WorldWideScience

Sample records for underlying ceramic substrate

  1. Ceramic substrate including thin film multilayer surface conductor

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Joseph Ambrose; Peterson, Kenneth A.

    2017-05-09

    A ceramic substrate comprises a plurality of ceramic sheets, a plurality of inner conductive layers, a plurality of vias, and an upper conductive layer. The ceramic sheets are stacked one on top of another and include a top ceramic sheet. The inner conductive layers include electrically conductive material that forms electrically conductive features on an upper surface of each ceramic sheet excluding the top ceramic sheet. The vias are formed in each of the ceramic sheets with each via being filled with electrically conductive material. The upper conductive layer includes electrically conductive material that forms electrically conductive features on an upper surface of the top ceramic sheet. The upper conductive layer is constructed from a stack of four sublayers. A first sublayer is formed from titanium. A second sublayer is formed from copper. A third sublayer is formed from platinum. A fourth sublayer is formed from gold.

  2. Hot Films on Ceramic Substrates for Measuring Skin Friction

    Science.gov (United States)

    Noffz, Greg; Leiser, Daniel; Bartlett, Jim; Lavine, Adrienne

    2003-01-01

    Hot-film sensors, consisting of a metallic film on an electrically nonconductive substrate, have been used to measure skin friction as far back as 1931. A hot film is maintained at an elevated temperature relative to the local flow by passing an electrical current through it. The power required to maintain the specified temperature depends on the rate at which heat is transferred to the flow. The heat transfer rate correlates to the velocity gradient at the surface, and hence, with skin friction. The hot-film skin friction measurement method is most thoroughly developed for steady-state conditions, but additional issues arise under transient conditions. Fabricating hot-film substrates using low-thermal-conductivity ceramics can offer advantages over traditional quartz or polyester-film substrates. First, a low conductivity substrate increases the fraction of heat convected away by the fluid, thus increasing sensitivity to changes in flow conditions. Furthermore, the two-part, composite nature of the substrate allows the installation of thermocouple junctions just below the hot film, which can provide an estimate of the conduction heat loss.

  3. Mo-Si-B-Based Coatings for Ceramic Base Substrates

    Science.gov (United States)

    Perepezko, John Harry (Inventor); Sakidja, Ridwan (Inventor); Ritt, Patrick (Inventor)

    2015-01-01

    Alumina-containing coatings based on molybdenum (Mo), silicon (Si), and boron (B) ("MoSiB coatings") that form protective, oxidation-resistant scales on ceramic substrate at high temperatures are provided. The protective scales comprise an aluminoborosilicate glass, and may additionally contain molybdenum. Two-stage deposition methods for forming the coatings are also provided.

  4. Laser cladding of high performance ceramic sheets on a low quality ceramic substrate

    International Nuclear Information System (INIS)

    Triantafyllidis, D.; Li, L.; Stott, F.H.

    2004-01-01

    High alumina refractory ceramics offer increased resistance in slagging environments. In particular, the presence of more than 5% Cr 2 O 3 in a high alumina refractory ceramic increases its slag corrosion resistance due to the formation of a dense Cr-spinel oxide layer at the refractory/slag interface. However, refractory ceramics containing more that 5% Cr 2 O 3 cost significantly more than Cr 2 O 3 -free refractory ceramics. The surface and near-surface compositions and properties are more important than the bulk properties for high-temperature applications in slag-containing environments. Laser cladding, therefore, is a useful tool for developing refractory ceramics with a low-cost substrate and a high slag-corrosion resistant surface layer. This paper presents a technique involving cladding of pre-positioned layers of a 85% Al 2 O 3 -5% Cr 2 O 3 ceramic on a 60% Al 2 O 3 refractory ceramic, focusing on the process characteristics. A simple model that describes the process of multi-sheet cladding is developed and the operating map for the process is presented. The microstructural characteristics of the clad surfaces have been analysed by optical and scanning electron microscopy (SEM), as well as energy dispersion X-ray spectroscopy (EDX), revealing the formation of an intermediate layer between the substrate and the top ceramic sheets in multi-sheet cladding. A bi-phasic structure is formed in the clad surface, comprising of an Al 2 O 3 -Cr 2 O 3 -based solid solution and a SiO 2 -based matrix

  5. Sol-gel derived ceramic electrolyte films on porous substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kueper, Timothy Walter [Univ. of California, Berkeley, CA (United States)

    1992-05-01

    A process for the deposition of sol-gel derived thin films on porous substrates has been developed; such films should be useful for solid oxide fuel cells and related applications. Yttria-stabilized zirconia films have been formed from metal alkoxide starting solutions. Dense films have been deposited on metal substrates and ceramic substrates, both dense and porous, through dip-coating and spin-coating techniques, followed by a heat treatment in air. X-ray diffraction has been used to determine the crystalline phases formed and the extent of reactions with various substrates which may be encountered in gas/gas devices. Surface coatings have been successfully applied to porous substrates through the control of substrate pore size and deposition parameters. Wetting of the substrate pores by the coating solution is discussed, and conditions are defined for which films can be deposited over the pores without filling the interiors of the pores. Shrinkage cracking was encountered in films thicker than a critical value, which depended on the sol-gel process parameters and on the substrate characteristics. Local discontinuities were also observed in films which were thinner than a critical value which depended on the substrate pore size. A theoretical discussion of cracking mechanisms is presented for both types of cracking, and the conditions necessary for successful thin formation are defined. The applicability of these film gas/gas devices is discussed.

  6. Bonding strength of glass-ceramic trabecular-like coatings to ceramic substrates for prosthetic applications.

    Science.gov (United States)

    Chen, Qiang; Baino, Francesco; Pugno, Nicola M; Vitale-Brovarone, Chiara

    2013-04-01

    A new approach based on the concepts of quantized fracture mechanics (QFM) is presented and discussed in this paper to estimate the bonding strength of trabecular-like coatings, i.e. glass-ceramic scaffolds mimicking the architecture of cancellous bone, to ceramic substrates. The innovative application of glass-derived scaffolds as trabecular-like coatings is proposed in order to enhance the osteointegration of prosthetic ceramic devices. The scaffolds, prepared by polymeric sponge replication, are joined to alumina substrates by a dense glass-ceramic coating (interlayer) and the so-obtained 3-layer constructs are investigated from micro-structural, morphological and mechanical viewpoints. In particular, the fracture strengths of three different crack propagation modes, i.e. glass-derived scaffold fracture, interface delamination or mixed fracture, are predicted in agreement with those of experimental mechanical tests. The approach proposed in this work could have interesting applications towards an ever more rational design of bone tissue engineering biomaterials and coatings, in view of the optimization of their mechanical properties for making them actually suitable for clinical applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Masking ability of a zirconia ceramic on composite resin substrate shades

    Directory of Open Access Journals (Sweden)

    Farhad Tabatabaian

    2017-01-01

    Conclusion: Within the limitations of this study, it can be concluded that the tested zirconia ceramic could not thoroughly mask different shades of the composite resin substrates. Moreover, color masking of zirconia depends on the shade of substrate.

  8. Deposition, characterization, and tribological applications of near-frictionless carbon films on glass and ceramic substrates

    International Nuclear Information System (INIS)

    Eryilmaz, O L; Johnson, J A; Ajayi, O O; Erdemir, A

    2006-01-01

    As an element, carbon is rather unique and offers a range of rare opportunities for the design and fabrication of zero-, one-, two-, and three-dimensional nanostructured novel materials and coatings such as fullerenes, nanotubes, thin films, and free-standing nano-to-macroscale structures. Among these, carbon-based two-dimensional thin films (such as diamond and diamond-like carbon (DLC)) have attracted an overwhelming interest in recent years, mainly because of their exceptional physical, chemical, mechanical, electrical, and tribological properties. In particular, certain DLC films were found to provide extremely low friction and wear coefficients to sliding metallic and ceramic surfaces. Since the early 1990s, carbon has been used at Argonne National Laboratory to synthesize a class of novel DLC films that now provide friction and wear coefficients as low as 0.001 and 10 -11 -10 -10 mm 3 N -1 m -1 , respectively, when tested in inert or vacuum test environments. Over the years, we have optimized these films and applied them successfully to all kinds of metallic and ceramic substrates and evaluated their friction and wear properties under a wide range of sliding conditions. In this paper, we will provide details of our recent work on the deposition, characterization, and tribological applications of near-frictionless carbon films on glass and ceramic substrates. We will also provide chemical and structural information about these films and describe the fundamental tribological mechanisms that control their unusual friction and wear behaviour

  9. Novel low-temperature sintering ceramic substrate based on indialite/cordierite glass ceramics

    Science.gov (United States)

    Varghese, Jobin; Vahera, Timo; Ohsato, Hitoshi; Iwata, Makoto; Jantunen, Heli

    2017-10-01

    In this paper, a novel low-temperature sintering substrate for low temperature co-fired ceramic applications based on indialite/cordierite glass ceramics with Bi2O3 as a sintering aid showing low permittivity (εr) and ultralow dielectric loss (tan δ) is described. The fine powder of indialite was prepared by the crystallization of cordierite glass at 1000 °C/1 h. The optimized sintering temperature was 900 °C with 10 wt % Bi2O3 addition. The relative density achieved was 97%, and εr and tan δ were 6.10 and 0.0001 at 1 MHz, respectively. The composition also showed a moderately low temperature coefficient of relative permittivity of 118 ppm/°C at 1 MHz. The obtained linear coefficient of thermal expansion was 3.5 ppm/°C in the measured temperature range of 100 to 600 °C. The decreasing trend in dielectric loss, the low relative permittivity at 1 MHz, and the low thermal expansion of the newly developed composition make it an ideal choice for radio frequency applications.

  10. Transformation kinetics of mixed polymeric substrates under ...

    African Journals Online (AJOL)

    Transformation kinetics of mixed polymeric substrates under transitory conditions by Aspergillus niger. ... Abstract. A mixture of polymeric substrates (simulating a complex wastewater) was transformed under sewer conditions and aerobiosis by Aspergillus niger in a tanks-in-series reactor at a hydraulic retention time of 14 h.

  11. Microstructural and Wear Behavior Characterization of Porous Layers Produced by Pulsed Laser Irradiation in Glass-Ceramics Substrates.

    Science.gov (United States)

    Sola, Daniel; Conde, Ana; García, Iñaki; Gracia-Escosa, Elena; de Damborenea, Juan J; Peña, Jose I

    2013-09-09

    In this work, wear behavior and microstructural characterization of porous layers produced in glass-ceramic substrates by pulsed laser irradiation in the nanosecond range are studied under unidirectional sliding conditions against AISI316 and corundum counterbodies. Depending on the optical configuration of the laser beam and on the working parameters, the local temperature and pressure applied over the interaction zone can generate a porous glass-ceramic layer. Material transference from the ball to the porous glass-ceramic layer was observed in the wear tests carried out against the AISI316 ball counterface whereas, in the case of the corundum ball, the wear volume loss was concentrated in the porous layer. Wear rate and friction coefficient presented higher values than expected for dense glass-ceramics.

  12. Microstructural and Wear Behavior Characterization of Porous Layers Produced by Pulsed Laser Irradiation in Glass-Ceramics Substrates

    Directory of Open Access Journals (Sweden)

    Jose I. Peña

    2013-09-01

    Full Text Available In this work, wear behavior and microstructural characterization of porous layers produced in glass-ceramic substrates by pulsed laser irradiation in the nanosecond range are studied under unidirectional sliding conditions against AISI316 and corundum counterbodies. Depending on the optical configuration of the laser beam and on the working parameters, the local temperature and pressure applied over the interaction zone can generate a porous glass-ceramic layer. Material transference from the ball to the porous glass-ceramic layer was observed in the wear tests carried out against the AISI316 ball counterface whereas, in the case of the corundum ball, the wear volume loss was concentrated in the porous layer. Wear rate and friction coefficient presented higher values than expected for dense glass-ceramics.

  13. Thermal Effect of Ceramic Substrate on Heat Distribution in Thermoelectric Generators

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse

    2012-01-01

    in the heat sink, a parallel microchannel heat sink is applied to a real TEG. The focus of this study is a discussion of the temperature difference variation between the cold/hot sides of the TEG legs versus the variation of the thermal conductivity of the ceramic substrate and the thickness of the substrate...... that the temperature difference is affected remarkably by the pressure drops in the heat sink, the thermal conductivity of the ceramic substrate, and the thickness of the substrate on the hot side....

  14. Transformation kinetics of mixed polymeric substrates under ...

    African Journals Online (AJOL)

    bglucosidase and a-mannosidase were abundantly secreted in the growth medium. This research is the first report on mixed polymeric substrate biodegradation under sewer condition by A. niger, and could be considered as an open window on ...

  15. Essential Factors Influencing the Bonding Strength of Cold-Sprayed Aluminum Coatings on Ceramic Substrates

    Science.gov (United States)

    Drehmann, R.; Grund, T.; Lampke, T.; Wielage, B.; Wüstefeld, C.; Motylenko, M.; Rafaja, D.

    2018-02-01

    The present work summarizes the most important results of a research project dealing with the comprehensive investigation of the bonding mechanisms between cold-sprayed Al coatings and various poly- and monocrystalline ceramic substrates (Al2O3, AlN, Si3N4, SiC, MgF2). Due to their exceptional combination of properties, metallized ceramics are gaining more and more importance for a wide variety of applications, especially in electronic engineering. Cold spray provides a quick, flexible, and cost-effective one-step process to apply metallic coatings on ceramic surfaces. However, since most of the existing cold-spray-related publications focus on metallic substrates, only very little is known about the bonding mechanisms acting between cold-sprayed metals and ceramic substrates. In this paper, the essential factors influencing the bonding strength in such composites are identified. Besides mechanical tensile strength testing, a thorough analysis of the coatings and especially the metal/ceramic interfaces was conducted by means of HRTEM, FFT, STEM, EDX, EELS, GAXRD, and EBSD. The influence of substrate material, substrate temperature, and particle size is evaluated. The results suggest that, apart from mechanical interlocking, the adhesion of cold-sprayed metallic coatings on ceramics is based on a complex interplay of different mechanisms such as quasiadiabatic shearing, static recrystallization, and heteroepitaxial growth.

  16. The Influence of Ceramic and Metallic Substrates on the Oxidation Behavior of Gold ABA

    Energy Technology Data Exchange (ETDEWEB)

    Weil, K. Scott; Rice, Joseph P.

    2004-12-31

    Two commercial ceramic-to-metal braze alloys, Nioro ABA and Gold ABA, were exposure tested in high-temperature air to evaluate their oxidation behavior, microstructural stability, and materials compatibility for potential application in sealing the ceramic and metal components of a solid-state oxygen separation device. Oxidation studies were conducted on the as-received braze alloy foils, on wetting samples prepared using yttria-stabilized zirconia (YSZ) and stainless steel substrates, and on brazed YSZ/stainless steel joints. It was found that the introduction of the YSZ and/or the stainless steel can significantly modify the inherent oxidation characteristics of these brazes due to accelerated oxygen transport along the braze/ceramic interface and/or diffusion of oxidizable species from the metal substrate into the braze during joining and subsequent segregation and oxidation of these species at the braze/ceramic interface.

  17. MM&T-Ceramic Metal Substrates for Hybrid Electronics: Handbook

    Science.gov (United States)

    1984-01-01

    Copper EL-P0II-2 Alloy 42 EK5/EK6 303 Stainless Steel Steel- Invar -Steel (a) FERRO-ECA Electronics Company 3130 West 22nd Street, P.O. Box 8305...AND ADDRESS Harry Diamond Laboratories 2800 Powder Mill Road Adelphi, MD 20783 12. REPORT DATE January 1984 13. NUMBER OF PAGES 14...PLASMA-SPRAYED CERAMIC ON METAL Metal Coating Results of Coating Effect of 850oC Thkr Film Profile Alloy #2 105SF 334F LINDE A Good Good

  18. Automatic quality control in the production of ceramic substrates by pulsed laser cutting

    DEFF Research Database (Denmark)

    Morace, Renate Erica; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2004-01-01

    This paper deals with the use of optical coordinate measuring machines (CMMs) in the quality control of ceramic substrates produced by a CO2 pulsed laser. A procedure of automatic measurements on a CMM equipped with a CCD camera was developed. In particular, the number and the distribution...

  19. Study of ceramics sintering under high pressures

    International Nuclear Information System (INIS)

    Kunrath Neto, A.O.

    1990-01-01

    A systematic study was made on high pressure sintering of ceramics in order to obtain materials with controlled microstructure, which are not accessible by conventional methods. Some aspects with particular interest were: to achieve very low porosity, with fine grains; to produce dispersed metastable and denser phases which can act as toughening agents; the study of new possibilities for toughening enhancement. (author)

  20. Glass-(nAg, nCu) Biocide Coatings on Ceramic Oxide Substrates

    OpenAIRE

    Esteban-Tejeda, Leticia; Malpartida, Francisco; Díaz, Luis Antonio; Torrecillas, Ramón; Rojo, Fernando; Moya, José Serafín

    2012-01-01

    The present work was focused on obtaining biocide coatings constituted by a glassy soda-lime matrix containing silver or copper nanoparticles on ceramic (alumina and zirconia based) substrates. Both glassy coatings showed a high biocide activity against Gram-, Gram+ bacteria and yeast, reducing cell numbers more than three logarithms. Silver nanoparticles had a significantly higher biocide activity than copper nanoparticles, since the lixiviation levels required to reduce cell numbers more th...

  1. Surface Hardness of Resin Cement Polymerized under Different Ceramic Materials

    OpenAIRE

    Kesrak, Pimmada; Leevailoj, Chalermpol

    2012-01-01

    Objectives. To evaluate the surface hardness of two light-cured resin cements polymerized under different ceramic discs. Methods. 40 experimental groups of 2 light-cured resin cement specimens (Variolink Veneer and NX3) were prepared and polymerized under 5 different ceramic discs (IPS e.max Press HT, LT, MO, HO, and Cercon) of 4 thicknesses (0.5, 1.0, 1.5, and 2.0 mm), Those directly activated of both resin cements were used as control. After light activation and 3 7 ∘ C storage in an incuba...

  2. Crack Driving Forces in a Multilayered Coating System for Ceramic Matrix Composite Substrates

    Science.gov (United States)

    Ghosn, Louis J.; Zhu, Dongming; Miller, Robert A.

    2005-01-01

    The effects of the top coating thickness, modulus and shrinkage strains on the crack driving forces for a baseline multilayer Yttria-Stabilized-Zirconia/Mullite/Si thermal and environment barrier coating (TEBC) system for SiC/SiC ceramic matrix composite substrates are determined for gas turbine applications. The crack driving forces increase with increasing modulus, and a low modulus thermal barrier coating material (below 10 GPa) will have no cracking issues under the thermal gradient condition analyzed. Since top coating sintering increases the crack driving forces with time, highly sintering resistant coatings are desirable to maintain a low tensile modulus and maintain a low crack driving force with time. Finite element results demonstrated that an advanced TEBC system, such as ZrO2/HfO2, which possesses improved sintering resistance and high temperature stability, exhibited excellent durability. A multi-vertical cracked structure with fine columnar spacing is an ideal strain tolerant coating capable of reducing the crack driving forces to an acceptable level even with a high modulus of 50 GPa.

  3. Thin Single Crystal Silicon Solar Cells on Ceramic Substrates: November 2009 - November 2010

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A.; Ravi, K. V.

    2011-06-01

    In this program we have been developing a technology for fabricating thin (< 50 micrometres) single crystal silicon wafers on foreign substrates. We reverse the conventional approach of depositing or forming silicon on foreign substrates by depositing or forming thick (200 to 400 micrometres) ceramic materials on high quality single crystal silicon films ~ 50 micrometres thick. Our key innovation is the fabrication of thin, refractory, and self-adhering 'handling layers or substrates' on thin epitaxial silicon films in-situ, from powder precursors obtained from low cost raw materials. This 'handling layer' has sufficient strength for device and module processing and fabrication. Successful production of full sized (125 mm X 125 mm) silicon on ceramic wafers with 50 micrometre thick single crystal silicon has been achieved and device process flow developed for solar cell fabrication. Impurity transfer from the ceramic to the silicon during the elevated temperature consolidation process has resulted in very low minority carrier lifetimes and resulting low cell efficiencies. Detailed analysis of minority carrier lifetime, metals analysis and device characterization have been done. A full sized solar cell efficiency of 8% has been demonstrated.

  4. Modeling of thermal explosion under pressure in metal ceramic systems

    International Nuclear Information System (INIS)

    Shapiro, M.; Dudko, V.; Skachek, B.; Matvienko, A.; Gotman, I.; Gutmanas, E.Y.

    1998-01-01

    The process of reactive in situ synthesis of dense ceramic matrix composites in Ti-B-C, Ti-B-N, Ti-Si-N systems is modeled. These ceramics are fabricated on the basis of compacted blends of ceramic powders, namely Ti-B 4 C and/or Ti-BN. The objectives of the project are to identify and investigate the optimal thermal conditions preferable for production of fully dense ceramic matrix composites. Towards this goal heat transfer and combustion in dense and porous ceramic blends are investigated during monotonous heating at a constant rate. This process is modeled using a heat transfer-combustion model with kinetic parameters determined from the differential thermal analysis of the experimental data. The kinetic burning parameters and the model developed are further used to describe the thermal explosion synthesis in a restrained die under pressure. It is shown that heat removal from the reaction zone affects the combustion process and the final phase composition

  5. Ceramic-like open-celled geopolymer foam as a porous substrate for water treatment catalyst

    Science.gov (United States)

    Kovářík, T.; Křenek, T.; Pola, M.; Rieger, D.; Kadlec, J.; Franče, P.

    2017-02-01

    This paper presents results from experimental study on microstructural and mechanical properties of geopolymer-based foam filters. The process for making porous ceramic-like geopolymer body was experimentally established, consists of (a) geopolymer paste synthesis, (b) ceramic filler incorporation, (c) coating of open-celled polyurethane foam with geopolymer mixture, (d) rapid setting procedure, (e) thermal treatment. Geopolymer paste was based on potassium silicate solution n(SiO2)/n(K2O)=1.6 and powder mixture of calcined kaolin and precipitated silica. Various types of ceramic granular filler (alumina, calcined schistous clay and cordierite) were tested in relation to aggregate gradation design and particle size distribution. The small amplitude oscillatory rheometry in strain controlled regime 0.01% with angular frequency 10 rad/s was applied for determination of rheology behavior of prepared mixtures. Thermal treatment conditions were applied in the temperature range 1100 - 1300 °C. The developed porous ceramic-like foam effectively served as a substrate for highly active nanoparticles of selected Fe+2 spinels. Such new-type of nanocomposite was tested as a heterogeneous catalyst for technological process of advanced oxidative degradation of resistive antibiotics occurring in waste waters.

  6. Survival of resin infiltrated ceramics under influence of fatigue.

    Science.gov (United States)

    Aboushelib, Moustafa N; Elsafi, Mohamed H

    2016-04-01

    to evaluate influence of cyclic fatigue on two resin infiltrated ceramics and three all-ceramic crowns manufactured using CAD/CAM technology. CAD/CAM anatomically shaped crowns were manufactured using two resin infiltrated ceramics (Lava Ultimate and Vita Enamic), two reinforced glass ceramic milling blocks ((IPS)Empress CAD and (IPS)e.max CAD) and a veneered zirconia core ((IPS)Zir CAD). (IPS)e.max CAD and (IPS)Zir CAD were milled into 0.5mm thick anatomically shaped core structure which received standardized press-on veneer ceramic. The manufactured crowns were cemented on standardized resin dies using a resin adhesive (Panavia F2.0). Initial fracture strength of half of the specimens was calculated using one cycle load to failure in a universal testing machine. The remaining crowns were subjected to 3.7 million chewing cycles (load range 50-200N at 3s interval) in a custom made pneumatic fatigue tester. Survival statistics were calculated and Weibull modulus was measured from fitted load-cycle-failure diagrams. Scanning electron microscopy was performed to fractographically analyze fractured surfaces. Data were analyzed using two way analysis of variance and Bonferroni post hoc tests (α=0.05). Dynamic fatigue resulted in significant reduction (F=7.54, Pceramics and (IPS)Empress demonstrated the highest percent of fracture incidences under the influence of fatigue (35-45% splitting). None of the tested veneered zirconia restorations were fractured during testing, however, chipping of the veneer ceramics was observed in 6 crowns. The lowest percent of failure was observed for (IPS)e.max crowns manifested as 3 cases of minor chipping in addition to two complete fracture incidences. SEM images demonstrated the internal structure of the tested materials and detected location and size of the critical crack. The internal structure of the tested materials significantly influenced their fatigue behavior. Resin infiltrated ceramics were least influenced by fatigue while

  7. Glass-(nAg, nCu) Biocide Coatings on Ceramic Oxide Substrates

    Science.gov (United States)

    Esteban-Tejeda, Leticia; Malpartida, Francisco; Díaz, Luis Antonio; Torrecillas, Ramón; Rojo, Fernando; Moya, José Serafín

    2012-01-01

    The present work was focused on obtaining biocide coatings constituted by a glassy soda-lime matrix containing silver or copper nanoparticles on ceramic (alumina and zirconia based) substrates. Both glassy coatings showed a high biocide activity against Gram−, Gram+ bacteria and yeast, reducing cell numbers more than three logarithms. Silver nanoparticles had a significantly higher biocide activity than copper nanoparticles, since the lixiviation levels required to reduce cell numbers more than 3 logarithms was of almost 1–2 µg/cm2 in the case of silver nanoparticles, and 10–15 µg/cm2 for the copper nanoparticles. PMID:22427967

  8. Glass-(nAg, nCu) biocide coatings on ceramic oxide substrates.

    Science.gov (United States)

    Esteban-Tejeda, Leticia; Malpartida, Francisco; Díaz, Luis Antonio; Torrecillas, Ramón; Rojo, Fernando; Moya, José Serafín

    2012-01-01

    The present work was focused on obtaining biocide coatings constituted by a glassy soda-lime matrix containing silver or copper nanoparticles on ceramic (alumina and zirconia based) substrates. Both glassy coatings showed a high biocide activity against Gram-, Gram+ bacteria and yeast, reducing cell numbers more than three logarithms. Silver nanoparticles had a significantly higher biocide activity than copper nanoparticles, since the lixiviation levels required to reduce cell numbers more than 3 logarithms was of almost 1-2 µg/cm(2) in the case of silver nanoparticles, and 10-15 µg/cm(2) for the copper nanoparticles.

  9. Glass-(nAg, nCu biocide coatings on ceramic oxide substrates.

    Directory of Open Access Journals (Sweden)

    Leticia Esteban-Tejeda

    Full Text Available The present work was focused on obtaining biocide coatings constituted by a glassy soda-lime matrix containing silver or copper nanoparticles on ceramic (alumina and zirconia based substrates. Both glassy coatings showed a high biocide activity against Gram-, Gram+ bacteria and yeast, reducing cell numbers more than three logarithms. Silver nanoparticles had a significantly higher biocide activity than copper nanoparticles, since the lixiviation levels required to reduce cell numbers more than 3 logarithms was of almost 1-2 µg/cm(2 in the case of silver nanoparticles, and 10-15 µg/cm(2 for the copper nanoparticles.

  10. Dental ceramics coated with bioactive glass: Surface changes after exposure in a simulated body fluid under static and dynamic conditions

    Science.gov (United States)

    Papadopoulou, L.; Kontonasaki, E.; Zorba, T.; Chatzistavrou, X.; Pavlidou, E.; Paraskevopoulos, K.; Sklavounos, S.; Koidis, P.

    2003-07-01

    Bioactive materials develop a strong bond with living tissues through a carbonate-containing hydroxyapatite layer, similar to that of bone. The fabrication of a thin bioactive glass coating on dental ceramics used in metal-ceramic restorations, could provide a bioactive surface, which in combination with a tissue regenerative technique could lead to periodontal tissues attachment. The aim of this study was the in vitro investigation of the surface structure changes of dental ceramics used in metal-ceramic restorations, coated with a bioactive glass heat-treated at 950 °C, after exposure in a simulated body fluid (SBF) under two different soaking conditions. Coating of dental ceramics with a bioactive glass resulted in the formation of a stable and well bonded with the ceramic substrate thin layer. The growth of a well-attached carbonate apatite layer on their surface after immersion in a simulated body fluid is well evidenced under both experimental conditions, although in static environment the rate of apatite growth is constant and the grown layers seem to be more dense and compact compared with the respective layers observed on specimens under dynamic conditions.

  11. Predicting sintering deformation of ceramic film constrained by rigid substrate using anisotropic constitutive law

    International Nuclear Information System (INIS)

    Li Fan; Pan Jingzhe; Guillon, Olivier; Cocks, Alan

    2010-01-01

    Sintering of ceramic films on a solid substrate is an important technology for fabricating a range of products, including solid oxide fuel cells, micro-electronic PZT films and protective coatings. There is clear evidence that the constrained sintering process is anisotropic in nature. This paper presents a study of the constrained sintering deformation using an anisotropic constitutive law. The state of the material is described using the sintering strains rather than the relative density. In the limiting case of free sintering, the constitutive law reduces to a conventional isotropic constitutive law. The anisotropic constitutive law is used to calculate sintering deformation of a constrained film bonded to a rigid substrate and the compressive stress required in a sinter-forging experiment to achieve zero lateral shrinkage. The results are compared with experimental data in the literature. It is shown that the anisotropic constitutive law can capture the behaviour of the materials observed in the sintering experiments.

  12. Development of Ceramic Coating on Metal Substrate using Industrial Waste and Ore Minerals

    Science.gov (United States)

    Bhuyan, S. K.; Thiyagarajan, T. K.; Mishra, S. C.

    2017-02-01

    The technological advancement in modern era has a boon for enlightening human life; but also is a bane to produce a huge amount of (industrial) wastes, which is of great concern for utilization and not to create environmental threats viz. polution etc. In the present piece of research work, attempts have been made to utilize fly ash (wastes of thermal power plants) and along with alumina bearing ore i.e. bauxite, for developing plasma spray ceramic coatings on metals. Fly ash and with 10 and 20% bauxite addition is used to deposit plasma spray coatings on a metal substrate. The surface morphology of the coatings deposited at different power levels of plasma spraying investigated through SEM and EDS analysis. The coating thickness is measured. The porosity levels of the coatings are evaluated. The coating hardness isalso measured. This piece of research work will be beneficial for future development and use of industrial waste and ore minerals for high-valued applications.

  13. Development of Bioactive Ceramic Coating on Titanium Alloy substrate for Biomedical Application Using Dip Coating Method

    Science.gov (United States)

    Asmawi, R.; Ibrahim, M. H. I.; Amin, A. M.; Mustafa, N.; Noranai, Z.

    2017-08-01

    Bioactive apatite, such as hydroxyapatite ceramic (HA), [Ca10(PO4)6(OH)2] has been extensively investigated for biomedical applications due to its excellent biocompatibility and tissue bioactivity properties. Its bioactivity provides direct bonding to the bone tissue. Because of its similarity in chemical composition to the inorganic matrix of bone, HA is widely used as implant materials for bone. Unfortunately, because of its poor mechanical properties,. this bioactive material is not suitable for load bearing applications. In this study, by the assistance of dip-coating technique, HA coatings were deposited on titanium alloy substrates by employing hydrothermal derived HA powder. The produced coatings then were oven-dried at 130°C for 1 hour and calcined at various temperature over the range of 200-800°C for 1 hour. XRD measurement showed that HA was the only phase present in the coatings. However coatings calcined at 800°C comprised a mixture of HA and tri-calcium phosphate (TCP). FTIR measurement showed the existence of hydroxyl, phosphate, and carbonate bands. PO4 - band became sharper and narrower with the increased of calcination temperature. FESEM observation showed that the coating is polycrystalline with individual particles of nano to submicron size and has an average particle size of 35 nm. The thickness of the coating are direcly propotional with the viscosity of coating slurry. It was shown that the more viscous coating slurry would produce a thicker ceramic coating. Mechanical properties of the coating were measured in term of adhesion strength using a Micro Materials Nano Test microscratch testing machine. The result revealed that the coating had a good adhesion to the titanium alloy substrate.

  14. The lubrication performance of the ceramic-on-ceramic hip implant under starved conditions.

    Science.gov (United States)

    Meng, Qingen; Wang, Jing; Yang, Peiran; Jin, Zhongmin; Fisher, John

    2015-10-01

    Lubrication plays an important role in the clinical performance of the ceramic-on-ceramic (CoC) hip implant in terms of reducing wear and avoiding squeaking. All the previous lubrication analyses of CoC hip implants assumed that synovial fluid was sufficiently supplied to the contact area. The aim of this study was to investigate the lubrication performance of the CoC hip implant under starved conditions. A starved lubrication model was presented for the CoC hip implant. The model was solved using multi-grid techniques. Results showed that the fluid film thickness of the CoC hip implant was affected by fluid supply conditions: with the increase in the supplied fluid layer, the lubrication film thickness approached to that of the fully blooded solution; when the available fluid layer reduced to some level, the fluid film thickness considerably decreased with the supplying condition. The above finding provides new insights into the lubrication performance of hip implants. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Transformation kinetics of mixed polymeric substrates under ...

    African Journals Online (AJOL)

    Admin

    The residual biomasses of fungi used in industries to produce enzymes are stocked in landfill nowadays, but they could serve as inoculums for pretreatment. The aims of this study were (i) to determine the kinetics of the pretreatment under transitory conditions of a synthetic wastewater containing a mixture of starch and.

  16. Influence of ceramic dental crown coating substrate thickness ratio on strain energy release rate

    Science.gov (United States)

    Khasnulhadi, K.; Daud, R.; Mat, F.; Noor, S. N. F. M.; Basaruddin, K. S.; Sulaiman, M. H.

    2017-10-01

    This paper presents the analysis of coating substrate thickness ratio effect on the crown coating fracture behaviour. The bi-layer material is examined under four point bending with pre-crack at the bottom of the core material by using finite element. Three different coating thickness of core/substrate was tested which is 1:1, 1:2 and 2:1. The fracture parameters are analysed based on bilayer and homogenous elastic interaction. The result shows that the ratio thickness of core/veneer provided a significant effect on energy release rate.

  17. Damage Characterization of EBC-SiCSiC Ceramic Matrix Composites Under Imposed Thermal Gradient Testing

    Science.gov (United States)

    Appleby, Matthew P.; Morscher, Gregory N.; Zhu, Dongming

    2014-01-01

    Due to their high temperature capabilities, Ceramic Matrix Composite (CMC) components are being developed for use in hot-section aerospace engine applications. Harsh engine environments have led to the development of Environmental Barrier Coatings (EBCs) for silicon-based CMCs to further increase thermal and environmental capabilities. This study aims at understanding the damage mechanisms associated with these materials under simulated operating conditions. A high heat-flux laser testing rig capable of imposing large through-thickness thermal gradients by means of controlled laser beam heating and back-side air cooling is used. Tests are performed on uncoated composites, as well as CMC substrates that have been coated with state-of-the-art ceramic EBC systems. Results show that the use of the EBCs may help increase temperature capability and creep resistance by reducing the effects of stressed oxidation and environmental degradation. Also, the ability of electrical resistance (ER) and acoustic emission (AE) measurements to monitor material condition and damage state during high temperature testing is shown; suggesting their usefulness as a valuable health monitoring technique. Micromechanics models are used to describe the localized stress state of the composite system, which is utilized along with ER modeling concepts to develop an electromechanical model capable of characterizing material behavior.

  18. Demonstrating the self-healing behaviour of some selected ceramics under combustion chamber conditions

    NARCIS (Netherlands)

    Farle, A.; Boatemaa, L.; Shen, Lu; Gövert, S.; Kok, J. B.W.; Bosch, M.; Yoshioka, S.; van der Zwaag, S.; Sloof, W. G.

    2016-01-01

    Closure of surface cracks by self-healing of conventional and MAX phase ceramics under realistic turbulent combustion chamber conditions is presented. Three ceramics namely; Al2O3, Ti2AlC and Cr2AlC are investigated. Healing was achieved in Al2O3 by even dispersion of TiC particles throughout the

  19. Banana peel: A novel substrate for cellulase production under solid ...

    African Journals Online (AJOL)

    These results indicated that banana peel provided necessary nutrients for cell growth and cellulase synthesis. It can be used as a potential substrate for cellulase production by T. viride GIM 3.0010 under solid-state fermentation. To the best of our knowledge, this is the first report on cellulase production using banana peel.

  20. Synthesis and characterisation of novel low temperature ceramic and its implementation as substrate in dual segment CDRA

    Science.gov (United States)

    Kumari, Preeti; Tripathi, Pankaj; Sahu, Bhagirath; Singh, S. P.; Parkash, Om; Kumar, Devendra

    2018-02-01

    Li2O-(2-3x)MgO-(x)Al2O3-P2O5 (LMAP) (x = 0.00-0.08) ceramic system was prepared through solid state synthesis route at different sintering temperatures (800-925 °C). A small addition of Al2O3 (x = 0.02) in LMAP ceramics lowers the sintering temperature by more than 100 °C with good relative density of 94.13%. The sintered samples were characterized in terms of density, apparent porosity, water absorption, crystal structure, micro-structure and microwave dielectric properties. Silver compatibility test is also performed for its use as electrode material in low temperature co-fired ceramic (LTCC) application. To check the performance of the prepared LTCC as substrate, a microstrip-fed aperture-coupled dual segment cylindrical dielectric resonator antenna (DS-CDRA) is designed using LMAP (x = 0.02) ceramic as substrate material and Barium Strontium Titanate with 10 wt% of PbO-BaO-B2O3-SiO2 glass (BSTG) and Teflon as the components of resonating material. The simulation study of the DS-CDRA is performed using the Ansys High Frequency Structure Simulator (HFSS) software. A conductive coating of silver is used on the substrate. The simulated and measured -10 dB reflection coefficient bandwidths of 910 MHz (9.07-9.98 GHz at resonant frequency of 9.49 GHz) and 1080 MHz (8.68-9.76 GHz at resonant frequency of 9.36 GHz), respectively are achieved. The measured results of the fabricated antenna are found in good agreement with the simulation results. The prepared material can find potential applications in radar and radio navigation as well as radio astronomy and military satellite communication.

  1. Bonding polycarbonate brackets to ceramic: : Effects of substrate treatment on bond strength

    NARCIS (Netherlands)

    Özcan, Mutlu; Vallittu, Pekka K.; Peltomäki, Timo; Huysmans, Marie-Charlotte; Kalk, Warner

    2004-01-01

    This study evaluated the effects of 5 different surface conditioning methods on the bond strength of polycarbonate brackets bonded to ceramic surfaces with resin based cement. Six disc-shaped ceramic specimens (feldspathic porcelain) with glazed surfaces were used for each group. The specimens were

  2. Synthesis and characterization of electrolyte-grade 10%Gd-doped ceria thin film/ceramic substrate structures for solid oxide fuel cells

    DEFF Research Database (Denmark)

    Chourashiya, M. G.; Bharadwaj, S. R.; Jadhav, L. D.

    2010-01-01

    In the present research, spray pyrolysis technique is employed to synthesize 10%Gd-doped ceria (GDC) thin films on ceramic substrates with an intention to use the "film/substrate" structure in solid oxide fuel cells. GDC films deposited on GDC substrate showed enhanced crystallite formation....... In case of NiO-GDC composite substrate, the thickness of film was higher (∼ 13 μm) as compared to the film thickness on GDC substrate (∼ 2 μm). The relative density of the films deposited on both the substrates was of the order of 95%. The impedance measurements revealed that ionic conductivity of GDC...

  3. Synthesis and characterization of 10%Gd doped ceria (GDC) deposited on NiO-GDC anode-grade-ceramic substrate as half cell for IT-SOFC

    DEFF Research Database (Denmark)

    Chourashiya, M. G.; Jadhav, L. D.

    2011-01-01

    with their interfacial-quality. By optimization of preparative parameters of SPT and modification of surface of anode-grade ceramic substrate, we were able to prepare the GDC films having thickness of the order of 13 μm on NiO-GDC substrate. Further to improve the interfacial quality and densification of film, annealing...

  4. Effects of coronal substrates and water storage on the microhardness of a resin cement used for luting ceramic crowns

    Directory of Open Access Journals (Sweden)

    Luana Menezes de MENDONÇA

    2014-07-01

    Full Text Available Composite resin and metallic posts are the materials most employed for reconstruction of teeth presenting partial or total destruction of crowns. Resin-based cements have been widely used for cementation of ceramic crowns. The success of cementation depends on the achievement of adequate cement curing. Objectives: To evaluate the microhardness of Variolink® II (Ivoclar Vivadent, Schaan, Liechtenstein, used for cementing ceramic crowns onto three different coronal substrate preparations (dentin, metal, and composite resin, after 7 days and 3 months of water storage. The evaluation was performed along the cement line in the cervical, medium and occlusal thirds on the buccal and lingual aspects, and on the occlusal surface. Material and Methods: Thirty molars were distributed in three groups (N=10 according to the type of coronal substrate: Group D- the prepared surfaces were kept in dentin; Groups M (metal and R (resin- the crowns were sectioned at the level of the cementoenamel junction and restored with metallic cast posts or resin build-up cores, respectively. The crowns were fabricated in ceramic IPS e.max® Press (Ivoclar Vivadent, Schaan, Liechtenstein and luted with Variolink II. After 7 days of water storage, 5 specimens of each group were sectioned in buccolingual direction for microhardness measurements. The other specimens (N=5 were kept stored in deionized water at 37ºC for three months, followed by sectioning and microhardness measurements. Results: Data were first analyzed by three-way ANOVA that did not reveal significant differences between thirds and occlusal surface (p=0.231. Two-way ANOVA showed significant effect of substrates (p<0.001 and the Tukey test revealed that microhardness was significantly lower when crowns were cemented on resin cores and tested after 7 days of water storage (p=0.007. Conclusion: The type of material employed for coronal reconstruction of preparations for prosthetic purposes may influence the

  5. Effects of coronal substrates and water storage on the microhardness of a resin cement used for luting ceramic crowns.

    Science.gov (United States)

    Mendonça, Luana Menezes de; Pegoraro, Luiz Fernando; Lanza, Marcos Daniel Septímio; Pegoraro, Thiago Amadei; Carvalho, Ricardo Marins de

    2014-01-01

    Composite resin and metallic posts are the materials most employed for reconstruction of teeth presenting partial or total destruction of crowns. Resin-based cements have been widely used for cementation of ceramic crowns. The success of cementation depends on the achievement of adequate cement curing. To evaluate the microhardness of Variolink® II (Ivoclar Vivadent, Schaan, Liechtenstein), used for cementing ceramic crowns onto three different coronal substrate preparations (dentin, metal, and composite resin), after 7 days and 3 months of water storage. The evaluation was performed along the cement line in the cervical, medium and occlusal thirds on the buccal and lingual aspects, and on the occlusal surface. Thirty molars were distributed in three groups (N=10) according to the type of coronal substrate: Group D- the prepared surfaces were kept in dentin; Groups M (metal) and R (resin)- the crowns were sectioned at the level of the cementoenamel junction and restored with metallic cast posts or resin build-up cores, respectively. The crowns were fabricated in ceramic IPS e.max® Press (Ivoclar Vivadent, Schaan, Liechtenstein) and luted with Variolink II. After 7 days of water storage, 5 specimens of each group were sectioned in buccolingual direction for microhardness measurements. The other specimens (N=5) were kept stored in deionized water at 37ºC for three months, followed by sectioning and microhardness measurements. Data were first analyzed by three-way ANOVA that did not reveal significant differences between thirds and occlusal surface (p=0.231). Two-way ANOVA showed significant effect of substrates (presin cores and tested after 7 days of water storage (p=0.007). The type of material employed for coronal reconstruction of preparations for prosthetic purposes may influence the cement properties.

  6. Study on ceramic breeder and related materials by means of work function measurement under irradiation

    International Nuclear Information System (INIS)

    Luo, G.N.; Terai, T.; Yamawaki, M.; Yamaguchi, K.

    2002-01-01

    Ceramic breeder materials, Li 2 O, LiAlO 2 and Li 4 SiO 4 , under irradiation have been studied using a Kelvin probe that measures work function changes of materials. Surface charging was observed to influence greatly the probe output, which can be explained qualitatively employing a model concerning induction electric field due to external field and free charges on ceramic surface. It is found that the insulating ceramics could not be studied properly with the Kelvin probe. A probable solution is to heat the ceramics, so as to raise their electric conductivities high enough to root out the surface charging. Also briefly discussed is the application of the probe to metals under ion irradiation. (orig.)

  7. Effect of Adhesive Type on the Shear Bond Strength of Metal Brackets to Two Ceramic Substrates

    Directory of Open Access Journals (Sweden)

    Mohammad Sadegh Ahmad Akhoundi

    2014-04-01

    Full Text Available Increased number of adult patients requesting orthodontic treatment result in bonding bracket to ceramic restorations more than before. The aim of this study was to evaluate and compare the shear bond strength of orthodontic brackets bonded to two types of ceramic bases with conventional orthodontic bonding resin and a new nano-filled composite resin.Twenty four feldespathic porcelain and 24 lithium disilicate ceramic disks were fabricated. All of the samples were conditioned by sandblasting, hydrofluoric acid and silane. Maxillary incisor metal brackets were bonded to half of the disks in each group by conventional orthodontic bonding resin and the other half bonded with a nano-filled composite. The samples then were thermocycled for 2000 cycle between 5-55° C. Shear bond strength was measured and the mode of failure was examined. Randomly selected samples were also evaluated by SEM.The lowest bond strength value was found infeldespathic ceramic bonded by nano-filled composite (p<0.05. There was not any statistically significant difference between other groups regarding bond strength. The mode of failure in the all groups except group 1 was cohesive and porcelain damages were detected.Since less damages to feldspathic porcelain was observed when the nano-filled composite was used to bond brackets, the use of nano-filled composite resins can be suggested for bonding brackets to feldspathic porcelain restorations.

  8. Self-supported ceramic substrates with directional porosity by mold freeze casting

    DEFF Research Database (Denmark)

    Gurauskis, Jonas; Graves, Christopher R.; Moreno, R.

    2016-01-01

    in a mold and applying directional freeze casting. Use of optimized suspension, cryoprotector additive and mold proved to deliver defect free ceramic films with high dimensional control. Microstructure analysis demonstrated the formation of desirable aligned porosity at macro-structural scale and resulted...

  9. Effect of core ceramic grinding on fracture behaviour of bilayered zirconia veneering ceramic systems under two loading schemes.

    Science.gov (United States)

    Jian, Yu-Tao; Tang, Tian-Yu; Swain, Michael V; Wang, Xiao-Dong; Zhao, Ke

    2016-12-01

    The aim of this in vitro study was to evaluate the effect of core ceramic grinding on the fracture behaviour of bilayered zirconia under two loading schemes. Interfacial surfaces of sandblasted zirconia disks (A) were ground with 80 (B), 120 (C) and 220 (D) grit diamond discs, respectively. Surface roughness and topographic analysis were performed using a confocal scanning laser microscope (CSLM) and a scanning electron microscopy (SEM). Relative monoclinic content was evaluated using X-ray diffraction analysis (XRD) then reevaluated after simulated veneer firing. Biaxial fracture strength (σ) and Weibull modulus (m) were calculated either with core in compression (subgroup Ac-Dc) or in tension (subgroup At-Dt). Facture surfaces were examined by SEM and energy dispersive X-ray spectroscopy (EDS). Maximum tensile stress at fracture was estimated by finite element analysis. Statistical data analysis was performed using Kruskal-Wallis and one-way ANOVA at a significance level of 0.05. As grit size of the diamond disc increased, zirconia surface roughness decreased (pzirconia surface after fracture for all groups. Technician grinding changed surface topography of zirconia ceramic material, but was not detrimental to the bilayered system strength after veneer application. Coarse grinding slightly improved the fracture strength reliability of the bilayered system tested with core in compression. It is recommended that veneering porcelain be applied directly after routine lab grinding of zirconia ceramic, and its application on rough zirconia cores may be preferred to enhance bond strength. Copyright © 2016. Published by Elsevier Ltd.

  10. Lifetime Reliability Prediction of Ceramic Structures Under Transient Thermomechanical Loads

    Science.gov (United States)

    Nemeth, Noel N.; Jadaan, Osama J.; Gyekenyesi, John P.

    2005-01-01

    An analytical methodology is developed to predict the probability of survival (reliability) of ceramic components subjected to harsh thermomechanical loads that can vary with time (transient reliability analysis). This capability enables more accurate prediction of ceramic component integrity against fracture in situations such as turbine startup and shutdown, operational vibrations, atmospheric reentry, or other rapid heating or cooling situations (thermal shock). The transient reliability analysis methodology developed herein incorporates the following features: fast-fracture transient analysis (reliability analysis without slow crack growth, SCG); transient analysis with SCG (reliability analysis with time-dependent damage due to SCG); a computationally efficient algorithm to compute the reliability for components subjected to repeated transient loading (block loading); cyclic fatigue modeling using a combined SCG and Walker fatigue law; proof testing for transient loads; and Weibull and fatigue parameters that are allowed to vary with temperature or time. Component-to-component variation in strength (stochastic strength response) is accounted for with the Weibull distribution, and either the principle of independent action or the Batdorf theory is used to predict the effect of multiaxial stresses on reliability. The reliability analysis can be performed either as a function of the component surface (for surface-distributed flaws) or component volume (for volume-distributed flaws). The transient reliability analysis capability has been added to the NASA CARES/ Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code. CARES/Life was also updated to interface with commercially available finite element analysis software, such as ANSYS, when used to model the effects of transient load histories. Examples are provided to demonstrate the features of the methodology as implemented in the CARES/Life program.

  11. Survival of heterotrophic bacteria in water environment under substrate deficiency

    International Nuclear Information System (INIS)

    Toth, D.

    1989-01-01

    The relationship between metabolic changes and survival of bacteria in the water environment under substrate deficiency was studied. The main factors supporting cell survival were cryptic growth, utilization of endogenous reserve substances and reorganization of metabolic activities. Based on the utilization of cell-free extract or lysates from dead bacteria, an Enterobacter aerogenes cell suspension yielded 50% more colonies. Metabolic processes of starved heterotrophic bacteria changed markedly and became stabilized at a lower level depending on species involved. The rate of utilization of endogenous reserve substances as indicated by endogenous respiration was related to the rate of cell mortality. Of the test bacteria, Pseudomonas fluorescens showed the lowest rates of endogenous respiration and mortality while in Enterobacter aerogenes these two rates were the highest. (author). 3 figs., 2 tabs.., 16 refs

  12. Friction and wear behaviour of ceramic-hardened steel couples under reciprocating sliding motion

    NARCIS (Netherlands)

    He, Y.; Winnubst, Aloysius J.A.; Schipper, Dirk J.; Bakker, P.M.V.; Bakker, P.M.V.; Burggraaf, Anthonie; Burggraaf, A.J.; Verweij, H.

    1995-01-01

    The friction and wear behaviour of ZrO2-Y203, ZrO2-Y203-CeO2 and ZrO2-A1203 composite ceramics against hardened steel AISI-52100 were investigated using a pin on plate configuration under reciprocating motion. The reproducibility of the results was examined in this configuration. Wear

  13. Evolution of transverse piezoelectric response of lead zirconate titanate ceramics under hydrostatic pressure

    International Nuclear Information System (INIS)

    Li Fei; Xu Zhuo; Wei Xiaoyong; Gao Junjie; Zhang, Chonghui; Yao Xi; Jin Li

    2009-01-01

    The piezoelectric properties of 31-mode resonators of lead zirconate titanate ceramics under hydrostatic pressure from 0.1 to 325 MPa were evaluated by a fitting method, in which mechanical loss was taken into account. Our results based on the fitting method showed a hydrostatic pressure independent tendency of the piezoelectric coefficient and the electromechanical coupling factor because the adopted PZT ceramic can be considered as a linear system in our experiment, while two misleading tendencies of piezoelectric coefficient were obtained based on the resonance method when ignoring the contribution of the mechanical loss. (fast track communication)

  14. In-situ ionic conductivity measurement of lithium ceramics under high energy heavy ion irradiation

    International Nuclear Information System (INIS)

    Nakazawa, Tetsuya; Noda, Kenji; Ishii, Yoshinobu; Ohno, Hideo; Watanabe, Hitoshi; Matsui, Hisayuki.

    1992-01-01

    To obtain fundamental information regarding the radiation damage in some lithium ceramics, e.g. Li 2 O, Li 4 SiO 4 etc., candidate of breeder materials exposed to severe irradiation environment, an in-situ experiment technique for the ionic conductivity measurement, which allows the specimen temperature control and the beam current monitoring, have been developed. This paper describes the features of an apparatus to measure in situ the ionic conductivity under the irradiation environment and presents some results of ionic conductivity measured for typical ceramic breeders using this apparatus. (J.P.N.)

  15. Method for non-destructive evaluation of ceramic coatings

    Science.gov (United States)

    Peterson, Kristen A.; Rosen, Elias P.; Jordan, Eric H.; Shahbazmohamadi, Sina; Vakhtin, Andrei B.

    2016-11-08

    A method for evaluating the condition of a ceramic coating deposited on a substrate comprising illuminating the ceramic coating with light, measuring the intensity of light returned from the ceramic coating as function of depth in the coating and transverse position on the coating, and analyzing the measured light intensities to obtain one or more of intensity of the light returned from the exposed coating surface relative to the intensity of light returned from the coating/substrate interface, intensity of the light returned from the coating/substrate interface relative to the intensity of light returned from the bulk of the ceramic coating, determination of roughness at the exposed surface of the ceramic coating, and determination of roughness of the interface between the ceramic coating and underlying bond coat or substrate.

  16. Spectral and lasing characteristics of 1% Ho:YAG ceramics under intracavity pumping

    Science.gov (United States)

    Bagayev, S. N.; Osipov, V. V.; Vatnik, S. M.; Shitov, V. A.; Vedin, I. A.; Kurbatov, P. F.; Maksimov, R. N.; Luk'yashin, K. E.; Pavlyuk, A. A.

    2015-01-01

    High-transparency 1% Ho:YAG ceramics with the transmission coefficient of 82% in the IR range at the sample thickness of 1 mm are synthesised from a mixture of the Ho:Y2O3 and Al2O3 nanopowders obtained by the laser method. Results of investigations of spectral and lasing characteristics of 1 % Ho:YAG ceramics under intracavity pumping by radiation of a 5% Tm:KLuW disk element are presented. Based on spectral intensity analysis of generation in the 1.8 - 2.1 mm range and on cavity parameters, the estimated lasing slope efficiency for 1% Ho:YAG ceramics is about 40%.

  17. New apparatus for ceramic texturing working under uniaxial stress and in a magnetic field

    International Nuclear Information System (INIS)

    Noudem, J.G.; Beille, J.; Draperi, A.; Sulpice, A.; Tournier, R.

    1993-01-01

    We have developed a new versatile apparatus combining the effect of hot pressing and the effect of magnetic field to texture HTSC (high-temperature superconductor) ceramics. The experimental set-up allows application of uniaxial stress up to 1100 degrees C under a maximum pressure of 60 MPa, in a controlled atmosphere and a magnetic field of 8 T. We have optimized the cycle for stress application along with the thermal cycle to produce highly-textured ceramics. In this paper, we describe the stress and thermal cycles used to texture Bi-Pb-Sr-Ca-Cu-O (2223 phase) ceramics. We present the physical and chemical characterizations of the samples which show a strong degree of crystallite orientation. (author)

  18. Ba2ErNbO6: A new perovskite ceramic substrate for Bi(2223 ...

    Indian Academy of Sciences (India)

    Unknown

    110 K and current density of ~ 4 × 103 A cm–2 at 77 K and zero magnetic field. Keywords. Barium erbium niobate; perovskite; substrate; sintering; superconducting film. 1. Introduction. High-Tc superconducting thick films have wide ... The physical properties of BENO are sum- marized in table 1. *Author for correspondence ...

  19. Ba2ErNbO6: A new perovskite ceramic substrate for Bi (2223 ...

    Indian Academy of Sciences (India)

    Barium erbium niobate (Ba2ErNbO6) has been developed as a new substrate for (Bi,Pb)2Sr2Ca2Cu3O [Bi(2223)] superconductor film. Ba2ErNbO6 (BENO) has a cubic perovskite structure with lattice constant, = 8.318 Å. The Bi(2223) superconductor does not show any detectable chemical reaction with BENO even ...

  20. Acclimatization and growth of ornamental pineapple seedlings under organic substrates

    Directory of Open Access Journals (Sweden)

    Ronan Carlos Colombo

    2017-09-01

    Full Text Available The in vitro propagation techniques are commonly used to produce ornamental pineapple seedlings in commercial scale, aiming to attend the growers with genetic and sanitary quality seedlings. However, the choice of the ideal substrate is essential for the acclimatization and growth stage of the seedlings propagated by this technique, since some substrates can increase the seedling mortality and/or limit the seedling growth due to its physical and chemical characteristics. Thus, the aim of this study was to evaluate the acclimatization of ornamental pineapple [Ananas comosus (L. Merr. var. ananassoides (Baker Coppens & Leal] on different substrates. Seedlings with approximately seven centimeters, obtained from in vitro culture, were transplanted into styrofoam trays filled with the following substrates: sphagnum; semi-composed pine bark; carbonized rice husk; sphagnum + semicomposed pine bark; sphagnum + carbonized rice husk; and semi-composed pine bark + carbonized rice husk. Each treatment was replicated five times using 10 plants. At 180 days, there were evaluated the following variables: survival percentage, plant height, number of leaves, leaf area, largest root length, and shoot and root dry matter. The substrate semi-composed pine bark + carbonized rice husk presented the lowest mean (62% for survival percentage. The semi-composed pine bark and semi-composed pine bark + carbonized rice husk treatments presented significant increments in some evaluated biometric characteristics. The semi-composed pine bark is the most favorable substrate for the A. comosus var. ananassoids acclimatization.

