Sample records for underlying mechanisms driving

  1. Turbulent current drive mechanisms (United States)

    McDevitt, Christopher J.; Tang, Xian-Zhu; Guo, Zehua


    Mechanisms through which plasma microturbulence can drive a mean electron plasma current are derived. The efficiency through which these turbulent contributions can drive deviations from neoclassical predictions of the electron current profile is computed by employing a linearized Coulomb collision operator. It is found that a non-diffusive contribution to the electron momentum flux as well as an anomalous electron-ion momentum exchange term provide the most efficient means through which turbulence can modify the mean electron current for the cases considered. Such turbulent contributions appear as an effective EMF within Ohm's law and hence provide an ideal means for driving deviations from neoclassical predictions.

  2. Emotional dysregulation and anxiety control in the psychopathological mechanism underlying drive for thinness

    Directory of Open Access Journals (Sweden)

    Francesca eFiore


    Full Text Available Emotional dysregulation is a process which consists in mitigating, intensifying or maintaining a given emotion and is the trigger for some psychological disorders. Research has shown that a anxiety control plays an important role in emotional expression and regulation and, in addition, for anorexia nervosa and, more in general, in drive for thinness. Scientific literature suggests that in anorexia nervosa there is a core of emotional dysregulation and anxiety control. The aim of this study is to explore the roles of emotional dysregulation and anxiety control as independent or third variables in a mediational regression model related to drive for thinness. 154 clinical individuals with anorexia participated in the study and all completed a set of self-report questionnaires: eating disorders inventory version 3 (EDI-3, DERS, and the anxiety control questionnaire (ACQ. The data confirmed a mediational model in which the relation between emotional dysregulation and drive for thinness is mediated by anxiety control. The current study partially supports a clinical model in which emotional dysregulation is a distal factor in eating disorders while the mediator variable anxiety control is a proximal factor in the psychopathological process underlying it.

  3. Rod drive and latching mechanism

    International Nuclear Information System (INIS)

    Veronesi, L.; Sherwood, D.G.


    Hydraulic drive and latching mechanisms for driving reactivity control mechanisms in nuclear reactors are described. Preferably, the pressurized reactor coolant is utilized to raise the drive rod into contact with and to pivot the latching mechanism so as to allow the drive rod to pass the latching mechanism. The pressure in the housing may then be equalized which allows the drive rod to move downwardly into contact with the latching mechanism but to hold the shaft in a raised position with respect to the reactor core. Once again, the reactor coolant pressure may be utilized to raise the drive rod and thus pivot the latching mechanism so that the drive rod passes above the latching mechanism. Again, the mechanism pressure can be equalized which allows the drive rod to fall and pass by the latching mechanism so that the drive rod approaches the reactor core. (author)

  4. Granular gases under extreme driving (United States)

    Kang, W.; Machta, J.; Ben-Naim, E.


    We study inelastic gases in two dimensions using event-driven molecular-dynamics simulations. Our focus is the nature of the stationary state attained by rare injection of large amounts of energy to balance the dissipation due to collisions. We find that under such extreme driving, with the injection rate much smaller than the collision rate, the velocity distribution has a power-law high-energy tail. The numerically measured exponent characterizing this tail is in excellent agreement with predictions of kinetic theory over a wide range of system parameters. We conclude that driving by rare but powerful energy injection leads to a well-mixed gas and constitutes an alternative mechanism for agitating granular matter. In this distinct nonequilibrium steady state, energy cascades from large to small scales. Our simulations also show that when the injection rate is comparable with the collision rate, the velocity distribution has a stretched exponential tail.

  5. Control rod driving mechanisms

    International Nuclear Information System (INIS)

    Maejima, Yoshinori.


    Purpose: To conduct reactor scram by an external signal and, also by a signal for the abnormal temperature from a temperature detector in the nuclear reactor. Constitution: Control rod driving mechanisms magnetically coupling the extension pipe with the elevating mechanism above the reactor core and the holding magnet, and retains a control rod to the lower portion of the extension pipe by way of a latch mechanism. The temperature detector is immersed in reactor coolants. If the temperature of the coolants rises abnormally, bimetal contacts of the temperature detector are opened to interrupt the current supply to the holding electromagnet. Then, the extension pipe released from the magnetic coupling is lowered and the control rod free from latch is rapidly dropped and inserted into the reactor core. Since this procedure is carried out for all of the control rods, the reactor scram can be attained. The feature of this invention resides in that the reactor scram can be attained also by the signal of the reactor core itself even if the signal system for the external signals should be failed. (Horiuchi, T.)

  6. Balanced Motions Realization for a Mechanical Regulators Free and Front-Wheel Drive Bicycle Robot Under Zero Forward Speed

    Directory of Open Access Journals (Sweden)

    Yonghua Huang


    Full Text Available This paper focuses on a mechanical regulator free and front- wheel drive bicycle robot. We present a scheme to achieve the robot's track-stand motion and circular motion under zero forward speed. In a situation where the robot's front-bar is locked at 90 degrees, a kinetic constraint about the rotating rate of the front-wheel and the yawing rate of the frame is derived. Using the constraint as a basis, we developed a simplified model of two independent velocities for the robot. The model suggests there is an under-actuated rolling angle in the system. Our control strategy originates from the under- actuated characteristics of the robot system. Concretely, we linearize the rolling angle of the frame and set the bicycle robot to regulate its tilting by rotating the front-wheel. In the track-stand motion, we control the position and the rotational rate of the front-wheel; but in the circular motion, only the rotational rate of the front-wheel is strictly regulated. Both simulations and physical experiments results show that our strategy is effective for achieving these two motions.

  7. A test research on ventilative well-distributivity under normal temperature for a control rod drive mechanism (Continuous article)

    International Nuclear Information System (INIS)

    Zhu Longxing


    A test for cooling of the control rod drive mechnism under normal temperature is described. The relationship between the unbalanced cofficient and the frictional resistance and wind velocity is found by comparing the ventilation in plate top structure of reactor with that in global top structure of reactor

  8. Blow molding electric drives of Mechanical Engineering (United States)

    Bukhanov, S. S.; Ramazanov, M. A.; Tsirkunenko, A. T.


    The article considers the questions about the analysis of new possibilities, which gives the use of adjustable electric drives for blowing mechanisms of plastic production. Thus, the use of new semiconductor converters makes it possible not only to compensate the instability of the supply network by using special dynamic voltage regulators, but to improve (correct) the power factor. The calculation of economic efficiency in controlled electric drives of blowing mechanisms is given. On the basis of statistical analysis, the calculation of the reliability parameters of the regulated electric drives’ elements under consideration is given. It is shown that an increase in the reliability of adjustable electric drives is possible both due to overestimation of the electric drive’s installed power, and in simpler schemes with pulse-vector control.

  9. Design of the pulse rod drive mechanism for pulsed reactor

    International Nuclear Information System (INIS)

    You Keyi


    The pulse rod drive mechanism is a critical movable device for a pulsed reactor. It is an executor under pulse operations, and it may be used in a shim rod under steady-state operations. The pneumatic-electromechanical driving method is taken in the designing. The structure, operating, calculation of parameters and designing methods of the pulse rod drive mechanism are briefly described in this paper. The testing results of the prototypical mechanism are also presented

  10. Research on Conflict Decision between Shift Schedule and Multienergy Management for PHEV with Automatic Mechanical Transmission under Special Driving Cycles

    Directory of Open Access Journals (Sweden)

    JunQiang Xi


    Full Text Available In order to satisfy the character of parallel hybrid electric vehicle (PHEV in some special driving cycles, a collision decision problem between the shift decision and power split ratio is proposed. Based on a large amount of experimental data the optimal decisions are determined with evidential reasoning theory. The proposed decision strategy has been verified through real road test of Chongqing public transportation line 818 and the fuel economic improvement has also been achieved.

  11. Driving Performance Under Alcohol in Simulated Representative Driving Tasks (United States)

    Kenntner-Mabiala, Ramona; Kaussner, Yvonne; Jagiellowicz-Kaufmann, Monika; Hoffmann, Sonja; Krüger, Hans-Peter


    Abstract Comparing drug-induced driving impairments with the effects of benchmark blood alcohol concentrations (BACs) is an approved approach to determine the clinical relevance of findings for traffic safety. The present study aimed to collect alcohol calibration data to validate findings of clinical trials that were derived from a representative test course in a dynamic driving simulator. The driving performance of 24 healthy volunteers under placebo and with 0.05% and 0.08% BACs was measured in a double-blind, randomized, crossover design. Trained investigators assessed the subjects’ driving performance and registered their driving errors. Various driving parameters that were recorded during the simulation were also analyzed. Generally, the participants performed worse on the test course (P the investigators’ assessment) under the influence of alcohol. Consistent with the relevant literature, lane-keeping performance parameters were sensitive to the investigated BACs. There were significant differences between the alcohol and placebo conditions in most of the parameters analyzed. However, the total number of errors was the only parameter discriminating significantly between all three BAC conditions. In conclusion, data show that the present experimental setup is suitable for future psychopharmacological research. Thereby, for each drug to be investigated, we recommend to assess a profile of various parameters that address different levels of driving. On the basis of this performance profile, the total number of driving errors is recommended as the primary endpoint. However, this overall endpoint should be completed by a specifically sensitive parameter that is chosen depending on the effect known to be induced by the tested drug. PMID:25689289

  12. Drive mechanism nuclear reactor control rod

    International Nuclear Information System (INIS)

    Brooks, J.G. Jr.; Maure, D.R.; Meijer, C.H.


    An improved method and apparatus for operating magnetic stepping-type mechanisms. The current flowing in the coils of magnetic stepping-type mechanisms of the kind, for instance, that are used in control-element drive mechanisms is sensed and used to monitor operation of the mechanism. Current waveforms that characterize the motion of the mechanism are used to trigger changes in drive voltage and to verify that the drive mechanism is operating properly. In addition, incipient failures are detected through the observation of differences between the observed waveform and waveforms that characterize proper operation

  13. Cost of autotomy drives ontogenetic switching of anti-predator mechanisms under developmental constraints in a land snail. (United States)

    Hoso, Masaki


    Autotomy of body parts offers various prey animals immediate benefits of survival in compensation for considerable costs. I found that a land snail Satsuma caliginosa of populations coexisting with a snail-eating snake Pareas iwasakii survived the snake predation by autotomizing its foot, whereas those out of the snake range rarely survived. Regeneration of a lost foot completed in a few weeks but imposed a delay of shell growth. Imprints of autotomy were found in greater than 10 per cent of S. caliginosa in the snake range but in only less than 1 per cent out of it, simultaneously demonstrating intense predation by the snakes and high efficiency of autotomy for surviving snake predation in the wild. However, in experiments, mature S. caliginosa performed autotomy less frequently. Instead of the costly autotomy, they can use defensive denticles on the inside of their shell apertures. Owing to the constraints from the additive growth of shells, most pulmonate snails can produce these denticles only when they have fully grown up. Thus, this developmental constraint limits the availability of the modified aperture, resulting in ontogenetic switching of the alternative defences. This study illustrates how costs of adaptation operate in the evolution of life-history strategies under developmental constraints.

  14. Driving under the influence of cannabis. (United States)


    As more states decriminalize and legalize medical and recreational use of cannabis (marijuana), traffic safety leaders and public health advocates have growing concerns about driving under the influence of cannabis (DUIC). How do we understand the cu...

  15. Normal temperature ventilating homogenity test of control rod drive mechanism

    International Nuclear Information System (INIS)

    Zhu Longxing.


    This paper describes the cooling for the control rod drive mechanism. It emphatically introduces some problems which must be considered in the test on ventilating homogenity under normal temperature for the control rod drive mechanism at the top of a reactor such as the selection of cooling shroud assemblies, installed position of ducts, volume of the static pressure container, etc. The test data of blowing-in and induced draft are compared and analysed

  16. 49 CFR 384.203 - Driving while under the influence. (United States)


    ... 49 Transportation 5 2010-10-01 2010-10-01 false Driving while under the influence. 384.203 Section... § 384.203 Driving while under the influence. (a) The State must have in effect and enforce through... apply its criminal or other sanctions for driving under the influence to a person found to have operated...

  17. Maintenance of BWR control rod drive mechanisms

    International Nuclear Information System (INIS)

    Greene, R.H.


    Control rod drive mechanism (CRDM) replacement and rebuilding is one of the highest dose, most physically demanding, and complicated maintenance activities routinely accomplished by BWR utilities. A recent industry workshop sponsored by the Oak Ridge National Laboratory, which dealt with the effects of CRDM aging, revealed enhancements in maintenance techniques and tooling which have reduced ALARA, improved worker comfort and productivity, and have provided revised guidelines for CRDM changeout selection. Highlights of this workshop and ongoing research on CRDM aging are presented in this paper

  18. Physical Mechanisms Driving Cell Sorting in Hydra. (United States)

    Cochet-Escartin, Olivier; Locke, Tiffany T; Shi, Winnie H; Steele, Robert E; Collins, Eva-Maria S


    Cell sorting, whereby a heterogeneous cell mixture organizes into distinct tissues, is a fundamental patterning process in development. Hydra is a powerful model system for carrying out studies of cell sorting in three dimensions, because of its unique ability to regenerate after complete dissociation into individual cells. The physicists Alfred Gierer and Hans Meinhardt recognized Hydra's self-organizing properties more than 40 years ago. However, what drives cell sorting during regeneration of Hydra from cell aggregates is still debated. Differential motility and differential adhesion have been proposed as driving mechanisms, but the available experimental data are insufficient to distinguish between these two. Here, we answer this longstanding question by using transgenic Hydra expressing fluorescent proteins and a multiscale experimental and numerical approach. By quantifying the kinematics of single cell and whole aggregate behaviors, we show that no differences in cell motility exist among cell types and that sorting dynamics follow a power law with an exponent of ∼0.5. Additionally, we measure the physical properties of separated tissues and quantify their viscosities and surface tensions. Based on our experimental results and numerical simulations, we conclude that tissue interfacial tensions are sufficient to explain cell sorting in aggregates of Hydra cells. Furthermore, we demonstrate that the aggregate's geometry during sorting is key to understanding the sorting dynamics and explains the exponent of the power law behavior. Our results answer the long standing question of the physical mechanisms driving cell sorting in Hydra cell aggregates. In addition, they demonstrate how powerful this organism is for biophysical studies of self-organization and pattern formation. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Nutrients and Hydrology Indicate the Driving Mechanisms of Peatland Surface Patterning

    NARCIS (Netherlands)

    Eppinga, M.B.; Ruiter, de P.C.; Wassen, M.J.; Rietkerk, M.


    Peatland surface patterning motivates studies that identify underlying structuring mechanisms. Theoretical studies so far suggest that different mechanisms may drive similar types of patterning. The long time span associated with peatland surface pattern formation, however, limits possibilities for

  20. Child abuse: underlying mechanisms


    Martínez, Gladys S.


    Exposure to traumatic stress during childhood, in the form of abuse or neglect, is related to an increased vulnerability resulting in the development of several pathologies, this relation has been confi rmed by epidemiological studies; however, the neural mechanisms underlying such abnormalities are still unknown. Most of the research done has focused on the effects in the infant, and only recently it has begun to focus on the neurobiological changes in the abusive parents. In this article, I...

  1. Method of inspecting control rod drive mechanism

    International Nuclear Information System (INIS)

    Sato, Tomomi; Tatemichi, Shin-ichiro; Hasegawa, Hidenobu.


    Purpose: To conduct inspection for control rod drives and fuel handling operations in parallel without taking out the entire fuel, while maintaining the reactor in a subcritical state. Method: Control rod drives are inspected through the release of connection between control rods and control rod drives, detachment and dismantling of control rod drives, etc. In this case, structural materials having neutron absorbing power equal to or greater than the control rods are inserted into the gap after taking out fuels. Since the structural materials have neutron absorbing portion, subcriticality is maintained by the neutron absorbing effect. Accordingly, there is no requirement for taking out all of the fuels, thereby enabling to check the control rod drives and conduct handling for the fuels in parallel. As a result, the number of days required for the inspection can be shortened and it is possible to improve the working efficiency for the decomposition, inspection, etc. of the control rod drives and, thus, improve the operation efficiency of the nuclear power plant thereby attaining the predetermined purpose. (Kawakami, Y.)

  2. Control rod drive mechanism stator loss of coolant test

    International Nuclear Information System (INIS)

    Besel, L.; Ibatuan, R.


    This report documents the stator loss of coolant test conducted at HEDL on the lead unit Control Rod Drive Mechanism (CRDM) in February, 1977. The purpose of the test was to demonstrate scram capability of the CRDM with an uncooled stator and to obtain a time versus temperature curve of an uncooled stator under power. Brief descriptions of the test, hardware used, and results obtained are presented in the report. The test demonstrated that the CRDM could be successfully scrammed with no anomalies in both the two-phase and three-phase stator winding hold conditions after the respective equilibrium stator temperatures had been obtained with no stator coolant

  3. Speed Controlled Belt Conveyors: Drives and Mechanical Considerations

    Directory of Open Access Journals (Sweden)

    BEBIC, M. Z.


    Full Text Available The paper presents variable speed belt conveyor system where the reference speed is changed in order to achieve improved energy efficiency of operation. The recorded measurements show that belt tension varies within the same limits as under constant speed operation. These results introduce a new insight of the present state of the art in variable speed belt conveyor drives. The system is realized with remote control from the control center on an open pit mine. The structure of the multi-motor drive system of a single conveyor, as well as of the network-based control system distributed among belt conveyor stations and the control center are shown. Speed control of a belt conveyor system is organized to provide better utilization of the available material cross section on the belt and reduced electrical energy consumption of the drive. The experimental results obtained on the system prove that, under existing constraints, the applied algorithm has not introduced additional stress to the belt or mechanical assemblies during acceleration and deceleration processes, while providing higher energy efficiency of operation.

  4. The 2006 National Labor Day impaired driving enforcement crackdown : Drunk driving. Over the limit. Under arrest. (United States)


    The National Highway Traffic Safety Administrations 2006 Drunk Driving. Over the Limit. Under Arrest. Labor Day holiday campaign had three main components: (1) DWI enforcement, (2) public awareness efforts, and (3) evaluation. The 2006 program use...

  5. Conceptual Design of Bottom-mounted Control Rod Drive Mechanism

    International Nuclear Information System (INIS)

    Lee, Jin Haeng; Kim, Sanghaun; Yoo, Yeonsik; Cho, Yeonggarp; Kim, Dongmin; Kim, Jong In


    The arrangement of the BMCRDMs and irradiation holes in the core is therefore easier than that of the top-mounted CRDM. Hence, many foreign research reactors, such as JRR-3M, JMTR, OPAL, and CARR, have adopted the BMCRDM concept. The purpose of this paper is to introduce the basic design concept on the BMCRDM. The major differences of the CRDMs between HANARO and KJRR are compared, and the design features and individual system of the BMCRDM for the KJRR are described. The Control Rod Drive Mechanism (CRDM) is a device to regulate the reactor power by changing the position of a Control Absorber Rod (CAR) and to shut down the reactor by fully inserting the CAR into the core within a specified time. The Bottom-Mounted CRDM (BMCRDM) for the KiJang Research Reactor (KJRR) is a quite different design concept compared to the top-mounted CRDM such as HANARO and JRTR. The main drive mechanism of the BMCRDM is located in a Reactivity Control Mechanism (RCM) room under the reactor pool bottom, which makes the interference with equipment in the reactor pool reduced

  6. A linear chromatic mechanism drives the pupillary response. (United States)

    Tsujimura, S; Wolffsohn, J S; Gilmartin, B


    Previous studies have shown that a chromatic mechanism can drive pupil responses. The aim of this research was to clarify whether a linear or nonlinear chromatic mechanism drives pupillary responses by using test stimuli of various colours that are defined in cone contrast space. The pupil and accommodation responses evoked by these test stimuli were continuously and simultaneously objectively measured by photorefraction. The results with isochromatic and isoluminant stimuli showed that the accommodative level remained approximately constant (linear chromatic mechanism, whereby a signal from the long wavelength cone is subtracted from that of the middle wavelength cone and vice versa, drives pupillary responses.

  7. Cam Drive Step Mechanism of a Quadruped Robot

    Directory of Open Access Journals (Sweden)

    Qun Sun


    Full Text Available Bionic quadruped robots received considerable worldwide research attention. For a quadruped robot walking with steady paces on a flat terrain, using a cam drive control mechanism instead of servomotors provides theoretical and practical benefits as it reduces the system weight, cost, and control complexities; thus it may be more cost beneficial for some recreational or household applications. This study explores the robot step mechanism including the leg and cam drive control systems based on studying the bone structure and the kinematic step sequences of dog. The design requirements for the cam drive robot legs have been raised, and the mechanical principles of the leg operating mechanism as well as the control parameters have been analyzed. A cam drive control system was constructed using three cams to control each leg. Finally, a four-leg demo robot was manufactured for experiments and it showed stable walking patterns on a flat floor.

  8. Establishing legal limits for driving under the influence of marijuana


    Wong, Kristin; Brady, Joanne E; Li, Guohua


    Marijuana has become the most commonly detected non-alcohol substance among drivers in the United States and Europe. Use of marijuana has been shown to impair driving performance and increase crash risk. Due to the lack of standardization in assessing marijuana-induced impairment and limitations of zero tolerance legislation, more jurisdictions are adopting per se laws by specifying a legal limit of ?9-tetrahydrocannabinol (THC) at or above which drivers are prosecuted for driving under the i...

  9. Multi-function magnetic jack control drive mechanism

    International Nuclear Information System (INIS)

    Bollinger, L.R.; Crawford, D.C.


    A multi-function magnetic jack control drive mechanism is described for controlling a nuclear reactor comprising: an elongate pressure housing; closely-spaced drive rods located in the pressure housing, the drive rod being connected to a reactor rod which is insertable in a reactor core; electrochemical stationary latch means which are selectively actuatable for holding a respective one of the drive rods stationary with respect to the pressure housing, the plurality of stationary latch means including at least one coil located about the pressure housing; longitudinally spaced electromechanical movable latch means, individually associated with one of the drive rods and each including a base for the drive rod associated therewith, for, when actuated, holding the associated drive rod stationary with respect to the base associated therewith, the movable latch means including an associated coil located about the pressure housing; and longitudinally spaced electromechanical lift means, individually associated with the base, for, when actuated, moving an associated base longitudinally along the pressure housing from a first position to a second position to thereby enable movement of one or more of the other drive rods longitudinally independently of the other drive rods in response to sequential and repeated operation of the electromechanical means, the lift means including an associated coil located about the pressure housing

  10. Driving Force Filtering and Driving Mechanism Analysis of Urban Agricultural Development in Weifang County, China

    Directory of Open Access Journals (Sweden)

    SUI Fei-fei


    Full Text Available As an agricultural nation, the agricultural landscape is the basic appearance and existence in China, but the common existence often be neglected and contempted. As a new type of design and ideology, the development of urban agricultural landscape will greatly affect the texture and structure of the urban space. According to the urban agricultural production data and the socio-economic data of Weifang County, a set of evaluation index system that could analyze quantitatively the driving force of urban agricultural production changes and the internal drive mechanism was built. The original driving force indicators of economy, society, resources and environment from the time-series were chosen, and then 15 driving forces from the original driving forces by correlation analysis and principal component analysis were selected. The degree of influence was analyzed and the driving forces model by means of partial least squares(PLS was built. The results demonstrated that the factors greatly influenced the increase of urban agricultural output value in Weifang County were per capita net income of rural residents, agricultural machinery total power, effective irrigation area, centralized treatment rate of urban sewage, with the driving exponents 0.2509, 0.1019, 0.1655, 0.1332, respectively. The negative influence factor was the use amount of agricultural plastic film and the driving exponent was-0.2146. The research provides a reference for the development of urban agriculture, as well as a reference for the related study.

  11. A comparison of drive mechanisms for precision motion controlled stages

    Energy Technology Data Exchange (ETDEWEB)

    Buice, E S; Yang, H; Otten, D; Smith, S T; Hocken, R J; Trumper, D L; Seugling, R M


    This abstract presents a comparison of two drive mechanisms, a Rohlix{reg_sign} drive and a polymer nut drive, for precision motion controlled stages. A single-axis long-range stage with a 50 mm traverse combined with a short-range stage with a 16 {micro}m traverse at a operational bandwidth of 2.2 kHz were developed to evaluate the performance of the drives. The polymer nut and Rohlix{reg_sign} drives showed 4 nm RMS and 7 nm RMS positioning capabilities respectively, with traverses of 5 mm at a maximum velocity of 0.15 mm{sup -}s{sup -1} with the short range stage operating at a 2.2 kHz bandwidth. Further results will be presented in the subsequent sections.

  12. Improvements in or relating to rotary drive mechanisms

    International Nuclear Information System (INIS)

    Lodge, J.A.


    The invention relates to rotary drive mechanisms and relates especially, though not exclusively, to such mechanisms for use in rotating a source of penetrating radiation, such as X-radiation, in steps around a body, in the course of a computerised tomographic (CAT) examination of the body. (author)

  13. Multiple evolutionary mechanisms drive papillomavirus diversification. (United States)

    Gottschling, Marc; Stamatakis, Alexandros; Nindl, Ingo; Stockfleth, Eggert; Alonso, Angel; Bravo, Ignacio G


    The circular, double-stranded 8-kb DNA genome of papillomaviruses (PVes) consists mainly of 4 large genes, E1, E2, L2, and L1. Approximately 150 papillomavirus genomes have been sequenced to date. We analyzed a representative sample of 53 PVes genomes using maximum likelihood, Bayesian inference, maximum parsimony, and distance-based methods both on nucleotide (nt) and on amino acid (aa) alignments. When the 4 genes were analyzed separately, aa-inferred phylogenies contradicted each other less than nt-inferred trees (judged by partition homogeneity tests). In particular, gene combinations including the L2 gene generated significant incongruence (P artifacts and insufficient taxon sampling, may contribute to the incomplete resolution of deep phylogenetic nodes. The molecular data globally supports a complex evolutionary scenario for PVes, which is driven by multiple mechanisms but not exclusively by coevolution with corresponding hosts.

  14. Novel Spherical Robot with Hybrid Pendulum Driving Mechanism

    Directory of Open Access Journals (Sweden)

    Sung-Su Ahn


    Full Text Available As regards omnidirectional driving, conventional one- and two-pendulum spherical robots have a limited capability due to a limited pendulum motion range. In particular, such robots cannot move from a stationary state in a parallel direction to the center horizontal axis to which the pendulums are attached. Thus, to overcome the limited driving capability of one- and two-pendulum driven spherical robots, a passive version of a spherical robot, called KisBot II, was developed with a curved two-pendulum driving mechanism operated by a joystick. However, this paper presents an active upgraded version of KisBot II that includes a DSP-based control system and Task-based software architecture for driving control and data communication, respectively. A dynamic model for two-pendulum driving is derived using the Lagrange equation method, and a feedback controller for linear driving using two pendulums is then constructed based on the dynamic model. Experiments with several motions verify the driving efficiency of the proposed novel spherical robot.


    Directory of Open Access Journals (Sweden)

    A. I. Safonov


    Full Text Available The paper analyzes factors that determine dynamic loads of mechanical transmission of trolleybus traction driving gear. The paper proposes a methodology for determination of calculative moments of loading transmission elements. Results of the research are analyzed and recommendations on  dynamic reduction of trolleybus transmission are given in the paper. 

  16. Electromagnetic design calculation of the control rod drive mechanism

    International Nuclear Information System (INIS)

    Zhu Qirong; Zhu Jingchang


    Electromagnetic design calculation of the step-by-step magnetic jacking control rod drive mechanism includes magnetic field force calculation and design calculation of magnetomotive force for three electromagnetic iron and their coilds. The basic principle and method of electromagnetic design calculation had been expounded to take the lift magnet and lift coil for example

  17. On the Optimally Controlled Hydrostatic Mechanical Drive in Case of Flywheel Acceleration

    Directory of Open Access Journals (Sweden)

    V. A. Korsunskii


    Full Text Available An improving dynamic quality of vehicles and enhanced fuel efficiency are gained thanks to the combined power system (CPS, comprising a main energy source - internal combustion engine (ICE with an attained level of the power source - and an auxiliary energy source, i.e. an energy storage device (a flywheel.To solve this problem was developed a mathematical model of CPS comprising internal combustion engine and flywheel energy storage (FES with stepless drive.The stepless drive of the flywheel is made to be hydrostatic mechanical to raise the system efficiency. To reduce the drive weight and simplify the control system in the hydraulic part of the flywheel drive is used only one hydraulic unit being controlled.The paper presents a kinematic diagram of the track-type vehicle equipped with the CPS that has a hydrostatic mechanical drive of the flywheel and a mechanical transmission.A mathematical model of the system comprising an ICE, hydrostatic mechanical drive, and FES with stepless drive has been developed. This mathematical model was used to study the influence of ICE and flywheel drive parameters on the dynamic characteristics of the system.The paper estimates the impact of flywheel energy consumption, pressure in the hydraulic system, and control parameter of hydrostatic mechanical drive on the charging time of FES.The obtained piecewise linear law to control the regulation parameter of the hydraulic unit allows us to minimize the charging time of the flywheel at the short-term stops and in the parking area of a tracked vehicle equipped with a CPS.The causes affecting the performance of ‘ICE – drive – flywheel’ system in the course of the flywheel acceleration are a restricted maximum power of the engine, as well as a limited generating capacity, and a maximum flywheel drive hydro-system pressure.The obtained results allow us to determine rational parameters of the flywheel and the laws of drive control to provide their further

  18. Arcsecond grating drive mechanism for operation at 4 K (United States)

    Downey, C. H.; Kubitschek, M. J.; Tarde, R. W.; Houck, J. R.


    A grating drive mechanism that achieves arcsecond positional control at both room temperature and 4 K is described. The mechanism accommodates eight equally spaced facets on a 360-deg drum, with each facet having arcsecond control over an angular range of +/-3 deg. The cryogenic portion consists of dry lubricated angular contact bearings, a dc brushless torque motor, and a compact magnetic position sensor capable of less than 1 arcsec rms resolution. Test results demonstrate angular repeatability of less than 2 arcsec rms at 4 K and static power dissipation to the helium bath of less than 100 microW.

  19. Underlying Mechanisms Affecting Institutionalisation of ...

    African Journals Online (AJOL)

    This paper discusses the underlying causal mechanisms that enabled or constrained institutionalisation of environmental education in 12 institutions in eight countries in southern Africa. The study was carried out in the context of the Southern Africa Development Community Regional Environmental Education Support ...

  20. Underlying Mechanisms Affecting Institutionalisation of ...

    African Journals Online (AJOL)

    doctoral study and draws on critical realism as the ontological lens. Data analysis was done by means of a retroductive mode of inference, as articulated by Danermark, Ekström, Jakosben and Karlsson (2002). The paper demonstrates that there are a number of underlying causal mechanisms, which may enable or.

  1. Molecular mechanisms underlying bacterial persisters

    DEFF Research Database (Denmark)

    Maisonneuve, Etienne; Gerdes, Kenn


    All bacteria form persisters, cells that are multidrug tolerant and therefore able to survive antibiotic treatment. Due to the low frequencies of persisters in growing bacterial cultures and the complex underlying molecular mechanisms, the phenomenon has been challenging to study. However, recent...

  2. Speed Controlled Belt Conveyors: Drives and Mechanical Considerations


    BEBIC, M. Z.; RISTIC, L. B.


    The paper presents variable speed belt conveyor system where the reference speed is changed in order to achieve improved energy efficiency of operation. The recorded measurements show that belt tension varies within the same limits as under constant speed operation. These results introduce a new insight of the present state of the art in variable speed belt conveyor drives. The system is realized with remote control from the control center on an open pit mine. The structure of...

  3. A calibration mechanism based on worm drive for space telescope (United States)

    Chong, Yaqin; Li, Chuang; Xia, Siyu; Zhong, Peifeng; Lei, Wang


    In this paper, a new type of calibration mechanism based on worm drive is presented for a space telescope. This calibration mechanism based on worm drive has the advantages of compact size and self-lock. The mechanism mainly consists of thirty-six LEDs as the light source for flat calibration, a diffuse plate, a step motor, a worm gear reducer and a potentiometer. As the main part of the diffuse plate, a PTFE tablet is mounted in an aluminum alloy frame. The frame is fixed on the shaft of the worm gear, which is driven by the step motor through the worm. The shaft of the potentiometer is connected to that of the worm gear to measure the rotation angle of the diffuse plate through a flexible coupler. Firstly, the calibration mechanism is designed, which includes the LEDs assembly design, the worm gear reducer design and the diffuse plate assembly design. The counterweight blocks and two end stops are also designed for the diffuse plate assembly. Then a modal analysis with finite element method for the diffuse plate assembly is completed.

  4. Molecular Mechanisms Underlying Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Christian Trepo


    Full Text Available Hepatocarcinogenesis is a complex process that remains still partly understood. That might be explained by the multiplicity of etiologic factors, the genetic/epigenetic heterogeneity of tumors bulks and the ignorance of the liver cell types that give rise to tumorigenic cells that have stem cell-like properties. The DNA stress induced by hepatocyte turnover, inflammation and maybe early oncogenic pathway activation and sometimes viral factors, leads to DNA damage response which activates the key tumor suppressive checkpoints p53/p21Cip1 and p16INK4a/pRb responsible of cell cycle arrest and cellular senescence as reflected by the cirrhosis stage. Still obscure mechanisms, but maybe involving the Wnt signaling and Twist proteins, would allow pre-senescent hepatocytes to bypass senescence, acquire immortality by telomerase reactivation and get the last genetic/epigenetic hits necessary for cancerous transformation. Among some of the oncogenic pathways that might play key driving roles in hepatocarcinogenesis, c-myc and the Wnt/β-catenin signaling seem of particular interest. Finally, antiproliferative and apoptosis deficiencies involving TGF-β, Akt/PTEN, IGF2 pathways for instance are prerequisite for cancerous transformation. Of evidence, not only the transformed liver cell per se but the facilitating microenvironment is of fundamental importance for tumor bulk growth and metastasis.

  5. The Association of Sensation Seeking and Impulsivity to Driving while under the Influence of Alcohol (United States)

    Curran, Matthew F.; Fuertes, Jairo N.; Alfonso, Vincent C.; Hennessy, James J.


    This study examined the association between sensation seeking, impulsivity, and drunk driving. Results showed significant differences in sensation seeking and impulsivity among 160 individuals convicted of impaired or intoxicated driving and individuals who had never been arrested for driving while under the influence/driving while intoxicated…

  6. The driving mechanism of roAp stars

    Energy Technology Data Exchange (ETDEWEB)

    Dupret, M-A [Observatoire de Paris, LESIA, CNRS UMR 8109, 5 place J. Janssen, 92195 Meudon (France); Theado, S; Noels, A [Institut d' Astrophysique et Geophysique, Universite de Liege (Belgium)], E-mail:


    We analyse in detail the driving mechanism of roAp stars and present the theoretical instability strip predicted by our models with solar metallicity. A particular attention is given to the interpretation of the role played by the different eigenfunctions in the stabilization of the modes at the red edge of the instability strip. The gradient of temperature in the H{sub I} opacity bump appears to play a major role in this context. We also consider the particular and complex role played by the shape of the eigenfunctions (location of the nodes, ...)

  7. Driving Performance and User's Evaluation of Self-Balancing Personal Mobility Vehicle with a Pedal Driving Mechanism

    Directory of Open Access Journals (Sweden)

    Seonghee Jeong


    Full Text Available In this paper, we propose a self-balancing personal mobility vehicle with a hybrid driving mechanism, called as Wi-PMP, and discuss its features from the perspectives of its power-assist driving performance and a rider's evaluation. The mobility vehicle consists of a wheeled inverted pendulum type mobile platform, and a hybrid driving mechanism that can use human and motor power together for driving. By performing a bump driving, a slope driving, and a outdoor driving experiment, we confirm that the proposed hybrid mechanism is valid for the integration of human and motor power, and is effective to increase the driving power and reduce electrical load on motors and batteries. We conducted several experiments to investigate the rider's evaluation on a sit-riding method compared to a stand-riding one. The questionnaire results showed that a rider felt more comfortable in the case of the sit-riding method when getting on and off, and when driving the mobility vehicle. This implies that riding-type self-balancing vehicles such as Wi-PMP have the potential to become familiar personal mobility vehicles in daily life.

  8. Mechanical Design Engineering Enabler Project wheel and wheel drives (United States)

    Nutt, Richard E.; Couch, Britt K.; Holley, John L., Jr.; Garris, Eric S.; Staut, Paul V.


    Our group was assigned the responsibility of designing the wheel and wheel drive system for a proof-of-concept model of the lunar-based ENABLER. ENABLER is a multi-purpose, six wheeled vehicle designed to lift and transport heavy objects associated with the construction of a lunar base. The resulting design was based on the performance criteria of the ENABLER. The drive system was designed to enable the vehicle to achieve a speed of 7 mph on a level surface, climb a 30 percent grade, and surpass a one meter high object and one meter wide crevice. The wheel assemblies were designed to support the entire weight of the vehicle on two wheels. The wheels were designed to serve as the main component of the vehicle's suspension and will provide suitable traction for lunar-type surfaces. The expected performance of the drive system for the ENABLER was influenced by many mechanical factors. The expected top speed on a level sandy surface is 4 mph instead of the desired 7 mph. This is due to a lack of necessary power at the wheels. The lack of power resulted from dimension considerations that allowed only an eight horsepower engine and also from mechanical inefficiencies of the hydraulic system. However, the vehicle will be able to climb a 30 percent grade, surpass a one meter high object and one meter wide crevice. The wheel assemblies will be able to support the entire weight of the vehicle on two wheels. The wheels will also provide adequate suspension for the vehicle and sufficient traction for lunar-type surfaces.

  9. Electromagnetic analysis of control element drive mechanism for KSNP

    International Nuclear Information System (INIS)

    Kim, H. M.; Kim, I. G.; Kim, I. Y.


    The magnetic jack type Control Element Drive Mechanism (CEDM) for Korean Standard Nuclear Power Plant (KSNP) is an electromechanical device which provides controlled linear motion to the Control Element Assembly (CEA) through the Extension Shaft Assembly (ESA) in response to operational signals received from the Control Element Drive Mechanism Control System (CEDMCS). The CEDM is operated by applying localized magnetic flux fields to movable latch and lift magnets, which are in the coolant pressure boundary. The CEDM design had been developed through electromechanical testing of the system including the magnetic force lifting the ESA. But it will be inefficient if parametric studies should be performed to improve the CEDM by test due to the consumption of high cost and long duration. So it becomes necessary to develop a computational model to simulate the electromagnetic characteristics of the CEDM to improve the CEDM design efficiently. In this paper, the electromagnetic analysis using a 2D finite element model has been carried out to simulate magnetic force of the lift magnet of the CEDM, to provide effective evaluation between leakage flux and lift force and to compare with test results. Analysis results show the lift force satisfied the test results and design requirement and the lift force depend on the shape of the components, leakage flux and B-H curve

  10. Study on dynamic lifting characteristics of control rod drive mechanism

    International Nuclear Information System (INIS)

    Shen Xiaoyao


    Based on the equations of the electric circuit and the magnetic circuit and analysis of the dynamic lifting process for the control rod drive mechanism (CRDM), coupled magnetic-electric-mechanical equations both for the static status and the dynamic status are derived. The analytical method is utilized to obtain the current and the time when the lift starts. The numerical simulation method of dynamic analysis recommended by ASME Code is utilized to simulate the dynamic lifting process of CRDM, and the dynamic features of the system with different design gaps are studied. Conclusions are drawn as: (1) the lifting-start time increases with the design gap, and the time for the lifting process is longer with larger gaps; (2) the lifting velocity increases with time; (3) the lifting acceleration increases with time, and with smaller gaps, the impact acceleration is larger. (author)

  11. Development of in-vessel type control rod drive mechanism for a innovative small reactor (Contract research)

    Energy Technology Data Exchange (ETDEWEB)

    Yoritsune, Tsutomu; Ishida, Toshihisa [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment


    Although the control rod drive mechanism of an existing large scale light water reactor is generally installed outside the reactor vessel, an in-vessel type control rod drive mechanism (INV-CRDM) is installed inside the reactor vessel. The INV-CRDM contributes to compactness and simplicity of the reactor system, and it can eliminate the possibility of a rod ejection accident. Therefore, INV-CRDM is an important technology adopted in an innovative small reactor. Japan Atomic Energy Research Institute (JAERI) has developed this type of CRDM driven by an electric motor, which can work under high temperature and high pressure water for the advanced marine reactor. On the basis of this research result, a driving motor coil and a bearing were developed to be used under the high temperature steam, severe condition for an innovative small reactor. About the driving motor, we manufactured the driving motor available for high temperature steam and carried out performance test under room temperature atmosphere to confirm the electric characteristic and coolability of the driving coil. With these test results and the past test results under high temperature water, we analyzed and evaluated the electric performance and coolability of the driving coil under high temperature steam. Concerning bearing, we manufactured the test pieces using some candidate material for material characteristic test and carried out the rolling wear test under high temperature steam to select the material. Consequently, we confirmed that performance of the driving coil for the advanced type driving motor, is enough to be used under high temperature steam. And, we evaluated the performance of the bearing and selected the material of the bearing, which can be used under high temperature steam. From these results, we have obtained the prospect that the INV-CRDM can be used for an innovative small reactor under steam atmosphere could be developed. (author)

  12. Fast-Response electric drives of Mechanical Engineering objects (United States)

    Doykina, L. A.; Bukhanov, S. S.; Gryzlov, A. A.


    The article gives a solution to the problem of increasing the speed in the electrical drives of machine-building enterprises due to the application of a structure with ISC control. In this case, it is possible to get rid of the speed sensors. It is noted that in this case no circulating pulsations are applied to the input of the control system, caused by a non-identical interface between the sensor and the shaft of the operating mechanism. For detailed modeling, a mathematical model of an electric drive with distributed parameters was proposed. The calculation of such system was carried out by the finite element method. Taking into account the distributed characteristic of the system parameters allowed one to take into account the discrete nature of the electric machine’s work. The simulation results showed that the response time in the control circuit is estimated at a time constant of 0.0015, which is about twice as fast as in traditional vector control schemes.

  13. 14 CFR 27.923 - Rotor drive system and control mechanism tests. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor drive system and control mechanism... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 27.923 Rotor drive system and control mechanism tests. (a) Each part tested as prescribed in this section...

  14. Mechanisms of the negative synergy effect between electron cyclotron current drive and lower hybrid current drive in tokamak

    International Nuclear Information System (INIS)

    Chen Shaoyong; Hong Binbin; Tang Changjian; Yang Wen; Zhang Xinjun


    The synergy current drive by combining electron cyclotron wave (ECW) with lower hybrid wave (LHW) can be used to either increase the noninductive current drive efficiency or shape the plasma current profile. In this paper, the synergy current drive by ECW and LHW is studied with numerical simulation. The nonlinear relationship between the wave powers and the synergy current of ECW and LHW is revealed. When the LHW power is small, the synergy current reduces as the ECW power increases, and the synergy current is even reduced to lower than zero, which is referred as negative synergy in the this context. Research shows that the mechanism of the negative synergy is the peaking effect of LHW power profile and the trapped electrons effect. The present research is helpful for understanding the physics of synergy between electron cyclotron current drive and lower hybrid current drive, it can also instruct the design of experiments. (authors)

  15. Design of diverse safety rod and its drive mechanism of PFBR

    International Nuclear Information System (INIS)

    Vijayashree, R.; Govindarajan, S.; Chetal, S.C.


    In Prototype Fast Breeder Reactor (PFBR), there are two types of absorber rods for control and shutdown of the reactor in the event of any abnormal event. They are: (i) Control and Safety Rod (CSR) and (ii) the Diverse Safety Rod (DSR). Of these, the former (CSR) caters to the control function of the reactor during normal operating conditions and to the shutdown during abnormal situations. The DSR, on the other hand is meant essentially for the reactor shutdown to take care of any abnormal transient. It is rather important to note that functionally the DSR is independent of CSR in the sense, that it can bring the reactor to a cold shutdown state and maintain it even under the hypothetical condition of the failure of CSR. From the design point of view, this stipulates a failure probability of less than 10 -4 per demand. The DSR is normally parked above the core by the Diverse Safety Rod Drive Mechanism (DSRDM). On receiving a scram signal it gets released from the holding electromagnet and falls under the gravity into the core. Diverse features are incorporated both in the absorber rods and in the drive mechanisms to avoid common mode failures. This paper discusses the salient features of DSR and DSRDM. A brief account of detailed design, analysis and development of two important subassemblies viz. electromagnet and sodium dash pot is also presented. In addition, a brief comparison between CSR and DSR including their drive mechanisms is also provided. (author)

  16. Preliminary aseismic analysis on bolts of driving mechanism in absorption sphere shutdown system

    International Nuclear Information System (INIS)

    Chen Feng; Li Tianjin; Zhang Zhengming; Huang Zhiyong; Bo Hanliang


    The absorption sphere shutdown system performs an important role in reactivity regulating and control. Driving mechanism is a set of key mechanical moving parts which is used to control falling of absorption spheres in absorption sphere shutdown system. It is about 5 m for driving mechanism with the slim structure, which is connected with the upper supported plate of metal reactor internals through storage vessel with bolts. Both the storage vessel and driving mechanism are equipment of seismic classification I. It is significant to calculate and check the bolts strength of driving mechanism. In this paper, complicate structure of driving mechanism was simplified to three variable cross sections and statically indeterminate problem was solved. The bolts at the bottom and on the top of the storage vessel were calculated and checked. The preliminary results indicate that the bolts strength is reliable and safe, and the supporting force at the most weak point of driving mechanism is as well obtained. (authors)

  17. Detection and suppression for mechanical resonance in hard disk drives with built-in piezoelectric sensors (United States)

    Gao, Peng; Lou, Yaolong; Okada, Kanzo


    Many components in hard disk drives (HDDs), when in operation, are subjected to vibration due to out of balance of rotating components, inertial impacts under servo driving and dynamic interactions between components. These vibrations have been found to have significant effect upon the servo performance of drive systems. In order to improve the servo performance by reducing the effect of mechanical resonance in HDDs, this paper seeks to detect and suppress mechanical resonance of the head actuator using smart sensors and multi-sensing control techniques. In this regard, sensitive and miniature piezoelectric elements from the polymer-based piezoelectric materials PVDF (polyvinylindin fluoride) or the ceramic-based piezoelectric materials PZT 9lead zircornate titanate) are built in the head actuator for sensing the mechanical vibration. In the experiment, the multi-sensing signals by the piezoelectric sensors and the laser Doppler vibrometer (LDV) are transferred into a voice coil motor (VCM) through a feedback controller so as to actively suppress structural resonance. Numerical simulation and experimental results indicate that the piezoelectric sensors provide an effective way in monitoring the HDD actuator resonance, and the active vibration control strategy is capable of suppressing main mechanical resonance in the head actuator effectively.

  18. Clays causing adhesion with tool surfaces during mechanical tunnel driving (United States)

    Spagnoli, G.; Fernández-Steeger, T.; Stanjek, H.; Feinendegen, M.; Post, C.; Azzam, R.


    During mechanical excavation with a tunnel boring machine (TBM) it is possible that clays stick to the cutting wheel and to other metal parts. The resulting delays in the progress of construction work, cause great economic damage and often disputes between the public awarding authorities and executing companies. One of the most important factors to reduce successfully the clay adhesion is the use of special polymers and foams. But why does the clay stick to the metal parts? A first step is to recognize which kind of clay mineralogy shows serious adhesion problems. The mechanical properties of clay and clay suspensions are primarily determined by surface chemistry and charge distribution at the interfaces, which in turn affect the arrangement of the clay structure. As we know, clay is a multi-phase material and its behaviour depends on numerous parameters such as: clay mineralogy, clay fraction, silt fraction, sand fraction, water content, water saturation, Atterberg limits, sticky limit, activity, cation exchange capacity, degree of consolidation and stress state. It is therefore likely that adhesion of clay on steel is also affected by these clay parameters. Samples of clay formations, which caused problems during tunnel driving, will be analyzed in laboratory. Mineralogical analyses (diffractometry, etc.) will be carried out to observe which minerals are responsible for adherence problems. To manipulate the physical properties, batch tests will be carried out in order to eliminate or reduce the adhesion on tool surfaces through variation of the zeta potential. Second step is the performance of vane shear tests on clay samples. Different pore fluid (distilled water, pure NaCl solution, ethanol and methanol) will be used to study the variation of the mechanical behaviour of clay depending on the dielectric constant of the fluids. This project is funded by the German Federal Ministry of Education and Research (BMBF) and the DFG (German Research Foundation) in the

  19. Design Preliminaries for Direct Drive under Water Wind Turbine Generator

    DEFF Research Database (Denmark)

    Leban, Krisztina Monika; Ritchie, Ewen; Argeseanu, Alin


    This paper focuses on the preliminary design process of a 20 MW electric generator. The application calls for an offshore, vertical axis, direct drive wind turbine. Arguments for selecting the type of electric machine for the application are presented and discussed. Comparison criteria for deciding...... on a type of machine are listed. Additional constraints emerging from the direct drive, vertical axis concepts are considered. General rules and a preliminary algorithm are discussed for the machine selected to be most suitable for the imposed conditions....

  20. The thermohaline driving mechanism of oceanic jet streams (United States)

    Csanady, G. T.


    In a series of publications dealing with the circulation of the North Atlantic, Worthington (1959, 1972, 1976, 1977) has challenged the widely accepted notion that the Gulf Stream system is entirely wind-driven. He was able to demonstrate that the Gulf Stream over its most intense portion south of New England generally intensifies in winter. Worthington postulates that strong surface cooling in winter is the cause of Gulf Stream intensification, i.e., he believes that a thermal mechanism is partially responsible for driving the Gulf Stream. Worthington speaks of 'anticyclogenesis' and of a 'fresh charge of energy' which the Gulf Stream receives at the end of each (severe) winter. A pattern of thermoline circulation arising in the upper layers of the Stream could play a role similar to that of the Hadley circulation in the atmosphere, which derives the subtropical jet stream. The present investigation is concerned with the examination of such a possibility, taking into account the employment of a two-layer model.

  1. Wheelchair ergonomic hand drive mechanism use improves wrist mechanics associated with carpal tunnel syndrome


    Lisa A. Zukowski, MA; Jaimie A. Roper, MS; Orit Shechtman, PhD, OTR/L; Dana M. Otzel, PhD; Patty W. Hovis, MSESS; Mark D. Tillman, PhD


    Among conventional manual wheelchair (CMW) users, 49% to 63% experience carpal tunnel syndrome (CTS) that is likely induced by large forces transmitted through the wrist and extreme wrist orientations. The ergonomic hand drive mechanism (EHDM) tested in this study has been shown to utilize a more neutral wrist orientation. This study evaluates the use of an EHDM in terms of wrist orientations that may predispose individuals to CTS. Eleven adult full-time CMW users with spinal cord injury part...

  2. Working principle and structure characteristics analysis of the reactivity control drive mechanism

    International Nuclear Information System (INIS)

    Zhao Tianyu; Huang Zhiyong; Chen Feng; He Xuedong


    The startup, power regulation and safety shutdown of the nuclear reactor are operated by the reactivity control devices. Reactivity control drive mechanism is a key mechanical transmission component, which directly control the location of the neutron absorber in the core. Its working condition is complex, and its service life should be long., which requires high reliability. PWR as well as newly developed different type of reactors have different control devices drive mechanism. This paper mainly do analysis and comparison about the working environment, mechanical transmission principle, structure, performance, service life and other aspects of PWR, HTR control devices drive mechanism. In addition, this paper is also based on the working principles of reactive control devices drive mechanism, also consider the trends of its design and test verification by the international countries, and discussed the method and feasibility of improving and perfecting the structure and function of drive mechanism. (authors)


    Rupprecht, Laura E.; Smith, Tracy T.; Schassburger, Rachel L.; Buffalari, Deanne M.; Sved, Alan F.; Donny, Eric C.


    Cigarette smoking is the leading cause of preventable deaths worldwide and nicotine, the primary psychoactive constituent in tobacco, drives sustained use. The behavioral actions of nicotine are complex and extend well beyond the actions of the drug as a primary reinforcer. Stimuli that are consistently paired with nicotine can, through associative learning, take on reinforcing properties as conditioned stimuli. These conditioned stimuli can then impact the rate and probability of behavior and even function as conditioning reinforcers that maintain behavior in the absence of nicotine. Nicotine can also act as a conditioned stimulus, predicting the delivery of other reinforcers, which may allow nicotine to acquire value as a conditioned reinforcer. These associative effects, establishing non-nicotine stimuli as conditioned stimuli with discriminative stimulus and conditioned reinforcing properties as well as establishing nicotine as a conditioned stimulus, are predicted by basic conditioning principles. However, nicotine can also act non-associatively. Nicotine directly enhances the reinforcing efficacy of other reinforcing stimuli in the environment, an effect that does not require a temporal or predictive relationship between nicotine and either the stimulus or the behavior. Hence, the reinforcing actions of nicotine stem both from the primary reinforcing actions of the drug (and the subsequent associative learning effects) as well as the reinforcement enhancement action of nicotine which is non-associative in nature. Gaining a better understanding of how nicotine impacts behavior will allow for maximally effective tobacco control efforts aimed at reducing the harm associated with tobacco use by reducing and/or treating its addictiveness. PMID:25638333

  4. Effects of vibration on occupant driving performance under simulated driving conditions. (United States)

    Azizan, Amzar; Fard, M; Azari, Michael F; Jazar, Reza


    Although much research has been devoted to the characterization of the effects of whole-body vibration on seated occupants' comfort, drowsiness induced by vibration has received less attention to date. There are also little validated measurement methods available to quantify whole body vibration-induced drowsiness. Here, the effects of vibration on drowsiness were investigated. Twenty male volunteers were recruited for this experiment. Drowsiness was measured in a driving simulator, before and after 30-min exposure to vibration. Gaussian random vibration, with 1-15 Hz frequency bandwidth was used for excitation. During the driving session, volunteers were required to obey the speed limit of 100 kph and maintain a steady position on the left-hand lane. A deviation in lane position, steering angle variability, and speed deviation were recorded and analysed. Alternatively, volunteers rated their subjective drowsiness by Karolinska Sleepiness Scale (KSS) scores every 5-min. Following 30-min of exposure to vibration, a significant increase of lane deviation, steering angle variability, and KSS scores were observed in all volunteers suggesting the adverse effects of vibration on human alertness level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Nonlinear Dynamics Response of a Planar Mechanism with Two Driving Links and Prismatic Pair Clearance

    Directory of Open Access Journals (Sweden)

    Lijuan Wu


    Full Text Available The influence of the joint clearance on the dynamic response of a planar mechanism with two driving links and prismatic pair clearance is investigated under variable input speeds of the system. The simulation model was built with a nonlinear impact model. The normal contact force is characterized by Hertz contact theory and an energy dissipation term. A tangential friction force is involved in the simulation model based on Coulomb’s friction law. The simulation results indicate that the largest Lyapunov exponents are dependent on the clearance size and the input speed.

  6. Determination of The Mechanical Power in Belt Conveyor's Drive System in Industrial Conditions (United States)

    Król, Robert; Kaszuba, Damian; Kisielewski, Waldemar


    Mechanical power is a value which carries a significant amount of information on the properties of the operating status of the machine analysed. The value of mechanical power reflects the degree of load of the drive system and of the entire machine. It is essential to determine the actual efficiency of the drive system η [%], which is the key parameter of the energy efficiency of the drive system. In the case of a single drive of a belt conveyor the actual efficiency is expressed as the ratio of mechanical output power Pm [W] at the drive pulley shaft to active electrical power drawn by the motor Pe [W]. Furthermore, the knowledge about the mechanical power from all drives of the multiple driven belt conveyor allows for the analysis of load distribution between the drives. In case of belt conveyor, the mechanical power Pm [W] generated by the drive at the drive pulley's shaft is equal to its angular velocity ω [rad / s] multiplied by the torque T [Nm]. The measurement of angular velocity is relatively easy and can be realized with the use of a tachometer or can be determined on the basis of linear velocity of the conveyor belt during belt conveyor's steady state operation. Significantly more difficult to perform in industrial conditions is the measurement of the torque. This is due to the operational conditions of belt conveyors (e.g. dustiness, high humidity, high temperature) and tight assembly of the drive components without the possibility of their disassembly. It makes it difficult or even impossible to measure the torque using a number of the techniques available, causing an individual approach to each object of research. The paper proposes a measurement methodology allowing to determine the mechanical power in belt conveyors drives which are commonly used in underground and surface mining. The paper presents result of the research into mechanical power in belt conveyor's drive carried out in underground mine conditions.

  7. A thermodynamic approach to compare the performance of rhombic-drive and crank-drive mechanisms for a beta-type Stirling engine

    International Nuclear Information System (INIS)

    Aksoy, F.; Solmaz, H.; Karabulut, H.; Cinar, C.; Ozgoren, Y.O.; Polat, Seyfi


    Highlights: • Rhombic drive and crank drive mechanisms of a beta type engine were compared. • Nodal analysis method was used to compare engines having different drive mechanism. • Maximum specific power was 1410 W/L for rhombic-drive engine. • Heat transfer coefficient was determined as 475 W/m 2 K for rhombic-drive engine. • Rhombic drive provided higher efficiency because of its better kinematic behaviours. - Abstract: In this study, the effect of rhombic drive and crank drive mechanisms on the performance of a beta-type Stirling engine was investigated by nodal analysis. Kinematic and thermodynamic relations for both drive mechanisms were introduced and a Fortran code was written for the solution. Piston strokes, cylinder and displacer diameters, hot and cold end temperatures, regenerator volumes and heat transfer surface areas were taken equal for both engines with two different drive mechanisms. In the analysis, air was used as the working gas. Engine power and efficiency were compared for different charge pressure values, working gas mass values, heat transfer coefficients and hot end temperatures. Maximum specific engine power was 1410 W/L for the engine with rhombic drive mechanism and 1200 W/L for the engine with crank drive mechanism at 4 bars of charge pressure and 500 W/m 2 K heat transfer coefficient. Rhombic drive mechanism was relatively advantageous at low working gas mass values and high hot end temperatures. In comparison with the engine having rhombic drive mechanism, the relatively poor kinematic behaviour of the engine having crank drive mechanism caused lower engine efficiency and performance. Heat transfer coefficient was also predicted by using an experimental pressure trace.

  8. Roller-chain Drives Mechanics using Multibody Dynamics Tools

    DEFF Research Database (Denmark)

    Ambrosio, Jorge A. C.; Hansen, John Michael


    An integrated model for the simulation of roller-chain drives based on a multibody dynamics methodology is presented here in order to describeits complex dynamic behavior. The chain is modeled by masses lumped at the roller locations and connected by translational spring-damper elements in order...

  9. Metacognitive mechanisms underlying lucid dreaming. (United States)

    Filevich, Elisa; Dresler, Martin; Brick, Timothy R; Kühn, Simone


    Lucid dreaming is a state of awareness that one is dreaming, without leaving the sleep state. Dream reports show that self-reflection and volitional control are more pronounced in lucid compared with nonlucid dreams. Mostly on these grounds, lucid dreaming has been associated with metacognition. However, the link to lucid dreaming at the neural level has not yet been explored. We sought for relationships between the neural correlates of lucid dreaming and thought monitoring. Human participants completed a questionnaire assessing lucid dreaming ability, and underwent structural and functional MRI. We split participants based on their reported dream lucidity. Participants in the high-lucidity group showed greater gray matter volume in the frontopolar cortex (BA9/10) compared with those in the low-lucidity group. Further, differences in brain structure were mirrored by differences in brain function. The BA9/10 regions identified through structural analyses showed increases in blood oxygen level-dependent signal during thought monitoring in both groups, and more strongly in the high-lucidity group. Our results reveal shared neural systems between lucid dreaming and metacognitive function, in particular in the domain of thought monitoring. This finding contributes to our understanding of the mechanisms enabling higher-order consciousness in dreams. Copyright © 2015 the authors 0270-6474/15/351082-07$15.00/0.

  10. Trajectory control of an articulated robot with a parallel drive arm based on splines under tension (United States)

    Yi, Seung-Jong

    Today's industrial robots controlled by mini/micro computers are basically simple positioning devices. The positioning accuracy depends on the mathematical description of the robot configuration to place the end-effector at the desired position and orientation within the workspace and on following the specified path which requires the trajectory planner. In addition, the consideration of joint velocity, acceleration, and jerk trajectories are essential for trajectory planning of industrial robots to obtain smooth operation. The newly designed 6 DOF articulated robot with a parallel drive arm mechanism which permits the joint actuators to be placed in the same horizontal line to reduce the arm inertia and to increase load capacity and stiffness is selected. First, the forward kinematic and inverse kinematic problems are examined. The forward kinematic equations are successfully derived based on Denavit-Hartenberg notation with independent joint angle constraints. The inverse kinematic problems are solved using the arm-wrist partitioned approach with independent joint angle constraints. Three types of curve fitting methods used in trajectory planning, i.e., certain degree polynomial functions, cubic spline functions, and cubic spline functions under tension, are compared to select the best possible method to satisfy both smooth joint trajectories and positioning accuracy for a robot trajectory planner. Cubic spline functions under tension is the method selected for the new trajectory planner. This method is implemented for a 6 DOF articulated robot with a parallel drive arm mechanism to improve the smoothness of the joint trajectories and the positioning accuracy of the manipulator. Also, this approach is compared with existing trajectory planners, 4-3-4 polynomials and cubic spline functions, via circular arc motion simulations. The new trajectory planner using cubic spline functions under tension is implemented into the microprocessor based robot controller and

  11. Anomalous Scaling Behaviors in a Rice-Pile Model with Two Different Driving Mechanisms

    International Nuclear Information System (INIS)

    Zhang Duanming; Sun Hongzhang; Li Zhihua; Pan Guijun; Yu Boming; Li Rui; Yin Yanping


    The moment analysis is applied to perform large scale simulations of the rice-pile model. We find that this model shows different scaling behavior depending on the driving mechanism used. With the noisy driving, the rice-pile model violates the finite-size scaling hypothesis, whereas, with fixed driving, it shows well defined avalanche exponents and displays good finite size scaling behavior for the avalanche size and time duration distributions.

  12. Seismic appraisal test of control rod drive mechanism of China experiment fast reactor

    International Nuclear Information System (INIS)

    Song Qing; Yang Hongyi; Jing Yueqing; Wen Jing; Liu Guijuan; Sun Lei


    The structure of the control rod drive mechanism in pool type sodium-cooled fast reactor is the characterized by long, thin, and geometric nonlinearity, and the seismic load is multiple activation. The anti-seismic evaluation is always paid great attention by the countries developing the technology worldwide. This article introduces the seismic appraisal test of the control rod drive mechanism of China Experimental Fast Reactor (CEFR) performed on a seismic platform which is vertical shaft style and multiple activation. The result of the test shows the structural integrity and the function of the control rod drive mechanism could meet the design requirements of the earthquake intensity. (authors)

  13. 14 CFR 29.923 - Rotor drive system and control mechanism tests. (United States)


    ..., assuming that speed and torque limiting devices, if any, function properly. (i) Endurance tests; rotor....923 Rotor drive system and control mechanism tests. (a) Endurance tests, general. Each rotor drive... rotorcraft. (3) The test torque and rotational speed must be— (i) Determined by the powerplant limitations...

  14. Standard guide for mechanical drive systems for remote operation in hot cell facilities

    CERN Document Server

    American Society for Testing and Materials. Philadelphia


    1.1 Intent: 1.1.1 The intent of this standard is to provide general guidelines for the design, selection, quality assurance, installation, operation, and maintenance of mechanical drive systems used in remote hot cell environments. The term mechanical drive systems used herein, encompasses all individual components used for imparting motion to equipment systems, subsystems, assemblies, and other components. It also includes complete positioning systems and individual units that provide motive power and any position indicators necessary to monitor the motion. 1.2 Applicability: 1.2.1 This standard is intended to be applicable to equipment used under one or more of the following conditions: The materials handled or processed constitute a significant radiation hazard to man or to the environment. The equipment will generally be used over a long-term life cycle (for example, in excess of two years), but equipment intended for use over a shorter life cycle is not excluded. The ...

  15. Cellular and Molecular Mechanisms of REM Sleep Homeostatic Drive: A Plausible Component for Behavioral Plasticity

    Directory of Open Access Journals (Sweden)

    Subimal Datta


    Full Text Available Homeostatic regulation of REM sleep drive, as measured by an increase in the number of REM sleep transitions, plays a key role in neuronal and behavioral plasticity (i.e., learning and memory. Deficits in REM sleep homeostatic drive (RSHD are implicated in the development of many neuropsychiatric disorders. Yet, the cellular and molecular mechanisms underlying this RSHD remain to be incomplete. To further our understanding of this mechanism, the current study was performed on freely moving rats to test a hypothesis that a positive interaction between extracellular-signal-regulated kinase 1 and 2 (ERK1/2 activity and brain-derived neurotrophic factor (BDNF signaling in the pedunculopontine tegmentum (PPT is a causal factor for the development of RSHD. Behavioral results of this study demonstrated that a short period (<90 min of selective REM sleep restriction (RSR exhibited a strong RSHD. Molecular analyses revealed that this increased RSHD increased phosphorylation and activation of ERK1/2 and BDNF expression in the PPT. Additionally, pharmacological results demonstrated that the application of the ERK1/2 activation inhibitor U0126 into the PPT prevented RSHD and suppressed BDNF expression in the PPT. These results, for the first time, suggest that the positive interaction between ERK1/2 and BDNF in the PPT is a casual factor for the development of RSHD. These findings provide a novel direction in understanding how RSHD-associated specific molecular changes can facilitate neuronal plasticity and memory processing.


    Directory of Open Access Journals (Sweden)

    P. Kishkevich


    Full Text Available Object of research – hydraulic drive of tilting platform mechanism of dump truck. We pro-pose a dynamic model of the hydraulic system. The model takes into account the cyclic operation (lifting, lowering the platform.



    P. Kishkevich; A. Safonau; I. Selivonchik; P. Bartosh


    Object of research – hydraulic drive of tilting platform mechanism of dump truck. We pro-pose a dynamic model of the hydraulic system. The model takes into account the cyclic operation (lifting, lowering the platform).

  18. Spin dynamics and spin-dependent recombination of a polaron pair under a strong ac drive (United States)

    Malla, Rajesh K.; Raikh, M. E.


    We study theoretically the recombination within a pair of two polarons in magnetic field subject to a strong linearly polarized ac drive. Strong drive implies that the Zeeman frequencies of the pair partners are much smaller than the Rabi frequency, so that the rotating wave approximation does not apply. What makes the recombination dynamics nontrivial is that the partners recombine only when they form a singlet S . By admixing singlet to triplets, the drive induces the triplet recombination as well. We calculate the effective decay rate of all four spin modes. Our main finding is that, under the strong drive, the major contribution to the decay of the modes comes from short time intervals when the driving field passes through zero. When the recombination time in the absence of drive is short, fast recombination from S leads to anomalously slow recombination from the other spin states of the pair. We show that, with strong drive, this recombination becomes even slower. The corresponding decay rate falls off as a power law with the amplitude of the drive.

  19. Development of an innovative reflector drive mechanism using magnetic repulsion force for 4S reactor

    International Nuclear Information System (INIS)

    Tsuji, K.; Watanabe, M.; Inagaki, H.; Nishikawa, A.; Takahashi, H.; Wakamatsu, M.; Matsumiya, H.; Nishiguchi, Y.


    A small sized fast reactor 4S: (Super Safe Small and Simple) which has a core of 10 - 30 years life time is controlled by reflectors. The reflector is required to be risen at very low speed to make up for the reactivity swing during operation. This report shows the development of an innovative reflector drive mechanism using magnetic repulsion force that can move at a several micrometer per one step. This drive mechanism has a passive shut down capability, and can eliminate reflector drive line. (author)

  20. Deciphering the Cognitive and Neural Mechanisms Underlying ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Deciphering the Cognitive and Neural Mechanisms Underlying Auditory Learning. This project seeks to understand the brain mechanisms necessary for people to learn to perceive sounds. Neural circuits and learning. The research team will test people with and without musical training to evaluate their capacity to learn ...

  1. Mortality and pulmonary mechanics in relation to respiratory system and transpulmonary driving pressures in ARDS. (United States)

    Baedorf Kassis, Elias; Loring, Stephen H; Talmor, Daniel


    The driving pressure of the respiratory system has been shown to strongly correlate with mortality in a recent large retrospective ARDSnet study. Respiratory system driving pressure [plateau pressure-positive end-expiratory pressure (PEEP)] does not account for variable chest wall compliance. Esophageal manometry can be utilized to determine transpulmonary driving pressure. We have examined the relationships between respiratory system and transpulmonary driving pressure, pulmonary mechanics and 28-day mortality. Fifty-six patients from a previous study were analyzed to compare PEEP titration to maintain positive transpulmonary end-expiratory pressure to a control protocol. Respiratory system and transpulmonary driving pressures and pulmonary mechanics were examined at baseline, 5 min and 24 h. Analysis of variance and linear regression were used to compare 28 day survivors versus non-survivors and the intervention group versus the control group, respectively. At baseline and 5 min there was no difference in respiratory system or transpulmonary driving pressure. By 24 h, survivors had lower respiratory system and transpulmonary driving pressures. Similarly, by 24 h the intervention group had lower transpulmonary driving pressure. This decrease was explained by improved elastance and increased PEEP. The results suggest that utilizing PEEP titration to target positive transpulmonary pressure via esophageal manometry causes both improved elastance and driving pressures. Treatment strategies leading to decreased respiratory system and transpulmonary driving pressure at 24 h may be associated with improved 28 day mortality. Studies to clarify the role of respiratory system and transpulmonary driving pressures as a prognosticator and bedside ventilator target are warranted.

