in the clinical presentations of the acute coronary syndromes mandates a critical reassessment of the underlying mechanisms, proposed risk scores, the results and interpretation of preclinical experiments, as well as recognition of the limitations of the use of population data and samples collected before the application of current preventive interventions.

  8. Organic nitrates: update on mechanisms underlying vasodilation, tolerance and endothelial dysfunction.

    Science.gov (United States)

    Münzel, Thomas; Steven, Sebastian; Daiber, Andreas

    2014-12-01

    Given acutely, organic nitrates, such as nitroglycerin (GTN), isosorbide mono- and dinitrates (ISMN, ISDN), and pentaerythrityl tetranitrate (PETN), have potent vasodilator and anti-ischemic effects in patients with acute coronary syndromes, acute and chronic congestive heart failure and arterial hypertension. During long-term treatment, however, side effects such as nitrate tolerance and endothelial dysfunction occur, and therapeutic efficacy of these drugs rapidly vanishes. Recent experimental and clinical studies have revealed that organic nitrates per se are not just nitric oxide (NO) donors, but rather a quite heterogeneous group of drugs considerably differing for mechanisms underlying vasodilation and the development of endothelial dysfunction and tolerance. Based on this, we propose that the term nitrate tolerance should be avoided and more specifically the terms of GTN, ISMN and ISDN tolerance should be used. The present review summarizes preclinical and clinical data concerning organic nitrates. Here we also emphasize the consequences of chronic nitrate therapy on the supersensitivity of the vasculature to vasoconstriction and on the increased autocrine expression of endothelin. We believe that these so far rather neglected and underestimated side effects of chronic therapy with at least GTN and ISMN are clinically important. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Underlying mechanism in the water chemistry of nuclear systems

    International Nuclear Information System (INIS)

    Walton, G.N.

    1978-01-01

    The equilibrium between dissolved hydrogen and oxygen in the molecular decomposition of water, and the equilibrium between hydrogen ions and hydroxyl ions in the ionic dissociation of water, both constitute important underlying mechanisms in the corrosion behaviour of water. The two equilibria, and the rates of the reactions involved in water and steam, will be compared and contrasted as a function of temperature, pressure and radiation. The effects of the equilibria on the hydrolysis and solubility of ferrous and ferric ions, and the ions of other metals, will be discussed in relation to the control of conditions in the coolant circuits of nuclear reactors. A third mechanism to discussed is the electrochemical exchange reactions that can contribute to the contamination of circuits. (author)

  10. Paramecium tetraurelia growth stimulation under low-level chronic irradiation: investigations on a possible mechanism

    International Nuclear Information System (INIS)

    Croute, F.; Soleilhavoup, J.P.; Vidal, S.; Dupouy, D.; Planel, H.

    1982-01-01

    Experiments were carried out to demonstrate the effects of low-level chronic irradiation on Paramecium tetraurelia proliferation. Biological effects were strongly dependent on the bacterial density of culture medium and more exactly on the catalase content of the medium. Significant growth stimulation was found under 60 Co chronic irradiation at a dose rate of 2 rad/year when paramecia were grown in a medium containing a high bacterial concentration (2.5 x 10 2 cells/m) or supplemented with catalase (300 U/ml). In a medium with a low bacterial density (1 x 10 6 cell/ml) or supplemented with a catalase activity inhibitor, growth simulation was preceded by a transitory inhibiting effect which could be correlated with extracellularly radioproduced H 2 O 2 . H 2 O 2 addition appeared to be able to simulate the biological effects of chronic irradiation. A possible mechanism is discussed.We proposed that the stimulating effects were the result of intracellular enzymatic scavenging of radioproduced H 2 O 2

  11. An experimental study of the mechanism of failure of rocks under borehole jack loading

    Science.gov (United States)

    Van, T. K.; Goodman, R. E.

    1971-01-01

    Laboratory and field tests with an experimental jack and an NX-borehole jack are reported. The following conclusions were made: Under borehole jack loading, a circular opening in a brittle solid fails by tensile fracturing when the bearing plate width is not too small. Two proposed contact stress distributions can explain the mechanism of tensile fracturing. The contact stress distribution factor is a material property which can be determined experimentally. The borehole tensile strength is larger than the rupture flexural strength. Knowing the magnitude and orientation of the in situ stress field, borehole jack test results can be used to determine the borehole tensile strength. Knowing the orientation of the in situ stress field and the flexural strength of the rock substance, the magnitude of the in situ stress components can be calculated. The detection of very small cracks is essential for the accurate determination of the failure loads which are used in the calculation of strengths and stress components.

  12. Detecting impact signal in mechanical fault diagnosis under chaotic and Gaussian background noise

    Science.gov (United States)

    Hu, Jinfeng; Duan, Jie; Chen, Zhuo; Li, Huiyong; Xie, Julan; Chen, Hanwen

    2018-01-01

    In actual fault diagnosis, useful information is often submerged in heavy noise, and the feature information is difficult to extract. Traditional methods, such like stochastic resonance (SR), which using noise to enhance weak signals instead of suppressing noise, failed in chaotic background. Neural network, which use reference sequence to estimate and reconstruct the background noise, failed in white Gaussian noise. To solve these problems, a novel weak signal detection method aimed at the problem of detecting impact signal buried under heavy chaotic and Gaussian background noise is proposed. First, the proposed method obtains the virtual reference sequence by constructing the Hankel data matrix. Then an M-order optimal FIR filter is designed, which can minimize the output power of background noise and pass the weak periodic signal undistorted. Finally, detection and reconstruction of the weak periodic signal are achieved from the output SBNR (signal to background noise ratio). The simulation shows, compared with the stochastic resonance (SR) method, the proposed method can detect the weak periodic signal in chaotic noise background while stochastic resonance (SR) method cannot. Compared with the neural network method, (a) the proposed method does not need a reference sequence while neural network method needs one; (b) the proposed method can detect the weak periodic signal in white Gaussian noise background while the neural network method fails, in chaotic noise background, the proposed method can detect the weak periodic signal under a lower SBNR (about 8-17 dB lower) than the neural network method; (c) the proposed method can reconstruct the weak periodic signal precisely.

  13. Beneficial Microorganisms for Corals (BMC): Proposed Mechanisms for Coral Health and Resilience.

    Science.gov (United States)

    Peixoto, Raquel S; Rosado, Phillipe M; Leite, Deborah Catharine de Assis; Rosado, Alexandre S; Bourne, David G

    2017-01-01

    The symbiotic association between the coral animal and its endosymbiotic dinoflagellate partner Symbiodinium is central to the success of corals. However, an array of other microorganisms associated with coral (i.e., Bacteria, Archaea, Fungi, and viruses) have a complex and intricate role in maintaining homeostasis between corals and Symbiodinium . Corals are sensitive to shifts in the surrounding environmental conditions. One of the most widely reported responses of coral to stressful environmental conditions is bleaching. During this event, corals expel Symbiodinium cells from their gastrodermal tissues upon experiencing extended seawater temperatures above their thermal threshold. An array of other environmental stressors can also destabilize the coral microbiome, resulting in compromised health of the host, which may include disease and mortality in the worst scenario. However, the exact mechanisms by which the coral microbiome supports coral health and increases resilience are poorly understood. Earlier studies of coral microbiology proposed a coral probiotic hypothesis, wherein a dynamic relationship exists between corals and their symbiotic microorganisms, selecting for the coral holobiont that is best suited for the prevailing environmental conditions. Here, we discuss the microbial-host relationships within the coral holobiont, along with their potential roles in maintaining coral health. We propose the term BMC (Beneficial Microorganisms for Corals) to define (specific) symbionts that promote coral health. This term and concept are analogous to the term Plant Growth Promoting Rhizosphere (PGPR), which has been widely explored and manipulated in the agricultural industry for microorganisms that inhabit the rhizosphere and directly or indirectly promote plant growth and development through the production of regulatory signals, antibiotics and nutrients. Additionally, we propose and discuss the potential mechanisms of the effects of BMC on corals, suggesting

  14. Modeling oscillatory dynamics in brain microcircuits as a way to help uncover neurological disease mechanisms: A proposal

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, F. K. [Toronto Western Research Institute, University Health Network, Krembil Discovery Tower, Toronto Western Hospital, 60 Leonard Street, 7th floor, 7KD411, Toronto, Ontario M5T 2S8 (Canada); Department of Medicine (Neurology), University of Toronto, 200 Elizabeth Street, Toronto, Ontario M5G 2C4 (Canada); Department of Physiology, University of Toronto Medical Sciences Building, 3rd Floor, 1 King' s College Circle, Toronto, Ontario M5S 1A8 (Canada); Ferguson, K. A. [Toronto Western Research Institute, University Health Network, Krembil Discovery Tower, Toronto Western Hospital, 60 Leonard Street, 7th floor, 7KD411, Toronto, Ontario M5T 2S8 (Canada); Department of Physiology, University of Toronto Medical Sciences Building, 3rd Floor, 1 King' s College Circle, Toronto, Ontario M5S 1A8 (Canada)

    2013-12-15

    There is an undisputed need and requirement for theoretical and computational studies in Neuroscience today. Furthermore, it is clear that oscillatory dynamical output from brain networks is representative of various behavioural states, and it is becoming clear that one could consider these outputs as measures of normal and pathological brain states. Although mathematical modeling of oscillatory dynamics in the context of neurological disease exists, it is a highly challenging endeavour because of the many levels of organization in the nervous system. This challenge is coupled with the increasing knowledge of cellular specificity and network dysfunction that is associated with disease. Recently, whole hippocampus in vitro preparations from control animals have been shown to spontaneously express oscillatory activities. In addition, when using preparations derived from animal models of disease, these activities show particular alterations. These preparations present an opportunity to address challenges involved with using models to gain insight because of easier access to simultaneous cellular and network measurements, and pharmacological modulations. We propose that by developing and using models with direct links to experiment at multiple levels, which at least include cellular and microcircuit, a cycling can be set up and used to help us determine critical mechanisms underlying neurological disease. We illustrate our proposal using our previously developed inhibitory network models in the context of these whole hippocampus preparations and show the importance of having direct links at multiple levels.

  15. Music and Memory in Alzheimer's Disease and The Potential Underlying Mechanisms.

    Science.gov (United States)

    Peck, Katlyn J; Girard, Todd A; Russo, Frank A; Fiocco, Alexandra J

    2016-01-01

    With population aging and a projected exponential expansion of persons diagnosed with Alzheimer's disease (AD), the development of treatment and prevention programs has become a fervent area of research and discovery. A growing body of evidence suggests that music exposure can enhance memory and emotional function in persons with AD. However, there is a paucity of research that aims to identify specific underlying neural mechanisms associated with music's beneficial effects in this particular population. As such, this paper reviews existing anecdotal and empirical evidence related to the enhancing effects of music exposure on cognitive function and further provides a discussion on the potential underlying mechanisms that may explain music's beneficial effect. Specifically, this paper will outline the potential role of the dopaminergic system, the autonomic nervous system, and the default network in explaining how music may enhance memory function in persons with AD.

  16. Plant-insect interactions under bacterial influence: ecological implications and underlying mechanisms.

    Science.gov (United States)

    Sugio, Akiko; Dubreuil, Géraldine; Giron, David; Simon, Jean-Christophe

    2015-02-01

    Plants and insects have been co-existing for more than 400 million years, leading to intimate and complex relationships. Throughout their own evolutionary history, plants and insects have also established intricate and very diverse relationships with microbial associates. Studies in recent years have revealed plant- or insect-associated microbes to be instrumental in plant-insect interactions, with important implications for plant defences and plant utilization by insects. Microbial communities associated with plants are rich in diversity, and their structure greatly differs between below- and above-ground levels. Microbial communities associated with insect herbivores generally present a lower diversity and can reside in different body parts of their hosts including bacteriocytes, haemolymph, gut, and salivary glands. Acquisition of microbial communities by vertical or horizontal transmission and possible genetic exchanges through lateral transfer could strongly impact on the host insect or plant fitness by conferring adaptations to new habitats. Recent developments in sequencing technologies and molecular tools have dramatically enhanced opportunities to characterize the microbial diversity associated with plants and insects and have unveiled some of the mechanisms by which symbionts modulate plant-insect interactions. Here, we focus on the diversity and ecological consequences of bacterial communities associated with plants and herbivorous insects. We also highlight the known mechanisms by which these microbes interfere with plant-insect interactions. Revealing such mechanisms in model systems under controlled environments but also in more natural ecological settings will help us to understand the evolution of complex multitrophic interactions in which plants, herbivorous insects, and micro-organisms are inserted. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions

  17. 75 FR 32940 - Request for Proposals for New or Upgraded Transmission Line Projects Under Section 1222 of the...

    Science.gov (United States)

    2010-06-10

    ... financial condition and has the ability to secure the necessary financing to meet the Project's requirements... for Proposals for New or Upgraded Transmission Line Projects Under Section 1222 of the Energy Policy..., Department of Energy. ACTION: Request for Project Proposals. SUMMARY: The Department of Energy (DOE or...

  18. Insights into the Mechanisms Underlying Boron Homeostasis in Plants

    Directory of Open Access Journals (Sweden)

    Akira Yoshinari

    2017-11-01

    Full Text Available Boron is an essential element for plants but is toxic in excess. Therefore, plants must adapt to both limiting and excess boron conditions for normal growth. Boron transport in plants is primarily based on three transport mechanisms across the plasma membrane: passive diffusion of boric acid, facilitated diffusion of boric acid via channels, and export of borate anion via transporters. Under boron -limiting conditions, boric acid channels and borate exporters function in the uptake and translocation of boron to support growth of various plant species. In Arabidopsis thaliana, NIP5;1 and BOR1 are located in the plasma membrane and polarized toward soil and stele, respectively, in various root cells, for efficient transport of boron from the soil to the stele. Importantly, sufficient levels of boron induce downregulation of NIP5;1 and BOR1 through mRNA degradation and proteolysis through endocytosis, respectively. In addition, borate exporters, such as Arabidopsis BOR4 and barley Bot1, function in boron exclusion from tissues and cells under conditions of excess boron. Thus, plants actively regulate intracellular localization and abundance of transport proteins to maintain boron homeostasis. In this review, the physiological roles and regulatory mechanisms of intracellular localization and abundance of boron transport proteins are discussed.

  19. PHYSIOLOGICAL QUALITY OF SOYBEAN SEEDS UNDER MECHANICAL INJURIES CAUSED BY COMBINES

    OpenAIRE

    FÁBIO PALCZEWSKI PACHECO; LÚCIA HELENA PEREIRA NÓBREGA; GISLAINE PICOLLO DE LIMA; MÁRCIA SANTORUM; WALTER BOLLER; LORIVAN FORMIGHIERI

    2015-01-01

    The mechanical harvesting causes injuries on seeds and may affect their quality. Different threshing mechanisms and their adjustments may also affect the intensity of impacts that machines cause on seeds. So, this study aimed at diagnosing and evaluating the effect of two combines: the first one with a threshing system of axial flow and the other one with a threshing system of tangential flow, under adjustments of concave opening (10 mm, 30 mm and 10 mm for a combine with axial ...

  20. The mechanisms underlying overgeneral autobiographical memory: an evaluative review of evidence for the CaR-FA-X model.

    Science.gov (United States)

    Sumner, Jennifer A

    2012-02-01

    Overgeneral autobiographical memory (OGM) has been found to be an important cognitive phenomenon with respect to depression and trauma-related psychopathology (e.g., posttraumatic stress disorder), and researchers have been interested in better understanding the factors that contribute to this proposed vulnerability factor. The most prominent model of mechanisms underlying OGM to date is Williams et al.'s (2007) CaR-FA-X model. This model proposes that three processes influence OGM: capture and rumination, functional avoidance, and impaired executive control. The author reviews the current state of support for the CaR-FA-X model by evaluating 38 studies that have examined OGM and one or more mechanisms of the model. Collectively, these studies reveal robust support for associations between OGM and both rumination and impaired executive control. OGM also appears to be a cognitive avoidance strategy, and there is evidence that avoiding the retrieval of specific memories reduces distress after an aversive event, at least in the short term. Important issues that have been left unresolved are highlighted, including the nature of the capture phenomenon, the role of trauma in functional avoidance, and the developmental nature of functional avoidance. Recommendations for future research that will enhance understanding of the factors that contribute to OGM are suggested. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Frictional behaviour of polymer films under mechanical and electrostatic loads

    International Nuclear Information System (INIS)

    Ginés, R; Christen, R; Motavalli, M; Bergamini, A; Ermanni, P

    2013-01-01

    Different polymer foils, namely polyimide, FEP, PFA and PVDF were tested on a setup designed to measure the static coefficient of friction between them. The setup was designed according to the requirements of a damping device based on electrostatically tunable friction. The foils were tested under different mechanically applied forces and showed reproducible results for the static coefficient of friction. With the same setup the measurements were performed under an electric field as the source of the normal force. Up to a certain electric field the values were in good agreement. Beyond this field discrepancies were found. (paper)

  2. Failure mechanism of monolayer graphene under hypervelocity impact of spherical projectile

    Science.gov (United States)

    Xia, Kang; Zhan, Haifei; Hu, De'An; Gu, Yuantong

    2016-09-01

    The excellent mechanical properties of graphene have enabled it as appealing candidate in the field of impact protection or protective shield. By considering a monolayer graphene membrane, in this work, we assessed its deformation mechanisms under hypervelocity impact (from 2 to 6 km/s), based on a serial of in silico studies. It is found that the cracks are formed preferentially in the zigzag directions which are consistent with that observed from tensile deformation. Specifically, the boundary condition is found to exert an obvious influence on the stress distribution and transmission during the impact process, which eventually influences the penetration energy and crack growth. For similar sample size, the circular shape graphene possesses the best impact resistance, followed by hexagonal graphene membrane. Moreover, it is found the failure shape of graphene membrane has a strong relationship with the initial kinetic energy of the projectile. The higher kinetic energy, the more number the cracks. This study provides a fundamental understanding of the deformation mechanisms of monolayer graphene under impact, which is crucial in order to facilitate their emerging future applications for impact protection, such as protective shield from orbital debris for spacecraft.

  3. Behavior of duplex stainless steel casting defects under mechanical loadings

    Energy Technology Data Exchange (ETDEWEB)

    Jayet-Gendrot, S [Electricite de France, 77 - Moret-sur-Loing (France). Dept. of Materials Study; Gilles, P; Migne, C [Societe Franco-Americaine de Constructions Atomiques (FRAMATOME), 92 - Paris-La-Defense (France)

    1997-04-01

    Several components in the primary circuit of pressurized water reactors are made of cast duplex stainless steels. This material contains small casting defects, mainly shrinkage cavities, due to the manufacturing process. In safety analyses, the structural integrity of the components is studied. In order to assess the real severity of the casting defects under mechanical loadings, an experimental program was carried out. It consisted of testing, under both cyclic and monotonic solicitations, three-point bend specimens containing either a natural defect (in the form of a localized cluster of cavities) or a machined notch having the dimensions of the cluster`s envelope. The tests are analyzed in order to develop a method that takes into account the behavior of castings defects in a more realistic fashion than by an envelope crack. Various approaches are investigated, including the search of equivalent defects or of criteria based on continuum mechanics concepts, and compared with literature data. This study shows the conservatism of current safety analyses in modelling casting defects by envelope semi-elliptical cracks and contributes to the development of alternative approaches. (author) 18 refs.

  4. Trials and Tribulations: Student Approaches and Difficulties with Proposing Mechanisms Using the Electron-Pushing Formalism

    Science.gov (United States)

    Bhattacharyya, Gautam

    2014-01-01

    The skill of proposing mechanisms of reactions using the electron-pushing formalism (EPF) is not only of value to practicing organic chemists but it is also emphasized to students enrolled in organic chemistry courses at all levels. Several research studies in the past decade have documented the difficulties that undergraduate, and even graduate…

  5. Nonlinear Mechanics of MEMS Rectangular Microplates under Electrostatic Actuation

    KAUST Repository

    Saghir, Shahid

    2016-12-01

    The first objective of the dissertation is to develop a suitable reduced order model capable of investigating the nonlinear mechanical behavior of von-Karman plates under electrostatic actuation. The second objective is to investigate the nonlinear static and dynamic behavior of rectangular microplates under small and large actuating forces. In the first part, we present and compare various approaches to develop reduced order models for the nonlinear von-Karman rectangular microplates actuated by nonlinear electrostatic forces. The reduced-order models aim to investigate the static and dynamic behavior of the plate under small and large actuation forces. A fully clamped microplate is considered. Different types of basis functions are used in conjunction with the Galerkin method to discretize the governing equations. First we investigate the convergence with the number of modes retained in the model. Then for validation purpose, a comparison of the static results is made with the results calculated by a nonlinear finite element model. The linear eigenvalue problem for the plate under the electrostatic force is solved for a wide range of voltages up to pull-in. In the second part, we present an investigation of the static and dynamic behavior of a fully clamped microplate. We investigate the effect of different non-dimensional design parameters on the static response. The forced-vibration response of the plate is then investigated when the plate is excited by a harmonic AC load superimposed to a DC load. The dynamic behavior is examined near the primary and secondary (superharmonic and subharmonic) resonances. The microplate shows a strong hardening behavior due to the cubic nonlinearity of midplane stretching. However, the behavior switches to softening as the DC load is increased. Next, near-square plates are studied to understand the effect of geometric imperfections of microplates. In the final part of the dissertation, we investigate the mechanical behavior of

  6. Neural mechanisms underlying morphine withdrawal in addicted patients: a review

    Directory of Open Access Journals (Sweden)

    Nima Babhadiashar

    2015-06-01

    Full Text Available Morphine is one of the most potent alkaloid in opium, which has substantial medical uses and needs and it is the first active principle purified from herbal source. Morphine has commonly been used for relief of moderate to severe pain as it acts directly on the central nervous system; nonetheless, its chronic abuse increases tolerance and physical dependence, which is commonly known as opiate addiction. Morphine withdrawal syndrome is physiological and behavioral symptoms that stem from prolonged exposure to morphine. A majority of brain regions are hypofunctional over prolonged abstinence and acute morphine withdrawal. Furthermore, several neural mechanisms are likely to contribute to morphine withdrawal. The present review summarizes the literature pertaining to neural mechanisms underlying morphine withdrawal. Despite the fact that morphine withdrawal is a complex process, it is suggested that neural mechanisms play key roles in morphine withdrawal.

  7. Novel failure mechanism and improvement for split-gate trench MOSFET with large current under unclamped inductive switch stress

    Science.gov (United States)

    Tian, Ye; Yang, Zhuo; Xu, Zhiyuan; Liu, Siyang; Sun, Weifeng; Shi, Longxing; Zhu, Yuanzheng; Ye, Peng; Zhou, Jincheng

    2018-04-01

    In this paper, a novel failure mechanism under unclamped inductive switch (UIS) for Split-Gate Trench Metal Oxide Semiconductor Field Effect Transistor (MOSFET) with large current is investigated. The device sample is tested and analyzed in detail. The simulation results demonstrate that the nonuniform potential distribution of the source poly should be responsible for the failure. Three structures are proposed and verified available to improve the device UIS ruggedness by TCAD simulation. The best one of the structures the device with source metal inserting into source poly through contacts in the field oxide is carried out and measured. The results demonstrate that the optimized structure can balance the trade-off between the UIS ruggedness and the static characteristics.

  8. A proposal for further integration of the cyanobacteria under the Bacteriological Code.

    Science.gov (United States)

    Oren, Aharon

    2004-09-01

    This taxonomic note reviews the present status of the nomenclature of the cyanobacteria under the Bacteriological Code. No more than 13 names of cyanobacterial species have been proposed so far in the International Journal of Systematic and Evolutionary Microbiology (IJSEM)/International Journal of Systematic Bacteriology (IJSB), and of these only five are validly published. The cyanobacteria (Cyanophyta, blue-green algae) are also named under the Botanical Code, and the dual nomenclature system causes considerable confusion. This note calls for a more intense involvement of the International Committee on Systematics of Prokaryotes (ICSP), its Judicial Commission and its Subcommittee on the Taxonomy of Photosynthetic Prokaryotes in the nomenclature of the cyanobacteria under the Bacteriological Code. The establishment of minimal standards for the description of new species and genera should be encouraged in a way that will be acceptable to the botanical authorities as well. This should be followed by the publication of an 'Approved List of Names of Cyanobacteria' in IJSEM. The ultimate goal is to achieve a consensus nomenclature that is acceptable both to bacteriologists and to botanists, anticipating the future implementation of a universal 'Biocode' that would regulate the nomenclature of all organisms living on Earth.

  9. Crack Propagation Calculations for Optical Fibers under Static Bending and Tensile Loads Using Continuum Damage Mechanics

    Science.gov (United States)

    Chen, Yunxia; Cui, Yuxuan; Gong, Wenjun

    2017-01-01

    Static fatigue behavior is the main failure mode of optical fibers applied in sensors. In this paper, a computational framework based on continuum damage mechanics (CDM) is presented to calculate the crack propagation process and failure time of optical fibers subjected to static bending and tensile loads. For this purpose, the static fatigue crack propagation in the glass core of the optical fiber is studied. Combining a finite element method (FEM), we use the continuum damage mechanics for the glass core to calculate the crack propagation path and corresponding failure time. In addition, three factors including bending radius, tensile force and optical fiber diameter are investigated to find their impacts on the crack propagation process and failure time of the optical fiber under concerned situations. Finally, experiments are conducted and the results verify the correctness of the simulation calculation. It is believed that the proposed method could give a straightforward description of the crack propagation path in the inner glass core. Additionally, the predicted crack propagation time of the optical fiber with different factors can provide effective suggestions for improving the long-term usage of optical fibers. PMID:29140284

  10. Mechanical behaviors of multi-filament twist superconducting strand under tensile and cyclic loading

    Science.gov (United States)

    Wang, Xu; Li, Yingxu; Gao, Yuanwen

    2016-01-01

    The superconducting strand, serving as the basic unit cell of the cable-in-conduit-conductors (CICCs), is a typical multi-filament twist composite which is always subjected to a cyclic loading under the operating condition. Meanwhile, the superconducting material Nb3Sn in the strand is sensitive to strain frequently relating to the performance degradation of the superconductivity. Therefore, a comprehensive study on the mechanical behavior of the strand helps understanding the superconducting performance of the strained Nb3Sn strands. To address this issue, taking the LMI (internal tin) strand as an example, a three-dimensional structural finite element model, named as the Multi-filament twist model, of the strand with the real configuration of the LMI strand is built to study the influences of the plasticity of the component materials, the twist of the filament bundle, the initial thermal residual stress and the breakage and its evolution of the filaments on the mechanical behaviors of the strand. The effective properties of superconducting filament bundle with random filament breakage and its evolution versus strain are obtained based on the damage theory of fiber-reinforced composite materials proposed by Curtin and Zhou. From the calculation results of this model, we find that the occurrence of the hysteresis loop in the cyclic loading curve is determined by the reverse yielding of the elastic-plastic materials in the strand. Both the initial thermal residual stress in the strand and the pitch length of the filaments have significant impacts on the axial and hysteretic behaviors of the strand. The damage of the filaments also affects the axial mechanical behavior of the strand remarkably at large axial strain. The critical current of the strand is calculated by the scaling law with the results of the Multi-filament twist model. The predicted results of the Multi-filament twist model show an acceptable agreement with the experiment.

  11. An analytical model of the mechanical properties of bulk coal under confined stress

    Science.gov (United States)

    Wang, G.X.; Wang, Z.T.; Rudolph, V.; Massarotto, P.; Finley, R.J.

    2007-01-01

    This paper presents the development of an analytical model which can be used to relate the structural parameters of coal to its mechanical properties such as elastic modulus and Poisson's ratio under a confined stress condition. This model is developed primarily to support process modeling of coalbed methane (CBM) or CO2-enhanced CBM (ECBM) recovery from coal seam. It applied an innovative approach by which stresses acting on and strains occurring in coal are successively combined in rectangular coordinates, leading to the aggregated mechanical constants. These mechanical properties represent important information for improving CBM/ECBM simulations and incorporating within these considerations of directional permeability. The model, consisting of constitutive equations which implement a mechanically consistent stress-strains correlation, can be used as a generalized tool to study the mechanical and fluid behaviors of coal composites. An example using the model to predict the stress-strain correlation of coal under triaxial confined stress by accounting for the elastic and brittle (non-elastic) deformations is discussed. The result shows a good agreement between the prediction and the experimental measurement. ?? 2007 Elsevier Ltd. All rights reserved.

  12. Unraveling the Root Proteome Changes and Its Relationship to Molecular Mechanism Underlying Salt Stress Response in Radish (Raphanus sativus L.

    Directory of Open Access Journals (Sweden)

    Xiaochuan Sun

    2017-07-01

    Full Text Available To understand the molecular mechanism underlying salt stress response in radish, iTRAQ-based proteomic analysis was conducted to investigate the differences in protein species abundance under different salt treatments. In total, 851, 706, and 685 differential abundance protein species (DAPS were identified between CK vs. Na100, CK vs. Na200, and Na100 vs. Na200, respectively. Functional annotation analysis revealed that salt stress elicited complex proteomic alterations in radish roots involved in carbohydrate and energy metabolism, protein metabolism, signal transduction, transcription regulation, stress and defense and transport. Additionally, the expression levels of nine genes encoding DAPS were further verified using RT-qPCR. The integrative analysis of transcriptomic and proteomic data in conjunction with miRNAs was further performed to strengthen the understanding of radish response to salinity. The genes responsible for signal transduction, ROS scavenging and transport activities as well as several key miRNAs including miR171, miR395, and miR398 played crucial roles in salt stress response in radish. Based on these findings, a schematic genetic regulatory network of salt stress response was proposed. This study provided valuable insights into the molecular mechanism underlying salt stress response in radish roots and would facilitate developing effective strategies toward genetically engineered salt-tolerant radish and other root vegetable crops.

  13. Fatigue response of a PZT multilayer actuator under high-field electric cycling with mechanical preload

    Science.gov (United States)

    Wang, Hong; Wereszczak, Andrew A.; Lin, Hua-Tay

    2009-01-01

    An electric fatigue test system was developed for evaluating the reliability of piezoelectric actuators with a mechanical loading capability. Fatigue responses of a lead zirconate titanate (PZT) multilayer actuator with a platethrough electrode configuration were studied under an electric field (1.7 times that of the coercive field of PZT material) and a concurrent mechanical preload (30.0 MPa). A total of 109 cycles was carried out. Variations in charge density and mechanical strain under the high electric field and constant mechanical loads were observed during the fatigue test. The dc and the first harmonic (at 10 Hz) dielectric and piezoelectric coefficients were subsequently characterized using fast Fourier transformation. Both the dielectric and the piezoelectric coefficients exhibited a monotonic decrease prior to 2.86×108 cycles under certain preloading conditions, and then fluctuated. Both the dielectric loss tangent and the piezoelectric loss tangent also fluctuated after a decrease. The results are interpreted and discussed with respect to domain wall activities, microdefects, and other anomalies.

  14. 78 FR 38074 - Notice of Lodging of Proposed Consent Decree Under the Clean Air Act

    Science.gov (United States)

    2013-06-25

    ... manufacturing plants operating in as many states. The states of Arkansas, Idaho, Kansas, Montana, Nebraska... DEPARTMENT OF JUSTICE Notice of Lodging of Proposed Consent Decree Under the Clean Air Act On June... Court for the District of Kansas in the lawsuit entitled United States et al. v. Ash Grove Cement...

  15. An investigation of the mechanism underlying teacher aggression : Testing I3 theory and the General Aggression Model

    NARCIS (Netherlands)

    Montuoro, Paul; Mainhard, Tim

    2017-01-01

    Background: Considerable research has investigated the deleterious effects of teachers responding aggressively to students who misbehave, but the mechanism underlying this dysfunctional behaviour remains unknown. Aims: This study investigated whether the mechanism underlying teacher aggression

  16. Reliability Issues and Solutions in Flexible Electronics Under Mechanical Fatigue

    Science.gov (United States)

    Yi, Seol-Min; Choi, In-Suk; Kim, Byoung-Joon; Joo, Young-Chang

    2018-03-01

    Flexible devices are of significant interest due to their potential expansion of the application of smart devices into various fields, such as energy harvesting, biological applications and consumer electronics. Due to the mechanically dynamic operations of flexible electronics, their mechanical reliability must be thoroughly investigated to understand their failure mechanisms and lifetimes. Reliability issue caused by bending fatigue, one of the typical operational limitations of flexible electronics, has been studied using various test methodologies; however, electromechanical evaluations which are essential to assess the reliability of electronic devices for flexible applications had not been investigated because the testing method was not established. By employing the in situ bending fatigue test, we has studied the failure mechanism for various conditions and parameters, such as bending strain, fatigue area, film thickness, and lateral dimensions. Moreover, various methods for improving the bending reliability have been developed based on the failure mechanism. Nanostructures such as holes, pores, wires and composites of nanoparticles and nanotubes have been suggested for better reliability. Flexible devices were also investigated to find the potential failures initiated by complex structures under bending fatigue strain. In this review, the recent advances in test methodology, mechanism studies, and practical applications are introduced. Additionally, perspectives including the future advance to stretchable electronics are discussed based on the current achievements in research.

  17. Biochemical mechanisms of signaling: perspectives in plants under arsenic stress.

    Science.gov (United States)

    Islam, Ejazul; Khan, Muhammad Tahir; Irem, Samra

    2015-04-01

    Plants are the ultimate food source for humans, either directly or indirectly. Being sessile in nature, they are exposed to various biotic and abiotic stresses because of changing climate that adversely effects their growth and development. Contamination of heavy metals is one of the major abiotic stresses because of anthropogenic as well as natural factors which lead to increased toxicity and accumulation in plants. Arsenic is a naturally occurring metalloid toxin present in the earth crust. Due to its presence in terrestrial and aquatic environments, it effects the growth of plants. Plants can tolerate arsenic using several mechanisms like phytochelation, vacuole sequestration and activation of antioxidant defense systems. Several signaling mechanisms have evolved in plants that involve the use of proteins, calcium ions, hormones, reactive oxygen species and nitric oxide as signaling molecules to cope with arsenic toxicity. These mechanisms facilitate plants to survive under metal stress by activating their defense systems. The pathways by which these stress signals are perceived and responded is an unexplored area of research and there are lots of gaps still to be filled. A good understanding of these signaling pathways can help in raising the plants which can perform better in arsenic contaminated soil and water. In order to increase the survival of plants in contaminated areas there is a strong need to identify suitable gene targets that can be modified according to needs of the stakeholders using various biotechnological techniques. This review focuses on the signaling mechanisms of plants grown under arsenic stress and will give an insight of the different sensory systems in plants. Furthermore, it provides the knowledge about several pathways that can be exploited to develop plant cultivars which are resistant to arsenic stress or can reduce its uptake to minimize the risk of arsenic toxicity through food chain thus ensuring food security. Copyright © 2015

  18. Thermal stability of nafion membranes under mechanical stress

    Energy Technology Data Exchange (ETDEWEB)

    Quintilii, M; Struis, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The feasibility of adequately modified fluoro-ionomer membranes (NAFION{sup R}) is demonstrated for the selective separation of methanol synthesis products from the raw reactor gas at temperatures around 200{sup o}C. For an economically relevant application of this concept on a technical scale the Nafion membranes should be thin ({approx_equal}10 {mu}m) and thermally stable over a long period of time (1-2 years). In cooperation with industry (Methanol Casale SA, Lugano (CH)), we test the thermal stability of Nafion hollow fibers and supported Nafion thin sheet membranes at temperatures between 160 and 200{sup o}C under mechanical stress by applying a gas pressure difference over the membrane surface ({Delta}P{<=} 40 bar). Tests with the hollow fibers revealed that Nafion has visco-elastic properties. Tests with 50 {mu}m thin Nafion sheets supported by a porous metal carrier at 200{sup o}C and {Delta}P=39 bar showed no mechanical defects over a period of 92 days. (author) 5 figs., 4 refs.

  19. Design options for cooperation mechanisms under the new European renewable energy directive

    International Nuclear Information System (INIS)

    Klessmann, Corinna; Lamers, Patrick; Ragwitz, Mario; Resch, Gustav

    2010-01-01

    In June 2009, a new EU directive on the promotion of renewable energy sources (RES) entered into effect. The directive 2009/28/EC, provides for three cooperation mechanisms that will allow member states to achieve their national RES target in cooperation with other member states: statistical transfer, joint projects, and joint support schemes. This article analyses the pros and cons of the three mechanisms and explores design options for their implementation through strategic and economic questions: How to counterbalance the major drawbacks of each mechanism? How to reflect a balance of costs and benefits between the involved member states? The analysis identifies a number of design options that respond to these questions, e.g. long term contracts to ensure sufficient flexibility for statistical transfers, a coordinated, standardised joint project approach to increase transparency in the European market, and a stepwise harmonisation of joint support schemes that is based on a cost-effective accounting approach. One conclusion is that the three cooperation mechanisms are closely interlinked. One can consider their relation to be a gradual transition from member state cooperation under fully closed national support systems in case of statistical transfers, to cooperation under fully open national support systems in a joint support scheme.

  20. Mechanisms underlying the associations of maternal age with adverse perinatal outcomes

    DEFF Research Database (Denmark)

    Lawlor, Debbie A; Mortensen, Laust; Andersen, Anne-Marie Nybo

    2011-01-01

    The mechanisms underlying the association between maternal age (both young and older maternal age) and adverse perinatal outcomes are unclear. Methods We examined the association of maternal age at first birth with preterm birth (<37 weeks gestation) and small for gestational age (SGA) in a cohor...

  1. Investigation of sheet steel St 37.2 under mechanical impact

    International Nuclear Information System (INIS)

    Berg, H.P.; Brennecke, P.; Koester, R.; Friehmelt, V.

    1990-01-01

    Special waste originating, e.g. from chemical industry and radioactive wastes are emplaced in disposal mines. Slinger stowing is an approved technique to fill up residual voids in emplacement rooms. If it should be applied, possible mechanical loads on the integrity of sheet steel containers have to be considered. By theoretical calculations and by experiments under variation of different parameters using test specimen and backfill material from the Konrad mine using the container type V as an example it has been shown that sheet steel St 37.2 with a wall thickness of 3 mm will withstand mechanical impact imposed by backfill particles having a speed of 24 m/s. (orig.) [de

  2. The mechanisms of action underlying the efficacy of psychological nightmare treatments: A systematic review and thematic analysis of discussed hypotheses.

    Science.gov (United States)

    Rousseau, Andréanne; Belleville, Geneviève

    2018-06-01

    Studies of psychotherapeutic treatments for nightmares have yielded support for their effectiveness. However, no consensus exists to explain how they work. This study combines a systematic review with a qualitative thematic analysis to identify and categorize the existing proposed mechanisms of action (MAs) of nightmare treatments. The systematic review allowed for a great number of scholarly publications on supported psychological treatments for nightmares to be identified. Characteristics of the study and citations regarding potential MAs were extracted using a standardized coding grid. Then, thematic analysis allowed citations to be grouped under six different categories of possible MAs according to their similarities and differences. Results reveal that an increased sense of mastery was the most often cited hypothesis to explain the efficacy of nightmare psychotherapies. Other mechanisms included emotional processing leading to modification of the fear structure, modification of beliefs, restoration of sleep functions, decreased arousal, and prevention of avoidance. An illustration of the different variables involved in the treatment of nightmares is proposed. Different avenues for operationalization of these MAs are put forth to enable future research on nightmare treatments to measure and link them to efficacy measures, and test the implications of the illustration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Discussion of a didactic proposal on quantum mechanics with secondary school students

    Science.gov (United States)

    Michelini, M.; Ragazzon, R.; Santi, L.; Stefanel, A.

    2004-09-01

    Within some research projects a proposal for the teaching of quantum mechanics in secondary school has been carried out, and some didactic material has been prepared in order to illustrate it, offering resources for its class experimentation (www.fisica.uniud.it/URDF/). In order to study in depth the critical points, which cause learning difficulties for the students in this field, a pilot activity was carried out for a restricted group of students with which the crucial points were discussed. Some interesting elements emerged, such as for example the fact that the major problems in understanding the concept of quantum state are linked to the meaning of incompatible observables.

  4. Investigation on the interaction of catalase with sodium lauryl sulfonate and the underlying mechanisms.

    Science.gov (United States)

    Wang, Jing; Jia, Rui; Wang, Jiaxi; Sun, Zhiqiang; Wu, Zitao; Liu, Rutao; Zong, Wansong

    2018-02-01

    As a classic type of anionic surfactants, sodium lauryl sulfonate (SLS) might change the structure and function of antioxidant enzyme catalase (CAT) through their direct interactions. However, the underlying molecular mechanism is still unknown. This study investigated the direct interaction of SLS with CAT molecule and the underlying mechanisms using multi-spectroscopic methods, isothermal titration calorimetry, and molecular docking studies. No obvious effects were observed on CAT structure and activity under low SLS concentration exposure. The particle size of CAT molecule decreased and CAT activity was slightly inhibited under high SLS concentration exposure. SLS prefers to bind to the interface of CAT mainly via van der Waals' forces and hydrogen bonds. Subsequently, SLS interacts with the amino acid residues around the heme groups of CAT via hydrophobic interactions and might inhibit CAT activity. © 2017 Wiley Periodicals, Inc.

  5. Deformation and damage modes of deep argillaceous rocks under hydro-mechanical stresses

    International Nuclear Information System (INIS)

    Vales, F.

    2008-12-01

    An experimental identification of the hydro-mechanical behaviour of an argillite rock is proposed within a multi-scale approach. In particular, interest is focused on the spatial and temporal localization of strain and damage in a specimen during hydro-mechanical loading. Firstly, we describe the techniques used to follow the rock evolutions under loading, and in particular Digital Images Correlation (DIC), Acoustic Emission, microscopy and mercury intrusion porosimetry. Measurement errors and device limitations are discussed. The studied material is the Callovo-Oxfordian indurated argillaceous rock (or argillite) of the Bure site where ANDRA has built an underground research laboratory to study the radioactive waste storage. Petrophysical characterizations and microstructural observations by optical and scanning electron microscopy provide an identification of the constitutive phase and a characterization of their spatial distribution and typical sizes. Argillite can be described as a composite structure with a continuous clay matrix and embedded mineral particles, essentially quartz and carbonates. The typical size of these particles ranges from a few micrometers to a few hundreds micrometers, with an average close to 50 μ.m. The general experimental procedure combines two steps: in a fist time, imposed suctions bring samples to a given degree of water saturation, and, in a second time, uniaxial mechanical compression tests are performed. To understand the evolutions of the material under hydric and mechanical loading, samples are instrumented with standard measurement techniques, but also with Digital Image Correlation, at both the global scale of the sample and the local scale of the composite microstructure, and with Acoustic Emissions recording. Moisture transfers are imposed by controlled suctions on the range of 150 to 2.8 MPa, corresponding to the relative humidity range of 32 to 98%RH. During pure hydric solicitation, the changes in physical parameters

  6. Crack growth threshold under hold time conditions in DA Inconel 718 – A transition in the crack growth mechanism

    Directory of Open Access Journals (Sweden)

    E. Fessler

    2016-01-01

    Full Text Available Aeroengine manufacturers have to demonstrate that critical components such as turbine disks, made of DA Inconel 718, meet the certification requirements in term of fatigue crack growth. In order to be more representative of the in service loading conditions, crack growth under hold time conditions is studied. Modelling crack growth under these conditions is challenging due to the combined effect of fatigue, creep and environment. Under these conditions, established models are often conservative but the degree of conservatism can be reduced by introducing the crack growth threshold in models. Here, the emphasis is laid on the characterization of crack growth rates in the low ΔK regime under hold time conditions and in particular, on the involved crack growth mechanism. Crack growth tests were carried out at high temperature (550 °C to 650 °C under hold time conditions (up to 1200 s in the low ΔK regime using a K-decreasing procedure. Scanning electron microscopy was used to identify the fracture mode involved in the low ΔK regime. EBSD analyses and BSE imaging were also carried out along the crack path for a more accurate identification of the fracture mode. A transition from intergranular to transgranular fracture was evidenced in the low ΔK regime and slip bands have also been observed at the tip of an arrested crack at low ΔK. Transgranular fracture and slip bands are usually observed under pure fatigue loading conditions. At low ΔK, hold time cycles are believed to act as equivalent pure fatigue cycles. This change in the crack growth mechanism under hold time conditions at low ΔK is discussed regarding results related to intergranular crack tip oxidation and its effect on the crack growth behaviour of Inconel 718 alloy. A concept based on an “effective oxygen partial pressure” at the crack tip is proposed to explain the transition from transgranular to intergranular fracture in the low ΔK regime.

  7. Changes in ventilatory mechanics caused by variations in PEEP and pressure support: study in healthy subjects under non-invasive mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Isabel Cristina Muñoz

    2017-04-01

    Conclusions: The proposed technique allowed to find compliance and resistance values consistent with those set in the mechanical simulator, which, in turn, coincide with those reported in the literature for healthy subjects. This information is useful for decision-making in intensive care units..

  8. Mechanical properties of the human spinal cord under the compressive loading.

    Science.gov (United States)

    Karimi, Alireza; Shojaei, Ahmad; Tehrani, Pedram

    2017-12-01

    The spinal cord as the most complex and critical part of the human body is responsible for the transmission of both motor and sensory impulses between the body and the brain. Due to its pivotal role any types of physical injury in that disrupts its function following by shortfalls, including the minor motor and sensory malfunctions as well as complicate quadriplegia and lifelong ventilator dependency. In order to shed light on the injuries to the spinal cord, the application of the computational models to simulate the trauma impact loading to that are deemed required. Nonetheless, it has not been fulfilled since there is a paucity of knowledge about the mechanical properties of the spinal cord, especially the cervical one, under the compressive loading on the grounds of the difficulty in obtaining this tissue from the human body. This study was aimed at experimentally measuring the mechanical properties of the human cervical spinal cord of 24 isolated fresh samples under the unconfined compressive loading at a relatively low strain rate. The stress-strain data revealed the elastic modulus and maximum/failure stress of 40.12±6.90 and 62.26±5.02kPa, respectively. Owing to the nonlinear response of the spinal cord, the Yeoh, Ogden, and Mooney-Rivlin hyperelastic material models have also been employed. The results may have implications not only for understanding the linear elastic and nonlinear hyperelastic mechanical properties of the cervical spinal cord under the compressive loading, but also for providing a raw data for investigating the injury as a result of the trauma thru the numerical simulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Reliability-based optimization of maintenance scheduling of mechanical components under fatigue

    Science.gov (United States)

    Beaurepaire, P.; Valdebenito, M.A.; Schuëller, G.I.; Jensen, H.A.

    2012-01-01

    This study presents the optimization of the maintenance scheduling of mechanical components under fatigue loading. The cracks of damaged structures may be detected during non-destructive inspection and subsequently repaired. Fatigue crack initiation and growth show inherent variability, and as well the outcome of inspection activities. The problem is addressed under the framework of reliability based optimization. The initiation and propagation of fatigue cracks are efficiently modeled using cohesive zone elements. The applicability of the method is demonstrated by a numerical example, which involves a plate with two holes subject to alternating stress. PMID:23564979

  10. Elaboration of the recently proposed test of Pauli's principle under strong interactions

    International Nuclear Information System (INIS)

    Ktorides, C.N.; Myung, H.C.; Santilli, R.M.

    1980-01-01

    The primary objective of this paper is to stimulate the experimental verification of the validity or invalidity of Pauli's principle under strong interactions. We first outline the most relevant steps in the evolution of the notion of particle. The spin as well as other intrinsic characteristics of extended, massive, particles under electromagnetic interactions at large distances might be subjected to a mutation under additional strong interactions at distances smaller than their charge radius. These dynamical effects can apparently be conjectured to account for the nonpointlike nature of the particles, their necessary state of penetration to activate the strong interactions, and the consequential emergence of broader forces which imply the breaking of the SU(2)-spin symmetry. We study a characterization of the mutated value of the spin via the transition from the associative enveloping algebra of SU(2) to a nonassociative Lie-admissible form. The departure from the original associative product then becomes directly representative of the breaking of the SU(2)-spin symmetry, the presence of forces more general than those derivable from a potential, and the mutated value of the spin. In turn, such a departure of the spin from conventional quantum-mechanical values implies the inapplicability of Pauli's exclusion principle under strong interactions, because, according to this hypothesis, particles that are fermions under long-range electromagnetic interactions are no longer fermions under these broader, short-range, forces. In nuclear physics possible deviations from Pauli's exclusion principle can at most be very small. These experimental data establish that, for the nuclei considered, nucleons are in a partial state of penetration of their charge volumes although of small statistical character

  11. Behavior of duplex stainless steel casting defects under mechanical loadings

    International Nuclear Information System (INIS)

    Jayet-Gendrot, S.; Gilles, P.

    2000-01-01

    Several components in the primary circuit of pressurized water reactors are made of cast duplex stainless steels. This material contains small casting defects, mainly shrinkage cavities, due to the manufacturing process. In safety analyses, the structural integrity of the components is studied under the most severe assumptions: presence of a large defect, accidental loadings and end-of-life material properties accounting for its thermal aging embrittlement at the service temperature. The casting defects are idealized as semi-circular surface cracks or notches that have envelope dimensions. In order to assess the real severity of the casting defects under mechanical loadings, an experimental program was carried out. It consisted of testing, under both cyclic and monotonic solicitations, three-point bend specimens containing either a natural defect (in the form of a localized cluster of cavities) or a machined notch having the dimensions of the cluster's envelope. The results show that shrinkage cavities are far less harmful than envelope notches thanks to the metal bridges between cavities. Under fatigue loadings, the generalized initiation of a cluster of cavities (defined when the cluster becomes a crack of the same global size) is reached for a number of cycles that is much higher than the one leading to the initiation of a notch. In the case of monotonic loadings, specimens with casting defects offer a very high resistance to ductile tearing. The tests are analyzed in order to develop a method that takes into account the behavior of casting defects in a more realistic fashion than by an envelope crack. Various approaches are investigated, including the search of equivalent defects or of criteria based on continuum mechanics concepts, and compared with literature data. This study shows the conservatism of current safety analyses in modeling casting defects by envelope semi-elliptical cracks and contributes to the development of alternative approaches. (orig.)

  12. Friction Stir Weld Failure Mechanisms in Aluminum-Armor Structures Under Ballistic Impact Loading Conditions

    Science.gov (United States)

    2013-01-01

    REPORT Friction Stir Weld Failure Mechanisms in Aluminum-Armor Structures Under Ballistic Impact Loading Conditions 14. ABSTRACT 16. SECURITY...properties and of the attendant ballistic-impact failure mechanisms in prototypical friction stir welding (FSW) joints found in armor structures made of high...mechanisms, friction stir welding M. Grujicic, B. Pandurangan, A. Arakere, C-F. Yen, B. A. Cheeseman Clemson University Office of Sponsored Programs 300

  13. Mechanisms underlying prorenin actions on hypothalamic neurons implicated in cardiometabolic control

    Directory of Open Access Journals (Sweden)

    Soledad Pitra

    2016-10-01

    Conclusions: We identified novel neuronal targets and cellular mechanisms underlying PR/PRR actions in critical hypothalamic neurons involved in cardiometabolic regulation. This fundamental mechanistic information regarding central PR/PRR actions is essential for the development of novel RAS-based therapeutic targets for the treatment of cardiometabolic disorders in obesity and hypertension.

  14. Study on a mechanical snubber with an adjustment mechanism for resisting force

    International Nuclear Information System (INIS)

    Ohmata, Kenichiro; Miyanaga, Hiroyuki.