  1. Method for improving the performance of oxidizable ceramic materials in oxidizing environments

    Science.gov (United States)

    Nagaraj, Bangalore A. (Inventor)

    2002-01-01

    Improved adhesion of thermal barrier coatings to nonmetallic substrates using a dense layer of ceramic on an underlying nonmetallic substrate that includes at least one oxidizable component. The improved adhesion occurs because the application of the dense ceramic layer forms a diffusion barrier for oxygen. This diffusion barrier prevents the oxidizable component of the substrate from decomposing. The present invention applies ceramic by a process that deposits a relatively thick and dense ceramic layer on the underlying substrate. The formation of the dense layer of ceramic avoids the problem of void formation associated with ceramic formation by most prior art thermal decomposition processes. The formation of voids has been associated with premature spalling of thermal barrier layers and other protective layers applied to substrates.

  2. Materials design considerations involved in the fabrication of implantable bionics by metallization of ceramic substrates.

    Science.gov (United States)

    Patel, Sunil; Guenther, Thomas; Dodds, Christopher W D; Kolke, Sergej; Privat, Karen L; Matteucci, Paul B; Suaning, Gregg J

    2013-01-01

    The Pt metallization of co-fired Al2O3/SiO2 substrates containing Pt feedthroughs was shown to be a suitable means to construct implantable bionics. The use of forge welding to join an electrode to such a metallized feedthrough was demonstrated and subsequently evaluated through the use of metallography and electron microscopy. Metallurgical phenomena involved in forge welding relevant to the fabrication of all types of biomedical implants are discussed within this paper. The affect of thermal profiles used in brazing or welding to build implantable devices from metal components is analysed and the case for considered selection of alloys in implant design is put forward.

  3. Long time relaxation of resistance in La0.8Sr0.2MnO3 ceramics and La0.65Ca0.35 MnO3 films on ferroelectric substrates

    International Nuclear Information System (INIS)

    Medvedev, Yu.V.; Mezin, N.I.; Nikolaenko, Yu.M.; Pigur, A.E.; Shishkova, N.V.; Ishchuk, V.M.; Chukanova, I.N.

    2004-01-01

    Galvanomagnetic properties of La 0.65 Ca 0.35 MnO 3 films with a thickness of 0.2 μm on Pb 2.9 Ba 0.05 Sr 0.05 (Zr 0.4 Ti 0.6 )O 3 ferroelectric ceramics substrates have been investigated. We have discovered the monotonic irreversible increase of the film resistance by 3-5 time of value during several hours after multiple inversion of substrate polarization. The long-time relaxation (LTR) of film resistance is explained by dielecrtrization of film intercrystallite boundaries as a result of oxygen redistribution under action of inhomogeneous mechanical stress. In addition, the LTR of resistance of La 0.8 Sr 0.2 MnO 3 and La 0.6 Sr 0.2 Mn 1.2 O 3 ceramic samples has been investigated under action of different kind of mechanical stress: stretch, compression and hydrostatic press. Time dependence of resistance is described by R 0 +ΔRexp(-t/τ). The magnitude of LTR is 5-10 time greater then fast variation of resistance under action of stress. The sign of ΔR is dependent on the kind of stress. The time constant (τ) has the value of 3-9 hours. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Substrate Integrated Waveguide Based Phase Shifter and Phased Array in a Ferrite Low Temperature Co-fired Ceramic Package

    KAUST Repository

    Nafe, Ahmed A.

    2014-03-01

    Phased array antennas, capable of controlling the direction of their radiated beam, are demanded by many conventional as well as modern systems. Applications such as automotive collision avoidance radar, inter-satellite communication links and future man-portable satellite communication on move services require reconfigurable beam systems with stress on mobility and cost effectiveness. Microwave phase shifters are key components of phased antenna arrays. A phase shifter is a device that controls the phase of the signal passing through it. Among the technologies used to realize this device, traditional ferrite waveguide phase shifters offer the best performance. However, they are bulky and difficult to integrate with other system components. Recently, ferrite material has been introduced in Low Temperature Co-fired Ceramic (LTCC) multilayer packaging technology. This enables the integration of ferrite based components with other microwave circuitry in a compact, light-weight and mass producible package. Additionally, the recent concept of Substrate Integrated Waveguide (SIW) allowed realization of synthesized rectangular waveguide-like structures in planar and multilayer substrates. These SIW structures have been shown to maintain the merits of conventional rectangular waveguides such as low loss and high power handling capabilities while being planar and easily integrable with other components. Implementing SIW structures inside a multilayer ferrite LTCC package enables monolithic integration of phase shifters and phased arrays representing a true System on Package (SoP) solution. It is the objective of this thesis to pursue realizing efficient integrated phase shifters and phased arrays combining the above mentioned technologies, namely Ferrite LTCC and SIW. In this work, a novel SIW phase shifter in ferrite LTCC package is designed, fabricated and tested. The device is able to operate reciprocally as well as non-reciprocally. Demonstrating a measured maximum

  5. Microleakage under metallic and ceramic brackets bonded with orthodontic self-etching primer systems.

    Science.gov (United States)

    Uysal, Tancan; Ulker, Mustafa; Ramoglu, Sabri Ilhan; Ertas, Huseyin

    2008-11-01

    To compare the in vitro microleakage of orthodontic brackets (metal and ceramic) between enamel-adhesive and adhesive-bracket interfaces at the occlusal and gingival sides produced by self-etching primer system with that of conventional acid etching and bonding. Sixty freshly extracted human mandibular premolar teeth were used in this study. The teeth were separated into four groups of 15 teeth each and received the following treatments: Group 1, 37% phosphoric acid gel + Transbond XT liquid primer + stainless steel bracket; Group 2, Transbond Plus Self-Etching Primer (TSEP) + stainless steel bracket; Group 3, 37% phosphoric acid gel + Transbond XT liquid primer + ceramic bracket; Group 4, TSEP + ceramic bracket. After curing, specimens were further sealed with nail varnish, stained with 0.5% basic fuchsine for 24 hours, sectioned and examined under a stereomicroscope, and scored for microleakage for the enamel-adhesive and bracket-adhesive interfaces from both occlusal and gingival margins. Statistical analyses were performed using Kruskal-Wallis and Mann-Whitney U tests. The gingival sides in all groups exhibited higher microleakage scores compared with those observed in occlusal sides for both adhesive interfaces. Enamel-adhesive interfaces exhibited more microleakage than did the adhesive-bracket interfaces. Brackets bonded with self-etching primer system showed significantly higher microleakage at the enamel-adhesive interface of the gingival side. TSEP causes more microleakage between enamel-adhesive interfaces, which may lead to lower bond strength and/or white-spot lesions.

  6. Conductive stability of graphene on PET and glass substrates under blue light irradiation

    Science.gov (United States)

    Cao, Xueying; Liu, Xianming; Li, Xiangdi; Lei, Xiaohua; Chen, Weimin

    2018-01-01

    Electrical properties of graphene transparent conductive film under visible light irradiation are investigated. The CVD-grown graphene on Polyethylene Terephthalate (PET) and glass substrates for flexible and rigid touch screen display application are chosen for research. The resistances of graphene with and without gold trichloride (AuCl3) doping are measured in vacuum and atmosphere environment under blue light irradiation. Results show that the conductivities of all samples change slowly under light irradiation. The change rate and degree are related to the substrate material, doping, environment and lighting power. Graphene on flexible PET substrate is more stable than that on rigid glass substrate. Doping can improve the electrical conductivity but induce instability under light irradiation. Finally, the main reason resulting in the graphene resistance slowly increasing under blue light irradiation is analyzed.

  7. Hydrolysis of particulate substrate by activated sludge under aerobic, anoxic and anaerobic conditions

    DEFF Research Database (Denmark)

    Henze, Mogens; Mladenovski, C.

    1991-01-01

    An investigation of hydrolysis of particulate organic substrate by activated sludge has been made. Raw municipal wastewater was used as substrate. It was mixed with activated sludge from a high loaded activated sludge plant with pure oxygen aeration. During 4 days batch experiments under aerobic......, anoxic and anaerobic conditions, the hydrolysis was following through the production of ammonia. The hydrolysis rate of nitrogeneous compounds is significantly affected by the electron donor available. The rate is high under aerobic conditions, medium under anaerobic conditions and low under anoxic...... conditions. The ratio between the hydrolysis rates under aerobic and under anoxic conditions are very similar to the respiration rates measured as electron equivalents....

  8. Enhancement of ionic conductivity in stabilized zirconia ceramics under millimeter-wave irradiation heating

    International Nuclear Information System (INIS)

    Kishimoto, Akira; Ayano, Keiko; Hayashi, Hidetaka

    2011-01-01

    Ionic conductivity in yttria-stabilized zirconia ceramics under millimeter-wave irradiation heating was compared with that obtained using conventional heating. The former was found to result in higher conductivity than the latter. Enhancement of the ionic conductivity and the reduction in activation energy seemed to depend on self-heating resulting from the millimeter-wave irradiation. Millimeter-wave irradiation heating restricted the degradation in conductivity accompanying over-substitution, suggesting the optimum structure that provided the maximum conductivity could be different between the two heating methods.

  9. Evaluation of organic Substrates for wheat production under rainfed conditions

    International Nuclear Information System (INIS)

    Muhammad, S.; Tanveer, S.K.; Anjum, A.S.; Javed, A.; Ullah, M.A.

    2013-01-01

    A study was carried out to evaluate the effect of different organic amendments and bio-fertilisers on organic wheat crop at National Agricultural Research Center (NARC), Islamabad during the year 2008-2009. Randomised Complete Block Design (RCBD) with four replications was used. The soil at NARC is slightly alkaline. Organic matter ranges from 0.31-2.50 % in the surface soils and 0.15-2.50 % in sub-soils. Most soils at NARC have low soil organic matter content. The treatments included (a) organic fertilizers 3: 16:1.5 (N:P:K), 15kg N, 85kg P/sub 2/O/sub 5/and 7kg K per acre),(b) organic fertilizers (NPK),15kg N, 85kg P/sub 2/O/sub 5/and 7gK+ Humic acid (8/acre as basel dose and foliar spray), (c) compost (well decomposed and fermented with yeast mixed with molasses) 1000kg/acre (1.5% N,1.2% P/sub 2/ O/sub 5/ and 0.8% K), (d) a control. Different organic products including bio-trace, humic acid (granulated form, i.e. lignatic coal treated with 10% potassium hydroxide) and humic acid alkaline solution in water were applied in the form of foliar spray on the crop (treatments 1 and 3) at six leaves stage, after 1.5 months and at spike emergence stage. The use of organic fertiliser with compost alone or in combination increased growth parameters as well as wheat yield, with maximum biomass (5,788kg/ha). Minimum biomass was recorded in the control treatment. The soil chemical, physical and biological properties were improved with addition of all types of organic substrates. The soil quality relates with its characteristics and microbial dynamism. (author)

  10. Method for preparing thin-walled ceramic articles of configuration

    International Nuclear Information System (INIS)

    Holcombe, C.E.; Powell, G.L.

    1975-01-01

    A method for preparing a hollow thin-walled ceramic product is described. Ceramic powder is plasma-sprayed onto a concave surface of a substrate having a coefficient of thermal expansion less than that of the ceramic. The coated substrate is heated to sinter the ceramic and then cooled to effect a separation of the ceramic product from the substrate

  11. Growth and instability of charged dislocation loops under irradiation in ceramic materials

    CERN Document Server

    Ryazanov, A I; Kinoshita, C; Klaptsov, A V

    2002-01-01

    We have investigated the physical mechanisms of the growth and stability of charged dislocation loops in ceramic materials with very strong different mass of atoms (stabilized cubic zirconia) under different energies and types of irradiation conditions: 100-1000 keV electrons, 100 keV He sup + and 300 keV O sup + ions. The anomalous formation of extended defect clusters (charged dislocation loops) has been observed by TEM under electron irradiation subsequent to ion irradiation. It is demonstrated that very strong strain field (contrast) near charged dislocation loops is formed. The dislocation loops grow up to a critical size and after then become unstable. The instability of the charged dislocation loop leads to the multiplication of dislocation loops and the formation of dislocation network near the charged dislocation loops. A theoretical model is suggested for the explanation of the growth and stability of the charged dislocation loop, taking the charge state of point defects. The calculated distribution...

  12. Ceramic electrolyte coating methods

    Energy Technology Data Exchange (ETDEWEB)

    Seabaugh, Matthew M.; Swartz, Scott L.; Dawson, William J.; McCormick, Buddy E.

    2004-10-12

    Processes for preparing aqueous suspensions of a nanoscale ceramic electrolyte material such as yttrium-stabilized zirconia. The invention also includes a process for preparing an aqueous coating slurry of a nanoscale ceramic electrolyte material. The invention further includes a process for depositing an aqueous spray coating slurry including a ceramic electrolyte material on pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.

  13. Evaluating the Atrial Myopathy Underlying Atrial Fibrillation: Identifying the Arrhythmogenic and Thrombogenic Substrate

    Science.gov (United States)

    Goldberger, Jeffrey J.; Arora, Rishi; Green, David; Greenland, Philip; Lee, Daniel C.; Lloyd-Jones, Donald M.; Markl, Michael; Ng, Jason; Shah, Sanjiv J.

    2015-01-01

    Atrial disease or myopathy forms the substrate for atrial fibrillation (AF) and underlies the potential for atrial thrombus formation and subsequent stroke. Current diagnostic approaches in patients with AF focus on identifying clinical predictors with evaluation of left atrial size by echocardiography serving as the sole measure specifically evaluating the atrium. Although the atrial substrate underlying AF is likely developing for years prior to the onset of AF, there is no current evaluation to identify the pre-clinical atrial myopathy. Atrial fibrosis is one component of the atrial substrate that has garnered recent attention based on newer MRI techniques that have been applied to visualize atrial fibrosis in humans with prognostic implications regarding success of treatment. Advanced ECG signal processing, echocardiographic techniques, and MRI imaging of fibrosis and flow provide up-to-date approaches to evaluate the atrial myopathy underlying AF. While thromboembolic risk is currently defined by clinical scores, their predictive value is mediocre. Evaluation of stasis via imaging and biomarkers associated with thrombogenesis may provide enhanced approaches to assess risk for stroke in patients with AF. Better delineation of the atrial myopathy that serves as the substrate for AF and thromboembolic complications might improve treatment outcomes. Furthermore, better delineation of the pathophysiologic mechanisms underlying the development of the atrial substrate for AF, particularly in its earlier stages, could help identify blood and imaging biomarkers that could be useful to assess risk for developing new onset AF and suggest specific pathways that could be targeted for prevention. PMID:26216085

  14. Arbuscular Mycorrhiza Improves Substrate Hydraulic Conductivity in the Plant Available Moisture Range Under Root Growth Exclusion.

    Science.gov (United States)

    Bitterlich, Michael; Franken, Philipp; Graefe, Jan

    2018-01-01

    Arbuscular mycorrhizal fungi (AMF) proliferate in soils and are known to affect soil structure. Although their contribution to structure is extensively investigated, the consequences of those processes for soil water extractability and transport has, so far, gained surprisingly little attention. Therefore we asked, whether AMF can affect water retention and unsaturated hydraulic conductivity under exclusion of root ingrowth, in order to minimize plant driven effects. We carried out experiments with tomato inoculated with Rhizoglomus irregulare in a soil substrate with sand and vermiculite that created variation in colonization by mixed pots with wild type (WT) plants and mycorrhiza resistant (RMC) mutants. Sampling cores were introduced and used to assess substrate moisture retention dynamics and modeling of substrate water retention and hydraulic conductivity. AMF reduced the saturated water content and total porosity, but maintained air filled porosity in soil spheres that excluded root ingrowth. The water content between field capacity and the permanent wilting point (6-1500 kPa) was only reduced in mycorrhizal substrates that contained at least one RMC mutant. Plant available water contents correlated positively with soil protein contents. Soil protein contents were highest in pots that possessed the strongest hyphal colonization, but not significantly affected. Substrate conductivity increased up to 50% in colonized substrates in the physiologically important water potential range between 6 and 10 kPa. The improvements in hydraulic conductivity are restricted to substrates where at least one WT plant was available for the fungus, indicating a necessity of a functional symbiosis for this effect. We conclude that functional mycorrhiza alleviates the resistance to water movement through the substrate in substrate areas outside of the root zone.

  15. Arbuscular Mycorrhiza Improves Substrate Hydraulic Conductivity in the Plant Available Moisture Range Under Root Growth Exclusion

    Directory of Open Access Journals (Sweden)

    Michael Bitterlich

    2018-03-01

    Full Text Available Arbuscular mycorrhizal fungi (AMF proliferate in soils and are known to affect soil structure. Although their contribution to structure is extensively investigated, the consequences of those processes for soil water extractability and transport has, so far, gained surprisingly little attention. Therefore we asked, whether AMF can affect water retention and unsaturated hydraulic conductivity under exclusion of root ingrowth, in order to minimize plant driven effects. We carried out experiments with tomato inoculated with Rhizoglomus irregulare in a soil substrate with sand and vermiculite that created variation in colonization by mixed pots with wild type (WT plants and mycorrhiza resistant (RMC mutants. Sampling cores were introduced and used to assess substrate moisture retention dynamics and modeling of substrate water retention and hydraulic conductivity. AMF reduced the saturated water content and total porosity, but maintained air filled porosity in soil spheres that excluded root ingrowth. The water content between field capacity and the permanent wilting point (6–1500 kPa was only reduced in mycorrhizal substrates that contained at least one RMC mutant. Plant available water contents correlated positively with soil protein contents. Soil protein contents were highest in pots that possessed the strongest hyphal colonization, but not significantly affected. Substrate conductivity increased up to 50% in colonized substrates in the physiologically important water potential range between 6 and 10 kPa. The improvements in hydraulic conductivity are restricted to substrates where at least one WT plant was available for the fungus, indicating a necessity of a functional symbiosis for this effect. We conclude that functional mycorrhiza alleviates the resistance to water movement through the substrate in substrate areas outside of the root zone.

  16. Evaluation of Mechanical Properties and Structural Changes of Ceramic Filter Materials for Hot Gas Cleaning under Simulated Process Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Westerheide, R.; von der Wehd, C.; Adler, J.; Rehak, P.

    2002-09-19

    The objective of this study is to evaluate changes in structure and mechanical properties of ceramic filter materials under simulated corrosive process conditions. Due to an analysis of the mechanisms of degradation firstly an optimization of materials shall be enabled and secondly a material selection for specific applications shall be relieved. This publication describes the investigations made on many ceramic support materials based on oxides and carbides. Both commercially available and newly developed support materials have been evaluated for specific applications in hot gas cleaning.

  17. Gas Separations using Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Paul KT Liu

    2005-01-13

    This project has been oriented toward the development of a commercially viable ceramic membrane for high temperature gas separations. A technically and commercially viable high temperature gas separation membrane and process has been developed under this project. The lab and field tests have demonstrated the operational stability, both performance and material, of the gas separation thin film, deposited upon the ceramic membrane developed. This performance reliability is built upon the ceramic membrane developed under this project as a substrate for elevated temperature operation. A comprehensive product development approach has been taken to produce an economically viable ceramic substrate, gas selective thin film and the module required to house the innovative membranes for the elevated temperature operation. Field tests have been performed to demonstrate the technical and commercial viability for (i) energy and water recovery from boiler flue gases, and (ii) hydrogen recovery from refinery waste streams using the membrane/module product developed under this project. Active commercializations effort teaming with key industrial OEMs and end users is currently underway for these applications. In addition, the gas separation membrane developed under this project has demonstrated its economical viability for the CO2 removal from subquality natural gas and landfill gas, although performance stability at the elevated temperature remains to be confirmed in the field.

  18. Examination of the creep behaviour of ceramic fuel elements under neutron irradiation

    International Nuclear Information System (INIS)

    Brucklacher, D.

    1978-01-01

    This paper examines the creeping of UO 2 , UO 2 -PuO 2 and UN under neutron irradiation. It starts with the experimental results about the relation between the thermal creep rate and the load, the temperature, as well as characteristic material values, stoichiometry, grain size and porosity. These correlation are first qualitatively discussed and then compared with the statements of actual quantitative equations. From the models and theories on which these equations are based a modified Nabarro-Heering-equation results for the correlation between the creep rate of ceramic fuels, stress, temperature and the fission rate. In the experimental part of the examination, length-changes of creep samples of UO 2 , (U,Pu)O 2 and UN were measured in specially developed irradiation creep casings in different reactors. The measuring data were corrected and evaluated considering the thermal expansion effects, irregular temperature distribution and swelling effects in such a way that the dependences of the creep rate of UO 2 , UO 2 -PuO 2 and UN under irradiation on stress, temperature, fission rate, burn-up and porosity is obtained. It shows that creeping of fuels under irradiation at high temperatures is equivalent to thermally activated creeping, while at low temperature the creep rate induced by irradiation is much higher than the condition without irradiation. The increment of oxidic nuclear fuels is greater than in UN, the stress dependence on low burn-up is proportional in both cases, and the influence of temperature is quite small. (orig.) [de

  19. Investigation of deterioration mechanism of electrical ceramic insulating materials under high temperature

    International Nuclear Information System (INIS)

    Mizutani, Yoshinobu; Ito, Tetsuo; Okamoto, Tatsuki; Kumazawa, Ryoji; Aizawa, Rie; Moriyama, Hideshige

    2000-01-01

    It is thought that ceramic insulator can be applied to electric power equipments that are under high temperature not to be able use organic materials. Our research has suggested components of mica-alumina combined insulation. As the results of and carried out temperature accelerating test, combined insulation life is expected long term over 40 years at over 500-Celsius degrees. However to construct high reliable insulating system, it is clarified deterioration mechanism on combined insulation and evaluates life of that. Therefore we carried out metal behavior test and voltage aging test using mica-sheet and alumina-cloth that are components of combined insulation under high temperature in nitrogen gas atmosphere. It is cleared two metal behavior mechanisms: One is that the opening of insulator are filled up with copper that is oxidized, the other is the metal diffuses in alumina-cloth through surface. And distance of metal behavior is able to be estimated at modulate temperature and in modulate time. It is also cleared that alumina-cloth is deteriorated by metal behavior into alumina-cloth. These results indicate that combined insulation is deteriorated from electrode side by metal behavior and is finally broken down through alumina-cloth. (author)

  20. Modeling the Tensile Strength of Carbon Fiber - Reinforced Ceramic - Matrix Composites Under Multiple Fatigue Loading

    Science.gov (United States)

    Li, Longbiao

    2016-06-01

    An analytical method has been developed to investigate the effect of interface wear on the tensile strength of carbon fiber - reinforced ceramic - matrix composites (CMCs) under multiple fatigue loading. The Budiansky - Hutchinson - Evans shear - lag model was used to describe the micro stress field of the damaged composite considering fibers failure and the difference existed in the new and original interface debonded region. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. The interface shear stress degradation model and fibers strength degradation model have been adopted to analyze the interface wear effect on the tensile strength of the composite subjected to multiple fatigue loading. Under tensile loading, the fibers failure probabilities were determined by combining the interface wear model and fibers failure model based on the assumption that the fiber strength is subjected to two - parameter Weibull distribution and the loads carried by broken and intact fibers satisfy the Global Load Sharing criterion. The composite can no longer support the applied load when the total loads supported by broken and intact fibers approach its maximum value. The conditions of a single matrix crack and matrix multicrackings for tensile strength corresponding to multiple fatigue peak stress levels and different cycle number have been analyzed.

  1. Numerical Modelling of the Compressive and Tensile Response of Glass and Ceramic under High Pressure Dynamic Loading

    Science.gov (United States)

    Clegg, Richard A.; Hayhurst, Colin J.

    1999-06-01

    Ceramic materials, including glass, are commonly used as ballistic protection materials. The response of a ceramic to impact, perforation and penetration is complex and difficult and/or expensive to instrument for obtaining detailed physical data. This paper demonstrates how a hydrocode, such as AUTODYN, can be used to aid in the understanding of the response of brittle materials to high pressure impact loading and thus promote an efficient and cost effective design process. Hydrocode simulations cannot be made without appropriate characterisation of the material. Because of the complexitiy of the response of ceramic materials this often requires a number of complex material tests. Here we present a methodology for using the results of flyer plate tests, in conjunction with numerical simulations, to derive input to the Johnson-Holmquist material model for ceramics. Most of the research effort in relation to the development of hydrocode material models for ceramics has concentrated on the material behaviour under compression and shear. While the penetration process is dominated by these aspects of the material response, the final damaged state of the material can be significantly influenced by the tensile behaviour. Modelling of the final damage state is important since this is often the only physical information which is available. In this paper we present a unique implementation, in a hydrocode, for improved modelling of brittle materials in the tensile regime. Tensile failure initiation is based on any combination of principal stress or strain while the post-failure tensile response of the material is controlled through a Rankine plasticity damaging failure surface. The tensile failure surface can be combined with any of the traditional plasticity and/or compressive damage models. Finally, the models and data are applied in both traditional grid based Lagrangian and Eulerian solution techniques and the relativley new SPH (Smooth Particle Hydrodynamics) meshless

  2. Hardness of resin cement cured under different thickness of lithium disilicate-based ceramic.

    Science.gov (United States)

    Zhang, Xuan; Wang, Fu

    2011-11-01

    The lithium disilicate-based ceramic is a newly developed all-ceramic material, which is lithium disilicate-based and could be used for fabricating almost all kinds of restorations. The extent of light attenuation by ceramic material was material-dependent. Ceramic materials with different crystal composition or crystalline content would exhibit distinct light-absorbing characteristics. The aim of this study was to analyze the influence of ceramic thickness and light-curing time on the polymerization of a dual-curing resin luting material with a lithium disilicate-based ceramic. A lithium disilicate-based ceramic was used in this study. The light attenuation caused by ceramic with different thickness was determined using a spectral radiometer. The commercial dual-cured resin cement was light-cured directly or through ceramic discs with different thickness (1, 2 and 3 mm, respectively) for different times (10, 20, 30, 40, 50 and 60 seconds, respectively). The polymerization efficiency of resin cement was expressed in terms as Vickers hardness (VHN) measured after 24 hours storage. Two-way analysis of variance (ANOVA) and Tukey's HSD tests were used to determine differences. Intensity of polymerizing light transmitted through ceramic discs was reduced from 584 mW/cm(2) to about 216 mW/cm(2)2, 80 mW/cm(2) and 52 mW/cm(2) at thicknesses of 1 mm, 2 mm and 3 mm, respectively. Resin cement specimens self-cured alone showed significantly lower hardness values. When resin cement was light-cured through ceramic discs with a thickness of 1 mm, 2 mm and 3 mm, no further increasing in hardness values was observed when light-curing time was more than 30 seconds, 40 seconds and 60 seconds, respectively. Within the limitation of the present study, ceramic thickness and light-curing time had remarkable influence on the polymerization of dual-cured resin cement. When resin cement is light-cured beneath a lithium disilicate ceramic with different thickness, prolonging light

  3. In vitro evaluation of microleakage under ceramic and metal brackets bonded with LED and plasma arc curing.

    Science.gov (United States)

    Davari, Abdolrahim; Yassaei, Soghra; Karandish, Mariam; Zarghami, Fateme

    2012-09-01

    The aim of the present study was to evaluate these two high intensity light curing units regarding microleakage beneath metal and ceramic brackets. A total of 60 freshly extracted human premolar teeth were randomly divided into four groups of 15 samples; group I: Metal bracket + LED cured, group II: Ceramic bracket + LED cured, group III: Metal bracket + plasma arc cured, group IV: Ceramic bracket + plasma arc cured. After photopolymerization, the teeth were immersed in water and thermocycled (500 cycles between 5 and 55). Specimens were further sealed with nail varnish and stained with 5% basic fuchsin for 24 hours. All of the teeth were sectioned with two parallel longitudinal occlusogingival cuts and examined under a stereomicroscope. The microleakage was measured with a digital caliper and scored from 0 to 3 for marginal microleakage at the bracket-adhesive and adhesive-enamel interfaces from both the occlusal and gingival margins. Microleakage was detected in all groups. The plasma arc cured group showed less microleakage than light emitting diode (LED) cured in all samples at the enamel-adhesive interface at the gingival margin (ceramic brackets, p = 0.009 and metal brackets, p = 0.005). The plasma arc cured samples showed less microleakage than LED cured in metal brackets at the adhesive-brackets interface at the occlusal margin (p = 0.033). While curing with an LED unit, ceramic brackets displayed significantly less microleakage than metal ones at the gingival margin of adhesive-enamel interface (p = 0.013). The gingival margin in all groups exhibited higher microleakage compared with those observed in occlusal sides in all sample groups (p white spot lesions beneath the bracket base.

  4. Phase transformation of PZST-86/14-5-2Nb ceramic under quasi-static loading conditions.

    Energy Technology Data Exchange (ETDEWEB)

    Broome, Scott Thomas; Scofield, Timothy W.; Montgomery, Stephen Tedford; Bauer, Stephen J.; Hofer, John H.

    2010-02-01

    Specimens of poled and unpoled PZST ceramic were tested under hydrostatic loading conditions at temperatures of -55, 25, and 75 C. The objective of this experimental study was to obtain the electro-mechanical properties of the ceramic and the criteria of FE (Ferroelectric) to AFE (Antiferroelectric) phase transformations of the PZST ceramic to aid grain-scale modeling efforts in developing and testing realistic response models for use in simulation codes. As seen in previous studies, the poled ceramic from PZST undergoes anisotropic deformation during the transition from a FE to an AFE phase at -55 C. Warmer temperature tests exhibit anisotropic deformation in both the FE and AFE phase. The phase transformation is permanent at -55 C for all ceramics tests, whereas the transformation can be completely reversed at 25 and 75 C. The change in the phase transformation pressures at different temperatures were practically identical for both unpoled and poled PZST specimens. Bulk modulus for both poled and unpoled material was lowest in the FE phase, intermediate in the transition phase, and highest in the AFE phase. Additionally, bulk modulus varies with temperature in that PZST is stiffer as temperature decreases. Results from one poled-biased test for PZST and four poled-biased tests from PNZT 95/5-2Nb are presented. A bias of 1kV did not show noticeable differences in phase transformation pressure for the PZST material. However, with PNZT 95/5-2Nb phase transformation pressure increased with increasing voltage bias up to 4.5kV.

  5. Wear Characteristics of Ceramic Coating Materials by Plasma Spray under the Lubricative Environment

    International Nuclear Information System (INIS)

    Kim, Chang Ho

    2001-02-01

    This paper is to investigate the wear behaviors of two types of ceramics, Al 2 O 3 and TiO 2 , by coated plasma thermal spray method under the lubricative environment. The lubricative environments are grease fluids, a general hydraulic fluids, and bearing fluids. The wear testing machine used a pin on disk type. Wear characteristics, which were friction force, friction coefficient and the specific wear rate, according to the lubricative environments were obtained at the four kinds of load, and the sliding velocity is 0.2m/sec. After the wear experiments, the wear surfaces of the each test specimen were observed by a scanning electronic microscope. The obtained results are as follows. : 1. The friction coefficients of TiO 2 coating materials are 0.11 ∼ 0.16 range and those of Al 2 O 3 are 0.24 ∼ 0.39. The friction coefficient of two coating materials is relative to the hardness of these materials. 2. The friction coefficient of TiO 2 coating materials in three lubricative environments is almost same to each other in spite of changing of applied loads. 3. The friction coefficient of Al 2 O 3 coating materials is more large in low load than high load. And the friction coefficient in grease is more large than a general hydraulic and bearing fluids had almost same friction coefficient. 4. The specific wear rate in TiO 2 is greatly increasing according to change the applied loads, but that in Al 2 O 3 is slightly. And the wear in grease is the least among three lubricating environments. 5. On the wear mechanism by SEM image observation, the wear of Al 2 O 3 is adhesive wear and TiO 3 is abrasive wear

  6. Neurite development in PC12 cells on flexible micro-textured substrates under cyclic stretch.

    Science.gov (United States)

    Haq, Furqan; Keith, Charles; Zhang, Guigen

    2006-01-01

    We investigated the combined effect of micro-texture and mechanical strain on neuronal cell development such as neurite length and neurite density in a rat pheochromocytoma cell line (PC12 cells). Cells were seeded on flexible silicone substrates with micro-texture or no texture (smooth) and cultured under static and dynamic conditions. In the static condition substrates were not stretched and in the dynamic conditions substrates were subjected to cyclic uniaxial stretching at three different strain levels of 4%, 8%, and 16% with each at three different strain rates at 0.1, 0.5, and 1.0 Hz. Results showed that of all cell cultures there was no significant difference in neurite development between cells on smooth and textured substrates, except in the static and 4% at 0.1 Hz conditions, where micro-texture induced significantly longer neurites. With both types of substrates, a lower mechanical condition (4% at 1.0 Hz or 16% at 0.1 Hz) resulted in more and longer neurites and lower cell density, and a higher mechanical condition (16% at 1.0 Hz) resulted in fewer and shorter neurites and lower cell density as compared to the static condition. These findings suggest that the effect of the micro-texture on neurite development is more prominent in low mechanical conditions than in high mechanical conditions and that the strain level and strain rate have an interrelated effect on neurite development: a higher strain level at a lower strain rate has a similar effect as a lower strain level at a higher strain rate in terms of promoting neurite development.

  7. Greatly Enhancing Catalytic Activity of Graphene by Doping the Underlying Metal Substrate.

    Science.gov (United States)

    Guo, Na; Xi, Yongjie; Liu, Shuanglong; Zhang, Chun

    2015-07-09

    Graphene-based solid-state catalysis represents a new direction in applications of graphene and has attracted a lot of interests recently. However, the difficulty in fine control and large-scale production of previously proposed graphene catalysts greatly limits their industrial applications. Here we present a novel way to enhance the catalytic activity of graphene, which is highly efficient yet easy to fabricate and control. By first-principles calculations, we show that when the underlying metal substrate is doped with impurities, the catalytic activity of the supported graphene can be drastically enhanced. Graphene supported on a Fe/Ni(111) surface is chosen as a model catalyst, and the chemical reaction of CO oxidation is used to probe the catalytic activity of graphene. When the underlying Fe/Ni(111) substrate is impurity free, the graphene is catalytically inactive. When a Zn atom is doped into the substrate, the catalytic activity of the supported graphene is greatly enhanced, and the reaction barrier of the catalyzed CO oxidation is reduced to less than 0.5 eV. Intriguing reaction mechanism of catalyzed CO oxidation is revealed. These studies suggest a new class of graphene-based catalysts and pave the way for future applications of graphene in solid-state catalysis.

  8. Thermomechanical and Environmental Durability of Environmental Barrier Coated Ceramic Matrix Composites Under Thermal Gradients

    Science.gov (United States)

    Zhu, Dongming; Bhatt, Ramakrishna T.; Harder, Bryan

    2016-01-01

    This paper presents the developments of thermo-mechanical testing approaches and durability performance of environmental barrier coatings (EBCs) and EBC coated SiCSiC ceramic matrix composites (CMCs). Critical testing aspects of the CMCs will be described, including state of the art instrumentations such as temperature, thermal gradient, and full field strain measurements; materials thermal conductivity evolutions and thermal stress resistance; NDE methods; thermo-mechanical stress and environment interactions associated damage accumulations. Examples are also given for testing ceramic matrix composite sub-elements and small airfoils to help better understand the critical and complex CMC and EBC properties in engine relevant testing environments.

  9. Neural substrates underlying motor skill learning in chronic hemiparetic stroke patients

    Directory of Open Access Journals (Sweden)

    Stephanie eLefebvre

    2015-06-01

    Full Text Available Motor skill learning is critical in post-stroke motor recovery, but little is known about its underlying neural substrates. Recently, using a new visuomotor skill learning paradigm involving a speed/accuracy trade-off in healthy individuals we identified three subpopulations based on their behavioral trajectories: fitters (in whom improvement in speed or accuracy coincided with deterioration in the other parameter, shifters (in whom speed and/or accuracy improved without degradation of the other parameter, and non-learners. We aimed to identify the neural substrates underlying the first stages of motor skill learning in chronic hemiparetic stroke patients and to determine whether specific neural substrates were recruited in shifters versus fitters. During functional magnetic resonance imaging (fMRI, 23 patients learned the visuomotor skill with their paretic upper limb. In the whole-group analysis, correlation between activation and motor skill learning was restricted to the dorsal prefrontal cortex of the damaged hemisphere (DLPFCdamh: r=-0.82 and the dorsal premotor cortex (PMddamh: r=0.70; the correlations was much lesser (-0.160.25 in the other regions of interest. In a subgroup analysis, significant activation was restricted to bilateral posterior parietal cortices of the fitters and did not correlate with motor skill learning. Conversely, in shifters significant activation occurred in the primary sensorimotor cortexdamh and supplementary motor areadamh and in bilateral PMd where activation changes correlated significantly with motor skill learning (r=0.91. Finally, resting-state activity acquired before learning showed a higher functional connectivity in the salience network of shifters compared with fitters (qFDR<0.05. These data suggest a neuroplastic compensatory reorganization of brain activity underlying the first stages of motor skill learning with the paretic upper limb in chronic hemiparetic stroke patients, with a key role of

  10. Substrate Wetting Under the Conditions of Drop Free Falling on a Heated Surface

    Directory of Open Access Journals (Sweden)

    Batischeva Ksenia A.

    2015-01-01

    Full Text Available We conducted an experimental study of a heated substrate wetting by drops of distilled water under the conditions of their free-falling. The studies were conducted using a shadow system, which consists of a light source, lens and high-speed video camera. It was found that the maximum wetted area of drop is directly proportional to its volume. The main ranges of evolution of distilled water drop behavior on the heated surface (change of geometry at contact with the surface have been conditionally divided.

  11. Ultrafast dynamics of ligand and substrate interaction in endothelial nitric oxide synthase under Soret excitation.

    Science.gov (United States)

    Hung, Chih-Chang; Yabushita, Atsushi; Kobayashi, Takayoshi; Chen, Pei-Feng; Liang, Keng S

    2016-01-01

    Ultrafast transient absorption spectroscopy of endothelial NOS oxygenase domain (eNOS-oxy) was performed to study dynamics of ligand or substrate interaction under Soret band excitation. Photo-excitation dissociates imidazole ligand in 4ps. The eNOS-oxy without additive is partially bound with water molecule, thus its photoexcited dynamics also shows ligand dissociation in <800fs. Then it followed by vibrational cooling coupled with charge transfer in 4.8ps, and recombination of ligand to distal side of heme in 12ps. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Predicting the Reliability of Ceramics Under Transient Loads and Temperatures With CARES/Life

    Science.gov (United States)

    Nemeth, Noel N.; Jadaan, Osama M.; Palfi, Tamas; Baker, Eric H.

    2003-01-01

    A methodology is shown for predicting the time-dependent reliability of ceramic components against catastrophic rupture when subjected to transient thermomechanical loads (including cyclic loads). The methodology takes into account the changes in material response that can occur with temperature or time (i.e., changing fatigue and Weibull parameters with temperature or time). This capability has been added to the NASA CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code. The code has been modified to have the ability to interface with commercially available finite element analysis (FEA) codes executed for transient load histories. Examples are provided to demonstrate the features of the methodology as implemented in the CARES/Life program.

  13. Fabrication of lead-free piezoelectric Li2CO3-added (Ba,Ca)(Ti,Sn)O3 ceramics under controlled low oxygen partial pressure and their properties

    Science.gov (United States)

    Noritake, Kouta; Sakamoto, Wataru; Yuitoo, Isamu; Takeuchi, Teruaki; Hayashi, Koichiro; Yogo, Toshinobu

    2018-02-01

    Reduction-resistant lead-free (Ba,Ca)(Ti,Sn)O3 piezoceramics with high piezoelectric constants were fabricated by optimizing the amount of Li2CO3 added. Oxygen partial pressure was controlled during the sintering of (Ba,Ca)(Ti,Sn)O3 ceramics in a reducing atmosphere using H2-CO2 gas. Enhanced grain growth and a high-polarization state after poling treatment were achieved by adding Li2CO3. Optimizing the amount of Li2CO3 added to (Ba0.95Ca0.05)(Ti0.95Sn0.05)O3 ceramics sintered under a low oxygen partial pressure resulted in improved piezoelectric properties while maintaining the high sintered density. The prepared Li2CO3-added ceramic samples had homogeneous microstructures with a uniform dispersion of each major constituent element. However, the residual Li content in the 3 mol % Li2CO3-added (Ba0.95Ca0.05)(Ti0.95Sn0.05)O3 ceramics after sintering was less than 0.3 mol %. Sintered bodies of this ceramic prepared in a CO2 (1.5%)-H2 (0.3%)/Ar reducing atmosphere (PO2 = 10-8 atm at 1350 °C), exhibited sufficient electrical resistivity and a piezoelectric constant (d 33) exceeding 500 pC/N. The piezoelectric properties of this nonreducible ceramic were comparable or superior to those of the same ceramic sintered in air.

  14. The effect of the adsorbate layer on the work function reduction of gold substrates under external electric fields

    Science.gov (United States)

    He, Xiang; Cheng, Feng; Chen, Zhao-Xu

    2017-12-01

    The interface interaction between the dimethyl sulfide (DMS) molecule and the gold substrate under external electric fields is investigated by density functional theory method. The polarized DMS adsorbate reduces the work function of the gold substrate while the induced substrate dipole upon the adsorption slightly increases the work function. The DMS layer partially shields the Au(111) substrate from the electric fields and the vacuum level of DMS/Au(111) shifts less than of Au(111) in consequence. Under electric fields pointing outward from the Au(111) surface, both the reduction of work function and the adsorption of DMS molecule are enhanced on the surface. We also suggest the possible application of the field-effect transistor (FET) sensor with gold gate for detecting DMS molecule by utilizing the reduction of substrate work function upon adsorption. The effects of coverage and electric field on the theoretical sensitivity of the sensor are also discussed.

  15. Phase transformations on the surface of YAG composite ceramics under the action of directed laser treatment

    Energy Technology Data Exchange (ETDEWEB)

    Vlasova, M., E-mail: vlasovamarina@inbox.ru; Márquez Aguilar, P.A.; Escobar Martinez, A.; Kakazey, M.; Guardian Tapia, R.; Trujillo Estrada, A.

    2016-07-30

    Highlights: • During directed laser treatment of the surface of the composite ceramics consisting of predominantly Y{sub 3}Al{sub 5}O{sub 12} and Al{sub 2}O{sub 3}, the oriented crystallization of YAG and Al{sub 2}O{sub 3} takes place. • As a result of high-temperature heating, in the surface layer of tracks, the partial dissociation of Y{sub 3}Al{sub 5}O{sub 12}, Y{sub 2}Ti{sub 2}O{sub 7}, and Al{sub 2}Y{sub 4}O{sub 9} and enrichment in YAlO{sub 3} occur. • The content of YAlO{sub 3}, the size of YAG crystallites, and their crystallographic texturing depend on the irradiation mode. • After laser treatment, the ceramic material transforms into a three-layer macrostructure consisting of the basic ceramic material, near-surface textured layer, and surface layer. - Abstract: The laser treatment of composite ceramics based on Y{sub 3}Al{sub 5}O{sub 12} with Y{sub 2}Ti{sub 2}O{sub 7}, Al{sub 2}Y{sub 4}O{sub 9}, and Al{sub 2}O{sub 3} additives is accompanied by the melting of the surface layer and formation of tracks. In the volume of tracks, the partial dissociation of Y{sub 3}Al{sub 5}O{sub 12}, Y{sub 2}Ti{sub 2}O{sub 7}, and Al{sub 2}Y{sub 4}O{sub 9}, and the formation of new phases such as YAlO{sub 3} of orthorhombic and hexagonal modifications along with the appearance of additional content of Y{sub 3}Al{sub 5}O{sub 12} and Al{sub 2}O{sub 3} are observed. The content of all these phases depends on the irradiation mode and the phase composition of the ceramics. With increase in the corundum content in ceramic specimens, in the tracks, the Al{sub 2}O{sub 3} content increases, and the Y{sub 3}Al{sub 5}O{sub 12} content decreases. In the volume of tracks, Y{sub 3}Al{sub 5}O{sub 12} crystallites are textured. The size of YAG crystallites and their crystallographic texturing depend on the irradiation mode and Y{sub 3}Al{sub 5}O{sub 12}/Al{sub 2}O{sub 3} phase ratio. On the surface of tracks, a layer enriched in YAlO{sub 3} forms. Thus, as a result of laser

  16. Mechanical Properties and Plasma Erosion Resistance of ZrO{sub 2p}(3Y)/BN-SiO{sub 2} Ceramic Composites under Different Sintering Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Yu; Duan Xiaoming; Jia Dechang; Yang Zhihua; Meng Qingchang; Yu Yang [Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin, 150001 (China); Yu Daren; Ding Yongjie, E-mail: dxmhit@126.com [School of Energy Science and Technology, Harbin Institute of Technology, Harbin, 150001 (China)

    2011-10-29

    ZrO{sub 2p}(3Y)/BN-SiO{sub 2} ceramic composites were hot pressed under different sintering temperature. The ceramic composites were composed by BN, m-ZrO{sub 2}, t-ZrO{sub 2} and SiO{sub 2}. The relative density, bending strength, elastic modulus and fracture toughness increase with the sintering temperature increasing, the maximum value of which at the sintering temperature of 1800 deg. C are 97.5%, 229.9MPa, 60.8GPa and 3.55MPam{sup 1/2}, respectively. The erosion resistance ability of ZrO{sub 2p}(3Y)/BN-SiO{sub 2} ceramic composites rise gradually with the sintering temperature increasing, and the erosion rate of the ceramic composite sintered at 1800 deg. C is 8.03x10{sup -3}mm/h.

  17. Droplet evaporation on a horizontal substrate under gravity field by mesoscopic modeling.

    Science.gov (United States)

    Xie, Chiyu; Zhang, Jianying; Bertola, Volfango; Wang, Moran

    2016-02-01

    The evaporation of water drop deposited on a horizontal substrate is investigated using a lattice Boltzmann method (LBM) for multiphase flows with a large-density ratio. To account for the variation of evaporation flux distribution along the drop interface, a novel evaporation scheme is introduced into the LBM framework, and validated by comparison with experimental data. We aim at discovering the effect of gravity on the evaporating drop in detail, and various evaporation conditions are considered as well as different wetting properties of the substrates. An effective diameter is introduced as an indicator of the critical drop size under which gravity is negligible. Our results show that such critical diameter is much smaller than the capillary length, which has been widely accepted as the critical size in previous and current works. The critical diameter is found to be almost independent of the evaporation conditions and the surface wettability. A correlation between this critical diameter and the capillary length is also proposed for easy use in applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Sensor Substrate Development

    Data.gov (United States)

    National Aeronautics and Space Administration — Novel substrates, such as aerogels and porous, low density ceramics may increase the sensitivities of chemical reaction-based sensors for toxic vapors. These sensors...

  19. Cellulase Production by Native Bacteria Using Water Hyacinth as Substrate under Solid State Fermentation

    Directory of Open Access Journals (Sweden)

    Suresh Chandra Kurup, R.

    2005-01-01

    Full Text Available Most of the freshwater systems in tropical countries are infested with one kind of aquatic weed or the other causing serious environmental problems. All efforts to control the growth and spread of these weeds have failed miserably and hence the concept of eradication through utilization is being adopted by many researchers. Solid state fermentation, the culturing of microorganisms on moist solid substrates in the absence or near absence of free water, has generatedgreat deal of interest among researchers because of its various advantages over the submerged fermentation technique. Cellulase enzyme is used extensively in various industries, especially in textile, food and in the bioconversion of lignocellulosic wastes to alcohol. The extensive use of cellulase in industries depends on the cost of the enzyme and hence considerable research is being carried out to isolate better microbial strains and also to develop new fermentationprocesses with the aim to reduce the product cost. The objective of the present study is to determine whether water hyacinth, one of the commonly found aquatic weeds, can be used as a substrate for cellulase production, by three native bacterial isolates named WHB 3, WHB 4 and SMB 3, under the process of solid state fermentation. Results indicatethat all the three isolates produced cellulase enzyme by using water hyacinth as the solid support. Under optimized conditions of moisture, pH, temperature, incubation time and inoculum concentration, the enzyme yield increased from 16.8 to 94.8 units for SMB 3, from 25.2 to 110.4 units for WHB 3 and from 18.0 to 127.2 units for WHB 4. The addition of nitrogen and carbon sources resulted in a significant increase in cellulase yield and WHB 3 produced the maximum amount of 216 units followed by SMB 3 and WHB 4.

  20. Ceramic Seal.

    Energy Technology Data Exchange (ETDEWEB)

    Smartt, Heidi A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Romero, Juan A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Custer, Joyce Olsen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hymel, Ross W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Krementz, Dan [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gobin, Derek [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Harpring, Larry [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martinez-Rodriguez, Michael [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Varble, Don [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); DiMaio, Jeff [Tetramer Technologies, Pendleton, SC (United States); Hudson, Stephen [Tetramer Technologies, Pendleton, SC (United States)

    2016-11-01

    Containment/Surveillance (C/S) measures are critical to any verification regime in order to maintain Continuity of Knowledge (CoK). The Ceramic Seal project is research into the next generation technologies to advance C/S, in particular improving security and efficiency. The Ceramic Seal is a small form factor loop seal with improved tamper-indication including a frangible seal body, tamper planes, external coatings, and electronic monitoring of the seal body integrity. It improves efficiency through a self-securing wire and in-situ verification with a handheld reader. Sandia National Laboratories (SNL) and Savannah River National Laboratory (SRNL), under sponsorship from the U.S. National Nuclear Security Administration (NNSA) Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), have previously designed and have now fabricated and tested Ceramic Seals. Tests have occurred at both SNL and SRNL, with different types of tests occurring at each facility. This interim report will describe the Ceramic Seal prototype, the design and development of a handheld standalone reader and an interface to a data acquisition system, fabrication of the seals, and results of initial testing.

  1. DC-magnetron sputtering of ZnO:Al films on (00.1)Al2O3 substrates from slip-casting sintered ceramic targets

    International Nuclear Information System (INIS)

    Miccoli, I.; Spampinato, R.; Marzo, F.; Prete, P.; Lovergine, N.

    2014-01-01

    Highlights: • ZnO:Al was DC-sputtered on sapphire >350 °C by slip-casting sintered AZO target. • Films are highly (00.1)-oriented, smooth and transparent in the NIR–visible range. • Films growth rate decreases with temperature, while their grain size increases. • A high temperature reduction for sticking coefficients of impinging species is proved. • We prove that Thornton model does not apply to high-temperature DC-sputtered ZnO. - Abstract: High (>350 °C) temperature DC-sputtering deposition of ZnO:Al thin films onto single-crystal (00.1) oriented Al 2 O 3 (sapphire) substrates is reported, using a ultrahigh-density, low-resistivity and low-cost composite ceramic target produced by slip-casting (pressureless) sintering of ZnO–Al 2 O 3 (AZO) powders. The original combination of high-angle θ–2θ (Bragg–Brentano geometry) X-ray diffraction with low angle θ–2θ X-ray reflectivity (XRR) techniques allows us to define the AZO target composition and investigate the structural properties and surface/interface roughness of as-sputtered ZnO:Al films; besides, the growth dynamics of ZnO:Al is unambiguously determined. The target turned out composed of the sole wurtzite ZnO and spinel ZnAl 2 O 4 phases. X-ray diffraction analyses revealed highly (00.1)-oriented (epitaxial) ZnO:Al films, the material mean crystallite size being in the 13–20 nm range and increasing with temperature between 350 °C and 450 °C, while the film growth rate (determined via XRR measurements) decreases appreciably. XRR spectra also allowed to determine rms surface roughness <1 nm for present films and showed ZnO:Al density changes by only a few percent between 350 °C and 450 °C. The latter result disproves the often-adopted Thornton model for the description of the sputter-grown ZnO films and instead points out toward a reduction of the sticking coefficients of impinging species, as the main origin of film growth rate and grain size dependence with temperature. Zn

  2. Portfolio: Ceramics.

    Science.gov (United States)

    Hardy, Jane; And Others

    1982-01-01

    Describes eight art activities using ceramics. Elementary students created ceramic tiles to depict ancient Egyptian and medieval European art, made ceramic cookie stamps, traced bisque plates on sketch paper, constructed clay room-tableaus, and designed clay relief masks. Secondary students pit-fired ceramic pots and designed ceramic Victorian…

  3. The insula: a critical neural substrate for craving and drug seeking under conflict and risk

    Science.gov (United States)

    Naqvi, Nasir H.; Gaznick, Natassia; Tranel, Daniel; Bechara, Antoine

    2014-01-01

    Drug addiction is characterized by the inability to control drug use when it results in negative consequences or conflicts with more adaptive goals. Our previous work showed that damage to the insula disrupted addiction to cigarette smoking—the first time that the insula was shown to be a critical neural substrate for addiction. Here, we review those findings, as well as more recent studies that corroborate and extend them, demonstrating the role of the insula in (1) incentive motivational processes that drive addictive behavior, (2) control processes that moderate or inhibit addictive behavior, and (3) interoceptive processes that represent bodily states associated with drug use. We then describe a theoretical framework that attempts to integrate these seemingly disparate findings. In this framework, the insula functions in the recall of interoceptive drug effects during craving and drug seeking under specific conditions where drug taking is perceived as risky and/or where there is conflict between drug taking and more adaptive goals. We describe this framework in an evolutionary context and discuss its implications for understanding the mechanisms of behavior change in addiction treatments. PMID:24690001

  4. Neuronal Substrates Underlying Performance Variability in Well-Trained Skillful Motor Task in Humans

    Directory of Open Access Journals (Sweden)

    Nobuaki Mizuguchi

    2016-01-01

    Full Text Available Motor performance fluctuates trial by trial even in a well-trained motor skill. Here we show neural substrates underlying such behavioral fluctuation in humans. We first scanned brain activity with functional magnetic resonance imaging while healthy participants repeatedly performed a 10 s skillful sequential finger-tapping task. Before starting the experiment, the participants had completed intensive training. We evaluated task performance per trial (number of correct sequences in 10 s and depicted brain regions where the activity changes in association with the fluctuation of the task performance across trials. We found that the activity in a broader range of frontoparietocerebellar network, including the bilateral dorsolateral prefrontal cortex (DLPFC, anterior cingulate and anterior insular cortices, and left cerebellar hemisphere, was negatively correlated with the task performance. We further showed in another transcranial direct current stimulation (tDCS experiment that task performance deteriorated, when we applied anodal tDCS to the right DLPFC. These results indicate that fluctuation of brain activity in the nonmotor frontoparietocerebellar network may underlie trial-by-trial performance variability even in a well-trained motor skill, and its neuromodulation with tDCS may affect the task performance.

  5. Influence of dormancy on microbial competition under intermittent substrate supply: insights from model simulations.

    Science.gov (United States)

    Stolpovsky, Konstantin; Fetzer, Ingo; Van Cappellen, Philippe; Thullner, Martin

    2016-06-01

    Most natural environments are characterized by frequent changes of their abiotic conditions. Microorganisms can respond to such changes by switching their physiological state between activity and dormancy allowing them to endure periods of unfavorable abiotic conditions. As a consequence, the competitiveness of microbial species is not simply determined by their growth performance under favorable conditions but also by their ability and readiness to respond to periods of unfavorable environmental conditions. The present study investigates the relevance of factors controlling the abundance and activity of individual bacterial species competing for an intermittently supplied substrate. For this purpose, numerical experiments were performed addressing the response of microbial systems to regularly applied feeding pulses. Simulation results show that community dynamics may exhibit a non-trivial link to the frequency of the external constraints and that for a certain combination of these environmental conditions coexistence of species is possible. The ecological implication of our results is that even non-dominant, neglected species can have a strong influence on realized species composition of dominant key species, due to their invisible presence enable the coexistence between important key species and by this affecting provided function of the system. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. The insula: a critical neural substrate for craving and drug seeking under conflict and risk.

    Science.gov (United States)

    Naqvi, Nasir H; Gaznick, Natassia; Tranel, Daniel; Bechara, Antoine

    2014-05-01

    Drug addiction is characterized by the inability to control drug use when it results in negative consequences or conflicts with more adaptive goals. Our previous work showed that damage to the insula disrupted addiction to cigarette smoking-the first time that the insula was shown to be a critical neural substrate for addiction. Here, we review those findings, as well as more recent studies that corroborate and extend them, demonstrating the role of the insula in (1) incentive motivational processes that drive addictive behavior, (2) control processes that moderate or inhibit addictive behavior, and (3) interoceptive processes that represent bodily states associated with drug use. We then describe a theoretical framework that attempts to integrate these seemingly disparate findings. In this framework, the insula functions in the recall of interoceptive drug effects during craving and drug seeking under specific conditions where drug taking is perceived as risky and/or where there is conflict between drug taking and more adaptive goals. We describe this framework in an evolutionary context and discuss its implications for understanding the mechanisms of behavior change in addiction treatments. © 2014 New York Academy of Sciences.

  7. Continuous Fiber Ceramic Composites

    Energy Technology Data Exchange (ETDEWEB)

    Fareed, Ali [Honeywell Advanced Composites Inc. (HACI), Newark, DE (United States); Craig, Phillip A. [Honeywell Advanced Composites Inc. (HACI), Newark, DE (United States)

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  8. Silver endotaxy in silicon under various ambient conditions and their use as surface enhanced Raman spectroscopy substrates

    International Nuclear Information System (INIS)

    Juluri, R.R.; Ghosh, A.; Bhukta, A.; Sathyavathi, R.; Satyam, P.V.