  2. An NMDA Receptor-Dependent Mechanism Underlies Inhibitory Synapse Development

    Directory of Open Access Journals (Sweden)

    Xinglong Gu


    Full Text Available In the mammalian brain, GABAergic synaptic transmission provides inhibitory balance to glutamatergic excitatory drive and controls neuronal output. The molecular mechanisms underlying the development of GABAergic synapses remain largely unclear. Here, we report that NMDA-type ionotropic glutamate receptors (NMDARs in individual immature neurons are the upstream signaling molecules essential for GABAergic synapse development, which requires signaling via Calmodulin binding motif in the C0 domain of the NMDAR GluN1 subunit. Interestingly, in neurons lacking NMDARs, whereas GABAergic synaptic transmission is strongly reduced, the tonic inhibition mediated by extrasynaptic GABAA receptors is increased, suggesting a compensatory mechanism for the lack of synaptic inhibition. These results demonstrate a crucial role for NMDARs in specifying the development of inhibitory synapses, and suggest an important mechanism for controlling the establishment of the balance between synaptic excitation and inhibition in the developing brain.

  3. Control rod drive mechanism with shock absorber for nuclear reactor

    International Nuclear Information System (INIS)

    Chevereau, G.


    The mechanism usable in a PWR has a shaft carrying the bar vertically displaceable in the reactor internals and a dash pot with a hydraulic cylinder and a piston. The cylinder has a large diameter perforated upper section to the cylinder, a small diameter lower section, a piston traversed by the control rod sized to fit into the upper section and forced downwards when the control descends. The shock absorbing chamber is defined between the piston and the upper section [fr

  4. Immunogenetic mechanisms driving norovirus GII.4 antigenic variation.

    Directory of Open Access Journals (Sweden)

    Lisa C Lindesmith

    epitopes and consequently, antibody-driven receptor switching; thus, protective herd immunity is a driving force in norovirus molecular evolution.

  5. Mass loss as a driving mechanism of tectonics of Enceladus (United States)

    Czechowski, Leszek


    Summary We suggest that the mass loss from South Polar Terrain (SPT) is the main driving force of the following tectonic processes on Enceladus: subsidence of SPT, flow in the mantle and motion of plates. 1. Introduction Enceladus, a satellite of Saturn, is the smallest celestial body in the Solar System where volcanic activity is observed. Every second, the mass of ~200 kg is ejected into space from the South Polar Terrain (SPT) - [1, 2, 3]. The loss of matter from the body's interior should lead to global compression of the crust. Typical effects of compression are: thrust faults, folding and subduction. However, such forms are not dominant on Enceladus. We propose here special tectonic model that could explain this paradox. 2. Subsidence of SPT and tectonics The volatiles escape from the hot region through the fractures forming plumes in the space. The loss of the volatiles results in a void, an instability, and motion of solid matter into the hot region to fill the void. The motion includes : Subsidence of the 'lithosphere' of SPT. Flow of the matter in the mantle. Motion of plates adjacent to SPT towards the active region. If emerging void is being filled by the subsidence of SPT only, then the velocity of subsidence is ~0.05 mm-yr-1. However, all three types of motion are probably important, so the subsidence is slower but mantle flow and plates' motion also play a role in filling the void. Note that in our model the reduction of the crust area is not a result of compression but it is a result of the plate sinking. Therefore the compressional surface features do not have to be dominant. 3. Models of subsidence The numerical model of suggested process of subsidence is developed. It is based on the typical set of equation: Navier-Stokes equation for incompressible viscous liquid, equation of continuity and equation of heat conduction. The Newtonian and non-Newtonian rheologies are used. The preliminary results of the model indicate that the subsidence rate of

  6. Design of a Gear-Shifting Control Mechanism for 8-Speed Bicycle Drive Hub

    Directory of Open Access Journals (Sweden)

    Li-An Chen


    Full Text Available The multi-speed drive hub stored on the rear wheel of a bicycle is an important speed-changing device to adjust the pedaling force and driving speed. This paper proposes a feasible gear-shifting control mechanism of an 8-speed distributed-flow-type transmission mechanism. A transmission mechanism consisting of two parallel-connected transmission units and one differential unit is introduced first. Then, based on the clutching sequence table, the embodiment design of a gear-shifting control mechanism is presented to selectively control the engagement of pawl-and-ratchet clutches and slot-with-block clutches as well as govern the power-flow path. The power-flow path at each speed-stage of this 8-speed drive hub is analyzed to verify the feasibility of the proposed design.

  7. Coupling device of the control rod and of the drive mechanism

    International Nuclear Information System (INIS)

    Savary, F.


    The invention proposes a coupling device removable in which the connection between the upper head of the control rod and the drive mechanism is a real rigid fixing, in the mechanical sense of the term, suppressing longitudinal play and allowing to restrict the momenta occurring when locating the control rods [fr

  8. A Possible Mechanism for Driving Oscillations in Hot Giant Planets

    Energy Technology Data Exchange (ETDEWEB)

    Dederick, Ethan; Jackiewicz, Jason, E-mail:, E-mail: [New Mexico State University, Las Cruces, NM (United States)


    The κ -mechanism has been successful in explaining the origin of observed oscillations of many types of “classical” pulsating variable stars. Here we examine quantitatively if that same process is prominent enough to excite the potential global oscillations within Jupiter, whose energy flux is powered by gravitational collapse rather than nuclear fusion. Additionally, we examine whether external radiative forcing, i.e., starlight, could be a driver for global oscillations in hot Jupiters orbiting various main-sequence stars at defined orbital semimajor axes. Using planetary models generated by the Modules for Experiments in Stellar Astrophysics and nonadiabatic oscillation calculations, we confirm that Jovian oscillations cannot be driven via the κ -mechanism. However, we do show that, in hot Jupiters, oscillations can likely be excited via the suppression of radiative cooling due to external radiation given a large enough stellar flux and the absence of a significant oscillatory damping zone within the planet. This trend does not seem to be dependent on the planetary mass. In future observations, we can thus expect that such planets may be pulsating, thereby giving greater insight into the internal structure of these bodies.

  9. Mechanical buckling of artery under pulsatile pressure. (United States)

    Liu, Qin; Han, Hai-Chao


    Tortuosity that often occurs in carotid and other arteries has been shown to be associated with high blood pressure, atherosclerosis, and other diseases. However the mechanisms of tortuosity development are not clear. Our previous studies have suggested that arteries buckling could be a possible mechanism for the initiation of tortuous shape but artery buckling under pulsatile flow condition has not been fully studied. The objectives of this study were to determine the artery critical buckling pressure under pulsatile pressure both experimentally and theoretically, and to elucidate the relationship of critical pressures under pulsatile flow, steady flow, and static pressure. We first tested the buckling pressures of porcine carotid arteries under these loading conditions, and then proposed a nonlinear elastic artery model to examine the buckling pressures under pulsatile pressure conditions. Experimental results showed that under pulsatile pressure arteries buckled when the peak pressures were approximately equal to the critical buckling pressures under static pressure. This was also confirmed by model simulations at low pulse frequencies. Our results provide an effective tool to predict artery buckling pressure under pulsatile pressure. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Development of linear pulse motor type control element drive mechanism for smart

    International Nuclear Information System (INIS)

    Je-Yong, Yu; Jong-in, Kim; Ji-ho, Kim; Hyung, Huh; Moon-Hee, Chang


    The system-integrated modular advanced reactor (SMART) currently under development at the Korea Atomic Energy Research Institute is being designed with soluble boron free operation and the use of nuclear heating for reactor start-up. These design features require a Control Element Drive Mechanism(CEDM) for SMART to have fine-step movement capability as well as high reliability for fine reactivity control. In this paper, the design characteristics of a new concept CEDM driven by a Linear Pulse Motor (LPM) which meets the design requirements of the integral reactor SMART are introduced. The primary dimensions of the linear pulse motor are determined by electro-magnetic analysis and the results are also presented. In parallel with the electro-magnetic analysis, the conceptual design of the CEDM is visualized and checked for interferences among parts by assembling three dimensional (3D) models on computer. A prototype of the LPM with double air-gaps for the CEDM sub-assemblies to lift 100 kg is designed, analysed, manufactured and tested to confirm the validity of the CEDM design concept. A converter and test facility are manufactured to verify the dynamic performance of the LPM. The mover of the LPM is welded with ferromagnetic material and non-ferromagnetic material to get the magnetic flux path between the inner stator and outer stator. The thrust forces of LPM predicted by the analytic model have shown good agreement with experimental results from the prototype LPM. It is found that the LPM type CEDM has high force density and a simple drive mechanism to reduce volume and satisfy reactor operating circumstances with high pressure and temperature. (authors)

  11. Linear pulse motor type control element drive mechanism for the integral reactor

    International Nuclear Information System (INIS)

    Yu, J. Y.; Choi, S.; Kim, J. H.; Huh, H.; Park, K. B.


    The integral reactor SMART currently under development at Korea Atomic Energy Research Institute is designed with soluble boron free operation and use of nuclear heating for reactor startup. These design features require the Control Element Drive Mechanism (CEDM) for SMART to have fine-step movement capability as well as high reliability for the fine reactivity control. In this paper, design characteristics of a new concept CEDM driven by the Linear Pulse Motor (LPM) which meets the design requirements of the integral reactor SMART are introduced. The primary dimensions of the linear pulse motor are determined by the electro-magnetic analysis and the results are also presented. In parallel with the electro-magnetic analysis, the conceptual design of the CEDM is visualized and checked for interferences among parts by assembling three dimensional (3D) models on the computer. Prototype of LPM with double air-gaps for the CEDM sub-assemblies to lift 100 kg is designed, analysed, manufactured and tested to confirm the validity of the CEDM design concept. A converter and a test facility are manufactured to verify the dynamic performance of the LPM. The mover of the LPM is welded with ferromagnetic material and non-ferromagnetic material to get the magnetic flux path between inner stator and outer stator. The thrust forces of LPM predicted by analytic model have shown good agreement with experimental results from the prototype LPM. It is found that the LPM type CEDM has high force density and simple drive mechanism to reduce volume and satisfy the reactor operating circumstances with high pressure and temperature

  12. Use of a driving simulator to assess performance under adverse weather conditions in adults with albinism. (United States)

    Hofman, Gwen M; Summers, C Gail; Ward, Nicholas; Bhargava, Esha; Rakauskas, Michael E; Holleschau, Ann M


    Participants with albinism have reduced vision and nystagmus with reduced foveation times. This prospective study evaluated driving in 12 participants with albinism and 12 matched controls. Participants drove a vehicle simulator through a virtual rural course in sunny and foggy conditions. Under sunny conditions, participants with albinism showed a narrower preferred minimum safety boundary during car-following tasks than did controls, but there was no difference under foggy conditions. Their driving did not differ significantly from that of controls when approaching a stop sign or when choosing gap size between oncoming vehicles when crossing an intersection. However, when compared to control drivers, participants with albinism had a decreased minimum safety boundary for car-following that should be included in counseling regarding driving safety.

  13. Amorphization of ice under mechanical stresses (United States)

    Bordonskii, G. S.; Krylov, S. D.


    The dielectric parameters of freshly produced freshwater ice in the microwave range are investigated. It is established that this kind of ice contains a noticeable amount of amorphous ice. Its production is associated with plastic deformation under mechanical stresses. An assessment of the dielectric-permeability change caused by amorphous ice in the state of a slowly flowing medium is given.


    International Nuclear Information System (INIS)

    Teyssier, Romain; Chapon, Damien; Bournaud, Frederic


    We present hydrodynamic simulations of a major merger of disk galaxies, and study the interstellar medium (ISM) dynamics and star formation (SF) properties. High spatial and mass resolutions of 12 pc and 4 x 10 4 M sun allow us to resolve cold and turbulent gas clouds embedded in a warmer diffuse phase. We compare lower-resolution models, where the multiphase ISM is not resolved and is modeled as a relatively homogeneous and stable medium. While merger-driven bursts of SF are generally attributed to large-scale gas inflows toward the nuclear regions, we show that once a realistic ISM is resolved, the dominant process is actually gas fragmentation into massive and dense clouds and rapid SF therein. As a consequence, SF is more efficient by a factor of up to ∼10 and is also somewhat more extended, while the gas density probability distribution function rapidly evolves toward very high densities. We thus propose that the actual mechanism of starburst triggering in galaxy collisions can only be captured at high spatial resolution and when the cooling of gas is modeled down to less than 10 3 K. Not only does our model reproduce the properties of the Antennae system, but it also explains the 'starburst mode' recently revealed in high-redshift mergers compared to quiescent disks.

  15. Qualification tests for PWR control element drive mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Yong; Jin, Choon Eon; Choi Suhn [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)


    It is necessary to perform the qualification test for the magnetic jack type CEDM to show the design compatibility because the CEDM is composed of many mechanical and electrical components complicatedly. ABB-CE performed various qualification tests during the development of the System80 CEDM to which Korea Standard Nuclear Plant (KSNP) CEDM referred. The qualification test for the CEDM is classified into the performance test and the dynamic test. The performance test is to verify operability of the CEDM, and the dynamic test is to find dynamic characteristics and to verify the structural integrity if the CEDM for the seismic accidents. Described in this report are the test requirements, the test facilities and the test methods for the performance and the dynamic qualification tests of the PWR magnetic jack type CEDM. The impacts of the design changes in the Korea Next Generation Reactor (KNGR) on the KSNP CEDM were analyzed to present the necessity for the tests. This report also proposes the facilities to perform the tests in KAERI including reasonable schedule for the tests. Attached to this report is the summary of qualification tests of System 80 CEDM performed by ABB-CE. 20 figs., 16 tabs., 21 refs. (Author) .new.

  16. Gas Bubble Dynamics under Mechanical Vibrations (United States)

    Mohagheghian, Shahrouz; Elbing, Brian


    The scientific community has a limited understanding of the bubble dynamics under mechanical oscillations due to over simplification of Navier-Stockes equation by neglecting the shear stress tensor and not accounting for body forces when calculating the acoustic radiation force. The current work experimental investigates bubble dynamics under mechanical vibration and resulting acoustic field by measuring the bubble size and velocity using high-speed imaging. The experimental setup consists of a custom-designed shaker table, cast acrylic bubble column, compressed air injection manifold and an optical imaging system. The mechanical vibrations resulted in accelerations between 0.25 to 10 times gravitational acceleration corresponding to frequency and amplitude range of 8 - 22Hz and 1 - 10mm respectively. Throughout testing the void fraction was limited to definition of Bjerknes force in combination with Rayleigh-Plesset equation. Physical behavior of the system was capture and classified. Bubble size, velocity as well as size and spatial distribution will be presented.

  17. Unique and interactive effects of impulsivity facets on reckless driving and driving under the influence in a high-risk young adult sample. (United States)

    Luk, Jeremy W; Trim, Ryan S; Karyadi, Kenny A; Curry, Inga; Hopfer, Christian J; Hewitt, John K; Stallings, Michael C; Brown, Sandra A; Wall, Tamara L


    Risky driving behaviors are disproportionately high among young adults and impulsivity is a robust risk factor. Recent conceptualizations have proposed multidimensional facets of impulsivity comprised of negative urgency, premeditation, perseverance, sensation seeking, and positive urgency (UPPS-P model). Prior studies have found these facets are associated with risky driving behaviors in college student samples, but no prior studies have examined these facets in clinical samples. This study examined the unique and interactive effects of UPPS-P impulsivity facets on past-year risky driving behaviors in a sample of high-risk young adults (ages 18-30 years) with a history of substance use and antisocial behavior and their siblings ( n =1,100). Multilevel Poisson regressions indicated that sensation seeking and negative urgency were uniquely and positively associated with both frequency of past-year reckless driving and driving under the influence. Moreover, lack of premeditation was uniquely and positively associated with reckless driving, whereas lack of perseverance was uniquely and positively associated with driving under the influence. Furthermore, lack of premeditation moderated and strengthened the positive association between sensation seeking and driving under the influence. These study findings suggest that assessing multiple facets of trait impulsivity could facilitate targeted prevention efforts among young adults with a history of externalizing psychopathology.

  18. Control rod driving mechanism of reactor, control device and operation method therefor

    International Nuclear Information System (INIS)

    Ariyoshi, Masahiko; Matsumoto, Fujio; Matsumoto, Koji; Kinugasa, Kunihiko; Nara, Yoshihiko; Otama, Kiyomaro; Mikami, Takao


    The present invention provides a device for and a method of directly driving control rods of an FBR type reactor linearly by a cylinder type linear motor while having a driving shaft as an electric conductor. Namely, a linear induction motor drives a driving shaft connected with a control rod and vertically moving the control rod by electromagnetic force as an electric conductor. The position of the control rod is detected by a position detector. The driving shaft is hung by a wire by way of an electromagnet which is attachably/detachably held. With such a constitution, the driving shaft connected with the control rod can be vertically moved linearly, stopped or kept. Since they can be driven smoothly at a wide range speed, the responsibility and reliability of the reactor operation can be improved. In addition, since responsibility of the control rod operation is high, scram can be conducted by the linear motor. Since the driving mechanism can be simplified, maintenance and inspection operation can be mitigated. (I.S.)

  19. Conceptual Design on Primary Control Rod Drive Mechanism of a Prototype Gen-IV SFR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Han; Koo, Gyeong Hoi [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    This paper describes the key concept of the drive mechanism, and suggests a required motor power and reducer gears to meet the functional design requirements, and a seismic response analysis of CRDM housing is performed to check its structural integrity. An AC servo motor is selected as a CRA driving power because it uses permanent magnets and is brushless type while DC motor needs a brush and a coil rotates. The control shim motor size is constrained by a housing diameter of 250mm. The driving system has several design requirements. To calculate the motor power, the drive shaft torque is needed. One part of the drive shaft has a lead screw, driving by a ball-nut. The ball screw driver torque (Tr) is calculated by some equations as follow; A servo motor with a nominal power of 100W, a nominal torque of 0.32 N-m (max. 0.48N-m) is selected considering a safety margin. Its diameter is about 50mm. The fast drive-in motor needs a strong power to insert enforcedly the stuck CRA into core within a required time. The motor sizes are calculated by the same procedure. The diameters are in the range of 80mm to 110mm by the insertion time (10 ∼ 24 seconds). The prototype Gen-IV SFR (sodium-cooled Fast Reactor) is of 150MWe capacity. The reactor has six primary control rod assemblies(CRAs). The primary control rod is used for power control, burn-up compensation and reactor shutdown in response to demands from the plant control or protection systems. The control rod drive mechanism (CRDM) consists of the drive motor assembly, the driveline, and its housing. The driveline consists of three concentric members of a drive shaft, a tension tube, and a position indicator rod, and it connects the drive motor assembly to the CRA. Main issue is that these many driving parts shall be enclosed within a limited housing diameter because the available pitch of CRDMs is limited by 300mm.

  20. Finite element analysis of ROPS for mechanical driving dump truck cab (United States)

    Wang, Yong; Xie, Heping; Fang, Yuanbin; Feng, Handui; Dong, Lei


    For roll-over protective structures (ROPS) in a mechanical driving dump truck cab, it simulates the lateral, vertical and longitudinal loads of ROPS. It obtains stress and deformation of the cab that occurs to roll. For the relative weak position of ROPS in the cab, the structure of the cab is improved and verified according to the ISO 3164: 1995. The results show that the established finite element model can effectively predict the deformation and stress distribution of ROPS, and optimize the weak structure of the cab, which has important guiding significance for structural design of the cab and ROPS optimization of the mechanical driving dump truck cab.

  1. Driving under the influence behaviours among high school students who mix alcohol with energy drinks. (United States)

    Wilson, Maria N; Cumming, Tammy; Burkhalter, Robin; Langille, Donald B; Ogilvie, Rachel; Asbridge, Mark


    Alcohol and energy drinks are commonly used substances by youth in Canada, and are often mixed (AmED). While several studies have shown that AmED can have dangerous effects, less well understood is how AmED is associated with driving under the influence of either alcohol or drugs. This study sought to determine whether youth who use AmED were more likely to engage in driving, or being a passenger of a driver, under the influence of alcohol or cannabis compared to youth who use either alcohol or energy drinks alone. This study used data from grade 10-12 students who took part in the 2014/2015 Canadian Student Tobacco, Alcohol and Drugs Survey (N=17,450). The association of past-year AmED use with past-30day: driving under the influence of alcohol or cannabis, and riding with an alcohol- or cannabis-influenced driver, was assessed using logistic regression. One in four youth had consumed AmED in the previous 12months. AmED users were more likely to engage in all risk behaviours except riding with a drinking driver, relative to youth who only consumed alcohol. No association was observed for youth who consumed alcohol and energy drinks on separate occasions. Youth who use AmED demonstrate a higher risk profile for driving under the influence of alcohol or cannabis, than youth who use alcohol alone. Future research should explore the biopsychosocial pathways that may explain why using energy drinks enhances the already heightened risk posed by alcohol on other health-related behaviours such as driving under the influence. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Assessment of wind turbine drive-train fatigue loads under torsional excitation

    DEFF Research Database (Denmark)

    Gallego Calderon, Juan Felipe; Natarajan, Anand


    This paper establishes validated models that can accurately account for the dynamics of the gearbox, along with the external dynamics that excite the system. A drive-train model implementation is presented where the gearbox and generator are coupled to the wind turbine structure in a dynamic...... allows the computation of the bearing and gear-mesh loads. The proposed models are validated by experiments from a 750 kW test-rig. The drive-train model is configured for a 5 MW power capacity and coupled to the corresponding wind turbine and load simulations are carried out under turbulent wind...

  3. Transcriptomic profile reveals gender-specific molecular mechanisms driving multiple sclerosis progression.

    Directory of Open Access Journals (Sweden)

    Haritz Irizar

    Full Text Available BACKGROUND: Although the most common clinical presentation of multiple sclerosis (MS is the so called Relapsing-Remitting MS (RRMS, the molecular mechanisms responsible for its progression are currently unknown. To tackle this problem, a whole-genome gene expression analysis has been performed on RRMS patients. RESULTS: The comparative analysis of the Affymetrix Human Gene 1.0 ST microarray data from peripheral blood leucocytes obtained from 25 patients in remission and relapse and 25 healthy subjects has revealed 174 genes altered in both remission and relapse, a high proportion of them showing what we have called "mirror pattern": they are upregulated in remission and downregulated in relapse or vice versa. The coexpression analysis of these genes has shown that they are organized in three female-specific and one male-specific modules. CONCLUSIONS: The interpretation of the modules of the coexpression network suggests that Epstein-Barr virus (EBV reactivation of B cells happens in MS relapses; however, qPCR expression data of the viral genes supports that hypothesis only in female patients, reinforcing the notion that different molecular processes drive disease progression in females and males. Besides, we propose that the "primed" state showed by neutrophils in women is an endogenous control mechanism triggered to keep EBV reactivation under control through vitamin B12 physiology. Finally, our results also point towards an important sex-specific role of non-coding RNA in MS.

  4. DNA under Force: Mechanics, Electrostatics, and Hydration

    Directory of Open Access Journals (Sweden)

    Jingqiang Li


    Full Text Available Quantifying the basic intra- and inter-molecular forces of DNA has helped us to better understand and further predict the behavior of DNA. Single molecule technique elucidates the mechanics of DNA under applied external forces, sometimes under extreme forces. On the other hand, ensemble studies of DNA molecular force allow us to extend our understanding of DNA molecules under other forces such as electrostatic and hydration forces. Using a variety of techniques, we can have a comprehensive understanding of DNA molecular forces, which is crucial in unraveling the complex DNA functions in living cells as well as in designing a system that utilizes the unique properties of DNA in nanotechnology.

  5. On current drive by Ohkawa mechanism of electron cyclotron wave in large inverse aspect ratio tokamaks (United States)

    Zheng, Pingwei; Gong, Xueyu; Lu, Xingqiang; He, Lihua; Cao, Jingjia; Huang, Qianhong; Deng, Sheng


    A localized and efficient current drive method in the outer-half region of the tokamak with a large inverse aspect ratio is proposed via the Ohkawa mechanism of electron cyclotron (EC) waves. Further off-axis Ohkawa current drive (OKCD) via EC waves was investigated in high electron beta β e HL-2M-like tokamaks with a large inverse aspect ratio, and in EAST-like tokamaks with a low inverse aspect ratio. OKCD can be driven efficiently, and the driven current profile is spatially localized in the radial region, ranging from 0.62 to 0.85, where the large fraction of trapped electrons provides an excellent advantage for OKCD. Furthermore, the current drive efficiency increases with an increase in minor radius, and then drops when the minor radius beyond a certain value. The effect of trapped electrons greatly enhances the current driving capability of the OKCD mechanism. The highest current drive efficiency can reach 0.183 by adjusting the steering mirror to change the toroidal and poloidal incident angle, and the total driven current by OKCD can reach 20–32 kA MW‑1 in HL-2M-like tokamaks. The current drive is less efficient for the EAST-like scenario due to the lower inverse aspect ratio. The results show that OKCD may be a valuable alternative current drive method in large inverse aspect ratio tokamaks, and the potential capabilities of OKCD can be used to suppress some important magnetohydrodynamics instabilities in the far off-axis region.

  6. Mechanisms driving carbon allocation in tropical rainforests: allometric constraints and environmental responses (United States)

    Hofhansl, Florian; Schnecker, Jörg; Singer, Gabriel; Wanek, Wolfgang


    Tropical forest ecosystems play a major role in global water and carbon cycles. However, mechanisms of C allocation in tropical forests and their response to environmental variation are largely unresolved as, due to the scarcity of data, they are underrepresented in global syntheses of forest C allocation. Allocation of gross primary production to wood production exerts a key control on forest C residence time and biomass C turnover, and therefore is of special interest for terrestrial ecosystem research and earth system science. Here, we synthesize pantropical data from 105 old-growth rainforests to investigate relationships between climate (mean annual precipitation, mean annual temperature, dry season length and cloud cover), soil nutrient relations (soil N:P) and the partitioning of aboveground net primary production (ANPP) to wood production (WPart) using structural equation modelling. Our results show a strong increase of WPart with ANPP, pointing towards allometric scaling controls on WPart, with increasing light competition in more productive forests triggering greater ANPP allocation to wood production. ANPP itself was positively affected by mean annual temperature and soil N:P. Beyond these allometric controls on WPart we found direct environmental controls. WPart increased with dry season length in tropical montane rainforests and with mean annual precipitation in lowland tropical rainforests. We discuss different trade-offs between plant traits, such as community-wide changes along the wood economics spectrum, the leaf economics spectrum and the plant resource economics spectrum, as underlying mechanisms for direct climatic controls on WPart. We thereby provide new insights into mechanisms driving carbon allocation to WPart in tropical rainforests and show that low and high productive tropical rainforests may respond differently to projected global changes.

  7. Production bias: A proposed modification of the driving force for void swelling under cascade damage conditions

    International Nuclear Information System (INIS)

    Woo, C.H.; Garner, F.A.


    A new concept of point-defect production as the main driving force for void swelling under cascade damage conditions is proposed. This concept takes into account the recombination and formation of immobile clusters and loops of vacancies and interstitials in the cascade region. The life times of the clusters and loops due to desolution are strong functions of the temperature, as well as their vacancy and interstitial nature. The resulting biased production of free point defects from the internal sources is shown to be a strong driving force for void swelling. The characteristics of void swelling due to production bias are described and compared with experimental results. We conclude that the production bias concept provides a good description of void swelling under cascade damage conditions

  8. Impact of alcohol checks and social norm on driving under the influence of alcohol (DUI). (United States)

    Meesmann, Uta; Martensen, Heike; Dupont, Emmanuelle


    This study investigated the influence of alcohol checks and social norm on self-reported driving under the influence of alcohol above the legal limit (DUI). The analysis was based on the responses of 12,507 car drivers from 19 European countries to the SARTRE-4 survey (2010). The data were analysed by means of a multiple logistic regression-model on two levels: (1) individual and (2) national level. On the individual level the results revealed that driving under the influence (DUI) was positively associated with male gender, young age (17-34), personal experience with alcohol checks, the perceived likelihood of being checked for alcohol, perceived drunk driving behaviour of friends (social norm) and was negatively associated with higher age (55+). On a national level, the results showed a negative association with a lower legal alcohol limit (BAC 0.2g/l compared with BAC 0.5g/l) and the percentage of drivers checked for alcohol. DUI was positively associated with the percentage of respondents in the country that reported that their friends drink and drive (social norm). The comparison of the results obtained on national and individual levels shows a paradoxical effect of alcohol checks: Countries with more alcohol checks show lower DUI (negative association) but respondents who have been personally checked for alcohol show a higher chance of DUI (positive association). Possible explanations of this paradox are discussed. The effects of the social norm variable (perceived drunk driving behaviour of friends) are positively associated with DUI on both levels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Aging considerations for PWR [pressurized water reactor] control rod drive mechanisms and reactor internals

    International Nuclear Information System (INIS)

    Ware, A.G.


    This paper describes age-related degradation mechanisms affecting life extension of pressurized water reactor control rod drive mechanisms and reactor internals. The major sources of age-related degradation for control rod drive mechanisms are thermal transients such as plant heatups and cooldowns, latchings and unlatchings, long-term aging effects on electrical insulation, and the high temperature corrosive environment. Flow induced loads, the high-temperature corrosive environment, radiation exposure, and high tensile stresses in bolts all contribute to aging related degradation of reactor internals. Another problem has been wear and fretting of instrument guide tubes. The paper also discusses age-related failures that have occurred to date in pressurized water reactors

  10. Method of controlling moving-coil type control rod driving mechanisms

    International Nuclear Information System (INIS)

    Hosoya, Kazuya; Kanazawa, Takashi; Matsuzaki, Tokunori.


    Purpose: To enable solenoid plungers to sufficiently follow after abrupt changes of moving speed of moving-coils in nuclear reactors. Method: In a control circuit for moving-coil type control rod driving mechanisms of nuclear reactors, the velocity of a driving device for the moving-coils is detected by a velocity detector to control the velocity change of exciting currents in the coils depending on a velocity instruction signal. Since the velocity change of the coil exciting current varies depending on the change in the velocity instruction signal, the solenoid plunger can smoothly follow after the moving coils electromagnetically coupled therewith, and the deviation between the moving-coils and the solenoid plunger, that is, the driving axis can be minimized. Accordingly, smooth reactor control can be attained. (Takahashi, M.)

  11. Permeability and mechanical properties of cracked glass under pressure

    International Nuclear Information System (INIS)

    Ougier-Simonin, A.


    Crack initiation and growth in brittle solids under tension have been extensively studied by various experimental, theoretical and numerical approaches. If has been established that dynamic brittle fracture is related to fundamental physical parameters and processes, such as crack speed, crack branching, surface roughening, and dynamic instabilities. On the other hand, less studies have been done in the area of compressive fracture despite its vital importance in geology, material science and engineering applications (such as the improvement and the insurance of the nuclear wastes storage). The present work aims to investigate thermo-mechanical cracking effects on elastic wave velocities, mechanical strength and permeability und r pressure to evaluate damage evolution, brittle failure and transport properties on a synthetic glass (SON 68), and to highlight the very different behavior of the glass amorphous structure compared to any rock structure. The original glass, produced in ideal conditions of slow cooling that prevent from any crack formation, exhibits a linear and reversible mechanical behavior and isotropic elastic velocities, as expected. It also presents a high strength as it fails at about 700 MPa of deviatoric stress for a confining pressure of 15 MPa. We choose to apply to some original glass samples a reproducible method (thermal treatment with a thermal shock of T=100,200 and 300 C) which creates cracks with a homogeneous distribution. The impact of the thermal treatment is clearly visible through the elastic wave velocity measurements as we observe crack closure under hydrostatic conditions (at about 30 MPa). For T ≥ 200 C, the glass mechanical behavior becomes non linear and records an irreversible damage. The total damage observed with the acoustic emissions in these samples underlines the combination of the thermal and the mechanical cracks which drive to the sample failure. The results obtained with pore fluid pressure show a very small

  12. A study on the fundamental mechanism and the evolutionary driving forces behind aerobic fermentation in yeast. (United States)

    Hagman, Arne; Piškur, Jure


    Baker's yeast Saccharomyces cerevisiae rapidly converts sugars to ethanol and carbon dioxide at both anaerobic and aerobic conditions. The later phenomenon is called Crabtree effect and has been described in two forms, long-term and short-term effect. We have previously studied under fully controlled aerobic conditions forty yeast species for their central carbon metabolism and the presence of long-term Crabtree effect. We have also studied ten steady-state yeast cultures, pulsed them with glucose, and followed the central carbon metabolism and the appearance of ethanol at dynamic conditions. In this paper we analyzed those wet laboratory data to elucidate possible mechanisms that determine the fate of glucose in different yeast species that cover approximately 250 million years of evolutionary history. We determine overflow metabolism to be the fundamental mechanism behind both long- and short-term Crabtree effect, which originated approximately 125-150 million years ago in the Saccharomyces lineage. The "invention" of overflow metabolism was the first step in the evolution of aerobic fermentation in yeast. It provides a general strategy to increase energy production rates, which we show is positively correlated to growth. The "invention" of overflow has also simultaneously enabled rapid glucose consumption in yeast, which is a trait that could have been selected for, to "starve" competitors in nature. We also show that glucose repression of respiration is confined mainly among S. cerevisiae and closely related species that diverged after the whole genome duplication event, less than 100 million years ago. Thus, glucose repression of respiration was apparently "invented" as a second step to further increase overflow and ethanol production, to inhibit growth of other microbes. The driving force behind the initial evolutionary steps was most likely competition with other microbes to faster consume and convert sugar into biomass, in niches that were semi-anaerobic.

  13. A study on the fundamental mechanism and the evolutionary driving forces behind aerobic fermentation in yeast.

    Directory of Open Access Journals (Sweden)

    Arne Hagman

    Full Text Available Baker's yeast Saccharomyces cerevisiae rapidly converts sugars to ethanol and carbon dioxide at both anaerobic and aerobic conditions. The later phenomenon is called Crabtree effect and has been described in two forms, long-term and short-term effect. We have previously studied under fully controlled aerobic conditions forty yeast species for their central carbon metabolism and the presence of long-term Crabtree effect. We have also studied ten steady-state yeast cultures, pulsed them with glucose, and followed the central carbon metabolism and the appearance of ethanol at dynamic conditions. In this paper we analyzed those wet laboratory data to elucidate possible mechanisms that determine the fate of glucose in different yeast species that cover approximately 250 million years of evolutionary history. We determine overflow metabolism to be the fundamental mechanism behind both long- and short-term Crabtree effect, which originated approximately 125-150 million years ago in the Saccharomyces lineage. The "invention" of overflow metabolism was the first step in the evolution of aerobic fermentation in yeast. It provides a general strategy to increase energy production rates, which we show is positively correlated to growth. The "invention" of overflow has also simultaneously enabled rapid glucose consumption in yeast, which is a trait that could have been selected for, to "starve" competitors in nature. We also show that glucose repression of respiration is confined mainly among S. cerevisiae and closely related species that diverged after the whole genome duplication event, less than 100 million years ago. Thus, glucose repression of respiration was apparently "invented" as a second step to further increase overflow and ethanol production, to inhibit growth of other microbes. The driving force behind the initial evolutionary steps was most likely competition with other microbes to faster consume and convert sugar into biomass, in niches that


    Energy Technology Data Exchange (ETDEWEB)

    Anton, D.; Wipke, K.; Sprik, S.


    The objective of this evaluation was to independently and objectively verify driving ranges of >400 miles announced by Toyota for its new advanced Fuel Cell Hybrid Vehicle (FCHV-adv) utilizing 70 MPa compressed hydrogen. To accomplish this, participants from both Savannah River National Laboratory (SRNL) and the National Renewable Energy Laboratory (NREL) witnessed and participated in a 2-vehicle evaluation with Toyota Motor Engineering & Manufacturing North America, Inc. (TEMA) over a typical open road route for over 11 hours in one day with all relevant data recorded. SRNL and TEMA first entered into discussions of verifying the range of the advanced Toyota Fuel Cell Hybrid Vehicle (FCHV-adv) in August 2008 resulting from reported 400+ mile range by Toyota. After extended negotiations, a CRADA agreement, SRNS CRADA No. CR-04-003, was signed on May 6, 2009. Subsequently, on June 30, 2009 SRNL and NREL participated in an all-day evaluation of the FCHV-adv with TEMA to determine the real-world driving range of this vehicle through on-road driving on an extended round-trip drive between Torrance and San Diego, California. SRNL and NREL observed the vehicles being refueled at Toyota's headquarters the day before the evaluation in Torrance, CA on June 29. At 8:00 AM on June 30, the vehicles departed Torrance north toward downtown Los Angeles, then west to the Pacific Coast Highway, and down to San Diego. After lunch the vehicles retraced their route back to Torrance. The traffic encountered was much heavier than anticipated, causing the vehicles to not return to Torrance until 9 PM. Each vehicle was driven by the same Toyota driver all day, with one SRNL/NREL observer in each vehicle the entire route. Data was logged by Toyota and analyzed by NREL. The maximum range of the FCHV-adv vehicles was calculated to be 431 miles under these driving conditions. This distance was calculated from the actual range of 331.5 miles during over 11 hours driving, plus 99.5 miles

  15. Marijuana Use and Driving Under the Influence among Young Adults: A Socioecological Perspective on Risk Factors. (United States)

    Berg, Carla J; Daniel, Carmen N; Vu, Milkie; Li, Jingjing; Martin, Kathleen; Le, Lana


    Given increases in marijuana use and driving under the influence (DUI), it is critical to identify those at risk in order to inform intervention efforts. We used a socioecological framework to examine correlates of level of marijuana use and DUI in the past month among young adult marijuana users. We recruited 1567 participants aged 18-34 years via Facebook ads targeting tobacco and marijuana users in August 2014 to complete an online survey assessing marijuana use and DUI, as well as related multilevel factors. Analyses focused on 649 participants reporting past 30-day marijuana use. The sample was an average age of 24.48 (SD = 5.10), 43.9% female, and 76.4% White and used marijuana an average of 17.86 (SD = 11.29) days in the past month. Notably, 48.4% reported driving after marijuana use at least once in the past month, and 74.0% were passengers. Multivariable regression indicated that greater use was associated with: being older; being male; greater symptoms of dependence; residing in a state with recreational marijuana legalized; having a medical marijuana card; having parents and more friends who use; higher coping motives; lower perceived harm to health; and less concern about driving after marijuana use (adjusted R-squared = 0.294). Correlates of driving after using marijuana in the past month included: being younger; more frequent use; having more friends who use; higher enhancement motives; and less concern about driving after using (Nagelkerke R-squared = 0.442). Conclusions/Importance: Interventions and campaigns should address social norms and risk perceptions regarding marijuana use, particularly as it relates to DUI.

  16. Driving mechanism and sources of groundwater nitrate contamination in the rapidly urbanized region of south China (United States)

    Zhang, Qianqian; Sun, Jichao; Liu, Jingtao; Huang, Guanxing; Lu, Chuan; Zhang, Yuxi


    Nitrate contamination of groundwater has become an environmental problem of widespread concern in China. We collected 899 groundwater samples from a rapidly urbanized area, in order to identify the main sources and driving mechanisms of groundwater nitrate contamination. The results showed that the land use has a significant effect on groundwater nitrate concentration (P population growth. This study revealed that domestic wastewater and industrial wastewater were the main sources of groundwater nitrate pollution. Therefore, the priority method for relieving groundwater nitrate contamination is to control the random discharge of domestic and industrial wastewater in regions undergoing rapid urbanization. Capsule abstract. The main driving mechanism of groundwater nitrate contamination was determined to be urban construction and the secondary and tertiary industrial development, and population growth.

  17. Evolved Mechanisms Versus Underlying Conditional Relations

    Directory of Open Access Journals (Sweden)

    Astorga Miguel López


    Full Text Available The social contracts theory claims that, in social exchange circumstances, human reasoning is not necessarily led by logic, but by certain evolved mental mechanisms that are useful for catching offenders. An emblematic experiment carried out with the intention to prove this thesis is the first experiment described by Fiddick, Cosmides, and Tooby in their paper of 2000. Lopez Astorga has questioned that experiment claiming that its results depend on an underlying conditional logical form not taken into account by Fiddick, Cosmides, and Tooby. In this paper, I propose an explanation alternative to that of Lopez Astorga, which does not depend on logical forms and is based on the mental models theory. Thus, I conclude that this other alternative explanation is one more proof that the experiment in question does not demonstrate the fundamental thesis of the social contracts theory.

  18. Mechanisms underlying UV-induced immune suppression

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, Stephen E. [Department of Immunology, University of Texas, MD Anderson Cancer Center, South Campus Research Building 1, 7455 Fannin St., P.O. Box 301402, Houston, TX 77030-1903 (United States)]. E-mail:


    Skin cancer is the most prevalent form of human neoplasia. Estimates suggest that in excess of one million new cases of skin cancer will be diagnosed this year alone in the United States ( Fortunately, because of their highly visible location, skin cancers are more rapidly diagnosed and more easily treated than other types of cancer. Be that as it may, approximately 10,000 Americans a year die from skin cancer. The cost of treating non-melanoma skin cancer is estimated to be in excess of US$ 650 million a year [J.G. Chen, A.B. Fleischer, E.D. Smith, C. Kancler, N.D. Goldman, P.M. Williford, S.R. Feldman, Cost of non-melanoma skin cancer treatment in the United States, Dermatol. Surg. 27 (2001) 1035-1038], and when melanoma is included, the estimated cost of treating skin cancer in the United States is estimated to rise to US$ 2.9 billion annually ( Because the morbidity and mortality associated with skin cancer is a major public health problem, it is important to understand the mechanisms underlying skin cancer development. The primary cause of skin cancer is the ultraviolet (UV) radiation found in sunlight. In addition to its carcinogenic potential, UV radiation is also immune suppressive. In fact, data from studies with both experimental animals and biopsy proven skin cancer patients suggest that there is an association between the immune suppressive effects of UV radiation and its carcinogenic potential. The focus of this manuscript will be to review the mechanisms underlying the induction of immune suppression following UV exposure. Particular attention will be directed to the role of soluble mediators in activating immune suppression.

  19. Mechanisms underlying UV-induced immune suppression

    International Nuclear Information System (INIS)

    Ullrich, Stephen E.


    Skin cancer is the most prevalent form of human neoplasia. Estimates suggest that in excess of one million new cases of skin cancer will be diagnosed this year alone in the United States ( Fortunately, because of their highly visible location, skin cancers are more rapidly diagnosed and more easily treated than other types of cancer. Be that as it may, approximately 10,000 Americans a year die from skin cancer. The cost of treating non-melanoma skin cancer is estimated to be in excess of US$ 650 million a year [J.G. Chen, A.B. Fleischer, E.D. Smith, C. Kancler, N.D. Goldman, P.M. Williford, S.R. Feldman, Cost of non-melanoma skin cancer treatment in the United States, Dermatol. Surg. 27 (2001) 1035-1038], and when melanoma is included, the estimated cost of treating skin cancer in the United States is estimated to rise to US$ 2.9 billion annually ( Because the morbidity and mortality associated with skin cancer is a major public health problem, it is important to understand the mechanisms underlying skin cancer development. The primary cause of skin cancer is the ultraviolet (UV) radiation found in sunlight. In addition to its carcinogenic potential, UV radiation is also immune suppressive. In fact, data from studies with both experimental animals and biopsy proven skin cancer patients suggest that there is an association between the immune suppressive effects of UV radiation and its carcinogenic potential. The focus of this manuscript will be to review the mechanisms underlying the induction of immune suppression following UV exposure. Particular attention will be directed to the role of soluble mediators in activating immune suppression


    Directory of Open Access Journals (Sweden)



    Full Text Available It evaluates the maximum static and dynamic stresses produced in the elements of a quadrilateral mechanism transporting a vehicle in the storage in an urban park. Determine multiplier shock hazard if the mechanism freezes and increases mechanical stress.

  1. Two distinct neural mechanisms underlying indirect reciprocity. (United States)

    Watanabe, Takamitsu; Takezawa, Masanori; Nakawake, Yo; Kunimatsu, Akira; Yamasue, Hidenori; Nakamura, Mitsuhiro; Miyashita, Yasushi; Masuda, Naoki


    Cooperation is a hallmark of human society. Humans often cooperate with strangers even if they will not meet each other again. This so-called indirect reciprocity enables large-scale cooperation among nonkin and can occur based on a reputation mechanism or as a succession of pay-it-forward behavior. Here, we provide the functional and anatomical neural evidence for two distinct mechanisms governing the two types of indirect reciprocity. Cooperation occurring as reputation-based reciprocity specifically recruited the precuneus, a region associated with self-centered cognition. During such cooperative behavior, the precuneus was functionally connected with the caudate, a region linking rewards to behavior. Furthermore, the precuneus of a cooperative subject had a strong resting-state functional connectivity (rsFC) with the caudate and a large gray matter volume. In contrast, pay-it-forward reciprocity recruited the anterior insula (AI), a brain region associated with affective empathy. The AI was functionally connected with the caudate during cooperation occurring as pay-it-forward reciprocity, and its gray matter volume and rsFC with the caudate predicted the tendency of such cooperation. The revealed difference is consistent with the existing results of evolutionary game theory: although reputation-based indirect reciprocity robustly evolves as a self-interested behavior in theory, pay-it-forward indirect reciprocity does not on its own. The present study provides neural mechanisms underlying indirect reciprocity and suggests that pay-it-forward reciprocity may not occur as myopic profit maximization but elicit emotional rewards.

  2. Holonomic planar motion from non-holonomic driving mechanisms: the front-point method (United States)

    Temizer, Selim; Pack Kaelbling, Leslie


    There are many methods that address navigation and path planning for mobile robots with non-holonomic motion constraints using clever techniques and exploiting application-specific data, but it is always better not to have any such constraints at all. In this document we re-examine the capabilities of some popular driving mechanisms from a different perspective and describe a method to obtain holonomic motion using those mechanisms. The main idea is to not concentrate on the center of the driving mechanism (which is the usual choice) as the reference point for our calculations, but to select another point whose motion in the x-y plane is not constrained in any direction, and which is also a logical and useful substitute for the center. In addition to the derivation of the forward and inverse kinematics equations for the new reference point, we also explain how to further simplify the design of a controller which uses the described method to compute motion commands for the robot. In order to illustrate the ideas, we present graphs that were plotted using the actual parameter values for a synchronous-drive research robot.

  3. Model Development for Risk Assessment of Driving on Freeway under Rainy Weather Conditions.

    Directory of Open Access Journals (Sweden)

    Xiaonan Cai

    Full Text Available Rainy weather conditions could result in significantly negative impacts on driving on freeways. However, due to lack of enough historical data and monitoring facilities, many regions are not able to establish reliable risk assessment models to identify such impacts. Given the situation, this paper provides an alternative solution where the procedure of risk assessment is developed based on drivers' subjective questionnaire and its performance is validated by using actual crash data. First, an ordered logit model was developed, based on questionnaire data collected from Freeway G15 in China, to estimate the relationship between drivers' perceived risk and factors, including vehicle type, rain intensity, traffic volume, and location. Then, weighted driving risk for different conditions was obtained by the model, and further divided into four levels of early warning (specified by colors using a rank order cluster analysis. After that, a risk matrix was established to determine which warning color should be disseminated to drivers, given a specific condition. Finally, to validate the proposed procedure, actual crash data from Freeway G15 were compared with the safety prediction based on the risk matrix. The results show that the risk matrix obtained in the study is able to predict driving risk consistent with actual safety implications, under rainy weather conditions.

  4. Dynamic Simulation Research on Chain Drive Mechanism of Corn Seeder Based on ADAMS (United States)

    Wang, Y. B.; Jia, H. P.


    In order to reduce the damage to the chain and improve the seeding quality of the seeding machine, the corn seeder has the characteristics of the seeding quality and some technical indexes in the work of the corn seeding machine. The dynamic analysis of the chain drive mechanism is carried out by using the dynamic virtual prototype. In this paper, the speed of the corn planter is 5km/h, and the speed of the simulated knuckle is 0.1~0.9s. The velocity is 0.12m/s, which is equal to the chain speed when the seeder is running normally. Of the dynamic simulation of the movement and the actual situation is basically consistent with the apparent speed of the drive wheel has changed the acceleration and additional dynamic load, the chain drive has a very serious damage, and the maximum load value of 47.28N, in order to reduce the damage to the chain, As far as possible so that the sowing machine in the work to maintain a reasonable uniform speed, to avoid a greater acceleration, the corn sowing machine drive the design of a certain reference.

  5. Development of a 3-D simulation analysis system for PWR control rod drive mechanism

    International Nuclear Information System (INIS)

    Tanaka, Akio; Futahashi, Kensuke; Takanabe, Kiyoshi; Kurimura, Chikara; Kato, Jungo; Hara, Hidekiyo


    A 3-D virtual analysis system to analyze the motion of control rod drive mechanism (CRDM) was developed. The analysis system consists of a 3-D model established as per the actual dimensions and interfaces of CRDM parts and a routine to calculate the forces acting on the mechanism, and was verified by mock-up test using the same equipment as the actual product. The analysis system is useful for functional evaluation in maintenance or to factor out root causes in the case of malfunction of CRDM

  6. Steady-state responses of a belt-drive dynamical system under dual excitations (United States)

    Ding, Hu


    The stable steady-state periodic responses of a belt-drive system with a one-way clutch are studied. For the first time, the dynamical system is investigated under dual excitations. The system is simultaneously excited by the firing pulsations of the engine and the harmonic motion of the foundation. Nonlinear discrete-continuous equations are derived for coupling the transverse vibration of the belt spans and the rotations of the driving and driven pulleys and the accessory pulley. The nonlinear dynamics is studied under equal and multiple relations between the frequency of the firing pulsations and the frequency of the foundation motion. Furthermore, translating belt spans are modeled as axially moving strings. A set of nonlinear piecewise ordinary differential equations is achieved by using the Galerkin truncation. Under various relations between the excitation frequencies, the time histories of the dynamical system are numerically simulated based on the time discretization method. Furthermore, the stable steady-state periodic response curves are calculated based on the frequency sweep. Moreover, the convergence of the Galerkin truncation is examined. Numerical results demonstrate that the one-way clutch reduces the resonance amplitude of the rotations of the driven pulley and the accessory pulley. On the other hand, numerical examples prove that the resonance areas of the belt spans are decreased by eliminating the torque-transmitting in the opposite direction. With the increasing amplitude of the foundation excitation, the damping effect of the one-way clutch will be reduced. Furthermore, as the amplitude of the firing pulsations of the engine increases, the jumping phenomena in steady-state response curves of the belt-drive system with or without a one-way clutch both occur.

  7. Development of a solar array drive mechanism for micro-satellite platforms (United States)

    Galatis, Giorgos; Guo, Jian; Buursink, Jeroen


    Photovoltaic solar array (PVSA) systems are the most widely used method for spacecraft power generation. However, in many satellite missions, the optimum orientation of the PVSA system is not always compatible with that of the payload orientation. Many methods, have been examined in the past to overcome this problem. Up to date, the most widely used active method for large costly satellites is the Solar Array Drive Mechanism (SADM). The SADM serves as the interface between the satellite body and the PVSA subsystem, enabling the decoupling of their spatial orientation. Nonetheless, there exists a research and development gap for such systems regarding low cost micro-satellites. During the literature study of this paper, individual orbital parameters of various micro-satellites have been extracted and compared to the rotational freedom of the corresponding SADMs used. The findings demonstrated that the implemented SADMs are over designed. It is therefore concluded that these components are not tailored made for each spacecraft mission individually, but rather, exhibit a generic design to full fill a majority of mission profiles and requirements. Motivated by the above analysis, the cardinal objective of the current research is to develop a low cost mechanism that will be precisely tailored for the use of a low Earth orbit (LEO) micro-satellite platform orbiting in altitudes of 500 - 1000km . The design of the mechanism may vary from the existing miniaturized SADMs. For example, the preliminary analysis of the current research suggests, that the conventional use of the slip ring system as the electronic transfer unit can be replaced by a seMI Orientation Unit (MIOU). Systems engineering tools for concept generation and selection have been used. In addition, simulation and mathematical modelling have been implemented on component and system level, to accurately predict the behaviour of the system under various modes of operation. The production and system testing of

  8. Saturating light and not increased carbon dioxide under ocean acidification drives photosynthesis and growth in Ulva rigida (Chlorophyta). (United States)

    Rautenberger, Ralf; Fernández, Pamela A; Strittmatter, Martina; Heesch, Svenja; Cornwall, Christopher E; Hurd, Catriona L; Roleda, Michael Y


    Carbon physiology of a genetically identified Ulva rigida was investigated under different CO2(aq) and light levels. The study was designed to answer whether (1) light or exogenous inorganic carbon (Ci) pool is driving growth; and (2) elevated CO2(aq) concentration under ocean acidification (OA) will downregulate CAext-mediated [Formula: see text] dehydration and alter the stable carbon isotope (δ (13)C) signatures toward more CO2 use to support higher growth rate. At pHT 9.0 where CO2(aq) is carbon uptake mechanism for the remaining 17-44% of the NPS unaccounted. An in silico search for carbon-concentrating mechanism elements in expressed sequence tag libraries of Ulva found putative light-dependent [Formula: see text] transporters to which the remaining NPS can be attributed. The shift in δ (13)C signatures from -22‰ toward -10‰ under saturating light but not under elevated CO2(aq) suggest preference and substantial [Formula: see text] use to support photosynthesis and growth. U. rigida is Ci saturated, and growth was primarily controlled by light. Therefore, increased levels of CO2(aq) predicted for the future will not, in isolation, stimulate Ulva blooms.

  9. Driver exposure to volatile organic compounds, CO, ozone, and NO2 under different driving conditions

    International Nuclear Information System (INIS)

    Changchuan Chan; Oezkaynak, H.; Spengler, J.D.; Sheldon, L.


    The in-vehicle concentrations of 24 gasoline-related volatile organic compounds (VOCs) and three criteria air pollutants, ozone, carbon monoxide, and nitrogen dioxide, were measured in the summer of 1988, in Raleigh, NC. Two four-door sedan of different ages were used to evaluate in-vehicle concentrations of these compounds under different driving conditions. Factors that could influence driver exposure, such as different traffic patterns, car model, vehicle ventilation conditions, and driving periods, were evaluated. Isopentane was the most abundant aliphatic hydrocarbon and toluene was the most abundant aromatic VOC measured inside the vehicles. In-vehicle VOC and CO concentrations were highest for the urban roadway, second highest for the interstate highway, and lowest for the rural road. The median concentration ratio of urban/interstate/rural for each VOC was about 10/6/1. No differences in in-vehicle VOC concentrations were found between morning and afternoon rush hour driving, but higher in-vehicle ozone and NO 2 concentrations were found during afternoon driving. In-vehicle VOC levels were lowest with the air conditioner on and highest when the vent was open with the fan on. The in-vehicle/car exterior concentration ratio for VOCs, CO, and NO 2 was slightly higher than 1. The VOC concentration measured by a pedestrian on the urban sidewalk was lower than the in-vehicle measurements but higher than the fixed-site measurements but higher than the fixed-site measurements on urban roadways 50 m from streets. The VOC measurements were positively correlated with the CO measurement and negatively correlated with the ozone measurement

  10. Dissociable cognitive mechanisms underlying human path integration. (United States)

    Wiener, Jan M; Berthoz, Alain; Wolbers, Thomas


    Path integration is a fundamental mechanism of spatial navigation. In non-human species, it is assumed to be an online process in which a homing vector is updated continuously during an outward journey. In contrast, human path integration has been conceptualized as a configural process in which travelers store working memory representations of path segments, with the computation of a homing vector only occurring when required. To resolve this apparent discrepancy, we tested whether humans can employ different path integration strategies in the same task. Using a triangle completion paradigm, participants were instructed either to continuously update the start position during locomotion (continuous strategy) or to remember the shape of the outbound path and to calculate home vectors on basis of this representation (configural strategy). While overall homing accuracy was superior in the configural condition, participants were quicker to respond during continuous updating, strongly suggesting that homing vectors were computed online. Corroborating these findings, we observed reliable differences in head orientation during the outbound path: when participants applied the continuous updating strategy, the head deviated significantly from straight ahead in direction of the start place, which can be interpreted as a continuous motor expression of the homing vector. Head orientation-a novel online measure for path integration-can thus inform about the underlying updating mechanism already during locomotion. In addition to demonstrating that humans can employ different cognitive strategies during path integration, our two-systems view helps to resolve recent controversies regarding the role of the medial temporal lobe in human path integration.

  11. Mechanics of carbon nanotube scission under sonication. (United States)

    Stegen, J


    As-produced carbon nanotubes come in bundles that must be exfoliated for practical applications in nanocomposites. Sonication not only causes the exfoliation of nanotube bundles but also unwanted scission. An understanding of how precisely sonication induces the scission and exfoliation of nanotubes will help maximising the degree of exfoliation while minimising scission. We present a theoretical study of the mechanics of carbon nanotube scission under sonicaton, based on the accepted view that it is caused by strong gradients in the fluid velocity near a transiently collapsing bubble. We calculate the length-dependent scission rate by taking the actual movement of the nanotube during the collapse of a bubble into account, allowing for the prediction of the temporal evolution of the length distribution of the nanotubes. We show that the dependence of the scission rate on the sonication settings and the nanotube properties results in non-universal, experiment-dependent scission kinetics potentially explaining the variety in experimentally observed scission kinetics. The non-universality arises from the dependence of the maximum strain rate of the fluid experienced by a nanotube on its length. The maximum strain rate that a nanotube experiences increases with decreasing distance to the bubble. As short nanotubes are dragged along more easily by the fluid flow they experience a higher maximum strain rate than longer nanotubes. This dependence of the maximum strain rate on nanotube length affects the scaling of tensile strength with terminal length. We find that the terminal length scales with tensile strength to the power of 1/1.16 instead of with an exponent of 1/2 as found when nanotube motion is neglected. Finally, we show that the mechanism we propose responsible for scission can also explain the exfoliation of carbon nanotube bundles.

  12. Identification of common features of vehicle motion under drowsy/distracted driving: A case study in Wuhan, China. (United States)

    Chen, Zhijun; Wu, Chaozhong; Zhong, Ming; Lyu, Nengchao; Huang, Zhen


    Drowsy/distracted driving has become one of the leading causes of traffic crash. Only certain particular drowsy/distracted driving behaviors have been studied by previous studies, which are mainly based on dedicated sensor devices such as bio and visual sensors. The objective of this study is to extract the common features for identifying drowsy/distracted driving through a set of common vehicle motion parameters. An intelligent vehicle was used to collect vehicle motion parameters. Fifty licensed drivers (37 males and 13 females, M=32.5 years, SD=6.2) were recruited to carry out road experiments in Wuhan, China and collecting vehicle motion data under four driving scenarios including talking, watching roadside, drinking and under the influence of drowsiness. For the first scenario, the drivers were exposed to a set of questions and asked to repeat a few sentences that had been proved valid in inducing driving distraction. Watching roadside, drinking and driving under drowsiness were assessed by an observer and self-reporting from the drivers. The common features of vehicle motions under four types of drowsy/distracted driving were analyzed using descriptive statistics and then Wilcoxon rank sum test. The results indicated that there was a significant difference of lateral acceleration rates and yaw rate acceleration between "normal driving" and drowsy/distracted driving. Study results also shown that, under drowsy/distracted driving, the lateral acceleration rates and yaw rate acceleration were significantly larger from the normal driving. The lateral acceleration rates were shown to suddenly increase or decrease by more than 2.0m/s(3) and the yaw rate acceleration by more than 2.5°/s(2). The standard deviation of acceleration rate (SDA) and standard deviation of yaw rate acceleration (SDY) were identified to as the common features of vehicle motion for distinguishing the drowsy/distracted driving from the normal driving. In order to identify a time window for

  13. Drive mechanism for the shuttle orbiter/external tank propellant disconnect (United States)

    Thomas, E.; Wilders, R.; Ulanovsky, J.


    The space shuttle design required development of a large, 0.43 m nominal diameter separable disconnect for the liquid hydrogen and liquid oxygen propellant lines at the orbiter to external tank interface. The disconnect provides for shutoff of the propellant flow area by simultaneous action of two rotary flapper valves (orbiter and external tank) prior to disconnect separation. In the case of pneumatic system failure, the rotary flapper valves are closed automatically through mechanical interlocking linkage during disconnect separation. The mechanism must meet requirements while accommodating changes in bearing clearances and linkage geometry over a wide temperature range from ambient to 20.37 K. The mechanical design of the separable disconnect, kinematics of the drive mechanism, and the analysis and test methods used to verify proper operation and qualification for the space shuttle dynamic environments are presented.

  14. Vascular Adventitia Calcification and Its Underlying Mechanism.

    Directory of Open Access Journals (Sweden)

    Na Li

    Full Text Available Previous research on vascular calcification has mainly focused on the vascular intima and media. However, we show here that vascular calcification may also occur in the adventitia. The purpose of this work is to help elucidate the pathogenic mechanisms underlying vascular calcification. The calcified lesions were examined by Von Kossa staining in ApoE-/- mice which were fed high fat diets (HFD for 48 weeks and human subjects aged 60 years and older that had died of coronary heart disease, heart failure or acute renal failure. Explant cultured fibroblasts and smooth muscle cells (SMCswere obtained from rat adventitia and media, respectively. After calcification induction, cells were collected for Alizarin Red S staining. Calcified lesions were observed in the aorta adventitia and coronary artery adventitia of ApoE-/-mice, as well as in the aorta adventitia of human subjects examined. Explant culture of fibroblasts, the primary cell type comprising the adventitia, was successfully induced for calcification after incubation with TGF-β1 (20 ng/ml + mineralization media for 4 days, and the phenotype conversion vascular adventitia fibroblasts into myofibroblasts was identified. Culture of SMCs, which comprise only a small percentage of all cells in the adventitia, in calcifying medium for 14 days resulted in significant calcification.Vascular calcification can occur in the adventitia. Adventitia calcification may arise from the fibroblasts which were transformed into myofibroblasts or smooth muscle cells.

  15. Proteoglycans remodeling in cancer: Underlying molecular mechanisms. (United States)

    Theocharis, Achilleas D; Karamanos, Nikos K


    Extracellular matrix is a highly dynamic macromolecular network. Proteoglycans are major components of extracellular matrix playing key roles in its structural organization and cell signaling contributing to the control of numerous normal and pathological processes. As multifunctional molecules, proteoglycans participate in various cell functions during morphogenesis, wound healing, inflammation and tumorigenesis. Their interactions with matrix effectors, cell surface receptors and enzymes enable them with unique properties. In malignancy, extensive remodeling of tumor stroma is associated with marked alterations in proteoglycans' expression and structural variability. Proteoglycans exert diverse functions in tumor stroma in a cell-specific and context-specific manner and they mainly contribute to the formation of a permissive provisional matrix for tumor growth affecting tissue organization, cell-cell and cell-matrix interactions and tumor cell signaling. Proteoglycans also modulate cancer cell phenotype and properties, the development of drug resistance and tumor stroma angiogenesis. This review summarizes the proteoglycans remodeling and their novel biological roles in malignancies with particular emphasis to the underlying molecular mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Driving under the effect of drugs: Hair analysis in order to evaluate recidivism. (United States)

    Tassoni, Giovanna; Cippitelli, Marta; Mirtella, Dora; Froldi, Rino; Ottaviani, Giovanni; Zampi, Massimiliano; Cingolani, Mariano


    Under Italian law drug addiction and regular drug abuse are incompatible with driving ability. One important problem with the enforcement of the impaired driving law is the large number of people that re-offend. To regain their license, offenders must be drug-free for the duration of an observation period, according to the judgement of a medical commission. The exclusion of illicit drug use is determined by toxicological analysis. A few studies exist that have used a hair matrix to monitor recidivism. Hair is an attractive matrix for monitoring drug recidivism, due to the large time window for drug detection, and to the non-alterability of this matrix. We report the results of several years of experience at our forensic toxicology laboratory in the use of hair analysis for the assessment of past exposure to drugs in persons suspected of driving under the influence of drugs. 5592 subjects were analyzed for opiates, cocaine and delta-9-tetrahydrocannabinol (Δ 9 -THC) using a GC/MS method. 1062 (19.0%) subjects resulted positive. From this group, the individuals that resulted positive at least at the second control were considered recidivists (243, 22.9%). 79.7% of recidivist subjects were positive for cocaine and metabolites, 14.9% for morphine and metabolites, 5.4% for Δ 9 -THC. We also studied the time frame of the abuse, as well as gender and age distribution of recidivist subjects. Furthermore, we analyzed risk factors associated with recidivist behaviour. Our results show that cocaine consumption was the only factor that showed significance with regard to increased likelihood of being a recidivist. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Drivers under the influence of drugs of abuse: quantification of cocaine and impaired driving. (United States)

    Arroyo, Amparo; Sánchez, Marta; Barberia, Eneko; Barbal, Maria; Marrón, M Teresa; Mora, Agustí


    In recent years, the interest in oral fluid as a biological matrix has significantly increased, particularly for detecting driving under the influence of drugs. In this study, the concentration of cocaine and its relationship with clinical symptoms in drivers suspected of driving under the influence of drugs was evaluated. A total of 154 samples of oral fluid, which tested positive for cocaine in previous immunoassay screening, Cozart Drug Detector System, were confirmed using gas chromatography/mass spectrometry method. In Catalonia, during 2007-2010, there were 1791 samples positive for cocaine among a total of 3468 samples taken from drivers who tested positive for any drug of abuse. The evaluation of clinical symptoms was through a questionnaire that was filled in by the police officers who collected the samples. The mean concentration of cocaine was 4.11 mg/l and median concentration was 0.38 mg/l (range 0.01-345.64 mg/l). Clinical impairment symptoms such as motor coordination, walking, speech, mood and state of pupils were not significant. The testing of oral fluids presents fewer ethical problems than blood or urine.

  18. Undocumented Immigration, Drug Problems, and Driving Under the Influence in the United States, 1990-2014. (United States)

    Light, Michael T; Miller, Ty; Kelly, Brian C


    To examine the influence of undocumented immigration in the United States on 4 different metrics of drug and alcohol problems: drug arrests, drug overdose fatalities, driving under the influence (DUI) arrests, and DUI deaths. We combined newly developed state-level estimates of the undocumented population between 1990 and 2014 from the Center for Migration Studies with arrest data from the Federal Bureau of Investigation Uniform Crime Reports and fatality information from the Fatality Analysis Reporting System and the Centers for Disease Control and Prevention Underlying Cause of Death database. We used fixed-effects regression models to examine the longitudinal association between increased undocumented immigration and drug problems and drunk driving. Increased undocumented immigration was significantly associated with reductions in drug arrests, drug overdose deaths, and DUI arrests, net of other factors. There was no significant relationship between increased undocumented immigration and DUI deaths. This study provides evidence that undocumented immigration has not increased the prevalence of drug or alcohol problems, but may be associated with reductions in these public health concerns.

  19. Mechanical behaviour of nuclear fuel under irradiation

    International Nuclear Information System (INIS)

    Guerin, Y.


    The main mechanical properties (fracture, thermal and irradiation creep) of oxide and carbide fuels are summarised and discussed. Some examples are given of the influence of these mechanical properties on the in-pile behaviour of fuel pins [fr

  20. Simultaneous electrical and mechanical resonance drive for large signal amplification of micro resonators

    KAUST Repository

    Hasan, M. H.


    Achieving large signal-noise ratio using low levels of excitation signal is key requirement for practical applications of micro and nano electromechanical resonators. In this work, we introduce the double electromechanical resonance drive concept to achieve an order-of-magnitude dynamic signal amplification in micro resonators. The concept relies on simultaneously activating the micro-resonator mechanical and electrical resonance frequencies. We report an input voltage amplification up to 15 times for a micro-resonator when its electrical resonance is tuned to match the mechanical resonance that leads to dynamic signal amplification in air (Quality factor enhancement). Furthermore, using a multi-frequency excitation technique, input voltage and vibrational amplification of up to 30 times were shown for the same micro-resonator while relaxing the need to match its mechanical and electrical resonances.