    1991-01-01

    The mechanical snubber is an earthquakeproof device for a piping system under particular circumstances such as high temperature and radioactivity. It restrains the piping system by a strong resisting force during an earthquake. This strong force can cause elastic failure of grooves on a brake disk, where steel balls are placed. In this report, an improved mechanical snubber having an adjustment mechanism for resisting force is proposed in order to obtain a mechanical snubber which has almost the same restraint effect and less resisting force in comparison with a conventional mechanical snubber. The resisting force characteristics and the restraint effect of the improved mechanical snubber applied to a simple beam are discussed both numerically and experimentally. The digital simulations are carried out using the Continuous System Simulation Language (CSSL). (author)

  15. Model test study of evaporation mechanism of sand under constant atmospheric condition

    OpenAIRE

    CUI, Yu Jun; DING, Wenqi; SONG, Weikang

    2014-01-01

    The evaporation mechanism of Fontainebleau sand using a large-scale model chamber is studied. First, the evaporation test on a layer of water above sand surface is performed under various atmospheric conditions, validating the performance of the chamber and the calculation method of actual evaporation rate by comparing the calculated and measured cumulative evaporations. Second,the evaporation test on sand without water layer is conducted under constant atmospheric condition. Both the evoluti...

  16. Contraction and elongation: Mechanics underlying cell boundary deformations in epithelial tissue.

    Science.gov (United States)

    Hara, Yusuke

    2017-06-01

    The cell-cell boundaries of epithelial cells form cellular frameworks at the apical side of tissues. Deformations in these boundaries, for example, boundary contraction and elongation, and the associated forces form the mechanical basis of epithelial tissue morphogenesis. In this review, using data from recent Drosophila studies on cell boundary contraction and elongation, I provide an overview of the mechanism underlying the bi-directional deformations in the epithelial cell boundary, that are sustained by biased accumulations of junctional and apico-medial non-muscle myosin II. Moreover, how the junctional tensions exist on cell boundaries in different boundary dynamics and morphologies are discussed. Finally, some future perspectives on how recent knowledge about single cell boundary-level mechanics will contribute to our understanding of epithelial tissue morphogenesis are discussed. © 2017 Japanese Society of Developmental Biologists.

  17. Safety Evaluations Under the Proposed US Safe Cosmetics and Personal Care Products Act of 2013 : Animal Use and Cost Estimates

    OpenAIRE

    Knight, Jean; Rovida, Costanza

    2014-01-01

    The proposed Safe Cosmetics and Personal Care Products Act of 2013 calls for a new evaluation program for cosmetic ingredients in the US, with the new assessments initially dependent on expanded animal testing. This paper considers possible testing scenarios under the proposed Act and estimates the number of test animals and cost under each scenario. It focuses on the impact for the first 10 years of testing, the period of greatest impact on animals and costs. The analysis suggests the first ...

  18. Mechanical Behaviour of Bolted Joints Under Impact Rates of Loading

    Science.gov (United States)

    2012-01-01

    M. (1995). Bearing Strength of Autoclave and oven cured kevlar / epoxy laminates under static and dynamic loading. Compostes, 451-456. Kretsis, G...Joints in Glass Fibre/ Epoxy Laminates. Composites, Volume 16. No 2. Kolsky, H. (1949). An Investigation of the Mechanical Properties of Materials at...elongating the pulse width. The responses are read by the strain gages bonded on the incident and transmission bar with Vishay AE-10 epoxy . The gages

  19. Neural mechanisms underlying cognitive control of men with lifelong antisocial behavior.

    Science.gov (United States)

    Schiffer, Boris; Pawliczek, Christina; Mu Ller, Bernhard; Forsting, Michael; Gizewski, Elke; Leygraf, Norbert; Hodgins, Sheilagh

    2014-04-30

    Results of meta-analyses suggested subtle deficits in cognitive control among antisocial individuals. Because almost all studies focused on children with conduct problems or adult psychopaths, however, little is known about cognitive control mechanisms among the majority of persistent violent offenders who present an antisocial personality disorder (ASPD). The present study aimed to determine whether offenders with ASPD, relative to non-offenders, display dysfunction in the neural mechanisms underlying cognitive control and to assess the extent to which these dysfunctions are associated with psychopathic traits and trait impulsivity. Participants comprised 21 violent offenders and 23 non-offenders who underwent event-related functional magnetic resonance imaging while performing a non-verbal Stroop task. The offenders, relative to the non-offenders, exhibited reduced response time interference and a different pattern of conflict- and error-related activity in brain areas involved in cognitive control, attention, language, and emotion processing, that is, the anterior cingulate, dorsolateral prefrontal, superior temporal and postcentral cortices, putamen, thalamus, and amygdala. Moreover, between-group differences in behavioural and neural responses revealed associations with core features of psychopathy and attentional impulsivity. Thus, the results of the present study confirmed the hypothesis that offenders with ASPD display alterations in the neural mechanisms underlying cognitive control and that those alterations relate, at least in part, to personality characteristics. Copyright © 2014. Published by Elsevier Ireland Ltd.

  20. TRISO-Coated Fuel Durability Under Extreme Conditions

    International Nuclear Information System (INIS)

    2014-01-01

    The PIs propose to examine TRISO-coated particles (SiC and ZrC coatings) in an integrated two-part study. In the first part, experiments will be performed to assess the reaction kinetics of the carbides under CO-CO2 environments at temperatures up to 1800 degree C. Kinetic model will be applied to describe the degradation. Scanning and transmission electron microscopy will be employed to establish the chemical and microstructure evolution under the imposed environmental conditions. The second part of the proposed work focuses on establishing the role of the high temperature, environmental exposure described above on the mechanical behavior of TRISO-coated particles. Electron microscopy and other advanced techniques will be subsequently performed to evaluate failure mechanisms. The work is expected to reveal relationships between corrosion reactions, starting material characteristics (polytype of SiC, impurity concentration, flaw distribution), flaw healing behavior, and crack growth.

  1. Unraveling the mechanisms underlying postural instability in Parkinson's disease using dynamic posturography

    NARCIS (Netherlands)

    Nonnekes, J.H.; Kam, D. de; Geurts, A.C.; Weerdesteijn, V.G.M.; Bloem, B.R.

    2013-01-01

    Postural instability, one of the cardinal symptoms of Parkinson's disease (PD), has devastating consequences for affected patients. Better strategies to prevent falls are needed, but this calls for an improved understanding of the complex mechanisms underlying postural instability. We must also

  2. Desorption of hydrocarbon chains by association with ionic and nonionic surfactants under flow as a mechanism for enhanced oil recovery.

    Science.gov (United States)

    Terrón-Mejía, Ketzasmin A; López-Rendón, Roberto; Goicochea, Armando Gama

    2017-08-29

    The need to extract oil from wells where it is embedded on the surfaces of rocks has led to the development of new and improved enhanced oil recovery techniques. One of those is the injection of surfactants with water vapor, which promotes desorption of oil that can then be extracted using pumps, as the surfactants encapsulate the oil in foams. However, the mechanisms that lead to the optimal desorption of oil and the best type of surfactants to carry out desorption are not well known yet, which warrants the need to carry out basic research on this topic. In this work, we report non equilibrium dissipative particle dynamics simulations of model surfactants and oil molecules adsorbed on surfaces, with the purpose of studying the efficiency of the surfactants to desorb hydrocarbon chains, that are found adsorbed over flat surfaces. The model surfactants studied correspond to nonionic and cationic surfactants, and the hydrocarbon desorption is studied as a function of surfactant concentration under increasing Poiseuille flow. We obtain various hydrocarbon desorption isotherms for every model of surfactant proposed, under flow. Nonionic surfactants are found to be the most effective to desorb oil and the mechanisms that lead to this phenomenon are presented and discussed.

  3. Feeding Problems and Their Underlying Mechanisms in the Esophageal Atresia–Tracheoesophageal Fistula Patient

    Science.gov (United States)

    Mahoney, Lisa; Rosen, Rachel

    2017-01-01

    Feeding difficulties such as dysphagia, coughing, choking, or vomiting during meals, slow eating, oral aversion, food refusal, and stressful mealtimes are common in children with repaired esophageal atresia (EA) and the reasons for this are often multifactorial. The aim of this review is to describe the possible underlying mechanisms contributing to feeding difficulties in patients with EA and approaches to management. Underlying mechanisms for these feeding difficulties include esophageal dysphagia, oropharyngeal dysphagia and aspiration, and aversions related to prolonged gastrostomy tube feeding. The initial diagnostic evaluation for feeding difficulties in a patient with EA may involve an esophagram, videofluoroscopic imaging or fiberoptic endoscopic evaluation during swallowing, upper endoscopy with biopsies, pH-impedance testing, and/or esophageal motility studies. The main goal of management is to reduce the factors contributing to feeding difficulties and may include reducing esophageal stasis, maximizing reflux therapies, treating underlying lung disease, dilating strictures, and altering feeding methods, routes, or schedules. PMID:28620597

  4. [Study on mechanism of SOM stabilization of paddy soils under long-term fertilizations].

    Science.gov (United States)

    Luo, Lu; Zhou, Ping; Tong, Cheng-Li; Shi, Hui; Wu, Jin-Shui; Huang, Tie-Ping

    2013-02-01

    Fourier transform infrared spectroscopy (FTIR) was applied to study the structure of soil organic matter (SOM) of paddy soils under long-term different fertilization treatments. The aim was to clarify the different distribution of SOM between different fertilization methods and between topsoil and subsoil, and to explore the stability mechanism of SOM under different fertilization treatments. The results showed that the content of topsoil organic carbon (SOC) was the highest under organic-inorganic fertilizations, with the increment of SOC by 18.5%, 12.9% and 18.4% under high organic manure (HOM), low organic manure (LOM) and straw returning (STW) respectively compared with no fertilization treatment (CK). The long-term fertilizations also changed the chemical structure of SOM. As compared with CK, different fertilization treatments increased the functional group absorbing intensity of chemical resistance compounds (aliphatic, aromaticity), carbohydrate and organo-silicon compounds, which was the most distinctive under treatments of HOM, LOM and STW. For example, the absorbing intensity of alkyl was 0.30, 0.25 and 0.29 under HOM, LOM and STW, respectively. These values were increased by 87% , 56% and 81% as compared with that under CK treatment. The functional group absorbing intensity of SOM in the topsoil was stronger than that in the subsoil, with the most distinctive difference under HOM, LOM and STW treatments. The present research indicated that the enhanced chemical resistance of functional group of SOM may contribute to the high contents of SOC in the paddy soils under long-term organic-inorganic fertilizations, which also suggested a chemical stabilization mechanism of SOM in the paddy soils.

  5. Mechanical properties of cellulose electro-active paper under different environmental conditions

    International Nuclear Information System (INIS)

    Kim, Heung Soo; Kim, Jaehwan; Jung, Woochul; Ampofo, Joshua; Craft, William; Sankar, Jagannathan

    2008-01-01

    The mechanical properties of cellulose-based electro-active paper (EAPap) are investigated under various environmental conditions. Cellulose EAPap has been discovered as a smart material that can be used as both sensor and actuator. Its advantages include low voltage operation, light weight, low power consumption, biodegradability and low cost. EAPap is made with cellulose paper coated with thin electrodes. EAPap shows a reversible and reproducible bending movement as well as longitudinal displacement under an electric field. However, EAPap is a complex anisotropic material which has not been fully characterized. This study investigates the mechanical properties of cellulose-based EAPap, including Young's modulus, yield strength, ultimate strength and creep, along with orientation directions, humidity and temperature levels. To test the materials in different humidity and temperature levels, a special material testing system was made that can control the testing environmental conditions. The initial Young's modulus of EAPap is in the range of 4–9 GPa, which was higher than that of other polymer materials. Also, the Young's modulus is orientation dependent, which may be associated with the piezoelectricity of EAPap materials. The elastic strength and stiffness gradually decreased when the humidity and temperature were increased. Creep and relaxation were observed under constant stress and strain, respectively. Through scanning electron microscopy, EAPap is shown to exhibit both layered and oriented cellulose macromolecular structures that impact both the elastic and plastic behavior

  6. Mathematical Modeling of Interacting Glucose-Sensing Mechanisms and Electrical Activity Underlying Glucagon-Like Peptide 1 Secretion.

    Directory of Open Access Journals (Sweden)

    Michela Riz

    2015-12-01

    Full Text Available Intestinal L-cells sense glucose and other nutrients, and in response release glucagon-like peptide 1 (GLP-1, peptide YY and other hormones with anti-diabetic and weight-reducing effects. The stimulus-secretion pathway in L-cells is still poorly understood, although it is known that GLP-1 secreting cells use sodium-glucose co-transporters (SGLT and ATP-sensitive K+-channels (K(ATP-channels to sense intestinal glucose levels. Electrical activity then transduces glucose sensing to Ca2+-stimulated exocytosis. This particular glucose-sensing arrangement with glucose triggering both a depolarizing SGLT current as well as leading to closure of the hyperpolarizing K(ATP current is of more general interest for our understanding of glucose-sensing cells. To dissect the interactions of these two glucose-sensing mechanisms, we build a mathematical model of electrical activity underlying GLP-1 secretion. Two sets of model parameters are presented: one set represents primary mouse colonic L-cells; the other set is based on data from the GLP-1 secreting GLUTag cell line. The model is then used to obtain insight into the differences in glucose-sensing between primary L-cells and GLUTag cells. Our results illuminate how the two glucose-sensing mechanisms interact, and suggest that the depolarizing effect of SGLT currents is modulated by K(ATP-channel activity. Based on our simulations, we propose that primary L-cells encode the glucose signal as changes in action potential amplitude, whereas GLUTag cells rely mainly on frequency modulation. The model should be useful for further basic, pharmacological and theoretical investigations of the cellular signals underlying endogenous GLP-1 and peptide YY release.

  7. How diagnostic tests help to disentangle the mechanisms underlying neuropathic pain symptoms in painful neuropathies.

    Science.gov (United States)

    Truini, Andrea; Cruccu, Giorgio

    2016-02-01

    Neuropathic pain, ie, pain arising directly from a lesion or disease affecting the somatosensory afferent pathway, manifests with various symptoms, the commonest being ongoing burning pain, electrical shock-like sensations, and dynamic mechanical allodynia. Reliable insights into the mechanisms underlying neuropathic pain symptoms come from diagnostic tests documenting and quantifying somatosensory afferent pathway damage in patients with painful neuropathies. Neurophysiological investigation and skin biopsy studies suggest that ongoing burning pain primarily reflects spontaneous activity in nociceptive-fiber pathways. Electrical shock-like sensations presumably arise from high-frequency ectopic bursts generated in demyelinated, nonnociceptive, Aβ fibers. Although the mechanisms underlying dynamic mechanical allodynia remain debatable, normally innocuous stimuli might cause pain by activating spared and sensitized nociceptive afferents. Extending the mechanistic approach to neuropathic pain symptoms might advance targeted therapy for the individual patient and improve testing for new drugs.

  8. Mechanisms of astrocytic K(+) clearance and swelling under high extracellular K(+) concentrations.

    Science.gov (United States)

    Murakami, Shingo; Kurachi, Yoshihisa

    2016-03-01

    In response to the elevation of extracellular K(+) concentration ([K(+)]out), astrocytes clear excessive K(+) to maintain conditions necessary for neural activity. K(+) clearance in astrocytes occurs via two processes: K(+) uptake and K(+) spatial buffering. High [K(+)]out also induces swelling in astrocytes, leading to edema and cell death in the brain. Despite the importance of astrocytic K(+) clearance and swelling, the underlying mechanisms remain unclear. Here, we report results from a simulation analysis of astrocytic K(+) clearance and swelling. Astrocyte models were constructed by incorporating various mechanisms such as intra/extracellular ion concentrations of Na(+), K(+), and Cl(-), cell volume, and models of Na,K-ATPase, Na-K-Cl cotransporter (NKCC), K-Cl cotransporter, inwardly-rectifying K(+) (KIR) channel, passive Cl(-) current, and aquaporin channel. The simulated response of astrocyte models under the uniform distribution of high [K(+)]out revealed significant contributions of NKCC and Na,K-ATPase to increases of intracellular K(+) and Cl(-) concentrations, and swelling. Moreover, we found that, under the non-uniform distribution of high [K(+)]out, KIR channels localized at synaptic clefts absorbed excess K(+) by depolarizing the equivalent potential of K(+) (E K) above membrane potential, while K(+) released through perivascular KIR channels was enhanced by hyperpolarizing E K and depolarizing membrane potential. Further analysis of simulated drug effects revealed that astrocyte swelling was modulated by blocking each of the ion channels and transporters. Our simulation analysis revealed controversial mechanisms of astrocytic K(+) clearance and swelling resulting from complex interactions among ion channels and transporters.

  9. Thermal-mechanical-chemical responses of polymer-bonded explosives using a mesoscopic reactive model under impact loading.

    Science.gov (United States)

    Wang, XinJie; Wu, YanQing; Huang, FengLei

    2017-01-05

    A mesoscopic framework is developed to quantify the thermal-mechanical-chemical responses of polymer-bonded explosive (PBX) samples under impact loading. A mesoscopic reactive model is developed for the cyclotetramethylenetetranitramine (HMX) crystal, which incorporates nonlinear elasticity, crystal plasticity, and temperature-dependent chemical reaction. The proposed model was implemented in the finite element code ABAQUS by the user subroutine VUMAT. A series of three-dimensional mesoscale models were constructed and calculated under low-strength impact loading scenarios from 100m/s to 600m/s where only the first wave transit is studied. Crystal anisotropy and microstructural heterogeneity are responsible for the nonuniform stress field and fluctuations of the stress wave front. At a critical impact velocity (≥300m/s), a chemical reaction is triggered because the temperature contributed by the volumetric and plastic works is sufficiently high. Physical quantities, including stress, temperature, and extent of reaction, are homogenized from those across the microstructure at the mesoscale to compare with macroscale measurements, which will advance the continuum-level models. The framework presented in this study has important implications in understanding hot spot ignition processes and improving predictive capabilities in energetic materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Gravity-Based Precise Cell Manipulation System Enhanced by In-Phase Mechanism

    Directory of Open Access Journals (Sweden)

    Koji Mizoue

    2016-07-01

    Full Text Available This paper proposes a gravity-based system capable of generating high-resolution pressure for precise cell manipulation or evaluation in a microfluidic channel. While the pressure resolution of conventional pumps for microfluidic applications is usually about hundreds of pascals as the resolution of their feedback sensors, precise cell manipulation at the pascal level cannot be done. The proposed system successfully achieves a resolution of 100 millipascals using water head pressure with an in-phase noise cancelation mechanism. The in-phase mechanism aims to suppress the noises from ambient vibrations to the system. The proposed pressure system is tested with a microfluidic platform for pressure validation. The experimental results show that the in-phase mechanism effectively reduces the pressure turbulence, and the pressure-driven cell movement matches the theoretical simulations. Preliminary experiments on deformability evaluation with red blood cells under incremental pressures of one pascal are successfully performed. Different deformation patterns are observed from cell to cell under precise pressure control.

  11. Microscale failure mechanisms leading to internal short circuit in Li-ion batteries under complex loading scenarios

    NARCIS (Netherlands)

    Sahraei, E.; Bosco, E.; Dixon, B.; Lai, B.

    2016-01-01

    One of the least understood mechanisms of Li-ion batteries is the development of internal short circuits under mechanical loads. In this study, a micro mechanical model is developed and subjected to various loading scenarios to understand the sequence of failure in the multi-layer, multi-material

  12. Evolution of the bonding mechanism of ZnO under isotropic compression: A first-principles study

    International Nuclear Information System (INIS)

    Zhou, G.C.; Sun, L.Z.; Wang, J.B.; Zhong, X.L.; Zhou, Y.C.

    2008-01-01

    The electronic structure and the bonding mechanism of ZnO under isotropic pressure have been studied by using the full-potential linear augmented plane wave (FP-LAPW) method within the density-functional theory (DFT) based on LDA+U exchange correlation (EXC) potential. We used the theory of Atoms in Molecules (AIM) method to analyze the change of the charge transfer and the bonding strength under isotropic pressure. The results of the theoretical analysis show that charge transfer between Zn and O atomic basins nearly linearly increases with the increasing pressure. Charge density along the Zn-O bond increases under the high pressure. The bonding strength and the ionicity of Zn-O bond also increase with the increasing pressure. The linear evolution process of the bonding mechanism under isotropic pressure was shown clearly in the present paper

  13. The pathologic mechanisms underlying lumbar distraction spinal cord injury in rabbits.

    Science.gov (United States)

    Wu, Di; Zheng, Chao; Wu, Ji; Xue, Jing; Huang, Rongrong; Wu, Di; Song, Yueming

    2017-11-01

    A reliable experimental rabbit model of distraction spinal cord injury (SCI) was established to successfully simulate gradable and replicable distraction SCI. However, further research is needed to elucidate the pathologic mechanisms underlying distraction SCI. The aim of this study was to investigate the pathologic mechanisms underlying lumbar distraction SCI in rabbits. This is an animal laboratory study. Using a self-designed spine distractor, the experimental animals were divided into a control group and 10%, 20%, and 30% distraction groups. Pathologic changes to the spinal cord microvessels in the early stage of distraction SCI were identified by perfusion of the spinal cord vasculature with ink, production of transparent specimens, observation by light microscopy, and observation of corrosion casts of the spinal cord microvascular architecture by scanning electron microscopy. Malondialdehyde (MDA) and superoxide dismutase (SOD) concentrations in the injured spinal cord tissue were measured after 8 hours. With an increasing degree and duration of distraction, the spinal cord microvessels were only partially filled and had the appearance of spasm until rupture and hemorrhage were observed. The MDA concentration increased and the SOD concentration decreased in the spinal cord tissue. Changes to the internal and external spinal cord vessels led to spinal cord ischemia, which is a primary pathologic mechanism of distraction SCI. Lipid peroxidation mediated by free radicals took part in secondary pathologic damage of distraction SCI. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Clinical neurofeedback: case studies, proposed mechanism, and implications for pediatric neurology practice.

    Science.gov (United States)

    Legarda, Stella B; McMahon, Doreen; Othmer, Siegfried; Othmer, Sue

    2011-08-01

    Trends in alternative medicine use by American health care consumers are rising substantially. Extensive literature exists reporting on the effectiveness of neurofeedback in the treatment of autism, closed head injury, insomnia, migraine, depression, attention deficit hyperactivity disorder, epilepsy, and posttraumatic stress disorder. We speculated that neurofeedback might serve as a therapeutic modality for patients with medically refractory neurological disorders and have begun referring patients to train with clinical neurofeedback practitioners. The modality is not always covered by insurance. Confident their child's medical and neurological needs would continue to be met, the parents of 3 children with epilepsy spectrum disorder decided to have their child train in the modality. The children's individual progress following neurofeedback are each presented here. A proposed mechanism and practice implications are discussed.

  15. Advanced power cycler with intelligent monitoring strategy of IGBT module under test

    DEFF Research Database (Denmark)

    Choi, U. M.; Blaabjerg, F.; Iannuzzo, F.

    2017-01-01

    and diode, which for the wear-out condition monitoring are presented. This advanced power cycler allows to perform power cycling test cost-effectively under conditions close to real power converter applications. In addition, an intelligent monitoring strategy for the separation of package-related wear......-out failure mechanisms has been proposed. By means of the proposed method, the wear-out failure mechanisms of an IGBT module can be separated without any additional efforts during the power cycling tests. The validity and effectiveness of the proposed monitoring strategy are also verified by experiments....

  16. Mechanisms for closing bores and releasably securing articles within the bores under longitudinal load

    International Nuclear Information System (INIS)

    Klahn, F.C.; Nolan, J.H.; Wills, C.

    1979-01-01

    This invention relates to mechanisms for closing bores of tubular passages and for releasably securing articles within the bores under longitudinal load. The system includes an axially movable latch, an actuator and locking devices. Embodiments of the invention can be used as closure mechanisms for tubular irradiation surveillance specimen assembly holders used in nuclear reactors. (UK)

  17. Mechanisms for closing bores and releasably securing articles within the bores under longitudinal load

    International Nuclear Information System (INIS)

    Kalen, D.D.; Mitchem, J.W.

    1979-01-01

    This invention relates to mechanisms for closing bores of tubular passages and for releasably securing articles within the bores under longitudinal load. The system includes an axially movable actuator and a latch which engages the tubular opening. Embodiments of the invention can be used as closure mechanisms for tubular irradiation surveillance specimen assembly holders used in nuclear reactors. (UK)

  18. Nonlinear Dynamic Analysis of Telescopic Mechanism for Truss Structure Bridge Inspection Vehicle Under Pedestrian Excitation

    Directory of Open Access Journals (Sweden)

    Wenwen Sui

    Full Text Available Abstract Nonlinear dynamic analysis of an axially moving telescopic mechanism for truss structure bridge inspection vehicle under pedestrian excitation is carried out. A biomechanically inspired inverted-pendulum model is utilized to simplify the pedestrian. The nonlinear equations of motion for the beam-pedestrian system are derived using the Hamilton's principle. The equations are transformed into two ordinary differential equations by applying the Galerkin's method at the first two orders. The solutions to the equations are acquired by using the Newmark-β method associated with the Newton-Raphson method. The time-dependent feature of the eigenfunctions for the two beams are taken into consideration in the solutions. Accordingly, the equations of motion for a simplified system, in which the pedestrian is regarded as moving cart, are given. In the numerical examples, dynamic responses of the telescopic mechanism in eight conditions of different beam-telescoping and pedestrian-moving directions are simulated. Comparisons between the vibrations of the beams under pedestrian excitation and corresponding moving cart are carried out to investigate the influence of the pedestrian excitation on the telescopic mechanism. The results show that the displacement of the telescopic mechanism under pedestrian excitation is smaller than that under moving cart especially when the pedestrian approaches the beams end. Additionally, compared with moving cart, the pedestrian excitation can effectively strengthen the vibration when the beam extension is small or when the pedestrian is close to the beams end.

  19. An Investigation of the Mechanism Underlying Teacher Aggression: Testing I[superscript 3] Theory and the General Aggression Model

    Science.gov (United States)

    Montuoro, Paul; Mainhard, Tim

    2017-01-01

    Background: Considerable research has investigated the deleterious effects of teachers responding aggressively to students who misbehave, but the mechanism underlying this dysfunctional behaviour remains unknown. Aims: This study investigated whether the mechanism underlying teacher aggression follows I[superscript 3] theory or General Aggression…

  20. Cyclic life of superalloy IN738LC under in-phase and out-of-phase thermo-mechanical fatigue loading

    International Nuclear Information System (INIS)

    Chen Hongjun; Wahi, R.P.; Wever, H.

    1995-01-01

    The cyclic life of IN738LC, a widely used nickel base superalloy for blades in stationary gas turbines, was investigated under thermo-mechanical fatigue loading using a temperature variation range of 1023 to 1223 K, with temperature variation rate in the range of 6 to 15 K/min. Simple thermo-mechanical cycles with linear sequences corresponding to in-phase (IP) and out-of-phase (OP) tests were performed. Both the IP and OP tests were carried out at different constant mechanical strain ranges varied between 0.8 to 2.0% and at a constant mechanical strain rate of 10 -5 s -1 . Thermo-mechanical fatigue lives under both test conditions were compared with each other and with those of isothermal LCF tests at a temperature of 1223 K. The results show that the life under thermo-mechanical fatigue is strongly dependent on the nature of the test, i.e. stress controlled or strain controlled. (orig.)

  1. Functional methods underlying classical mechanics, relativity and quantum theory

    International Nuclear Information System (INIS)

    Kryukov, A

    2013-01-01

    The paper investigates the physical content of a recently proposed mathematical framework that unifies the standard formalisms of classical mechanics, relativity and quantum theory. In the framework states of a classical particle are identified with Dirac delta functions. The classical space is ''made'' of these functions and becomes a submanifold in a Hilbert space of states of the particle. The resulting embedding of the classical space into the space of states is highly non-trivial and accounts for numerous deep relations between classical and quantum physics and relativity. One of the most striking results is the proof that the normal probability distribution of position of a macroscopic particle (equivalently, position of the corresponding delta state within the classical space submanifold) yields the Born rule for transitions between arbitrary quantum states.

  2. Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms.

    Science.gov (United States)

    Wei, Min; Li, Song; Le, Weidong

    2017-10-25

    Stem cells are unspecialized cells that have the potential for self-renewal and differentiation into more specialized cell types. The chemical and physical properties of surrounding microenvironment contribute to the growth and differentiation of stem cells and consequently play crucial roles in the regulation of stem cells' fate. Nanomaterials hold great promise in biological and biomedical fields owing to their unique properties, such as controllable particle size, facile synthesis, large surface-to-volume ratio, tunable surface chemistry, and biocompatibility. Over the recent years, accumulating evidence has shown that nanomaterials can facilitate stem cell proliferation and differentiation, and great effort is undertaken to explore their possible modulating manners and mechanisms on stem cell differentiation. In present review, we summarize recent progress in the regulating potential of various nanomaterials on stem cell differentiation and discuss the possible cell uptake, biological interaction and underlying mechanisms.

  3. Mechanisms Underlying HIV-Associated Noninfectious Lung Disease.

    Science.gov (United States)

    Presti, Rachel M; Flores, Sonia C; Palmer, Brent E; Atkinson, Jeffrey J; Lesko, Catherine R; Lau, Bryan; Fontenot, Andrew P; Roman, Jesse; McDyer, John F; Twigg, Homer L

    2017-11-01

    Pulmonary disease remains a primary source of morbidity and mortality in persons living with HIV (PLWH), although the advent of potent combination antiretroviral therapy has resulted in a shift from predominantly infectious to noninfectious pulmonary complications. PLWH are at high risk for COPD, pulmonary hypertension, and lung cancer even in the era of combination antiretroviral therapy. The underlying mechanisms of this are incompletely understood, but recent research in both human and animal models suggests that oxidative stress, expression of matrix metalloproteinases, and genetic instability may result in lung damage, which predisposes PLWH to these conditions. Some of the factors that drive these processes include tobacco and other substance use, direct HIV infection and expression of specific HIV proteins, inflammation, and shifts in the microbiome toward pathogenic and opportunistic organisms. Further studies are needed to understand the relative importance of these factors to the development of lung disease in PLWH. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  4. Neural mechanisms underlying human consensus decision-making.

    Science.gov (United States)

    Suzuki, Shinsuke; Adachi, Ryo; Dunne, Simon; Bossaerts, Peter; O'Doherty, John P

    2015-04-22

    Consensus building in a group is a hallmark of animal societies, yet little is known about its underlying computational and neural mechanisms. Here, we applied a computational framework to behavioral and fMRI data from human participants performing a consensus decision-making task with up to five other participants. We found that participants reached consensus decisions through integrating their own preferences with information about the majority group members' prior choices, as well as inferences about how much each option was stuck to by the other people. These distinct decision variables were separately encoded in distinct brain areas-the ventromedial prefrontal cortex, posterior superior temporal sulcus/temporoparietal junction, and intraparietal sulcus-and were integrated in the dorsal anterior cingulate cortex. Our findings provide support for a theoretical account in which collective decisions are made through integrating multiple types of inference about oneself, others, and environments, processed in distinct brain modules. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Autophagy as a Possible Underlying Mechanism of Nanomaterial Toxicity

    Directory of Open Access Journals (Sweden)

    Vanessa Cohignac

    2014-07-01

    Full Text Available The rapid development of nanotechnologies is raising safety concerns because of the potential effects of engineered nanomaterials on human health, particularly at the respiratory level. Since the last decades, many in vivo studies have been interested in the pulmonary effects of different classes of nanomaterials. It has been shown that some of them can induce toxic effects, essentially depending on their physico-chemical characteristics, but other studies did not identify such effects. Inflammation and oxidative stress are currently the two main mechanisms described to explain the observed toxicity. However, the exact underlying mechanism(s still remain(s unknown and autophagy could represent an interesting candidate. Autophagy is a physiological process in which cytoplasmic components are digested via a lysosomal pathway. It has been shown that autophagy is involved in the pathogenesis and the progression of human diseases, and is able to modulate the oxidative stress and pro-inflammatory responses. A growing amount of literature suggests that a link between nanomaterial toxicity and autophagy impairment could exist. In this review, we will first summarize what is known about the respiratory effects of nanomaterials and we will then discuss the possible involvement of autophagy in this toxicity. This review should help understand why autophagy impairment could be taken as a promising candidate to fully understand nanomaterials toxicity.

  6. Proposal of limit moment equation applicable to planar/non-planar flaw in wall thinned pipes under bending

    International Nuclear Information System (INIS)

    Tsuji, Masataka; Meshii, Toshiyuki

    2011-01-01

    Highlights: → A limit moment equation applicable to planar/non-planar flaw of 0 ≤ θ ≤ π found in wall thinned straight pipes was proposed. → An idea to rationally classify planar/non-planar flaw in wall thinned pipes was proposed. → The equation based on the experimental observation focused on the fracture mode. - Abstract: In this paper, a limit bending moment equation applicable to all types of planar and non-planar flaws in wall-thinned straight pipes under bending was proposed. A system to rationally classify the planar/non-planar flaws in wall-thinned pipes was suggested based on experimental observations focused on the fracture mode. The results demonstrate the importance of distinguishing between axial and circumferential long flaws in wall-thinned pipes.

  7. The mechanism underlying fast germination of tomato cultivar LA2711.

    Science.gov (United States)

    Yang, Rongchao; Chu, Zhuannan; Zhang, Haijun; Li, Ying; Wang, Jinfang; Li, Dianbo; Weeda, Sarah; Ren, Shuxin; Ouyang, Bo; Guo, Yang-Dong

    2015-09-01

    Seed germination is important for early plant morphogenesis as well as abiotic stress tolerance, and is mainly controlled by the phytohormones abscisic acid (ABA) and gibberellic acid (GA). Our previous studies identified a salt-tolerant tomato cultivar, LA2711, which is also a fast-germinating genotype, compared to its salt-sensitive counterpart, ZS-5. In an effort to further clarify the mechanism underlying this phenomenon, we compared the dynamic levels of ABA and GA4, the transcript abundance of genes involved in their biosynthesis and catabolism as well as signal transduction between the two cultivars. In addition, we tested seed germination sensitivity to ABA and GAs. Our results revealed that insensitivity of seed germination to exogenous ABA and low ABA content in seeds are the physiological mechanisms conferring faster germination rates of LA2711 seeds. SlCYP707A2, which encodes an ABA catabolic enzyme, may play a decisive role in the fast germination rate of LA2711, as it showed a significantly higher level of expression in LA2711 than ZS-5 at most time points tested during germination. The current results will enable us to gain insight into the mechanism(s) regarding seed germination of tomato and the role of fast germination in stress tolerance. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Handedness is related to neural mechanisms underlying hemispheric lateralization of face processing

    Science.gov (United States)

    Frässle, Stefan; Krach, Sören; Paulus, Frieder Michel; Jansen, Andreas

    2016-06-01

    While the right-hemispheric lateralization of the face perception network is well established, recent evidence suggests that handedness affects the cerebral lateralization of face processing at the hierarchical level of the fusiform face area (FFA). However, the neural mechanisms underlying differential hemispheric lateralization of face perception in right- and left-handers are largely unknown. Using dynamic causal modeling (DCM) for fMRI, we aimed to unravel the putative processes that mediate handedness-related differences by investigating the effective connectivity in the bilateral core face perception network. Our results reveal an enhanced recruitment of the left FFA in left-handers compared to right-handers, as evidenced by more pronounced face-specific modulatory influences on both intra- and interhemispheric connections. As structural and physiological correlates of handedness-related differences in face processing, right- and left-handers varied with regard to their gray matter volume in the left fusiform gyrus and their pupil responses to face stimuli. Overall, these results describe how handedness is related to the lateralization of the core face perception network, and point to different neural mechanisms underlying face processing in right- and left-handers. In a wider context, this demonstrates the entanglement of structurally and functionally remote brain networks, suggesting a broader underlying process regulating brain lateralization.

  9. Asymmetric migration of human keratinocytes under mechanical stretch and cocultured fibroblasts in a wound repair model.

    Directory of Open Access Journals (Sweden)

    Dongyuan Lü

    Full Text Available Keratinocyte migration during re-epithelization is crucial in wound healing under biochemical and biomechanical microenvironment. However, little is known about the underlying mechanisms whereby mechanical tension and cocultured fibroblasts or keratinocytes modulate the migration of keratinocytes or fibroblasts. Here we applied a tensile device together with a modified transwell assay to determine the lateral and transmembrane migration dynamics of human HaCaT keratinocytes or HF fibroblasts. A novel pattern of asymmetric migration was observed for keratinocytes when they were cocultured with non-contact fibroblasts, i.e., the accumulative distance of HaCaT cells was significantly higher when moving away from HF cells or migrating from down to up cross the membrane than that when moving close to HF cells or when migrating from up to down, whereas HF migration was symmetric. This asymmetric migration was mainly regulated by EGF derived from fibroblasts, but not transforming growth factor α or β1 production. Mechanical stretch subjected to fibroblasts fostered keratinocyte asymmetric migration by increasing EGF secretion, while no role of mechanical stretch was found for EGF secretion by keratinocytes. These results provided a new insight into understanding the regulating mechanisms of two- or three-dimensional migration of keratinocytes or fibroblasts along or across dermis and epidermis under biomechanical microenvironment.

  10. Micro-mechanics of polycrystals subjected to small strains

    International Nuclear Information System (INIS)

    Sauzay, M.

    2009-04-01

    The author proposes an overview of the different research works he performed during several years. His aim is the understanding and the modelling of plasticity and damage mechanisms in metal polycrystals subjected to small strains, mainly under long duration creep and fatigue. Three topics are more particularly developed: the distribution of mechanical fields in polycrystals subjected to small strains, the strain localisation at the grain scale, and the softening of martensitic steels under creep or fatigue loadings. For each of these topics, the author reports the investigation of microstructure and of damage and strain mechanisms (mechanical tests, microstructure observations), the modelling of these mechanisms (based on continuum mechanics, crystalline elasto-plasticity, finite elements calculations, theory of dislocations and diffusion), and the validation of these predictions at a microscopic and macroscopic scale by comparison with experimental measurements and observations

  11. Inspection Mechanism and Experimental Study of Prestressed Reverse Tension Method under PC Beam Bridge Anchorage

    Science.gov (United States)

    Peng, Zhang

    2018-03-01

    the prestress under anchorage is directly related to the structural security and performance of PC beam bridge. The reverse tension method is a kind of inspection which confirms the prestress by exerting reversed tension load on the exposed prestressing tendon of beam bridge anchoring system. The thesis elaborately expounds the inspection mechanism and mechanical effect of reverse tension method, theoretically analyzes the influential elements of inspection like tool anchorage deformation, compression of conjuncture, device glide, friction of anchorage loop mouth and elastic compression of concrete, and then presents the following formula to calculate prestress under anchorage. On the basis of model experiment, the thesis systematically studies some key issues during the reverse tension process of PC beam bridge anchorage system like the formation of stress-elongation curve, influential factors, judgment method of prestress under anchorage, variation trend and compensation scale, verifies the accuracy of mechanism analysis and demonstrates: the prestress under anchorage is less than or equal to 75% of the ultimate strength of prestressing tendon, the error of inspect result is less than 1%, which can meet with the demands of construction. The research result has provided theoretical basis and technical foundation for the promotion and application of reverse tension in bridge construction.

  12. [Neural mechanism underlying autistic savant and acquired savant syndrome].

    Science.gov (United States)

    Takahata, Keisuke; Kato, Motoichiro

    2008-07-01

    , especially that of the prefrontal cortex and the posterior regions of the brain. (3) Autistic models, including those based on weak central coherence theory (Frith, 1989), that focus on how savant skills emerge from an autistic brain. Based on recent neuroimaging studies of ASD, Just et al. (2004) suggested the underconnectivity theory, which emphasizes the disruption of long-range connectivity and the relative intact or even more enhanced local connectivity in the autistic brain. All the models listed above have certain advantages and shortcomings. At the end of this review, we propose another integrative model of savant syndrome. In this model, we predict an altered balance of local/global connectivity patterns that contribute to an altered functional segregation/integration ratio. In particular, we emphasize the crucial role played by the disruption of global connectivity in a parallel distributed cortical network, which might result in impairment in integrated cognitive processing, such as impairment in executive function and social cognition. On the other hand, the reduced inter-regional collaboration could lead to a disinhibitory enhancement of neural activity and connectivity in local cortical regions. In addition, enhanced connectivity in the local brain regions is partly due to the abnormal organization of the cortical network as a result of developmental and pathological states. This enhanced local connectivity results in the specialization and facilitation of low-level cognitive processing. The disruption of connectivity between the prefrontal cortex and other regions is considered to be a particularly important factor because the prefrontal region shows the most influential inhibitory control on other cortical areas. We propose that these neural mechanisms as the underlying causes for the emergence of savant ability in ASD and FTD patients.

  13. Behavioral Effects of Upper Respiratory Tract Illnesses: A Consideration of Possible Underlying Cognitive Mechanisms

    Directory of Open Access Journals (Sweden)

    Andrew P. Smith

    2012-03-01

    Full Text Available Previous research has shown that both experimentally induced upper respiratory tract illnesses (URTIs and naturally occurring URTIs influence mood and performance. The present study investigated possible cognitive mechanisms underlying the URTI-performance changes. Those who developed a cold (N = 47 had significantly faster, but less accurate, performance than those who remained healthy (N = 54. Illness had no effect on manipulations designed to influence encoding, response organisation (stimulus-response compatilibility or response preparation. Similarly, there was no evidence that different components of working memory were impaired. Overall, the present research confirms that URTIs can have an effect on performance efficiency. Further research is required to identify the physiological and behavioral mechanisms underlying these effects.

  14. Modeling novel back-pressure mechanisms for a 100 Gb/s switch

    DEFF Research Database (Denmark)

    Fagertun, Anna Manolova; Ruepp, Sarah Renée

    2012-01-01

    In this work we evaluate the performance of novel back-pressure mechanisms in a Clos-based 100 Gb/s switch system via OPNET modeler simulations. The effectiveness of the mechanisms under different switch configurations, as well as under different traffic patterns, is presented. Our results indicate...... that the proposed back-pressure techniques can effectively reduce the requirements for buffer space in the different stages of the Clos switch....

  15. Mechanical Model for Dynamic Behavior of Concrete Under Impact Loading

    Science.gov (United States)

    Sun, Yuanxiang

    Concrete is a geo-material which is used substantively in the civil building and military safeguard. One coupled model of damage and plasticity to describe the complex behavior of concrete subjected to impact loading is proposed in this research work. The concrete is assumed as homogeneous continuum with pre-existing micro-cracks and micro-voids. Damage to concrete is caused due to micro-crack nucleation, growth and coalescence, and defined as the probability of fracture at a given crack density. It induces a decrease of strength and stiffness of concrete. Compaction of concrete is physically a collapse of the material voids. It produces the plastic strain in the concrete and, at the same time, an increase of the bulk modulus. In terms of crack growth model, micro-cracks are activated, and begin to propagate gradually. When crack density reaches a critical value, concrete takes place the smashing destroy. The model parameters for mortar are determined using plate impact experiment with uni-axial strain state. Comparison with the test results shows that the proposed model can give consistent prediction of the impact behavior of concrete. The proposed model may be used to design and analysis of concrete structures under impact and shock loading. This work is supported by State Key Laboratory of Explosion science and Technology, Beijing Institute of Technology (YBKT14-02).

  16. Shared and unique mechanisms underlying binge eating disorder and addictive disorders

    Science.gov (United States)

    Schulte, Erica M.; Grilo, Carlos M.; Gearhardt, Ashley N.

    2018-01-01

    Scientific interest in “food addiction” is growing, but the topic remains controversial. One critique of “food addiction” is its high degree of phenotypic overlap with binge eating disorder (BED). In order to examine associations between problematic eating behaviors, such as binge eating and “food addiction,” we propose the need to move past examining similarities and differences in symptomology. Instead, focusing on relevant mechanisms may more effectively determine whether “food addiction” contributes to disordered eating behavior for some individuals. This paper reviews the evidence for mechanisms that are shared (i.e., reward dysfunction, impulsivity) and unique for addiction (i.e., withdrawal, tolerance) and eating disorder (i.e., dietary restraint, shape/weight concern) frameworks. This review will provide a guiding framework to outline future areas of research needed to evaluate the validity of the “food addiction” model and to understand its potential contribution to disordered eating. PMID:26879210

  17. Mechanism and kinetics of parathion degradation under ultrasonic irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yao Juanjuan, E-mail: yao_juanjuan@yahoo.cn [State Key laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092 (China); Gao Naiyun; Li Cong; Li Lei; Xu Bin [State Key laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092 (China)

    2010-03-15

    The parathion degradation under ultrasonic irradiation in aqueous solution was investigated. The results indicate that at the conditions in question, degradation rate of parathion decreased with increasing initial concentration and decreasing power. The optimal frequency for parathion degradation was 600 kHz. The free radical reactions predominate in the sonochemical degradation of parathion and the reaction zones are predominately at the bubble interface and, to a much lesser extent, in bulk solution. The gas/liquid interfacial regions are the real effective reaction sites for sonochemical degradation of parathion. The reaction can be well described as a gas/liquid heterogeneous reaction which obeys a kinetic model based on Langmuir-Hinshelwood model. The main pathways of parathion degradation by ultrasonic irradiation were also proposed by qualitative and quantitative analysis of organic and inorganic byproducts. It is indicated that the N{sub 2} in air takes part in the parathion degradation through the formation of {center_dot}NO{sub 2} under ultrasonic irradiation. Parathion is decomposed into paraoxon and 4-nitrophenol in the first step via two different pathways, respectively, which is in agreement with the theoretical molecular orbital (MO) calculations.

  18. Non-Fourier based thermal-mechanical tissue damage prediction for thermal ablation.

    Science.gov (United States)

    Li, Xin; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-01-02

    Prediction of tissue damage under thermal loads plays important role for thermal ablation planning. A new methodology is presented in this paper by combing non-Fourier bio-heat transfer, constitutive elastic mechanics as well as non-rigid motion of dynamics to predict and analyze thermal distribution, thermal-induced mechanical deformation and thermal-mechanical damage of soft tissues under thermal loads. Simulations and comparison analysis demonstrate that the proposed methodology based on the non-Fourier bio-heat transfer can account for the thermal-induced mechanical behaviors of soft tissues and predict tissue thermal damage more accurately than classical Fourier bio-heat transfer based model.

  19. Mechanical failure of zigzag graphene nanoribbons under tensile strain induced by edge reconstruction

    KAUST Repository

    Cheng, Yingchun

    2012-10-01

    The structural and mechanical properties of graphene nanoribbons (GNRs) under uniaxial tensile strain are studied by density functional theory. The ideal strength of a zigzag GNR (120 GPa) is close to that of pristine graphene. However, for a GNR with both edges reconstructed to pentagon–heptagon pairs (from hexagon–hexagon pairs) it decreases to 94 GPa and the maximum tensile strain is reduced to 15%. Our results constitute a comprehensive picture of the edge structure effect on the mechanical properties of GNRs.

  20. Mechanical failure of zigzag graphene nanoribbons under tensile strain induced by edge reconstruction

    KAUST Repository

    Cheng, Yingchun; Schwingenschlö gl, Udo; Zhu, Zhiyong

    2012-01-01

    The structural and mechanical properties of graphene nanoribbons (GNRs) under uniaxial tensile strain are studied by density functional theory. The ideal strength of a zigzag GNR (120 GPa) is close to that of pristine graphene. However, for a GNR with both edges reconstructed to pentagon–heptagon pairs (from hexagon–hexagon pairs) it decreases to 94 GPa and the maximum tensile strain is reduced to 15%. Our results constitute a comprehensive picture of the edge structure effect on the mechanical properties of GNRs.

  1. New developments on the neurobiological and pharmaco-genetic mechanisms underlying internet and videogame addiction.

    Science.gov (United States)

    Weinstein, Aviv; Lejoyeux, Michel

    2015-03-01

    There is emerging evidence that the psychobiological mechanisms underlying behavioral addictions such as internet and videogame addiction resemble those of addiction for substances of abuse. Review of brain imaging, treatment and genetic studies on videogame and internet addiction. Literature search of published articles between 2009 and 2013 in Pubmed using "internet addiction" and "videogame addiction" as the search word. Twenty-nine studies have been selected and evaluated under the criteria of brain imaging, treatment, and genetics. Brain imaging studies of the resting state have shown that long-term internet game playing affected brain regions responsible for reward, impulse control and sensory-motor coordination. Brain activation studies have shown that videogame playing involved changes in reward and loss of control and that gaming pictures have activated regions similarly to those activated by cue-exposure to drugs. Structural studies have shown alterations in the volume of the ventral striatum possible as result of changes in reward. Furthermore, videogame playing was associated with dopamine release similar in magnitude to those of drugs of abuse and that there were faulty inhibitory control and reward mechanisms videogame addicted individuals. Finally, treatment studies using fMRI have shown reduction in craving for videogames and reduced associated brain activity. Videogame playing may be supported by similar neural mechanisms underlying drug abuse. Similar to drug and alcohol abuse, internet addiction results in sub-sensitivity of dopamine reward mechanisms. Given the fact that this research is in its early stage it is premature to conclude that internet addiction is equivalent to substance addictions. © American Academy of Addiction Psychiatry.