    2015-01-01

    Search for reliable, robust and efficient substrates for surface enhanced Raman spectroscopy (SERS) leads to the growth of various shapes and nanostructures of noble metals, and in particular, Ag nanostructures for this purpose. Coherently embedded (also known as endotaxial) Ag nanostructures in silicon substrates can be made robust and reusable SERS substrates. In this paper, we show the possibility of the growth of Ag endotaxial structures in Si crystal during Ar and low-vacuum annealing conditions while this is absent in O 2 and ultra high vacuum (UHV) annealing conditions and along with their respective use as SERS substrates. Systems annealed under air-annealing and low-vacuum conditions were found to show larger enhancement factors (typically ≈ 5 × 10 5 in SERS measurement for 0.5 nM Crystal Violet (CV) molecule) while the systems prepared under UHV-annealing conditions (where no endotaxial Ag structures were formed) were found to be not effective as SERS substrates. Extensive electron microscopy, synchrotron X-ray diffraction and Rutherford backscattering spectrometry techniques were used to understand the structural aspects. - Highlights: • Various aspects on the growth of endotaxial Ag nanostructures are presented. • Optimum amount of oxygen is necessary for the growth of endotaxial structures. • Reaction of oxygen with GeOx and SiOx plays a crucial role. • Ag nanostructures prepared under UHV conditions show low SERS activity • SERS enhancement is better for low-vacuum and argon annealing conditions

  9. Reliability of Ceramic Column Grid Array Interconnect Packages Under Extreme Temperatures

    Science.gov (United States)

    Ramesham, Rajeshuni

    2011-01-01

    A paper describes advanced ceramic column grid array (CCGA) packaging interconnects technology test objects that were subjected to extreme temperature thermal cycles. CCGA interconnect electronic package printed wiring boards (PWBs) of polyimide were assembled, inspected nondestructively, and, subsequently, subjected to ex - treme-temperature thermal cycling to assess reliability for future deep-space, short- and long-term, extreme-temperature missions. The test hardware consisted of two CCGA717 packages with each package divided into four daisy-chained sections, for a total of eight daisy chains to be monitored. The package is 33 33 mm with a 27 27 array of 80%/20% Pb/Sn columns on a 1.27-mm pitch. The change in resistance of the daisy-chained CCGA interconnects was measured as a function of the increasing number of thermal cycles. Several catastrophic failures were observed after 137 extreme-temperature thermal cycles, as per electrical resistance measurements, and then the tests were continued through 1,058 thermal cycles to corroborate and understand the test results. X-ray and optical inspection have been made after thermal cycling. Optical inspections were also conducted on the CCGA vs. thermal cycles. The optical inspections were conclusive; the x-ray images were not. Process qualification and assembly is required to optimize the CCGA assembly, which is very clear from the x-rays. Six daisy chains were open out of seven daisy chains, as per experimental test data reported. The daisy chains are open during the cold cycle, and then recover during the hot cycle, though some of them also opened during the hot thermal cycle..

  10. Compliant sleeve for ceramic turbine blades

    Science.gov (United States)

    Cai, Hongda; Narasimhan, Dave; Strangman, Thomas E.; Easley, Michael L.; Schenk, Bjoern

    2000-01-01

    A compliant sleeve for attaching a ceramic member to a metal member is comprised of a superalloy substrate having a metal contacting side and a ceramic contacting side. The ceramic contacting side is plated with a layer of nickel followed by a layer of platinum. The substrate is then oxidized to form nickel oxide scale on the ceramic contacting side and a cobalt oxide scale on the metal contacting side. A lubricious coating of boron nitride is then applied over the metal contacting side, and a shear-stress limiting gold coating is applied over the ceramic contacting side.

  11. Substrate induced denitrification over or under estimates shifts in soil N₂/N₂O ratios.

    Directory of Open Access Journals (Sweden)

    Nicholas J Morley

    Full Text Available The increase in atmospheric nitrous oxide (N₂O, a potent greenhouse and ozone depleting gas, is of serious global concern. Soils are large contributors to this increase through microbial processes that are enhanced in agricultural land due to nitrogenous fertilizer applications. Denitrification, a respiratory process using nitrogen oxides as electron acceptors in the absence of oxygen, is the main source of N₂O. The end product of denitrification is benign dinitrogen (N₂ and understanding what regulates the shift in ratio of N₂O and N₂ emission is crucial for mitigation strategies. The role of organic carbon in controlling N₂O reduction is poorly understood, and mostly based on application of glucose. Here we investigated how a range of carbon compounds (succinate, butyrate, malic acid, acetate, glucose, sucrose and cysteine affect denitrifier N₂/N₂O production stoichiometry under laboratory conditions. The results show that a soil's capability in efficiently reducing N₂O to N₂ is C substrate dependent and most compounds tested were different in regards to this efficiency compared to glucose. We challenge the concept of using glucose as a model soil C compound in furthering our understanding of denitrification and specifically the efficiency in the N₂O reductase enzyme. Organic acids, commonly exuded by roots, increased N₂/N₂O ratios compared to glucose, and therefore mitigated net N₂O release and we suggest provides better insights into soil regulatory aspects of N₂O reduction. The widespread use of glucose in soil laboratory studies could lead to misleading knowledge on the functioning of denitrification in soils with regards to N₂O reduction.

  12. Designing the fiber volume ratio in SiC fiber-reinforced SiC ceramic composites under Hertzian stress

    International Nuclear Information System (INIS)

    Lee, Kee Sung; Jang, Kyung Soon; Park, Jae Hong; Kim, Tae Woo; Han, In Sub; Woo, Sang Kuk

    2011-01-01

    Highlights: → Optimum fiber volume ratios in the SiC/SiC composite layers were designed under Hertzian stress. → FEM analysis and spherical indentation experiments were undertaken. → Boron nitride-pyrocarbon double coatings on the SiC fiber were effective. → Fiber volume ratio should be designed against flexural stress. -- Abstract: Finite element method (FEM) analysis and experimental studies are undertaken on the design of the fiber volume ratio in silicon carbide (SiC) fiber-reinforced SiC composites under indentation contact stresses. Boron nitride (BN)/Pyrocarbon (PyC) are selected as the coating materials for the SiC fiber. Various SiC matrix/coating/fiber/coating/matrix structures are modeled by introducing a woven fiber layer in the SiC matrix. Especially, this study attempts to find the optimum fiber volume ratio in SiC fiber-reinforced SiC ceramics under Hertzian stress. The analysis is performed by changing the fiber type, fiber volume ratio, coating material, number of coating layers, and stacking sequence of the coating layers. The variation in the stress for composites in relation to the fiber volume ratio in the contact axial or radial direction is also analyzed. The same structures are fabricated experimentally by a hot process, and the mechanical behaviors regarding the load-displacement are evaluated using the Hertzian indentation method. Various SiC matrix/coating/fiber/coating/matrix structures are fabricated, and mechanical characterization is performed by changing the coating layer, according to the introduction (or omission) of the coating layer, and the number of woven fiber mats. The results show that the damage mode changes from Hertzian stress to flexural stress as the fiber volume ratio increases in composites because of the decreased matrix volume fraction, which intensifies the radial crack damage. The result significantly indicates that the optimum fiber volume ratio in SiC fiber-reinforced SiC ceramics should be designed for

  13. Direct cooled power electronics substrate

    Science.gov (United States)

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Lowe, Kirk T [Knoxville, TN

    2010-09-14

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  14. Fatigue Damage and Lifetime of SiC/SiC Ceramic-Matrix Composite under Cyclic Loading at Elevated Temperatures.

    Science.gov (United States)

    Li, Longbiao

    2017-03-31

    In this paper, the fatigue damage and lifetime of 2D SiC/SiC ceramic-matrix composites (CMCs) under cyclic fatigue loading at 750, 1000, 1100, 1200 and 1300 °C in air and in steam atmosphere have been investigated. The damage evolution versus applied cycles of 2D SiC/SiC composites were analyzed using fatigue hysteresis dissipated energy, fatigue hysteresis modulus, fatigue peak strain and interface shear stress. The presence of steam accelerated the damage development inside of SiC/SiC composites, which increased the increasing rate of the fatigue hysteresis dissipated energy and the fatigue peak strain, and the decreasing rate of the fatigue hysteresis modulus and the interface shear stress. The fatigue life stress-cycle (S-N) curves and fatigue limit stresses of 2D SiC/SiC composites at different temperatures in air and in steam condition have been predicted. The fatigue limit stresses approach 67%, 28%, 39% 17% and 28% tensile strength at 750, 1000, 1100, 1200 and 1300 °C in air, and 49%, 10%, 9% and 19% tensile strength at 750, 1000, 1200 and 1300 °C in steam conditions, respectively.

  15. Durability and Design Issues of Thermal/environmental Barrier Coatings on Sic/sic Ceramic Matrix Composites Under 1650 C Test Conditions

    Science.gov (United States)

    Zhu, Dong-Ming; Choi, Sung R.; Ghosn, Louis J.; Miller, Robert A.

    2004-01-01

    Ceramic thermal/environmental barrier coatings for SiC-based ceramics will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating durability remains a major concern with the ever-increasing temperature requirements. Currently, advanced T/EBC systems, which typically include a high temperature capable zirconia- (or hahia-) based oxide top coat (thermal barrier) on a less temperature capable mullite/barium-strontium-aluminosilicate (BSAS)/Si inner coat (environmental barrier), are being developed and tested for higher temperature capability Sic combustor applications. In this paper, durability of several thermal/environmental barrier coating systems on SiC/SiC ceramic matrix composites was investigated under laser simulated engine thermal gradient cyclic, and 1650 C (3000 F) test conditions. The coating cracking and delamination processes were monitored and evaluated. The effects of temperature gradients and coating configurations on the ceramic coating crack initiation and propagation were analyzed using finite element analysis (FEA) models based on the observed failure mechanisms, in conjunction with mechanical testing results. The environmental effects on the coating durability will be discussed. The coating design approach will also be presented.

  16. Corrosion resistance of ceramic materials in pyrochemical reprocessing atmosphere by using molten salt for spent nuclear oxide fuel. Corrosion research under chlorine gas condition

    International Nuclear Information System (INIS)

    Takeuchi, Masayuki; Hanada, Keiji; Koizumi, Tsutomu; Aose, Shinichi; Kato, Toshihiro

    2002-12-01

    Pyrochemical reprocessing using molten salts (RIAR process) has been recently developed for spent nuclear oxide fuel and discussed in feasibility study. It is required to improve the corrosion resistance of equipments such as electrolyzer because the process is operated in severe corrosion environment. In this study, the corrosion resistance of ceramic materials was discussed through the thermodynamic calculation and corrosion test. The corrosion test was basically carried out in alkali molten salt under chlorine gas condition. And further consideration about the effects of oxygen, carbon and main fission product's chlorides were evaluated in molten salt. The result of thermodynamic calculation shows most of ceramic oxides have good chemical stability on chlorine, oxygen and uranyl chloride, however the standard Gibb's free energies with carbon have negative value. On the other hand, eleven kinds of ceramic materials were examined by corrosion test, then silicon nitride, mullite and cordierite have a good corrosion resistance less than 0.1 mm/y. Cracks were not observed on the materials and flexural strength did not reduce remarkably after 480 hours test in molten salt with Cl 2 -O 2 bubbling. In conclusion, these three ceramic materials are most applicable materials for the pyrochemical reprocessing process with chlorine gas condition. (author)

  17. Evaluation of mechanical properties and structural changes of ceramic filter materials for hot gas cleaning under simulated process conditions

    OpenAIRE

    Westerheide, R.; Wehd, C. von der; Rehak, P.; Adler, J.

    2002-01-01

    In the combined cycle technology for advanced coal fired power plants at high temperatures up to 950 °C the removal of particles from the stream to the gas turbine is carried out with ceramic filter elements. These elements consist often of siliceous bonded coarse grained silicon carbide. A stable long term operation of the filter elements leads to the demands on good resistance towards thermal, mechanical and chemical loading. The structure of ceramic filter elements consists usually of a hi...

  18. Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions.

    Science.gov (United States)

    Saha, Krishanu; Mei, Ying; Reisterer, Colin M; Pyzocha, Neena Kenton; Yang, Jing; Muffat, Julien; Davies, Martyn C; Alexander, Morgan R; Langer, Robert; Anderson, Daniel G; Jaenisch, Rudolf

    2011-11-15

    The current gold standard for the culture of human pluripotent stem cells requires the use of a feeder layer of cells. Here, we develop a spatially defined culture system based on UV/ozone radiation modification of typical cell culture plastics to define a favorable surface environment for human pluripotent stem cell culture. Chemical and geometrical optimization of the surfaces enables control of early cell aggregation from fully dissociated cells, as predicted from a numerical model of cell migration, and results in significant increases in cell growth of undifferentiated cells. These chemically defined xeno-free substrates generate more than three times the number of cells than feeder-containing substrates per surface area. Further, reprogramming and typical gene-targeting protocols can be readily performed on these engineered surfaces. These substrates provide an attractive cell culture platform for the production of clinically relevant factor-free reprogrammed cells from patient tissue samples and facilitate the definition of standardized scale-up friendly methods for disease modeling and cell therapeutic applications.

  19. Adherent diamond film deposited on Cu substrate by carbon transport from nanodiamond buried under Pt interlayer

    International Nuclear Information System (INIS)

    Liu Xuezhang; Wei Qiuping; Yu Zhiming; Yang Taiming; Zhai Hao

    2013-01-01

    Highlights: ► Adherent polycrystalline diamond films were grown on copper substrate by carbon transport. ► The nucleation density was increased to 10 11 cm −2 . ► Diamond films were a composite structure of nano-crystalline diamond layer and micro-crystalline diamond layer. ► Diamond nucleation was based by carbon dissolving from UDDs to Pt interlayer and formation of sp 3 -bonded diamond clusters at the Pt surface. - Abstract: Diamond film deposited on Cu suffered from poor adhesion mainly due to the large mismatch of thermal expansion coefficients and the lack of affinity between carbon and Cu. Enhancing diamond nucleation by carbon transport from buried nanodiamond through a Pt ultrathin interlayer, adherent diamond film was then deposited on Cu substrate without distinctly metallic interlayer. This novel nucleation mechanism increased diamond nucleation density to 10 11 cm −2 , and developed diamond film with a composite structure of nano-crystalline diamond (NCD) layer and micro-crystalline diamond layer. Diamond film was characterized by the scanning electron microscope (SEM) and Raman spectroscope, respectively. The composition of diamond film/Cu substrate interface was examined by electron probe microanalysis (EPMA). The adhesion of diamond film was evaluated by indentation test. Those results show that a Pt ultrathin interlayer provides stronger chemically bonded interfaces and improve film adhesion.

  20. Adherent diamond film deposited on Cu substrate by carbon transport from nanodiamond buried under Pt interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xuezhang [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Wei Qiuping, E-mail: qiupwei@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083 (China); Yu Zhiming, E-mail: zhiming@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083 (China); Yang Taiming; Zhai Hao [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Adherent polycrystalline diamond films were grown on copper substrate by carbon transport. Black-Right-Pointing-Pointer The nucleation density was increased to 10{sup 11} cm{sup -2}. Black-Right-Pointing-Pointer Diamond films were a composite structure of nano-crystalline diamond layer and micro-crystalline diamond layer. Black-Right-Pointing-Pointer Diamond nucleation was based by carbon dissolving from UDDs to Pt interlayer and formation of sp{sup 3}-bonded diamond clusters at the Pt surface. - Abstract: Diamond film deposited on Cu suffered from poor adhesion mainly due to the large mismatch of thermal expansion coefficients and the lack of affinity between carbon and Cu. Enhancing diamond nucleation by carbon transport from buried nanodiamond through a Pt ultrathin interlayer, adherent diamond film was then deposited on Cu substrate without distinctly metallic interlayer. This novel nucleation mechanism increased diamond nucleation density to 10{sup 11} cm{sup -2}, and developed diamond film with a composite structure of nano-crystalline diamond (NCD) layer and micro-crystalline diamond layer. Diamond film was characterized by the scanning electron microscope (SEM) and Raman spectroscope, respectively. The composition of diamond film/Cu substrate interface was examined by electron probe microanalysis (EPMA). The adhesion of diamond film was evaluated by indentation test. Those results show that a Pt ultrathin interlayer provides stronger chemically bonded interfaces and improve film adhesion.

  1. High Ms Fe16N2 thin film with Ag under layer on GaAs substrate

    Energy Technology Data Exchange (ETDEWEB)

    Allard Jr, Lawrence Frederick [ORNL

    2016-01-01

    (001) textured Fe16N2 thin film with Ag under layer is successfully grown on GaAs substrate using a facing target sputtering (FTS) system. After post annealing, chemically ordered Fe16N2 phase is formed and detected by X-ray diffraction (XRD). High saturation magnetization (Ms) is measured by a vibrating sample magnetometer (VSM). In comparison with Fe16N2 with Ag under layer on MgO substrate and Fe16N2 with Fe under layer on GaAs substrate, the current layer structure shows a higher Ms value, with a magnetically softer feature in contrast to the above cases. In addition, X-ray photoelectron spectroscopy (XPS) is performed to characterize the binding energy of N atoms. To verify the role of strain that the FeN layer experiences in the above three structures, Grazing Incidence X-ray Diffraction (GIXRD) is conducted to reveal a large in-plane lattice constant due to the in-plane biaxial tensile strain. INTRODUCTION

  2. Ceramic Matrix Characterization Under a Gas Turbine Combustion and Loading Environment

    Science.gov (United States)

    2014-03-17

    consisting of a silicon carbide matrix reinforced by boron nitride coated Hi-Nicalon type S TM SiC fiber under tension-tension fatigue loading in...were not covered by this research. One thing that would be of interest would be to x - ray the material before testing in the combustion environment to...made up of woven Sylramic SiC (silicon carbide ) fibers situated in an SiC matrix using chemical vapor infiltration (CVI). The specimens used in this

  3. Piezoelectric Ceramics

    International Nuclear Information System (INIS)

    Park, Chang Yeop

    1987-03-01

    This book tells of piezoelectric ceramics on BaTiO 3 Pb(Zr, Ti)O 3 , properties of piezoelectric ceramics, measurement method of piezoelectric ceramics, manufacturing method of piezoelectric ceramics, property of PbZrO 3 -PbTiO 3 , transparent ceramics like electro-optics effect, electro-optics ceramics, application of a producer of high voltage, application of ultrasonic generator, ZnO piezoelectric film and its application such as property of ZnO, piezoelectric of ZnO film, manufacturing method of ZnO.

  4. THE THICKNESS DEPENDENCE OF OXYGEN PERMEABILITY IN SOL-GEL DERIVED CGO-COFE2O4 THIN FILMS ON POROUS CERAMIC SUBSTRATES: A SPUTTERED BLOCKING LAYER FOR THICKNESS CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, K

    2009-01-08

    Mixed conductive oxides are a topic of interest for applications in oxygen separation membranes as well as use in producing hydrogen fuel through the partial oxidation of methane. The oxygen flux through the membrane is governed both by the oxygen ionic conductivity as well as the material's electronic conductivity; composite membranes like Ce{sub 0.8}Gd{sub 0.2}O{sub 2-{delta}} (CGO)-CoFe{sub 2}O{sub 4} (CFO) use gadolinium doped ceria oxides as the ionic conducting material combined with cobalt iron spinel which serves as the electronic conductor. In this study we employ {approx} 50 nm sputtered CeO{sub 2} layers on the surface of porous CGO ceramic substrates which serve as solution 'blocking' layers during the thin film fabrication process facilitating the control of film thickness. Films with thickness of {approx} 2 and 4 microns were prepared by depositing 40 and 95 separate sol-gel layers respectively. Oxygen flux measurements indicated that the permeation increased with decreasing membrane thickness; thin film membrane with thickness on the micron level showed flux values an order of magnitude greater (0.03 {micro}mol/cm{sup 2} s) at 800 C as compared to 1mm thick bulk ceramic membranes (0.003 {micro}mol/cm{sup 2}).

  5. Estudo da conformação de substratos cerâmicos por laminação a partir de suspensões concentradas de alumina Rolling study of ceramic substrates from concentrate alumina suspensions

    Directory of Open Access Journals (Sweden)

    L. F. G. Setz

    2011-12-01

    Full Text Available A produção de substratos cerâmicos por laminação, ou conformação viscoplástica, é interessante, pois minimiza problemas inerentes ao processamento como a aglomeração dos pós. Quando a preparação das massas a serem conformadas por esta técnica é realizada a partir de suspensões estáveis, estes problemas quase inexistem, possibilitando a obtenção de produtos íntegros com microestrutura homogênea. Neste trabalho é apresentado o comportamento reológico das suspensões concentradas e das massas de alumina contendo diferentes teores do espessante/plastificante hidroxipropil metilcelulose (HPMC e também o estudo das variáveis de processo envolvidas na conformação por calandragem. Como resultado deste estudo foi possível obter substratos de alumina calandrados densos, utilizando-se uma suspensão concentrada (60% vol., estabilizada com 0,02% de Viscocrete 20HE e com adição de 1,5%m. de HPMC.The ceramic substrates production by calendering, or viscous plastic processing, is interesting because inherent problems as a powder agglomeration is minimized. When the ceramic pastes shaping for this technique are produced from stabilized suspensions these problems almost inexist. This work presents the concentrate suspensions and pastes with different hydroxypropyl methyl cellulose (HPMC thickener content rheological behaviors. The variables involved in calendering shaping were studied, too. The production of dense alumina substrates shaped by calendaring from concentrate suspensions (60 vol.%, stabilized with 0.02 wt.% Viscocrete 20HE and 1.5 wt.% HPMC is possible.

  6. On Ceramics.

    Science.gov (United States)

    School Arts, 1982

    1982-01-01

    Presents four ceramics activities for secondary-level art classes. Included are directions for primitive kiln construction and glaze making. Two ceramics design activities are described in which students make bizarrely-shaped lidded jars, feet, and footwear. (AM)

  7. Substrate-Mediated Laser Ablation under Ambient Conditions for Spatially-Resolved Tissue Proteomics.

    Science.gov (United States)

    Fatou, Benoit; Wisztorski, Maxence; Focsa, Cristian; Salzet, Michel; Ziskind, Michael; Fournier, Isabelle

    2015-12-17

    Numerous applications of ambient Mass Spectrometry (MS) have been demonstrated over the past decade. They promoted the emergence of various micro-sampling techniques such as Laser Ablation/Droplet Capture (LADC). LADC consists in the ablation of analytes from a surface and their subsequent capture in a solvent droplet which can then be analyzed by MS. LADC is thus generally performed in the UV or IR range, using a wavelength at which analytes or the matrix absorb. In this work, we explore the potential of visible range LADC (532 nm) as a micro-sampling technology for large-scale proteomics analyses. We demonstrate that biomolecule analyses using 532 nm LADC are possible, despite the low absorbance of biomolecules at this wavelength. This is due to the preponderance of an indirect substrate-mediated ablation mechanism at low laser energy which contrasts with the conventional direct ablation driven by sample absorption. Using our custom LADC system and taking advantage of this substrate-mediated ablation mechanism, we were able to perform large-scale proteomic analyses of micro-sampled tissue sections and demonstrated the possible identification of proteins with relevant biological functions. Consequently, the 532 nm LADC technique offers a new tool for biological and clinical applications.

  8. Substrate-Mediated Laser Ablation under Ambient Conditions for Spatially-Resolved Tissue Proteomics

    Science.gov (United States)

    Fatou, Benoit; Wisztorski, Maxence; Focsa, Cristian; Salzet, Michel; Ziskind, Michael; Fournier, Isabelle

    2015-01-01

    Numerous applications of ambient Mass Spectrometry (MS) have been demonstrated over the past decade. They promoted the emergence of various micro-sampling techniques such as Laser Ablation/Droplet Capture (LADC). LADC consists in the ablation of analytes from a surface and their subsequent capture in a solvent droplet which can then be analyzed by MS. LADC is thus generally performed in the UV or IR range, using a wavelength at which analytes or the matrix absorb. In this work, we explore the potential of visible range LADC (532 nm) as a micro-sampling technology for large-scale proteomics analyses. We demonstrate that biomolecule analyses using 532 nm LADC are possible, despite the low absorbance of biomolecules at this wavelength. This is due to the preponderance of an indirect substrate-mediated ablation mechanism at low laser energy which contrasts with the conventional direct ablation driven by sample absorption. Using our custom LADC system and taking advantage of this substrate-mediated ablation mechanism, we were able to perform large-scale proteomic analyses of micro-sampled tissue sections and demonstrated the possible identification of proteins with relevant biological functions. Consequently, the 532 nm LADC technique offers a new tool for biological and clinical applications. PMID:26674367

  9. Direct bonding of metals to ceramics: Interface investigations

    Science.gov (United States)

    Curicuta, Victor

    There is a growing interest in metal/ceramic bonding for a wide range of applications from electronic packaging to biomedical implants. In this research work, results are reported for direct bonding of copper to ceramic (e.g., Al2O3 and ZrO) in a furnace under inert atmosphere (e.g., N2 and Ar2). Other, metals such as Cu, Ni, SS-316 were directly bonded to ceramics (e.g., α- Al2O3, sapphire) using laser heating (e.g., 247 nm and 10.6 μm wavelengths) in the presence of N2 atmosphere. Cu flakes have bean bonded to industrial alumina ceramic and sapphire in the presence of methyl, ethyl and isopropyl alcohols using a CO2 laser. All these experiments were performed by heating the metal or metal-organic media member for a sufficient time in order to create a metal-metal oxide eutectic melt at the interface with the ceramic substrate. Thermal wave imaging (TWI) was used to investigate the bonding at the metal/ceramic interface. It was found that the method of direct bonding of metals to ceramics using lasers performed better than the furnace. The properties of the copper bonded layer on alumina ceramic was investigated using scanning electron microscopy (SEM). Also, the elemental distribution at the metal/ceramic interface was analyzed, using energy dispersive x-ray spectroscopy (EDS). With the help of x-ray diffraction (XRD), the phase present at the copper/industrial alumina ceramic interface was determined to be CuAl2O4. This was different from the CuAlO2 phase found at the copper/sapphire interface for the furnace bonding case. Transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM) was also used to investigate the aspects of metal/ceramic interfaces. It was found that the samples processed by furnace heating and by laser beam heating have a diffused transition interface. The electron diffraction patterns revealed the phase present at the interface (Cu/ /alpha- Al2O3) to be a cubic one, with the CuAl2O4 crystallographic

  10. Advanced Ceramics

    International Nuclear Information System (INIS)

    1989-01-01

    The First Florida-Brazil Seminar on Materials and the Second State Meeting about new materials in Rio de Janeiro State show the specific technical contribution in advanced ceramic sector. The others main topics discussed for the development of the country are the advanced ceramic programs the market, the national technic-scientific capacitation, the advanced ceramic patents, etc. (C.G.C.) [pt

  11. Antibacterial ceramic for sandbox. Sunabayo kokin ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, K. (Ishizuka Glass Co. Ltd. Nagoya (Japan))

    1993-10-01

    Sands in sandboxes in parks have been called into question of being contaminated by colon bacilli and spawns from ascarides. This paper introduces an antibacterial ceramic for sandbox developed as a new material effective to help reduce the contamination. The ceramic uses natural sand as the main raw material, which is added with borax and silver to contain silver ions that have bacteria and fungus resistance and deodorizing effect. The ceramic has an average grain size ranging from 0.5 mm to 0.7 mm, and is so devised as to match specific gravity, grain size and shape of the sand, hence no separation and segregation can occur. The result of weatherability and antibacterial strength tests on sand for a sandbox mixed with the ceramic at 1% suggests that its efficacy lasts for about three years. Its actual use is under observation. Its efficacy has been verified in a test that measures a survival factor of spawns from dog ascardides contacted with aqueous solution containing the ceramic at 1%. Safety and sanitation tests have proved the ceramic a highly safe product that conforms to the food sanitation law. 5 refs., 3 figs., 3 tabs.

  12. Influence of substrate temperature on epitaxial growth of YBa2Cu3O6.9 superconducting films under laser sputtering

    International Nuclear Information System (INIS)

    Gasparov, V.A.; Dite, A.F.; Ovchinnikov, I.M.; Sorokin, N.M.; Khasanov, S.S.; Yaremenko, V.G.

    1989-01-01

    Using ac resistivity measurements, X-ray diffraction and Auger spectroscopy we have investigated the influence of SrTiO 3 substrate temperature (T s ) on the epitaxial growth of superconducting YBaCu 3 O 6.9 films evaporated by a moderate energy (∼ c films and to investigate their surface properties (Auger spectra) in situ. The Y-Ba-Cu-O thin films were evaporated from a rotated cyylindrical target of YBa 2 Cu 3 O 6.9 superconducting ceramic onto a SrTiO 3 (100) single crystal substrate which also has been rotated.The films were subsequently annealed for one hour at different temperatures in an O 2 flow in the same chamber immediatly after evaporation and cooled down slowly (100 deg C/hour) to room temperature

  13. Random lasing in Eu³⁺ doped borate glass-ceramic embedded with Ag nanoparticles under direct three-photon excitation.

    Science.gov (United States)

    Xu, Xuhui; Zhang, Wenfei; Jin, Limin; Qiu, Jianbei; Yu, Siu Fung

    2015-10-21

    We report the observation of random lasing from Eu(3+) doped borate glass ceramic films embedded with Ag nanoparticles through three-photon absorption at room temperature. Under 1179 nm ultrashort femtosecond pulse excitation, discrete sharp peaks with linewidth ∼0.4 nm emerge randomly from a broad emission band with peak wavelength at ∼612 nm. In addition, the number of sharp peaks increases with the increase of excitation power. We also show that the emission spectrum varies with different observation angles and the corresponding lasing threshold is dependent on the excitation area. Hence, we verify unambiguously that the Eu(3+) doped borate glass ceramic film supports random lasing action via three-photon absorption excitation. In addition, Ag nanoparticles, which act as light scatterers, allow the formation of random microcavities inside the bulk film.

  14. High-T sub c fluorine-doped YBa2Cu3O(y) films on ceramic substrates by screen printing

    Science.gov (United States)

    Bansal, Narottam P.

    1991-01-01

    Thick films of fluorine-doped YBa2Cu3O(y) were screen printed on highly polished alumina, magnesia spinel, strontium titanate, and yttria-stabilized zirconia (YSZ) substrates. They were annealed at 1000 C and soaked in oxygen at 450 C, followed by slow cooling to room temperature. The films were characterized by electrical resistivity measurements as a function of temperature and x-ray diffraction. The film on YSZ showed the best characteristics with a T sub c (onset) of 91 K, T sub c (R equals 0) of 88.2 K, and a transition width, delta T sub c (10-90 percent), of approximately 1.7 K. The film adhesion, probably controlled by interdiffusion of cations between the film and the substrate, was good in all cases except on strontium titanate where the film completely detached from the substrate.

  15. Quantum Dots obtained by LPE from under-saturated In-As liquid phases on GaAs substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz F E; Mishurnyi V; Gorbatchev A; De Anda F [Universidad Autonoma de San Luis Potosi, Instituto de Investigacion en Comunicacion Optica, Av. Karacorum 1470, Col. Lomas 4a Sec., CP 78210San Luis PotosI (Mexico); Prutskij T, E-mail: fcoe_ov@prodigy.net.mx, E-mail: andre@cactus.iico.uaslp.mx [BUAP, Instituto de Ciencias, Apartado Postal 207, 72000, Puebla (Mexico)

    2011-01-01

    In this work we inform about quantum dots (QD) obtained by Liquid Phase Epitaxy (LPE) on GaAs substrates from under-saturated In-As liquid phases. In our processes, we have prepared saturated In-rich liquid phases by dissolving an InAs wafer at one of the temperatures interval from 450 to 414 C for 60 minutes. The contact between In-As liquid phase and the GaAs substrate was always done at a constant temperature of 444 C for 5 seconds. Thus, the growth temperature for most of the samples was higher than the liquidus temperature. We think that the growth driving force is related to a transient process that occurs when the system is trying to reach equilibrium. Under the atom force microscope (AFM) we have observed nano-islands on the surfaces of the samples obtained from under-saturated liquid phases prepared at 438, 432 and 426 C. The 25 K photoluminescence spectrum shows a peak at a 1.33 eV, in addition to the GaAs related line.

  16. Behaviour of the hip joint endoprosthesis ceramic head with manufacturing inaccuracies under ISO 7206-5 loading

    Czech Academy of Sciences Publication Activity Database

    Fuis, Vladimír; Janíček, P.

    2003-01-01

    Roč. 10, č. 5 (2003), s. 399-411 ISSN 1210-2717 R&D Projects: GA ČR GP101/01/P039 Institutional research plan: CEZ:AV0Z2076919 Keywords : micro-unevenness modelling * stress and failure probability analyses * Weibull weakest link theory Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  17. Study on the substrate-induced crystallisation of amorphous SiC-precursor ceramics. TIB/A; Untersuchungen zur substratinduzierten Kristallisation amorpher SiC-Precursorkeramiken

    Energy Technology Data Exchange (ETDEWEB)

    Rau, C.

    2000-12-01

    In the present thesis the crystallization behaviour of amorphous silicon-carbon materials (SiC{sub x}) was studied. The main topic of the experimental studies formed thereby the epitactical crystallization of thin silicon carbide layers on monocrystalline substrates of silicon carbides or silicon. Furthermore by thermolysis of the polymer amorphous SiC{sub x}-powder was obtained.

  18. Anaerobic digestion of spent mushroom substrate under thermophilic conditions: performance and microbial community analysis.

    Science.gov (United States)

    Xiao, Zheng; Lin, Manhong; Fan, Jinlin; Chen, Yixuan; Zhao, Chao; Liu, Bin

    2018-01-01

    Spent mushroom substrate (SMS) is the residue of edible mushroom production occurring in huge amounts. The SMS residue can be digested for biogas production in the mesophilic anaerobic digestion. In the present study, performance of batch thermophilic anaerobic digestion (TAD) of SMS was investigated as well as the interconnected microbial population structure changes. The analyzed batch TAD process lasted for 12 days with the cumulative methane yields of 177.69 mL/g volatile solid (VS). Hydrolytic activities of soluble sugar, crude protein, and crude fat in SMS were conducted mainly in the initial phase, accompanied by the excessive accumulation of volatile fatty acids and low methane yield. Biogas production increased dramatically from days 4 to 6. The degradation rates of cellulose and hemicellulose were 47.53 and 55.08%, respectively. The high-throughput sequencing of 16S rRNA gene amplicons revealed that Proteobacteria (56.7%-62.8%) was the dominant phylum in different fermentative stages, which was highly specific compared with other anaerobic processes of lignocellulosic materials reported in the literature. Crenarchaeota was abundant in the archaea. The most dominant genera of archaea were retrieved as Methanothermobacter and Methanobacterium, but the latter decreased sharply with time. This study shows that TAD is a feasible method to handle the waste SMS.

  19. Jet formation in spallation of metal film from substrate under action of femtosecond laser pulse

    International Nuclear Information System (INIS)

    Inogamov, N. A.; Zhakhovskii, V. V.; Khokhlov, V. A.

    2015-01-01

    It is well known that during ablation by an ultrashort laser pulse, the main contribution to ablation of the substance is determined not by evaporation, but by the thermomechanical spallation of the substance. For identical metals and pulse parameters, the type of spallation is determined by film thickness d f . An important gauge is metal heating depth d T at the two-temperature stage, at which electron temperature is higher than ion temperature. We compare cases with d f < d T (thin film) and d f ≫ d T (bulk target). Radius R L of the spot of heating by an optical laser is the next (after d f ) important geometrical parameter. The morphology of film bulging in cases where d f < d T on the substrate (blistering) changes upon a change in radius R L in the range from diffraction limit R L ∼ λ to high values of R L ≫ λ, where λ ∼ 1 μm is the wavelength of optical laser radiation. When d f < d T , R L ∼ λ, and F abs > F m , gold film deposited on the glass target acquires a cupola-shaped blister with a miniature frozen nanojet in the form of a tip on the circular top of the cupola (F abs and F m are the absorbed energy and the melting threshold of the film per unit surface area of the film). A new physical mechanism leading to the formation of the nanojet is proposed

  20. Organic matter composition and substrate diversity under elevated CO2 in the Mojave Desert

    Science.gov (United States)

    Tfaily, M. M.; Hess, N. J.; Koyama, A.; Evans, R. D.

    2016-12-01

    Little is known about how rising atmospheric CO2 concentration will impact long-term plant biomass or the dynamics of soil organic matter (SOM) in arid ecosystems. In this study, we investigated the change in the molecular composition of SOM by high resolution mass spectrometry after 10 years exposure to elevated atmospheric CO2 concentrations at the Nevada Desert FACE Facility. Samples were collected from soil profiles from 0 to 1m in 0.2m increments under the dominant evergreen shrub (Larrea tridentata). The differences in the composition of SOM were more evident in soils close to the surface and consistent with higher bulk soil organic carbon (C) and total nitrogen (N) concentrations under elevated than ambient CO2, reflecting increased net productivity of shrubs under elevated CO2, which could be attributed to increased litter input from above-ground biomass and/or shallow roots, root exudation and/or microbial residues. This was further supported by the significant increase in the abundance of amino sugars-, protein- and carbohydrate-like compounds. These compounds are involved in diverse pathways ranging from sugars and amino-acid metabolism to lipid biosynthesis. This indicates increased activity and metabolism under elevated CO2 and suggests that elevated CO2 have altered microbial C use patterns, reflecting changes in the quality and quantity of soil C inputs. A significant increase in the mineral-bound soil organic C was also observed in the surface soils under elevated CO2. This was accompanied by increased microbial residues as identified by mass spectrometry that supports microbial lipid analysis, and reflecting accelerated microbial turnover under elevated CO2. Fungal neutral lipid fatty acids (NLFA) abundance doubled under elevated CO2. When provided with excess labile compounds, such as root exudates, and with limited supply of nutrients, fungi assimilate the excess labile C and store it as NLFA likely contributing to increased total N

  1. Modeling of metal nanocluster growth on patterned substrates and surface pattern formation under ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, Satoshi

    2012-11-01

    This work addresses the metal nanocluster growth process on prepatterned substrates, the development of atomistic simulation method with respect to an acceleration of the atomistic transition states, and the continuum model of the ion-beam inducing semiconductor surface pattern formation mechanism. Experimentally, highly ordered Ag nanocluster structures have been grown on pre-patterned amorphous SiO{sub 2} surfaces by oblique angle physical vapor deposition at room temperature. Despite the small undulation of the rippled surface, the stripe-like Ag nanoclusters are very pronounced, reproducible and well-separated. The first topic is the investigation of this growth process with a continuum theoretical approach to the surface gas condensation as well as an atomistic cluster growth model. The atomistic simulation model is a lattice-based kinetic Monte-Carlo (KMC) method using a combination of a simplified inter-atomic potential and experimental transition barriers taken from the literature. An effective transition event classification method is introduced which allows a boost factor of several thousand compared to a traditional KMC approach, thus allowing experimental time scales to be modeled. The simulation predicts a low sticking probability for the arriving atoms, millisecond order lifetimes for single Ag monomers and {approx}1 nm square surface migration ranges of Ag monomers. The simulations give excellent reproduction of the experimentally observed nanocluster growth patterns. The second topic specifies the acceleration scheme utilized in the metallic cluster growth model. Concerning the atomistic movements, a classical harmonic transition state theory is considered and applied in discrete lattice cells with hierarchical transition levels. The model results in an effective reduction of KMC simulation steps by utilizing a classification scheme of transition levels for thermally activated atomistic diffusion processes. Thermally activated atomistic movements

  2. Cellular, Molecular, and Genetic Substrates Underlying the Impact of Nicotine on Learning

    Science.gov (United States)

    Gould, Thomas J.; Leach, Prescott T.

    2013-01-01

    Addiction is a chronic disorder marked by long-lasting maladaptive changes in behavior and in reward system function. However, the factors that contribute to the behavioral and biological changes that occur with addiction are complex and go beyond reward. Addiction involves changes in cognitive control and the development of disruptive drug-stimuli associations that can drive behavior. A reason for the strong influence drugs of abuse can exert on cognition may be the striking overlap between the neurobiological substrates of addiction and of learning and memory, especially areas involved in declarative memory. Declarative memories are critically involved in the formation of autobiographical memories, and the ability of drugs of abuse to alter these memories could be particularly detrimental. A key structure in this memory system is the hippocampus, which is critically involved in binding multimodal stimuli together to form complex long-term memories. While all drugs of abuse can alter hippocampal function, this review focuses on nicotine. Addiction to tobacco products is insidious, with the majority of smokers wanting to quit; yet the majority of those that attempt to quit fail. Nicotine addiction is associated with the presence of drug-context and drug-cue associations that trigger drug seeking behavior and altered cognition during periods of abstinence, which contributes to relapse. This suggests that understanding the effects of nicotine on learning and memory will advance understanding and potentially facilitate treating nicotine addiction. The following sections examine: 1) how the effects of nicotine on hippocampus-dependent learning change as nicotine administration transitions from acute to chronic and then to withdrawal from chronic treatment and the potential impact of these changes on addiction, 2) how nicotine usurps the cellular mechanisms of synaptic plasticity, 3) the physiological changes in the hippocampus that may contribute to nicotine withdrawal

  3. Jet formation in spallation of metal film from substrate under action of femtosecond laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Inogamov, N. A., E-mail: nailinogamov@googlemail.com [Russian Academy of Sciences, Landau Institute for Theoretical Physics (Russian Federation); Zhakhovskii, V. V. [Dukhov All-Russia Research Institute of Automatics (Russian Federation); Khokhlov, V. A. [Russian Academy of Sciences, Landau Institute for Theoretical Physics (Russian Federation)

    2015-01-15

    It is well known that during ablation by an ultrashort laser pulse, the main contribution to ablation of the substance is determined not by evaporation, but by the thermomechanical spallation of the substance. For identical metals and pulse parameters, the type of spallation is determined by film thickness d{sub f}. An important gauge is metal heating depth d{sub T} at the two-temperature stage, at which electron temperature is higher than ion temperature. We compare cases with d{sub f} < d{sub T} (thin film) and d{sub f} ≫ d{sub T} (bulk target). Radius R{sub L} of the spot of heating by an optical laser is the next (after d{sub f}) important geometrical parameter. The morphology of film bulging in cases where d{sub f} < d{sub T} on the substrate (blistering) changes upon a change in radius R{sub L} in the range from diffraction limit R{sub L} ∼ λ to high values of R{sub L} ≫ λ, where λ ∼ 1 μm is the wavelength of optical laser radiation. When d{sub f} < d{sub T}, R{sub L} ∼ λ, and F{sub abs} > F{sub m}, gold film deposited on the glass target acquires a cupola-shaped blister with a miniature frozen nanojet in the form of a tip on the circular top of the cupola (F{sub abs} and F{sub m} are the absorbed energy and the melting threshold of the film per unit surface area of the film). A new physical mechanism leading to the formation of the nanojet is proposed.

  4. Neural substrates of cognitive control under the belief of getting neurofeedback training

    Directory of Open Access Journals (Sweden)

    Manuel eNinaus

    2013-12-01

    Full Text Available Learning to modulate one’s own brain activity is the fundament of neurofeedback (NF applications. Besides the neural networks directly involved in the generation and modulation of the neurophysiological parameter being specifically trained, more general determinants of NF efficacy such as self-referential processes and cognitive control have been frequently disregarded. Nonetheless, deeper insight into these cognitive mechanisms and their neuronal underpinnings sheds light on various open NF related questions concerning individual differences, brain-computer interface (BCI illiteracy as well as a more general model of NF learning. In this context, we investigated the neuronal substrate of these more general regulatory mechanisms that are engaged when participants believe that they are receiving NF. Twenty healthy participants (40-63 years, 10 female performed a sham NF paradigm during fMRI scanning. All participants were novices to NF-experiments and were instructed to voluntarily modulate their own brain activity based on a visual display of moving color bars. However, the bar depicted a recording and not the actual brain activity of participants. Reports collected at the end of the experiment indicate that participants were unaware of the sham feedback. In comparison to a passive watching condition, bilateral insula, anterior cingulate cortex and supplementary motor and dorsomedial and lateral prefrontal area were activated when participants actively tried to control the bar. In contrast, when merely watching moving bars, increased activation in the left angular gyrus was observed. These results show that the intention to control a moving bar is sufficient to engage a broad frontoparietal and cingulo-opercular network involved in cognitive control. The results of the present study indicate that tasks such as those generally employed in NF training recruit the neuronal correlates of cognitive control even when only sham NF is presented.

  5. Neural substrates of cognitive control under the belief of getting neurofeedback training.

    Science.gov (United States)

    Ninaus, Manuel; Kober, Silvia E; Witte, Matthias; Koschutnig, Karl; Stangl, Matthias; Neuper, Christa; Wood, Guilherme

    2013-01-01

    Learning to modulate one's own brain activity is the fundament of neurofeedback (NF) applications. Besides the neural networks directly involved in the generation and modulation of the neurophysiological parameter being specifically trained, more general determinants of NF efficacy such as self-referential processes and cognitive control have been frequently disregarded. Nonetheless, deeper insight into these cognitive mechanisms and their neuronal underpinnings sheds light on various open NF related questions concerning individual differences, brain-computer interface (BCI) illiteracy as well as a more general model of NF learning. In this context, we investigated the neuronal substrate of these more general regulatory mechanisms that are engaged when participants believe that they are receiving NF. Twenty healthy participants (40-63 years, 10 female) performed a sham NF paradigm during fMRI scanning. All participants were novices to NF-experiments and were instructed to voluntarily modulate their own brain activity based on a visual display of moving color bars. However, the bar depicted a recording and not the actual brain activity of participants. Reports collected at the end of the experiment indicate that participants were unaware of the sham feedback. In comparison to a passive watching condition, bilateral insula, anterior cingulate cortex and supplementary motor and dorsomedial and lateral prefrontal areas were activated when participants actively tried to control the bar. In contrast, when merely watching moving bars, increased activation in the left angular gyrus was observed. These results show that the intention to control a moving bar is sufficient to engage a broad frontoparietal and cingulo-opercular network involved in cognitive control. The results of the present study indicate that tasks such as those generally employed in NF training recruit the neuronal correlates of cognitive control even when only sham NF is presented.

  6. Near-field microwave detection of corrosion precursor pitting under thin dielectric coatings in metallic substrate

    International Nuclear Information System (INIS)

    Hughes, D.; Zoughi, R.; Austin, R.; Wood, N.; Engelbart, R.

    2003-01-01

    Detection of corrosion precursor pitting on metallic surfaces under various coatings and on bare metal is of keen interest in evaluation of aircraft fuselage. Near-field microwave nondestructive testing methods, utilizing open-ended rectangular waveguides and coaxial probes, have been used extensively for detection of surface flaws in metals, both on bare metal and under a dielectric coating. This paper presents the preliminary results of using microwave techniques to detect corrosion precursor pitting under paint and primer, applique and on bare metal. Machined pits of 500 μm diameter were detected using open-ended rectangular waveguides at V-Band under paint and primer and applique, and on bare metal. Using coaxial probes, machined pits with diameters down to 150 μm on bare metal were also detected. Relative pit size and density were shown on a corrosion-pitted sample using open-ended rectangular waveguides at frequencies of 35 GHz to 70 GHz. The use of Boeing's MAUS TM scanning systems provided improved results by alleviating standoff variation and scanning artifact. Typical results of this investigation are also presented

  7. Surface Effects and Challenges for Application of Piezoelectric Langasite Substrates in Surface Acoustic Wave Devices Caused by High Temperature Annealing under High Vacuum

    Directory of Open Access Journals (Sweden)

    Marietta Seifert

    2015-12-01

    Full Text Available Substrate materials that are high-temperature stable are essential for sensor devices which are applied at high temperatures. Although langasite is suggested as such a material, severe O and Ga diffusion into an O-affine deposited film was observed during annealing at high temperatures under vacuum conditions, leading to a damage of the metallization as well as a change of the properties of the substrate and finally to a failure of the device. Therefore, annealing of bare LGS (La 3 Ga 5 SiO 14 substrates at 800 ∘ C under high vacuum conditions is performed to analyze whether this pretreatment improves the suitability and stability of this material for high temperature applications in vacuum. To reveal the influence of the pretreatment on the subsequently deposited metallization, RuAl thin films are used as they are known to oxidize on LGS at high temperatures. A local study of the pretreated and metallized substrates using transmission electron microscopy reveals strong modification of the substrate surface. Micro cracks are visible. The composition of the substrate is strongly altered at those regions. Severe challenges for the application of LGS substrates under high-temperature vacuum conditions arise from these substrate damages, revealing that the pretreatment does not improve the applicability.

  8. Surface Effects and Challenges for Application of Piezoelectric Langasite Substrates in Surface Acoustic Wave Devices Caused by High Temperature Annealing under High Vacuum.

    Science.gov (United States)

    Seifert, Marietta; Rane, Gayatri K; Kirbus, Benjamin; Menzel, Siegfried B; Gemming, Thomas

    2015-12-19

    Substrate materials that are high-temperature stable are essential for sensor devices which are applied at high temperatures. Although langasite is suggested as such a material, severe O and Ga diffusion into an O-affine deposited film was observed during annealing at high temperatures under vacuum conditions, leading to a damage of the metallization as well as a change of the properties of the substrate and finally to a failure of the device. Therefore, annealing of bare LGS (La 3 Ga 5 SiO 14 ) substrates at 800 ∘ C under high vacuum conditions is performed to analyze whether this pretreatment improves the suitability and stability of this material for high temperature applications in vacuum. To reveal the influence of the pretreatment on the subsequently deposited metallization, RuAl thin films are used as they are known to oxidize on LGS at high temperatures. A local study of the pretreated and metallized substrates using transmission electron microscopy reveals strong modification of the substrate surface. Micro cracks are visible. The composition of the substrate is strongly altered at those regions. Severe challenges for the application of LGS substrates under high-temperature vacuum conditions arise from these substrate damages, revealing that the pretreatment does not improve the applicability.

  9. Mapping Common Aphasia Assessments to Underlying Cognitive Processes and Their Neural Substrates.

    Science.gov (United States)

    Lacey, Elizabeth H; Skipper-Kallal, Laura M; Xing, Shihui; Fama, Mackenzie E; Turkeltaub, Peter E

    2017-05-01

    Understanding the relationships between clinical tests, the processes they measure, and the brain networks underlying them, is critical in order for clinicians to move beyond aphasia syndrome classification toward specification of individual language process impairments. To understand the cognitive, language, and neuroanatomical factors underlying scores of commonly used aphasia tests. Twenty-five behavioral tests were administered to a group of 38 chronic left hemisphere stroke survivors and a high-resolution magnetic resonance image was obtained. Test scores were entered into a principal components analysis to extract the latent variables (factors) measured by the tests. Multivariate lesion-symptom mapping was used to localize lesions associated with the factor scores. The principal components analysis yielded 4 dissociable factors, which we labeled Word Finding/Fluency, Comprehension, Phonology/Working Memory Capacity, and Executive Function. While many tests loaded onto the factors in predictable ways, some relied heavily on factors not commonly associated with the tests. Lesion symptom mapping demonstrated discrete brain structures associated with each factor, including frontal, temporal, and parietal areas extending beyond the classical language network. Specific functions mapped onto brain anatomy largely in correspondence with modern neural models of language processing. An extensive clinical aphasia assessment identifies 4 independent language functions, relying on discrete parts of the left middle cerebral artery territory. A better understanding of the processes underlying cognitive tests and the link between lesion and behavior may lead to improved aphasia diagnosis, and may yield treatments better targeted to an individual's specific pattern of deficits and preserved abilities.

  10. A simple surrogate test method to rank the wear performance of prospective ceramic materials under hip prosthesis edge-loading conditions.

    Science.gov (United States)

    Sanders, Anthony P; Brannon, Rebecca M

    2014-02-01

    This research has developed a novel test method for evaluating the wear resistance of ceramic materials under severe contact stresses simulating edge loading in prosthetic hip bearings. Simply shaped test specimens - a cylinder and a spheroid - were designed as surrogates for an edge-loaded, head/liner implant pair. Equivalency of the simpler specimens was assured in the sense that their theoretical contact dimensions and pressures were identical, according to Hertzian contact theory, to those of the head/liner pair. The surrogates were fabricated in three ceramic materials: Al2 O3 , zirconia-toughened alumina (ZTA), and ZrO2 . They were mated in three different material pairs and reciprocated under a 200 N normal contact force for 1000-2000 cycles, which created small (material pairs were ranked by their wear resistance, quantified by the volume of abraded material measured using an interferometer. Similar tests were performed on edge-loaded hip implants in the same material pairs. The surrogates replicated the wear rankings of their full-scale implant counterparts and mimicked their friction force trends. The results show that a proxy test using simple test specimens can validly rank the wear performance of ceramic materials under severe, edge-loading contact stresses, while replicating the beginning stage of edge-loading wear. This simple wear test is therefore potentially useful for screening and ranking new, prospective materials early in their development, to produce optimized candidates for more complicated full-scale hip simulator wear tests. Copyright © 2013 Wiley Periodicals, Inc.

  11. Comparative study of the structural damage of nano-structured and micro-structured ceramics SiC under irradiation

    International Nuclear Information System (INIS)

    Leconte, Y.; Herlin-Boime, N.; Reynaud, C.; Monnet, I.; Levalois, M.; Morales, M.; Portier, X.; Thome, L.

    2006-01-01

    In order to know if the nano-structured ceramics SiC are possible materials for the future nuclear applications, SiC pellets have been submitted to low and mean energy irradiation experiments. These samples have been characterized by grazing X-ray diffraction and confocal Raman spectroscopy as well as conventional SiC ceramic pellets as reference. The low energy irradiations have allowed to exceed the amorphization threshold and to obtain a total disorder in the two types of samples. At the mean energies, this amorphization has not been obtained in spite of the doses generating a number of dpa superior to those of the low energies. The hypothesis of a synergy between the effects of the electronic and nuclear energy losses is advanced. (O.M.)

  12. The development of an interpretive methodology for the application of real-time acousto-ultrasonic NDE technique for monitoring damage in ceramic composites under dynamic loads

    Science.gov (United States)

    Tiwari, Anil

    Research effort was directed towards developing a near real-time acousto-ultrasonic (AU), nondestructive evaluation (NDE) tool study the failure mechanisms of ceramic composites. Progression damage is monitored in real-time by observing the changes in the received AU signal during the actual test. During the real-time AU test the AU signals are generated and received by the AU transducers attached to the specimen while it is being subjected to increasing quasi static loads or cyclic loads (10 Hz, R = 0.1). The received AU signals for 64 successive pulses were gated in the time domain (T = 40.96) and then averaged every second over ten load cycles and store in a computer file during fatigue tests. These averaged gated signal are representative of the damage state of the specimen at that point c its fatigue life. This is also the first major attempt in the development and application of real-time AU for continuously monitoring damage accumulation during fatigue without interrupting the test. The present work has verified the capability of the AU technique to assess the damage state in silicon carbide/calcium aluminosilicatt (SiC/CAS) and silicon carbide/magnesium aluminosilicate (SiC/MAS) ceramic composites. Continuous monitoring of damage initiation and progression under quasi-static ramp loading in tension to failure of unidirectional and cross-ply SiC/CAS and quasi-isotropic SiC/MAS ceramic composite specimens at room temperature was accomplished using near real-time AU parameters. The AU technique was shown to be able to detect the stress levels for the onset and saturation of matrix cracks, respectively. The critical cracking stress level is used as a design stress for brittle matrix composites operating at elevated temperatures. The AU technique has found that the critical cracking stress level is 10-15 percent below the level presently obtained for design purposes from analytical models. An acousto-ultrasonic stress-strain response (AUSSR) model for

  13. Ceramic joining

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    This paper describes the relation between reactions at ceramic-metal interfaces and the development of strong interfacial bonds in ceramic joining. Studies on a number of systems are described, including silicon nitrides, aluminium nitrides, mullite, and aluminium oxides. Joints can be weakened by stresses such as thermal expansion mismatch. Ceramic joining is used in a variety of applications such as solid oxide fuel cells.

  14. Robust, high temperature-ceramic membranes for gas separation

    Science.gov (United States)

    Berchtold, Kathryn A.; Young, Jennifer S.

    2014-07-29

    A method of making ceramic membranes, and the ceramic membranes so formed, comprising combining a ceramic precursor with an organic or inorganic comonomer, forming the combination as a thin film on a substrate, photopolymerizing the thin film, and pyrolyzing the photopolymerized thin film.

  15. Joining ceramics, glass and metal

    International Nuclear Information System (INIS)

    Kraft, W.

    1989-01-01

    In many areas of electronics, engine manufacturing, machine and apparatus construction and aearospace, different combinations of materials such as ceramics/metal and glass/metal are gaining increasingly in importance. The proceedings cover the 53 papers presented to the 3rd International Conference on Joining Ceramics, Glass and Metal, held in Bad Nauheim (FRG) from April 26 to 28, 1989. The papers discuss problems and results under the following main topics of the conference: (1) Active brazing applied to non-oxide ceramics and oxide ceramics. (2) Diffusion bonding of metals and ceramics. (3) Friction welding, reaction bonding, and other joining methods. (4) Properties of metal-ceramic joints (as e.g. residual stress, fracture toughness, thermal stress) and various investigation methods for their determination. (MM) [de

  16. Fracture-dissociation of ceramic liner.

    Science.gov (United States)

    Hwang, Sung Kwan; Oh, Jin-Rok; Her, Man Seung; Shim, Young Jun; Cho, Tae Yeun; Kwon, Sung Min

    2008-08-01

    The use of BIOLOX delta ceramic (CeramTec AG, Plochingen, Germany) has been increasing. This ceramic prevents cracking by restraining the phase transformation due to the insertion of nano-sized, yttria-stabilized tetragonal zirconia into the alumina matrix. This restrains the progress of cracking through the formation of platelet-like crystal or whiskers due to the addition of an oxide additive. We observed a case of BIOLOX delta ceramic liner (CeramTec AG) rim fracture 4 months postoperatively. Radiographs showed that the ceramic liner was subluxated from the acetabular cup. Scratches on the acetabular cup and femoral neck were seen, and the fracture was visible on the rim of the liner. Under electron microscope, metal particle coatings from the ceramic liner were identified. The ceramic liner, fracture fragments, and adjacent tissues were removed and replaced with a ceramic liner and femoral head of the same size and design. We believe the mechanism of the fracture-dissociation of the ceramic liner in this case is similar to a case of separation of the ceramic liner from the polyethylene shell in a sandwich-type ceramic-ceramic joint. To prevent ceramic liner fracture-dissociation, the diameter of the femoral neck needs to be decreased in a new design, while the diameter of the femoral head needs to be increased to ensure an increase in range of motion.

  17. [Ceramic posts].

    Science.gov (United States)

    Mainjot, Amélie; Legros, Caroline; Vanheusden, Alain

    2006-01-01

    As a result of ceramics and all-ceram technologies development esthetic inlay core and abutments flooded the market. Their tooth-colored appearance enhances restoration biomimetism principally on the marginal gingiva area. This article reviews indications and types of cores designed for natural teeth and implants.