  1. Stress and fatigue analysis for lower joint of control rod drive mechanisms seal house

    International Nuclear Information System (INIS)

    Shao Xuejiao; Zhang Liping; Du Juan; Xie Hai


    Two kinds of seal houses for control rod drive mechanisms which have different thickness of the lower seal ring was analyzed for its stress and fatigue by finite element method. In the fatigue computation, all the transitions were grouped into several groups, and then the elastoplastic strain correction factor was modified by analyzing thermal and mechanical load separately referring the rules of RCC-M 2002. The results show that the structure with thicker seal ring behaves more safely than the other one except in the second condition. Meanwhile, the amplify of the primary and secondary stress as well as fatigue usage factor can be reduced by regrouping the transients. The precision of fatigue usage factor can be elevated using modified K e when the amplify of the primary and secondary stress is large to some extent produced by both thermal and mechanical loads. (authors)

  2. Predictors for patient knowledge and reported behaviour regarding driving under the influence of medicines: a multi-country survey (United States)


    Background Reports on the state of knowledge about medicines and driving showed an increased concern about the role that the use of medicines might play in car crashes. Much of patient knowledge regarding medicines comes from communications with healthcare professionals. This study, part of the DRUID (Driving Under the Influence of Drugs, alcohol and medicines) project, was carried out in four European countries and attempts to define predictors for knowledge of patients who use driving-impairing medicines. The influence of socio-demographic variables on patient knowledge was investigated as well as the influence of socio-demographic factors, knowledge and attitudes on patients' reported behaviour regarding driving under the influence of medicines. Methods Pharmacists handed out questionnaires to patients who met the inclusion criteria: 1) prevalent user of benzodiazepines, antidepressants or first generation antihistamines for systemic use; 2) age between 18 and 75 years old and 3) actual driver of a motorised vehicle. Factors affecting knowledge and reported behaviour towards driving-impairing medicines were analysed by means of multiple linear regression analysis and multiple logistic regression analysis, respectively. Results A total of 633 questionnaires (out of 3.607 that were distributed to patients) were analysed. Patient knowledge regarding driving under the influence of medicines is better in younger and higher educated patients. Information provided to or accessed by patients does not influence knowledge. Patients who experienced side effects and who have a negative attitude towards driving under the influence of impairing medicines are more prone to change their driving frequency behaviour than those who use their motorised vehicles on a daily basis or those who use anti-allergic medicines. Conclusions Changes in driving behaviour can be predicted by negative attitudes towards driving under the influence of medicines but not by patients' knowledge

  3. Intramolecular energy transfer and the driving mechanisms for large-amplitude collective motions of clusters (United States)

    Yanao, Tomohiro; Koon, Wang Sang; Marsden, Jerrold E.


    This paper uncovers novel and specific dynamical mechanisms that initiate large-amplitude collective motions in polyatomic molecules. These mechanisms are understood in terms of intramolecular energy transfer between modes and driving forces. Structural transition dynamics of a six-atom cluster between a symmetric and an elongated isomer is highlighted as an illustrative example of what is a general message. First, we introduce a general method of hyperspherical mode analysis to analyze the energy transfer among internal modes of polyatomic molecules. In this method, the (3n-6) internal modes of an n-atom molecule are classified generally into three coarse level gyration-radius modes, three fine level twisting modes, and (3n-12) fine level shearing modes. We show that a large amount of kinetic energy flows into the gyration-radius modes when the cluster undergoes structural transitions by changing its mass distribution. Based on this fact, we construct a reactive mode as a linear combination of the three gyration-radius modes. It is shown that before the reactive mode acquires a large amount of kinetic energy, activation or inactivation of the twisting modes, depending on the geometry of the isomer, plays crucial roles for the onset of a structural transition. Specifically, in a symmetric isomer with a spherical mass distribution, activation of specific twisting modes drives the structural transition into an elongated isomer by inducing a strong internal centrifugal force, which has the effect of elongating the mass distribution of the system. On the other hand, in an elongated isomer, inactivation of specific twisting modes initiates the structural transition into a symmetric isomer with lower potential energy by suppressing the elongation effect of the internal centrifugal force and making the effects of the potential force dominant. This driving mechanism for reactions as well as the present method of hyperspherical mode analysis should be widely applicable to

  4. Driving and damping mechanisms in hybrid pressure-gravity modes pulsators

    Energy Technology Data Exchange (ETDEWEB)

    Dupret, M A [Observatoire de Paris, LESIA, CNRS UMR 8109, 5 place J. Janssen, 92195 Meudon (France); Miglio, A; Montalban, J; Noels, A [Institut d' Astrophysique et Geophysique, Universite de Liege (Belgium); Grigahcene, A [CRAAG - Algiers Observatory BP 63 Bouzareah 16340, Algiers (Algeria)], E-mail:


    We study the energetic aspects of hybrid pressure-gravity modes pulsations. The case of hybrid {beta} Cephei-SPB pulsators is considered with special attention. In addition to the already known sensitivity of the driving mechanism to the heavy elements mixture (mainly the iron abundance), we show that the characteristics of the propagation and evanescent regions play also a major role, determining the extension of the stable gap in the frequency domain between the unstable low order pressure and high order gravity modes. Finally, we consider the case of hybrid {delta} Sct-{gamma} Dor pulsators.

  5. The construction design of ball bearings used in the control rod driving mechanisms of PWRs

    International Nuclear Information System (INIS)

    Leng Chengmu; Huang Chongming; Chen Jianting.


    According to the operation conditions of ball bearings used in the control rod driving mechanisms of PWRs, this paper has analysed and discussed the problems that must be taken into account in the construction design of this ball bearing. It includes: a discussion about the reasonable selection of construction parameters of the bearing, deduction of the relationship between bearing clearance and contact angle, and the emphasis on the significance of assembling accuracy and torque measurement in the assurance of operational performance of the bearings. These experiences may be somewhat valuable for the design and application of this kind of ball bearing

  6. Design and Analysis of a Novel Articulated Drive Mechanism for Multifunctional NOTES Robot. (United States)

    Shen, Tao; Nelson, Carl A; Warburton, Kevin; Oleynikov, Dmitry


    This paper presents a novel articulated drive mechanism (ADM) for a multifunctional natural orifice transluminal endoscopic surgery (NOTES) robotic manipulator. It consists mainly of three major components including a snakelike linkage, motor housing, and an arm connector. The ADM can articulate into complex shapes for improved access to surgical targets. A connector provides an efficient and convenient modularity for insertion and removal of the robot. Four DC motors guide eight cables to steer the robot. The workspace, cable displacement and force transmission relationships are derived. Experimental results give preliminary validation of the feasibility and capability of the ADM system.

  7. Predictors of driving under the influence of alcohol among Spanish adolescents. (United States)

    M J, Barlés Arizón; J J, Escario; J, Galbe Sánchez-Ventura


    This paper aims to examine the socio-economic determinants of alcohol-impaired drinking in Spanish adolescents. In particular, we are interested in analysing the impact of the family and school environment. To do it, we used the Spanish Survey on Drug Use in the School Population for the year 2008, carried out by the Spanish Government’s Delegation for the National Plan on Drugs. This survey with 30,183 students between 14 and 18 years of age (M = 15.6; SD = 1.17) constitutes a representative sample of the Spanish student population. Of these, 6.7% reported having driven under the influence of alcohol, this behaviour being more frequent among boys (10.6%) than girls (2.9%). Logistic regressions reveal that informative campaigns at school could significantly reduce the likelihood of alcohol-impaired driving (OR = 0.82), especially among males (OR = 0.73) and among younger students (OR = 0.66). Our results also suggest that although parents’ education has no significant impact, parent’s alcohol abuse increase notably the probability of driving after drinking (OR = 2.22 for mothers and OR = 2.81 for fathers).

  8. Adult activity and temperature preference drives region-wide damselfly (Zygoptera) distributions under a warming climate. (United States)

    Corser, Jeffrey D; White, Erin L; Schlesinger, Matthew D


    We analysed a recently completed statewide odonate Atlas using multivariate linear models. Within a phylogenetically explicit framework, we developed a suite of data-derived traits to assess the mechanistic distributional drivers of 59 species of damselflies in New York State (NYS). We found that length of the flight season (adult breeding activity period) mediated by thermal preference drives regional distributions at broad (10(5) km(2)) scales. Species that had longer adult flight periods, in conjunction with longer growing seasons, had significantly wider distributions. These intrinsic traits shape species' responses to changing climates and the mechanisms behind such range shifts are fitness-based metapopulation processes that adjust phenology to the prevailing habitat and climate regime through a photoperiod filter. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. Mechanisms underlying temperature extremes in Iberia: a Lagrangian perspective

    Directory of Open Access Journals (Sweden)

    João A. Santos


    Full Text Available The mechanisms underlying the occurrence of temperature extremes in Iberia are analysed considering a Lagrangian perspective of the atmospheric flow, using 6-hourly ERA-Interim reanalysis data for the years 1979–2012. Daily 2-m minimum temperatures below the 1st percentile and 2-m maximum temperatures above the 99th percentile at each grid point over Iberia are selected separately for winter and summer. Four categories of extremes are analysed using 10-d backward trajectories initialized at the extreme temperature grid points close to the surface: winter cold (WCE and warm extremes (WWE, and summer cold (SCE and warm extremes (SWE. Air masses leading to temperature extremes are first transported from the North Atlantic towards Europe for all categories. While there is a clear relation to large-scale circulation patterns in winter, the Iberian thermal low is important in summer. Along the trajectories, air mass characteristics are significantly modified through adiabatic warming (air parcel descent, upper-air radiative cooling and near-surface warming (surface heat fluxes and radiation. High residence times over continental areas, such as over northern-central Europe for WCE and, to a lesser extent, over Iberia for SWE, significantly enhance these air mass modifications. Near-surface diabatic warming is particularly striking for SWE. WCE and SWE are responsible for the most extreme conditions in a given year. For WWE and SCE, strong temperature advection associated with important meridional air mass transports are the main driving mechanisms, accompanied by comparatively minor changes in the air mass properties. These results permit a better understanding of mechanisms leading to temperature extremes in Iberia.

  10. Mechanisms Underlying HIV-Associated Noninfectious Lung Disease. (United States)

    Presti, Rachel M; Flores, Sonia C; Palmer, Brent E; Atkinson, Jeffrey J; Lesko, Catherine R; Lau, Bryan; Fontenot, Andrew P; Roman, Jesse; McDyer, John F; Twigg, Homer L


    Pulmonary disease remains a primary source of morbidity and mortality in persons living with HIV (PLWH), although the advent of potent combination antiretroviral therapy has resulted in a shift from predominantly infectious to noninfectious pulmonary complications. PLWH are at high risk for COPD, pulmonary hypertension, and lung cancer even in the era of combination antiretroviral therapy. The underlying mechanisms of this are incompletely understood, but recent research in both human and animal models suggests that oxidative stress, expression of matrix metalloproteinases, and genetic instability may result in lung damage, which predisposes PLWH to these conditions. Some of the factors that drive these processes include tobacco and other substance use, direct HIV infection and expression of specific HIV proteins, inflammation, and shifts in the microbiome toward pathogenic and opportunistic organisms. Further studies are needed to understand the relative importance of these factors to the development of lung disease in PLWH. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  11. Neural mechanisms underlying the induction and relief of perceptual curiosity

    Directory of Open Access Journals (Sweden)

    Marieke eJepma


    Full Text Available Curiosity is one of the most basic biological drives in both animals and humans, and has been identified as a key motive for learning and discovery. Despite the importance of curiosity and related behaviors, the topic has been largely neglected in human neuroscience; hence little is known about the neurobiological mechanisms underlying curiosity. We used functional magnetic resonance imaging (fMRI to investigate what happens in our brain during the induction and subsequent relief of perceptual curiosity. Our core findings were that (i the induction of perceptual curiosity, through the presentation of ambiguous visual input, activated the anterior insula and anterior cingulate cortex, brain regions sensitive to conflict and arousal; (ii the relief of perceptual curiosity, through visual disambiguation, activated regions of the striatum that have been related to reward processing; and (iii the relief of perceptual curiosity was associated with hippocampal activation and enhanced incidental memory. These findings provide the first demonstration of the neural basis of human perceptual curiosity. Our results provide neurobiological support for a classic psychological theory of curiosity, which holds that curiosity is an aversive condition of increased arousal whose termination is rewarding and facilitates memory.


    Directory of Open Access Journals (Sweden)

    E. I. Baida


    Full Text Available Introduction. In the last 10-15 years a dominant position in the market of medium voltage circuit breakers, vacuum circuit breakers have taken in which as an actuator mono- or bistable actuators with permanent magnets are used. Such circuit breakers are characterized by simplicity of design, high reliability, require preventive maintenance for many years. Development, research and improvement of vacuum circuit breakers are carried out at the Department for Electrical Apparatus, National Technical University «Kharkiv Polytechnic Institute». While working on the circuit breakers, developers have to deal with two related objectives – electrical and mechanical. This paper considers the solution of one of these problems – calculation of mechanical forces in the drive shaft of the vacuum circuit breaker in static and dynamic modes. This work was preceded by the failure of the results of measurements of the prototype circuit breakers’ contacts. Measurements have shown that these values do not match the expected values (there were less than the value of 0.8 to 1 mm. The assumption about the reasons for this discrepancy needed to be detailed checked. The results of the work done are presented in this paper. Purpose. Investigation of static and dynamic mechanical stresses and strains in the drive shaft of the vacuum circuit breaker mechanism to determine its characteristics and material selection. Methods. The investigation of mechanical processes is performed by the finite element method in the COMSOL software package. Results. We obtain the static and dynamic characteristics of the circuit breaker drive shaft: deformations, reaction forces, stresses. These characteristics made it possible to determine the actual course of the contacts, select shaft material and calculate the forces acting on the bearings. Conclusions. It is shown that the contact velocity and contact pressure are different from the theoretical value due to the deformation of the

  13. Conceptual Design Study on Electromagnets of Control Rod Drive Mechanism of a SFR

    International Nuclear Information System (INIS)

    Lee, Jaehan; Koo, Gyeonghoi


    The prototype SFR has six primary control rod assemblies(CRAs) and three secondary shutdown assemblies. The primary control system is used for power control, burnup compensation and reactor shutdown in response to demands from the plant control or protection systems. This paper describes the design concept of primary control rod drive mechanism shortly, and performs the parametric design studies for the electromagnet device of the drive mechanism to maximize CRA gripping force. The electromagnetic core usually confines and guides the magnetic field. The major parameters influenced on the electromagnetic force are the geometry and arrangement of the electromagnet and armature for a given coil specification. A typical equation calculating the electromagnetic force for a solenoid type is represented in equation. The first one is the increasing of the flux cross section area (Α c , Α g ) in magnetic field connecting of air gap, armature and electromagnets. Secondly, the reducing of the path lengths (l c , l g ) of the armature and electromagnet makes the magnetic flux (Β) resistance to be low. An electromagnet field analyses are performed for the initial design values of the electromagnet device. The gripping force is about 3 times of CRA weight when one coil is power on. The parametric studies on air gap, core sizes configuring of the electromagnet cores are performed to maximize the electromagnetic force

  14. Summary of the control-drive-mechanism design and performance for LWBR (LWBR Development Program)

    International Nuclear Information System (INIS)

    Yarnall, F.


    Control Drive Mechanisms (CDM) are used in the Light Water Breeder reactor to position Movable Fuel Assemblies weighing in excess of one ton each for purposes of reactivity control. These mechanisms are the first of a kind designed for loads of that magnitude. This report presents a summary of the design and performance of the CDM and includes discussions of the principles of operation, unique design features, and fabrication methods of this large, high load capacity CDM. The extensive design acceptance test program and the Shippingport plant periodic testing are summrized as are lessons learned during assembly of the CDM's to the reactor. These CDM's operated successfully to control the light water breeder core at the Shippingport Station from initial criticality in August 1977 to the final shutdown in October 1982. All test and operative data were within expected bands

  15. Epigenetic mechanisms underlying nervous system diseases. (United States)

    Qureshi, Irfan A; Mehler, Mark F


    Epigenetic mechanisms act as control systems for modulating genomic structure and activity in response to evolving profiles of cell-extrinsic, cell-cell, and cell-intrinsic signals. These dynamic processes are responsible for mediating cell- and tissue-specific gene expression and function and gene-gene and gene-environmental interactions. The major epigenetic mechanisms include DNA methylation and hydroxymethylation; histone protein posttranslational modifications, nucleosome remodeling/repositioning, and higher-order chromatin reorganization; noncoding RNA regulation; and RNA editing. These mechanisms are intimately involved in executing fundamental genomic programs, including gene transcription, posttranscriptional RNA processing and transport, translation, X-chromosome inactivation, genomic imprinting, retrotransposon regulation, DNA replication, and DNA repair and the maintenance of genomic stability. For the nervous system, epigenetics offers a novel and robust framework for explaining how brain development and aging occur, neural cellular diversity is generated, synaptic and neural network connectivity and plasticity are mediated, and complex cognitive and behavioral phenotypes are inherited transgenerationally. Epigenetic factors and processes are, not surprisingly, implicated in nervous system disease pathophysiology through several emerging paradigms - mutations and genetic variation in genes encoding epigenetic factors; impairments in epigenetic factor expression, localization, and function; epigenetic mechanisms modulating disease-associated factors and pathways; and the presence of deregulated epigenetic profiles in central and peripheral tissues. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Parental and offspring assessment of driving capability under the influence of drugs or alcohol: gender and inter-generational differences. (United States)

    Rosenbloom, Tova; Beigel, Ariela; Perlman, Amotz; Eldror, Ehud


    The current study set to examine whether there are inter-generational and gender-based differences between family members self-assessing their ability to drive under normal conditions and while under the influence of either alcohol or drugs. Participants were 135 young-adults and both their parents, consisting 45 family triads, who received self-assessment questionnaires relating to their driving skills in various road scenarios. Each family triad was randomly assigned to one of three groups: either requested to base the assessments on normal driving conditions, or under the influence of either drugs or alcohol, thus forming a control group, and two experimental groups (alcohol and drugs), respectively. The findings indicate the assessments of both the alcohol and drugs groups were more severe than those of the control group. The alcohol group assessments were less strict than the drug group assessment (non-significantly). Inter-generational differences indicated that the parents' driving-skills assessments were lower than those of their offspring, corresponding with previous findings (Elkind, 1967; Finn and Bragg, 1986). A significant within-subject interaction has been found between the respondent's gender and familial relations regarding the self-assessment of driving skills: male respondents assessed better driving skills compared to the self estimates of both parents (which did not significantly differ). In contrast, female respondents' estimates did not differ from their fathers' and both fathers' and daughters' estimates were significantly higher than that of the mothers in each family. 2010 Elsevier Ltd. All rights reserved.

  17. Neural Mechanisms Underlying Hyperphagia in Prader-Willi Syndrome (United States)

    Holsen, Laura M.; Zarcone, Jennifer R.; Brooks, William M.; Butler, Merlin G.; Thompson, Travis I.; Ahluwalia, Jasjit S.; Nollen, Nicole L.; Savage, Cary R.


    Objective Prader-Willi syndrome (PWS) is a genetic disorder associated with developmental delay, obesity, and obsessive behavior related to food consumption. The most striking symptom of PWS is hyperphagia; as such, PWS may provide important insights into factors leading to overeating and obesity in the general population. We used functional magnetic resonance imaging to study the neural mechanisms underlying responses to visual food stimuli, before and after eating, in individuals with PWS and a healthy weight control (HWC) group. Research Methods and Procedures Participants were scanned once before (pre-meal) and once after (post-meal) eating a standardized meal. Pictures of food, animals, and blurred control images were presented in a block design format during acquisition of functional magnetic resonance imaging data. Results Statistical contrasts in the HWC group showed greater activation to food pictures in the pre-meal condition compared with the post-meal condition in the amygdala, orbitofrontal cortex, medial prefrontal cortex (medial PFC), and frontal operculum. In comparison, the PWS group exhibited greater activation to food pictures in the post-meal condition compared with the pre-meal condition in the orbitofrontal cortex, medial PFC, insula, hippocampus, and parahippocampal gyrus. Between-group contrasts in the pre- and post-meal conditions confirmed group differences, with the PWS group showing greater activation than the HWC group after the meal in food motivation networks. Discussion Results point to distinct neural mechanisms associated with hyperphagia in PWS. After eating a meal, the PWS group showed hyperfunction in limbic and para-limbic regions that drive eating behavior (e.g., the amygdala) and in regions that suppress food intake (e.g., the medial PFC). PMID:16861608

  18. Neural mechanisms underlying hyperphagia in Prader-Willi syndrome. (United States)

    Holsen, Laura M; Zarcone, Jennifer R; Brooks, William M; Butler, Merlin G; Thompson, Travis I; Ahluwalia, Jasjit S; Nollen, Nicole L; Savage, Cary R


    Prader-Willi syndrome (PWS) is a genetic disorder associated with developmental delay, obesity, and obsessive behavior related to food consumption. The most striking symptom of PWS is hyperphagia; as such, PWS may provide important insights into factors leading to overeating and obesity in the general population. We used functional magnetic resonance imaging to study the neural mechanisms underlying responses to visual food stimuli, before and after eating, in individuals with PWS and a healthy weight control (HWC) group. Participants were scanned once before (pre-meal) and once after (post-meal) eating a standardized meal. Pictures of food, animals, and blurred control images were presented in a block design format during acquisition of functional magnetic resonance imaging data. Statistical contrasts in the HWC group showed greater activation to food pictures in the pre-meal condition compared with the post-meal condition in the amygdala, orbitofrontal cortex, medial prefrontal cortex (medial PFC), and frontal operculum. In comparison, the PWS group exhibited greater activation to food pictures in the post-meal condition compared with the pre-meal condition in the orbitofrontal cortex, medial PFC, insula, hippocampus, and parahippocampal gyrus. Between-group contrasts in the pre- and post-meal conditions confirmed group differences, with the PWS group showing greater activation than the HWC group after the meal in food motivation networks. Results point to distinct neural mechanisms associated with hyperphagia in PWS. After eating a meal, the PWS group showed hyperfunction in limbic and paralimbic regions that drive eating behavior (e.g., the amygdala) and in regions that suppress food intake (e.g., the medial PFC).

  19. Design of Seismic Test Rig for Control Rod Drive Mechanism of Jordan Research and Training Reactor

    International Nuclear Information System (INIS)

    Sun, Jongoh; Kim, Gyeongho; Yoo, Yeonsik; Cho, Yeonggarp; Kim, Jong In


    The reactor assembly is submerged in a reactor pool filled with water and its reactivity is controlled by locations of four control absorber rods(CARs) inside the reactor assembly. Each CAR is driven by a stepping motor installed at the top of the reactor pool and they are connected to each other by a tie rod and an electromagnet. The CARs scram the reactor by de-energizing the electromagnet in the event of a safe shutdown earthquake(SSE). Therefore, the safety function of the control rod drive mechanism(CRDM) which consists of a drive assembly, tie rod and CARs is to drop the CAR into the core within an appropriate time in case of the SSE. As well known, the operability for complex equipment such as the CRDM during an earthquake is very hard to be demonstrated by analysis and should be verified through tests. One of them simulates the reactor assembly and the guide tube of the CAR, and the other one does the pool wall where the drive assembly is installed. In this paper, design of the latter test rig and how the test is performed are presented. Initial design of the seismic test rig and excitation table had its first natural frequency at 16.3Hz and could not represent the environment where the CRDM was installed. Therefore, experimental modal analyses were performed and an FE model for the test rig and table was obtained and tuned based on the experimental results. Using the FE model, the design of the test rig and table was modified in order to have higher natural frequency than the cutoff frequency. The goal was achieved by changing its center of gravity and the stiffness of its sliding bearings

  20. An investigation into the mechanism underlying enhanced ...

    African Journals Online (AJOL)

    The solubilisation of primary sewage sludge under sulphate reducing conditions was conducted in controlled flask studies and previously reported findings of enhanced hydrolysis were confirmed. The maximum percentage solubilisation obtained in this study over a 10-day period was 31% and 64% for the methanogenic ...

  1. Supersymmetric quantum mechanics under point singularities

    International Nuclear Information System (INIS)

    Uchino, Takashi; Tsutsui, Izumi


    We provide a systematic study on the possibility of supersymmetry (SUSY) for one-dimensional quantum mechanical systems consisting of a pair of lines R or intervals [-l, l] each having a point singularity. We consider the most general singularities and walls (boundaries) at x = ±l admitted quantum mechanically, using a U(2) family of parameters to specify one singularity and similarly a U(1) family of parameters to specify one wall. With these parameter freedoms, we find that for a certain subfamily the line systems acquire an N = 1 SUSY which can be enhanced to N = 4 if the parameters are further tuned, and that these SUSY are generically broken except for a special case. The interval systems, on the other hand, can accommodate N = 2 or N = 4 SUSY, broken or unbroken, and exhibit a rich variety of (degenerate) spectra. Our SUSY systems include the familiar SUSY systems with the Dirac δ(x)-potential, and hence are extensions of the known SUSY quantum mechanics to those with general point singularities and walls. The self-adjointness of the supercharge in relation to the self-adjointness of the Hamiltonian is also discussed

  2. The evolution of mechanisms driving the stomatal response to vapor pressure deficit. (United States)

    McAdam, Scott A M; Brodribb, Timothy J


    Stomatal responses to vapor pressure deficit (VPD) are a principal means by which vascular land plants regulate daytime transpiration. While much work has focused on characterizing and modeling this response, there remains no consensus as to the mechanism that drives it. Explanations range from passive regulation by leaf hydration to biochemical regulation by the phytohormone abscisic acid (ABA). We monitored ABA levels, leaf gas exchange, and water status in a diversity of vascular land plants exposed to a symmetrical, mild transition in VPD. The stomata in basal lineages of vascular plants, including gymnosperms, appeared to respond passively to changes in leaf water status induced by VPD perturbation, with minimal changes in foliar ABA levels and no hysteresis in stomatal action. In contrast, foliar ABA appeared to drive the stomatal response to VPD in our angiosperm samples. Increased foliar ABA level at high VPD in angiosperm species resulted in hysteresis in the recovery of stomatal conductance; this was most pronounced in herbaceous species. Increased levels of ABA in the leaf epidermis were found to originate from sites of synthesis in other parts of the leaf rather than from the guard cells themselves. The transition from a passive regulation to ABA regulation of the stomatal response to VPD in the earliest angiosperms is likely to have had critical implications for the ecological success of this lineage. © 2015 American Society of Plant Biologists. All Rights Reserved.

  3. The Evolution of Mechanisms Driving the Stomatal Response to Vapor Pressure Deficit1[OPEN (United States)

    McAdam, Scott A.M.; Brodribb, Timothy J.


    Stomatal responses to vapor pressure deficit (VPD) are a principal means by which vascular land plants regulate daytime transpiration. While much work has focused on characterizing and modeling this response, there remains no consensus as to the mechanism that drives it. Explanations range from passive regulation by leaf hydration to biochemical regulation by the phytohormone abscisic acid (ABA). We monitored ABA levels, leaf gas exchange, and water status in a diversity of vascular land plants exposed to a symmetrical, mild transition in VPD. The stomata in basal lineages of vascular plants, including gymnosperms, appeared to respond passively to changes in leaf water status induced by VPD perturbation, with minimal changes in foliar ABA levels and no hysteresis in stomatal action. In contrast, foliar ABA appeared to drive the stomatal response to VPD in our angiosperm samples. Increased foliar ABA level at high VPD in angiosperm species resulted in hysteresis in the recovery of stomatal conductance; this was most pronounced in herbaceous species. Increased levels of ABA in the leaf epidermis were found to originate from sites of synthesis in other parts of the leaf rather than from the guard cells themselves. The transition from a passive regulation to ABA regulation of the stomatal response to VPD in the earliest angiosperms is likely to have had critical implications for the ecological success of this lineage. PMID:25637454

  4. Research on the electromagnetic structure of movable coil electromagnet drive mechanism for reactor control rod

    International Nuclear Information System (INIS)

    Zhang Jige; Yian Huijie; Wu Yuanqiang; Wu Xinxin; Yu Suyuan; He Shuyan


    The movable coil electromagnet drive mechanism (MCEDM) is a new drive scheme for the reactor control rod, and it has a simple structure, good security and reliability property, etc. MCEDM with an air cooled structure has been used in the land research reactor. In order to apply MCEDM to the mobile reactor, experimental and theoretical study on the electromagnet with an oil-water cooled structure and a single magnetic flux circuit (called the type A electro-magnet) has been completed. It is proven by the experiment and theory that the oil-water cooled structure is an excellent measure to increase the coil current of MCEDM. Moreover, a type B electromagnet with an oil-water cooled structure and double magnetic flux circuits is designed to further increase the magnetic force of MCEDM. The analysis of finite element method shows that the type B electromagnet could double the saturation current of type A electro-magnet and the magnetic force of type B electromagnet is greater than that of the type A electromagnet. Moreover, it is proven that the dynamic property of type B electromagnet is better than type A electromagnet. (author)

  5. Polymers under mechanical stress- an NMR investigation

    Energy Technology Data Exchange (ETDEWEB)

    Boehme, Ute; Scheler, Ulrich [Leibniz Institute of Polymer Research Dresden (Germany); Xu, Bo; Leisen, Johannes; Beckham, Haskell W. [Georgia Institute of Technology, Atlanta, Georgia (United States)


    Low-field NMR using permanent magnets in Halbach arrangements permit NMR investigation without the limits present in high-field NMR. The lower field in conjunction with confined stray field permit the application of NMR, in particular relaxation NMR in a stretching apparatus and a rheometer. Crystalline and amorphous fraction of semi-crystalline polymers are distinguished by their transverse relaxation times. Upon mechanical load the relaxation times of the amorphous fraction changes as seen in in-situ measurements on polypropylene rods. During the formation of a neck the crystalline fraction becomes more prominent.

  6. Mechanisms Underlying Sex Differences in Cannabis Use. (United States)

    Calakos, Katina C; Bhatt, Shivani; Foster, Dawn W; Cosgrove, Kelly P


    Cannabis is the most commonly used illicit substance worldwide. In recent decades, highly concentrated products have flooded the market, and prevalence rates have increased. Gender differences exist in cannabis use, as men have higher prevalence of both cannabis use and cannabis use disorder (CUD), while women progress more rapidly from first use to CUD. This paper reviews findings from preclinical and human studies examining the sex-specific neurobiological underpinnings of cannabis use and CUD, and associations with psychiatric symptoms. Sex differences exist in the endocannabinoid system, in cannabis exposure effects on brain structure and function, and in the co-occurrence of cannabis use with symptoms of anxiety, depression and schizophrenia. In female cannabis users, anxiety symptoms correlate with larger amygdala volume and social anxiety disorder symptoms correlate with CUD symptoms. Female cannabis users are reported to be especially vulnerable to earlier onset of schizophrenia, and mixed trends emerge in the correlation of depressive symptoms with cannabis exposure in females and males. As prevalence of cannabis use may continue to increase given the shifting policy landscape regarding marijuana laws, understanding the neurobiological mechanisms of cannabis exposure in females and males is key. Examining these mechanisms may help inform future research on sex-specific pharmacological and behavioral interventions for women and men with high-risk cannabis use, comorbid psychiatric disease, and CUD.

  7. Habitats under Mechanical and Herbicide Management Regimes

    Directory of Open Access Journals (Sweden)

    Wendy-Ann P. Isaac


    Full Text Available Commelina diffusa is a colonising species of banana orchard habitats in St. Vincent in the Windward Islands of the Caribbean. In the present study, the population dynamics of C. diffusa were investigated in response to mechanical weed management with either a rotary string trimmer or glufosinate in ruderal and banana habitats. The study focused on density and size distribution of the weed over time and their response to two weed management strategies. The population dynamics of C. diffusa differed between the two habitats. Seedling establishment appeared to be an important factor influencing the dynamics of C. diffusa in banana orchards as there was little recruitment of seeds with less flower production compared with ruderal habitats where plants produced more flowers. Plants of C. diffusa in the banana orchard habitat had a longer growth cycle. In the banana orchard habitat, the C. diffusa population was greater and the plants were shorter with mechanical management than in areas treated with glufosinate. The results suggest that it is possible to manipulate the dynamics of C. diffusa in banana orchards as there is less chance of seed recruitment. Further research is necessary to refine an IPM approach for the management of C. diffusa.

  8. An Optimal Design of Driving Mechanism in a 1 Degree of Freedom (d.o.f. Anthropomorphic Finger

    Directory of Open Access Journals (Sweden)

    M. Ceccarelli


    Full Text Available Mechanisms can be used in finger design to obtain suitable actuation systems and to give stiff robust behavior in grasping tasks. The design of driving mechanisms for fingers has been attached at LARM in Cassino with the aim to obtain one degree of freedom actuation for an anthropomorphic finger. The dimensional design of a finger-driving mechanism has been formulated as a multi-objective optimization problem by using evaluation criteria for fundamental characteristics regarding with finger motion, grasping equilibrium and force transmission. The feasibility of the herein proposed optimum design procedure for a finger-driving mechanism has been tested by numerical examples that have been also used to enhance a prototype previously built at LARM in Cassino.

  9. Design of control and safety rod and its drive mechanism of PFBR

    International Nuclear Information System (INIS)

    Rajan Babu, V.; Govindarajan, S.; Chetal, S.C.


    Control and Safety Rod (CSR) is one of the two types of absorber rods in shutdown systems of PFBR. Control and Safety Rod Drive Mechanism (CSRDM) actuates CSR to have vertical translatory motion in reactor core. The dual responsibilities entrusted on CSR to control reactor power during normal operating condition and to shutdown the reactor by scram action during abnormal condition, necessitate highly reliable design, analysis, testing and surveillance of CSR and CSRDM. The paper discusses on the salient features of CSR and CSRDM and design and analysis of individual sub-assemblies, viz., gripper, scram-release electromagnet, hydraulic dash pot, seals. Also it discusses on the developmental activities proposed and surveillance test requirements. (author)


    International Nuclear Information System (INIS)



    OAK-B135 Thin glow discharge polymer (GDP) shells are currently used as the targets for cryogenic direct drive laser fusion experiments. These shells need to be filled with nearly 1000 atm of D 2 and cooled to cryogenic temperatures without failing due to buckling and bursting pressures they experience in this process. Therefore, the mechanical and permeation properties of these shells are of utmost importance in successful and rapid filling with D 2 . In this paper, they present an overview of buckle and burst pressures of several different types of GDP shells. These include those made using traditional GDP deposition parameters (standard GDP) using a high deposition pressure and using modified parameters (strong GDP) of low deposition pressure that leads to more robust shells

  11. A Review of Tribological Coatings for Control Drive Mechanisms in Space Reactors

    International Nuclear Information System (INIS)

    CJ Larkin; JD Edington; BJ Close


    Tribological coatings must provide lubrication for moving components of the control drive mechanism for a space reactor and prevent seizing due to friction or diffusion welding to provide highly reliable and precise control of reflector position over the mission lifetime. Several coatings were evaluated based on tribological performance at elevated temperatures and in ultrahigh vacuum environments. Candidates with proven performance in the anticipated environment are limited primarily to disulfide materials. Irradiation data for these coatings is nonexistent. Compatibility issues between coating materials and structural components may require the use of barrier layers between the solid lubricant and structural components to prevent deleterious interactions. It would be advisable to consider possible lubricant interactions prior to down-selection of structural materials. A battery of tests was proposed to provide the necessary data for eventual solid lubricant/coating selection

  12. Polymide composite evaluated as a candidate for a traction drive mechanism for space use (United States)

    Sato, Tomoyuki; Nishimura, Makoto; Mizumoto, Muneo; Koseki, Humio; Ezawa, Naoya; Umemoto, Noboru

    To investigate the possibility of applying polymers in a traction drive mechanism for use in space, 16 polyimide composites were evaluated in vacuum and the results compared with similar results for two types of steel. A rolling-sliding friction apparatus with two cylindrical rollers was used in these experiments. Three combinations of materials were tested: polyimide/stainless steel (SUS440C), stainless steel (SUS440C)/stainless steel (SUS440C), and nitriding steel (SACM645)/nitriding steel (SACM645). While there was variation in the wearing rates of the polyimides, the maximum traction coefficients were all 0.15 or less. These results show that the polyimide/steel combination can be used for transmitting rotation, but not for transmitting power.

  13. The test for electromagnet of control element drive mechanism for SMART

    International Nuclear Information System (INIS)

    Cho, D. H.; Jeong, K. S.; Kim, J. H.; Hur, H.; Kim, J. I.


    The electromagnet installed in the ball-screw type control element drive mechanism for SMART is the necessary parts for quick insertion of the control element into the core on scram state. The electromagnet is the state holding on to the moving parts by electromagnet force during normal operation, but on the scram situation, the moving parts are quickly inserted by gravity force by turning off the power supplied to the electromagnet. In this paper, by the pre-making part test of the electromagnet the electromagnet thrust forces by the air gap between anchors, the size of current density supplied and the circumferential fluid temperature are obtained. The results by this test are compared with those by the finite element analysis. The test results can be used as a reference data for electromagnet design

  14. Study on electromagnetism force of CARR control rod drive mechanism experimental machine

    International Nuclear Information System (INIS)

    Zhu Xuewei; Zhen Jianxiao; Wang Yulin; Jia Yueguang; Yang Kun; Yin Haozhe


    With the aim of acquiring electromagnetic force and electromagnetic field distributions of control rod drive mechanism (CRDM) in China Advanced Research Reactor (CARR), the force analysis on the CRDM was taken. Manufacturing the experimental machine, the electromagnetic force experiment was taken on it. The electromagnetic field and electromagnetic force simulation analyses of experimental machine were taken, working out distribution data of electromagnetic force and magnetic induction intensity distribution curve, and the effects of permanent magnetic field on electromagnetic field and structure parameters on electromagnetic force. The simulation value is accord with experiment value, the research results provide a reference to electromagnetic force study on CRDM in CARR, and also provide a reference to design of the same type CRDM. (authors)

  15. Electromagnetic and thermal analysis of electromagnet for SMART control element drive mechanism

    International Nuclear Information System (INIS)

    Huh, H.; Kim, J. H.; Park, J. S.; Kim, Y. W.; Kim, J. I.


    A numerical electromagnetic and thermal analysis was performed for the electromagnet which is installed in the control element drive mechanism(CEDM) of the integral reactor SMART. A model for the electromagnetic analysis of the electromagnet was developed and theoretical bases for the model were established. Design parameters related to thrust force were identified, and the optimum design point was determined by analyzing the trend of the magnetic saturation with finite element method. Also It is important that the temperature of the electomagnet windings be maintained within the allowable limit of the insulation, since the electromagnet of CEDM is always supplied with current during the reactor operation. So the thermal analysis of the winding insulation which is composed of polyimide and air were performed by finite element method. The electromagnetic and thermal properties obtained here will be used as input for the optimization analysis of the electromagnet

  16. A Review of Tribological Coatings for Control Drive Mechanisms in Space Reactors

    Energy Technology Data Exchange (ETDEWEB)

    CJ Larkin; JD Edington; BJ Close


    Tribological coatings must provide lubrication for moving components of the control drive mechanism for a space reactor and prevent seizing due to friction or diffusion welding to provide highly reliable and precise control of reflector position over the mission lifetime. Several coatings were evaluated based on tribological performance at elevated temperatures and in ultrahigh vacuum environments. Candidates with proven performance in the anticipated environment are limited primarily to disulfide materials. Irradiation data for these coatings is nonexistent. Compatibility issues between coating materials and structural components may require the use of barrier layers between the solid lubricant and structural components to prevent deleterious interactions. It would be advisable to consider possible lubricant interactions prior to down-selection of structural materials. A battery of tests was proposed to provide the necessary data for eventual solid lubricant/coating selection.

  17. Physical and chemical mechanisms underlying hematoma evolution

    International Nuclear Information System (INIS)

    Cho, K.J.; Fanders, B.L.; Smid, A.R.; McLaughlin, P.


    Angiostat, a new collagen embolic material supplied at a concentration of 35 mg/ml (Target Therapeutics, Los Angeles) was used for flow-directed hepatic artery embolization in a series of rabbits to examine its acute effects on hepatic microcirculation. Arteriograms were obtained both before and after embolization. The aorta and portal vein were perfused with two different colors of Microfil after the animals were killed,. Cleared liver specimens were examined under a dissection microscope. Extent of dearterialization, status of portal sinusoidal perfusion, and collateral formation after embolization with Angiostat were evaluated. Results will be compared with results achieved using other liquid and particulate embolic agents

  18. Environmental genotoxicity: Probing the underlying mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Shugart, L. [Oak Ridge National Lab., TN (United States); Theodorakis, C. [Tennessee Univ., Knoxville, TN (United States)


    Environmental pollution is a complex issue because of the diversity of anthropogenic agents, both chemical and physical, that have been detected and catalogued. The consequences to biota from exposure to genotoxic agents present an additional problem because of the potential for these agents to produce adverse change at the cellular and organismal levels. Past studies in genetic toxicology at the Oak Ridge National Laboratory have focused on structural damage to the DNA of environmental species that may occur after exposure to genotoxic agents and the use of this information to document exposure and to monitor remediation. In an effort to predict effects at the population, community and ecosystem levels, current studies in genetic ecotoxicology are attempting to characterize the biological mechanisms at the gene level that regulate and limit the response of an individual organism to genotoxic factors in their environment.

  19. Development and design of control rod drive mechanisms for pressurized water reactors

    International Nuclear Information System (INIS)

    Leme, Francisco Louzano


    The Control Rod Drive Mechanisms (CRDM) for a Pressurized Water Reactor (PWR) are equipment, integrated to the reactor pressure vessel, incorporating mechanical and electrical components designed to move and position the control rods to guarantee the control of power and shutdown of the nuclear reactor, during normal operation, either in emergency or accidental situations. The type of CRDM used in PWR reactors, whose detailed individual description will be presented in this monograph are the Roller-Nut and Magnetic-Jack. The environment, where the CRDM performs its above presented operational functions, includes direct contact with the fluid used as coolant peculiar to the interior of the reactor, and its associated chemical characteristics, the radiation field next to the reactor core, and also the temperature and pressure in the reactor pressure vessel. So the importance of the CRDM design requirements related to its safety functions are emphasized. Finally, some aspects related to the mechanical and structural design of CRDM of a case study, considering the CRDM for a PWR from the experimental nuclear plant to be applied by CTMSP (Centro Tecnologico da Marinha em Sao Paulo), are pointed out. The design and development of these equipment (author)

  20. Determination on Damage Mechanism of the Planet Gear of Heavy Vehicle Final Drive (United States)

    Ramdan, RD; Setiawan, R.; Sasmita, F.; Suratman, R.; Taufiqulloh


    The works focus on the investigation of damage mechanism of fractured in the form of spalling of the planet gears from the final drive assembly of 160-ton heavy vehicles. The objective of this work is to clearly understand the mechanism of damage. The work is the first stage of the on-going research on the remaining life estimation of such gears. The understanding of the damage mechanism is critical in order to provide accurate estimate of the gear’s remaining life with observed initial damage. The analysis was performed based on the metallurgy laboratory works, including visual observation, macro-micro fractography by optical stereo and optical microscope and micro-vickers hardness test. From visual observation it was observed pitting that form lining defect at common position, which is at gear flank position. From spalling sample it was observed ratchet mark at the boundary between macro pitting and the edge of fractured parts. Further observation on the cross-section of the samples by optical microscope confirm that initial micro pitting occur without spalling of the case hardened surface. Spalling occur when pitting achieve certain critical size, and occur at multiple initiation site of crack propagation. From the present research it was concluded that pitting was resulted due to repeated contact fatigue. In addition, development of micro to macro pitting as well as spalling occur at certain direction towards the top of the gear teeth.

  1. A State-by-State Analysis of Laws Dealing With Driving Under the Influence of Drugs (United States)


    This study reviewed each State statute regarding drug-impaired driving as of December 2008. There : is a high degree of variability across the States in the ways they approach drug-impaired driving. : Current laws in many States contain provisions ma...

  2. Reconstruction of the drive underlying food intake and its control by leptin and dieting

    NARCIS (Netherlands)

    Grasman, J.


    The intake of food and the expenditure of calories is modelled by a system of differential equations. The state variables are the amount of calories stored in adipose tissue and the level of plasma leptin. The model has as input a drive that controls the intake of food. This drive consists of a

  3. Physiological mechanisms underlying animal social behaviour. (United States)

    Seebacher, Frank; Krause, Jens


    Many species of animal live in groups, and the group represents the organizational level within which ecological and evolutionary processes occur. Understanding these processes, therefore, relies on knowledge of the mechanisms that permit or constrain group formation. We suggest that physiological capacities and differences in physiology between individuals modify fission-fusion dynamics. Differences between individuals in locomotor capacity and metabolism may lead to fission of groups and sorting of individuals into groups with similar physiological phenotypes. Environmental impacts such as hypoxia can influence maximum group sizes and structure in fish schools by altering access to oxygenated water. The nutritional environment determines group cohesion, and the increase in information collected by the group means that individuals should rely more on social information and form more cohesive groups in uncertain environments. Changing environmental contexts require rapid responses by individuals to maintain group coordination, which are mediated by neuroendocrine signalling systems such as nonapeptides and steroid hormones. Brain processing capacity may constrain social complexity by limiting information processing. Failure to evaluate socially relevant information correctly limits social interactions, which is seen, for example, in autism. Hence, functioning of a group relies to a large extent on the perception and appropriate processing of signals from conspecifics. Many if not all physiological systems are mechanistically linked, and therefore have synergistic effects on social behaviour. A challenge for the future lies in understanding these interactive effects, which will improve understanding of group dynamics, particularly in changing environments.This article is part of the themed issue 'Physiological determinants of social behaviour in animals'. © 2017 The Author(s).

  4. Testing and qualification of Control and Safety Rod and its drive mechanism of Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Rajan Babu, V.; Veerasamy, R.; Patri, Sudheer; Ignatius Sundar Raj, S.; Kumar Krovvidi, S.C.S.P.; Dash, S.K.; Meikandamurthy, C.; Rajan, K.K.; Puthiyavinayagam, P.; Chellapandi, P.; Vaidyanathan, G.; Chetal, S.C.


    Prototype Fast Breeder Reactor (PFBR) has two independent fast acting diverse shutdown systems. The absorber rod of the first system is called Control and Safety Rod (CSR). CSR and its Drive Mechanism (CSRDM) are used for reactor control and for safe shutdown of the reactor by scram action. In view of the safety role, the qualification of CSRDM is one of the important requirements. CSR and CSRDM were qualified in two stages by extensive testing. In the first stage, the critical subassemblies of the mechanism, such as scram release electromagnet, hydraulic dashpot and dynamic seals and CSR subassembly, were tested and qualified individually simulating the operating conditions of the reactor. Experiments were also carried out on sodium vapour deposition in the annular gaps between the stationary and mobile parts of the mechanism. In the second stage, full-scale CSRDM and CSR were subjected to all the integrated functional tests in air, hot argon and subsequently in sodium simulating the operating conditions of the reactor and finally subjected to endurance tests. Since the damage occurring in CSRDM and CSR is mainly due to fatigue cycles during scram actions, the number of test cycles was decided based on the guidelines given in ASME, Section III, Div. 1. The results show that the performance of CSRDM and CSR is satisfactory. Subsequent to the testing in sodium, the assemblies having contact with liquid sodium/sodium vapour were cleaned using CO 2 process and the total cleaning process has been established, so that the mechanism can be reused in sodium. The various stages of qualification programmes have raised the confidence level on the performance of the system as a whole for the intended and reliable operation in the reactor.

  5. Electric drives

    CERN Document Server

    Boldea, Ion


    ENERGY CONVERSION IN ELECTRIC DRIVESElectric Drives: A DefinitionApplication Range of Electric DrivesEnergy Savings Pay Off RapidlyGlobal Energy Savings Through PEC DrivesMotor/Mechanical Load MatchMotion/Time Profile MatchLoad Dynamics and StabilityMultiquadrant OperationPerformance IndexesProblemsELECTRIC MOTORS FOR DRIVESElectric Drives: A Typical ConfigurationElectric Motors for DrivesDC Brush MotorsConventional AC MotorsPower Electronic Converter Dependent MotorsEnergy Conversion in Electric Motors/GeneratorsPOWER ELECTRONIC CONVERTERS (PECs) FOR DRIVESPower Electronic Switches (PESs)The

  6. Mechanisms driving local breast cancer recurrence in a model of breast-conserving surgery.

    LENUS (Irish Health Repository)

    Smith, Myles J


    OBJECTIVE: We aimed to identify mechanisms driving local recurrence in a model of breast-conserving surgery (BCS) for breast cancer. BACKGROUND: Breast cancer recurrence after BCS remains a clinically significant, but poorly understood problem. We have previously reported that recurrent colorectal tumours demonstrate altered growth dynamics, increased metastatic burden and resistance to apoptosis, mediated by upregulation of phosphoinositide-3-kinase\\/Akt (PI3K\\/Akt). We investigated whether similar characteristics were evident in a model of locally recurrent breast cancer. METHODS: Tumours were generated by orthotopic inoculation of 4T1 cells in two groups of female Balb\\/c mice and cytoreductive surgery performed when mean tumour size was above 150 mm(3). Local recurrence was observed and gene expression was examined using Affymetrix GeneChips in primary and recurrent tumours. Differential expression was confirmed with quantitative real-time polymerase chain reaction (qRT-PCR). Phosphorylation of Akt was assessed using Western immunoblotting. An ex vivo heat shock protein (HSP)-loaded dendritic cell vaccine was administered in the perioperative period. RESULTS: We observed a significant difference in the recurrent 4T1 tumour volume and growth rate (p < 0.05). Gene expression studies suggested roles for the PI3K\\/Akt system and local immunosuppression driving the altered growth kinetics. We demonstrated that perioperative vaccination with an ex vivo HSP-loaded dendritic cell vaccine abrogated recurrent tumour growth in vivo (p = 0.003 at day 15). CONCLUSION: Investigating therapies which target tumour survival pathways such as PI3K\\/Akt and boost immune surveillance in the perioperative period may be useful adjuncts to contemporary breast cancer treatment.

  7. Fuzzy Diagnostic System for Oleo-Pneumatic Drive Mechanism of High-Voltage Circuit Breakers

    Directory of Open Access Journals (Sweden)

    Viorel Nicolau


    Full Text Available Many oil-based high-voltage circuit breakers are still in use in national power networks of developing countries, like those in Eastern Europe. Changing these breakers with new more reliable ones is not an easy task, due to their implementing costs. The acting device, called oleo-pneumatic mechanism (MOP, presents the highest fault rate from all components of circuit breaker. Therefore, online predictive diagnosis and early detection of the MOP fault tendencies are very important for their good functioning state. In this paper, fuzzy logic approach is used for the diagnosis of MOP-type drive mechanisms. Expert rules are generated to estimate the MOP functioning state, and a fuzzy system is proposed for predictive diagnosis. The fuzzy inputs give information about the number of starts and time of functioning per hour, in terms of short-term components, and their mean values. Several fuzzy systems were generated, using different sets of membership functions and rule bases, and their output performances are studied. Simulation results are presented based on an input data set, which contains hourly records of operating points for a time horizon of five years. The fuzzy systems work well, making an early detection of the MOP fault tendencies.

  8. A Modified Model Reference Adaptive Control for a Single Motor of Latch Type Control Element Drive Mechanism

    International Nuclear Information System (INIS)

    Park, Bae Jeong


    A modified Model Reference Adaptive Control (MRAC) for a single motor of latch type Control Element Drive Mechanism (CEDM) is described herein. The CEDM has complicated dynamic characteristics including electrical, mechanical, and magnetic effects. The previous control system has utilized a Proportional-Integral (PI) controller, and the control performance is limited according to nonlinear dynamic characteristics and environmental conditions. The modified MRAC using system identification (ID) technique improves the control performance in the operating condition such as model parameter variation and environmental condition change. The modified MRAC using the identified reference model with feed-forward gain and 180Hz noise reduction filter presents better performance under normal and/or abnormal condition. The simplified reference model can make H/W implementation more practical on the viewpoint of less computation and good performance. Actually, the CEDM controller shall be capable of controlling 101 control element assemblies (CEAs) individually in the nuclear power plant. Because the load conditions and the environmental condition around the 101 CEAs are all different minutely, the proposed modified MRAC can be a good practice. The modified MRAC controller will be applied in the real nuclear power plant later and this will overcome some weak point of PI controller

  9. Design, Fabrication, and Characteristic Experiment of a Hybrid Electromagnet for Bottom-mounted Control Rod Drive Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Hyung; Lee, Jin-Haeng; Yoo, Yeon-Sik; Cho, Yeong-Garp; Ryu, Jeong-Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    A control rod drive mechanism (CRDM) is located in the reactor pool top (Top-mounted) or a reactivity control mechanism room under the reactor pool bottom (Bottom-mounted). The function of the CRDM is to insert, withdraw, or maintain neutron absorbing material at any required position in the reactor core in order to keep reactivity control of the core. There are so many kinds of CRDMs, such as magnetic-jack type, hydraulic type, rack and pinion type, chain type, and linear or rotary step motor and so on. As a part of a new project, we have completed the design, fabrication, and characteristic experiment of the prototype bottom-mounted CRDM (BMCRDM). The measured carrying capacity of proto-type hybrid electromagnet is approximately 2.8 (kgf) larger than that of 3D-FEM result. The major reasons of the disagreement between the measured and calculated results are as follows. A. B-H Curve differences of ferromagnetic materials B. Fabrication tolerance and the measured maximum temperature at the center of winding for proto-type hybrid electromagnet, 106 .deg. C, appeared to be 5 .deg. C higher than the analytical result. The major reasons of the disagreement between the measured and calculated results are as follows. A. Difficult for exact modeling of winding including impregnated epoxy, coil insulator, and isolator.

  10. Mechanisms driving the seasonality of catchment scale nitrate export: Evidence for riparian ecohydrologic controls (United States)

    Duncan, Jonathan M.; Band, Lawrence E.; Groffman, Peter M.; Bernhardt, Emily S.


    Considerable variability in the seasonal patterns of stream water nitrate (NO3-) has been observed in forested watersheds throughout the world. While many forested headwater catchments exhibit winter and early spring peaks in NO3- concentrations, several watersheds have peak concentrations during the summer months. Pond Branch, a headwater catchment in Maryland monitored for over 10 years, exhibits recurrent and broad summer peaks in both NO3- concentrations and watershed export. Higher NO3- export from June to September is particularly surprising, given that these summer months typically have the year's lowest discharge. A key challenge is identifying the source(s) of NO3- and the mechanism(s) by which it is transported to the watershed outlet during the summer. In this study, we assessed multiple hypotheses (not mutually exclusive) that could account for the seasonal trend including proximal controls of groundwater-surface water interactions, instream processes, and riparian groundwater-N cycling interactions, as well as two distal controls: geochemical weathering and senescence of riparian vegetation. A combination of long-term weekly and limited duration high-frequency sensor data reveals the importance of riparian ecohydrologic processes during base flow. In this watershed, patterns of seasonal stream water NO3- concentrations and fluxes depend fundamentally on interactions between groundwater dynamics and nitrogen (N) cycling in the riparian zone. Groundwater tables control nitrification-denitrification dynamics as well as hydrologic transport. Our results suggest that in many watersheds, a more sophisticated exploration of NO3- production and NO3- transport mechanisms is required to identify critical points in the landscape and over time that disproportionately drive patterns of watershed NO3- export.

  11. Potential Mechanisms Driving Population Variation in Spatial Memory and the Hippocampus in Food-caching Chickadees. (United States)

    Croston, Rebecca; Branch, Carrie L; Kozlovsky, Dovid Y; Roth, Timothy C; LaDage, Lara D; Freas, Cody A; Pravosudov, Vladimir V


    Harsh environments and severe winters have been hypothesized to favor improvement of the cognitive abilities necessary for successful foraging. Geographic variation in winter climate, then, is likely associated with differences in selection pressures on cognitive ability, which could lead to evolutionary changes in cognition and its neural mechanisms, assuming that variation in these traits is heritable. Here, we focus on two species of food-caching chickadees (genus Poecile), which rely on stored food for survival over winter and require the use of spatial memory to recover their stores. These species also exhibit extensive climate-related population level variation in spatial memory and the hippocampus, including volume, the total number and size of neurons, and adults' rates of neurogenesis. Such variation could be driven by several mechanisms within the context of natural selection, including independent, population-specific selection (local adaptation), environment experience-based plasticity, developmental differences, and/or epigenetic differences. Extensive data on cognition, brain morphology, and behavior in multiple populations of these two species of chickadees along longitudinal, latitudinal, and elevational gradients in winter climate are most consistent with the hypothesis that natural selection drives the evolution of local adaptations associated with spatial memory differences among populations. Conversely, there is little support for the hypotheses that environment-induced plasticity or developmental differences are the main causes of population differences across climatic gradients. Available data on epigenetic modifications of memory ability are also inconsistent with the observed patterns of population variation, with birds living in more stressful and harsher environments having better spatial memory associated with a larger hippocampus and a larger number of hippocampal neurons. Overall, the existing data are most consistent with the

  12. On The Plausibility of The Gravitational Collapse As Driving Mechanism For Tectonic Extension (United States)

    Viti, M.; Mantovani, E.; Albarello, D.

    The possibility that gravitational collapse of a thickened zone induces tensional failure in the lithosphere has quantitatively been investigated by comparing driving forces and lithospheric strength. The force induced by a lateral variation of crustal thickness has been estimated by the difference of gravitational potential energy stored in unit-area lithospheric columns, set in the thickened and reference domains. This force quadrati- cally depends on the thickness ratio and on the thickness of the reference lithosphere. The tensional strength of the thickened belt is obtained by its strength envelope, ten- tatively reconstructed by taking into account the gross petrological composition, the thermal state and the mechanical properties of the crust-mantle system. The effects of normal and hot geotherms (corresponding to a superficial heat flow density of 55 and 70 mW m-2, respectively) have also been investigated. Thickening of both oceanic and continental crust is considered. In the case of oceanic crust, the spreading force, obtained by increasing the crustal thickness up to 4 times the 5-km reference value, is considerably lower than the lithospheric strength, even when the tensional resis- tance is reduced by thermal weakening. Thus, the gravitational collapse of thickened oceanic zones appears to be unlikely. For continental domains, the effect of crustal thickening, up to 60 km, has been investigated. In this kind of structures, lithospheric strength rapidly decreases with the increase of crustal thickness. By assuming a nor- mal geotherm, the spreading force of a thickened (h>40 km) chain facing a 40 km thick foreland is always lower than the lithospheric strength. When a hot geotherm is assumed, the same orogenic belt may collapse when the thickness difference between the chain and the foreland exceeds 10 km. The collapse of an orogenic zone (h>20 km) surrounded by a 20 km-thick foreland occurs when the thickness difference is greater than 30 km, with a

  13. The axolotl limb blastema: cellular and molecular mechanisms driving blastema formation and limb regeneration in tetrapods (United States)

    McCusker, Catherine; Bryant, Susan V.


    Abstract The axolotl is one of the few tetrapods that are capable of regenerating complicated biological structures, such as complete limbs, throughout adulthood. Upon injury the axolotl generates a population of regeneration‐competent limb progenitor cells known as the blastema, which will grow, establish pattern, and differentiate into the missing limb structures. In this review we focus on the crucial early events that occur during wound healing, the neural−epithelial interactions that drive the formation of the early blastema, and how these mechanisms differ from those of other species that have restricted regenerative potential, such as humans. We also discuss how the presence of cells from the different axes of the limb is required for the continued growth and establishment of pattern in the blastema as described in the polar coordinate model, and how this positional information is reprogrammed in blastema cells during regeneration. Multiple cell types from the mature limb stump contribute to the blastema at different stages of regeneration, and we discuss the contribution of these types to the regenerate with reference to whether they are “pattern‐forming” or “pattern‐following” cells. Lastly, we explain how an engineering approach will help resolve unanswered questions in limb regeneration, with the goal of translating these concepts to developing better human regenerative therapies. PMID:27499868

  14. Electroacoustics: A New Mechanism for Driving Individually Addressable Jetting and Other Microfluidic Manipulations in Multiwell Arrays (United States)

    Yeo, Leslie; Rezk, Amgad


    The low take-up of microfluidic technology at the laboratory bench despite 25 years of advances can be attributed to the reluctance of practitioners to adopt new and sophisticated technology, which requires substantial retraining, as well as the large investments that have already been made in the vast array of existing laboratory equipment. A way to circumvent this is to design microfluidic technology to retrofit existing laboratory technology such as microscope stages, microplate readers, etc. This is however not without challenge as existing microfluidic devices themselves often require large ancillary equipment to drive fluidic actuation/detection, which are not always amenable to integration into these existing laboratory formats. We have developed a low-cost and scalable modular plug-and-play microplatform that facilitates individual addressability of each well in a microarray plate for sample dispensing, mixing and preconcentration, as well as its ejection via jetting/nebulisation for subsequent analysis. As this cannot be achieved using standard acoustofluidics, we have developed a new electroacoustic mechanism that allows the transmission of high frequency sound waves into each well while uniquely confining the electric field off the piezoelectric chip.

  15. On a Small-scale EUV Wave: The Driving Mechanism and the Associated Oscillating Filament (United States)

    Shen, Yuandeng; Liu, Yu; Tian, Zhanjun; Qu, Zhining


    We present observations of a small-scale extreme-ultraviolet (EUV) wave that was associated with a mini-filament eruption and a GOES B1.9 micro-flare in the quiet-Sun region. The initiation of the event was due to the photospheric magnetic emergence and cancellation in the eruption source region, which first caused the ejection of a small plasma ejecta, then the ejecta impacted a nearby mini-filament and thereby led to the filament’s eruption and the associated flare. During the filament eruption, an EUV wave at a speed of 182{--}317 {km} {{{s}}}-1 was formed ahead of an expanding coronal loop, which propagated faster than the expanding loop and showed obvious deceleration and reflection during the propagation. In addition, the EUV wave further resulted in the transverse oscillation of a remote filament whose period and damping time are 15 and 60 minutes, respectively. Based on the observational results, we propose that the small-scale EUV wave should be a fast-mode magnetosonic wave that was driven by the expanding coronal loop. Moreover, with the application of filament seismology, it is estimated that the radial magnetic field strength is about 7 Gauss. The observations also suggest that small-scale EUV waves associated with miniature solar eruptions share similar driving mechanisms and observational characteristics with their large-scale counterparts.

  16. Analytical Kinematics and Coupled Vibrations Analysis of Mechanical System Operated by Solar Array Drive Assembly (United States)

    Sattar, M.; Wei, C.; Jalali, A.; Sattar, R.


    To address the impact of solar array (SA) anomalies and vibrations on performance of precision space-based operations, it is important to complete its accurate jitter analysis. This work provides mathematical modelling scheme to approximate kinematics and coupled micro disturbance dynamics of rigid load supported and operated by solar array drive assembly (SADA). SADA employed in analysis provides a step wave excitation torque to activate the system. Analytical investigations into kinematics is accomplished by using generalized linear and Euler angle coordinates, applying multi-body dynamics concepts and transformations principles. Theoretical model is extended, to develop equations of motion (EoM), through energy method (Lagrange equation). The main emphasis is to research coupled frequency response by determining energies dissipated and observing dynamic behaviour of internal vibratory systems of SADA. The disturbance model captures discrete active harmonics of SADA, natural modes and vibration amplifications caused by interactions between active harmonics and structural modes of mechanical assembly. The proposed methodology can help to predict true micro disturbance nature of SADA operating rigid load. Moreover, performance outputs may be compared against actual mission requirements to assess precise spacecraft controller design to meet next space generation stringent accuracy goals.

  17. Magnetic Actuation Connector Between Extension Shaft and Armature for Bottom Mounted Control Rod Drive Mechanism

    International Nuclear Information System (INIS)

    Huh, Hyung; Cho, Yeong Garp; Kim, Jong In


    The electromagnet and armature inside the guide tube interact and produce magnetism, thus making the armature, connecting extension shaft and control rod move up and down to control the power of reactor. During the overhaul, the control absorber rod (CAR), extension shaft, and armature of BMCRDM are lifted together for closing a seal valve. But total length of CAR assembly is so long that it cannot be lifted due to exposure above the water level of pool which is strictly controlled. In addition to this, it is difficult to calibrate a position indicator and lifting force of electromagnet without armature assembly as a seal valve is closed. For this reason, it is necessary to install a disconnecting system between armature and extension shaft. Therefore, KAERI has developed magnetic actuation connector using plunger between armature and extension shaft for the bottom mounted control rod drive mechanism in research reactor. The results of a FEM and the experiments in this work lead to the following conclusions: The FEM result for the design of the magnetic actuation connector is compared with the measured lifting force of prototype production. As a result, it is shown that the lifting force of the prototype connector has a good agreement with the result of the FEM. A newly developed technique of prototype magnetic actuation connector which is designed by FEM analysis result is proposed

  18. Driving mechanism of SOL plasma flow an effects on the divertor performance in JT-60U

    International Nuclear Information System (INIS)

    Asakura, Nobuyuki; Takenaga, H.; Sakurai, S.


    The measurements of the scrape-off layer(SOL) flow and plasma profiles both at the high-field-side (HFS) and low-field-side (LFS), for the first time, identified the SOL flow pattern and its driving mechanism. 'Flow reversal' was found near the HFS and LFS separatrix of the main plasma for the ion ∇B drift direction towards the divertor, Radial profiles of the SOL flow were similar to those calculated numerically using the UEDGE code with the plasma drifts included although Mach numbers in measurements were greater than those obtained numerically. Particle fluxes towards the HFS and LFS divertors produced by the parallel SOL flow and E r xB drift flow were evaluated. The particle flux for the case of intense gas puff and divertor pump (puff and pump) was investigated, and it was found that both the Mach number and collisionality were enhanced, in particular, at HFS. Drift flux in the private flux region was also evaluated, and important physics issues for the divertor design and operation, such as in-out asymmetries of the heat and particle fluxes, and control of impurity ions were investigated. (author)

  19. Driving mechanism of SOL plasma flow and effects on the divertor performance in JT-60U

    International Nuclear Information System (INIS)

    Asakura, N.; Takenaga, H.; Sakurai, S.


    The measurements of the SOL flow and plasma profiles both at the high-field-side (HFS) and low field- side (LFS), for the first time, identified the SOL flow pattern and its driving mechanism. 'Flow reversal' was found near the HFS and LFS separatrix of the main plasma for the ion ∇β drift direction towards the divertor. Radial profiles of the SOL flow were similar to those calculated numerically using the UEDGE code with the plasma drifts included although Mach numbers in measurements were greater than those obtained numerically. Particle fluxes towards the HFS and LFS divertors produced by the parallel SOL flow and E r xB drift flow were evaluated. The particle flux for the case of intense gas puff and divertor pump (puff and pump) was investigated, and it was found that both the Mach number and collisionality were enhanced, in particular, at HFS. Drift flux in the private flux region was also evaluated, and important physics issues for the divertor design and operation, such as in-out asymmetries of the heat and particle fluxes, and control of impurity ions were investigated. (author)

  20. Current understanding of the driving mechanisms for spatiotemporal variations of atmospheric speciated mercury: a review

    Directory of Open Access Journals (Sweden)

    H. Mao


    Full Text Available Atmospheric mercury (Hg is a global pollutant and thought to be the main source of mercury in oceanic and remote terrestrial systems, where it becomes methylated and bioavailable; hence, atmospheric mercury pollution has global consequences for both human and ecosystem health. Understanding of spatial and temporal variations of atmospheric speciated mercury can advance our knowledge of mercury cycling in various environments. This review summarized spatiotemporal variations of total gaseous mercury or gaseous elemental mercury (TGM/GEM, gaseous oxidized mercury (GOM, and particulate-bound mercury (PBM in various environments including oceans, continents, high elevation, the free troposphere, and low to high latitudes. In the marine boundary layer (MBL, the oxidation of GEM was generally thought to drive the diurnal and seasonal variations of TGM/GEM and GOM in most oceanic regions, leading to lower GEM and higher GOM from noon to afternoon and higher GEM during winter and higher GOM during spring–summer. At continental sites, the driving mechanisms of TGM/GEM diurnal patterns included surface and local emissions, boundary layer dynamics, GEM oxidation, and for high-elevation sites mountain–valley winds, while oxidation of GEM and entrainment of free tropospheric air appeared to control the diurnal patterns of GOM. No pronounced diurnal variation was found for Tekran measured PBM at MBL and continental sites. Seasonal variations in TGM/GEM at continental sites were attributed to increased winter combustion and summertime surface emissions, and monsoons in Asia, while those in GOM were controlled by GEM oxidation, free tropospheric transport, anthropogenic emissions, and wet deposition. Increased PBM at continental sites during winter was primarily due to local/regional coal and wood combustion emissions. Long-term TGM measurements from the MBL and continental sites indicated an overall declining trend. Limited measurements suggested TGM

  1. Epigenetic Mechanisms in Bone Biology and Osteoporosis: Can They Drive Therapeutic Choices? (United States)

    Marini, Francesca; Cianferotti, Luisella; Brandi, Maria Luisa


    Osteoporosis is a complex multifactorial disorder of the skeleton. Genetic factors are important in determining peak bone mass and structure, as well as the predisposition to bone deterioration and fragility fractures. Nonetheless, genetic factors alone are not sufficient to explain osteoporosis development and fragility fracture occurrence. Indeed, epigenetic factors, representing a link between individual genetic aspects and environmental influences, are also strongly suspected to be involved in bone biology and osteoporosis. Recently, alterations in epigenetic mechanisms and their activity have been associated with aging. Also, bone metabolism has been demonstrated to be under the control of epigenetic mechanisms. Runt-related transcription factor 2 (RUNX2), the master transcription factor of osteoblast differentiation, has been shown to be regulated by histone deacetylases and microRNAs (miRNAs). Some miRNAs were also proven to have key roles in the regulation of Wnt signalling in osteoblastogenesis, and to be important for the positive or negative regulation of both osteoblast and osteoclast differentiation. Exogenous and environmental stimuli, influencing the functionality of epigenetic mechanisms involved in the regulation of bone metabolism, may contribute to the development of osteoporosis and other bone disorders, in synergy with genetic determinants. The progressive understanding of roles of epigenetic mechanisms in normal bone metabolism and in multifactorial bone disorders will be very helpful for a better comprehension of disease pathogenesis and translation of this information into clinical practice. A deep understanding of these mechanisms could help in the future tailoring of proper individual treatments, according to precision medicine's principles.