  2. Nanoscale copper in the soil–plant system – toxicity and underlying potential mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Anjum, Naser A., E-mail: anjum@ua.pt [CESAM-Centre for Environmental and Marine Studies & Department of Chemistry, University of Aveiro, 3810-193 Aveiro (Portugal); Adam, Vojtech [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Kizek, Rene [Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Duarte, Armando C.; Pereira, Eduarda [CESAM-Centre for Environmental and Marine Studies & Department of Chemistry, University of Aveiro, 3810-193 Aveiro (Portugal); Iqbal, Muhammad [Department of Botany, Faculty of Science, Hamdard University, New Delhi 110062 (India); Lukatkin, Alexander S. [Department of Botany, Plant Physiology and Ecology, N.P. Ogarev Mordovia State University, Bolshevistskaja Str., 68. Saransk 430005 (Russian Federation); Ahmad, Iqbal, E-mail: ahmadr@ua.pt [CESAM-Centre for Environmental and Marine Studies & Department of Chemistry, University of Aveiro, 3810-193 Aveiro (Portugal); CESAM-Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, 3810-193 Aveiro (Portugal)

    2015-04-15

    Nanoscale copper particles (nano-Cu) are used in many antimicrobial formulations and products for their antimicrobial activity. They may enter deliberately and/or accidentally into terrestrial environments including soils. Being the major ‘eco-receptors’ of nanoscale particles in the terrestrial ecosystem, soil–microbiota and plants (the soil–plant system) have been used as a model to dissect the potential impact of these particles on the environmental and human health. In the soil–plant system, the plant can be an indirect non-target organism of the soil-associated nano-Cu that may in turn affect plant-based products and their consumers. By all accounts, information pertaining to nano-Cu toxicity and the underlying potential mechanisms in the soil–plant system remains scanty, deficient and little discussed. Therefore, based on some recent reports from (bio)chemical, molecular and genetic studies of nano-Cu versus soil–plant system, this article: (i) overviews the status, chemistry and toxicity of nano-Cu in soil and plants, (ii) discusses critically the poorly understood potential mechanisms of nano-Cu toxicity and tolerance both in soil–microbiota and plants, and (iii) proposes future research directions. It appears from studies hitherto made that the uncontrolled generation and inefficient metabolism of reactive oxygen species through different reactions are the major factors underpinning the overall nano-Cu consequences in both the systems. However, it is not clear whether the nano-Cu or the ion released from it is the cause of the toxicity. We advocate to intensify the multi-approach studies focused at a complete characterization of the nano-Cu, its toxicity (during life cycles of the least-explored soil–microbiota and plants), and behavior in an environmentally relevant terrestrial exposure setting. Such studies may help to obtain a deeper insight into nano-Cu actions and address adequately the nano-Cu-associated safety concerns in the

  3. Nanoscale copper in the soil–plant system – toxicity and underlying potential mechanisms

    International Nuclear Information System (INIS)

    Anjum, Naser A.; Adam, Vojtech; Kizek, Rene; Duarte, Armando C.; Pereira, Eduarda; Iqbal, Muhammad; Lukatkin, Alexander S.; Ahmad, Iqbal

    2015-01-01

    Nanoscale copper particles (nano-Cu) are used in many antimicrobial formulations and products for their antimicrobial activity. They may enter deliberately and/or accidentally into terrestrial environments including soils. Being the major ‘eco-receptors’ of nanoscale particles in the terrestrial ecosystem, soil–microbiota and plants (the soil–plant system) have been used as a model to dissect the potential impact of these particles on the environmental and human health. In the soil–plant system, the plant can be an indirect non-target organism of the soil-associated nano-Cu that may in turn affect plant-based products and their consumers. By all accounts, information pertaining to nano-Cu toxicity and the underlying potential mechanisms in the soil–plant system remains scanty, deficient and little discussed. Therefore, based on some recent reports from (bio)chemical, molecular and genetic studies of nano-Cu versus soil–plant system, this article: (i) overviews the status, chemistry and toxicity of nano-Cu in soil and plants, (ii) discusses critically the poorly understood potential mechanisms of nano-Cu toxicity and tolerance both in soil–microbiota and plants, and (iii) proposes future research directions. It appears from studies hitherto made that the uncontrolled generation and inefficient metabolism of reactive oxygen species through different reactions are the major factors underpinning the overall nano-Cu consequences in both the systems. However, it is not clear whether the nano-Cu or the ion released from it is the cause of the toxicity. We advocate to intensify the multi-approach studies focused at a complete characterization of the nano-Cu, its toxicity (during life cycles of the least-explored soil–microbiota and plants), and behavior in an environmentally relevant terrestrial exposure setting. Such studies may help to obtain a deeper insight into nano-Cu actions and address adequately the nano-Cu-associated safety concerns in the

  4. Ablation characteristics and reaction mechanism of insulation materials under slag deposition condition

    Science.gov (United States)

    Guan, Yiwen; Li, Jiang; Liu, Yang

    2017-07-01

    Current understanding of the physical and chemical processes involved in the ablation of insulation materials by highly aluminized solid propellants is limited. The study on the heat transfer and ablation principle of ethylene propylene diene monomer (EPDM) materials under slag deposition condition is essential for future design or modification of large solid rocket motors (SRMs) for launch application. In this paper, the alumina liquid flow pattern and the deposition principle in full-scale SRM engines are discussed. The interaction mechanism between the alumina droplets and the wall are analyzed. Then, an experimental method was developed to simulate the insulation material ablation under slag deposition condition. Experimental study was conducted based on a laboratory-scale device. Meanwhile, from the analysis of the cross-sectional morphology and chemical composition of the charring layer after ablation, the reaction mechanism of the charring layer under deposition condition was discussed, and the main reaction equation was derived. The numerical simulation and experimental results show the following. (i) The alumina droplet flow in the deposition section of the laboratory-scale device is similar to that of a full-scale SRM. (ii) The charring layer of the EPDM insulator displays a porous tight/loose structure under high-temperature slag deposition condition. (iii) A seven-step carbothermal reduction in the alumina is derived and established under high-pressure and high-temperature environment in the SRM combustion chamber. (iv) The analysis using thermodynamic software indicates that the reaction of the alumina and charring layer initially forms Al4C3 during the operation. Then, Al element and Al2OC compound are subsequently produced with the reduction in the release of gas CO as well with continuous environmental heating.

  5. Burns caused by electronic vaping devices (e-cigarettes): A new classification proposal based on mechanisms.

    Science.gov (United States)

    Serror, K; Chaouat, M; Legrand, Matthieu M; Depret, F; Haddad, J; Malca, N; Mimoun, M; Boccara, D

    2018-05-01

    Introduction With more than 10 million of daily users, e-cigarettes encountered a great success. But in the past few years, the number of medical reports of injuries caused by the explosion of e-cigarettes has significantly increased. This article aims at reporting our series and reviewing the literature to propose a new classification based on the mechanisms of injuries related to e-cigarettes that can guide non-specialists and specialists in the management of these patients. Method We performed a retrospective review of our institutional burn database from June 2016 to July 2017 for injuries caused by or in the context of using an e-cigarette. The patients' demographics (age, gender), burn injury mechanisms, depth, localization, surface and interventions were described. Results Ten patients suffered from burns related to the use of e-cigarettes. The burns were located at the thigh (80%) and the hand (50%) with a mean surface of 3% of TBSA. Four different mechanisms could be described: Type A: thermal burns with flames due to the phenomenon of "thermal runaway", Type B: blasts lesions secondary to the explosion, Type C: chemical alkali burns caused by spreading of the electrolyte solution and Type D: thermal burns without flames due to overheating. These different mechanisms suggest specific surgical and non-surgical management. Conclusion Management of injuries sustained from e-cigarettes' explosions should be approached from the standpoint of mechanisms. Different mechanisms could be associated and should be considered in specific management. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  6. From Sound to Significance: Exploring the Mechanisms Underlying Emotional Reactions to Music.

    Science.gov (United States)

    Juslin, Patrik N; Barradas, Gonçalo; Eerola, Tuomas

    2015-01-01

    A common approach to studying emotional reactions to music is to attempt to obtain direct links between musical surface features such as tempo and a listener's responses. However, such an analysis ultimately fails to explain why emotions are aroused in the listener. In this article we explore an alternative approach, which aims to account for musical emotions in terms of a set of psychological mechanisms that are activated by different types of information in a musical event. This approach was tested in 4 experiments that manipulated 4 mechanisms (brain stem reflex, contagion, episodic memory, musical expectancy) by selecting existing musical pieces that featured information relevant for each mechanism. The excerpts were played to 60 listeners, who were asked to rate their felt emotions on 15 scales. Skin conductance levels and facial expressions were measured, and listeners reported subjective impressions of relevance to specific mechanisms. Results indicated that the target mechanism conditions evoked emotions largely as predicted by a multimechanism framework and that mostly similar effects occurred across the experiments that included different pieces of music. We conclude that a satisfactory account of musical emotions requires consideration of how musical features and responses are mediated by a range of underlying mechanisms.

  7. Molecular Mechanisms Underlying the Epileptogenesis and Seizure Progression in Tuberous Sclerosis Complex 1 Deficient Mouse Models

    Science.gov (United States)

    2016-10-01

    dysregulation in epileptogenesis in the developing brain? 2) What are the molecular mechanisms downstream of mTOR hyperactivation that trigger epileptogenesis...underlying epilepsy. Hopefully, a knowledge of these mechanisms will aid in a rational development of therapies. KEYWORDS Tuberous Sclerosis, Epilepsy

  8. Mechanical stress analysis for a fuel rod under normal operating conditions

    International Nuclear Information System (INIS)

    Pino, Eddy S.; Giovedi, Claudia; Serra, Andre da Silva; Abe, Alfredo Y.

    2013-01-01

    Nuclear reactor fuel elements consist mainly in a system of a nuclear fuel encapsulated by a cladding material subject to high fluxes of energetic neutrons, high operating temperatures, pressure systems, thermal gradients, heat fluxes and with chemical compatibility with the reactor coolant. The design of a nuclear reactor requires, among a set of activities, the evaluation of the structural integrity of the fuel rod submitted to different loads acting on the fuel rod and the specific properties (dimensions and mechanical and thermal properties) of the cladding material and coolant, including thermal and pressure gradients produced inside the rod due to the fuel burnup. In this work were evaluated the structural mechanical stresses of a fuel rod using stainless steel as cladding material and UO 2 with a low degree of enrichment as fuel pellet on a PWR (pressurized water reactor) under normal operating conditions. In this sense, tangential, radial and axial stress on internal and external cladding surfaces considering the orientations of 0 deg, 90 deg and 180 deg were considered. The obtained values were compared with the limit values for stress to the studied material. From the obtained results, it was possible to conclude that, under the expected normal reactor operation conditions, the integrity of the fuel rod can be maintained. (author)

  9. Uncovering the underlying physical mechanisms of biological systems via quantification of landscape and flux

    International Nuclear Information System (INIS)

    Xu Li; Chu Xiakun; Yan Zhiqiang; Zheng Xiliang; Zhang Kun; Zhang Feng; Yan Han; Wu Wei; Wang Jin

    2016-01-01

    In this review, we explore the physical mechanisms of biological processes such as protein folding and recognition, ligand binding, and systems biology, including cell cycle, stem cell, cancer, evolution, ecology, and neural networks. Our approach is based on the landscape and flux theory for nonequilibrium dynamical systems. This theory provides a unifying principle and foundation for investigating the underlying mechanisms and physical quantification of biological systems. (topical review)

  10. Age differences in the underlying mechanisms of stereotype threat effects.

    Science.gov (United States)

    Popham, Lauren E; Hess, Thomas M

    2015-03-01

    The goals of the present study were to (a) examine whether age differences exist in the mechanisms underlying stereotype threat effects on cognitive performance and (b) examine whether emotion regulation abilities may buffer against threat effects on performance. Older and younger adults were exposed to positive or negative age-relevant stereotypes, allowing us to examine the impact of threat on regulatory focus and working memory. Self-reported emotion regulation measures were completed prior to the session. Older adults' performance under threat suggested a prevention-focused approach to the task, indexed by increased accuracy and reduced speed. The same pattern was observed in younger adults, but the effects were not as strong. Age differences emerged when examining the availability of working memory resources under threat, with young adults showing decrements, whereas older adults did not. Emotion regulation abilities moderated threat effects in young adults but not in older adults. The results provide support for the notion that stereotype threat may lead to underperformance through somewhat different pathways in older and younger adults. Future research should further examine whether the underlying reason for this age difference is rooted in age-related improvements in emotion regulation. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Transformational Leadership and Organizational Citizenship Behavior: A Meta-Analytic Test of Underlying Mechanisms.

    Science.gov (United States)

    Nohe, Christoph; Hertel, Guido

    2017-01-01

    Based on social exchange theory, we examined and contrasted attitudinal mediators (affective organizational commitment, job satisfaction) and relational mediators (trust in leader, leader-member exchange; LMX) of the positive relationship between transformational leadership and organizational citizenship behavior (OCB). Hypotheses were tested using meta-analytic path models with correlations from published meta-analyses (761 samples with 227,419 individuals overall). When testing single-mediator models, results supported our expectations that each of the mediators explained the relationship between transformational leadership and OCB. When testing a multi-mediator model, LMX was the strongest mediator. When testing a model with a latent attitudinal mechanism and a latent relational mechanism, the relational mechanism was the stronger mediator of the relationship between transformational leadership and OCB. Our findings help to better understand the underlying mechanisms of the relationship between transformational leadership and OCB.

  12. Mechanical and microstructural stability of P92 steel under uniaxial tension at high temperature

    International Nuclear Information System (INIS)

    Giroux, P.F.; Dalle, F.; Sauzay, M.; Malaplate, J.; Fournier, B.; Gourgues-Lorenzon, A.F.

    2010-01-01

    9-12%Cr creep-resistant ferritic-martensitic steels are candidates for structural components of Generation IV nuclear power plants. However, they are sensitive to softening during low-cycle fatigue, creep and creep-fatigue tests, due to the destabilisation of the tempered martensite microstructure, possibly inducing a decrease in further creep resistance. To better identify the softening mechanisms in P92 steel during uniaxial deformation, tensile tests were carried out at 823 K, showing an extended and stable softening stage on true stress-strain curves after some work-hardening. Three phenomena were studied in order to understand this behaviour: mechanical instability (necking), damage and grain size evolution. Examination of fractured and non-fractured tensile specimens (light optical and electron microscopy, macrohardness) suggested that the physical mechanisms responsible for softening are mainly (sub)grain size evolution and diffuse necking. Models were proposed to predict grain growth and beginning of the mechanical instability during homogeneous deformation.

  13. Mechanisms underlying epithelium-dependent relaxation in rat bronchioles

    DEFF Research Database (Denmark)

    Kroigaard, Christel; Dalsgaard, Thomas; Simonsen, Ulf

    2010-01-01

    This study investigated the mechanisms underlying epithelium-derived hyperpolarizing factor (EpDHF)-type relaxation in rat bronchioles. Immunohistochemistry was performed, and rat bronchioles and pulmonary arteries were mounted in microvascular myographs for functional studies. An opener of small...... (SK(Ca)) and intermediate (IK(Ca))-conductance calcium-activated potassium channels, NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime) was used to induce EpDHF-type relaxation. IK(Ca) and SK(Ca)3 positive immunoreactions were observed mainly in the epithelium and endothelium of bronchioles and arteries......, respectively. In 5-hydroxytryptamine (1 microM)-contracted bronchioles (828 +/- 20 microm, n = 84) and U46619 (0.03 microM)-contracted arteries (720 +/- 24 microm, n = 68), NS309 (0.001-10 microM) induced concentration-dependent relaxations that were reduced by epithelium/endothelium removal and by blocking IK...

  14. Kinetics and mechanism of Prussian blue formation

    Directory of Open Access Journals (Sweden)

    R.K. Adhikamsetty

    2009-04-01

    Full Text Available The kinetics of reaction between ferrocyanide and ferric ions under acidic conditions was studied at fixed ionic strength (0.1 M and (25 plus or minus 0.1 oC by using the stopped flow technique, under limiting conditions of [ferrocyanide] and with other reactants in excess. The reaction had first-order dependence on ferrocyanide, Fe(III and H+ ion concentrations and had negative salt effect. On the basis of the experimental findings, a plausible mechanism for the formation of soluble form of Prussian blue (KFe{Fe(CN6}x H2O and rate law are proposed. The activation parameters for the title reaction are estimated. A relatively low energy of activation (23 kJ mol-1 and high negative entropy of activation (-231 J K-1 mol-1 agree well with the proposed mechanism and configuration of complex ion leading to the formation of insoluble Prussian blue, Fe4{Fe(CN6}3 y H2O.

  15. Imitation in Newborn Infants: Exploring the Range of Gestures Imitated and the Underlying Mechanisms.

    Science.gov (United States)

    Meltzoff, Andrew N.; Moore, M. Keith

    1989-01-01

    Evaluated psychological mechanisms underlying imitation of facial actions in 40 newborn infants. Results showed imitation of head movement and a tongue-protrusion gesture. Subjects imitated from memory after displays had stopped. (RJC)

  16. A Pareto Optimal Auction Mechanism for Carbon Emission Rights

    Directory of Open Access Journals (Sweden)

    Mingxi Wang

    2014-01-01

    Full Text Available The carbon emission rights do not fit well into the framework of existing multi-item auction mechanisms because of their own unique features. This paper proposes a new auction mechanism which converges to a unique Pareto optimal equilibrium in a finite number of periods. In the proposed auction mechanism, the assignment outcome is Pareto efficient and the carbon emission rights’ resources are efficiently used. For commercial application and theoretical completeness, both discrete and continuous markets—represented by discrete and continuous bid prices, respectively—are examined, and the results show the existence of a Pareto optimal equilibrium under the constraint of individual rationality. With no ties, the Pareto optimal equilibrium can be further proven to be unique.

  17. Deformation mechanisms in Ti/TiN multilayer under compressive loading

    International Nuclear Information System (INIS)

    Yang, Wei; Ayoub, Georges; Salehinia, Iman; Mansoor, Bilal; Zbib, Hussein

    2017-01-01

    The promising mechanical, physical and chemical properties of nano-scale metal/ceramic multilayers (MCMs) are of high interest for extreme environment applications. Understanding the plastic deformation mechanisms and the variables affecting those properties is therefore essential. The interface characteristics and the plastic deformation mechanisms under compressive loading in a Ti/TiN multilayer with a semi-coherent interface are numerically investigated. The interface structure of the Ti/TiN interface and the interface misfit dislocation were characterized using molecular dynamic simulations combined with atomically informed Frank-Bilby method. Three possible atomic stacking interface structures are identified according to the crystallographic analysis of the interface. Upon relaxation, large interface areas are occupied with the energetically stable configuration. Furthermore, the higher energy stacking are transformed into misfit dislocations or dislocation nodes. The molecular dynamic compressive stress strain response of the Ti/TiN multilayers exhibited three distinctive peaks. The first peak was generated by the dislocation dissociation of perfect dislocation into pairs of partials dislocation around extended nodes region at the interface. Upon further compression the second peak, identified as the first yielding, resulted from the activation of pyramidal slip planes in the Ti layer. Finally, a third peak identified as the second yielding, occurred when dislocation nucleated/transmitted in/into the TiN layer.

  18. Microcracking in composite laminates under thermal and mechanical loading. Thesis

    Science.gov (United States)

    Maddocks, Jason R.

    1995-01-01

    Composites used in space structures are exposed to both extremes in temperature and applied mechanical loads. Cracks in the matrix form, changing the laminate thermoelastic properties. The goal of the present investigation is to develop a predictive methodology to quantify microcracking in general composite laminates under both thermal and mechanical loading. This objective is successfully met through a combination of analytical modeling and experimental investigation. In the analysis, the stress and displacement distributions in the vicinity of a crack are determined using a shear lag model. These are incorporated into an energy based cracking criterion to determine the favorability of crack formation. A progressive damage algorithm allows the inclusion of material softening effects and temperature-dependent material properties. The analysis is implemented by a computer code which gives predicted crack density and degraded laminate properties as functions of any thermomechanical load history. Extensive experimentation provides verification of the analysis. AS4/3501-6 graphite/epoxy laminates are manufactured with three different layups to investigate ply thickness and orientation effects. Thermal specimens are cooled to progressively lower temperatures down to -184 C. After conditioning the specimens to each temperature, cracks are counted on their edges using optical microscopy and in their interiors by sanding to incremental depths. Tensile coupons are loaded monotonically to progressively higher loads until failure. Cracks are counted on the coupon edges after each loading. A data fit to all available results provides input parameters for the analysis and shows them to be material properties, independent of geometry and loading. Correlation between experiment and analysis is generally very good under both thermal and mechanical loading, showing the methodology to be a powerful, unified tool. Delayed crack initiation observed in a few cases is attributed to a

  19. An agent-based simulation of power generation company behavior in electricity markets under different market-clearing mechanisms

    International Nuclear Information System (INIS)

    Aliabadi, Danial Esmaeili; Kaya, Murat; Şahin, Güvenç

    2017-01-01

    Deregulated electricity markets are expected to provide affordable electricity for consumers through promoting competition. Yet, the results do not always fulfill the expectations. The regulator's market-clearing mechanism is a strategic choice that may affect the level of competition in the market. We conceive of the market-clearing mechanism as composed of two components: pricing rules and rationing policies. We investigate the strategic behavior of power generation companies under different market-clearing mechanisms using an agent-based simulation model which integrates a game-theoretical understanding of the auction mechanism in the electricity market and generation companies' learning mechanism. Results of our simulation experiments are presented using various case studies representing different market settings. The market in simulations is observed to converge to a Nash equilibrium of the stage game or to a similar state under most parameter combinations. Compared to pay-as-bid pricing, bid prices are closer to marginal costs on average under uniform pricing while GenCos' total profit is also higher. The random rationing policy of the ISO turns out to be more successful in achieving lower bid prices and lower GenCo profits. In minimizing GenCos' total profit, a combination of pay-as-bid pricing rule and random rationing policy is observed to be the most promising. - Highlights: • An agent-based simulation of generation company behavior in electricity markets is developed. • Learning dynamics of companies is modeled with an extended Q-learning algorithm. • Different market clearing mechanisms of the regulator are compared. • Convergence to Nash equilibria is analyzed under different cases. • The level of competition in the market is studied.

  20. Working group inciting mechanisms; Groupe de travail mecanismes incitatifs

    Energy Technology Data Exchange (ETDEWEB)

    Bureau, D

    2001-07-01

    This document deals with the inciting mechanisms under consideration in the framework of the greenhouse effect fight. The advantages and disadvantages, the coherence of these mechanisms and their articulation with the taxation, have been specified. A whole evaluation of the various scenario, taking into account the implementing problems and the evolution in an international context, is proposed. (A.L.B.)

  1. Failure mechanisms of aluminium foams under compressive loads

    Directory of Open Access Journals (Sweden)

    Sáenz, E.

    2000-08-01

    Full Text Available The purpose of this paper is the investigation of the major failure mechanisms of aluminium foams, which were obtained by powder metallurgy route, under compressive loads. The study was focused on two commonly aluminium alloys AlMg1Si or A 6061 and AlSi12. Due to the fact that the failure mechanisms strongly depend on the density and the macrostructural properties of the material, the mechanical properties always have to be correlated to the structural properties. Therefore, macrostructural investigations were used as a basis to establish the correlation between structural and mechanical properties. This was done with a commercially available image analysis system. The average cell size, the cell size distribution and the cell density (number of cells/area were obtained. In order to evaluate the influence of foaming direction on the cell morphology, some cross sections parallel to the foaming direction were prepared. For the characterization of the mechanical compression properties the compressive or upper yield strength (UYS, the densification strain (eD, the energy absorption (Ea and the efficiency (Eff were obtained. Furthermore, the failure behavior of the samples was in-situ observed with a digital video camera and continuously recorded during the test.

    El objetivo de este estudio es investigar los principales mecanismos de fallo de espumas de aluminio sometidas a cargas de compresión. Las espumas metálicas fueron obtenidas mediante el proceso pulvimetalúrgico, utilizándose como materia prima dos aleaciones comerciales AlMg1Si o A 6061 y AlSi12. Debido a que los mecanismos de fallo en este tipo de materiales depende fuertemente de la densidad y las características macroestructurales del material, en este estudio se busca correlacionar las propiedades mecánicas con estas características. La macroestructura se caracterizó mediante análisis de imagen. El tamaño de celda promedio, la distribución de tamaño y la densidad de

  2. The Immunomodulatory Effects of Macrolides—A Systematic Review of the Underlying Mechanisms

    Directory of Open Access Journals (Sweden)

    Petra Zimmermann

    2018-03-01

    Full Text Available BackgroundThe mechanisms underlying the non-antimicrobial immunomodulatory properties of macrolides are not well understood.ObjectivesTo systematically review the evidence for the immunomodulatory properties of macrolides in humans and to describe the underlying mechanism and extent of their influence on the innate and adaptive immune system.MethodsA systematic literature search was done in MEDLINE using the OVID interface from 1946 to December 2016 according to the preferred reporting items for systematic reviews and meta-analysis (PRISMA. Original articles investigating the influence of four macrolides (azithromycin, clarithromycin, erythromycin, and roxithromycin on immunological markers in humans were included.ResultsWe identified 22 randomized, controlled trials, 16 prospective cohort studies, and 8 case–control studies investigating 47 different immunological markers (186 measurements in 1,834 participants. The most frequently reported outcomes were a decrease in the number of neutrophils, and the concentrations of neutrophil elastase, interleukin (IL-8, IL-6, IL-1beta, tumor necrosis factor (TNF-alpha, eosinophilic cationic protein, and matrix metalloproteinase 9. Inhibition of neutrophil function was reported more frequently than eosinophil function. A decrease in T helper (Th 2 cells cytokines (IL-4, IL-5, IL-6 was reported more frequently than a decrease in Th1 cytokines (IL-2, INF-gamma.ConclusionMacrolides influence a broad range of immunological mechanisms resulting in immunomodulatory effects. To optimize the treatment of chronic inflammatory diseases by macrolides, further studies are necessary, particularly comparing different macrolides and dose effect relationships.

  3. The C-Terminal O-S Acyl Shift Pathway under Acidic Condition to Propose Peptide-Thioesters

    Directory of Open Access Journals (Sweden)

    Bo Mi Kim

    2016-11-01

    Full Text Available Peptide-thioester is a pivotal intermediate for peptide ligation and N-, C-terminal cyclization. In this study, desired pathway and the side products of two C-terminal handles, hydroxyethylthiol (HET and hydroxypropylthiol (HPT are described in different conditions as well as kinetic studies. In addition, a new mechanism of C-terminal residue racemization is proposed on the basis of differentiation of products derived from the two C-terminal handles in preparing peptide thioesters through an acid-catalyzed tandem thiol switch, first by an intramolecular O-S acyl shift, and then by an intermolecular S-S exchange.

  4. Effects of delaying transplanting on agronomic traits and grain yield of rice under mechanical transplantation pattern.

    Directory of Open Access Journals (Sweden)

    Qihua Liu

    Full Text Available A delay in the mechanical transplantation (MT of rice seedlings frequently occurs in Huanghuai wheat-rice rotation cropping districts of China, due to the late harvest of wheat, the poor weather conditions and the insufficiency of transplanters, missing the optimum transplanting time and causing seedlings to age. To identify how delaying transplanting rice affects the agronomic characteristics including the growth duration, photosynthetic productivity and dry matter remobilization efficiency and the grain yield under mechanical transplanting pattern, an experiment with a split-plot design was conducted over two consecutive years. The main plot includes two types of cultivation: mechanical transplanting and artificial transplanting (AT. The subplot comprises four japonica rice cultivars. The results indicate that the rice jointing, booting, heading and maturity stages were postponed under MT when using AT as a control. The tiller occurrence number, dry matter weight per tiller, accumulative dry matter for the population, leaf area index, crop growth rate, photosynthetic potential, and dry matter remobilization efficiency of the leaf under MT significantly decreased compared to those under AT. In contrast, the reduction rate of the leaf area during the heading-maturity stage was markedly enhanced under MT. The numbers of effective panicles and filled grains per panicle and the grain yield significantly decreased under MT. A significant correlation was observed between the dry matter production, remobilization and distribution characteristics and the grain yield. We infer that, as with rice from old seedlings, the decrease in the tiller occurrence, the photosynthetic productivity and the assimilate remobilization efficiency may be important agronomic traits that are responsible for the reduced grain yield under MT.

  5. Research on energy conversion mechanism of a screw centrifugal pump under the water

    International Nuclear Information System (INIS)

    Quan, H; Li, R N; Han, W; Cheng, X R; Shen, Z J; Su, Q M

    2013-01-01

    In order to research screw centrifugal pump impeller power capability and energy conversion mechanism, we used Navier-Stokes equation and standard k-ε equation turbulence model on the basis of the Euler equations to carry out screw centrifugal pump internal flow numerical simulation. This was explored by simulating specific design conditions; the medium is water, variation of speed and pressure of flow filed under the action of the impeller, and the screw centrifugal impeller shroud line and wheel line segment take monitoring sites. The monitoring points are between dynamic head and static head change to analyze the energy conversion capability along the impeller corners of screw centrifugal pump. The results show that the energy of fluid of the screw centrifugal pump is provided by spiral segment, the spiral segment in front of the impeller has played a multi-level role, it has significant reference value to research the energy conversion mechanism of screw centrifugal pump under solid-liquid two phase

  6. Portfolio selection problem with liquidity constraints under non-extensive statistical mechanics

    International Nuclear Information System (INIS)

    Zhao, Pan; Xiao, Qingxian

    2016-01-01

    In this study, we consider the optimal portfolio selection problem with liquidity limits. A portfolio selection model is proposed in which the risky asset price is driven by the process based on non-extensive statistical mechanics instead of the classic Wiener process. Using dynamic programming and Lagrange multiplier methods, we obtain the optimal policy and value function. Moreover, the numerical results indicate that this model is considerably different from the model based on the classic Wiener process, the optimal strategy is affected by the non-extensive parameter q, the increase in the investment in the risky asset is faster at a larger parameter q and the increase in wealth is similar.

  7. CISM course on mechanical behaviour of soils under environmentally induced cyclic loads

    CERN Document Server

    Wood, David; Mechanical Behaviour of Soils Under Environmentally Induced Cyclic Loads

    2012-01-01

    The book gives a comprehensive description of the mechanical response of soils (granular and cohesive materials) under cyclic loading. It provides the geotechnical engineer with the theoretical and analytical tools necessary for the evaluation of settlements developng with time under cyclic, einvironmentally idncued loads (such as wave motion, wind actions, water table level variation) and their consequences for the serviceability and durability of structures such as the shallow or deep foundations used in offshore engineering, caisson beakwaters, ballast and airport pavements and also to interpret monitoring data, obtained from both natural and artificial slopes and earth embankments, for the purposes of risk assessment and mitigation.

  8. Biological mechanisms underlying the role of physical fitness in health and resilience

    OpenAIRE

    Silverman, Marni N.; Deuster, Patricia A.

    2014-01-01

    Physical fitness, achieved through regular exercise and/or spontaneous physical activity, confers resilience by inducing positive psychological and physiological benefits, blunting stress reactivity, protecting against potentially adverse behavioural and metabolic consequences of stressful events and preventing many chronic diseases. In this review, we discuss the biological mechanisms underlying the beneficial effects of physical fitness on mental and physical health. Physical fitness appear...

  9. J evaluation by simplified method for cracked pipes under mechanical loading

    International Nuclear Information System (INIS)

    Lacire, M.H.; Michel, B.; Gilles, P.

    2001-01-01

    The integrity of structures behaviour is an important subject for the nuclear reactor safety. Most of assessment methods of cracked components are based on the evaluation of the parameter J. However to avoid complex elastic-plastic finite element calculations of J, a simplified method has been jointly developed by CEA, EDF and Framatome. This method, called Js, is based on the reference stress approach and a new KI handbook. To validate this method, a complete set of 2D and 3D elastic-plastic finite element calculations of J have been performed on pipes (more than 300 calculations are available) for different types of part through wall crack (circumferential or longitudinal); mechanical loading (pressure, bending moment, axial load, torsion moment, and combination of these loading); different kind of materials (austenitic or ferritic steel). This paper presents a comparison between the simplified assessment of J and finite element results on these configurations for mechanical loading. Then, validity of the method is discussed and an applicability domain is proposed. (author)

  10. Advanced paternal age effects in neurodevelopmental disorders-review of potential underlying mechanisms.

    Science.gov (United States)

    Janecka, M; Mill, J; Basson, M A; Goriely, A; Spiers, H; Reichenberg, A; Schalkwyk, L; Fernandes, C

    2017-01-31

    Multiple epidemiological studies suggest a relationship between advanced paternal age (APA) at conception and adverse neurodevelopmental outcomes in offspring, particularly with regard to increased risk for autism and schizophrenia. Conclusive evidence about how age-related changes in paternal gametes, or age-independent behavioral traits affect neural development is still lacking. Recent evidence suggests that the origins of APA effects are likely to be multidimensional, involving both inherited predisposition and de novo events. Here we provide a review of the epidemiological and molecular findings to date. Focusing on the latter, we present the evidence for genetic and epigenetic mechanisms underpinning the association between late fatherhood and disorder in offspring. We also discuss the limitations of the APA literature. We propose that different hypotheses relating to the origins of the APA effects are not mutually exclusive. Instead, multiple mechanisms likely contribute, reflecting the etiological complexity of neurodevelopmental disorders.

  11. Scattering in relativistic particle mechanics

    International Nuclear Information System (INIS)

    De Bievre, S.

    1986-01-01

    The problem of direct interaction in relativistic particle mechanics has been extensively studied and a variety of models has been proposed avoiding the conclusions of the so-called no-interaction theorems. In this thesis the authors studied scattering in the relativistic two-body problem. He uses the results to analyze gauge invariance in Hamiltonian constraint models and the uniqueness of the symplectic structure in manifestly covariant relativistic particle mechanics. A general geometric framework that underlies approaches to relativistic particle mechanics is presented and the kinematic properties of the scattering transformation, i.e., those properties that arise solely from the invariance of the theory under the Poincare group are studied. The second part of the analysis of the relativistic two-body scattering problem is devoted to the dynamical properties of the scattering process. Using general geometric arguments, gauge invariance of the scattering transformation in the Todorov-Komar Hamiltonian constraint model is proved. Finally, quantization of the models is discussed

  12. Possible Mechanisms Underlying the Therapeutic Effects of Transcranial Magnetic Stimulation

    Science.gov (United States)

    Chervyakov, Alexander V.; Chernyavsky, Andrey Yu.; Sinitsyn, Dmitry O.; Piradov, Michael A.

    2015-01-01

    Transcranial magnetic stimulation (TMS) is an effective method used to diagnose and treat many neurological disorders. Although repetitive TMS (rTMS) has been used to treat a variety of serious pathological conditions including stroke, depression, Parkinson’s disease, epilepsy, pain, and migraines, the pathophysiological mechanisms underlying the effects of long-term TMS remain unclear. In the present review, the effects of rTMS on neurotransmitters and synaptic plasticity are described, including the classic interpretations of TMS effects on synaptic plasticity via long-term potentiation and long-term depression. We also discuss the effects of rTMS on the genetic apparatus of neurons, glial cells, and the prevention of neuronal death. The neurotrophic effects of rTMS on dendritic growth and sprouting and neurotrophic factors are described, including change in brain-derived neurotrophic factor concentration under the influence of rTMS. Also, non-classical effects of TMS related to biophysical effects of magnetic fields are described, including the quantum effects, the magnetic spin effects, genetic magnetoreception, the macromolecular effects of TMS, and the electromagnetic theory of consciousness. Finally, we discuss possible interpretations of TMS effects according to dynamical systems theory. Evidence suggests that a rTMS-induced magnetic field should be considered a separate physical factor that can be impactful at the subatomic level and that rTMS is capable of significantly altering the reactivity of molecules (radicals). It is thought that these factors underlie the therapeutic benefits of therapy with TMS. Future research on these mechanisms will be instrumental to the development of more powerful and reliable TMS treatment protocols. PMID:26136672

  13. Mechanical measurement of hydrogen bonded host-guest systems under non-equilibrium, near-physiological conditions.

    Science.gov (United States)

    Naranjo, Teresa; Cerrón, Fernando; Nieto-Ortega, Belén; Latorre, Alfonso; Somoza, Álvaro; Ibarra, Borja; Pérez, Emilio M

    2017-09-01

    Decades after the birth of supramolecular chemistry, there are many techniques to measure noncovalent interactions, such as hydrogen bonding, under equilibrium conditions. As ensembles of molecules rapidly lose coherence, we cannot extrapolate bulk data to single-molecule events under non-equilibrium conditions, more relevant to the dynamics of biological systems. We present a new method that exploits the high force resolution of optical tweezers to measure at the single molecule level the mechanical strength of a hydrogen bonded host-guest pair out of equilibrium and under near-physiological conditions. We utilize a DNA reporter to unambiguously isolate single binding events. The Hamilton receptor-cyanuric acid host-guest system is used as a test bed. The force required to dissociate the host-guest system is ∼17 pN and increases with the pulling rate as expected for a system under non-equilibrium conditions. Blocking one of the hydrogen bonding sites results in a significant decrease of the force-to-break by 1-2 pN, pointing out the ability of the method to resolve subtle changes in the mechanical strength of the binding due to the individual H-bonding components. We believe the method will prove to be a versatile tool to address important questions in supramolecular chemistry.

  14. Neurogenomic mechanisms of social plasticity.

    Science.gov (United States)

    Cardoso, Sara D; Teles, Magda C; Oliveira, Rui F

    2015-01-01

    Group-living animals must adjust the expression of their social behaviour to changes in their social environment and to transitions between life-history stages, and this social plasticity can be seen as an adaptive trait that can be under positive selection when changes in the environment outpace the rate of genetic evolutionary change. Here, we propose a conceptual framework for understanding the neuromolecular mechanisms of social plasticity. According to this framework, social plasticity is achieved by rewiring or by biochemically switching nodes of a neural network underlying social behaviour in response to perceived social information. Therefore, at the molecular level, it depends on the social regulation of gene expression, so that different genomic and epigenetic states of this brain network correspond to different behavioural states, and the switches between states are orchestrated by signalling pathways that interface the social environment and the genotype. Different types of social plasticity can be recognized based on the observed patterns of inter- versus intra-individual occurrence, time scale and reversibility. It is proposed that these different types of social plasticity rely on different proximate mechanisms at the physiological, neural and genomic level. © 2015. Published by The Company of Biologists Ltd.

  15. A study of the diffusion mechanisms in amorphous metallic alloys: diffusion and diffusion under high pressure in an amorphous NiZr alloy

    International Nuclear Information System (INIS)

    Grandjean, A.

    1996-01-01

    The aim of this work is a better understanding of the diffusion mechanism in amorphous metallic alloys. Then interdiffusion and hafnium diffusion in amorphous NiZr alloy have been studied. Samples used are made by sputtering co-deposition under vacuum and are well relaxed before the diffusion measurements. The time evolution of resistivity during annealing due to the decay of a composition modulated film has been measured and from this change in resistivity interdiffusion coefficients have been determined. Dependence of Hf diffusion on temperature and pressure has been studied using (SIMS). In this two cases, the diffusion process obeys an Arrhenius law and gives an activation energy of 1.33 eV for interdiffusion, and 0.76 eV for Hf diffusion. An effect of pressure on Hf diffusion has been found leading to an activation volume of 8.5 angstrom 3 . Thanks to these results, two approaches of the diffusion mechanisms in these systems have been proposed. The first comes from a comparison with the diffusion mechanisms in crystalline metals, that is to say by point defects. The second is an hypothesis of collective motions in these non crystalline alloys. (author)

  16. Investigation of deterioration mechanism of electrical ceramic insulating materials under high temperature

    International Nuclear Information System (INIS)

    Mizutani, Yoshinobu; Ito, Tetsuo; Okamoto, Tatsuki; Kumazawa, Ryoji; Aizawa, Rie; Moriyama, Hideshige

    2000-01-01

    It is thought that ceramic insulator can be applied to electric power equipments that are under high temperature not to be able use organic materials. Our research has suggested components of mica-alumina combined insulation. As the results of and carried out temperature accelerating test, combined insulation life is expected long term over 40 years at over 500-Celsius degrees. However to construct high reliable insulating system, it is clarified deterioration mechanism on combined insulation and evaluates life of that. Therefore we carried out metal behavior test and voltage aging test using mica-sheet and alumina-cloth that are components of combined insulation under high temperature in nitrogen gas atmosphere. It is cleared two metal behavior mechanisms: One is that the opening of insulator are filled up with copper that is oxidized, the other is the metal diffuses in alumina-cloth through surface. And distance of metal behavior is able to be estimated at modulate temperature and in modulate time. It is also cleared that alumina-cloth is deteriorated by metal behavior into alumina-cloth. These results indicate that combined insulation is deteriorated from electrode side by metal behavior and is finally broken down through alumina-cloth. (author)

  17. Mechanical characteristics under monotonic and cyclic simple shear of spark plasma sintered ultrafine-grained nickel

    International Nuclear Information System (INIS)

    Dirras, G.; Bouvier, S.; Gubicza, J.; Hasni, B.; Szilagyi, T.

    2009-01-01

    The present work focuses on understanding the mechanical behavior of bulk ultrafine-grained nickel specimens processed by spark plasma sintering of high purity nickel nanopowder and subsequently deformed under large amplitude monotonic simple shear tests and strain-controlled cyclic simple shear tests at room temperature. During cyclic tests, the samples were deformed up to an accumulated von Mises strain of about ε VM = 0.75 (the flow stress was in the 650-700 MPa range), which is extremely high in comparison with the low tensile/compression ductility of this class of materials at quasi-static conditions. The underlying physical mechanisms were investigated by electron microscopy and X-ray diffraction profile analysis. Lattice dislocation-based plasticity leading to cell formation and dislocation interactions with twin boundaries contributed to the work-hardening of these materials. The large amount of plastic strain that has been reached during the shear tests highlights intrinsic mechanical characteristics of the ultrafine-grained nickel studied here.

  18. Mechanical characteristics under monotonic and cyclic simple shear of spark plasma sintered ultrafine-grained nickel

    Energy Technology Data Exchange (ETDEWEB)

    Dirras, G., E-mail: dirras@univ-paris13.fr [LPMTM - CNRS, Institut Galilee, Universite Paris 13, 99 Avenue J.B. Clement, 93430 Villetaneuse (France); Bouvier, S. [LPMTM - CNRS, Institut Galilee, Universite Paris 13, 99 Avenue J.B. Clement, 93430 Villetaneuse (France); Gubicza, J. [Department of Materials Physics, Eoetvoes Lorand University, P.O.B. 32, Budapest H-1518 (Hungary); Hasni, B. [LPMTM - CNRS, Institut Galilee, Universite Paris 13, 99 Avenue J.B. Clement, 93430 Villetaneuse (France); Szilagyi, T. [Department of Materials Physics, Eoetvoes Lorand University, P.O.B. 32, Budapest H-1518 (Hungary)

    2009-11-25

    The present work focuses on understanding the mechanical behavior of bulk ultrafine-grained nickel specimens processed by spark plasma sintering of high purity nickel nanopowder and subsequently deformed under large amplitude monotonic simple shear tests and strain-controlled cyclic simple shear tests at room temperature. During cyclic tests, the samples were deformed up to an accumulated von Mises strain of about {epsilon}{sub VM} = 0.75 (the flow stress was in the 650-700 MPa range), which is extremely high in comparison with the low tensile/compression ductility of this class of materials at quasi-static conditions. The underlying physical mechanisms were investigated by electron microscopy and X-ray diffraction profile analysis. Lattice dislocation-based plasticity leading to cell formation and dislocation interactions with twin boundaries contributed to the work-hardening of these materials. The large amount of plastic strain that has been reached during the shear tests highlights intrinsic mechanical characteristics of the ultrafine-grained nickel studied here.

  19. Intercomparison of chemical mechanisms for air quality policy formulation and assessment under North American conditions.

    Science.gov (United States)

    Derwent, Richard

    2017-07-01

    The intercomparison of seven chemical mechanisms for their suitability for air quality policy formulation and assessment is described. Box modeling techniques were employed using 44 sets of background environmental conditions covering North America to constrain the chemical development of the longer lived species. The selected mechanisms were modified to enable an unbiased assessment of the adequacy of the parameterizations of photochemical ozone production from volatile organic compound (VOC) oxidation in the presence of NO x . Photochemical ozone production rates responded differently to 30% NO x and VOC reductions with the different mechanisms, despite the striking similarities between the base-case ozone production rates. The 30% reductions in NO x and VOCs also produced changes in OH. The responses in OH to 30% reductions in NO x and VOCs appeared to be more sensitive to mechanism choice, compared with the responses in the photochemical ozone production rates. Although 30% NO x reductions generally led to decreases in OH, 30% reductions in VOCs led to increases in OH, irrespective of mechanism choice and background environmental conditions. The different mechanisms therefore gave different OH responses to NO x and VOC reductions and so would give different responses in terms of changes in the fate and behavior of air toxics, acidification and eutrophication, and fine particle formation compared with others, in response to ozone control strategies. Policymakers need to understand that there are likely to be inherent differences in the responses to ozone control strategies between different mechanisms, depending on background environmental conditions and the extents of NO x and VOC reductions under consideration. The purpose of this paper is to compare predicted ozone responses to NO x and VOC reductions with seven chemical mechanisms under North American conditions. The good agreement found between the tested mechanisms should provide some support for their

  20. Experimental Investigation on Shock Mechanical Properties of Red Sandstone under Preloaded 3D Static Stresses

    Directory of Open Access Journals (Sweden)

    Niu Yong

    2015-11-01

    Full Text Available Triaxial impact mechanical performance experiment was performed to study the mechanical properties of red sandstone subjected to three-dimensional (3D coupled static and dynamic loads, i.e., three confining pressures (0, 5, and 10 MPa and three axial pressures (11, 27, and 43 MPa. A modified 3D split Hopkinson pressure bar testing system was used. The change trend in the deformation of red sandstone and the strength and failure modes under axial pressures and confining pressures were analyzed. Results show that, when the confining pressure is constant, the compressive strength, secant modulus, and energy absorbed per unit volume of red sandstone initially increases and subsequently decreases, whereas the average strain rate exhibits an opposite trend. When the axial pressure is constant, both the compressive strength and secant modulus of red sandstone are enhanced, but the average strain rate is decreased with increasing confining pressure. The energy absorbed per unit volume is initially increased and subsequently decreased as the confining pressure increases. Red sandstone exhibits a cone-shaped compression–shear failure mode under the 3D coupled static and dynamic loads. The conclusions serve as theoretical basis on the mechanical properties of deep medium-strength rock under a high ground stress and external load disturbance condition

  1. Interactivity effects in social media marketing on brand engagement: an investigation of underlying mechanisms

    NARCIS (Netherlands)

    Antheunis, M.L.; van Noort, G.; Eisend, M.; Langner, T.

    2011-01-01

    Although, SNS advertising spending increases, research on SNS campaigning is still underexposed. First, this study aims to investigate the effect of SNS campaign interactivity on the receivers brand engagement, taking four underlying mechanisms into account (brand identification, campaign

  2. Hardening and softening mechanisms of pearlitic steel wire under torsion

    International Nuclear Information System (INIS)

    Zhao, Tian-Zhang; Zhang, Shi-Hong; Zhang, Guang-Liang; Song, Hong-Wu; Cheng, Ming

    2014-01-01

    Highlights: • Mechanical behavior of pearlitic steel wire is studied using torsion. • Work hardening results from refinement lamellar pearlitic structure. • Softening results from recovery, shear bands and lamellar fragmentations. • A microstructure based analytical flow stress model is established. - Abstract: The mechanical behaviors and microstructure evolution of pearlitic steel wires under monotonic shear deformation have been investigated by a torsion test and a number of electron microscopy techniques including scanning electron microscopy (SEM) and transmission electron microscopy (TEM), with an aim to reveal the softening and hardening mechanisms of a randomly oriented pearlitic structure during a monotonic stain path. Significantly different from the remarkable strain hardening in cold wire drawing, the strain hardening rate during torsion drops to zero quickly after a short hardening stage. The microstructure observations indicate that the inter-lamellar spacing (ILS) decreases and the dislocations accumulate with strain, which leads to hardening of the material. Meanwhile, when the strain is larger than 0.154, the enhancement of dynamic recovery, shear bands (SBs) and cementite fragmentations results in the softening and balances the strain hardening. A microstructure based analytical flow stress model with considering the influence of ILS on the mean free path of dislocations and the softening caused by SBs and cementite fragmentations, has been established and the predicted flow shear curve meets well with the measured curve in the torsion test

  3. Swinging control of two-pendulum system under energy constraints

    NARCIS (Netherlands)

    Ananyevskiy, M.S.; Fradkov, A.L.; Nijmeijer, H.; Leonov, G.; Nijmeijer, H.; Pogromsky, A.; Fradkov, A.

    2009-01-01

    A method for control of mechanical systems under phase constraints, applicable to energy control of Hamiltonian systems is proposed. The constrained energy control problem for two pendulums by a single control action is studied both analytically and numerically. It is shown that for a proper choice

  4. On some mechanisms of the effect of thermal prehistory on the behavior of silicon parameters under irradiation. O nekotorykh mekhanizmakh vliyaniya teplovoj predystorii na povedenie parametrov kremniya pod oblucheniem

    Energy Technology Data Exchange (ETDEWEB)

    Nejmash, V B; Sagan, T R; Tsmots' , V M; Shakhovtsov, V I; Shindich, V L [AN Ukrainskoj SSR, Kiev (Ukraine). Inst. Fiziki

    1991-11-01

    The effect of preliminary thermal treatment (TT) in 400-1200 degC temperature range on the behavior of Si monocrystal parameters under subsequent [gamma]-, electron and neutron irradiation is investigated. Five mechanisms of Si thermal prehistory effect on its properties are proposed: (1) decomposition of solid solutions of impurities interacting with radiation defects (RD); (2) formation of electrically active thermal defects (TD) in concentrations wich are sufficient for a significant alteration of RD charged state; (3) origination of TD, which can efficiency as aresult of the redistribution of impurities under thermal treatment; (5) formation of clusters of electrically active TD, resulting in the disturbance of electric homogeneity of Si crystal.

  5. Ultrastructural changes of cell walls under intense mechanical treatment of selective plant raw material

    International Nuclear Information System (INIS)

    Bychkov, Aleksey L.; Ryabchikova, E.I.; Korolev, K.G.; Lomovsky, O.I.

    2012-01-01

    Structural changes of cell walls under intense mechanical treatment of corn straw and oil-palm fibers were studied by electron and light microscopy. Differences in the character of destruction of plant biomass were revealed, and the dependence of destruction mechanisms on the structure of cell walls and lignin content was demonstrated. We suggest that the high reactivity of the particles of corn straw (about 18% of lignin) after intense mechanical treatment is related to disordering of cell walls and an increase of the surface area, while in the case of oil palm (10% of lignin) the major contribution into an increase in the reactivity is made by an increase of surface area. -- Highlights: ► Structure of cell walls determines the processes of plant materials' destruction. ► Ultrastructure of highly lignified materials strongly disordering by mechanical action. ► Ultrastructure of low-lignified materials is not disordering by mechanical action.

  6. Molecular mechanisms underlying formation of long-term reward memories and extinction memories in the honeybee (Apis mellifera)

    Science.gov (United States)

    2014-01-01

    The honeybee (Apis mellifera) has long served as an invertebrate model organism for reward learning and memory research. Its capacity for learning and memory formation is rooted in the ecological need to efficiently collect nectar and pollen during summer to ensure survival of the hive during winter. Foraging bees learn to associate a flower's characteristic features with a reward in a way that resembles olfactory appetitive classical conditioning, a learning paradigm that is used to study mechanisms underlying learning and memory formation in the honeybee. Due to a plethora of studies on appetitive classical conditioning and phenomena related to it, the honeybee is one of the best characterized invertebrate model organisms from a learning psychological point of view. Moreover, classical conditioning and associated behavioral phenomena are surprisingly similar in honeybees and vertebrates, suggesting a convergence of underlying neuronal processes, including the molecular mechanisms that contribute to them. Here I review current thinking on the molecular mechanisms underlying long-term memory (LTM) formation in honeybees following classical conditioning and extinction, demonstrating that an in-depth analysis of the molecular mechanisms of classical conditioning in honeybees might add to our understanding of associative learning in honeybees and vertebrates. PMID:25225299

  7. The three-dimension model for the rock-breaking mechanism of disc cutter and analysis of rock-breaking forces

    Science.gov (United States)

    Zhang, Zhao-Huang; Sun, Fei

    2012-06-01

    To study the rock deformation with three-dimensional model under rolling forces of disc cutter, by carrying out the circular-grooving test with disc cutter rolling around on the rock, the rock mechanical behavior under rolling disc cutter is studied, the mechanical model of disc cutter rolling around the groove is established, and the theory of single-point and double-angle variables is proposed. Based on this theory, the physics equations and geometric equations of rock mechanical behavior under disc cutters of tunnel boring machine (TBM) are studied, and then the balance equations of interactive forces between disc cutter and rock are established. Accordingly, formulas about normal force, rolling force and side force of a disc cutter are derived, and their validity is studied by tests. Therefore, a new method and theory is proposed to study rock-breaking mechanism of disc cutters.

  8. The underlying mechanism of action for various medicinal properties of Piper betle (betel).

    Science.gov (United States)

    Haslan, H; Suhaimi, F H; Thent, Zar Chi; Das, S

    2015-01-01

    Piper betle (betel) plant belongs to the Piperaceae family. Piper. betle is widely known for its potent medicinal properties. Various active compounds are present in Piper. betle such as allylpyrocatechol, hydroxychavicol, piperbetol, ethylpiperbetol, piperol A, piperol B, chavibetol, and alkaloids which account for these beneficial medicinal properties. In the present narrative review, we looked into the various active compounds present in the Piper betle and attempted to understand their underlying mechanism of action. Proper understanding of the molecular biology involving the mechanism of action may help in better drug formulation and provide better therapeutic actions in the field of alternative and complementary medicine.