  18. Ceramics in nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Chikalla, T D; Mendel, J E [eds.

    1979-05-01

    Seventy-three papers are included, arranged under the following section headings: national programs for the disposal of radioactive wastes, waste from stability and characterization, glass processing, ceramic processing, ceramic and glass processing, leaching of waste materials, properties of nuclear waste forms, and immobilization of special radioactive wastes. Separate abstracts were prepared for all the papers. (DLC)

  19. Preparation of a dense, polycrystalline ceramic structure

    Science.gov (United States)

    Cooley, Jason; Chen, Ching-Fong; Alexander, David

    2010-12-07

    Ceramic nanopowder was sealed inside a metal container under a vacuum. The sealed evacuated container was forced through a severe deformation channel at an elevated temperature below the melting point of the ceramic nanopowder. The result was a dense nanocrystalline ceramic structure inside the metal container.

  20. Lubrication And Wear Of Hot Ceramics

    Science.gov (United States)

    Sliney, H. E.; Jacobson, T. P.; Deadmore, D.; Miyoshi, K.

    1988-01-01

    Report presents results of experiments on tribological properties of ceramics. Describes friction and wear characteristics of some ceramics under consideration for use in gas turbines, diesel engines, and Stirling engines. Discusses formulation of composite plasma-sprayed ceramics containing solid lubricant additives, and data for carbide- and oxide-based composite coatings for use at temperatures up to at least 900 degree C.

  1. Modification of Structure and Tribological Properties of the Surface Layer of Metal-Ceramic Composite under Electron Irradiation in the Plasmas of Inert Gases

    Science.gov (United States)

    Ovcharenko, V. E.; Ivanov, K. V.; Mohovikov, A. A.; Yu, B.; Xu, Yu; Zhong, L.

    2018-01-01

    Metal-ceramic composites are the main materials for high-load parts in tribomechanical systems. Modern approaches to extend the operation life of tribomechanical systems are based on increasing the strength and tribological properties of the surface layer having 100 to 200 microns in depth. The essential improvement of the properties occurs when high dispersed structure is formed in the surface layer using high-energy processing. As a result of the dispersed structure formation the more uniform distribution of elastic stresses takes place under mechanical or thermal action, the energy of stress concentrators emergence significantly increases and the probability of internal defects formation reduces. The promising method to form the dispersed structure in the surface layer is pulse electron irradiation in the plasmas of inert gases combining electron irradiation and ion bombardment in one process. The present work reports upon the effect of pulse electron irradiation in plasmas of different inert gases with different atomic mass and ionization energy on the structure and tribological properties of the surface layer of TiC/(Ni-Cr) metal-ceramic composite with the volume ratio of the component being 50:50. It is experimentally shown that high-dispersed heterophase structure with a fraction of nanosized particles is formed during the irradiation. Electron microscopy study reveals that refining of the initial coarse TiC particles occurs via their dissolution in the molten metal binder followed by the precipitation of secondary fine particles in the interparticle layers of the binder. The depth of modified layer and the fraction of nanosized particles increase when the atomic number of the plasma gas increases and ionization energy decreases. The wear resistance of metal-ceramic composite improves in accordance to the formation of nanocrystalline structure in the surface layer.

  2. Ceramic capacitor exhibiting graceful failure by self-clearing, method for fabricating self-clearing capacitor

    Science.gov (United States)

    Kaufman, David Y [Chicago, IL; Saha, Sanjib [Santa Clara, CA

    2006-08-29

    A short-resistant capacitor comprises an electrically conductive planar support substrate having a first thickness, a ceramic film deposited over the support substrate, thereby defining a ceramic surface; and a metallic film deposited over the ceramic surface, said film having a second thickness which is less than the first thickness and which is between 0.01 and 0.1 microns.

  3. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendfra Nagabhushana

    2001-07-01

    The mechanical properties of model systems were analyzed. A reasonably accurate finite element model was implemented and a rational metric to predict the strength of ceramic/metal concentrical joints was developed. The mode of failure of the ceramic/metal joints was determined and the importance of the mechanical properties of the braze material was assessed. Thermal cycling experiments were performed on the model systems and the results were discussed. Additionally, experiments using the concept of placing diffusion barriers on the ceramic surface to limit the extent of the reaction with the braze were performed. It was also observed that the nature and morphology of the reaction zone depends greatly on the nature of the perovskite structure being used. From the experiments, it is observed that the presence of Cr in the Fe-occupied sites decreases the tendency of Fe to segregate and to precipitate out of the lattice. In these new experiments, Ni was observed to play a major role in the decomposition of the ceramic substrate.

  4. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2001-05-01

    The mechanical properties of model systems were analyzed. A reasonably accurate finite element model was implemented and a rational metric to predict the strength of ceramic/metal concentrical joints was developed. The mode of failure of the ceramic/metal joints was determined and the importance of the mechanical properties of the braze material was assessed. Thermal cycling experiments were performed on the model systems and the results were discussed. Additionally, experiments using the concept of placing diffusion barriers on the ceramic surface to limit the extent of the reaction with the braze were performed. It was also observed that the nature and morphology of the reaction zone depends greatly on the nature of the perovskite structure being used. From the experiments, it is observed that the presence of Cr in the Fe-occupied sites decreases the tendency of Fe to segregate and to precipitate out of the lattice. In these new experiments, Ni was observed to play a major role in the decomposition of the ceramic substrate.

  5. Ex situ protection of the European mudminnow (Umbra krameri Walbaum, 1792: Spawning substrate preference for larvae rearing under controlled conditions

    Directory of Open Access Journals (Sweden)

    Kucska Balázs

    2016-01-01

    Full Text Available Captive breeding programs of endangered fish species, such as the European mudminnow Umbra krameri, are essential for population restoration. To improve captive spawning and larvae rearing under controlled conditions, two experiments were carried out. In the first, the spawning substrate preference was tested in triplicate, where five different types of artificial surface were provided for mudminnow pairs:(isand, (iiartificial plants, (iiigravel, (ivsand + artificial plants and(vgravel + artificial plants. All fish preferred the gravel + artificial plant combination, which indicates that this type of surface could be the most appropriate for spawning in captivity. In the second trial, three feeding protocols were tested in triplicate under controlled conditions. In the first treatment fish were fed exclusively with Artemia nauplii; in the second treatment fish were fed with Artemiafor the first ten days then Artemia was gradually replaced with dry feed; for the third group the transition period started after 5 days of Artemia feeding. Although the survival rate of larvae could be maintained at a high level in some of the feeding protocols, a strong decrease in the growth rate was obvious in all diets containing dry food, which means that live food is essential for the first three weeks of mudminnow larvae rearing.

  6. Statistical assessment of dumpsite soil suitability to enhance methane bio-oxidation under interactive influence of substrates and temperature.

    Science.gov (United States)

    Bajar, Somvir; Singh, Anita; Kaushik, C P; Kaushik, Anubha

    2017-05-01

    Biocovers are considered as the most effective and efficient way to treat methane (CH 4 ) emission from dumpsites and landfills. Active methanotrophs in the biocovers play a crucial role in reduction of emissions through microbiological methane oxidation. Several factors affecting methane bio-oxidation (MOX) have been well documented, however, their interactive effect on the oxidation process needs to be explored. Therefore, the present study was undertaken to investigate the suitability of a dumpsite soil to be employed as biocover, under the influence of substrate concentrations (CH 4 and O 2 ) and temperature at variable incubation periods. Statistical design matrix of Response Surface Methodology (RSM) revealed that MOX rate up to 69.58μgCH 4 g -1 dw h -1 could be achieved under optimum conditions. MOX was found to be more dependent on CH 4 concentration at higher level (30-40%, v/v), in comparison to O 2 concentration. However, unlike other studies MOX was found in direct proportionality relationship with temperature within a range of 25-35°C. The results obtained with the dumpsite soil biocover open up a new possibility to provide improved, sustained and environmental friendly systems to control even high CH 4 emissions from the waste sector. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Application of low magnetic field on inulinase production by Geotrichum candidum under solid state fermentation using leek as substrate.

    Science.gov (United States)

    Canli, Ozden; Kurbanoglu, Esabi Basaran

    2012-11-01

    This study evaluates the application of low magnetic field (LMF) on inulinase enzyme production by Geotrichum candidum under solid state fermentation (SSF) using leek as potential carbon source. First, the fermentation conditions were optimized using normal magnetic field grown microorganism. Among eight G. candidum isolates, the most effective strain called G. candidum OC-7 was selected to use in further experiments. In the second part of the study, SSF was carried out under different LMFs (4 and 7 mT). The results showed that inulinase activity was strongly affected by LMF application. The highest enzyme activity was obtained as 535.2 U/g of dry substrate (gds) by 7 mT magnetic field grown G. candidum OC-7. On the contrary, the control had only 412.1 U/gds. Consequently, the use of leek presents a great potential as an alternative carbon source for inulinase production and magnetic field treatment could effectively be used in order to enhance the enzyme production.

  8. Toward Improved Lifetimes of Organic Solar Cells under Thermal Stress: Substrate-Dependent Morphological Stability of PCDTBT:PCBM Films and Devices

    Science.gov (United States)

    Li, Zhe; Ho Chiu, Kar; Shahid Ashraf, Raja; Fearn, Sarah; Dattani, Rajeev; Cheng Wong, Him; Tan, Ching-Hong; Wu, Jiaying; Cabral, João T.; Durrant, James R.

    2015-10-01

    Morphological stability is a key requirement for outdoor operation of organic solar cells. We demonstrate that morphological stability and lifetime of polymer/fullerene based solar cells under thermal stress depend strongly on the substrate interface on which the active layer is deposited. In particular, we find that the stability of benchmark PCDTBT/PCBM solar cells under modest thermal stress is substantially increased in inverted solar cells employing a ZnO substrate compared to conventional devices employing a PEDOT:PSS substrate. This improved stability is observed to correlate with PCBM nucleation at the 50 nm scale, which is shown to be strongly influenced by different substrate interfaces. Employing this approach, we demonstrate remarkable thermal stability for inverted PCDTBT:PC70BM devices on ZnO substrates, with negligible (stress and minimal thermally induced “burn-in” effect. We thus conclude that inverted organic solar cells, in addition to showing improved environmental stability against ambient humidity exposure as widely reported previously, can also demonstrate enhanced morphological stability. As such we show that the choice of suitable substrate interfaces may be a key factor in achieving prolonged lifetimes for organic solar cells under thermal stress conditions.

  9. Surface treatment of ceramic articles

    International Nuclear Information System (INIS)

    Komvopoulos, K.; Brown, I.G.; Wei, B.; Anders, S.; Anders, A.; Bhatia, C.S.

    1998-01-01

    A process is disclosed for producing an article with improved ceramic surface properties including providing an article having a ceramic surface, and placing the article onto a conductive substrate holder in a hermetic enclosure. Thereafter a low pressure ambient is provided in the hermetic enclosure. A plasma including ions of solid materials is produced the ceramic surface of the article being at least partially immersed in a macroparticle free region of the plasma. While the article is immersed in the macroparticle free region, a bias of the substrate holder is biased between a low voltage at which material from the plasma condenses on the surface of the article and a high negative voltage at which ions from the plasma are implanted into the article. 15 figs

  10. [Ceramic brackets].

    Science.gov (United States)

    Mølsted, K

    1992-01-01

    Because of the many drawbacks of the hard and brittle material, ceramic brackets should not be used uncritically for orthodontic treatments. If ceramic brackets are used, the following guidelines should be observed: 1. If large and complicated tooth movements are involved, conventional bracket systems should be considered. 2. Occlusion on ceramic brackets is to be avoided. 3. Sharp instruments should be used with extreme care to avoid scratching the ceramic surface. Metal ligatures must not be used. 4. The length of the treatment is extended, probably because of the increased friction. 5. The problems connected with removing the brackets have not yet been solved. Be particularly careful of weakened teeth. 6. Esthetically, ceramic brackets function satisfactorily, but transparent elastic ligatures do not. They rapidly become discoloured and need frequent replacement. Nor are there as yet any "invisible arch wires", apart from some few, extremely flexible "white" arch wires. The ceramic bracket has no doubt come to stay, but there have been many difficulties in the "running-in" period, and the problems are far from solved yet. New ceramic brackets are coming onto the market all the time, and only future clinical studies can show whether they will become a genuine alternative to the conventional bracket.

  11. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  12. Oxide ceramics

    International Nuclear Information System (INIS)

    Ryshkewitch, E.; Richerson, D.W.

    1985-01-01

    The book explores single-phase ceramic oxide systems from the standpoint of physical chemistry and technology. This second edition also focuses on advances in technology since publication of the original edition. These include improvements in raw materials and forming and sintering techniques, and the major role that oxide ceramics have had in development of advanced products and processes. The text is divided into five major sections: general fundamentals of oxide ceramics, advances in aluminum oxide technology, advances in zirconia technology, and advances in beryllium oxide technology

  13. Tailored ceramics

    International Nuclear Information System (INIS)

    Harker, A.B.

    1988-01-01

    In polyphase tailored ceramic forms two distinct modes of radionuclide immobilization occur. At high waste loadings the radionuclides are distributed through most of the ceramic phases in dilute solid solution, as indicated schematically in this paper. However, in the case of low waste loadings, or a high loading of a waste with low radionuclide content, the ceramic can be designed with only selected phases containing the radionuclides. The remaining material forms nonradioactive phases which provide a degree of physical microstructural isolation. The research and development work with polyphase ceramic nuclear waste forms over the past ten years is discussed. It has demonstrated the critical attributes which suggest them as a waste form for future HLW disposal. From a safety standpoint, the crystalline phases in the ceramic waste forms offer the potential for demonstrable chemical durability in immobilizing the long-lived radionuclides in a geologic environment. With continued experimental research on pure phases, analysis of mineral analogue behavior in geochemical environments, and the study of radiation effects, realistic predictive models for waste form behavior over geologic time scales are feasible. The ceramic forms extend the degree of freedom for the economic optimization of the waste disposal system

  14. Ceramic breeder materials

    International Nuclear Information System (INIS)

    Johnson, C.E.; Kummerer, K.R.; Roth, E.

    1987-01-01

    Ceramic materials are under investigation as potential breeder material in fusion reactors. This paper will review candidate materials with respect to fabrication routes and characterization, properties in as-fabricated and irradiated condition, and experimental results from laboratory and inpile investigations on tritium transport and release. Also discussed are the resources of beryllium, which is being considered as a neutron multiplier. The comparison of ceramic properties that is attempted here aims at the identification of the most-promising material for use in a tritium breeding blanket. 82 refs., 12 figs., 5 tabs

  15. Evaluation of the onset of failure under mechanical and thermal stresses on luting agent for metal-ceramic and metal crowns by finite element analysis

    Directory of Open Access Journals (Sweden)

    Hema Agnihotri

    2010-01-01

    Full Text Available Long-term clinical failures of cemented prosthesis depend, to a large extent, on the integrity of the luting agent. The causative factors that lead to microfracture and, hence, failure of the luting agents are the stresses acting inside the oral cavity. Therefore, the present study was designed to develop an understanding of the relationship between stresses in the tooth and the failure potential of the luting agent. Two-dimensional finite element stress analysis was performed on the mandibular second premolar. The behavior of zinc-phosphate and glass-ionomer were studied under different crowns (metal-ceramic and metal crown and loading conditions (mechanical force of 450 N acting vertically over the occlusal surface, thermal loads of 60° and 0°C. It was observed from the study that failure threshold of the luting agent was influenced both by the elastic modulus of the luting agent and by the type of the crown.

  16. Pyroelectric response mechanism of barium strontium titanate ceramics in dielectric bolometer mode: The underlying essence of the enhancing effect of direct current bias field

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Chaoliang; Cao, Sheng; Yan, Shiguang; Yao, Chunhua; Cao, Fei; Wang, Genshui; Dong, Xianlin [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Changning, Shanghai 200050 (China); Hu, Xu; Yang, Chunli [Kunming Institute of Physics, Kunming 650223 (China)

    2013-06-17

    Pyroelectric response mechanism of Ba{sub 0.70}Sr{sub 0.30}TiO{sub 3} ceramics under dielectric bolometer (DB) mode was investigated by dielectric and pyroelectric properties measurement. The variations of total, intrinsic, and induced pyroelectric coefficients (p{sub tot}, p{sub int}, p{sub ind}) with temperatures and bias fields were analyzed. p{sub int} plays the dominant role to p{sub tot} through most of the temperature range and p{sub ind} will be slightly higher than p{sub int} above T{sub 0}. The essence of the enhancing effect of DC bias field on pyroelectric coefficient can be attributed to the high value of p{sub int}. This mechanism is useful for the pyroelectric materials (DB mode) applications.

  17. FATIGUE OF DENTAL CERAMICS

    Science.gov (United States)

    Zhang, Yu; Sailer, Irena; Lawn, Brian R

    2013-01-01

    Objectives Clinical data on survival rates reveal that all-ceramic dental prostheses are susceptible to fracture from repetitive occlusal loading. The objective of this review is to examine the underlying mechanisms of fatigue in current and future dental ceramics. Data/sources The nature of various fatigue modes is elucidated using fracture test data on ceramic layer specimens from the dental and biomechanics literature. Conclusions Failure modes can change over a lifetime, depending on restoration geometry, loading conditions and material properties. Modes that operate in single-cycle loading may be dominated by alternative modes in multi-cycle loading. While post-mortem examination of failed prostheses can determine the sources of certain fractures, the evolution of these fractures en route to failure remains poorly understood. Whereas it is commonly held that loss of load-bearing capacity of dental ceramics in repetitive loading is attributable to chemically-assisted 'slow crack growth' in the presence of water, we demonstrate the existence of more deleterious fatigue mechanisms, mechanical rather than chemical in nature. Neglecting to account for mechanical fatigue can lead to gross overestimates in predicted survival rates. Clinical significance Strategies for prolonging the clinical lifetimes of ceramic restorations are proposed based on a crack-containment philosophy. PMID:24135295

  18. Comparison of hydrogen and acetate as substrates for the reductive immobilization of uranium under in-situ pressure

    Science.gov (United States)

    Heuston, Daniel Jon

    Complete baseline restoration at in-situ recovery (ISR) uranium (U) mining sites has proven difficult through conventional methods. Bioremediation by means of reductive immobilization of soluble U(VI) to insoluble U(IV) is currently being investigated as a secondary restoration method. Various organic substrates have been used in many U bioremediation studies and applications. However, the oxidation of organic substrates increases total inorganic carbon concentrations (TIC) due to the respiration of heterotrophic bacteria. It is widely accepted that U forms stable complexes with carbonate that in turn lower the thermodynamic redox potential at which the U(VI)/U(IV) couple takes place. In this study, it was hypothesized that greater U reductive immobilization would be achieved with hydrogen (H2) as an electron donor compared to that with acetate (Ac) because H2 would select for autotrophic bacteria that would decrease TIC. The hypothesis was tested by supplying H 2 and Ac at the same reductive capacity to continuous-flow sediment-columns. Unlike previous studies, the columns were operated at pressures representative of the in-situ conditions at ISR mining sites. The experimental results indicated that effluent TIC and U concentrations were both significantly lower for the H2-supplied column than for the Ac-supplied column. Comparison of the experimental data to theoretical speciation indicated by a pE-versus-pH diagram revealed that the benefit of U solubility decreasing at lower TIC is only gained when the pH is held constant. However, a lower TIC and a constant pH were not realized in the H2 column due to the dynamics of the pH/alkalinity/total carbonate/CaCO 3 system. Nevertheless, based on prevailing theory, it was speculated that the superior U removal in the H2-supplied column may have been attributed to the presence of kinetically-limited Fe(OH)3 under the prevailing pE and pH conditions of the respective H2 and Ac columns. However, in the absence of sediment

  19. Ceramics: past, present, and future.

    Science.gov (United States)

    Lemons, J E

    1996-07-01

    The selection and application of synthetic materials for surgical implants has been directly dependent upon the biocompatibility profiles of specific prosthetic devices. The early rationale for ceramic biomaterials was based upon the chemical and biochemical inertness (minimal bioreactivity) of elemental compounds constituted into structural forms (materials). Subsequently, mildly reactive (bioactive), and partially and fully degradable ceramics were identified for clinical uses. Structural forms have included bulk solids or particulates with and without porosities for tissue ingrowth, and more recently, coatings onto other types of biomaterial substrates. The physical shapes selected were application dependent, with advantages and disadvantages determined by: (1) the basic material and design properties of the device construct; and (2) the patient-based functional considerations. Most of the ceramics (bioceramics) selected in the 1960s and 1970s have continued over the long-term, and the science and technology for thick and thin coatings have evolved significantly over the past decade. Applications of ceramic biomaterials range from bulk (100%) ceramic structures as joint and bone replacements to fully or partially biodegradable substrates for the controlled delivery of pharmaceutical drugs, growth factors, and morphogenetically inductive substances. Because of the relatively unique properties of bioceramics, expanded uses as structural composites with other biomaterials and macromolecular biologically-derived substances are anticipated in the future.

  20. Structural Ceramics Database

    Science.gov (United States)

    SRD 30 NIST Structural Ceramics Database (Web, free access)   The NIST Structural Ceramics Database (WebSCD) provides evaluated materials property data for a wide range of advanced ceramics known variously as structural ceramics, engineering ceramics, and fine ceramics.

  1. Microstructure evolution of an EB-PVD NiAl coating and its underlying single crystal superalloy substrate

    International Nuclear Information System (INIS)

    Gong, Xueyuan; Peng, Hui; Ma, Yue; Guo, Hongbo; Gong, Shengkai

    2016-01-01

    A NiAl coating was deposited onto a Ni-based single crystal superalloy with (001) crystal orientation by electron beam physical vapor deposition (EB-PVD). The as-deposited NiAl coating showed a columnar microstructure with (110) preferred orientation. The microstructure evolution behavior near interface between the NiAl coating and superalloy substrate at 1100 °C was investigated. Kirkendall voids were formed in the NiAl coating, indicating the different elements diffusion coefficients in the coating and substrate. Interdiffusion zone (IDZ) with rod-like and granular topological close-packed (TCP) phases and substrate diffusion zone (SDZ) with needle-like TCP phases were formed during diffusion annealing at elevated temperature. The equi-axed β-NiAl grains were developed in the IDZ after diffusion annealing at 1100 °C for 10 h, which showed different orientations from the coating and substrate. However, after 50 h diffusion annealing, the equi-axed β-NiAl phases in the IDZ were transformed into γ′-Ni 3 Al phases which had the same orientation as the substrate. Furthermore, oriented rafting of the substrate occurred during diffusion annealing and the rafts were parallel to the coating/substrate interface. - Highlights: • The as-deposited NiAl coating by EB-PVD showed a (110) preferred orientation. • Kirkendall voids were formed in the NiAl coating near the interface. • Equi-axed β grains in the IDZ were transformed into γ′ after 50 h annealing. • The secondary γ′ phases in the IDZ showed the same orientation as substrate. • Oriented rafting of the substrate occurred during diffusion annealing.

  2. MHD oxidant intermediate temperature ceramic heater study

    Science.gov (United States)

    Carlson, A. W.; Chait, I. L.; Saari, D. P.; Marksberry, C. L.

    1981-09-01

    The use of three types of directly fired ceramic heaters for preheating oxygen enriched air to an intermediate temperature of 1144K was investigated. The three types of ceramic heaters are: (1) a fixed bed, periodic flow ceramic brick regenerative heater; (2) a ceramic pebble regenerative heater. The heater design, performance and operating characteristics under conditions in which the particulate matter is not solidified are evaluated. A comparison and overall evaluation of the three types of ceramic heaters and temperature range determination at which the particulate matter in the MHD exhaust gas is estimated to be a dry powder are presented.

  3. Scanning electron microscopy-based approach to understand the mechanism underlying the adhesion of dengue viruses on ceramic hydroxyapatite columns.

    Directory of Open Access Journals (Sweden)

    Maiko Saito

    Full Text Available Although ceramic hydroxyapatite (HAp chromatography has been used as an alternative method ultracentrifugation for the production of vaccines, the mechanism of virus separation is still obscure. In order to begin to understand the mechanisms of virus separation, HAp surfaces were observed by scanning electron microscopy after chromatography with dengue viruses. When these processes were performed without elution and with a 10-207 mM sodium phosphate buffer gradient elution, dengue viruses that were adsorbed to HAp were disproportionately located in the columns. However, when eluted with a 10-600 mM sodium phosphate buffer gradient, few viruses were observed on the HAp surface. After incubating the dengue viruses that were adsorbed on HAp beads at 37°C and 2°C, the sphericity of the dengue viruses were reduced with an increase in incubation temperature. These results suggested that dengue virus was adsorbed to the HAp surface by electronic interactions and could be eluted by high-salt concentration buffers, which are commonly used in protein purification. Furthermore, virus fusion was thought to occur with increasing temperature, which implied that virus-HAp adhesion was similar to virus-cell adhesion.

  4. Werkstoffwoche 98. Vol. 7. Symposium 9: Ceramics. Symposium 14: Simulation of ceramics

    International Nuclear Information System (INIS)

    Heinrich, J.; Ziegler, G.; Hermel, W.; Riedel, H.

    1999-01-01

    The leading subject of this proceedings volume is ceramic materials, with papers on the following subject clusters: Processing (infiltration, sintering, forming) - Physics and chemistry of ceramics (functional ceramics, SiC, ceramic precursors, microstructural properties) - Novel concepts (composites, damage induced by oxidation and mechanical stress, performance until damage under mechanical and thermal stress, layers, nanocomposites). 28 of the conference papers have been prepared for individual retrieval from the ENERGY database. (orig./CB) [de

  5. Effect of LASER Irradiation on the Shear Bond Strength of Zirconia Ceramic Surface to Dentin

    Directory of Open Access Journals (Sweden)

    Sima Shahabi

    2012-09-01

    Full Text Available Background and Aims: Reliable bonding between tooth substrate and zirconia-based ceramic restorations is always of great importance. The laser might be useful for treatment of ceramic surfaces. The aim of the present study was to investigate the effect of laser irradiation on the shear bond strength of zirconia ceramic surface to dentin. Materials and Methods: In this experimental in vitro study, 40 Cercon zirconia ceramic blocks were fabricated. The surface treatment was performed using sandblasting with 50-micrometer Al2O3, CO2 laser, or Nd:YAG laser in each test groups. After that, the specimens were cemented to human dentin with resin cement. The shear bond strength of ceramics to dentin was determined and failure mode of each specimen was analyzed by stereo-microscope and SEM investigations. The data were statistically analyzed by one-way analysis of variance and Tukey multiple comparisons. The surface morphology of one specimen from each group was investigated under SEM. Results: The mean shear bond strength of zirconia ceramic to dentin was 7.79±3.03, 9.85±4.69, 14.92±4.48 MPa for CO2 irradiated, Nd:YAG irradiated, and sandblasted specimens, respectively. Significant differences were noted between CO2 (P=0.001 and Nd:YAG laser (P=0.017 irradiated specimens with sandblasted specimens. No significant differences were observed between two laser methods (P=0.47. The mode of bond failure was predominantly adhesive in test groups (CO2 irradiated specimens: 75%, Nd:YAG irradiated: 66.7%, and sandblasting: 41.7%. Conclusion: Under the limitations of the present study, surface treatment of zirconia ceramics using CO2 and Nd:YAG lasers was not able to produce adequate bond strength with dentin surfaces in comparison to sandblasting technique. Therefore, the use of lasers with the mentioned parameters may not be recommended for the surface treatment of Cercon ceramics.

  6. Deconvolving temperature and substrate effects on soil heterotrophic respiration under multiple global change factors in mixed grass prairie

    Science.gov (United States)

    Tucker, C.; Nie, M.; Pendall, E. G.

    2013-12-01

    in temperature sensitivity of SOM decomposition. Overall, the temperature sensitivity of the fast pool was highly sensitive to global change factors and their interactions. On the other hand, there were no differences in temperature sensitivity of the slow pool in response to the global change factors. Similarly, the base rate of the fast pool was sensitive to the global change factors, while the slow pool base rate was not. However, the overall size of the slow pool was significantly affected by the global change factors. Vegetation removal reduced the slow pool by ~19% across all warming x CO2 treatments. This effect was greatest under elevated CO2 (both warmed and control), but non-significant under ambient CO2 and temperature. Importantly, effects mediated through the vegetation were the primary factor determining whether slow pool C was gained or lost under elevated CO2 and warming. Our data-model fusion approach allowed us to deconvolve the effect of reduced substrate availability from temperature sensitivity, and to demonstrate that global change may lead to strong positive C cycling feedbacks.

  7. Wear Behavior and Self Tribofilm Formation of Infiltration-Type TiC/FeCrWMoV Metal Ceramics Under Dry Sliding Conditions

    DEFF Research Database (Denmark)

    Wang, Yanjun; Yang, Zhenyu; Han, Liying

    2015-01-01

    A new type high temperature self-lubrication TiC/FeCrWMoV metal ceramic was fabricated successfully by applying an innovating technology which molten solid lubricant (60Pb40Sn-15Ag-0.5RE) was infiltrated into metal ceramic preforms with an interpenetrating network using a vacuum high pressure...

  8. Potential use of the facultative halophyte Chenopodium quinoa Willd. as substrate for biogas production cultivated with different concentrations of sodium chloride under hydroponic conditions.

    Science.gov (United States)

    Turcios, Ariel E; Weichgrebe, Dirk; Papenbrock, Jutta

    2016-03-01

    This project analyses the biogas potential of the halophyte Chenopodium quinoa Willd. In a first approach C. quinoa was grown with different concentrations of NaCl (0, 10 and 20 ppt NaCl) and the crop residues were used as substrate for biogas production. In a second approach, C. quinoa was grown with 0, 10, 20 and 30 ppt NaCl under hydroponic conditions and the fresh biomass was used as substrate. The more NaCl is in the culture medium, the higher the sodium, potassium, crude ash and hemicellulose content in the plant tissue whereas the calcium, sulfur, nitrogen and carbon content in the biomass decrease. According to this study, it is possible to produce high yields of methane using biomass of C. quinoa. The highest specific methane yields were obtained using the substrate from the plants cultivated at 10 and 20 ppt NaCl in both experiments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Adhesion/cementation to zirconia and other non-silicate ceramics: Where are we now?

    Science.gov (United States)

    Thompson, Jeffrey Y; Stoner, Brian R.; Piascik, Jeffrey R.; Smith, Robert

    2010-01-01

    Non-silicate ceramics, especially zirconia, have become a topic of great interest in the field of prosthetic and implant dentistry. A clinical problem with use of zirconia-based components is the difficulty in achieving suitable adhesion with intended synthetic substrates or natural tissues. Traditional adhesive techniques used with silica-based ceramics do not work effectively with zirconia. Currently, several technologies are being utilized clinically to address this problem, and other approaches are under investigation. Most focus on surface modification of the inert surfaces of high strength ceramics. The ability to chemically functionalize the surface of zirconia appears to be critical in achieving adhesive bonding. This review will focus on currently available approaches as well as new advanced technologies to address this problem. PMID:21094526

  10. An analysis of the pull strength behaviors of fine-pitch, flip chip solder interconnections using a Au-Pt-Pd thick film conductor on Low-Temperature, Co-fired Ceramic (LTCC) substrates.

    Energy Technology Data Exchange (ETDEWEB)

    Uribe, Fernando R.; Kilgo, Alice C.; Grazier, John Mark; Vianco, Paul Thomas; Zender, Gary L.; Hlava, Paul Frank; Rejent, Jerome Andrew

    2008-09-01

    The assembly of the BDYE detector requires the attachment of sixteen silicon (Si) processor dice (eight on the top side; eight on the bottom side) onto a low-temperature, co-fired ceramic (LTCC) substrate using 63Sn-37Pb (wt.%, Sn-Pb) in a double-reflow soldering process (nitrogen). There are 132 solder joints per die. The bond pads were gold-platinum-palladium (71Au-26Pt-3Pd, wt.%) thick film layers fired onto the LTCC in a post-process sequence. The pull strength and failure modes provided the quality metrics for the Sn-Pb solder joints. Pull strengths were measured in both the as-fabricated condition and after exposure to thermal cycling (-55/125 C; 15 min hold times; 20 cycles). Extremely low pull strengths--referred to as the low pull strength phenomenon--were observed intermittently throughout the product build, resulting in added program costs, schedule delays, and a long-term reliability concern for the detector. There was no statistically significant correlation between the low pull strength phenomenon and (1) the LTCC 'sub-floor' lot; (2) grit blasting the LTCC surfaces prior to the post-process steps; (3) the post-process parameters; (4) the conductor pad height (thickness); (5) the dice soldering assembly sequence; or (5) the dice pull test sequence. Formation of an intermetallic compound (IMC)/LTCC interface caused by thick film consumption during either the soldering process or by solid-state IMC formation was not directly responsible for the low-strength phenomenon. Metallographic cross sections of solder joints from dice that exhibited the low pull strength behavior, revealed the presence of a reaction layer resulting from an interaction between Sn from the molten Sn-Pb and the glassy phase at the TKN/LTCC interface. The thick film porosity did not contribute, explicitly, to the occurrence of reaction layer. Rather, the process of printing the very thin conductor pads was too sensitive to minor thixotropic changes to ink, which resulted in

  11. Experimental and Simulated Investigations of Thin Polymer Substrates with an Indium Tin Oxide Coating under Fatigue Bending Loadings

    Directory of Open Access Journals (Sweden)

    Jiong-Shiun Hsu

    2016-08-01

    Full Text Available Stress-induced failure is a critical concern that influences the mechanical reliability of an indium tin oxide (ITO film deposited on a transparently flexible polyethylene terephthalate (PET substrate. In this study, a cycling bending mechanism was proposed and used to experimentally investigate the influences of compressive and tensile stresses on the mechanical stability of an ITO film deposited on PET substrates. The sheet resistance of the ITO film, optical transmittance of the ITO-coated PET substrates, and failure scheme within the ITO film were measured to evaluate the mechanical stability of the concerned thin films. The results indicated that compressive and tensile stresses generated distinct failure schemes within an ITO film and both led to increased sheet resistance and optical transmittance. In addition, tensile stress increased the sheet resistance of an ITO film more easily than compressive stress did. However, the influences of both compressive and tensile stress on increased optical transmittance were demonstrated to be highly similar. Increasing the thickness of a PET substrate resulted in increased sheet resistance and optical transmittance regardless of the presence of compressive or tensile stress. Moreover, J-Integral, a method based on strain energy, was used to estimate the interfacial adhesion strength of the ITO-PET film through the simulation approach enabled by a finite element analysis.

  12. Development of a novel non-contact inspection technique to detect micro cracks under the surface of a glass substrate by thermal stress-induced light scattering method

    Science.gov (United States)

    Sakata, Yoshitaro; Terasaki, Nao; Nonaka, Kazuhiro

    2017-05-01

    Fine polishing techniques, such as a chemical mechanical polishing treatment, are important techniques in glass substrate manufacturing. However, these techniques may cause micro cracks under the surface of glass substrates because they used mechanical friction. A stress-induced light scattering method (SILSM), which was combined with light scattering method and mechanical stress effects, was proposed for inspecting surfaces to detect polishing-induced micro cracks. However, in the conventional SILSM, samples need to be loaded with physical contact, and the loading point is invisible in transparent materials. Here, we introduced a novel non-contact SILSM using a heating device. A glass substrate was heated first, and then the light scattering intensity of micro cracks was detected by a cooled charge-couple device camera during the natural cooling process. Results clearly showed during the decreasing surface temperature of a glass substrate, appropriate thermal stress is generated for detecting micro cracks by using the SILSM and light scattering intensity from micro cracks changes. We confirmed that non-contact thermal SILSM (T-SILSM) can detect micro cracks under the surface of transparent materials.

  13. Development of forsterite ceramic materials at Rojan Advanced Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Alecu, I.D.; Stead, R.J. [Rojan Advanced Ceramics Pty Ltd, Osborne Park, WA (Australia)

    1998-12-31

    Forsterite is a crystalline magnesium silicate with the chemical formula Mg{sub 2}SiO{sub 4} or 2MgO.SiO{sub 2}. It is best known for having, like the other magnesium silicate, clino- enstatite, with the formula MgSiO{sub 3} or MgO.SiO{sub 2}, an extremely low electrical conductivity. This makes forsterite ceramics the ideal substrate materials for electronics. In addition, forsterite ceramics are considered as some of the most adequate materials for applications as manifolds for SOFC - Solid Oxide Fuel Cells - due to them having a linear thermal expansion coefficient perfectly matching with the other cell components and a very high stability in fuel cell environments. The paper presents some of the results of the technology R and D performed at Rojan Advanced Ceramics Pty Ltd. in Perth, Western Australia, together with some material characteristics and several forsterite ceramic products, from crucibles and boats to planar components. Copyright (1998) Australasian Ceramic Society 3 refs., 1 fig.

  14. Adaptation of continuous biogas reactors operating under wet fermentation conditions to dry conditions with corn stover as substrate.

    Science.gov (United States)

    Kakuk, Balázs; Kovács, Kornél L; Szuhaj, Márk; Rákhely, Gábor; Bagi, Zoltán

    2017-08-01

    Corn stover (CS) is the agricultural by-product of maize cultivation. Due to its high abundance and high energy content it is a promising substrate for the bioenergy sector. However, it is currently neglected in industrial scale biogas plants, because of its slow decomposition and hydrophobic character. To assess the maximum biomethane potential of CS, long-term batch fermentations were carried out with various substrate concentrations and particle sizes for 72 days. In separate experiments we adapted the biogas producing microbial community in wet fermentation arrangement first to the lignocellulosic substrate, in Continuous Stirred Tank Reactor (CSTR), then subsequently, by continuously elevating the feed-in concentration, to dry conditions in solid state fermenters (SS-AD). In the batch tests, the produce 90% of the total biomethane yield than the amount of substrate added to the fermentation lowered the specific methane yield. In the CSTR experiment, the daily substrate loading was gradually increased from 1 to 2 g vs /L/day until the system produced signs of overloading. Then the biomass was transferred to SS-AD reactors and the adaptation process was studied. Although the specific methane yields were lower in the SS-AD arrangement (177 mL CH 4 /g vs in CSTR vs. 105 mL in SS-AD), the benefits of process operational parameters, i.e. lower energy consumption, smaller reactor volume, digestate amount generated and simpler configuration, may compensate the somewhat lower yield. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. EFFECT OF DIFFERENT SUBSTRATES ON THE GROWTH AND YIELD OF TOMATO (Lycopersicum esculentum Mill UNDER GREENHOUSE CONDITIONS

    Directory of Open Access Journals (Sweden)

    Luis Daniel Ortega-Martínez

    2010-09-01

    Full Text Available The tomato (Lycopersicum esculentum Mill is the world's second most important vegetable. In Mexico, the crop gains economic and social relevance by the generation of foreign exchange and jobs, the production systems of this vegetable have been diversified in order to increase performance, incorporating innovative technologies such as plastic covers, drop irrigation and hydroponics. One of the main factors determining the success of the crop is the substrate, being the medium in which roots were developed which have great influence on the growth and development. In thisstudy, we evaluated during the crop season 2008-2009, the effect of substrate: pine sawdust, compost of sheep manure, agricultural land and red volcanic rock, on growth and yield of tomato. The experimental design used was randomized complete block with four repetitions and ten treatments were evaluated results from a combination of substrates in a volume of 1:1, each experimental unit consisted of four plants, the studied variables were subjected to an analysis of variance (ANOVA using the statistical package Statistical Package for the Social Sciences (SPSS. The genotype used was Sun 7705. Significant differences between substrates, composting with sawdust mixing affected to a greater response for the variables height 4.61 m, 2.1 cm thick of stem, the fruits of greater weight 107.8 g, yield per plant and 4 kg and 25 kg/m-2. However, the number of flowers and clusters was higher in the sawdust substrate, so the composting with sawdust mixture may be a viable option for greenhouse tomato production.

  16. Coating of substrates

    International Nuclear Information System (INIS)

    Cairns, J.A.; Nelson, R.L.; Woodhead, J.L.

    1979-01-01

    The process is concerned with providing substrates with coatings obtainable from sols, for example to protect the substrate (such as in nuclear reactors or hydrocarbon cracking plant) or to provide a carrier for catalytically active material. Hitherto, coatings obtained from sols have had a high porosity and high surface area so that they have not been entirely satisfactory for the above applications. In the process described, dense, low-porosity coatings are provided by contacting the substrate with a sol of refractory material (e.g. CeO 2 or SiO 2 ) convertible to a gel of density at least 40% of the theoretical density of the refractory material, and converting the sol to the gel. Optionally, the gel may be converted to a ceramic coating by firing. (author)

  17. Ceramics for fusion applications

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1987-01-01

    Ceramics are required for a variety of uses in both near-term fusion devices and in commercial powerplants. These materials must retain adequate structural and electrical properties under conditions of neutron, particle and ionizing irradiation; thermal and applied stresses; and physical and chemical sputtering. Ceramics such as Al 2 O 3 , MgAl 2 O 4 , BeO, Si 3 N 4 and SiC are currently under study for fusion applications, and results to date show widely-varying responses to the fusion environment. Materials can be identified today that will meet initial operating requirements, but improvements in physical properties are needed to achieve satisfactory lifetimes for critical applications. (author)

  18. Ceramics for fusion applications

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1986-01-01

    Ceramics are required for a variety of uses in both near-term fusion devices and in commercial powerplants. These materials must retain adequate structural and electrical properties under conditions of neutron, particle, and ionizing irradiation; thermal and applied stresses; and physical and chemical sputtering. Ceramics such as Al 2 O 3 , MgAl 2 O 4 , BeO, Si 3 N 4 and SiC are currently under study for fusion applications, and results to date show widely-varying response to the fusion environment. Materials can be identified today which will meet initial operating requirements, but improvements in physical properties are needed to achieve satisfactory lifetimes for critical applications

  19. Etching process for improving the strength of a laser-machined silicon-based ceramic article

    Science.gov (United States)

    Copley, Stephen M.; Tao, Hongyi; Todd-Copley, Judith A.

    1991-01-01

    A process for improving the strength of laser-machined articles formed of a silicon-based ceramic material such as silicon nitride, in which the laser-machined surface is immersed in an etching solution of hydrofluoric acid and nitric acid for a duration sufficient to remove substantially all of a silicon film residue on the surface but insufficient to allow the solution to unduly attack the grain boundaries of the underlying silicon nitride substrate. This effectively removes the silicon film as a source of cracks that otherwise could propagate downwardly into the silicon nitride substrate and significantly reduce its strength.

  20. Synergistic Effects of Temperature, Oxidation and Multicracking Modes on Damage Evolution and Life Prediction of 2D Woven Ceramic-Matrix Composites under Tension-Tension Fatigue Loading

    Science.gov (United States)

    Longbiao, Li

    2017-08-01

    In this paper, the synergistic effects of temperature, oxidation and multicracking modes on damage evolution and life prediction in 2D woven ceramic-matrix composites (CMCs) have been investigated. The damage parameter of fatigue hysteresis dissipated energy and the interface shear stress were used to monitor the damage evolution inside of CMCs. Under cyclic fatigue loading, the fibers broken fraction was determined by combining the interface/fiber oxidation model, interface wear model and fibers statistical failure model at elevated temperature, based on the assumption that the fiber strength is subjected to two-parameter Weibull distribution and the load carried by broken and intact fibers satisfy the Global Load Sharing (GLS) criterion. When the broken fibers fraction approaches to the critical value, the composite fatigue fractures. The evolution of fatigue hysteresis dissipated energy, the interface shear stress and broken fibers fraction versus cycle number, and the fatigue life S-N curves of SiC/SiC at 1000, 1200 and 1300 °C in air and steam condition have been predicted. The synergistic effects of temperature, oxidation, fatigue peak stress, and multicracking modes on the evolution of interface shear stress and fatigue hysteresis dissipated energy versus cycle numbers curves have been analyzed.

  1. Resorcinol degradation by a Penicillium chrysogenum strain under osmotic stress: mono and binary substrate matrices with phenol.

    Science.gov (United States)

    Guedes, Sumaya Ferreira; Mendes, Benilde; Leitão, Ana Lúcia

    2011-04-01

    A phenol-degrading Penicillium chrysogenum strain previously isolated from a salt mine was able to grow at 1,000 mg l(-1) of resorcinol on solid medium. The aerobic degradation of resorcinol by P. chrysogenum CLONA2 was studied in batch cultures in minimal mineral medium with 58.5 g l(-1) of sodium chloride using resorcinol as the sole carbon source. The fungal strain showed the ability to degrade up to 250 mg l(-1) of resorcinol. Resorcinol and phenol efficiency degradation by P. chrysogenum CLONA2 was compared. This strain removes phenol faster than resorcinol. When phenol and resorcinol were in binary substrate matrices, phenol enhanced resorcinol degradation, and organic load decreased with respect to the mono substrate matrices. The acute toxicity of phenol and resorcinol, individually and in combination, to Artemia franciscana larvae has been verified before and after the bioremediation process with P. chrysogenum CLONA2. The remediation process was effective in mono and binary substrate systems.

  2. Research on Durability of Recycled Ceramic Powder Concrete

    Science.gov (United States)

    Chen, M. C.; Fang, W.; Xu, K. C.; Xie, L.

    2017-06-01

    Ceramic was ground into powder with 325 mesh and used to prepare for concrete. Basic mechanical properties, carbonation and chloride ion penetration of the concrete tests were conducted. In addition, 6-hour electric fluxes of recycled ceramic powder concrete were measured under loading. The results showed that the age strength of ceramics powder concrete is higher than that of the ordinary concrete and the fly ash concrete. The ceramic powder used as admixture would reduce the strength of concrete under no consideration of its impact factor; under consideration of the impact factor for ceramic powder as admixture, the carbonation resistance of ceramic powder concrete was significantly improved, and the 28 day carbonation depth of the ceramic powder concrete was only 31.5% of ordinary concrete. The anti-chloride-permeability of recycled ceramic powder concrete was excellent.

  3. Gallium arsenide (GaAs) island growth under SiO(2) nanodisks patterned on GaAs substrates.

    Science.gov (United States)

    Tjahjana, Liliana; Wang, Benzhong; Tanoto, Hendrix; Chua, Soo-Jin; Yoon, Soon Fatt

    2010-05-14

    We report a growth phenomenon where uniform gallium arsenide (GaAs) islands were found to grow underneath an ordered array of SiO(2) nanodisks on a GaAs(100) substrate. Each island eventually grows into a pyramidal shape resulting in the toppling of the supported SiO(2) nanodisk. This phenomenon occurred consistently for each nanodisk across a large patterned area of approximately 50 x 50 microm(2) (with nanodisks of 210 nm diameter and 280 nm spacing). The growth mechanism is attributed to a combination of 'catalytic' growth and facet formation.

  4. A facile precursor route to highly loaded metal/ceramic nanofibers as a robust surface-enhanced Raman template

    Science.gov (United States)

    Park, Jay Hoon; Joo, Yong Lak

    2017-09-01

    We report silver (Ag)/ceramic nanofibers with highly robust and sensitive optical sensory capabilities that can withstand harsh conditions. These nanofibers are fabricated by first electrospinning solutions of poly vinyl alcohol (PVA) and metal precursor polymers, followed by subsequent series of heat treatment. The reported fabrication method demonstrate the effects of (i) the location of Ag crystals, (ii) crystal size and shape, and (iii) constituents of the ceramic matrix as surface-enhanced Raman spectroscopy (SERS) templates with 10-6 M 4-mercaptobenzoic acid (4-MBA). Notably, these silver/ceramic nanofibers preserved most of their highly sensitive localized surface plasmon resonance (LSPR) even under high temperature of 400 °C, in contrast to preformed Ag nanoparticles (NPs) in PVA nanofibers which lost most of its optical property presumably due to (i) Ag oxidation and (ii) loss of the matrix material. Among the ceramic substrates of ZrO2, Al2O3, and ZnO with silver crystals, we discovered that the ZnO substrate showed the most consistent and the strongest signal strength owing to the synergistic chemical and optical properties of the ZnO substrate. Moreover, the pure Ag nanofiber proved to be the best heat-resistant SERS template, owing to its (i) anisotropic morphology and (ii) thicker diameter when compared with other conventional Ag nanomaterials. These results demonstrated simple yet highly controllable fabrication of robust SERS templates, with potential applications in a catalytic sensory which is often exposed to harsh conditions.

  5. Neural substrates underlying reconcentration for the preparation of an appropriate cognitive state to prevent future mistakes: a functional magnetic resonance imaging study

    Science.gov (United States)

    Miura, Naoki; Nozawa, Takayuki; Takahashi, Makoto; Yokoyama, Ryoichi; Sasaki, Yukako; Sakaki, Kohei; Kawashima, Ryuta

    2015-01-01

    The ability to reconcentrate on the present situation by recognizing one’s own recent errors is a cognitive mechanism that is crucial for safe and appropriate behavior in a particular situation. However, an individual may not be able to adequately perform a subsequent task even if he/she recognize his/her own error; thus, it is hypothesized that the neural mechanisms underlying the reconcentration process are different from the neural substrates supporting error recognition. The present study performed a functional magnetic resonance imaging (fMRI) analysis to explore the neural substrates associated with reconcentration related to achieving an appropriate cognitive state, and to dissociate these brain regions from the neural substrates involved in recognizing one’s own mistake. This study included 44 healthy volunteers who completed an experimental procedure that was based on the Eriksen flanker task and included feedback regarding the results of the current trial. The hemodynamic response induced by each instance of feedback was modeled using a combination of the successes and failures of the current and subsequent trials in order to identify the neural substrates underlying the ability to reconcentrate for the next situation and to dissociate them from those involved in recognizing current errors. The fMRI findings revealed significant and specific activation in the dorsal aspect of the medial prefrontal cortex (MFC) when participants successfully reconcentrated on the task after recognizing their own error based on feedback. Additionally, this specific activation was clearly dissociated from the activation foci that occurred during error recognition. These findings indicate that the dorsal aspect of the MFC may be a distinct functional region that specifically supports the reconcentration process and that is associated with the prevention of successive errors when a human subject recognizes his/her own mistake. Furthermore, it is likely that this

  6. Investigations on thermoluminescent dosimetry (TLD) with doped alumina ceramics

    International Nuclear Information System (INIS)

    Janas, R.; Huebner, K.

    1976-01-01

    Alumina ceramics doped and burned under various conditions have been investigated with regard to their suitability for thermoluminescent dosimetry. The production of ceramics is described. The properties essential for dosimetric purposes, such as glow curve, energy dose characteristics, fading, recoverability, lower detection limit and energy dependence, are indicated. The advantages and disadvantages of alumina ceramics are compared. (author)

  7. Ceramic bond durability and degradation mechanism of commercial gamma-methacryloxypropyl trimethoxysilane-based ceramic primers.

    Science.gov (United States)

    Aida, Masahiro; Tabei, Naoko; Kimoto, Suguru; Tanimura, Hideki; Takahashi, Haruyoshi; Yaguchi, Takehiro; Nishiyama, Norihiro

    2012-08-01

    To investigate the bond durability and degradation mechanism of various commercial ceramic primers that are based on gamma-methacryloxypropyl trimethoxysilane (gamma-MPTS) and contain various organic additives. The null hypotheses tested were that (1) the type of ceramic primer had no effect on the bond strength after thermocycling and (2) the type of ceramic primer had no effect on the water contact angle after rinsing with THF. The adherent was a silica-based ceramic block used for computer-aided design/computer-aided manufacturing (CAD-CAM). Four commercial ceramic primers, Clearfil Mega Bond Porcelain Bonding kit (CM), Tokuso ceramic primer (TC), GC ceramic primer (CP), and Porcelain Liner M (PL), were compared with a simplified experimental ceramic primer (EP) that comprised gamma-MPTS and an inorganic acid (hydrochloric acid) but no other organic additives. The specimens for the adhesion test were prepared after a dual-curing type resin cement (Link Max) had adhered to the ceramic surfaces treated with each ceramic primer. The bonded specimens were then stored in water at 37 degrees C for 1 day. Then, the bonded specimens were thermocycled between 5 degrees C and 55 degrees C in water baths for 5000 or 10,000 cycles. The dwell time in each water bath and the transfer time were 60 and 7 seconds, respectively. The shear bond strength of resin to the ceramic surface was measured under a crosshead speed of 1.0 mm/minute by a conventional testing machine. Thereafter, the fracture mode for each specimen was determined. In addition, the water contact angle on the treated ceramic surfaces was measured before and after THF using a cotton pellet. As a control, the contact angle on the ground ceramic surface was measured without any ceramic primer. For all samples, thermocycling led to an increase in the frequency of interfacial failure, reflecting reduced mean bond strength of the resin to the treated ceramic surfaces. However, the bond degradation behavior differed

  8. Monolithic ceramics

    Science.gov (United States)

    Herbell, Thomas P.; Sanders, William A.

    1992-01-01

    A development history and current development status evaluation are presented for SiC and Si3N4 monolithic ceramics. In the absence of widely sought improvements in these materials' toughness, and associated reliability in structural applications, uses will remain restricted to components in noncritical, nonman-rated aerospace applications such as cruise missile and drone gas turbine engine components. In such high temperature engine-section components, projected costs lie below those associated with superalloy-based short-life/expendable engines. Advancements are required in processing technology for the sake of fewer and smaller microstructural flaws.

  9. The composition and depth of green roof substrates affect the growth of Silene vulgaris and Lagurus ovatus species and the C and N sequestration under two irrigation conditions.

    Science.gov (United States)

    Ondoño, S; Martínez-Sánchez, J J; Moreno, J L

    2016-01-15

    Extensive green roofs are used to increase the surface area covered by vegetation in big cities, thereby reducing the urban heat-island effect, promoting CO2 sequestration, and increasing biodiversity and urban-wildlife habitats. In Mediterranean semi-arid regions, the deficiency of water necessitates the use in these roofs of overall native plants which are more adapted to drought than other species. However, such endemic plants have been used scarcely in green roofs. For this purpose, we tested two different substrates with two depths (5 and 10 cm), in order to study their suitability with regard to adequate plant development under Mediterranean conditions. A compost-soil-bricks (CSB) (1:1:3; v:v:v) mixture and another made up of compost and bricks (CB) (1:4; v:v) were arranged in two depths (5 and 10 cm), in cultivation tables. Silene vulgaris (Moench) Garcke and Lagurus ovatus L. seeds were sown in each substrate. These experimental units were subjected, on the one hand, to irrigation at 40% of the registered evapotranspiration values (ET0) and, on the other, to drought conditions, during a nine-month trial. Physichochemical and microbiological substrate characteristics were studied, along with the physiological and nutritional status of the plants. We obtained significantly greater plant coverage in CSB at 10 cm, especially for L. ovatus (80-90%), as well as a better physiological status, especially in S. vulgaris (SPAD values of 50-60), under irrigation, whereas neither species could grow in the absence of water. The carbon and nitrogen fixation by the substrate and the aboveground biomass were also higher in CSB at 10 cm, especially under L. ovatus - in which 1.32 kg C m(-2) and 209 g N m(-2) were fixed throughout the experiment. Besides, the enzymatic and biochemical parameters assayed showed that microbial activity and nutrient cycling, which fulfill a key role for plant development, were higher in CSB. Therefore, irrigation of 40% can

  10. Ceramic matrix and resin matrix composites - A comparison

    Science.gov (United States)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  11. Ceramic matrix and resin matrix composites: A comparison

    Science.gov (United States)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  12. Functionally Graded Materials using Plasma Spray with Nano Structured Ceramic

    International Nuclear Information System (INIS)

    Sioh, E L; Tok, A I Y

    2013-01-01

    In this paper, nano structured FGM was fabricated using DC plasma spray technique. Nano structured and micro structured powder were used as the feeding powder with steel substrate. The spray parameters was optimized and characterisation of nano-ceramic FGM and micro-ceramic FGM were done using bending test and micro-hardness test. Experimental results have shown that the nano-structured FGM exhibit 20% improvement flexure strength and 10% in hardness. A comparison was made between sintered micro ceramic tile and nano ceramic FGM using simple drop test method.

  13. SIMULATION OF HEAT TRANSFER BY COOLING CHANNELS IN LTCC SUBSTRATE

    Directory of Open Access Journals (Sweden)

    Tomas GIRASEK

    2017-06-01

    Full Text Available The thermal resistance, flow analysis, pressure drop and distribution of coolant inside multilayer LTCC (Low Temperature Co-fired Ceramics substrate are detailed investigated in this paper. For this reason four various structures of internal channels in the multilayer LTCC substrates were designed and simulated. The simulation 3D model consist of 6 LTCC of DuPont 951® layer with cooling microchannel in middle of substrate, power chips paced on top of LTCC and silver sintered joints under power chips. The impact of the structure of channels, volume flow and power loss of die was simulated, calculated and analyzed by using the simulation software Mentor Graphics FloEFDTM. The structure and size of channels have the significant impact on thermal resistance, pressure of coolant as well as the effectivity of cooling power components which can be placed on LTCC substrate. The thermal resistance was calculated from the temperature gradient among chip junction, the inlet fluid and the thermal load of chip. Optimizing and comparison of cooling channels structure inside LTCC substrates and analyzing the effect of volume flow for achieving the least thermal resistance of LTCC multilayer substrate is the main contribution of this paper.

  14. Cracking in thin films of colloidal particles on elastomeric substrates

    Science.gov (United States)

    Smith, Michael; Sharp, James

    2012-02-01

    The drying of thin colloidal films of particles is a common industrial problem (e.g paint drying, ceramic coatings). An often undesirable side effect is the appearance of cracks. As the liquid in a suspension evaporates, particles are forced into contact both with each other and the substrate, forming a fully wetted film. Under carefully controlled conditions the observed cracks grow orthogonal to the drying front, spaced at regular intervals along it. In this work we investigated the role of the substrate in constraining the film. Atomic force microscopy, was used to image the particle arrangements on the top and bottom surfaces of films, dried on liquid and glass substrates. We present convincing evidence that the interface prevents particle rearrangements at the bottom of the film, leading to a mismatch strain between upper and lower surfaces of the film which appears to drive cracking. We show that when the modulus of the substrate becomes comparable to the stresses measured in the films, the crack spacing is significantly altered. We also show that cracks do not form on liquid substrates. These combined experiments highlight the importance of substrate constraint in the crack formation mechanism.[4pt] [1] M.I. Smith, J.S. Sharp, Langmuir 27, 8009 (2011)

  15. Influence of ceramic thickness and ceramic materials on fracture resistance of posterior partial coverage restorations.