  2. Mechanisms underlying epithelium-dependent relaxation in rat bronchioles

    DEFF Research Database (Denmark)

    Kroigaard, Christel; Dalsgaard, Thomas; Simonsen, Ulf


    This study investigated the mechanisms underlying epithelium-derived hyperpolarizing factor (EpDHF)-type relaxation in rat bronchioles. Immunohistochemistry was performed, and rat bronchioles and pulmonary arteries were mounted in microvascular myographs for functional studies. An opener of small...

  3. Underlying Mechanisms of Improving Physical Activity Behavior after Rehabilitation

    NARCIS (Netherlands)

    van der Ploeg, Hidde P.; Streppel, Kitty R.M.; van der Beek, Allard J.; Woude, Luc H.V.; van Harten, Willem H.; Vollenbroek-Hutten, Miriam Marie Rosé; van Mechelen, Willem


    Background: Regular physical activity is beneficial for the health and functioning of people with a disability. Effective components of successful physical activity promotion interventions should be identified and disseminated. Purpose: To study the underlying mechanisms of the combined sport

  4. Peer influence: Neural mechanisms underlying in-group conformity

    Directory of Open Access Journals (Sweden)

    Mirre eStallen


    Full Text Available People often conform to the behavior of others with whom they identify. However, it is unclear what fundamental mechanisms underlie this type of conformity. Here, we investigate the processes mediating in-group conformity by using functional magnetic resonance imaging (fMRI. Participants completed a perceptual decision-making task while undergoing fMRI, during which they were exposed to the judgments of both in-group and out-group members. Our data suggest that conformity to the in-group is mediated by both positive affect as well as the cognitive capacity of perspective taking. Examining the processes that drive in-group conformity by utilizing a basic decision-making paradigm combined with neuroimaging methods provides important insights into the potential mechanisms of conformity. These results may provide an integral step in developing more effective campaigns using group conformity as a tool for behavioral change.

  5. Peer influence: neural mechanisms underlying in-group conformity. (United States)

    Stallen, Mirre; Smidts, Ale; Sanfey, Alan G


    People often conform to the behavior of others with whom they identify. However, it is unclear what fundamental mechanisms underlie this type of conformity. Here, we investigate the processes mediating in-group conformity by using functional magnetic resonance imaging (fMRI). Participants completed a perceptual decision-making task while undergoing fMRI, during which they were exposed to the judgments of both in-group and out-group members. Our data suggest that conformity to the in-group is mediated by both positive affect as well as the cognitive capacity of perspective taking. Examining the processes that drive in-group conformity by utilizing a basic decision-making paradigm combined with neuroimaging methods provides important insights into the potential mechanisms of conformity. These results may provide an integral step in developing more effective campaigns using group conformity as a tool for behavioral change.

  6. Stress analysis in a functionally graded disc under mechanical loads ...

    Indian Academy of Sciences (India)

    Stress analysis in a functionally graded disc under mechanical loads and a steady state temperature distribution. HASAN ÇALLIO ˘GLU. Department of Mechanical Engineering, Pamukkale University, 20070,. Denizli, Turkey e-mail: MS received 25 November 2009; revised 12 August 2010; accepted.

  7. Maintenance of working capacity of movement mechanism of load trolley with linear traction electric drive of bridge type crane. (United States)

    Goncharov, K. A.; Denisov, I. A.


    The article considers the influence of the air gap size between the linear motor elements on the stability of the traction drive of the movement mechanism of the trolley of the bridge type crane. The main factors affecting the air gap size and the causes of their occurrence are described. The technique of calculating the magnitude of air gap variation is described in relation to the general deformation of the crane metal structure. Recommendations on the need for installation of additional equipment for load trolleys of various designs are given. The optimal values of the length of the trolley base are proposed. Observance of these values ensures normal operation of the traction drive.

  8. Reversible Gene Drive Mechanism Utilizing Trana Inactivating Paramutatlons In Insects (paramutale 0.9)

    Energy Technology Data Exchange (ETDEWEB)


    The paramutate software package Is a tool to calculate the genotyplc and phenotyplc propagation of a gene drive that can be silenced with a homologuus trans-Inactivating panmutatlon, ln dlptera or other species with a slmUar-acttng pl RNA system/Plwi pathway. Method of SolaUon: paramutate uses rults of Mendelian, gene drive (I.e.. stimulated conversion), and maternal Inheritance to compute the propaptlon of a notional gene drive construct and Its trans-lnactlvat1n1 paramutatlon, throu1b a panmlctlc, fixed-size population reproducing In synchronous generations.

  9. NDE of Possible Service-Induced PWSCC in Control Rod Drive Mechanism Housings Removed from Service

    International Nuclear Information System (INIS)

    Cumblidge, Stephen E.; Doctor, Steven R.; Schuster, George J.; Harris, Robert V.; Crawford, Susan L.


    Studies being conducted at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington are being performed to assess the effectiveness of nondestructive examination (NDE) techniques on removed-from-service control rod drive mechanism (CRDM) nozzles and the associated J-groove attachment welds. This work is being performed to provide information to the United States Nuclear Regulatory Commission (US NRC) on the effectiveness of NDE techniques such as ultrasonic testing (UT), eddy current testing (ET), and visual testing (VT) as related to the in-service inspection of CRDM nozzles and J-groove weldments, and to enhance the knowledge base of primary water stress corrosion cracking (PWSCC) through destructive characterization of the CRDM assemblies. The basic NDE measurements follow standard industry techniques for conducting in-service inspections of CRDM nozzles and the crown of the J-groove welds and buttering. In addition, laboratory-based NDE methods were employed to conduct inspections of the CRDM assemblies, with particular emphasis on the J-groove weld and buttering. This paper describes the NDE measurements that were employed on the two CRDMs to detect and characterize the indications and the analysis of these indications. The two CRDM assemblies were removed from service from the North Anna 2 vessel head, including the CRDM nozzle, the J-groove weld, buttering, and a portion of the ferritic head material. One nozzle contains suspected PWSCC, based on in-service inspection data; the second contains evidence suggesting through-wall leakage, although this was unconfirmed. A destructive test plan is being developed to directly characterize the indications found using nondestructive testing. The results of this destructive testing will be included when the destructive testing is completed.

  10. Physiological mechanisms of dyspnea during exercise with external thoracic restriction: Role of increased neural respiratory drive (United States)

    Mendonca, Cassandra T.; Schaeffer, Michele R.; Riley, Patrick


    We tested the hypothesis that neuromechanical uncoupling of the respiratory system forms the mechanistic basis of dyspnea during exercise in the setting of “abnormal” restrictive constraints on ventilation (VE). To this end, we examined the effect of chest wall strapping (CWS) sufficient to mimic a “mild” restrictive lung deficit on the interrelationships between VE, breathing pattern, dynamic operating lung volumes, esophageal electrode-balloon catheter-derived measures of the diaphragm electromyogram (EMGdi) and the transdiaphragmatic pressure time product (PTPdi), and sensory intensity and unpleasantness ratings of dyspnea during exercise. Twenty healthy men aged 25.7 ± 1.1 years (means ± SE) completed symptom-limited incremental cycle exercise tests under two randomized conditions: unrestricted control and CWS to reduce vital capacity (VC) by 21.6 ± 0.5%. Compared with control, exercise with CWS was associated with 1) an exaggerated EMGdi and PTPdi response; 2) no change in the relationship between EMGdi and each of tidal volume (expressed as a percentage of VC), inspiratory reserve volume, and PTPdi, thus indicating relative preservation of neuromechanical coupling; 3) increased sensory intensity and unpleasantness ratings of dyspnea; and 4) no change in the relationship between increasing EMGdi and each of the intensity and unpleasantness of dyspnea. In conclusion, the increased intensity and unpleasantness of dyspnea during exercise with CWS could not be readily explained by increased neuromechanical uncoupling but likely reflected the awareness of increased neural respiratory drive (EMGdi) needed to achieve any given VE during exercise in the setting of “abnormal” restrictive constraints on tidal volume expansion. PMID:24356524

  11. Epigenetic Mechanisms in Bone Biology and Osteoporosis: Can They Drive Therapeutic Choices?

    Directory of Open Access Journals (Sweden)

    Francesca Marini


    Full Text Available Osteoporosis is a complex multifactorial disorder of the skeleton. Genetic factors are important in determining peak bone mass and structure, as well as the predisposition to bone deterioration and fragility fractures. Nonetheless, genetic factors alone are not sufficient to explain osteoporosis development and fragility fracture occurrence. Indeed, epigenetic factors, representing a link between individual genetic aspects and environmental influences, are also strongly suspected to be involved in bone biology and osteoporosis. Recently, alterations in epigenetic mechanisms and their activity have been associated with aging. Also, bone metabolism has been demonstrated to be under the control of epigenetic mechanisms. Runt-related transcription factor 2 (RUNX2, the master transcription factor of osteoblast differentiation, has been shown to be regulated by histone deacetylases and microRNAs (miRNAs. Some miRNAs were also proven to have key roles in the regulation of Wnt signalling in osteoblastogenesis, and to be important for the positive or negative regulation of both osteoblast and osteoclast differentiation. Exogenous and environmental stimuli, influencing the functionality of epigenetic mechanisms involved in the regulation of bone metabolism, may contribute to the development of osteoporosis and other bone disorders, in synergy with genetic determinants. The progressive understanding of roles of epigenetic mechanisms in normal bone metabolism and in multifactorial bone disorders will be very helpful for a better comprehension of disease pathogenesis and translation of this information into clinical practice. A deep understanding of these mechanisms could help in the future tailoring of proper individual treatments, according to precision medicine’s principles.

  12. Railway crossings: driving the structure under the railway by means of oleodinamic jacks


    Escribano Méndez, Ramón; López Palomar, Rafael; Ruiz Viedma, Andrés J.


    "The best level crossing is a dead crossing", those involved are accustomed to say Yet, until a short time ago, eliminating these conflictive crossings not only implied a great deal of money but prolonged building work, with the all too familiar sequel of precautions, speed restrictions and problems for rail traffic. However, a brand new system, based on using hydraulic jacks to drive the concrete structure of the crossing to a different level in the track embankment, allows the execution in ...

  13. Investigating the Electromechanical Coupling in Piezoelectric Actuator Drive Motor Under Heavy Load

    DEFF Research Database (Denmark)

    Zsurzsan, Tiberiu-Gabriel; Andersen, Michael A. E.; Zhang, Zhe


    The Piezoelectric Actuator Drive (PAD) is an accurate, high-torque rotary piezoelectric motor that employs piezoelectric stack actuators and inverse hypocycloidal motion to generate rotation. Important factors that determine motor performance are the proper concentric alignment between the motor...... ring and shaft and the similarity of the stack actuators used. This paper investigates the electromechanical coupling of these factors into the motor current through experimental means...

  14. Police custody following driving under the influence of cannabis: a prospective study. (United States)

    Mahindhoratep, Tiao Saysouda; Lepresle, Aude; Chiadmi, Fouad; Schlatter, Joël; Boraud, Cyril; Chariot, Patrick


    Traffic offences are a common cause of detention in police custody. We hypothesized that drug intoxication while driving could correspond to specific medical conditions of the detainees. Our objective was to evaluate medical features and addictive behaviours of suspected drug drivers and to collect data regarding assaults or injuries in these individuals. We conducted a prospective study (April 2010-December 2011) of suspected drug driving arrestees, who were compared to drink drivers or persons aged over 18 detained for other reasons. Data collected concerned persons' characteristics, reported assaults, and observed injuries. A total of 205 drivers were tested positive for drugs in blood, 116 were either positive for drugs in urine or saliva and negative in blood, or negative in urine. Cannabis-only users accounted for 201 of 205 drug drivers (98%). Suspected drug driving arrestees had good overall health rating. Drug drivers were younger than controls and requested more rarely medical examination (12% vs. 44%, Pcustody was better than that of controls and they were considered unconditionally fit for detention more frequently (99% vs. 77%, P<0.0001). We conclude that arrested drug drivers were young, healthy, and infrequently reported assaults or presented traumatic injuries, which does not put them in a high risk medical condition. Medical care could include brief interventions on addictive behaviours. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Sex ratio meiotic drive as a plausible evolutionary mechanism for hybrid male sterility.

    Directory of Open Access Journals (Sweden)

    Linbin Zhang


    Full Text Available Biological diversity on Earth depends on the multiplication of species or speciation, which is the evolution of reproductive isolation such as hybrid sterility between two new species. An unsolved puzzle is the exact mechanism(s that causes two genomes to diverge from their common ancestor so that some divergent genes no longer function properly in the hybrids. Here we report genetic analyses of divergent genes controlling male fertility and sex ratio in two very young fruitfly species, Drosophila albomicans and D. nasuta. A majority of the genetic divergence for both traits is mapped to the same regions by quantitative trait loci mappings. With introgressions, six major loci are found to contribute to both traits. This genetic colocalization implicates that genes for hybrid male sterility have evolved primarily for controlling sex ratio. We propose that genetic conflicts over sex ratio may operate as a perpetual dynamo for genome divergence. This particular evolutionary mechanism may largely contribute to the rapid evolution of hybrid male sterility and the disproportionate enrichment of its underlying genes on the X chromosome--two patterns widely observed across animals.

  16. Design optimization of dual-axis driving mechanism for satellite antenna with two planar revolute clearance joints (United States)

    Bai, Zheng Feng; Zhao, Ji Jun; Chen, Jun; Zhao, Yang


    In the dynamic analysis of satellite antenna dual-axis driving mechanism, it is usually assumed that the joints are ideal or perfect without clearances. However, in reality, clearances in joints are unavoidable due to assemblage, manufacturing errors and wear. When clearance is introduced to the mechanism, it will lead to poor dynamic performances and undesirable vibrations due to impact forces in clearance joint. In this paper, a design optimization method is presented to reduce the undesirable vibrations of satellite antenna considering clearance joints in dual-axis driving mechanism. The contact force model in clearance joint is established using a nonlinear spring-damper model and the friction effect is considered using a modified Coulomb friction model. Firstly, the effects of clearances on dynamic responses of satellite antenna are investigated. Then the optimization method for dynamic design of the dual-axis driving mechanism with clearance is presented. The objective of the optimization is to minimize the maximum absolute vibration peak of antenna acceleration by reducing the impact forces in clearance joint. The main consideration here is to optimize the contact parameters of the joint elements. The contact stiffness coefficient, damping coefficient and the dynamic friction coefficient for clearance joint elements are taken as the optimization variables. A Generalized Reduced Gradient (GRG) algorithm is used to solve this highly nonlinear optimization problem for dual-axis driving mechanism with clearance joints. The results show that the acceleration peaks of satellite antenna and contact forces in clearance joints are reduced obviously after design optimization, which contributes to a better performance of the satellite antenna. Also, the application and limitation of the proposed optimization method are discussed.

  17. Amount of fear extinction changes its underlying mechanisms. (United States)

    An, Bobae; Kim, Jihye; Park, Kyungjoon; Lee, Sukwon; Song, Sukwoon; Choi, Sukwoo


    There has been a longstanding debate on whether original fear memory is inhibited or erased after extinction. One possibility that reconciles this uncertainty is that the inhibition and erasure mechanisms are engaged in different phases (early or late) of extinction. In this study, using single-session extinction training and its repetition (multiple-session extinction training), we investigated the inhibition and erasure mechanisms in the prefrontal cortex and amygdala of rats, where neural circuits underlying extinction reside. The inhibition mechanism was prevalent with single-session extinction training but faded when single-session extinction training was repeated. In contrast, the erasure mechanism became prevalent when single-session extinction training was repeated. Moreover, ablating the intercalated neurons of amygdala, which are responsible for maintaining extinction-induced inhibition, was no longer effective in multiple-session extinction training. We propose that the inhibition mechanism operates primarily in the early phase of extinction training, and the erasure mechanism takes over after that.

  18. Study on fundamental mechanism of nuclear advanced robot. Some consideration of driving mechanism on remotely operated and submerged vehicle using the maintenance for nuclear power plant

    International Nuclear Information System (INIS)

    Ohki, Arahiko; Hirano, Sigeo; Oogihara, Hirotugu


    A propulsion system of fish was studied as a research of the driving mechanism of robot for nuclear maintenance in water. Fish sailing with higher speed than a constant value can sail by an Ostraciform type swimming method. Fish can advance by a winding actuation. The movement of fishes trunk and caudal at the stationary movement was studied in this paper. The hypothetical formulae of movement were constructed on the basis of the movements of trunk and caudal. The elements related to the driving force were analysed and evaluated. Then, a model for reproducing the movement was designed. The movement of model was tested. The theoretical formula proved that the driving forces were consisted of the force vectors in the forward direction to be generated by the phase differences of each points of trunk and caudal in their cyclic movements. (S.Y.)

  19. Investigating the effect of tractive parameters on imposed vertical stresses under driving wheel using a soil bin test rig facility

    Directory of Open Access Journals (Sweden)

    H Taghavifar


    relationship between traction and the soil vertical stress in a soil profile using a single-wheel tester and a soil bin facility. Materials and methods: The soil bin in Department of Mechanical Engineering of Urmia University was used in this study. This soil bin is featured 24 m in length, 2 m in width and 1 m in depth including a single-wheel tester and the carriage. A chain system was used for the power transmission from the electromotor to the carriage. The carriage was able to move alongside the soil bin through four ball bearings which also hold the weight of the carriage. The utilized tire in the study was a 220/65R21 driving wheel. One load cell was situated vertically to measure the wheel load and four S-shaped load cells were horizontally situated between the single-wheel tester and the carriage to measure the traction force. An electric motor was used to empower the carriage while another electric motor was used to empower the wheel tester. The difference between the linear velocities of the carriage and the wheel-tester provided the desired levels of slip. A housing including four load cells situated at the distances of 12.5 cm was used to measure the soil vertical stress transmission in the soil profile. The system was buried at the desired depth in the path of wheel traversal. Under the aforesaid treatments, the experiments were undertaken with the purpose of simultaneous measurement of soil stress propagation and traction force and finally the correlation between these parameters. Results and discussion: The results were analyzed using the statistical analysis at 1% significance level. The results showed that an increase in traction force leads to an increment of vertical soil stress. It was also recognized that the reduction in the velocity leads to the increase in soil stress which is due to the greater contact duration between the soil and the tire. Also, an increase in wheel load results in an increase of soil stress which has a linear correlation with the

  20. Mechanical Property Analysis of Circular Polymer Membrane under Uniform Pressure


    Jianbing, Sang; Xiang, Li; Sufang, Xing; Wenjia, Wang


    Mechanical property analysis of circular hyperelastic polymer membrane under uniform pressure has been researched in this work. The polymer membrane material is assumed to be homogeneous and isotropic and incompressibility of materials has been considered. Based on the modified stain energy function from Gao and nonmomental theory of axial symmetry thin shell, finite deformation analysis of polymer membrane under uniform pressure has been proposed in current configuration and governing equati...

  1. Cooling Performance Characteristics of the Stack Thermal Management System for Fuel Cell Electric Vehicles under Actual Driving Conditions

    Directory of Open Access Journals (Sweden)

    Ho-Seong Lee


    Full Text Available The cooling performance of the stack radiator of a fuel cell electric vehicle was evaluated under various actual road driving conditions, such as highway and uphill travel. The thermal stability was then optimized, thereby ensuring stable operation of the stack thermal management system. The coolant inlet temperature of the radiator in the highway mode was lower than that associated with the uphill mode because the corresponding frontal air velocity was higher than obtained in the uphill mode. In both the highway and uphill modes, the coolant temperatures of the radiator, operated under actual road driving conditions, were lower than the allowable limit (80 °C; this is the maximum temperature at which stable operation of the stack thermal management system of the fuel cell electric vehicle could be maintained. Furthermore, under actual road driving conditions in uphill mode, the initial temperature difference (ITD between the coolant temperature and air temperature of the system was higher than that associated with the highway mode; this higher ITD occurred even though the thermal load of the system in uphill mode was greater than that corresponding to the highway mode. Since the coolant inlet temperature is expected to exceed the allowable limit (80 °C in uphill mode under higher ambient temperature with air conditioning system operation, the FEM design layout should be modified to improve the heat capacity. In addition, the overall volume of the stack cooling radiator is 52.2% higher than that of the present model and the coolant inlet temperature of the improved radiator is 22.7% lower than that of the present model.

  2. Emotional responses to music: the need to consider underlying mechanisms. (United States)

    Juslin, Patrik N; Västfjäll, Daniel


    Research indicates that people value music primarily because of the emotions it evokes. Yet, the notion of musical emotions remains controversial, and researchers have so far been unable to offer a satisfactory account of such emotions. We argue that the study of musical emotions has suffered from a neglect of underlying mechanisms. Specifically, researchers have studied musical emotions without regard to how they were evoked, or have assumed that the emotions must be based on the "default" mechanism for emotion induction, a cognitive appraisal. Here, we present a novel theoretical framework featuring six additional mechanisms through which music listening may induce emotions: (1) brain stem reflexes, (2) evaluative conditioning, (3) emotional contagion, (4) visual imagery, (5) episodic memory, and (6) musical expectancy. We propose that these mechanisms differ regarding such characteristics as their information focus, ontogenetic development, key brain regions, cultural impact, induction speed, degree of volitional influence, modularity, and dependence on musical structure. By synthesizing theory and findings from different domains, we are able to provide the first set of hypotheses that can help researchers to distinguish among the mechanisms. We show that failure to control for the underlying mechanism may lead to inconsistent or non-interpretable findings. Thus, we argue that the new framework may guide future research and help to resolve previous disagreements in the field. We conclude that music evokes emotions through mechanisms that are not unique to music, and that the study of musical emotions could benefit the emotion field as a whole by providing novel paradigms for emotion induction.

  3. Functional composition drives ecosystem function through multiple mechanisms in a broadleaved subtropical forest. (United States)

    Chiang, Jyh-Min; Spasojevic, Marko J; Muller-Landau, Helene C; Sun, I-Fang; Lin, Yiching; Su, Sheng-Hsin; Chen, Zueng-Sang; Chen, Chien-Teh; Swenson, Nathan G; McEwan, Ryan W


    Understanding the role of biodiversity (B) in maintaining ecosystem function (EF) is a foundational scientific goal with applications for resource management and conservation. Two main hypotheses have emerged that address B-EF relationships: niche complementarity (NC) and the mass-ratio (MR) effect. We tested the relative importance of these hypotheses in a subtropical old-growth forest on the island nation of Taiwan for two EFs: aboveground biomass (ABG) and coarse woody productivity (CWP). Functional dispersion (FDis) of eight plant functional traits was used to evaluate complementarity of resource use. Under the NC hypothesis, EF will be positively correlated with FDis. Under the MR hypothesis, EF will be negatively correlated with FDis and will be significantly influenced by community-weighted mean (CWM) trait values. We used path analysis to assess how these two processes (NC and MR) directly influence EF and may contribute indirectly to EF via their influence on canopy packing (stem density). Our results indicate that decreasing functional diversity and a significant influence of CWM traits were linked to increasing AGB for all eight traits in this forest supporting the MR hypothesis. Interestingly, CWP was primarily influenced by NC and MR indirectly via their influence on canopy packing. Maximum height explained more of the variation in both AGB and CWP than any of the other plant functional traits. Together, our results suggest that multiple mechanisms operate simultaneously to influence EF, and understanding their relative importance will help to elucidate the role of biodiversity in maintaining ecosystem function.

  4. Study on Mechanical Properties of Barite Concrete under Impact Load (United States)

    Chen, Z. F.; Cheng, K.; Wu, D.; Gan, Y. C.; Tao, Q. W.


    In order to research the mechanical properties of Barite concrete under impact load, a group of concrete compression tests was carried out under the impact load by using the drop test machine. A high-speed camera was used to record the failure process of the specimen during the impact process. The test results show that:with the increase of drop height, the loading rate, the peak load, the strain under peak load, the strain rate and the dynamic increase factor (DIF) all increase gradually. The ultimate tensile strain is close to each other, and the time of impact force decreases significantly, showing significant strain rate effect.

  5. Damage mechanisms in PBT-GF30 under thermo-mechanical cyclic loading

    International Nuclear Information System (INIS)

    Schaaf, A.; De Monte, M.; Hoffmann, C.; Vormwald, M.; Quaresimin, M.


    The scope of this paper is the investigation of damage mechanisms at microscopic scale on a short glass fiber reinforced polybutylene terephthalate (PBT-GF30) under thermo-mechanical cyclic loading. In addition the principal mechanisms are verified through micro mechanical FE models. In order to investigate the fatigue behavior of the material both isothermal strain controlled fatigue (ISCF) tests at three different temperatures and thermo-mechanical fatigue (TMF) tests were conducted on plain and notched specimens, manufactured by injection molding. The goal of the work is to determine the damage mechanisms occurring under TMF conditions and to compare them with the mechanisms occurring under ISCF. For this reason fracture surfaces of TMF and ISCF samples loaded at different temperature levels were analyzed using scanning electron microscopy. Furthermore, specimens that failed under TMF were examined on microsections revealing insight into both crack initiation and crack propagation. The findings of this investigation give valuable information about the main damage mechanisms of PBT-GF30 under TMF loading and serve as basis for the development of a TMF life estimation methodology

  6. Neural Circuitry and Plasticity Mechanisms Underlying Delay Eyeblink Conditioning (United States)

    Freeman, John H.; Steinmetz, Adam B.


    Pavlovian eyeblink conditioning has been used extensively as a model system for examining the neural mechanisms underlying associative learning. Delay eyeblink conditioning depends on the intermediate cerebellum ipsilateral to the conditioned eye. Evidence favors a two-site plasticity model within the cerebellum with long-term depression of…

  7. Mechanisms underlying cognitive conspicuity in the detection of cyclists by car drivers. (United States)

    Rogé, Joceline; Ndiaye, Daniel; Aillerie, Isabelle; Aillerie, Stéphane; Navarro, Jordan; Vienne, Fabrice


    The aim of this study was to evaluate the visibility of cyclists for motorists in a simulated car driving task. In several cases involving collisions between cars and cyclists, car drivers failed to detect the latter in time to avoid collision because of their low conspicuity. 2 groups of motorists (29.2 years old), including 12 cyclist-motorists and 13 non-cyclist-motorists, performed a vulnerable road user detection task in a car-driving simulator. They had to detect cyclists and pedestrians in an urban setting and evaluate the realism of the cyclists, the traffic, the city, the infrastructure, the car driven and the situations. Cyclists appeared in critical situations derived from previous accounts given by injured cyclists and from cyclists' observations in real-life situations. Cyclist's levels of visibility for car drivers were either high or low in these situations according to the cyclists. Realism scores were similar and high in both groups. Cyclist-motorists had fewer collisions with cyclists and detected cyclists at a greater distance in all situations, irrespective of cyclist visibility. Several mechanisms underlying the cognitive conspicuity of cyclists for car drivers were considered. The attentional selection of a cyclist in the road environment during car driving depends on top-down processing. We consider the practical implications of these results for the safety of vulnerable road users and future directions of research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Factors Shaping the Decision of College Students to Walk or Drive under the Influence of Alcohol: A Test of Rational Choice Theory (United States)

    Mason, Ashley; Monk-Turner, Elizabeth


    Aims: Rational Choice theory was tested to better understand the differences in behaviour regarding walking and driving under the influence of alcohol. Methods: Students at a residential college campus in Virginia were surveyed. Findings: Results show that students were less likely to walk or drive while intoxicated if they believed such behaviour…

  9. Driving under the influence of drugs in Sweden with zero concentration limits in blood for controlled substances. (United States)

    Jones, Alan Wayne


    This article describes the background and implementation in Sweden of zero-concentration limits for controlled drugs in the blood of drivers. Eliminating the need to prove that a person's ability to drive safely was impaired by drugs has greatly simplified the prosecution case, which now rests primarily on the forensic toxicology report. Driving under the influence of a prescription drug listed as a controlled substance is exempt from the zero-limit law provided the medication was being used in accordance with a physician's direction and the person was not considered unfit to drive. The prevalence of driving under the influence of drugs (DUID) in Sweden was evaluated from police reports with the main focus on the toxicological findings. A large case series of DUID suspects was compared before and after introducing zero concentration limits in blood for controlled substances on July 1, 1999. The spectrum of drugs used by typical offenders and the concentrations of various licit and illicit substances in blood were evaluated and compared. Immediately after the zero-limit law came into force, the number of cases of DUID submitted by the police for toxicological analysis increased sharply and is currently ten-fold higher than before the new legislation. Statistics show that about 85% of all blood samples sent for toxicological analysis have one or more banned substances present. Amphetamine is by far the leading drug of abuse in Sweden and was identified in about 50-60% of all DUID suspects either alone or together with other controlled substances. The next most frequently encountered illicit drug was tetrahydrocannabinol (THC), with positive findings in about 20-25% of cases. Various prescription drugs, mainly sedative-hypnotics like diazepam and flunitrazepam, were also highly prevalent and these occurred mostly together with illicit substances. Opiates, such as 6-acetyl morphine and morphine, the metabolites of heroin, were high on the list of substances identified

  10. Evaluation of the Ride-Through Capability of an Active-Front-End Adjustable Speed Drive under Real Grid Conditions

    DEFF Research Database (Denmark)

    Liserre, Marco; Klumpner, Christian; Blaabjerg, Frede


    Better quality of the input currents, unity power factor and regenerative capability are not the only benefits of equipping an Adjustable Speed Drive (ASD) with an active front-end-stage. Controlling the power inflow may enable also the reduction of the dc-link energy storage, which will then lead...... to the replacement of the electrolytic capacitors with film capacitors, which have lower energy density meaning that the volume is similar, but will increase the ASD lifetime. In these circumstances, operation under unbalanced and distorted supply voltage as well as high dynamic operation of the ASD makes...

  11. A possible realization of Einstein's causal theory underlying quantum mechanics

    International Nuclear Information System (INIS)

    Yussouff, M.


    It is shown that a new microscopic mechanics formulated earlier can be looked upon as a possible causal theory underlying quantum mechanics, which removes Einstein's famous objections against quantum theory. This approach is free from objections raised against Bohm's hidden variable theory and leads to a clear physical picture in terms of familiar concepts, if self interactions are held responsible for deviations from classical behaviour. The new level of physics unfolded by this approach may reveal novel frontiers in high-energy physics. (author)

  12. Frictional behaviour of polymer films under mechanical and electrostatic loads

    International Nuclear Information System (INIS)

    Ginés, R; Christen, R; Motavalli, M; Bergamini, A; Ermanni, P


    Different polymer foils, namely polyimide, FEP, PFA and PVDF were tested on a setup designed to measure the static coefficient of friction between them. The setup was designed according to the requirements of a damping device based on electrostatically tunable friction. The foils were tested under different mechanically applied forces and showed reproducible results for the static coefficient of friction. With the same setup the measurements were performed under an electric field as the source of the normal force. Up to a certain electric field the values were in good agreement. Beyond this field discrepancies were found. (paper)

  13. Reliability Issues and Solutions in Flexible Electronics Under Mechanical Fatigue (United States)

    Yi, Seol-Min; Choi, In-Suk; Kim, Byoung-Joon; Joo, Young-Chang


    Flexible devices are of significant interest due to their potential expansion of the application of smart devices into various fields, such as energy harvesting, biological applications and consumer electronics. Due to the mechanically dynamic operations of flexible electronics, their mechanical reliability must be thoroughly investigated to understand their failure mechanisms and lifetimes. Reliability issue caused by bending fatigue, one of the typical operational limitations of flexible electronics, has been studied using various test methodologies; however, electromechanical evaluations which are essential to assess the reliability of electronic devices for flexible applications had not been investigated because the testing method was not established. By employing the in situ bending fatigue test, we has studied the failure mechanism for various conditions and parameters, such as bending strain, fatigue area, film thickness, and lateral dimensions. Moreover, various methods for improving the bending reliability have been developed based on the failure mechanism. Nanostructures such as holes, pores, wires and composites of nanoparticles and nanotubes have been suggested for better reliability. Flexible devices were also investigated to find the potential failures initiated by complex structures under bending fatigue strain. In this review, the recent advances in test methodology, mechanism studies, and practical applications are introduced. Additionally, perspectives including the future advance to stretchable electronics are discussed based on the current achievements in research.

  14. PBX1 Genomic Pioneer Function Drives ERα Signaling Underlying Progression in Breast Cancer (United States)

    Magnani, Luca; Ballantyne, Elizabeth B.; Zhang, Xiaoyang; Lupien, Mathieu


    Altered transcriptional programs are a hallmark of diseases, yet how these are established is still ill-defined. PBX1 is a TALE homeodomain protein involved in the development of different types of cancers. The estrogen receptor alpha (ERα) is central to the development of two-thirds of all breast cancers. Here we demonstrate that PBX1 acts as a pioneer factor and is essential for the ERα-mediated transcriptional response driving aggressive tumors in breast cancer. Indeed, PBX1 expression correlates with ERα in primary breast tumors, and breast cancer cells depleted of PBX1 no longer proliferate following estrogen stimulation. Profiling PBX1 recruitment and chromatin accessibility across the genome of breast cancer cells through ChIP-seq and FAIRE-seq reveals that PBX1 is loaded and promotes chromatin openness at specific genomic locations through its capacity to read specific epigenetic signatures. Accordingly, PBX1 guides ERα recruitment to a specific subset of sites. Expression profiling studies demonstrate that PBX1 controls over 70% of the estrogen response. More importantly, the PBX1-dependent transcriptional program is associated with poor-outcome in breast cancer patients. Correspondingly, PBX1 expression alone can discriminate a priori the outcome in ERα-positive breast cancer patients. These features are markedly different from the previously characterized ERα-associated pioneer factor FoxA1. Indeed, PBX1 is the only pioneer factor identified to date that discriminates outcome such as metastasis in ERα-positive breast cancer patients. Together our results reveal that PBX1 is a novel pioneer factor defining aggressive ERα-positive breast tumors, as it guides ERα genomic activity to unique genomic regions promoting a transcriptional program favorable to breast cancer progression. PMID:22125492

  15. Transitions in Land Use Architecture under Multiple Human Driving Forces in a Semi-Arid Zone

    Directory of Open Access Journals (Sweden)

    Issa Ouedraogo


    Full Text Available The present study aimed to detect the main shifts in land-use architecture and assess the factors behind the changes in typical tropical semi-arid land in Burkina Faso. Three sets of time-series LANDSAT data over a 23-year period were used to detect land use changes and their underpinning drivers in multifunctional but vulnerable ecologies. Group discussions in selected villages were organized for mapping output interpretation and collection of essential drivers of change as perceived by local populations. Results revealed profound changes and transitions during the study period. During the last decade, shrub and wood savannahs exhibited high net changes (39% and −37% respectively with a weak net positive change for cropland (only 2%, while cropland and shrub savannah exhibited high swap (8% and 16%. This suggests that the area of cropland remained almost unchanged but was subject to relocation, wood savannah decreased drastically, and shrub savannah increased exponentially. Cropland exhibited a null net persistence while shrub and wood savannahs exhibited positive and negative net persistence (1.91 and −10.24, respectively, indicating that there is movement toward agricultural intensification and wood savannah tended to disappear to the benefit of shrub savannah. Local people are aware of the changes that have occurred and support the idea that illegal wood cutting and farming are inappropriate farming practices associated with immigration; absence of alternative cash generation sources, overgrazing and increasing demand for wood energy are driving the changes in their ecosystems. Policies that integrate restoration and conservation of natural ecosystems and promote sustainable agroforestry practices in the study zone are highly recommended.

  16. Driving under the influence of alcohol or drugs among adolescents: the role of urban and rural environments. (United States)

    Font-Ribera, Laia; Garcia-Continente, Xavier; Pérez, Anna; Torres, Rosa; Sala, Núria; Espelt, Albert; Nebot, Manel


    This study aimed to describe driving under the influence of alcohol or drugs (DUIAD) and riding in a vehicle with a driver under the influence of alcohol or drugs (RDUIAD) and their associated factors among rural and urban adolescents in Spain. We performed a cross-sectional study including 2067 students from Barcelona and a rural area 60 km north of this city. The prevalences of ever DUIAD and RDUIAD were 17% and 41% among 17-18 year-old adolescents. DUIAD was more common in boys. Living in the rural area was independently associated with these behaviours. Exposure to these behaviours is common among Spanish adolescents, especially in rural areas. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Control of a perturbed under-actuated mechanical system

    KAUST Repository

    Zayane, Chadia


    In this work, the trajectory tracking problem for an under-actuated mechanical system in presence of unknown input disturbances is addressed. The studied inertia wheel inverted pendulum falls in the class of non minimum phase systems. The proposed high order sliding mode control architecture including a controller and differentiator allows to track accurately the predefined trajectory and to stabilize the internal dynamics. The robustness of the proposed approach is illustrated through different perturbation and output noise configurations.

  18. Linking Pesticide Exposure with Pediatric Leukemia: Potential Underlying Mechanisms. (United States)

    Hernández, Antonio F; Menéndez, Pablo


    Leukemia is the most common cancer in children, representing 30% of all childhood cancers. The disease arises from recurrent genetic insults that block differentiation of hematopoietic stem and/or progenitor cells (HSPCs) and drives uncontrolled proliferation and survival of the differentiation-blocked clone. Pediatric leukemia is phenotypically and genetically heterogeneous with an obscure etiology. The interaction between genetic factors and environmental agents represents a potential etiological driver. Although information is limited, the principal toxic mechanisms of potential leukemogenic agents (e.g., etoposide, benzene metabolites, bioflavonoids and some pesticides) include topoisomerase II inhibition and/or excessive generation of free radicals, which may induce DNA single- and double-strand breaks (DNA-DSBs) in early HSPCs. Chromosomal rearrangements (duplications, deletions and translocations) may occur if these lesions are not properly repaired. The initiating hit usually occurs in utero and commonly leads to the expression of oncogenic fusion proteins. Subsequent cooperating hits define the disease latency and occur after birth and may be of a genetic, epigenetic or immune nature (i.e., delayed infection-mediated immune deregulation). Here, we review the available experimental and epidemiological evidence linking pesticide exposure to infant and childhood leukemia and provide a mechanistic basis to support the association, focusing on early initiating molecular events.

  19. Neural mechanisms underlying morphine withdrawal in addicted patients: a review

    Directory of Open Access Journals (Sweden)

    Nima Babhadiashar


    Full Text Available Morphine is one of the most potent alkaloid in opium, which has substantial medical uses and needs and it is the first active principle purified from herbal source. Morphine has commonly been used for relief of moderate to severe pain as it acts directly on the central nervous system; nonetheless, its chronic abuse increases tolerance and physical dependence, which is commonly known as opiate addiction. Morphine withdrawal syndrome is physiological and behavioral symptoms that stem from prolonged exposure to morphine. A majority of brain regions are hypofunctional over prolonged abstinence and acute morphine withdrawal. Furthermore, several neural mechanisms are likely to contribute to morphine withdrawal. The present review summarizes the literature pertaining to neural mechanisms underlying morphine withdrawal. Despite the fact that morphine withdrawal is a complex process, it is suggested that neural mechanisms play key roles in morphine withdrawal.

  20. Driving under the influence (of stress): evidence of a regional increase in impaired driving and traffic fatalities after the september 11 terrorist attacks. (United States)

    Su, Jenny C; Tran, Alisia G T T; Wirtz, John G; Langteau, Rita A; Rothman, Alexander J


    Did the September 11 terrorist attacks elicit a subsequent increase in traffic fatalities? Gigerenzer (2004) argued that decreases in flying and increases in driving in the 3 months after the attacks led to 353 "surplus" traffic fatalities. We applied a more systematic analysis to the same data and found no evidence of a significant increase in miles driven or of a significant increase in traffic fatalities. However, we did find evidence for a regional effect of the attacks on driving behaviors. We hypothesized that geographic proximity to the attacks increased stress, which in turn decreased driving quality. Our analyses revealed that in the last 3 months of 2001, the Northeast exhibited a significant increase in traffic fatalities, as well as a significant increase in fatal accidents involving an alcohol- or drug-related citation. Increased stress related to physical proximity to the attacks may explain the increase in traffic fatalities.

  1. Mathematical modelling of performance of safety rod and its drive mechanism in sodium cooled fast reactor during scram action

    International Nuclear Information System (INIS)

    Rajan Babu, V.; Thanigaiyarasu, G.; Chellapandi, P.


    Highlights: • Mathematical modelling of dynamic behaviour of safety rod during scram action in fast reactor. • Effects of hydraulics, structural interaction and geometry on drop time of safety rod are understood. • Using simplified model, drop time can be assessed replacing detailed CFD analysis. • Sensitivities of the related parameters on drop time are understood. • Experimental validation qualifies the modelling and computer software developed. - Abstract: Performance of safety rod and its drive mechanism which are parts of shutdown systems in sodium cooled fast reactor (SFR) plays a major role in ensuring safe operation of the plant during all the design basis events. The safety rods are to be inserted into the core within a stipulated time during off-normal conditions of the reactor. Mathematical modelling of dynamic behaviour of a safety rod and its drive mechanism in a typical 500 MWe SFR during scram action is considered in the present study. A full-scale prototype system has undergone qualification tests in air, water and in sodium simulating the operating conditions in the reactor. In this paper, the salient features of the safety rod and its mechanism, details related to mathematical modelling and sensitivity of the parameters having influence on drop time are presented. The outcomes of the numerical analysis are compared with the experimental results. In this process, the mathematical model and the computer software developed are validated

  2. Assessment of safety levels and microscopic traffic simulation modeling tool under the IntelliDrive environment

    NARCIS (Netherlands)

    Roelofsen, M.; Bie, Jing; Lisheng, J.; van Arem, Bart


    In this paper we propose a novel design for the Lane Change Assistant (LCA). For drivers on the highway, LCA advises them on whether it is safe to change lanes under the current traffic conditions. We focus on how the LCA can provide a reliable advice in practice by considering the issues of

  3. Giant panda׳s tooth enamel: Structure, mechanical behavior and toughening mechanisms under indentation. (United States)

    Weng, Z Y; Liu, Z Q; Ritchie, R O; Jiao, D; Li, D S; Wu, H L; Deng, L H; Zhang, Z F


    The giant panda׳s teeth possess remarkable load-bearing capacity and damage resistance for masticating bamboos. In this study, the hierarchical structure and mechanical behavior of the giant panda׳s tooth enamel were investigated under indentation. The effects of loading orientation and location on mechanical properties of the enamel were clarified and the evolution of damage in the enamel under increasing load evaluated. The nature of the damage, both at and beneath the indentation surfaces, and the underlying toughening mechanisms were explored. Indentation cracks invariably were seen to propagate along the internal interfaces, specifically the sheaths between enamel rods, and multiple extrinsic toughening mechanisms, e.g., crack deflection/twisting and uncracked-ligament bridging, were active to shield the tips of cracks from the applied stress. The giant panda׳s tooth enamel is analogous to human enamel in its mechanical properties, yet it has superior hardness and Young׳s modulus but inferior toughness as compared to the bamboo that pandas primarily feed on, highlighting the critical roles of the integration of underlying tissues in the entire tooth and the highly hydrated state of bamboo foods. Our objective is that this study can aid the understanding of the structure-mechanical property relations in the tooth enamel of mammals and further provide some insight on the food habits of the giant pandas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Mechanical properties of graphene nanoribbons under uniaxial tensile strain (United States)

    Yoneyama, Kazufumi; Yamanaka, Ayaka; Okada, Susumu


    Based on the density functional theory with the generalized gradient approximation, we investigated the mechanical properties of graphene nanoribbons in terms of their edge shape under a uniaxial tensile strain. The nanoribbons with armchair and zigzag edges retain their structure under a large tensile strain, while the nanoribbons with chiral edges are fragile against the tensile strain compared with those with armchair and zigzag edges. The fracture started at the cove region, which corresponds to the border between the zigzag and armchair edges for the nanoribbons with chiral edges. For the nanoribbons with armchair edges, the fracture started at one of the cove regions at the edges. In contrast, the fracture started at the inner region of the nanoribbons with zigzag edges. The bond elongation under the tensile strain depends on the mutual arrangement of covalent bonds with respect to the strain direction.

  5. Peripheral Receptor Mechanisms Underlying Orofacial Muscle Pain and Hyperalgesia (United States)

    Saloman, Jami L.

    Musculoskeletal pain conditions, particularly those associated with temporomandibular joint and muscle disorders (TMD) are severely debilitating and affect approximately 12% of the population. Identifying peripheral nociceptive mechanisms underlying mechanical hyperalgesia, a prominent feature of persistent muscle pain, could contribute to the development of new treatment strategies for the management of TMD and other muscle pain conditions. This study provides evidence of functional interactions between ligand-gated channels, P2X3 and TRPV1/TRPA1, in trigeminal sensory neurons, and proposes that these interactions underlie the development of mechanical hyperalgesia. In the masseter muscle, direct P2X3 activation, via the selective agonist αβmeATP, induced a dose- and time-dependent hyperalgesia. Importantly, the αβmeATP-induced hyperalgesia was prevented by pretreatment of the muscle with a TRPV1 antagonist, AMG9810, or the TRPA1 antagonist, AP18. P2X3 was co-expressed with both TRPV1 and TRPA1 in masseter muscle afferents confirming the possibility for intracellular interactions. Moreover, in a subpopulation of P2X3 /TRPV1 positive neurons, capsaicin-induced Ca2+ transients were significantly potentiated following P2X3 activation. Inhibition of Ca2+-dependent kinases, PKC and CaMKII, prevented P2X3-mechanical hyperalgesia whereas blockade of Ca2+-independent PKA did not. Finally, activation of P2X3 induced phosphorylation of serine, but not threonine, residues in TRPV1 in trigeminal sensory neurons. Significant phosphorylation was observed at 15 minutes, the time point at which behavioral hyperalgesia was prominent. Similar data were obtained regarding another nonselective cation channel, the NMDA receptor (NMDAR). Our data propose P2X3 and NMDARs interact with TRPV1 in a facilitatory manner, which could contribute to the peripheral sensitization underlying masseter hyperalgesia. This study offers novel mechanisms by which individual pro-nociceptive ligand

  6. Mechanical properties of a collagen fibril under simulated degradation. (United States)

    Malaspina, David C; Szleifer, Igal; Dhaher, Yasin


    Collagen fibrils are a very important component in most of the connective tissue in humans. An important process associated with several physiological and pathological states is the degradation of collagen. Collagen degradation is usually mediated by enzymatic and non-enzymatic processes. In this work we use molecular dynamics simulations to study the influence of simulated degradation on the mechanical properties of the collagen fibril. We applied tensile stress to the collagen fiber at different stages of degradation. We compared the difference in the fibril mechanical priorities due the removal of enzymatic crosslink, surface degradation and volumetric degradation. As anticipated, our results indicated that, regardless of the degradation scenario, fibril mechanical properties is reduced. The type of degradation mechanism (crosslink, surface or volumetric) expressed differential effect on the change in the fibril stiffness. Our simulation results showed dramatic change in the fibril stiffness with a small amount of degradation. This suggests that the hierarchical structure of the fibril is a key component for the toughness and is very sensitive to changes in the organization of the fibril. The overall results are intended to provide a theoretical framework for the understanding the mechanical behavior of collagen fibrils under degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Risk of injury by driving with alcohol and other drugs. Driving under the Influence of Drugs, Alcohol and Medicines DRUID, Deliverable 2.3.5.

    NARCIS (Netherlands)

    Hels, T. Bernhoft, I.M. Lyckegaard, A. Houwing, S. Hagenzieker, M.P. Legrand, S.-A. Isalberti, C. Van der Linden, T. & Verstraete, A.


    The objective of this deliverable is to assess the risk of driving with alcohol, illicit drugs and medicines in various European countries. In total nine countries participated in the study on relative risk of serious injury/fatality while positive for psychoactive substances. Six countries

  8. PLZT Ceramic Driving Rotary Micro-mirror Based on Photoelectric-electrostatic Mechanism (United States)

    Tang, Yujuan; Yang, Zhong; Chen, Yusong; Wang, Xinjie


    Based on the anomalous photovoltaic effect of PLZT, a rotary micro-mirror driven by hybrid photoelectric-electrostatic actuation of PLZT ceramic is proposed. Firstly, the mathematical modelling of coupled multi-physics fields of PLZT ceramic is established during illumination and light off phases. Then, the relationship between the rotation angle and the photovoltage of PLZT ceramics is established. In addition, the feasibility of rotary micro-mirror with hybrid photoelectric-electrostatic driving is verified via closed-loop control for photo-induced voltage of PLZT ceramic. The experimental results show that the photo-induced voltage of PLZT ceramics has good dynamic control precision using on-off closed-loop control method.

  9. Developing a theoretical foundation to change road user behavior and improve traffic safety: Driving under the influence of cannabis (DUIC). (United States)

    Ward, Nicholas J; Schell, William; Kelley-Baker, Tara; Otto, Jay; Finley, Kari


    This study explored a theoretical model to assess the influence of culture on willingness and intention to drive under the influence of cannabis (DUIC). This model is expected to guide the design of strategies to change future DUIC behavior in road users. This study used a survey methodology to obtain a nationally representative sample (n = 941) from the AmeriSpeak Panel. Survey items were designed to measure aspects of a proposed definition of traffic safety culture and a predictive model of its relationship to DUIC. Although the percentage of reported past DUIC behaviors was relatively low (8.5%), this behavior is still a significant public health issue-especially for younger drivers (18-29 years), who reported more DUIC than expected. Findings suggest that specific cultural components (attitudes, norms) reliably predict past DUIC behavior, general DUIC willingness, and future DUIC intention. Most DUIC behavior appears to be deliberate, related significantly to willingness and intention. Intention and willingness both appear to fully moderate the relationship between traffic safety culture and DUIC behavior. This study explored a theoretical model to understand road user behavior involving drug (cannabis)-impaired driving as a significant risk factor for traffic safety. By understanding the cultural factors that increase DUIC behavior, we can create strategies to transform this culture and sustain safer road user behavior.

  10. Risk, control and self-identity: Young drunk drivers’ experiences with driving under the influence of alcohol and drugs

    Directory of Open Access Journals (Sweden)

    Fynbo Lars


    Full Text Available AIM - This article explores how young Danish drunk (and drug drivers relate to the risk of driving under the influence (DUI. DESIGN - The study is based on qualitative interviews with 25 convicted drunk drivers who in 2010 participated in mandatory alcohol and traffic safety courses. The analysis follows Stephen Lyng’s concept of “edgework”, focusing on volitional risk taking and its effect on the acting individual’s self-identity. RESULTS - Drawing on the interviewees’ accounts of being arrested for drunk driving, the analysis discusses three different categories of young drunk drivers. Those in the first category view a DUI arrest as a loss of control and a reminder of the risk of DUI. Those in the second present DUI as a reaction to what they perceive as untenable social demands. Those in the third see loss of control - such as causing a traffic accident - as the ultimate way of claiming control over their lives. CONCLUSION - The study shows that young drunk drivers have different associations with DUI-related risks. The more constrained they feel in relation to society, the more likely it is that they will divorce negative experiences related to DUI such as being arrested or causing a traffic accident.

  11. The driving mechanisms of particle precipitation during the moderate geomagnetic storm of 7 January 2005

    Directory of Open Access Journals (Sweden)

    N. Longden


    Full Text Available The arrival of an interplanetary coronal mass ejection (ICME triggered a sudden storm commencement (SSC at ~09:22 UT on the 7 January 2005. The ICME followed a quiet period in the solar wind and interplanetary magnetic field (IMF. We present global scale observations of energetic electron precipitation during the moderate geomagnetic storm driven by the ICME. Energetic electron precipitation is inferred from increases in cosmic noise absorption (CNA recorded by stations in the Global Riometer Array (GLORIA. No evidence of CNA was observed during the first four hours of passage of the ICME or following the sudden commencement (SC of the storm. This is consistent with the findings of Osepian and Kirkwood (2004 that SCs will only trigger precipitation during periods of geomagnetic activity or when the magnetic perturbation in the magnetosphere is substantial. CNA was only observed following enhanced coupling between the IMF and the magnetosphere, resulting from southward oriented IMF. Precipitation was observed due to substorm activity, as a result of the initial injection and particles drifting from the injection region. During the recovery phase of the storm, when substorm activity diminished, precipitation due to density driven increases in the solar wind dynamic pressure (Pdyn were identified. A number of increases in Pdyn were shown to drive sudden impulses (SIs in the geomagnetic field. While many of these SIs appear coincident with CNA, SIs without CNA were also observed. During this period, the threshold of geomagnetic activity required for SC driven precipitation was exceeded. This implies that solar wind density driven SIs occurring during storm recovery can drive a different response in particle precipitation to typical SCs.

  12. Robust design of microelectronics assemblies against mechanical shock, temperature and moisture effects of temperature, moisture and mechanical driving forces

    CERN Document Server

    Wong, E-H


    Robust Design of Microelectronics Assemblies Against Mechanical Shock, Temperature and Moisture discusses how the reliability of packaging components is a prime concern to electronics manufacturers. The text presents a thorough review of this important field of research, providing users with a practical guide that discusses theoretical aspects, experimental results, and modeling techniques. The authors use their extensive experience to produce detailed chapters covering temperature, moisture, and mechanical shock induced failure, adhesive interconnects, and viscoelasticity. Useful progr

  13. Temporomandibular disorders and painful comorbidities: clinical association and underlying mechanisms. (United States)

    Costa, Yuri Martins; Conti, Paulo César Rodrigues; de Faria, Flavio Augusto Cardoso; Bonjardim, Leonardo Rigoldi


    The association between temporomandibular disorders (TMDs) and headaches, cervical spine dysfunction, and fibromyalgia is not artefactual. The aim of this review is to describe the comorbid relationship between TMD and these three major painful conditions and to discuss the clinical implications and the underlying pain mechanisms involved in these relationships. Common neuronal pathways and central sensitization processes are acknowledged as the main factors for the association between TMD and primary headaches, although the establishment of cause-effect mechanisms requires further clarification and characterization. The biomechanical aspects are not the main factors involved in the comorbid relationship between TMD and cervical spine dysfunction, which can be better explained by the neuronal convergence of the trigeminal and cervical spine sensory pathways as well as by central sensitization processes. The association between TMD and fibromyalgia also has supporting evidence in the literature, and the proposed main mechanism underlying this relationship is the impairment of the descending pain inhibitory system. In this particular scenario, a cause-effect relationship is more likely to occur in one direction, that is, fibromyalgia as a risk factor for TMD. Therefore, clinical awareness of the association between TMD and painful comorbidities and the support of multidisciplinary approaches are required to recognize these related conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Saturating light and not increased carbon dioxide under ocean acidification drives photosynthesis and growth in Ulva rigida (Chlorophyta) (United States)

    Rautenberger, Ralf; Fernández, Pamela A; Strittmatter, Martina; Heesch, Svenja; Cornwall, Christopher E; Hurd, Catriona L; Roleda, Michael Y


    Carbon physiology of a genetically identified Ulva rigida was investigated under different CO2(aq) and light levels. The study was designed to answer whether (1) light or exogenous inorganic carbon (Ci) pool is driving growth; and (2) elevated CO2(aq) concentration under ocean acidification (OA) will downregulate CAext-mediated dehydration and alter the stable carbon isotope (δ13C) signatures toward more CO2 use to support higher growth rate. At pHT 9.0 where CO2(aq) is Ulva found putative light-dependent transporters to which the remaining NPS can be attributed. The shift in δ13C signatures from –22‰ toward –10‰ under saturating light but not under elevated CO2(aq) suggest preference and substantial use to support photosynthesis and growth. U. rigida is Ci saturated, and growth was primarily controlled by light. Therefore, increased levels of CO2(aq) predicted for the future will not, in isolation, stimulate Ulva blooms. PMID:25750714

  15. Design and manufacture of an ultrasonic inspection device for the friction welds in reactor vessel control rod drive mechanism housings

    International Nuclear Information System (INIS)

    Cieslav, C.; Peteuil, M.


    The control rod drive mechanism housings of a PWR reactor vessel consist of a stainless steel flange and a Ni-Cr-Fe alloy tube, assembled by friction welding. The properties of the interface and the nature of the adjacent materials require the development of a specific ultrasonic inspection technique which could be easily automated, considering the number of parts involved (77 parts per 1300 MWe reactor vessel). The part has the general shape of a tube (inside diameter: 70 mm, outside diameter: 103 mm). The transition between both forged parent materials (stainless steel/Ni-Cr-Fe alloy) is obtained by a very thin interface, whose general orientation is normal to the tube centerline. The heat affected zone has generally a coarser and more irregular structure than that observed in the parent materials. The design and development were carried out using a prototype machine on test-pieces representative of a control rod drive mechanism housing, and containing the following artificial reflectors: notches obtained by electro-discharge machining on the inside and outside surfaces, on each side of the interface; planar artificial defects, parallel to the interface. These defects, obtained from 2 flat bottomed holes, drilled into the mock-up constituent parts, were conveyed to the interface during friction welding

  16. Failure Mechanisms of Brittle Rocks under Uniaxial Compression

    Directory of Open Access Journals (Sweden)

    Liu Taoying


    Full Text Available The behaviour of a rock mass is determined not only by the properties of the rock matrix, but mostly by the presence and properties of discontinuities or fractures within the mass. The compression test on rock-like specimens with two prefabricated transfixion fissures, made by pulling out the embedded metal inserts in the pre-cured period was carried out on the servo control uniaxial loading tester. The influence of the geometry of pre-existing cracks on the cracking processes was analysed with reference to the experimental observation of crack initiation and propagation from pre-existing flaws. Based on the rock fracture mechanics and the stress-strain curves, the evolution failure mechanism of the fissure body was also analyzed on the basis of exploring the law of the compression-shear crack initiation, wing crack growth and rock bridge connection. Meanwhile, damage fracture mechanical models of a compression-shear rock mass are established when the rock bridge axial transfixion failure, tension-shear combined failure, or wing crack shear connection failure occurs on the specimen under axial compression. This research was of significance in studying the failure mechanism of fractured rock mass.

  17. The mechanism underlying fast germination of tomato cultivar LA2711. (United States)

    Yang, Rongchao; Chu, Zhuannan; Zhang, Haijun; Li, Ying; Wang, Jinfang; Li, Dianbo; Weeda, Sarah; Ren, Shuxin; Ouyang, Bo; Guo, Yang-Dong


    Seed germination is important for early plant morphogenesis as well as abiotic stress tolerance, and is mainly controlled by the phytohormones abscisic acid (ABA) and gibberellic acid (GA). Our previous studies identified a salt-tolerant tomato cultivar, LA2711, which is also a fast-germinating genotype, compared to its salt-sensitive counterpart, ZS-5. In an effort to further clarify the mechanism underlying this phenomenon, we compared the dynamic levels of ABA and GA4, the transcript abundance of genes involved in their biosynthesis and catabolism as well as signal transduction between the two cultivars. In addition, we tested seed germination sensitivity to ABA and GAs. Our results revealed that insensitivity of seed germination to exogenous ABA and low ABA content in seeds are the physiological mechanisms conferring faster germination rates of LA2711 seeds. SlCYP707A2, which encodes an ABA catabolic enzyme, may play a decisive role in the fast germination rate of LA2711, as it showed a significantly higher level of expression in LA2711 than ZS-5 at most time points tested during germination. The current results will enable us to gain insight into the mechanism(s) regarding seed germination of tomato and the role of fast germination in stress tolerance. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Mechanisms underlying HIV-1 Vpu-mediated viral egress

    Directory of Open Access Journals (Sweden)

    Nicolas eRoy


    Full Text Available Viruses such as lentiviruses that are responsible for long lasting infections, have to evade several level of cellular immune mechanisms to persist and efficiently disseminate in the host. Over the past decades, many evidences have emerged regarding the major role of accessory proteins of primate lentiviruses (Human (HIV and simian immunodeficiency viruses (SIV in viral evasion from the host immune defense. This short review will provide an overview of the mechanism whereby the accessory protein Vpu contributes to this escape. Vpu is a multifunctional protein that was shown to contribute to viral egress by down-regulating several mediators of the immune system such as CD4, CD1d, NTB-A and the restriction factor BST2. The mechanisms underlying its activity are not fully characterized but rely on its ability to interfere with the host machinery regulating proteins turnover and vesicular trafficking. This review will focus on our current understanding of the mechanisms whereby Vpu down-regulates CD4 and BST2 expression level to favour viral egress.

  19. Magnetic hyperthermia performance of magnetite nanoparticle assemblies under different driving fields (United States)

    Wu, Kai; Wang, Jian-Ping


    The heating performance of magnetic nanoparticles (MNPs) under an alternating magnetic field (AMF) is dependent on several factors. Optimizing these factors improves the heating efficiency for cancer therapy and meanwhile lowers the MNP treatment dosage. AMF is one of the most easily controllable variables to enhance the efficiency of heat generation. This paper investigated the optimal magnetic field strength and frequency for an assembly of magnetite nanoparticles. For hyperthermia treatment in clinical applications, monodispersed NPs are forming nanoclusters in target regions where a strong magnetically interactive environment is anticipated, which leads to a completely different situation than MNPs in ferrofluids. Herein, the energy barrier model is revisited and Néel relaxation time is tailored for high MNP packing densities. AMF strength and frequency are customized for different magnetite NPs to achieve the highest power generation and the best hyperthermia performance.

  20. Mechanism Underlying the Spatial Pattern Formation of Dominant Tree Species in a Natural Secondary Forest.

    Directory of Open Access Journals (Sweden)

    Guodong Jia

    Full Text Available Studying the spatial pattern of plant species may provide significant insights into processes and mechanisms that maintain stand stability. To better understand the dynamics of naturally regenerated secondary forests, univariate and bivariate Ripley's L(r functions were employed to evaluate intra-/interspecific relationships of four dominant tree species (Populus davidiana, Betula platyphylla, Larix gmelinii and Acer mono and to distinguish the underlying mechanism of spatial distribution. The results showed that the distribution of soil, water and nutrients was not fragmented but presented clear gradients. An overall aggregated distribution existed at most distances. No correlation was found between the spatial pattern of soil conditions and that of trees. Both positive and negative intra- and interspecific relationships were found between different DBH classes at various distances. Large trees did not show systematic inhibition of the saplings. By contrast, the inhibition intensified as the height differences increased between the compared pairs. Except for Larix, universal inhibition of saplings by upper layer trees occurred among other species, and this reflected the vertical competition for light. Therefore, we believe that competition for light rather than soil nutrients underlies the mechanism driving the formation of stand spatial pattern in the rocky mountainous areas examined.

  1. Mechanical Design of AM Fabricated Prismatic Rods under Torsion

    Directory of Open Access Journals (Sweden)

    Manzhirov Alexander V.


    Full Text Available We study the stress-strain state of viscoelastic prismatic rods fabricated or repaired by additive manufacturing technologies under torsion. An adequate description of the processes involved is given by methods of a new scientific field, mechanics of growing solids. Three main stages of the deformation process (before the beginning of growth, in the course of growth, and after the termination of growth are studied. Two versions of statement of two problems are given: (i given the torque, find the stresses, displacements, and torsion; (ii given the torsion, find the stresses, displacements, and torque. Solution methods using techniques of complex analysis are presented. The results can be used in mechanical and instrument engineering.

  2. Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms. (United States)

    Wei, Min; Li, Song; Le, Weidong


    Stem cells are unspecialized cells that have the potential for self-renewal and differentiation into more specialized cell types. The chemical and physical properties of surrounding microenvironment contribute to the growth and differentiation of stem cells and consequently play crucial roles in the regulation of stem cells' fate. Nanomaterials hold great promise in biological and biomedical fields owing to their unique properties, such as controllable particle size, facile synthesis, large surface-to-volume ratio, tunable surface chemistry, and biocompatibility. Over the recent years, accumulating evidence has shown that nanomaterials can facilitate stem cell proliferation and differentiation, and great effort is undertaken to explore their possible modulating manners and mechanisms on stem cell differentiation. In present review, we summarize recent progress in the regulating potential of various nanomaterials on stem cell differentiation and discuss the possible cell uptake, biological interaction and underlying mechanisms.

  3. Emissions characterization from EURO 5 diesel/biodiesel passenger car operating under the new European driving cycle (United States)

    Lopes, M.; Serrano, L.; Ribeiro, I.; Cascão, P.; Pires, N.; Rafael, S.; Tarelho, L.; Monteiro, A.; Nunes, T.; Evtyugina, M.; Nielsen, O. J.; Gameiro da Silva, M.; Miranda, A. I.; Borrego, C.


    The increasing demand of petroleum based fuels and their use in internal combustion engines have adverse effect on air quality and climate change. Production of biofuels promises substantial improvement in air quality through reducing emission from biofuel operated vehicles. In this study the influence of the fuel mixture on EURO 5 vehicle exhaust emissions operating under the New European Driving Cycle (NEDC) and in hot operating conditions was analysed. Distinct diesel/biodiesel ratios (B0 (100%/0%), B7 (93%/7%) and B20 (80%/20%), volume basis) were considered. Experiments were conducted on a chassis dynamometer examining several pollutants, namely: carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NO and NO2), particulate matter (PM10 and PM2.5) and total volatile organic compounds (VOC). Moreover, a VOC speciation analysis by gas chromatography was performed to explore the emission variations regarding a set of seventeen VOC.

  4. Hydraulic Circuit of Mechanical Pruner Drive for Hops on Low Trellises

    Directory of Open Access Journals (Sweden)

    Hoffmann David


    Full Text Available A mechanical pruner serves for pruning new hopvine shoots in spring. The later yield depends on the right timing and quality of pruning. That is why hop pruning is one of the most important agrotechnical procedures. A double-disc mechanical pruner used on high trellises cannot be used on low trellises due to its large size. Abroad, for pruning hops on low trellises a specially adapted sprinkler is used (chemical pruning. With regard to the effort to minimize the chemical environmental burden, we opted for the design of the mechanical pruner. Firstly, the low trellis, mechanical pruner, and also elements used in the design of hydraulic circuit are described. Next part of the paper is devoted to the input requirements for both the hydraulic circuit and the mechanical pruner designs. Then a description of an adapted inter-axle carrier used for the experimental model of the hop mechanical pruner and of the effected field measurement follows, along with interpretation of the measured data. These data are depicted in clearly arranged graphs showing the dependency of pressure and hydraulic oil flow on the cutting disc rotational frequency.

  5. Dynamics of Dirac strings and monopolelike excitations in chiral magnets under a current drive (United States)

    Lin, Shi-Zeng; Saxena, Avadh


    Skyrmion lines in metallic chiral magnets carry an emergent magnetic field experienced by the conduction electrons. The inflow and outflow of this field across a closed surface is not necessarily equal, thus it allows for the existence of emergent monopoles. One example is a segment of skyrmion line inside a crystal, where a monopole and antimonopole pair is connected by the emergent magnetic flux line. This is a realization of Dirac stringlike excitations. Here we study the dynamics of monopoles in chiral magnets under an electric current. We show that in the process of creation of skyrmion lines, skyrmion line segments are first created via the proliferation of monopoles and antimonopoles. Then these line segments join and span the whole system through the annihilation of monopoles. The skyrmion lines are destroyed via the proliferation of monopoles and antimonopoles at high currents, resulting in a chiral liquid phase. We also propose to create the monopoles in a controlled way by applying an inhomogeneous current to a crystal. Remarkably, an electric field component in the magnetic field direction proportional to the current squared in the low current region is induced by the motion of distorted skyrmion lines, in addition to the Hall and longitudinal voltage. The existence of monopoles can be inferred from transport or imaging measurements.

  6. VapC toxins drive cellular dormancy under uranium stress for the extreme thermoacidophile Metallosphaera prunae. (United States)

    Mukherjee, Arpan; Wheaton, Garrett H; Counts, James A; Ijeomah, Brenda; Desai, Jigar; Kelly, Robert M


    When abruptly exposed to toxic levels of hexavalent uranium, the extremely thermoacidophilic archaeon Metallosphaera prunae, originally isolated from an abandoned uranium mine, ceased to grow, and concomitantly exhibited heightened levels of cytosolic ribonuclease activity that corresponded to substantial degradation of cellular RNA. The M. prunae transcriptome during 'uranium-shock' implicated VapC toxins as possible causative agents of the observed RNA degradation. Identifiable VapC toxins and PIN-domain proteins encoded in the M. prunae genome were produced and characterized, three of which (VapC4, VapC7, VapC8) substantially degraded M. prunae rRNA in vitro. RNA cleavage specificity for these VapCs mapped to motifs within M. prunae rRNA. Furthermore, based on frequency of cleavage sequences, putative target mRNAs for these VapCs were identified; these were closely associated with translation, transcription, and replication. It is interesting to note that Metallosphaera sedula, a member of the same genus and which has a nearly identical genome sequence but not isolated from a uranium-rich biotope, showed no evidence of dormancy when exposed to this metal. M. prunae utilizes VapC toxins for post-transcriptional regulation under uranium stress to enter a cellular dormant state, thereby providing an adaptive response to what would otherwise be a deleterious environmental perturbation. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Microscopic Driving Parameters-Based Energy-Saving Effect Analysis under Different Electric Vehicle Penetration

    Directory of Open Access Journals (Sweden)

    Enjian Yao


    Full Text Available Due to the rapid motorization over the recent years, China's transportation sector has been facing an increasing environmental pressure. Compared with gasoline vehicle (GV, electric vehicle (EV is expected to play an important role in the mitigation of CO2 and other pollution emissions, and urban air quality improvement, for its zero emission during use and higher energy efficiency. This paper aims to estimate the energy saving efficiency of EV, especially under different EV penetration and road traffic conditions. First, based on the emission and electricity consumption data collected by a light-duty EV and a light duty GV, a set of electricity consumption rate models and gasoline consumption rate models are established. Then, according to the conversion formula of coal equivalent, these models are transformed into coal equivalent consumption models, which make gasoline consumption and electricity consumption comparable. Finally, the relationship between the EV penetration and the reduction of energy consumption is explored based on the simulation undertaken on the North Second Ring Road in Beijing. The results show that the coal equivalent consumption will decrease by about 5% with the increases of EV penetration by 10% and the maximum energy-saving effect can be achieved when the traffic volume is about 4000 pcu/h.