  9. Mechanical Modeling of a WIPP Drum Under Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jeffrey A. [Sandia National Laboratories, Albuquerque, NM (United States)

    2014-11-25

    Mechanical modeling was undertaken to support the Waste Isolation Pilot Plant (WIPP) technical assessment team (TAT) investigating the February 14th 2014 event where there was a radiological release at the WIPP. The initial goal of the modeling was to examine if a mechanical model could inform the team about the event. The intention was to have a model that could test scenarios with respect to the rate of pressurization. It was expected that the deformation and failure (inability of the drum to contain any pressure) would vary according to the pressurization rate. As the work progressed there was also interest in using the mechanical analysis of the drum to investigate what would happen if a drum pressurized when it was located under a standard waste package. Specifically, would the deformation be detectable from camera views within the room. A finite element model of a WIPP 55-gallon drum was developed that used all hex elements. Analyses were conducted using the explicit transient dynamics module of Sierra/SM to explore potential pressurization scenarios of the drum. Theses analysis show similar deformation patterns to documented pressurization tests of drums in the literature. The calculated failure pressures from previous tests documented in the literature vary from as little as 16 psi to 320 psi. In addition, previous testing documented in the literature shows drums bulging but not failing at pressures ranging from 69 to 138 psi. The analyses performed for this study found the drums failing at pressures ranging from 35 psi to 75 psi. When the drums are pressurized quickly (in 0.01 seconds) there is significant deformation to the lid. At lower pressurization rates the deformation of the lid is considerably less, yet the lids will still open from the pressure. The analyses demonstrate the influence of pressurization rate on deformation and opening pressure of the drums. Analyses conducted with a substantial mass on top of the closed drum demonstrate that the

  10. Mechanical behavior and high-resolution EBSD investigation of the microstructural evolution in AISI 321 stainless steel under dynamic loading condition

    International Nuclear Information System (INIS)

    Tiamiyu, A.A.; Eskandari, M.; Sanayei, Mohsen; Odeshi, A.G.; Szpunar, J.A.

    2016-01-01

    The impact response of three regions (top, mid and center) across the thickness of AISI 321 austenitic stainless steel plate at high strain rates (>6000 s −1 ) was studied using the split Hopkinson pressure bar system. The result shows that texture and stored energy heterogeneity across plate thickness influenced the mechanical responses of the investigated steel in these regions. Microstructural evaluation using high-resolution electron backscattered diffraction (HR-EBSD) analysis showed that strengthening in AISI 321 steel originates from the evolution of strain-induced martensite and formation of nano-carbides in addition to plastic deformation by mechanical twinning and slip. This resulted in a desirable combination of high strength and good ductility (approx. 2000 MPa at 0.42 true strain). Phase transformation, dynamic recrystallization and formation of nano-carbides were confirmed within the adiabatic shear band (ASB) region. The average dynamic recrystallized (DRX) grain size in the shear band region is 0.28 µm in comparison to grain size of 15 µm outside the shear bands. The nano-sized grain inside the shear bands is proposed to form by rotational dynamic recrystallization. A comparative study of the alloy's behavior under dynamic and quasi-static compression shows that the stability of austenite is higher at high strain rates and lower at a low strain rate. The strength in the dynamically impacted specimen is compromised as a result of the suppressed evolution of strain-induced martensite and mechanical twin. Martensitic transformation under both loading conditions follows the FCC É£-austenite→BCC ά-martensite kinetic path and both phases obey the Kurdjumov-Sachs' {(111)É£||(110)ά and <−101>É£||<1–11>ά} orientation relationship.

  11. Mechanical behavior and high-resolution EBSD investigation of the microstructural evolution in AISI 321 stainless steel under dynamic loading condition

    Energy Technology Data Exchange (ETDEWEB)

    Tiamiyu, A.A., E-mail: ahmed.tiamiyu@usask.ca [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Sask. (Canada); Eskandari, M. [Department of Materials Science & Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of); Sanayei, Mohsen; Odeshi, A.G.; Szpunar, J.A. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Sask. (Canada)

    2016-09-15

    The impact response of three regions (top, mid and center) across the thickness of AISI 321 austenitic stainless steel plate at high strain rates (>6000 s{sup −1}) was studied using the split Hopkinson pressure bar system. The result shows that texture and stored energy heterogeneity across plate thickness influenced the mechanical responses of the investigated steel in these regions. Microstructural evaluation using high-resolution electron backscattered diffraction (HR-EBSD) analysis showed that strengthening in AISI 321 steel originates from the evolution of strain-induced martensite and formation of nano-carbides in addition to plastic deformation by mechanical twinning and slip. This resulted in a desirable combination of high strength and good ductility (approx. 2000 MPa at 0.42 true strain). Phase transformation, dynamic recrystallization and formation of nano-carbides were confirmed within the adiabatic shear band (ASB) region. The average dynamic recrystallized (DRX) grain size in the shear band region is 0.28 µm in comparison to grain size of 15 µm outside the shear bands. The nano-sized grain inside the shear bands is proposed to form by rotational dynamic recrystallization. A comparative study of the alloy's behavior under dynamic and quasi-static compression shows that the stability of austenite is higher at high strain rates and lower at a low strain rate. The strength in the dynamically impacted specimen is compromised as a result of the suppressed evolution of strain-induced martensite and mechanical twin. Martensitic transformation under both loading conditions follows the FCC É£-austenite→BCC ά-martensite kinetic path and both phases obey the Kurdjumov-Sachs' {(111)É£||(110)ά and <−101>É£||<1–11>ά} orientation relationship.

  12. Peripheral afferent mechanisms underlying acupuncture inhibition of cocaine behavioral effects in rats.

    Directory of Open Access Journals (Sweden)

    Seol Ah Kim

    Full Text Available Administration of cocaine increases locomotor activity by enhancing dopamine transmission. To explore the peripheral mechanisms underlying acupuncture treatment for drug addiction, we developed a novel mechanical acupuncture instrument (MAI for objective mechanical stimulation. The aim of this study was to evaluate whether acupuncture inhibition of cocaine-induced locomotor activity is mediated through specific peripheral nerves, the afferents from superficial or deep tissues, or specific groups of nerve fibers. Mechanical stimulation of acupuncture point HT7 with MAI suppressed cocaine-induced locomotor activity in a stimulus time-dependent manner, which was blocked by severing the ulnar nerve or by local anesthesia. Suppression of cocaine-induced locomotor activity was elicited after HT7 stimulation at frequencies of either 50 (for Meissner corpuscles or 200 (for Pacinian corpuscles Hz and was not affected by block of C/Aδ-fibers in the ulnar nerve with resiniferatoxin, nor generated by direct stimulation of C/Aδ-fiber afferents with capsaicin. These findings suggest that HT7 inhibition of cocaine-induced locomotor activity is mediated by A-fiber activation of ulnar nerve that originates in superficial and deep tissue.

  13. Mechanical characterisation of porcine rectus sheath under uniaxial and biaxial tension.

    LENUS (Irish Health Repository)

    Lyons, Mathew

    2014-06-03

    Incisional hernia development is a significant complication after laparoscopic abdominal surgery. Intra-abdominal pressure (IAP) is known to initiate the extrusion of intestines through the abdominal wall, but there is limited data on the mechanics of IAP generation and the structural properties of rectus sheath. This paper presents an explanation of the mechanics of IAP development, a study of the uniaxial and biaxial tensile properties of porcine rectus sheath, and a simple computational investigation of the tissue. Analysis using Laplace׳s law showed a circumferential stress in the abdominal wall of approx. 1.1MPa due to an IAP of 11kPa, commonly seen during coughing. Uniaxial and biaxial tensile tests were conducted on samples of porcine rectus sheath to characterise the stress-stretch responses of the tissue. Under uniaxial tension, fibre direction samples failed on average at a stress of 4.5MPa at a stretch of 1.07 while cross-fibre samples failed at a stress of 1.6MPa under a stretch of 1.29. Under equi-biaxial tension, failure occurred at 1.6MPa with the fibre direction stretching to only 1.02 while the cross-fibre direction stretched to 1.13. Uniaxial and biaxial stress-stretch plots are presented allowing detailed modelling of the tissue either in silico or in a surrogate material. An FeBio computational model of the tissue is presented using a combination of an Ogden and an exponential power law model to represent the matrix and fibres respectively. The structural properties of porcine rectus sheath have been characterised and add to the small set of human data in the literature with which it may be possible to develop methods to reduce the incidence of incisional hernia development.

  14. Fracture Mechanisms of Zirconium Diboride Ultra-High Temperature Ceramics under Pulse Loading

    Science.gov (United States)

    Skripnyak, Vladimir V.; Bragov, Anatolii M.; Skripnyak, Vladimir A.; Lomunov, Andrei K.; Skripnyak, Evgeniya G.; Vaganova, Irina K.

    2015-06-01

    Mechanisms of failure in ultra-high temperature ceramics (UHTC) based on zirconium diboride under pulse loading were studied experimentally by the method of SHPB and theoretically using the multiscale simulation method. The obtained experimental and numerical data are evidence of the quasi-brittle fracture character of nanostructured zirconium diboride ceramics under compression and tension at high strain rates and the room temperatures. Damage of nanostructured porous zirconium diboride -based UHTC can be formed under stress pulse amplitude below the Hugoniot elastic limit. Fracture of nanostructured ultra-high temperature ceramics under pulse and shock-wave loadings is provided by fast processes of intercrystalline brittle fracture and relatively slow processes of quasi-brittle failure via growth and coalescence of microcracks. A decrease of the shear strength can be caused by nano-voids clusters in vicinity of triple junctions between ceramic matrix grains and ultrafine-grained ceramics. This research was supported by grants from ``The Tomsk State University Academic D.I. Mendeleev Fund Program'' and also N. I. Lobachevski State University of Nizhny Novgorod (Grant of post graduate mobility).

  15. Production bias: A proposed modification of the driving force for void swelling under cascade damage conditions

    International Nuclear Information System (INIS)

    Woo, C.H.; Garner, F.A.

    1991-11-01

    A new concept of point-defect production as the main driving force for void swelling under cascade damage conditions is proposed. This concept takes into account the recombination and formation of immobile clusters and loops of vacancies and interstitials in the cascade region. The life times of the clusters and loops due to desolution are strong functions of the temperature, as well as their vacancy and interstitial nature. The resulting biased production of free point defects from the internal sources is shown to be a strong driving force for void swelling. The characteristics of void swelling due to production bias are described and compared with experimental results. We conclude that the production bias concept provides a good description of void swelling under cascade damage conditions

  16. Production bias: A proposed modification of the driving force for void swelling under cascade damage conditions

    International Nuclear Information System (INIS)

    Woo, C.H.; Singh, B.N.; Garner, F.A.

    1992-01-01

    A new concept of point defect production as the main driving force for void swelling under cascade damage conditions is proposed. This concept takes into account the recombination and formation of immobile clusters and loops of vacancies and interstitials in the cascade region. The lifetimes of the clusters and loops due to desolution are strong functions of the temperature, as well as their vacancy and interstitial nature. The resulting biased production of free point defects from the internal sources is shown to be a strong driving force for void swelling. The characteristics of void swelling due to production bias are described and compared with experimental results. We conclude that the production bias concept provides a good description of void swelling under cascade damage conditions. (orig.)

  17. Safety evaluations under the proposed US Safe Cosmetics and Personal Care Products Act of 2013: animal use and cost estimates.

    Science.gov (United States)

    Knight, Jean; Rovida, Costanca

    2014-01-01

    The proposed Safe Cosmetics and Personal Care Products Act of 2013 calls for a new evaluation program for cosmetic ingredients in the US, with the new assessments initially dependent on expanded animal testing. This paper considers possible testing scenarios under the proposed Act and estimates the number of test animals and cost under each scenario. It focuses on the impact for the first 10 years of testing, the period of greatest impact on animals and costs. The analysis suggests the first 10 years of testing under the Act could evaluate, at most, about 50% of ingredients used in cosmetics. Testing during this period would cost about $ 1.7-$ 9 billion and 1-11.5 million animals. By test year 10, alternative, high-throughput test methods under development are expected to be available, replacing animal testing and allowing rapid evaluation of all ingredients. Given the high cost in dollars and animal lives of the first 10 years for only about half of ingredients, a better choice may be to accelerate development of high-throughput methods. This would allow evaluation of 100% of cosmetic ingredients before year 10 at lower cost and without animal testing.

  18. Parametric study of control mechanism of cortical bone remodeling under mechanical stimulus

    Science.gov (United States)

    Wang, Yanan; Qin, Qing-Hua

    2010-03-01

    The control mechanism of mechanical bone remodeling at cellular level was investigated by means of an extensive parametric study on a theoretical model described in this paper. From a perspective of control mechanism, it was found that there are several control mechanisms working simultaneously in bone remodeling which is a complex process. Typically, an extensive parametric study was carried out for investigating model parameter space related to cell differentiation and apoptosis which can describe the fundamental cell lineage behaviors. After analyzing all the combinations of 728 permutations in six model parameters, we have identified a small number of parameter combinations that can lead to physiologically realistic responses which are similar to theoretically idealized physiological responses. The results presented in the work enhanced our understanding on mechanical bone remodeling and the identified control mechanisms can help researchers to develop combined pharmacological-mechanical therapies to treat bone loss diseases such as osteoporosis.

  19. Surface scattering mechanisms of tantalum nitride thin film resistor.

    Science.gov (United States)

    Chen, Huey-Ru; Chen, Ying-Chung; Chang, Ting-Chang; Chang, Kuan-Chang; Tsai, Tsung-Ming; Chu, Tian-Jian; Shih, Chih-Cheng; Chuang, Nai-Chuan; Wang, Kao-Yuan

    2014-01-01

    In this letter, we utilize an electrical analysis method to develop a TaN thin film resistor with a stricter spec and near-zero temperature coefficient of resistance (TCR) for car-used electronic applications. Simultaneously, we also propose a physical mechanism mode to explain the origin of near-zero TCR for the TaN thin film resistor (TFR). Through current fitting, the carrier conduction mechanism of the TaN TFR changes from hopping to surface scattering and finally to ohmic conduction for different TaN TFRs with different TaN microstructures. Experimental data of current-voltage measurement under successive increasing temperature confirm the conduction mechanism transition. A model of TaN grain boundary isolation ability is eventually proposed to influence the carrier transport in the TaN thin film resistor, which causes different current conduction mechanisms.

  20. Elucidating the molecular mechanisms underlying cellular response to biophysical cues using synthetic biology approaches

    NARCIS (Netherlands)

    Denning, Denise; Roos, Wouter H

    2016-01-01

    The use of synthetic surfaces and materials to influence and study cell behavior has vastly progressed our understanding of the underlying molecular mechanisms involved in cellular response to physicochemical and biophysical cues. Reconstituting cytoskeletal proteins and interfacing them with a

  1. The potential mechanisms for motor complications of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    SUN Sheng-gang

    2013-08-01

    Full Text Available Parkinson's disease (PD is a common neurodegenerative disease. Dopaminergic replacement therapy is still considered as a major treatment for PD. However, long-term dopaminergic replacement therapy for PD patients is frequently associated with the development of motor complications. To date, the mechanisms underlying motor complications have not been completely understood yet. Moreover, parts of motor complications are lack of therapeutic alternatives. All these characters make this disorder difficult and challenging to manage. Increasing number of researches have been proposed in recent years for elucidating the underlying mechanisms of levodopa-related motor complications, resulting in much progression. For better understanding the management of motor complications, here we provide an overview of the current knowledge of the potential mechanisms, including the pharmacodynamic and pharmacokinetic mechanisms of levodopa and levodopa-associated neurotransmitter systems.

  2. First-principles predictions of structural, mechanical and electronic properties of βTiNb under high pressure

    Science.gov (United States)

    Wang, Z. P.; Fang, Q. H.; Li, J.; Liu, B.

    2018-04-01

    Structural, mechanical and electronic properties of βTiNb alloy under high pressure have been investigated based on the density functional theory (DFT). The dependences of dimensionless volume ratio, elastic constants, bulk modulus, Young's modulus, shear modulus, ductile/brittle, anisotropy and Poisson's ratio on applied pressure are all calculated successfully. The results reveal that βTiNb alloy is mechanically stable under pressure below 23.45 GPa, and the pressure-induced phase transformation could occur beyond this critical value. Meanwhile, the applied pressure can effectively promote the mechanical properties of βTiNb alloy, including the resistances to volume change, elastic deformation and shear deformation, as well as the material ductility and metallicity. Furthermore, the calculated electronic structures testify that βTiNb alloy performs the metallicity and the higher pressure reduces the structural stability of unit cell.

  3. Underlying mechanisms and the evolving influence of diet

    DEFF Research Database (Denmark)

    Larsen, Lesli Hingstrup

    2012-01-01

    Obesity is determined by both genetic and environmental factors. Since 2007, 52 genes have been associated with obesity and obesity-related measurements in genome-wide association studies (GWAS), among these the fat and obesity-associated gene (FTO). Despite the success in identifying genes predi...... and the microbiome that can be modified by diet, and by genotype, adding to the complexity of determining the contributors to obesity....... has been shown to attenuate the effect of FTO on obesity. Several studies have examined gene-diet interactions in relation to obesity, but only a few suggestive interactions have been identified. This is most probably due to small effect sizes of the interactions and thereby a demand for large samples...... to increased risk of developing obesity. Recently, the intestinal microbiome, the collected genome of the bacteria, also has been associated with obesity and with specific dietary profiles. The underlying mechanisms determining the susceptibility to obesity do not only include the genome but also the epigenome...

  4. An investigation of the mechanical behavior of initially curved microplates under electrostatic actuation

    KAUST Repository

    Saghir, Shahid

    2018-03-28

    In this article, we investigate the mechanical behavior of initially curved microplates under electrostatic actuation. Microplates are essential components of many Micro-Electro-Mechanical System devices; however, they commonly undergo an initial curvature imperfection, due to the microfabrication process. Initial curvature imperfection significantly affects the mechanical behavior of microplates. In this work, we derive a dynamic analogue of the von Kármán governing equation for such plates. These equations are then used to develop a reduced order model based on the Galerkin procedure to simulate the static and dynamic behavior of the microplate. Two profiles of initial curvature commonly encountered in microfabricated structures are considered, where one assumes a variation in shape along one dimension of the plate only (cylindrical bending shape) while the other assumes a variation in shape along both dimensions of the plate. Their effects on both the static and dynamic responses of the microplates are examined and compared. We validate the reduced order model by comparing the calculated static behavior and the fundamental natural frequency with those computed by a finite element model over a range of the initial plate rise. The static behavior of the microplate is investigated when varying the DC voltage. Then, the dynamic behavior of the microplate is examined under the application of a harmonic AC voltage superimposed to a DC voltage.

  5. POSSIBLE MECHANISMS UNDERLYING THE THERAPEUTIC EFFECTS OF TRANSCRANIAL MAGNETIC STIMULATION

    Directory of Open Access Journals (Sweden)

    Alexander eChervyakov

    2015-06-01

    Full Text Available Transcranial magnetic stimulation (TMS is an effective method used to diagnose and treat many neurological disorders. Although repetitive TMS (rTMS has been used to treat a variety of serious pathological conditions including stroke, depression, Parkinson's disease, epilepsy, pain, and migraines, the pathophysiological mechanisms underlying the effects of long-term TMS remain unclear. In the present review, the effects of rTMS on neurotransmitters and synaptic plasticity are described, including the classic interpretations of TMS effects on synaptic plasticity via long-term potentiation (LTP and long-term depression (LTD. We also discuss the effects of rTMS on the genetic apparatus of neurons, glial cells and the prevention of neuronal death. The neurotrophic effects of rTMS on dendritic growth and sprouting and neurotrophic factors are described, including change in brain-derived neurotrophic factor (BDNF concentration under the influence of rTMS. Also, non-classical effects of TMS related to biophysical effects of magnetic fields are described, including the quantum effects, the magnetic spin effects, genetic magnetoreception, the macromolecular effects of TMS, and the electromagnetic theory of consciousness. Finally, we discuss possible interpretations of TMS effects according to dynamical systems theory. Evidence suggests that a rTMS-induced magnetic field should be considered a separate physical factor that can be impactful at the subatomic level and that rTMS is capable of significantly altering the reactivity of molecules (radicals. It is thought that these factors underlie the therapeutic benefits of therapy with TMS. Future research on these mechanisms will be instrumental to the development of more powerful and reliable TMS treatment protocols.

  6. Evaluating Public Plantation and Community Planted Forests under the CDM and REDD+ Mechanism for Carbon Stock in Nepal

    Directory of Open Access Journals (Sweden)

    Ram Asheshwar MANDAL

    2013-09-01

    Full Text Available Public plantations (PPs and Community planted forests (CPFs are inimitable types of participatory forest management practices in Nepal, but their eligibility issues under the framework of clean development mechanism (CDM and reducing emission from the deforestation and forest degradation mechanism (REDD+ are not evaluated. So, to explore the management system of PP and CPF, we compared forest carbon stocks in plantations and evaluated these plantations under these mechanisms as objectives of this research. The relevant documents were revised and altogether 55 samples were collected from Shreepur, Banauta and Bisbity PPs and Sita, Ramnagar and Jogikuti CPFs, in Mahottary district, Nepal. The equation of Chave et al was used to calculate the biomass, which was further converted into carbon. Meanwhile, management practices were evaluated under the framework of CDM and REDD+. The PPs are public land managed, especially by disadvantaged communities, while CPFs are the patches of national forest managed by users. The variation in carbon stock was found to be highest (148.89 ton ha-1 in Sita CPF and lowest (30.34 ton ha-1 in Bisbitty PP. In fact, it is difficult to certify plantations under CDM, due to its complexity, but they can easily be candidate to the REDD+ mechanism, if they are bundled with large forest blocks.

  7. Underlying Mechanisms of Tinnitus: Review and Clinical Implications

    Science.gov (United States)

    Henry, James A.; Roberts, Larry E.; Caspary, Donald M.; Theodoroff, Sarah M.; Salvi, Richard J.

    2016-01-01

    Background The study of tinnitus mechanisms has increased tenfold in the last decade. The common denominator for all of these studies is the goal of elucidating the underlying neural mechanisms of tinnitus with the ultimate purpose of finding a cure. While these basic science findings may not be immediately applicable to the clinician who works directly with patients to assist them in managing their reactions to tinnitus, a clear understanding of these findings is needed to develop the most effective procedures for alleviating tinnitus. Purpose The goal of this review is to provide audiologists and other health-care professionals with a basic understanding of the neurophysiological changes in the auditory system likely to be responsible for tinnitus. Results It is increasingly clear that tinnitus is a pathology involving neuroplastic changes in central auditory structures that take place when the brain is deprived of its normal input by pathology in the cochlea. Cochlear pathology is not always expressed in the audiogram but may be detected by more sensitive measures. Neural changes can occur at the level of synapses between inner hair cells and the auditory nerve and within multiple levels of the central auditory pathway. Long-term maintenance of tinnitus is likely a function of a complex network of structures involving central auditory and nonauditory systems. Conclusions Patients often have expectations that a treatment exists to cure their tinnitus. They should be made aware that research is increasing to discover such a cure and that their reactions to tinnitus can be mitigated through the use of evidence-based behavioral interventions. PMID:24622858

  8. A fracture mechanics study of tungsten failure under high heat flux loads

    International Nuclear Information System (INIS)

    Li, Muyuan

    2015-01-01

    The performance of fusion devices is highly dependent on plasma-facing components. Tungsten is the most promising candidate material for armors in plasma-facing components in ITER and DEMO. However, the brittleness of tungsten below the ductile-to-brittle transition temperature is very critical to the reliability of plasma-facing components. In this work, thermo-mechanical and fracture behaviors of tungsten are predicted numerically under fusion relevant thermal loadings.

  9. Effect of fuel assembly mechanical design changes on dynamic response of reactor pressure vessel system under extreme loadings

    International Nuclear Information System (INIS)

    Bhandari, D.R.; Hankinson, M.F.

    1993-01-01

    This paper presents the results of a study to assess the effect of fuel assembly mechanical design changes on the dynamic response of a pressurized water reactor vessel and reactor internals under Loss-Of-Coolant Accident (LOCA) conditions. The results of this study show that the dynamic response of the reactor vessel internals and the core under extreme loadings, such as LOCA, is very sensitive to fuel assembly mechanical design changes. (author)

  10. Study of the changes in the magnetic properties of stainless steels under mechanical treatment

    Energy Technology Data Exchange (ETDEWEB)

    Iankov, R.; Rusanov, V., E-mail: rusanov@phys.uni-sofia.bg [Magna Powertrain Ltd., Industrial Zone Rakowski (Bulgaria); Paneva, D.; Mitov, I. [Institute of Catalysis, Bulgarian Academy of Sciences (Bulgaria); Trautwein, A. X. [Institut für Physik, Universität zu Lübeck (Germany)

    2016-12-15

    Six types of stainless steels (SS) were studied for changes in its structure and magnetic properties under mechanical treatment. Depending on intensity and duration of the process of plastic deformation and the SS type the paramagnetic austenite structure transforms partially to completely into ferrite structure with ferromagnetic behaviour. Some of the SS tested were found slightly modified yet in the process of its manufacturing. Only one SS type with high Ni content preserved its structure and paramagnetic properties even after very intense mechanical treatment.

  11. Different intra- and interspecific facilitation mechanisms between two Mediterranean trees under a climate change scenario.

    Science.gov (United States)

    Gimeno, Teresa E; Escudero, Adrián; Valladares, Fernando

    2015-01-01

    In harsh environments facilitation alleviates biotic and abiotic constraints on tree recruitment. Under ongoing drier climate change, we expect facilitation to increase as a driver of coexistence. However, this might not hold under extreme abiotic stress and when the outcome depends on the interaction with other drivers such as altered herbivore pressure due to land use change. We performed a field water-manipulation experiment to quantify the importance of facilitation in two coexisting Mediterranean trees (dominant Juniperus thurifera and coexisting Quercus ilex subsp. ballota) under a climate change scenario. Shifts in canopy dominance favouring Q. ilex could be based on the extension of heterospecific facilitation to the detriment of conspecific alleviation. We found that saplings of both species transplanted under the canopy of nurse trees had greater survival probability, growth and photochemical efficiency. Intra- and interspecific facilitation mechanisms differed: alleviation of abiotic stress benefited both species during summer and J. thurifera during winter, whereas browsing protection was relevant only for Q. ilex. Facilitation was greater under the dry treatment only for Q. ilex, which partially agreed with the predictions of the stress gradient hypothesis. We conclude that present rainfall availability limits neither J. thurifera nor Q. ilex establishment. Nevertheless, under current global change scenarios, imposing increasing abiotic stress together with altered herbivore browsing, nurse trees could differentially facilitate the establishment of Q. ilex due to species-specific traits, i.e. palatability; drought, heat and cold tolerance, underlying species differences in the facilitation mechanisms and eventually triggering a change from pure juniper woodlands to mixed formations.

  12. Identification and Sensitivity Analysis for Average Causal Mediation Effects with Time-Varying Treatments and Mediators: Investigating the Underlying Mechanisms of Kindergarten Retention Policy.

    Science.gov (United States)

    Park, Soojin; Steiner, Peter M; Kaplan, David

    2018-06-01

    Considering that causal mechanisms unfold over time, it is important to investigate the mechanisms over time, taking into account the time-varying features of treatments and mediators. However, identification of the average causal mediation effect in the presence of time-varying treatments and mediators is often complicated by time-varying confounding. This article aims to provide a novel approach to uncovering causal mechanisms in time-varying treatments and mediators in the presence of time-varying confounding. We provide different strategies for identification and sensitivity analysis under homogeneous and heterogeneous effects. Homogeneous effects are those in which each individual experiences the same effect, and heterogeneous effects are those in which the effects vary over individuals. Most importantly, we provide an alternative definition of average causal mediation effects that evaluates a partial mediation effect; the effect that is mediated by paths other than through an intermediate confounding variable. We argue that this alternative definition allows us to better assess at least a part of the mediated effect and provides meaningful and unique interpretations. A case study using ECLS-K data that evaluates kindergarten retention policy is offered to illustrate our proposed approach.

  13. A Resource Sharing Mechanism for Sustainable Production in the Garment Industry

    Directory of Open Access Journals (Sweden)

    Ke Ma

    2017-12-01

    Full Text Available With the development of mass customization, the traditional garment production model needs to be optimized to have a more sustainable structure. To meet demand for flexibility, low-cost, and high-efficiency, an innovative resource sharing mechanism was proposed in this paper to form a new sustainable type of garment production. Different from the individual production in traditional models, the new mechanism involves resources being shared among various manufacturers. The tradeoff between positive and negative effects of the proposed mechanism is a key issue for sustainable production. In the present study, an overall sustainable index, integrating four production performance indicators, was defined on the basis of an Analytical Network Process to assess various production scenarios. According to the discrete-event simulation results of the different scenarios, we found that garment manufacturers could obtain comprehensive improvements in sustainable production by implementing the proposed resource sharing mechanism under the threshold of an increasing production failure rate.

  14. Experimental study of the anisotropic properties of argillite under moisture and mechanical loads

    International Nuclear Information System (INIS)

    Yang, D.S.; Chanchole, S.; Wang, L.L.; Bornert, M.; Gatmiri, B.

    2012-01-01

    Document available in extended abstract form only. Due to various factors, such as sedimentation, layered morphology of clay mineral, in-situ stress, etc., the behavior of argillite rocks is often anisotropic. In order to study the anisotropy of the Callovo-Oxfordian (COx) argillite considered as a possible host rock for high-level radioactive nuclear waste repository in France, a series of tests including uniaxial compression and dehydration and hydration at different constant applied stress levels, are carried out using a specific setup combining mechanical and moisture loading devices. During these hydro-mechanical tests, this specific setup can also continuously capture images of the sample surfaces to be subsequently analyzed using Digital Image Correlation techniques (DIC) in order to determine full-field strains. In this study, three sampling directions are used with the angle θ between the bedding plane and the cylindrical sample axis equal to 45 deg., 60 deg. and 90 deg.. To investigate the mechanical anisotropy, uniaxial compressive tests with mechanical loading and unloading cycles are performed on several different samples at the same moisture level. The results show that the mechanical parameters (apparent modulus, failure stress) depend on loading orientation relative to the stratification plane. For a given water content, the failure stress reaches maximum values for θ =90 deg. and minimum values for θ =45 deg.. To study the hydric anisotropy, dehydration and hydration tests under stress-free conditions are performed on two cylindrical samples (θ=90 deg. and θ=60 deg.). Three cycles of hydration and dehydration are carried out by varying the relative humidity between 40% and 95%. The sample weight, the deformation measured by strain gages and the relative humidity are continuously recorded during the test by means of another specific setup described in [Pham et al., 2007]. Fig.1a illustrates the evolution of the strains of the sample EST28030-No

  15. A numerical study of crack interactions under thermo-mechanical load using EFGM

    International Nuclear Information System (INIS)

    Pant, Mohit; Singh, I. V.; Mishra, B. K.

    2011-01-01

    In this work, element free Galerkin method (EFGM) has been used to obtain the solution of various edge crack problems under thermo-mechanical loads as it provides a versatile technique to model stationary as well as moving crack problems without re-meshing. Standard diffraction criterion has been modified with multiple crack weight technique to characterize the presence of various cracks in the domain of influence of a particular node. The effect of crack inclination has been studied for single as well as two edge cracks, whereas the cracks interaction has been studied for two edge cracks lying on same as well as opposite edges under plane stress conditions. The values of mode-I and mode-II stress intensity factors have been evaluated by the interaction integral approach

  16. Numerical simulation of lead devices for seismic isolation and vibration control on their damping characteristics. Development of lead material model under cyclic large deformation

    International Nuclear Information System (INIS)

    Matsuda, Akihiro; Yabana, Shuichi; Borst, Rene de

    2004-01-01

    In order to predict the mechanical properties of lead devices for seismic isolation and vibration control, especially damping behavior under cyclic loading using numerical simulation, cyclic shear loading tests and uniaxial tensile loading tests were performed, and a new material model was proposed with the use of the both test results. Until now, it has been difficult to evaluate mechanical properties of lead material under cyclic loading by uniaxial tensile loading test because local deformations appeared with the small tensile strain. Our shear cyclic loading tests for lead material enabled practical evaluation of its mechanical properties under cyclic large strain which makes it difficult to apply uniaxial test. The proposed material model was implemented into a finite element program, and it was applied to numerical simulation of mechanical properties of lead dampers and rubber bearings with a lead plug. The numerical simulations and the corresponding laboratory loading tests showed good agreement, which proved the applicability of the proposed model. (author)

  17. Modeling and Proposed Molecular Mechanism of Hydroxyurea Through Docking and Molecular Dynamic Simulation to Curtail the Action of Ribonucleotide Reductase.

    Science.gov (United States)

    Iman, Maryam; Khansefid, Zeynab; Davood, Asghar

    2016-01-01

    Ribonucleotide Reductase (RNR) is an important anticancer chemotherapy target. It has main key role in DNA synthesis and cell growth. Therefore several RNR inhibitors, such as hydroxyurea, have entered the clinical trials. Based on our proposed mechanism, radical site of RNR protein reacts with hydroxyurea in which hydroxyurea is converted into its oxidized form compound III, and whereby the tyrosyl radical is converted into a normal tyrosine residue. In this study, docking and molecular dynamics simulations were used for proposed molecular mechanism of hydroxyurea in RNR inhibition as anticancer agent. The binding affinity of hydroxyurea and compound III to RNR was studied by docking method. The docking study was performed for the crystal structure of human RNR with the radical scavenger Hydroxyurea and its oxidized form to inhibit the human RNR. hydroxyurea and compound III bind at the active site with Tyr-176, which are essential for free radical formation. This helps to understand the functional aspects and also aids in the development of novel inhibitors for the human RNR2. To confirm the binding mode of inhibitors, the molecular dynamics (MD) simulations were performed using GROMACS 4.5.5, based upon the docked conformation of inhibitors. Both of the studied compounds stayed in the active site. The results of MD simulations confirmed the binding mode of ligands, accuracy of docking and the reliability of active conformations which were obtained by AutoDock. MD studies confirm our proposed mechanism in which compound III reacts with the active site residues specially Tyr-176, and inhibits the radical generation and subsequently inhibits the RNR enzyme.

  18. Mechanical design and fabrication of a prototype undulator for Indus-2

    International Nuclear Information System (INIS)

    Veerabhadhraiah, T.; Sinha, Gautam; Prabhu, S.S.

    2011-01-01

    An Apple II type undulator is proposed for 2.5 GeV SRS. For initial studies of magnetic parameters and manufacturing feasibilities, a 6 periods prototype undulator of period length 72 mm and pole gap 20 mm is under development. Mechanical structure with stringent tolerances is required to achieve the required field quality. Stress analysis has been done to study the deflection under the magnetic forces. The prototype structure along with the magnet block holders has been made and mechanical dimensions and geometric tolerances have been measured. In this paper we present the preliminary mechanical design and assembly of static parts of prototype undulator structure. (author)

  19. Temperature-dependent dynamic mechanical properties of magnetorheological elastomers under magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Benxiang, E-mail: jubenxiang@qq.com [National Instrument Functional Materials Engineering Technology Research Center, Chongqing 400707 (China); Tang, Rui; Zhang, Dengyou; Yang, Bailian [National Instrument Functional Materials Engineering Technology Research Center, Chongqing 400707 (China); Yu, Miao; Liao, Changrong [College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China)

    2015-01-15

    Both anisotropic and isotropic magnetorheological elastomer (MRE) samples were fabricated by using as-prepared polyurethane (PU) matrix and carbonyl iron particles. Temperature-dependent dynamic mechanical properties of MRE were investigated and analyzed. Due to the unique structural features of as-prepared matrix, temperature has a greater impact on the properties of as-prepared MRE, especially isotropic MRE. With increasing of temperature and magnetic field, MR effect of isotropic MRE can reach up to as high as 4176.5% at temperature of 80 °C, and the mechanism of the temperature-dependent in presence of magnetic field was discussed. These results indicated that MRE is a kind of temperature-dependent material, and can be cycled between MRE and MR plastomer (MRP) by varying temperature. - Highlights: • Both anisotropic and isotropic MRE were fabricated by using as-prepared matrix. • Temperature-dependent properties of MRE under magnetic field were investigated. • As-prepared MRE can transform MRE to MRP by adjusting temperature.

  20. Mechanical properties and fracture behaviour of defective phosphorene nanotubes under uniaxial tension

    Science.gov (United States)

    Liu, Ping; Pei, Qing-Xiang; Huang, Wei; Zhang, Yong-Wei

    2017-12-01

    The easy formation of vacancy defects and the asymmetry in the two sublayers of phosphorene nanotubes (PNTs) may result in brand new mechanical properties and failure behaviour. Herein, we investigate the mechanical properties and fracture behaviour of defective PNTs under uniaxial tension using molecular dynamics simulations. Our simulation results show that atomic vacancies cause local stress concentration and thus significantly reduce the fracture strength and fracture strain of PNTs. More specifically, a 1% defect concentration is able to reduce the fracture strength and fracture strain by as much as 50% and 66%, respectively. Interestingly, the reduction in the mechanical properties is found to depend on the defect location: a defect located in the outer sublayer has a stronger effect than one located in the inner layer, especially for PNTs with a small diameter. Temperature is also found to strongly influence the mechanical properties of both defect-free and defective PNTs. When the temperature is increased from 0 K to 400 K, the fracture strength and fracture strain of defective PNTs with a defect concentration of 1% are reduced further by 71% and 61%, respectively. These findings are of great importance for the structural design of PNTs as building blocks in nanodevices.

  1. Loosening and damage mechanism of thread-joined structures in nuclear power equipment

    International Nuclear Information System (INIS)

    Tang Hui

    1999-01-01

    The author proposes a loosening mechanism of thread-joined structures under vibrate environments in the nuclear power equipment and structures, which is on the base of the macro and imperceptible-mechanics analysis. It has answered the problems on the seizing, the adhesive wearing, the generation of cracks, the thread-tooth fracture. So it has a conclusion that the loosening of thread-joined structures is essential trend, in other words, the locking property of thread-pair is failure under vibrate environments

  2. Magnetization reversal mechanisms under oblique magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Ntallis, N.; Efthimiadis, K.G., E-mail: kge@auth.gr

    2017-03-01

    In this work finite element micromagnetic simulations were performed in order to study the reversal mechanisms of spherical ferromagnetic particles with uniaxial magnetocrystalline anisotropy, when they are magnetized along an oblique direction with respect to the anisotropy axis. Magnetization loops are taken in different directions of external magnetic field, at different anisotropy constants and particle sizes. In the simulation results, the three reversal mechanisms (coherent, curling and domains) are observed and new phenomena arise due to the action of oblique magnetic fields. Moreover, the dependence of the critical fields with respect to the angle of the external field is presented. - Highlights: • Finite element micromagnetic simulation of the three different reversal mechanisms. • For the curling mechanism, the new phenomenon is the rotation of the vortex. • In the domain reversal mechanism, the formed domain wall is smaller than 180°. • In soft ferromagnetic particles a rearrangement of the magnetic domains is observed.

  3. Electromigration failures under bidirectional current stress

    Science.gov (United States)

    Tao, Jiang; Cheung, Nathan W.; Hu, Chenming

    1998-01-01

    Electromigration failure under DC stress has been studied for more than 30 years, and the methodologies for accelerated DC testing and design rules have been well established in the IC industry. However, the electromigration behavior and design rules under time-varying current stress are still unclear. In CMOS circuits, as many interconnects carry pulsed-DC (local VCC and VSS lines) and bidirectional AC current (clock and signal lines), it is essential to assess the reliability of metallization systems under these conditions. Failure mechanisms of different metallization systems (Al-Si, Al-Cu, Cu, TiN/Al-alloy/TiN, etc.) and different metallization structures (via, plug and interconnect) under AC current stress in a wide frequency range (from mHz to 500 MHz) has been study in this paper. Based on these experimental results, a damage healing model is developed, and electromigration design rules are proposed. It shows that in the circuit operating frequency range, the "design-rule current" is the time-average current. The pure AC component of the current only contributes to self-heating, while the average (DC component) current contributes to electromigration. To ensure longer thermal-migration lifetime under high frequency AC stress, an additional design rule is proposed to limit the temperature rise due to self-joule heating.

  4. Neurodevelopmental Disorders and Environmental Toxicants: Epigenetics as an Underlying Mechanism

    Science.gov (United States)

    2017-01-01

    The increasing prevalence of neurodevelopmental disorders, especially autism spectrum disorders (ASD) and attention deficit hyperactivity disorder (ADHD), calls for more research into the identification of etiologic and risk factors. The Developmental Origin of Health and Disease (DOHaD) hypothesizes that the environment during fetal and childhood development affects the risk for many chronic diseases in later stages of life, including neurodevelopmental disorders. Epigenetics, a term describing mechanisms that cause changes in the chromosome state without affecting DNA sequences, is suggested to be the underlying mechanism, according to the DOHaD hypothesis. Moreover, many neurodevelopmental disorders are also related to epigenetic abnormalities. Experimental and epidemiological studies suggest that exposure to prenatal environmental toxicants is associated with neurodevelopmental disorders. In addition, there is also evidence that environmental toxicants can result in epigenetic alterations, notably DNA methylation. In this review, we first focus on the relationship between neurodevelopmental disorders and environmental toxicants, in particular maternal smoking, plastic-derived chemicals (bisphenol A and phthalates), persistent organic pollutants, and heavy metals. We then review studies showing the epigenetic effects of those environmental factors in humans that may affect normal neurodevelopment. PMID:28567415

  5. MECHANICAL BEHAVIOR OF PRESTRESSED VISCOELASTIC ADHESIVE AREAS UNDER COMBINING LOADINGS

    Directory of Open Access Journals (Sweden)

    Halil Murat Enginsoy

    2017-12-01

    Full Text Available In this article, mechanical behaviors of adhesive tape VHB 4950 elastomeric material, which is an element of acrylic polymer group and which is in viscoelastic behavior, under different pre-stress conditions and complex forces of different geometric parameters created by combining loadings have been experimentally and numerically investigated. In experimental studies, loading-unloading cyclic tests, one of the different standardized tests for the mechanical characterization of viscoelastic material, have been applied which give the most suitable convergent optimization parameters for the finite element model. Different material models were also investigated by using the data obtained from loading-unloading test results in all numerical models. According to the experimental results, the most suitable material parameters were determined with the Abaqus Parallel Rheological Framework Model (PRF for 4 Yeoh Networks with Bergstrom-Boyce Flow model created in the Mcalibration software for finite element analysis. Subsequently, using these material parameters, finite element analysis was performed as three dimension non-linear viscoelastic with a commercial finite element software Abaqus. The finite element analysis results showed good correlation to the Force (N-Displacement (mm experimental data for maximum load-carrying capacity of structural specimens.

  6. Neurodevelopmental Disorders and Environmental Toxicants: Epigenetics as an Underlying Mechanism

    Directory of Open Access Journals (Sweden)

    Nguyen Quoc Vuong Tran

    2017-01-01

    Full Text Available The increasing prevalence of neurodevelopmental disorders, especially autism spectrum disorders (ASD and attention deficit hyperactivity disorder (ADHD, calls for more research into the identification of etiologic and risk factors. The Developmental Origin of Health and Disease (DOHaD hypothesizes that the environment during fetal and childhood development affects the risk for many chronic diseases in later stages of life, including neurodevelopmental disorders. Epigenetics, a term describing mechanisms that cause changes in the chromosome state without affecting DNA sequences, is suggested to be the underlying mechanism, according to the DOHaD hypothesis. Moreover, many neurodevelopmental disorders are also related to epigenetic abnormalities. Experimental and epidemiological studies suggest that exposure to prenatal environmental toxicants is associated with neurodevelopmental disorders. In addition, there is also evidence that environmental toxicants can result in epigenetic alterations, notably DNA methylation. In this review, we first focus on the relationship between neurodevelopmental disorders and environmental toxicants, in particular maternal smoking, plastic-derived chemicals (bisphenol A and phthalates, persistent organic pollutants, and heavy metals. We then review studies showing the epigenetic effects of those environmental factors in humans that may affect normal neurodevelopment.

  7. The prestress-dependent mechanical response of magnetorheological elastomers

    International Nuclear Information System (INIS)

    Feng, Jiabin; Xuan, Shouhu; Liu, Taixiang; Ge, Lin; Zhou, Hong; Gong, Xinglong; Yan, Lixun

    2015-01-01

    Magnetorheological elastomers (MREs) are intelligent materials consisting of a rubber matrix filled with magnetizable particles. In many engineering applications, MREs are usually pre-confined and work with constraint-induced prestress. The prestress can significantly change the mechanical properties of MREs. In this work, the influence of prestress on the mechanical response of MREs is studieds both experimentally and theoretically. The storage modulus as well as the magneto-induced modulus change non-linearly with increasing prestress and three regions can be found in the non-linear change. In the non-full contact region, the MREs present poor mechanical properties at small prestress due to the unevenness of the sample surface. In the full contact region, the MREs are under suitable prestress, thus they present good mechanical properties. In the overload region, the pre-configured microstructure of the MREs is destroyed under the large prestress. Moreover, an analytical model is proposed to study the prestress-dependent mechanical properties of MREs. It is revealed that the prestress can change the inter-particle distance, thus further affecting the mechanical response of MREs. (paper)

  8. Prediction study on mechanical and thermodynamic properties of orthorhombic Mg2SiO4 under high temperature

    International Nuclear Information System (INIS)

    Zhou, Jianting; Zhang, Hong; Chen, Yue; Shong, Jun; Chen, Zhuo; Yang, Juan; Zheng, Zhou; Wang, Feng

    2014-01-01

    In this work, based on density functional theory and quasi-harmonic Debye model, mechanical and thermodynamic properties of orthorhombic Mg 2 SiO 4 under high temperature are predicted. We found out that α-Mg 2 SiO 4 is mechanically stable under the condition from about 0 to 74 GPa. Results indicate that the main cause of mechanical instability is high pressure, and the effect caused by high temperature is small. C 11 , C 22 , C 33 , B and v p reduce with temperature just a little and increase with pressure obviously. Mg 2 SiO 4 has excellent resistance to strong compression; however the resistance to shear is unsatisfactory. The C v tends to the Petit and Dulong limit at high temperature under any pressure, and it is proportional to T 3 at extremely low temperature. Pressure has an opposite effect on C v than temperature. The suppressed effect on C v caused by pressure is not obvious under low and very high temperature. Mg 2 SiO 4 has three different thermal expansion coefficients (α) along a-, b- and c-axes, and α a <α c <α b . α increases rapidly at low temperature (about <300 K), and slows down at high temperature. High pressure would greatly suppress expansion caused by temperature. Nevertheless, increasing tendency of α b and α c is still obvious under high pressure, especially α b . All the properties are mainly due to Si–O covalent bonds and their directions

  9. Estimation of mechanical properties of gelatin using a microbubble under acoustic radiation force

    International Nuclear Information System (INIS)

    Shirota, Eriko; Ando, Keita

    2015-01-01

    This paper is concerned with observations of the translation of a microbubble (80 μm or 137 μm in radius) in a viscoelastic medium (3 w% gelatin), which is induced by acoustic radiation force originating from 1 MHz focused ultrasound. An optical system using a high-speed camera was designed to visualize the bubble translation and deformation. If the bubble remains its spherical shape under the sonication, the bubble translation we observed can be described by theory based on the Voigt model for linear viscoelastic solids; mechanical properties of the gelatin are calculated from measurements of the terminal displacement under the sonication. (paper)

  10. Active fault-tolerant control strategy of large civil aircraft under elevator failures

    Directory of Open Access Journals (Sweden)

    Wang Xingjian

    2015-12-01

    Full Text Available Aircraft longitudinal control is the most important actuation system and its failures would lead to catastrophic accident of aircraft. This paper proposes an active fault-tolerant control (AFTC strategy for civil aircraft with different numbers of faulty elevators. In order to improve the fault-tolerant flight control system performance and effective utilization of the control surface, trimmable horizontal stabilizer (THS is considered to generate the extra pitch moment. A suitable switching mechanism with performance improvement coefficient is proposed to determine when it is worthwhile to utilize THS. Furthermore, AFTC strategy is detailed by using model following technique and the proposed THS switching mechanism. The basic fault-tolerant controller is designed to guarantee longitudinal control system stability and acceptable performance degradation under partial elevators failure. The proposed AFTC is applied to Boeing 747-200 numerical model and simulation results validate the effectiveness of the proposed AFTC approach.

  11. Silver nanoparticles in aquatic environments: Physiochemical behavior and antimicrobial mechanisms.

    Science.gov (United States)

    Zhang, Chiqian; Hu, Zhiqiang; Deng, Baolin

    2016-01-01

    Nanosilver (silver nanoparticles or AgNPs) has unique physiochemical properties and strong antimicrobial activities. This paper provides a comprehensive review of the physicochemical behavior (e.g., dissolution and aggregation) and antimicrobial mechanisms of nanosilver in aquatic environments. The inconsistency in calculating the Gibbs free energy of formation of nanosilver [ΔGf(AgNPs)] in aquatic environments highlights the research needed to carefully determine the thermodynamic stability of nanosilver. The dissolutive release of silver ion (Ag(+)) in the literature is often described using a pseudo-first-order kinetics, but the fit is generally poor. This paper proposes a two-stage model that could better predict silver ion release kinetics. The theoretical analysis suggests that nanosilver dissolution could occur under anoxic conditions and that nanosilver may be sulfidized to form silver sulfide (Ag2S) under strict anaerobic conditions, but more investigation with carefully-designed experiments is required to confirm the analysis. Although silver ion release is likely the main antimicrobial mechanism of nanosilver, the contributions of (ion-free) AgNPs and reactive oxygen species (ROS) generation to the overall toxicity of nanosilver must not be neglected. Several research directions are proposed to better understand the dissolution kinetics of nanosilver and its antimicrobial mechanisms under various aquatic environmental conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Underlying mechanism of drug-drug interaction between pioglitazone and gemfibrozil: Gemfibrozil acyl-glucuronide is a mechanism-based inhibitor of CYP2C8.

    Science.gov (United States)

    Takagi, Motoi; Sakamoto, Masaya; Itoh, Tomoo; Fujiwara, Ryoichi

    2015-08-01

    While co-administered gemfibrozil can increase the area under the concentration/time curve (AUC) of pioglitazone more than 3-fold, the underlying mechanism of the drug-drug interaction between gemfibrozil and pioglitazone has not been fully understood. In the present study, gemfibrozil preincubation time-dependently inhibited the metabolism of pioglitazone in the cytochrome P450 (CYP)- and UDP-glucuronosyltransferase (UGT)-activated human liver microsomes. We estimated the kinact and K'app values, which are the maximum inactivation rate constant and the apparent dissociation constant, of gemfibrozil to be 0.071 min(-1) and 57.3 μM, respectively. In this study, the kobs, in vivo value was defined as a parameter that indicates the potency of the mechanism-based inhibitory effect at the blood drug concentration in vivo. The kobs, in vivo values of potent mechanism-based inhibitors, clarithromycin and erythromycin, were estimated to be 0.0096 min(-1) and 0.0051 min(-1), respectively. The kobs, in vivo value of gemfibrozil was 0.0060 min(-1), which was comparable to those of clarithromycin and erythromycin, suggesting that gemfibrozil could be a mechanism-based inhibitor as potent as clarithromycin and erythromycin in vivo. Copyright © 2015 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  13. Word learning mechanisms.