    Science.gov (United States)

    Bakeman, E M; Rego, N; Chaiyabutr, Y; Kois, J C

    2015-01-01

    This study evaluated the influence of ceramic thickness and ceramic materials on fracture resistance of posterior partial coverage ceramic restorations. Forty extracted molars were allocated into four groups (n=10) to test for two variables: 1) the thickness of ceramic (1 mm or 2 mm) and 2) the ceramic materials (a lithium disilicate glass-ceramic [IPS e.max] or leucite-reinforced glass ceramic [IPS Empress]). All ceramic restorations were luted with resin cement (Variolink II) on the prepared teeth. These luted specimens were loaded to failure in a universal testing machine, in the compression mode, with a crosshead speed of 1.0 mm/min. The data were analyzed using two-way analysis of variance and the Tukey Honestly Significantly Different multiple comparison test (α =0.05). The fracture resistance revealed a significant effect for materials (pceramic was not significant (p=0.074), and the interaction between the thickness of ceramic and the materials was not significant (p=0.406). Mean (standard deviation) fracture resistance values were as follows: a 2-mm thickness of a lithium disilicate bonded to tooth structure (2505 [401] N) revealed a significantly higher fracture resistance than did a 1-mm thickness of leucite-reinforced (1569 [452] N) and a 2-mm thickness of leucite-reinforced ceramic bonded to tooth structure (1716 [436] N) (pceramic at 1-mm thickness (2105 [567] N) and at 2-mm thickness. Using a lithium disilicate glass ceramic for partial coverage restoration significantly improved fracture resistance compared to using a leucite-reinforced glass ceramic. The thickness of ceramic had no significant effect on fracture resistance when the ceramics were bonded to the underlying tooth structure.

  16. Closure of mass exchange under use of a vegetable conveyer cultivated on a neutral and soil-like substrates as applied to BLSS

    Science.gov (United States)

    Velitchko, Vladimir; Tikhomirov, Alexander; Ushakova, Sofya

    To increase a closure level of mass exchange processes in bioregenerative life support systems (BLSS) including a human a technology of plants cultivation on a soil-like substrate (SLS) consisting in a gradual decomposition of inedible plants biomass under its addition in the SLS was developed at the Institute of Biophysics SB RAS (Russia). In the given work the effect of periodical introduction of inedible plant biomass in the SLS on plants photosynthetic productivity and on the closure of mass exchange has been analyzed. Thereupon CO2 gas exchange and the certain vegetables' productivity under their cultivation in a conveyor regime on the SLS and on a neutral substrate with reference to the closure of mass exchange processes in BLSS have been studied in this work. The vegetables Raphanus sativus L., Brassica caulorapa L. Daucus carota L. and Beta vulgaris L. being prospective plantsrepresentatives of the BLSS phototrophic unit were taken as the research objects. The SLS was taken as an experiment substrate and an expanded clay aggregate as the control. The changeable Knop solution was used for the control, and an irrigation solution with the SLS extract was used for the experiment. Rapidity dynamics of CO2 consumption showed sharp distinctions of the ‘plants-SLS' system from the ‘plantsexpanded clay aggregate' system connected with the oxidation processes coursing in the SLS. The intensity of CO2 evolution from the SLS on average was 70% of the total plants conveyor's respiration. Thus a balance between the system's respiration and photosynthesis was often determined by the processes coursing in the SLS. Here the sharp CO2 evolution was recorded after introduction of the plants inedible biomass in the SLS. That peak was gradually coming down during 10-14 days after the beginning of every cycle of plants cultivation that was connected with intensification of plants photosynthesis and drop of decomposition intensity of the biomass introduced. Comparative

  17. Modifications of optical properties with ceramic coatings

    International Nuclear Information System (INIS)

    Besmann, T.M.; Abdel-Latif, A.I.

    1990-01-01

    Coatings of ceramic materials that exhibited high thermal absorptivities and emissivities were chemical vapor deposited on graphite and refractory metals. In this paper the coatings prepared were SiC and B 4 C, and the substrates used were graphite, molybdenum, titanium, and Nb-1Zr. The coatings are characterized with regard to adherence, optical properties, and response to potential harsh environments

  18. Experimental Investigation of Mechanical Behavior of an Oxide/Oxide Ceramic Composite in Interlaminar Shear and under Combined Tension-Torsion Loading

    Science.gov (United States)

    2014-03-27

    together with data from literature in the σyy-τxy coordinate space. The experimental failure envelope was compared with predictions obtained using the...high temperature of a self-healing ceramic matrix composite," Annales De Chimie (Science Des Materiaux), Vol. 30, No. 6, 2005, pp. 649-58. [51

  19. Nano-Ceramic Coated Plastics

    Science.gov (United States)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (plastics. One possible way of processing nanoceramic coatings at low temperatures (plastic materials (silicone, Teflon, PET, etc.) that can possess both photocatalytic oxide properties and flexible plastic properties. Processing cost is low and it does not require any expensive equipment investment. Processing can be scalable to current manufacturing infrastructure.

  20. Interfaces in ceramic nuclear fuels

    International Nuclear Information System (INIS)

    Reeve, K.D.

    Internal interfaces in all-ceramic dispersion fuels (such as these for HTGRs) are discussed for two classes: BeO-based dispersions, and coated particles for graphite-based fuels. The following points are made: (1) The strength of a two-phase dispersion is controlled by the weaker dispersed phase bonded to the matrix. (2) Differential expansion between two phases can be controlled by an intermediate buffer zone of low density. (3) A thin ceramic coating should be in compression. (4) Chemical reaction between coating and substrate and mass transfer in service should be minimized. The problems of the nuclear fuel designer are to develop coatings for fission product retention, and to produce radiation-resistant interfaces. 44 references, 18 figures

  1. Nanomechanics of hard films on compliant substrates.

    Energy Technology Data Exchange (ETDEWEB)

    Reedy, Earl David, Jr. (Sandia National Laboratories, Albuquerque, NM); Emerson, John Allen (Sandia National Laboratories, Albuquerque, NM); Bahr, David F. (Washington State University, Pullman, WA); Moody, Neville Reid; Zhou, Xiao Wang; Hales, Lucas (University of Minnesota, Minneapolis, MN); Adams, David Price (Sandia National Laboratories, Albuquerque, NM); Yeager,John (Washington State University, Pullman, WA); Nyugen, Thao D. (Johns Hopkins University, Baltimore, MD); Corona, Edmundo (Sandia National Laboratories, Albuquerque, NM); Kennedy, Marian S. (Clemson University, Clemson, SC); Cordill, Megan J. (Erich Schmid Institute, Leoben, Austria)

    2009-09-01

    Development of flexible thin film systems for biomedical, homeland security and environmental sensing applications has increased dramatically in recent years [1,2,3,4]. These systems typically combine traditional semiconductor technology with new flexible substrates, allowing for both the high electron mobility of semiconductors and the flexibility of polymers. The devices have the ability to be easily integrated into components and show promise for advanced design concepts, ranging from innovative microelectronics to MEMS and NEMS devices. These devices often contain layers of thin polymer, ceramic and metallic films where differing properties can lead to large residual stresses [5]. As long as the films remain substrate-bonded, they may deform far beyond their freestanding counterpart. Once debonded, substrate constraint disappears leading to film failure where compressive stresses can lead to wrinkling, delamination, and buckling [6,7,8] while tensile stresses can lead to film fracture and decohesion [9,10,11]. In all cases, performance depends on film adhesion. Experimentally it is difficult to measure adhesion. It is often studied using tape [12], pull off [13,14,15], and peel tests [16,17]. More recent techniques for measuring adhesion include scratch testing [18,19,20,21], four point bending [22,23,24], indentation [25,26,27], spontaneous blisters [28,29] and stressed overlayers [7,26,30,31,32,33]. Nevertheless, sample design and test techniques must be tailored for each system. There is a large body of elastic thin film fracture and elastic contact mechanics solutions for elastic films on rigid substrates in the published literature [5,7,34,35,36]. More recent work has extended these solutions to films on compliant substrates and show that increasing compliance markedly changes fracture energies compared with rigid elastic solution results [37,38]. However, the introduction of inelastic substrate response significantly complicates the problem [10,39,40]. As

  2. Thermal Conductivity Change Kinetics of Ceramic Thermal Barrier Coatings Determined by the Steady-State Laser Heat Flux Technique

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.

    2000-01-01

    A steady-state laser heat flux technique has been developed at the NASA Glenn Research Center at Lewis Field to obtain critical thermal conductivity data of ceramic thermal barrier coatings under the temperature and thermal gradients that are realistically expected to be encountered in advanced engine systems. In this study, thermal conductivity change kinetics of a plasma-sprayed, 254-mm-thick ZrO2-8 wt % Y2O3 ceramic coating were obtained at high temperatures. During the testing, the temperature gradients across the coating system were carefully measured by the surface and back pyrometers and an embedded miniature thermocouple in the substrate. The actual heat flux passing through the coating system was determined from the metal substrate temperature drop (measured by the embedded miniature thermocouple and the back pyrometer) combined with one-dimensional heat transfer models.

  3. Produção de mudas de meloeiro amarelo, sob cultivo protegido, em diferentes substratos Production of yellow melon seedlings in different substrates under protected cultivation

    Directory of Open Access Journals (Sweden)

    Tânia Regina Pelizza

    2013-04-01

    Full Text Available Mudas mal formadas e debilitadas comprometem o desenvolvimento das culturas. O objetivo deste trabalho foi avaliar a produção de mudas de meloeiro amarelo, sob cultivo protegido, em diferentes substratos. Este trabalho foi conduzido em telado, na Universidade Federal de Pelotas (RS, nos meses de novembro e dezembro. Testaram-se os seguintes substratos: T1 (vermicomposto bovino puro; T2 (substrato comercial Plantmax®; T3 (substrato comercial Húmus Fértil®; T4 (vermicomposto bovino 75% + casca de arroz carbonizada 25% e T5 (solo 75% + vermicomposto bovino 25%. Foram avaliados o índice de velocidade e a percentagem de emergência do 6º ao 9º dia; a altura, o comprimento da raiz principal, a massa seca das raízes e da parte aérea das mudas de meloeiro, aos 27 dias. Os substratos que proporcionaram maior índice de velocidade de emergência das mudas de meloeiro amarelo foram Húmus Fértil®, vermicomposto bovino puro e vermicomposto bovino 75% mais casca de arroz carbonizada 25%. Maior altura da muda é obtida com o substrato Húmus Fértil®. O comprimento da raiz principal foi maior com o uso de vermicomposto bovino puro, Húmus Fértil®, vermicomposto bovino puro mais casca de arroz carbonizada (VB75+CAC25, em comparação com solo 75% mais vermicomposto bovino 25%. A massa seca de raiz foi maior quando utilizado Húmus Fértil®, em comparação com solo 75% mais vermicomposto bovino 25%. É possível utilizar substratos isolados ou em combinação para a produção de mudas de meloeiro amarelo sob cultivo protegido. Porém, deve-se evitar o uso de solo 75% em combinação com vermicomposto bovino 25%.Weak and malformed seedlings compromise the development of the crop. The objective of this study was to evaluate the production of yellow melon seedlings in different substrates under protected cultivation. The experiment was conducted in a greenhouse during November and December, at the Federal University of Pelotas (RS. The following

  4. DEVELOPMENT OF COMPLEX EQUIPMENT FOR PLASMA SPRAY CERAMIC COATINGS

    Directory of Open Access Journals (Sweden)

    V. V. Okovity

    2017-01-01

    Full Text Available Develop a set equipment for plasma forming ceramic coatings. The article presents characteristics and parameters of the developed complex equipment for formation of plasma ceramic coatings as well as results of its testing. Methods of research is based on studies of structural elements composite plasma coatings system ZrO2 – Y2O3  obtained  using  developed complex equipment. One of the most effective ways to protect the components from high temperature corrosion and oxidation is formation on the surface of plasma thermal barrier coatings. For thermal barrier coating has very strict requirements: сharacterized by a smooth change of physico-mechanical properties (porosity, microhardness, elastic modulus in the cross section of the metal substrate to the outer ceramic layer; to withstand multiple cycles of thermal cycling from room temperature to the operating temperature; to maintain gastightness under operating conditions and thus ensure a sufficiently high level of adhesive strength. For realization of new technological schemes applying thermal barrier coatings with high operational characteristics was developed, patented and manufactured a range of new equipment. The experiments show that authors developed PBG-1 plasmatron and powder feeder PPBG-04 have at least 2–3 times the service life during the deposition of ceramic materials compared to the standard equipment of the company "Plasma-Technik", by changing the structure of the cathode-anode plasma torch assembly and construction of the delivery unit of the feeder to facilitate the uniform supply of the powder into the plasma jet and the best of his penetration. The result is better plasma coatings with improved operational characteristics: adhesion strength is increased to 1.3–2 times, material utilization in 1.5–1.6 times microhardness 1.2–1.4 times the porosity is reduced by 2–2.5 times.

  5. Topographic changes in Ni-5at.%W substrate after annealing under conditions of buffer layer crystallization

    DEFF Research Database (Denmark)

    Wulff, Anders Christian; Mishin, Oleg; Grivel, Jean-Claude

    2012-01-01

    twin boundaries. Average groove widths increased for all boundary types. Despite the observed changes in the extent of grain boundary grooving, the mean surface roughness was almost identical before and after the additional annealing. © 2012 Published by Elsevier B.V. Selection and/or peer-review under...... and that the average depth of grain boundary grooves increased considerably for certain boundary types. Grooves at general high angle boundaries and Σ3 boundaries with large deviations from the ideal twin relationship were found to be more sensitive to the additional heat-treatment than grooves at low angle and true...

  6. Low Voltage Power Supply Incorporating Ceramic Transformer

    CERN Document Server

    Imori, M

    2007-01-01

    A low voltage power supply provides the regulated output voltage of 1 V from the supply voltage around 48 V. The low voltage power supply incorporates a ceramic transformer which utilizes piezoelectric effect to convert voltage. The ceramic transformer isolates the secondary from the primary, thus providing the ground isolation between the supply and the output voltages. The ceramic transformer takes the place of the conventional magnetic transformer. The ceramic transformer is constructed from a ceramic bar and does not include any magnetic material. So the low voltage power supply can operate under a magnetic field. The output voltage is stabilized by feedback. A feedback loop consists of an error amplifier, a voltage controlled oscillator and a driver circuit. The amplitude ratio of the transformer has dependence on the frequency, which is utilized to stabilize the output voltage. The low voltage power supply is investigated on the analogy of the high voltage power supply similarly incorporating the cerami...

  7. Integrated function of microbial fuel cell (MFC) as bio-electrochemical treatment system associated with bioelectricity generation under higher substrate load.

    Science.gov (United States)

    Mohan, S Venkata; Raghavulu, S Veer; Peri, Dinakar; Sarma, P N

    2009-03-15

    Function of microbial fuel cell (MFC) as bio-electrochemical treatment system in concurrence with power generation was evaluated with composite chemical wastewater at high loading conditions (18.6 gCOD/l; 56.8 gTDS/l). Two dual chambered MFCs [non-catalyzed graphite electrodes; mediatorless anode] were studied separately with aerated and potassium ferricyanide catholytes under similar anodic operating conditions [mixed consortia; pH 6]. Marked improvement in power output was observed at applied higher substrate loading rate for extended period of time without any process inhibition. Catholyte nature showed significant influence on power generation [ferricyanide-651 mV; 18.22 mA; 6230 mW/kg COD(R) (500 Omega); 2321.69 mA/m(2) (100 Omega); 11.80 mW/m(3) and aerated-578 mV; 10.23mA; 2450 mW/kg COD(R) (400 Omega); 1220.68 mA/m(2) (100 Omega); 5.64 mW/m(3)] but not on wastewater treatment efficiency. Along with enhanced substrate degradation, relatively good removal of color (31%) and TDS (51%) was also observed during MFC operation, which might be attributed to the diverse bio-electrochemical processes triggered due to substrate metabolism and subsequent in situ bio-potential (voltage) generation. Apart from power generation, various unit operations pertaining to wastewater treatment viz., biological (anaerobic) process, electrochemical decomposition and electrochemical oxidation were found to occur symbiotically in the anode chamber. Among them anaerobic metabolism is considered to be a crucial and important rate limiting step. In view of inherent advantages, function of MFC as integrated bio-electrochemical treatment system in the direction of various wastewater treatment operations can be exploited.

  8. Bonding of glass ceramic and indirect composite to non-aged and aged resin composite.

    Science.gov (United States)

    Gresnigt, Marco; Özcan, Mutlu; Muis, Maarten; Kalk, Warner

    2012-02-01

    Since adhesion of the restorative materials to pre-polymerized or aged resin composites presents a challenge to the clinicians, existing restorations are often removed and remade prior to cementation of fixed dental prostheses (FDPs). This study evaluated bond strength of non-aged and aged resin composite to an indirect resin composite and pressed glass ceramic using two resin cements. Disk-shaped specimens (diameter: 3.5, thickness: 3 mm) (N = 160) produced from a microhybrid resin composite (Quadrant Anterior Shine) were randomly divided into eight groups. While half of the specimens were kept dry at 37°C for 24 h, the other half was aged by means of thermocycling (6000 times, 5°C to 55°C). The non-aged and aged resin composites were bonded to a highly filled indirect composite (Estenia) and a pressed glass ceramic (IPS Empress II) using either a photopolymerizing (Variolink Veneer) or a dual-polymerizing (Panavia F2.0) resin cement. While cementation surfaces of both the direct and indirect composite materials were silica coated (30 µm SiO2, CoJet-Sand) and silanized (ESPE-Sil), ceramic surfaces were conditioned with hydrofluoric acid (20 s), neutralized, and silanized prior to cementation. All specimens were cemented under a load of 750 g. Shear force was applied to the adhesive interface in a universal testing machine (1 mm/min). Failure types of the specimens were identified after debonding. Significant effects of aging (p ceramic in combination with both cements showed no significant difference (p > 0.05). Both indirect composite (24.3 ± 5.1 MPa) and glass ceramic in combination with Variolink (22 ± 9 MPa) showed the highest results on non-aged composites, but were not significantly different from one another (p > 0.05). On the aged composites, indirect composite and glass ceramic showed no significant difference in bond strength within each material group (p > 0.05), with both Panavia (17.2 ± 6 and 15 ± 5.5 MPa, respectively) and Variolink (19 ± 8

  9. Fabrication and characterization of low temperature co-fired cordierite glass–ceramics from potassium feldspar

    International Nuclear Information System (INIS)

    Wu, Jianfang; Li, Zhen; Huang, Yanqiu; Li, Fei; Yang, Qiuran

    2014-01-01

    Highlights: • Low cost cordierite glass–ceramics were fabricated from potassium feldspar. • The glass–ceramics could be highly densified below 950 °C. • The glass–ceramics exhibit extraordinary properties. • The glass–ceramics can be used as LTCC substrates. • The excess SiO 2 improved the microstructure and properties of the glass–ceramics. -- Abstract: Cordierite glass–ceramics for low temperature co-fired ceramic (LTCC) substrates were fabricated successfully using potassium feldspar as the main raw material. The sintering and crystallization behaviors of the glass–ceramics were investigated by the differential scanning calorimetry (DSC), X-ray diffraction (XRD), and field emission scanning electron microscope (FESEM). The results indicated that the glass–ceramics could be highly densified at 850 °C and the cordierite was the main crystalline phase precipitated from the glasses in the temperature range between 900 and 925 °C. The study also evaluated the physical properties including dielectric properties, thermal expansion and flexural strength of the glass–ceramics. The glass–ceramics showed low dielectric constants in the range of 6–8 and low dielectric losses in the range of 0.0025–0.01. The coefficients of thermal expansion (CTEs) are between 4.32 and 5.48 × 10 −6 K −1 and flexural strength of the glass–ceramics are 90–130 MPa. All of those qualify the glass–ceramics for further research to be used as potential LTCC substrates in the multilayer electronic substrate field. Additionally, the excess SiO 2 acted as a great role in improving the sinterability of the glasses, and the microstructure and dielectric properties of the relevant glass–ceramics

  10. Ceramic porous material and method of making same

    Science.gov (United States)

    Liu, Jun; Kim, Anthony Y.; Virden, Jud W.

    1997-01-01

    The invention is a mesoporous ceramic membrane having substantially uniform pore size. Additionally, the invention includes aqueous and non-aqueous processing routes to making the mesoporous ceramic membranes. According to one aspect of the present invention, inserting a substrate into a reaction chamber at pressure results in reaction products collecting on the substrate and forming a membrane thereon. According to another aspect of the present invention, a second aqueous solution that is sufficiently immiscible in the aqueous solution provides an interface between the two solutions whereon the mesoporous membrane is formed. According to a further aspect of the present invention, a porous substrate is placed at the interface between the two solutions permitting formation of a membrane on the surface or within the pores of the porous substrate. According to yet another aspect of the present invention, mesoporous ceramic materials are formed using a non-aqueous solvent and water-sensitive precursors.

  11. Verification of ceramic structures

    NARCIS (Netherlands)

    Behar-Lafenetre, S.; Cornillon, L.; Rancurel, M.; Graaf, D. de; Hartmann, P.; Coe, G.; Laine, B.

    2012-01-01

    In the framework of the "Mechanical Design and Verification Methodologies for Ceramic Structures" contract [1] awarded by ESA, Thales Alenia Space has investigated literature and practices in affiliated industries to propose a methodological guideline for verification of ceramic spacecraft and

  12. Ceramic Laser Materials

    Science.gov (United States)

    Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar

    2012-01-01

    Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044

  13. Substrate-induced instability in gas microstrip detectors

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.

    1992-12-01

    The results of a programme of research into substrate-induced gain instability in gas microstrip detectors are reported. Information has been collected on a wide range of substrates including many commonly available glasses and ceramics. A theoretical model of the gain instability is proposed. While we have not yet found an acceptable substrate for the construction of high flux detectors our experience points to electronically conductive glasses as the most promising source of a stable substrate. (Author)

  14. Effect of Impact Angle on Ceramic Deposition Behavior in Composite Cold Spray: A Finite-Element Study

    Science.gov (United States)

    Chakrabarty, Rohan; Song, Jun

    2017-10-01

    During the cold spraying of particle-reinforced metal matrix composite coatings (ceramic and metal particles mixture) on metal substrates, ceramic particles may either get embedded in the substrate/deposited coating or may rebound from the substrate surface. In this study, the dependence of the ceramic rebounding phenomenon on the spray angle and its effect on substrate erosion have been analyzed using finite-element analysis. From the numerical simulations, it was found that the ceramic particle density and substrate material strength played the major roles in determining the embedding and ceramic retention behavior. Substrate material erosion also influenced the ceramic retention, and the material loss increased as the impact angles decreased from normal. In general, the results concluded that decreasing the impact angle promoted the retention possibility of ceramics in the substrate. This study provides new theoretical insights into the effect of spray angles on the ceramic retention and suggests a new route toward optimizing the spraying process to increase the ceramic retention in composite coatings cold spray.

  15. Corrosion protection of SiC-based ceramics with CVDMullite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Sarin, V.; Auger, M. [Boston Univ., MA (United States)

    1997-05-01

    Silicon carbide ceramics are the leading candidate materials for use as heat exchangers in advanced combined cycle power plants because of their unique combination of high temperature strength, high thermal conductivity, excellent thermal shock resistance, and good high temperature stability and oxidation resistance. Ceramic coatings are being considered for diesel engine cylinder liners, piston caps, valve faces and seats, piston rings, and for turbine components such as combustors, blades, stators, seals, and bearings. Under such conditions ceramics are better suited to high temperature environments than metals. For the first time, adherent crystalline mullite coatings have been chemically vapor deposited onto SiC substrates to enhance its corrosion/oxidation resistance. Thermodynamic and kinetic considerations have been utilized to produce mullite coatings with a variety of growth rates, compositions, and morphologies. The flexibility of processing can be exploited to produce coated ceramics with properties tailored to specific applications and varied corrosive environments. These corrosive environments include thermal, Na{sub 2}SO{sub 4}, O{sub 2} and coal slag.

  16. Design and characterization of a carbon-nanotube-reinforced adhesive coating for piezoelectric ceramic discs

    International Nuclear Information System (INIS)

    Lanzara, G; Chang, F-K

    2009-01-01

    The silver paste electrode of piezoelectric (PZT) ceramic discs has been shown to produce a weak interface bond between a bare PZT and its paste coating under a peeling force. In this work, an investigation was conducted to reinforce the bond with a high density array of oriented carbon nanotube nano-electrodes (CNTs-NEA), between a bare PZT ceramic and a metal substrate. The ensuing design and fabrication of a carbon-nanotube-coated piezoelectric disc (CPZT) is presented along with a study of the bondline integrity of a CPZT mounted on a hosting structure. The CPZT has its electrode silver paste coating replaced with a high density array of CNTs-NEA. Mechanical tests were performed to characterize the shear strength of the bondline between CPZT discs and the substrate. The test results were compared with shear strengths of the bondlines made of pure non-conductive adhesive and adhesive with randomly mixed CNTs. The comparison showed the oriented CNT coating on PZTs could significantly enhance the interfacial shear strength. Through the microscopic examination, it was evident that the ratio between the CNT length (Lc) and the bond thickness (H) significantly influenced the bond strength of CPZT discs. Three major interface microstructure types and their corresponding failure modes for specific Lc/H values were identified. The study also showed that failure did not occur along the interface between the PZT ceramic element and the CNT coating

  17. Ceramic gas turbine shroud

    Science.gov (United States)

    Shi, Jun; Green, Kevin E.

    2014-07-22

    An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

  18. Creep in ceramics

    CERN Document Server

    Pelleg, Joshua

    2017-01-01

    This textbook is one of its kind, since there are no other books on Creep in Ceramics. The book consist of two parts: A and B. In part A general knowledge of creep in ceramics is considered, while part B specifies creep in technologically important ceramics. Part B covers creep in oxide ceramics, carnides and nitrides. While covering all relevant information regarding raw materials and characterization of creep in ceramics, the book also summarizes most recent innovations and developments in this field as a result of extensive literature search.

  19. An interdisciplinary approach to reconstruct a fractured tooth under an intact all ceramic crown: Case report with four years follow up

    Directory of Open Access Journals (Sweden)

    Sudhir Bhandari

    2011-01-01

    Full Text Available Trauma causing the fracture of a restored tooth with the extracoronal full coverage prosthesis remaining intact is a common occurrence in dental practice. Reconstruction of the damaged tooth foundation and recementation of the crown can pose quite a challenge for the restorative dentist. This case report describes an innovative interdisciplinary chairside technique for the recementation of an all-ceramic crown on a fractured maxillary central incisor. The course of care described is effective, affordable, and saves time in comparison with other treatment options for such clinical situations.

  20. Surface analysis applied to metal-ceramic and bioceramic interfacial bonding

    International Nuclear Information System (INIS)

    Smart, R.St.C.; Arora, P.S.; Steveson, M.; Kawashima, N.; Cavallaro, G.P.; Ming, H.; Skinner, W.M.

    1999-01-01

    Full text: Low temperature plasma reactions, combined with sol-gel coatings, have been used to produce a variety of ceramic surface layers on metal substrates and interfacial layers between metals and oxides or other ceramics. These layers can be designed to be compositionally and functionally graded from the metal to bulk ceramic material, eg. silica, alumina, hydroxyapatite. The graded layers are generally <50nm thick, continuous, fully bonded to the substrate and deformable without disbonding. The objectives in design of these layers have been to produce: metal surfaces protected from oxidation, corrosion and acid attack; improved metal-ceramic bonding; and bioceramic titanium-based interfaces to bioactive hydroxyapatite for improved dental and medical implants. Modified Auger parameter studies for Si in XPS spectra show that the structure on the metal surfaces grades from amorphous, dehydroxylated silica on the outer surface through layer silicates, chain silicates, pyrosilicates to orthosilicates close to the metal interface. At the metal interface, detached grains of the metal are imaged with interpenetration of the oxide and silicate species linking the layer to the oxidised metal surface. The ∼30nm layer has a substantially increased frictional load compared with the untreated oxidised metal, i.e. behaviour consistent with either stronger adhesion of the coating to the substrate or a harder surface. The composition, structure and thickness of these layers can be controlled by the duration of each plasma reaction and the choice of the final reagent. The mechanisms of reaction in each process step have been elucidated with a combination of XPS, TOF-SIMS, TEM, SEM and FTIR. Similar, graded titanium/oxide/silicate/silica ceramic surface layers have been shown to form using the low temperature plasma reactions on titanium alloys used in medical and dental implants. Thicker (i.e. μm) overlayers of ceramic materials can be added to the graded surface layers

  1. Tailored ceramics. Chapter 5

    International Nuclear Information System (INIS)

    Haker, A.B.

    1988-01-01

    In the light of the broad variation in US high-level waste (HLW) types and the uncertainties in future waste production, research on the Rockwell International Science Center has focussed on developing a generic technology for the consolidation of high-level wastes into polyphase ceramics. The basic approach has been to 'tailor' wste compositions with chemical additives so that upon consolidation a dense ceramic assemblage is formed that chemically binds the waste species into known phases. This chapter deals with tailored ceramics for current and future high-level waste compositions. Section 2 gives a historical review of the development of tailored ceramics. Section 3 deals with tailored ceramics designed for specific HLW compositions and with microstructure and phase development. Section 4 discusses chemical and physical properties of tailored ceramic waste forms. In section 5 the various processing steps involved in converting HLW to polycrystalline ceramic forms are described. (author). 159 refs.; 20 figs.; 14 tabs

  2. Catalyzed Ceramic Burner Material

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Amy S., Dr.

    2012-06-29

    period in accomplishing these objectives. Our work in the area of Pd-based, methane oxidation catalysts has led to the development of highly active catalysts with relatively low loadings of Pd metal using proprietary coating methods. The thermal stability of these Pd-based catalysts were characterized using SEM and BET analyses, further demonstrating that certain catalyst supports offer enhanced stability toward both PdO decomposition and/or thermal sintering/growth of Pd particles. When applied to commercially available fiber mesh substrates (both metallic and ceramic) and tested in an open-air burner, these catalyst-support chemistries showed modest improvements in the NOx emissions and radiant output compared to uncatalyzed substrates. More significant, though, was the performance of the catalyst-support chemistries on novel media substrates. These substrates were developed to overcome the limitations that are present with commercially available substrate designs and increase the gas-catalyst contact time. When catalyzed, these substrates demonstrated a 65-75% reduction in NOx emissions across the firing range when tested in an open air burner. In testing in a residential boiler, this translated into NOx emissions of <15 ppm over the 15-150 kBtu/hr firing range.

  3. Offshore Substrate

    Data.gov (United States)

    California Department of Resources — This shapefile displays the distribution of substrate types from Pt. Arena to Pt. Sal in central/northern California. Originally this data consisted of seven paper...

  4. Metal oxide nanorod arrays on monolithic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Pu-Xian; Guo, Yanbing; Ren, Zheng

    2018-01-02

    A metal oxide nanorod array structure according to embodiments disclosed herein includes a monolithic substrate having a surface and multiple channels, an interface layer bonded to the surface of the substrate, and a metal oxide nanorod array coupled to the substrate surface via the interface layer. The metal oxide can include ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide. The substrate can include a glass substrate, a plastic substrate, a silicon substrate, a ceramic monolith, and a stainless steel monolith. The ceramic can include cordierite, alumina, tin oxide, and titania. The nanorod array structure can include a perovskite shell, such as a lanthanum-based transition metal oxide, or a metal oxide shell, such as ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide, or a coating of metal particles, such as platinum, gold, palladium, rhodium, and ruthenium, over each metal oxide nanorod. Structures can be bonded to the surface of a substrate and resist erosion if exposed to high velocity flow rates.

  5. Phytoplankton communities from San Francisco Bay Delta respond differently to oxidized and reduced nitrogen substrates - even under conditions that would otherwise suggest nitrogen sufficiency

    Directory of Open Access Journals (Sweden)

    Patricia M Glibert

    2014-07-01

    Full Text Available The effect of equivalent additions of nitrogen (N, 30-40 μM-N in different forms (ammonium, NH4+, and nitrate, NO3- under conditions of different light exposure on phytoplankton community composition was studied in a series of four, 5-day enclosure experiments on water collected from the nutrient-rich San Francisco Bay Delta over two years. Overall, proportionately more chlorophyll a and fucoxanthin (generally indicative of diatoms was produced per unit N taken up in enclosures enriched with NO3- and incubated at reduced (~15% of ambient light intensity than in treatments with NO3- with high (~60% of ambient light exposure or with NH4+ under either light condition. In contrast, proportionately more chlorophyll b (generally indicative of chlorophytes and zeaxanthin (generally indicative of cyanobacteria was produced in enclosures enriched with NH4+ and incubated under high light intensity than in treatments with low light or with added NO3- at either light level. Rates of maximal velocities (Vmax of uptake of N substrates, measured using 15N tracer techniques, in all enclosures enriched with NO3- were higher than those enriched with NH4+. Directionality of trends in enclosures were similar to phytoplankton community shifts observed in transects of the Sacramento River to Suisun Bay, a region in which large changes in total N quantity and form occur. These data substantiate the growing body of experimental evidence that dichotomous microbial communities develop when enriched with the same absolute concentration of oxidized vs. reduced N forms, even when sufficient N nutrient was available to the community prior to the N inoculations.

  6. Scratch resistance of brittle thin films on compliant substrates

    International Nuclear Information System (INIS)

    Chen Zhong; Wu, Linda Y.L.; Chwa, Edmund; Tham, Otto

    2008-01-01

    There has been intensive interest in studying the behavior of hard and brittle thin films on compliant substrates under scratch action. The examples include sol-gel protective coatings on plastic optical lenses, safe windows, and flexible electronic devices and displays. Hard ceramic coatings have been widely used to prolong the life of cutting tools and biomedical implants. In this work, the scratch resistance of sol-gel coatings with different amount of colloidal silica on polycarbonate substrates was tested by the pencil scratch test following the ISO 15184 standard. The scratch failure was found to be tensile trailing cracking in the coating and substrate gouging. The indentation hardness, elasticity modulus and fracture toughness of the coatings were determined and correlated to the observed pencil scratch hardness. Based on the analysis, the main factors to improve the scratch resistance are the elasticity modulus, thickness and fracture toughness of the coatings. General consideration for the improvement of scratch resistance of hard coatings on compliant substrates was also discussed

  7. Lower-Conductivity Ceramic Materials for Thermal-Barrier Coatings

    Science.gov (United States)

    Bansal, Narottam P.; Zhu, Dongming

    2006-01-01

    Doped pyrochlore oxides of a type described below are under consideration as alternative materials for high-temperature thermal-barrier coatings (TBCs). In comparison with partially-yttria-stabilized zirconia (YSZ), which is the state-of-the-art TBC material now in commercial use, these doped pyrochlore oxides exhibit lower thermal conductivities, which could be exploited to obtain the following advantages: For a given difference in temperature between an outer coating surface and the coating/substrate interface, the coating could be thinner. Reductions in coating thicknesses could translate to reductions in weight of hot-section components of turbine engines (e.g., combustor liners, blades, and vanes) to which TBCs are typically applied. For a given coating thickness, the difference in temperature between the outer coating surface and the coating/substrate interface could be greater. For turbine engines, this could translate to higher operating temperatures, with consequent increases in efficiency and reductions in polluting emissions. TBCs are needed because the temperatures in some turbine-engine hot sections exceed the maximum temperatures that the substrate materials (superalloys, Si-based ceramics, and others) can withstand. YSZ TBCs are applied to engine components as thin layers by plasma spraying or electron-beam physical vapor deposition. During operation at higher temperatures, YSZ layers undergo sintering, which increases their thermal conductivities and thereby renders them less effective as TBCs. Moreover, the sintered YSZ TBCs are less tolerant of stress and strain and, hence, are less durable.

  8. Influence of Heat-Treatment on the Adhesive Strength between a Micro-Sized Bonded Component and a Silicon Substrate under Bend and Shear Loading Conditions

    International Nuclear Information System (INIS)

    Ishiyama, Chiemi

    2012-01-01

    Adhesive bend and shear tests of micro-sized bonded component have been performed to clarify the relationship between effects of heat-treatment on the adhesive strength and the bonded specimen shape using Weibull analysis. Multiple micro-sized SU-8 columns with four different diameters were fabricated on a Si substrate under the same fabrication condition. Heat-treatment can improve both of the adhesive bend and shear strength. The improvement rate of the adhesive shear strength is much larger than that of the adhesive bend strength, because the residual stress, which must change by heat-treatment, should effect more strongly on the shear loading. In case of bend type test, the adhesive bend strength in the smaller diameters (50 and 75 μm) widely vary, because the critical size of the natural defect (micro-crack) should vary more widely in the smaller diameters. In contrast, in case of shear type test, the adhesive shear strengths in each diameter of the columns little vary. This suggests that the size of the natural defects may not strongly influence on the adhesive shear strength. All the result suggests that both of the adhesive bend and shear strengths should be complicatedly affected by heat-treatment and the bonded columnar diameter

  9. Sputtering and crystalline structure modification of bismuth thin films deposited onto silicon substrates under the impact of 20-160 keV Ar+ ions

    International Nuclear Information System (INIS)

    Mammeri, S.; Ouichaoui, S.; Ammi, H.; Zemih, R.

    2010-01-01

    The sputtering of bismuth thin films induced by 20-160 keV Ar + ions has been studied using Rutherford backscattering spectrometry, scanning electron microscopy and X-ray energy dispersive and diffraction spectroscopy. These techniques revealed increasing modifications of the Bi film surfaces with increasing both ion beam energy and fluence up to their complete deterioration under irradiation conditions E = 160 keV and φ = 1.5 x 10 16 cm -2 , leaving isolated islands of preferred (0 1 2) orientation on the Si substrate. The observed surface morphology and crystalline structure evolutions are likely due to a complex interplay of interaction mechanisms involving both elastic nuclear collisions and inelastic electronic ones. The measured Bi sputtering yields versus Ar + ion fluence for a fixed ion energy exhibit a significant depression at very low φ-values followed by a steady state regime above ∼2.0 x 10 14 cm -2 . Measured sputtering yields versus Ar + ion energy with fixing ion fluence to 1.2 x 10 16 cm -2 in the upper part of the yield saturation regime are also reported. Their comparison to theoretical model and SRIM 2008 Monte Carlo simulation predictions is discussed.

  10. CELLULASES PRODUCTION UNDER SOLID STATE FERMENTATION USING AGRO WASTE AS A SUBSTRATE AND ITS APPLICATION IN SACCHARIFICATION BY TRAMETES HIRSUTA NCIM

    Directory of Open Access Journals (Sweden)

    Bhaumik R. Dave

    2014-12-01

    Full Text Available Food and energy crisis are the biggest constraint all over the world which has focused lights on need of utilizing renewable resources to meet the future demand. A promising strategy is efficient utilization of lignocellulosic waste and fermentation of the resulting sugars for production of desired metabolites or biofuel. Production of all the cellulase enzymes on wheat bran and different parameters regulating it like pH, moisture ratio (substrate: liquid, temperature and inoculum size has been optimized which found to be 4.5, 1:3, 30°C and 108 spores respectively. Salient feature of partially purified enzyme with stability in the range of 30-50°C under acidic pH range was found to be prominent for industrial applications, moreover in this study, Trametes hirsuta, an efficient cellulase producer, was observed to be an effective species for saccharification of wheat straw to enhance the sugar yield. Enzymatic hydrolysis of wheat straw with 15 FPU of cellulase from the species showed 73% yield in 20 hrs. It may prove to be a suitable choice for the industrial saccharification of lignocellulosic biomasses.

  11. Literature Review of Polymer Derived Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Reuben James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-25

    Polymer Derived Ceramics (PDCs), also known as preceramic polymers, are valuable coating agents that are used to produce surface barriers on substrates such as stainless steel. These barriers protect against a multitude of environmental threats, and have been used since their research and development in 19772. This paper seeks to review and demonstrate the remarkable properties and versatility that PDCs have to offer, while also giving a brief overview of the processing techniques used today.

  12. Erosion resistance and adhesion of composite metal/ceramic coatings produced by plasma spraying

    OpenAIRE

    Ramm , D.; Hutchings , I.; Clyne , T.

    1993-01-01

    Ceramic coatings can exhibit greater erosion resistance than most metallic coatings. Such coatings are conveniently produced by thermal spraying. Unfortunately, thermally sprayed ceramic coatings often exhibit poor adhesion, partly as a consequence of the development of residual stresses during spraying and subsequent cooling. Composite coatings have been studied using aluminium/alumina deposits on steel substrates. The incorporation of ceramics within a ductile matrix has potential for sharp...

  13. Microstructural properties of BaTiO3 ceramics and thin films

    International Nuclear Information System (INIS)

    Fundora C, A.; Portelles, J.J.; Siqueiros, J.M.

    2000-01-01

    A microstructural study of BaTiO 3 ceramics obtained by the conventional ceramic method is presented. Targets were produced to grow BaTiO 3 thin films by pulsed laser deposition on Pt/Ti/Si (100) substrates. X-ray diffraction, Auger Electron Spectroscopy, X-ray Photon Spectroscopy and Scanning Electron Microscopy were used to study the properties of the BaTiO 3 ceramic samples and thin films, as deposited and after an annealing process. (Author)

  14. Mixed-mode fracture of ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.

    1985-01-01

    The mixed-mode fracture behavior of ceramic materials is of importance for monolithic ceramics in order to predict the onset of fracture under generalized loading conditions and for ceramic composites to describe crack deflection toughening mechanisms. Experimental data on surface flaw mixed-mode fracture in various ceramics indicate that the flaw-plane normal stress at fracture decreases with increasing in-flaw-plane shear stress, although present data exhibit a fairly wide range in details of this sigma - tau relationship. Fracture from large cracks suggests that Mode II has a greater effect on Mode I fracture than Mode III. A comparison of surface flaw and large crack mixed-mode I-II fracture responses indicated that surface flaw behavior is influenced by shear resistance effects.

  15. Different in vitro behavior of two Ca3(PO42 based biomaterials, a glass-ceramic and a ceramic, having the same chemical composition

    Directory of Open Access Journals (Sweden)

    M. Cristina Guerrero-Lecuona

    2015-09-01

    The reactivity in simulated body fluid and Tris–HCl solutions was studied. Both materials showed bioactive behavior, but the glass-ceramic dissolved faster, releasing large proportion of Ca and P ions, which afterwards nucleated and precipitated. However, the ceramic was more stable under the same conditions in these solutions. Glass-ceramic composite has a more open structure and allowed the faster formation of a bone-like apatite layer than the ceramic.

  16. Analyses of fine paste ceramics

    International Nuclear Information System (INIS)

    Sabloff, J.A.

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics

  17. Analyses of fine paste ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sabloff, J A [ed.

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics. (DLC)

  18. Science and Technology of Ceramics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 2. Science and Technology of Ceramics - Advanced Ceramics: Structural Ceramics and Glasses. Sheela K Ramasesha. Series Article Volume 5 Issue 2 February 2000 pp 4-11 ...

  19. 2-Nitrobenzoate 2-Nitroreductase (NbaA) Switches Its Substrate Specificity from 2-Nitrobenzoic Acid to 2,4-Dinitrobenzoic Acid under Oxidizing Conditions

    Science.gov (United States)

    Song, Woo-Seok; Go, Hayoung; Cha, Chang-Jun; Lee, Cheolju; Yu, Myeong-Hee; Lau, Peter C. K.

    2013-01-01

    2-Nitrobenzoate 2-nitroreductase (NbaA) of Pseudomonas fluorescens strain KU-7 is a unique enzyme, transforming 2-nitrobenzoic acid (2-NBA) and 2,4-dinitrobenzoic acid (2,4-DNBA) to the 2-hydroxylamine compounds. Sequence comparison reveals that NbaA contains a conserved cysteine residue at position 141 and two variable regions at amino acids 65 to 74 and 193 to 216. The truncated mutant Δ65-74 exhibited markedly reduced activity toward 2,4-DNBA, but its 2-NBA reduction activity was unaffected; however, both activities were abolished in the Δ193-216 mutant, suggesting that these regions are necessary for the catalysis and specificity of NbaA. NbaA showed different lag times for the reduction of 2-NBA and 2,4-DNBA with NADPH, and the reduction of 2,4-DNBA, but not 2-NBA, failed in the presence of 1 mM dithiothreitol or under anaerobic conditions, indicating oxidative modification of the enzyme for 2,4-DNBA. The enzyme was irreversibly inhibited by 5,5′-dithio-bis-(2-nitrobenzoic acid) and ZnCl2, which bind to reactive thiol/thiolate groups, and was eventually inactivated during the formation of higher-order oligomers at high pH, high temperature, or in the presence of H2O2. SDS-PAGE and mass spectrometry revealed the formation of intermolecular disulfide bonds by involvement of the two cysteines at positions 141 and 194. Site-directed mutagenesis indicated that the cysteines at positions 39, 103, 141, and 194 played a role in changing the enzyme activity and specificity toward 2-NBA and 2,4-DNBA. This study suggests that oxidative modifications of NbaA are responsible for the differential specificity for the two substrates and further enzyme inactivation through the formation of disulfide bonds under oxidizing conditions. PMID:23123905

  20. [Ceramic inlays and onlays].

    Science.gov (United States)

    van Pelt, A W; de Kloet, H J; van der Kuy, P

    1996-11-01

    Large direct composite restorations can induce shrinkage related postoperative sensitivity. Indirect resin-bonded (tooth colored) restorations may perhaps prevent these complaints. Indirect bonded ceramics are especially attractive because of their biocompatibility and esthetic performance. Several procedures and techniques are currently available for the fabrication of ceramic restorations: firing, casting, heat-pressing and milling. In this article the different systems are described. Advantages, disadvantages and clinical performance of ceramic inlays are compared and discussed.

  1. Method of sintering ceramic materials

    Science.gov (United States)

    Holcombe, Cressie E.; Dykes, Norman L.

    1992-01-01

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density.

  2. Ceramic piezoelectric materials

    International Nuclear Information System (INIS)

    Kaszuwara, W.

    2004-01-01

    Ceramic piezoelectric materials conert reversibility electric energy into mechanical energy. In the presence of electric field piezoelectric materials exhibit deformations up to 0.15% (for single crystals up to 1.7%). The deformation energy is in the range of 10 2 - 10 3 J/m 3 and working frequency can reach 10 5 Hz. Ceramic piezoelectric materials find applications in many modern disciplines such as: automatics, micromanipulation, measuring techniques, medical diagnostics and many others. Among the variety of ceramic piezoelectric materials the most important appear to be ferroelectric materials such as lead zirconate titanate so called PZT ceramics. Ceramic piezoelectric materials can be processed by methods widely applied for standard ceramics, i.e. starting from simple precursors e.g. oxides. Application of sol-gel method has also been reported. Substantial drawback for many applications of piezoelectric ceramics is their brittleness, thus much effort is currently being put in the development of piezoelectric composite materials. Other important research directions in the field of ceramic piezoelectric materials composite development of lead free materials, which can exhibit properties similar to the PZT ceramics. Among other directions one has to state processing of single crystals and materials having texture or gradient structure. (author)

  3. Corrosion of Ceramic Materials

    Science.gov (United States)

    Opila, Elizabeth J.; Jacobson, Nathan S.

    1999-01-01

    Non-oxide ceramics are promising materials for a range of high temperature applications. Selected current and future applications are listed. In all such applications, the ceramics are exposed to high temperature gases. Therefore it is critical to understand the response of these materials to their environment. The variables to be considered here include both the type of ceramic and the environment to which it is exposed. Non-oxide ceramics include borides, nitrides, and carbides. Most high temperature corrosion environments contain oxygen and hence the emphasis of this chapter will be on oxidation processes.

  4. Influence of ceramic surface texture on the wear of gold alloy and heat-pressed ceramics.

    Science.gov (United States)

    Saiki, Osamu; Koizumi, Hiroyasu; Nogawa, Hiroshi; Hiraba, Haruto; Akazawa, Nobutaka; Matsumura, Hideo

    2014-01-01

    The purpose of this study was to evaluate the influence of ceramic surface texture on the wear of rounded rod specimens. Plate specimens were fabricated from zirconia (ZrO2), feldspathic porcelain, and lithium disilicate glass ceramics (LDG ceramics). Plate surfaces were either ground or polished. Rounded rod specimens with a 2.0-mm-diameter were fabricated from type 4 gold alloy and heat-pressed ceramics (HP ceramics). Wear testing was performed by means of a wear testing apparatus under 5,000 reciprocal strokes of the rod specimen with 5.9 N vertical loading. The results were statistically analyzed with a non-parametric procedure. The gold alloy showed the maximal height loss (90.0 µm) when the rod specimen was abraded with ground porcelain, whereas the HP ceramics exhibited maximal height loss (49.8 µm) when the rod specimen was abraded with ground zirconia. There was a strong correlation between height loss of the rod and surface roughness of the underlying plates, for both the gold alloy and HP ceramics.

  5. A Ceramic Armor Material Database

    National Research Council Canada - National Science Library

    Holmquist, T

    1999-01-01

    .... The data include nine different ceramic materials. The ceramics are Silicon Carbide, Boron Carbide, Titanium Diboride, Aluminum Nitride, Silicon Nitride, Aluminum Oxide (85% pure), Aluminum Oxide (high purity...

  6. Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  7. Kiln furniture for sintering electronic ceramics. Ceramics shosei jigu (doguzai) ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Fushimi, T.; Shibata, S. (Toshiba Ceramics Co. Ltd., Tokyo (Japan))

    1994-05-01

    This paper summarizes refractory jigs used in manufacturing electronic ceramics. Jigs used vary with types of sintering kilns. Sintering kilns include pusher kiln, trolley kiln, roller hearth kiln, batch kiln, and HIP. The paper describes jigs by electronic ceramics materials. Ferrites are sintered in a pusher kiln, where such jigs are used as a base plate, stanchions, shelf plates, saggers, and a setter. Jigs that contact with ferrite are demanded not to give such adverse effects to materials to be sintered as crystal growth. Soft ferrites of Mn/Zn and Ni/Zn systems use jigs of pure alumina and zirconia nature, while large-size soft ferrites use setters with rough surface. A barium titanate system as a ceramic dielectric uses a zirconia jig, and materials containing Pb and Bi such as for varistors use magnesia and spinel jigs. Alumina porcelain substrates use mullite or high-alumina pusher kilns and alumina jigs. 4 refs., 1 fig., 4 tabs.

  8. Comparison of Heavy-Duty Scuffing Behavior between Chromium-Based Ceramic Composite and Nickel-Chromium-Molybdenum-Coated Ring Sliding against Cast Iron Liner under Starvation.

    Science.gov (United States)

    Shen, Yan; Yu, Baihong; Lv, Yutao; Li, Bin

    2017-10-14

    A running-in and starved lubrication experiment is designed to investigate the heavy-duty scuffing behavior of piston ring coatings against cast iron (Fe) cylinder liner using the piston ring reciprocating liner test rig. The scuffing resistance of the piston ring with the chromium-based ceramic composite coating (CKS), and that with the thermally sprayed nickel-chromium-molybdenum coating (NCM) is compared at different nominal pressures (40~100 MPa) and temperatures (180~250 °C). With the failure time as a criterion, the rank order is as follows: NCM/Fe > CKS/Fe. Before the scoring occurs at the interface of the piston ring and cylinder liner (PRCL), the cast iron liner enters into a "polish wear" stage, and iron-based adhesive materials begin to form on the piston ring surface. With the macroscopic adhesion formation, the plastic shearing cycle causes surface damages mainly due to abrasive effects for the CKS/Fe pairs and adhesive effects for the NCM/Fe pairs.

  9. Comparison of Heavy-Duty Scuffing Behavior between Chromium-Based Ceramic Composite and Nickel-Chromium-Molybdenum-Coated Ring Sliding against Cast Iron Liner under Starvation

    Directory of Open Access Journals (Sweden)

    Yan Shen

    2017-10-01

    Full Text Available A running-in and starved lubrication experiment is designed to investigate the heavy-duty scuffing behavior of piston ring coatings against cast iron (Fe cylinder liner using the piston ring reciprocating liner test rig. The scuffing resistance of the piston ring with the chromium-based ceramic composite coating (CKS, and that with the thermally sprayed nickel-chromium-molybdenum coating (NCM is compared at different nominal pressures (40~100 MPa and temperatures (180~250 °C. With the failure time as a criterion, the rank order is as follows: NCM/Fe > CKS/Fe. Before the scoring occurs at the interface of the piston ring and cylinder liner (PRCL, the cast iron liner enters into a “polish wear” stage, and iron-based adhesive materials begin to form on the piston ring surface. With the macroscopic adhesion formation, the plastic shearing cycle causes surface damages mainly due to abrasive effects for the CKS/Fe pairs and adhesive effects for the NCM/Fe pairs.

  10. Proton conducting ceramic membranes for hydrogen separation

    Science.gov (United States)

    Elangovan, S [South Jordan, UT; Nair, Balakrishnan G [Sandy, UT; Small, Troy [Midvale, UT; Heck, Brian [Salt Lake City, UT

    2011-09-06

    A multi-phase proton conducting material comprising a proton-conducting ceramic phase and a stabilizing ceramic phase. Under the presence of a partial pressure gradient of hydrogen across the membrane or under the influence of an electrical potential, a membrane fabricated with this material selectively transports hydrogen ions through the proton conducting phase, which results in ultrahigh purity hydrogen permeation through the membrane. The stabilizing ceramic phase may be substantially structurally and chemically identical to at least one product of a reaction between the proton conducting phase and at least one expected gas under operating conditions of a membrane fabricated using the material. In a barium cerate-based proton conducting membrane, one stabilizing phase is ceria.

  11. Marginal Strength of Collarless Metal Ceramic Crown

    Directory of Open Access Journals (Sweden)

    Sikka Swati

    2010-01-01

    fracture strength at margins of metal ceramic crowns cemented to metal tooth analogs. Crowns evaluated with different marginal configurations, shoulder and shoulder bevel with 0 mm, 0.5 mm, 1 mm, and 1.5 mm, were selected. Methods. Maxillary right canine typhodont tooth was prepared to receive a metal ceramic crown with shoulder margin. This was duplicated to get 20 metal teeth analogs. Then the same tooth was reprepared to get shoulder bevel configuration. These crowns were then cemented onmetal teeth analogs and tested for fracture strength atmargin on an Instron testing machine. A progressive compressive load was applied using 6.3 mm diameter rod with crosshead speed of 2.5 mm per minute. Statisticaly analysis was performed with ANOVA, Student's “t” test and “f” test. Results. The fracture strength of collarless metal ceramic crowns under study exceeded the normal biting force. Therefore it can be suggested that collarless metal ceramic crowns with shoulder or shoulder bevel margins up to 1.5 mm framework reduction may be indicated for anteriormetal ceramic restorations. Significance. k Collarless metal ceramic crowns have proved to be successful for anterior fixed restorations. Hence, it may be subjected to more clinical trials.

  12. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2001-02-01

    This is the fifth quarterly report on a new study to develop a ceramic membrane/metal joint. Results of wetting experiments on commercially available Nickel based brazing alloys on perovskite surfaces are described. Additionally, experimental and numerical investigations on the strength of concentric ceramic/metal joints are presented.

  13. Effects of improved process for CuO-doped NKN lead-free ceramics on high-power piezoelectric transformers.

    Science.gov (United States)

    Yang, Song-Ling; Tsai, Cheng-Che; Liou, Yi-Cheng; Hong, Cheng-Shong; Li, Bing-Jing; Chu, Sheng-Yuan

    2011-12-01

    In this paper, the effects of the electrical proper- ties of CuO-doped (Na(0.5)K(0.5))NbO(3) (NKN) ceramics prepared separately using the B-site oxide precursor method (BO method) and conventional mixed-oxide method (MO method) on high-power piezoelectric transformers (PTs) were investigated. The performances of PTs made with these two substrates were compared. Experimental results showed that the output power and temperature stability of PTs could be enhanced because of the lower resonant impedance of the ceramics prepared using the BO method. In addition, the output power of PTs was more affected by the resonant impedance than by the mechanical quality factor (Q(m)) of the ceramics. The PTs fabricated with ceramics prepared using the BO method showed a high efficiency of more than 94% and a maximum output power of 8.98 W (power density: 18.3 W/cm(3)) with temperature increase of 3°C under the optimum load resistance (5 kΩ) and an input voltage of 150 V(pp). This output power of the lead-free disk-type PTs is the best reported so far.

  14. Fragment and particle size distribution of impacted ceramic tiles

    NARCIS (Netherlands)

    Carton, E.P.; Weerheijm, J.; Ditzhuijzen, C.; Tuinman, I.

    2014-01-01

    The fragmentation of ceramic tiles under ballistic impact has been studied. Fragments and aerosol (respirable) particles were collected and analyzed to determine the total surface area generated by fracturing (macro-cracking and comminution) of armor grade ceramics. The larger fragments were

  15. Effects of irradiation on structural properties of crystalline ceramics

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.; Hurley, G.F.

    1979-01-01

    Stability of crystalline ceramic nuclear waste may be degraded by self-irradiation damage. Changes in density, strength, thermal conductivity, and lattice structure are of concern. Structural damage of ceramics under various radiation conditions is discussed and related to possible effects in nuclear waste

  16. Effects of irradiation on structural properties of crystalline ceramics

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.; Hurley, G.F.