  8. Age differences in the underlying mechanisms of stereotype threat effects. (United States)

    Popham, Lauren E; Hess, Thomas M


    The goals of the present study were to (a) examine whether age differences exist in the mechanisms underlying stereotype threat effects on cognitive performance and (b) examine whether emotion regulation abilities may buffer against threat effects on performance. Older and younger adults were exposed to positive or negative age-relevant stereotypes, allowing us to examine the impact of threat on regulatory focus and working memory. Self-reported emotion regulation measures were completed prior to the session. Older adults' performance under threat suggested a prevention-focused approach to the task, indexed by increased accuracy and reduced speed. The same pattern was observed in younger adults, but the effects were not as strong. Age differences emerged when examining the availability of working memory resources under threat, with young adults showing decrements, whereas older adults did not. Emotion regulation abilities moderated threat effects in young adults but not in older adults. The results provide support for the notion that stereotype threat may lead to underperformance through somewhat different pathways in older and younger adults. Future research should further examine whether the underlying reason for this age difference is rooted in age-related improvements in emotion regulation. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail:

  9. Aging mechanisms in the Westinghouse PWR [Pressurized Water Reactor] Control Rod Drive system

    International Nuclear Information System (INIS)

    Gunther, W.; Sullivan, K.


    An aging assessment of the Westinghouse Pressurized Water Reactor (PWR) Control Rod System (CRD) has been completed as part of the US NRC's Nuclear Plant Aging Research, (NPAR) Program. This study examined the design, construction, maintenance, and operation of the system to determine its potential for degradation as the plant ages. Selected results from this study are presented in this paper. The operating experience data were evaluated to identify the predominant failure modes, causes, and effects. From our evaluation of the data, coupled with an assessment of the materials of construction and the operating environment, we conclude that the Westinghouse CRD system is subject to degradation which, if unchecked, could affect its safety function as a plant ages. Ways to detect and mitigate the effects of aging are included in this paper. The current maintenance for the control rod drive system at fifteen Westinghouse PWRs was obtained through a survey conducted in cooperation with EPRI and NUMARC. The results of the survey indicate that some plants have modified the system, replaced components, or expanded preventive maintenance. Several of these activities have effectively addressed the aging issue. 2 refs., 2 figs., 2 tabs

  10. Smac mimetics and oncolytic viruses synergize in driving anticancer T-cell responses through complementary mechanisms. (United States)

    Kim, Dae-Sun; Dastidar, Himika; Zhang, Chunfen; Zemp, Franz J; Lau, Keith; Ernst, Matthias; Rakic, Andrea; Sikdar, Saif; Rajwani, Jahanara; Naumenko, Victor; Balce, Dale R; Ewanchuk, Ben W; Taylor, Pankaj; Yates, Robin M; Jenne, Craig; Gafuik, Chris; Mahoney, Douglas J


    Second mitochondrial activator of caspase (Smac)-mimetic compounds and oncolytic viruses were developed to kill cancer cells directly. However, Smac-mimetic compound and oncolytic virus therapies also modulate host immune responses in ways we hypothesized would complement one another in promoting anticancer T-cell immunity. We show that Smac-mimetic compound and oncolytic virus therapies synergize in driving CD8 + T-cell responses toward tumors through distinct activities. Smac-mimetic compound treatment with LCL161 reinvigorates exhausted CD8 + T cells within immunosuppressed tumors by targeting tumor-associated macrophages for M1-like polarization. Oncolytic virus treatment with vesicular stomatitis virus (VSV ΔM51 ) promotes CD8 + T-cell accumulation within tumors and CD8 + T-cell activation within the tumor-draining lymph node. When combined, LCL161 and VSV ΔM51 therapy engenders CD8 + T-cell-mediated tumor control in several aggressive mouse models of cancer. Smac-mimetic compound and oncolytic virus therapies are both in clinical development and their combination therapy represents a promising approach for promoting anticancer T-cell immunity.Oncolytic viruses (OV) and second mitochondrial activator of caspase (Smac)-mimetic compounds (SMC) synergistically kill cancer cells directly. Here, the authors show that SMC and OV therapies combination also synergize in vivo by promoting anticancer immunity through an increase in CD8 + T-cell response.

  11. Converging Mechanisms of p53 Activation Drive Motor Neuron Degeneration in Spinal Muscular Atrophy. (United States)

    Simon, Christian M; Dai, Ya; Van Alstyne, Meaghan; Koutsioumpa, Charalampia; Pagiazitis, John G; Chalif, Joshua I; Wang, Xiaojian; Rabinowitz, Joseph E; Henderson, Christopher E; Pellizzoni, Livio; Mentis, George Z


    The hallmark of spinal muscular atrophy (SMA), an inherited disease caused by ubiquitous deficiency in the SMN protein, is the selective degeneration of subsets of spinal motor neurons. Here, we show that cell-autonomous activation of p53 occurs in vulnerable but not resistant motor neurons of SMA mice at pre-symptomatic stages. Moreover, pharmacological or genetic inhibition of p53 prevents motor neuron death, demonstrating that induction of p53 signaling drives neurodegeneration. At late disease stages, however, nuclear accumulation of p53 extends to resistant motor neurons and spinal interneurons but is not associated with cell death. Importantly, we identify phosphorylation of serine 18 as a specific post-translational modification of p53 that exclusively marks vulnerable SMA motor neurons and provide evidence that amino-terminal phosphorylation of p53 is required for the neurodegenerative process. Our findings indicate that distinct events induced by SMN deficiency converge on p53 to trigger selective death of vulnerable SMA motor neurons. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Study on Driving Performance of the Axial-Flow Blood Pump under the Condition of Large Gap

    Directory of Open Access Journals (Sweden)

    Yan Xu


    Full Text Available The paper demonstrates an improvement of the simulation and computational methods for research on the system magnetic field and driving performance of the large gap magnetic drive system, which is used to drive the axial flow blood pump. The operational principle and structure of large gap magnetic drive system are narrated. Ansoft is adopted to simulate a three-dimensional driving torque to improve accuracy of computation. Experiments and theoretical study show that the use of Z10-T25 oriented silicon steel sheets as the electromagnetic core material can remarkably improve the system driving performance as well as optimize the volume and weight of the electromagnets. So the electromagnet made with oriented silicon steel sheets is conducive to improving the driving performance.

  13. Electrochemical mechanism of tin membrane electrodeposition under ultrasonic waves. (United States)

    Nan, Tianxiang; Yang, Jianguang; Chen, Bing


    Tin was electrodeposited from chloride solutions using a membrane cell under ultrasonic waves. Cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CHR), and chronopotentiometry were applied to investigate the electrochemical mechanism of tin electrodeposition under ultrasonic field. Chronoamperometry curves showed that the initial process of tin electrodeposition followed the diffusion controlled three-dimensional nucleation and grain growth mechanism. The analysis of the cyclic voltammetry and linear sweep voltammetry diagrams showed that the application of ultrasound can change the tin membrane electro-deposition reaction from diffusion to electrochemical control, and the optimum parameters for tin electrodeposition were H + concentration 3.5 mol·L -1 , temperature 35 °C and ultrasonic power 100 W. The coupling ultrasonic field played a role in refining the grain in this process. The growth of tin crystals showed no orientation preferential, and the tin deposition showed a tendency to form a regular network structure after ultrasonic coupling. While in the absence of ultrasonic coupling, the growth of tin crystals has a high preferential orientation, and the tin deposition showed a tendency to form tin whiskers. Ultrasonic coupling was more favorable for obtaining a more compact and smoother cathode tin layer. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Mechanisms Underlying the Antidepressant Response and Treatment Resistance

    Directory of Open Access Journals (Sweden)

    Marjorie Rose Levinstein


    Full Text Available Depression is a complex and heterogeneous disorder affecting millions of Americans. There are several different medications and other treatments that are available and effective for many patients with depression. However, a substantial percentage of patients fail to achieve remission with these currently available interventions, and relapse rates are high. Therefore, it is necessary to determine both the mechanisms underlying the antidepressant response and the differences between responders and non-responders to treatment. Delineation of these mechanisms largely relies on experiments that utilize animal models. Therefore, this review provides an overview of the various mouse models that are currently used to assess the antidepressant response, such as chronic mild stress, social defeat, and chronic corticosterone. We discuss how these mouse models can be used to advance our understanding of the differences between responders and non-responders to antidepressant treatment. We also provide an overview of experimental treatment modalities that are used for treatment-resistant depression, such as deep brain stimulation and ketamine administration. We will then review the various genetic polymorphisms and transgenic mice that display resistance to antidepressant treatment. Finally, we synthesize the published data to describe a potential neural circuit underlying the antidepressant response and treatment resistance.

  15. Channelized melting drives thinning under Dotson ice shelf, Western Antarctic Ice Sheet (United States)

    Gourmelen, N.; Goldberg, D.; Snow, K.; Henley, S. F.; Bingham, R. G.; Kimura, S.; Hogg, A.; Shepherd, A.; Mouginot, J.; Lenaerts, J.; Ligtenberg, S.; Van De Berg, W. J.


    The majority of meteoric ice that forms in West Antarctica leaves the ice sheet through floating ice shelves, many of which have been thinning substantially over the last 25 years. A significant proportion of ice-shelf thinning has been driven by submarine melting facilitated by increased access of relatively warm (>0.6oC) modified Circumpolar Deep Water to sub-shelf cavities. Ice shelves play a significant role in stabilising the ice sheet from runaway retreat and regulating its contribution to sea level change. Ice-shelf melting has also been implicated in sustaining high primary productivity in Antarctica's coastal seas. However, these processes vary regionally and are not fully understood. Under some ice shelves, concentrated melting leads to the formation of inverted channels. These channels guide buoyant melt-laden outflow, which can lead to localised melting of the sea ice cover. The channels may also potentially lead to heightened crevassing, which in turn affects ice-shelf stability. Meanwhile, numerical studies suggest that buttressing loss is sensitive to the location of ice removal within an ice-shelf. Thus it is important that we observe spatial patterns, as well as magnitudes, of ice-shelf thinning, in order to improve understanding of the ocean drivers of thinning and of their impacts on ice-shelf stability. Here we show from high-resolution altimetry measurements acquired between 2010 to 2016 that Dotson Ice Shelf, West Antarctica, thins in response to basal melting focussed along a single 5 km-wide and 60 km-long channel extending from the ice shelf's grounding zone to its calving front. The coupled effect of geostrophic circulation and ice-shelf topography leads to the observed concentration of basal melting. Analysis of previous datasets suggests that this process has been ongoing for at least the last 25 years. If focused thinning continues at present rates, the channel would melt through within 40-50 years, almost two centuries before it is

  16. Evidence of two distinct mechanisms driving photoinduced matter motion in thin films containing azobenzene derivatives. (United States)

    Fabbri, F; Garrot, D; Lahlil, K; Boilot, J P; Lassailly, Y; Peretti, J


    Photoinduced matter motion in thin films containing azobenzene derivatives grafted to a polymer backbone is investigated by means of near-field probe microscopy. We evidence the existence of two different photomechanical processes which produce mass transport. One is governed by the light intensity pattern and the other by the light polarization pattern. The intensity-driven mechanism is found to critically depend on the polymer matrix while the polarization-driven mechanism occurs with almost the same efficiency in different materials. Depending on the relationship between the polarization and intensity patterns, the two processes may either compete or cooperate giving rise to a nontrivial directional mass transport process.

  17. Autophagy as a Possible Underlying Mechanism of Nanomaterial Toxicity

    Directory of Open Access Journals (Sweden)

    Vanessa Cohignac


    Full Text Available The rapid development of nanotechnologies is raising safety concerns because of the potential effects of engineered nanomaterials on human health, particularly at the respiratory level. Since the last decades, many in vivo studies have been interested in the pulmonary effects of different classes of nanomaterials. It has been shown that some of them can induce toxic effects, essentially depending on their physico-chemical characteristics, but other studies did not identify such effects. Inflammation and oxidative stress are currently the two main mechanisms described to explain the observed toxicity. However, the exact underlying mechanism(s still remain(s unknown and autophagy could represent an interesting candidate. Autophagy is a physiological process in which cytoplasmic components are digested via a lysosomal pathway. It has been shown that autophagy is involved in the pathogenesis and the progression of human diseases, and is able to modulate the oxidative stress and pro-inflammatory responses. A growing amount of literature suggests that a link between nanomaterial toxicity and autophagy impairment could exist. In this review, we will first summarize what is known about the respiratory effects of nanomaterials and we will then discuss the possible involvement of autophagy in this toxicity. This review should help understand why autophagy impairment could be taken as a promising candidate to fully understand nanomaterials toxicity.

  18. Effects of manual hyperinflation in preterm newborns under mechanical ventilation. (United States)

    Viana, Camila Chaves; Nicolau, Carla Marques; Juliani, Regina Celia Turola Passos; Carvalho, Werther Brunow de; Krebs, Vera Lucia Jornada


    To assess the effects of manual hyperinflation, performed with a manual resuscitator with and without the positive end-expiratory pressure valve, on the respiratory function of preterm newborns under mechanical ventilation. Cross-sectional study of hemodynamically stable preterm newborns with gestational age of less than 32 weeks, under mechanical ventilation and dependent on it at 28 days of life. Manual hyperinflation was applied randomly, alternating the use or not of the positive end-expiratory pressure valve, followed by tracheal aspiration for ending the maneuver. For nominal data, the two-tailed Wilcoxon test was applied at the 5% significance level and 80% power. Twenty-eight preterm newborns, with an average birth weight of 1,005.71 ± 372.16g, an average gestational age of 28.90 ± 1.79 weeks, an average corrected age of 33.26 ± 1.78 weeks, and an average mechanical ventilation time of 29.5 (15 - 53) days, were studied. Increases in inspiratory and expiratory volumes occurred between time-points A5 (before the maneuver) and C1 (immediately after tracheal aspiration) in both the maneuver with the valve (p = 0.001 and p = 0.009) and without the valve (p = 0.026 and p = 0.001), respectively. There was also an increase in expiratory resistance between time-points A5 and C1 (p = 0.044). Lung volumes increased when performing the maneuver with and without the valve, with a significant difference in the first minute after aspiration. There was a significant difference in expiratory resistance between the time-points A5 (before the maneuver) and C1 (immediately after tracheal aspiration) in the first minute after aspiration within each maneuver.

  19. Exploration of mechanisms underlying the strain-rate-dependent mechanical property of single chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Trung Dung; Gu, YuanTong, E-mail: [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland (Australia)


    Based on the characterization by Atomic Force Microscopy, we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young's moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton and the intracellular fluid when the fixed chondrocytes are mainly governed by their intracellular fluid, which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic constitutive material model which can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.

  20. A literature review of empirical studies of philanthropy : eight mechanisms that drive charitable giving.

    NARCIS (Netherlands)

    Bekkers, René; Wiepking, Pamala


    The authors present an overview of the academic literature on charitable giving based on a literature review of more than 500 articles. They structure their review around the central question of why people donate money to charitable organizations. We identify eight mechanisms as the most important

  1. Hurried driving: Relationship to distress tolerance, driver anger, aggressive and risky driving in college students. (United States)

    Beck, Kenneth H; Daughters, Stacey B; Ali, Bina


    Being a hurried driver is associated with a variety of risky driving behaviors, yet the mechanisms underlying this behavior remain unknown. Distress tolerance, defined as an individual's capability to experience and endure negative emotional states, was examined as a predictor of hurried driving among 769 college students. Results indicate that after controlling for age, gender, race, ethnicity, the student's year in school, their grade point average, driving frequency, angry driving, aggressive driving as well as other forms of self-reported risky driving; hurried driving was significantly associated with lower levels of distress tolerance. Hurried drivers also reported greater levels of frustration and impatience with other drivers, suggesting that they have difficulty in withstanding or coping with negative psychological states when driving. Traditional traffic safety campaigns that emphasize enforcement may be less successful with these drivers. The need to develop campaigns that address the affective coping abilities that contribute to this behavioral pattern is discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Prospective prediction of arrests for driving under the influence from relationship patterns with family and friends in adolescence. (United States)

    Pelham, William E; Dishion, Thomas J


    Driving under the influence (DUI) is dangerous and costly, yet there are few prospective studies on modifiable risk and protective processes that would inform prevention. Middle adolescence, when most individuals are first learning to drive and first using alcohol, may be a particularly salient period for family and friendship influences on DUI risk. In the present study, youth's family and friendship environments were observed and measured at age 16 in a diverse community sample (n=999), and then court records were used to document arrest for DUI through the age of 32years. We first examined the univariate effects of family and friendship variables on later DUI and then fit more comprehensive structural equation models to test predictive effects on the level of construct (e.g., parental monitoring) and environment (e.g., family). Results indicate that parental monitoring (Odds Ratio [OR]=0.77), positive family relations (OR=0.84), prosocial peer affiliation (OR=0.77), and deviant peer affiliation (OR=1.43) at age 16 were individually predictive of arrests for DUI from ages 16 to 32, even after controlling for both teen and parent alcohol use. The comprehensive, multivariate models indicated that the friendship environment was most predictive of arrests for DUI during the follow-up period. Together, these results are consistent with a model in which attenuated family ties contribute to substance-use-based friendships at age 16, which in turn contribute to an increased likelihood of arrest for DUI in later adolescence and early adulthood. Implications for prevention are discussed. Copyright © 2017. Published by Elsevier Ltd.

  3. Overview of condition monitoring and operation control of electric power conversion systems in direct-drive wind turbines under faults (United States)

    Huang, Shoudao; Wu, Xuan; Liu, Xiao; Gao, Jian; He, Yunze


    Electric power conversion system (EPCS), which consists of a generator and power converter, is one of the most important subsystems in a direct-drive wind turbine (DD-WT). However, this component accounts for the most failures (approximately 60% of the total number) in the entire DD-WT system according to statistical data. To improve the reliability of EPCSs and reduce the operation and maintenance cost of DD-WTs, numerous researchers have studied condition monitoring (CM) and fault diagnostics (FD). Numerous CM and FD techniques, which have respective advantages and disadvantages, have emerged. This paper provides an overview of the CM, FD, and operation control of EPCSs in DD-WTs under faults. After introducing the functional principle and structure of EPCS, this survey discusses the common failures in wind generators and power converters; briefly reviewed CM and FD methods and operation control of these generators and power converters under faults; and discussed the grid voltage faults related to EPCSs in DD-WTs. These theories and their related technical concepts are systematically discussed. Finally, predicted development trends are presented. The paper provides a valuable reference for developing service quality evaluation methods and fault operation control systems to achieve high-performance and high-intelligence DD-WTs.


    Directory of Open Access Journals (Sweden)

    V. M. Bohomaz


    were built. Practical value. The application of the proposed method of determining the driving power of the crane allows determining its value more precisely, taking into account the impedance of the rolling friction of the wheels on the rails with a flanged on the rails. This approach enables better selection of elements of the mechanism of the bridge crane movement.

  5. Signaling mechanism underlying the histamine-modulated action of hypoglossal motoneurons. (United States)

    Liu, Zi-Long; Wu, Xu; Luo, Yan-Jia; Wang, Lu; Qu, Wei-Min; Li, Shan-Qun; Huang, Zhi-Li


    Histamine, an important modulator of the arousal states of the central nervous system, has been reported to contribute an excitatory drive at the hypoglossal motor nucleus to the genioglossus (GG) muscle, which is involved in the pathogenesis of obstructive sleep apnea. However, the effect of histamine on hypoglossal motoneurons (HMNs) and the underlying signaling mechanisms have remained elusive. Here, whole-cell patch-clamp recordings were conducted using neonatal rat brain sections, which showed that histamine excited HMNs with an inward current under voltage-clamp and a depolarization membrane potential under current-clamp via histamine H1 receptors (H1Rs). The phospholipase C inhibitor U-73122 blocked H1Rs-mediated excitatory effects, but protein kinase A inhibitor and protein kinase C inhibitor did not, indicating that the signal transduction cascades underlying the excitatory action of histamine on HMNs were H1R/Gq/11 /phospholipase C/inositol-1,4,5-trisphosphate (IP3). The effects of histamine were also dependent on extracellular Na(+) and intracellular Ca(2+), which took place via activation of Na(+)-Ca(2+) exchangers. These results identify the signaling molecules associated with the regulatory effect of histamine on HMNs. The findings of this study may provide new insights into therapeutic approaches in obstructive sleep apnea. We proposed the post-synaptic mechanisms underlying the modulation effect of histamine on hypoglossal motoneuron. Histamine activates the H1Rs via PLC and IP3, increases Ca(2+) releases from intracellular stores, promotes Na(+) influx and Ca(2+) efflux via the NCXs, and then produces an inward current and depolarizes the neurons. Histamine modulates the excitability of HMNs with other neuromodulators, such as noradrenaline, serotonin and orexin. We think that these findings should provide an important new direction for drug development for the treatment of obstructive sleep apnea. © 2016 International Society for Neurochemistry.

  6. The role of turbulent pressure as a coherent pulsational driving mechanism: the case of the δ Scuti star HD 187547

    Energy Technology Data Exchange (ETDEWEB)

    Antoci, V.; Houdek, G.; Kjeldsen, H.; Trampedach, R.; Arentoft, T. [Stellar Astrophysics Centre, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Cunha, M. [Centro de Astrofísca e Faculdade de Ciências, Universidade do Porto, Rua das Estrelas 4150-762 (Portugal); Handler, G. [Copernicus Astronomical Center, Bartycka 18, 00-716 Warsaw (Poland); Lüftinger, T. [Institute for Astronomy, University of Vienna, Türkenschanzstr. 17, A-1180 Vienna (Austria); Murphy, S., E-mail: [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, Sydney, NSW 2006 (Australia)


    HD 187547 was the first candidate that led to the suggestion that solar-like oscillations are present in δ Scuti stars. Longer observations, however, show that the modes interpreted as solar-like oscillations have either very long mode lifetimes, longer than 960 days, or are coherent. These results are incompatible with the nature of 'pure' stochastic excitation as observed in solar-like stars. Nonetheless, one point is certain: the opacity mechanism alone cannot explain the oscillation spectrum of HD 187547. Here we present new theoretical investigations showing that convection dynamics can intrinsically excite coherent pulsations in the chemically peculiar δ Scuti star HD 187547. More precisely, it is the perturbations of the mean Reynold stresses (turbulent pressure) that drives the pulsations and the excitation takes place predominantly in the hydrogen ionization zone.

  7. Current drive drift waves as a possible mechanism for dynamo effect and transport in reversed field pinches

    International Nuclear Information System (INIS)

    Briguglio, S.; Romanelli, F.; Vlad, G.


    The possibility that a current driven drift wave turbulence may be responsible for the outward ion flux observed in Reversed Field Pinches (RFPs) is investigated; the latter flux was recently proposed as the driving mechanism of the dynamo sustaining the poloidal current in the external region of an RFP discharge. It is shown that this possibility can be supported by the linear theory of current driven drift waves. Finally, on the assumption that the transport is dominated by these instabilities, a scaling law for the temperature in RFPs is derived, which shows an approximately linear dependence on the current and a weak dependence on the size of the machine, in agreement with the experimental results. (author)

  8. The mechanisms underlying fructose-induced hypertension: a review (United States)

    Klein, Alice Victoria; Kiat, Hosen


    We are currently in the midst of an epidemic of metabolic disorders, which may, in part, be explained by excess fructose intake. This theory is supported by epidemiological observations as well as experimental studies in animals and humans. Rising consumption of fructose has been matched with growing rates of hypertension, leading to concern from public health experts. At this stage, the mechanisms underlying fructose-induced hypertension have not been fully characterized and the bulk of our knowledge is derived from animal models. Animal studies have shown that high-fructose diets up-regulate sodium and chloride transporters, resulting in a state of salt overload that increases blood pressure. Excess fructose has also been found to activate vasoconstrictors, inactivate vasodilators, and over-stimulate the sympathetic nervous system. Further work is required to determine the relevance of these findings to humans and to establish the level at which dietary fructose increases the risk of developing hypertension PMID:25715094

  9. Degradation Mechanisms of Transparent Polyurethane Interlayer under UV Irradiation

    Directory of Open Access Journals (Sweden)

    OU Yingchun


    Full Text Available According to the ageing problem of laminated transparency, the trasparent polyurethane film used as interlayer had been irradiated by fluorescent ultraviolet lamp for 0 h, 200 h, 300 h, and 500 h respectively. With the aid of ultraviolet/visible spectrophotometer, FTIR and SEM etc., the color, structure and morphology of the materials were studied. SEM shows that when the irradiation time is increased to 500 h, the film surface cracks. The UV degradation mechanisms are that -CH2- of the position connecting the O and N from hard segment and the soft segment are easy to oxidize and produce hydrogen peroxide under UV and oxygen, which is furtherly oxidized to CO, and some part of the C-O and C-N bonds is cracked through β scission, and then the materials are fractured.

  10. Nonlinear mechanical response of supercooled melts under applied forces (United States)

    Cárdenas, Heliana; Frahsa, Fabian; Fritschi, Sebastian; Nicolas, Alexandre; Papenkort, Simon; Voigtmann, Thomas; Fuchs, Matthias


    We review recent progress on a microscopic theoretical approach to describe the nonlinear response of glass-forming colloidal dispersions under strong external forcing leading to homogeneous and inhomogeneous flow. Using mode-coupling theory (MCT), constitutive equations for the rheology of viscoelastic shear-thinning fluids are obtained. These are, in suitably simplified form, employed in continuum fluid dynamics, solved by a hybrid-Lattice Boltzmann (LB) algorithm that was developed to deal with long-lasting memory effects. The combined microscopic theoretical and mesoscopic numerical approach captures a number of phenomena far from equilibrium, including the yielding of metastable states, process-dependent mechanical properties, and inhomogeneous pressure-driven channel flow.

  11. Simulated airplane headache: a proxy towards identification of underlying mechanisms. (United States)

    Bui, Sebastian Bao Dinh; Petersen, Torben; Poulsen, Jeppe Nørgaard; Gazerani, Parisa


    Airplane Headache (AH) occurs during flights and often appears as an intense, short lasting headache during take-off or landing. Reports are limited on pathological mechanisms underlying the occurrence of this headache. Proper diagnosis and treatments would benefit from identification of potential pathways involved in AH pathogenesis. This study aimed at providing a simulated airplane headache condition as a proxy towards identification of its underlying mechanisms. Fourteen participants including 7 volunteers suffering from AH and 7 healthy matched controls were recruited after meeting the diagnostic and safety criteria based on an approved study protocol. Simulation of AH was achieved by entering a pressure chamber with similar characteristics of an airplane flight. Selected potential biomarkers including salivary prostaglandin E 2 (PGE 2 ), cortisol, facial thermo-images, blood pressure, pulse, and saturation pulse oxygen (SPO) were defined and values were collected before, during and after flight simulation in the pressure chamber. Salivary samples were analyzed with ELISA techniques, while data analysis and statistical tests were handled with SPSS version 22.0. All participants in the AH-group experienced a headache attack similar to AH experience during flight. The non-AH-group did not experience any headaches. Our data showed that the values for PGE 2 , cortisol and SPO were significantly different in the AH-group in comparison with the non-AH-group during the flight simulation in the pressure chamber. The pressure chamber proved useful not only to provoke AH-like attack but also to study potential biomarkers for AH in this study. PGE 2 , and cortisol levels together with SPO presented dysregulation during the simulated AH-attack in affected individuals compared with healthy controls. Based on these findings we propose to use pressure chamber as a model to induce AH, and thus assess new potential biomarkers for AH in future studies.


    Directory of Open Access Journals (Sweden)

    Alexander eChervyakov


    Full Text Available Transcranial magnetic stimulation (TMS is an effective method used to diagnose and treat many neurological disorders. Although repetitive TMS (rTMS has been used to treat a variety of serious pathological conditions including stroke, depression, Parkinson's disease, epilepsy, pain, and migraines, the pathophysiological mechanisms underlying the effects of long-term TMS remain unclear. In the present review, the effects of rTMS on neurotransmitters and synaptic plasticity are described, including the classic interpretations of TMS effects on synaptic plasticity via long-term potentiation (LTP and long-term depression (LTD. We also discuss the effects of rTMS on the genetic apparatus of neurons, glial cells and the prevention of neuronal death. The neurotrophic effects of rTMS on dendritic growth and sprouting and neurotrophic factors are described, including change in brain-derived neurotrophic factor (BDNF concentration under the influence of rTMS. Also, non-classical effects of TMS related to biophysical effects of magnetic fields are described, including the quantum effects, the magnetic spin effects, genetic magnetoreception, the macromolecular effects of TMS, and the electromagnetic theory of consciousness. Finally, we discuss possible interpretations of TMS effects according to dynamical systems theory. Evidence suggests that a rTMS-induced magnetic field should be considered a separate physical factor that can be impactful at the subatomic level and that rTMS is capable of significantly altering the reactivity of molecules (radicals. It is thought that these factors underlie the therapeutic benefits of therapy with TMS. Future research on these mechanisms will be instrumental to the development of more powerful and reliable TMS treatment protocols.

  13. [Shifting path of industrial pollution gravity centers and its driving mechanism in Pan-Yangtze River Delta]. (United States)

    Zhao, Hai-Xia; Jiang, Xiao-Wei; Cui, Jian-Xin


    Shifting path of industrial pollution gravity centers is the response of environmental special formation during the industry transfer process, in order to prove the responding of industrial pollution gravity centers to industry transfer in economically developed areas, this paper calculates the gravity centers of industrial wastewater, gas and solid patterns and reveals the shifting path and its driving mechanism, using the data of industrial pollution in the Pan-Yangtze River Delta from 2000 to 2010. The results show that the gravity center of the industrial waste in Pan-Yangtze River Delta shifts for sure in the last 10 years, and gravity center of solid waste shifts the maximum distance within the three wastes, which was 180.18 km, and shifting distances for waste gas and waste water were 109.51 km and 85.92 km respectively. Moreover, the gravity center of the industrial waste in Pan-Yangtze River Delta shifts westwards, and gravity centers of waste water, gas and solid shift for 0.40 degrees, 0.17 degrees and 0.03 degrees respectively. The shifting of industrial pollution gravity centers is driven by many factors. The rapid development of the heavy industry in Anhui and Jiangxi provinces results in the westward shifting of the pollutions. The optimization and adjustment of industrial structures in Yangtze River Delta region benefit to alleviating industrial pollution, and high-polluting industries shifted to Anhui and Jiangxi provinces promotes pollution gravity center shifting to west. While the development of massive clean enterprise, strong environmental management efforts and better environmental monitoring system slow the shifting trend of industrial pollution to the east in Yangtze River Delta. The study of industrial pollution gravity shift and its driving mechanism provides a new angle of view to analyze the relationship between economic development and environmental pollution, and also provides academic basis for synthetical management and control of

  14. Customizing the coefficients of urban domestic pollutant discharge and their driving mechanisms: Evidence from the Taihu Basin, China. (United States)

    Zhao, Haixia; Cui, Jianxin; Wang, Shufen; Lindley, Sarah


    Discharge of urban domestic pollution has risen sharply during China's extensive urbanization. Together with understanding the complexity of influencing factors underpinning this rise, it has become a pressing issue to estimate total discharge and illustrate its driving mechanism scientifically. This paper reports on the monitoring of discharge from 36 sampling sites in selected residential districts in the heavily polluted Taihu Basin, China. The data were used to estimate the total amount of discharge, to develop corresponding urban domestic pollutant discharge coefficients and to analyse associated spatial patterns. Data from a questionnaire survey of over 1000 households in downtown, suburb and market town areas were then used to apply an econometric model in order to distinguish driving mechanisms. The urban domestic pollutant discharge coefficients developed in this paper are generally smaller than those reported nationally for China, based on more generalised data, decaying from city centres to the urban periphery. This study quantifies the amount of discharge and also demonstrates that urban domestic pollutant discharge is driven by multiple factors. For example, urban domestic pollution discharge rates were positively correlated with income and female-dominated households also tend to discharge more wastewater. Other factors were found to have negative correlations, such as sewage treatment rates, awareness of environmental protection, age and degree of education. As well as providing new and refined data on urban pollution discharge characteristics, the research in this paper also demonstrates the utility of combining household questionnaire and sample monitoring data in order to yield greater insights into the causes of typical polluting behaviour in Chinese neighbourhoods. Copyright © 2017. Published by Elsevier Ltd.

  15. Nonlinear Mechanics of MEMS Rectangular Microplates under Electrostatic Actuation

    KAUST Repository

    Saghir, Shahid


    The first objective of the dissertation is to develop a suitable reduced order model capable of investigating the nonlinear mechanical behavior of von-Karman plates under electrostatic actuation. The second objective is to investigate the nonlinear static and dynamic behavior of rectangular microplates under small and large actuating forces. In the first part, we present and compare various approaches to develop reduced order models for the nonlinear von-Karman rectangular microplates actuated by nonlinear electrostatic forces. The reduced-order models aim to investigate the static and dynamic behavior of the plate under small and large actuation forces. A fully clamped microplate is considered. Different types of basis functions are used in conjunction with the Galerkin method to discretize the governing equations. First we investigate the convergence with the number of modes retained in the model. Then for validation purpose, a comparison of the static results is made with the results calculated by a nonlinear finite element model. The linear eigenvalue problem for the plate under the electrostatic force is solved for a wide range of voltages up to pull-in. In the second part, we present an investigation of the static and dynamic behavior of a fully clamped microplate. We investigate the effect of different non-dimensional design parameters on the static response. The forced-vibration response of the plate is then investigated when the plate is excited by a harmonic AC load superimposed to a DC load. The dynamic behavior is examined near the primary and secondary (superharmonic and subharmonic) resonances. The microplate shows a strong hardening behavior due to the cubic nonlinearity of midplane stretching. However, the behavior switches to softening as the DC load is increased. Next, near-square plates are studied to understand the effect of geometric imperfections of microplates. In the final part of the dissertation, we investigate the mechanical behavior of

  16. Efficiency Evaluation of Five-Phase Outer-Rotor Fault-Tolerant BLDC Drives under Healthy and Open-Circuit Faulty Conditions

    Directory of Open Access Journals (Sweden)



    Full Text Available Fault tolerant motor drives are an interesting subject for many applications such as automotive industries and wind power generation. Among different configurations of these systems, five-phase BLDC drives are gaining more importance which is because of their compactness and high efficiency. Due to replacement of field windings by permanent magnets in their rotor structure, the main sources of power losses in these drives are iron (core losses, copper (winding losses, and inverter unit (semiconductor losses. Although low amplitude of power losses in five-phase BLDC drives is an important aspect for many applications, but their efficiency under faulty conditions is not considered in previous studies. In this paper, the efficiency of an outer-rotor five phase BLDC drive is evaluated under normal and different faulty conditions. Open-circuit fault is considered for one, two adjacent and two non-adjacent faulty phases. Iron core losses are calculated via FEM simulations in Flux-Cedrat software, and moreover, inverter losses and winding copper losses are simulated in MATLAB� environment. Experimental evaluations are conducted to evaluate the efficiency of the entire BLDC drive which verifies the theoretical developments.

  17. Piecewise nonlinear dynamic characteristics study of the control rod drive mechanism

    International Nuclear Information System (INIS)

    Shen Xiaoyao; Wang Feng


    Piecewise nonlinear dynamics of the control rod mechanism (CRDM), one of the critical components in PWR nuclear power plants, are studied for its lifting process in this paper. Firstly, equations of the electric circuit and the magnetic circuit are set up. Then based on the dynamic lifting process analysis of CRDM, its motion procedure is divided into three stages, and the coupled magnetic-electric-mechanical equation for each stage is derived. By combining the analytical solution method and the numerical simulation method, the piecewise nonlinear governing equations are solved. Finally, parameters which can illustrate the dynamic characteristics of CRDM, such as the magnetic force, the coil current, the armature displacement, the armature velocity and the acceleration are obtained and corresponding curves with the time are drawn and analyzed. The analysis results are confirmed by the test which proves the validity of our method. Work in this paper can be used for design and analysis as well as the site fault diagnosis of CRDM. (author)

  18. Mechanisms underlying the social enhancement of vocal learning in songbirds. (United States)

    Chen, Yining; Matheson, Laura E; Sakata, Jon T


    Social processes profoundly influence speech and language acquisition. Despite the importance of social influences, little is known about how social interactions modulate vocal learning. Like humans, songbirds learn their vocalizations during development, and they provide an excellent opportunity to reveal mechanisms of social influences on vocal learning. Using yoked experimental designs, we demonstrate that social interactions with adult tutors for as little as 1 d significantly enhanced vocal learning. Social influences on attention to song seemed central to the social enhancement of learning because socially tutored birds were more attentive to the tutor's songs than passively tutored birds, and because variation in attentiveness and in the social modulation of attention significantly predicted variation in vocal learning. Attention to song was influenced by both the nature and amount of tutor song: Pupils paid more attention to songs that tutors directed at them and to tutors that produced fewer songs. Tutors altered their song structure when directing songs at pupils in a manner that resembled how humans alter their vocalizations when speaking to infants, that was distinct from how tutors changed their songs when singing to females, and that could influence attention and learning. Furthermore, social interactions that rapidly enhanced learning increased the activity of noradrenergic and dopaminergic midbrain neurons. These data highlight striking parallels between humans and songbirds in the social modulation of vocal learning and suggest that social influences on attention and midbrain circuitry could represent shared mechanisms underlying the social modulation of vocal learning.

  19. Neurodevelopmental Disorders and Environmental Toxicants: Epigenetics as an Underlying Mechanism

    Directory of Open Access Journals (Sweden)

    Nguyen Quoc Vuong Tran


    Full Text Available The increasing prevalence of neurodevelopmental disorders, especially autism spectrum disorders (ASD and attention deficit hyperactivity disorder (ADHD, calls for more research into the identification of etiologic and risk factors. The Developmental Origin of Health and Disease (DOHaD hypothesizes that the environment during fetal and childhood development affects the risk for many chronic diseases in later stages of life, including neurodevelopmental disorders. Epigenetics, a term describing mechanisms that cause changes in the chromosome state without affecting DNA sequences, is suggested to be the underlying mechanism, according to the DOHaD hypothesis. Moreover, many neurodevelopmental disorders are also related to epigenetic abnormalities. Experimental and epidemiological studies suggest that exposure to prenatal environmental toxicants is associated with neurodevelopmental disorders. In addition, there is also evidence that environmental toxicants can result in epigenetic alterations, notably DNA methylation. In this review, we first focus on the relationship between neurodevelopmental disorders and environmental toxicants, in particular maternal smoking, plastic-derived chemicals (bisphenol A and phthalates, persistent organic pollutants, and heavy metals. We then review studies showing the epigenetic effects of those environmental factors in humans that may affect normal neurodevelopment.

  20. Thermal stability of nafion membranes under mechanical stress

    Energy Technology Data Exchange (ETDEWEB)

    Quintilii, M.; Struis, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)


    The feasibility of adequately modified fluoro-ionomer membranes (NAFION{sup R}) is demonstrated for the selective separation of methanol synthesis products from the raw reactor gas at temperatures around 200{sup o}C. For an economically relevant application of this concept on a technical scale the Nafion membranes should be thin ({approx_equal}10 {mu}m) and thermally stable over a long period of time (1-2 years). In cooperation with industry (Methanol Casale SA, Lugano (CH)), we test the thermal stability of Nafion hollow fibers and supported Nafion thin sheet membranes at temperatures between 160 and 200{sup o}C under mechanical stress by applying a gas pressure difference over the membrane surface ({Delta}P{<=} 40 bar). Tests with the hollow fibers revealed that Nafion has visco-elastic properties. Tests with 50 {mu}m thin Nafion sheets supported by a porous metal carrier at 200{sup o}C and {Delta}P=39 bar showed no mechanical defects over a period of 92 days. (author) 5 figs., 4 refs.

  1. Using Drosophila to discover mechanisms underlying type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Ronald W. Alfa


    Full Text Available Mechanisms of glucose homeostasis are remarkably well conserved between the fruit fly Drosophila melanogaster and mammals. From the initial characterization of insulin signaling in the fly came the identification of downstream metabolic pathways for nutrient storage and utilization. Defects in these pathways lead to phenotypes that are analogous to diabetic states in mammals. These discoveries have stimulated interest in leveraging the fly to better understand the genetics of type 2 diabetes mellitus in humans. Type 2 diabetes results from insulin insufficiency in the context of ongoing insulin resistance. Although genetic susceptibility is thought to govern the propensity of individuals to develop type 2 diabetes mellitus under appropriate environmental conditions, many of the human genes associated with the disease in genome-wide association studies have not been functionally studied. Recent advances in the phenotyping of metabolic defects have positioned Drosophila as an excellent model for the functional characterization of large numbers of genes associated with type 2 diabetes mellitus. Here, we examine results from studies modeling metabolic disease in the fruit fly and compare findings to proposed mechanisms for diabetic phenotypes in mammals. We provide a systematic framework for assessing the contribution of gene candidates to insulin-secretion or insulin-resistance pathways relevant to diabetes pathogenesis.

  2. Different neurophysiological mechanisms underlying word and rule extraction from speech.

    Directory of Open Access Journals (Sweden)

    Ruth De Diego Balaguer

    Full Text Available The initial process of identifying words from spoken language and the detection of more subtle regularities underlying their structure are mandatory processes for language acquisition. Little is known about the cognitive mechanisms that allow us to extract these two types of information and their specific time-course of acquisition following initial contact with a new language. We report time-related electrophysiological changes that occurred while participants learned an artificial language. These changes strongly correlated with the discovery of the structural rules embedded in the words. These changes were clearly different from those related to word learning and occurred during the first minutes of exposition. There is a functional distinction in the nature of the electrophysiological signals during acquisition: an increase in negativity (N400 in the central electrodes is related to word-learning and development of a frontal positivity (P2 is related to rule-learning. In addition, the results of an online implicit and a post-learning test indicate that, once the rules of the language have been acquired, new words following the rule are processed as words of the language. By contrast, new words violating the rule induce syntax-related electrophysiological responses when inserted online in the stream (an early frontal negativity followed by a late posterior positivity and clear lexical effects when presented in isolation (N400 modulation. The present study provides direct evidence suggesting that the mechanisms to extract words and structural dependencies from continuous speech are functionally segregated. When these mechanisms are engaged, the electrophysiological marker associated with rule-learning appears very quickly, during the earliest phases of exposition to a new language.

  3. Understanding and imitating unfamiliar actions: distinct underlying mechanisms.

    Directory of Open Access Journals (Sweden)

    Joana C Carmo

    Full Text Available The human "mirror neuron system" has been proposed to be the neural substrate that underlies understanding and, possibly, imitating actions. However, since the brain activity with mirror properties seems insufficient to provide a good description for imitation of actions outside one's own repertoire, the existence of supplementary processes has been proposed. Moreover, it is unclear whether action observation requires the same neural mechanisms as the explicit access to their meaning. The aim of this study was two-fold as we investigated whether action observation requires different processes depending on 1 whether the ultimate goal is to imitate or understand the presented actions and 2 whether the to-be-imitated actions are familiar or unfamiliar to the subject. Participants were presented with both meaningful familiar actions and meaningless unfamiliar actions that they had to either imitate or discriminate later. Event-related Potentials were used as differences in brain activity could have been masked by the use of other techniques with lower temporal resolution. In the imitation task, a sustained left frontal negativity was more pronounced for meaningless actions than for meaningful ones, starting from an early time-window. Conversely, observing unfamiliar versus familiar actions with the intention of discriminating them led to marked differences over right centro-posterior scalp regions, in both middle and latest time-windows. These findings suggest that action imitation and action understanding may be sustained by dissociable mechanisms: while imitation of unfamiliar actions activates left frontal processes, that are likely to be related to learning mechanisms, action understanding involves dedicated operations which probably require right posterior regions, consistent with their involvement in social interactions.

  4. Mechanical properties and failure mechanisms of graphene under a central load. (United States)

    Wang, Shuaiwei; Yang, Baocheng; Zhang, Shouren; Yuan, Jinyun; Si, Yubing; Chen, Houyang


    By employing molecular dynamics simulations, the evolution of deformation of a monolayer graphene sheet under a central transverse loading are investigated. Dependence of mechanical responses on the symmetry (shape) of the loading domain, on the size of the graphene sheet, and on temperature, is determined. It is found that the symmetry of the loading domain plays a central role in fracture strength and strain. By increasing the size of the graphene sheet or increasing temperature, the tensile strength and fracture strain decrease. The results have demonstrated that the breaking force and breaking displacement are sensitive to both temperature and the symmetry of the loading domain. In addition, we find that the intrinsic strength of graphene under a central load is much smaller than that of graphene under a uniaxial load. By examining the deformation processes, two failure mechanisms are identified namely, brittle bond breaking and plastic relaxation. In the second mechanism, the Stone-Wales transformation occurs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Evaluation of Possible Proximate Mechanisms Underlying the Kinship Theory of Intragenomic Conflict in Social Insects. (United States)

    Galbraith, David A; Yi, Soojin V; Grozinger, Christina M


    Kinship theory provides a universal framework in which to understand the evolution of altruism, but there are many molecular and genetic mechanisms that can generate altruistic behaviors. Interestingly, kinship theory specifically predicts intragenomic conflict between maternally-derived alleles (matrigenes) and paternally-derived alleles (patrigenes) over the generation of altruistic behavior in cases where the interests of the matrigenes and patrigenes are not aligned. Under these conditions, individual differences in selfish versus altruistic behavior are predicted to arise from differential expression of the matrigenes and patrigenes (parent-specific gene expression or PSGE) that regulate selfish versus altruistic behaviors. As one of the leading theories to describe PSGE and genomic imprinting, kinship theory has been used to generate predictions to describe the reproductive division of labor in social insect colonies, which represents an excellent model system to test the hypotheses of kinship theory and examine the underlying mechanisms driving it. Recent studies have confirmed the predicted differences in the influence of matrigenes and patrigenes on reproductive division of labor in social insects, and demonstrated that these differences are associated with differences in PSGE of key genes involved in regulating reproductive physiology, providing further support for kinship theory. However, the mechanisms mediating PSGE in social insects, and how PSGE leads to differences in selfish versus altruistic behavior, remain to be determined. Here, we review the available supporting evidence for three possible epigenetic mechanisms (DNA methylation, piRNAs, and histone modification) that may generate PSGE in social insects, and discuss how these may lead to variation in social behavior. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email

  6. Microcracking in composite laminates under thermal and mechanical loading. Thesis (United States)

    Maddocks, Jason R.


    Composites used in space structures are exposed to both extremes in temperature and applied mechanical loads. Cracks in the matrix form, changing the laminate thermoelastic properties. The goal of the present investigation is to develop a predictive methodology to quantify microcracking in general composite laminates under both thermal and mechanical loading. This objective is successfully met through a combination of analytical modeling and experimental investigation. In the analysis, the stress and displacement distributions in the vicinity of a crack are determined using a shear lag model. These are incorporated into an energy based cracking criterion to determine the favorability of crack formation. A progressive damage algorithm allows the inclusion of material softening effects and temperature-dependent material properties. The analysis is implemented by a computer code which gives predicted crack density and degraded laminate properties as functions of any thermomechanical load history. Extensive experimentation provides verification of the analysis. AS4/3501-6 graphite/epoxy laminates are manufactured with three different layups to investigate ply thickness and orientation effects. Thermal specimens are cooled to progressively lower temperatures down to -184 C. After conditioning the specimens to each temperature, cracks are counted on their edges using optical microscopy and in their interiors by sanding to incremental depths. Tensile coupons are loaded monotonically to progressively higher loads until failure. Cracks are counted on the coupon edges after each loading. A data fit to all available results provides input parameters for the analysis and shows them to be material properties, independent of geometry and loading. Correlation between experiment and analysis is generally very good under both thermal and mechanical loading, showing the methodology to be a powerful, unified tool. Delayed crack initiation observed in a few cases is attributed to a

  7. Traditional medicines as a mechanism for driving research innovation in Africa

    Directory of Open Access Journals (Sweden)

    Holtel Andreas


    Full Text Available Abstract The outcomes from recent high profile deliberations concerning African health research and economic development all point towards the need for a mechanism to support health innovation on the continent. The mission of the African Network for Drugs and Diagnostics Innovation (ANDI, is to promote and sustain African-led health product innovation to address African public health needs through the assembly of research networks, and building of capacity to support human and economic development. ANDI is widely viewed as the vehicle to implementing some of these recommendations. There is tremendous opportunity for Africa, to leverage the expertise in natural products and traditional medicines in support of this objective to kick-start innovation. This report highlights key recommendations that have emerged through expert forums convened by ANDI on the challenges, opportunities and prospects for investing in this important area of research.

  8. A comparison of drivers with high versus low perceived risk of being caught and arrested for driving under the influence of alcohol. (United States)

    Beck, Kenneth H; Fell, James C; Yan, Alice F


    To examine the beliefs, behaviors, and knowledge of drivers concerning drunk driving and to compare those with greater or lesser perceptions of risk of being caught driving while impaired. A random-digit-dial telephone survey was conducted of 850 licensed drivers throughout Maryland who reported their driving behaviors, crash history, beliefs about various alcohol countermeasures, and their knowledge of state alcohol laws. Most drivers (72%) did not feel that it was very likely that they would be stopped by the police if they drove after having too much to drink (low-risk perceivers). High-risk perceivers (28%) felt that it was very likely that they would be stopped and most (70%) felt that it was very likely that they would be arrested and convicted. Less than half (45%) of the low-risk perceivers felt that they would be arrested and convicted if they drove impaired. High-risk perceivers were significantly more likely to be non-white, less likely to drive 10 mph above the speed limit, but were more likely have five or more tickets in their lifetime and believed that sobriety checkpoints are effective. They were also more aware of laws regarding mandatory use of ignition interlocks for repeat driving under the influence (DUI) offenders and the zero tolerance law for under-21-year-old drivers. There is a need to elevate the perceived risk of being caught when driving while alcohol impaired. Despite several years of prevention programs, a substantial portion of Maryland drivers do not feel it very likely that they would be stopped by the police if they were to drive after drinking too much. Drivers who perceive these risks are more accepting of enforcement and treatment countermeasures and are more likely to report safer driving behaviors.

  9. Mechanical Modeling of a WIPP Drum Under Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jeffrey A. [Sandia National Laboratories, Albuquerque, NM (United States)


    Mechanical modeling was undertaken to support the Waste Isolation Pilot Plant (WIPP) technical assessment team (TAT) investigating the February 14th 2014 event where there was a radiological release at the WIPP. The initial goal of the modeling was to examine if a mechanical model could inform the team about the event. The intention was to have a model that could test scenarios with respect to the rate of pressurization. It was expected that the deformation and failure (inability of the drum to contain any pressure) would vary according to the pressurization rate. As the work progressed there was also interest in using the mechanical analysis of the drum to investigate what would happen if a drum pressurized when it was located under a standard waste package. Specifically, would the deformation be detectable from camera views within the room. A finite element model of a WIPP 55-gallon drum was developed that used all hex elements. Analyses were conducted using the explicit transient dynamics module of Sierra/SM to explore potential pressurization scenarios of the drum. Theses analysis show similar deformation patterns to documented pressurization tests of drums in the literature. The calculated failure pressures from previous tests documented in the literature vary from as little as 16 psi to 320 psi. In addition, previous testing documented in the literature shows drums bulging but not failing at pressures ranging from 69 to 138 psi. The analyses performed for this study found the drums failing at pressures ranging from 35 psi to 75 psi. When the drums are pressurized quickly (in 0.01 seconds) there is significant deformation to the lid. At lower pressurization rates the deformation of the lid is considerably less, yet the lids will still open from the pressure. The analyses demonstrate the influence of pressurization rate on deformation and opening pressure of the drums. Analyses conducted with a substantial mass on top of the closed drum demonstrate that the

  10. Synoptic-scale analysis of mechanisms driving surface chlorophyll dynamics in the North Atlantic

    Directory of Open Access Journals (Sweden)

    A. S. A. Ferreira


    Full Text Available Several hypotheses have been proposed for the onset of the spring phytoplankton bloom in the North Atlantic. Our main objective is to examine which bottom-up processes can best predict the annual increase in surface phytoplankton concentration in the North Atlantic by applying novel phenology algorithms to ocean colour data. We construct indicator fields and time series which, in various combinations, provide models consistent with the principle dynamics previously proposed. Using a multimodel inference approach, we investigate the evidence supporting these models and how it varies in space. We show that, in terms of bottom-up processes alone, there is a dominant physical mechanism, namely mixed-layer shoaling, that best predicts the interannual variation in the initial increase in surface chlorophyll across large sectors of the North Atlantic. We further show that different regions are governed by different physical phenomena and that wind-driven mixing is a common component, with either heat flux or light as triggers. We believe these findings to be relevant to the ongoing discussion on North Atlantic bloom onset.

  11. Is mitochondrial dysfunction a driving mechanism linking COPD to nonsmall cell lung carcinoma?

    Directory of Open Access Journals (Sweden)

    Francois Ng Kee Kwong


    Full Text Available Chronic obstructive pulmonary disease (COPD patients are at increased risk of developing nonsmall cell lung carcinoma, irrespective of their smoking history. Although the mechanisms behind this observation are not clear, established drivers of carcinogenesis in COPD include oxidative stress and sustained chronic inflammation. Mitochondria are critical in these two processes and recent evidence links increased oxidative stress in COPD patients to mitochondrial damage. We therefore postulate that mitochondrial damage in COPD patients leads to increased oxidative stress and chronic inflammation, thereby increasing the risk of carcinogenesis. The functional state of the mitochondrion is dependent on the balance between its biogenesis and degradation (mitophagy. Dysfunctional mitochondria are a source of oxidative stress and inflammasome activation. In COPD, there is impaired translocation of the ubiquitin-related degradation molecule Parkin following activation of the Pink1 mitophagy pathway, resulting in excessive dysfunctional mitochondria. We hypothesise that deranged pathways in mitochondrial biogenesis and mitophagy in COPD can account for the increased risk in carcinogenesis. To test this hypothesis, animal models exposed to cigarette smoke and developing emphysema and lung cancer should be developed. In the future, the use of mitochondria-based antioxidants should be studied as an adjunct with the aim of reducing the risk of COPD-associated cancer.

  12. Driving under the influence among frequent ecstasy consumers in Australia: trends over time and the role of risk perceptions. (United States)

    Matthews, Allison Jane; Bruno, Raimondo; Dietze, Paul; Butler, Kerryn; Burns, Lucy


    Driving under the influence (DUI) of alcohol and illicit drugs is a serious road safety concern. This research aimed to examine trends in DUI across time and changes in attitudes towards the risks (crash and legal) associated with DUI among regular ecstasy users (REU) interviewed in Australia. Participants were regular (at least monthly) ecstasy users surveyed in 2007 (n=573) or 2011 (n=429) who had driven a car in the last six months. Face to face interviews comprised questions about recent engagement of DUI and roadside breath (alcohol) and saliva (drug) testing. Participants also reported the risk of crash and of being apprehended by police if DUI of alcohol, cannabis, ecstasy, and methamphetamine. There were significant reductions in DUI of psychostimulants (ecstasy, methamphetamine, cocaine, LSD) but not alcohol or cannabis between 2007 and 2011. This was accompanied by increased experience of roadside saliva testing and increases in crash and legal risk perceptions for ecstasy and methamphetamine, but not alcohol or cannabis. When the relationship between DUI and risk variables was examined, low crash risk perceptions were associated with DUI of all substances and low legal risk perceptions were associated with DUI of ecstasy. The observed reduction in DUI of psychostimulants among frequent ecstasy consumers may be related to increased risk awareness stemming from educational campaigns and the introduction of saliva testing on Australian roads. Such countermeasures may be less effective in relation to deterring or changing attitudes towards DUI of cannabis and alcohol among this group. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. The unprecedented 2014 Legionnaires' disease outbreak in Portugal: atmospheric driving mechanisms (United States)

    Russo, Ana; Gouveia, Célia M.; Soares, Pedro M. M.; Cardoso, Rita M.; Mendes, Manuel T.; Trigo, Ricardo M.


    A large outbreak of Legionnaires' disease occurred in November 2014 nearby Lisbon, Portugal. This epidemic infected 377 individuals by the Legionella pneumophila bacteria, resulting in 14 deaths. The primary source of transmission was contaminated aerosolized water which, when inhaled, lead to atypical pneumonia. The unseasonably warm temperatures during October 2014 may have played a role in the proliferation of Legionella species in cooling tower systems. The episode was further exacerbated by high relative humidity and a thermal inversion which limited the bacterial dispersion. Here, we analyze if the Legionella outbreak event occurred during a situation of extreme potential recirculation and/or stagnation characteristics. In order to achieve this goal, the Allwine and Whiteman approach was applied for a hindcast simulation covering the affected area during a near 20-year long period (1989-2007) and then for an independent period covering the 2014 event (15 October to 13 November 2014). The results regarding the average daily critical transport indices for the 1989-2007 period clearly indicate that the airshed is prone to stagnation as these events have a dominant presence through most of the study period (42%), relatively to the occurrence of recirculation (18%) and ventilation (17%) events. However, the year of 2014 represents an exceptional year when compared to the 1989-2007 period, with 53 and 33% of the days being classified as under stagnation and recirculation conditions, respectively.

  14. Melanoregulin regulates a shedding mechanism that drives melanosome transfer from melanocytes to keratinocytes. (United States)

    Wu, Xufeng S; Masedunskas, Andreas; Weigert, Roberto; Copeland, Neal G; Jenkins, Nancy A; Hammer, John A


    Mammalian pigmentation is driven by the intercellular transfer of pigment-containing melanosomes from the tips of melanocyte dendrites to surrounding keratinocytes. Tip accumulation of melanosomes requires myosin Va, because melanosomes concentrate in the center of melanocytes from myosin Va-null (dilute) mice. This distribution defect results in inefficient melanosome transfer and a dilution of coat color. Dilute mice that simultaneously lack melanoregulin, the product of the dilute suppressor locus, exhibit a nearly complete restoration of coat color, but, surprisingly, melanosomes remain concentrated in the center of their melanocytes. Here we show that dilute/dsu melanocytes, but not dilute melanocytes, readily transfer the melanosomes concentrated in their center to surrounding keratinocytes in situ. Using time-lapse imaging of WT melanocyte/keratinocyte cocultures in which the plasma membranes of the two cells are marked with different colors, we define an intercellular melanosome transfer pathway that involves the shedding by the melanocyte of melanosome-rich packages, which subsequently are phagocytosed by the keratinocyte. Shedding, which occurs primarily at dendritic tips but also from more central regions, involves adhesion to the keratinocyte, thinning behind the forming package, and apparent self-abscission. Finally, we show that shedding from the cell center is sixfold more frequent in cultured dilute/dsu melanocytes than in dilute melanocytes, consistent with the in situ data. Together, these results explain how dsu restores the coat color of dilute mice without restoring intracellular melanosome distribution, indicate that melanoregulin is a negative regulator of melanosome transfer, and provide insight into the mechanism of intercellular melanosome transfer.

  15. Video analysis of concussion injury mechanism in under-18 rugby (United States)

    Hendricks, Sharief; O'Connor, Sam; Lambert, Michael; Brown, James C; Burger, Nicholas; Mc Fie, Sarah; Readhead, Clint; Viljoen, Wayne


    Background Understanding the mechanism of injury is necessary for the development of effective injury prevention strategies. Video analysis of injuries provides valuable information on the playing situation and athlete-movement patterns, which can be used to formulate these strategies. Therefore, we conducted a video analysis of the mechanism of concussion injury in junior-level rugby union and compared it with a representative and matched non-injury sample. Methods Injury reports for 18 concussion events were collected from the 2011 to 2013 under-18 Craven Week tournaments. Also, video footage was recorded for all 3 years. On the basis of the injury events, a representative ‘control’ sample of matched non-injury events in the same players was identified. The video footage, which had been recorded at each tournament, was then retrospectively analysed and coded. 10 injury events (5 tackle, 4 ruck, 1 aerial collision) and 83 non-injury events were analysed. Results All concussions were a result of contact with an opponent and 60% of players were unaware of the impending contact. For the measurement of head position on contact, 43% had a ‘down’ position, 29% the ‘up and forward’ and 29% the ‘away’ position (n=7). The speed of the injured tackler was observed as ‘slow’ in 60% of injurious tackles (n=5). In 3 of the 4 rucks in which injury occurred (75%), the concussed player was acting defensively either in the capacity of ‘support’ (n=2) or as the ‘jackal’ (n=1). Conclusions Training interventions aimed at improving peripheral vision, strengthening of the cervical muscles, targeted conditioning programmes to reduce the effects of fatigue, and emphasising safe and effective playing techniques have the potential to reduce the risk of sustaining a concussion injury. PMID:27900149

  16. Video analysis of concussion injury mechanism in under-18 rugby. (United States)

    Hendricks, Sharief; O'Connor, Sam; Lambert, Michael; Brown, James C; Burger, Nicholas; Mc Fie, Sarah; Readhead, Clint; Viljoen, Wayne


    Understanding the mechanism of injury is necessary for the development of effective injury prevention strategies. Video analysis of injuries provides valuable information on the playing situation and athlete-movement patterns, which can be used to formulate these strategies. Therefore, we conducted a video analysis of the mechanism of concussion injury in junior-level rugby union and compared it with a representative and matched non-injury sample. Injury reports for 18 concussion events were collected from the 2011 to 2013 under-18 Craven Week tournaments. Also, video footage was recorded for all 3 years. On the basis of the injury events, a representative 'control' sample of matched non-injury events in the same players was identified. The video footage, which had been recorded at each tournament, was then retrospectively analysed and coded. 10 injury events (5 tackle, 4 ruck, 1 aerial collision) and 83 non-injury events were analysed. All concussions were a result of contact with an opponent and 60% of players were unaware of the impending contact. For the measurement of head position on contact , 43% had a 'down' position, 29% the 'up and forward' and 29% the 'away' position (n=7). The speed of the injured tackler was observed as 'slow' in 60% of injurious tackles (n=5). In 3 of the 4 rucks in which injury occurred (75%), the concussed player was acting defensively either in the capacity of 'support' (n=2) or as the 'jackal' (n=1). Training interventions aimed at improving peripheral vision, strengthening of the cervical muscles, targeted conditioning programmes to reduce the effects of fatigue, and emphasising safe and effective playing techniques have the potential to reduce the risk of sustaining a concussion injury.

  17. Underlying Mechanisms of Tinnitus: Review and Clinical Implications (United States)

    Henry, James A.; Roberts, Larry E.; Caspary, Donald M.; Theodoroff, Sarah M.; Salvi, Richard J.


    Background The study of tinnitus mechanisms has increased tenfold in the last decade. The common denominator for all of these studies is the goal of elucidating the underlying neural mechanisms of tinnitus with the ultimate purpose of finding a cure. While these basic science findings may not be immediately applicable to the clinician who works directly with patients to assist them in managing their reactions to tinnitus, a clear understanding of these findings is needed to develop the most effective procedures for alleviating tinnitus. Purpose The goal of this review is to provide audiologists and other health-care professionals with a basic understanding of the neurophysiological changes in the auditory system likely to be responsible for tinnitus. Results It is increasingly clear that tinnitus is a pathology involving neuroplastic changes in central auditory structures that take place when the brain is deprived of its normal input by pathology in the cochlea. Cochlear pathology is not always expressed in the audiogram but may be detected by more sensitive measures. Neural changes can occur at the level of synapses between inner hair cells and the auditory nerve and within multiple levels of the central auditory pathway. Long-term maintenance of tinnitus is likely a function of a complex network of structures involving central auditory and nonauditory systems. Conclusions Patients often have expectations that a treatment exists to cure their tinnitus. They should be made aware that research is increasing to discover such a cure and that their reactions to tinnitus can be mitigated through the use of evidence-based behavioral interventions. PMID:24622858

  18. Mechanisms underlying recovery of zooplankton in Lake Orta after liming

    Directory of Open Access Journals (Sweden)

    Roberta Piscia


    Full Text Available The goal of this study was to improve the understanding of the large-scale mechanisms underlying the recovery of the zooplankton of Lake Orta from historical contamination, following reduced input of ammonia and metals and the subsequent 1989/90 liming intervention. The industrial pollution had been severe and long-lasting (1929-1990. Zooplankton biodiversity has improved, but most of the new taxa appearing in our counts are rotifers, while many calanoids and the large cladoceran predators (Bythotrephes and Leptodora that are common in the nearby Lake Maggiore, were still absent from Lake Orta 17 years after liming. To aid understanding of the large-scale mechanisms controlling changes in annual richness, we assessed the annual persistence (P of Crustacea and Rotifera taxa as an estimator of whether propagules that survived introduction, as result of the natural recolonization process, also thrived. We found that the rate of introduction of zooplankton colonists and their persistence in the water column of Lake Orta changed from 1971 to 2007. New rotifer taxa appeared in the lake after the mid-1980s, when discharge of toxic substances decreased, but their annual persistence was low (P<0.5 until the turn of the century. The numerical values of rotifer and crustacean persistence in Lake Orta were unexpectedly high in 2001 and 2007 (0.55 and 0.72 for rotifers, 0.85 and 0.86 for crustacean, respectively, much higher than in limed lakes in Sudbury, Canada, and in adjacent Lake Maggiore. We hypothesize this could be related to the lack of Cladoceran predators and zooplanktivorous fish in the pelagic waters of Lake Orta.

  19. Mechanisms underlying stage-1 TRPL channel translocation in Drosophila photoreceptors.

    Directory of Open Access Journals (Sweden)

    Minh-Ha Lieu

    Full Text Available TRP channels function as key mediators of sensory transduction and other cellular signaling pathways. In Drosophila, TRP and TRPL are the light-activated channels in photoreceptors. While TRP is statically localized in the signaling compartment of the cell (the rhabdomere, TRPL localization is regulated by light. TRPL channels translocate out of the rhabdomere in two distinct stages, returning to the rhabdomere with dark-incubation. Translocation of TRPL channels regulates their availability, and thereby the gain of the signal. Little, however, is known about the mechanisms underlying this trafficking of TRPL channels.We first examine the involvement of de novo protein synthesis in TRPL translocation. We feed flies cycloheximide, verify inhibition of protein synthesis, and test for TRPL translocation in photoreceptors. We find that protein synthesis is not involved in either stage of TRPL translocation out of the rhabdomere, but that re-localization to the rhabdomere from stage-1, but not stage-2, depends on protein synthesis. We also characterize an ex vivo eye preparation that is amenable to biochemical and genetic manipulation. We use this preparation to examine mechanisms of stage-1 TRPL translocation. We find that stage-1 translocation is: induced with ATP depletion, unaltered with perturbation of the actin cytoskeleton or inhibition of endocytosis, and slowed with increased membrane sterol content.Our results indicate that translocation of TRPL out of the rhabdomere is likely due to protein transport, and not degradation/re-synthesis. Re-localization from each stage to the rhabdomere likely involves different strategies. Since TRPL channels can translocate to stage-1 in the absence of ATP, with no major requirement of the cytoskeleton, we suggest that stage-1 translocation involves simple diffusion through the apical membrane, which may be regulated by release of a light-dependent anchor in the rhabdomere.

  20. The behavior of the planetary rings under the Kozai Mechanism (United States)

    Sucerquia, M. A.; Ramírez, C. V.; Zuluaga, J. I.


    Rings are one of the main feature of almost all giant planets in the Solar System. Even though thousands of exoplanets have been discovered to date, no evidence of exoplanetary rings have been found despite the effort made in the development and enhancing of techniques and methods for direct or indirect detection. In the transit of a ringed planet, the dynamic of the ring itself could play a meaningful role due to the so called Kozai Mechanism (KM) acting on each particle of it. When some specific initial conditions of the ring are fulfilled (as a ring inclination greater than ˜ 39°), KM generates short periodic changes in the inclination and eccentricity of each particle, leading to a meaningful characteristic collective behavior of the ring: it changes its width, inclination and optical depth. These changes induce periodic variations on the eclipsed area of the parent star, generating slight changes in the observed transit signal. Under this mechanism, light curves depths and shapes oscillate according to the fluctuations of the ring. To show this effect we have performed numerical simulations of the dynamic of a system of particles to asses the ring inclination and width variations over time. We have calculated the expected variations in the transit depth and finally, we have estimated the effect on the light curve of a hypothetical ringed exoplanet affected by the KM. The detection of this effect could be used as an alternative method to detect/confirm exoplanetary rings, and also it could be considered as a way to explain anomalous light curves patterns of exoplanets, as the case of KIC 8462852 star.