    Science.gov (United States)

    He, Angela Xiaoxue; Arunachalam, Sudha

    2017-07-01

    How do children acquire the meanings of words? Many word learning mechanisms have been proposed to guide learners through this challenging task. Despite the availability of rich information in the learner's linguistic and extralinguistic input, the word-learning task is insurmountable without such mechanisms for filtering through and utilizing that information. Different kinds of words, such as nouns denoting object concepts and verbs denoting event concepts, require to some extent different kinds of information and, therefore, access to different kinds of mechanisms. We review some of these mechanisms to examine the relationship between the input that is available to learners and learners' intake of that input-that is, the organized, interpreted, and stored representations they form. We discuss how learners segment individual words from the speech stream and identify their grammatical categories, how they identify the concepts denoted by these words, and how they refine their initial representations of word meanings. WIREs Cogn Sci 2017, 8:e1435. doi: 10.1002/wcs.1435 This article is categorized under: Linguistics > Language Acquisition Psychology > Language. © 2017 Wiley Periodicals, Inc.

  14. Mechanisms Underlying the Anti-Aging and Anti-Tumor Effects of Lithocholic Bile Acid

    Directory of Open Access Journals (Sweden)

    Anthony Arlia-Ciommo

    2014-09-01

    Full Text Available Bile acids are cholesterol-derived bioactive lipids that play essential roles in the maintenance of a heathy lifespan. These amphipathic molecules with detergent-like properties display numerous beneficial effects on various longevity- and healthspan-promoting processes in evolutionarily distant organisms. Recent studies revealed that lithocholic bile acid not only causes a considerable lifespan extension in yeast, but also exhibits a substantial cytotoxic effect in cultured cancer cells derived from different tissues and organisms. The molecular and cellular mechanisms underlying the robust anti-aging and anti-tumor effects of lithocholic acid have emerged. This review summarizes the current knowledge of these mechanisms, outlines the most important unanswered questions and suggests directions for future research.

  15. Proposal for New Experimental Tests of the Bose-Einstein Condensation Mechanism for Low-Energy Nuclear Reaction and Transmutation Processes in Deuterium Loaded - and Nano-Scale Cavities

    Science.gov (United States)

    Kim, Yeong E.; Koltick, David S.; Reifenberger, Ronald G.; Zubarev, Alexander L.

    2006-02-01

    Most of experimental results of low-energy nuclear reaction (LENR) reported so far cannot be reproduced on demand. There have been persistent experimental results indicating that the LENR and transmutation processes in condensed matters (LENRTPCM) are surface phenomena rather than bulk phenomena. Recently proposed Bose-Einstein condensation (BEC) mechanism may provide a suitable theoretical description of the surface phenomena. New experiments are proposed and described for testing the BEC mechanism for LENR and transmutation processes in micro- and nano-scale traps. (1) We propose the use of micro- or nano-porous conducting materials as a cathode in electrolysis experiments with heavy water with or without Li in order to stabilize the active surface spots and to enhance the effect for the purpose of improving the reproducibility of excess heat generation and nuclear emission. (2) We propose new experimental tests of the BEC mechanism by measuring the pressure and temperature dependence of LENR events using deuterium gas and these deuterated metals with or without Li. If the LENRTPCM are surface phenomena, the proposed use of micro-/nano-scale porous materials is expected to enhance and scale up the LENRTPCM effects by many order of magnitude, and thus may lead to better reproductivity and theoretical understanding of the phenomena.

  16. Optimal transmission planning under the Mexican new electricity market

    International Nuclear Information System (INIS)

    Zenón, Eric; Rosellón, Juan

    2017-01-01

    This paper addresses electricity transmission planning under the new industry and institutional structure of the Mexican electricity market, which has engaged in a deep reform process after decades of a state-owned-vertically-integrated-non-competitive-closed industry. Under this new structure, characterized by a nodal pricing system and an independent system operator (ISO), we analyze welfare-optimal network expansion with two modeling strategies. In a first model, we propose the use of an incentive price-cap mechanism to promote the expansion of Mexican networks. In a second model, we study centrally-planned grid expansion in Mexico by an ISO within a power-flow model. We carry out comparisons of these models which provide us with hints to evaluate the actual transmission planning process proposed by Mexican authorities (PRODESEN). We obtain that the PRODESEN plan appears to be a convergent welfare-optimal planning process. - Highlights: • We model transmission planning (PRODESEN) in the Mexican new electricity market. • We propose a first model with a price-cap mechanism to promote network expansion. • In a second power-flow model, we study centrally-planned grid expansions. • The PRODESEN appears to be a convergent welfare-optimal planning process. • Incentive regulation could further help to implement such an optimal process.

  17. Mechanical Behavior of Red Sandstone under Incremental Uniaxial Cyclical Compressive and Tensile Loading

    Directory of Open Access Journals (Sweden)

    Baoyun Zhao

    2017-01-01

    Full Text Available Uniaxial experiments were carried out on red sandstone specimens to investigate their short-term and creep mechanical behavior under incremental cyclic compressive and tensile loading. First, based on the results of short-term uniaxial incremental cyclic compressive and tensile loading experiments, deformation characteristics and energy dissipation were analyzed. The results show that the stress-strain curve of red sandstone has an obvious memory effect in the compressive and tensile loading stages. The strains at peak stresses and residual strains increase with the cycle number. Energy dissipation, defined as the area of the hysteresis loop in the stress-strain curves, increases nearly in a power function with the cycle number. Creep test of the red sandstone was also conducted. Results show that the creep curve under each compressive or tensile stress level can be divided into decay and steady stages, which cannot be described by the conventional Burgers model. Therefore, an improved Burgers creep model of rock material is constructed through viscoplastic mechanics, which agrees very well with the experimental results and can describe the creep behavior of red sandstone better than the Burgers creep model.

  18. The tunable mechanical property of water-filled carbon nanotubes under an electric field

    Science.gov (United States)

    Ye, Hongfei; Zhang, Zhongqiang; Zhang, Hongwu; Chen, Zhen; Zong, Zhi; Zheng, Yonggang

    2014-03-01

    The spring-induced compression of water-filled carbon nanotubes (CNTs) under an electric field is investigated by molecular dynamics simulations. Due to the incompressibility and polarity of water, the mechanical property of CNTs can be tuned through filling with water molecules and applying an electric field. To explore the variation of the mechanical property of water-filled CNTs, the effects of the CNT length, the filling density and the electric field intensity are examined. The simulation results indicate that the water filling and electric field can result in a slight change in the elastic property (the elastic modulus and Poisson's ratio) of water-filled CNTs. However, the yield stress and average post-buckling stress exhibit a significant response to the water density and electric field intensity. As compared to hollow CNTs, the increment in yield stress of the water-filled CNTs under an electric field of 2.0 V Å-1 is up to 35.29%, which is even higher than that resulting from metal filling. The findings from this study provide a valuable theoretical basis for designing and fabricating the controlling units at the nanoscale.

  19. Oxidative stress-induced telomeric erosion as a mechanism underlying airborne particulate matter-related cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Grahame Thomas J

    2012-06-01

    Full Text Available Abstract Particulate matter (PM pollution is responsible for hundreds of thousands of deaths worldwide, the majority due to cardiovascular disease (CVD. While many potential pathophysiological mechanisms have been proposed, there is not yet a consensus as to which are most important in causing pollution-related morbidity/mortality. Nor is there consensus regarding which specific types of PM are most likely to affect public health in this regard. One toxicological mechanism linking exposure to airborne PM with CVD outcomes is oxidative stress, a contributor to the development of CVD risk factors including atherosclerosis. Recent work suggests that accelerated shortening of telomeres and, thus, early senescence of cells may be an important pathway by which oxidative stress may accelerate biological aging and the resultant development of age-related morbidity. This pathway may explain a significant proportion of PM-related adverse health outcomes, since shortened telomeres accelerate the progression of many diseases. There is limited but consistent evidence that vehicular emissions produce oxidative stress in humans. Given that oxidative stress is associated with accelerated erosion of telomeres, and that shortened telomeres are linked with acceleration of biological ageing and greater incidence of various age-related pathology, including CVD, it is hypothesized that associations noted between certain pollution types and sources and oxidative stress may reflect a mechanism by which these pollutants result in CVD-related morbidity and mortality, namely accelerated aging via enhanced erosion of telomeres. This paper reviews the literature providing links among oxidative stress, accelerated erosion of telomeres, CVD, and specific sources and types of air pollutants. If certain PM species/sources might be responsible for adverse health outcomes via the proposed mechanism, perhaps the pathway to reducing mortality/morbidity from PM would become clearer

  20. A constitutive mechanical model for gas hydrate bearing sediments incorporating inelastic mechanisms

    KAUST Repository

    Sánchez, Marcelo

    2016-11-30

    Gas hydrate bearing sediments (HBS) are natural soils formed in permafrost and sub-marine settings where the temperature and pressure conditions are such that gas hydrates are stable. If these conditions shift from the hydrate stability zone, hydrates dissociate and move from the solid to the gas phase. Hydrate dissociation is accompanied by significant changes in sediment structure and strongly affects its mechanical behavior (e.g., sediment stiffenss, strength and dilatancy). The mechanical behavior of HBS is very complex and its modeling poses great challenges. This paper presents a new geomechanical model for hydrate bearing sediments. The model incorporates the concept of partition stress, plus a number of inelastic mechanisms proposed to capture the complex behavior of this type of soil. This constitutive model is especially well suited to simulate the behavior of HBS upon dissociation. The model was applied and validated against experimental data from triaxial and oedometric tests conducted on manufactured and natural specimens involving different hydrate saturation, hydrate morphology, and confinement conditions. Particular attention was paid to model the HBS behavior during hydrate dissociation under loading. The model performance was highly satisfactory in all the cases studied. It managed to properly capture the main features of HBS mechanical behavior and it also assisted to interpret the behavior of this type of sediment under different loading and hydrate conditions.

  1. Suicide Clusters: A Review of Risk Factors and Mechanisms

    Science.gov (United States)

    Haw, Camilla; Hawton, Keith; Niedzwiedz, Claire; Platt, Steve

    2013-01-01

    Suicide clusters, although uncommon, cause great concern in the communities in which they occur. We searched the world literature on suicide clusters and describe the risk factors and proposed psychological mechanisms underlying the spatio-temporal clustering of suicides (point clusters). Potential risk factors include male gender, being an…

  2. Fatigue degradation and failure of rotating composite structures - Materials characterisation and underlying mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Gamstedt, E K; Andersen, S I

    2001-03-01

    The present review concerns rotating composite structures, in which fatigue degradation is of key concern for in-service failure. Such applications are for instance rotor blades in wind turbines, helicopter rotor blades, flywheels for energy storage, marine and aeronautical propellers, and rolls for paper machines. The purpose is to identify areas where impending efforts should be made to make better use of composite materials in these applications. In order to obtain better design methodologies, which would allow more reliable and slender structures, improved test methods are necessary. Furthermore, the relation between structural, component and specimen test results should be better understood than what is presently the case. Improved predictive methods rely on a better understanding of the underlying damage mechanisms. With mechanism-based models, the component substructure or even the material microstructure could be optimised for best possible fatigue resistance. These issues are addressed in the present report, with special emphasis on test methods, and scaling from damage mechanisms to relevant material properties. (au)

  3. Mechanisms underlying the effects of prenatal psychosocial stress on child outcomes: beyond the HPA axis

    NARCIS (Netherlands)

    Beijers, R.; Buitelaar, J.K.; Weerth, C. de

    2014-01-01

    Accumulating evidence from preclinical and clinical studies indicates that maternal psychosocial stress and anxiety during pregnancy adversely affect child outcomes. However, knowledge on the possible mechanisms underlying these relations is limited. In the present paper, we review the most often

  4. Fatigue behaviour of the austenitic steel 1.4550 under mechanical and thermal cyclic loading

    Energy Technology Data Exchange (ETDEWEB)

    Siegele, D.; Fingerhuth, J.; Varfolomeev, I.; Moroz, S. [Fraunhofer Institute for Mechanics of Materials (IWM), Freiburg (Germany)

    2014-07-01

    Fatigue behaviour of the austenitic steel 1.4550 (X6CrNiNb18-10) under low-cycle fatigue and high-cycle thermal fatigue was investigated with in two research projects supported by the Federal Ministry of Economic Affairs and Energy and the Ministry of Education and Research. The objectives of the projects were the gain of deep understanding of the damage mechanisms under mechanical and thermal cyclic loading and the development of material models and simulation procedures for an improved lifetime assessment. In comparison to the advanced mechanism based material models engineering computational procedures were proven with respect to their applicability and conservatisms. For thermal cyclic loading, test equipment and technique were developed which allow for cyclic thermal loading with temperature ranges between 1 00 C and 300 C and frequencies between 0.1 and 1 Hz. As a result, tests with a temperature range of 150 C and lower showed no crack formation up to 300,000 cycles. For temperature ranges of 200 C and higher multiple crack patterns were observed with the deepest crack of about 1.3 mm after 1,000,000 cycles, whereas the difference in crack depth between 300,000 and 1,000,000 cycles was negligibly small. To model the fatigue lifetime, the D{sub TMF} damage parameter was applied to the low-cycle fatigue and the thermal, high frequent fatigue tests. For thermal fatigue, the analyses predicted in agreement with the tests crack initiation followed by crack propagation, subsequent retardation and arrest. This behaviour can be explained qualitatively and quantitatively using the methods of linear-elastic fracture mechanics, whereas the consideration of the interaction of multiple cracks is essential to describe the experimentally observed crack retardation. The results for thermal fatigue are in the scatterband of the mechanical p and thermo-mechanical fatigue results and the cycles to failure are 10 times higher than those estimated according to the KTA fatigue

  5. Transferring Data from Smartwatch to Smartphone through Mechanical Wave Propagation

    Directory of Open Access Journals (Sweden)

    Seung-Chan Kim

    2015-08-01

    Full Text Available Inspired by the mechanisms of bone conduction transmission, we present a novel sensor and actuation system that enables a smartwatch to securely communicate with a peripheral touch device, such as a smartphone. Our system regards hand structures as a mechanical waveguide that transmits particular signals through mechanical waves. As a signal, we used high-frequency vibrations (18.0–20.0 kHz so that users cannot sense the signals either tactually or audibly. To this end, we adopted a commercial surface transducer, which is originally developed as a bone-conduction actuator, for mechanical signal generation. At the receiver side, a piezoelement was adopted for picking up the transferred mechanical signals. Experimental results have shown that the proposed system can successfully transfer data using mechanical waves. We also validate dual-frequency actuations under which high-frequency signals (18.0–20.0 kHz are generated along with low-frequency (up to 250 Hz haptic vibrations. The proposed method has advantages in terms of security in that it does not reveal the signals outside the body, meaning that it is not possible for attackers to eavesdrop on the signals. To further illustrate the possible application spaces, we conclude with explorations of the proposed approach.

  6. Transferring Data from Smartwatch to Smartphone through Mechanical Wave Propagation.

    Science.gov (United States)

    Kim, Seung-Chan; Lim, Soo-Chul

    2015-08-28

    Inspired by the mechanisms of bone conduction transmission, we present a novel sensor and actuation system that enables a smartwatch to securely communicate with a peripheral touch device, such as a smartphone. Our system regards hand structures as a mechanical waveguide that transmits particular signals through mechanical waves. As a signal, we used high-frequency vibrations (18.0-20.0 kHz) so that users cannot sense the signals either tactually or audibly. To this end, we adopted a commercial surface transducer, which is originally developed as a bone-conduction actuator, for mechanical signal generation. At the receiver side, a piezoelement was adopted for picking up the transferred mechanical signals. Experimental results have shown that the proposed system can successfully transfer data using mechanical waves. We also validate dual-frequency actuations under which high-frequency signals (18.0-20.0 kHz) are generated along with low-frequency (up to 250 Hz) haptic vibrations. The proposed method has advantages in terms of security in that it does not reveal the signals outside the body, meaning that it is not possible for attackers to eavesdrop on the signals. To further illustrate the possible application spaces, we conclude with explorations of the proposed approach.

  7. Statistical model for the mechanical behavior of the tissue engineering non-woven fibrous matrices under large deformation.

    Science.gov (United States)

    Rizvi, Mohd Suhail; Pal, Anupam

    2014-09-01

    The fibrous matrices are widely used as scaffolds for the regeneration of load-bearing tissues due to their structural and mechanical similarities with the fibrous components of the extracellular matrix. These scaffolds not only provide the appropriate microenvironment for the residing cells but also act as medium for the transmission of the mechanical stimuli, essential for the tissue regeneration, from macroscopic scale of the scaffolds to the microscopic scale of cells. The requirement of the mechanical loading for the tissue regeneration requires the fibrous scaffolds to be able to sustain the complex three-dimensional mechanical loading conditions. In order to gain insight into the mechanical behavior of the fibrous matrices under large amount of elongation as well as shear, a statistical model has been formulated to study the macroscopic mechanical behavior of the electrospun fibrous matrix and the transmission of the mechanical stimuli from scaffolds to the cells via the constituting fibers. The study establishes the load-deformation relationships for the fibrous matrices for different structural parameters. It also quantifies the changes in the fiber arrangement and tension generated in the fibers with the deformation of the matrix. The model reveals that the tension generated in the fibers on matrix deformation is not homogeneous and hence the cells located in different regions of the fibrous scaffold might experience different mechanical stimuli. The mechanical response of fibrous matrices was also found to be dependent on the aspect ratio of the matrix. Therefore, the model establishes a structure-mechanics interdependence of the fibrous matrices under large deformation, which can be utilized in identifying the appropriate structure and external mechanical loading conditions for the regeneration of load-bearing tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Design issues of a back-pressure-based congestion control mechanism

    NARCIS (Netherlands)

    Malhotra, R.; Mandjes, M.R.H.; Scheinhardt, W.R.W.; Berg, van den J.L.

    2008-01-01

    Congestion control in packet-based networks is often realized by feedback protocols -- in this paper we assess the performance under a back-pressure mechanism that has been proposed and standardized for Ethernet metropolitan networks. Relying on our earlier results for feedback fluid queues, we

  9. Adaptive mechanism-based congestion control for networked systems

    Science.gov (United States)

    Liu, Zhi; Zhang, Yun; Chen, C. L. Philip

    2013-03-01

    In order to assure the communication quality in network systems with heavy traffic and limited bandwidth, a new ATRED (adaptive thresholds random early detection) congestion control algorithm is proposed for the congestion avoidance and resource management of network systems. Different to the traditional AQM (active queue management) algorithms, the control parameters of ATRED are not configured statically, but dynamically adjusted by the adaptive mechanism. By integrating with the adaptive strategy, ATRED alleviates the tuning difficulty of RED (random early detection) and shows a better control on the queue management, and achieve a more robust performance than RED under varying network conditions. Furthermore, a dynamic transmission control protocol-AQM control system using ATRED controller is introduced for the systematic analysis. It is proved that the stability of the network system can be guaranteed when the adaptive mechanism is finely designed. Simulation studies show the proposed ATRED algorithm achieves a good performance in varying network environments, which is superior to the RED and Gentle-RED algorithm, and providing more reliable service under varying network conditions.

  10. Growth of 2D and 3D plane cracks under thermo-mechanical loading with varying amplitudes

    International Nuclear Information System (INIS)

    Sbitti, Amine

    2009-01-01

    After a presentation of the phenomenon of thermal fatigue (in industrial applications and nuclear plants), this research thesis reports the investigation of the growth and arrest of a 2D crack under thermal fatigue (temperature and stress distribution over thickness, calculation of stress intensity factors, laws of fatigue crack growth, growth under varying amplitude), and the investigation of 3D crack growth under cyclic loading with varying amplitudes (analytic and numerical calculation of stress intensity factors, variational formulation in failure mechanics, 3D crack propagation under fatigue, use of the Aster code, use of the extended finite element method or X-FEM). The author discusses the origin and influence of the 3D crack network under thermal fatigue

  11. Evaluating the reliability of multi-body mechanisms: A method considering the uncertainties of dynamic performance

    International Nuclear Information System (INIS)

    Wu, Jianing; Yan, Shaoze; Zuo, Ming J.

    2016-01-01

    Mechanism reliability is defined as the ability of a certain mechanism to maintain output accuracy under specified conditions. Mechanism reliability is generally assessed by the classical direct probability method (DPM) derived from the first order second moment (FOSM) method. The DPM relies strongly on the analytical form of the dynamic solution so it is not applicable to multi-body mechanisms that have only numerical solutions. In this paper, an indirect probability model (IPM) is proposed for mechanism reliability evaluation of multi-body mechanisms. IPM combines the dynamic equation, degradation function and Kaplan–Meier estimator to evaluate mechanism reliability comprehensively. Furthermore, to reduce the amount of computation in practical applications, the IPM is simplified into the indirect probability step model (IPSM). A case study of a crank–slider mechanism with clearance is investigated. Results show that relative errors between the theoretical and experimental results of mechanism reliability are less than 5%, demonstrating the effectiveness of the proposed method. - Highlights: • An indirect probability model (IPM) is proposed for mechanism reliability evaluation. • The dynamic equation, degradation function and Kaplan–Meier estimator are used. • Then the simplified form of indirect probability model is proposed. • The experimental results agree well with the predicted results.

  12. Anisotropic Elastoplastic Damage Mechanics Method to Predict Fatigue Life of the Structure

    Directory of Open Access Journals (Sweden)

    Hualiang Wan

    2016-01-01

    Full Text Available New damage mechanics method is proposed to predict the low-cycle fatigue life of metallic structures under multiaxial loading. The microstructure mechanical model is proposed to simulate anisotropic elastoplastic damage evolution. As the micromodel depends on few material parameters, the present method is very concise and suitable for engineering application. The material parameters in damage evolution equation are determined by fatigue experimental data of standard specimens. By employing further development on the ANSYS platform, the anisotropic elastoplastic damage mechanics-finite element method is developed. The fatigue crack propagation life of satellite structure is predicted using the present method and the computational results comply with the experimental data very well.

  13. Vascular Adventitia Calcification and Its Underlying Mechanism.

    Directory of Open Access Journals (Sweden)

    Na Li

    Full Text Available Previous research on vascular calcification has mainly focused on the vascular intima and media. However, we show here that vascular calcification may also occur in the adventitia. The purpose of this work is to help elucidate the pathogenic mechanisms underlying vascular calcification. The calcified lesions were examined by Von Kossa staining in ApoE-/- mice which were fed high fat diets (HFD for 48 weeks and human subjects aged 60 years and older that had died of coronary heart disease, heart failure or acute renal failure. Explant cultured fibroblasts and smooth muscle cells (SMCswere obtained from rat adventitia and media, respectively. After calcification induction, cells were collected for Alizarin Red S staining. Calcified lesions were observed in the aorta adventitia and coronary artery adventitia of ApoE-/-mice, as well as in the aorta adventitia of human subjects examined. Explant culture of fibroblasts, the primary cell type comprising the adventitia, was successfully induced for calcification after incubation with TGF-β1 (20 ng/ml + mineralization media for 4 days, and the phenotype conversion vascular adventitia fibroblasts into myofibroblasts was identified. Culture of SMCs, which comprise only a small percentage of all cells in the adventitia, in calcifying medium for 14 days resulted in significant calcification.Vascular calcification can occur in the adventitia. Adventitia calcification may arise from the fibroblasts which were transformed into myofibroblasts or smooth muscle cells.

  14. Resveratrol increases nucleus pulposus matrix synthesis through activating the PI3K/Akt signaling pathway under mechanical compression in a disc organ culture.

    Science.gov (United States)

    Han, Xiaorui; Leng, Xiaoming; Zhao, Man; Wu, Mei; Chen, Amei; Hong, Guoju; Sun, Ping

    2017-12-22

    Disc nucleus pulposus (NP) matrix homeostasis is important for normal disc function. Mechanical overloading seriously decreases matrix synthesis and increases matrix degradation. The present study aims to investigate the effects of resveratrol on disc NP matrix homeostasis under a relatively high-magnitude mechanical compression and the potential mechanism underlying this process. Porcine discs were perfusion-cultured and subjected to a relatively high-magnitude mechanical compression (1.3 MPa at a frequency of 1.0 Hz for 2 h once per day) for 7 days in a mechanically active bioreactor. The non-compressed discs were used as controls. Resveratrol was added along with culture medium to observe the effects of resveratrol on NP matrix synthesis under mechanical load respectively. NP matrix synthesis was evaluated by histology, biochemical content (glycosaminoglycan (GAG) and hydroxyproline (HYP)), and expression of matrix macromolecules (aggrecan and collagen II). Results showed that this high-magnitude mechanical compression significantly decreased NP matrix content, indicated by the decreased staining intensity of Alcian Blue and biochemical content (GAG and HYP), and the down-regulated expression of NP matrix macromolecules (aggrecan and collagen II). Further analysis indicated that resveratrol partly stimulated NP matrix synthesis and increased activity of the PI3K/Akt pathway in a dose-dependent manner under mechanical compression. Together, resveratrol is beneficial for disc NP matrix synthesis under mechanical overloading, and the activation of the PI3K/Akt pathway may participate in this regulatory process. Resveratrol may be promising to regenerate mechanical overloading-induced disc degeneration. © 2017 The Author(s).

  15. Scientific conception on mechanisms of calcium homeostasis disorders under low dose effect of ionizing radiation

    International Nuclear Information System (INIS)

    Abylaev, Zh.A.; Dospolova, Zh.G.

    1997-01-01

    Scientific conception of probable consequences of calcium homeostasis disorders in personals, exposed to low dose effect of ionizing radiation has been developed. Principle positions of the conception is that pathologic processes development have different ways of conducting. During predominance of low doses of external gamma-radiation there is leading pathologic mechanism (mechanism 1) of disorder neuroendocrine regulation of both the calcium and the phosphor. In this case sicks have disorders of both the vegetative tonus and the endocrine status. Under internal irradiation (mechanism 2) there is disfunction of organs and systems (bore changes and disorders of hormone status). These changes are considered as consequence of negative action on organism of incorporated long-living radionuclides. Radio-toxic factors action (mechanism 3) provokes the excess of hormones, which acting on bone tissue and could be cause of steroid osteoporosis. Influence of chronic stress factor (mechanism 4) enlarges and burden action on organism of low radiation doses. It is emphasized, that decisive role in development of pathologic processes has mechanism of disturbance of neuroendocrine regulation of calcium exchange

  16. Microstructural development under interrupted hot deformation and the mechanical properties of a cast Mg–Gd–Y–Zr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Zhenyu [Educational Key Laboratory of Nonferrous Metal Materials Science and Engineering, School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Yang, Xuyue [Educational Key Laboratory of Nonferrous Metal Materials Science and Engineering, School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Institute for Materials Microstructure, Central South University, Changsha 410083 (China); Yang, Yi; Zhang, Zhirou; Zhang, Duxiu; Li, Yi [Educational Key Laboratory of Nonferrous Metal Materials Science and Engineering, School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Sakai, Taku [UEC Tokyo (The University of Electro-Communications), Chofu, Tokyo 182-8585 (Japan)

    2016-01-15

    Microstructural development under interrupted hot deformation of a cast Mg–Gd–Y–Zr alloy was investigated by optical microscopy (OM) and electron backscattering diffraction (EBSD) technology and the resultant mechanical properties were detected through tensile tests at room temperature. Ultrafine grains (UFGs) were remarkably developed under the condition of interrupted hot forging, resulting in an improvement of ambient mechanical properties. The basal texture was weakened by an effective increase of the volume fraction of UFGs under interrupted hot forging. These resulted in an improvement of tensile ductility with little or no drop in strength, i.e. the volume fraction of UFGs was raised from 30% to 70%, leading to an increase of the ambient tensile elongation from 15% to 23%.

  17. Fracture mechanics in new designed power module under thermo-mechanical loads

    Directory of Open Access Journals (Sweden)

    Durand Camille

    2014-06-01

    Full Text Available Thermo-mechanically induced failure is a major reliability issue in the microelectronic industry. On this account, a new type of Assembly Interconnected Technology used to connect MOSFETs in power modules has been developed. The reliability is increased by using a copper clip soldered on the top side of the chip, avoiding the use of aluminium wire bonds, often responsible for the failure of the device. Thus the new designed MOSFET package does not follow the same failure mechanisms as standard modules. Thermal and power cycling tests were performed on these new packages and resulting failures were analyzed. Thermo-mechanical simulations including cracks in the aluminium metallization and intermetallics (IMC were performed using Finite Element Analysis in order to better understand crack propagation and module behaviour.

  18. A coupled diffusion-fluid pressure model to predict cell density distribution for cells encapsulated in a porous hydrogel scaffold under mechanical loading.

    Science.gov (United States)

    Zhao, Feihu; Vaughan, Ted J; Mc Garrigle, Myles J; McNamara, Laoise M

    2017-10-01

    Tissue formation within tissue engineering (TE) scaffolds is preceded by growth of the cells throughout the scaffold volume and attachment of cells to the scaffold substrate. It is known that mechanical stimulation, in the form of fluid perfusion or mechanical strain, enhances cell differentiation and overall tissue formation. However, due to the complex multi-physics environment of cells within TE scaffolds, cell transport under mechanical stimulation is not fully understood. Therefore, in this study, we have developed a coupled multiphysics model to predict cell density distribution in a TE scaffold. In this model, cell transport is modelled as a thermal conduction process, which is driven by the pore fluid pressure under applied loading. As a case study, the model is investigated to predict the cell density patterns of pre-osteoblasts MC3T3-e1 cells under a range of different loading regimes, to obtain an understanding of desirable mechanical stimulation that will enhance cell density distribution within TE scaffolds. The results of this study have demonstrated that fluid perfusion can result in a higher cell density in the scaffold region closed to the outlet, while cell density distribution under mechanical compression was similar with static condition. More importantly, the study provides a novel computational approach to predict cell distribution in TE scaffolds under mechanical loading. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Pluripotent Stem Cell Studies Elucidate the Underlying Mechanisms of Early Embryonic Development

    Directory of Open Access Journals (Sweden)

    Lingyu Li

    2011-03-01

    Full Text Available Early embryonic development is a multi-step process that is intensively regulated by various signaling pathways. Because of the complexity of the embryo and the interactions between the germ layers, it is very difficult to fully understand how these signals regulate embryo patterning. Recently, pluripotent stem cell lines derived from different developmental stages have provided an in vitro system for investigating molecular mechanisms regulating cell fate decisions. In this review, we summarize the major functions of the BMP, FGF, Nodal and Wnt signaling pathways, which have well-established roles in vertebrate embryogenesis. Then, we highlight recent studies in pluripotent stem cells that have revealed the stage-specific roles of BMP,FGF and Nodal pathways during neural differentiation. These findings enhance our understanding of the stepwise regulation of embryo patterning by particular signaling pathways and provide new insight into the mechanisms underlying early embryonic development.

  20. Thermo-Mechanical Properties of Semi-Degradable Poly(β-amino ester)-co-Methyl Methacrylate Networks under Simulated Physiological Conditions

    Science.gov (United States)

    Safranski, David L.; Crabtree, Jacob C.; Huq, Yameen R.; Gall, Ken

    2011-01-01

    Poly(β-amino ester) networks are being explored for biomedical applications, but they may lack the mechanical properties necessary for long term implantation. The objective of this study is to evaluate the effect of adding methyl methacrylate on networks' mechanical properties under simulated physiological conditions. The networks were synthesized in two parts: (1) a biodegradable crosslinker was formed from a diacrylate and amine, (2) and then varying concentrations of methyl methacrylate were added prior to photopolymerizing the network. Degradation rate, mechanical properties, and glass transition temperature were studied as a function of methyl methacrylate composition. The crosslinking density played a limited role on mechanical properties for these networks, but increasing methyl methacrylate concentration improved the toughness by several orders of magnitude. Under simulated physiological conditions, networks showed increasing toughness or sustained toughness as degradation occurred. This work establishes a method of creating degradable networks with tailorable toughness while undergoing partial degradation. PMID:21966028

  1. Statistical mechanics of fluids under internal constraints: Rigorous results for the one-dimensional hard rod fluid

    International Nuclear Information System (INIS)

    Corti, D.S.; Debenedetti, P.G.

    1998-01-01

    The rigorous statistical mechanics of metastability requires the imposition of internal constraints that prevent access to regions of phase space corresponding to inhomogeneous states. We derive exactly the Helmholtz energy and equation of state of the one-dimensional hard rod fluid under the influence of an internal constraint that places an upper bound on the distance between nearest-neighbor rods. This type of constraint is relevant to the suppression of boiling in a superheated liquid. We determine the effects of this constraint upon the thermophysical properties and internal structure of the hard rod fluid. By adding an infinitely weak and infinitely long-ranged attractive potential to the hard core, the fluid exhibits a first-order vapor-liquid transition. We determine exactly the equation of state of the one-dimensional superheated liquid and show that it exhibits metastable phase equilibrium. We also derive statistical mechanical relations for the equation of state of a fluid under the action of arbitrary constraints, and show the connection between the statistical mechanics of constrained and unconstrained ensembles. copyright 1998 The American Physical Society

  2. Different neurophysiological mechanisms underlying word and rule extraction from speech.

    Directory of Open Access Journals (Sweden)

    Ruth De Diego Balaguer

    Full Text Available The initial process of identifying words from spoken language and the detection of more subtle regularities underlying their structure are mandatory processes for language acquisition. Little is known about the cognitive mechanisms that allow us to extract these two types of information and their specific time-course of acquisition following initial contact with a new language. We report time-related electrophysiological changes that occurred while participants learned an artificial language. These changes strongly correlated with the discovery of the structural rules embedded in the words. These changes were clearly different from those related to word learning and occurred during the first minutes of exposition. There is a functional distinction in the nature of the electrophysiological signals during acquisition: an increase in negativity (N400 in the central electrodes is related to word-learning and development of a frontal positivity (P2 is related to rule-learning. In addition, the results of an online implicit and a post-learning test indicate that, once the rules of the language have been acquired, new words following the rule are processed as words of the language. By contrast, new words violating the rule induce syntax-related electrophysiological responses when inserted online in the stream (an early frontal negativity followed by a late posterior positivity and clear lexical effects when presented in isolation (N400 modulation. The present study provides direct evidence suggesting that the mechanisms to extract words and structural dependencies from continuous speech are functionally segregated. When these mechanisms are engaged, the electrophysiological marker associated with rule-learning appears very quickly, during the earliest phases of exposition to a new language.

  3. Reduced softening of EUROFER 97 under thermo-mechanical and multiaxial fatigue loading and its impact on the design rules

    International Nuclear Information System (INIS)

    Aktaa, J.; Weick, M.; Petersen, C.

    2007-01-01

    Full text of publication follows: Toward test blanket module (TBM) in ITER and DEMO fusion power plants design rules for components built from EUROFER 97 get more and more in the midpoint of interest. One of the specific characteristic of EUROFER 97 as a ferritic-martensitic steel is its cyclic softening yielding to lower stresses under strain controlled fatigue loading and thus longer lifetimes. However our thermo-mechanical and multiaxial fatigue tests showed lifetimes remarkably lower than those expected on the base of isothermal uniaxial fatigue tests. Reduced cyclic softening observed in these experiments is believed as one of the reasons of the shorter fatigue lifetimes. When applying the design rules, derived for EUROFER 97 on the base of isothermal uniaxial data considering the recommendations in the ASME and RCC-MR code, to our thermo-mechanical and multiaxial fatigue tests for verification strong loss in their conservatism has been found. The lifetimes observed in a part of the multiaxial experiments are even lower than the design lifetimes supposed to be sufficiently conservative. To overcome this problem new design rules are proposed among others on the base of damage and lifetime prediction model developed lately for EUROFER 97. In this paper the experimental findings as well as the new design approaches will be presented and discussed. (authors)

  4. Supersymmetric quantum mechanics under point singularities

    International Nuclear Information System (INIS)

    Uchino, Takashi; Tsutsui, Izumi

    2003-01-01

    We provide a systematic study on the possibility of supersymmetry (SUSY) for one-dimensional quantum mechanical systems consisting of a pair of lines R or intervals [-l, l] each having a point singularity. We consider the most general singularities and walls (boundaries) at x = ±l admitted quantum mechanically, using a U(2) family of parameters to specify one singularity and similarly a U(1) family of parameters to specify one wall. With these parameter freedoms, we find that for a certain subfamily the line systems acquire an N = 1 SUSY which can be enhanced to N = 4 if the parameters are further tuned, and that these SUSY are generically broken except for a special case. The interval systems, on the other hand, can accommodate N = 2 or N = 4 SUSY, broken or unbroken, and exhibit a rich variety of (degenerate) spectra. Our SUSY systems include the familiar SUSY systems with the Dirac δ(x)-potential, and hence are extensions of the known SUSY quantum mechanics to those with general point singularities and walls. The self-adjointness of the supercharge in relation to the self-adjointness of the Hamiltonian is also discussed

  5. Experimental study on the thermo-mechanical behaviour of stiff clay under non-isotropic stress state

    International Nuclear Information System (INIS)

    Tang, Anh Minh; Cui, Yu-Jun; Li, Xiang-Ling

    2012-01-01

    Document available in extended abstract form only. Stiff clay is usually considered as possible host-rock for geological radioactive waste disposal due to its low permeability and its self-sealing capacity. Boom Clay, for instance, is one of the clays currently considered by the Belgian radioactive waste management agency Ondraf/Niras as a potential host for a geological repository. In order to analyse the performance of this material, it is important to understand its behaviour under the coupled thermo-hydro-mechanical solicitations. In laboratory, several studies have been performed to study the volume change of clay under coupled thermomechanical loading. The results show that heating under drained conditions can induce thermal dilation at low confining stress and thermal contraction at high confining stress. On the other hand, compression tests performed at constant temperature show that the compressibility parameters of soil can be modified by temperature change. These features are now well considered in constitutive laws based on the framework of elasto-plasticity. Under undrained conditions, heating can increase pore-water pressure and this behaviour can be simulated using the theoretical thermo-poro-elastic framework. The temperature effect on the soil behaviour under triaxial compression is also often considered. It is commonly accepted that heating decreases the shear strength of clay but this softening can be hidden by the thermal contraction that occurs during heating which can induce at the same time soil hardening. In spite of these existing works, laboratory tests considering the thermo-mechanical loading path that the soil can be subjected to are still rare. Actually, in the case of geological radioactive waste disposal, after the installation of waste canisters, the soil is expected to be heated under non-isotropic stress state. Most of the existing laboratory works show heating tests in odometer cell or triaxial cell under isotropic stress

  6. Push-and-stick mechanism for charged and excited small cluster emission under ion bombardment

    International Nuclear Information System (INIS)

    Bitensky, I.S.; Parilis, E.S.; Wojciechowski, I.A.

    1992-01-01

    The mechanism for the formation, excitation and ionization of small clusters emitted under ion bombardment is discussed. It is shown that the increased degree of ionization for the transition metal dimers, trimers and tetramers can be explained by the existence of an additional effective channel for their formation, namely the associative ionization process. A simple estimate shows that the sticking together of a fast cascade atom and the pushed out surface atom is 30-40 times more effective for dimer formation, than the recombination of two fast atoms. This push-and-stick mechanism of cluster formation could also be effective for the formation of trimers and tetramers. (orig.)

  7. Decisions on new product development under uncertainties

    Science.gov (United States)

    Huang, Yeu-Shiang; Liu, Li-Chen; Ho, Jyh-Wen

    2015-04-01

    In an intensively competitive market, developing a new product has become a valuable strategy for companies to establish their market positions and enhance their competitive advantages. Therefore, it is essential to effectively manage the process of new product development (NPD). However, since various problems may arise in NPD projects, managers should set up some milestones and subsequently construct evaluative mechanisms to assess their feasibility. This paper employed the approach of Bayesian decision analysis to deal with the two crucial uncertainties for NPD, which are the future market share and the responses of competitors. The proposed decision process can provide a systematic analytical procedure to determine whether an NPD project should be continued or not under the consideration of whether effective usage is being made of the organisational resources. Accordingly, the proposed decision model can assist the managers in effectively addressing the NPD issue under the competitive market.

  8. Multi-scale modeling of the thermo-hydro- mechanical behaviour of heterogeneous materials. Application to cement-based materials under severe loads

    International Nuclear Information System (INIS)

    Grondin, Frederic Alain

    2005-01-01

    The work of modeling presented here relates to the study of the thermo-hydro- mechanical behaviour of porous materials based on hydraulic binder such as concrete, High Performance Concrete or more generally cement-based materials. This work is based on the exploitation of the Digital Concrete model, of the finite element code Symphonie developed in the Scientific and Technical Centre for Building (CSTB), in coupling with the homogenization methods to obtain macroscopic behaviour laws drawn from the Micro-Macro relations. Scales of investigation, macroscopic and microscopic, has been exploited by simulation in order to allow the comprehension fine of the behaviour of cement-based materials according to thermal, hydrous and mechanical loads. It appears necessary to take into account various scales of modeling. In order to study the behaviour of the structure, we are brought to reduce the scale of investigation to study the material more particularly. The research tasks presented suggest a new approach for the identification of the multi-physic behaviour of materials by simulation. In complement of the purely experimental approach, based on observations on the sample with measurements of the apparent parameters on the macroscopic scale, this new approach allows to obtain the fine analysis of elementary mechanisms in acting within the material. These elementary mechanisms are at the origin of the evolution of the macroscopic parameters measured in experimental tests. In this work, coefficients of the thermo-hydro-mechanical behaviour law of porous materials and the equivalent hydraulic conductivity were obtained by a multi-scales approach. Applications has been carried out on the study of the damaged behaviour of cement-based materials, in the objective to determine the elasticity tensor and the permeability tensor of a High Performance Concrete at high temperatures under a mechanical load. Also, the study of the strain evolution of cement-based materials at low

  9. Surviving a Dry Future: Abscisic Acid (ABA)-Mediated Plant Mechanisms for Conserving Water under Low Humidity

    Science.gov (United States)

    McAdam, Scott A. M.

    2017-01-01

    Angiosperms are able to respond rapidly to the first sign of dry conditions, a decrease in air humidity, more accurately described as an increase in the vapor pressure deficit between the leaf and the atmosphere (VPD), by abscisic acid (ABA)-mediated stomatal closure. The genes underlying this response offer valuable candidates for targeted selection of crop varieties with improved drought tolerance, a critical goal for current plant breeding programs, to maximize crop production in drier and increasingly marginalized environments, and meet the demands of a growing population in the face of a changing climate. Here, we review current understanding of the genetic mechanisms underpinning ABA-mediated stomatal closure, a key means for conserving water under dry conditions, examine how these mechanisms evolved, and discuss what remains to be investigated. PMID:29113039

  10. Proposal for new experimental tests of the Bose-Einstein condensation mechanism for low-energy nuclear reaction and transmutation processes in deuterium loaded micro- and nano-scale cavities

    International Nuclear Information System (INIS)

    Yeong, E. Kim; Koltick, David S.; Reifenberger, Ronald G.; Zubarev, Alexander L.

    2006-01-01

    Most of experimental results of low-energy nuclear reaction (LENR) reported so far cannot be reproduced on demand. There have been persistent. experimental results indicating that the LENR und transmutation processes in condensed matter (LENRTPCM) are surface phenomena rather than bulk phenomena. Recently, proposed Bose-Einstein condensation (BEC) mechanism may provide a suitable theoretical description of the surface phenomena. New experiments are proposed and described for testing the BEC mechanism for LENR and transmutation processes in micro- and nano-scale traps. (1) We propose the use of micro-or nano-porous conducting materials as a cathode in electrolysis experiments with heavy water with or without Li in order to stabilize the active surface spots and to enhance the effect for the purpose of improving the reproducibility of excess heat generation and nuclear emission. (2) We propose new experimental tests of the BEC mechanism by measuring the pressure and temperature dependence of LENR events using deuterium gas and those deuterated metals with or without Li. If the LENRTPCM are surface phenomena, the proposed use of micro-/nano-scale porous materials is expected to enhance and scale up the LENRTPCM effects by many orders of magnitude, and thus may lead to better reproducibility and theoretical understanding of the phenomena. (authors)

  11. Proposal for new experimental tests of the Bose-Einstein condensation mechanism for low-energy nuclear reaction and transmutation processes in deuterium loaded micro- and nano-scale cavities

    Energy Technology Data Exchange (ETDEWEB)

    Yeong, E. Kim; Koltick, David S.; Reifenberger, Ronald G.; Zubarev, Alexander L. [Department of Phsysics, Purdue University, West Lafayette, IN 47907 (United States)

    2006-07-01

    Most of experimental results of low-energy nuclear reaction (LENR) reported so far cannot be reproduced on demand. There have been persistent. experimental results indicating that the LENR und transmutation processes in condensed matter (LENRTPCM) are surface phenomena rather than bulk phenomena. Recently, proposed Bose-Einstein condensation (BEC) mechanism may provide a suitable theoretical description of the surface phenomena. New experiments are proposed and described for testing the BEC mechanism for LENR and transmutation processes in micro- and nano-scale traps. (1) We propose the use of micro-or nano-porous conducting materials as a cathode in electrolysis experiments with heavy water with or without Li in order to stabilize the active surface spots and to enhance the effect for the purpose of improving the reproducibility of excess heat generation and nuclear emission. (2) We propose new experimental tests of the BEC mechanism by measuring the pressure and temperature dependence of LENR events using deuterium gas and those deuterated metals with or without Li. If the LENRTPCM are surface phenomena, the proposed use of micro-/nano-scale porous materials is expected to enhance and scale up the LENRTPCM effects by many orders of magnitude, and thus may lead to better reproducibility and theoretical understanding of the phenomena. (authors)

  12. Mechanical and Thermophysical Properties of Cubic Rock-Salt AlN Under High Pressure

    Science.gov (United States)

    Lebga, Noudjoud; Daoud, Salah; Sun, Xiao-Wei; Bioud, Nadhira; Latreche, Abdelhakim

    2018-03-01

    Density functional theory, density functional perturbation theory, and the Debye model have been used to investigate the structural, elastic, sound velocity, and thermodynamic properties of AlN with cubic rock-salt structure under high pressure, yielding the equilibrium structural parameters, equation of state, and elastic constants of this interesting material. The isotropic shear modulus, Pugh ratio, and Poisson's ratio were also investigated carefully. In addition, the longitudinal, transverse, and average elastic wave velocities, phonon contribution to the thermal conductivity, and interesting thermodynamic properties were predicted and analyzed in detail. The results demonstrate that the behavior of the elastic wave velocities under increasing hydrostatic pressure explains the hardening of the corresponding phonons. Based on the elastic stability criteria under pressure, it is found that AlN with cubic rock-salt structure is mechanically stable, even at pressures up to 100 GPa. Analysis of the Pugh ratio and Poisson's ratio revealed that AlN with cubic rock-salt structure behaves in brittle manner.

  13. The Mechanical Behaviors of Various Dental Implant Materials under Fatigue

    Directory of Open Access Journals (Sweden)

    Fatma Bayata

    2018-01-01

    Full Text Available The selection of materials has a considerable role on long-term stability of implants. The materials having high resistance to fatigue are required for dental implant applications since these implants are subjected to cyclic loads during chewing. This study evaluates the performance of different types of materials (AISI 316L stainless steel, alumina and its porous state, CoCr alloys, yttrium-stabilized zirconia (YSZ, zirconia-toughened alumina (ZTA, and cp Ti with the nanotubular TiO2 surface by finite element analysis (FEA under real cyclic biting loads and researches the optimum material for implant applications. For the analysis, the implant design generated by our group was utilized. The mechanical behavior and the life of the implant under biting loads were estimated based on the material and surface properties. According to the condition based on ISO 14801, the FEA results showed that the equivalent von Mises stress values were in the range of 226.95 MPa and 239.05 MPa. The penetration analysis was also performed, and the calculated penetration of the models onto the bone structure ranged between 0.0037389 mm and 0.013626 mm. L-605 CoCr alloy-assigned implant model showed the least penetration, while cp Ti with the nanotubular TiO2 surface led to the most one. However, the difference was about 0.01 mm, and it may not be evaluated as a distinct difference. As the final numerical evaluation item, the fatigue life was executed, and the results were achieved in the range of 4 × 105 and 1 × 109 cycles. These results indicated that different materials showed good performance for each evaluation component, but considering the overall mechanical performance and the treatment process (implant adsorption by means of surface properties, cp Ti with the nanotubular TiO2 surface material was evaluated as the suitable one, and it may also be implied that it displayed enough performance in the designed dental implant model.

  14. Local and systemic immune mechanisms underlying the anti-colitis effects of the dairy bacterium Lactobacillus delbrueckii.

    Directory of Open Access Journals (Sweden)

    Clarissa Santos Rocha

    Full Text Available Several probiotic bacteria have been proposed for treatment or prevention of inflammatory bowel diseases (IBD, showing a protective effect in animal models of experimental colitis and for some of them also in human clinical trials. While most of these probiotic bacteria are isolated from the digestive tract, we recently reported that a Lactobacillus strain isolated from cheese, L. delbrueckii subsp. lactis CNRZ327 (Lb CNRZ327, also possesses anti-inflammatory effects in vitro and in vivo, demonstrating that common dairy bacteria may be useful in the treatment or prevention of IBD. Here, we studied the mechanisms underlying the protective effects of Lb CNRZ327 in vivo, in a mouse dextran sodium sulfate (DSS colitis model. During colitis, Lb CNRZ327 modulated the production of TGF-β, IL-6, and IL-12 in colonic tissue and of TGF-β and IL-6 in the spleen, and caused an expansion of CD4+Foxp3+ regulatory T cells in the cecal lymph nodes. Moreover, a strong tendency to CD4+Foxp3+ expansion was also observed in the spleen. The results of this study for the first time show that orally administered dairy lactobacilli can not only modulate mucosal but also systemic immune responses and constitute an effective treatment of IBD.

  15. Local and systemic immune mechanisms underlying the anti-colitis effects of the dairy bacterium Lactobacillus delbrueckii.

    Science.gov (United States)

    Santos Rocha, Clarissa; Gomes-Santos, Ana Cristina; Garcias Moreira, Thais; de Azevedo, Marcela; Diniz Luerce, Tessalia; Mariadassou, Mahendra; Longaray Delamare, Ana Paula; Langella, Philippe; Maguin, Emmanuelle; Azevedo, Vasco; Caetano de Faria, Ana Maria; Miyoshi, Anderson; van de Guchte, Maarten

    2014-01-01

    Several probiotic bacteria have been proposed for treatment or prevention of inflammatory bowel diseases (IBD), showing a protective effect in animal models of experimental colitis and for some of them also in human clinical trials. While most of these probiotic bacteria are isolated from the digestive tract, we recently reported that a Lactobacillus strain isolated from cheese, L. delbrueckii subsp. lactis CNRZ327 (Lb CNRZ327), also possesses anti-inflammatory effects in vitro and in vivo, demonstrating that common dairy bacteria may be useful in the treatment or prevention of IBD. Here, we studied the mechanisms underlying the protective effects of Lb CNRZ327 in vivo, in a mouse dextran sodium sulfate (DSS) colitis model. During colitis, Lb CNRZ327 modulated the production of TGF-β, IL-6, and IL-12 in colonic tissue and of TGF-β and IL-6 in the spleen, and caused an expansion of CD4+Foxp3+ regulatory T cells in the cecal lymph nodes. Moreover, a strong tendency to CD4+Foxp3+ expansion was also observed in the spleen. The results of this study for the first time show that orally administered dairy lactobacilli can not only modulate mucosal but also systemic immune responses and constitute an effective treatment of IBD.