    1979-01-01

    Stability of crystalline ceramic nuclear waste may be degraded by self-irradiation damage. Changes in density, strength, thermal conductivity, and lattice structure are of concern. In this paper, structural damage of ceramics under various radiation conditions is discussed and related to possible effects in nuclear waste

  17. Fiscal 1997 achievement report. Research and development of synergy ceramics; 1997 nendo synergy ceramics no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Research and development is conducted on two subjects, that is, 1) hyper organized structure control technology and 2) structural element control technology. In addition, joint research and development is conducted on the creation of new materials by hyper organized structure controlling, hyper organized structure controlling for ceramics by a structurization reaction process, designing of precursors to ceramics, and the hyper organized structure control for ceramics by nanostructure process control. The joint research and development endeavors further deal with re-entrusted projects which involve researches on sintered structure control by powdery particulate structure control; dynamic process of synergy ceramics; oxynitride liquids, glasses, and glass-ceramics; and multifunctional ceramic laminates for engineering applications. Under subject 1), researches are made on the development of precursors into ceramics by utilizing chemical reactions of organic metal compounds, and analyses are conducted into the effects, exerted by the molecular structures of precursors and the conditions of a reaction for their development into ceramics, on the microstructures and various properties of the ceramics to be composed. Under subject 2), high strength, great hardness, and high resistance to wear are realized by allowing the precipitation of nano-particulates in crystals of a fine and very compact sintered body of alumina. (NEDO)

  18. Effect of various intermediate ceramic layers on the interfacial stability of zirconia core and veneering ceramics.

    Science.gov (United States)

    Yoon, Hyung-In; Yeo, In-Sung; Yi, Yang-Jin; Kim, Sung-Hun; Lee, Jai-Bong; Han, Jung-Suk

    2015-01-01

    The purposes of this study were to evaluate the effects of intermediate ceramics on the adhesion between the zirconia core and veneer ceramics. The polished surfaces of fully sintered Y-TZP blocks received three different treatments: (1) connector (C), (2) liner (L) or (3) wash layer (W). All the treated zirconia blocks were veneered with either (a) fluorapatite glass-ceramic (E) or (b) feldspathic porcelain (V) and divided into four groups (CE, CV, LE and WV). For the control group, the testing surfaces of metal blocks were veneered with feldspathic porcelain (VM). A half of the samples in each group (n = 21) were exposed to thermocycling, while the other half of the specimens were stored at room temperature under dry conditions. All specimens were subjected to the shear test and the failed surfaces were microscopically examined. The elemental distribution at the zirconia core/veneer interface was analyzed. The specimens in Groups CE and CV exhibited significantly greater mean bond strength values than those in Groups LE and WV, respectively (p ceramic substances into the zirconia surface. A glass-ceramic based connector is significantly more favorable to core/veneer adhesion than the other intermediate ceramics evaluated in the study. However, thermal cycling affected the bond strength at the core/veneer interface differently according to the intermediate ceramics.

  19. Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study.

    Science.gov (United States)

    Elfadaly, Lamiaa Said; Khairallah, Lamiaa Sayed; Al Agroudy, Mona Atteya

    2017-12-01

    The aim of this study was to evaluate the biomechanical response of the peri-implant bone to standard, short-wide, and double mini implants replacing missing molar supporting either hybrid ceramic crowns (Lava Ultimate restorative) or full-metal crowns under two different loading conditions (axial and off-axial loading) using strain gauge analysis. Three single-molar implant designs, (1) single, 3.8-mm (regular) diameter implant, (2) single, 5.8-mm (wide) diameter implant, and (3) two 2.5-mm diameter (double) implants connected through a single-molar crown, were embedded in epoxy resin by the aid of a surveyor to ensure their parallelism. Each implant supported full-metal crowns made of Ni-Cr alloy and hybrid ceramic with standardized dimensions. Epoxy resin casts were prepared to receive 4 strain gauges around each implant design, on the buccal, lingual, mesial, and distal surfaces. Results were analyzed statistically. Results showed that implant design has statistically significant effect on peri-implant microstrains, where the standard implant showed the highest mean microstrain values followed by double mini implants, while the short-wide implant showed the lowest mean microstrain values. Concerning the superstructure material, implants supporting Lava Ultimate crowns had statistically significant higher mean microstrain values than those supporting full-metal crowns. Concerning the load direction, off-axial loading caused uneven distribution of load with statistically significant higher microstrain values on the site of off-axial loading (distal surface) than the axial loading. Implant design, superstructure material, and load direction significantly affect peri-implant microstrains.

  20. Hardness and electrochemical behavior of ceramic coatings on Inconel

    Directory of Open Access Journals (Sweden)

    C. SUJAYA

    2012-03-01

    Full Text Available Thin films of ceramic materials like alumina and silicon carbide are deposited on Inconel substrate by pulsed laser deposition technique using Q-switched Nd: YAG laser. Deposited films are characterized using UV-visible spectrophotometry and X-ray diffraction. Composite microhardness of ceramic coated Inconel system is measured using Knoop indenter and its film hardness is separated using a mathematical model based on area-law of mixture. It is then compared with values obtained using nanoindentation method. Film hardness of the ceramic coating is found to be high compared to the substrates. Corrosion behavior of substrates after ceramic coating is studied in 3.5% NaCl solution by potentiodynamic polarization and electrochemical impedance spectroscopy measurements. The Nyquist and the Bode plots obtained from the EIS data are fitted by appropriate equivalent circuits. The pore resistance, the charge transfer resistance, the coating capacitance and the double layer capacitance of the coatings are obtained from the equivalent circuit. Experimental results show an increase in corrosion resistance of Inconel after ceramic coating. Alumina coated Inconel showed higher corrosion resistance than silicon carbide coated Inconel. After the corrosion testing, the surface topography of the uncoated and the coated systems are examined by scanning electron microscopy.

  1. Ceramics As Materials Of Construction

    OpenAIRE

    Zaki, A; Eteiba, M. B.; Abdelmonem, N.M.

    1988-01-01

    This paper attempts to review the limitations for using the important ceramics in contact with corrosive media. Different types of ceramics are included. Corrosion properties of ceramics and their electrical properties are mentioned. Recommendations are suggested for using ceramics in different media.

  2. Ceramic Inlays: Effect of Mechanical Cycling and Ceramic Type on Restoration-dentin Bond Strength.

    Science.gov (United States)

    Trindade, F Z; Kleverlaan, C J; da Silva, L H; Feilzer, A J; Cesar, P F; Bottino, M A; Valandro, L F

    2016-01-01

    This study aimed to evaluate the bond strength between dentin and five different ceramic inlays in permanent maxillary premolars, with and without mechanical cycling. One hundred permanent maxillary premolars were prepared and divided into 10 groups (n=10) according to the ceramic system (IPS e.Max Press; IPS e.Max CAD; Vita PM9; Vita Mark II; and Vita VM7) and the mechanical cycling factor (with and without [100 N, 2 Hz, 1.2×10(6) cycles]). The inlays were adhesively cemented, and all of the specimens were cut into microbars (1×1 mm, nontrimming method), which were tested under microtensile loading. The failure mode was classified and contact angle, roughness, and microtopographic analyses were performed on each ceramic surface. The mechanical cycling had a significant effect (p=0.0087) on the bond strength between dentin and IPS e.max Press. The Vita Mark II group had the highest bond strength values under both conditions, with mechanical cycling (9.7±1.8 MPa) and without (8.2±1.9 MPa), while IPS e.Max CAD had the lowest values (2.6±1.6 and 2.2±1.4, respectively). The adhesive failure mode at the ceramic/cement interface was the most frequent. Vita Mark II showed the highest value of average roughness. IPS e.max Press and Vita Mark II ceramics presented the lowest contact angles. In conclusion, the composition and manufacturing process of ceramics seem to have an influence on the ceramic surface and resin cement bond strength. Mechanical cycling did not cause significant degradation on the dentin and ceramic bond strength under the configuration used.

  3. Ceramic MEMS Designed for Wireless Pressure Monitoring in the Industrial Environment

    Directory of Open Access Journals (Sweden)

    Marko Pavlin

    2011-12-01

    Full Text Available This paper presents the design of a wireless pressure-monitoring system for harsh-environment applications. Two types of ceramic pressure sensors made with a low-temperature cofired ceramic (LTCC were considered. The first type is a piezoresistive strain gauge pressure sensor. The second type is a capacitive pressure sensor, which is based on changes of the capacitance values between two electrodes: one electrode is fixed and the other is movable under an applied pressure. The design was primarily focused on low power consumption. Reliable operation in the presence of disturbances, like electromagnetic interference, parasitic capacitances, etc., proved to be contradictory constraints. A piezoresistive ceramic pressure sensor with a high bridge impedance was chosen for use in a wireless pressure-monitoring system and an acceptable solution using energy-harvesting techniques has been achieved. The described solution allows for the integration of a sensor element with an energy harvester that has a printed thick-film battery and complete electronics in a single substrate packaged inside a compact housing.

  4. Ceramic MEMS designed for wireless pressure monitoring in the industrial environment.

    Science.gov (United States)

    Pavlin, Marko; Belavic, Darko; Novak, Franc

    2012-01-01

    This paper presents the design of a wireless pressure-monitoring system for harsh-environment applications. Two types of ceramic pressure sensors made with a low-temperature cofired ceramic (LTCC) were considered. The first type is a piezoresistive strain gauge pressure sensor. The second type is a capacitive pressure sensor, which is based on changes of the capacitance values between two electrodes: one electrode is fixed and the other is movable under an applied pressure. The design was primarily focused on low power consumption. Reliable operation in the presence of disturbances, like electromagnetic interference, parasitic capacitances, etc., proved to be contradictory constraints. A piezoresistive ceramic pressure sensor with a high bridge impedance was chosen for use in a wireless pressure-monitoring system and an acceptable solution using energy-harvesting techniques has been achieved. The described solution allows for the integration of a sensor element with an energy harvester that has a printed thick-film battery and complete electronics in a single substrate packaged inside a compact housing.

  5. Ceramic MEMS Designed for Wireless Pressure Monitoring in the Industrial Environment

    Science.gov (United States)

    Pavlin, Marko; Belavic, Darko; Novak, Franc

    2012-01-01

    This paper presents the design of a wireless pressure-monitoring system for harsh-environment applications. Two types of ceramic pressure sensors made with a low-temperature cofired ceramic (LTCC) were considered. The first type is a piezoresistive strain gauge pressure sensor. The second type is a capacitive pressure sensor, which is based on changes of the capacitance values between two electrodes: one electrode is fixed and the other is movable under an applied pressure. The design was primarily focused on low power consumption. Reliable operation in the presence of disturbances, like electromagnetic interference, parasitic capacitances, etc., proved to be contradictory constraints. A piezoresistive ceramic pressure sensor with a high bridge impedance was chosen for use in a wireless pressure-monitoring system and an acceptable solution using energy-harvesting techniques has been achieved. The described solution allows for the integration of a sensor element with an energy harvester that has a printed thick-film battery and complete electronics in a single substrate packaged inside a compact housing. PMID:22368471

  6. Germination and Growth of a Foreign Plant, Satureja sp.(Labiaceae Over Three Organic Substrates Under Controlled Conditions in the Sabana de Bogotá, Colombia

    Directory of Open Access Journals (Sweden)

    Jazmín Arias

    2003-07-01

    Bogotá, in order to determine which are the best conditions for its culture. The major germination percentage was found in the seeds sowed on control conditions (earth with a neutral and basic pH. The manure substrate showed notorious results concerning steam length, dry weight and leaf number. The third substrate, soil and trash, did not render results neither on germination or other parameters. In conclusion, if the commercial interest is to obtain a longer steams, greater leaf number and biomass, we recommend the manure treatment.

  7. Material design of ceramic coating by plasma spray method

    International Nuclear Information System (INIS)

    Nakamichi, M.; Kawamura, H.; Takabatake, T.

    1998-01-01

    In the ceramic coating on substrate, cracking and peeling occur due to the difference of thermal expansion between substrate material and coating material. For evaluation of peeling property of plasma sprayed coating, it is demanded that thermal properties of plasma sprayed coating are estimated in detail. In this study, the results of comparison of thermal properties between bulk material and plasma sprayed material are investigated to design the ceramic coating quantitatively. Thermal conductivity of plasma sprayed MgO.Al 2 O 3 is decreased by approximately 50% to that of sintered MgO.Al 2 O 3 . Thermal conductivity of plasma sprayed 410SS agreed well with the calculation results of relation between porosity and thermal conductivity of iron sintered material. Thermal expansions of atmospheric plasma sprayed MgO.Al 2 O 3 and bulk 410SS, respectively. Therefore, as to material design on ceramic coating, it was made clear that thermal conductivity is more important than thermal expansion. (orig.)

  8. Experimental study on ceramic membrane technology for onboard oxygen generation

    Directory of Open Access Journals (Sweden)

    Jiang Dongsheng

    2016-08-01

    Full Text Available The ceramic membrane oxygen generation technology has advantages of high concentration of produced oxygen and potential nuclear and biochemical protection capability. The present paper studies the ceramic membrane technology for onboard oxygen generation. Comparisons are made to have knowledge of the effects of two kinds of ceramic membrane separation technologies on oxygen generation, namely electricity driven ceramic membrane separation oxygen generation technology (EDCMSOGT and pressure driven ceramic membrane separation oxygen generation technology (PDCMSOGT. Experiments were conducted under different temperatures, pressures of feed air and produced oxygen flow rates. On the basis of these experiments, the flow rate of feed air, electric power provided, oxygen recovery rate and concentration of produced oxygen are compared under each working condition. It is concluded that the EDCMSOGT is the oxygen generation means more suitable for onboard conditions.

  9. Erosion resistance and adhesion of composite metal/ceramic coatings produced by plasma spraying

    International Nuclear Information System (INIS)

    Ramm, D.A.J.; Hutchings, I.M.; Clyne, T.W.

    1993-01-01

    Ceramic coatings can exhibit greater erosion resistance than most metallic coatings. Such coatings are conveniently produced by thermal spraying. Unfortunately, thermally sprayed ceramic coatings often exhibit poor adhesion, partly as a consequence of the development of residual stresses during spraying and subsequent cooling. Composite coatings have been studied using aluminium/alumina deposits on steel substrates. The incorporation of ceramics within a ductile matrix has potential for sharply reducing the erosive wear at high erodent impact angles, whilst retaining the good erosion resistance of ceramics at low angles. It is shown that the proportion of metal and ceramic at the free surface can be specified so as to optimise the erosion resistance. Experiments have also been carried out on the resistance of the coatings to debonding during four-point bending of the coated substrate. Progress is being made towards the tailoring of composition profiles in graded coatings so as to optimise the combination of erosion resistance and adhesion. (orig.)

  10. Large area ceramic thin films on plastics: A versatile route via solution processing

    Science.gov (United States)

    Kozuka, H.; Yamano, A.; Fukui, T.; Uchiyama, H.; Takahashi, M.; Yoki, M.; Akase, T.

    2012-01-01

    A new general route for large area, submicron thick ceramic thin films (crystalline metal oxide thin films) on plastic substrates is presented, where the crystallization of films is guaranteed by a firing process. Gel films are deposited on silicon substrates with a release layer and fired to be ceramic films, followed by transferring onto plastic substrates using adhesives. The ceramic films thus fabricated on plastics exhibit a certain degree of flexibility, implying the possibility of the technique to be applied to high-throughput roll-to-roll processes. Using this technique, we successfully realized transparent anatase thin films that provide high optical reflectance and transparent indium tin oxide thin films that exhibit electrical conductivity on polycarbonate and acrylic resin substrates, respectively. Crystallographically oriented zinc oxide films and patterned zinc oxide films are also demonstrated to be realized on acrylic resin substrates.

  11. Study on the neotype zirconia's implant coated nanometer hydroxyapatite ceramics

    Science.gov (United States)

    Zhu, J. W.; Yang, D. W.

    2007-07-01

    In recent years, biologic ceramics is a popular material of implants and bioactive surface modification of dental implant became a research emphasis, which aims to improve bioactivity of implants materials and acquire firmer implants-bone interface. The zirconia ceramic has excellent mechanical properties and nanometer HA ceramics is a bioceramic well known for its bioactivity, therefore, nanometer HA ceramics coating on zirconia, allows combining the excellent mechanical properties of zirconia substrates with its bioactivity. This paper shows a new method for implant shape design and bioactive modification of dental implants surface. Zirconia's implant substrate was prepared by sintered method, central and lateral tunnels were drilled in the zirconia hollow porous cylindrical implants by laser processing. The HA powders and needle-like HA crystals were made by a wet precipitation and calcining method. Its surface was coated with nanometer HA ceramics which was used brush HA slurry and vacuum sintering. Mechanical testing results revealed that the attachment strength of nanometer HA ceramics coated zirconia samples is high. SEM and interface observation after inserted experiment indicated that calcium and phosphor content increased and symmetrically around coated implant-bone tissue interface. A significantly higher affinity index was demonstrated in vivo by histomorphometric evaluation in coated versus uncoated implants. SEM analysis demonstrated better bone adhesion to the material in coated implant at any situation. In addition, the hollow porous cylindrical implant coated with nanometer HA ceramics increase the interaction of bone and implant, the new bone induced into the surface of hollow porous cylindrical implant and through the most tunnels filled into central hole. The branch-like structure makes the implant and bone a body, which increased the contact area and decreased elastic ratio. Therefore, the macroscopical and microcosmic nested structure of

  12. Surface texturing of sialon ceramic by femtosecond pulsed laser

    CSIR Research Space (South Africa)

    Tshabalala, Lerato C

    2017-01-01

    Full Text Available AlONSi(sub3)N(sub4) ceramic using the Ti: Sapphire Femtosecond laser system was investigated. Parametric analysis was conducted using surface drilling, unidirectional and cross-hatching machining procedures performed on the substrate at a varied power...

  13. PREFACE: 3rd International Congress on Ceramics (ICC3)

    Science.gov (United States)

    Niihara, Koichi; Ohji, Tatsuki; Sakka, Yoshio

    2011-10-01

    Early in 2005, the American Ceramic Society, the European Ceramic Society and the Ceramic Society of Japan announced a collaborative effort to provide leadership for the global ceramics community that would facilitate the use of ceramic and glass materials. That effort resulted in an agreement to organize a new biennial series of the International Congress on Ceramics, convened by the International Ceramic Federation (ICF). In order to share ideas and visions of the future for ceramic and glass materials, the 1st International Congress on Ceramics (ICC1) was held in Canada, 2006, under the organization of the American Ceramic Society, and the 2nd Congress (ICC2) was held in Italy, 2008, hosted by the European Ceramic Society. Organized by the Ceramic Society of Japan, the 3rd Congress (ICC3) was held in Osaka, Japan, 14-18 November 2010. Incorporating the 23rd Fall Meeting of the Ceramic Society of Japan and the 20th Iketani Conference, ICC3 was also co-organized by the Iketani Science and Technology Foundation, and was endorsed and supported by ICF, Asia-Oceania Ceramic Federation (AOCF) as well as many other organizations. Following the style of the previous two successful Congresses, the program was designed to advance ceramic and glass technologies to the next generation through discussion of the most recent advances and future perspectives, and to engage the worldwide ceramics community in a collective effort to expand the use of these materials in both conventional as well as new and exciting applications. ICC3 consisted of 22 voluntarily organized symposia in the most topical and essential themes of ceramic and glass materials, including Characterization, design and processing technologies Electro, magnetic and optical ceramics and devices Energy and environment related ceramics and systems Bio-ceramics and bio-technologies Ceramics for advanced industry and safety society Innovation in traditional ceramics It also contained the Plenary Session and the

  14. Performance of diamond-like carbon-protected rubber under cyclic friction. I. Influence of substrate viscoelasticity on the depth evolution

    NARCIS (Netherlands)

    Martinez-Martinez, D.; Pal, J.P. van der; Pei, Y.T.; Hosson, J.Th.M. De

    2011-01-01

    In this paper, the influence of the viscoelastic properties of rubber substrate on the tribological behavior of DLC film-coated alkyl acrylate rubber is studied. The mechanical behavior of the rubber was first characterized by creep experiments using spherical indentations. The results were adjusted

  15. An optical coherence tomography investigation of materials defects in ceramic fixed partial dental prostheses

    Science.gov (United States)

    Sinescu, Cosmin; Negrutiu, Meda; Hughes, Michael; Bradu, Adrian; Todea, Carmen; Rominu, Mihai; Laissue, Philippe L.; Podoleanu, Adrian Gh.

    2008-04-01

    Metal ceramic and integral ceramic fixed partial prostheses are mainly used in the frontal part of the dental arch because for esthetics reasons. The masticatory stress may induce fractures of the bridges. There are several factors that are associated with the stress state created in ceramic restorations, including: thickness of ceramic layers, mechanical properties of the materials, elastic modulus of the supporting substrate material, direction, magnitude and frequency of applied load, size and location of occlusal contact areas, residual stresses induced by processing or pores, restoration-cement interfacial defects and environmental defects. The fractures of these bridges lead to functional, esthetic and phonetic disturbances which finally render the prosthetic treatment inefficient. The purpose of this study is to evaluate the capability of optical coherence tomography (OCT) in detection and analysis of possible material defects in metal-ceramic and integral ceramic fixed partial dentures.

  16. Bar piezoelectric ceramic transformers.

    Science.gov (United States)

    Erhart, Jiří; Pulpan, Půlpán; Rusin, Luboš

    2013-07-01

    Bar-shaped piezoelectric ceramic transformers (PTs) working in the longitudinal vibration mode (k31 mode) were studied. Two types of the transformer were designed--one with the electrode divided into two segments of different length, and one with the electrodes divided into three symmetrical segments. Parameters of studied transformers such as efficiency, transformation ratio, and input and output impedances were measured. An analytical model was developed for PT parameter calculation for both two- and three-segment PTs. Neither type of bar PT exhibited very high efficiency (maximum 72% for three-segment PT design) at a relatively high transformation ratio (it is 4 for two-segment PT and 2 for three-segment PT at the fundamental resonance mode). The optimum resistive loads were 20 and 10 kΩ for two- and three-segment PT designs for the fundamental resonance, respectively, and about one order of magnitude smaller for the higher overtone (i.e., 2 kΩ and 500 Ω, respectively). The no-load transformation ratio was less than 27 (maximum for two-segment electrode PT design). The optimum input electrode aspect ratios (0.48 for three-segment PT and 0.63 for two-segment PT) were calculated numerically under no-load conditions.

  17. Antiferroelectric Shape Memory Ceramics

    Directory of Open Access Journals (Sweden)

    Kenji Uchino

    2016-05-01

    Full Text Available Antiferroelectrics (AFE can exhibit a “shape memory function controllable by electric field”, with huge isotropic volumetric expansion (0.26% associated with the AFE to Ferroelectric (FE phase transformation. Small inverse electric field application can realize the original AFE phase. The response speed is quick (2.5 ms. In the Pb0.99Nb0.02[(Zr0.6Sn0.41-yTiy]0.98O3 (PNZST system, the shape memory function is observed in the intermediate range between high temperature AFE and low temperature FE, or low Ti-concentration AFE and high Ti-concentration FE in the composition. In the AFE multilayer actuators (MLAs, the crack is initiated in the center of a pair of internal electrodes under cyclic electric field, rather than the edge area of the internal electrodes in normal piezoelectric MLAs. The two-sublattice polarization coupling model is proposed to explain: (1 isotropic volume expansion during the AFE-FE transformation; and (2 piezoelectric anisotropy. We introduce latching relays and mechanical clampers as possible unique applications of shape memory ceramics.

  18. Corrosion resistant ceramic materials

    Science.gov (United States)

    Kaun, Thomas D.

    1996-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  19. Ceramic breeder materials

    International Nuclear Information System (INIS)

    Johnson, C.E.

    1990-01-01

    The breeding blanket is a key component of the fusion reactor because it directly involves tritium breeding and energy extraction, both of which are critical to development of fusion power. The lithium ceramics continue to show promise as candidate breeder materials. This promise was recognized by the International Thermonuclear Reactor (ITER) design team in its selection of ceramics as the first option for the ITER breeder material. Blanket design studies have indicated properties in the candidate materials data base that need further investigation. Current studies are focusing on tritium release behavior at high burnup, changes in thermophysical properties with burnup, compatibility between the ceramic breeder and beryllium multiplier, and phase changes with burnup. Laboratory and in-reactor tests, some as part of an international collaboration for development of ceramic breeder materials, are underway. 32 refs., 1 fig., 1 tab

  20. Anionic Conducting Oxide Ceramics

    National Research Council Canada - National Science Library

    Dunn, Bruce

    1998-01-01

    This program has emphasized the interrelationships among synthesis, microstructure and properties for oxygen ion conducting ceramics based on copper-substituted bismuth vanadate (Bi V Cu O ), known as BICUVOX...

  1. [Basic studies on CaO-P2O5-MgO-SiO2-CaF system glass ceramics. 1. Morphology under the phase-contrast microscope and growth of cultured cells].

    Science.gov (United States)

    Yoshimoto, Y; Hara, Y; Abe, T; Akamine, A; Maeda, K; Aono, M

    1989-06-01

    In order to determine the biocompatibility of glass ceramics which is one of the new biomaterials, in vitro studies were carried out by a cell culture method using four established cell lines. Materials used were glass ceramic disks with a diameter of 3 mm, and polystyrene coverslips of the same size as controls of the growth curve. Cells of each line were inoculated into 24-well multiplates at an appropriate density onto glass ceramic disks, and examined by phase contrast microscopy on the 1st, 3rd, 6th and 8th day. In addition, doubling time and saturation density were calculated from the growth curve. The results obtained were as follows. 1) Phase-contrast microscopy revealed that cells of each line attached to the disk within 24 hours and their numbers increased with time. After 8 days of cultivation, all of them reached confluence. 2) Contact with the glass ceramics did not cause cellular death or degeneration. Furthermore, the cultured cells showed the same morphological features as the control cells. 3) According to the growth curves, doubling time of all cells cultured with glass ceramics was shorter than that of the control cultures. On the other hand, saturation density was reduced to a minimum of 80% of the controls. These findings led to the conclusion that glass ceramic materials do not prevent the growth of cultured cells. According to the above results, glass ceramics possess the characteristics needed for bone grafts and implant materials.

  2. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-07-01

    This is the fourth quarterly report on a new study to develop a ceramic membrane/metal joint. The first experiments using the La-Sr-Fe-O ceramic are reported. Some of the analysis performed on the samples obtained are commented upon. A set of experiments to characterize the mechanical strength and thermal fatigue properties of the joints has been designed and begun. Finite element models of joints used to model residual stresses are described.

  3. ZnO buffer layer for metal films on silicon substrates

    Science.gov (United States)

    Ihlefeld, Jon

    2014-09-16

    Dramatic improvements in metallization integrity and electroceramic thin film performance can be achieved by the use of the ZnO buffer layer to minimize interfacial energy between metallization and adhesion layers. In particular, the invention provides a substrate metallization method utilizing a ZnO adhesion layer that has a high work of adhesion, which in turn enables processing under thermal budgets typically reserved for more exotic ceramic, single-crystal, or metal foil substrates. Embodiments of the present invention can be used in a broad range of applications beyond ferroelectric capacitors, including microelectromechanical systems, micro-printed heaters and sensors, and electrochemical energy storage, where integrity of metallized silicon to high temperatures is necessary.

  4. Periphyton biomass on artificial substrates during the summer and winter

    Directory of Open Access Journals (Sweden)

    Altevir Signor

    2015-01-01

    Full Text Available This study evaluated the periphyton production on artificial substrates considering it as a source of low cost live food for fish. Blades of artificial substrates such as wood, black plastic, acrylic, fiberglass, ceramics and glass (all with 144cm2 blades, 24 for each substrate were submerged 20.0cm below the water column for 35 days in the winter and 42 days in the summer. The blades were randomly installed in 200m3 pond and evaluated for the biomass production at different phases during the summer and winter. Four blades of each substrate were collected weekly, and the periphytic community was carefully scraped with a spatula and fixed in 4% formaldehyde. The periphytic biomass productivity was evaluated by artificial substrate area and per day. The results evidenced the characteristic periodicity in periphyton biomass production and a significant variability in the collect period and season in the different artificial substrates used. Ceramic and wood showed the best results in the summer while wood showed the best results in the winter. The priphyton biomass productions differ among periods, substrates and seasons. Wood and ceramics could be indicated for periphyton biomass production in either winter or summer.

  5. Sintering characteristics of nano-ceramic coatings

    NARCIS (Netherlands)

    de Hosson, J.T.M.; Popma, R.

    2003-01-01

    This paper concentrates on sintering characteristics of nano-sized ceramic SiO2 particles. The sintering process is studied as a function of temperature using a conventional furnace and using a laser beam. The underlying idea is to combine the nanoceramic sol-gel concept with inkjet technology and

  6. FIB/SEM and SEM/EDS microstructural analysis of metal-ceramic and zirconia-ceramic interfaces.

    Science.gov (United States)

    Massimi, F; Merlati, G; Sebastiani, M; Battaini, P; Menghini, P; Bemporad, E

    2012-01-10

    Recently introduced FIB/SEM analysis in microscopy seems to provide a high-resolution characterization of the samples by 3D (FIB) cross-sectioning and (SEM) high resolution imaging. The aim of this study was to apply the FIB/SEM and SEM/EDS analysis to the interfaces of a metal-ceramic vs. two zirconia-ceramic systems. Plate samples of three different prosthetic systems were prepared in the dental lab following the manufacturers' instructions, where metal-ceramic was the result of a ceramic veneering (porcelain-fused-to-metal) and the two zirconia-ceramic systems were produced by the dedicated CAD-CAM procedures of the zirconia cores (both with final sintering) and then veneered by layered or heat pressed ceramics. In a FIB/SEM equipment (also called DualBeam), a thin layer of platinum (1 μm) was deposited on samples surface crossing the interfaces, in order to protect them during milling. Then, increasingly deeper trenches were milled by a focused ion beam, first using a relatively higher and later using a lower ion current (from 9 nA to 0.28 nA, 30KV). Finally, FEG-SEM (5KV) micrographs (1000-50,000X) were acquired. In a SEM the analysis of the morphology and internal microstructure was performed by 13KV secondary and backscattered electrons signals (in all the samples). The compositional maps were then performed by EDS probe only in the metal-ceramic system (20kV). Despite the presence of many voids in all the ceramic layers, it was possible to identify: (1) the grain structures of the metallic and zirconia substrates, (2) the thin oxide layer at the metal-ceramic interface and its interactions with the first ceramic layer (wash technique), (3) the roughness of the two different zirconia cores and their interactions with the ceramic interface, where the presence of zirconia grains in the ceramic layer was reported in two system possibly due to sandblasting before ceramic firing.

  7. Clinical application of bio ceramics

    International Nuclear Information System (INIS)

    Anu, Sharma; Gayatri, Sharma

    2016-01-01

    Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.

  8. Study of solid metal/ceramic reactions

    International Nuclear Information System (INIS)

    Mehan, R.L.; Jackson, M.R.

    1981-01-01

    In advanced energy systems, ceramics may allow higher operating temperatures for greater efficiency. However, compressive contacts at joints with metals are required by the poor tensile behavior of ceramics. Compression at these interfaces excludes oxygen, and oxides do not form. Reactions under inert or reducing conditions (as in metal matrix composites) have been studied, as have reactions of complex superalloys with SiC, Si/SiC and Si 3 N 4 . The reactions were complex, dictating a phenomenological study with no treatment of their basic nature or the phase equilibria. With a model alloy containing only Ni, Cr and Al, the present experiments and analyses are an attempt to gain a more basic understanding of metal/ceramic reactions

  9. Ceramic technology for advanced heat engines project

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems in Conservation and Renewable Energy. This project was developed to meet the ceramic technology requirements of the OTT's automotive technology programs. This project is managed by ORNL and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DoD, and industry. Research is discussed under the following topics; Turbomilling of SiC Whiskers; microwave sintering of silicon nitride; and milling characterization; processing of monolithics; silicon nitride matrix; oxide matrix; silicate matrix; thermal and wear coatings; joining; design; contact interfaces; time-dependent behavior; environmental effects; fracture mechanics; nondestructive evaluation; and technology transfer. References, figures, and tables are included with each topic.

  10. Fretting wear and friction behaviour of engineering ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Stachowiak, G.B. [Tribology Lab., Dept. of Mechanical and Materials Engineering, Univ. of Western Australia, Perth (Australia); Stachowiak, G.W. [Tribology Lab., Dept. of Mechanical and Materials Engineering, Univ. of Western Australia, Perth (Australia)

    1995-12-01

    Friction and wear characteristics of partially stabilized zirconia (PSZ) fretted against itself and against high carbon steel were investigated. The results fror the transformation toughened PSZ ceramics are compared with the behaviour of more brittle alumina ceramic under the same test conditions. Fretting tests in air were carried out on a high frequency wear test rig at room temperature using a cross-cylinder configuration. It was found that both the oxide ceramics were more resistant to fretting wear than the steel. Surface cracking was observed on the alumina wear scars while microfracture and delamination dominated on the PSZ wear scars. When metallic samples were fretted against ceramics, metallic film transfer to the ceramic surfaces occurred. (orig.)

  11. Blue luminescence in ZnO single crystals, nanopowders, ceramic

    International Nuclear Information System (INIS)

    LGrigorjeva; Millers, D; Pankratov, V; Kalinko, A; Grabis, J; Monty, C

    2007-01-01

    The luminescence spectra and luminescence decay processes were studied in a ZnO single crystal, nanopowders and ceramic at liquid helium and room temperature under VUV synchrotron radiation as well as under pulsed laser excitation. The exciton-exciton and exciton-multiphonon processes were compared in different ZnO nanopowders (commercial powder, powders obtained by vaporization-condensation technique) and ceramic. The possibility of luminescence decay time modification by Al 3+ doping was shown

  12. Laser technologies of ceramics treatment (review)

    International Nuclear Information System (INIS)

    Markov, E.M.; Voronezhtsev, Yu.I.; Gol'dade, V.A.

    1990-01-01

    Publications on the laser technologies of ceramic coating production, ceramics treatment and ceramics manufacture are analyzed for the past 5 years. Features of production processes utilizing the interaction of laser radiation with ceramics and other substances which form the ceramics as a result of such interaction are considered. Possible ways of improving laser technologies of ceramics treatment are outlined

  13. Multilayered ceramic/metal composites by extrusion freeform fabrication

    Science.gov (United States)

    Kasichainula, Sridhar

    Metal layers within a laminar ceramic can improve damage tolerance of ceramics by arresting large cracks either by ductile bridging or by crack deflection at the ceramic/metal interface, which will allow engineers to design reliable ceramics for structural applications. At low volume fractions of the metal ductile bridging is not very effective, mainly owing to decreased distance between the crack tip and next ceramic layer. Significant increase in the energy absorption during fracture can come from delamination, but depends on the interfacial fracture resistance. A two-fold increase in energy absorption is realized in the case of glass-ceramic/silver laminates prepared by extrusion freeform fabrication. Interfacial fracture energy for glass-ceramic/silver is found to be 100 J/m2 in comparison to 15 J/m2 for glass-ceramic/SiC, which should explain the sporadic crack deflection in notched four-point bend. For a short beam flexural test shear failure is more favorable in four-point than in three-point bending. In four-point tests, the shear stresses between the outer and inner loading pins can precipitate shear delamination prior to tensile cracking of the layers. Damage modes under low velocity impact tests are similar to four-point bend showing delamination as primary energy dissipation mechanism.

  14. Integration Science and Technology of Silicon-Based Ceramics and Composites:Technical Challenges and Opportunities

    Science.gov (United States)

    Singh, M.

    2013-01-01

    Ceramic integration technologies enable hierarchical design and manufacturing of intricate ceramic and composite parts starting with geometrically simpler units that are subsequently joined to themselves and/or to metals to create components with progressively higher levels of complexity and functionality. However, for the development of robust and reliable integrated systems with optimum performance for high temperature applications, detailed understanding of various thermochemical and thermomechanical factors is critical. Different technical approaches are required for the integration of ceramic to ceramic and ceramic to metal systems. Active metal brazing, in particular, is a simple and cost-effective method to integrate ceramic to metallic components. Active braze alloys usually contain a reactive filler metal (e.g., Ti, Cr, V, Hf etc) that promotes wettability and spreading by inducing chemical reactions with the ceramics and composites. In this presentation, various examples of brazing of silicon nitride to themselves and to metallic systems are presented. Other examples of joining of ceramic composites (C/SiC and SiC/SiC) using ceramic interlayers and the resulting microstructures are also presented. Thermomechanical characterization of joints is presented for both types of systems. In addition, various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Potential opportunities and need for the development of innovative design philosophies, approaches, and integrated system testing under simulated application conditions will also be presented.

  15. Testing method for ceramic armour and bare ceramic tiles

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.

    2016-01-01

    TNO developed an alternative, more configuration independent ceramic test method than the Depth-of-Penetration test method. In this alternative test ceramic tiles and ceramic based armour are evaluated as target without a semi-infinite backing layer. An energy approach is chosen to evaluate and rank

  16. Testing method for ceramic armor and bare ceramic tiles

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.

    2014-01-01

    TNO has developed an alternative, more configuration independent ceramic test method than the standard Depth-of-Penetration test method. In this test ceramic tiles and ceramic based armor are evaluated as target without a semi-infinite backing layer. An energy approach is chosen to evaluate and rank

  17. Germinação de sementes de urucu em diferentes temperaturas e substratos Germination of annatto seeds under different temperatures and substrates

    Directory of Open Access Journals (Sweden)

    Renata Vianna Lima

    2007-08-01

    Full Text Available Objetivou-se, neste trabalho, analisar o comportamento germinativo das sementes de urucu cultivar Casca Verde, com e sem escarificação, sob regime de diferentes temperaturas e substratos. O trabalho foi realizado no Laboratório de Tecnologia e Análise de Sementes do Centro de Ciências Agrárias da Universidade Federal do Espírito Santo (CCA-UFES. O delineamento experimental utilizado foi o inteiramente casualizado, num esquema fatorial 2x6x4 (dois tratamentos físicos nas sementes, seis substratos e quatro temperaturas, totalizando 48 tratamentos, com quatro repetições de 50 sementes. Os tratamentos físicos foram: as sementes intactas e as sementes escarificadas; os substratos foram: a areia, a vermiculita, a fibra de coco, o pó de serra, o Plantmax e o rolo de papel Germitest ; e, as temperaturas testadas foram constantes de 20, 25 e 30ºC e alternada de 20-30ºC. Os dados foram submetidos à análise de variância e as médias comparadas pelo teste de Tukey. Os resultados obtidos evidenciaram maior porcentagem de germinação das sementes de urucu, semeadas nos substratos areia, vermiculita e rolo de papel; as temperaturas de 25, 30 e 20-30ºC foram mais adequadas para testes de germinação dessas sementes.This work was carried out with the objective to verify the effect of temperature and substrate on germinative capacity of annatto seeds. This study was developed in the Laboratories of Seed Analysis of Agrarian Science Center that belongs to the Universidade Federal do Espirito Santo (CCA-UFES, located in Alegre ES, Brazil. The experimental design was 2x6x4 factorial involving: (i two treatments in the seeds, (ii six substrates, and (iii four temperatures. Four replications were realized using 50 seeds at each experimental unit. Treatments refer to intact and scarified seeds. Substrates utilized were sand, vermiculite, coconut fiber, wood fiber, Plantmax and paper roll. Temperatures employed were 20, 25, 30 and 20-30ºC. Average

  18. Ceramics for Molten Materials Containment, Transfer and Handling on the Lunar Surface

    Science.gov (United States)

    Standish, Evan; Stefanescu, Doru M.; Curreri, Peter A.

    2009-01-01

    As part of a project on Molten Materials Transfer and Handling on the Lunar Surface, molten materials containment samples of various ceramics were tested to determine their performance in contact with a melt of lunar regolith simulant. The test temperature was 1600 C with contact times ranging from 0 to 12 hours. Regolith simulant was pressed into cylinders with the approximate dimensions of 1.25 dia x 1.25cm height and then melted on ceramic substrates. The regolith-ceramic interface was examined after processing to determine the melt/ceramic interaction. It was found that the molten regolith wetted all oxide ceramics tested extremely well which resulted in chemical reaction between the materials in each case. Alumina substrates were identified which withstood contact at the operating temperature of a molten regolith electrolysis cell (1600 C) for eight hours with little interaction or deformation. This represents an improvement over alumina grades currently in use and will provide a lifetime adequate for electrolysis experiments lasting 24 hours or more. Two types of non-oxide ceramics were also tested. It was found that they interacted to a limited degree with the melt resulting in little corrosion. These ceramics, Sic and BN, were not wetted as well as the oxides by the melt, and so remain possible materials for molten regolith handling. Tests wing longer holding periods and larger volumes of regolith are necessary to determine the ultimate performance of the tested ceramics.

  19. Method for producing ceramic bodies

    International Nuclear Information System (INIS)

    Prunier, A.R. Jr.; Spangenberg, S.F.; Wijeyesekera, S.

    1992-01-01

    This patent describes a method for preparing a superconducting ceramic article. It comprises heating a powdered admixture comprising a source of yttria (Y 2 O 3 ), a source of barium monoxide and a source of cupric oxide to a temperature of from about 800 degrees Centigrade to 900 degrees Centigrade to allow the admixture to be densified under pressure to more than about 65 percent of the admixture's theoretical density but low enough to substantially preclude melting of the admixture; applying to the heated admixture isostatic pressure of between about 80,000 psi (5.5 x 10 2 MPa) and about the fracture stress of the heated admixture, for a period of time of from about 0.1 second to about ten minutes to form a densified article with a density of more than about 65 percent of the admixture's theoretical density; and annealing the densified article in the presence of gaseous oxygen under conditions sufficient to convert the densified article to a superconducting ceramic article having a composition comprising YBa 2 Cu 3 O 7 - x where O < x < 0.6

  20. Stress analysis and fail-safe design of bilayered tubular supported ceramic membranes

    DEFF Research Database (Denmark)

    Kwok, Kawai; Frandsen, Henrik Lund; Søgaard, Martin

    2014-01-01

    Supported ceramic membranes based on mixed ionic and electronic conductors are a promising technology for oxygen separation applications. In addition to chemically induced stress under oxygen activity gradients in the materials, strain mismatch between membrane and support gives rise...... to considerable stress that may compromise mechanical reliability. This paper presents an analysis of stress generated in tubular supported membranes during operation. Closed-form analytical solutions for stresses due to external pressures, strain gradients, and mismatch in materials properties are derived....... Stress distributions in two membrane systems have been analyzed and routes to minimize stress are proposed. For a Ba0.5Sr0.5Co0.8Fe0.2O3−δBa0.5Sr0.5Co0.8Fe0.2O3−δ membrane supported on a porous substrate of the same material under pressure-vacuum operation, the optimal configuration in terms...

  1. Diffusion in ceramics

    CERN Document Server

    Pelleg, Joshua

    2016-01-01

    This textbook provides an introduction to changes that occur in solids such as ceramics, mainly at high temperatures, which are diffusion controlled, as well as presenting research data. Such changes are related to the kinetics of various reactions such as precipitation, oxidation and phase transformations, but are also related to some mechanical changes, such as creep. The book is composed of two parts, beginning with a look at the basics of diffusion according to Fick's Laws. Solutions of Fick’s second law for constant D, diffusion in grain boundaries and dislocations are presented along with a look at the atomistic approach for the random motion of atoms. In the second part, the author discusses diffusion in several technologically important ceramics. The ceramics selected are monolithic single phase ones, including: A12O3, SiC, MgO, ZrO2 and Si3N4. Of these, three refer to oxide ceramics (alumina, magnesia and zirconia). Carbide based ceramics are represented by the technologically very important Si-ca...

  2. Mechanical properties of ceramics

    CERN Document Server

    Pelleg, Joshua

    2014-01-01

    This book discusses the mechanical properties of ceramics and aims to provide both a solid background for undergraduate students, as well as serving as a text to bring practicing engineers up to date with the latest developments in this topic so they can use and apply these to their actual engineering work.  Generally, ceramics are made by moistening a mixture of clays, casting it into desired shapes and then firing it to a high temperature, a process known as 'vitrification'. The relatively late development of metallurgy was contingent on the availability of ceramics and the know-how to mold them into the appropriate forms. Because of the characteristics of ceramics, they offer great advantages over metals in specific applications in which hardness, wear resistance and chemical stability at high temperatures are essential. Clearly, modern ceramics manufacturing has come a long way from the early clay-processing fabrication method, and the last two decades have seen the development of sophisticated technique...

  3. Printed sub-100 nm polymer-derived ceramic structures.

    Science.gov (United States)

    Duong, Binh; Gangopadhyay, Palash; Brent, Josh; Seraphin, Supapan; Loutfy, Raouf O; Peyghambarian, Nasser; Thomas, Jayan

    2013-05-01

    We proposed an unconventional fabrication technique called spin-on nanoprinting (SNAP) to generate and transfer sub-100 nm preceramic polymer patterns onto flexible and rigid substrates. The dimensions of printed nanostructures are almost the same as those of the mold, since the ceramic precursor used is a liquid. The printed patterns can be used as a replica for printing second-generation structures using other polymeric materials or they can be further converted to desirable ceramic structures, which are very attractive for high-temperature and harsh environment applications. SNAP is an inexpensive parallel process and requires no special equipment for operation.

  4. Crambe seed germination under the influence of temperature and substrateGerminação de sementes de crambe em diferentes temperaturas e substratos

    Directory of Open Access Journals (Sweden)

    Felipe Gustavo Pilau

    2012-10-01

    Full Text Available Crambe, native from Mediterranean zone, belonging to the Brassicaceae family, is a rustic crop that e merges as a productive alternative, with a potential for the production of feedstock for biodiesel, with emphasis on its oil quality. This study aimed to evaluate the effects of temperature and substrate on seed germination crambe, FMS Brilhante cultivar. The experimental design was completely randomized in a factorial 2 x 7 (temperature x substrate with 4 replicates of 25 seeds. The seeds were placed on substrates Germitest® paper and clay soil + sand and subjected to temperatures of 9°C, 12°C, 15°C, 20°C, 25°C, 30°C and 35°C. Seed germination percentage and germination speed index were evaluated. The temperature of 25°C is ideal for testing the seed germination of crambe. Temperatures below of 12°C and above of 30°C are detrimental to the germination process. The substrates germitest® paper and sand + clay soil are suitable for testing germination, since observed temperature of execution. The use of paper substrate at temperatures lower than 20°C underestimate the seed germination.Pertencente a família das Brassicaceae, nativo da zona Mediterrânea, o crambe é uma planta rústica que surge como mais uma alternativa produtiva, com potencial para a produção de matéria-prima para biodiesel, com destaque na qualidade de seu óleo. O trabalho teve por objetivo avaliar os efeitos de diferentes temperaturas e substratos na germinação de sementes de crambe, cultivar FMS Brilhante. O delineamento experimental foi o inteiramente casualizado no esquema fatorial 7 x 2 (temperaturas x substratos com 4 repetições de 25 sementes. As sementes foram colocadas em substratos papel Germitest® e solo argiloso + areia e submetidas ao teste de germinação sob temperaturas de 9°C, 12°C, 15°C, 20°C, 25°C, 30°C e 35°C. Foram avaliados a porcentagem e o índice de velocidade de germinação. A temperatura de 25°C é a ideal para a realiza

  5. Effects of mechanical properties of polymer on ceramic-polymer composite thick films fabricated by aerosol deposition

    OpenAIRE

    Kwon, Oh-Yun; Na, Hyun-Jun; Kim, Hyung-Jun; Lee, Dong-Won; Nam, Song-Min

    2012-01-01

    Two types of ceramic-polymer composite thick films were deposited on Cu substrates by an aerosol deposition process, and their properties were investigated to fabricate optimized ceramic-based polymer composite thick films for application onto integrated substrates with the advantage of plasticity. When polymers with different mechanical properties, such as polyimide (PI) and poly(methyl methacrylate) (PMMA), are used as starting powders together with α-Al2O3 powder, two types of composite fi...

  6. Capacitive pressure sensor in post-processing on LTCC substrates

    NARCIS (Netherlands)

    Meijerink, M.G.H.; Nieuwkoop, E.; Veninga, E.P.; Meuwissen, M.H.H.; Tijdink, M.W.W.J.

    2005-01-01

    A capacitive pressure sensor was realized by means of a post-processing step on a low temperature co-fired ceramics (LTCC) substrate. The new sensor fabrication technology allows for integration of the sensor with interface circuitry and possibly also wireless transmission circuits on LTCC

  7. Ceramic composites: Enabling aerospace materials

    Science.gov (United States)

    Levine, S. R.

    1992-01-01

    Ceramics and ceramic matrix composites (CMC) have the potential for significant impact on the performance of aerospace propulsion and power systems. In this paper, the potential benefits are discussed in broad qualitative terms and are illustrated by some specific application case studies. The key issues in need of resolution for the potential of ceramics to be realized are discussed.

  8. Biomass conservation potential of pottery/ceramic lined Mamta Stove: An improved stove promoted under National Programme on Improved Cookstoves in India

    Energy Technology Data Exchange (ETDEWEB)

    George, R.; Yadla, V.L. [M.S. Univ. of Baroda, Vadodara (India). Home Management Dept.

    1995-10-01

    To combat biomass scarcity and ensure a cleaner cooking environment with less drudgery, among other things, a variety of improved stoves are promoted under National Programme on Improved Cookstoves (NPIC). Mamta Stove (MS) is one among such improved stoves. An indepth study was undertaken covering a sample of twenty-five rural families with the primary objective of assessing fuel saving potential of MS under field conditions through Kitchen Performance Test (KPT). Conventional stove (CS) used in almost all the families was shielded horse-shoe shaped stove with a negligible proportion using three stone open fire. Nearly 88% depended only on zero private cost fuels. The mean number of persons for whom the stoves were used on the days of field measurements in case of CS and MS were 5.6 and 5.7 respectively with an SD of 1.16 and standard adult equivalent (SAE) was approximately 4. Cooking pots included a concave roasting pan, a deep frying pan and flat bottomed pots. The mean daily fuel consumption on CS and MS were estimated to be 4.88 kg and 3.75 kg respective, thereby, resulting in fuel saving to the tune of 24% on MS. The paper discusses at length the design features of CS and MS, meal pattern, cooking habits, need for user training, consumerism in the area of cooking and stove technology, economics of switching over to MS and policy implications of commercialization of hitherto subsidized stove program. Further, salient characteristics of high and low cooking fuel consumers on MS are presented to bring to limelight their profile.

  9. The precursors effects on biomimetic hydroxyapatite ceramic powders.

    Science.gov (United States)

    Yoruç, Afife Binnaz Hazar; Aydınoğlu, Aysu

    2017-06-01

    In this study, effects of the starting material on chemical, physical, and biological properties of biomimetic hydroxyapatite ceramic powders (BHA) were investigated. Characterization and chemical analysis of BHA powders were performed by using XRD, FT-IR, and ICP-AES. Microstructural features such as size and morphology of the resulting BHA powders were characterized by using BET, nano particle sizer, pycnometer, and SEM. Additionally, biological properties of the BHA ceramic powders were also investigated by using water-soluble tetrazolium salts test (WST-1). According to the chemical analysis of BHA ceramic powders, chemical structures of ceramics which are prepared under different conditions and by using different starting materials show differences. Ceramic powders which are produced at 80°C are mainly composed of hydroxyapatite, dental hydroxyapatite (contain Na and Mg elements in addition to Ca), and calcium phosphate sulfide. However, these structures are altered at high temperatures such as 900°C depending on the features of starting materials and form various calcium phosphate ceramics and/or their mixtures such as Na-Mg-hydroxyapatite, hydroxyapatite, Mg-Whitlockit, and chloroapatite. In vitro cytotoxicity studies showed that amorphous ceramics produced at 80°C and ceramics containing chloroapatite structure as main or secondary phases were found to be extremely cytotoxic. Furthermore, cell culture studies showed that highly crystalline pure hydroxyapatite structures were extremely cytotoxic due to their high crystallinity values. Consequently, the current study indicates that the selection of starting materials which can be used in the production of calcium phosphate ceramics is very important. It is possible to produce calcium phosphate ceramics which have sufficient biocompatibility at physiological pH values and by using appropriate starting materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Development of clonal matrices of australian red cedar in different substrates under fertilizer doses Desenvolvimento de matrizes clonais de cedro Australiano em diferentes substratos sob doses de fertilizantes

    Directory of Open Access Journals (Sweden)

    Bruno Peres Benatti

    2012-06-01

    Full Text Available In order to evaluate fertilizers doses in different substrates for growth and development of clonal matrices of Australian Red Cedar [Toona ciliata var. australis (F. Muell. Bahadur], an experiment was conducted in a greenhouse. Five substrates were evaluate, with proportions by volume, the first consisting of 100% of Multiplant florestal®, the second of 50% vermiculite, 20% carbonized rice hulls, 20% soil and 10% coconut fiber, the third with 50% soil and 50% sand, the fourth was composed by 50% Multiplant florestal®, 10% soil and 40% coconut fiber and the fifth with 65% of Multiplant florestal®, 25% vermiculite and 10% carbonized rice hulls. The fertilizers doses applied were 0.0; 0.3; 0.6; 1.2; 2.4 of fertilization suggested by Malavolta (1980 for vases. The characteristics evaluated were: collar diameter of the matrices, production of dry mater by shoots, root system and total and accumulation of nutrients by shoot at the end of the experimental period of 150 days. The Australian Red Cedar plants have high nutritional requirements, as showed by the better development obtained with higher fertilizer doses than those suggested by Malavolta (1980. The substrate three provided the worst development to clonal matrices while the substrates 1, 4 and 5 provided the best environment for the development considering all the fertilizer doses and all variables.Com o objetivo de avaliar diferentes substratos com taxas de fertilizantes para o crescimento e desenvolvimento de matrizes clonais de cedro australiano [Toona ciliata var. australis (F. Muell. Bahadur], foi realizado um experimento em casa de vegetação. Foram avaliados cinco substratos, com as proporções em volume, sendo o primeiro composto por 100% Multiplant florestal®, o segundo de 50% Vermiculita, 20% casca de arroz carbonizada, 20% terra e 10% fibra de coco, o terceiro com 50% terra e 50% areia, o quarto com proporção de 50% Multiplant florestal®, 10% terra e 40% de fibra de coco e

  11. Cyclic mechanical fatigue in ceramic-ceramic composites: an update

    International Nuclear Information System (INIS)

    Lewis, D. III

    1983-01-01

    Attention is given to cyclic mechanical fatigue effects in a number of ceramics and ceramic composites, including several monolithic ceramics in which significant residual stresses should be present as a result of thermal expansion mismatches and anisotropy. Fatigue is also noted in several BN-containing ceramic matrix-particulate composites and in SiC fiber-ceramic matrix composites. These results suggest that fatigue testing is imperative for ceramics and ceramic composites that are to be used in applications subject to cyclic loading. Fatigue process models are proposed which provide a rationale for fatigue effect observations, but do not as yet provide quantitative results. Fiber composite fatigue damage models indicate that design stresses in these materials may have to be maintained below the level at which fiber pullout occurs

  12. Simulation of green roof runoff under different substrate depths and vegetation covers by coupling a simple conceptual and a physically based hydrological model.

    Science.gov (United States)

    Soulis, Konstantinos X; Valiantzas, John D; Ntoulas, Nikolaos; Kargas, George; Nektarios, Panayiotis A

    2017-09-15

    In spite of the well-known green roof benefits, their widespread adoption in the management practices of urban drainage systems requires the use of adequate analytical and modelling tools. In the current study, green roof runoff modeling was accomplished by developing, testing, and jointly using a simple conceptual model and a physically based numerical simulation model utilizing HYDRUS-1D software. The use of such an approach combines the advantages of the conceptual model, namely simplicity, low computational requirements, and ability to be easily integrated in decision support tools with the capacity of the physically based simulation model to be easily transferred in conditions and locations other than those used for calibrating and validating it. The proposed approach was evaluated with an experimental dataset that included various green roof covers (either succulent plants - Sedum sediforme, or xerophytic plants - Origanum onites, or bare substrate without any vegetation) and two substrate depths (either 8 cm or 16 cm). Both the physically based and the conceptual models matched very closely the observed hydrographs. In general, the conceptual model performed better than the physically based simulation model but the overall performance of both models was sufficient in most cases as it is revealed by the Nash-Sutcliffe Efficiency index which was generally greater than 0.70. Finally, it was showcased how a physically based and a simple conceptual model can be jointly used to allow the use of the simple conceptual model for a wider set of conditions than the available experimental data and in order to support green roof design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Flame assisted synthesis of catalytic ceramic membranes

    DEFF Research Database (Denmark)

    Johansen, Johnny; Mosleh, Majid; Johannessen, Tue

    2004-01-01

    Membranes consisting of one or more metal oxides can be synthesized by flame pyrolysis. The general principle behind flame pyrolysis is the decomposition and oxidation of evaporated organo-metallic precursors in a flame, thereby forming metal oxide monomers. Because of the extreme supersaturation...... technology it is possible to make supported catalysts, composite metal oxides, catalytically active surfaces, and porous ceramic membranes. Membrane layers can be formed by using a porous substrate tube (or surface) as a nano-particle filter. The aerosol gas from the flame is led through a porous substrate......, membranes with pore sizes below 5 nm have been produced by this continuous filtration of nano-particles. In this way, top-layers with Knudsen separation have been achieved by a reduction of the pore size of three orders of magnitude within an hour. It has previously been shown that it also is possible...

  14. Fluorinated precursors of superconducting ceramics, and methods of making the same

    Science.gov (United States)

    Wiesmann, Harold; Solovyov, Vyacheslav

    2008-04-22

    This invention provides a method of making a fluorinated precursor of a superconducting ceramic. The method comprises providing a solution comprising a rare earth salt, an alkaline earth metal salt and a copper salt; spraying the solution onto a substrate to provide a film-covered substrate; and heating the film-covered substrate in an atmosphere containing fluorinated gas to provide the fluorinated precursor.

  15. Ceramics like PZT-PMN

    International Nuclear Information System (INIS)

    Droescher, R.E.; Sousa, V.C.; Bergman, C.P.