  1. [Neurophysiologic mechanisms of arterial hypertension under experimental chronic emotional stress]. (United States)

    Baumann, H; Martin, G; Urmantscheeva, T G; Degen, G; Wolter, F; Chasabova, W A; Gurk, C; Hinays, I; Läuter, J


    Neurophysiological studies were conducted with subhuman primates (macaca mulatta) in order to obtain an estimate of central nervous effects of socio-emotional stress. This was combined with continuously aggravated conditioning procedures in view of the possible significance of chronic environmental stress escalation for etiology and pathogenesis of an arterial hypertension model. Our conclusions are based on evoked potentials (EP) as integrative characteristics of cerebral information processing. The EPs were recorded by means of electrodes chronically implanted in brain structures of emotional and cardio-vascular relevance. Multivariate mathematico-statistical analyses of average EPs (AEP) provide an objective measure of stress sensibility of the individual, particularly of the effects of acute and chronic environmental stress factors upon the functional organization of the CNS. By means of a quantitative approach to AEP we were able to demonstrate a disjunction between distinct limbic and hypothalamic structures starting under stress conditions of subchronic character. We assume that the constancy of functionally antagonistic hyperactive excitation foci at diencephalic and supradiencephalic levels and their specific interaction with the equally stress related neocortical functional insufficiency constitutes a decisive pathogenetic central mechanism of neurotic behaviour. Long-term changes of amplification of external and internal afferences could be demonstrated on the basis of hypo- and hyperreactive neuroelectric functional patterns. These processes cause cerebro-visceral regulatory diseases as, e. g., a primary arterial hypertension by restriction of neocortical control and the corresponding efferent reactions for re-establishment of the dynamic homeostasis.

  2. Deciphering Molecular Mechanism Underlying Hypolipidemic Activity of Echinocystic Acid

    Directory of Open Access Journals (Sweden)

    Li Han


    Full Text Available Our previous study showed that a triterpene mixture, consisting of echinocystic acid (EA and oleanolic acid (OA at a ratio of 4 : 1, dose-dependently ameliorated the hyperlipidemia and atherosclerosis in rabbits fed with high fat/high cholesterol diets. This study was aimed at exploring the mechanisms underlying antihyperlipidemic effect of EA. Molecular docking simulation of EA was performed using Molegro Virtual Docker (version: 4.3.0 to investigate the potential targets related to lipid metabolism. Based on the molecular docking information, isotope labeling method or spectrophotometry was applied to examine the effect of EA on the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA reductase, acyl-CoA:cholesterol acyltransferase (ACAT, and diacylglycerol acyltransferase (DGAT in rat liver microsomes. Our results revealed a strong affinity of EA towards ACAT and DGAT in molecular docking analysis, while low binding affinity existed between EA and HMG-CoA reductase as well as between EA and cholesteryl ester transfer protein. Consistent with the results of molecular docking, in vitro enzyme activity assays showed that EA inhibited ACAT and DGAT, with IC50 values of 103 and 139 μM, respectively, and exhibited no significant effect on HMG-CoA reductase activity. The present findings suggest that EA may exert hypolipidemic effect by inhibiting the activity of ACAT and DGAT.

  3. Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants. (United States)

    Zhang, Zhaoliang; Liao, Hong; Lucas, William J


    As an essential plant macronutrient, the low availability of phosphorus (P) in most soils imposes serious limitation on crop production. Plants have evolved complex responsive and adaptive mechanisms for acquisition, remobilization and recycling of phosphate (Pi) to maintain P homeostasis. Spatio-temporal molecular, physiological, and biochemical Pi deficiency responses developed by plants are the consequence of local and systemic sensing and signaling pathways. Pi deficiency is sensed locally by the root system where hormones serve as important signaling components in terms of developmental reprogramming, leading to changes in root system architecture. Root-to-shoot and shoot-to-root signals, delivered through the xylem and phloem, respectively, involving Pi itself, hormones, miRNAs, mRNAs, and sucrose, serve to coordinate Pi deficiency responses at the whole-plant level. A combination of chromatin remodeling, transcriptional and posttranslational events contribute to globally regulating a wide range of Pi deficiency responses. In this review, recent advances are evaluated in terms of progress toward developing a comprehensive understanding of the molecular events underlying control over P homeostasis. Application of this knowledge, in terms of developing crop plants having enhanced attributes for P use efficiency, is discussed from the perspective of agricultural sustainability in the face of diminishing global P supplies. © 2014 Institute of Botany, Chinese Academy of Sciences.

  4. Fatigue life prediction of mechanical structures under stochastic loading

    Directory of Open Access Journals (Sweden)

    Leitner Bohuš


    Full Text Available Problems of fatigue life prediction of materials and structures are discussed in the paper. Service loading is assumed as a continuous loading process with possible discontinuous events, which are caused by various operating conditions. The damage in a material is due to a cumulative degradation process. The damaging process is then represented either by rain-flow matrices or by a fatigue damage function which is derived using some hypothesis of a fatigue failure criterion. Presented theoretical procedure enables a very effective estimation of a service life and/or reliable evaluation of residual life of any structures under various types of loading and environmental conditions. This approach creates a good basis for powerful expert systems in structural and mechanical engineering. The aim of the paper is to present briefly some results of analysis of load-bearing steel structure loads of special railway crane PKP 25/20i which was utilized in some specific ad relatively hard operating conditions. Virtual models of the structure were being used in an analysis of acting working dynamics loads influence to be able to forecast fatigue life of load-bearing of the crane jib.

  5. Spread of Epidemic on Complex Networks Under Voluntary Vaccination Mechanism (United States)

    Xue, Shengjun; Ruan, Feng; Yin, Chuanyang; Zhang, Haifeng; Wang, Binghong

    Under the assumption that the decision of vaccination is a voluntary behavior, in this paper, we use two forms of risk functions to characterize how susceptible individuals estimate the perceived risk of infection. One is uniform case, where each susceptible individual estimates the perceived risk of infection only based on the density of infection at each time step, so the risk function is only a function of the density of infection; another is preferential case, where each susceptible individual estimates the perceived risk of infection not only based on the density of infection but only related to its own activities/immediate neighbors (in network terminology, the activity or the number of immediate neighbors is the degree of node), so the risk function is a function of the density of infection and the degree of individuals. By investigating two different ways of estimating the risk of infection for susceptible individuals on complex network, we find that, for the preferential case, the spread of epidemic can be effectively controlled; yet, for the uniform case, voluntary vaccination mechanism is almost invalid in controlling the spread of epidemic on networks. Furthermore, given the temporality of some vaccines, the waves of epidemic for two cases are also different. Therefore, our work insight that the way of estimating the perceived risk of infection determines the decision on vaccination options, and then determines the success or failure of control strategy.

  6. Mechanisms underlying the antihypertensive effects of garlic bioactives. (United States)

    Shouk, Reem; Abdou, Aya; Shetty, Kalidas; Sarkar, Dipayan; Eid, Ali H


    Cardiovascular disease remains the leading cause of death worldwide with hypertension being a major contributing factor to cardiovascular disease-associated mortality. On a population level, non-pharmacological approaches, such as alternative/complementary medicine, including phytochemicals, have the potential to ameliorate cardiovascular risk factors, including high blood pressure. Several epidemiological studies suggest an antihypertensive effect of garlic (Allium sativum) and of many its bioactive components. The aim of this review is to present an in-depth discussion regarding the molecular, biochemical and cellular rationale underlying the antihypertensive properties of garlic and its bioactive constituents with a primary focus on S-allyl cysteine and allicin. Key studies, largely from PubMed, were selected and screened to develop a comprehensive understanding of the specific role of garlic and its bioactive constituents in the management of hypertension. We also reviewed recent advances focusing on the role of garlic bioactives, S-allyl cysteine and allicin, in modulating various parameters implicated in the pathogenesis of hypertension. These parameters include oxidative stress, nitric oxide bioavailability, hydrogen sulfide production, angiotensin converting enzyme activity, expression of nuclear factor-κB and the proliferation of vascular smooth muscle cells. This review suggests that garlic and garlic derived bioactives have significant medicinal properties with the potential for ameliorating hypertension and associated morbidity; however, further clinical and epidemiological studies are required to determine completely the specific physiological and biochemical mechanisms involved in disease prevention and management. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Random and systematic errors in case–control studies calculating the injury risk of driving under the influence of psychoactive substances

    DEFF Research Database (Denmark)

    Houwing, Sjoerd; Hagenzieker, Marjan; Mathijssen, René P.M.


    Between 2006 and 2010, six population based case-control studies were conducted as part of the European research-project DRUID (DRiving Under the Influence of Drugs, alcohol and medicines). The aim of these case-control studies was to calculate odds ratios indicating the relative risk of serious ...

  8. Modeling and analysis of hydraulic dashpot for impact free operation in a shut-off rod drive mechanism

    Directory of Open Access Journals (Sweden)

    Narendra K. Singh


    Full Text Available Rotary hydraulic dashpot used for shut-off rod drive mechanism application of a nuclear reactor has been studied in this paper for impact free operation. The rotary hydraulic dashpot has been modeled as a system with 1 degree of freedom (DOF and the simulation results are experimentally validated. The dashpot is modeled as a hinge joint with moving and fixed vanes as rigid bodies. Shut-off rods are used to shut-down a nuclear reactor and hydraulic dashpot absorbs the energy of freely falling shut-off rod at the end of rod travel. With the increase in the environmental temperature the dashpot becomes underdamped at a point because of reduction in the viscosity of oil and results into impact on mechanism components. Hydraulic dashpot designs are finalized with an optimum combination of dashpot clearances and oil viscosity to meet the drop time criterion and impact free operation at room temperature as well as at elevated temperature. Also with the change in mechanical loads the dashpot becomes underdamped. So the study is further extended to see the effects of various parameters such as moment of inertia, constraint angle and applied moment on the dashpot. Study is focused on obtaining dashpot responses in terms of relative rotation, relative angular velocity and relative angular acceleration at various environmental temperatures. Finite element commercial code COMSOL Multiphysics 5.1 has been used for numerical simulations. Equations for both rigid body dynamics and heat transfer in solids are solved simultaneously. Thus, energy absorbed and local temperature rise in the dashpot operation is also obtained. Both simulation and experimental results at wide range of environmental temperature are presented and compared in this paper. This study forms a good tool to design a hydraulic dashpot, which gives impact free operation in a shut-off rod free fall.

  9. Modal space three-state feedback control for electro-hydraulic servo plane redundant driving mechanism with eccentric load decoupling. (United States)

    Zhao, Jinsong; Wang, Zhipeng; Zhang, Chuanbi; Yang, Chifu; Bai, Wenjie; Zhao, Zining


    The shaking table based on electro-hydraulic servo parallel mechanism has the advantage of strong carrying capacity. However, the strong coupling caused by the eccentric load not only affects the degree of freedom space control precision, but also brings trouble to the system control. A novel decoupling control strategy is proposed, which is based on modal space to solve the coupling problem for parallel mechanism with eccentric load. The phenomenon of strong dynamic coupling among degree of freedom space is described by experiments, and its influence on control design is discussed. Considering the particularity of plane motion, the dynamic model is built by Lagrangian method to avoid complex calculations. The dynamic equations of the coupling physical space are transformed into the dynamic equations of the decoupling modal space by using the weighted orthogonality of the modal main mode with respect to mass matrix and stiffness matrix. In the modal space, the adjustments of the modal channels are independent of each other. Moreover, the paper discusses identical closed-loop dynamic characteristics of modal channels, which will realize decoupling for degree of freedom space, thus a modal space three-state feedback control is proposed to expand the frequency bandwidth of each modal channel for ensuring their near-identical responses in a larger frequency range. Experimental results show that the concept of modal space three-state feedback control proposed in this paper can effectively reduce the strong coupling problem of degree of freedom space channels, which verify the effectiveness of the proposed model space state feedback control strategy for improving the control performance of the electro-hydraulic servo plane redundant driving mechanism. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Mechanism of crack initiation and crack growth under thermal and mechanical fatigue loading

    International Nuclear Information System (INIS)

    Utz, S.; Soppa, E.; Silcher, H.; Kohler, C.


    The present contribution is focused on the experimental investigations and numerical simulations of the deformation behaviour and crack development in the austenitic stainless steel X6CrNiNb18-10 under thermal and mechanical cyclic loading in HCF and LCF regimes. The main objective of this research is the understanding of the basic mechanisms of fatigue damage and the development of simulation methods, which can be applied further in safety evaluations of nuclear power plant components. In this context the modelling of crack initiation and crack growth inside the material structure induced by varying thermal or mechanical loads are of particular interest. The mechanisms of crack initiation depend among other things on the type of loading, microstructure, material properties and temperature. The Nb-stabilized austenitic stainless steel in the solution-annealed condition was chosen for the investigations. Experiments with two kinds of cyclic loading - pure thermal and pure mechanical - were carried out and simulated. The fatigue behaviour of the steel X6CrNiNb18-10 under thermal loading was studied within the framework of the joint research project [4]. Interrupted thermal cyclic tests in the temperature range of 150 C to 300 C combined with non-destructive residual stress measurements (XRD) and various microscopic investigations, e.g. in SEM (Scanning Electron Microscope), were used to study the effects of thermal cyclic loading on the material. This thermal cyclic loading leads to thermal induced stresses and strains. As a result intrusions and extrusions appear inside the grains (at the surface), at which microcracks arise and evolve to a dominant crack. Finally, these microcracks cause a continuous and significant decrease of residual stresses. The fatigue behaviour of the steel X6CrNiNb18-10 under mechanical loading at room temperature was studied within the framework of the research project [5], [8]. With a combination of interrupted LCF tests and EBSD

  11. Mechanism of crack initiation and crack growth under thermal and mechanical fatigue loading

    Energy Technology Data Exchange (ETDEWEB)

    Utz, S.; Soppa, E.; Silcher, H.; Kohler, C. [Stuttgart Univ. (Germany). Materials Testing Inst.


    The present contribution is focused on the experimental investigations and numerical simulations of the deformation behaviour and crack development in the austenitic stainless steel X6CrNiNb18-10 under thermal and mechanical cyclic loading in HCF and LCF regimes. The main objective of this research is the understanding of the basic mechanisms of fatigue damage and the development of simulation methods, which can be applied further in safety evaluations of nuclear power plant components. In this context the modelling of crack initiation and crack growth inside the material structure induced by varying thermal or mechanical loads are of particular interest. The mechanisms of crack initiation depend among other things on the type of loading, microstructure, material properties and temperature. The Nb-stabilized austenitic stainless steel in the solution-annealed condition was chosen for the investigations. Experiments with two kinds of cyclic loading - pure thermal and pure mechanical - were carried out and simulated. The fatigue behaviour of the steel X6CrNiNb18-10 under thermal loading was studied within the framework of the joint research project [4]. Interrupted thermal cyclic tests in the temperature range of 150 C to 300 C combined with non-destructive residual stress measurements (XRD) and various microscopic investigations, e.g. in SEM (Scanning Electron Microscope), were used to study the effects of thermal cyclic loading on the material. This thermal cyclic loading leads to thermal induced stresses and strains. As a result intrusions and extrusions appear inside the grains (at the surface), at which microcracks arise and evolve to a dominant crack. Finally, these microcracks cause a continuous and significant decrease of residual stresses. The fatigue behaviour of the steel X6CrNiNb18-10 under mechanical loading at room temperature was studied within the framework of the research project [5], [8]. With a combination of interrupted LCF tests and EBSD

  12. Mechanisms underlying the antihypertensive properties of Urtica dioica. (United States)

    Qayyum, Rahila; Qamar, Hafiz Misbah-Ud-Din; Khan, Shamim; Salma, Umme; Khan, Taous; Shah, Abdul Jabbar


    Urtica dioica has traditionally been used in the management of cardiovascular disorders especially hypertension. The aim of this study was to explore pharmacological base of its use in hypertension. Crude methanolic extract of U. dioica (Ud.Cr) and its fractions (Ud.EtAc, Ud.nHex, Ud.Chl and Ud.Aq) were tested in vivo on normotensive and hypertensive rats under anesthesia for blood pressure lowering effect. In-vitro experiments on rat and rabbit aortae were employed to probe the vasorelaxation mechanism(s). The responses were measured using pressure and force transducers connected to PowerLab Data Acquisition System. Ud.Cr and fractions were found more effective antihypertensive in hypertensive rats than normotensive with remarkable potency exhibited by the ethyl acetate fraction. The effect was same in the presence of atropine. In isolated rat aortic rings, Ud.Cr and all its fractions exhibited L-NAME sensitive endothelium-dependent vasodilator effect and also inhibit K(+) (80 mM)-induced pre-contractions. In isolated rabbit thoracic aortic rings Ud.Cr and its fractions induced relaxation with more potency against K(+) (80 mM) than phenylephrine (1 µM) like verapamil, showing Ud.EtAc fraction the most potent one. Pre-incubation of aortic rings with Ud.Cr and its fractions exhibited Ca(2+) channel blocking activity comparable with verapamil by shifting Ca(2+) concentration response curves to the right. Ud.Cr and its fractions also ablated the intracellular Ca(2+) release by suppressing PE peak formation in Ca(2+) free medium. When tested on basal tension, the crude extract and all fractions were devoid of any vasoconstrictor effect. These data indicate that crude methanolic extract and its fractions possess antihypertensive effect. Identification of NO-mediated vasorelaxation and calcium channel blocking effects explain the antihypertensive potential of U. dioica and provide a potential pharmacological base to its medicinal use in the management of hypertension.

  13. Antioxidant Property of Jobelyn as the Possible Mechanism Underlying

    Directory of Open Access Journals (Sweden)

    Solomon Umukoro


    Full Text Available   Introduction: Amnesia or loss of memory is the cardinal hallmark of Alzheimer’s disease (AD, a progressive neurodegenerative disorder associated with ageing process. Although, AD had been discovered over a century ago, drugs which could cure or halt the progression of the disease are yet to see the light of the day. However, there has been a growing interest in the use of phytomedicines with multipronged mechanisms of action that could target various aspects of the pathologies of AD. Jobelyn (JB is a potent antioxidant African polyherbal formulation with active components that have been acclaimed to show neuroprotection. T his investigation was carried out to evaluate whether JB has anti-amnesic and antioxidant activities.   Methods: The alteration of alternation behavior in the Y-maze paradigm was utilized as the test for memory function in mice. The effect of JB on a cetylcholinesterase (AChE activity, malondialdehyde (MDA level and the concentrations of glutathione (GSH in the frontal cortex and hippocampus were assessed in rats as means of providing insight into the mechanism underlying its anti-amnesic activity. The animals were given JB (1, 2.5 or 5mg/kg, i.p. daily for 7 days before the biochemical assays or test for memory functions were carried out.   Results: JB was found to produce a significant increase in the level of alternation behavior compared with the control, suggesting anti-amnesic activity. Also, JB reversed the memory impairment induced by scopolamine, which further indicates anti-amnesic property. Furthermore, JB demonstrated a significant inhibition of MDA formation in the frontal cortex and hippocampus of rats, indicating antioxidant property. In addition, it increased the defense armory of the brain tissues, as it significantly increased the concentrations of GSH in the frontal cortex and hippocampus of rats. However, JB did not demonstrate any inhibitory effect against AChE activity in the frontal cortex and

  14. Bronchopulmonary dysplasia: understanding of the underlying pathological mechanisms

    Directory of Open Access Journals (Sweden)

    Daniela Fanni


    better understanding of the underlying pathological mechanisms of BPD might provide insight into development of new therapeutic and preventive strategies.  Proceedings of the International Course on Perinatal Pathology (part of the 10th International Workshop on Neonatology · October 22nd-25th, 2014 · Cagliari (Italy · October 25th, 2014 · The role of the clinical pathological dialogue in problem solving Guest Editors: Gavino Faa, Vassilios Fanos, Peter Van Eyken

  15. Prevalence of driving under the influence of psychoactive substances and road traffic crashes among Brazilian crack-using drivers. (United States)

    Scherer, Juliana Nichterwitz; Silvestrin, Roberta; Ornell, Felipe; Roglio, Vinícius; Sousa, Tanara Rosangela Vieira; Von Diemen, Lisia; Kessler, Felix Henrique Paim; Pechansky, Flavio


    Substance use disorders are associated with the increased risk of driving under the influence (DUI), but little is known about crack-cocaine and its relationship with road traffic crashes (RTC). A multicenter sample of 765 crack-cocaine users was recruited in six Brazilian capitals in order to estimate the prevalence of DUI and RTC involvement. Legal, psychiatric, and drug-use aspects related with traffic safety were evaluated using the Addiction Severity Index - 6th version (ASI-6) and the Mini International Neuropsychiatric Interview. Seventy-six (28.3%) current drivers reported accident involvement following crack-cocaine use. Among drivers (n=269), 45.7% and 30.5% reported DUIs in the past 6 months and 30 days, respectively. Drivers reporting DUI's in the past month (n=82) had higher scores in the "psychiatric", "legal", and "family problems" subscales from the ASI-6, and lower scores in the "family social support" subscale in comparison to those without a history of DUIs (n=187). An overall high prevalence of psychiatric comorbidity and substance consumption was observed. Participants with 5+ years of crack-cocaine use were more likely to have been in a RTC (RR=1.52, 95%IC: 1.02-2.75), independently of marijuana use, binge drinking and psychiatric comorbidities. The high prevalence of RTC and DUI involvement among crack-using drivers supports the idea that they are at a high risk group regarding traffic safety. Years of crack consumption seem to be associated with RTC involvement. Also, the presence of psychiatric comorbidities, poly-drug use, and cognitive impairment usually associated with crack addiction could yield additional risk of accidents. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Gear bearing drive (United States)

    Weinberg, Brian (Inventor); Mavroidis, Constantinos (Inventor); Vranish, John M. (Inventor)


    A gear bearing drive provides a compact mechanism that operates as an actuator providing torque and as a joint providing support. The drive includes a gear arrangement integrating an external rotor DC motor within a sun gear. Locking surfaces maintain the components of the drive in alignment and provide support for axial loads and moments. The gear bearing drive has a variety of applications, including as a joint in robotic arms and prosthetic limbs.

  17. Alteration mechanisms of UOX spent fuel under water

    International Nuclear Information System (INIS)

    Muzeau, B.


    The mechanisms of spent fuel alteration in aqueous media need to be understood on the assumption of a direct disposal of the assemblies in a geological formation or for long duration storage in pool. This work is a contribution to the study of the effects of the alpha and/or beta/gamma radiolysis of water on the oxidation and the dissolution of the UO 2 matrix of UOX spent fuel. The effects of the alpha radiolysis, predominant in geological disposal conditions, were quantified by using samples of UO 2 doped with plutonium. The leaching experiments highlighted two types of control for the matrix alteration according to the alpha activity. The first is based on the radiolytic oxidation of the surface and leads to a continuous release of uranium in solution whereas the second is based on a control by the solubility of uranium. An activity threshold, between 18 MBq.g -1 and 33 MBq.g -1 , was defined in a carbonated water. The value of this threshold is dependent on the experimental conditions and the presence or not of electro-active species such as hydrogen in the system. The effects of the alpha/beta/gamma radiolysis in relation with the storage conditions were also quantified. The experimental data obtained on spent fuel indicate that the alteration rate of the matrix based on the behaviour of tracer elements (caesium and strontium) reached a maximum value of some mg.m -2 .d -1 , even under very oxidizing conditions. The solubility of uranium and the nature of the secondary phases depend however on the extent of the oxidizing conditions. (author)

  18. Unraveling the Molecular Mechanisms Underlying the Nasopharyngeal Bacterial Community Structure

    Directory of Open Access Journals (Sweden)

    Wouter A. A. de Steenhuijsen Piters


    Full Text Available The upper respiratory tract is colonized by a diverse array of commensal bacteria that harbor potential pathogens, such as Streptococcus pneumoniae. As long as the local microbial ecosystem—also called “microbiome”—is in balance, these potentially pathogenic bacterial residents cause no harm to the host. However, similar to macrobiological ecosystems, when the bacterial community structure gets perturbed, potential pathogens can overtake the niche and cause mild to severe infections. Recent studies using next-generation sequencing show that S. pneumoniae, as well as other potential pathogens, might be kept at bay by certain commensal bacteria, including Corynebacterium and Dolosigranulum spp. Bomar and colleagues are the first to explore a specific biological mechanism contributing to the antagonistic interaction between Corynebacterium accolens and S. pneumoniae in vitro [L. Bomar, S. D. Brugger, B. H. Yost, S. S. Davies, K. P. Lemon, mBio 7(1:e01725-15, 2016, doi:10.1128/mBio.01725-15]. The authors comprehensively show that C. accolens is capable of hydrolyzing host triacylglycerols into free fatty acids, which display antipneumococcal properties, suggesting that these bacteria might contribute to the containment of pneumococcus. This work exemplifies how molecular epidemiological findings can lay the foundation for mechanistic studies to elucidate the host-microbe and microbial interspecies interactions underlying the bacterial community structure. Next, translation of these results to an in vivo setting seems necessary to unveil the magnitude and importance of the observed effect in its natural, polymicrobial setting.

  19. Cognitive mechanisms underlying instructed choice exploration of small city maps

    Directory of Open Access Journals (Sweden)

    Sofia eSakellaridi


    Full Text Available We investigated the cognitive mechanisms underlying the exploration and decision-making in realistic and novel environments. Twelve human subjects were shown small circular U.S. city maps with two locations highlighted on the circumference, as possible choices for a post office (targets. At the beginning of a trial, subjects fixated a spot at the center of the map and ultimately chose one of the two locations. A space syntax analysis of the map paths (from the center to each target revealed that the chosen location was associated with the less convoluted path, as if subjects navigated mentally the paths in an ant’s way, i.e. by staying within street boundaries, and ultimately choosing the target that could be reached from the center in the shortest way, and the fewest turns and intersections. The subjects’ strategy for map exploration and decision making was investigated by monitoring eye position during the task. This revealed a restricted exploration of the map delimited by the location of the two alternative options and the center of the map. Specifically, subjects explored the areas around the two target options by repeatedly looking at them before deciding which one to choose, presumably implementing an evaluation and decision-making process. The ultimate selection of a specific target was significantly associated with the time spent exploring the area around that target. Finally, an analysis of the sequence of eye fixations revealed that subjects tended to look systematically towards the target ultimately chosen even from the beginning of the trial. This finding indicates an early cognitive selection bias for the ensuing decision process.

  20. Neurobiology of consummatory behavior: mechanisms underlying overeating and drug use. (United States)

    Barson, Jessica R; Morganstern, Irene; Leibowitz, Sarah F


    Consummatory behavior is driven by both caloric and emotional need, and a wide variety of animal models have been useful in research on the systems that drive consumption of food and drugs. Models have included selective breeding for a specific trait, manipulation of gene expression, forced or voluntary exposure to a substance, and identification of biomarkers that predict which animals are prone to overconsuming specific substances. This research has elucidated numerous brain areas and neurochemicals that drive consummatory behavior. Although energy homeostasis is primarily mediated by the hypothalamus, reinforcement is more strongly mediated by nuclei outside the hypothalamus, in mesocorticolimbic regions. Orexigenic neurochemicals that control food intake can provide a general signal for promoting caloric intake or a more specific signal for stimulating consumption of a particular macronutrient, fat, carbohydrate, or protein. The neurochemicals involved in controlling fat ingestion--galanin, enkephalin, orexin, melanin-concentrating hormone, and the endocannabinoids--show positive feedback with this macronutrient, as these peptides both increase fat intake and are further stimulated by its intake. This positive association offers some explanation for why foods high in fat are so often overconsumed. Consumption of ethanol, a drug of abuse that also contains calories, is similarly driven by the neurochemical systems involved in fat intake, according to evidence that closely relates fat and ethanol consumption. Further understanding of the systems involved in consummatory behavior will enable the development of effective therapies for the treatment of both overeating and drug abuse.

  1. Neurobiology of Consummatory Behavior: Mechanisms Underlying Overeating and Drug Use (United States)

    Barson, Jessica R.; Morganstern, Irene; Leibowitz, Sarah F.


    Consummatory behavior is driven not just by caloric need but also by emotional need. In the last several decades, a wide variety of models have been used to study the systems that drive food and drug intake. These include selective breeding for a specific trait, manipulation of gene expression, forced or voluntary exposure to a substance, and identification of biomarkers that predict which animals are prone to overconsuming specific substances. From this research, numerous brain areas and neurochemicals have been identified that drive consummatory behavior. While energy homeostasis is primarily mediated by the hypothalamus, reinforcement is more strongly mediated by nuclei outside of the hypothalamus, in mesocorticolimbic regions. Orexigenic neurochemicals that control food intake can provide a general signal for promoting caloric intake or a more specific signal for stimulating consumption of a particular macronutrient, fat, carbohydrate or protein. Those involved in controlling fat ingestion, including galanin, enkephalin, orexin, melanin-concentrating hormone and the endocannabinoids, show positive feedback with this macronutrient, with these peptides both increasing fat intake and being further stimulated by its intake. This positive relationship offers some explanation for why foods high in fat are so often overconsumed. Consumption of ethanol, a drug of abuse that also contains calories, is similarly driven by these neurochemical systems involved in fat intake, consistent with evidence closely relating fat and ethanol consumption. Further understanding of these systems involved in consummatory behavior will allow researchers to develop effective therapies for the treatment of overeating as well as drug abuse. PMID:23520598

  2. Plant-insect interactions under bacterial influence: ecological implications and underlying mechanisms. (United States)

    Sugio, Akiko; Dubreuil, Géraldine; Giron, David; Simon, Jean-Christophe


    Plants and insects have been co-existing for more than 400 million years, leading to intimate and complex relationships. Throughout their own evolutionary history, plants and insects have also established intricate and very diverse relationships with microbial associates. Studies in recent years have revealed plant- or insect-associated microbes to be instrumental in plant-insect interactions, with important implications for plant defences and plant utilization by insects. Microbial communities associated with plants are rich in diversity, and their structure greatly differs between below- and above-ground levels. Microbial communities associated with insect herbivores generally present a lower diversity and can reside in different body parts of their hosts including bacteriocytes, haemolymph, gut, and salivary glands. Acquisition of microbial communities by vertical or horizontal transmission and possible genetic exchanges through lateral transfer could strongly impact on the host insect or plant fitness by conferring adaptations to new habitats. Recent developments in sequencing technologies and molecular tools have dramatically enhanced opportunities to characterize the microbial diversity associated with plants and insects and have unveiled some of the mechanisms by which symbionts modulate plant-insect interactions. Here, we focus on the diversity and ecological consequences of bacterial communities associated with plants and herbivorous insects. We also highlight the known mechanisms by which these microbes interfere with plant-insect interactions. Revealing such mechanisms in model systems under controlled environments but also in more natural ecological settings will help us to understand the evolution of complex multitrophic interactions in which plants, herbivorous insects, and micro-organisms are inserted. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions

  3. Possible mechanisms underlying abundance and diversity responses of nematode communities to plant diversity

    NARCIS (Netherlands)

    Cortois, R.; Veen, G.F.; Duyts, Henk; Abbas, Maike; Strecker, Tanja; Kostenko, Olga; Eisenhauer, Nico; Scheu, Stefan; Gleixner, Gerd; Deyn, De Gerlinde B.; Putten, van der Wim H.


    Plant diversity is known to influence the abundance and diversity of belowground biota; however, patterns are not well predictable and there is still much unknown about the driving mechanisms. We analyzed changes in soil nematode community composition as affected by long-term manipulations of

  4. Possible mechanisms underlying abundance and diversity responses of nematode communities to plant diversity

    NARCIS (Netherlands)

    Cortois, R.; Veen, G.F.; Duyts, H.; Abbas, M.; Strecker, T; Kostenko, O.; Eisenhauer, Nico; Scheu, S.; Gleixner, G.; De Deyn, G.B.; van der Putten, W.H.


    Plant diversity is known to influence the abundance and diversity of belowground biota; however, patterns are not well predictable and there is still much unknown about the driving mechanisms. We analyzed changes in soil nematode community composition as affected by long-term manipulations of plant

  5. Laser Ultrasonic System for Surface Crack Visualization in Dissimilar Welds of Control Rod Drive Mechanism Assembly of Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Yun-Shil Choi


    Full Text Available In this paper, we propose a J-groove dissimilar weld crack visualization system based on ultrasonic propagation imaging (UPI technology. A full-scale control rod drive mechanism (CRDM assembly specimen was fabricated to verify the proposed system. An ultrasonic sensor was contacted at one point of the inner surface of the reactor vessel head part of the CRDM assembly. Q-switched laser beams were scanned to generate ultrasonic waves around the weld bead. The localization and sizing of the crack were possible by ultrasonic wave propagation imaging. Furthermore, ultrasonic spectral imaging unveiled frequency components of damage-induced waves, while wavelet-transformed ultrasonic propagation imaging enhanced damage visibility by generating a wave propagation video focused on the frequency component of the damage-induced waves. Dual-directional anomalous wave propagation imaging with adjacent wave subtraction was also developed to enhance the crack visibility regardless of crack orientation and wave propagation direction. In conclusion, the full-scale specimen test demonstrated that the multiple damage visualization tools are very effective in the visualization of J-groove dissimilar weld cracks.

  6. Mechanical characteristics of a double-fed machine in asynchronous mode and prospects of its application in the electric drive of mining machines (United States)

    Ostrovlyanchik, V. Yu; Popolzin, I. Yu; Kubarev, V. A.; Marshev, D. A.


    The concept of a double-fed machine as an asynchronous motor with a phase rotor and a source of additional voltage is defined. Based on the analysis of a circuit replacing the double-fed machine, an expression is derived relating the moment, slip, amplitude and phase of additional voltage across the rotor. The conditions maximizing the moment with respect to amplitude and phase of additional voltage in the rotor circuit are also obtained, the phase surface of function of machine electromagnetic moment is constructed. The analysis of basic equation of electric drive motion in relation to electric drive of mine hoisting installations and the conclusion about the necessity of work in all four quadrants of coordinate plane “moment-slip” are made. Family of mechanical characteristics is constructed for a double-fed machine and its achievable speed control range in asynchronous mode is determined. Based on the type of mechanical characteristics and the calculated range of speed control, the conclusion is made about the suitability of using a dual-fed asynchronous machine for driving mine mechanisms with a small required speed control range and the need for organizing a combined operating mode for driving mine hoisting installations and other mechanisms with a large speed control range.

  7. An APC:WNT counter-current-like mechanism regulates cell division along the colonic crypt axis: a mechanism that explains how APC mutations induce proliferative abnormalities that drive colon cancer development.

    Directory of Open Access Journals (Sweden)

    Bruce M Boman


    Full Text Available APC normally down-regulates WNT signaling in human colon, and APC mutations cause proliferative abnormalities in premalignant crypts leading to colon cancer, but the mechanisms are unclear at the level of spatial and functional organization of the crypt. Accordingly, we postulated a counter-current-like mechanism based on gradients of factors (APC;WNT that regulate colonocyte proliferation along the crypt axis. During crypt renewal, stem cells (SCs at the crypt bottom generate non-SC daughter cells that proliferate and differentiate while migrating upwards. The APC concentration is low at the crypt bottom and high at the top (where differentiated cells reside. WNT signaling, in contrast, is high at the bottom (where SCs reside and low at the top. Given that WNT and APC gradients are counter to one another, we hypothesized that a counter-current-like mechanism exists. Since both APC and WNT signaling components (e.g. survivin are required for mitosis, this mechanism establishes a zone in the lower crypt where conditions are optimal for maximal cell division and mitosis orientation (symmetric versus asymmetric. APC haploinsufficiency diminishes the APC gradient, shifts the proliferative zone upwards, and increases symmetric division, which causes SC overpopulation. In homozygote mutant crypts, these changes are exacerbated. Thus, APC-mutation-induced changes in the counter-current-like mechanism cause expansion of proliferative populations (SCs, rapidly-proliferating cells during tumorigenesis. We propose this mechanism also drives crypt fission, functions in the crypt cycle, and underlies adenoma development. Novel chemoprevention approaches designed to normalize the two gradients and readjust the proliferative zone downwards, might thwart progression of these premalignant changes.

  8. Self-reported driving under the influence of alcohol and cannabis among Ontario students: Associations with graduated licensing, risk taking, and substance abuse. (United States)

    Cook, Steven; Shank, Danielle; Bruno, Tara; Turner, Nigel E; Mann, Robert E


    This article describes the patterns of self-reported driving under the influence of alcohol (DUIA) and driving under the influence of cannabis (DUIC) among licensed Ontario students in 2009 and examines their associations with graduated licensing, risk taking, and substance use problems for understanding DUIA and DUIC behaviors. Ontario's graduated licensing system requires new drivers to hold a G1 license for a minimum of 8 months and a G2 license for a minimum of 12 months before a full and unrestricted G license can be obtained. Among other restrictions, G1 drivers must maintain a 0 blood alcohol content (BAC), have an experienced driver in the passenger seat, not drive on any high-speed expressways, and not drive between the hours of midnight and 5 a.m. A G2 license is more similar to a G license, with fewer restrictions. This study analyzed data from the 2009 Ontario Student Drug Use and Health Survey (OSDUHS). The OSDUHS is a biennial population-based survey of students (grades 7 to 12) in Ontario, Canada. The results showed that 16.3% of licensed students in Ontario reported DUIC and 11.5% reported DUIA during the past year. After controlling for the effect of age, type of license emerged as a robust predictor for both DUIA and DUIC behavior, because students with a G2 and full license were significantly more likely to report DUIA and DUIC than drivers with a G1 license. Multivariate analyses suggested that risk-seeking behaviors were more important for understanding DUIA behavior than for DUIC behavior. Elevated problem indicators for alcohol and for cannabis were associated with DUIA and DUIC, respectively. Though much attention has been paid to drinking and driving among adolescents, this research shows that more Ontario students now report driving after cannabis use than after drinking alcohol. The results identify important correlates of both behaviors that may be useful for prevention purposes.

  9. Greenhouse gas emission impacts of electric vehicles under varying driving cycles in various counties and US cities

    International Nuclear Information System (INIS)

    Wang, M.Q.; Marr, W.W.


    Electric vehicles (EVs) can reduce greenhouse gas emissions, relative to emissions from gasoline-fueled vehicles. However, those studies have not considered all aspects that determine greenhouse gas emissions from both gasoline vehicles (GVs) and EVs. Aspects often overlooked include variations in vehicle trip characteristics, inclusion of all greenhouse gases, and vehicle total fuel cycle. In this paper, we estimate greenhouse gas emission reductions for EVs, including these important aspects. We select four US cities (Boston, Chicago, Los Angeles, and Washington, D.C.) and six countries (Australia, France, Japan, Norway, the United Kingdom, and the United States) and analyze greenhouse emission impacts of EVs in each city or country. We also select six driving cycles developed around the world (i.e., the US federal urban driving cycle, the Economic Community of Europe cycle 15, the Japanese 10-mode cycle, the Los Angeles 92 cycle, the New York City cycle, and the Sydney cycle). Note that we have not analyzed EVs in high-speed driving (e.g., highway driving), where the results would be less favorable to EVs; here, EVs are regarded as urban vehicles only. We choose one specific driving cycle for a given city or country and estimate the energy consumption of four-passenger compact electric and gasoline cars in the given city or country. Finally, we estimate total fuel cycle greenhouse gas emissions of both GVs and EVs by accounting for emissions from primary energy recovery, transportation, and processing; energy product transportation; and powerplant and vehicle operations

  10. Molecular Mechanics: The Method and Its Underlying Philosophy. (United States)

    Boyd, Donald B.; Lipkowitz, Kenny B.


    Molecular mechanics is a nonquantum mechanical method for solving problems concerning molecular geometries and energy. Methodology based on: the principle of combining potential energy functions of all structural features of a particular molecule into a total force field; derivation of basic equations; and use of available computer programs is…

  11. Potential Mechanisms Underlying Centralized Pain and Emerging Therapeutic Interventions

    Directory of Open Access Journals (Sweden)

    Olivia C. Eller-Smith


    Full Text Available Centralized pain syndromes are associated with changes within the central nervous system that amplify peripheral input and/or generate the perception of pain in the absence of a noxious stimulus. Examples of idiopathic functional disorders that are often categorized as centralized pain syndromes include fibromyalgia, chronic pelvic pain syndromes, migraine, and temporomandibular disorder. Patients often suffer from widespread pain, associated with more than one specific syndrome, and report fatigue, mood and sleep disturbances, and poor quality of life. The high degree of symptom comorbidity and a lack of definitive underlying etiology make these syndromes notoriously difficult to treat. The main purpose of this review article is to discuss potential mechanisms of centrally-driven pain amplification and how they may contribute to increased comorbidity, poorer pain outcomes, and decreased quality of life in patients diagnosed with centralized pain syndromes, as well as discuss emerging non-pharmacological therapies that improve symptomology associated with these syndromes. Abnormal regulation and output of the hypothalamic-pituitary-adrenal (HPA axis is commonly associated with centralized pain disorders. The HPA axis is the primary stress response system and its activation results in downstream production of cortisol and a dampening of the immune response. Patients with centralized pain syndromes often present with hyper- or hypocortisolism and evidence of altered downstream signaling from the HPA axis including increased Mast cell (MC infiltration and activation, which can lead to sensitization of nearby nociceptive afferents. Increased peripheral input via nociceptor activation can lead to “hyperalgesic priming” and/or “wind-up” and eventually to central sensitization through long term potentiation in the central nervous system. Other evidence of central modifications has been observed through brain imaging studies of functional

  12. [Study on main pharmacodynamics and underlying mechanisms of 999 Ganmaoling]. (United States)

    Xu, Qi-Hua; He, Rong; Peng, Bo; Ye, Zu-Guang; Li, Jian-Rong; Zhang, Yue-Fei; Dai, Zhi


    To observe synergistic effects of 999 Ganmaoling (GML) and its Chinese/Western materia medica (CMM and WMM) on pharmacodynamic action and to study underlying mechanisms, their anti-inflammatory, antipyretic effects were compared by assaying the increased capillary permeability induced by glacial acetic acid in mice, ear swelling induced by Xylene in mice, non-specific pleurisy induced by carrageenan in rats, and yeast induced fever in rats. Crystal violet (CV) and microbial activity (XTT) assay were used to evaluate the inhibition of GML and its CMM and WMM on KPN biofilm formation, and scanning electron microscopy (SEM) was applied for observing KPN biofilm morphology changes. The results showed that compared with control group, GML could reduce exudation amount of Evans-Blue and the degree of Ear swelling significantly, and CMM and WMM have no significant effects. The concentration of TNF-α and IL-1β of rat pleural effusion in GML, CMM and WMM group decreased significantly. The concentration of TNF-α, IL-1β and IL-8 in GML group, TNF-α, IL-8 in WMM group and IL-8 in CMM in rats serum decreased significantly. The body temperature in rats decreased significantly in GML and WMM group after 4-8 h of administration. CMM group showed no significant difference in rat body temperature compare with control. Compared with control group, GML (55-13.75 g•L⁻¹) could inhibit KPN biofilm formation and reduce number of viable cells in the KPN biofilm. CMM (45-22.5 g•L⁻¹) and WMM (10 g•L⁻¹) could also inhibit KPN biofilm formation and reduce number of viable cells (P<0.01). Result of SEM also showed that GML (55 g•L⁻¹) and its CMM (45 g•L⁻¹) and WMM (10 g•L⁻¹) could interfere the bacterial arrangement of KPN biofilm and extracellular matrix. GML and its CMM & WMM could inhibit the formation of KPN biofilm, CMM & WMM in GML showed synergism and complementation in inhibit KPN biofilm. Results showed that GML had obvious anti-inflammatory and

  13. Mechanisms and pharmacogenetic signals underlying thiazide diuretics blood pressure response. (United States)

    Shahin, Mohamed H; Johnson, Julie A


    Thiazide (TZD) diuretics are among the most commonly prescribed antihypertensives globally; however their chronic blood pressure (BP) lowering mechanism remains unclear. Herein we discuss the current evidence regarding specific mechanisms regulating the antihypertensive effects of TZDs, suggesting that TZDs act via multiple complex and interacting mechanisms, including natriuresis with short term use and direct vasodilatory effects chronically. Additionally, we review pharmacogenomics signals that have been associated with TZDs BP-response in several cohorts (i.e. NEDD4L, PRKCA, EDNRA-GNAS, and YEATS4) and discuss how these genes might be related to TZD BP-response mechanism. Understanding the association between these genes and TZD BP mechanism might facilitate the development of new drugs and therapeutic approaches based on a deeper understanding of the determinants of BP-response. Copyright © 2016. Published by Elsevier Ltd.

  14. High speed control of electro-mechanical transduction Advanced Drive Techniques for Optimized Step-and-Settle Response of MEMS Micromirrors


    Imboden, Matthias; Chang, Jackson; Pollock, Corey; Lowell, Evan; Akbulut, Mehmet; Morrison, Jessica; Stark, Thomas; Bifano, Thomas G.; Bishop, David J.


    Micro/Nano Electro Mechanical Systems (MEMS/NEMS) provide the engineer with a powerful set of solutions to a wide variety of technical challenges. However, because they are mechanical systems, response times can be a limitation. In some situations, advanced engineered drive techniques can improve response times by as much as a thousand, significantly opening up the application space for MEMS/NEMS solutions.

  15. Impact of Different Ventilation Strategies on Driving Pressure, Mechanical Power, and Biological Markers During Open Abdominal Surgery in Rats. (United States)

    Maia, Lígia de A; Samary, Cynthia S; Oliveira, Milena V; Santos, Cintia L; Huhle, Robert; Capelozzi, Vera L; Morales, Marcelo M; Schultz, Marcus J; Abreu, Marcelo G; Pelosi, Paolo; Silva, Pedro L; Rocco, Patricia Rieken Macedo


    Intraoperative mechanical ventilation may yield lung injury. To date, there is no consensus regarding the best ventilator strategy for abdominal surgery. We aimed to investigate the impact of the mechanical ventilation strategies used in 2 recent trials (Intraoperative Protective Ventilation [IMPROVE] trial and Protective Ventilation using High versus Low PEEP [PROVHILO] trial) on driving pressure (ΔPRS), mechanical power, and lung damage in a model of open abdominal surgery. Thirty-five Wistar rats were used, of which 28 were anesthetized, and a laparotomy was performed with standardized bowel manipulation. Postoperatively, animals (n = 7/group) were randomly assigned to 4 hours of ventilation with: (1) tidal volume (VT) = 7 mL/kg and positive end-expiratory pressure (PEEP) = 1 cm H2O without recruitment maneuvers (RMs) (low VT/low PEEP/RM-), mimicking the low-VT/low-PEEP strategy of PROVHILO; (2) VT = 7 mL/kg and PEEP = 3 cm H2O with RMs before laparotomy and hourly thereafter (low VT/moderate PEEP/4 RM+), mimicking the protective ventilation strategy of IMPROVE; (3) VT = 7 mL/kg and PEEP = 6 cm H2O with RMs only before laparotomy (low VT/high PEEP/1 RM+), mimicking the strategy used after intubation and before extubation in PROVHILO; or (4) VT = 14 mL/kg and PEEP = 1 cm H2O without RMs (high VT/low PEEP/RM-), mimicking conventional ventilation used in IMPROVE. Seven rats were not tracheotomized, operated, or mechanically ventilated, and constituted the healthy nonoperated and nonventilated controls. Low VT/moderate PEEP/4 RM+ and low VT/high PEEP/1 RM+, compared to low VT/low PEEP/RM- and high VT/low PEEP/RM-, resulted in lower ΔPRS (7.1 ± 0.8 and 10.2 ± 2.1 cm H2O vs 13.9 ± 0.9 and 16.9 ± 0.8 cm H2O, respectively; Pmechanical power (63 ± 7 and 79 ± 20 J/min vs 110 ± 10 and 120 ± 20 J/min, respectively; P = .007). Low VT/high PEEP/1 RM+ was associated with less alveolar collapse than low VT/low PEEP/RM- (P = .03). E-cadherin expression was higher in

  16. Mechanical response of collagen molecule under hydrostatic compression

    International Nuclear Information System (INIS)

    Saini, Karanvir; Kumar, Navin


    Proteins like collagen are the basic building blocks of various body tissues (soft and hard). Collagen molecules find their presence in the skeletal system of the body where they bear mechanical loads from different directions, either individually or along with hydroxy-apatite crystals. Therefore, it is very important to understand the mechanical behavior of the collagen molecule which is subjected to multi-axial state of loading. The estimation of strains of collagen molecule along different directions resulting from the changes in hydrostatic pressure magnitude, can provide us new insights into its mechanical behavior. In the present work, full atomistic simulations have been used to study global (volumetric) as well as local (along different directions) mechanical properties of the hydrated collagen molecule which is subjected to different hydrostatic pressure magnitudes. To estimate the local mechanical properties, the strains of collagen molecule along its longitudinal and transverse directions have been acquired at different hydrostatic pressure magnitudes. In spite of non-homogeneous distribution of atoms within the collagen molecule, the calculated values of local mechanical properties have been found to carry the same order of magnitude along the longitudinal and transverse directions. It has been demonstrated that the values of global mechanical properties like compressibility, bulk modulus, etc. as well as local mechanical properties like linear compressibility, linear elastic modulus, etc. are functions of magnitudes of applied hydrostatic pressures. The mechanical characteristics of collagen molecule based on the atomistic model have also been compared with that of the continuum model in the present work. The comparison showed up orthotropic material behavior for the collagen molecule. The information on collagen molecule provided in the present study can be very helpful in designing the future bio-materials.

  17. Determination of safety margins for whole blood concentrations of alcohol and nineteen drugs in driving under the influence cases. (United States)

    Kristoffersen, Lena; Strand, Dag Helge; Liane, Veronica Horpestad; Vindenes, Vigdis; Tvete, Ingunn Fride; Aldrin, Magne


    Legislative limits for driving under the influence of 20 non-alcohol drugs were introduced in Norway in February 2012. Per se limits corresponding to blood alcohol concentrations (BAC) of 0.2g/kg were established for 20 psychoactive drugs, and limits for graded sanctions corresponding to BACs of 0.5 and 1.2g/kg were determined for 13 of these drugs. This new legislation made it possible for the courts to make sentences based on the analytical results, similar to the situation for alcohol. To ensure that the reported concentration is as least as high as the true concentration, with a 99% safety level, safety margins had to be calculated for each of the substances. Diazepam, tetrahydrocannabinol (THC) and alcohol were used as model substances to establish a new model for estimating the safety margins. The model was compared with a previous used model established several years ago, by a similar yet much simpler model, and they were found to be in agreement. The measurement uncertainties depend on the standard batch used, the work list and the measurements' replicate. A Bayesian modelling approach was used to determine the parameters in the model, using a dataset of 4700 diazepam positive specimens and 5400 THC positive specimens. Different safety margins were considered for low and high concentration levels of diazepam (≤2μM (0.6mg/L) and >2μM) and THC (≤0.01μM (0.003mg/L) and >0.01μM). The safety margins were for diazepam 19.5% (≤2μM) and 34% (>2μM), for THC 19.5% (≤0.01μM) and 24.9% (>0.01μM). Concentration dependent safety margins for BAC were based on a dataset of 29500 alcohol positive specimens, and were in the range 10.4% (0.1g/kg) to 4.0% (4.0g/kg) at a 99% safety level. A simplified approach was used to establish safety margins for the compounds amphetamine, MDMA, methamphetamine, alprazolam, phenazepam, flunitrazepam, clonazepam, nitrazepam, oxazepam, buprenorphine, GHB, methadone, ketamine, cocaine, morphine, zolpidem and zopiclone. The

  18. Hormonal and genetic influences underlying arousal as it drives sex and aggression in animal and human brains. (United States)

    Mong, Jessica A; Pfaff, Donald W


    Estrogen treatment induces transcription and increases excitability and reproductive behavior. Estrogens provide the structural basis for increased synaptic activity and greater behavior-facilitating output. Administration of progesterone amplifies the effect of estrogens on mating behavior. The role of GnRH is to synchronize reproductive behavior with the ovulatory surge of LH. A causal connection can be charted from one individual gene to human social behavior, but only via six causal links. Glia, meninges and neurons may participate, under the influence of sex hormones, in the direction of sex behavior. Neural and genetic mechanisms for motivation may lead to biological understanding of functions that apply to the most primitive aspects of human mental functioning. With respect to aggression, besides testosterone and its metabolites, serotonergic projections to the forebrain play an important role.

  19. Mechanical Characterization of Anion Exchange Membranes Under Controlled Environmental Conditions (United States)


    supporting textiles and test the mechanical properties. Even though their films were only 10 microns, the SER fixture was used by applying double stick tape...aramid and stainless steel. The authors conclude that supporting textile has a large impact on mechanical properties due to the difference in...Elongation) are depicted. 2.2 Conductivity Ionic conductivity was measured by electrochemical impedance spectroscopy using a four- electrode in-plane

  20. Features wear nodes mechanization wing aircraft operating under dynamic loads

    Directory of Open Access Journals (Sweden)

    А.М. Хімко


    Full Text Available  The conducted researches of titanic alloy ВТ-22 at dynamic loading with cycled sliding and dynamic loading in conditions of rolling with slipping. It is established that roller jamming in the carriage increases wear of rod of mechanization of a wing to twenty times. The optimum covering for strengthening wearied sites and restoration of working surfaces of wing’s mechanization rod is defined.

  1. Improving arithmetic performance with number sense training: an investigation of underlying mechanism. (United States)

    Park, Joonkoo; Brannon, Elizabeth M


    A nonverbal primitive number sense allows approximate estimation and mental manipulations on numerical quantities without the use of numerical symbols. In a recent randomized controlled intervention study in adults, we demonstrated that repeated training on a non-symbolic approximate arithmetic task resulted in improved exact symbolic arithmetic performance, suggesting a causal relationship between the primitive number sense and arithmetic competence. Here, we investigate the potential mechanisms underlying this causal relationship. We constructed multiple training conditions designed to isolate distinct cognitive components of the approximate arithmetic task. We then assessed the effectiveness of these training conditions in improving exact symbolic arithmetic in adults. We found that training on approximate arithmetic, but not on numerical comparison, numerical matching, or visuo-spatial short-term memory, improves symbolic arithmetic performance. In addition, a second experiment revealed that our approximate arithmetic task does not require verbal encoding of number, ruling out an alternative explanation that participants use exact symbolic strategies during approximate arithmetic training. Based on these results, we propose that nonverbal numerical quantity manipulation is one key factor that drives the link between the primitive number sense and symbolic arithmetic competence. Future work should investigate whether training young children on approximate arithmetic tasks even before they solidify their symbolic number understanding is fruitful for improving readiness for math education. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Synthetic oligorotaxanes exert high forces when folding under mechanical load (United States)

    Sluysmans, Damien; Hubert, Sandrine; Bruns, Carson J.; Zhu, Zhixue; Stoddart, J. Fraser; Duwez, Anne-Sophie


    Folding is a ubiquitous process that nature uses to control the conformations of its molecular machines, allowing them to perform chemical and mechanical tasks. Over the years, chemists have synthesized foldamers that adopt well-defined and stable folded architectures, mimicking the control expressed by natural systems1,2. Mechanically interlocked molecules, such as rotaxanes and catenanes, are prototypical molecular machines that enable the controlled movement and positioning of their component parts3-5. Recently, combining the exquisite complexity of these two classes of molecules, donor-acceptor oligorotaxane foldamers have been synthesized, in which interactions between the mechanically interlocked component parts dictate the single-molecule assembly into a folded secondary structure6-8. Here we report on the mechanochemical properties of these molecules. We use atomic force microscopy-based single-molecule force spectroscopy to mechanically unfold oligorotaxanes, made of oligomeric dumbbells incorporating 1,5-dioxynaphthalene units encircled by cyclobis(paraquat-p-phenylene) rings. Real-time capture of fluctuations between unfolded and folded states reveals that the molecules exert forces of up to 50 pN against a mechanical load of up to 150 pN, and displays transition times of less than 10 μs. While the folding is at least as fast as that observed in proteins, it is remarkably more robust, thanks to the mechanically interlocked structure. Our results show that synthetic oligorotaxanes have the potential to exceed the performance of natural folding proteins.

  3. Predictors for patient knowledge and reported behaviour regarding driving under the influence of medicines: a multi-country survey.

    NARCIS (Netherlands)

    Monteiro, S.P.; Dijk, L. van; Verstraete, A.G.; Alvarez, F.J.; Heissing, M.; Gier, J.J. de


    Background: Reports on the state of knowledge about medicines and driving showed an increased concern about the role that the use of medicines might play in car crashes. Much of patient knowledge regarding medicines comes from communications with healthcare professionals. This study, part of the

  4. Predictors for patient knowledge and reported behaviour regarding driving under the influence of medicines : a multi-country survey

    NARCIS (Netherlands)

    Monteiro, Susana P.; van Dijk, Liset; Verstraete, Alain G.; Alvarez, F. Javier; Heissing, Michael; de Gier, Johan J.


    Background: Reports on the state of knowledge about medicines and driving showed an increased concern about the role that the use of medicines might play in car crashes. Much of patient knowledge regarding medicines comes from communications with healthcare professionals. This study, part of the

  5. Mechanisms Driving Galling Success in a Fragmented Landscape: Synergy of Habitat and Top-Down Factors along Temperate Forest Edges.

    Directory of Open Access Journals (Sweden)

    Nina-S Kelch

    Full Text Available Edge effects play key roles in the anthropogenic transformation of forested ecosystems and their biota, and are therefore a prime field of contemporary fragmentation research. We present the first empirical study to address edge effects on the population level of a widespread galling herbivore in a temperate deciduous forest. By analyzing edge effects on abundance and trophic interactions of beech gall midge (Mikiola fagi Htg., we found 30% higher gall abundance in the edge habitat as well as lower mortality rates due to decreased top-down control, especially by parasitoids. Two GLM models with similar explanatory power (58% identified habitat specific traits (such as canopy closure and altitude and parasitism as the best predictors of gall abundance. Further analyses revealed a crucial influence of light exposure (46% on top-down control by the parasitoid complex. Guided by a conceptual framework synthesizing the key factors driving gall density, we conclude that forest edge proliferation of M. fagi is due to a complex interplay of abiotic changes and trophic control mechanisms. Most prominently, it is caused by the microclimatic regime in forest edges, acting alone or in synergistic concert with top-down pressure by parasitoids. Contrary to the prevailing notion that specialists are edge-sensitive, this turns M. fagi into a winner species in fragmented temperate beech forests. In view of the increasing proportion of edge habitats and the documented benefits from edge microclimate, we call for investigations exploring the pest status of this galling insect and the modulators of its biological control.

  6. Dementia & Driving (United States)

    ... find the loss of driving privileges and the inherent loss of independence upsetting. Encourage the individual with ... to modify their driving. This can reduce the risk of an accident if the individual’s driving skills ...

  7. Drive Stands (United States)

    Federal Laboratory Consortium — The Electrical Systems Laboratory (ESL)houses numerous electrically driven drive stands. A drive stand consists of an electric motor driving a gearbox and a mounting...

  8. Mechanism and kinetics of mineral weathering under acid conditions

    NARCIS (Netherlands)

    Anbeek, C.


    This study deals with the relationships between crystal structure, grain diameter, surface morphology and dissolution kinetics for feldspar and quartz under acid conditions.

    Intensively ground samples from large, naturally weathered mineral fragments are frequently used in

  9. Performance of multifilamentary Nb3Sn under mechanical load

    International Nuclear Information System (INIS)

    Easton, D.S.; Schwall, R.E.


    The critical current of a commercial multifilamentary Nb 3 Sn conductor has been measured under the application of uniaxial tension at 4.2 K and following bending at room temperature. Significant reductions in J/subc/ are observed under uniaxial loading. Results are presented for a monolithic conductor manufactured by the bronze diffusion technique and for cable conductors formed by the tin-dip technique

  10. Decentralized control mechanism underlying interlimb coordination of millipedes. (United States)

    Kano, Takeshi; Sakai, Kazuhiko; Yasui, Kotaro; Owaki, Dai; Ishiguro, Akio


    Legged animals exhibit adaptive and resilient locomotion through interlimb coordination. The long-term goal of this study is to clarify the relationship between the number of legs and the inherent decentralized control mechanism for interlimb coordination. As a preliminary step, the study focuses on millipedes as they represent the species with the greatest number of legs among various animal species. A decentralized control mechanism involving local force feedback was proposed based on the qualitative findings of behavioural experiments in which responses to the removal of part of the terrain and leg amputation were observed. The proposed mechanism was implemented in a developed millipede-like robot to demonstrate that the robot can adapt to the removal of the part of the terrain and leg amputation in a manner similar to that in behavioural experiments.

  11. Advanced waterflooding in chalk reservoirs: Understanding of underlying mechanisms

    DEFF Research Database (Denmark)

    Zahid, Adeel; Sandersen, Sara Bülow; Stenby, Erling Halfdan


    Over the last decade, a number of studies have shown SO42−, Ca2+ and Mg2+ to be potential determining ions, which may be added to the injected brine for improving oil recovery during waterflooding in chalk reservoirs. However the understanding of the mechanism leading to an increase in oil recove...... of a microemulsion phase could be the possible reasons for the observed increase in oil recovery with sulfate ions at high temperature in chalk reservoirs besides the mechanism of the rock wettability alteration, which has been reported in most previous studies.......Over the last decade, a number of studies have shown SO42−, Ca2+ and Mg2+ to be potential determining ions, which may be added to the injected brine for improving oil recovery during waterflooding in chalk reservoirs. However the understanding of the mechanism leading to an increase in oil recovery...

  12. Epigenetic mechanisms underlying the pathogenesis of neurogenetic diseases. (United States)

    Qureshi, Irfan A; Mehler, Mark F


    There have been considerable advances in uncovering the complex genetic mechanisms that underlie nervous system disease pathogenesis, particularly with the advent of exome and whole genome sequencing techniques. The emerging field of epigenetics is also providing further insights into these mechanisms. Here, we discuss our understanding of the interplay that exists between genetic and epigenetic mechanisms in these disorders, highlighting the nascent field of epigenetic epidemiology-which focuses on analyzing relationships between the epigenome and environmental exposures, development and aging, other health-related phenotypes, and disease states-and next-generation research tools (i.e., those leveraging synthetic and chemical biology and optogenetics) for examining precisely how epigenetic modifications at specific genomic sites affect disease processes.

  13. A review of mechanisms underlying anticarcinogenicity by brassica vegetables

    NARCIS (Netherlands)

    Verhoeven, D.T.H.; Verhagen, H.; Goldbohm, R.A.; Brandt, P.A. van den; Poppel, G. van


    The mechanisms by which brassica vegetables might decrease the risk of cancer are reviewed in this paper. Brassicas, including all types of cabbages, broccoli, cauliflower and Brussels sprouts, may be protective against cancer due to their relatively high glucosinolate content. Glucosinolates are

  14. Peer influence: neural mechanisms underlying in-group conformity

    NARCIS (Netherlands)

    Stallen, M.; Smidts, A.; Sanfey, A.G.


    People often conform to the behavior of others with whom they identify. However, it is unclear what fundamental mechanisms underlie this type of conformity. Here, we investigate the processes mediating in-group conformity by using functional magnetic resonance imaging (fMRI). Participants completed

  15. Peer influence: Neural mechanisms underlying in-group conformity

    NARCIS (Netherlands)

    M. Stallen (Mirre); A. Smidts (Ale); A.G. Sanfey (Alan)


    textabstractPeople often conform to the behavior of others with whom they identify. However, it is unclear what fundamental mechanisms underlie this type of conformity. Here, we investigate the processes mediating in-group conformity by using functional magnetic resonance imaging (fMRI).

  16. Survival under stress: molecular mechanisms of metabolic rate ...

    African Journals Online (AJOL)

    Studies in my laboratory are analysing the molecular mechanisms and regulatory events that underlie transitions to and from hypometabolic states In systems including anoxia-tolerant turtles and molluscs, estivating snails and toads, hibernating small mammals, and freeze tolerant frogs and insects. Our newest research ...

  17. Underlying mechanisms of transient luminous events: a review

    Directory of Open Access Journals (Sweden)

    V. V. Surkov


    Full Text Available Transient luminous events (TLEs occasionally observed above a strong thunderstorm system have been the subject of a great deal of research during recent years. The main goal of this review is to introduce readers to recent theories of electrodynamics processes associated with TLEs. We examine the simplest versions of these theories in order to make their physics as transparent as possible. The study is begun with the conventional mechanism for air breakdown at stratospheric and mesospheric altitudes. An electron impact ionization and dissociative attachment to neutrals are discussed. A streamer size and mobility of electrons as a function of altitude in the atmosphere are estimated on the basis of similarity law. An alternative mechanism of air breakdown, runaway electron mechanism, is discussed. In this section we focus on a runaway breakdown field, characteristic length to increase avalanche of runaway electrons and on the role played by fast seed electrons in generation of the runaway breakdown. An effect of thunderclouds charge distribution on initiation of blue jets and gigantic jets is examined. A model in which the blue jet is treated as upward-propagating positive leader with a streamer zone/corona on the top is discussed. Sprite models based on streamer-like mechanism of air breakdown in the presence of atmospheric conductivity are reviewed. To analyze conditions for sprite generation, thunderstorm electric field arising just after positive cloud-to-ground stroke is compared with the thresholds for propagation of positively/negatively charged streamers and with runway breakdown. Our own estimate of tendril's length at the bottom of sprite is obtained to demonstrate that the runaway breakdown can trigger the streamer formation. In conclusion we discuss physical mechanisms of VLF (very low frequency and ELF (extremely low frequency phenomena associated with sprites.

  18. Mechanisms underlying social inequality in post-menopausal breast cancer. (United States)

    Hvidtfeldt, Ulla Arthur


    This thesis is based on studies conducted in the period 2010-2014 at Department of Public Health, University of Copenhagen and at Department of Epidemiology and Population Health, Albert Einstein College of Medicine, New York. The results are presented in three scientific papers and a synopsis. The main objective of the thesis was to determine mechanisms underlying social inequality (defined by educational level) in postmenopausal breast cancer (BC) by addressing mediating effects through hormone therapy (HT) use, BMI, lifestyle and reproductive factors. The results of previous studies suggest that the higher risk of postmenopausal BC among women of high socioeconomic position (SEP) may be explained by reproductive factors and health behaviors. Women of higher SEP generally have fewer children and give birth at older ages than women of low SEP, and these factors have been found to affect the risk of BC - probably through altered hormone levels. Adverse effects on BC risk have also been documented for modifiable health behaviors that may affect hormone levels, such as alcohol consumption, high BMI, physical inactivity, and HT use. Alcohol consumption and HT use are likewise more common among women of higher SEP. The analyses were based on the Social Inequality in Cancer (SIC) cohort and a subsample of the Women's Health Initiative Observational Study (WHI-OS). The SIC cohort was derived by pooling 6 individual studies from the Copenhagen area including 33,562 women (1,733 BC cases) aged 50-70 years at baseline. The subsample of WHI-OS consisted of two case-cohort studies with measurements of endogenous estradiol (N = 1,601) and insulin (N = 791). Assessment of mediation often relies on comparing multiplicative models with and without the potential mediator. Such approaches provide potentially biased results, because they do not account for mediator-outcome confounding, exposure-dependent mediator-outcome confounding, exposure-mediator interaction and interactions

  19. Analysis of field-oriented controlled induction motor drives under sensor faults and an overview of sensorless schemes. (United States)

    Arun Dominic, D; Chelliah, Thanga Raj


    To obtain high dynamic performance on induction motor drives (IMD), variable voltage and variable frequency operation has to be performed by measuring speed of rotation and stator currents through sensors and fed back them to the controllers. When the sensors are undergone a fault, the stability of control system, may be designed for an industrial process, is disturbed. This paper studies the negative effects on a 12.5 hp induction motor drives when the field oriented control system is subjected to sensor faults. To illustrate the importance of this study mine hoist load diagram is considered as shaft load of the tested machine. The methods to recover the system from sensor faults are discussed. In addition, the various speed sensorless schemes are reviewed comprehensively. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Mechanical response of human female breast skin under uniaxial stretching. (United States)

    Kumaraswamy, N; Khatam, Hamed; Reece, Gregory P; Fingeret, Michelle C; Markey, Mia K; Ravi-Chandar, Krishnaswamy


    Skin is a complex material covering the entire surface of the human body. Studying the mechanical properties of skin to calibrate a constitutive model is of great importance to many applications such as plastic or cosmetic surgery and treatment of skin-based diseases like decubitus ulcers. The main objective of the present study was to identify and calibrate an appropriate material constitutive model for skin and establish certain universal properties that are independent of patient-specific variability. We performed uniaxial tests performed on breast skin specimens freshly harvested during mastectomy. Two different constitutive models - one phenomenological and another microstructurally inspired - were used to interpret the mechanical responses observed in the experiments. Remarkably, we found that the model parameters that characterize dependence on previous maximum stretch (or preconditioning) exhibited specimen-independent universal behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Molecular Mechanism Underlying Lymphatic Metastasis in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Zhiwen Xiao


    Full Text Available As the most challenging human malignancies, pancreatic cancer is characterized by its insidious symptoms, low rate of surgical resection, high risk of local invasion, metastasis and recurrence, and overall dismal prognosis. Lymphatic metastasis, above all, is recognized as an early adverse event in progression of pancreatic cancer and has been described to be an independent poor prognostic factor. It should be noted that the occurrence of lymphatic metastasis is not a casual or stochastic but an ineluctable and designed event. Increasing evidences suggest that metastasis-initiating cells (MICs and the microenvironments may act as a double-reed style in this crime. However, the exact mechanisms on how they function synergistically for this dismal clinical course remain largely elusive. Therefore, a better understanding of its molecular and cellular mechanisms involved in pancreatic lymphatic metastasis is urgently required. In this review, we will summarize the latest advances on lymphatic metastasis in pancreatic cancer.