  16. Mechanism Underlying the Spatial Pattern Formation of Dominant Tree Species in a Natural Secondary Forest.

    Directory of Open Access Journals (Sweden)

    Guodong Jia

    Full Text Available Studying the spatial pattern of plant species may provide significant insights into processes and mechanisms that maintain stand stability. To better understand the dynamics of naturally regenerated secondary forests, univariate and bivariate Ripley's L(r functions were employed to evaluate intra-/interspecific relationships of four dominant tree species (Populus davidiana, Betula platyphylla, Larix gmelinii and Acer mono and to distinguish the underlying mechanism of spatial distribution. The results showed that the distribution of soil, water and nutrients was not fragmented but presented clear gradients. An overall aggregated distribution existed at most distances. No correlation was found between the spatial pattern of soil conditions and that of trees. Both positive and negative intra- and interspecific relationships were found between different DBH classes at various distances. Large trees did not show systematic inhibition of the saplings. By contrast, the inhibition intensified as the height differences increased between the compared pairs. Except for Larix, universal inhibition of saplings by upper layer trees occurred among other species, and this reflected the vertical competition for light. Therefore, we believe that competition for light rather than soil nutrients underlies the mechanism driving the formation of stand spatial pattern in the rocky mountainous areas examined.

  17. Failure mechanism of coated biomaterials under high impact-sliding contact stresses

    Science.gov (United States)

    Chen, Ying

    This study uses a newly developed testing method--- inclined cyclic impact-sliding test to investigate the failure behaviors of different types of biomaterials, (SS316L, Ti6Al4V and CoCr) coated by different coatings (TiN, DLC and PEO), under extremely high dynamic contact stress conditions. This test method can simulate the combined impact and sliding/rolling loading conditions, which is very practical in many aspects of commercial usages. During the tests, fatigue cracking, chipping, peeling and material transferring were observed in damaged area. This research is mainly focused on the failure behaviors of load-bearing materials which cyclic impacting and sliding are always involved. This purpose was accomplished in the three stages: First, impact-sliding test was carried out on TiN coated unhardened M2. It was found that soft substrate can cause early failure of coating due to the considerable plastic deformation in the substrate. In this case, stronger substrate is required to support coating better when tested under high contact stresses. Second, PEO coated Ti-6Al-4V was tested under pure sliding and impact-sliding wear conditions. PEO coating was found not strong enough to afford the high contact pressure under cyclic impact-sliding wear test due to its porous surface structure. However, the wear performance of PEO coating was enhanced due to the sub-stoichiometric oxide. To sum up, for load-bearing biomedical implants involved in high impacting movement, PEO coating may not be a promising surface protection. Third, the dense, smooth PVD/CVD bio-inert coatings were reconsidered. DLC and TiN coatings, combined by different substrates together with different interface materials were tested under the cyclic impact-sliding test using a set of proper loading. The results show that to choose a proper combination of coating, interface and substrate based on their mechanical properties is of great importance under the test condition. Hard substrates provide support

  18. Investigations On Crack Propagation Under Cyclical Isothermal And Thermo-mechanical Loadings For A Type 304-L Stainless Steel Used For Pressurized Water Reactor

    Directory of Open Access Journals (Sweden)

    Gourdin Cédric

    2018-01-01

    Full Text Available The integrity of structures exhibiting flaws in Pressurized Water Reactor (PWR has to be assessed to meet safety criteria. This paper deals with crack-propagation under cyclic thermo-mechanical loadings, as encountered in class I austenitic pipes of PWR’s. To have a conservative and reliable assessment of the crack propagation due to the in-service loading, various codes and standards use simplified method. For example, the RSE-M Code introduces a plastic correction depending on the proportion of the mechanical loading. An improvement of the current method requires additional investigations. Moreover, components loaded with transient or thermal fluctuations are not really in loadcontrolled conditions. To this end, a device called PROFATH was designed. The specimen is a pre-cracked thick-walled tube undergoing a set of thermal cycles and loaded with a static mechanical force. During the first part of the thermal cycle, a high frequency induction coil heats the external wall of the tube. Then, the heating system stops and the specimen is cooled down by running water inside the tube. Finite element calculations show that only a region half-way along the tube should be heated to ensure adequate structural effect. In the heated zone, the machining of a sharp circumferential groove ensures the propagation of a unique crack. An electro-mechanical jack controls the level of the mechanical static load. Tests have been carried out, and these tests allow having an evaluation of the pertinence of the correction proposed by the RSE-M Code for a significant plasticity.

  19. The Dynamic Evolution of Firms’ Pollution Control Strategy under Graded Reward-Penalty Mechanism

    OpenAIRE

    Li Ming Chen; Wen Ping Wang

    2016-01-01

    The externality of pollution problem makes firms lack enough incentive to reduce pollution emission. Therefore, it is necessary to design a reasonable environmental regulation mechanism so as to effectively urge firms to control pollution. In order to inspire firms to control pollution, we divide firms into different grades according to their pollution level and construct an evolutionary game model to analyze the interaction between government’s regulation and firms’ pollution control under g...

  20. Novel instrument for characterizing comprehensive physical properties under multi-mechanical loads and multi-physical field coupling conditions

    Science.gov (United States)

    Liu, Changyi; Zhao, Hongwei; Ma, Zhichao; Qiao, Yuansen; Hong, Kun; Ren, Zhuang; Zhang, Jianhai; Pei, Yongmao; Ren, Luquan

    2018-02-01

    Functional materials represented by ferromagnetics and ferroelectrics are widely used in advanced sensor and precision actuation due to their special characterization under coupling interactions of complex loads and external physical fields. However, the conventional devices for material characterization can only provide a limited type of loads and physical fields and cannot simulate the actual service conditions of materials. A multi-field coupling instrument for characterization has been designed and implemented to overcome this barrier and measure the comprehensive physical properties under complex service conditions. The testing forms include tension, compression, bending, torsion, and fatigue in mechanical loads, as well as different external physical fields, including electric, magnetic, and thermal fields. In order to offer a variety of information to reveal mechanical damage or deformation forms, a series of measurement methods at the microscale are integrated with the instrument including an indentation unit and in situ microimaging module. Finally, several coupling experiments which cover all the loading and measurement functions of the instrument have been implemented. The results illustrate the functions and characteristics of the instrument and then reveal the variety in mechanical and electromagnetic properties of the piezoelectric transducer ceramic, TbDyFe alloy, and carbon fiber reinforced polymer under coupling conditions.

  1. Research on the mechanical characteristic of the bentonite mixture material under the groundwater environment of Horonobe. 2

    International Nuclear Information System (INIS)

    Takaji, Kazuhiko; Shigeno, Yoshimasa; Simogouchi, Takafumi

    2005-02-01

    In the Horonobe underground research project, various in-situ experiments are conducted in order to confirm the applicability of the Engineered Barrier System (EBS) design techniques shown in H12 report, to understand the long-term effects of EBS, and to improve the reliability of the prediction method. Moreover, since it is assumed that the circumference of Horonobe underground research laboratory is the saline water environment, to understand the mechanical behavior of the bentonite mixture material under the saline water environment is important when influenced in design of in-situ experiments. In this study, unconfined compression tests, consolidated-undrained triaxial compression tests and long-term consolidation tests of the bentonite mixture material were performed using groundwater that is extracted near the Horonobe underground research laboratory, and simulation analyses of EBS over a period of time using the results of laboratory experiments etc. were carried out. Consequently, although compressive strength and the elastic modulus under the saline water environment declined compared with that the fresh water, neither shear deformation behavior under triaxial stress condition nor volume deformation behavior by consolidation test almost had a difference, and it was suggested that there were few possibilities that the saline water had serious influence mechanically also about long-term mechanical behavior. (author)

  2. Training-induced acceleration of oxygen uptake kinetics in skeletal muscle: the underlying mechanisms.

    Science.gov (United States)

    Zoladz, J A; Korzeniewski, B; Grassi, B

    2006-11-01

    It is well known that the oxygen uptake kinetics during rest-to-work transition (V(O2) on-kinetics) in trained subjects is significantly faster than in untrained individuals. It was recently postulated that the main system variable that determines the transition time (t(1/2)) of the V(O2) on-kinetics in skeletal muscle, at a given moderate ATP usage/work intensity, and under the assumption that creatine kinase reaction works near thermodynamic equilibrium, is the absolute (in mM) decrease in [PCr] during rest-to-work transition. Therefore we postulate that the training-induced acceleration of the V(O2) on-kinetics is a marker of an improvement of absolute metabolic stability in skeletal muscles. The most frequently postulated factor responsible for enhancement of muscle metabolic stability is the training-induced increase in mitochondrial proteins. However, the mechanism proposed by Gollnick and Saltin (1982) can improve absolute metabolic stability only if training leads to a decrease in resting [ADP(free)]. This effect is not observed in many examples of training causing an acceleration of the V(O2) on-kinetics, especially in early stages of training. Additionally, this mechanism cannot account for the significant training-induced increase in the relative (expressed in % or as multiples of the resting values) metabolic stability at low work intensities, condition in which oxidative phosphorylation is not saturated with [ADP(free)]. Finally, it was reported that in the early stage of training, acceleration in the V(O2) on-kinetics and enhancement of muscle metabolic stability may precede adaptive responses in mitochondrial enzymes activities or mitochondria content. We postulate that the training-induced acceleration in the V(O2) on-kinetics and the improvement of the metabolite stability during moderate intensity exercise in the early stage of training is mostly caused by an intensification of the "parallel activation" of ATP consumption and ATP supply pathways

  3. A novel photocatalytic material for removing microcystin-LR under visible light irradiation: degradation characteristics and mechanisms.

    Directory of Open Access Journals (Sweden)

    Xin Sui

    Full Text Available Microcystin-LR (MC-LR, a common toxic species in contaminated aquatic systems, persists for long periods because of its cyclic structure. Ag3PO4 is an environment-friendly photocatalyst with relatively good degradation capacity for hazardous organic pollutants. This study aimed to investigate the degradation capacity of Ag3PO4 for MC-LR under visible light.An Ag3PO4 photocatalyst was synthesized by the ion-exchange method and characterized by X-ray diffraction, field-emission scanning electron microscope, and UV-Vis spectrophotometer. MC-LR was quantified in each sample through high-performance liquid chromatograph. The degradation efficiency of MC-LR was affected by initial pH, initial Ag3PO4 concentration, initial MC-LR concentration, and recycle experiments. The degradation intermediates of MC-LR were examined by liquid chromatography-mass spectrometry (LC/MS.The degradation process can be well fitted with the pseudo-first-order kinetic model. The maximum MC-LR degradation rate of 99.98% can be obtained within 5 h under the following optimum conditions: pH of 5.01, Ag3PO4 concentration of 26.67 g/L, and MC-LR concentration of 9.06 mg/L. Nine intermediates were detected and analyzed by LC/MS. Three main degradation pathways were proposed based on the molecular weight of the intermediates and the reaction mechanism: (1 hydroxylation on the aromatic ring of Adda, (2 hydroxylation on the diene bonds of Adda, and (3 internal interactions on the cyclic structure of MC-LR.Ag3PO4 is a highly efficient catalyst for MC-LR degradation in aqueous solutions.

  4. Towards identifying the mechanisms underlying field-aligned edge-loss of HHFW power on NSTX

    International Nuclear Information System (INIS)

    Perkins, R. J.; Bell, R. E.; Bertelli, N.; Diallo, A.; Gerhardt, S.; Hosea, J. C.; Jaworski, M. A.; LeBlanc, B. P.; Kramer, G. J.; Maingi, R.; Phillips, C. K.; Podestà, M.; Roquemore, L.; Scotti, F.; Taylor, G.; Wilson, J. R.; Ahn, J-W.; Gray, T. K.; Green, D. L.; McLean, A.

    2014-01-01

    Fast-wave heating will be a major heating scheme on ITER, as it can heat ions directly and is relatively unaffected by the large machine size unlike neutral beams. However, fast-wave interactions with the plasma edge can lead to deleterious effects such as, in the case of the high-harmonic fast-wave (HHFW) system on NSTX, large losses of fast-wave power in the scrape off layer (SOL) under certain conditions. In such scenarios, a large fraction of the lost HHFW power is deposited on the upper and lower divertors in bright spiral shapes. The responsible mechanism(s) has not yet been identified but may include fast-wave propagation in the scrape off layer, parametric decay instability, and RF currents driven by the antenna reactive fields. Understanding and mitigating these losses is important not only for improving the heating and current-drive on NSTX-Upgrade but also for understanding fast-wave propagation across the SOL in any fast-wave system. This talk summarizes experimental results demonstrating that the flow of lost HHFW power to the divertor regions largely follows the open SOL magnetic field lines. This lost power flux is relatively large close to both the antenna and the last closed flux surface with a reduced level in between, so the loss mechanism cannot be localized to the antenna. At the same time, significant losses also occur along field lines connected to the inboard edge of the bottom antenna plate. The power lost within the spirals is roughly estimated, showing that these field-aligned losses to the divertor are significant but may not account for the total HHFW loss. To elucidate the role of the onset layer for perpendicular fast-wave propagation with regards to fast-wave propagation in the SOL, a cylindrical cold-plasma model is being developed. This model, in addition to advanced RF codes such as TORIC and AORSA, is aimed at identifying the underlying mechanism(s) behind these SOL losses, to minimize their effects in NSTX-U, and to predict

  5. Towards identifying the mechanisms underlying field-aligned edge-loss of HHFW power on NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, R. J.; Bell, R. E.; Bertelli, N.; Diallo, A.; Gerhardt, S.; Hosea, J. C.; Jaworski, M. A.; LeBlanc, B. P.; Kramer, G. J.; Maingi, R.; Phillips, C. K.; Podestà, M.; Roquemore, L.; Scotti, F.; Taylor, G.; Wilson, J. R. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Ahn, J-W.; Gray, T. K.; Green, D. L.; McLean, A. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); and others

    2014-02-12

    Fast-wave heating will be a major heating scheme on ITER, as it can heat ions directly and is relatively unaffected by the large machine size unlike neutral beams. However, fast-wave interactions with the plasma edge can lead to deleterious effects such as, in the case of the high-harmonic fast-wave (HHFW) system on NSTX, large losses of fast-wave power in the scrape off layer (SOL) under certain conditions. In such scenarios, a large fraction of the lost HHFW power is deposited on the upper and lower divertors in bright spiral shapes. The responsible mechanism(s) has not yet been identified but may include fast-wave propagation in the scrape off layer, parametric decay instability, and RF currents driven by the antenna reactive fields. Understanding and mitigating these losses is important not only for improving the heating and current-drive on NSTX-Upgrade but also for understanding fast-wave propagation across the SOL in any fast-wave system. This talk summarizes experimental results demonstrating that the flow of lost HHFW power to the divertor regions largely follows the open SOL magnetic field lines. This lost power flux is relatively large close to both the antenna and the last closed flux surface with a reduced level in between, so the loss mechanism cannot be localized to the antenna. At the same time, significant losses also occur along field lines connected to the inboard edge of the bottom antenna plate. The power lost within the spirals is roughly estimated, showing that these field-aligned losses to the divertor are significant but may not account for the total HHFW loss. To elucidate the role of the onset layer for perpendicular fast-wave propagation with regards to fast-wave propagation in the SOL, a cylindrical cold-plasma model is being developed. This model, in addition to advanced RF codes such as TORIC and AORSA, is aimed at identifying the underlying mechanism(s) behind these SOL losses, to minimize their effects in NSTX-U, and to predict

  6. Concurrent material-fabrication optimization of metal-matrix laminates under thermo-mechanical loading

    Science.gov (United States)

    Saravanos, D. A.; Morel, M. R.; Chamis, C. C.

    1991-01-01

    A methodology is developed to tailor fabrication and material parameters of metal-matrix laminates for maximum loading capacity under thermomechanical loads. The stresses during the thermomechanical response are minimized subject to failure constrains and bounds on the laminate properties. The thermomechanical response of the laminate is simulated using nonlinear composite mechanics. Evaluations of the method on a graphite/copper symmetric cross-ply laminate were performed. The cross-ply laminate required different optimum fabrication procedures than a unidirectional composite. Also, the consideration of the thermomechanical cycle had a significant effect on the predicted optimal process.

  7. Ageing under mechanical stress: first experiments for a silver based multilayer mirror

    Science.gov (United States)

    Lalo, Arnaud; Ravel, Guillaume; Ignat, Michel; Cousin, Bernard; Swain, Michael V.

    2017-11-01

    Improving materials and devices reliability is a major concern to the spatial industry. Results are reported for satellite mirrors-like specimens consisting in oxide-protected metal systems. Optical coatings were deposited by electron beam evaporation. Mechanical stress fields in multi-layered materials play an important role. The stress state can have far-reaching implications both in kinetics and thermodynamics. Therefore an integrated apparatus with four-point bending equipment was designed. The technique allowed us to exert stress into a film or a system of films on a substrate concurrently with thermal treatment. In order to achieve the first tests performed with the help of the apparatus, various preliminary characterizations were required. The article reports the preliminary micro-mechanical testing of the materials (ultra micro-indentation to evaluate the elastic modulus of the samples materials and wafer curvature technique to determine the specimen residual stress) and the first ageing experiment. Experimental evidence of accelerated ageing under stress is successfully reported.

  8. Microscale experimental investigation of deformation and damage of argillaceous rocks under cyclic hydric and mechanical loads

    International Nuclear Information System (INIS)

    Wang, Linlin; Yang, Diansen; Heripre, Eva; Chanchole, Serge; Bornert, Michel; Pouya, Ahmad; Halphen, Bernard

    2012-01-01

    Document available in abstract form only. Argillaceous rocks are possible host rocks for underground nuclear waste repositories. They exhibit complex coupled thermo-hydro-chemo-mechanical behavior, the description of which would strongly benefit from an improved experimental insight on their deformation and damage mechanisms at microscale. We present some recent observations of the evolution of these rocks at the scale of their composite microstructure, essentially made of a clay matrix with embedded carbonates and quartz particles with sizes ranging from a few to several tens of micrometers, when they are subjected to cyclic variations of relative humidity and mechanical loading. They are based on the combination of high definition and high resolution imaging in an environmental scanning electron microscope (ESEM), in situ hydro-mechanical loading of the samples, and digital image correlation techniques. Samples, several millimeters in diameter, are held at a constant temperature of 2 deg. Celsius while the vapor pressure in the ESEM chamber is varied from a few to several hundreds of Pascals, generating a relative humidity ranging from about 10% up to 90%. Results show a strongly heterogeneous deformation field at microscale, which is the result of complex hydro-mechanical interactions. In particular, it can be shown that local swelling incompatibilities can generate irreversible deformations in the clay matrix, even if the overall hydric deformations seem reversible. In addition, local damage can be generated, in the form of a network of microcracks, located in the bulk of the clay matrix and/or at the interface between clay and other mineral particles. The morphology of this network, described in terms of crack length, orientation and preferred location, has been observed to be dependent on the speed of the variation of the relative humidity, and is different in a saturation or desaturation process. Besides studying the deformation and damage under hydric

  9. Neural Mechanisms Underlying Risk and Ambiguity Attitudes.

    Science.gov (United States)

    Blankenstein, Neeltje E; Peper, Jiska S; Crone, Eveline A; van Duijvenvoorde, Anna C K

    2017-11-01

    Individual differences in attitudes to risk (a taste for risk, known probabilities) and ambiguity (a tolerance for uncertainty, unknown probabilities) differentially influence risky decision-making. However, it is not well understood whether risk and ambiguity are coded differently within individuals. Here, we tested whether individual differences in risk and ambiguity attitudes were reflected in distinct neural correlates during choice and outcome processing of risky and ambiguous gambles. To these ends, we developed a neuroimaging task in which participants ( n = 50) chose between a sure gain and a gamble, which was either risky or ambiguous, and presented decision outcomes (gains, no gains). From a separate task in which the amount, probability, and ambiguity level were varied, we estimated individuals' risk and ambiguity attitudes. Although there was pronounced neural overlap between risky and ambiguous gambling in a network typically related to decision-making under uncertainty, relatively more risk-seeking attitudes were associated with increased activation in valuation regions of the brain (medial and lateral OFC), whereas relatively more ambiguity-seeking attitudes were related to temporal cortex activation. In addition, although striatum activation was observed during reward processing irrespective of a prior risky or ambiguous gamble, reward processing after an ambiguous gamble resulted in enhanced dorsomedial PFC activation, possibly functioning as a general signal of uncertainty coding. These findings suggest that different neural mechanisms reflect individual differences in risk and ambiguity attitudes and that risk and ambiguity may impact overt risk-taking behavior in different ways.

  10. 78 FR 31598 - Proposed Collection; Comment Request; Operations Under Water

    Science.gov (United States)

    2013-05-24

    ...; Operations Under Water AGENCY: Mine Safety and Health Administration, Labor. ACTION: 60-Day Notice. SUMMARY... under bodies of water and to obtain a permit to mine under a body of water if, in the judgment of the... the inundation of underground coal mines with water that has the potential of drowning miners. Section...

  11. Mechanisms underlying reduced fertility in anovular dairy cows.

    Science.gov (United States)

    Santos, J E P; Bisinotto, R S; Ribeiro, E S

    2016-07-01

    Resumption of ovulation after parturition is a coordinated process that involves recoupling of the GH/insulin-like growth factor 1 axis in the liver, increase in follicular development and steroidogenesis, and removal of negative feedback from estradiol in the hypothalamus. Infectious diseases and metabolic disorders associated with extensive negative energy balance during early lactation disrupt this pathway and delay first ovulation postpartum. Extended periods of anovulation postpartum exert long-lasting effects on fertility in dairy cows including the lack of spontaneous estrus, reduced pregnancy per artificial insemination (P/AI), and increased risk of pregnancy loss. Concentrations of progesterone in anovular cows subjected to synchronized programs for AI are insufficient to optimize follicular maturation, oocyte competence, and subsequent fertility to AI. Ovulation of first wave follicles, which develop under low concentrations of progesterone, reduces embryo quality in the first week after fertilization and P/AI in dairy cows. Although the specific mechanisms by which anovulation and low concentrations of progesterone impair oocyte quality have not been defined, studies with persistent follicles support the involvement of premature resumption of meiosis and degradation of maternal RNA. Suboptimal concentrations of progesterone before ovulation also increase the synthesis of PGF2α in response to oxytocin during the subsequent estrous cycle, which explains the greater incidence of short luteal phases after the first AI postpartum in anovular cows compared with estrous cyclic herd mates. It is suggested that increased spontaneous luteolysis early in the estrous cycle is one of the mechanisms that contributes to early embryonic losses in anovular cows. Anovulation also leads to major shifts in gene expression in elongated conceptuses during preimplantation stages of pregnancy. Transcripts involved with control of energy metabolism and DNA repair were

  12. Colloid and radionuclide retention mechanisms in fractured rock under near-natural flow conditions

    International Nuclear Information System (INIS)

    Delos, A.; Schaefer, T.; Geckeis, H.; Guimera, J.; Carrera, J.; Fanghaenel, T.

    2005-01-01

    Full text of publication follows: Experiments in fractured host rock (Grimsel Test Site, GTS, Switzerland) revealed that the colloid relevance for actinide migration is high due to the specific geochemical groundwater conditions [1]. However, even under such conditions it is found that retention of colloids and colloid-borne actinides becomes significant under near-natural groundwater flow rates (1-10 m/a) [2]. Underlying mechanisms of colloid and radionuclide retention are not well understood up to now. The present study co-funded by the NoE ACTINET-6 focuses on (i) the kinetics of actinide-colloid interactions and (ii) the relevance of matrix diffusion as a competition process to other retention mechanisms which affect the actinides behavior in fractured rock systems such as the Grimsel granodiorite. Colloid migration is studied with well defined model colloids as e.g. fluorescence dyed carboxylated polystyrene particles, and natural colloids extracted from bentonite (FEBEX) and from fracture filling material (GTS). In order to study the influence of matrix porosity on actinides migration, those experiments are performed in columns of well defined geometry filled with microporous unmodified silica spheres, porous ceramic material and natural fracture filling material from the GTS. The behaviour of actinides (Pu(IV) and Am(III)) sorbed onto bentonite colloids is investigated in column and batch experiments. All experiments are performed under anoxic conditions. Colloid characterization methods used in this study include the combination of photon correlation spectroscopy (PCS), laser-induced breakdown detection (LIBD), fluorimetry and field flow fractionation (FFF). Experimental results and their application to the parametrisation of reactive colloid transport models are discussed. [1] Geckeis H, Schaefer T, Hauser W, Rabung T, Missana T, Degueldre C, Moeri A, Eikenberg J, Fierz T, Alexander WR (2004) Results of the Colloid and Radionuclide Retention experiment

  13. Supersymmetric hadronic mechanics and procedures for isosupersymmetrization

    International Nuclear Information System (INIS)

    Ntibashirakandi, L.; Callebaut, D.K.

    1994-01-01

    In this paper the authors present the Lie-Santilli lifting of Witten's one-dimensional supersymmetric quantum mechanical model within the context of supersymmetric hadronic mechanics and extended it to three dimensions. They show that the model describes the motion of a spin one-half particle in a central isosuperpotential. Choosing this isosuperpotential within the specific isosupersymmetrization procedure, their theory produces the model of hadronic harmonic oscillator plus isotopic spin-orbit couplings. They finally indicate that their model describes a particle under conventional potentials plus nonlocal-nonhamiltonian corrections expected in deep penetrations of the wavepackets. As such, the model appears to be significant for the recently proposed chemical synthesis of unstable hadrons via lighter hadrons, which is prohibited by quantum mechanics, but permitted by the covering hadronic mechanics. 16 refs

  14. Ultrahigh-Q mechanical oscillators through optical trapping

    International Nuclear Information System (INIS)

    Chang, D E; Ni, K-K; Painter, O; Kimble, H J

    2012-01-01

    Rapid advances are being made toward optically cooling a single mode of a micro-mechanical system to its quantum ground state and observing the quantum behavior at macroscopic scales. Reaching this regime in room-temperature environments requires a stringent condition on the mechanical quality factor Q m and frequency f m , Q m f m ≳ k B T bath /h, which so far has been marginally satisfied only in a small number of systems. Here we propose and analyze a new class of systems that should enable one to obtain unprecedented Q-frequency products. The technique is based on the use of optical forces to ‘trap’ and stiffen the motion of a tethered mechanical structure, thereby freeing the resulting mechanical frequencies and decoherence rates from the underlying material properties. (paper)

  15. Mechanical response of collagen molecule under hydrostatic compression

    International Nuclear Information System (INIS)

    Saini, Karanvir; Kumar, Navin

    2015-01-01

    Proteins like collagen are the basic building blocks of various body tissues (soft and hard). Collagen molecules find their presence in the skeletal system of the body where they bear mechanical loads from different directions, either individually or along with hydroxy-apatite crystals. Therefore, it is very important to understand the mechanical behavior of the collagen molecule which is subjected to multi-axial state of loading. The estimation of strains of collagen molecule along different directions resulting from the changes in hydrostatic pressure magnitude, can provide us new insights into its mechanical behavior. In the present work, full atomistic simulations have been used to study global (volumetric) as well as local (along different directions) mechanical properties of the hydrated collagen molecule which is subjected to different hydrostatic pressure magnitudes. To estimate the local mechanical properties, the strains of collagen molecule along its longitudinal and transverse directions have been acquired at different hydrostatic pressure magnitudes. In spite of non-homogeneous distribution of atoms within the collagen molecule, the calculated values of local mechanical properties have been found to carry the same order of magnitude along the longitudinal and transverse directions. It has been demonstrated that the values of global mechanical properties like compressibility, bulk modulus, etc. as well as local mechanical properties like linear compressibility, linear elastic modulus, etc. are functions of magnitudes of applied hydrostatic pressures. The mechanical characteristics of collagen molecule based on the atomistic model have also been compared with that of the continuum model in the present work. The comparison showed up orthotropic material behavior for the collagen molecule. The information on collagen molecule provided in the present study can be very helpful in designing the future bio-materials.

  16. Mechanical response of collagen molecule under hydrostatic compression.

    Science.gov (United States)

    Saini, Karanvir; Kumar, Navin

    2015-04-01

    Proteins like collagen are the basic building blocks of various body tissues (soft and hard). Collagen molecules find their presence in the skeletal system of the body where they bear mechanical loads from different directions, either individually or along with hydroxy-apatite crystals. Therefore, it is very important to understand the mechanical behavior of the collagen molecule which is subjected to multi-axial state of loading. The estimation of strains of collagen molecule along different directions resulting from the changes in hydrostatic pressure magnitude, can provide us new insights into its mechanical behavior. In the present work, full atomistic simulations have been used to study global (volumetric) as well as local (along different directions) mechanical properties of the hydrated collagen molecule which is subjected to different hydrostatic pressure magnitudes. To estimate the local mechanical properties, the strains of collagen molecule along its longitudinal and transverse directions have been acquired at different hydrostatic pressure magnitudes. In spite of non-homogeneous distribution of atoms within the collagen molecule, the calculated values of local mechanical properties have been found to carry the same order of magnitude along the longitudinal and transverse directions. It has been demonstrated that the values of global mechanical properties like compressibility, bulk modulus, etc. as well as local mechanical properties like linear compressibility, linear elastic modulus, etc. are functions of magnitudes of applied hydrostatic pressures. The mechanical characteristics of collagen molecule based on the atomistic model have also been compared with that of the continuum model in the present work. The comparison showed up orthotropic material behavior for the collagen molecule. The information on collagen molecule provided in the present study can be very helpful in designing the future bio-materials. Copyright © 2015 Elsevier B.V. All rights

  17. Mechanical response of collagen molecule under hydrostatic compression

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Karanvir, E-mail: karans@iitrpr.ac.in; Kumar, Navin

    2015-04-01

    Proteins like collagen are the basic building blocks of various body tissues (soft and hard). Collagen molecules find their presence in the skeletal system of the body where they bear mechanical loads from different directions, either individually or along with hydroxy-apatite crystals. Therefore, it is very important to understand the mechanical behavior of the collagen molecule which is subjected to multi-axial state of loading. The estimation of strains of collagen molecule along different directions resulting from the changes in hydrostatic pressure magnitude, can provide us new insights into its mechanical behavior. In the present work, full atomistic simulations have been used to study global (volumetric) as well as local (along different directions) mechanical properties of the hydrated collagen molecule which is subjected to different hydrostatic pressure magnitudes. To estimate the local mechanical properties, the strains of collagen molecule along its longitudinal and transverse directions have been acquired at different hydrostatic pressure magnitudes. In spite of non-homogeneous distribution of atoms within the collagen molecule, the calculated values of local mechanical properties have been found to carry the same order of magnitude along the longitudinal and transverse directions. It has been demonstrated that the values of global mechanical properties like compressibility, bulk modulus, etc. as well as local mechanical properties like linear compressibility, linear elastic modulus, etc. are functions of magnitudes of applied hydrostatic pressures. The mechanical characteristics of collagen molecule based on the atomistic model have also been compared with that of the continuum model in the present work. The comparison showed up orthotropic material behavior for the collagen molecule. The information on collagen molecule provided in the present study can be very helpful in designing the future bio-materials.

  18. Studies on the mechanisms underlying the transfer of calcium and phosphate from bone to blood

    Energy Technology Data Exchange (ETDEWEB)

    Brommage, Jr., Robert J. [Univ. of Rochester, NY (United States)

    1978-01-01

    The skeleton is recognized as a crucial organ in the minute-to-minute regulation of the blood levels of calcium and phosphate. The fluxes of calcium and phosphate to and from bone greatly exceed the entry and exit of these ions occurring in the intestine and kidneys. Parathyroid hormone, calcitonin, and 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3 are known to influence the transfer of calcium and phosphate from bone to blood. Three mechanisms have been proposed to explain the hormonal control of the calcium and phosphate effluxes from bone. The concept of a bone membrane maintaining a distinct bone extracellular fluid composition has led to the pump and pH gradient theories. An alternate solubilizer theory proposes that bone cells secrete a substance which increases the solubility of the bone mineral. The bone membrane concept was originally proposed to explain the presence of the apparent anomalously high concentrations of potassium in the bone extracellular fluid. However, the available evidence does not allow an unambiguous decision concerning the presence of a bone membrane. Calvarial lactate production was unaltered by 1,25-(OH)2D3 treatment and consequently 1,25-(OH)2D3 does not appear to promote the mobilization of bone mineral through a lactate-mediated pH gradient mechanism. 1,25-(OH)2D3 did increase the solubility of non-vital bone, clearly demonstrating that the solubilizer mechanism is at least partially responsible for the mobilization of bone mineral and the regulation of blood levels of calcium and phosphate. Vitamin D-deficient female rats fed a 0.2% calcium, 0.4% phosphorous diet and supplemented with daily injections of 0.75 pmole of 1,25-(OH)2D3 were shown to be capable of bearing young. When the injections of 1,25-(OH)2D3 were terminated at delivery, the dams and pups showed signs of vitamin D deficiency

  19. Mechanical behavior of confined self-compacting reinforced concrete circular columns under concentric axial loading

    Directory of Open Access Journals (Sweden)

    Fouad Khairallah

    2013-12-01

    Full Text Available While there is abundant research information on ordinary confined concrete, there are little data on the behavior of Self-Compacting Concrete (SCC under such condition. Due to higher shrinkage and lower coarse aggregate content of SCC compared to that of Normal Concrete (NC, its composite performance under confined conditions needs more investigation. This paper has been devoted to investigate and compare the mechanical behavior of confined concrete circular columns cast with SCC and NC under concentric axial loading. The parameters affecting are including concrete compressive strength and confinement configuration. Twenty column specimens were casted and confined using four confinement techniques, CFRP wrap, FRP tube, GFRP wrap, and spiral steel hoops. The performance of the tested column specimens is evaluated based on mode of failure, load–displacement curve, stress–strain characteristics, ultimate strength, ductility, and degree of confinement.

  20. A proposal of constitutive creep model for soft rock to be applied to numerical analysis for mechanical interaction in the underground facilities

    International Nuclear Information System (INIS)

    Sawada, Masataka; Okada, Tetsuji

    2005-01-01

    In the case that the underground facilities of high-level nuclear waste disposal are constructed in soft rock mass, it is predicted that time-dependent behavior of rock has an important role both on the stability of surrounding rock mass after excavation and on the super long-term stability of barrier system. Existing creep model that has been applied to excavation problems in electric power industry is not sufficient in order to evaluate long-term behavior of the facility constructed in soft rock mass. Therefore, it is necessary to develop an appropriate creep model for soft rock. In this research, we try to develop a prototype of numerical tool for evaluating the stability during and after the excavation and super long-term stability after back-filling. Firstly, a simple rheological model for time-dependent behavior of soft rock is proposed. It is the key feature of this model that two different types of rheological model can be selected in order to describe both failure and non-failure processes. Rock continues to deform until failure in the case where stress applied to the rock exceeds its residual strength, although deformation of the rock finally ceases in the other cases. The applicability of this model is investigated by comparing the calculated results with those in laboratory test results. The proposed model can describe the time-dependent and dilatancy behavior of mudstone of Tertiary period observed in the drained triaxial creep test. Next, we apply the proposed model to the problem of time-dependent behavior of rock mass around a deposition hole. Numerical simulation of excavation problem and long-term mechanical interaction between buffer material and surrounding rock mass is carried out using a hydrological - mechanical coupled FEM code that includes the proposed model. Several mechanical models can be selected in order to apply to the mechanical behavior of materials consisting of underground facility. The main results obtained from this simulation

  1. Structural integrity and failure mechanisms of a smart piezoelectric actuator under a cyclic bending mode

    International Nuclear Information System (INIS)

    Woo, Sung-Choong; Goo, Nam Seo

    2008-01-01

    Information on the onset and evolution of damage within materials is essential for guaranteeing the integrity of actuator systems. The authors have evaluated the structural integrity and the failure mechanisms of smart composite actuators with a PZT ceramic plate under electric cyclic loading. For this, two kinds of actuators, actuator 1 and actuator 2, were manufactured. Prior to the main testing, performance testing was performed on the actuators to determine their resonant frequencies. Electric cyclic tests were conducted up to twenty million cycles. An acoustic emission technique was used for monitoring the damage evolution in real time. We observed the extent of the damage after testing using scanning electron microscopy and reflected optical microscopy to support characteristics in the acoustic emission behavior that corresponded to specific types of damage mechanisms. It was shown that the initial damage mechanism of the smart composite actuator under electric cyclic loading originated from the transgranular micro-fatigue damage in the PZT ceramic layer. With increasing cycles, a local intergranular crack initiated and developed onto the surface of the PZT ceramic layer or propagated into the internal layer. Finally, short-circuiting led to the electric breakdown of the actuator. These results were different depending on the drive frequencies and the configuration of the actuators. Moreover, we differentiated between the aforementioned damage mechanisms via AE signal pattern analyses based on the primary frequency and the waveform. From our results, we conclude that the drive frequency and the existence of a protecting layer are dominant factors in the structural integrity of the smart composite actuator

  2. Mechanical properties of novel forms of graphyne under strain: A density functional theory study

    Science.gov (United States)

    Majidi, Roya

    2017-06-01

    The mechanical properties of two forms of graphyne sheets named α-graphyne and α2-graphyne under uniaxial and biaxial strains were studied. In-plane stiffness, bulk modulus, and shear modulus were calculated based on density functional theory. The in-plane stiffness, bulk modulus, and shear modulus of α2-graphyne were found to be larger than that of α-graphyne. The maximum values of supported uniaxial and biaxial strains before failure were determined. The α-graphyne was entered into the plastic region with the higher magnitude of tension in comparison to α2-graphyne. The mechanical properties of α-graphyne family revealed that these forms of graphyne are proper materials for use in nanomechanical applications.

  3. Modulating Conscious Movement Intention by Noninvasive Brain Stimulation and the Underlying Neural Mechanisms

    OpenAIRE

    Douglas, Zachary H.; Maniscalco, Brian; Hallett, Mark; Wassermann, Eric M.; He, Biyu J.

    2015-01-01

    Conscious intention is a fundamental aspect of the human experience. Despite long-standing interest in the basis and implications of intention, its underlying neurobiological mechanisms remain poorly understood. Using high-definition transcranial DC stimulation (tDCS), we observed that enhancing spontaneous neuronal excitability in both the angular gyrus and the primary motor cortex caused the reported time of conscious movement intention to be ∼60–70 ms earlier. Slow brain waves recorded ∼2–...

  4. Linear Analytical Solutions of Mechanical Sensitivity in Large Deflection of Unsymmetrically Layered Piezoelectric Plate under Pretension

    Directory of Open Access Journals (Sweden)

    Chun-Fu Chen

    2014-03-01

    Full Text Available Linear analytical study on the mechanical sensitivity in large deflection of unsymmetrically layered and laterally loaded piezoelectric plate under pretension is conducted. von Karman plate theory for large deflection is utilized but extended to the case of an unsymmetrically layered plate embedded with a piezoelectric layer. The governing equations thus obtained are simplified by omitting the arising nonlinear terms, yielding a Bessel or modified Bessel equation for the lateral slope. Depending on the relative magnitude of the piezoelectric effect, for both cases, analytical solutions of various geometrical responses are developed and formulated via Bessel and modified Bessel functions. The associated ultimate radial stresses are further derived following lamina constitutive law to evaluate the mechanical sensitivity of the considered plate. For a nearly monolithic plate under a very low applied voltage, the results are in good agreement with those for a single-layered case due to pure mechanical load available in literature, and thus the present approach is checked. For a two-layered unsymmetric plate made of typical silicon-based materials, a sound piezoelectric effect is illustrated particularly in a low pretension condition.

  5. Frequency-dependent failure mechanisms of nanocrystalline gold interconnect lines under general alternating current

    Science.gov (United States)

    Luo, X. M.; Zhang, B.; Zhang, G. P.

    2014-09-01

    Thermal fatigue failure of metallization interconnect lines subjected to alternating currents (AC) is becoming a severe threat to the long-term reliability of micro/nanodevices with increasing electrical current density/power. Here, thermal fatigue failure behaviors and damage mechanisms of nanocrystalline Au interconnect lines on the silicon glass substrate have been investigated by applying general alternating currents (the pure alternating current coupled with a direct current (DC) component) with different frequencies ranging from 0.05 Hz to 5 kHz. We observed both thermal fatigue damages caused by Joule heating-induced cyclic strain/stress and electromigration (EM) damages caused by the DC component. Besides, the damage formation showed a strong electrically-thermally-mechanically coupled effect and frequency dependence. At lower frequencies, thermal fatigue damages were dominant and the main damage forms were grain coarsening with grain boundary (GB) cracking/voiding and grain thinning. At higher frequencies, EM damages took over and the main damage forms were GB cracking/voiding of smaller grains and hillocks. Furthermore, the healing effect of the reversing current was considered to elucidate damage mechanisms of the nanocrystalline Au lines generated by the general AC. Lastly, a modified model was proposed to predict the lifetime of the nanocrystalline metal interconnect lines, i.e., that was a competing drift velocity-based approach based on the threshold time required for reverse diffusion/healing to occur.

  6. Acoustic and Vibration Control for an Underwater Structure under Mechanical Excitation

    Directory of Open Access Journals (Sweden)

    Shi-Jian Zhu

    2014-01-01

    Full Text Available Acoustic and vibration control for an underwater structure under mechanical excitation has been investigated by using negative feedback control algorithm. The underwater structure is modeled with cylindrical shells, conical shells, and circular bulkheads, of which the motion equations are built with the variational approach, respectively. Acoustic property is analyzed by the Helmholtz integration formulation with boundary element method. Based on negative feedback control algorithm, a control loop with a coupling use of piezoelectric sensor and actuator is built, and accordingly some numerical examples are carried out on active control of structural vibration and acoustic response. Effects of geometrical and material parameters on acoustic and vibration properties are investigated and discussed.

  7. Mechanisms underlying the antihypertensive properties of Urtica dioica.

    Science.gov (United States)

    Qayyum, Rahila; Qamar, Hafiz Misbah-Ud-Din; Khan, Shamim; Salma, Umme; Khan, Taous; Shah, Abdul Jabbar

    2016-09-01

    Urtica dioica has traditionally been used in the management of cardiovascular disorders especially hypertension. The aim of this study was to explore pharmacological base of its use in hypertension. Crude methanolic extract of U. dioica (Ud.Cr) and its fractions (Ud.EtAc, Ud.nHex, Ud.Chl and Ud.Aq) were tested in vivo on normotensive and hypertensive rats under anesthesia for blood pressure lowering effect. In-vitro experiments on rat and rabbit aortae were employed to probe the vasorelaxation mechanism(s). The responses were measured using pressure and force transducers connected to PowerLab Data Acquisition System. Ud.Cr and fractions were found more effective antihypertensive in hypertensive rats than normotensive with remarkable potency exhibited by the ethyl acetate fraction. The effect was same in the presence of atropine. In isolated rat aortic rings, Ud.Cr and all its fractions exhibited L-NAME sensitive endothelium-dependent vasodilator effect and also inhibit K(+) (80 mM)-induced pre-contractions. In isolated rabbit thoracic aortic rings Ud.Cr and its fractions induced relaxation with more potency against K(+) (80 mM) than phenylephrine (1 µM) like verapamil, showing Ud.EtAc fraction the most potent one. Pre-incubation of aortic rings with Ud.Cr and its fractions exhibited Ca(2+) channel blocking activity comparable with verapamil by shifting Ca(2+) concentration response curves to the right. Ud.Cr and its fractions also ablated the intracellular Ca(2+) release by suppressing PE peak formation in Ca(2+) free medium. When tested on basal tension, the crude extract and all fractions were devoid of any vasoconstrictor effect. These data indicate that crude methanolic extract and its fractions possess antihypertensive effect. Identification of NO-mediated vasorelaxation and calcium channel blocking effects explain the antihypertensive potential of U. dioica and provide a potential pharmacological base to its medicinal use in the management of hypertension.

  8. Water-cooled lithium-lead box-shaped blanket concept for Demo: thermo-mechanical optimization and manufacturing sequence proposal

    International Nuclear Information System (INIS)

    Baraer, L.; Dinot, N.; Giancarli, L.; Proust, E.; Salavy, J.F.; Severi, Y.; Quintric-Bossy, J.

    1992-01-01

    The development of the water-cooled lithium-lead box-shaped blanket concept for DEMO has now reached the stage of thermo-mechanical optimization. In the previous design phases the preliminary dimensioning of the cooling circuit has permitted to define the water proportions required in the breeder region and to demonstrate, after a minimization of steel proportion and thicknesses, that this concept could reach tritium breeding self-sufficiency. In the present analysis the location of the coolant pipes has been optimized for the whole equatorial plane cross-section of both inboard and outboard segments in order to maintain the maximum Pb-17Li/steel interface temperature below 480 deg C and to minimize the thermal gradients along the steel structures. The consequent thermo-mechanical analysis has shown that the thermal stresses always remain below the allowable limits. Segment fabricability and removal are the next design issues to be analyzed. Within this strategy, a first manufactury sequence for the outboard segment is proposed

  9. Numerical and experimental characterization of ceramic pebble beds under cycling mechanical loading

    Energy Technology Data Exchange (ETDEWEB)

    Pupeschi, S., E-mail: pupeschi.simone@hotmail.it [Institute for Applied Materials, Karlsruhe Institute of Technology (KIT) (Germany); Knitter, R.; Kamlah, M. [Institute for Applied Materials, Karlsruhe Institute of Technology (KIT) (Germany); Gan, Y. [School of Civil Engineering, The University of Sydney, Sydney, NSW, 2006 (Australia)

    2016-11-15

    Highlights: • The effect of cyclic loading on the mechanical response of pebble beds was assessed. • Numerical simulations were performed with KIT-DEM code. • The numerical simulations were compared with the experimental outcomes. • A good qualitative agreement between experimental and simulation results was found. • The pebble size distribution affects the mechanical response of the assemblies. - Abstract: All solid breeder concepts considered to be tested in ITER (International Thermonuclear Experimental Reactor), make use of lithium-based ceramics in the form of pebble-packed beds as tritium breeder. A thorough understanding of the thermal and mechanical properties of the ceramic pebble beds under fusion relevant conditions is essential for the design of the breeder blanket modules of future fusion reactors. In this study, the effect of cyclic loading on the mechanical behaviour of pebble bed assemblies was investigated using a Discrete Element Method (DEM) code. The numerical simulations were compared with the experimental outcomes. The results of numerical simulations show that the pebble size distribution affects noticeably the stress-strain behaviour of the assemblies. A good qualitative agreement between experimental and simulation results was found in terms of difference between residual strains of consecutive cycles. An increase of the oedometric modulus with the compressive load was observed for all investigated compositions in both experimental and DEM simulations. The numerical results show an increase of the oedometric modulus (E) with progressive compaction of the assemblies due to the cycling loading, while no significant influence of the pebbles size distribution was observed.

  10. Photoelectrochemical etching of gallium nitride surface by complexation dissolution mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Miao-Rong [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 215123 Suzhou (China); University of Chinese Academy of Sciences, 100049 Beijing (China); Hou, Fei; Wang, Zu-Gang; Zhang, Shao-Hui [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 215123 Suzhou (China); Changchun University of Science and Technology, 130022 Changchun (China); Pan, Ge-Bo, E-mail: gbpan2008@sinano.ac.cn [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 215123 Suzhou (China)

    2017-07-15

    Graphical abstract: GaN surface was etched by 0.3 M EDTA-2Na. The proposed complexation dissolution mechanism can be applicable to almost all neutral etchants under the prerequisite of strong light and electric field. - Highlights: • GaN surface was etched by EDTA-2Na. • GaN may be dissolved into EDTA-2Na by forming Ga–EDTA complex. • We propose the complexation dissolution mechanism for the first time. - Abstract: Gallium nitride (GaN) surface was etched by 0.3 M ethylenediamine tetraacetic acid disodium (EDTA-2Na) via photoelectrochemical etching technique. SEM images reveal the etched GaN surface becomes rough and irregular. The pore density is up to 1.9 × 10{sup 9} per square centimeter after simple acid post-treatment. The difference of XPS spectra of Ga 3d, N 1s and O 1s between the non-etched and freshly etched GaN surfaces can be attributed to the formation of Ga–EDTA complex at the etching interface between GaN and EDTA-2Na. The proposed complexation dissolution mechanism can be broadly applicable to almost all neutral etchants under the prerequisite of strong light and electric field. From the point of view of environment, safety and energy, EDTA-2Na has obvious advantages over conventionally corrosive etchants. Moreover, as the further and deeper study of such nearly neutral etchants, GaN etching technology has better application prospect in photoelectric micro-device fabrication.

  11. Li-ion Battery Separators, Mechanical Integrity and Failure Mechanisms Leading to Soft and Hard Internal Shorts.

    Science.gov (United States)

    Zhang, Xiaowei; Sahraei, Elham; Wang, Kai

    2016-09-01

    Separator integrity is an important factor in preventing internal short circuit in lithium-ion batteries. Local penetration tests (nail or conical punch) often produce presumably sporadic results, where in exactly similar cell and test set-ups one cell goes to thermal runaway while the other shows minimal reactions. We conducted an experimental study of the separators under mechanical loading, and discovered two distinct deformation and failure mechanisms, which could explain the difference in short circuit characteristics of otherwise similar tests. Additionally, by investigation of failure modes, we provided a hypothesis about the process of formation of local "soft short circuits" in cells with undetectable failure. Finally, we proposed a criterion for predicting onset of soft short from experimental data.

  12. Aging of magnesium stearate under high doses gamma irradiation and oxidative conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lebeau, D.; Beuvier, L.; Cornaton, M. [CEA, DEN, DPC, SECR, LRMO, F-91191 Gif-sur-Yvette (France); Miserque, F. [CEA, DEN, DPC, SCCME, LECA, F-91191 Gif-sur-Yvette (France); Tabarant, M. [CEA, DEN, DPC, SEARS, LISL, F-91191 Gif-sur-Yvette (France); Esnouf, S. [CEA, DEN, DPC, SECR, LRMO, F-91191 Gif-sur-Yvette (France); Ferry, M., E-mail: muriel.ferry@cea.fr [CEA, DEN, DPC, SECR, LRMO, F-91191 Gif-sur-Yvette (France)

    2015-05-15

    Highlights: • Magnesium stearate was radio-oxidized at very high doses using gamma-rays. • H{sub 2} emission was estimated as a function of the integrated dose. • Modifications in the organic solid were followed as a function of the integrated dose. • A non-exhaustive degradation mechanism of magnesium stearate was proposed. - Abstract: In nuclear waste packages conditioning processes, magnesium stearate is widely used because of its high lubricating properties. For safety purposes, the radiolytic degradation of these organic materials has to be better understood to be able to predict their aging in repository conditions. This study reports the radiolytic degradation of magnesium stearate, using gamma-rays at room temperature and under air. Modifications were followed using different analytical tools (XPS, ATR-FTIR, ICP-AES, ATG and mass spectrometry). It has been observed that molecules mainly formed up to 1000 kGy of gamma irradiation dose under radio-oxidation are alkanes, hydroperoxides, double bonds in the aliphatic chain, carboxylates with aliphatic chain shorter than the one of stearate and ketones. At a dose of 4000 kGy, dicarboxylic acids are observed: the formation of these molecules needs a dose of at least 1000 kGy to be created under radio-oxidation. These observations allow us to propose a non-exhaustive degradation mechanism of magnesium stearate under gamma-irradiation at room temperature and under air.