    2009-01-01

    The goal of this work was to achieve piezoelectric ceramics referring to the system PZT-PMN Pb(Mg 1 / 3 Nb 2 / 3 Zr 0 , 52 Ti 0 , 48 )O 3 . Have been analysed ceramics like 0,65PZT-0,35PMN ((Pb(Mg 0 , 1167 Nb 0 , 2300 Zr 0 , 3380 Ti 0 , 3120 )O 3 ), 0,75PZT-0,25PMN ((Pb(Mg 0 , 083 Nb 0 . 1675 Zr 0 , 3900 Ti 0 , 3600 )O3) and the 0,85PZT-0,15PMN ((Pb(Mg 0,0500 Nb 0 , 1000 Zr 0 , 4420 Ti 0 , 4080 )O 3 ). The influence of the calcination and concentration of PZT on the lattice phases, microstructure and density was evaluated. Then, the method used was the mixed-oxide method, the samples were taken under different temperatures of calcination before the final sinterizing. The DRX and SEM techniques were used to identify the phases formed and analyse the microstructure, respectively. The main result revealed that, the better way is to realize three burns before the final sinterizing at 1200 o C/4 h . Like that, on obtain for sure the average lattice phases, like: perovskite, pyrochlore and PbO and also tend to densify the samples. (author)

  16. Evidence for Substrate Influence on Artificial Substrate Invertebrate Communities.

    Science.gov (United States)

    Phillips, Iain D; Prestie, Kate S

    2017-08-01

    Cobble baskets are frequently used as a tool to measure differences in benthic macroinvertebrate communities between waterbodies; however, underlying differences in substrate type may influence the resultant colonization of baskets, misrepresenting communities. This study tests the hypothesis that cobble basket placement influences the resulting benthic macroinvertebrate community. Cobble basket arrays (n = 4) were deployed in Dog Lake, Saskatchewan, in 2011 (97 d) and 2012 (95 d) on cobble habitats and soft or sandy substrates ∼100 m apart. Baskets placed on cobble substrate had significantly higher Shannon-Weaver diversity relative to those placed on soft substrate in both years, and higher % EPT (Ephemeroptera Plecoptera Trichoptera) in 2011, but total density was not significantly different. Nonmetric multidimensional scaling revealed that the community was different between both treatments, characterized by higher densities of Gammarus lacustris Sars in baskets placed on soft sediment in both years, higher densities of Aeshna sp. and Mystacides sp. on cobble substrate in 2011, and higher densities of Helobdella stagnalis (L.) and Glossophinia complanata (L.) on cobble substrate in 2012. The results were consistent with the hypothesis that baskets placed on cobble substrate versus soft substrate will result in differing community colonization. The resulting recommendation for monitoring and assessment using cobble baskets in lakes is that baskets be placed on comparable substrate type when comparing between lakes, and that cobble beds be chosen as a more appropriate substrate for deployment, as the added habitat complexity of baskets on soft sediment may act as an attractant and not reflect the true community composition of that habitat. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Tick-proof ceramics. Bo dani ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Shimono, F. (Ishizuka Glass Co. Ltd., Nagoya (Japan))

    1993-07-01

    Ishizuka Glass has developed SiO2-B2O3-R2O(RO) based tick-proof ceramics (trade name; Segrocera) in cooperation with Yamato Chemical Industry, insecticide maker. This article is a report on effectiveness of this ceramics. Ticks living indoors are roughly divided into two kinds, namely ticks living in a house itself and ticks which enter the house by parasitizing on animals and plants, and Segrocera has been developed aiming at the former ticks which, irrespective of its kind, need the temperature of 20-30[degree]C and the moisture of 60% or more as its breeding conditions. The tick-proof effect of Segrocera is as excellent as 90-99% and even after keeping its specimen at 75RH for 12 months, it has shown the ratio of inhibiting ticks' breeding of 98-99%. In comparison with that the effect of other tick-proof agent, pyrethroids-based aerosol is limited up to 24 hours, it is the feature of Segrocera that its life is considerably longer. Safety of Segrocera is also very high. 2 refs., 1 fig., 7 tabs.

  18. Power electronics substrate for direct substrate cooling

    Science.gov (United States)

    Le, Khiet [Mission Viejo, CA; Ward, Terence G [Redondo Beach, CA; Mann, Brooks S [Redondo Beach, CA; Yankoski, Edward P [Corona, CA; Smith, Gregory S [Woodland Hills, CA

    2012-05-01

    Systems and apparatus are provided for power electronics substrates adapted for direct substrate cooling. A power electronics substrate comprises a first surface configured to have electrical circuitry disposed thereon, a second surface, and a plurality of physical features on the second surface. The physical features are configured to promote a turbulent boundary layer in a coolant impinged upon the second surface.

  19. AlN-Based Ceramic Patch Antenna-Type Wireless Passive High-Temperature Sensor

    Directory of Open Access Journals (Sweden)

    Dan Yan

    2017-10-01

    Full Text Available An aluminum nitride (AlN based patch antenna-type high-temperature wireless passive sensor is reported to operate as both a sensor and an antenna, which integrates in situ measurement/sensing with remote wireless communication at the same time. The sensor is small, easy to manufacture, highly sensitive and has a high operating temperature; it can be used in high-temperature, chemically corrosive and other harsh environments. The sensing mechanism of the sensor, the dielectric constant of the AlN ceramic substrate, increases with rising temperature, which reduces the resonant frequency of the sensor. Thus, the temperature can be measured by detecting changes in the sensor’s resonant frequency. High-Frequency Simulation Structure (HFSS software is used to determine the structure and size of the sensor, which is then fabricated using thick-film technology. The substrate of the sensor is AlN ceramic due to its outstanding thermal resistance at high temperature; and its conductors (the radiation patch and the ground under the substrate are silver-palladium alloy sintered form silver–palladium paste. A vector network analyzer reveals that the sensor’s operating range extends to 700 °C. Furthermore, its resonant frequency decreases from 2.20 GHz to 2.13 GHz with increasing temperature from room temperature (25 °C to 700 °C, with an absolute sensitivity of 104.77 KHz/°C. Our work verifies the feasibility of measuring high temperatures using AlN-based patch antenna wireless passive temperature sensors, and provides a new material and temperature sensitive structure for high-temperature measurement in harsh environments.

  20. Broadband dielectric response of AlN ceramic composites

    Directory of Open Access Journals (Sweden)

    Iryna V. Brodnikovska

    2014-03-01

    Full Text Available Aluminium nitride (AlN is considered as a substrate material for microelectronic applications. AlN ceramic composites with different amount of TiO2 (up to 4 vol.% were obtained using hot pressing at different sintering temperature from 1700 to 1900 °C. It was shown that milling of the raw AlN powder has strongly influence on sintering and improves densification. Broadband dielectric spectroscopy was used as a nondestructive method for monitoring of the ceramic microstructures. TiO2 additive affects the key properties of AlN ceramics. Thus, porosity of 0.1 %, dielectric permeability of σ = 9.7 and dielectric loss tangent of tanδ = 1.3·10-3 can be achieved if up to 2 vol.% TiO2 is added.

  1. Low-temperature cofire ceramic (LTCC) for extreme external conditions; Low Temperature Cofire Ceramic (LTCC) fuer extreme Belastungen

    Energy Technology Data Exchange (ETDEWEB)

    Albers, S.; Roethlingshoefer, W.; Schaich, J. [Robert Bosch GmbH (Germany)

    2004-03-01

    Electronic systems to be installed in automobile vehicles often have to be implemented on extremely limited space and are subject to high temperature and acceleration stress. Bosch has fully developed a multi-layer ceramic system as a substrate (Low-Temperature Cofire Ceramic - LTCC) and has so far delivered approx. 70 million LTCC substrates for the most diverse electronic control units. Bosch manufactures the LTCC not only for its in-house production, but also supplies these substrates to other companies. This paper describes the applications and the structure of the LTCC and describes the key aspects of reliability and quality. (orig.) [German] Elektronik im Kraftfahrzeug ist oftmals unter extrem engen Bauraeumen bei hoher Temperatur- und Beschleunigsungsbelastung zu realisieren. Als Schaltungstraeger hat Bosch ein Mehrlagenkeramiksystem (Low Temperature Cofire Ceramic - LTCC) zur industriellen Reife entwickelt und bis heute etwa 70 Millionen LTCC-Substrate zum Aufbau verschiedenster elektronischer Steuergeraete geliefert. Im Folgenden werden Einsatzgebiete und Aufbau der LTCC erlaeutert und Aspekte fuer Zuverlaessigkeit und Qualitaet aufgezeigt. (orig.)

  2. Coated ceramic breeder materials

    Science.gov (United States)

    Tam, Shiu-Wing; Johnson, Carl E.

    1987-01-01

    A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

  3. Dense ceramic articles

    International Nuclear Information System (INIS)

    Cockbain, A.G.

    1976-01-01

    A method is described for the manufacture of articles of substantially pure dense ceramic materials, for use in severe environments. Si N is very suitable for use in such environments, but suffers from the disadvantage that it is not amenable to sintering. Some disadvantages of the methods normally used for making articles of Si N are mentioned. The method described comprises mixing a powder of the substantially pure ceramic material with an additive that promotes densification, and which is capable of nuclear transmutation into a gas when exposed to radiation, and hot pressing the mixture to form a billet. The billet is then irradiated to convert the additive into a gas which is held captive in the billet, and it is then subjected to a hot forging operation, during which the captive gas escapes and an article of substantially pure dense ceramic material is forged. The method is intended primarily for use for Si N, but may be applied to other ceramic materials. The additive may be Li or Be or their compounds, to the extent of at least 5 ppm and not more than 5% by weight. Irradiation is effected by proton or neutron bombardment. (UK)

  4. Mechanical and tribological performance of coated ceramic tiles with alumina by thermal spraying process

    Directory of Open Access Journals (Sweden)

    Marilse Araque-Pabón

    2015-07-01

    Full Text Available Mechanical and tribological performance of red clay ceramic tiles uncoated and coated by oxy-fuel thermal spraying process from α-Al2O3 powder was evaluated. The ceramic tile substrates were manufactured by uniaxial pressing at 30 bar pressure, and sintered at 1100°C, while alumina Sulzer-Metco 105SPFTM was used as feedstock powder to elaborate coatings with three different thicknesses. Both, the bending and the deep abrasion resistances were evaluated according to ISO 10545-4 e ISO 10545-6 standards respectively. The results obtained indicate that the deep abrasion in the ceramic tiles decreases when the thickness of alumina coating increases. On the other hand, the bending resistance of ceramic tiles coated increased between 5 and 49% regarding to those uncoated. These results contribute to the development of ceramic products with high value added, which can be used in various technological applications.

  5. Arbuscular mycorrhizal fungi altered the hypericin, pseudohypericin, and hyperforin content in flowers of Hypericum perforatum grown under contrasting P availability in a highly organic substrate.

    Science.gov (United States)

    Lazzara, Silvia; Militello, Marcello; Carrubba, Alessandra; Napoli, Edoardo; Saia, Sergio

    2017-05-01

    St. John's Wort (Hypericum perforatum) is a perennial herb able to produce water-soluble active ingredients (a.i.), mostly in flowers, with a wide range of medicinal and biotechnological uses. However, information about the ability of arbuscular mycorrhizal fungi (AMF) to affect its biomass accumulation, flower production, and concentration of a.i. under contrasting nutrient availability is still scarce. In the present experiment, we evaluated the role of AMF on growth, flower production, and concentration of bioactive secondary metabolites (hypericin, pseudohypericin, and hyperforin) of H. perforatum under contrasting P availability. AMF stimulated the production of aboveground biomass under low P conditions and increased the production of root biomass. AMF almost halved the number of flowers per plant by means of a reduction of the number of flower-bearing stems per plant under high P availability and through a lower number of flowers per stem in the low-P treatment. Flower hyperforin concentration was 17.5% lower in mycorrhizal than in non-mycorrhizal plants. On the contrary, pseudohypericin and hypericin concentrations increased by 166.8 and 279.2%, respectively, with AMF under low P availability, whereas no effect of AMF was found under high P availability. These results have implications for modulating the secondary metabolite production of H. perforatum. However, further studies are needed to evaluate the competition for photosynthates between AMF and flowers at different nutrient availabilities for both plant and AM fungus.

  6. Critical Analysis of Mottling and its Impact on Various Grades of Paper Substrates Printed under Conventional Sheet Fed Offset, Dry Toner & Liquid Toner Based Digital Print Engines

    Directory of Open Access Journals (Sweden)

    Rajendrakumar Anayath

    2016-03-01

    Full Text Available Mottle is one of the print quality factors which highly affect the final print in any printing system. Print mottle is without doubt one of the most important factors regarding visual impression of print quality in any printing system. It is usually the result of uneven ink layer or non-uniform ink absorption across the paper surface and it is more prominently visible in middle tone images or areas of uniform colour such as solids and continuous tone screen images. A mottled picture highly makes the picture smudgy and in most of the cases is not acceptable to the end user. It is required to print photographs with high sharpness and consistently from the very first print to the last print. Mottle pictures can also be observed visually and hence it needs utmost care and attention for enhancing the final print quality. Various types of mottles are generally resulted from the surface characteristics of the substrate, the setting and operation of the printing machines, and the behavior & characteristics of the printing ink.

  7. Post-growth annealing of zinc oxide thin films pulsed laser deposited under enhanced oxygen pressure on quartz and silicon substrates

    International Nuclear Information System (INIS)

    Rusop, M.; Uma, K.; Soga, T.; Jimbo, T.

    2006-01-01

    Zinc oxide (ZnO) thin films have been prepared by pulsed laser deposition (PLD) technique at room temperature on quartz and single crystal silicon (1 0 0) substrates. The oxygen ambient gas pressure was attained at 6 Torr during the deposition. The deposited films were post-growth annealed in air at various annealing temperatures for 30 min. The X-ray diffraction (XRD), optical and electrical properties have been measured to study the properties of the films as a function of annealing temperatures. XRD has shown the strength of (0 0 2) peak increases and FWHM value decreases as the annealing temperatures increases from 200 to 600 deg. C. The post-growth annealed at 600 deg. C show dominant c-axis oriented hexagonal wurtize crystal structure and exhibit high average transmittance about 85% in the visible region and very sharp absorption edge at 376 nm with energy band gap of approximately 3.46 eV. Electrical measurement indicates the resistivity decreases with the annealing temperatures up to 600 deg. C, after which it increases with higher annealing temperatures at 800 deg. C. The complex of oxygen vacancy in the ZnO films may be the source of low conductivity in undoped ZnO films

  8. Magnetic domain-wall motion study under an electric field in a Finemet{sup ®} thin film on flexible substrate

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Ngo Thi [Laboratoire des Sciences des Procédés et des Matériaux, CNRS-Université Paris XIII, 93430 Villetaneuse (France); Mercone, Silvana, E-mail: silvana.mercone@univ-paris13.fr [Laboratoire des Sciences des Procédés et des Matériaux, CNRS-Université Paris XIII, 93430 Villetaneuse (France); Moulin, Johan [Institut d' Electronique Fondamentale, UMR 8622 Université Paris Sud/CNRS, Orsay (France); Bahoui, Anouar El; Faurie, Damien; Zighem, Fatih; Belmeguenai, Mohamed; Haddadi, Halim [Laboratoire des Sciences des Procédés et des Matériaux, CNRS-Université Paris XIII, 93430 Villetaneuse (France)

    2015-01-01

    We study the influence of applied in-plane elastic strains on the static magnetic configuration of a 530 nm magnetostrictive FeCuNbSiB (Finemet{sup ®}) thin film. The in-plane strains are induced via the application of a voltage to a piezoelectric actuator on which the film/substrate system was glued. A quantitative characterization of the voltage dependence of the induced-strain at the surface of the film was performed using a digital image correlation technique. Magnetic Force Microscopy (MFM) images at remanence (H=0 Oe and U=0 V) clearly reveal the presence of weak stripe domains. The effect of the voltage-induced strain shows the existence of a voltage threshold value for the strike configuration break. For a maximum strain of ε{sub XX}∼0.5×10{sup −3} we succeed in destabilizing the stripes configuration helping the setting up of a complete homogeneous magnetic pattern. - Highlights: • Elastic strain effect on the magnetic domain structure of a Finemet/Kapton is investigated. • External loading is applied thanks to a piezo-actuator on which the sample is glued. • The amount of strains was measured by the Digital Image Correlation technique. • Magnetic Force Microscopy showed high mobility of magnetic stripes domains. • Bending, curving and branching of domains go into maze-like pattern.

  9. Ceramic package fabrication for YMP nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Wilfinger, K.

    1994-08-01

    The purpose of this work is to develop alternate materials/design concepts to metal barriers for the Nevada Nuclear Waste Storage Investigations Project. There is some potential that site conditions may prove to be too aggressive for successful employment of the metal alloys under current consideration or that performance assessment models will predict metal container degradation rates that are inconsistent with the goal of substantially complete containment included in the NRC regulations. In the event that the anticipated lifetimes of metal containers are considered inadequate, alternate materials (i.e. ceramics or ceramic/metal composites) will be chosen due to superior corrosion resistance. This document was prepared using information taken from the open literature, conversations and correspondence with vendors, news releases and data presented at conferences to determine what form such a package might take. This discussion presents some ceramic material selection criteria, alternatives for the materials which might be used and alternatives for potential fabrication routes. This includes {open_quotes}stand alone{close_quotes} ceramic components and ceramic coatings/linings for metallic structures. A list of companies providing verbal or written information concerning the production of ceramic or ceramic lined waste containers appears at the end of this discussion.

  10. Influence of resin cement shade on the color and translucency of ceramic veneers

    Directory of Open Access Journals (Sweden)

    Daiana Kelly Lopes HERNANDES

    Full Text Available ABSTRACT Objective This in vitro study evaluated the effect of two different shades of resin cement (RC- A1 and A3 layer on color change, translucency parameter (TP, and chroma of low (LT and high (HT translucent reinforced lithium disilicate ceramic laminates. Material and Methods One dual-cured RC (Variolink II, A1- and A3-shade, Ivoclar Vivadent was applied to 1-mm thick ceramic discs to create thin RC films (100 µm thick under the ceramics. The RC was exposed to light from a LED curing unit. Color change (ΔE of ceramic discs was measured according to CIEL*a*b* system with a standard illuminant D65 in reflectance mode in a spectrophotometer, operating in the light range of 360-740 nm, equipped with an integrating sphere. The color difference between black (B and white (W background readings was used for TP analysis, while chroma was calculated by the formula C*ab=(a*2+b*2½. ΔE of 3.3 was set as the threshold of clinically unacceptable. The results were evaluated by two-way ANOVA followed by Tukey's post hoc test. Results HT ceramics showed higher ΔE and higher TP than LT ceramics. A3-shade RC promoted higher ΔE than A1-shade cement, regardless of the ceramic translucency. No significant difference in TP was noted between ceramic discs with A1- and those with A3-shade cement. Ceramic with underlying RC showed lower TP than discs without RC. HT ceramics showed lower chroma than LT ceramics, regardless of the resin cement shade. The presence of A3-shade RC resulted in higher chroma than the presence of A1-shade RC. Conclusions Darker underlying RC layer promoted more pronounced changes in ceramic translucency, chroma, and shade of high translucent ceramic veneers. These differences may not be clinically differentiable.

  11. Influence of resin cement shade on the color and translucency of ceramic veneers.

    Science.gov (United States)

    Hernandes, Daiana Kelly Lopes; Arrais, Cesar Augusto Galvão; Lima, Erick de; Cesar, Paulo Francisco; Rodrigues, José Augusto

    2016-01-01

    This in vitro study evaluated the effect of two different shades of resin cement (RC- A1 and A3) layer on color change, translucency parameter (TP), and chroma of low (LT) and high (HT) translucent reinforced lithium disilicate ceramic laminates. One dual-cured RC (Variolink II, A1- and A3-shade, Ivoclar Vivadent) was applied to 1-mm thick ceramic discs to create thin RC films (100 µm thick) under the ceramics. The RC was exposed to light from a LED curing unit. Color change (ΔE) of ceramic discs was measured according to CIEL*a*b* system with a standard illuminant D65 in reflectance mode in a spectrophotometer, operating in the light range of 360-740 nm, equipped with an integrating sphere. The color difference between black (B) and white (W) background readings was used for TP analysis, while chroma was calculated by the formula C*ab=(a*2+b*2)½. ΔE of 3.3 was set as the threshold of clinically unacceptable. The results were evaluated by two-way ANOVA followed by Tukey's post hoc test. HT ceramics showed higher ΔE and higher TP than LT ceramics. A3-shade RC promoted higher ΔE than A1-shade cement, regardless of the ceramic translucency. No significant difference in TP was noted between ceramic discs with A1- and those with A3-shade cement. Ceramic with underlying RC showed lower TP than discs without RC. HT ceramics showed lower chroma than LT ceramics, regardless of the resin cement shade. The presence of A3-shade RC resulted in higher chroma than the presence of A1-shade RC. Darker underlying RC layer promoted more pronounced changes in ceramic translucency, chroma, and shade of high translucent ceramic veneers. These differences may not be clinically differentiable.

  12. Novel, Ceramic Membrane System For Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    Elangovan, S.

    2012-12-31

    Separation of hydrogen from coal gas represents one of the most promising ways to produce alternative sources of fuel. Ceramatec, teamed with CoorsTek and Sandia National Laboratories has developed materials technology for a pressure driven, high temperature proton-electron mixed conducting membrane system to remove hydrogen from the syngas. This system separates high purity hydrogen and isolates high pressure CO{sub 2} as the retentate, which is amenable to low cost capture and transport to storage sites. The team demonstrated a highly efficient, pressure-driven hydrogen separation membrane to generate high purity hydrogen from syngas using a novel ceramic-ceramic composite membrane. Recognizing the benefits and limitations of present membrane systems, the all-ceramic system has been developed to address the key technical challenges related to materials performance under actual operating conditions, while retaining the advantages of thermal and process compatibility offered by the ceramic membranes. The feasibility of the concept has already been demonstrated at Ceramatec. This project developed advanced materials composition for potential integration with water gas shift rectors to maximize the hydrogenproduction.

  13. Highly reflective polymeric substrates functionalized utilizing atomic layer deposition

    Science.gov (United States)

    Zuzuarregui, Ana; Coto, Borja; Rodríguez, Jorge; Gregorczyk, Keith E.; Ruiz de Gopegui, Unai; Barriga, Javier; Knez, Mato

    2015-08-01

    Reflective surfaces are one of the key elements of solar plants to concentrate energy in the receivers of solar thermal electricity plants. Polymeric substrates are being considered as an alternative to the widely used glass mirrors due to their intrinsic and processing advantages, but optimizing both the reflectance and the physical stability of polymeric mirrors still poses technological difficulties. In this work, polymeric surfaces have been functionalized with ceramic thin-films by atomic layer deposition. The characterization and optimization of the parameters involved in the process resulted in surfaces with a reflection index of 97%, turning polymers into a real alternative to glass substrates. The solution we present here can be easily applied in further technological areas where seemingly incompatible combinations of polymeric substrates and ceramic coatings occur.

  14. Novel ceramic-polymer composite membranes for the separation of hazardous liquid waste. 1998 annual progress report

    International Nuclear Information System (INIS)

    Cohen, Y.

    1998-01-01

    'This report summarizes the work progress over the last 1.75 years of a 3 year project. The objectives of the project have been to develop a new class of ceramic-supported polymeric membranes that could be tailored-designed for a wide-range of applications in remediation and pollution prevention. To date, a new class of chemically-modified ceramic membranes was developed for the treatment of oil-in-water emulsions and for the pervaporation removal of volatile organics from aqueous systems. These new ceramic-supported polymer (CSP) membranes are fabricated by modifying the pore surface of a ceramic membrane support by a graft polymerization process (Chaimberg and Cohen, 1994). The graft polymerization process consists of activating the membrane surface with alkoxy vinyl silanes onto which vinyl monomers are added via free-radical graft polymerization resulting in a thin surface layer of terminally anchored polymer chains. Reaction conditions are selected based on knowledge of the graft polymerization kinetics for the specific polymer/substrate system. The resultant ceramic-supported polymer (CSP) membrane is a composite structure in which mechanical strength is provided by the ceramic support and the selectivity is determined by the covalently bonded polymer brush layer. Thus, one of the unique attributes of the CSP membrane is that it can be used in environments where the polymer layer is swollen (or even completely miscible) in the mixture to be separated (Castro et al., 1993). It is important to note that the above modification process is carried out under mild conditions (e.g., temperature of about 70 C) and is well suited for large scale commercial application. In a series of studies, the applicability of a polyvinylpyrrolidone CSP membrane was demonstrated for the treatment of oil-in-water emulsion under a variety of flow conditions (Castro et al.,1996). Improved membrane performance was achieved due to minimization of surface adsorption of the oil components

  15. Microstructural properties of BaTiO{sub 3} ceramics and thin films

    Energy Technology Data Exchange (ETDEWEB)

    Fundora C, A.; Portelles, J.J.; Siqueiros, J.M. [Posgrado en Fisica de Materiales, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada. Apartado Postal 2861, 22800 Ensenada, Baja California (Mexico)

    2000-07-01

    A microstructural study of BaTiO{sub 3} ceramics obtained by the conventional ceramic method is presented. Targets were produced to grow BaTiO{sub 3} thin films by pulsed laser deposition on Pt/Ti/Si (100) substrates. X-ray diffraction, Auger Electron Spectroscopy, X-ray Photon Spectroscopy and Scanning Electron Microscopy were used to study the properties of the BaTiO{sub 3} ceramic samples and thin films, as deposited and after an annealing process. (Author)

  16. Nitrogenated compounds' biofiltration under alternative bacterium fixation substrates Biofiltración de compuestos nitrogenados bajo medios de fijación bacteriana alternativos

    Directory of Open Access Journals (Sweden)

    Carlos Carroza

    2012-09-01

    Full Text Available This study compares the behavior of nitrification (NH4+, NO2- and NO3-, and performance, in terms of the surface TAN conversion rate (STR, volumetric TAN conversion rate (VTR and removal percentage of TAN (PTR among three fixation media of nitrifying bacteria (two alternatives (S1, S2 and one commercial (Co. The experiment was performed in two tests of 42 days each. Three isolated biofiltration systems were built for the experience, to which were added media colonized by bacteria as a "seed" to start the process of nitrification. Ammonium chloride (NH4Cl was attached as source of ammonium in reconditioned freshwater, also gradually adding inorganic carbon (HCO3- to maintain moderate water hardness. The average results for both tests indicate that the substrates S1 and S2 show a statistically similar behavior to the substrate Co (P > 0.05 during the first 33 days (until steady state. For the second test in terms of performance, STR values were 0.40, 0.39, 0.39 g TAN m-2 d-1 recorded for S2 and Co respectively; in terms of PRN, values were 92(3 9־/ and 93% for S1, S2 and Co, respectively. Regarding VTR, values of 72.31, 114.94, and 39.02 g TAN m-3 d-1 were recorded for S2 and Co respectively. Statistical analysis provided that for STR and PRN, no significant differences, were found. But for VTR, statistically significant differences between means were evaluated, registering for the S2 media the highest value of VTR.Se compara el comportamiento del proceso de nitrificación (NH4+, NO2- y NO3-, y el rendimiento, en términos de la tasa superficial de conversión de NAT, tasa volumétrica de conversión de NAT y porcentaje de remoción de NAT (PRN entre tres medios de fijación de bacterias nitrificantes, dos alternativos (S1, S2 y uno comercial (Co. La experiencia se realizó en dos pruebas de 42 días cada una. Se construyeron tres sistemas aislados para la experiencia, a los cuales se adicionaron medios colonizados por bacterias a modo de

  17. Application of Hot-wire Method for Measuring Thermal Conductivity of Fine Ceramics

    Directory of Open Access Journals (Sweden)

    Shangxi WANG

    2016-11-01

    Full Text Available Ceramic substrate is preferred in high density packaging due to its high electrical resistivity and moderate expansion coefficient. The thermal conductivity is a key parameter for packaging substrates. There are two common methods to measure the thermal conductivity, which are the hot-wire method and the laser-flash method. Usually, the thermal conductivities of porcelain is low and meet the measurement range of hot-wire method, and the measured value by hot-wire method has little difference with that by laser-flash method. In recent years, with the requirement of high-powered LED lighting, some kinds of ceramic substrates with good thermal conductivity have been developed and their thermal conductivity always measured by the means of laser flash method, which needs expensive instrument. In this paper, in order to detect the thermal conductivity of fine ceramic with convenience and low cost, the feasibility of replacing the laser flash method with hot wire method to measure thermal conductivity of ceramic composites was studied. The experiment results showed that the thermal conductivity value of fine ceramics measured by the hot-wire method is severely lower than that by the laser-flash method. However, there is a positive relationship between them. It is possible to measure the thermal conductivity of fine ceramic workpiece instantly by hot-wire method via a correction formula.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.12543

  18. FORMATION OF ANTIBACTERIAL EFFECT ON CERAMIC TILE SURFACES

    Directory of Open Access Journals (Sweden)

    Selçuk ÖZCAN

    2017-03-01

    Full Text Available Biocidal antimicrobial molecular barrier (BAMB solutions are known to provide antimicrobial effect on the surfaces in industrial applications. However, there has been a lack of scientific reports about the subject in the literature. In this study, in order to impart an antimicrobial surface property on ceramic surfaces, a BAMB solution was applied on gloss fired ceramic wall tile substrates and the surface antimicrobial activity results were compared with that of plain wall tiles (without BAMB application. The ceramic surfaces were cleaned, and stove dried at120°C prior to spray coating with a BAMB solution. The coated substrates were dried in the ambient. The intactness of the coatings was checked with the bromophenol blue test. The microstructural and molecular characterization of the BAMB coated surfaces were carried out with SEM imaging and surface FTIR, respectively. The antimicrobial activity tests of the surfaces were conducted according to ASTM E2180-07 (Standard Test Method for Determining the Activity of Incorporated Antimicrobial Agent in Polymeric or Hydrophobic Materials. The microorganisms used were Staphylococcus aureus (ATCC 6538 and Pseudomonas aeruginosa (ATCC 15442 bacteria. The BAMB coated surfaces showed less flocculent bacterial growth in comparison to uncoated ceramic surfaces leading to the conclusion that the BAMB improved the antimicrobial property.

  19. Experimental study on the penetration effect of ceramics composite projectile on ceramic / A3 steel compound targets

    Directory of Open Access Journals (Sweden)

    Di-qi Hu

    2017-08-01

    Full Text Available In order to improve the penetration of projectiles into ceramic composite armors, the nose of 30 mm standard projectile was replaced by a toughened ceramic nose, and the performance of ceramic-nose projectiles penetrating into ceramic/A3 steel composite targets has been experimentally researched. According to impact dynamics theory,, the performances of 30 mm ceramic-nose projectile and 30 mm standard projectile penetrating into the ceramic/A3 steel composite targets were analyzed and compared using DOP method, especially focusing on the effects made by different nose structures and materials. The aperture and depth of perforation of projectile into the armor plates as well as the residual mass of bullet core under the same conditions were comparatively analyzed. A numerical simulation was built and computed by ANSYS/LS-DYNA. Based on the simulated results, the penetration performance was further analyzed in terms of the residual mass of bullet core. The results show that the ceramic nose has a great effect on the protection of bullet core.

  20. Wonderland of ceramics superplasticity; Ceramics chososei no sekai

    Energy Technology Data Exchange (ETDEWEB)

    Wakai, F. [National Industrial Research Inst. of Nagoya, Nagoya (Japan)

    1995-07-01

    It has been ten years since it was found that ceramics, which is strong and hard at room temperatures and does not deform at all, may exhibit a superplasticity phenomenon at high temperatures that it endlessly elongates when pulled as if it were chewing gum. This phenomenon is one of peculiar behaviours which nano-crystal ceramics, pulverized to an extent that the crystalline particle size is on the order of nanometers, show. The application of superplasticity made the material engineers`s old dream come true that hard ceramics are arbitrarily deformed and machined like metal. Using as models materials such as silicone nitride, alumina and zirconia, this paper describes the history and deformation mechanism of ceramics superplasticity, material design aiming at superplasticization and application of ceramics superplasticity to the machining technology. Furthermore, it describes the trend and future development of international joint researches on the basic surveys on ceramics superplasticity. 25 refs., 11 figs.

  1. Dewetting of liquids on ceramic surfaces at high temperatures.

    Science.gov (United States)

    Ravishankar, N; Gilliss, Shelley R; Carter, C Barry

    2002-08-01

    The influence of surface structure and chemistry on high-temperature dewetting of silicate liquids on ceramic surfaces has been investigated. Model systems based on well-defined crystallography and known chemistry have been used to illustrate the effect of surface roughness and chemistry on the dewetting process. Reconstructed ceramic surfaces provide ideal substrates to study effects of surface roughness. It has been shown that the morphology of dewet droplets depend on the length scale and the crystallography of the facets on the surface. Complex pattern formation due to solute redistribution during dewetting is illustrated in the case of SiO2 dewetting on (001) rutile substrates. The role of kinetics on the dewetting process has also been clarified.

  2. Plasma spraying of bioactive glass-ceramics containing bovine bone

    Directory of Open Access Journals (Sweden)

    Annamária Dobrádi

    2017-06-01

    Full Text Available Natural bone derived glass-ceramics are promising biomaterials for implants. However, due to their price and weak mechanical properties they are preferably applied as coatings on load bearing implants. This paper describes result obtained by plasma spraying of bioactive glass-ceramics containing natural bone onto selected implant materials, such as stainless steel, alumina, and titanium alloy. Adhesion of plasma sprayed coating was tested by computed X-ray tomography and SEM of cross sections. The results showed defect free interface between the coating and substrate, without cracks or gaps. Dissolution rate of the coating in simulated body fluid (SBF was readily controlled by the bone additives (phase composition, as well as microstructure. The SBF treatment of the plasma sprayed coating did not influence the boundary between the coating and substrate.

  3. Processing and optimization of functional ceramic coatings and inorganic nanomaterials

    Science.gov (United States)

    Nyutu, Edward Kennedy G.

    Processing of functional inorganic materials including zero (0-D) dimensional (e.g. nanoparticles), 1-D (nanorods, nanofibers), and 2-D (films/coating) structures is of fundamental and technological interest. This research will have two major sections. The first part of section one focuses on the deposition of silicon dioxide onto a pre-deposited molybdenum disilicide coating on molybdenum substrates for both high (>1000 °C) and moderate (500-600 °C) temperature oxidation protection. Chemical vapor deposition (CVD/MOCVD) techniques will be utilized to deposit the metal suicide and oxide coatings. The focus of this study will be to establish optimum deposition conditions and evaluate the metal oxide coating as oxidation - thermal barriers for Mo substrates under both isothermal (static) and cyclic oxidation conditions. The second part of this section will involve a systematic evaluation of a boron nitride (BN) interface coating prepared by chemical vapor deposition. Ceramic matrix composites (CMCs) are prospective candidates for high (>1000 °C) temperature applications and fiber- matrix interfaces are the dominant design parameters in ceramic matrix composites (CMCs). An important goal of the study is to determine a set of process parameters, which would define a boron nitride (BN) interface coating by a chemical vapor deposition (CVD) process with respect to coating. In the first part of the second section, we will investigate a new approach to synthesize ultrafine metal oxides that combines microwave heating and an in-situ ultrasonic mixing of two or more liquid precursors with a tubular flow reactor. Different metal oxides such as nickel ferrite and zinc aluminate spinels will be studied. The synthesis of metal oxides were investigated in order to study the effects of the nozzle and microwave (INM process) on the purity, composition, and particle size of the resulting powders. The second part of this research section involves a study of microwave frequency

  4. Experimental Investigation on Ductile Mode Micro-Milling of ZrO2 Ceramics with Diamond-Coated End Mills

    Directory of Open Access Journals (Sweden)

    Rong Bian

    2018-03-01

    Full Text Available ZrO2 ceramics are currently used in a broad range of industrial applications. However, the machining of post-sintered ZrO2 ceramic is a difficult task, due to its high hardness and brittleness. In this study, micro-milling of ZrO2 with two kinds of diamond-coated end mills has been conducted on a Kern MMP 2522 micro-milling center (Kern Microtechnik GmbH, Eschenlohe, Germany. To achieve a ductile mode machining of ZrO2, the feed per tooth and depth of cut was set in the range of a few micrometers. Cutting force and machined surface roughness have been measured by a Kistler MiniDynamometer (Kistler Group, Winterthur, Switzerland and a Talysurf 120 L profilometer (Taylor Hobson Ltd., Leicester, UK, respectively. Machined surface topography and tool wear have been examined under SEM. Experiment results show that the material can be removed in ductile mode, and mirror quality surface with Ra low as 0.02 μm can be achieved. Curled and smooth chips have been collected and observed. The axial cutting force Fz is always bigger than Fx and Fy, and presents a rising trend with increasing of milling length. Tool wear includes delamination of diamond coating and wear of tungsten carbide substrate. Without the protection of diamond coating, the tungsten carbide substrate was worn out quickly, resulting a change of tool tip geometry.

  5. Mechanistic Studies of Superplasticity of Structural Ceramics

    Science.gov (United States)

    1992-02-01

    powder suspension, and direct consolida- gy and, correspondingly, strengthening tion of the slurry into a green body using the grain boundary. colloidal...librium, must possess a countercharge which is negative (posi- trolyte. The milled slurry was cast, under a pressure of up to tive). The dopants, in...34Space Charges, Elastic CeO2 -ZrO 2" pp. 147-52 in Materials Science Forum, Vol. 34-36, Ceramic Field and Dipole Contributions to Equilibrium Solute

  6. Experimental Analyses for The Mechanical Behavior of Pressed All-Ceramic Molar Crowns with Anatomical Design

    OpenAIRE

    Porojan Liliana; Porojan Sorin; Rusu Lucian; Boloş Adrian; Savencu Cristina

    2017-01-01

    Ceramic restorations show considerable variation in strength and structural reliability regarding to the type of material, and design characteristics. The fracture of ceramics occurs with little or no plastic deformation, with cracks propagated in an unstable manner under applied tensile stresses. The aim of the study was to assess experimental analyses of pressed monolithic ceramic crowns with anatomical design used in the posterior areas in order to understand their mechanical behavior befo...

  7. Sputtering and surface structure modification of gold thin films deposited onto silicon substrates under the impact of 20–160 keV Ar{sup +} ions

    Energy Technology Data Exchange (ETDEWEB)

    Mammeri, S., E-mail: smammeri@yahoo.fr [Centre de Recherche Nucléaire d’Alger, B.P. 399, 02 Bd. Frantz Fanon, Alger-Gare, Algiers (Algeria); Ouichaoui, S. [Université des Sciences et de la Technologie H. Boumediene (USTHB), Faculté de Physique, Laboratoire SNIRM, B.P. 32, El-Alia, 16111 Bab Ezzouar, Algiers (Algeria); Ammi, H.; Dib, A. [Centre de Recherche Nucléaire d’Alger, B.P. 399, 02 Bd. Frantz Fanon, Alger-Gare, Algiers (Algeria)

    2014-10-15

    Highlights: •Sputter yields were measured for gold thin films under keV Ar{sup +} ion bombardment. •RBS analysis was used to derive energy dependence of sputtering yield. •Surface effects under Ar{sup +} ion irradiation were studied by SEM and XRD analyses. -- Abstract: The induced sputtering and surface state modification of Au thin films bombarded by swift Ar{sup +} ions under normal incident angle have been studied over an energy range of (20–160) keV using three complementary techniques: Rutherford backscattering spectroscopy (RBS), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The sputtering yields determined by RBS measurements using a 2 MeV {sup 4}He{sup +} ion beam were found to be consistent with previous data measured within the Ar{sup +} ion energy region E ⩽ 50 keV, which are thus extended to higher bombarding energies. Besides, the SEM and XRD measurements clearly point out that the irradiated Au film surfaces undergo drastic modifications with increasing the Ar{sup +} ion energy, giving rise to the formation of increasingly sized grains of preferred (1 1 1) crystalline orientations. The relevance of different sputtering yield models for describing experimental data is discussed with invoking the observed surface effects induced by the Ar{sup +} ion irradiation.

  8. Bioactive ceramic coating on orthopedic implants for enhanced bone tissue integration

    Science.gov (United States)

    Aniket

    Tissue integration between bone and orthopedic implant is essential for implant fixation and longevity. An immunological response leads to fibrous encapsulation of metallic implants leading to implant instability and failure. Bioactive ceramics have the ability to directly bond to bone; however, they have limited mechanical strength for load bearing applications. Coating bioactive ceramics on metallic implant offers the exciting opportunity to enhance bone formation without compromising the mechanical strength of the implant. In the present study, we have developed a novel bioactive silica-calcium phosphate nanocomposite (SCPC) coating on medical grade Ti-6Al-4V orthopedic implant using electrophoretic deposition (EPD) and evaluated bone tissue response to the coated implant at the cellular level. The effect of SCPC composition and suspending medium pH on the zeta potential of three different SCPC formulations; SCPC25, SCPC50 and SCPC75 were analyzed. The average zeta potential of SCPC50 in pure ethanol was more negative than that of SCPC25 or SCPC75; however the difference was not statistically significant. Ti-6Al-4V discs were passivated, coated with SCPC50 (200 nm - 10 mum) and thermally treated at 600 - 800 ºC to produce a coating thickness in the range of 43.1 +/- 5.7 to 30.1 +/- 4.6 μm. After treatment at 600, 700 and 800 ºC, the adhesion strength at the SCPC50/Ti-6Al-4V interface was 42.6 +/- 3.6, 44.7 +/- 8.7 and 47.2 +/- 4.3 MPa, respectively. XRD analyses of SCPC50 before and after EPD coating indicated no change in the crystallinity of the material. Fracture surface analyses showed that failure occurred within the ceramic layer or at the ceramic/polymer interface; however, the ceramic/metal interface was intact in all samples. The adhesion strength of SCPC50-coated substrates after immersion in PBS for 2 days (11.7 +/- 3.9 MPa) was higher than that measured on commercially available hydroxyapatite (HA) coated substrates (5.5 +/- 2.7 MPa), although the

  9. Positron annihilation in transparent ceramics

    International Nuclear Information System (INIS)

    Husband, P; Selim, F A; Bartošová, I; Slugeň, V

    2016-01-01

    Transparent ceramics are emerging as excellent candidates for many photonic applications including laser, scintillation and illumination. However achieving perfect transparency is essential in these applications and requires high technology processing and complete understanding for the ceramic microstructure and its effect on the optical properties. Positron annihilation spectroscopy (PAS) is the perfect tool to study porosity and defects. It has been applied to investigate many ceramic structures; and transparent ceramics field may be greatly advanced by applying PAS. In this work positron lifetime (PLT) measurements were carried out in parallel with optical studies on yttrium aluminum garnet transparent ceramics in order to gain an understanding for their structure at the atomic level and its effect on the transparency and light scattering. The study confirmed that PAS can provide useful information on their microstructure and guide the technology of manufacturing and advancing transparent ceramics. (paper)

  10. Ceramic hot-gas filter

    Science.gov (United States)

    Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam

    1999-01-01

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  11. International Engineering Foundation Conference on the Plastic Deformation of Ceramics

    CERN Document Server

    Brookes, Chris; Routbort, Jules

    1995-01-01

    This proceedings volume, "Plastic Deformation of Ceramics," constitutes the papers of an international symposium held at Snowbird, Utah from August 7-12, 1994. It was attended by nearly 100 scientists and engineers from more than a dozen countries representing academia, national laboratories, and industry. Two previous conferences on this topic were held at The Pennsylvania State University in 1974 and 1983. Therefore, the last major international conference focusing on the deformation of ceramic materials was held more than a decade ago. Since the early 1980s, ceramic materials have progressed through an evolutionary period of development and advancement. They are now under consideration for applications in engineering structures. The contents of the previous conferences indicate that considerable effort was directed towards a basic understanding of deformation processes in covalently bonded or simple oxide ceramics. However, now, more than a decade later, the focus has completely shifted. In particular, the...

  12. Development of a thin film vitreous bond based composite ceramic coating for corrosion and abrasion services

    International Nuclear Information System (INIS)

    Franke, B.

    2003-01-01

    IPC has been involved with the Alberta Research Council in developing a vitreous bond (VB) - based composite ceramic fluoropolymer coating technology. Compared to the present state of the art which is based on a hard discontinuous phase (ceramic particles) suspended in a soft continuous matrix (fluoropolymer mix) the novelty of our approach consists of designing a composite system in which both the ceramic and the fluoropolymer phases are continuous. The ceramic matrix will provide the strength and the erosion resistance for the fluoropolymer matrix even at high temperatures. The ceramic formulation employed is not affected by temperatures up to 500 o F while the fluoropolymer matrix provides a corrosion protection seal for the ceramic matrix. The inherent flexibility of the polymer matrix will protect against brittle fractures that may develop by handling or impact. Therefore the composite coating is able to withstand the deformation of the substrate without chipping or disbanding. The fluoropolymer matrix also provides dry lubrication properties further enhancing the erosion resistance of the ceramic phase. The thickness of the coating is very thin, in the 25 to 100 micron range. In summary, the coating technology is able to provide the following features: Corrosion protection levels similar to those of fluoropolymer coatings; Erosion resistance similar to that of ceramic coatings; Price comparable to that of polymer coatings; Exceptional wear resistance properties; and Capability for coating complicated shapes internally or externally or both. This paper will discuss the theory and development of this new technology and the resultant coating and potential properties. (author)

  13. Piezoelectric Ceramics Characterization

    National Research Council Canada - National Science Library

    Jordan, T

    2001-01-01

    ... the behavior of a piezoelectric material. We have attempted to cover the most common measurement methods as well as introduce parameters of interest. Excellent sources for more in-depth coverage of specific topics can be found in the bibliography. In most cases, we refer to lead zirconate titanate (PZT) to illustrate some of the concepts since it is the most widely used and studied piezoelectric ceramic to date.

  14. Advanced ceramic in structural engineering

    OpenAIRE

    Alonso Rodea, Jorge

    2012-01-01

    The work deals with "Advanced Ceramics in Structural Engineering”. Throughout this work we present the different types of ceramic that are currently in wider use, and the main research lines that are being followed. Ceramics have very interesting properties, both mechanical and electrical and refractory where we can find some of the most interesting points of inquiry. Through this work we try tounderstand this complex world, analyzing both general and specific properties of ...

  15. Ceramic with zircon coating

    Science.gov (United States)

    Wang, Hongyu (Inventor)

    2003-01-01

    An article comprises a silicon-containing substrate and a zircon coating. The article can comprise a silicon carbide/silicon (SiC/Si) substrate, a zircon (ZrSiO.sub.4) intermediate coating and an external environmental/thermal barrier coating.

  16. Ion conductivity of nasicon ceramics

    International Nuclear Information System (INIS)

    Hoj, J.W.; Engell, J.

    1989-01-01

    The Nasicon ss ,Na 1 + X Zr 2 Si X P 3 - X O 12 o , X , 3, includes some of the best solid state sodium conductors known today. Compositions in the interval 1.6 , X , 2.6 show conductivities comparable to the best β double-prime-alumina ceramics. It is well known that the ion conductivity of β-alumina is strongly dependent on the texture of the ceramic. Here a similar behavior is reported for Nasicon ceramics. Ceramics of the bulk composition Na 2.94 Zr 1.49 Si 2.20 P 0.80 O 10.85 were prepared by a gel method. The final ceramics consist of Nasicon crystals with x = 2.14 and a glass phase. The grain size and texture of the ceramics were controlled by varying the thermal history of the gel based raw materials and the sintering conditions. The room temperature resistivity of the resulting ceramics varies from 3.65*10 3 ohm cm to 1.23*10 3 ohm cm. Using the temperature comparison method and estimates of the area of grain boundaries in the ceramics, the resistivity of the Nasicon phase is estimated to be 225 ohm cm at 25 degrees C. B 2 O 3 - or Al 2 O 3 -doping of the glass bearing Nasicon ceramic lower the room temperature resistivity by a factor 2 to 5. The dopants do not substitute into the Nasicon phase in substantial amounts

  17. Effects of gene augmentation on the removal of 2,4-dichlorophenoxyacetic acid in a biofilm reactor under different scales and substrate conditions

    Energy Technology Data Exchange (ETDEWEB)

    Quan Xiangchun, E-mail: xchquan@bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Tang Hua; Ma Jingyun [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China)

    2011-01-30

    With a conjugative plasmid pJP4 carrying strain as the donor, two bioaugmentation experiments were conducted in a microcosm biofilm reactor with 2,4-D as the sole carbon source operated in fed-batch mode, and an enlarged lab-scale sequence batch biofilm reactor with mixed carbon sources of 2,4-D and other easily biodegradable compounds, respectively. In the microcosm study under sole carbon source condition, bioaugmentation led to a persistently increased 2,4-D degradation rate in the five operation cycles with enhancement of 13-64%. For the enlarged lab-scale bioaugmentation experiment under mixed carbon source conditions, no enhancement in 2,4-D removal could be observed during start-up period. After a period of operation, biofilm samples from the bioaugmented reactor demonstrated a stronger degradation capacity than the control and showed the presence of a large number of transconjugants. This study indicates that bioaugmentation based on plasmid horizontal transfer is a feasible strategy to establish functional microbial community in a biofilm reactor, and the strong selective pressure of 2,4-D existing alone and persistently was more favorable for the success of gene augmentation.

  18. Inducing bioactivity of dental ceramic/bioactive glass composites by Nd:YAG laser.

    Science.gov (United States)

    Beketova, Anastasia; Poulakis, Nikolaos; Bakopoulou, Athina; Zorba, Triantafillia; Papadopoulou, Lambrini; Christofilos, Dimitrios; Kantiranis, Nikolaos; Zachariadis, George A; Kontonasaki, Eleana; Kourouklis, Gerasimos A; Paraskevopoulos, Konstantinos M; Koidis, Petros

    2016-11-01

    Aims of this study were to investigate the optimal conditions of laser irradiation of a novel Bioactive Glass/Dental Ceramic-BP67 composite for acceleration of hydroxyapatite-HA formation and to assess cellular responses on the precipitated HA region. BP67 (Bioactive Glass: 33.3%, Dental Ceramic: 66.7%) was fabricated by the sol-gel method. A laser assisted biomimetic-LAB process was applied to BP67 sintered specimens immersed in 1.5-times concentrated simulated body fluid-1.5×-SBF. The effect of various energy densities of pulsed nanosecond Nd-YAG (1064nm) laser and irradiation exposure times (30min, 1 and 3h) were evaluated for HA precipitation. The HA film was characterized by FTIR, XRD, SEM and micro Raman techniques. ICP-AES was used for revealing changes in chemical composition of the 1.5×-SBF during irradiation. Cell viability and morphological characteristics of periodontal ligament fibroblasts-PDLFs, human gingival fibroblasts-HGFs and SAOS-2 osteoblasts on the HA surface were evaluated by MTT assays and SEM. At optimal energy fluence of 1.52J/cm 2 and irradiation time for 3h followed by immersion in 1.5×-SBF at 60°C, a dense HA layer was formed on laser-irradiated BP67 within 7 days. The resulting HA film was tightly bonded to the underlying substrate and had mineral composition similar to cementum. MTT assay showed a consistent reduction of cell proliferation on the HA layer in comparison to conventional control ceramic and BP67 for all 3 cell lines studied. These findings suggest LAB is an effective method for acceleration of HA formation on materials with low bioactivity, while cellular responses need further investigation. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Fracture toughness of heat-pressed and layered ceramics.

    Science.gov (United States)

    Ansong, Richard; Flinn, Brian; Chung, Kwok-Hung; Mancl, Lloyd; Ishibe, Motoaki; Raigrodski, Ariel J

    2013-04-01

    Veneering ceramic materials designed to be used with high noble alloy and zirconia-based restorations have been reported to be susceptible to chipping in vivo. The purpose of this study was to evaluate and compare the fracture toughness of heat-pressed and layered ceramics intended for zirconia and high-noble alloy substrates. Bar specimens were fabricated from 8 different ceramics (Ivoclar-Vivadent [I] and Noritake [N]) intended for pressing (P) and layering (L) to high noble alloy (M) and zirconia (Z) substrates, following the ISO 6872 protocol. The single edge notch beam test method was used to create a notch in the center of each specimen, which was then tested with a universal testing machine (n=6, cross-head speed=0.5 mm/min) and the fracture force values recorded. These values were used to calculate the fracture toughness (K1c) for each specimen. Fracture surfaces were examined with a scanning electron microscope, and the basic components of the tested ceramics were determined by using energy dispersive x-ray (EDX) spectroscopy. Data were analyzed with 3-way ANOVA, followed by multiple comparisons using the Holm method (α=.05). The mean (SD) of the calculated fracture toughness values obtained ranged from 1.20 (0.04) MPa·m(1/2) (group NZL) to 1.74 (0.04) MPa·m(1/2) (group IZL). Fracture toughness was significantly higher in group IZL (1.74) than group IZP (1.41), but lower in group NZL (1.20) than group NZP (1.36) (Pceramics used with a metal substrate showed a crystalline structure mixed with a glassy phase pattern on the fracture surface. The results of EDX analysis on the fracture surfaces indicated that the tested ceramics were composed of Si, Al, K, Na, Mg, and oxygen elements. Ceramics used for veneering zirconia substrate may have various fracture toughness values that relate primarily to the processing technique. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  20. Compact Ceramic Microchannel Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Lewinsohn, Charles [Ceramatec, Inc., Salt Lake City, UT (United States)

    2016-10-31

    The objective of the proposed work was to demonstrate the feasibility of a step change in power plant efficiency at a commercially viable cost, by obtaining performance data for prototype, compact, ceramic microchannel heat exchangers. By performing the tasks described in the initial proposal, all of the milestones were met. The work performed will advance the technology from Technology Readiness Level 3 (TRL 3) to Technology Readiness Level 4 (TRL 4) and validate the potential of using these heat exchangers for enabling high efficiency solid oxide fuel cell (SOFC) or high-temperature turbine-based power plants. The attached report will describe how this objective was met. In collaboration with The Colorado School of Mines (CSM), specifications were developed for a high temperature heat exchanger for three commercial microturbines. Microturbines were selected because they are a more mature commercial technology than SOFC, they are a low-volume and high-value target for market entry of high-temperature heat exchangers, and they are essentially scaled-down versions of turbines used in utility-scale power plants. Using these specifications, microchannel dimensions were selected to meet the performance requirements. Ceramic plates were fabricated with microchannels of these dimensions. The plates were tested at room temperature and elevated temperature. Plates were joined together to make modular, heat exchanger stacks that were tested at a variety of temperatures and flow rates. Although gas flow rates equivalent to those in microturbines could not be achieved in the laboratory environment, the results showed expected efficiencies, robust operation under significant temperature gradients at high temperature, and the ability to cycle the stacks. Details of the methods and results are presented in this final report.

  1. Entwicklung und Charakterisierung eines metallischen Substrats für eine nanostrukturierte, keramische Gastrennmembran

    OpenAIRE

    Brands, K.

    2010-01-01

    In order to minimize the further increase of CO2-content in the atmosphere, efforts are made to separate and store CO2 from exhaust gases of fossil power plants. Beside well-established separation techniques like chemical scrubber, the application of membrane technology is intensively investigated. One focus of this thesis is the development of metal supported substrates for microporous ceramic gas separation membranes, which are expected to have a higher mechanical stability than ceram...

  2. Deodorant ceramic catalyst. Dasshu ceramics shokubai

    Energy Technology Data Exchange (ETDEWEB)

    Arai, K. (Kobe Steel Ltd., Kobe (Japan)); Naka, R. (Hitachi Ltd., Tokyo (Japan))

    1993-07-01

    Concerning debromination to be used for the filter of deodorizing device, those of long life and high deodorizing performance are demanded a great deal. As one of this kind of debromination, a deodorant ceramic catalyst (mangantid) has been developed and put for practical use as deodorant for refrigerator. In this article, the information and knowledge obtained by the development of mangantid, the features as well as several properties of the product are stated. The deodorizing methods currently used practically are roughly divided into 6 kinds such as the adsorption method, the direct combustion method, the catalytic method and the oxidation method, but each of them has its own merit and demerit, hence it is necessary to select the method in accordance with the kind of odor and its generating condition. Mangantid is a compound body of high deodorant material in a honeycomb configuration, and has the features that in comparison with the existing deordorants, its pressure loss is smaller, its deodorizing rate is bigger, and acidic, neutral and basic gaseous components can be removed in a well-balanced manner. Deodorization with mangantid has the mechanism to let the odorous component contact and react with the catalyst and change the component to the non-odorous component in the temperature range from room temperature to the low temperature region. 5 refs., 11 figs., 1 tab.

  3. Enhanced Luminescent Properties in Tm3+/Dy3+ Co-doped Transparent Phosphate Glass Ceramic

    OpenAIRE

    Yao L. Q.; Chen G. H.; Zhong H. J.; Cui S. C.; Li F.; Gan J.Y.

    2016-01-01

    Novel Tm3+/Dy3+ co-doped phosphate glass and glass ceramic samples for white light emitting diodes were prepared by melt quenching method. Under 353 nm excitation, the colors of the luminescence of the glass and glass ceramic samples are white. The CIE chromaticity coordinates (0.338, 0.328) of the emission from the glass ceramic is close to the standard white-light illumination (0.333, 0.333). Compared to the glass, the fluorescence intensity in the glass ceramic is greatly enhanced.

  4. Sewage sludge ash characteristics and potential for use in bricks, tiles and glass ceramics.

    Science.gov (United States)

    Lynn, Ciarán J; Dhir, Ravindra K; Ghataora, Gurmel S

    2016-01-01

    The characteristics of sewage sludge ash (SSA) and its use in ceramic applications pertaining to bricks, tiles and glass ceramics have been assessed using the globally published literature in the English medium. It is shown that SSA possesses similar chemical characteristics to established ceramic materials and under heat treatment achieves the targeted densification, strength increases and absorption reductions. In brick and tile applications, technical requirements relating to strength, absorption and durability are achievable, with merely manageable performance reductions with SSA as a partial clay replacement. Fluxing properties of SSA facilitate lower firing temperatures during ceramics production, although reductions in mix plasticity leads to higher forming water requirements. SSA glass ceramics attained strengths in excess of natural materials such as granite and marble and displayed strong durability properties. The thermal treatment and nature of ceramic products also effectively restricted heavy metal leaching to low levels. Case studies, predominantly in bricks applications, reinforce confidence in the material with suitable technical performances achieved in practical conditions.

  5. Influence of surface treatment on bond strength of veneering ceramics fused to zirconia.

    Science.gov (United States)

    Tada, Kouki; Sato, Toru; Yoshinari, Masao

    2012-01-01

    In all-ceramic restorations involving a zirconia framework, surface treatment of the zirconia surface is required to enhance bonding strength with the veneering ceramics and thus prevent chipping. The purpose of the present study was to investigate the influence of surface roughness and heat treatment of the zirconia and use of liner porcelain on bond strength between veneering ceramics and a zirconia framework. Debonding/crack-initiation strength (τb) was determined according to ISO 9693. No significant difference was observed among conditions, except with use of a liner under heat treatment, which yielded a τb of 26.0±2.9-28.9±1.7 MPa. Electron probe microanalysis revealed that components of the veneering ceramics remained on the zirconia surface after debonding, suggesting that fractures occur in the veneering ceramics and that improving the strength of the veneering ceramics themselves might increase bond strength.