  2. Mental imagery in music performance: underlying mechanisms and potential benefits. (United States)

    Keller, Peter E


    This paper examines the role of mental imagery in music performance. Self-reports by musicians, and various other sources of anecdotal evidence, suggest that covert auditory, motor, and/or visual imagery facilitate multiple aspects of music performance. The cognitive and motor mechanisms that underlie such imagery include working memory, action simulation, and internal models. Together these mechanisms support the generation of anticipatory images that enable thorough action planning and movement execution that is characterized by efficiency, temporal precision, and biomechanical economy. In ensemble performance, anticipatory imagery may facilitate interpersonal coordination by enhancing online predictions about others' action timing. Overlap in brain regions subserving auditory imagery and temporal prediction is consistent with this view. It is concluded that individual differences in anticipatory imagery may be a source of variation in expressive performance excellence and the quality of ensemble cohesion. Engaging in effortful musical imagery is therefore justified when artistic perfection is the goal. © 2012 New York Academy of Sciences.

  3. Neural mechanisms underlying context-dependent shifts in risk preferences

    NARCIS (Netherlands)

    Losecaat Vermeer, A.B.; Boksem, M.A.S.; Sanfey, A.G.


    Studies of risky decision-making have demonstrated that humans typically prefer risky options after incurring a financial loss, while generally preferring safer options after a monetary gain. Here, we examined the neural processes underlying these inconsistent risk preferences by investigating the

  4. Effect of friction time on mechanical and metallurgical properties of continuous drive friction welded Ti6Al4V/SUS321 joints

    International Nuclear Information System (INIS)

    Li, Peng; Li, Jinglong; Salman, Muhammad; Liang, Li; Xiong, Jiangtao; Zhang, Fusheng


    Highlights: • The effect of friction time on the microstructure and joint strength was studied. • The fit of burn-off lengths at different times yields a simple equation. • The longer friction time leads to oversized flash in Ti6Al4V side and overgrown IMCs. • An IMZ with width less than 3 μm is beneficial to make a strong metallurgical bond. • The average strength of 560 MPa is obtained and higher than ever reported results. - Abstract: Dissimilar joint of Ti6Al4V titanium alloy and SUS321 stainless steel was fabricated by continuous drive friction welding. The effect of friction time on the mechanical properties was evaluated by hardness measurement and tensile test, while the interfacial microstructure and fracture morphologies were analyzed by scanning electron microscope, energy dispersive spectroscope and X-ray Diffraction. The results show that the tensile strength increases with friction time under the experimental conditions. And the maximum average strength 560 MPa, which is 90.3% of the SUS321 base metal, is achieved at a friction time of 4 s. For all samples, studied fracture occurred along the joint interface, where intermetallic compounds like FeTi, Fe 2 Ti, Ni 3 (Al, Ti) and Fe 3 Ti 3 O and many other phases were formed among elements from the two base metals. The width of intermetallic compounds zone increases with friction time up to 3 μm, below which it is beneficial to make a strong metallurgical bond. However, the longer friction time leads to oversized flash on the Ti6Al4V side and overgrown intermetallic compounds. Finally the optimized friction time was discussed to be in the range of 2–4 s, under which the sound joint with good reproducibility can be expected

  5. [Mechanisms underlying glucocorticoid resistance in chronic rhinosinusitis with nasal polyps]. (United States)

    Zhang, Y Y; Lou, H F; Wang, C S; Zhang, L


    Chronic rhinosinusitis with nasal polyps (CRSwNP) is a chronic inflammatory disease that occurs in the nasal and sinus mucosa, which is a common disease in otorhinolaryngology. At present, CRSwNP can be effectively treated by glucocorticoids (GC). GC binds to GC receptors in the nasal mucosa, affects the expression of inflammatory genes, inhibits the activation and action of eosinophils, T cell-associated inflammatory responses in nasal polyps, as well as tissue remodeling. However, there are some patients fall reponse to GC, so called GC resistance. The study suggests that the possible mechanism of CRSwNP GC resistance is mainly related to GC receptor abnormal, the role of cytokines and transcription factors, such as Th cells and IL-8. In addition, MAPK-related kinases and histone deacetylase in the GC signaling pathway also play important roles in the GC resistance process. This paper reviews the mechanism of GC treatment of CRSwNP, the mechanism of GC resistance and alternative treatment of GC.

  6. The Survival Advantage: Underlying Mechanisms and Extant Limitations

    Directory of Open Access Journals (Sweden)

    Stephanie A. Kazanas


    Full Text Available Recently, researchers have begun to investigate the function of memory in our evolutionary history. According to Nairne and colleagues (e.g., Nairne, Pandeirada, and Thompson, 2008; Nairne, Thompson, and Pandeirada, 2007, the best mnemonic strategy for learning lists of unrelated words may be one that addresses the same problems that our Pleistocene ancestors faced: fitness-relevant problems including securing food and water, as well as protecting themselves from predators. Survival processing has been shown to promote better recall and recognition memory than many well-known mnemonic strategies (e.g., pleasantness ratings, imagery, generation, etc.. However, the survival advantage does not extend to all types of stimuli and tasks. The current review presents research that has replicated Nairne et al.'s (2007 original findings, in addition to the research designs that fail to replicate the survival advantage. In other words, there are specific manipulations in which survival processing does not appear to benefit memory any more than other strategies. Potential mechanisms for the survival advantage are described, with an emphasis on those that are the most plausible. These proximate mechanisms outline the memory processes that may contribute to the advantage, although the ultimate mechanism may be the congruity between the survival scenario and Pleistocene problem-solving.

  7. Passive and active response of bacteria under mechanical compression (United States)

    Garces, Renata; Miller, Samantha; Schmidt, Christoph F.; Byophysics Team; Institute of Medical Sciences Collaboration

    Bacteria display simple but fascinating cellular structures and geometries. Their shapes are the result of the interplay between osmotic pressure and cell wall construction. Typically, bacteria maintain a high difference of osmotic pressure (on the order of 1 atm) to the environment. This pressure difference (turgor pressure) is supported by the cell envelope, a composite of lipid membranes and a rigid cell wall. The response of the cell envelope to mechanical perturbations such as geometrical confinements is important for the cells survival. Another key property of bacteria is the ability to regulate turgor pressure after abrupt changes of external osmotic conditions. This response relies on the activity of mechanosensitive (MS) channels: membrane proteins that release solutes in response to excessive stress in the cell envelope. We here present experimental data on the mechanical response of the cell envelope and on turgor regulation of bacteria subjected to compressive forces. We indent living cells with micron-sized beads attached to the cantilever of an atomic force microscope (AFM). This approach ensures global deformation of the cell. We show that such mechanical loading is sufficient to gate mechanosensitive channels in isosmotic conditions.

  8. Violent behavior and driving under the influence of alcohol: prevalence and association with impulsivity among individuals in treatment for alcohol dependence in Poland. (United States)

    Klimkiewicz, Anna; Jakubczyk, Andrzej; Wnorowska, Anna; Klimkiewicz, Jakub; Bohnert, Amy; Ilgen, Mark A; Brower, Kirk J; Wojnar, Marcin


    Driving while intoxicated or under the influence (DUI; for the purposes of this paper, we use the following terms synonymously: driving under the influence, driving while intoxicated, and drunk driving) and engaging in interpersonal violence are two injury-related problems of high public health importance that have both been linked to alcohol consumption. This study sought to estimate the prevalence of DUI and violence in a sample of individuals in treatment for alcohol dependence in Poland. Patient characteristics associated with DUI and violence involvement, with a particular focus on impulsivity, were examined. Three hundred and sixty-four patients consecutively admitted to four alcohol treatment programs in Warsaw, Poland participated in this study. Questions concerning history of interpersonal violence as well as those about DUI were derived from the Michigan Alcoholism Screening Test. Impulsivity level was measured using the Barratt Impulsiveness Scale 11, the Revised NEO Personality Inventory, and the stop-signal task. Among all participants in the study, 148 (40.1%) had been arrested in the past for DUI, and 196 (55%) reported involvement in a fight under the influence of alcohol (FUI). The DUI group had a significantly earlier onset of alcohol problems, a longer period of heavy alcohol use, and fewer women in comparison to participants without a DUI history. FUI patients were significantly younger, with a younger average age of onset of drinking problems, longer period of heavy drinking, and lower percentage of women than the non-FUI group. Both of the self-reported measures of impulsivity indicated a higher level of impulsivity among participants from the FUI group than those from the non-FUI group. © 2013 S. Karger AG, Basel.

  9. Prolactinergic and dopaminergic mechanisms underlying sexual arousal and orgasm in humans. (United States)

    Krüger, Tillmann H C; Hartmann, Uwe; Schedlowski, Manfred


    Dopaminergic mechanisms play a major role in modulating sexual behavior in humans and animals. Animal data demonstrate important interactions between the dopaminergic and prolactinergic system. As recently demonstrated, dopamine agonists have facilitatory properties for penile erection but may also enhance sexual drive and orgasmic quality. In contrast, chronic elevations of prolactin inhibit appetitive as well as consummatory parameters of sexual behavior. Recent human studies show a marked increase in prolactin after orgasm in males and females. Concerning the biological relevance of acute prolactin alterations after orgasm, prolactin might serve as a neuroendocrine reproductive reflex for peripheral reproductive organs. Alternatively, prolactin may feedback to dopaminergic neurons in the central nervous system and thereby modulate sexual drive and satiation. Here, we provide a brief overview of the physiology of dopamine and prolactin in regulating sexual behavior. In addition, recent experimental and clinical evidence for a postulated feedback mechanism for prolactin and its implications for orgasmic disorders are discussed.

  10. Phosphorene under strain:electronic, mechanical and piezoelectric responses (United States)

    Drissi, L. B.; Sadki, S.; Sadki, K.


    Structural, electronic, elastic and piezoelectric properties of pure phosphorene under in-plane strain are investigated using first-principles calculations based on density functional theory. The two critical yielding points are determined along armchair and zigzag directions. It is shown that the buckling, the band gap and the charge transfer can be controlled under strains. A semiconductor to metallic transition is observed in metastable region. Polar plots of Young's modulus, Poisson ratio, sound velocities and Debye temperature exhibit evident anisotropic feature of phosphorene and indicate auxetic behavior for some angles θ. Our calculations show also that phosphorene has both in-plane and out-of-plane piezoelectric responses comparable to known 2D materials. The findings of this work reveal the great potential of pure phosphorene in nanomechanical applications.

  11. Electronic, mechanical and dielectric properties of silicane under tensile strain

    Energy Technology Data Exchange (ETDEWEB)

    Jamdagni, Pooja, E-mail:; Sharma, Munish; Ahluwalia, P. K. [Physics Department, Himachal Pradesh University, Shimla, Himachal Pradesh, India 171005 (India); Kumar, Ashok [Physics Department, Panjab University, Chandigarh, India, 160014 (India); Thakur, Anil [Physics Department, Govt. Collage Solan, Himachal Pradesh, India,173212 (India)


    The electronic, mechanical and dielectric properties of fully hydrogenated silicene i.e. silicane in stable configuration are studied by means of density functional theory based calculations. The band gap of silicane monolayer can be flexibly reduced to zero when subjected to bi-axial tensile strain, leading to semi-conducting to metallic transition, whereas the static dielectric constant for in-plane polarization increases monotonically with increasing strain. Also the EEL function show the red shift in resonance peak with tensile strain. Our results offer useful insight for the application of silicane monolayer in nano-optical and electronics devices.

  12. Electronic, mechanical and dielectric properties of silicane under tensile strain

    International Nuclear Information System (INIS)

    Jamdagni, Pooja; Sharma, Munish; Ahluwalia, P. K.; Kumar, Ashok; Thakur, Anil


    The electronic, mechanical and dielectric properties of fully hydrogenated silicene i.e. silicane in stable configuration are studied by means of density functional theory based calculations. The band gap of silicane monolayer can be flexibly reduced to zero when subjected to bi-axial tensile strain, leading to semi-conducting to metallic transition, whereas the static dielectric constant for in-plane polarization increases monotonically with increasing strain. Also the EEL function show the red shift in resonance peak with tensile strain. Our results offer useful insight for the application of silicane monolayer in nano-optical and electronics devices

  13. Studies on Molecular Mechanisms Underlying Spinocerebellar Ataxia Type 3

    DEFF Research Database (Denmark)

    Kristensen, Line Vildbrad

    The polyglutamine (polyQ) disorders comprise nine diseases characterized by an expanded polyQ tract within the respective proteins. These disorders are rare but include the well-known Huntington’s disease, and several spinocerebellar ataxias (SCAs). The diseases usually strike midlife and progress....... Even though a range of mechanisms contributing to polyQ diseases have been uncovered, there is still no treatment available. One of the more common polyQ diseases is SCA3, which is caused by a polyQ expansion in the ataxin-3 protein that normally functions as a deubiquitinating enzyme involved...

  14. Ethanol Neurotoxicity in the Developing Cerebellum: Underlying Mechanisms and Implications

    Directory of Open Access Journals (Sweden)

    Ambrish Kumar


    Full Text Available Ethanol is the main constituent of alcoholic beverages that exerts toxicity to neuronal development. Ethanol affects synaptogenesis and prevents proper brain development. In humans, synaptogenesis takes place during the third trimester of pregnancy, and in rodents this period corresponds to the initial few weeks of postnatal development. In this period neuronal maturation and differentiation begin and neuronal cells start migrating to their ultimate destinations. Although the neuronal development of all areas of the brain is affected, the cerebellum and cerebellar neurons are more susceptible to the damaging effects of ethanol. Ethanol’s harmful effects include neuronal cell death, impaired differentiation, reduction of neuronal numbers, and weakening of neuronal plasticity. Neuronal development requires many hormones and growth factors such as retinoic acid, nerve growth factors, and cytokines. These factors regulate development and differentiation of neurons by acting through various receptors and their signaling pathways. Ethanol exposure during development impairs neuronal signaling mechanisms mediated by the N-methyl-d-aspartate (NMDA receptors, the retinoic acid receptors, and by growth factors such as brain-derived neurotrophic factor (BDNF, insulin-like growth factor 1 (IGF-I, and basic fibroblast growth factor (bFGF. In combination, these ethanol effects disrupt cellular homeostasis, reduce the survival and migration of neurons, and lead to various developmental defects in the brain. Here we review the signaling mechanisms that are required for proper neuronal development, and how these processes are impaired by ethanol resulting in harmful consequences to brain development.

  15. Brainstem mechanisms underlying the cough reflex and its regulation. (United States)

    Mutolo, Donatella


    Cough is a very important airway protective reflex. Cough-related inputs are conveyed to the caudal nucleus tractus solitarii (cNTS) that projects to the brainstem respiratory network. The latter is reconfigured to generate the cough motor pattern. A high degree of modulation is exerted on second-order neurons and the brainstem respiratory network by sensory inputs and higher brain areas. Two medullary structures proved to have key functions in cough production and to be strategic sites of action for centrally active drugs: the cNTS and the caudal ventral respiratory group (cVRG). Drugs microinjected into these medullary structures caused downregulation or upregulation of the cough reflex. The results suggest that inhibition and disinhibition are prominent regulatory mechanisms of this reflex and that both the cNTS and the cVRG are essential in the generation of the entire cough motor pattern. Studies on the basic neural mechanisms subserving the cough reflex may provide hints for novel therapeutic approaches. Different proposals for further investigations are advanced. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Internal insulation failure mechanisms of HV equipment under service conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lokhanin, A.K.; Morozova, T.I. [All-Russian Electrochemical Inst. (Russian Federation); Shneider, G.Y. [Electrozavod Holding Company (Russian Federation); Sokolov, V.V. [Scientific and Engineering Centre, ZTZ Service Research Inst. (Russian Federation); Chornogotsky, V.M. [Ukrainian Transformer Research Inst. (Ukraine)


    Failure mechanisms in oil-barrier transformer insulation and oil-paper condenser type insulation of transformers and HV bushing were discussed with reference to typical defects and failure modes of oil-barrier insulation of transformers, shunt reactor, condenser type bushing and instrument current transformers. It was noted that insulation problems predominantly involve the impairment of insulation, and that the relative rate of major failures in shunt reactors is about 1 per cent. It was suggested that bushings can cause about 45 per cent of major transformer failures, with aged mode failure occurring most frequently. The failure rate of 220-500 kV CTs accounts for more than 60 per cent of total instrument transformer failures. Two failure modes were observed: ionisation-mode and aging-mode failures. The reduction of switching surge breakdown voltage due to deposit of insoluble aging products was discussed. A long-term dielectric strength test revealed the following 2 mechanisms of insulation breakdown: accidental breakdown during the first period of aging and wearing mode breakdown due to degradation of materials at the last stage of the calculated terms of aging. Issues concerning the mechanism of the incipient irreversible failure in oil-barrier insulation were discussed, as well as issues concerning creeping discharge and large failures during normal operating conditions. It was suggested that the occurrence of surface discharge is associated with increased voltage due to oil breakdown progressing into insulation destruction and surface discharge as a self-firing phenomenon. Failure modes induced by peculiar oil and staining of internal porcelain were reviewed. It was noted that the discharges across the inner part of the transformer and porcelain were the out-come of a typical aging-mode phenomenon in the bushing. In addition, failure modes induced by staining the outer surface of bottom porcelain were discussed, as well as failure of oil-filled paper

  17. Parametric study of control mechanism of cortical bone remodeling under mechanical stimulus (United States)

    Wang, Yanan; Qin, Qing-Hua


    The control mechanism of mechanical bone remodeling at cellular level was investigated by means of an extensive parametric study on a theoretical model described in this paper. From a perspective of control mechanism, it was found that there are several control mechanisms working simultaneously in bone remodeling which is a complex process. Typically, an extensive parametric study was carried out for investigating model parameter space related to cell differentiation and apoptosis which can describe the fundamental cell lineage behaviors. After analyzing all the combinations of 728 permutations in six model parameters, we have identified a small number of parameter combinations that can lead to physiologically realistic responses which are similar to theoretically idealized physiological responses. The results presented in the work enhanced our understanding on mechanical bone remodeling and the identified control mechanisms can help researchers to develop combined pharmacological-mechanical therapies to treat bone loss diseases such as osteoporosis.

  18. Mechanisms Underlying Profibrotic Epithelial Phenotype and Epithelial-Mesenchymal Crosstalk

    DEFF Research Database (Denmark)

    Bialik, Janne Folke

    , their roles in epithelial reprogramming are unclear. The aim of this thesis was to elucidate (i) the mechanism of TGFβ-induced TAZ expression in kidney fibrosis, (ii) the roles of MRTF and TAZ in PEP, (iii) how MRTF and TAZ regulate the oxidative state of the epithelium, and (iv) if the ensuing ROS production...... and TAZ prevented this, linking the cytoskeleton to the oxidative state of the cell. In Paper II TGFβ-induced increase in TAZ expression was investigated. Using pharmacological inhibition we show that non-canonical signaling via p38 and its downstream target MK2 mediates this upregulation. Furthermore......, MRTF regulates TAZ expression in a translocation-independent manner. Pharmacological inhibition of Nox4, a known activator of p38, resulted in decreased TAZ, suggesting a feedback loop in which Nox4 regulates TAZ and MRTF, which in turn regulates Nox4. In Paper III we investigated cytokine expression...

  19. Mechanisms underlying rapid aldosterone effects in the kidney.

    LENUS (Irish Health Repository)

    Thomas, Warren


    The steroid hormone aldosterone is a key regulator of electrolyte transport in the kidney and contributes to both homeostatic whole-body electrolyte balance and the development of renal and cardiovascular pathologies. Aldosterone exerts its action principally through the mineralocorticoid receptor (MR), which acts as a ligand-dependent transcription factor in target tissues. Aldosterone also stimulates the activation of protein kinases and secondary messenger signaling cascades that act independently on specific molecular targets in the cell membrane and also modulate the transcriptional action of aldosterone through MR. This review describes current knowledge regarding the mechanisms and targets of rapid aldosterone action in the nephron and how aldosterone integrates these responses into the regulation of renal physiology.

  20. Mechanisms underlying rapid aldosterone effects in the kidney.

    LENUS (Irish Health Repository)

    Thomas, Warren


    The steroid hormone aldosterone is a key regulator of electrolyte transport in the kidney and contributes to both homeostatic whole-body electrolyte balance and the development of renal and cardiovascular pathologies. Aldosterone exerts its action principally through the mineralocorticoid receptor (MR), which acts as a ligand-dependent transcription factor in target tissues. Aldosterone also stimulates the activation of protein kinases and secondary messenger signaling cascades that act independently on specific molecular targets in the cell membrane and also modulate the transcriptional action of aldosterone through MR. This review describes current knowledge regarding the mechanisms and targets of rapid aldosterone action in the nephron and how aldosterone integrates these responses into the regulation of renal physiology.

  1. Molecular mechanisms underlying the development of hepatocellular carcinoma. (United States)

    Bergsland, E K


    Hepatocellular carcinoma (HCC) is a disease that is extremely difficult to manage and is markedly increasing in incidence. Malignant transformation generally occurs in the setting of liver dysfunction related to a number of different diseases, including viral hepatitis, alcoholic liver disease, and aflatoxin exposure. Short of surgical or ablative approaches, no standard therapy exists for HCC and the prognosis is poor. Perhaps our best hope is that further elucidation of the specific molecular features underlying the disease will translate into innovative, and potentially disease-specific strategies to manage this difficult cancer. Exposure to aflatoxin is associated with a specific mutation in the tumor-suppressor gene p53. The exact molecular events underlying hepatocarcinogenesis in the setting of viral infection have yet to be elucidated, although there is evidence to suggest that virus-encoded proteins contribute to malignant transformation. Both hepatitis B X antigen and hepatitis C core protein appear to interact with a variety of cellular proteins leading to alterations in signal transduction and transcriptional activity. These events presumably cooperate to facilitate malignant progression by promoting extended hepatocyte survival, evasion of the immune response, and acquisition of mutations through genomic instability. Copyright 2001 by W.B. Saunders Company.

  2. Neural mechanisms underlying neurooptometric rehabilitation following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Hudac CM


    Full Text Available Caitlin M Hudac1, Srinivas Kota1, James L Nedrow2, Dennis L Molfese1,31Department of Psychology, University of Nebraska-Lincoln, 2Oculi Vision Rehabilitation, 3Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, NEAbstract: Mild to severe traumatic brain injuries have lasting effects on everyday functioning. Issues relating to sensory problems are often overlooked or not addressed until well after the onset of the injury. In particular, vision problems related to ambient vision and the magnocellular pathway often result in posttrauma vision syndrome or visual midline shift syndrome. Symptoms from these syndromes are not restricted to the visual domain. Patients commonly experience proprioceptive, kinesthetic, vestibular, cognitive, and language problems. Neurooptometric rehabilitation often entails the use of corrective lenses, prisms, and binasal occlusion to accommodate the unstable magnocellular system. However, little is known regarding the neural mechanisms engaged during neurooptometric rehabilitation, nor how these mechanisms impact other domains. Event-related potentials from noninvasive electrophysiological recordings can be used to assess rehabilitation progress in patients. In this case report, high-density visual event-related potentials were recorded from one patient with posttrauma vision syndrome and secondary visual midline shift syndrome during a pattern reversal task, both with and without prisms. Results indicate that two factors occurring during the end portion of the P148 component (168–256 milliseconds poststimulus onset map onto two separate neural systems that were engaged with and without neurooptometric rehabilitation. Without prisms, neural sources within somatosensory, language, and executive brain regions engage inefficient magnocellular system processing. However, when corrective prisms were worn, primary visual areas were appropriately engaged. The impact of using early

  3. Mechanical characterization of stomach tissue under uniaxial tensile action. (United States)

    Jia, Z G; Li, W; Zhou, Z R


    In this article, the tensile properties of gastric wall were investigated by using biomechanical test and theoretical analysis. The samples of porcine stomach strips from smaller and greater curvature of the stomach were cut in longitudinal and circumferential direction, respectively. The loading-unloading, stress relaxation, strain creep, tensile fracture tests were performed at mucosa-submucosa, serosa-muscle and intact layer, respectively. Results showed that the biomechanical properties of the porcine stomach depended on the layers, orientations and locations of the gastric wall and presented typical viscoelastic, nonlinear and anisotropic mechanical properties. During loading-unloading test, the stress of serosa-muscle layer in the longitudinal direction was 15-20% more than that in the circumferential direction at 12% stretch ratio, while it could reach about 40% for the intact layer and 50% for the mucosa-submucosa layer. The results of stress relaxation and strain creep showed that the variation degree was obviously faster in the circumferential direction than that in the longitudinal direction, and the ultimate residual values were also different for the different layers, orientations and locations. In the process of fracture test, the serosa-muscle layer fractured firstly followed by the mucosa-submucosa layer when the intact layer was tested, the longitudinal strips firstly began to fracture and the required stress value was about twice as much as that in the circumferential strips. The anisotropy and heterogeneity of mechanical characterization of the porcine stomach were related to its complicated geometry, structure and functions. The results would help us to understand the biomechanics of soft organ tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Mechanisms underlying probucol-induced hERG-channel deficiency

    Directory of Open Access Journals (Sweden)

    Shi YQ


    Full Text Available Yuan-Qi Shi,1,* Cai-Chuan Yan,1,* Xiao Zhang,1 Meng Yan,1 Li-Rong Liu,1 Huai-Ze Geng,1 Lin Lv,1 Bao-Xin Li1,21Department of Pharmacology, Harbin Medical University, 2State-Province Key Laboratory of Biopharmaceutical Engineering, Harbin, Heilongjiang, People’s Republic of China*These authors contributed equally to this workAbstract: The hERG gene encodes the pore-forming α-subunit of the rapidly activating delayed rectifier potassium channel (IKr, which is important for cardiac repolarization. Reduction of IhERG due to genetic mutations or drug interferences causes long QT syndrome, leading to life-threatening cardiac arrhythmias (torsades de pointes or sudden death. Probucol is a cholesterol-lowering drug that could reduce hERG current by decreasing plasma membrane hERG protein expression and eventually cause long QT syndrome. Here, we investigated the mechanisms of probucol effects on IhERG and hERG-channel expression. Our data demonstrated that probucol reduces SGK1 expression, known as SGK isoform, in a concentration-dependent manner, resulting in downregulation of phosphorylated E3 ubiquitin ligase Nedd4-2 expression, but not the total level of Nedd4-2. As a result, the hERG protein reduces, due to the enhanced ubiquitination level. On the contrary, carbachol could enhance the phosphorylation level of Nedd4-2 as an alternative to SGK1, and thus rescue the ubiquitin-mediated degradation of hERG channels caused by probucol. These discoveries provide a novel mechanism of probucol-induced hERG-channel deficiency, and imply that carbachol or its analog may serve as potential therapeutic compounds for the handling of probucol cardiotoxicity.Keywords: long QT, hERG potassium channels, probucol, SGK1, Nedd4-2

  5. Algorithmic mechanisms for reliable crowdsourcing computation under collusion. (United States)

    Fernández Anta, Antonio; Georgiou, Chryssis; Mosteiro, Miguel A; Pareja, Daniel


    We consider a computing system where a master processor assigns a task for execution to worker processors that may collude. We model the workers' decision of whether to comply (compute the task) or not (return a bogus result to save the computation cost) as a game among workers. That is, we assume that workers are rational in a game-theoretic sense. We identify analytically the parameter conditions for a unique Nash Equilibrium where the master obtains the correct result. We also evaluate experimentally mixed equilibria aiming to attain better reliability-profit trade-offs. For a wide range of parameter values that may be used in practice, our simulations show that, in fact, both master and workers are better off using a pure equilibrium where no worker cheats, even under collusion, and even for colluding behaviors that involve deviating from the game.

  6. Mechanisms of microstructural changes of fuel under irradiation

    International Nuclear Information System (INIS)

    Garcia, P.; Carlot, G.; Dorado, B.; Maillard, S.; Sabathier, C.; Martin, G.; Oh, J.Y.; Welland, M.J.


    Nuclear fuels are subjected to high levels of radiation damage mainly due to the slowing of fission fragments, which results in substantial modifications of the initial fuel microstructure. Microstructure changes alter practically all engineering fuel properties such as atomic transport or thermomechanical properties so understanding these changes is essential to predicting the performance of fuel elements. Also, with increasing burn-up, the fuel drifts away from its initial composition as the fission process produces new chemical elements. Because nuclear fuels operate at high temperature and usually under high-temperature gradients, damage annealing, foreign atom or defect clustering and migration occur on multiple time and length scales, which make long-term predictions difficult. The end result is a fuel microstructure which may show extensive differences on the scale of a single fuel pellet. The main challenge we are faced with is, therefore, to identify the phenomena occurring on the atom scale that are liable to have macroscopic effects that will determine the microstructure changes and ultimately the life-span of a fuel element. One step towards meeting this challenge is to develop and apply experimental or modelling methods capable of connecting events that occur over very short length and timescales to changes in the fuel microstructure over engineering length and timescales. In the first part of this chapter, we provide an overview of some of the more important microstructure modifications observed in nuclear fuels. The emphasis is placed on oxide fuels because of the extensive amount of data available in relation to these materials under neutron or ion irradiation. When possible and relevant, the specifics of other types of fuels such as metallic or carbide fuels are alluded to. Throughout this chapter but more specifically in the latter part, we attempt to give examples of how modelling and experimentation at various scales can provide us with

  7. Separable mechanisms underlying global feature-based attention. (United States)

    Bondarenko, Rowena; Boehler, Carsten N; Stoppel, Christian M; Heinze, Hans-Jochen; Schoenfeld, Mircea A; Hopf, Jens-Max


    Feature-based attention is known to operate in a spatially global manner, in that the selection of attended features is not bound to the spatial focus of attention. Here we used electromagnetic recordings in human observers to characterize the spatiotemporal signature of such global selection of an orientation feature. Observers performed a simple orientation-discrimination task while ignoring task-irrelevant orientation probes outside the focus of attention. We observed that global feature-based selection, indexed by the brain response to unattended orientation probes, is composed of separable functional components. One such component reflects global selection based on the similarity of the probe with task-relevant orientation values ("template matching"), which is followed by a component reflecting selection based on the similarity of the probe with the orientation value under discrimination in the focus of attention ("discrimination matching"). Importantly, template matching occurs at ∼150 ms after stimulus onset, ∼80 ms before the onset of discrimination matching. Moreover, source activity underlying template matching and discrimination matching was found to originate from ventral extrastriate cortex, with the former being generated in more anterolateral and the latter in more posteromedial parts, suggesting template matching to occur in visual cortex higher up in the visual processing hierarchy than discrimination matching. We take these observations to indicate that the population-level signature of global feature-based selection reflects a sequence of hierarchically ordered operations in extrastriate visual cortex, in which the selection based on task relevance has temporal priority over the selection based on the sensory similarity between input representations.

  8. Neural mechanisms underlying melodic perception and memory for pitch. (United States)

    Zatorre, R J; Evans, A C; Meyer, E


    The neural correlates of music perception were studied by measuring cerebral blood flow (CBF) changes with positron emission tomography (PET). Twelve volunteers were scanned using the bolus water method under four separate conditions: (1) listening to a sequence of noise bursts, (2) listening to unfamiliar tonal melodies, (3) comparing the pitch of the first two notes of the same set of melodies, and (4) comparing the pitch of the first and last notes of the melodies. The latter two conditions were designed to investigate short-term pitch retention under low or high memory load, respectively. Subtraction of the obtained PET images, superimposed on matched MRI scans, provides anatomical localization of CBF changes associated with specific cognitive functions. Listening to melodies, relative to acoustically matched noise sequences, resulted in CBF increases in the right superior temporal and right occipital cortices. Pitch judgments of the first two notes of each melody, relative to passive listening to the same stimuli, resulted in right frontal-lobe activation. Analysis of the high memory load condition relative to passive listening revealed the participation of a number of cortical and subcortical regions, notably in the right frontal and right temporal lobes, as well as in parietal and insular cortex. Both pitch judgment conditions also revealed CBF decreases within the left primary auditory cortex. We conclude that specialized neural systems in the right superior temporal cortex participate in perceptual analysis of melodies; pitch comparisons are effected via a neural network that includes right prefrontal cortex, but active retention of pitch involves the interaction of right temporal and frontal cortices.

  9. Comparative analysis reveals the underlying mechanism of vertebrate seasonal reproduction. (United States)

    Ikegami, Keisuke; Yoshimura, Takashi


    Animals utilize photoperiodic changes as a calendar to regulate seasonal reproduction. Birds have highly sophisticated photoperiodic mechanisms and functional genomics analysis in quail uncovered the signal transduction pathway regulating avian seasonal reproduction. Birds detect light with deep brain photoreceptors. Long day (LD) stimulus induces secretion of thyroid-stimulating hormone (TSH) from the pars tuberalis (PT) of the pituitary gland. PT-derived TSH locally activates thyroid hormone (TH) in the hypothalamus, which induces gonadotropin-releasing hormone (GnRH) and hence gonadotropin secretion. However, during winter, low temperatures increase serum TH for adaptive thermogenesis, which accelerates germ cell apoptosis by activating the genes involved in metamorphosis. Therefore, TH has a dual role in the regulation of seasonal reproduction. Studies using TSH receptor knockout mice confirmed the involvement of PT-derived TSH in mammalian seasonal reproduction. In addition, studies in mice revealed that the tissue-specific glycosylation of TSH diversifies its function in the circulation to avoid crosstalk. In contrast to birds and mammals, one of the molecular machineries necessary for the seasonal reproduction of fish are localized in the saccus vasculosus from the photoreceptor to the neuroendocrine output. Thus, comparative analysis is a powerful tool to uncover the universality and diversity of fundamental properties in various organisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Mechanisms underlying the formation of induced pluripotent stem cells (United States)

    González, Federico; Huangfu, Danwei


    Human pluripotent stem cells (hPSCs) offer unique opportunities for studying human biology, modeling diseases and for therapeutic applications. The simplest approach so far to generate human PSCs lines is through reprogramming of somatic cells from an individual by defined factors, referred to simply as reprogramming. Reprogramming circumvents the ethical issues associated with human embryonic stem cells (hESCs) and nuclear transfer hESCs (nt-hESCs), and the resulting induced pluripotent stem cells (hiPSCs) retain the same basic genetic makeup as the somatic cell used for reprogramming. Since the first report of iPSCs by Takahashi and Yamanaka, the molecular mechanisms of reprogramming have been extensively investigated. A better mechanistic understanding of reprogramming is fundamental not only to iPSC biology and improving the quality of iPSCs for therapeutic use, but also to our understanding of the molecular basis of cell identity, pluripotency and plasticity. Here we summarize the genetic, epigenetic and cellular events during reprogramming, and the roles of various factors identified thus far in the reprogramming process. PMID:26383234

  11. The neural sociometer: brain mechanisms underlying state self-esteem. (United States)

    Eisenberger, Naomi I; Inagaki, Tristen K; Muscatell, Keely A; Byrne Haltom, Kate E; Leary, Mark R


    On the basis of the importance of social connection for survival, humans may have evolved a "sociometer"-a mechanism that translates perceptions of rejection or acceptance into state self-esteem. Here, we explored the neural underpinnings of the sociometer by examining whether neural regions responsive to rejection or acceptance were associated with state self-esteem. Participants underwent fMRI while viewing feedback words ("interesting," "boring") ostensibly chosen by another individual (confederate) to describe the participant's previously recorded interview. Participants rated their state self-esteem in response to each feedback word. Results demonstrated that greater activity in rejection-related neural regions (dorsal ACC, anterior insula) and mentalizing regions was associated with lower-state self-esteem. Additionally, participants whose self-esteem decreased from prescan to postscan versus those whose self-esteem did not showed greater medial prefrontal cortical activity, previously associated with self-referential processing, in response to negative feedback. Together, the results inform our understanding of the origin and nature of our feelings about ourselves.

  12. Raynaud's Phenomenon: A Brief Review of the Underlying Mechanisms. (United States)

    Fardoun, Manal M; Nassif, Joseph; Issa, Khodr; Baydoun, Elias; Eid, Ali H


    Raynaud's phenomenon (RP) is characterized by exaggerated cold-induced vasoconstriction. This augmented vasoconstriction occurs by virtue of a reflex response to cooling via the sympathetic nervous system as well as by local activation of α 2C adrenoceptors (α 2C -AR). In a cold-initiated, mitochondrion-mediated mechanism involving reactive oxygen species and the Rho/ROCK pathway, cytoskeletal rearrangement in vascular smooth muscle cells orchestrates the translocation of α 2C -AR to the cell membrane, where this receptor readily interacts with its ligand. Different parameters are involved in this spatial and functional rescue of α 2C -AR. Of notable relevance is the female hormone, 17β-estradiol, or estrogen. This is consistent with the high prevalence of RP in premenopausal women compared to age-matched males. In addition to dissecting the role of these various players, the contribution of pollution as well as genetic background to the onset and prevalence of RP are also discussed. Different therapeutic approaches employed as treatment modalities for this disease are also highlighted and analyzed. The lack of an appropriate animal model for RP mandates that more efforts be undertaken in order to better understand and eventually treat this disease. Although several lines of treatment are utilized, it is important to note that precaution is often effective in reducing severity or frequency of RP attacks.

  13. Neural mechanisms underlying social conformity in an ultimatum game

    Directory of Open Access Journals (Sweden)

    Zhenyu eWei


    Full Text Available When individuals’ actions are incongruent with those of the group they belong to, they may change their initial behavior in order to conform to the group norm. This phenomenon is known as social conformity. In the present study, we used event-related functional magnetic resonance imaging (fMRI to investigate brain activity in response to group opinion during an ultimatum game. Results showed that participants changed their choices when these choices conflicted with the normative opinion of the group they were members of, especially in conditions of unfair treatment. The fMRI data revealed that a conflict with group norms activated the brain regions involved in norm violations and behavioral adjustment. Furthermore, in the reject-unfair condition, we observed that a conflict with group norms activated the medial frontal gyrus. These findings contribute to recent research examining neural mechanisms involved in detecting violations of social norms, and provide information regarding the neural representation of conformity behavior in an economic game.

  14. Adhesive wear mechanism under combined electric diamond grinding

    Directory of Open Access Journals (Sweden)

    Popov Vyacheslav


    Full Text Available The article provides a scientific substantiation of loading of metal-bond diamond grinding wheels and describes the mechanism of contact interaction (interlocking of wheels with tool steel as well as its general properties having an influence on combined electric diamond grinding efficiency. The study concluded that a loaded layer can be formed in a few stages different by nature. It is known, that one of the causes of grinding degradation is a continuous loading of active grits (abrasive grinding tool by workpiece chips. It all affects the diamond grinding wheels efficiency and grinding ability with a result in increase of tool pressure, contact temperature and wheels specific removal rate. Science has partially identified some various methods to minimize grinding wheel loading, however, as to loading of metal-bond diamond grinding wheels the search is still in progress. Therefore, research people have to state, that in spite of the fact that the wheels made of cubic boron nitride are of little use as applied to ceramic, ultrahard, hard-alloyed hard-to-machine and nano-materials of the time, but manufactures have to apply cubic boron nitride wheels wherein diamond ones preferable.

  15. Raynaud's Phenomenon: a Brief Review of the Underlying Mechanisms

    Directory of Open Access Journals (Sweden)

    Manal Fardoun


    Full Text Available Raynaud's phenomenon (RP is characterized by exaggerated cold-induced vasoconstriction. This augmented vasoconstriction occurs by virtue of a reflex response to cooling via the sympathetic nervous system as well as by local activation of α2C adrenoceptors (α2C-AR. In a cold-initiated, mitochondrion-mediated mechanism involving reactive oxygen species and the Rho/ROCK pathway, cytoskeletal rearrangement in vascular smooth muscle cells (VSMCs orchestrates the translocation of α2C-AR to the cell membrane, where this receptor readily interacts with its ligand. Different parameters are involved in this spatial and functional rescue of α2C-AR. Of notable relevance is the female hormone, 17β-estradiol, or estrogen. This is consistent with the high prevalence of RP in pre-menopausal women compared to age-matched males. In addition to dissecting the role of these various players, the contribution of pollution as well as genetic background to the onset and prevalence of RP are also discussed. Different therapeutic approaches employed as treatment modalities for this disease are also highlighted and analyzed. The lack of an appropriate animal model for RP mandates that more efforts be undertaken in order to better understand and eventually treat this disease. Although several lines of treatment are utilized, it is important to note that precaution is often effective in reducing severity or frequency of RP attacks.

  16. Assessing mechanical vulnerability in water distribution networks under multiple failures (United States)

    Berardi, Luigi; Ugarelli, Rita; Røstum, Jon; Giustolisi, Orazio


    Understanding mechanical vulnerability of water distribution networks (WDN) is of direct relevance for water utilities since it entails two different purposes. On the one hand, it might support the identification of severe failure scenarios due to external causes (e.g., natural or intentional events) which result into the most critical consequences on WDN supply capacity. On the other hand, it aims at figure out the WDN portions which are more prone to be affected by asset disruptions. The complexity of such analysis stems from the number of possible scenarios with single and multiple simultaneous shutdowns of asset elements leading to modifications of network topology and insufficient water supply to customers. In this work, the search for the most disruptive combinations of multiple asset failure events is formulated and solved as a multiobjective optimization problem. The higher vulnerability failure scenarios are detected as those causing the lower supplied demand due to the lower number of simultaneous failures. The automatic detection of WDN topology, subsequent to the detachments of failed elements, is combined with pressure-driven analysis. The methodology is demonstrated on a real water distribution network. Results show that, besides the failures causing the detachment of reservoirs, tanks, or pumps, there are other different topological modifications which may cause severe WDN service disruptions. Such information is of direct relevance to support planning asset enhancement works and improve the preparedness to extreme events.

  17. Obstructive sleep apnea and dyslipidemia: evidence and underlying mechanism. (United States)

    Adedayo, Ajibola Monsur; Olafiranye, Oladipupo; Smith, David; Hill, Alethea; Zizi, Ferdinand; Brown, Clinton; Jean-Louis, Girardin


    Over the past half century, evidence has been accumulating on the emergence of obstructive sleep apnea (OSA), the most prevalent sleep-disordered breathing, as a major risk factor for cardiovascular disease. A significant body of research has been focused on elucidating the complex interplay between OSA and cardiovascular risk factors, including dyslipidemia, obesity, hypertension, and diabetes mellitus that portend increased morbidity and mortality in susceptible individuals. Although a clear causal relationship of OSA and dyslipidemia is yet to be demonstrated, there is increasing evidence that chronic intermittent hypoxia, a major component of OSA, is independently associated and possibly the root cause of the dyslipidemia via the generation of stearoyl-coenzyme A desaturase-1 and reactive oxygen species, peroxidation of lipids, and sympathetic system dysfunction. The aim of this review is to highlight the relationship between OSA and dyslipidemia in the development of atherosclerosis and present the pathophysiologic mechanisms linking its association to clinical disease. Issues relating to epidemiology, confounding factors, significant gaps in research and future directions are also discussed.

  18. New mechanism under International Flood Initiative toward robustness for flood management in the Asia Pacific region (United States)

    Murase, M.; Yoshitani, J.; Takeuchi, K.; Koike, T.


    Climate change is likely to result in increases in the frequency or intensity of extreme weather events. It is imperative that a good understanding is developed of how climate change affects the events that are reflected in hydrological extremes such as floods and how practitioners in water resources management deal with them. Since there is still major uncertainty as to how the impact of climate change affect actual water resources management, it is important to build robustness into management schemes and communities. Flood management under such variety of uncertainty favors the flexible and adaptive implementation both in top-down and bottom-up approaches. The former uses projections of global or spatially downscaled models to drive resource models and project resource impacts. The latter utilizes policy or planning tools to identify what changes in climate would be most threatening to their long-range operations. Especially for the bottom-up approaches, it is essential to identify the gap between what should be done and what has not been achieved for disaster risks. Indicators or index are appropriate tools to measure such gaps, but they are still in progress to cover the whole world. The International Flood Initiative (IFI), initiated in January 2005 by UNESCO and WMO in close cooperation with UNU and ISDR, IAHS and IAHR, has promoted an integrated approach to flood management to take advantage of floods and use of flood plains while reducing the social, environmental and economic risks. Its secretariat is located in ICHARM. The initiative objective is to support national platforms to practice evidence-based disaster risk reduction through mobilizing scientific and research networks at national, regional and international levels. The initiative is now preparing for a new mechanism to facilitate the integrated approach for flood management on the ground regionally in the Asia Pacific (IFI-AP) through monitoring, assessment and capacity building.

  19. Neural mechanism underlying autobiographical memory modulated by remoteness and emotion (United States)

    Ge, Ruiyang; Fu, Yan; Wang, DaHua; Yao, Li; Long, Zhiying


    Autobiographical memory is the ability to recollect past events from one's own life. Both emotional tone and memory remoteness can influence autobiographical memory retrieval along the time axis of one's life. Although numerous studies have been performed to investigate brain regions involved in retrieving processes of autobiographical memory, the effect of emotional tone and memory age on autobiographical memory retrieval remains to be clarified. Moreover, whether the involvement of hippocampus in consolidation of autobiographical events is time dependent or independent has been controversial. In this study, we investigated the effect of memory remoteness (factor1: recent and remote) and emotional valence (factor2: positive and negative) on neural correlates underlying autobiographical memory by using functional magnetic resonance imaging (fMRI) technique. Although all four conditions activated some common regions known as "core" regions in autobiographical memory retrieval, there are some other regions showing significantly different activation for recent versus remote and positive versus negative memories. In particular, we found that bilateral hippocampal regions were activated in the four conditions regardless of memory remoteness and emotional valence. Thus, our study confirmed some findings of previous studies and provided further evidence to support the multi-trace theory which believes that the role of hippocampus involved in autobiographical memory retrieval is time-independent and permanent in memory consolidation.

  20. Molecular Mechanisms Underlying Origin and Diversification of the Angiosperm Flower (United States)

    Theissen, Guenter; Melzer, Rainer


    Background Understanding the mode and mechanisms of the evolution of the angiosperm flower is a long-standing and central problem of evolutionary biology and botany. It has essentially remained unsolved, however. In contrast, considerable progress has recently been made in our understanding of the genetic basis of flower development in some extant model species. The knowledge that accumulated this way has been pulled together in two major hypotheses, termed the ‘ABC model’ and the ‘floral quartet model’. These models explain how the identity of the different types of floral organs is specified during flower development by homeotic selector genes encoding transcription factors. Scope We intend to explain how the ‘ABC model’ and the ‘floral quartet model’ are now guiding investigations that help to understand the origin and diversification of the angiosperm flower. Conclusions Investigation of orthologues of class B and class C floral homeotic genes in gymnosperms suggest that bisexuality was one of the first innovations during the origin of the flower. The transition from dimer to tetramer formation of floral homeotic proteins after establishment of class E proteins may have increased cooperativity of DNA binding of the transcription factors controlling reproductive growth. That way, we hypothesize, better ‘developmental switches’ originated that facilitated the early evolution of the flower. Expression studies of ABC genes in basally diverging angiosperm lineages, monocots and basal eudicots suggest that the ‘classical’ ABC system known from core eudicots originated from a more fuzzy system with fading borders of gene expression and gradual transitions in organ identity, by sharpening of ABC gene expression domains and organ borders. Shifting boundaries of ABC gene expression may have contributed to the diversification of the angiosperm flower many times independently, as may have changes in interactions between ABC genes and their target

  1. Enhancement of sleep slow waves: underlying mechanisms and practical consequences.

    Directory of Open Access Journals (Sweden)

    Michele eBellesi


    Full Text Available Even modest sleep restriction, especially the loss of sleep slow wave activity, is invariably associated with slower EEG activity during wake, the occurrence of local sleep in an otherwise awake brain, and impaired performance due to cognitive and memory deficits. Recent studies not only confirm the beneficial role of sleep in memory consolidation, but also point to a specific role for sleep slow waves. Thus, the implementation of methods to enhance sleep slow waves without unwanted arousals or lightening of sleep could have significant practical implications. Here we first review the evidence that it is possible to enhance sleep slow waves in humans using transcranial direct-current stimulation and transcranial magnetic stimulation. Since these methods are currently impractical and their safety is questionable, especially for chronic long-term exposure, we then discuss novel data suggesting that it is possible to enhance slow waves using sensory stimuli. We consider the physiology of the K-complex, a peripheral evoked slow wave, and show that, among different sensory modalities, acoustic stimulation is the most effective in increasing the magnitude of slow waves, likely through the activation of non-lemniscal ascending pathways to the thalamo-cortical system. In addition, we discuss how intensity and frequency of the acoustic stimuli, as well as exact timing and pattern of stimulation, affect sleep enhancement. Finally, we discuss automated algorithms that read the EEG and, in real-time, adjust the stimulation parameters in a closed-loop manner to obtain an increase in sleep slow waves and avoid undesirable arousals. In conclusion, while discussing the mechanisms that underlie the generation of sleep slow waves, we review the converging evidence showing that acoustic stimulation is safe and represents an ideal tool for slow wave sleep enhancement.

  2. Thin circular cylinder under axisymmetrical thermal and mechanical loading

    International Nuclear Information System (INIS)

    Arnaudeau, F.; Zarka, J.; Gerij, J.


    To assess structural integrity of components subjected to cyclic thermal loadings one must look at thermal ratchetting as a possible failure mode. Considering a thin circular cylinder subjected to constant internal pressure and cyclically varying thermal gradient through the thickness Bree, J. Strain Analysis 2 (1967) No.3, obtained a diagram that serves as a foundation for many design rules (e.g.: ASME code). The upper part of the french LMFBR main vessel is subjected to an axisymmetrical axial thermal loading and an axial load (own weight). Operation of the reactor leads to cyclic variations of the axial thermal loading. The question that arises is whether or not the Bree diagram is realistic for such loading conditions. A special purpose computer code (Ratch) was developed to analyse a thin circular cylinder subjected to axisymmetrical mechanical and thermal loadings. The Mendelson's approach of this problem is followed. Classical Kirchoff-Love hypothesis of thin shells is used and a state of plane stress is assumed. Space integrations are performed by Gaussian quadrature in the axial direction and by Simpson's one third rule throughout the thickness. Thermoelastic-plastic constitutive equations are solved with an implicit scheme (Nguyen). Thermovisco-plastic constitutive equations are solved with an explicit time integration scheme (Treanor's algorithm especially fitted). A Bree type diagram is obtained for an axial step of temperature which varies cyclically and a sustained constant axial load. The material behavior is assumed perfectly plastic and creep effect is not considered. Results show that the domain where no ratchetting occurs is reduced when compared with the domain predicted by the Bree diagram

  3. Compression under a mechanical counter pressure space suit glove (United States)

    Waldie, James M A.; Tanaka, Kunihiko; Tourbier, Dietmar; Webb, Paul; Jarvis, Christine W.; Hargens, Alan R.


    Background: Current gas-pressurized space suits are bulky stiff shells severely limiting astronaut function and capability. A mechanical counter pressure (MCP) space suit in the form of a tight elastic garment could dramatically improve extravehicular activity (EVA) dexterity, but also be advantageous in safety, cost, mass and volume. The purpose of this study was to verify that a prototype MCP glove exerts the design compression of 200 mmHg, a pressure similar to the current NASA EVA suit. Methods: Seven male subjects donned a pressure measurement array and MCP glove on the right hand, which was placed into a partial vacuum chamber. Average compression was recorded on the palm, the bottom of the middle finger, the top of the middle finger and the dorsum of the hand at pressures of 760 (ambient), 660 and 580 mmHg. The vacuum chamber was used to simulate the pressure difference between the low breathing pressure of the current NASA space suits (approximately 200 mmHg) and an unprotected hand in space. Results: At ambient conditions, the MCP glove compressed the dorsum of the hand at 203.5 +/- 22.7 mmHg, the bottom of the middle finger at 179.4 +/- 16.0 mmHg, and the top of the middle finger at 183.8 +/- 22.6 mmHg. The palm compression was significantly lower (59.6 +/- 18.8 mmHg, pglove compression with the chamber pressure reductions. Conclusions: The MCP glove compressed the dorsum of the hand and middle finger at the design pressure.

  4. Neural mechanisms underlying cognitive inflexibility in Parkinson's disease. (United States)

    Lange, Florian; Seer, Caroline; Loens, Sebastian; Wegner, Florian; Schrader, Christoph; Dressler, Dirk; Dengler, Reinhard; Kopp, Bruno


    Cognitive inflexibility is a hallmark of executive dysfunction in Parkinson's disease (PD). This deficit consistently manifests itself in a PD-related increase in the number of perseverative errors committed on the Wisconsin Card Sorting Test (WCST). However, the neural processes underlying perseverative WCST performance in PD are still largely unknown. The present study is the first to investigate the event-related potential (ERP) correlates of cognitive inflexibility on the WCST in PD patients. Thirty-two PD patients and 35 matched control participants completed a computerized version of the WCST while the electroencephalogram (EEG) was recorded. Behavioral results revealed the expected increase in perseverative errors in patients with PD. ERP analysis focused on two established indicators of executive processes: the fronto-central P3a as an index of attentional orienting and the sustained parietal positivity (SPP) as an index of set-shifting processes. In comparison to controls, P3a amplitudes were significantly attenuated in PD patients. Regression analysis further revealed that P3a and SPP amplitudes interactively contributed to the prediction of perseverative errors in PD patients: The number of perseverative errors was only increased when both ERP amplitudes were attenuated. Notably, the two ERP markers of executive processes accounted for more than 40% of the variance in perseverative errors in PD patients. We conclude that cognitive inflexibility in PD occurs when the neural bases of multiple executive processes are affected by the pathophysiology of PD. The combined measurement of P3a and SPP might yield an electrophysiological marker of cognitive inflexibility in PD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Design principles and developmental mechanisms underlying retinal mosaics. (United States)

    Reese, Benjamin E; Keeley, Patrick W


    Most structures within the central nervous system (CNS) are composed of different types of neuron that vary in both number and morphology, but relatively little is known about the interplay between these two features, i.e. about the population dynamics of a given cell type. How such arrays of neurons are distributed within a structure, and how they differentiate their dendrites relative to each other, are issues that have recently drawn attention in the invertebrate nervous system, where the genetic and molecular underpinnings of these organizing principles are being revealed in exquisite detail. The retina is one of the few locations where these principles have been extensively studied in the vertebrate CNS, indeed, where the design principles of 'mosaic regularity' and 'uniformity of coverage' were first explicitly defined, quantified, and related to each other. Recent studies have revealed a number of genes that influence the formation of these histotypical features in the retina, including homologues of those invertebrate genes, although close inspection reveals that they do not always mediate comparable developmental processes nor elucidate fundamental design principles. The present review considers just how pervasive these features of 'mosaic regularity' and 'uniform dendritic coverage' are within the mammalian retina, discussing the means by which such features can be assessed in the mature and developing nervous system and examining the limitations associated with those assessments. We then address the extent to which these two design principles co-exist within different populations of neurons, and how they are achieved during development. Finally, we consider the neural phenotypes obtained in mutant nervous systems, to address whether a prospective gene of interest underlies those very design principles. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  6. Mechanism of attenuation of leptin signaling under chronic ligand stimulation

    Directory of Open Access Journals (Sweden)

    Bamberg-Lemper Simone


    Full Text Available Abstract Background Leptin is an adipocyte-derived hormone that acts via its hypothalamic receptor (LEPRb to regulate energy balance. A downstream effect essential for the weight-regulatory action of leptin is the phosphorylation and activation of the latent transcription factor STAT3 by LEPRb-associated Janus kinases (JAKs. Obesity is typically associated with chronically elevated leptin levels and a decreased ability of LEPRb to activate intracellular signal transduction pathways (leptin resistance. Here we have studied the roles of the intracellular tyrosine residues in the negative feedback regulation of LEPRb-signaling under chronic leptin stimulation. Results Mutational analysis showed that the presence of either Tyr985 and Tyr1077 in the intracellular domain of LEPRb was sufficient for the attenuation of STAT3 phosphorylation, whereas mutation of both tyrosines rendered LEPRb resistant to feedback regulation. Overexpression and RNA interference-mediated downregulation of suppressor of cytokine signaling 3 (SOCS3 revealed that both Tyr985 and Tyr1077 were capable of supporting the negative modulatory effect of SOCS3 in reporter gene assays. In contrast, the inhibitory effect of SOCS1 was enhanced by the presence of Tyr985 but not Tyr1077. Finally, the reduction of the STAT-phosphorylating activity of the LEPRb complex after 2 h of leptin stimulation was not accompanied by the dephosphorylation or degradation of LEPRb or the receptor-associated JAK molecule, but depended on Tyr985 and/or Tyr1077. Conclusions Both Tyr985 and Tyr1077 contribute to the negative regulation of LEPRb signaling. The inhibitory effects of SOCS1 and SOCS3 differ in the dependence on the tyrosine residues in the intracellular domain of LEPRb.

  7. Photodegradation kinetics, products and mechanism of timolol under simulated sunlight

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yong, E-mail: [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Liang, Qi; Zhou, Danna [College of Material Science and Chemical Engineering, China University of Geosciences, Wuhan 430074 (China); Wang, Zongping, E-mail: [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Tao, Tao [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Zuo, Yuegang [Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747 (United States)


    Highlights: ► The indirect degradation of timolol is first investigated in fulvic acid solution. ► {sup 3}FA{sup *} and {sup 1}O{sub 2} accounted for the degradation of timolol in the aerated FA solutions. ► The presence of halides inhibited the degradation in the order of Cl{sup −} < Br{sup −} < I{sup −}. ► The role of I{sup −} in the degradation was first found to be concentration-dependent. ► The photoproducts of timolol were identified by LC-DAD/ESI-MS/MS analysis. -- Abstract: The photodegradation of β-blocker timolol in fulvic acid (FA) solution was investigated under simulated sunlight. The triplet excited state of FA ({sup 3}FA{sup *}) and singlet oxygen ({sup 1}O{sub 2}) were the main reactive species responsible for the degradation of timolol in the aerated FA solutions. Both dissolved oxygen and iodide ions (I{sup −}) are the efficient quenchers of {sup 3}FA{sup *}. The photodegradation was drastically accelerated after removing the dissolved oxygen. The presence of I{sup −} inhibited the photosensitized degradation of timolol in the deoxygenated FA solutions, whereas the role of I{sup −} in the reaction was concentration-dependent in the aerated solutions. The other halide ions such as chloride (Cl{sup −}) and bromide (Br{sup −}) exhibited less effect on the photodegradation of timolol in both aerated and deoxygenated solutions. By LC-DAD/ESI-MS/MS analysis, the photoproducts of timolol in both aerated and deoxygenated FA solutions were identified. Electron transfer interaction occurred between {sup 3}FA{sup *} and amine moiety of timolol, leading to the cleavage of C–O bond in the side chain and oxidation of the hexatomic ring. These findings suggest the photosensitized degradation was a significant pathway for the elimination of timolol in natural waters.

  8. Degradation of selected industrial dyes using Mg-doped TiO2 polyscales under natural sun light as an alternative driving energy (United States)

    Shivaraju, H. P.; Midhun, G.; Anil Kumar, K. M.; Pallavi, S.; Pallavi, N.; Behzad, Shahmoradi


    Designing photocatalytic materials with modified functionalities for the utilization of renewable energy sources as an alternative driving energy has attracted much attention in the area of sustainable wastewater treatment applications. Catalyst-assisted advanced oxidation process is an emerging treatment technology for organic pollutants and toxicants in industrial wastewater. Preparation of visible-light-responsive photocatalyst such as Mg-doped TiO2 polyscales was carried out under mild sol-gel technique. Mg-doped TiO2 polyscales were characterized by powder XRD, SEM, FTIR, and optical and photocatalytic activity techniques. The Mg-doped TiO2 showed a mixed phase of anatase and rutile with an excellent crystallinity, structural elucidations, polyscales morphology, consequent shifting of bandgap energy and adequate photocatalytic activities under visible range of light. Mg-doped TiO2 polyscales were investigated for their efficiencies in the degradation of most commonly used industrial dyes in the real-time textile wastewater. Mg-doped TiO2 polyscales showed excellent photocatalytic degradation efficiency in both model industrial dyes (65-95%) and textile wastewater (92%) under natural sunlight as an alternative and renewable driving energy.

  9. Improved Control of an Active-Front-End Adjustable Speed Drive with a Small dc-link Capacitor under Real Grid Conditions

    DEFF Research Database (Denmark)

    Klumpner, Christian; Liserre, Marco; Blaabjerg, Frede


    Active front-end topologies will be widely used in the future and among them especially the two-level PWM rectifier, due to the need to improve the quality of the input currents and the robustness against grid disturbances of Adjustable Speed Drives (ASDs). Another expectation is that electrolytic...... capacitors will be replaced by film capacitors in order to increase the ASD lifetime, but as this has lower energy density, the dc-link capacitance is expected to decrease. In these circumstances, operation under unbalanced and distorted supply voltage as well as high dynamic operation of the ASD makes...

  10. Comparison of emissions from on-road sources using a mobile laboratory under various driving and operational sampling modes

    Directory of Open Access Journals (Sweden)

    M. Zavala


    Full Text Available Mobile sources produce a significant fraction of the total anthropogenic emissions burden in large cities and have harmful effects on air quality at multiple spatial scales. Mobile emissions are intrinsically difficult to estimate due to the large number of parameters affecting the emissions variability within and across vehicles types. The MCMA-2003 Campaign in Mexico City has showed the utility of using a mobile laboratory to sample and characterize specific classes of motor vehicles to better quantify their emissions characteristics as a function of their driving cycles. The technique clearly identifies "high emitter" vehicles via individual exhaust plumes, and also provides fleet average emission rates. We have applied this technique to Mexicali during the Border Ozone Reduction and Air Quality Improvement Program (BORAQIP for the Mexicali-Imperial Valley in 2005. We analyze the variability of measured emission ratios for emitted NOx, CO, specific VOCs, NH3, and some primary fine particle components and properties by deploying a mobile laboratory in roadside stationary sampling, chase and fleet average operational sampling modes. The measurements reflect various driving modes characteristic of the urban fleets. The observed variability for all measured gases and particle emission ratios is greater for the chase and roadside stationary sampling than for fleet average measurements. The fleet average sampling mode captured the effects of traffic conditions on the measured on-road emission ratios, allowing the use of fuel-based emission ratios to assess the validity of traditional "bottom-up" emissions inventories. Using the measured on-road emission ratios, we estimate CO and NOx mobile emissions of 175±62 and 10.4±1.3 metric tons/day, respectively, for the gasoline vehicle fleet in Mexicali. Comparisons with similar on-road emissions data from Mexico City indicated that fleet average NO emission ratios were

  11. Fracture mechanics in new designed power module under thermo-mechanical loads

    Directory of Open Access Journals (Sweden)

    Durand Camille


    Full Text Available Thermo-mechanically induced failure is a major reliability issue in the microelectronic industry. On this account, a new type of Assembly Interconnected Technology used to connect MOSFETs in power modules has been developed. The reliability is increased by using a copper clip soldered on the top side of the chip, avoiding the use of aluminium wire bonds, often responsible for the failure of the device. Thus the new designed MOSFET package does not follow the same failure mechanisms as standard modules. Thermal and power cycling tests were performed on these new packages and resulting failures were analyzed. Thermo-mechanical simulations including cracks in the aluminium metallization and intermetallics (IMC were performed using Finite Element Analysis in order to better understand crack propagation and module behaviour.

  12. CONTROL ROD DRIVE (United States)

    Chapellier, R.A.


    BS>A drive mechanism was invented for the control rod of a nuclear reactor. Power is provided by an electric motor and an outside source of fluid pressure is utilized in conjunction with the fluid pressure within the reactor to balance the loadings on the motor. The force exerted on the drive mechanism in the direction of scramming the rod is derived from the reactor fluid pressure so that failure of the outside pressure source will cause prompt scramming of the rod.

  13. Impact of Different Ventilation Strategies on Driving Pressure, Mechanical Power, and Biological Markers During Open Abdominal Surgery in Rats

    NARCIS (Netherlands)

    Maia, Lígia de A.; Samary, Cynthia S.; Oliveira, Milena V.; Santos, Cintia L.; Huhle, Robert; Capelozzi, Vera L.; Morales, Marcelo M.; Schultz, Marcus J.; Abreu, Marcelo G.; Pelosi, Paolo; Silva, Pedro L.; Rocco, Patricia Rieken Macedo


    Intraoperative mechanical ventilation may yield lung injury. To date, there is no consensus regarding the best ventilator strategy for abdominal surgery. We aimed to investigate the impact of the mechanical ventilation strategies used in 2 recent trials (Intraoperative Protective Ventilation

  14. Development of ball bearing in high temperature water for in-vessel type control rod drive mechanism of advanced marine reactor

    International Nuclear Information System (INIS)

    Nunokawa, Hiroshi; Yoritsune, Tsutomu; Imayoshi, Shou; Ochiai, Masa-aki; Ishida, Toshihisa


    An advanced marine reactor MRX designed by Japan Atomic Energy Research Institute (JAERI) adopts an in-vessel type control rod drive mechanism, which is installed inside the reactor vessel. Since the in-vessel type control rod drive mechanism should work at a severe condition of a high temperature and high pressure water - 310degC and 12 MPa -, the JAERI has developed the components, a ball bearing of which especially is one of key technologies for realization of this type mechanism. The present report describes the development of the ball bearing containing a survey of materials, material screening tests on oxidation in an autoclave and rolling wear by a small facility, a trial fabrication of the full size ball bearing, and endurance test of it in the high temperature water. As a result, it was found from the development that the materials of cobalt alloy for both of the inner and outer races, cermet for the ball, and graphite for the retainer can satisfy the design condition of the ball bearing. (author)

  15. Interactivity effects in social media marketing on brand engagement: an investigation of underlying mechanisms

    NARCIS (Netherlands)

    Antheunis, M.L.; van Noort, G.; Eisend, M.; Langner, T.


    Although, SNS advertising spending increases, research on SNS campaigning is still underexposed. First, this study aims to investigate the effect of SNS campaign interactivity on the receivers brand engagement, taking four underlying mechanisms into account (brand identification, campaign

  16. Temporal evolution and alternation of mechanisms of electric-field-induced patterns at ultralow-frequency driving. (United States)

    Éber, Nándor; Palomares, Laura O; Salamon, Péter; Krekhov, Alexei; Buka, Ágnes


    The temporal evolution of patterns within the driving period of the ac voltage was studied in the 10-mHz-250-Hz frequency range. It was shown that the stationary electroconvection pattern of the conductive regime transforms into a flashing one at ultralow frequencies, existing only in narrow time windows within the period. Furthermore a transition between electroconvection and flexoelectric domains was detected which is repeating in each half period. The two patterns are well separated in time and in Fourier space. Simultaneous current measurements uncovered that the electric properties of the polyimide orienting layers influence the redistribution of the applied voltage. The experimental findings are in good qualitative agreement with the theoretical predictions based on an extended standard model including flexoelectricity.

  17. Nitrate-nitrogen contamination in groundwater: Spatiotemporal variation and driving factors under cropland in Shandong Province, China (United States)

    Liu, J.; Jiang, L. H.; Zhang, C. J.; Li, P.; Zhao, T. K.


    High groundwater nitrate-N is a serious problem especially in highly active agricultural areas. In study, the concentration and spatialtemporal distribution of groundwater nitrate-N under cropland in Shandong province were assessed by statistical and geostatistical techniques. Nitrate-N concentration reached a maximum of 184.60 mg L-1 and 29.5% of samples had levels in excess of safety threshold concentration (20 mg L-1). The median nitrate-N contents after rainy season were significantly higher than those before rainy season, and decreased with increasing groundwater depth. Nitrate-N under vegetable and orchard area are significantly higher than ones under grain. The kriging map shows that groundwater nitrate-N has a strong spatial variability. Many districts, such as Weifang, Linyi in Shandong province are heavily contaminated with nitrate-N. However, there are no significant trends of NO3 --N for most cities. Stepwise regression analysis showed influencing factors are different for the groundwater in different depth. But overall, vegetable yield per unit area, percentages of orchard area, per capita agricultural production, unit-area nitrogen fertilizer, livestock per unit area, percentages of irrigation areas, population per unit area and annual mean temperature are significant variables for groundwater nitrate-N variation.

  18. micro-mechanical experimental investigation and modelling of strain and damage of argillaceous rocks under combined hydric and mechanical loads

    International Nuclear Information System (INIS)

    Wang, L.


    The hydro-mechanical behavior of argillaceous rocks, which are possible host rocks for underground radioactive nuclear waste storage, is investigated by means of micro-mechanical experimental investigations and modellings. Strain fields at the micrometric scale of the composite structure of this rock, are measured by the combination of environmental scanning electron microscopy, in situ testing and digital image correlation technique. The evolution of argillaceous rocks under pure hydric loading is first investigated. The strain field is strongly heterogeneous and manifests anisotropy. The observed nonlinear deformation at high relative humidity (RH) is related not only to damage, but also to the nonlinear swelling of the clay mineral itself, controlled by different local mechanisms depending on RH. Irreversible deformations are observed during hydric cycles, as well as a network of microcracks located in the bulk of the clay matrix and/or at the inclusion-matrix interface. Second, the local deformation field of the material under combined hydric and mechanical loadings is quantified. Three types of deformation bands are evidenced under mechanical loading, either normal to stress direction (compaction), parallel (microcracking) or inclined (shear). Moreover, they are strongly controlled by the water content of the material: shear bands are in particular prone to appear at high RH states. In view of understanding the mechanical interactions a local scale, the material is modeled as a composite made of non-swelling elastic inclusions embedded in an elastic swelling clay matrix. The internal stress field induced by swelling strain incompatibilities between inclusions and matrix, as well as the overall deformation, is numerically computed at equilibrium but also during the transient stage associated with a moisture gradient. An analytical micro-mechanical model based on Eshelby's solution is proposed. In addition, 2D finite element computations are performed. Results

  19. Microbial Mechanisms Underlying Acidity-induced Reduction in Soil Respiration Under Nitrogen Fertilization (United States)

    Niu, S.; Li, Y.