  13. Adapting the Euler-Lagrange equation to study one-dimensional motions under the action of a constant force

    Science.gov (United States)

    Dias, Clenilda F.; Araújo, Maria A. S.; Carvalho-Santos, Vagson L.

    2018-01-01

    The Euler-Lagrange equations (ELE) are very important in the theoretical description of several physical systems. In this work we have used a simplified form of ELE to study one-dimensional motions under the action of a constant force. From the use of the definition of partial derivative, we have proposed two operators, here called mean delta operators, which may be used to solve the ELE in a simplest way. We have applied this simplification to solve three simple mechanical problems in which the particle is under the action of the gravitational field: a free fall body, the Atwood’s machine and the inclined plan. The proposed simplification can be used to introduce the lagrangian formalism in teaching classical mechanics in introductory physics courses.

  14. A multi-scale approach of mechanical and transport properties of cementitious materials under rises of temperature

    International Nuclear Information System (INIS)

    Caratini, G.

    2012-01-01

    The modern industrial activities (storage of nuclear waste, geothermal wells, nuclear power plants,...) can submit cementitious materials to some extreme conditions, for example at temperatures above 200 C. This level of temperature will induce phenomena of dehydration in the cement paste, particularly impacting the CSH hydrates which led to the mechanical cohesion. The effects of these temperatures on the mechanical and transport properties have been the subject of this thesis.To understand these effects, we need to take into account the heterogeneous, porous, multi-scale aspects of these materials. To do this, micro-mechanics and homogenization tools based on the Eshelby problem's solution were used. Moreover, to support this multi-scale modeling, mechanical testing based on the theory of porous media were conducted. The measurements of modulus compressibility, permeability and porosity under confining pressure were used to investigate the mechanisms of degradation of these materials during thermal loads up to 400 C. (author)

  15. Damage effects and mechanisms of proton irradiation on methyl silicone rubber

    International Nuclear Information System (INIS)

    Zhang, L.X.; He, Sh.Y.; Xu, Zh.; Wei, Q.

    2004-01-01

    A study was performed on the damage effects and mechanisms of proton irradiation with 150 keV energy to space-grade methyl silicone rubber. The changes in surface morphology, mechanical properties, infrared attenuated total reflection (ATR) spectrum, mass spectrum and pyrolysis gas chromatography-mass spectrum (PYGC-MS) indicated that, under lower fluence, the proton radiation would induce cross-linking effect, resulting in an increase in tensile strengths and hardness of the methyl silicon rubber. However, under higher proton fluence, the radiation-induced degradation, which decreased the tensile strengths and hardness, became a dominant effect. A macromolecular-network destruction model for the silicone rubber radiated with the protons was proposed

  16. Compressions of electrorheological fluids under different initial gap distances.

    Science.gov (United States)

    Tian, Yu; Wen, Shizhu; Meng, Yonggang

    2003-05-01

    Compressions of electrorheological (ER) fluids have been carried out under different initial gap distances and different applied voltages. The nominal yield stresses of the compressed ER fluid under different conditions, according to the mechanics of compressing continuous fluids considering the yield stress of the plastic fluid, have been calculated. Curves of nominal yield stress under different applied voltages at an initial gap distance of 4 mm overlapped well and were shown to be proportional to the square of the external electric field and agree well with the traditional description. With the decrease of the initial gap distance, the difference between the nominal yield stress curves increased. The gap distance effect on the compression of ER fluids could not be explained by the traditional description based on the Bingham model and the continuous media theory. An explanation based on the mechanics of particle chain is proposed to describe the gap distance effect on the compression of ER fluids.

  17. Mechanical and electronic properties of monolayer and bilayer phosphorene under uniaxial and isotropic strains.

    Science.gov (United States)

    Hu, Ting; Han, Yang; Dong, Jinming

    2014-11-14

    The mechanical and electronic properties of both the monolayer and bilayer phosphorenes under either isotropic or uniaxial strain have been systematically investigated using first-principles calculations. It is interesting to find that: 1) Under a large enough isotropic tensile strain, the monolayer phosphorene would lose its pucker structure and transform into a flat hexagonal plane, while two inner sublayers of the bilayer phosphorene could be bonded due to its interlayer distance contraction. 2) Under the uniaxial tensile strain along a zigzag direction, the pucker distance of each layer in the bilayer phosphorene can exhibit a specific negative Poisson's ratio. 3) The electronic properties of both the monolayer and bilayer phosphorenes are sensitive to the magnitude and direction of the applied strains. Their band gaps decrease more rapidly under isotropic compressive strain than under uniaxial strain. Also, their direct-indirect band gap transitions happen at the larger isotropic tensile strains compared with that under uniaxial strain. 4) Under the isotropic compressive strain, the bilayer phosphorene exhibits a transition from a direct-gap semiconductor to a metal. In contrast, the monolayer phosphorene initially has the direct-indirect transition and then transitions to a metal. However, under isotropic tensile strain, both the bilayer and monolayer phosphorene show the direct-indirect transition and, finally, the transition to a metal. Our numerical results may open new potential applications of phosphorene in nanoelectronics and nanomechanical devices by external isotropic strain or uniaxial strain along different directions.

  18. PHYSIOLOGICAL QUALITY OF SOYBEAN SEEDS UNDER MECHANICAL INJURIES CAUSED BY COMBINES

    Directory of Open Access Journals (Sweden)

    FÁBIO PALCZEWSKI PACHECO

    2015-01-01

    Full Text Available The mechanical harvesting causes injuries on seeds and may affect their quality. Different threshing mechanisms and their adjustments may also affect the intensity of impacts that machines cause on seeds. So, this study aimed at diagnosing and evaluating the effect of two combines: the first one with a threshing system of axial flow and the other one with a threshing system of tangential flow, under adjustments of concave opening (10 mm, 30 mm and 10 mm for a combine with axial flow and 3.0 mm, 15 mm and 3.0 mm for a combine with tangential flow and three cylinder rotations on the quality of soybean seeds harvested at two moisture contents. Soybean seeds of cultivar 'ND 4910' were harvested at 16.6% moisture (mid - morning and 13.7% moisture in the afternoon. The seeds quality was evaluated by germination tests, germination speed index (GSI, germination rate, moisture content, percentage of purity and vigor by tetrazolium test. Despite the combine, the results showed that the mechanical injury has most reduced seeds quality, at 16.6% moisture content, concave opening of 30 mm (axial and 10 mm (tangential and cylinder rotation of 1100 rpm (axial and 1000 (tangential, both with the highest rotations used. The combine with tangential flow had the highest degree of seeds purity. When seeds moisture content at harvest was close to 13.7%, there was the highest seed injury, while, at 16.6%, there was the highest number of crushed soybeans, regardless the combine adjustment.

  19. Effect of fiber distribution and realignment on the nonlinear and inhomogeneous mechanical properties of human supraspinatus tendon under longitudinal tensile loading.

    Science.gov (United States)

    Lake, Spencer P; Miller, Kristin S; Elliott, Dawn M; Soslowsky, Louis J

    2009-12-01

    Tendon exhibits nonlinear stress-strain behavior that may be partly due to movement of collagen fibers through the extracellular matrix. While a few techniques have been developed to evaluate the fiber architecture of other soft tissues, the organizational behavior of tendon under load has not been determined. The supraspinatus tendon (SST) of the rotator cuff is of particular interest for investigation due to its complex mechanical environment and corresponding inhomogeneity. In addition, SST injury occurs frequently with limited success in treatment strategies, illustrating the need for a better understanding of SST properties. Therefore, the objective of this study was to quantitatively evaluate the inhomogeneous tensile mechanical properties, fiber organization, and fiber realignment under load of human SST utilizing a novel polarized light technique. Fiber distributions were found to become more aligned under load, particularly during the low stiffness toe-region, suggesting that fiber realignment may be partly responsible for observed nonlinear behavior. Fiber alignment was found to correlate significantly with mechanical parameters, providing evidence for strong structure-function relationships in tendon. Human SST exhibits complex, inhomogeneous mechanical properties and fiber distributions, perhaps due to its complex loading environment. Surprisingly, histological grade of degeneration did not correlate with mechanical properties.

  20. The effects of acute alcohol intoxication on the cognitive mechanisms underlying false facial recognition.

    Science.gov (United States)

    Colloff, Melissa F; Flowe, Heather D

    2016-06-01

    False face recognition rates are sometimes higher when faces are learned while under the influence of alcohol. Alcohol myopia theory (AMT) proposes that acute alcohol intoxication during face learning causes people to attend to only the most salient features of a face, impairing the encoding of less salient facial features. Yet, there is currently no direct evidence to support this claim. Our objective was to test whether acute alcohol intoxication impairs face learning by causing subjects to attend to a salient (i.e., distinctive) facial feature over other facial features, as per AMT. We employed a balanced placebo design (N = 100). Subjects in the alcohol group were dosed to achieve a blood alcohol concentration (BAC) of 0.06 %, whereas the no alcohol group consumed tonic water. Alcohol expectancy was controlled. Subjects studied faces with or without a distinctive feature (e.g., scar, piercing). An old-new recognition test followed. Some of the test faces were "old" (i.e., previously studied), and some were "new" (i.e., not previously studied). We varied whether the new test faces had a previously studied distinctive feature versus other familiar characteristics. Intoxicated and sober recognition accuracy was comparable, but subjects in the alcohol group made more positive identifications overall compared to the no alcohol group. The results are not in keeping with AMT. Rather, a more general cognitive mechanism appears to underlie false face recognition in intoxicated subjects. Specifically, acute alcohol intoxication during face learning results in more liberal choosing, perhaps because of an increased reliance on familiarity.

  1. Dynamic tensile behaviour and deformational mechanism of C5191 phosphor bronze under high strain rates deformation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dao-chun [College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); College of Mechanical and Electrical Engineering, Taizhou Vocational & Technical College, Taizhou 318000 (China); Chen, Ming-he, E-mail: meemhchen@nuaa.edu.cn [College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wang, Lei; Cheng, Hu [College of Mechanical Engineering, Taizhou University, Taizhou 318000 (China)

    2016-01-01

    High speed stamping process is used to high strength and high electrical conductivity phosphor bronze with extremely high strain rates more than 10{sup 3} s{sup −1}. This study on the dynamic tensile behaviour and deformational mechanism is to optimise the high speed stamping processes and improve geometrical precision in finished products. Thus, the tensile properties and deformation behaviour of C5191 phosphor bronze under quasi-static tensile condition at a strain rate of 0.001 s{sup −1} by electronic universal testing machine, and dynamic tensile condition at strain rate of 500, 1000 and 1500 s{sup −1} by split Hopkinson tensile bar (SHTB) apparatus were studied. The effects of strain rate and the deformation mechanism were investigated by means of SEM and TEM. The results showed that the yield strength and tensile strength of C5191 phosphor bronze under high strain rates deformation increased by 32.77% and 11.07% respectively compared with quasi-static condition, the strain hardening index increases from 0.075 to 0.251, and the strength of the material strain rates sensitivity index change from 0.005 to 0.022, which presented a clear sensitive to strain rates. Therefore, it is claimed that the dominant deformation mechanism was changed by the dislocation motion under different strain rates, and the ability of plastic deformation of C5191 phosphor bronze increased due to the number of movable dislocations increased significantly, started multi-line slip, and the soft effect of adiabatic temperature rise at the strain rate ranging from 500 to 1500 s{sup −1}.

  2. Mixed Mechanism of Lubrication by Lipid Bilayer Stacks.

    Science.gov (United States)

    Boţan, Alexandru; Joly, Laurent; Fillot, Nicolas; Loison, Claire

    2015-11-10

    Although the key role of lipid bilayer stacks in biological lubrication is generally accepted, the mechanisms underlying their extreme efficiency remain elusive. In this article, we report molecular dynamics simulations of lipid bilayer stacks undergoing load and shear. When the hydration level is reduced, the velocity accommodation mechanism changes from viscous shear in hydration water to interlayer sliding in the bilayers. This enables stacks of hydrated lipid bilayers to act as efficient boundary lubricants for various hydration conditions, structures, and mechanical loads. We also propose an estimation for the friction coefficient; thanks to the strong hydration forces between lipid bilayers, the high local viscosity is not in contradiction with low friction coefficients.

  3. Development of an advanced PFM code for the integrity evaluation of nuclear piping system under combined aging mechanisms

    International Nuclear Information System (INIS)

    Datta, Debashis

    2010-02-01

    A nuclear piping system is composed of several straight pipes and elbows joined by welding. These weld sections are usually the most susceptible failure parts susceptible to various degradation mechanisms. Whereas a specific location of a reactor piping system might fail by a combination of different aging mechanisms, e.g. fatigue and/or stress corrosion cracking, the majority of the piping probabilistic fracture mechanics (PFM) codes can only consider a single aging mechanism at a time. So, a probabilistic fracture mechanics computer code capable of considering multiple aging mechanisms was developed for an accurate failure analysis of each specific component of a nuclear piping section. The newly proposed crack morphology based probabilistic leak flow rate module is introduced in this code to separately treat fatigue and SCC type cracks. Improved models e.g. stressors models, elbow failure model, SIFs model, local seismic occurrence probability model, performance based crack detection models, etc., are also included in this code. Recent probabilistic fatigue (S-N) and SCC crack initiation (S-T) and subsequent crack growth rate models are coded. An integrated probabilistic risk assessment and probabilistic fracture mechanics methodology is proposed. A complete flow chart regarding the combined aging mechanism model is presented. The combined aging mechanism based module can significantly reduce simulation efforts and time. Two NUREG benchmark problems, e.g. reactor pressure vessel outlet nozzle section and a surge line elbow located just below the pressurizer are reinvestigated by this code. The results showed that, contribution of pre-existing cracks in addition to initiating cracks, can significantly increase the overall failure probability. Inconel weld location of reactor pressure vessel outlet nozzle section showed the weakest point in terms of relative through-wall leak failure probability in the order of about 10 -2 at the 40-year plant life. Considering

  4. Pontomedullary lacerations and concomitant head and neck injuries: their underlying mechanism. A prospective autopsy study.

    Science.gov (United States)

    Živković, Vladimir; Nikolić, Slobodan; Strajina, Veljko; Babić, Dragan; Djonić, Danijela; Djurić, Marija

    2012-09-01

    It is a well-documented fact that pontomedullary lacerations (PML) occur as a result of severe craniocervical injury, but their underlying mechanism has yet to be fully clarified. The aim of this prospective study has been to give greater insight into the underlying mechanism of PML through determining the site of blunt head-impact, as well as the presence of concomitant head and neck injuries in cases of brainstem PML. A total of 56 cases with partial PML have been analysed for this study. The case group was composed of 40 men and 16 women, averaging in age 44.2 ± 19.2 years and consisting of 7 motorcyclists, 4 bicyclists, 18 car occupants, 16 pedestrians, and 10 victims of falls from a height, as well as 1 victim of a fall from standing height. The presented study has shown that there are several possible mechanisms of PML. Impact to the chin, with or without a skull base fracture, most often leads to this fatal injury, due to the impact force transmission either through the jawbone or vertebral column; most likely in combination with a fronto-posterior hyperextension of the head. Additionally, lateral head-impacts with subsequent hinge fractures and PML may also be a possible mechanism. The jawbone and other facial bones are able to act as shock absorbers, and their fracture may diminish the energy transfer towards the skull and protect the brain and brainstem from injury. The upper cervical spine can act as damper and energy absorber as well, and may prevent any occurrence of fracture to the base of the skull.

  5. New Insights on Neurobiological Mechanisms underlying Alcohol Addiction

    Science.gov (United States)

    Cui, Changhai; Noronha, Antonio; Morikawa, Hitoshi; Alvarez, Veronica A.; Stuber, Garret D.; Szumlinski, Karen K.; Kash, Thomas L.; Roberto, Marisa; Wilcox, Mark V.

    2012-01-01

    Alcohol dependence/addiction is mediated by complex neural mechanisms that involve multiple brain circuits and neuroadaptive changes in a variety of neurotransmitter and neuropeptide systems. Although recent studies have provided substantial information on the neurobiological mechanisms that drive alcohol drinking behavior, significant challenges remain in understanding how alcohol-induced neuroadaptations occur and how different neurocircuits and pathways cross-talk. This review article highlights recent progress in understanding neural mechanisms of alcohol addiction from the perspectives of the development and maintenance of alcohol dependence. It provides insights on cross talks of different mechanisms and reviews the latest studies on metaplasticity, structural plasticity, interface of reward and stress pathways, and cross-talk of different neural signaling systems involved in binge-like drinking and alcohol dependence. PMID:23159531

  6. Behavior of clay materials under ionizing radiation

    International Nuclear Information System (INIS)

    Laine, Maxime

    2017-01-01

    The aim of this PhD thesis is to study and understand, by proposing reaction mechanisms, the behavior under irradiation of various clay materials. The systems of interest were first synthetic talc, which is the prototype of a non-swelling material. Under irradiation by accelerated electrons, the production of dihydrogen in this system, due solely to surface hydroxyl groups, is of the same order of magnitude as the one obtained in liquid water. This yield is divided by 30 in the case of natural talc from Luzenac, thus highlighting the importance of the impurities as scavengers of the precursors of dihydrogen. Synthetic smectites, which are swelling materials, were then studied. The results evidence the radiolysis of water confined in the interlayer space, leading to H 2 yields which may be two to three times higher than those measured in water. Moreover, they are similar for montmorillonite and saponite, evidencing that the charge location plays only a minor role. Finally, the study of double layered hydroxides or anionic clays shows that, in this case, the nature of the anion in the inter lamellar space controls the reactivity. Parallel to these measurements, electron paramagnetic spectroscopy experiments have enabled proposing reaction mechanisms. Finally, all these results are of interest in the context of the disposal of radioactive waste. (author) [fr

  7. Mechanisms underlying the social enhancement of vocal learning in songbirds.

    Science.gov (United States)

    Chen, Yining; Matheson, Laura E; Sakata, Jon T

    2016-06-14

    Social processes profoundly influence speech and language acquisition. Despite the importance of social influences, little is known about how social interactions modulate vocal learning. Like humans, songbirds learn their vocalizations during development, and they provide an excellent opportunity to reveal mechanisms of social influences on vocal learning. Using yoked experimental designs, we demonstrate that social interactions with adult tutors for as little as 1 d significantly enhanced vocal learning. Social influences on attention to song seemed central to the social enhancement of learning because socially tutored birds were more attentive to the tutor's songs than passively tutored birds, and because variation in attentiveness and in the social modulation of attention significantly predicted variation in vocal learning. Attention to song was influenced by both the nature and amount of tutor song: Pupils paid more attention to songs that tutors directed at them and to tutors that produced fewer songs. Tutors altered their song structure when directing songs at pupils in a manner that resembled how humans alter their vocalizations when speaking to infants, that was distinct from how tutors changed their songs when singing to females, and that could influence attention and learning. Furthermore, social interactions that rapidly enhanced learning increased the activity of noradrenergic and dopaminergic midbrain neurons. These data highlight striking parallels between humans and songbirds in the social modulation of vocal learning and suggest that social influences on attention and midbrain circuitry could represent shared mechanisms underlying the social modulation of vocal learning.

  8. Oxidative Stress and Mitochondrial Activation as the Main Mechanisms Underlying Graphene Toxicity against Human Cancer Cells

    Directory of Open Access Journals (Sweden)

    Anna Jarosz

    2016-01-01

    Full Text Available Due to the development of nanotechnology graphene and graphene-based nanomaterials have attracted the most attention owing to their unique physical, chemical, and mechanical properties. Graphene can be applied in many fields among which biomedical applications especially diagnostics, cancer therapy, and drug delivery have been arousing a lot of interest. Therefore it is essential to understand better the graphene-cell interactions, especially toxicity and underlying mechanisms for proper use and development. This review presents the recent knowledge concerning graphene cytotoxicity and influence on different cancer cell lines.

  9. A Three-Box Model of Thermohaline Circulation under the Energy Constraint

    International Nuclear Information System (INIS)

    Shen Yang; Guan Yu-Ping; Liang Chu-Jin; Chen Da-Ke

    2011-01-01

    The driving mechanism of thermohaline circulation is still a controversial topic in physical oceanography. Classic theory is based on Stommel's two-box model under buoyancy constraint. Recently, Guan and Huang proposed a new viewpoint in the framework of energy constraint with a two-box model. We extend it to a three-box model, including the effect of wind-driven circulation. Using this simple model, we further study how ocean mixing impacts on thermohaline circulation under the energy constraint. (geophysics, astronomy, and astrophysics)

  10. Molecular mechanism underlying juvenile hormone-mediated repression of precocious larval-adult metamorphosis.

    Science.gov (United States)

    Kayukawa, Takumi; Jouraku, Akiya; Ito, Yuka; Shinoda, Tetsuro

    2017-01-31

    Juvenile hormone (JH) represses precocious metamorphosis of larval to pupal and adult transitions in holometabolous insects. The early JH-inducible gene Krüppel homolog 1 (Kr-h1) plays a key role in the repression of metamorphosis as a mediator of JH action. Previous studies demonstrated that Kr-h1 inhibits precocious larval-pupal transition in immature larva via direct transcriptional repression of the pupal specifier Broad-Complex (BR-C). JH was recently reported to repress the adult specifier gene Ecdysone-induced protein 93F (E93); however, its mechanism of action remains unclear. Here, we found that JH suppressed ecdysone-inducible E93 expression in the epidermis of the silkworm Bombyx mori and in a B. mori cell line. Reporter assays in the cell line revealed that the JH-dependent suppression was mediated by Kr-h1. Genome-wide ChIP-seq analysis identified a consensus Kr-h1 binding site (KBS, 14 bp) located in the E93 promoter region, and EMSA confirmed that Kr-h1 directly binds to the KBS. Moreover, we identified a C-terminal conserved domain in Kr-h1 essential for the transcriptional repression of E93 Based on these results, we propose a mechanism in which JH-inducible Kr-h1 directly binds to the KBS site upstream of the E93 locus to repress its transcription in a cell-autonomous manner, thereby preventing larva from bypassing the pupal stage and progressing to precocious adult development. These findings help to elucidate the molecular mechanisms regulating the metamorphic genetic network, including the functional significance of Kr-h1, BR-C, and E93 in holometabolous insect metamorphosis.

  11. Magnesium alloys as body implants: fracture mechanism under dynamic and static loadings in a physiological environment.

    Science.gov (United States)

    Choudhary, Lokesh; Raman, R K Singh

    2012-02-01

    It is essential that a metallic implant material possesses adequate resistance to cracking/fracture under the synergistic action of a corrosive physiological environment and mechanical loading (i.e. stress corrosion cracking (SCC)), before the implant can be put to actual use. This paper presents a critique of the fundamental issues with an assessment of SCC of a rapidly corroding material such as magnesium alloys, and describes an investigation into the mechanism of SCC of a magnesium alloy in a physiological environment. The SCC susceptibility of the alloy in a simulated human body fluid was established by slow strain rate tensile (SSRT) testing using smooth specimens under different electrochemical conditions for understanding the mechanism of SCC. However, to assess the life of the implant devices that often possess fine micro-cracks, SCC susceptibility of notched specimens was investigated by circumferential notch tensile (CNT) testing. CNT tests also produced important design data, i.e. threshold stress intensity for SCC (KISCC) and SCC crack growth rate. Fractographic features of SCC were examined using scanning electron microscopy. The SSRT and CNT results, together with fractographic evidence, confirmed the SCC susceptibility of both smooth and notched specimens of a magnesium alloy in the physiological environment. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. A proposed chemical mechanism for biological phosphate removal ...

    African Journals Online (AJOL)

    DRINIE

    2003-04-02

    Apr 2, 2003 ... Water Utilisation Division, Department of Chemical Engineering, University of ... wastewater reacts with orthophosphate under anaerobic conditions to make ... role of acetates and other short-chain carbon compounds in bio-.

  13. The mechanical stability of retained austenite in low-alloyed TRIP steel under shear loading

    Energy Technology Data Exchange (ETDEWEB)

    Blondé, R., E-mail: r.j.p.blonde@tudelft.nl [Fundamental Aspects of Materials and Energy, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Materials Innovation Institute, Mekelweg 2, 2628 CD Delft (Netherlands); Jimenez-Melero, E., E-mail: enrique.jimenez-melero@manchester.ac.uk [Dalton Cumbrian Facility, The University of Manchester, Westlakes Science and Technology Park, Moor Row, Cumbria CA24 3HA (United Kingdom); Zhao, L., E-mail: lie.zhao@tudelft.nl [Materials Innovation Institute, Mekelweg 2, 2628 CD Delft (Netherlands); Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands); Schell, N., E-mail: norbert.schell@hzg.de [Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max Planck Strasse 1, 21502 Geesthacht (Germany); Brück, E., E-mail: e.h.bruck@tudelft.nl [Fundamental Aspects of Materials and Energy, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Zwaag, S. van der, E-mail: s.vanderzwaag@tudelft.nl [Novel Aerospace Materials Group, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft (Netherlands); Dijk, N.H. van, E-mail: n.h.vandijk@tudelft.nl [Fundamental Aspects of Materials and Energy, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)

    2014-01-31

    The microstructure evolution during shear loading of a low-alloyed TRIP steel with different amounts of the metastable austenite phase and its equivalent DP grade has been studied by in-situ high-energy X-ray diffraction. A detailed powder diffraction analysis has been performed to probe the austenite-to-martensite transformation by characterizing simultaneously the evolution of the austenite phase fraction and its carbon concentration, the load partitioning between the austenite and the ferritic matrix and the texture evolution of the constituent phases. Our results show that for shear deformation the TRIP effect extends over a significantly wider deformation range than for simple uniaxial loading. A clear increase in average carbon content during the mechanically-induced transformation indicates that austenite grains with a low carbon concentration are least stable during shear loading. The observed texture evolution indicates that under shear loading the orientation dependence of the austenite stability is relatively weak, while it has previously been found that under tensile load the {110}〈001〉 component transforms preferentially. The mechanical stability of retained austenite in TRIP steel is found to be a complex interplay between the interstitial carbon concentration in the austenite, the grain orientation and the load partitioning.

  14. Draft regulatory analysis: notice of proposed rulemaking motor gasoline allocation revisions

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-06-01

    The Draft Regulatory Analysis is prepared for those proposed regulations which either may have a major impact on the general economy, individual industries, or geographic regions and levels of government, or may be significant in that they affect important DOE policy concerns and are the object of public interest. The problems and proposed solutions for the Notice of Proposed Rulemaking and Public Hearings on the Motor Gasoline Allocation Program are examined. The ERA's mandate for this program is set out in the Emergency Petroleum Allocation Act of 1973. Under this Act, the President is empowered to enforce, at his discretion, price and allocation controls on petroleum and petroleum products, including gasoline, through September 30, 1981. The Act sets the following allocation goals: protect public health; maintain public services and agricultural operations; foster competition in the petroleum industry; distribute petroleum among industry sectors and US regions equitably; and minimize economic disruption and unnecessary interference wth market mechanisms.

  15. Near-field NanoThermoMechanical memory

    International Nuclear Information System (INIS)

    Elzouka, Mahmoud; Ndao, Sidy

    2014-01-01

    In this letter, we introduce the concept of NanoThermoMechanical Memory. Unlike electronic memory, a NanoThermoMechanical memory device uses heat instead of electricity to record, store, and recover data. Memory function is achieved through the coupling of near-field thermal radiation and thermal expansion resulting in negative differential thermal resistance and thermal latching. Here, we demonstrate theoretically via numerical modeling the concept of near-field thermal radiation enabled negative differential thermal resistance that achieves bistable states. Design and implementation of a practical silicon based NanoThermoMechanical memory device are proposed along with a study of its dynamic response under write/read cycles. With more than 50% of the world's energy losses being in the form of heat along with the ever increasing need to develop computer technologies which can operate in harsh environments (e.g., very high temperatures), NanoThermoMechanical memory and logic devices may hold the answer

  16. Morphological and molecular variations induce mitochondrial dysfunction as a possible underlying mechanism of athletic amenorrhea.

    Science.gov (United States)

    Xiong, Ruo-Hong; Wen, Shi-Lei; Wang, Qiang; Zhou, Hong-Ying; Feng, Shi

    2018-01-01

    Female athletes may experience difficulties in achieving pregnancy due to athletic amenorrhea (AA); however, the underlying mechanisms of AA remain unknown. The present study focuses on the mitochondrial alteration and its function in detecting the possible mechanism of AA. An AA rat model was established by excessive swimming. Hematoxylin and eosin staining, and transmission electron microscopic methods were performed to evaluate the morphological changes of the ovary, immunohistochemical examinations and radioimmunoassays were used to detect the reproductive hormones and corresponding receptors. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to test the mtDNA copy number. PCR and western blot analysis were used to test the expression of ND2. The change of morphological features of the rat ovaries revealed evident abnormalities. Particularly, the features of the mitochondria were markedly altered. In addition, reproductive hormones in the serum and tissues of AA rats were also detected to evaluate the function of the ovaries, and the levels of these hormones were significantly decreased. Furthermore, the mitochondrial DNA copy number (mtDNA) and expression of NADH dehydrogenase subunit 2 (ND2) were quantitated by qPCR or western blot analysis. Accordingly, the mtDNA copy number and expression of ND2 expression were markedly reduced in the AA rats. In conclusion, mitochondrial dysfunction in AA may affect the cellular energy supply and, therefore, result in dysfunction of the ovary. Thus, mitochondrial dysfunction may be considered as a possible underlying mechanism for the occurrence of AA.

  17. Molecular mechanisms underlying mancozeb-induced inhibition of TNF-alpha production

    International Nuclear Information System (INIS)

    Corsini, Emanuela; Viviani, Barbara; Birindelli, Sarah; Gilardi, Federica; Torri, Anna; Codeca, Ilaria; Lucchi, Laura; Bartesaghi, Stefano; Galli, Corrado L.; Marinovich, Marina; Colosio, Claudio

    2006-01-01

    after mancozeb treatment, confirming NF-κB binding as an intracellular target of mancozeb. Overall, this study contributes to our understanding of the mechanism underlying mancozeb-induced immunotoxicity

  18. MECHANICAL BEHAVIOR OF COLD BITUMINOUS MIXTURE UNDER EFFECTS OF STATIC AND REPEATED LOADS1

    OpenAIRE

    Tamyres Karla da Silva; Carlos Alexandre Braz de Carvalho; Geraldo Luciano de Oliveira Marques; Dario Cardoso de Lima; Taciano Oliveira da Silva; Carlos Cardoso Machado

    2017-01-01

    Abstract This paper presents the results of an experimental research aimed at analyzing the mechanical behavior of a cold bituminous mixture under effects of static and repeated loads. Initially, a Marshall mixture design was performed to determine the mixture design contents according to standard DNER (1994a). After obtaining the mixture design contents, nine bituminous specimens were molded and subjected to the following tests: resilient modulus, tensile strength by diametral compression, a...

  19. Different routes, same pathways: Molecular mechanisms under silver ion and nanoparticle exposures in the soil sentinel Eisenia fetida

    International Nuclear Information System (INIS)

    Novo, Marta; Lahive, Elma; Díez-Ortiz, María; Matzke, Marianne; Morgan, Andrew J.; Spurgeon, David J.; Svendsen, Claus; Kille, Peter

    2015-01-01

    Use of nanotechnology products is increasing; with silver (Ag) nanoparticles particularly widely used. A key uncertainty surrounding the risk assessment of AgNPs is whether their effects are driven through the same mechanism of action that underlies the toxic effects of Ag ions. We present the first full transcriptome study of the effects of Ag ions and NPs in an ecotoxicological model soil invertebrate, the earthworm Eisenia fetida. Gene expression analyses indicated similar mechanisms for both silver forms with toxicity being exerted through pathways related to ribosome function, sugar and protein metabolism, molecular stress, disruption of energy production and histones. The main difference seen between Ag ions and NPs was associated with potential toxicokinetic effects related to cellular internalisation and communication, with pathways related to endocytosis and cilia being significantly enriched. These results point to a common final toxicodynamic response, but initial internalisation driven by different exposure routes and toxicokinetic mechanisms. - Highlights: • Molecular effects underlying Ag ions and NPs exposure were studied in Eisenia fetida. • Full transcriptomic study of a genetically characterised lineage. • NPs and ions presented a similar toxicodynamic response. • Internalisation of the two Ag forms by different toxicokinetic mechanisms. - Transcriptomic analyses after exposure of earthworms to silver NPs or ions showed a final common toxicodynamic response, but internalisation by different toxicokinetic mechanisms

  20. Failure strains and proposed limit strains for an reactor pressure vessel under severe accident conditions

    International Nuclear Information System (INIS)

    Krieg, R.

    2005-01-01

    The local failure strains of essential design elements of a reactor vessel are investigated. The size influence of the structure is of special interest. Typical severe accident conditions including elevated temperatures and dynamic loads are considered. The main part of work consists of test families with specimens under uniaxial and biaxial load. Within one test family the specimen geometry and the load conditions are similar, but the size is varied up to reactor dimensions. Special attention is given to geometries with a hole or a notch causing non-uniform stress and strain distributions typical for the reactor vessel. A key problem is to determine the local failure strain. Here suitable methods had to be developed including the so-called 'vanishing gap method', and the 'forging die method'. They are based on post-test geometrical measurements of the fracture surfaces and reconstructions of the related strain fields using finite element models. The results indicate that stresses versus dimensionless deformations are approximately size independent up to failure for specimens of similar geometry under similar load conditions. Local failure strains could be determined. The values are rather high and size dependent. Statistical evaluation allow the proposal of limit strains which are also size dependent. If these limit strains are not exceeded, the structures will not fracture

  1. Construction Technology and Mechanical Properties of a Cement-Soil Mixing Pile Reinforced by Basalt Fibre

    Directory of Open Access Journals (Sweden)

    Yingwei Hong

    2017-01-01

    Full Text Available A new type of cement-soil mixing pile reinforced by basalt fibre is proposed for increasing the bearing capacity of cement-soil mixing piles. This work primarily consists of three parts. First, the process of construction technology is proposed, which could allow uniform mixing of the basalt fibre in cement-soil. Second, the optimal proportions of the compound mixtures and the mechanical properties of the pile material are obtained from unconfined compression strength test, tensile splitting strength test, and triaxial shear test under different conditions. Third, the reliability of the construction technology, optimal proportions, and mechanical properties are verified by testing the mechanical properties of the drilling core sample on site.

  2. Mechanism of laser micro-adjustment

    International Nuclear Information System (INIS)

    Shen Hong

    2008-01-01

    Miniaturization is a requirement in engineering to produce competitive products in the field of optical and electronic industries. Laser micro-adjustment is a new and promising technology for sheet metal actuator systems. Efforts have been made to understand the mechanisms of metal plate forming using a laser heating source. Three mechanisms have been proposed for describing the laser forming processes in different scenarios, namely the temperature gradient mechanism (TGM), buckling mechanism and upsetting mechanism (UM). However, none of these mechanisms can fully describe the deformation mechanisms involved in laser micro-adjustment. Based on the thermal and elastoplastic analyses, a coupled TGM and UM are presented in this paper to illustrate the thermal mechanical behaviours of two-bridge actuators when applying a laser forming process. To validate the proposed coupling mechanism, numerical simulations are carried out and the corresponding results demonstrate the mechanism proposed. The mechanism of the micro-laser adjustment could be taken as a supplement to the laser forming process.

  3. Contract-Based Incentive Mechanism for Mobile Crowdsourcing Networks

    Directory of Open Access Journals (Sweden)

    Nan Zhao

    2017-09-01

    Full Text Available Mobile crowdsourcing networks (MCNs are a promising method of data collecting and processing by leveraging the mobile devices’ sensing and computing capabilities. However, because of the selfish characteristics of the service provider (SP and mobile users (MUs, crowdsourcing participants only aim to maximize their own benefits. This paper investigates the incentive mechanism between the above two parties to create mutual benefits. By modeling MCNs as a labor market, a contract-based crowdsourcing model with moral hazard is proposed under the asymmetric information scenario. In order to incentivize the potential MUs to participate in crowdsourcing tasks, the optimization problem is formulated to maximize the SP’s utility by jointly examining the crowdsourcing participants’ risk preferences. The impact of crowdsourcing participants’ attitudes of risks on the incentive mechanism has been studied analytically and experimentally. Numerical simulation results demonstrate the effectiveness of the proposed contract design scheme for the crowdsourcing incentive.

  4. Failure mechanisms of closed-cell aluminum foam under monotonic and cyclic loading

    International Nuclear Information System (INIS)

    Amsterdam, E.; De Hosson, J.Th.M.; Onck, P.R.

    2006-01-01

    This paper concentrates on the differences in failure mechanisms of Alporas closed-cell aluminum foam under either monotonic or cyclic loading. The emphasis lies on aspects of crack nucleation and crack propagation in relation to the microstructure. The cell wall material consists of Al dendrites and an interdendritic network of Al 4 Ca and Al 22 CaTi 2 precipitates. In situ scanning electron microscopy monotonic tensile tests were performed on small samples to study crack nucleation and propagation. Digital image correlation was employed to map the strain in the cell wall on the characteristic microstructural length scale. Monotonic tensile tests and tension-tension fatigue tests were performed on larger samples to observe the overall fracture behavior and crack path in monotonic and cyclic loading. The crack nucleation and propagation path in both loading conditions are revealed and it can be concluded that during monotonic tension cracks nucleate in and propagate partly through the Al 4 Ca interdendritic network, whereas under cyclic loading cracks nucleate and propagate through the Al dendrites

  5. Effect of nature-based sounds' intervention on agitation, anxiety, and stress in patients under mechanical ventilator support: a randomised controlled trial.

    Science.gov (United States)

    Saadatmand, Vahid; Rejeh, Nahid; Heravi-Karimooi, Majideh; Tadrisi, Sayed Davood; Zayeri, Farid; Vaismoradi, Mojtaba; Jasper, Melanie

    2013-07-01

    Few studies have been conducted to investigate the effect of nature-based sounds (N-BS) on agitation, anxiety level and physiological signs of stress in patients under mechanical ventilator support. Non-pharmacological nursing interventions such as N-BS can be less expensive and efficient ways to alleviate anxiety and adverse effects of sedative medications in patients under mechanical ventilator support. This study was conducted to identify the effect of the nature-based sounds' intervention on agitation, anxiety level and physiological stress responses in patients under mechanical ventilation support. A randomized placebo-controlled trial design was used to conduct this study. A total of 60 patients aged 18-65 years under mechanical ventilation support in an intensive care unit were randomly assigned to the control and experimental groups. The patients in the intervention group received 90 min of N-BS. Pleasant nature sounds were played to the patients using media players and headphones. Patients' physiological signs were taken immediately before the intervention and at the 30th, 60th, 90th minutes and 30 min after the procedure had finished. The physiological signs of stress assessed were heart rate, respiratory rate, and blood pressure. Data were collected over eight months from Oct 2011 to June 2012. Anxiety levels and agitation were assessed using the Faces Anxiety Scale and Richmond Agitation Sedation Scale, respectively. The experimental group had significantly lower systolic blood pressure, diastolic blood pressure, anxiety and agitation levels than the control group. These reductions increased progressively in the 30th, 60th, 90th minutes, and 30 min after the procedure had finished indicating a cumulative dose effect. N-BS can provide an effective method of decreasing potentially harmful physiological responses arising from anxiety in mechanically ventilated patients. Nurses can incorporate N-BS intervention as a non-pharmacologic intervention into the

  6. Numerical Analysis on Failure Modes and Mechanisms of Mine Pillars under Shear Loading

    Directory of Open Access Journals (Sweden)

    Tianhui Ma

    2016-01-01

    Full Text Available Severe damage occurs frequently in mine pillars subjected to shear stresses. The empirical design charts or formulas for mine pillars are not applicable to orebodies under shear. In this paper, the failure process of pillars under shear stresses was investigated by numerical simulations using the rock failure process analysis (RFPA 2D software. The numerical simulation results indicate that the strength of mine pillars and the corresponding failure mode vary with different width-to-height ratios and dip angles. With increasing dip angle, stress concentration first occurs at the intersection between the pillar and the roof, leading to formation of microcracks. Damage gradually develops from the surface to the core of the pillar. The damage process is tracked with acoustic emission monitoring. The study in this paper can provide an effective means for understanding the failure mechanism, planning, and design of mine pillars.

  7. Evaluation of Possible Proximate Mechanisms Underlying the Kinship Theory of Intragenomic Conflict in Social Insects.

    Science.gov (United States)

    Galbraith, David A; Yi, Soojin V; Grozinger, Christina M

    2016-12-01

    Kinship theory provides a universal framework in which to understand the evolution of altruism, but there are many molecular and genetic mechanisms that can generate altruistic behaviors. Interestingly, kinship theory specifically predicts intragenomic conflict between maternally-derived alleles (matrigenes) and paternally-derived alleles (patrigenes) over the generation of altruistic behavior in cases where the interests of the matrigenes and patrigenes are not aligned. Under these conditions, individual differences in selfish versus altruistic behavior are predicted to arise from differential expression of the matrigenes and patrigenes (parent-specific gene expression or PSGE) that regulate selfish versus altruistic behaviors. As one of the leading theories to describe PSGE and genomic imprinting, kinship theory has been used to generate predictions to describe the reproductive division of labor in social insect colonies, which represents an excellent model system to test the hypotheses of kinship theory and examine the underlying mechanisms driving it. Recent studies have confirmed the predicted differences in the influence of matrigenes and patrigenes on reproductive division of labor in social insects, and demonstrated that these differences are associated with differences in PSGE of key genes involved in regulating reproductive physiology, providing further support for kinship theory. However, the mechanisms mediating PSGE in social insects, and how PSGE leads to differences in selfish versus altruistic behavior, remain to be determined. Here, we review the available supporting evidence for three possible epigenetic mechanisms (DNA methylation, piRNAs, and histone modification) that may generate PSGE in social insects, and discuss how these may lead to variation in social behavior. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email

  8. Cognitive Self-Scheduled Mechanism for Access Control in Noisy Vehicular Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Mario Manzano

    2015-01-01

    Full Text Available Within the challenging environment of intelligent transportation systems (ITS, networked control systems such as platooning guidance of autonomous vehicles require innovative mechanisms to provide real-time communications. Although several proposals are currently under discussion, the design of a rapid, efficient, flexible, and reliable medium access control mechanism which meets the specific constraints of such real-time communications applications remains unsolved in this highly dynamic environment. However, cognitive radio (CR combines the capacity to sense the radio spectrum with the flexibility to adapt to transmission parameters in order to maximize system performance and has thus become an effective approach for the design of dynamic spectrum access (DSA mechanisms. This paper presents the enhanced noncooperative cognitive division multiple access (ENCCMA proposal combining time division multiple access (TDMA and frequency division multiple access (FDMA schemes with CR techniques to obtain a mechanism fulfilling the requirements of real-time communications. The analysis presented here considers the IEEE WAVE and 802.11p as reference standards; however, the proposed medium access control (MAC mechanism can be adapted to operate on the physical layer of different standards. The mechanism also offers the advantage of avoiding signaling, thus enhancing system autonomy as well as behavior in adverse scenarios.

  9. Central sensitization as the mechanism underlying pain in joint hypermobility syndrome/Ehlers-Danlos syndrome, hypermobility type.

    Science.gov (United States)

    Di Stefano, G; Celletti, C; Baron, R; Castori, M; Di Franco, M; La Cesa, S; Leone, C; Pepe, A; Cruccu, G; Truini, A; Camerota, F

    2016-09-01

    Patients with joint hypermobility syndrome/Ehlers-Danlos syndrome, hypermobility type (JHS/EDS-HT) commonly suffer from pain. How this hereditary connective tissue disorder causes pain remains unclear although previous studies suggested it shares similar mechanisms with neuropathic pain and fibromyalgia. In this prospective study seeking information on the mechanisms underlying pain in patients with JHS/EDS-HT, we enrolled 27 consecutive patients with this connective tissue disorder. Patients underwent a detailed clinical examination, including the neuropathic pain questionnaire DN4 and the fibromyalgia rapid screening tool. As quantitative sensory testing methods, we included thermal-pain perceptive thresholds and the wind-up ratio and recorded a standard nerve conduction study to assess non-nociceptive fibres and laser-evoked potentials, assessing nociceptive fibres. Clinical examination and diagnostic tests disclosed no somatosensory nervous system damage. Conversely, most patients suffered from widespread pain, the fibromyalgia rapid screening tool elicited positive findings, and quantitative sensory testing showed lowered cold and heat pain thresholds and an increased wind-up ratio. While the lack of somatosensory nervous system damage is incompatible with neuropathic pain as the mechanism underlying pain in JHS/EDS-HT, the lowered cold and heat pain thresholds and increased wind-up ratio imply that pain in JHS/EDS-HT might arise through central sensitization. Hence, this connective tissue disorder and fibromyalgia share similar pain mechanisms. WHAT DOES THIS STUDY ADD?: In patients with JHS/EDS-HT, the persistent nociceptive input due to joint abnormalities probably triggers central sensitization in the dorsal horn neurons and causes widespread pain. © 2016 European Pain Federation - EFIC®

  10. Notes on Some Schizoid Mechanisms

    Science.gov (United States)

    KLEIN, MELANIE

    1996-01-01

    I propose to summarize some of the conclusions presented in this paper. One of my main points was the suggestion that in the first few months of life anxiety is predominantly experienced as fear of persecution and that this contributes to certain mechanisms and defenses which characterize the paranoid and schizoid positions. Outstanding among these defenses is the mechanism of splitting internal and external objects, emotions, and the ego. These mechanisms and defenses are part of normal development and at the same time form the basis for later schizophrenic illness. I described the processes underlying identification by projection as a combination of splitting off parts of the self and projecting them on to another person, and some of the effects this identification has on normal and schizoid object relations. The onset of the depressive position is the juncture at which by regression schizoid mechanisms may be reinforced. I also suggested a close connection between the manic-depressive and schizoid disorders, based on the interaction between the infantile schizoid and depressive positions. PMID:22700275

  11. Some proposed mechanisms for internal cladding corrosion

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Pickering, S.; Whitlow, W.H.

    1977-01-01

    In spite of extensive research during recent years, a comprehensive model for internal cladding corrosion in fast reactor oxide fuel pins has not yet been established. In this paper, a model is proposed which accounts for many of the features normally associated with this type of corrosion. The model is composed of a number of parts which describe the chronological sequence of events at the fuel/cladding interface. The corrosion reaction is visualised as being primarily chemical in character, involving the cladding steel, the fuel and the more aggressive fission products, notably caesium in the presence of oxygen. The model attempts to explain how corrosion starts, how it depends on the oxygen potential, why it occurs non-uniformly; also covered are phase changes within the cladding steel and morphological features such as the intergranular form of attack and the distribution of corrosion products in the fuel/cladding gap. (author)

  12. Some proposed mechanisms for internal cladding corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, M H; Pickering, S; Whitlow, W H [EURATOM (United Kingdom)

    1977-04-01

    In spite of extensive research during recent years, a comprehensive model for internal cladding corrosion in fast reactor oxide fuel pins has not yet been established. In this paper, a model is proposed which accounts for many of the features normally associated with this type of corrosion. The model is composed of a number of parts which describe the chronological sequence of events at the fuel/cladding interface. The corrosion reaction is visualised as being primarily chemical in character, involving the cladding steel, the fuel and the more aggressive fission products, notably caesium in the presence of oxygen. The model attempts to explain how corrosion starts, how it depends on the oxygen potential, why it occurs non-uniformly; also covered are phase changes within the cladding steel and morphological features such as the intergranular form of attack and the distribution of corrosion products in the fuel/cladding gap. (author)

  13. The Dynamic Evolution of Firms’ Pollution Control Strategy under Graded Reward-Penalty Mechanism

    Directory of Open Access Journals (Sweden)

    Li Ming Chen

    2016-01-01

    Full Text Available The externality of pollution problem makes firms lack enough incentive to reduce pollution emission. Therefore, it is necessary to design a reasonable environmental regulation mechanism so as to effectively urge firms to control pollution. In order to inspire firms to control pollution, we divide firms into different grades according to their pollution level and construct an evolutionary game model to analyze the interaction between government’s regulation and firms’ pollution control under graded reward-penalty mechanism. Then, we discuss stability of firms’ pollution control strategy and derive the condition of inspiring firms to control pollution. Our findings indicate that firms tend to control pollution after long-term repeated games if government’s excitation level and monitoring frequency meet some conditions. Otherwise, firms tend to discharge pollution that exceeds the stipulated standards. As a result, in order to effectively control pollution, a government should adjust its excitation level and monitoring frequency reasonably.

  14. Curcumin-mediated regulation of intestinal barrier function: The mechanism underlying its beneficial effects.

    Science.gov (United States)

    Ghosh, Siddhartha S; He, Hongliang; Wang, Jing; Gehr, Todd W; Ghosh, Shobha

    2018-01-02

    Curcumin has anti-inflammatory, anti-oxidant and anti-proliferative properties established largely by in vitro studies. Accordingly, oral administration of curcumin beneficially modulates many diseases including diabetes, fatty-liver disease, atherosclerosis, arthritis, cancer and neurological disorders such as depression, Alzheimer's or Parkinson's disease. However, limited bioavailability and inability to detect curcumin in circulation or target tissues has hindered the validation of a causal role. We established curcumin-mediated decrease in the release of gut bacteria-derived lipopolysaccharide (LPS) into circulation by maintaining the integrity of the intestinal barrier function as the mechanism underlying the attenuation of metabolic diseases (diabetes, atherosclerosis, kidney disease) by curcumin supplementation precluding the need for curcumin absorption. In view of the causative role of circulating LPS and resulting chronic inflammation in the development of diseases listed above, this review summarizes the mechanism by which curcumin affects the several layers of the intestinal barrier and, despite negligible absorption, can beneficially modulate these diseases.

  15. Proposal of measuring the mechanisms of nuclear excitation leading to fission with the ADONE jet-target tagged photon beam

    International Nuclear Information System (INIS)

    Lucherini, V.; Bianchi, N.; De Sanctis, E.; Guaraldo, C.; Levi Sandri, P.; Muccifora, V.; Polli, E.; Reolon, A.R.; Aiello, S.; De Filippo, E.; Lanzano', G.; Lo Nigro, S.; Milone, C.; Pagano, A.; Botvina, A.S.; Iljinov, A.S.; Mebel, M.V.

    1990-01-01

    The mechanisms of excitation with subsequent fission of heavy nuclei can be conveniently studied by means of photons, since this probe is able to interact deeply inside the nucleus. We propose the use of the (200-1200 MeV) tagged photon beam from the ADONE Jet Target in order to study the mass-energy and total momentum distributions of fission fragments, to obtain experimental information on the configurations (excitation energy and nucleonic composition) of produced compound nuclei and on their decay channels

  16. Opto-mechanical design of small infrared cloud measuring device

    Science.gov (United States)

    Zhang, Jiao; Yu, Xun; Tao, Yu; Jiang, Xu

    2018-01-01

    In order to make small infrared cloud measuring device can be well in a wide temperature range and day-night environment, a design idea using catadioptric infrared panoramic imaging optical system and simple mechanical structure for realizing observation clode under all-weather conditions was proposed. Firstly, the optical system of cloud measuring device was designed. An easy-to-use numerical method was proposed to acquire the profile of a catadioptric mirror, which brought the property of equidistance projection and played the most important role in a catadioptric panoramic lens. Secondly, the mechanical structure was studied in detail. Overcoming the limitations of traditional primary mirror support structure, integrative design was used for refractor and mirror support structure. Lastly, temperature adaptability and modes of the mirror support structure were analyzed. Results show that the observation range of the cloud measuring device is wide and the structure is simple, the fundamental frequency of the structure is greater than 100 Hz, the surface precision of the system reflector reaches PV of λ/10 and RMS of λ/40under the load of temperature range - 40 60°C, it can meet the needs of existing meteorological observation.