    Terrestrial ecosystems are receiving increasing amounts of reactive nitrogen (N) due to anthropogenic activities, which largely changes soil respiration and its feedback to climate change. N enrichment can not only increase N availability but also induce soil acidification, both may affect soil microbial activity and root growth with a consequent impact on soil respiration. However, it remains unclear whether elevated N availability or soil acidity has greater impact on soil respiration (Rs). We conducted a manipulative experiment to simulate N enrichment (10 g m-2 yr-1 NH4NO3) and soil acidity (0.552 mol H+ m-2 yr-1 sulfuric acid) and studied their effects on Rs and its components in a temperate forest. Our results showed that soil pH was reduced by 0.2 under N addition or acid addition treatment. Acid addition significantly decreased autotrophic respiration (Ra) and heterotrophic respiration (Rh) by 21.5% and 22.7% in 2014, 34.8% and 21.9% in 2015, respectively, resulting in a reduction of Rs by 22.2% in 2014 and 26.1% in 2015. Nitrogen enrichment reduced Ra, Rh, Rs by 21.9%, 16.2%, 18.6% in 2014 and 22.1%, 5.9%, 11.7% in 2015, respectively. The reductions of Rs and its components were attributable to decrease of fine root biomass, microbial biomass, and cellulose degrading enzymes. N addition did not change microbial community but acid addition increased both fungal and arbuscular mycorrhiza fungi PLFAs, and N plus acid addition significantly enhanced fungal to bacterial ratio. All the hydrolase enzymes were reduced more by soil acidity (43-50%) than nitrogen addition (30-39%). Structural equation model showed that soil acidity played more important role than N availability in reducing soil respiration mainly by changing microbial extracellular enzymes. We therefore suggest that N deposition induced indirect effect of soil acidification on microbial properties is critical and should be taken into account to better understand and predict ecosystem C cycling in

  20. Comparing Expert and Novice Driving Behavior in a Driving Simulator

    Directory of Open Access Journals (Sweden)

    Hiran B. Ekanayake


    Full Text Available This paper presents a study focused on comparing driving behavior of expert and novice drivers in a mid-range driving simulator with the intention of evaluating the validity of driving simulators for driver training. For the investigation, measurements of performance, psychophysiological measurements, and self-reported user experience under different conditions of driving tracks and driving sessions were analyzed. We calculated correlations between quantitative and qualitative measures to enhance the reliability of the findings. The experiment was conducted involving 14 experienced drivers and 17 novice drivers. The results indicate that driving behaviors of expert and novice drivers differ from each other in several ways but it heavily depends on the characteristics of the task. Moreover, our belief is that the analytical framework proposed in this paper can be used as a tool for selecting appropriate driving tasks as well as for evaluating driving performance in driving simulators.

  1. Cognitive mechanisms underlying disorganization of thought in a genetic syndrome (47,XXY)

    NARCIS (Netherlands)

    Van Rijn, Sophie; Aleman, Andre; De Sonneville, Leo; Swaab, Hanna

    Because of the risk for development of psychopathology such as psychotic symptoms, it has been suggested that studying men with the XXY karyotype may help in the search for underlying cognitive, neural and genetic mechanisms. The aim of this study was to identify cognitive mechanisms that may


    Directory of Open Access Journals (Sweden)

    Iosif TEMPEA


    Full Text Available The paper presents a synthesis of the Double SCARA Robot modelling, leading to an optimal solution, from workspace point of view, as well as precision and stability of the endeffector in performing the planned trajectory. For the design of the final mechanism CATIA software has been used, as well as NASTRAN/PATRAN software, for the mechanism analysis under mechanical and thermal loads.

  3. The effects of different size gold nanoparticles on mechanical properties of vascular smooth muscle cells under mechanical stretching (United States)

    Kieu, Tri Minh

    Nanotechnology is an emerging and promising frontier for medicine and biomedical research due to its potential for applications such as drug delivery, imaging enhancement, and cancer treatment. While these materials may possess significant possibilities, the effects of these particles in the body and how the particles affect the cells is not fully understood. In this study, vascular smooth muscle cells (VSMCs) will be exposed to 5 and 20 nm diameter citrate AuNPs under mechanical conditions. The cytotoxicity properties of these particles will be investigated using LDH and MTT assays. Atomic force microscopy will be used to study how the size of the nanoparticles affect the mechanical properties of the VSMCs. Immunofluorescence staining for alpha actin will also be performed to enhance understanding of the phenotypic shift. The LDH and MTT cytotoxicity assay results demonstrated that neither 5 nor 20 nm diameter nanoparticles are cytotoxic to the cells. However, the mechanical properties and cell morphology of the VSMCs was altered. Under static conditions, both AuNP treatments decreased the mechanical properties of the cells. The size of the nanoparticles had a softening effect on elastic modulus of the cell and sign of a synthetic phenotype was observed. The VSMCs subjected to mechanical stretching exhibited higher elastic modulus compared to the static experimental groups. Again, both AuNPs treatments decreased the mechanical properties of the cells and signs of more synthetic phenotype was seen. However, the size of the nanoparticles did not have any influence on cell's elastic modulus unlike the static treated cells. The mechanical testing condition provided a better look at how these particles would affect the cells in vivo. While the nanoparticles are not cytotoxic to the VSMCs, they are altering the mechanical properties and phenotype of the cell.

  4. EPO-dependent induction of erythroferrone drives hepcidin suppression and systematic iron absorption under phenylhydrazine-induced hemolytic anemia. (United States)

    Jiang, Xingkang; Gao, Ming; Chen, Yue; Liu, Jing; Qi, Shiyong; Ma, Juan; Zhang, Zhihong; Xu, Yong


    Hemolytic anemia is a common form of anemia due to hemolysis, resulting in disordered iron homeostasis. In this study, a dose of 40mg/kg phenylhydrazine (PHZ) was injected into mice to successfully establish a pronounced anemia animal model, which resulted in stress erythropoiesis and iron absorption. We found that serum erythropoietin (EPO) concentration was dramatically elevated by nearly 5000-fold for the first 2days, and then drop to the basal level on day 6 after PHZ injection. Mirrored with serum EPO concentration, the mRNA expression of erythroferrone (ERFE) was rapidly increased in the bone marrow and spleen 3days after injection of PHZ, and then gradually decreased but was still higher than baseline on day 6. In addition, we also found that the hepcidin mRNA levels were gradually reduced almost up to 8-fold on day 5, and then was ameliorated compared to the untreated control. Mechanistic investigation manifested that the increase of serum EPO essentially determined the induction of ERFE expression particular at the first 3days after PHZ treatment. Lentiviral mediated ERFE knockdown significantly restrained hepcidin suppression under PHZ treatment. Thus, our data unearthed EPO-dependent ERFE expression acts as an erythropoiesis-driven regulator of iron metabolism under PHZ-induced hemolytic anemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Simulating phenological shifts in French temperate forests under two climatic change scenarios and four driving global circulation models (United States)

    Lebourgeois, François; Pierrat, Jean-Claude; Perez, Vincent; Piedallu, Christian; Cecchini, Sébastien; Ulrich, Erwin


    After modeling the large-scale climate response patterns of leaf unfolding, leaf coloring and growing season length of evergreen and deciduous French temperate trees, we predicted the effects of eight future climate scenarios on phenological events. We used the ground observations from 103 temperate forests (10 species and 3,708 trees) from the French Renecofor Network and for the period 1997-2006. We applied RandomForest algorithms to predict phenological events from climatic and ecological variables. With the resulting models, we drew maps of phenological events throughout France under present climate and under two climatic change scenarios (A2, B2) and four global circulation models (HadCM3, CGCM2, CSIRO2 and PCM). We compared current observations and predicted values for the periods 2041-2070 and 2071-2100. On average, spring development of oaks precedes that of beech, which precedes that of conifers. Annual cycles in budburst and leaf coloring are highly correlated with January, March-April and October-November weather conditions through temperature, global solar radiation or potential evapotranspiration depending on species. At the end of the twenty-first century, each model predicts earlier budburst (mean: 7 days) and later leaf coloring (mean: 13 days) leading to an average increase in the growing season of about 20 days (for oaks and beech stands). The A2-HadCM3 hypothesis leads to an increase of up to 30 days in many areas. As a consequence of higher predicted warming during autumn than during winter or spring, shifts in leaf coloring dates appear greater than trends in leaf unfolding. At a regional scale, highly differing climatic response patterns were observed.

  6. Comparison of mechanical and thermodynamic properties of fcc and bcc titanium under high pressure (United States)

    Zhang, Yongmei; Zhao, Yuhong; Hou, Hua; Wen, Zhiqin; Duan, Meiling


    The mechanical and thermodynamic properties of fcc and bcc Ti have been discussed based on the first-principles calculation combined with the quasi-harmonic Debye model. We find that the bulk modulus B, shear modulus G, Young’s modulus E of fcc Ti are larger, while Poisson’s ratio σ is smaller than that of bcc Ti under the same pressure, which indicates the better mechanical performance of fcc Ti compared with bcc Ti. The values of B/G and σ indicate that mechanically stable fcc structure is much less ductile than the bcc structure, while mechanically metastable fcc structure has better ductility than stable bcc structure under high pressure. The normalized volume, isothermal bulk modulus, heat capacity, volume thermal expansion coefficient and Debye temperature under pressure and temperature for fcc and bcc Ti are predicted.

  7. Linear step drive

    International Nuclear Information System (INIS)

    Haniger, L.; Elger, R.; Kocandrle, L.; Zdebor, J.


    A linear step drive is described developed in Czechoslovak-Soviet cooperation and intended for driving WWER-1000 control rods. The functional principle is explained of the motor and the mechanical and electrical parts of the drive, power control, and the indicator of position are described. The motor has latches situated in the reactor at a distance of 3 m from magnetic armatures, it has a low structural height above the reactor cover, which suggests its suitability for seismic localities. Its magnetic circuits use counterpoles; the mechanical shocks at the completion of each step are damped using special design features. The position indicator is of a special design and evaluates motor position within ±1% of total travel. A drive diagram and the flow chart of both the control electronics and the position indicator are presented. (author) 4 figs

  8. Driving under the influence of drugs -- evaluation of analytical data of drugs in oral fluid, serum and urine, and correlation with impairment symptoms. (United States)

    Toennes, Stefan W; Kauert, Gerold F; Steinmeyer, Stefan; Moeller, Manfred R


    A study was performed to acquire urine, serum and oral fluid samples in cases of suspected driving under the influence of drugs of abuse. Oral fluid was collected using a novel sampling/testing device (Dräger DrugTest System). The aim of the study was to evaluate oral fluid and urine as a predictor of blood samples positive for drugs and impairment symptoms. Analysis for cannabinoids, amphetamine and its derivatives, opiates and cocaine was performed in urine using the Mahsan Kombi/DOA4-test, in serum using immunoassay and gas chromatography-mass spectrometry (GC-MS) confirmation and in oral fluid by GC-MS. Police and medical officer observations of impairment symptoms were rated and evaluated using a threshold value for the classification of driving inability. Accuracy in correlating drug detection in oral fluid and serum were >90% for all substances and also >90% in urine and serum except for THC (71.0%). Of the cases with oral fluid positive for any drug 97.1% of corresponding serum samples were also positive for at least one drug; of drug-positive urine samples this were only 82.4%. In 119 of 146 cases, impairment symptoms above threshold were observed (81.5%). Of the cases with drugs detected in serum, 19.1% appeared not impaired which were the same with drug-positive oral fluid while more persons with drug-positive urine samples appeared uninfluenced (32.7%). The data demonstrate that oral fluid is superior to urine in correlating with serum analytical data and impairment symptoms of drivers under the influence of drugs of abuse.

  9. Effect of Mechanical Heterogeneity on the Crack Driving Force of a Reactor Pressure Vessel Outlet Nozzle DMW Joint (United States)

    Lingyan, Zhao; Yinghao, Cui; He, Xue


    The welding mechanical heterogeneity, load complexity, material and geometrical structure makes it very difficult to assess the structural integrity of dissimilar metal weld (DMW) joints. Based on a numerical simulated approach of the continuous change of material mechanical property in the buttering layer, a reactor pressure vessel (RPV) outlet nozzle DMW joint with service loads is studied, effect of mechanical heterogeneity on the stress-strain field and stress triaxiality at the semi-elliptical surface crack front are discussed. The analyses show that once the crack extends into the high hardness zone of Alloy 182 buttering, the strain decreases sharply, the strain gradient increases and the crack propagation slows down. The influence of strength mismatch on the stress triaxiality at the shallow crack front is greater than that at the deep crack front. The interaction between strength mismatch and crack depth directly affects the crack growth direction.

  10. A Sclerostin super-producer cell line derived from the human cell line SaOS-2: a new tool for the study of the molecular mechanisms driving Sclerostin expression. (United States)

    Pérez-Campo, Flor M; Sañudo, Carolina; Delgado-Calle, Jesús; Arozamena, Jana; Zarrabeitia, María T; Riancho, José A


    Sclerostin, the product of the SOST gene, is a key regulator of bone homeostasis. Sclerostin interferes with the Wnt signalling pathway and, therefore, has a negative effect on bone formation. Although the importance of sclerostin in bone homeostasis is well established, many aspects of its biology are still unknown. Due to its restricted pattern of expression, in vitro studies of SOST gene regulation are technically challenging. Furthermore, a more profound investigation of the molecular mechanism controlling sclerostin expression has been hampered by the lack of a good human in vitro model. Here, we describe two cell lines derived from the human osteosarcoma cell line SaOS-2 that produce elevated levels of sclerostin. Analysis of the super-producer cell lines showed that sclerostin levels were still reduced in response to parathyroid hormone treatment or in response to mechanical loading, indicating that these regulatory mechanisms were not affected in the presented cell lines. In addition, we did not find differences between the promoter or ECR5 sequences of our clones and the SaOS-2 parental line. However, the methylation of the proximal CpG island located at the SOST promoter was lower in the super-producer clones, in agreement with a higher level of SOST transcription. Although the underlying biological causes of the elevated levels of sclerostin production in this cell line are not yet clear, we believe that it could be an extremely useful tool to study the molecular mechanisms driving sclerostin expression in humans.

  11. Myeloid cells expressing VEGF and arginase-1 following uptake of damaged retinal pigment epithelium suggests potential mechanism that drives the onset of choroidal angiogenesis in mice.

    Directory of Open Access Journals (Sweden)

    Jian Liu

    Full Text Available Whilst data recognise both myeloid cell accumulation during choroidal neovascularisation (CNV as well as complement activation, none of the data has presented a clear explanation for the angiogenic drive that promotes pathological angiogenesis. One possibility that is a pre-eminent drive is a specific and early conditioning and activation of the myeloid cell infiltrate. Using a laser-induced CNV murine model, we have identified that disruption of retinal pigment epithelium (RPE and Bruch's membrane resulted in an early recruitment of macrophages derived from monocytes and microglia, prior to angiogenesis and contemporaneous with lesional complement activation. Early recruited CD11b(+ cells expressed a definitive gene signature of selective inflammatory mediators particularly a pronounced Arg-1 expression. Accumulating macrophages from retina and peripheral blood were activated at the site of injury, displaying enhanced VEGF expression, and notably prior to exaggerated VEGF expression from RPE, or earliest stages of angiogenesis. All of these initial events, including distinct VEGF (+ Arg-1(+ myeloid cells, subsided when CNV was established and at the time RPE-VEGF expression was maximal. Depletion of inflammatory CCR2-positive monocytes confirmed origin of infiltrating monocyte Arg-1 expression, as following depletion Arg-1 signal was lost and CNV suppressed. Furthermore, our in vitro data supported a myeloid cell uptake of damaged RPE or its derivatives as a mechanism generating VEGF (+ Arg-1(+ phenotype in vivo. Our results reveal a potential early driver initiating angiogenesis via myeloid-derived VEGF drive following uptake of damaged RPE and deliver an explanation of why CNV develops during any of the stages of macular degeneration and can be explored further for therapeutic gain.

  12. A model of the plasma flow and current in Saturn's polar ionosphere under conditions of strong Dungey cycle driving

    Directory of Open Access Journals (Sweden)

    C. M. Jackman


    -dusk asymmetry in the accelerating voltages required and the energy fluxes produced, resulting from the corresponding asymmetry in the current. The auroral intensities for the outer magnetosphere source are typically ~50 kR at dawn and ~5 kR at dusk, in conformity with recent auroral observations under appropriate conditions. However, those for the magnetosheath source are much smaller. When the calculated precipitating electron energy flux values are integrated across the current layer and around the open closed field line boundary, this yields total UV output powers of ~10 GW for the hot outer magnetosphere source, which also agrees with observations.

  13. Mechanical behaviour and microstructural evolution of alloy 800H under biaxial cyclic loading

    International Nuclear Information System (INIS)

    Dolabella Portella, P.; Feng Jiao; Oesterle, W.; Ziebs, J.


    The mechanical behaviour of alloy 800H under biaxial cyclic loading was investigated at room temperature and at 800 C. The low-cycle fatigue experiments were carried out using tubular specimens under axial and torsional loading with constant total equivalent strain amplitude following either proportional or nonproportional loading paths. The cyclic hardening observed under nonproportional loading was clearly higher than that under proportional loading. The extra hardening due to the nonproportional loading path was more pronounced at room temperature. The evolution of the dislocation structure was characterized by transmission electron microscopy of specimens after interrupted fatigue tests. The changes in the dislocation structure and the precipitation phenomena are in accordance with the observed mechanical behaviour of the specimens. Twinning was observed in very few grains of some specimens and does not influence the extra hardening under nonproportional loading, martensite was not detected in any specimen. (orig.)

  14. Study of the dynamics of the lower hybrid wave during current drive in tokamaks and of the Weyl-Wigner in quantum mechanics

    International Nuclear Information System (INIS)

    Bizarro, J.P.


    A comprehensive and detailed investigation is presented on the dynamics of the lower hybrid wave during current drive in tokamaks in situations where toroidally induced ray stochasticity is important and on the Weyl-Wigner formalism for rotation angle and angular momentum variables in quantum mechanics. It is shown that ray-tracing and Fokker-Planck codes are reliable tools for modelling the physics of lower-hybrid current drive provided a large number of rays is used when stochastic effects are important, and, in particular, that such codes are capable of reproducing the experimentally observed features of the hard X-ray emission. The balance between the wave damping and the stochastic divergence of nearby ray trajectories appears to be of great importance in governing the dynamics of the launched power spectrum and in establishing the characteristics of the deposition patterns. The implications of rotational periodicity and of angular momentum quantization for the Weyl-Wigner formalism are analyzed. Particular attention is paid to discreteness and its consequences: importance of evenness and oddness, use of two difference operators instead of one differential operator. 24 refs

  15. An investigation of the mechanism underlying teacher aggression : Testing I3 theory and the General Aggression Model

    NARCIS (Netherlands)

    Montuoro, Paul; Mainhard, Tim


    Background: Considerable research has investigated the deleterious effects of teachers responding aggressively to students who misbehave, but the mechanism underlying this dysfunctional behaviour remains unknown. Aims: This study investigated whether the mechanism underlying teacher aggression

  16. Tensile mechanical behavior of hollow and filled carbon nanotubes under tension or combined tension-torsion (United States)

    Jeong, Byeong-Woo; Lim, Jang-Keun; Sinnott, Susan B.


    The tensile mechanical behavior of hollow and filled single-walled carbon nanotubes under tension or combined tension-torsion is examined using classical molecular dynamics simulations. These simulations indicate that the tensile strength under combined tension-torsion can be increased by filling the carbon nanotubes, and the amount of this increase depends on the kind of filling material. They also predict that the tensile strength under combined tension-torsion decreases linearly under applied torsion. The tensile strength can be modified by adjusting the system temperature and through chemical functionalization to the carbon nanotube walls.

  17. Identification of the mechanisms that drive the toxicity of TiO2 particulates: the contribution of physicochemical characteristics

    Directory of Open Access Journals (Sweden)

    Peters Sheona


    Full Text Available Abstract This review focuses on outlining the toxicity of titanium dioxide (TiO2 particulates in vitro and in vivo, in order to understand their ability to detrimentally impact on human health. Evaluating the hazards associated with TiO2 particles is vital as it enables risk assessments to be conducted, by combining this information with knowledge on the likely exposure levels of humans. This review has concentrated on the toxicity of TiO2, due to the fact that the greatest number of studies by far have evaluated the toxicity of TiO2, in comparison to other metal oxide particulates. This derives from historical reasons (whereby the size dependency of particulate toxicity was first realised for TiO2 and due to its widespread application within consumer products (such as sunscreens. The pulmonary and dermal hazards of TiO2 have been a particular focus of the available studies, due to the past use of TiO2 as a (negative control when assessing the pulmonary toxicity of particulates, and due to its incorporation within consumer products such as sunscreens. Mechanistic processes that are critical to TiO2 particulate toxicity will also be discussed and it is apparent that, in the main, the oxidant driven inflammatory, genotoxic and cytotoxic consequences associated with TiO2 exposure, are inherently linked, and are evident both in vivo and in vitro. The attributes of TiO2 that have been identified as being most likely to drive the observed toxicity include particle size (and therefore surface area, crystallinity (and photocatalytic activity, surface chemistry, and particle aggregation/agglomeration tendency. The experimental set up also influences toxicological outcomes, so that the species (or model used, route of exposure, experiment duration, particle concentration and light conditions are all able to influence the findings of investigations. In addition, the applicability of the observed findings for particular TiO2 forms, to TiO2 particulates in

  18. A semi-empirical voltage degradation model for a low-pressure proton exchange membrane fuel cell stack under bus city driving cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Languang; Ouyang, Minggao; Huang, Haiyan; Pei, Pucheng; Yang, Fuyuan [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China)


    A voltage degradation model for the low-pressure proton exchange membrane fuel cell (PEMFC) stack used in a fuel cell bus is presented: (1) the oxygen concentration term was derived from the PEMFC output voltage equation, and the concept of oxygen concentration resistance coefficient was introduced; (2) a 5kW low-pressure PEMFC stack was used in this study. Two similar tests were carried out before and after the stack operating in the driving cycle for 640h. First, the ohmic losses under different temperatures were measured using the current interrupt method and formulized with linear fitting method. Then, the oxygen concentration term was studied by the experiments with different air stoichiometric ratios while keeping the other operating parameters unchanged. The oxygen concentration resistance coefficient was obtained from the difference of voltages for the PEMFC stack in different air stoichiometric ratios using the genetic optimization algorithm. Then, the activation loss was obtained based on the PEMFC output voltage, the ohmic loss, and the concentration loss. The degradation model of the stack was built finally by comparing the two test results; (3) the correlation of the model to the actual experimental data is good; (4) the overvoltage of the stack with aging was analyzed using this model. The analysis showed that the activation overvoltage dominated the stack loss with about 80% of the total losses, followed by the ohmic loss. The concentration loss almost does not change with aging in the driving cycle condition; (5) the comparison of the simulation with the actual data from the PEMFC bus running for 30,000km indicated that after 36,000km the rated power of the PEMFC bus must be reduced. (author)

  19. How diagnostic tests help to disentangle the mechanisms underlying neuropathic pain symptoms in painful neuropathies. (United States)

    Truini, Andrea; Cruccu, Giorgio


    Neuropathic pain, ie, pain arising directly from a lesion or disease affecting the somatosensory afferent pathway, manifests with various symptoms, the commonest being ongoing burning pain, electrical shock-like sensations, and dynamic mechanical allodynia. Reliable insights into the mechanisms underlying neuropathic pain symptoms come from diagnostic tests documenting and quantifying somatosensory afferent pathway damage in patients with painful neuropathies. Neurophysiological investigation and skin biopsy studies suggest that ongoing burning pain primarily reflects spontaneous activity in nociceptive-fiber pathways. Electrical shock-like sensations presumably arise from high-frequency ectopic bursts generated in demyelinated, nonnociceptive, Aβ fibers. Although the mechanisms underlying dynamic mechanical allodynia remain debatable, normally innocuous stimuli might cause pain by activating spared and sensitized nociceptive afferents. Extending the mechanistic approach to neuropathic pain symptoms might advance targeted therapy for the individual patient and improve testing for new drugs.

  20. Visualization of hot spot formation in energetic materials under periodic mechanical excitation using phosphor thermography (United States)

    Casey, Alex; Fenoglio, Gabriel; Detrinidad, Humberto


    Under mechanical excitation, energy is known to localize within an energetic material resulting in `hot spot' formation. While many formation mechanisms have been proposed, additional insight to heat generation mechanisms, the effect of binder/crystal interfaces, and predication capabilities can be gained by quantifying the initiation and growth of the hot spots. Phosphor thermography is a well established temperature sensing technique wherein an object's temperature is obtained by collecting the temperature dependent luminescence of an optically excited phosphor. Herein, the phosphor thermography technique has been applied to Dow Corning Sylgard® 184/octahydro 1,3,5,7 tetranitro 1,3,5,7 tetrazocine (HMX) composite materials under mechanical excitation in order to visualize the evolution of the temperature field, and thus hot spot formation, within the binder. Funded by AFOSR. Supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  1. Stronger tests of mechanisms underlying geographic gradients of biodiversity: insights from the dimensionality of biodiversity.

    Directory of Open Access Journals (Sweden)

    Richard D Stevens

    Full Text Available Inference involving diversity gradients typically is gathered by mechanistic tests involving single dimensions of biodiversity such as species richness. Nonetheless, because traits such as geographic range size, trophic status or phenotypic characteristics are tied to a particular species, mechanistic effects driving broad diversity patterns should manifest across numerous dimensions of biodiversity. We develop an approach of stronger inference based on numerous dimensions of biodiversity and apply it to evaluate one such putative mechanism: the mid-domain effect (MDE. Species composition of 10,000-km(2 grid cells was determined by overlaying geographic range maps of 133 noctilionoid bat taxa. We determined empirical diversity gradients in the Neotropics by calculating species richness and three indices each of phylogenetic, functional and phenetic diversity for each grid cell. We also created 1,000 simulated gradients of each examined metric of biodiversity based on a MDE model to estimate patterns expected if species distributions were randomly placed within the Neotropics. For each simulation run, we regressed the observed gradient onto the MDE-expected gradient. If a MDE drives empirical gradients, then coefficients of determination from such an analysis should be high, the intercept no different from zero and the slope no different than unity. Species richness gradients predicted by the MDE fit empirical patterns. The MDE produced strong spatially structured gradients of taxonomic, phylogenetic, functional and phenetic diversity. Nonetheless, expected values generated from the MDE for most dimensions of biodiversity exhibited poor fit to most empirical patterns. The MDE cannot account for most empirical patterns of biodiversity. Fuller understanding of latitudinal gradients will come from simultaneous examination of relative effects of random, environmental and historical mechanisms to better understand distribution and abundance of the

  2. Driving under the influence of alcohol and drugs in the eastern part of Denmark in 2015 and 2016: Abuse patterns and trends. (United States)

    Simonsen, Kirsten Wiese; Linnet, Kristian; Rasmussen, Brian Schou


    The objective of this study was to examine the frequency of psychoactive drugs and alcohol in drivers under suspicion of driving under the influence of drugs and alcohol in 2015 and 2016 in the eastern part of Denmark. The trends in the number of traffic cases sent for drug analysis since 2000 and alcohol analysis since 2011 are also discussed. Blood samples from drivers suspected of being under the influence of alcohol and/or medication and/or illicit drugs in 2015 and 2016 were investigated as requested by the police. The blood samples were screened for alcohol and/or tetrahydrocannabinol (THC) alone, for other drugs (covering all drugs, except THC, listed in the Danish list of narcotic drugs) or for THC and other drugs. Age and gender were also recorded. The number of drug traffic cases since 2000 and the number of alcohol cases since 2011 were extracted from our LIMS system (laboratory information management system). In total, 11,493 traffic cases were investigated. Alcohol and/or drugs exceeded the legal limit in 9,657 (84%) cases. Men constituted 95% of the drivers investigated for drugs and 88% of the alcohol cases. The drivers investigated for drugs consisted primarily of young men, whereas drivers investigated for alcohol were older. The frequency was higher for positive alcohol cases above the legal limit (87%) than for drug cases (76%) above the fixed concentration limit. THC (67-69%) was the most frequently detected drug above the legal limit, followed by cocaine (27-28.5%), amphetamine (17%) and clonazepam (6-7%) in both years. Morphine (5.4%), included among the five most frequent drugs in 2015, was replaced by methadone (4.6%) in 2016. Few new psychoactive drugs (NPS) were detected. The number of traffic cases sent for drug analysis has increased more than 30-fold since 2000-2006, and the number of traffic cases submitted in 2016 for drug analysis was higher than the number for alcohol analysis; the latter has decreased since 2011. Overall, alcohol

  3. Drowsy Driving (United States)

    ... at least 8 hours. 8-9 Develop good sleeping habits such as sticking to a sleep schedule. If ... K, Howard ME. Cognitive components of simulated driving performance: sleep loss effects and predictors. Accid Anal Prev. 2012; ...

  4. Distracted Driving (United States)

    ... Communities Toolkit Best Practices Guide Publications Motorcycle Safety Bicycle Safety Publications Global Road Safety Get Email Updates ... study. The Insurance Institute for Highway Safety keeps track of distracted driving laws. 7 As of June ...

  5. The Role of Turbulent Pressure as a Coherent Pulsational Driving Mechanism: The Case of the δ Scuti Star HD 187547

    DEFF Research Database (Denmark)

    Antoci, V.; Cunha, M.; Houdek, G.


    HD 187547 was the first candidate that led to the suggestion that solar-like oscillations are present in δ Scuti stars. Longer observations, however, show that the modes interpreted as solar-like oscillations have either very long mode lifetimes, longer than 960 days, or are coherent. These results...... are incompatible with the nature of "pure" stochastic excitation as observed in solar-like stars. Nonetheless, one point is certain: the opacity mechanism alone cannot explain the oscillation spectrum of HD 187547. Here we present new theoretical investigations showing that convection dynamics can intrinsically...... excite coherent pulsations in the chemically peculiar δ Scuti star HD 187547. More precisely, it is the perturbations of the mean Reynold stresses (turbulent pressure) that drives the pulsations and the excitation takes place predominantly in the hydrogen ionization zone....

  6. A Cross-Cultural Approach to Psychological Mechanisms Underlying Emotional Reactions to Music


    Barradas, Gonçalo


    Music plays a crucial role in everyday life by enabling listeners to seek individual emotional experiences. To explain why such emotions occur, we must understand the underlying process that mediates between surface-level features of the music and aroused emotions. This thesis aimed to investigate how musical emotions are mediated by psychological mechanisms from a cross-cultural perspective. Study I manipulated four mechanisms by selecting ecologically valid pieces of music that featured inf...

  7. Determination of the Optimum Heat Transfer Coefficient and Temperature Rise Analysis for a Lithium-Ion Battery under the Conditions of Harbin City Bus Driving Cycles

    Directory of Open Access Journals (Sweden)

    Xiaogang Wu


    Full Text Available This study investigated the heat problems that occur during the operation of power batteries, especially thermal runaway, which usually take place in high temperature environments. The study was conducted on a ternary polymer lithium-ion battery. In addition, a lumped parameter thermal model was established to analyze the thermal behavior of the electric bus battery system under the operation conditions of the driving cycles of the Harbin city electric buses. Moreover, the quantitative relationship between the optimum heat transfer coefficient of the battery and the ambient temperature was investigated. The relationship between the temperature rise (Tr, the number of cycles (c, and the heat transfer coefficient (h under three Harbin bus cycles have been investigated at 30 °C, because it can provide a basis for the design of the battery thermal management system. The results indicated that the heat transfer coefficient that meets the requirements of the battery thermal management system is the cubic power function of the ambient temperature. Therefore, if the ambient temperature is 30 °C, the heat transfer coefficient should be at least 12 W/m2K in the regular bus lines, 22 W/m2K in the bus rapid transit lines, and 32 W/m2K in the suburban lines.

  8. Elucidation of the molecular mechanisms underlying adverse reactions associated with a kinase inhibitor using systems toxicology. (United States)

    Amemiya, Takahiro; Honma, Masashi; Kariya, Yoshiaki; Ghosh, Samik; Kitano, Hiroaki; Kurachi, Yoshihisa; Fujita, Ken-Ichi; Sasaki, Yasutsuna; Homma, Yukio; Abernethy, Darrel R; Kume, Haruki; Suzuki, Hiroshi


    Targeted kinase inhibitors are an important class of agents in anticancer therapeutics, but their limited tolerability hampers their clinical performance. Identification of the molecular mechanisms underlying the development of adverse reactions will be helpful in establishing a rational method for the management of clinically adverse reactions. Here, we selected sunitinib as a model and demonstrated that the molecular mechanisms underlying the adverse reactions associated with kinase inhibitors can efficiently be identified using a systems toxicological approach. First, toxicological target candidates were short-listed by comparing the human kinase occupancy profiles of sunitinib and sorafenib, and the molecular mechanisms underlying adverse reactions were predicted by sequential simulations using publicly available mathematical models. Next, to evaluate the probability of these predictions, a clinical observation study was conducted in six patients treated with sunitinib. Finally, mouse experiments were performed for detailed confirmation of the hypothesized molecular mechanisms and to evaluate the efficacy of a proposed countermeasure against adverse reactions to sunitinib. In silico simulations indicated the possibility that sunitinib-mediated off-target inhibition of phosphorylase kinase leads to the generation of oxidative stress in various tissues. Clinical observations of patients and mouse experiments confirmed the validity of this prediction. The simulation further suggested that concomitant use of an antioxidant may prevent sunitinib-mediated adverse reactions, which was confirmed in mouse experiments. A systems toxicological approach successfully predicted the molecular mechanisms underlying clinically adverse reactions associated with sunitinib and was used to plan a rational method for the management of these adverse reactions.

  9. Mechanisms Underlying Stress Fracture and the Influence of Sex and Race/Ethnicity (United States)


    AWARD NUMBER: W81XWH-16-1-0652 TITLE: Mechanisms Underlying Stress Fracture and the Influence of Sex and Race/Ethnicity PRINCIPAL INVESTIGATOR...5a. CONTRACT NUMBER W81XWH-16-1-0652 Mechanisms Underlying Stress Fracture and the Influence of Sex and Race/Ethnicity 5b. GRANT NUMBER W81XWH...Email addresses:;; ; E-Mail: 5f. WORK UNIT NUMBER 7

  10. Comparative proteomics of peanut gynophore development under dark and mechanical stimulation. (United States)

    Sun, Yong; Wang, Qingguo; Li, Zhen; Hou, Lei; Dai, Shaojun; Liu, Wei


    Peanut (Arachis hypogaea. L) is an important leguminous crop and source of proteins and lipids. It has attracted widespread attention of researchers due to its unique growth habit of geocarpy, which is regulated by geotropism, negative phototropism, and haptotropism. However, the protein expression pattern and molecular regulatory mechanism underlying the physiological processes of peanut remain unknown. In this study, the peanut gynophores under five treatment conditions were used for proteomic analysis, including aerial growth of the gynophores, the gynophores penetrated into the soil, as well as aerial growth of the gynophores under mechanical stimulation, dark, and mechanical stimulation combined with dark. The analysis of protein abundances in peanut gynophores under these conditions were conducted using comparative proteomic approaches. A total of 27 differentially expressed proteins were identified and further classified into nine biological functional groups of stress and defense, carbohydrate and energy metabolism, metabolism, photosynthesis, cell structure, signaling, transcription, protein folding and degradation, and function unknown. By searching gene functions against peanut database, 10 genes with similar annotations were selected as corresponding changed proteins, and their variation trends in gynophores under such growth conditions were further verified using quantitative real-time PCR. Overall, the investigation will benefit to enrich our understanding of the internal mechanisms of peanut gynophore development and lay a foundation for breeding and improving crop varieties and qualities.

  11. Dynamic simulation of a beta-type Stirling engine with cam-drive mechanism via the combination of the thermodynamic and dynamic models

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chin-Hsiang; Yu, Ying-Ju [Department of Aeronautics and Astronautics, National Cheng Kung University, No. 1, Ta-Shieh Road, Tainan, Taiwan (China)


    Dynamic simulation of a beta-type Stirling engine with cam-drive mechanism used in concentrating solar power system has been performed. A dynamic model of the mechanism is developed and then incorporated with the thermodynamic model so as to predict the transient behavior of the engine in the hot-start period. In this study, the engine is started from an initial rotational speed. The torques exerted by the flywheel of the engine at any time instant can be calculated by the dynamic model as long as the gas pressures in the chambers, the mass inertia, the friction force, and the external load have been evaluated. The instantaneous rotation speed of the engine is then determined by integration of the equation of rotational motion with respect to time, which in return affects the instantaneous variations in pressure and other thermodynamic properties of the gas inside the chambers. Therefore, the transient variations in gas properties inside the engine chambers and the dynamic behavior of the engine mechanism should be handled simultaneously via the coupling of the thermodynamic and dynamic models. An extensive parametric study of the effects of different operating and geometrical parameters has been performed, and results regarding the effects of mass moment of inertia of the flywheel, initial rotational speed, initial charged pressure, heat source temperature, phase angle, gap size, displacer length, and piston stroke on the engine transient behavior are investigated. (author)

  12. Interspecies Chemical Signals Released into the Environment May Create Xenohormetic, Hormetic and Cytostatic Selective Forces that Drive the Ecosystemic Evolution of Longevity Regulation Mechanisms. (United States)

    Burstein, Michelle T; Beach, Adam; Richard, Vincent R; Koupaki, Olivia; Gomez-Perez, Alejandra; Goldberg, Alexander A; Kyryakov, Pavlo; Bourque, Simon D; Glebov, Anastasia; Titorenko, Vladimir I


    Various organisms (i.e., bacteria, fungi, plants and animals) within an ecosystem can synthesize and release into the environment certain longevity-extending small molecules. Here we hypothesize that these interspecies chemical signals can create xenohormetic, hormetic and cytostatic selective forces driving the ecosystemic evolution of longevity regulation mechanisms. In our hypothesis, following their release into the environment by one species of the organisms composing an ecosystem, such small molecules can activate anti-aging processes and/or inhibit pro-aging processes in other species within the ecosystem. The organisms that possess the most effective (as compared to their counterparts of the same species) mechanisms for sensing the chemical signals produced and released by other species and for responding to such signals by undergoing certain hormetic and/or cytostatic life-extending changes to their metabolism and physiology are expected to live longer then their counterparts within the ecosystem. Thus, the ability of a species of the organisms composing an ecosystem to undergo life-extending metabolic or physiological changes in response to hormetic or cytostatic chemical compounds released to the ecosystem by other species: 1) increases its chances of survival; 2) creates selective forces aimed at maintaining such ability; and 3) enables the evolution of longevity regulation mechanisms.

  13. Model test study of evaporation mechanism of sand under constant atmospheric condition


    CUI, Yu Jun; DING, Wenqi; SONG, Weikang


    The evaporation mechanism of Fontainebleau sand using a large-scale model chamber is studied. First, the evaporation test on a layer of water above sand surface is performed under various atmospheric conditions, validating the performance of the chamber and the calculation method of actual evaporation rate by comparing the calculated and measured cumulative evaporations. Second,the evaporation test on sand without water layer is conducted under constant atmospheric condition. Both the evoluti...

  14. Mechanical behavior of confined self-compacting reinforced concrete circular columns under concentric axial loading


    Khairallah, Fouad


    While there is abundant research information on ordinary confined concrete, there are little data on the behavior of Self-Compacting Concrete (SCC) under such condition. Due to higher shrinkage and lower coarse aggregate content of SCC compared to that of Normal Concrete (NC), its composite performance under confined conditions needs more investigation. This paper has been devoted to investigate and compare the mechanical behavior of confined concrete circular columns cast with SCC and NC und...

  15. Modeling of primary water stress corrosion cracking at control rod drive mechanism nozzles of pressurized water reactors

    International Nuclear Information System (INIS)

    Aly, Omar Fernandes


    One of the main failure mechanisms that cause risks to pressurized water reactors is the primary water stress corrosion cracking (PWSCC) occurring in alloys. It can occurs, besides another places, at the control reactor displacement mechanism nozzles. It is caused by the joint effect of tensile stress, temperature, susceptible metallurgical microstructure and environmental conditions of the primary water. These cracks can cause accidents that reduce nuclear safety by blocking the rod's displacement and may cause leakage of primary water, reducing the reactor's life. In this work it is proposed a study of the existing models and a modeling proposal to primary water stress corrosion cracking in these nozzles in a nickel based Alloy 600. It is been superposed electrochemical and fracture mechanics models, and validated using experimental and literature data. The experimental data were obtained at CDTN-Brazilian Nuclear Technology Development Center, in a recent installed slow strain rate testing equipment. In the literature it is found a diagram that indicates a thermodynamic condition for the occurrence of some PWSCC sub modes in Alloy 600: it was used potential x pH diagrams (Pourbaix diagrams), for Alloy 600 in high temperature primary water (300 deg C till 350 deg C). Over it, were located the PWSCC sub modes, using experimental data. It was added a third parameter called 'stress corrosion strength fraction'. However, it is possible to superpose to this diagram, other parameters expressing PWSCC initiation or growth kinetics from other models. Here is the proposition of the original contribution of this work: from an original experimental condition of potential versus pH, it was superposed, an empiric-comparative, a semi-empiric-probabilistic, an initiation time, and a strain rate damage models, to quantify respectively the PWSCC susceptibility, the failure time, and in the two lasts, the initiation time of stress corrosion cracking. It was modeling from our

  16. [Automobile driving capacity in dementia]. (United States)

    Seeger, Rolf


    Dementia influences at an early stage the driving aptitude of motor vehicle steering persons. Every year in Switzerland, around 16'000 driving permit holders suffer newly from dementia; therefore the driving aptitude is questioned, especially because of possibly limited executive functions. Individuals with early-stage dementia often may show a dangerous driving stile. However, a mild dementia does not a priori exclude the driving aptitude, and less than half of these drivers can continue driving for another 1 - 3 years. In contrast, there is no further driving aptitude in presence of moderate dementia. In the assessment of driving aptitude, the underlying cause of dementia is always taken into account. Cognitive short tests such as the Mini-Mental Status Exam, Clock Drawing Test and Trail-Making Test are not suitable to make reliable statements about the aptitude to drive, but these tests are very important for the initial diagnosis of dementia in primary care practice and can lead the way for further examination concerning driving aptitude. The legally prescribed regular check-up for motorists aged over 70 years in Switzerland provides an ideal opportunity for early detection of incipient dementia. The practical procedure for the assessment of aptitude to drive in the primary care practice is presented. The physician-guided on-road driving test represents a meaningful, practical and relatively cost-effective tool for the evaluation of driving aptitude in cases of doubt.

  17. Ultrastructural changes of cell walls under intense mechanical treatment of selective plant raw material

    International Nuclear Information System (INIS)

    Bychkov, Aleksey L.; Ryabchikova, E.I.; Korolev, K.G.; Lomovsky, O.I.


    Structural changes of cell walls under intense mechanical treatment of corn straw and oil-palm fibers were studied by electron and light microscopy. Differences in the character of destruction of plant biomass were revealed, and the dependence of destruction mechanisms on the structure of cell walls and lignin content was demonstrated. We suggest that the high reactivity of the particles of corn straw (about 18% of lignin) after intense mechanical treatment is related to disordering of cell walls and an increase of the surface area, while in the case of oil palm (10% of lignin) the major contribution into an increase in the reactivity is made by an increase of surface area. -- Highlights: ► Structure of cell walls determines the processes of plant materials' destruction. ► Ultrastructure of highly lignified materials strongly disordering by mechanical action. ► Ultrastructure of low-lignified materials is not disordering by mechanical action.

  18. Passive temperature compensation in hydraulic dashpot used for the shut-off rod drive mechanism of a nuclear reactor

    International Nuclear Information System (INIS)

    Singh, Narendra K.; Badodkar, Deepak N.


    Highlights: • Passive temperature compensation in hydraulic dashpot has been studied numerically as well as experimentally. • Temperature compensation is achieved by reducing the clearances in the hydraulic dashpot at elevated temperature to compensate for the viscosity reduction. • Temperature compensation effects due to difference in thermal expansion of common engineering materials and use of bimetallic strips have been analyzed. • Design of a novel passive temperature compensating hydraulic dashpot is presented, which can be used for wide range of temperature variations. - Abstract: Passive temperature compensating hydraulic dashpot has been studied numerically as well as experimentally in this paper. Study is focused on reducing the clearances of the hydraulic dashpot at elevated temperature which intern compensates for the reduction in viscosity of damping oil and the dashpot gives uniform performance for wide range of temperature variation. Temperature compensation effects are mainly due to difference in the thermal expansion of materials. Different combinations of materials are used to reduce the dashpot clearances at elevated temperature. Finite element commercial code COMSOL Multiphysics 5.1 has been used for numerical analysis. Fluid-structure analysis has been carried-out to study the thermal expansion and pressure generated in the hydraulic dashpot. Multiphysics study with solid mechanics, laminar flow and moving mesh interfaces has been carried-out. Thermal expansion results of study-1 (solid mechanics) are further extended in to study-2 (laminar flow and moving mesh) and dashpot pressure is estimated. These results show that bimetallic strip improves the dashpot performance at 55 °C but do not fully compensate beyond that and less severe impacts occurs. Specific combinations of design and materials have been presented in this paper for obtaining maximum temperature compensation. A novel passive temperature compensating hydraulic dashpot

  19. Structural and Mechanical Properties of Intermediate Filaments under Extreme Conditions and Disease (United States)

    Qin, Zhao

    Intermediate filaments are one of the three major components of the cytoskeleton in eukaryotic cells. It was discovered during the recent decades that intermediate filament proteins play key roles to reinforce cells subjected to large-deformation as well as participate in signal transduction. However, it is still poorly understood how the nanoscopic structure, as well as the biochemical properties of these protein molecules contribute to their biomechanical functions. In this research we investigate the material function of intermediate filaments under various extreme mechanical conditions as well as disease states. We use a full atomistic model and study its response to mechanical stresses. Learning from the mechanical response obtained from atomistic simulations, we build mesoscopic models following the finer-trains-coarser principles. By using this multiple-scale model, we present a detailed analysis of the mechanical properties and associated deformation mechanisms of intermediate filament network. We reveal the mechanism of a transition from alpha-helices to beta-sheets with subsequent intermolecular sliding under mechanical force, which has been inferred previously from experimental results. This nanoscale mechanism results in a characteristic nonlinear force-extension curve, which leads to a delocalization of mechanical energy and prevents catastrophic fracture. This explains how intermediate filament can withstand extreme mechanical deformation of > 1 00% strain despite the presence of structural defects. We combine computational and experimental techniques to investigate the molecular mechanism of Hutchinson-Gilford progeria syndrome, a premature aging disease. We find that the mutated lamin tail .domain is more compact and stable than the normal one. This altered structure and stability may enhance the association of intermediate filaments with the nuclear membrane, providing a molecular mechanism of the disease. We study the nuclear membrane association

  20. Retinol and ascorbate drive erasure of epigenetic memory and enhance reprogramming to naïve pluripotency by complementary mechanisms. (United States)

    Hore, Timothy Alexander; von Meyenn, Ferdinand; Ravichandran, Mirunalini; Bachman, Martin; Ficz, Gabriella; Oxley, David; Santos, Fátima; Balasubramanian, Shankar; Jurkowski, Tomasz P; Reik, Wolf


    Epigenetic memory, in particular DNA methylation, is established during development in differentiating cells and must be erased to create naïve (induced) pluripotent stem cells. The ten-eleven translocation (TET) enzymes can catalyze the oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) and further oxidized derivatives, thereby actively removing this memory. Nevertheless, the mechanism by which the TET enzymes are regulated, and the extent to which they can be manipulated, are poorly understood. Here we report that retinoic acid (RA) or retinol (vitamin A) and ascorbate (vitamin C) act as modulators of TET levels and activity. RA or retinol enhances 5hmC production in naïve embryonic stem cells by activation of TET2 and TET3 transcription, whereas ascorbate potentiates TET activity and 5hmC production through enhanced Fe 2+ recycling, and not as a cofactor as reported previously. We find that both ascorbate and RA or retinol promote the derivation of induced pluripotent stem cells synergistically and enhance the erasure of epigenetic memory. This mechanistic insight has significance for the development of cell treatments for regenenerative medicine, and enhances our understanding of how intrinsic and extrinsic signals shape the epigenome.

  1. Kinematics of the 2015 San Ramon, California earthquake swarm: Implications for fault zone structure and driving mechanisms (United States)

    Xue, Lian; Bürgmann, Roland; Shelly, David R.; Johnson, Christopher W.; Taira, Taka'aki


    Earthquake swarms represent a sudden increase in seismicity that may indicate a heterogeneous fault-zone, the involvement of crustal fluids and/or slow fault slip. Swarms sometimes precede major earthquake ruptures. An earthquake swarm occurred in October 2015 near San Ramon, California in an extensional right step-over region between the northern Calaveras Fault and the Concord-Mt. Diablo fault zone, which has hosted ten major swarms since 1970. The 2015 San Ramon swarm is examined here from 11 October through 18 November using template matching analysis. The relocated seismicity catalog contains ∼4000 events with magnitudes between - 0.2 swarm illuminated three sub-parallel, southwest striking and northwest dipping fault segments of km-scale dimension and thickness of up to 200 m. The segments contain coexisting populations of different focal-mechanisms, suggesting a complex fault zone structure with several sets of en échelon fault orientations. The migration of events along the three planar structures indicates a complex fluid and faulting interaction processes. We searched for correlations between seismic activity and tidal stresses and found some suggestive features, but nothing that we can be confident is statistically significant.

  2. Nonlinear Dynamic Analysis of Telescopic Mechanism for Truss Structure Bridge Inspection Vehicle Under Pedestrian Excitation

    Directory of Open Access Journals (Sweden)

    Wenwen Sui

    Full Text Available Abstract Nonlinear dynamic analysis of an axially moving telescopic mechanism for truss structure bridge inspection vehicle under pedestrian excitation is carried out. A biomechanically inspired inverted-pendulum model is utilized to simplify the pedestrian. The nonlinear equations of motion for the beam-pedestrian system are derived using the Hamilton's principle. The equations are transformed into two ordinary differential equations by applying the Galerkin's method at the first two orders. The solutions to the equations are acquired by using the Newmark-β method associated with the Newton-Raphson method. The time-dependent feature of the eigenfunctions for the two beams are taken into consideration in the solutions. Accordingly, the equations of motion for a simplified system, in which the pedestrian is regarded as moving cart, are given. In the numerical examples, dynamic responses of the telescopic mechanism in eight conditions of different beam-telescoping and pedestrian-moving directions are simulated. Comparisons between the vibrations of the beams under pedestrian excitation and corresponding moving cart are carried out to investigate the influence of the pedestrian excitation on the telescopic mechanism. The results show that the displacement of the telescopic mechanism under pedestrian excitation is smaller than that under moving cart especially when the pedestrian approaches the beams end. Additionally, compared with moving cart, the pedestrian excitation can effectively strengthen the vibration when the beam extension is small or when the pedestrian is close to the beams end.

  3. Mechanisms underlying prorenin actions on hypothalamic neurons implicated in cardiometabolic control

    Directory of Open Access Journals (Sweden)

    Soledad Pitra


    Conclusions: We identified novel neuronal targets and cellular mechanisms underlying PR/PRR actions in critical hypothalamic neurons involved in cardiometabolic regulation. This fundamental mechanistic information regarding central PR/PRR actions is essential for the development of novel RAS-based therapeutic targets for the treatment of cardiometabolic disorders in obesity and hypertension.

  4. Unraveling the mechanisms underlying postural instability in Parkinson's disease using dynamic posturography

    NARCIS (Netherlands)

    Nonnekes, J.H.; Kam, D. de; Geurts, A.C.; Weerdesteijn, V.G.M.; Bloem, B.R.


    Postural instability, one of the cardinal symptoms of Parkinson's disease (PD), has devastating consequences for affected patients. Better strategies to prevent falls are needed, but this calls for an improved understanding of the complex mechanisms underlying postural instability. We must also

  5. The Mediated MIMIC Model for Understanding the Underlying Mechanism of DIF (United States)

    Cheng, Ying; Shao, Can; Lathrop, Quinn N.


    Due to its flexibility, the multiple-indicator, multiple-causes (MIMIC) model has become an increasingly popular method for the detection of differential item functioning (DIF). In this article, we propose the mediated MIMIC model method to uncover the underlying mechanism of DIF. This method extends the usual MIMIC model by including one variable…

  6. Deformation Microstructures and Creep Mechanisms in Advanced ZR-Based Cladding Under Biazal Loading

    Energy Technology Data Exchange (ETDEWEB)

    K. Linga (KL) Murty


    Investigate creep behavior of Zr-based cladding tubes with attention to basic creep mechanisms and transitions in them at low stresses and/or temperatures and study the dislocation microstructures of deformed samples for correlation with the underlying micromechanism of creep

  7. Cementogenesis is inhibited under a mechanical static compressive force via Piezo1. (United States)

    Zhang, Ying-Ying; Huang, Yi-Ping; Zhao, Hua-Xiang; Zhang, Ting; Chen, Feng; Liu, Yan


    To investigate whether Piezo1, a mechanotransduction gene mediates the cementogenic activity of cementoblasts under a static mechanical compressive force. Murine cementoblasts (OCCM-30) were exposed to a 2.0 g/cm 2 static compressive force for 3, 6, 12, and 24 hours. Then the expression profile of Piezo1 and the cementogenic activity markers osteoprotegerin (Opg), osteopontin (Opn), osteocalcin (Oc), and protein tyrosine phosphataselike member A (Ptpla) were analyzed. Opg, Opn, Oc, and Ptpla expression was further measured after using siRNA to knock down Piezo1. Real-time PCR, Western blot, and cell proliferation assays were performed according to standard procedures. After mechanical stimulation, cell morphology and proliferation did not change significantly. The expression of Piezo1, Opg, Opn, Oc, and Ptpla was significantly decreased, with a high positive correlation between Opg and Piezo1 expression. After Piezo1 knockdown, the expression of Opg, Opn, Oc, and Ptpla was further decreased under mechanical stimulation. Cementogenic activity was inhibited in OCCM-30 cells under static mechanical force, a process that was partially mediated by the decrease of Piezo1. This study provides a new viewpoint of the pathogenesis mechanism of orthodontically induced root resorption and repair.

  8. Large Deflections Mechanical Analysis of a Suspended Single-Wall Carbon Nanotube under Thermoelectrical Loading

    Directory of Open Access Journals (Sweden)

    Assaf Ya'akobovitz


    Full Text Available Following the recent progress in integrating single-wall carbon nanotubes (SWCNTs into silicon-based micro-electromechanical systems (MEMS, new modeling tools are needed to predict their behavior under different loads, including thermal, electrical and mechanical. In the present study, the mechanical behavior of SWCNTs under thermoelectrical loading is analyzed using a large deflection geometrically nonlinear string model. The effect of the resistive heating was found to have a substantial influence on the SWCNTs behavior, including significant enhancement of the strain (up to the millistrains range and buckling due to the thermal expansion. The effect of local buckling sites was also studied and was found to enhance the local strain. The theoretical and numerical results obtained in the present study demonstrate the importance of resistive heating in the analysis of SWCNTs and provide an additional insight into the unique mechanics of suspended SWCNTs.

  9. Intercomparison of chemical mechanisms for air quality policy formulation and assessment under North American conditions. (United States)

    Derwent, Richard


    The intercomparison of seven chemical mechanisms for their suitability for air quality policy formulation and assessment is described. Box modeling techniques were employed using 44 sets of background environmental conditions covering North America to constrain the chemical development of the longer lived species. The selected mechanisms were modified to enable an unbiased assessment of the adequacy of the parameterizations of photochemical ozone production from volatile organic compound (VOC) oxidation in the presence of NO x . Photochemical ozone production rates responded differently to 30% NO x and VOC reductions with the different mechanisms, despite the striking similarities between the base-case ozone production rates. The 30% reductions in NO x and VOCs also produced changes in OH. The responses in OH to 30% reductions in NO x and VOCs appeared to be more sensitive to mechanism choice, compared with the responses in the photochemical ozone production rates. Although 30% NO x reductions generally led to decreases in OH, 30% reductions in VOCs led to increases in OH, irrespective of mechanism choice and background environmental conditions. The different mechanisms therefore gave different OH responses to NO x and VOC reductions and so would give different responses in terms of changes in the fate and behavior of air toxics, acidification and eutrophication, and fine particle formation compared with others, in response to ozone control strategies. Policymakers need to understand that there are likely to be inherent differences in the responses to ozone control strategies between different mechanisms, depending on background environmental conditions and the extents of NO x and VOC reductions under consideration. The purpose of this paper is to compare predicted ozone responses to NO x and VOC reductions with seven chemical mechanisms under North American conditions. The good agreement found between the tested mechanisms should provide some support for their

  10. Flow pathways and nutrient transport mechanisms drive hydrochemical sensitivity to climate change across catchments with different geology and topography (United States)

    Crossman, J.; Futter, M. N.; Whitehead, P. G.; Stainsby, E.; Baulch, H. M.; Jin, L.; Oni, S. K.; Wilby, R. L.; Dillon, P. J.


    Hydrological processes determine the transport of nutrients and passage of diffuse pollution. Consequently, catchments are likely to exhibit individual hydrochemical responses (sensitivities) to climate change, which are expected to alter the timing and amount of runoff, and to impact in-stream water quality. In developing robust catchment management strategies and quantifying plausible future hydrochemical conditions it is therefore equally important to consider the potential for spatial variability in, and causal factors of, catchment sensitivity, as it is to explore future changes in climatic pressures. This study seeks to identify those factors which influence hydrochemical sensitivity to climate change. A perturbed physics ensemble (PPE), derived from a series of global climate model (GCM) variants with specific climate sensitivities was used to project future climate change and uncertainty. Using the INtegrated CAtchment model of Phosphorus dynamics (INCA-P), we quantified potential hydrochemical responses in four neighbouring catchments (with similar land use but varying topographic and geological characteristics) in southern Ontario, Canada. Responses were assessed by comparing a 30 year baseline (1968-1997) to two future periods: 2020-2049 and 2060-2089. Although projected climate change and uncertainties were similar across these catchments, hydrochemical responses (sensitivities) were highly varied. Sensitivity was governed by quaternary geology (influencing flow pathways) and nutrient transport mechanisms. Clay-rich catchments were most sensitive, with total phosphorus (TP) being rapidly transported to rivers via overland flow. In these catchments large annual reductions in TP loads were projected. Sensitivity in the other two catchments, dominated by sandy loams, was lower due to a larger proportion of soil matrix flow, longer soil water residence times and seasonal variability in soil-P saturation. Here smaller changes in TP loads, predominantly

  11. Determination of mechanical damage from wells under oil and gas flow condition; Determinacao de dano mecanico em pocos sob condicao de escoamento de oleo e gas

    Energy Technology Data Exchange (ETDEWEB)

    Marques, J. B.D. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Trevisan, O. V. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)


    The well bore effect is one of the most difficult variables obtained from well test analysis under two-phase condition. The presence of the gas in a well inserted in reservoir, which operates under gas drive solution, hinders the development of the analytical model to determine the mechanical damage. It is one of the reasons of the using the single phase well test analysis methodologies become suitable to the multiphase cases. The determination of the well bore effect is justified; therefore it is possible to work over in the well in order to determinate the real potential productive. The main objective of this work is to reevaluate a method of determination of the mechanical damage gotten from a well test under two-phase condition. In this work a simplified model of reservoir simulation is constructed in a commercial simulator in order to validate the methodology. The refinement of the blocks near to the well adopted in the simulation is a good representation of the well mechanical damage which occurs in a homogeneous reservoir. The types of well test analysis used in this work are two: drawdown and buildup test. The results gotten for this methodology, as will be shown, are excellent quality and the model of simulation presented here can be used for other analytical methods studies in order to determinate the mechanical damage or other variable of the reservoir. (author)

  12. [Pathophysiology of neuropathic pain: molecular mechanisms underlying central sensitization in the dorsal horn in neuropathic pain]. (United States)

    Yamanaka, Hiroki; Noguchi, Koichi


    Neuropathic pain syndromes are clinically characterized by spontaneous pain and evoked pain (hyperalgesia and allodynia). The optimal treatment approach for neuropathic pain is still under development because of the complex pathological mechanisms underlying this type of pain. The spinal cord is an important gateway thorough which peripheral pain signals are transmitted to the brain, and sensitization of the spinal neurons is one of the important mechanisms underlying neuropathic pain. Central sensitization represents enhancement of the function of neuronal circuits in nociceptive pathways and is a manifestation of the remarkable plasticity of the somatosensory nervous system after nerve injury. This review highlights the pathological features of central sensitization, which develops because of (1) injury-induced abnormal inputs from primary afferents, (2) increase in the excitability of dorsal horn neurons, and (3) activated glial cell-derived signals.

  13. Driving things

    DEFF Research Database (Denmark)

    Nevile, Maurice Richard


    . pp.155 (( Nevile, M., Haddington, P., Heinemann, T., Rauniomaa, M. (Eds.) Interacting with objects: Language, materiality, and social activity. Amsterdam/Philadelphia: John Benjamins. Redshaw, S. (2008....... Interaction with objects reflects the car’s role beyond mere transport as a site of personal, social, and work life (Featherstone et al. 2005; Redshaw 2008). Studies of interaction examine this role as it is actually enacted, understood, and accomplished, in situ through participants’ practices (e.g. Laurier...... of in-car distractions, and how they impact driving activities (Nevile & Haddington 2010). Data are video recordings of ordinary journeys, capturing drivers and passengers in real-world real-time driving situations (27 hours, 90 journeys). For driving and road safety, research and experience has...

  14. Community Drive

    DEFF Research Database (Denmark)

    Magnussen, Rikke


    opportunity to break boundaries between research institutions and surrounding communities through the involvement of new types of actors, knowledge forms and institutions (OECD, 2011). This paper presents the project Community Drive a three year cross disciplinary community-driven game– and data-based project....... In the paper we present how the project Community Drive initiated in May 2018 is based on results from pilot projects conducted from 2014 – 2017. Overall these studies showed that it is a strong motivational factor for students to be given the task to change their living conditions through redesign...... of living in the area. The paper discusses potentials and pitfalls of designing community-driven science gaming environments and how results from previous studies can form the project Community Drive....

  15. Back-arc Extension: Critical Analisys of Subduction-related and Non Subduction-related Driving Mechanisms (United States)

    Mantovani, E.; Viti, M.; Babbucci, D.; Tamburelli, C.; Albarello, D.

    It is argued that the opening of back arc basins can hardly be explained as an effect of subduction related forces, since this kind of interpretation has not yet provided plausible explanations for several major features of such processes in the world. In particular, it is not clear why back arc extension occurs in some subduction zones and not in others, why extension ceased in zones where subduction has remained active, why the arcs associated with back arc basins are often characterized by a strongly curved shape, why arc-trench-back arc systems do not develop along the entire length of consuming borders and why no significant correlation can be recognized between any parameter of subduction processes and the occurrence of back arc extension. In addition, modelling experiments indicate that the magnitude of the tensional stress induced in the overriding plate by subduction-related forces is significantly lower than the lithospheric strength. These problems are discussed, in particular, for three subduction-related interpretations, the "slab-pull", the "corner flow" and the "sea an- chor" models, which seem to be the most quoted in literature. It is then argued that possible solutions of the above problems may be provided by the extrusion model, which postulates that back arc basins are generated by the forced separation of the arc from the overriding plate, along a sector of the consuming border. This separa- tion is generally caused by the oblique indentation of strong and buoyant structures against the accretionary belt. In this view, subduction and back arc extension are not causally linked one to the other, but rather represent simultaneous effects of the lateral migration of the arc, driven by plate convergence. It is pointed out that the conditions required for the occurrence of this kind of mechanism may be recognized in the tec- tonic contexts where back arc basins developed in the wake of arc-trench migrating systems. On the other hand, in the zones

  16. Near-term hybrid vehicle program, phase 1. Appendix B: Design trade-off studies. [various hybrid/electric power train configurations and electrical and mechanical drive-line components (United States)


    The relative attractiveness of various hybrid/electric power train configurations and electrical and mechanical drive-line components was studied. The initial screening was concerned primarily with total vehicle weight and economic factors and identified the hybrid power train combinations which warranted detailed evaluation over various driving cycles. This was done using a second-by-second vehicle simulation program which permitted the calculations of fuel economy, electricity usage, and emissions as a function of distance traveled in urban and highway driving. Power train arrangement possibilities were examined in terms of their effect on vehicle handling, safety, serviceability, and passenger comfort. A dc electric drive system utilizing a separately excited motor with field control and battery switching was selected for the near term hybrid vehicle. Hybrid vehicle simulations showed that for the first 30 mi (the electric range of the vehicle) in urban driving, the fuel economy was 80 mpg using a gasoline engine and 100 mpg using a diesel engine. In urban driving the hybrid would save about 75% of the fuel used by the conventional vehicle and in combined urban/highway driving the fuel saving is about 50%.

  17. Review of the damage mechanism in wind turbine gearbox bearings under rolling contact fatigue (United States)

    Su, Yun-Shuai; Yu, Shu-Rong; Li, Shu-Xin; He, Yan-Ni


    Wind turbine gearbox bearings fail with the service life is much shorter than the designed life. Gearbox bearings are subjected to rolling contact fatigue (RCF) and they are observed to fail due to axial cracking, surface flaking, and the formation of white etching areas (WEAs). The current study reviewed these three typical failure modes. The underlying dominant mechanisms were discussed with emphasis on the formation mechanism of WEAs. Although numerous studies have been carried out, the formation of WEAs remains unclear. The prevailing mechanism of the rubbing of crack faces that generates WEAs was questioned by the authors. WEAs were compared with adiabatic shear bands (ASBs) generated in the high strain rate deformation in terms of microstructural compositions, grain refinement, and formation mechanism. Results indicate that a number of similarities exist between them. However, substantial evidence is required to verify whether or not WEAs and ASBs are the same matters.

  18. Transformational Leadership and Organizational Citizenship Behavior: A Meta-Analytic Test of Underlying Mechanisms. (United States)

    Nohe, Christoph; Hertel, Guido


    Based on social exchange theory, we examined and contrasted attitudinal mediators (affective organizational commitment, job satisfaction) and relational mediators (trust in leader, leader-member exchange; LMX) of the positive relationship between transformational leadership and organizational citizenship behavior (OCB). Hypotheses were tested using meta-analytic path models with correlations from published meta-analyses (761 samples with 227,419 individuals overall). When testing single-mediator models, results supported our expectations that each of the mediators explained the relationship between transformational leadership and OCB. When testing a multi-mediator model, LMX was the strongest mediator. When testing a model with a latent attitudinal mechanism and a latent relational mechanism, the relational mechanism was the stronger mediator of the relationship between transformational leadership and OCB. Our findings help to better understand the underlying mechanisms of the relationship between transformational leadership and OCB.

  19. Brain activity during driving with distraction: an immersive fMRI study

    Directory of Open Access Journals (Sweden)

    Tom A Schweizer


    Full Text Available Introduction: Non-invasive measurements of brain activity have an important role to play in understanding driving ability. The current study aimed to identify the neural underpinnings of human driving behavior by visualizing the areas of the brain involved in driving under different levels of demand, such as driving while distracted or making left turns at busy intersections. Methods: To capture brain activity during driving, we placed a driving simulator with a fully functional steering wheel and pedals in a 3.0 Tesla functional magnetic resonance imaging (fMRI system. To identify the brain areas involved while performing different real-world driving maneuvers, participants completed tasks ranging from simple (right turns to more complex (left turns at busy intersections. To assess the effects of driving while distracted, participants were asked to perform an auditory task while driving analogous to speaking on a hands-free device and driving. Results: A widely distributed brain network was identified, especially when making left turns at busy intersections compared to more simple driving tasks. During distracted driving, brain activation shifted dramatically from the posterior, visual and spatial areas to the prefrontal cortex. Conclusions: Our findings suggest that the distracted brain sacrificed areas in the posterior brain important for visual attention and alertness to recruit enough brain resources to perform a secondary, cognitive task. The present findings offer important new insights into the scientific understanding of the neuro-cognitive mechanisms of driving behavior and lay down an important foundation for future clinical research.

  20. Effects of delaying transplanting on agronomic traits and grain yield of rice under mechanical transplantation pattern.

    Directory of Open Access Journals (Sweden)

    Qihua Liu

    Full Text Available A delay in the mechanical transplantation (MT of rice seedlings frequently occurs in Huanghuai wheat-rice rotation cropping districts of China, due to the late harvest of wheat, the poor weather conditions and the insufficiency of transplanters, missing the optimum transplanting time and causing seedlings to age. To identify how delaying transplanting rice affects the agronomic characteristics including the growth duration, photosynthetic productivity and dry matter remobilization efficiency and the grain yield under mechanical transplanting pattern, an experiment with a split-plot design was conducted over two consecutive years. The main plot includes two types of cultivation: mechanical transplanting and artificial transplanting (AT. The subplot comprises four japonica rice cultivars. The results indicate that the rice jointing, booting, heading and maturity stages were postponed under MT when using AT as a control. The tiller occurrence number, dry matter weight per tiller, accumulative dry matter for the population, leaf area index, crop growth rate, photosynthetic po