  17. Neural mechanisms underlying transcranial direct current stimulation in aphasia: A feasibility study.

    Directory of Open Access Journals (Sweden)

    Lena eUlm

    2015-10-01

    Full Text Available Little is known about the neural mechanisms by which transcranial direct current stimulation (tDCS impacts on language processing in post-stroke aphasia. This was addressed in a proof-of-principle study that explored the effects of tDCS application in aphasia during simultaneous functional magnetic resonance imaging (fMRI. We employed a single subject, cross-over, sham-tDCS controlled design and the stimulation was administered to an individualized perilesional stimulation site that was identified by a baseline fMRI scan and a picture naming task. Peak activity during the baseline scan was located in the spared left inferior frontal gyrus (IFG and this area was stimulated during a subsequent cross-over phase. tDCS was successfully administered to the target region and anodal- vs. sham-tDCS resulted in selectively increased activity at the stimulation site. Our results thus demonstrate that it is feasible to precisely target an individualized stimulation site in aphasia patients during simultaneous fMRI which allows assessing the neural mechanisms underlying tDCS application. The functional imaging results of this case report highlight one possible mechanism that may have contributed to beneficial behavioural stimulation effects in previous clinical tDCS trials in aphasia. In the future, this approach will allow identifying distinct patterns of stimulation effects on neural processing in larger cohorts of patients. This may ultimately yield information about the variability of tDCS-effects on brain functions in aphasia.

  18. Possible health effects of 50/60 Hz electric and magnetic fields: review of proposed mechanisms

    International Nuclear Information System (INIS)

    Wood, A.W.

    1992-01-01

    There is inconclusive evidence from both epidemiological and laboratory studies that fields similar to those produced by electrical power transmission lines may contribute to certain diseases including cancer. There are several objections to a hypothesis of a direct causative link, based on identifying a mechanism of interaction. One is that the energy density of the fields is several orders of magnitude smaller than that associated with random thermal motion in biological tissue. Secondly, the induced currents are many times smaller than endogenous currents associated with normal membrane processes. A comparison of current densities and characteristics associated with field-related phenomena such as electro sensitivity in species of fish, night-time melatonin depression in rodents, limb regeneration in amphibians and magnetophosphenes in humans reveals little that can be of use in determining a 'response metric'. Nevertheless, guide-lines for the general public are in fact based on this quantity, for immediate effects at least. Indeed, currents induced by the electric component of environmental 50 Hz fields are of similar magnitude to those induced by the magnetic component, yet epidemiological studies have identified surrogates of the latter as the significant exposure metric in relation to cancer incidence. Proposed mechanisms, many of which are still at the 'working hypothesis' stage, are compared with experimental evidence. Some conflict with epidemiological evidence, itself not strong, but becoming stronger, is apparent. 131 refs., 6 figs

  19. Mechanical Behaviour of 3D Multi-layer Braided Composites: Experimental, Numerical and Theoretical Study

    Science.gov (United States)

    Deng, Jian; Zhou, Guangming; Ji, Le; Wang, Xiaopei

    2017-12-01

    Mechanical properties and failure mechanisms of a newly designed 3D multi-layer braided composites are evaluated by experimental, numerical and theoretical studies. The microstructure of the composites is introduced. The unit cell technique is employed to address the periodic arrangement of the structure. The volume averaging method is used in theoretical solutions while FEM with reasonable periodic boundary conditions and meshing technique in numerical simulations. Experimental studies are also conducted to verify the feasibility of the proposed models. Predicted elastic properties agree well with the experimental data, indicating the feasibility of the proposed models. Numerical evaluation is more accurate than theoretical assessment. Deformations and stress distributions of the unit cell under tension shows displacement and traction continuity, guaranteeing the rationality of the applied periodic boundary conditions. Although compression and tension modulus are close, the compressive strength only reaches 70% of the tension strength. This indicates that the composites can be weakened in compressive loading. Additionally, by analysing the micrograph of fracture faces and strain-stress curves, a brittle failure mechanism is observed both in composites under tension and compression.

  20. Reaction Mechanisms and HCCI Combustion Processes of Mixtures of n-Heptane and the Butanols

    Directory of Open Access Journals (Sweden)

    Hu eWang

    2015-03-01

    Full Text Available A reduced primary reference fuel (PRF-Alcohol-Di-tert-butyl Peroxide (DTBP mechanism with 108 species and 435 reactions, including sub-mechanisms of PRF, methanol, ethanol, DTBP and the four butanol isomers, is proposed for homogeneous charge compression ignition (HCCI engine combustion simulations of butanol isomers/n-heptane mixtures. HCCI experiments fuelled with butanol isomer/n-heptane mixtures on two different engines are conducted for the validation of proposed mechanism. The mechanism has been validated against shock tube ignition delays, laminar flame speeds, species profiles in premixed flames and engine HCCI combustion data, and good agreements with experimental results are demonstrated under various validation conditions. It is found that although the reactivity of neat tert-butanol is the lowest, mixtures of tert-butanol/n-heptane exhibit the highest reactivity among the butanol isomer/n-heptane mixtures if the n-heptane blending ratio exceeds 20% (mole. Kinetic analysis shows that the highest C-H bond energy in the tert-butanol molecule is partially responsible for this phenomenon. It is also found that the reaction tC4H9OH+CH3O2 =tC4H9O+CH3O2H plays important role and eventually produces the OH radical to promote the ignition and combustion. The proposed mechanism is able to capture HCCI combustion processes of the butanol/n-heptane mixtures under different operating conditions. In addition, the trend that tert-butanol /n-heptane has the highest reactivity is also captured in HCCI combustion simulations. The results indicate that the current mechanism can be used for HCCI engine predictions of PRF and alcohol fuels.

  1. Maize water status and physiological traits as affected by root endophytic fungus Piriformospora indica under combined drought and mechanical stresses.

    Science.gov (United States)

    Hosseini, Fatemeh; Mosaddeghi, Mohammad Reza; Dexter, Anthony Roger; Sepehri, Mozhgan

    2018-05-01

    Under combined drought and mechanical stresses, mechanical stress primarily controlled physiological responses of maize. Piriformospora indica mitigated the adverse effects of stresses, and inoculated maize experienced less oxidative damage and had better adaptation to stressful conditions. The objective of this study was to investigate the effect of maize root colonization by an endophytic fungus P. indica on plant water status, physiological traits and root morphology under combined drought and mechanical stresses. Seedlings of inoculated and non-inoculated maize (Zea mays L., cv. single cross 704) were cultivated in growth chambers filled with moistened siliceous sand at a matric suction of 20 hPa. Drought stress was induced using PEG 6000 solution with osmotic potentials of 0, - 0.3 and - 0.5 MPa. Mechanical stress (i.e., penetration resistances of 1.05, 4.23 and 6.34 MPa) was exerted by placing weights on the surface of the sand medium. After 30 days, leaf water potential (LWP) and relative water content (RWC), root and shoot fresh weights, root volume (RV) and diameter (RD), leaf proline content, leaf area (LA) and catalase (CAT) and ascorbate peroxidase (APX) activities were measured. The results show that exposure to individual drought and mechanical stresses led to higher RD and proline content and lower plant biomass, RV and LA. Moreover, increasing drought and mechanical stress severity increased APX activity by about 1.9- and 3.1-fold compared with the control. When plants were exposed to combined stresses, mechanical stress played the dominant role in controlling plant responses. P. indica-inoculated plants are better adapted to individual and combined stresses. The inoculated plants had greater RV, LA, RWC, LWP and proline content under stressful conditions. In comparison with non-inoculated plants, inoculated plants showed lower CAT and APX activities which means that they experienced less oxidative stress induced by stressful conditions.

  2. Incipient Fault Detection for Rolling Element Bearings under Varying Speed Conditions.

    Science.gov (United States)

    Xue, Lang; Li, Naipeng; Lei, Yaguo; Li, Ningbo

    2017-06-20

    Varying speed conditions bring a huge challenge to incipient fault detection of rolling element bearings because both the change of speed and faults could lead to the amplitude fluctuation of vibration signals. Effective detection methods need to be developed to eliminate the influence of speed variation. This paper proposes an incipient fault detection method for bearings under varying speed conditions. Firstly, relative residual (RR) features are extracted, which are insensitive to the varying speed conditions and are able to reflect the degradation trend of bearings. Then, a health indicator named selected negative log-likelihood probability (SNLLP) is constructed to fuse a feature set including RR features and non-dimensional features. Finally, based on the constructed SNLLP health indicator, a novel alarm trigger mechanism is designed to detect the incipient fault. The proposed method is demonstrated using vibration signals from bearing tests and industrial wind turbines. The results verify the effectiveness of the proposed method for incipient fault detection of rolling element bearings under varying speed conditions.

  3. Infrared Thermographic Diagnosis Mechanism for Fault Detection of Ball Bearing under Dynamic Loading Conditions

    International Nuclear Information System (INIS)

    Seo, Jin Ju; Yoon, Hanvit; Kim, Dong Yeon; Hong, Dong Pyo; Kim, Won Tae

    2011-01-01

    Fault detection for dynamic loading conditions of rotational machineries was considered from the contactless, non-destructive infrared thermographic method, rather than the traditional diagnosis method. In this paper, by applying a rotating deep-grooved ball bearing, passive thermographic experiment was performed as an alternative way proceeding the traditional fault monitoring. In addition, the thermographic experiments were compared with the vibration spectrum analysis to evaluate the efficiency of the proposed method. Based on the results, it was concluded the temperature characteristics of the ball bearing under dynamic loading conditions were analyzed thoroughly

  4. Investigations on colour dependent photo induced microactuation effect of FSMA and proposing suitable mechanisms to control the effect

    Science.gov (United States)

    Bagchi, A.; Sarkar, S.; Mukhopadhyay, P. K.

    2018-02-01

    Three different coloured focused laser beams were used to study the photo induced microactuation effect found in some ferromagnetic shape memory alloys. Besides trying to uncover the basic causes of this unique and as yet unexplained effect, these studies are to help find other conditions to further characterize the effect for practical use. In this study some mechanisms have been proposed to control the amplitude of actuation of the sample. Control of the actuation of the FSMA sample both linearly with the help of a continuously variable neutral density filter as well periodically with the help of a linear polarizer was achieved. Statistical analysis of the experimental data was also done by applying ANOVA studies on the data to conclusively provide evidence in support of the relationship between the actuation of the sample and the various controlling factors. This study is expected to pave the way to implement this property of the sample in fabricating and operating useful micro-mechanical systems in the near future.

  5. Mechanisms underlying the cardiac pacemaker: the role of SK4 calcium-activated potassium channels.

    Science.gov (United States)

    Weisbrod, David; Khun, Shiraz Haron; Bueno, Hanna; Peretz, Asher; Attali, Bernard

    2016-01-01

    The proper expression and function of the cardiac pacemaker is a critical feature of heart physiology. The sinoatrial node (SAN) in human right atrium generates an electrical stimulation approximately 70 times per minute, which propagates from a conductive network to the myocardium leading to chamber contractions during the systoles. Although the SAN and other nodal conductive structures were identified more than a century ago, the mechanisms involved in the generation of cardiac automaticity remain highly debated. In this short review, we survey the current data related to the development of the human cardiac conduction system and the various mechanisms that have been proposed to underlie the pacemaker activity. We also present the human embryonic stem cell-derived cardiomyocyte system, which is used as a model for studying the pacemaker. Finally, we describe our latest characterization of the previously unrecognized role of the SK4 Ca(2+)-activated K(+) channel conductance in pacemaker cells. By exquisitely balancing the inward currents during the diastolic depolarization, the SK4 channels appear to play a crucial role in human cardiac automaticity.

  6. On a proposal of superluminal communication

    International Nuclear Information System (INIS)

    Ghirardi, GianCarlo; Romano, Raffaele

    2012-01-01

    Recently, various new proposals of superluminal transmission of information have been suggested in the literature. Since the proposals make systematic use of recent formal and practical improvements in quantum mechanics, the old theorems proving the impossibility of such a performance must be adapted to the new scenario. In this communication, we consider some of the most challenging proposals of this kind and we show why they cannot work. (fast track communication)

  7. Evolution Procedure of Multiple Rock Cracks under Seepage Pressure

    Directory of Open Access Journals (Sweden)

    Taoying Liu

    2013-01-01

    Full Text Available In practical geotechnical engineering, most of rock masses with multiple cracks exist in water environment. Under such circumstance, these adjacent cracks could interact with each other. Moreover, the seepage pressure, produced by the high water pressure, can change cracks’ status and have an impact on the stress state of fragile rocks. According to the theory of fracture mechanics, this paper discusses the law of crack initiation and the evolution law of stress intensity factor at the tip of a wing crack caused by compression-shear stress and seepage pressure. Subsequently, considering the interaction of the wing cracks and the additional stress caused by rock bridge damage, this paper proposes the intensity factor evolution equation under the combined action of compression-shear stress and seepage pressure. In addition, this paper analyzes the propagation of cracks under different seepage pressure which reveals that the existence of seepage pressure facilitates the wing crack’s growth. The result indicates that the high seepage pressure converts wing crack growth from stable form to unstable form. Meanwhile, based on the criterion and mechanism for crack initiation and propagation, this paper puts forward the mechanical model for different fracture transfixion failure modes of the crag bridge under the combined action of seepage pressure and compression-shear stress. At the last part, this paper, through investigating the flexibility tensor of the rock mass’s initial damage and its damage evolution in terms of jointed rock mass's damage mechanics, deduces the damage evolution equation for the rock mass with multiple cracks under the combined action of compression-shear stress and seepage pressure. The achievement of this investigation provides a reliable theoretical principle for quantitative research of the fractured rock mass failure under seepage pressure.

  8. Exploratory study of mechanical kinematic innovation design based on gene recombination operation

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yixiong; Gao, Yicong; Tan, Jianrong [Zhejiang University, Hangzhou (China); Hagiwara, Ichiro [Tokyo Institute of Technology, Tokyo (Korea, Republic of)

    2013-03-15

    This paper analyzes the influencing factor of motion output of the inspired mechanism under the premise that the motion input is invariant. These factors are respectively expressed as kinematic pair chromosome number, kinematic pair feature gene and distance relationship vector gene by virtue of several concepts and principles in genetics, and then they are encoded. Mechanism chromosome model is established, which is constituted by mechanism chromosome relationship graph and mechanism chromosome matrix. Three kinematic pair chromosome gene recombination operations on mechanism chromosome model (dominance, translocation and metastasis), are proposed by using meiosis and chromosome variance in genetics for reference. Finally the paper takes shaper as the original mechanism and acquires its inspired mechanism, which proves the convenience and practicality of the methods.

  9. Exploratory study of mechanical kinematic innovation design based on gene recombination operation

    International Nuclear Information System (INIS)

    Feng, Yixiong; Gao, Yicong; Tan, Jianrong; Hagiwara, Ichiro

    2013-01-01

    This paper analyzes the influencing factor of motion output of the inspired mechanism under the premise that the motion input is invariant. These factors are respectively expressed as kinematic pair chromosome number, kinematic pair feature gene and distance relationship vector gene by virtue of several concepts and principles in genetics, and then they are encoded. Mechanism chromosome model is established, which is constituted by mechanism chromosome relationship graph and mechanism chromosome matrix. Three kinematic pair chromosome gene recombination operations on mechanism chromosome model (dominance, translocation and metastasis), are proposed by using meiosis and chromosome variance in genetics for reference. Finally the paper takes shaper as the original mechanism and acquires its inspired mechanism, which proves the convenience and practicality of the methods.

  10. Effect of Nb additions on the microstructure, thermal stability and mechanical behavior of high pressure Zr phases under ambient conditions

    International Nuclear Information System (INIS)

    Zhilyaev, A.P.; Sabirov, I.; Gonzalez-Doncel, G.; Molina-Aldareguia, J.; Srinivasarao, B.; Perez-Prado, M.T.

    2011-01-01

    Research highlights: → We analyze the influence of Nb additions on the shear-induced α → ω → β phase transformations in pure Zr by high pressure torsion (HPT). → Nb reduces the transition pressures and increases the transformation kinetics. → High pressure phases are retained under ambient conditions due to the presence of an internal stress. → Post-HPT annealing allows to fabricate bimodal/biphase nanostructures with enhanced mechanical behavior. - Abstract: This paper analyzes the influence of Nb on the shear-induced α → ω → β transformation taking place when processing Zr by high pressure torsion (HPT) under suitable conditions of pressure and shear. With that purpose, pure Zr and Zr-2.5%Nb were processed by HPT at room temperature and at pressures ranging from 0.25 to 6 GPa using 5 anvil turns. Nb causes a further reduction of the transition pressures, which are already lower when applying shear besides pressure. Thus, the transition pressure to the β phase is reduced at least 100 times in the Zr-Nb alloy. Alloying with Nb decreases the grain size of the transformed phases, significantly enhances their thermal stability and increases their UTS and elongation to failure. Selected post-HPT annealing treatments lead to the development of very tough, multiphase Zr and Zr-Nb with bimodal grain size distributions. The retention of the high pressure phases under ambient conditions is explained by the development of a high internal stress during processing. This stress is measured by synchrotron radiation diffraction at HZB-BESSY II. It is proposed that the presence of Nb reduces the internal stress level required for the retention of the high pressure phases.

  11. Investigation of the Degradation Mechanisms of Particulate Reinforced Epoxy Coatings and Zinc-Rich Coatings Under an Erosion and Corrosion Environment for Oil and Gas Industry Applications

    Science.gov (United States)

    Wang, Dailin

    During oil and gas production and transportation, the presence of an oil-sand slurry, together with the presence of CO2, H2S, oxygen, and seawater, create an erosive/abrasive and corrosive environment for the interior surfaces of undersea pipelines transporting oil and gas from offshore platforms. Erosion/wear and corrosion are often synergic processes leading to a much greater material loss of pipeline cross-section than that caused by each individual process alone. Both organic coatings and metallic sacrificial coatings have been widely employed to provide protection to the pipeline steels against corrosion through barrier protection and cathodic protection, and these protection mechanisms have been well studied. However, coating performance under the synergic processes of erosion/wear and corrosion have been much less researched and coating degradation mechanisms when erosion/wear and corrosion are both going on has not been well elucidated. In the work presented in this dissertation, steel panels coated with filler reinforced epoxy coatings and carbon nanotubes (CNTs) reinforced zinc-rich coatings have been evaluated under erosion/wear followed by an exposure to a corrosive environment. Electrochemical tests and material characterization methods have been applied to study the degradation mechanisms of the coatings during the tests and coating degradation mechanisms have been proposed. While organic coatings with a lower amount of filler particles provided better protection in a corrosive environment alone and in solid particle impingement erosion testing alone, organic coatings with a higher amount of filler particles showed better performance during wear testing alone. A higher amount of filler particles was also beneficial in providing protection against wear and corrosion environment, and erosion and corrosion environment. Coating thickness played a significant role in the barrier properties of the coatings under both erosion and corrosion tests. When the

  12. A proposed chemical mechanism for biological phosphate removal ...

    African Journals Online (AJOL)

    This paper presents an alternative for the ";all biological"; phosphate removal model. It is postulated that a chemical substance in wastewater reacts with orthophosphate under anaerobic conditions to make the so-called luxury uptake of phosphorus possible in biological nutrient removal (BNR) activated sludge plants.

  13. 78 FR 12702 - Endangered and Threatened Species; Proposed Rule To List 66 Reef-Building Coral Species; Proposed...

    Science.gov (United States)

    2013-02-25

    ...; Proposed Reclassification of Elkhorn Acropora palmata and Staghorn Acropora cervicornis Under the... reclassifications of elkhorn (Acropora palmata) and staghorn (Acropora cervicornis) corals under the ESA until April...

  14. The association between autism and errors in early embryogenesis: what is the causal mechanism?

    NARCIS (Netherlands)

    Ploeger, A.; Raijmakers, M.E.J.; van der Maas, H.L.J.; Galis, F.

    2010-01-01

    The association between embryonic errors and the development of autism has been recognized in the literature, but the mechanism underlying this association remains unknown. We propose that pleiotropic effects during a very early and specific stage of embryonic development—early organogenesis—can

  15. Noise performance in AlGaN/GaN HEMTs under high drain bias

    International Nuclear Information System (INIS)

    Pang Lei; Pu Yan; Lin Xinyu; Wang Liang; Liu Jian

    2009-01-01

    The advent of fully integrated GaN PA-LNA circuits makes it meaningful to investigate the noise performance under high drain bias. However, noise performance of AlGaN/GaN HEMTs under high bias has not received worldwide attention in theoretical studies due to its complicated mechanisms. The noise value is moderately higher and its rate of increase is fast with increasing high voltage. In this paper, several possible mechanisms are proposed to be responsible for it. Impact ionization under high electric field incurs great fluctuation of carrier density, which increases the drain diffusion noise. Besides, higher gate leakage current related shot noise and a more severe self-heating effect are also contributors to the noise increase at high bias. Analysis from macroscopic and microscopic perspectives can help us to design new device structures to improve noise performance of AlGaN/GaN HEMTs under high bias. (semiconductor devices)

  16. Characterisation of the physico-mechanical parameters of MSW.

    Science.gov (United States)

    Stoltz, Guillaume; Gourc, Jean-Pierre; Oxarango, Laurent

    2010-01-01

    Following the basics of soil mechanics, the physico-mechanical behaviour of municipal solid waste (MSW) can be defined through constitutive relationships which are expressed with respect to three physical parameters: the dry density, the porosity and the gravimetric liquid content. In order to take into account the complexity of MSW (grain size distribution and heterogeneity larger than for conventional soils), a special oedometer was designed to carry out laboratory experiments. This apparatus allowed a coupled measurement of physical parameters for MSW settlement under stress. The studied material was a typical sample of fresh MSW from a French landfill. The relevant physical parameters were measured using a gas pycnometer. Moreover, the compressibility of MSW was studied with respect to the initial gravimetric liquid content. Proposed methods to assess the set of three physical parameters allow a relevant understanding of the physico-mechanical behaviour of MSW under compression, specifically, the evolution of the limit liquid content. The present method can be extended to any type of MSW. 2010 Elsevier Ltd. All rights reserved.

  17. An investigation of the mechanism underlying teacher aggression: Testing I3 theory and the General Aggression Model.

    Science.gov (United States)

    Montuoro, Paul; Mainhard, Tim

    2017-12-01

    Considerable research has investigated the deleterious effects of teachers responding aggressively to students who misbehave, but the mechanism underlying this dysfunctional behaviour remains unknown. This study investigated whether the mechanism underlying teacher aggression follows I 3 theory or General Aggression Model (GAM) metatheory of human aggression. I 3 theory explains exceptional, catastrophic events of human aggression, whereas the GAM explains common human aggression behaviours. A total of 249 Australian teachers participated in this study, including 142 primary school teachers (Mdn [age] = 35-39 years; Mdn [years teaching] = 10-14 years; 84% female) and 107 secondary school teachers (Mdn [age] = 45-49 years; Mdn [years teaching] = 15-19 years; 65% female). Participants completed four online self-report questionnaires, which assessed caregiving responsiveness, trait self-control, misbehaviour provocation, and teacher aggression. Analyses revealed that the GAM most accurately captures the mechanism underlying teacher aggression, with lower caregiving responsiveness appearing to indirectly lead to teacher aggression via higher misbehaviour provocation and lower trait self-control in serial, controlling for gender, age, years teaching, and current role (primary, secondary). This study indicates that teacher aggression proceeds from 'the person in the situation'. Specifically, lower caregiving responsiveness appears to negatively shape a teacher's affective, cognitive, and arousal states, which influence how they perceive and interpret student misbehaviour. These internal states, in turn, appear to negatively influence appraisal and decision processes, leading to immediate appraisal and impulsive actions. These results raise the possibility that teacher aggression is a form of countertransference. © 2017 The British Psychological Society.

  18. Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms

    DEFF Research Database (Denmark)

    Niu, Shuli; Luo, Yiqi; Fei, Shenfeng

    2012-01-01

    distributed sites of eddy covariance and quantified the temperature response functions of net ecosystem exchange (NEE), an ecosystem‐level property, to determine whether NEE shows thermal optimality and to explore the underlying mechanisms. We found that the temperature response of NEE followed a peak curve......, with the optimum temperature (corresponding to the maximum magnitude of NEE) being positively correlated with annual mean temperature over years and across sites. Shifts of the optimum temperature of NEE were mostly a result of temperature acclimation of gross primary productivity (upward shift of optimum...... ecosystem–climate change feedbacks. The thermal optimality of NEE has implications for understanding fundamental properties of ecosystems in changing environments and benchmarking global models....

  19. Thermo-hydro mechanical modeling in unsaturated hard clay: application to nuclear waste storage

    International Nuclear Information System (INIS)

    Jia, Y.

    2006-07-01

    This work presents an elastoplastic damage model for argillite in unsaturated conditions. A short resume of experimental investigations is presented in the first part. The results obtained show an important plastic deformation coupled with damage induced by initiation and growth of microcracks. Influences of water content on the mechanical behaviour are also investigated. Based on experimental data and micro-mechanical considerations, a general constitutive model is proposed for the poro-mechanical behavior of argillite in unsaturated conditions. The time dependent creep has also been incorporated in they model. The performance of the model is examined by comparing numerical simulation with experimental data in various load paths under saturated and unsaturated conditions. Finally, the model is applied to hydro-mechanical coupling study of the REP experiment and thermo-hydro-mechanical coupling study of the HE-D experiment. A good agreement is obtained between experimental data and numerical predictions. It has been shown that the proposed model describe correctly the main features of the mechanical behaviour of unsaturated rocks. (author)

  20. Investigation on the Mechanical Properties of a Cement-Based Material Containing Carbon Nanotube under Drying and Freeze-Thaw Conditions

    Directory of Open Access Journals (Sweden)

    Wei-Wen Li

    2015-12-01

    Full Text Available This paper aimed to explore the mechanical properties of a cement-based material with carbon nanotube (CNT under drying and freeze-thaw environments. Mercury Intrusion Porosimetry and Scanning Electron Microscopy were used to analyze the pore structure and microstructure of CNT/cement composite, respectively. The experimental results showed that multi-walled CNT (MWCNT could improve to different degrees the mechanical properties (compressive and flexural strengths and physical performances (shrinkage and water loss of cement-based materials under drying and freeze-thaw conditions. This paper also demonstrated that MWCNT could interconnect hydration products to enhance the performance of anti-microcracks for cement-based materials, as well as the density of materials due to CNT’s filling action.

  1. Energy recovery from Municipal Solid Waste in EU: proposals to assess the management performance under a circular economy perspective

    Directory of Open Access Journals (Sweden)

    Rada Elena Cristina

    2017-01-01

    Full Text Available In 2015 the European Commission issued a package of documents on Circular Economy concerning an integrated revision of legislative proposals on waste management. The aim was to stimulate a European transition towards a circular economy concept, which is expected to foster competitiveness, sustainable economic growth and new jobs generation. Three indicators are proposed in this paper to contribute to the assessment of the energy recovery management performance from MSW in a scenario of circular economy: a referring to MSW directly used (RMSW or indirectly used (SRF as input of thermochemical plants, an indicator can be the percentage of waste having LHV > 13MJ/kg; b referring to the MSW directly or indirectly used as input of thermochemical plants, the percentage of waste having ash recovered; c referring to food waste, percentage of this stream sent to anaerobic digestion. The above indicators, proposed and discussed in this paper, have to be integrated with other ones in order to complete the quantification of the role of MSW management in term of energy recovery under a circular economy strategy. It is not the aim of the present paper to give a comprehensive solution to this complex issue.

  2. Reactive Molecular Dynamics Simulations to Understand Mechanical Response of Thaumasite under Temperature and Strain Rate Effects.

    Science.gov (United States)

    Hajilar, Shahin; Shafei, Behrouz; Cheng, Tao; Jaramillo-Botero, Andres

    2017-06-22

    Understanding the structural, thermal, and mechanical properties of thaumasite is of great interest to the cement industry, mainly because it is the phase responsible for the aging and deterioration of civil infrastructures made of cementitious materials attacked by external sources of sulfate. Despite the importance, effects of temperature and strain rate on the mechanical response of thaumasite had remained unexplored prior to the current study, in which the mechanical properties of thaumasite are fully characterized using the reactive molecular dynamics (RMD) method. With employing a first-principles based reactive force field, the RMD simulations enable the description of bond dissociation and formation under realistic conditions. From the stress-strain curves of thaumasite generated in the x, y, and z directions, the tensile strength, Young's modulus, and fracture strain are determined for the three orthogonal directions. During the course of each simulation, the chemical bonds undergoing tensile deformations are monitored to reveal the bonds responsible for the mechanical strength of thaumasite. The temperature increase is found to accelerate the bond breaking rate and consequently the degradation of mechanical properties of thaumasite, while the strain rate only leads to a slight enhancement of them for the ranges considered in this study.

  3. On the mechanical properties of tooth enamel under spherical indentation.

    Science.gov (United States)

    Chai, Herzl

    2014-11-01

    The mechanical properties of tooth enamel generally exhibit large variations, which reflect its structural and material complexity. Some key properties were evaluated under localized contact, simulating actual functioning conditions. Prominent cusps of extracted human molar teeth were polished down ~0.7 mm below the cusp tip and indented by tungsten carbide balls. The internal damage was assessed after unloading from longitudinal or transverse sections. The ultimate tensile stress (UTS) was determined using a novel bilayer specimen. The damage is characterized by penny-like radial cracks driven by hoop stresses and cylindrical cracks driven along protein-rich interrod materials by shear stresses. Shallow cone cracks typical of homogeneous materials which may cause rapid tooth wear under repeat contact are thus avoided. The mean stress vs. indentation strain curve is highly nonlinear, attributable to plastic shearing of protein between and within enamel rods. This curve is also affected by damage, especially radial cracks, the onset of which depends on ball radius. Several material properties were extracted from the tests, including shear strain at the onset of ring cracks γ(F) (=0.14), UTS (=119 MPa), toughness K(C) (=0.94 MPa m(1/2)), a crack propagation law and a constitutive response determined by trial and error with the aid of a finite-element analysis. These quantities, which are only slightly sensitive to anatomical location within the enamel region tested, facilitate a quantitative assessment of crown failure. Causes for variations in published UTS and K(C) values are discussed. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Elucidation of possible molecular mechanisms underlying the estrogen-induced disruption of cartilage development in zebrafish larvae.

    Science.gov (United States)

    He, Hanliang; Wang, Chunqing; Tang, Qifeng; Yang, Fan; Xu, Youjia

    2018-06-01

    Estrogen can affect the cartilage development of zebrafish; however, the mechanism underlying its effects is not completely understood. Four-day-old zebrafish larvae were treated with 0.8 μM estrogen, the 5 days post fertilization (dpf) zebrafish larvae did not demonstrate obvious abnormalities during development; however, the 6 dpf and 7 dpf larvae exhibited abnormal craniofacial bone development along with craniofacial bone degradation. RNA deep sequencing was performed to elucidate the mechanism involved. Gene Ontology functional and KEGG pathway enrichment analysis of differentially expressed genes (DEGs) showed that the extracellular matrix (ECM), extracellular region, ECM-interaction receptor, focal adhesion, cell cycle, apoptosis, and bone-related signaling pathways were disrupted. In these signaling pathways, the expressions of key genes, such as collagen encoded (col19a1a, col7a1, col7al, col18a1, and col9a3), MAPK signaling pathway (fgf19, fgf6a), TGF-beta signaling pathway (tgfbr1), and cell cycle (cdnk1a) genes were altered. The qRT-PCR results showed that after treatment with 0.8 μM 17-β estradiol (E2), col19a1a, col7a1, col7al, col18a1, col9a3, fgf6a, cdkn1a were downregulated, and fgf19, tgfr1 were upregulated, which were consistent with deep sequencing analysis. Therefore, the effect of estrogen on cartilage development might occur via multiple mechanisms. The study results demonstrate the mechanism underlying the effect of estrogen on cartilage development. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Durability study and lifetime prediction of baseline proton exchange membrane fuel cell under severe operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Marrony, M.; Quenet, S.; Aslanides, A. [European Institute for Energy Research, Emmy-Noether Strasse 11, 76131 Karlsruhe (Germany); Barrera, R.; Ginocchio, S.; Montelatici, L. [Edison, Via Giorgio La Pira 2, 10028 Trofarello (Italy)

    2008-08-01

    Comparative studies of mechanical and electrochemical properties of Nafion{sup registered} - and sulfonated polyetheretherketone polymer-type membranes are carried out under severe fuel cell conditions required by industrials, within stationary and cycling electric load profiles. These membranes are proposed to be used in PEM between 70 and 90 C as fluorinated or non-fluorinated baseline membranes, respectively. Thus, though the performance of both membranes remains suitable, Nafion{sup registered} backbone brought better mechanical properties and higher electrochemical stabilities than sulfonated polyetheretherketone backbone. The performance stability and the mechanical strength of the membrane-electrode assembly were shown to be influenced by several intrinsic properties of the membrane (e.g., thermal pre-treatment, thickness) and external conditions (fuel cell operating temperature, relative humidity). Finally, a lifetime prediction for membranes under stationary conditions is proposed depending on the operation temperature. At equivalent thicknesses (i.e. 50 {mu}m), Nafion{sup registered} membranes were estimated able to operate into the 80-90 C range while sulfonated polyetheretherketone would be limited into the 70-80 C range. This approach brings baseline information about the capability of these types of polymer electrolyte membrane under fuel cell critical operations. Finally, it is revealed as a potential tool for the selection of the most promising advanced polymers for the ensuing research phase. (author)

  6. Mechanical properties of pure and doped InP single crystals under concentrated loading

    International Nuclear Information System (INIS)

    Boyarskaya, Yu.S.; Grabko, D.Z.; Medinskaya, M.I.; Palistrant, N.A.

    1997-01-01

    The mechanical properties of pure and doped (Fe, Zn, Sn) InP single crystals were investigated in the temperature interval from 293 to 600 K. It was shown that impurity hardening (the microhardness increase) was more pronounced at elevated temperatures than at 293 K. This is conditioned by braking of the moving dislocations with impurities which is more observed in the the high temperature region. The obvious anisotropy of the scratch hardness was revealed at room temperature for the (001) face of crystals under investigation. This anisotropy decreased sharply in increasing the temperature from 293 to 600 K

  7. A Proposed Mechanism for the Thermal Denaturation of a Recombinant Bacillus Halmapalus Alpha-amylase - the Effect of Calcium Ions

    Science.gov (United States)

    Nielsen, Anders D.; Pusey, Marc L.; Fuglsang, Claus C.; Westh, Peter

    2003-01-01

    The thermal stability of a recombinant alpha-amylase from Bacillus halmapalus alpha-amylase (BHA) has been investigated using circular dichroism spectroscopy (CD) and differential scanning calorimetry (DSC). This alpha-amylase is homologous to other Bacillus alpha-amylases where previous crystallographic studies have identified the existence of 3 calcium binding sites in the structure. Denaturation of BHA is irreversible with a Tm of approximately 89 C, and DSC thermograms can be described using a one-step irreversible model. A 5 C increase in T(sub m) in the presence of 10 fold excess CaCl2 was observed. However, a concomitant increase in the tendency to aggregate was also observed. The presence of 30-40 fold excess calcium chelator (EDTA or EGTA) results in a large destabilization of BHA corresponding to about 40 C lower T(sub m), as determined by both CD and DSC. Ten fold excess EGTA reveals complex DSC thermograms corresponding to both reversible and irreversible transitions, which possibly originate from different populations of BHA:calcium complexes. The observations in the present study have, in combination with structural information of homologous alpha-amylases, provided the basis for the proposal of a simple denaturation mechanism of BHA. The proposed mechanism describes the irreversible thermal denaturation of different BHA:calcium complexes and the calcium binding equilibrium involved. Furthermore, the model accounts for a temperature induced reversible structural change associated with calcium binding.

  8. Mechanical behaviour of Arabica coffee (Coffea arabica) beans under loading compression

    Science.gov (United States)

    Sigalingging, R.; Herak, D.; Kabutey, A.; Sigalingging, C.

    2018-02-01

    The uniformity of the product of the grinding process depends on various factors including the brittleness of the roasted coffee bean and it affects the extraction of soluble solids to obtain the coffee brew. Therefore, the reaching of a certain degree of brittleness is very important for the grinding to which coffee beans have to be subjected to before brewing. The aims of this study to show the mechanical behaviour of Arabica coffee beans from Tobasa (Indonesia) with roasted using different roasting time (40, 60 and 80 minutes at temperature 174 °C) under loading compression 225 kN. Universal compression testing machine was used with pressing vessel diameter 60 mm and compression speed 10 mm min-1 with different initial pressing height ranging from 20 to 60 mm. The results showed that significant correlation between roasting time and the brittleness.

  9. Enhancing network performance under single link failure with AS-disjoint BGP extension

    DEFF Research Database (Denmark)

    Manolova, Anna Vasileva; Romeral, S.; Ruepp, Sarah Renée

    2009-01-01

    In this paper we propose an enhancement of the BGP protocol for obtaining AS-disjoint paths in GMPLS multi-domain networks. We evaluate the benefits of having AS-disjoint paths under single inter-domain link failure for two main applications: routing of future connection requests during routing...... protocol re-convergence and applying multi-domain restoration as survivability mechanism in case of a single link failure. The proposed BGP modification is a simple and effective solution for disjoint path selection in connection-oriented multi-domain networks. Our results show that applying the proper...

  10. Kinetics and mechanism of the selective oxidation of primary aliphatic alcohols under phase transfer catalysis

    Directory of Open Access Journals (Sweden)

    K. Bijudas

    2014-03-01

    Full Text Available Kinetics of the oxidation of primary aliphatic alcohols has been carried out using phase transferred monochromate in benzene. Tetrabutylammonium bromide (TBAB and tetrabutylphosphonium bromide (TBPB are used as phase transfer catalysts (PT catalyst. The reaction shows first order dependence on both [alcohol] and [monochromate ion]. The oxidation leads to the formation of corresponding aldehyde and no traces of carboxylic acid has been detected. The reaction mixture failed to induce the polymerization of added acrylonitrile which rules out the presence radical intermediates in the reaction. Various thermodynamic parameters have been evaluated and a suitable mechanism has been proposed.

  11. Mechanical properties of jammed packings of frictionless spheres under an applied shear stress

    International Nuclear Information System (INIS)

    Liu Hao; Tong Hua; Xu Ning

    2014-01-01

    By minimizing a thermodynamic-like potential, we unbiasedly sample the potential energy landscape of soft and frictionless spheres under a constant shear stress. We obtain zero-temperature jammed states under desired shear stresses and investigate their mechanical properties as a function of the shear stress. As a comparison, we also obtain the jammed states from the quasistatic-shear sampling in which the shear stress is not well-controlled. Although the yield stresses determined by both samplings show the same power-law scaling with the compression from the jamming transition point J at zero temperature and shear stress, for finite size systems the quasistatic-shear sampling leads to a lower yield stress and a higher critical volume fraction at point J. The shear modulus of the jammed solids decreases with increasing shear stress. However, the shear modulus does not decay to zero at yielding. This discontinuous change of the shear modulus implies the discontinuous nature of the unjamming transition under nonzero shear stress, which is further verified by the observation of a discontinuous jump in the pressure from the jammed solids to the shear flows. The pressure jump decreases upon decompression and approaches zero at the critical-like point J, in analogy with the well-known phase transitions under an external field. The analysis of the force networks in the jammed solids reveals that the force distribution is more sensitive to the increase of the shear stress near point J. The force network anisotropy increases with increasing shear stress. The weak particle contacts near the average force and under large shear stresses it exhibit an asymmetric angle distribution. (special topic — non-equilibrium phenomena in soft matters)

  12. Report on a survey in fiscal 1999. Survey on industrial utilization of microorganism reaction mechanisms under anaerobic condition; 1999 nendo kenki jokenka ni okeru biseibutsu hanno kiko no kogyoteki riyo ni kansuru chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Industrial utilization of reaction mechanisms of microorganisms under anaerobic condition permits structuring energy saving type production processes. The present survey has investigated features of new microorganisms under anaerobic condition and the status of researches thereon inside and outside the country, and discussed their future applications. Chapter 1 compares anaerobic microorganisms and functions of microorganism under anaerobic condition with those aerobic to describe their general features, and describes the purpose of this survey and the summary of the investigations. Chapter 2 surveys the current status of technologies to utilize microorganisms under anaerobic condition. Chapter 3 outlines metabolic characteristics of the anaerobic microorganisms, and extracts functions effective for material production by different anaerobic microorganisms to describe their applicability. Chapter 4 evaluates the system classification for the anaerobic microorganisms utilizing the basic arrangement of 16S rRNA genes, and extracts technical problems therein. Chapter 5 proposes structuring a total methane fermentation system including a raw material collecting process, and enhancing alcohol productivity of Zymomonas bacteria. (NEDO)

  13. A Novel Ex Vivo Model to Investigate the Underlying Mechanisms in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Emanuele Brai

    2017-09-01

    Full Text Available Currently there is no widely accepted animal model reproducing the full pathological profile of Alzheimer’s disease (AD, since the basic mechanisms of neurodegeneration are still poorly understood. We have proposed that the interaction between the α7 nicotinic acetylcholine receptor (α7-nAChR and a recently discovered toxic peptide, cleaved from the acetylcholinesterase (AChE C-terminus, could account for the aberrant processes occurring in AD. In this article we describe a new application on ex vivo model procedure, which combines the advantages of both in vivo and in vitro preparations, to study the effects of the AChE-derived peptide on the rat basal forebrain (BF. Western blot analysis showed that the levels of α7-nAChR, p-Tau and Aβ are differentially expressed upon the AChE-peptide administration, in a selective site-dependent manner. In conclusion, this methodology demonstrates the action of a novel peptide in triggering an AD-like phenotype and proposes a new ex vivo approach for manipulating and monitoring neurochemical processes contributing to neurodegeneration, in a time-dependent and site-specific manner.

  14. Mechanisms underlying cellular responses of cells from haemopoietic tissue to low dose/low LET radiation

    Energy Technology Data Exchange (ETDEWEB)

    Munira A Kadhim

    2010-03-05

    To accurately define the risks associated with human exposure to relevant environmental doses of low LET ionizing radiation, it is necessary to completely understand the biological effects at very low doses (i.e., less than 0.1 Gy), including the lowest possible dose, that of a single electron track traversal. At such low doses, a range of studies have shown responses in biological systems which are not related to the direct interaction of radiation tracks with DNA. The role of these “non-targeted” responses in critical tissues is poorly understood and little is known regarding the underlying mechanisms. Although critical for dosimetry and risk assessment, the role of individual genetic susceptibility in radiation risk is not satisfactorily defined at present. The aim of the proposed grant is to critically evaluate radiation-induced genomic instability and bystander responses in key stem cell populations from haemopoietic tissue. Using stem cells from two mouse strains (CBA/H and C57BL/6J) known to differ in their susceptibility to radiation effects, we plan to carefully dissect the role of genetic predisposition on two non-targeted radiation responses in these models; the bystander effect and genomic instability, which we believe are closely related. We will specifically focus on the effects of low doses of low LET radiation, down to doses approaching a single electron traversal. Using conventional X-ray and γ-ray sources, novel dish separation and targeted irradiation approaches, we will be able to assess the role of genetic variation under various bystander conditions at doses down to a few electron tracks. Irradiations will be carried out using facilities in routine operation for bystander targeted studies. Mechanistic studies of instability and the bystander response in different cell lineages will focus initially on the role of cytokines which have been shown to be involved in bystander signaling and the initiation of instability. These studies also aim

  15. The behavior of the planetary rings under the Kozai Mechanism

    Science.gov (United States)

    Sucerquia, M. A.; Ramírez, C. V.; Zuluaga, J. I.

    2017-07-01

    Rings are one of the main feature of almost all giant planets in the Solar System. Even though thousands of exoplanets have been discovered to date, no evidence of exoplanetary rings have been found despite the effort made in the development and enhancing of techniques and methods for direct or indirect detection. In the transit of a ringed planet, the dynamic of the ring itself could play a meaningful role due to the so called Kozai Mechanism (KM) acting on each particle of it. When some specific initial conditions of the ring are fulfilled (as a ring inclination greater than ˜ 39°), KM generates short periodic changes in the inclination and eccentricity of each particle, leading to a meaningful characteristic collective behavior of the ring: it changes its width, inclination and optical depth. These changes induce periodic variations on the eclipsed area of the parent star, generating slight changes in the observed transit signal. Under this mechanism, light curves depths and shapes oscillate according to the fluctuations of the ring. To show this effect we have performed numerical simulations of the dynamic of a system of particles to asses the ring inclination and width variations over time. We have calculated the expected variations in the transit depth and finally, we have estimated the effect on the light curve of a hypothetical ringed exoplanet affected by the KM. The detection of this effect could be used as an alternative method to detect/confirm exoplanetary rings, and also it could be considered as a way to explain anomalous light curves patterns of exoplanets, as the case of KIC 8462852 star.

  16. Mechanisms underlying recovery of zooplankton in Lake Orta after liming

    Directory of Open Access Journals (Sweden)

    Roberta Piscia

    2016-04-01

    Full Text Available The goal of this study was to improve the understanding of the large-scale mechanisms underlying the recovery of the zooplankton of Lake Orta from historical contamination, following reduced input of ammonia and metals and the subsequent 1989/90 liming intervention. The industrial pollution had been severe and long-lasting (1929-1990. Zooplankton biodiversity has improved, but most of the new taxa appearing in our counts are rotifers, while many calanoids and the large cladoceran predators (Bythotrephes and Leptodora that are common in the nearby Lake Maggiore, were still absent from Lake Orta 17 years after liming. To aid understanding of the large-scale mechanisms controlling changes in annual richness, we assessed the annual persistence (P of Crustacea and Rotifera taxa as an estimator of whether propagules that survived introduction, as result of the natural recolonization process, also thrived. We found that the rate of introduction of zooplankton colonists and their persistence in the water column of Lake Orta changed from 1971 to 2007. New rotifer taxa appeared in the lake after the mid-1980s, when discharge of toxic substances decreased, but their annual persistence was low (P<0.5 until the turn of the century. The numerical values of rotifer and crustacean persistence in Lake Orta were unexpectedly high in 2001 and 2007 (0.55 and 0.72 for rotifers, 0.85 and 0.86 for crustacean, respectively, much higher than in limed lakes in Sudbury, Canada, and in adjacent Lake Maggiore. We hypothesize this could be related to the lack of Cladoceran predators and zooplanktivorous fish in the pelagic waters of Lake Orta.

  17. A hypothesis regarding the molecular mechanism underlying dietary soy-induced effects on seizure propensity.

    Directory of Open Access Journals (Sweden)

    Cara Jean Westmark

    2014-09-01

    Full Text Available Numerous neurological disorders including fragile X syndrome, Down syndrome, autism and Alzheimer’s disease are comorbid with epilepsy. We have observed elevated seizure propensity in mouse models of these disorders dependent on diet. Specifically, soy-based diets exacerbate audiogenic-induced seizures in juvenile mice. We have also found potential associations between the consumption of soy-based infant formula and seizure incidence, epilepsy comorbidity and autism diagnostic scores in autistic children by retrospective analyses of medical record data. In total, these data suggest that consumption of high levels of soy protein during postnatal development may affect neuronal excitability. Herein, we present our theory regarding the molecular mechanism underlying soy-induced effects on seizure propensity. We hypothesize that soy phytoestrogens interfere with metabotropic glutamate receptor signaling through an estrogen receptor-dependent mechanism, which results in elevated production of key synaptic proteins and decreased seizure threshold.

  18. A novel role of dendritic gap junction and mechanisms underlying its interaction with thalamocortical conductance in fast spiking inhibitory neurons

    Directory of Open Access Journals (Sweden)

    Sun Qian-Quan

    2009-10-01

    Full Text Available Abstract Background Little is known about the roles of dendritic gap junctions (GJs of inhibitory interneurons in modulating temporal properties of sensory induced responses in sensory cortices. Electrophysiological dual patch-clamp recording and computational simulation methods were used in combination to examine a novel role of GJs in sensory mediated feed-forward inhibitory responses in barrel cortex layer IV and its underlying mechanisms. Results Under physiological conditions, excitatory post-junctional potentials (EPJPs interact with thalamocortical (TC inputs within an unprecedented few milliseconds (i.e. over 200 Hz to enhance the firing probability and synchrony of coupled fast-spiking (FS cells. Dendritic GJ coupling allows fourfold increase in synchrony and a significant enhancement in spike transmission efficacy in excitatory spiny stellate cells. The model revealed the following novel mechanisms: 1 rapid capacitive current (Icap underlies the activation of voltage-gated sodium channels; 2 there was less than 2 milliseconds in which the Icap underlying TC input and EPJP was coupled effectively; 3 cells with dendritic GJs had larger input conductance and smaller membrane response to weaker inputs; 4 synchrony in inhibitory networks by GJ coupling leads to reduced sporadic lateral inhibition and increased TC transmission efficacy. Conclusion Dendritic GJs of neocortical inhibitory networks can have very powerful effects in modulating the strength and the temporal properties of sensory induced feed-forward inhibitory and excitatory responses at a very high frequency band (>200 Hz. Rapid capacitive currents are identified as main mechanisms underlying interaction between two transient synaptic conductances.

  19. Non-lane-discipline-based car-following model under honk environment

    Science.gov (United States)

    Rong, Ying; Wen, Huiying

    2018-04-01

    This study proposed a non-lane-discipline-based car-following model by synthetically considering the visual angles and the timid/aggressive characteristics of drivers under honk environment. We firstly derived the neutral stability condition by the linear stability theory. It showed that the parameters related to visual angles and driving characteristics of drivers under honk environment all have significant impact on the stability of non-lane-discipline traffic flow. For better understanding the inner mechanism among these factors, we further analyzed how each parameter affects the traffic flow and gained further insight into how the visual angles information influences other parameters and then influences the non-lane-discipline traffic flow under honk environment. And the results showed that the other aspects such as driving characteristics of drivers or honk effect are all interacted with the "Visual-Angle Factor". And the effect of visual angle is not just to say simply it has larger stable region or not as the existing studies. Finally, to verify the proposed model, we carried out the numerical simulation under the periodic boundary condition. And the results of numerical simulation are agreed well with the theoretical findings.

  20. Mechanisms Underlying Cytotoxicity Induced by Engineered Nanomaterials: A Review of In Vitro Studies

    Science.gov (United States)

    Nogueira, Daniele R.; Mitjans, Montserrat; Rolim, Clarice M. B.; Vinardell, M. Pilar

    2014-01-01

    Engineered nanomaterials are emerging functional materials with technologically interesting properties and a wide range of promising applications, such as drug delivery devices, medical imaging and diagnostics, and various other industrial products. However, concerns have been expressed about the risks of such materials and whether they can cause adverse effects. Studies of the potential hazards of nanomaterials have been widely performed using cell models and a range of in vitro approaches. In the present review, we provide a comprehensive and critical literature overview on current in vitro toxicity test methods that have been applied to determine the mechanisms underlying the cytotoxic effects induced by the nanostructures. The small size, surface charge, hydrophobicity and high adsorption capacity of nanomaterial allow for specific interactions within cell membrane and subcellular organelles, which in turn could lead to cytotoxicity through a range of different mechanisms. Finally, aggregating the given information on the relationships of nanomaterial cytotoxic responses with an understanding of its structure and physicochemical properties may promote the design of biologically safe nanostructures. PMID:28344232