  6. Fabrication of silica ceramic membrane via sol-gel dip-coating method at different nitric acid amount

    Science.gov (United States)

    Kahlib, N. A. Z.; Daud, F. D. M.; Mel, M.; Hairin, A. L. N.; Azhar, A. Z. A.; Hassan, N. A.

    2018-01-01

    Fabrication of silica ceramics via the sol-gel method has offered more advantages over other methods in the fabrication of ceramic membrane, such as simple operation, high purity homogeneous, well defined-structure and complex shapes of end products. This work presents the fabrication of silica ceramic membrane via sol-gel dip-coating methods by varying nitric acid amount. The nitric acid plays an important role as catalyst in fabrication reaction which involved hydrolysis and condensation process. The tubular ceramic support, used as the substrate, was dipped into the sol of Tetrethylorthosilicate (TEOS), distilled water and ethanol with the addition of nitric acid. The fabricated silica membrane was then characterized by (Field Emission Scanning Electron Microscope) FESEM and (Fourier transform infrared spectroscopy) FTIR to determine structural and chemical properties at different amount of acids. From the XRD analysis, the fabricated silica ceramic membrane showed the existence of silicate hydrate in the final product. FESEM images indicated that the silica ceramic membrane has been deposited on the tubular ceramic support as a substrate and penetrate into the pore walls. The intensity peak of FTIR decreased with increasing of amount of acids. Hence, the 8 ml of acid has demonstrated the appropriate amount of catalyst in fabricating good physical and chemical characteristic of silica ceramic membrane.

  7. The preparation and characterization of chitin and chitosan under large-scale submerged fermentation level using shrimp by-products as substrate.

    Science.gov (United States)

    Zhang, Hongcai; Yun, Sanyue; Song, Lingling; Zhang, Yiwen; Zhao, Yanyun

    2017-03-01

    The crustacean shells of crabs and shrimps produces quantities of by-products, leading to seriously environmental pollution and human health problems during industrial processing, yet they turned into high-value useful products, such as chitin and chitosan. To prepare them under large-scale submerged fermentation level, shrimp shell powders (SSPs) was fermented by successive three-step fermentation of Serratia marcescens B742, Lactobacillus plantarum ATCC 8014 and Rhizopus japonicus M193 to extract chitin and chitosan based on previously optimal conditions. Moreover, the key parameters was investigated to monitor the changes of resulted products during fermentation process. The results showed that the yield of prepared chitin and chitosan reached 21.35 and 13.11% with the recovery rate of 74.67 and 63.42%, respectively. The degree of deacetylation (DDA) and molecular mass (MM) of produced chitosan were 81.23% and 512.06kDa, respectively. The obtained chitin and chitosan was characterized using Fourier transform infrared spectrometer (FT-IR) and X-ray diffraction (XRD) analysis. The established microbial fermentation method can be applied for the industrial large-scale production of chitin and chitosan, while the use of chemical reagents was significantly reduced. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Optical substrate materials for synchrotron radiation beamlines

    International Nuclear Information System (INIS)

    Howells, M.R.; Paquin, R.A.

    1997-06-01

    The authors consider the materials choices available for making optical substrates for synchrotron radiation beam lines. They find that currently the optical surfaces can only be polished to the required finish in fused silica and other glasses, silicon, CVD silicon carbide, electroless nickel and 17-4 PH stainless steel. Substrates must therefore be made of one of these materials or of a metal that can be coated with electroless nickel. In the context of material choices for mirrors they explore the issues of dimensional stability, polishing, bending, cooling, and manufacturing strategy. They conclude that metals are best from an engineering and cost standpoint while the ceramics are best from a polishing standpoint. They then give discussions of specific materials as follows: silicon carbide, silicon, electroless nickel, Glidcop trademark, aluminum, precipitation-hardening stainless steel, mild steel, invar and superinvar. Finally they summarize conclusions and propose ideas for further research

  9. Optical substrate materials for synchrotron radiation beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Howells, M.R. [Lawrence Berkeley National Lab., CA (United States). Advanced Light Source; Paquin, R.A. [Univ. of Arizona, Tucson, AZ (United States). Optical Sciences Center

    1997-06-01

    The authors consider the materials choices available for making optical substrates for synchrotron radiation beam lines. They find that currently the optical surfaces can only be polished to the required finish in fused silica and other glasses, silicon, CVD silicon carbide, electroless nickel and 17-4 PH stainless steel. Substrates must therefore be made of one of these materials or of a metal that can be coated with electroless nickel. In the context of material choices for mirrors they explore the issues of dimensional stability, polishing, bending, cooling, and manufacturing strategy. They conclude that metals are best from an engineering and cost standpoint while the ceramics are best from a polishing standpoint. They then give discussions of specific materials as follows: silicon carbide, silicon, electroless nickel, Glidcop{trademark}, aluminum, precipitation-hardening stainless steel, mild steel, invar and superinvar. Finally they summarize conclusions and propose ideas for further research.

  10. Substratos na aclimatização de Pfaffia glomerata (Spreng Pedersen produzida in vitro sob diferentes doses de sacarose Substrates in the acclimatization of Pfaffia glomerata (Spreng. Pedersen produced in vitro under different levels of sucrose

    Directory of Open Access Journals (Sweden)

    Etiane Caldeira Skrebsky

    2006-10-01

    Full Text Available Este trabalho teve como objetivo selecionar substratos para a aclimatização de plântulas de Pfaffia glomerata produzidas in vitro sob diferentes concentrações de sacarose. Os tratamentos consistiram de uma combinação bifatorial (5x3 entre cinco doses de sacarose (15, 30, 45, 60 e 75g L-1, presentes no meio de cultura in vitro, e três substratos [Plantmax® Hortaliças, Plantmax® + Solo (1:1 v/v e Vermiculita (granulometria média + Solo (ARGISSOLO VERMELHO Distrófico arênico (1:1 v/v] utilizados na aclimatização ex vitro. Foram realizadas determinações das características físicas e químicas dos substratos, bem como avaliações do crescimento e da sobrevivência das plantas tanto durante o cultivo in vitro como no ex vitro. Plantas provenientes do cultivo in vitro na presença de 45 a 60g L-1 de sacarose apresentaram melhor aclimatização ex vitro. As combinações dos substratos Vermiculita + solo (1:1 v/v e Plantmax® + solo (1:1 v/v proporcionaram maior crescimento às plantas durante a última fase de aclimatização (cultivo sob sombrite, provavelmente devido a possuírem maior porosidade total. Entretanto, o uso isolado de Plantmax® aumentou a sobrevivência das plantas cultivadas a campo, fato relacionado a esse substrato possuir os maiores valores de capacidade de retenção de água, de água facilmente disponível e de água disponível.This work was aimed at selecting substrates on the ex vitro acclimatization of Pfaffia glomerata produced in vitro under different sucrose levels. The treatments consisted of a bifactorial combination (5x3 between five sucrose levels (15, 30, 45, 60, and 75g L-1, present in the in vitro culture, and three substrates [Plantmax®; Plantmax® + soil (1:1 v/v, and vermiculite (middle size + soil (Paleudalf (1:1 v/v] used in the ex vitro acclimatization steps. Physical and chemical evaluations of the substrates were carried out as well as evaluations of plant growth and survival for both

  11. DEVELOPMENT OF A CERAMIC TAMPER INDICATING SEAL: SRNL CONTRIBUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Krementz, D.; Brinkman, K.; Martinez-Rodriguez, M.; Mendez-Torres, A.; Weeks, G.

    2013-06-03

    Savannah River National Laboratory (SRNL) and Sandia National Laboratories (SNL) are collaborating on development of a Ceramic Seal, also sometimes designated the Intrinsically Tamper Indicating Ceramic Seal (ITICS), which is a tamper indicating seal for international safeguards applications. The Ceramic Seal is designed to be a replacement for metal loop seals that are currently used by the IAEA and other safeguards organizations. The Ceramic Seal has numerous features that enhance the security of the seal, including a frangible ceramic body, protective and tamper indicating coatings, an intrinsic unique identifier using Laser Surface Authentication, electronics incorporated into the seal that provide cryptographic seal authentication, and user-friendly seal wire capture. A second generation prototype of the seal is currently under development whose seal body is of Low Temperature Co-fired Ceramic (LTCC) construction. SRNL has developed the mechanical design of the seal in an iterative process incorporating comments from the SNL vulnerability review team. SRNL is developing fluorescent tamper indicating coatings, with recent development focusing on optimizing the durability of the coatings and working with a vendor to develop a method to apply coatings on a 3-D surface. SRNL performed a study on the effects of radiation on the electronics of the seal and possible radiation shielding techniques to minimize the effects. SRNL is also investigating implementation of Laser Surface Authentication (LSA) as a means of unique identification of each seal and the effects of the surface coatings on the LSA signature.

  12. Integration Science and Technology of Advanced Ceramics for Energy and Environmental Applications

    Science.gov (United States)

    Singh, M.

    2012-01-01

    The discovery of new and innovative materials has been known to culminate in major turning points in human history. The transformative impact and functional manifestation of new materials have been demonstrated in every historical era by their integration into new products, systems, assemblies, and devices. In modern times, the integration of new materials into usable products has a special relevance for the technological development and economic competitiveness of industrial societies. Advanced ceramic technologies dramatically impact the energy and environmental landscape due to potential wide scale applications in all aspects of energy production, storage, distribution, conservation, and efficiency. Examples include gas turbine propulsion systems, fuel cells, thermoelectrics, photovoltaics, distribution and transmission systems based on superconductors, nuclear power generation, and waste disposal. Robust ceramic integration technologies enable hierarchical design and manufacturing of intricate ceramic components starting with geometrically simpler units that are subsequently joined to themselves and/or to metals to create components with progressively higher levels of complexity and functionality. However, for the development of robust and reliable integrated systems with optimum performance under different operating conditions, the detailed understanding of various thermochemical and thermomechanical factors is critical. Different approaches are required for the integration of ceramic-metal and ceramic-ceramic systems across length scales (macro to nano). In this presentation, a few examples of integration of ceramic to metals and ceramic to ceramic systems will be presented. Various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Potential opportunities and need for the development of innovative design philosophies, approaches, and

  13. Effect of ceramic thickness and shade on mechanical properties of a resin luting agent.

    Science.gov (United States)

    Passos, Sheila Pestana; Kimpara, Estevão Tomomitsu; Bottino, Marco Antonio; Rizkalla, Amin S; Santos, Gildo Coelho

    2014-08-01

    This study aimed to investigate the influence of ceramic thickness and shade on the Knoop hardness and dynamic elastic modulus of a dual-cured resin cement. Six ceramic shades (Bleaching, A1, A2, A3, A3.5, B3) and two ceramic thicknesses (1 mm, 3 mm) were evaluated. Disk specimens (diameter: 7 mm; thickness: 2 mm) of the resin cement were light cured under a ceramic block. Light-cured specimens without the ceramic block at distances of 1 and 3 mm were also produced. The Knoop hardness number (KHN), density, and dynamic Young's moduli were determined. Statistical analysis was conducted using ANOVA and a Tukey B rank order test (p = 0.05). The bleaching 1-mm-thick group exhibited significantly higher dynamic Young's modulus. Lower dynamic Young's moduli were observed for the 3-mm-thick ceramic groups compared to bleaching 3-mm-thick group, and no difference was found among the other 3-mm groups. For the KHN, when A3.5 3-mm-thick was used, the KHN was significantly lower than bleaching and A1 1-mm-thick ceramic; however, no difference was exhibited between the thicknesses of the same shade. The dual-cured resin cement studied irradiated through the 1-mm-thick ceramic with the lightest shade (bleaching ceramic) exhibited a better elastic modulus, and there was no effect in KHN of the resin cement when light cured under different ceramic shades and thicknesses (1 and 3 mm), except when the A3.5 3-mm-thick ceramic was used. Variolink II irradiated through ceramic with the lowest chroma exhibited the highest elastic modulus; therefore, the light activation method might not be the same for all clinical situations. © 2014 by the American College of Prosthodontists.

  14. Science and Technology of Ceramics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 12. Science and Technology of Ceramics - Functional Ceramics. Sheela K Ramasesha. Series Article Volume 4 Issue 12 December 1999 pp 21-30. Fulltext. Click here to view fulltext PDF. Permanent link:

  15. Science and Technology of Ceramics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 8. Science and Technology of Ceramics - Traditional Ceramics. Sheela K Ramasesha. Series Article Volume 4 Issue 8 August 1999 pp 16-24. Fulltext. Click here to view fulltext PDF. Permanent link:

  16. Micromolding for ceramic microneedle arrays

    NARCIS (Netherlands)

    van Nieuwkasteele-Bystrova, Svetlana Nikolajevna; Lüttge, Regina

    2011-01-01

    The fabrication process of ceramic microneedle arrays (MNAs) is presented. This includes the manufacturing of an SU-8/Si-master, its double replication resulting in a PDMS mold for production by micromolding and ceramic sintering. The robustness of the replicated structures was tested by means of

  17. Improved Tensile Test for Ceramics

    Science.gov (United States)

    Osiecki, R. A.

    1982-01-01

    For almost-nondestructive tensile testing of ceramics, steel rod is bonded to sample of ceramic. Assembly is then pulled apart in conventional tensile-test machine. Test destroys only shallow surface layer which can be machined away making specimen ready for other uses. Method should be useful as manufacturing inspection procedure for low-strength brittle materials.

  18. Ceramic membranes for gas separation

    Energy Technology Data Exchange (ETDEWEB)

    Vincente-Mingarro, I.M. de; Pitarch, J.A. [Tecnologia y Gestion de la Innovacion, Madrid (Spain)

    1998-11-01

    The project is being carried out jointly by TGI, S.A., CIEMAT and CSIC-ICM to develop and evaluate new inorganic membranes of a ceramic type, with nanometric pore size for separation of contaminants and fuel enrichment, in gas mixtures from coal gasification. In order to achieve both the highest active and selective surface, a candle (150 mm length and 60 mm in diameter), with 30-40 % porosity and pore sizes of {lt}1 {mu}m was developed. The processing steps include the slip-casting of the first layer (porous support) in a way than after thermal treatment (1400-1600{degree}C) the desirable shape dimensions, strength, porosity and pore size were obtained. Then the support was dipped successively (colloidal filtration over the casting porous piece) in an appropriate suspension of alumina with lower grain size. The top layer was obtained by the sol-gel process so that through successive setting and heat treatment the pores were reduced to the nanometre size. CVD and CVI techniques were set up to develop membranes for gas separation with a high selectivity level. Experimental chemical infiltration `Membranes Development` on porous substrates has been achieved on disk and candle-shaped materials. Characterisation was by spectrophotometry (IRS). Kinetic studies of coating in order to find out reproducible conditions at low temperature were also carried out. Uniform recovery over the whole membrane surface is wanted. The CIEMAT`s Hot Gas Separation Plant (HGSP) works with gas mixtures at a maximum design temperature 773 K and pressures up to 50 bar. It comprises: a gas supply unit equipped with flow, temperature and pressure measuring and control systems; a heating system within the membrane which must be leak proof for high pressures; and an in-line gas chromatography system thus allowing the chemical composition of the gas entering, permeated and retained to be measured. 7 figs.

  19. Metals and Ceramics Division Materials Science Program. Annual progress report for period ending December 31, 1982

    International Nuclear Information System (INIS)

    McHargue, C.J.

    1983-05-01

    This report summarizes the activities of the Materials Sciences Program in the Metals and Ceramics Division. These activities constitute about one-fourth of the research and development conducted by the division. The major elements of the Materials Sciences Program can be grouped under the areas of (1) structural characterization, (2) high-temperature alloy studies, (3) structural ceramics, and (4) radiation effects

  20. Ceramic Stationary Gas Turbine Development. Technical progress report, April 1, 1993--October 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    This report summarizes work performed by Solar Technologies Inc. and its subcontractors, during the period April 1, 1993 through October 31, 1994 under Phase II of the DOE Ceramic Stationary Gas Turbine Development program. The objective of the program is to improve the performance of stationary gas turbines in cogeneration through the implementation of selected ceramic components.

  1. Metals and Ceramics Division Materials Science Program. Annual progress report for period ending December 31, 1982

    Energy Technology Data Exchange (ETDEWEB)

    McHargue, C.J. (comp.)

    1983-05-01

    This report summarizes the activities of the Materials Sciences Program in the Metals and Ceramics Division. These activities constitute about one-fourth of the research and development conducted by the division. The major elements of the Materials Sciences Program can be grouped under the areas of (1) structural characterization, (2) high-temperature alloy studies, (3) structural ceramics, and (4) radiation effects.

  2. Ceramic Adhesive and Methods for On-Orbit Repair of Re-Entry Vehicles

    Science.gov (United States)

    Riedell, James A.; Easler, Timothy E.

    2013-01-01

    This adhesive is capable of repairing damaged leading edge components of reentry vehicles while in space, and is novel with regard to its ability to be applied in the vacuum of space, and in a microgravity environment. Once applied, the adhesive provides thermal and oxidation protection to the substrate (in this case, reinforced carbon/carbon composites, RCCs) during re-entry of a space vehicle. Although there may be many formulations for repair adhesives, at the time of this reporting, this is the first known adhesive capable of an on-orbit repair. The adhesive is an engineered ceramic material composed of a pre-ceramic polymer and refractory powders in the form of a paste or putty that can be applied to a scratched, cracked, or fractured composite surface, covering and protecting the damaged area. The adhesive is then "cured" with a heat cycle, thereby cross-linking the polymer into a hardened material and bonding it to the substrate. During the heat of reentry, the material is converted to a ceramic coating that provides thermal and oxidative stability to the repaired area, thus allowing the vehicle to pass safely from space into the upper atmosphere. Ceramic powders such as SiC, ZrB2 and Y2O3 are combined with allylhydridopolycarbosilane (AHPCS) resin, and are mixed to form a paste adhesive. The material is then applied to the damaged area by brush, spatula, trowel, or other means to fill cracks, gaps, and holes, or used to bond patches onto the damaged area. The material is then cured, in a vacuum, preferably at 250F (approximately equal to 121C) for two hours. The re-entry heating of the vehicle at temperatures in excess of 3,000F (approximately equal to 1,650C) then converts this material into a ceramic coating. This invention has demonstrated advantages in resistance to high temperatures, as was demonstrated in more than 100 arc-jet tests in representative environments at NASA. Extensive testing verified oxidation protection for the repaired substrate (RCC

  3. Low thermal expansion glass ceramics

    CERN Document Server

    1995-01-01

    This book is one of a series reporting on international research and development activities conducted by the Schott group of companies With the series, Schott aims to provide an overview of its activities for scientists, engineers, and managers from all branches of industry worldwide where glasses and glass ceramics are of interest Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated This volume describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization Thus glass ceramics with thermal c...

  4. Advanced device for testing the electrical behavior of conductive coatings on flexible polymer substrates under oscillatory bending: comparison of coatings of sputtered indium-tin oxide and poly3,4ethylenedioxythiophene

    International Nuclear Information System (INIS)

    Königer, Tobias; Münstedt, Helmut

    2008-01-01

    A special device was designed and set up to investigate the electrical behavior of conductive layers on flexible substrates under oscillatory bending. The resistance of conductive coatings can be measured during various oscillatory bending conditions. The bending radius, the amplitude and the frequency can be set to well-defined values. Furthermore, the setup allows us to apply tensile or compressive stress to the coating as well as both stresses alternately. Thus, various bending loads occurring in printable electronics applications can be simulated to investigate the electrical reliability of conductive coatings. In addition, it is possible to simulate different environmental conditions during oscillatory bending by running the device in an environmental chamber. Characterizations of the electrical behavior under oscillatory bending were carried out on commercially available polyethyleneterephthalate (PET) films sputtered with indium-tin oxide (ITO) and coated with poly3,4ethylenedioxythiophene (PEDOT). For coatings of sputtered ITO, a dramatic increase of the resistance is observed for bending radii smaller than 14 mm due to cracks spanning the whole sample width. The higher the amplitude, the more pronounced is the increase of the resistance. Coatings of PEDOT show high stability under oscillatory bending. There is no change in resistance observed for all bending radii and amplitudes applied over a large number of cycles

  5. Zirconia based ceramics

    International Nuclear Information System (INIS)

    Bressiani, J.C.; Bressiani, A.H.A.

    1989-05-01

    Within the new generation of ceramic materials, zirconia continues to attract ever increasing attention of scients, technologists and users by virtue of its singular combination of properties and being able to perform thermo-mechanical, electroeletronic, chemico-biological functions. Nevertheless, in order to obtain these properties, a through understanding of the phase transformation mechanisms and microstructural changes is necessary. This paper discusses the main parameters that require control during fabrication of these materials to obtain desired properties for a specific application. (author) [pt

  6. Transformation Toughening of Ceramics

    Science.gov (United States)

    1992-03-01

    irilugal Coimoi’datiio of Ai:0, and Al.O,/ZrO1 Compositte Slurries vit December 1991 Enhanced Fracture Toughness in Layered Microcomposites of Ce-ZrOz and...34 Nature (London), 258, 703-705 (1975). 2. K.E. Tsukuma and M. Shimada, *Strength, Fracture Toughness, and Vickers Hardness of CeO2 -Stabilized Tetragonal...Transformation Plasticity of CeO2 -stabllized Tetragonal Zirconia Polycrystals and I Stress Assistance and Autocatalysis," 3. Am. Ceram. Soc. 72(5] 343-53

  7. Zirconia based ceramics

    International Nuclear Information System (INIS)

    Bressiani, J.C.; Bressiani, A.H.A.

    1988-01-01

    Within the new generation of ceramic materials, zirconia continues to attract ever increasing attention of scientists, technologists and users by virtue of its singular combination of properties and being able to perform thermo-mechanical, electro-electronic, chemico-biological functions. Nevertheless, in order to obtain these properties, a through understanding of the phase transformation mechanisms and microstructural changes is necessary. This paper discusses the main parameters that require control during fabrication of these materials to obtain desired properties for a specific application. (author) [pt

  8. Indentation Damage in Ceramics.

    Science.gov (United States)

    1987-05-30

    resistance have finer grain sizes (cf. A999 and Vistal ). Most interesting, however, is the quantitative correlation between grinding resistance and...a 0.1 3 4.3 2.2 Vistal I a 0.1 20 4.1 1.7 Vistal 1, a 0.1 40 4.6 1.5 Glass-ceramic Pyroceram c - 1.5 2.3 2.0 Macor C _ 13 2.3 1.0 a. Coors Porcelain

  9. Tribology of Ceramics

    Science.gov (United States)

    1988-01-01

    techniques that do not require a vacuum (e.g., optical techniques such as FTIR , Raman, etc.). a Explore methods such as the use of a small spot...not require a vacuum (e.g., optical techniques such as FTIR , Raman, etc.). 0 Explore methods such as the use of a small spot ESCA device with an... inden - tation of ceramics. J. Mat. Sci., Vol. 16, pp. 1177-1182. Oh, H. L., and I. Finnie. 1966. An analysis of rock drilling by erosion. Proc. 1st Cong

  10. Ceramic Matrix Composite (CMC) Materials Characterization

    Science.gov (United States)

    Calomino, Anthony

    2001-01-01

    Under the former NASA EPM Program, much initial progress was made in identifying constituent materials and processes for SiC/SiC ceramic composite hot-section components. This presentation discusses the performance benefits of these approaches and elaborates on further constituent and property improvements made under NASA UEET. These include specific treatments at NASA that significantly improve the creep and environmental resistance of the Sylramic(TM) SiC fiber as well as the thermal conductivity and creep resistance of the CVI Sic matrix. Also discussed are recent findings concerning the beneficial effects of certain 2D-fabric architectures and carbon between the BN interphase coating and Sic matrix.

  11. Ceramic Matrix Composite (CMC) Materials Development

    Science.gov (United States)

    DiCarlo, James

    2001-01-01

    Under the former NASA EPM Program, much initial progress was made in identifying constituent materials and processes for SiC/SiC ceramic composite hot-section components. This presentation discusses the performance benefits of these approaches and elaborates on further constituent and property improvements made under NASA UEET. These include specific treatments at NASA that significantly improve the creep and environmental resistance of the Sylramic(TM) Sic fiber as well as the thermal conductivity and creep resistance of the CVI Sic matrix. Also discussed are recent findings concerning the beneficial effects of certain 2D-fabric architectures and carbon between the BN interphase coating and Sic matrix.

  12. Study on the performance of ceramic composite projectile penetrating into ceramic composite target

    Directory of Open Access Journals (Sweden)

    Rong-cheng Yi

    2017-08-01

    Full Text Available In order to study the performance of ceramic composite projectile penetrating into ceramic composite target, the contrast test and numerical simulations of the penetration of standard projectile and the ceramic composite projectile into a ceramic composite target were conducted. The results show that the penetration performance of ceramic composite projectile is obvious superior to that of standard projectile for ceramic composite target. The ceramic nose of ceramic composite projectile fully destroys the ceramic panels anterior to its following armor-piercing projectile body, thus maintaining the penetration ability of the following armor-piercing projectile body.

  13. Method of forming a ceramic matrix composite and a ceramic matrix component

    Science.gov (United States)

    de Diego, Peter; Zhang, James

    2017-05-30

    A method of forming a ceramic matrix composite component includes providing a formed ceramic member having a cavity, filling at least a portion of the cavity with a ceramic foam. The ceramic foam is deposited on a barrier layer covering at least one internal passage of the cavity. The method includes processing the formed ceramic member and ceramic foam to obtain a ceramic matrix composite component. Also provided is a method of forming a ceramic matrix composite blade and a ceramic matrix composite component.

  14. Nano-ceramics and its molding technologies

    International Nuclear Information System (INIS)

    Liu Jian; Xu Yunshu

    2007-01-01

    Nano-ceramics and its related knowledge were introduced. Fabrication of nano-ceramic powder, as well as the molding and sintering technologies of nano-ceramics were reviewed. Features of the present molding technologies were analyzed. The applications of nano-ceramics were prospected. (authors)

  15. Preparation of 147Pm ceramic source core

    International Nuclear Information System (INIS)

    Mielcarski, M.

    1989-01-01

    Preparation of ceramic pellets containing fixed promethium-147 is described. Incorporation rate of 147 Pm into the ceramic material was determined. The leachability and vaporization of promethium from the obtained ceramics was investigated. The ceramic pellets prepared by the described procedure, mounted in special holders, can be applied as point sources in beta backscatter thickness gauges. (author)

  16. Soudage par explosion thermique sous charge de cermets poreux à base de TiC-Ni sur substrat en acier-comportement tribologique Welding of porous TiC–Ni based cermets on substrate steel by thermal explosion under load-tribological behaviour

    Directory of Open Access Journals (Sweden)

    Lemboub Samia

    2013-11-01

    Full Text Available Dans ce travail, nous nous intéressons à l'élaboration de cermets à base de TiC-Ni par dispersion de particules de carbures, oxydes ou borures dans une matrice de nickel, grâce à la technique de l'explosion thermique sous une charge de 20 MPa. La combustion de mélanges actifs (Ti-C-Ni-An où An = Al2O3, MgO, SiC, TiB2, WC, basée sur la réaction de synthèse de TiC (ΔHf298K = −184 kJ/mole, génère des cermets complexes. Un court maintien sous charge du cermet à 1373 K, après l'explosion thermique, permet son soudage sur un substrat en acier XC55. Les cermets obtenus dans ces conditions demeurent poreux et conservent une porosité de l'ordre de 25–35 %. La densité relative du cermet, sa dureté et son comportement tribologique, dépendront de la nature de l'addition dans les mélanges de départ. Porous TiC-Ni based cermets were obtained by dispersion of carbides, oxides or borides particles in a nickel matrix thanks to the thermal explosion technique realized under a load of 20 MPa. The combustion of active mixtures (Ti-C-Ni-An where An = Al2O3, MgO, SiC, TiB2 or WC based on the titanium carbide reaction synthesis (ΔHf = −184 kJ/mol, generates porous complex cermets. After the thermal explosion, a short maintenance under load at 1373 K of the combustion product, allows at the same time the cermets welding on a carbon steel substrate. The obtained cermets under these conditions preserve a porosity of about 25–35%. The relative density, hardness and tribological behaviour of the complex cermets depend on the additions nature (An in the starting mixtures.

  17. An Innovative Ceramic Corrosion Protection System for Zircaloy Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Ronald H. Baney, Dr. D. Butt, Dr. P. Demkowicz, Dr. G. Fuchs Department of Materials Science; James S. Tulenko, Department of Nuclear and Radiological Engineering; University of Florida.

    2003-02-19

    Light Water reactor (LWR) fuel performance is currently limited by thermal, chemical and mechanical constraints associated with the design, fabrication, and operation of the fuel in incore operation. Corrosion of the zirconium based (Zircaloy-4) alloy cladding of the fuel is a primary limiting factor. Recent success at the University of Florida in developing thin ceramic films with great adhesive properties for metal substrates offers an innovative breakthrough for eliminating a major weakness of the Zircaloy clad. ?The University of Florida proposes to coat the existing Zircaloy clad tubes with a ceramic coating for corrosion protection. An added bonus of this approach would be the implementation of a boron-containing burnable poison outer layer will also be demonstrated as part of the ceramic coating development. In this proposed effort, emphasis will be on the ceramic coating with only demonstration of feasibility on the burnable outer coating approach. This proposed program i s expected to give a step change (approximately a doubling) in clad lifetime before failure due to corrosion. In the development of ceramic coatings for Zircaloy-4 clad, silicon carbide and zirconium carbide coatings will first be applied to Zircaloy-4 coupons and cladding samples by thermal assisted chemical vapor deposition, plasma assisted chemical vapor deposition or by laser ablation deposition. All of these processes are in use at the University of Florida and have shown great potential. The questions of adhesion and thermal expansion mismatch of the ceramic coating to the Zircaloy substrate will be addressed. Several solutions to these conditions will be examined, if needed. These solutions include the use of a zirconium oxide compliant layer, employment of a laser roughened surface and the use of a gradient composition interlayer. These solutions have already been shown to be effective for other high modulus coatings on metal substrates. Mechanical properties and adhesion of the

  18. Ceramic fiber reinforced filter

    Science.gov (United States)

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  19. Ceramics and magnetohydrodynamics

    International Nuclear Information System (INIS)

    Yvars, M.

    1982-01-01

    The principle of MHD conversion using ionized gases is briefly recalled. The enthalpy and temperature of the gas at the outlet of the MHD nozzle are still very high, so it is therefore essential to use this heat with care, by associating the MHD generator with a conventional steam or gas thermal unit (''head cycle''). The block diagrams of the open or closed cycles are particularly examined. The main difficulties of the MHD cycles are summed up. Closer interest is given to those relating to the alkaline seed cycle before moving on to the technology of the high temperature exchanger and the MHD nozzle. The use of MHD at the industrial stage is confronted with the problem of developing ceramics that operate at high temperatures, with significant thermal gradients. The ceramics for insulating walls, for conducting electrodes and those used for thermal exchangers are examined in turn. The article ends with a brief review of the progress of MHD work in the world [fr

  20. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2003-01-01

    In the present quarter, the possibility of using a more complex interfacial engineering approach to the development of reliable and stable oxygen transport perovskite ceramic membranes/metal seals is discussed. Experiments are presented and ceramic/metal interactions are characterized. Crack growth and fracture toughness of the membrane in the reducing conditions are also discussed. Future work regarding this approach is proposed are evaluated for strength and fracture in oxygen gradient conditions. Oxygen gradients are created in tubular membranes by insulating the inner surface from the reducing environment by platinum foils. Fracture in these test conditions is observed to have a gradient in trans and inter-granular fracture as opposed to pure trans-granular fracture observed in homogeneous conditions. Fracture gradients are reasoned to be due to oxygen gradient set up in the membrane, variation in stoichiometry across the thickness and due to varying decomposition of the parent perovskite. The studies are useful in predicting fracture criterion in actual reactor conditions and in understanding the initial evolution of fracture processes.

  1. Correlation between ceramics translucency and polymerization efficiency through ceramics.

    Science.gov (United States)

    Ilie, Nicoleta; Hickel, Reinhard

    2008-07-01

    The aim of this study was to analyse the effects of curing with a high intensity curing unit for different exposure times, for different ceramic types, thicknesses and corresponding different ceramic translucencies. The relationship between ceramic translucency and hardness, as well as the critical translucency value for sufficient curing were also determined. All these effects were expressed in terms of Vickers hardness measured with an automatic micro hardness indenter on thin luting composite films (Variolink II), stored for 24h in distilled water at 37 degrees C. Two preliminary studies determined the time necessary to achieve maximum hardness in the luting composite, with and without an additional chemical catalyst. The main study aimed to estimate the effect on luting composite hardness, without an additional chemical catalyst, of the following parameters: curing time (5, 10 and 15s), ceramic thickness (0.5, 1, 2 and 3mm), ceramic type (two leucite-reinforced and two lithium disilicate glass-ceramics) and ceramic translucency (TP), measured using a reflection spectrophotometer as a function of wavelength. The minimum curing time necessary to achieve maximum hardness in the luting composite was 15s for both groups, with and without an additional chemical catalyst. However, dual curing caused a hardness enhancement of ca. 50%. The two leucite-reinforced glass-ceramics did not reduced the hardness of the luting composite up to a ceramic thickness of 2mm, whereas the more dense lithium disilicate glass-ceramics had already caused this effect at a thickness of 1mm. ANOVA analyses revealed that the greatest effect on the luting composite hardness resulted from the curing time (eta square=0.62) followed by translucency (eta square=0.32 TP650 nm and 0.28 for TP470 nm), ceramic type (eta square=0.17) and ceramic thickness (eta square=0.03). High-power curing units are not able to consistently reduce the exposure time. In both systems, at least 15s were necessary to

  2. Study of Direct Bonding Ceramics with Metal Using Sn2La Solder

    Directory of Open Access Journals (Sweden)

    Roman Koleňák

    2015-01-01

    Full Text Available The aim of this research was to study the direct bonding of ceramic materials, mainly Al2O3 and selected metals, with primary attention given to Cu substrate. Soldering was performed with Sn-based solder alloyed with 2% La. We found that the bond formation between Sn2La solder and Al2O3 occurs at the activation of lanthanum phases in solder by ultrasound. Lanthanum in the solder becomes oxidised in air during the soldering process. However, due to ultrasonic activation, the lanthanum particles are distributed to the boundary with ceramic material. A uniformly thin layer containing La, 1.5 µm in thickness, is formed on the boundary with Al2O3 material, ensuring both wetting and joint formation. The shear strength with Al2O3 ceramics is 7.5 MPa. Increased strength to 13.5 MPa was observed with SiC ceramics.

  3. Surface modification technique of structural ceramics: ion implantation-assisted multi-arc ion plating

    International Nuclear Information System (INIS)

    Peng Zhijian; Miao Hezhuo; Si Wenjie; Qi Longhao; Li Wenzhi

    2003-01-01

    Through reviewing the advantages and disadvantages of the existed surface modification techniques, a new technique, ion implantation-assisted multi-arc ion plating, was proposed. Using the proposed technique, the surfaces of silicon nitride ceramics were modified by Ti ion implantation, and then three kinds of ternary coatings, (Ti,Al)N, (Ti,Zr)N and (Ti,Cr)N, were deposited on the as-implanted ceramics. The coatings prepared by this technique are of high-hardness and well adhesive to the ceramic substrates. The maximal hardness measured by nanoindentation tests is more than 40 GPa. The maximal critical load by nanoscratch tests is more than 60 mN. The cutting tools prepared by this technique with the presented coatings are of excellent performance in industrial applications. The technique may be promising for the surface modification of structural ceramics. (orig.)

  4. Using rice straw to manufacture ceramic bricks

    Directory of Open Access Journals (Sweden)

    Gorbunov German Ivanovich

    2014-12-01

    Full Text Available In the article, the co-authors offer their advanced and efficient methodologies for the recycling of the rice straw, as well as the novel approaches to the ceramic brick quality improvement through the application of the rice straw as the combustible additive and through the formation of amorphous silica in the course of the rice straw combustion. The co-authors provide characteristics of the raw materials, production techniques used to manufacture ceramic bricks, and their basic properties in the article. The co-authors describe the simulated process of formation of amorphous silica. The process in question has two independent steps (or options: 1 rice straw combustion and ash formation outside the oven (in the oxidizing medium, and further application of ash as the additive in the process of burning clay mixtures; 2 adding pre-treated rice straw as the combustible additive into the clay mixture, and its further burning in compliance with the pre-set temperature mode. The findings have proven that the most rational pre-requisite of the rice straw application in the manufacturing of ceramic bricks consists in feeding milled straw into the clay mixture to be followed by molding, drying and burning. Brick samples are highly porous, and they also demonstrate sufficient compressive strength. The co-authors have also identified optimal values of rice straw and ash content in the mixtures under research.

  5. Nanosecond Tm:Y2O3 ceramic laser passively Q-switched by a Ho:LuAG ceramic

    Science.gov (United States)

    Wang, Hui; Huang, Haitao; Wang, Shiqiang; Shen, Deyuan

    2018-02-01

    A passively Q-switched 2.05-μm Tm:Y2O3 ceramic laser, employing Ho:LuAG ceramic as a saturable absorber, was demonstrated for the first time. Under the absorbed pump power of 20.5 W, a maximum output power of 497 mW was obtained. Pulses with a minimum pulse width of 642 ns under the repetition rate of 33 kHz were achieved. Our works validate that Ho-doped materials have good potential for passive Q-switching of Tm-doped lasers at 2-μm wavelength region.

  6. A literature review on the new polymer-infiltrated ceramic-network material (PICN).

    Science.gov (United States)

    Facenda, Júlia Cadorim; Borba, Marcia; Corazza, Pedro Henrique

    2018-02-05

    Ceramics and composites are the most used materials for dental application. Recently, the characteristics of both were combined on the called "polymer-infiltrated ceramic-network" (PICN). The aim of this review is to report the behavior of PICN, comparing the findings that may support the correct clinical application. The PICN material is a structure with a sintered ceramic matrix infiltrated with a polymer matrix. Studies evaluated this material microstructure and composition, mechanical properties and adhesive behavior. The most cited mechanical properties are flexural strength, compressive strength, elastic modulus, Weibull modulus, hardness, fracture toughness and fatigue resistance. Most studies compared PICN with feldspathic porcelain, lithium disilicate glass-ceramic, lithium silicate, zirconia-reinforced glass-ceramic, leucite reinforced glass-ceramic, polycrystalline alumina and zirconia. Other studies evaluated a similar material (a nanoceramic resin). The mechanical properties of the PICN are equivalent to the properties of nanoceramic resins, lower to lithium disilicate glass ceramic and superior to feldspathic porcelain. Yet, the findings suggest a highly resistant material to degradation at low loads (close to physiological situation) when cemented on a substrate. © 2018 Wiley Periodicals, Inc.

  7. Parâmetros fisiológicos de mudas de copaíba sob diferentes substratos e condições de sombreamento Physiological parameters in seedlings of copaiba under different shade conditions and substrates

    Directory of Open Access Journals (Sweden)

    Tiago Reis Dutra

    2012-07-01

    Full Text Available O presente trabalho teve como objetivo avaliar parâmetros fisiológicos de mudas de copaíba produzidas sob o efeito de diferentes níveis de sombreamento e tipos de substratos. O experimento teve a duração de 130 dias e foi conduzido em blocos casualizados no esquema fatorial 5x4, com cinco substratos: Bioplant®; 70% vermiculita + 30% casca de arroz carbonizada; 40% vermiculita + 30% casca de arroz carbonizada + 30% fibra de coco; 50% vermiculita + 30% casca de arroz carbonizada + 20% areia; 70% vermiculita + 15% casca de arroz carbonizada + 15% vermicomposto de resíduo de indústria têxtil; quatro níveis de sombreamento (100, 70, 50 e 30% do pleno sol e três repetições. O nível de sombreamento de 50% em relação ao pleno sol possibilitou a produção de mudas de copaíba com maiores teores de clorofila b e clorofila total, além de proporcionar os menores valores de transpiração diária e ao longo do dia das plantas. A área foliar, os teores de clorofila e a transpiração das mudas de copaíba independem do tipo de substrato, podendo ser produzidas em qualquer um dos meios de crescimento avaliados.This research aimed to evaluate physiological parameters of seedlings of copaiba produced under the effect of different shading levels and types of substrates. The experiment lasted 130 days and was conducted in randomized blocks in factorial scheme 5x4 with five substrates: Bioplant®, 70% vermiculite + 30% rice hulls, 40% vermiculite + 30% rice charred hulls + 30% fiber coconut, 50% vermiculite + 30% rice charred hulls + 20% sand, 70% vermiculite + 15% rice charred hulls + 15% vermicompost residue of textile industry; four shading levels (100, 70, 50 and 30% full sun and three replications. The shade level of 50% compared to full sun, enabled the production of seedlings of Copaiba with higher concentrations of chlorophyll b and total chlorophyll, and provided the lowest daily transpiration throughout the day and the plants. The leaf

  8. Deposition and consolidation of porous ceramic films for membrane separation

    DEFF Research Database (Denmark)

    Elmøe, Tobias Dokkedal; Tricoli, Antonio; Johannessen, Tue

    The deposition of porous ceramic films for membrane separation can be done by several processes such as thermophoresis [1], dip-coating [2] and spray pyrolysis [3]. Here we present a high-speed method, in which ceramic nano-particles form a porous film by filtration on top of a porous ceramic...... substrate [4]. Ceramic nano-particles are generated in a flame, using either a premixed (gas) flame, in which a metal-oxide precursor is evaporated in an N2 stream, which is combusted with methane and air, or using a flame spray pyrolysis, in which a liquid metal-oxide precursor is sprayed through a nozzle.......E., Sahm, T., Gurlo, A., Barsan, N., Weimar, U., Sensors and Actuators B, 114, 283-295, 2006 [2] Cini, P., Blaha, S.R., Harold, M.P., Venkataraman, K., J. Membrane Sci., 55, 199-225, 1991 [3] Stoermer, A.O., Rupp, J.L.M., Gauckler, L.J., Solid State Ionics, In press, 2006 [4] Andersen, S.K., Johannessen, T...

  9. Damage accumulation and fatigue life of particle-abraded ceramics.

    Science.gov (United States)

    Zhang, Yu; Lawn, Brian R; Malament, Kenneth A; Van Thompson, P; Rekow, E Dianne

    2006-01-01

    This investigation compared initial and fatigue strengths of particle-abraded ceramics to those of as-polished alumina and zirconia ceramics in crown-like layer structures. Alumina or zirconia plates bonded to polycarbonate substrates were subjected to single-cycle and multi-cycle contact (fatigue) loading. Cementation surfaces of the ceramic were damaged by controlled particle abrasion, indentation with a sharp diamond at low load, or a blunt indenter at high load. The stresses needed to initiate radial fractures were evaluated. The strengths of specimens were lowered by fatigue loading. After the equivalent of 1 year of occlusal contacts, the strengths of undamaged specimens degraded to approximately half of their single-cycle values. In particle-abraded specimens, an additional 20% to 30% drop in strength occurred after several hundred load cycles. Particle abrasion damage was approximately equivalent to damage from sharp indentation at low load or blunt indentation at high load. Damage from particle abrasion, not necessarily immediately apparent, compromised the fatigue strength of zirconia and alumina ceramics in crown-like structures. In fatigue, small flaws introduced by particle abrasion can outweigh any countervailing strengthening effect from compression associated with surface damage or, in the case of zirconia, with phase transformation.

  10. Development of high-thermal-conductivity silicon nitride ceramics

    Directory of Open Access Journals (Sweden)

    You Zhou

    2015-09-01

    Full Text Available Silicon nitride (Si3N4 with high thermal conductivity has emerged as one of the most promising substrate materials for the next-generation power devices. This paper gives an overview on recent developments in preparing high-thermal-conductivity Si3N4 by a sintering of reaction-bonded silicon nitride (SRBSN method. Due to the reduction of lattice oxygen content, the SRBSN ceramics could attain substantially higher thermal conductivities than the Si3N4 ceramics prepared by the conventional gas-pressure sintering of silicon nitride (SSN method. Thermal conductivity could further be improved through increasing the β/α phase ratio during nitridation and enhancing grain growth during post-sintering. Studies on fracture resistance behaviors of the SRBSN ceramics revealed that they possessed high fracture toughness and exhibited obvious R-curve behaviors. Using the SRBSN method, a Si3N4 with a record-high thermal conductivity of 177 Wm−1K−1 and a fracture toughness of 11.2 MPa m1/2 was developed. Studies on the influences of two typical metallic impurity elements, Fe and Al, on thermal conductivities of the SRBSN ceramics revealed that the tolerable content limits for the two impurities were different. While 1 wt% of impurity Fe hardly degraded thermal conductivity, only 0.01 wt% of Al caused large decrease in thermal conductivity.

  11. Bioactive glass–ceramic coating for enhancing the in vitro corrosion resistance of biodegradable Mg alloy

    International Nuclear Information System (INIS)

    Ye Xinyu; Cai Shu; Dou Ying; Xu Guohua; Huang Kai; Ren Mengguo; Wang Xuexin

    2012-01-01

    Highlights: ► Sol–gel derived 45S5 glass–ceramic coating was prepared on Mg alloy substrate. ► The corrosion resistance of glass–ceramic coated Mg alloy was markedly improved. ► The corrosion behavior of the coated sample varied due to the cracking of coating. - Abstract: In this work, a bioactive 45S5 glass–ceramic coating was synthesized on magnesium (Mg) alloy substrate by using a sol–gel dip-coating method, to improve the initial corrosion resistance of AZ31 Mg alloy. The surface morphology and phase composition of the glass–ceramic coating were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The coating composed of amorphous phase and crystalline phase Na 2 Ca 2 Si 3 O 9 , with the thickness of ∼1.0 μm, exhibited a uniform and crack-free surface morphology. The corrosion behavior of the uncoated and coated Mg alloy substrates was investigated by the electrochemical measurements and immersion tests in simulated body fluid (SBF). Potentiodynamic polarization tests recorded an increase of potential (E corr ) form −1.60 V to −1.48 V, and a reduction of corrosion current density (i corr ) from 4.48 μA cm −2 to 0.16 μA cm −2 , due to the protection provided by the glass–ceramic coating. Immersion tests also showed the markedly improved corrosion resistance of the coated sample over the immersion period of 7 days. Moreover, after 14 days of immersion in SBF, the corrosion resistance of the coated sample declined due to the cracking of the glass–ceramic coating, which was confirmed by electrochemical impedance spectroscopy (EIS) analysis. The results suggested that the 45S5 glass–ceramic coated Mg alloy could provide a suitable corrosion behavior for use as degradable implants.

  12. The depolarization performances of 0.97PbZrO3-0.03Ba(Mg1/3Nb2/3)O3 ceramics under hydrostatic pressure

    Science.gov (United States)

    Su, Rigu; Nie, Hengchang; Liu, Zhen; Peng, Ping; Cao, Fei; Dong, Xianlin; Wang, Genshui

    2018-02-01

    Several 0.97PbZrO3-0.03Ba(Mg1/3Nb2/3)O3 (0.97PZ-0.03BMN) ceramics were prepared via the columbite precursor method. Their microstructures and pressure-dependent ferroelectric and depolarization performances were then studied. The X-ray diffraction patterns of ground and fresh samples indicate that a main rhombohedral symmetry crystal structure is present in the bulk and that it sits alongside a trace quantity of an orthorhombic antiferroelectric phase that results from the effect of grinding on the surface. The remanent polarization (Pr) of the 0.97PZ-0.03BMN reached 32.4 μC/cm2 at 4.5 kV/mm and ambient pressure. In an in situ pressure-induced current measurement, more than 91% of the retained Pr of the pre-poled sample was released when the pressure was increased from 194 MPa to 238 MPa. That this pressure-driven depolarization should be attributed to the pressure-induced ferroelectric-antiferroelectric phase transition is supported by the emergence of double P-E loops at high hydrostatic pressures. Moreover, the 0.97PZ-0.03BMN ceramics exhibit no temperature-induced phase transitions and little related polarization loss up to 125 °C, which suggests that Pr has excellent thermal stability. The sharp depolarization behavior at low pressures and excellent temperature stability reveal that our 0.97PZ-0.03BMN ceramics exhibit superior performances in mechanical-electrical energy conversion applications.

  13. High density, low open porosity magnesia ceramics

    International Nuclear Information System (INIS)

    Alecu, I.D.; Stead, R.J.

    1998-01-01

    Many modern high-tech applications require magnesia ceramic components with high bulk densities and very low apparent porosities. Quite commonly, bulk densities above 3500 kg.m -3 and open porosities close to zero are specified for such applications of magnesia ceramics. The paper presents the recent achievements of Rojan Advanced Ceramics in the field of high density, very low open porosity magnesia ceramic materials and special products, including labware and planar components. Copyright (1998) Australasian Ceramic Society

  14. A study on (K, Na) NbO3 based multilayer piezoelectric ceramics micro speaker

    Science.gov (United States)

    Gao, Renlong; Chu, Xiangcheng; Huan, Yu; Sun, Yiming; Liu, Jiayi; Wang, Xiaohui; Li, Longtu

    2014-10-01

    A flat panel micro speaker was fabricated from (K, Na) NbO3 (KNN)-based multilayer piezoelectric ceramics by a tape casting and cofiring process using Ag-Pd alloys as an inner electrode. The interface between ceramic and electrode was investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM). The acoustic response was characterized by a standard audio test system. We found that the micro speaker with dimensions of 23 × 27 × 0.6 mm3, using three layers of 30 μm thickness KNN-based ceramic, has a high average sound pressure level (SPL) of 87 dB, between 100 Hz-20 kHz under five voltage. This result was even better than that of lead zirconate titanate (PZT)-based ceramics under the same conditions. The experimental results show that the KNN-based multilayer ceramics could be used as lead free piezoelectric micro speakers.

  15. Ceramic material suitable for repair of a space vehicle component in a microgravity and vacuum environment, method of making same, and method of repairing a space vehicle component

    Science.gov (United States)

    Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)

    2009-01-01

    A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium diboride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.

  16. Post-cementation colorimetric evaluation of the interaction between the thickness of ceramic veneers and the shade of resin cement.

    Science.gov (United States)

    Calgaro, Patricia Angélica Milani; Furuse, Adilson Yoshio; Correr, Gisele Maria; Ornaghi, Bárbara Pick; Gonzaga, Carla Castiglia

    2014-08-01

    To evaluate the color parameters (CIELab*) after the cementation of ceramic disks of different thicknesses onto a resin substrate using four different shades of resin cements, and determine the color difference (ΔE) between the adhesively cemented disks and a 10 mm-thick A1 shade ceramic control (target color). Ceramic disks, simulating laminate veneers, with thicknesses of 0.5, 0.7 and 1.0 mm (shade A1, IPS Classic) were fabricated (n = 40) and cemented with a dual-cured resin cement (Variolink II, shades A1, bleach, opaque and transparent) onto 120 2 mm-thick resin composite substrates (shade A3.5, Adoro). Each ceramic disk was photocured for 80 seconds. The determination of the CIELab* parameters of each ceramic-cement-substrate set was performed with a spectrophotometer. A 10 mm-thick A1 ceramic disk was used as a control. The results for the color difference (ΔE) obtained from L*, a* and b* parameters were analyzed using ANOVA and Tukey's test (α = 0.05). The ΔE values ranged from 2.46 (1.0 mm, opaque cement) to 12.11 (0.5 mm, A1 cement). The opaque cement showed the lower ΔE values, followed by the bleach, transparent and A1 cements. With respect to the thickness of the ceramic, color differences between the target color and the group with 1.0 mm ceramic disks were smaller for all cement shades tested. Only the combination of 1.0 mm ceramic disks cemented with the opaque cement was able to mask the background color (ΔE resin cement were smaller in comparison with the bleach, transparent and A1 cements.

  17. Reliability Estimation of High Voltage Ceramic Capacitor by Failure Analysis

    International Nuclear Information System (INIS)

    Yang, Seok Jun; Kim, Jin Woo; Shin, Seung Woo; Lee, Hee Jin; Shin, Seung Hun; Ryu, Dong Su; Chang, Seog Weon

    2001-01-01

    This paper presents a result of failure analysis and reliability evaluation for high voltage ceramic capacitors. The failure modes and failure mechanisms were studied in two ways in order to estimate component life and failure rate. The causes of failure mechanisms for zero resistance phenomena under withstanding voltage test in high voltage ceramic capacitors molded by epoxy resin were studied by establishing an effective root cause failure analysis. Particular emphasis was placed on breakdown phenomena at the ceramic-epoxy interface. The validity of the results in this study was confirmed by the results of accelerated testing. Thermal cycling test for high voltage ceramic capacitor mounted on a magnetron were implemented. Delamination between ceramic and epoxy, which might cause electrical short in underlying circuitry, can occur during curing or thermal cycle. The results can be conveniently used to quickly identify defective lots, determine B 10 life estimation each lot at the level of inspection, and detect major changes in the vendors processes. Also, the condition for dielectric breakdown was investigated for the estimation of failure rate with load-strength interference model

  18. Mechanical energy dissipation in natural ceramic composites.

    Science.gov (United States)

    Mayer, George

    2017-12-01

    Ceramics and glasses, in their monolithic forms, typically exhibit low fracture toughness values, but rigid natural marine ceramic and glass composites have shown remarkable resistance to mechanical failure. This has been observed in load-extension behavior by recognizing that the total area under the curve, notably the part beyond the yield point, often conveys substantial capacity to carry mechanical load. The mechanisms underlying the latter observations are proposed as defining factors for toughness that provide resistance to failure, or capability to dissipate energy, rather than fracture toughness. Such behavior is exhibited in the spicules of glass sponges and in mollusk shells. There are a number of similarities in the manner in which energy dissipation takes place in both sponges and mollusks. It was observed that crack diversion, a new form of crack bridging, creation of new surface area, and other important energy-dissipating mechanisms occur and aid in "toughening". Crack tolerance, key to energy dissipation in these natural composite materials, is assisted by promoting energy distribution over large volumes of loaded specimens by minor components of organic constituents that also serve important roles as adhesives. Viscoelastic deformation was a notable characteristic of the organic component. Some of these energy-dissipating modes and characteristics were found to be quite different from the toughening mechanisms that are utilized for more conventional structural composites. Complementary to those mechanisms found in rigid natural ceramic/organic composites, layered architectures and very thin organic layers played major roles in energy dissipation in these structures. It has been demonstrated in rigid natural marine composites that not only architecture, but also the mechanical behavior of the individual constituents, the nature of the interfaces, and interfacial bonding play important roles in energy dissipation. Additionally, the controlling

  19. Hardness of ion implanted ceramics

    International Nuclear Information System (INIS)

    Oliver, W.C.; McHargue, C.J.; Farlow, G.C.; White, C.W.

    1985-01-01

    It has been established that the wear behavior of ceramic materials can be modified through ion implantation. Studies have been done to characterize the effect of implantation on the structure and composition of ceramic surfaces. To understand how these changes affect the wear properties of the ceramic, other mechanical properties must be measured. To accomplish this, a commercially available ultra low load hardness tester has been used to characterize Al 2 O 3 with different implanted species and doses. The hardness of the base material is compared with the highly damaged crystalline state as well as the amorphous material

  20. Ceramics for Turbine Engine Applications.

    Science.gov (United States)

    1980-03-01

    DEVELOPMENT OF CERAMIC NOZZLE SECTION FOR SMIALL RADIAL GAS TURBINE by J.C.Napier and J.P. Arnold 12 DEVELOPMENT OF A CERAMIC TURBINE NOZZLE RING by H.Burfeindt...this way, for instance, a Daimler engine was in 1911 awarded the prize of the "Automobiltechnische Gesell - schaft". In 1912, a Benz engine won the...blade development Turtle U~nion RB 199 v)ln BENEFITS OF CERAMICS TO GAS TURBINES by Arnold Brooks and Albert I. Bellin Aircraft Engine Group General

  1. Porous ceramics out of oxides

    International Nuclear Information System (INIS)

    Bakunov, V.S.; Balkevich, V.L.; Vlasov, A.S.; Guzman, I.Ya.; Lukin, E.S.; Poluboyarinov, D.N.; Poliskij, R.Ya.

    1977-01-01

    A review is made of manufacturing procedures and properties of oxide ceramics intended for high-temperature thermal insulation and thermal protection applications. Presented are structural characteristics of porous oxide refractories and their properties. Strength and thermal conductivity was shown to depend upon porosity. Described is a procedure for manufacturing porous ceramic materials from aluminium oxide, zirconium dioxide, magnesium oxide, beryllium oxide. The thermal resistance of porous ceramics from BeO is considerably greater than that of other high-refractoriness oxides. Listed are areas of application for porous materials based on oxides

  2. Ceramic drug-delivery devices.

    Science.gov (United States)

    Lasserre, A; Bajpai, P K

    1998-01-01

    A variety of ceramics and delivery systems have been used to deliver chemicals, biologicals, and drugs at various rates for desired periods of time from different sites of implantation. In vitro and in vivo studies have shown that ceramics can successfully be used as drug-delivery devices. Matrices, inserts, reservoirs, cements, and particles have been used to deliver a large variety of therapeutic agents such as antibiotics, anticancer drugs, anticoagulants, analgesics, growth factors, hormones, steroids, and vaccines. In this article, the advantages and disadvantages of conventional drug-delivery systems and the different approaches used to deliver chemical and biological agents by means of ceramic systems will be reviewed.

  3. Laser induced surface modification of low temperature cofired ceramics (LTCC)

    Energy Technology Data Exchange (ETDEWEB)

    Duitsch, U.; Rohde, M.; Heidinger, R. [Forschungszentrum Karlsruhe GmbH, Karlsruhe (Germany). Inst. for Materials Research

    2004-07-01

    In the present study a laser induced surface modification process is used to increase the electrical conductivity of ceramic substrates locally. The laser experiments were carried out with a CO{sub 2}-Laser ({lambda}=10,6 {mu}m, cw) on LTCC-Substrates DuPont 951 by using tungsten powder as additive. The resulting microstructures within the modified lines were characterised and changes in the electrical properties have been determined. By means of the laser process and using preheating substrates to avoid thermoshock a composite of LTCC and tungsten particles was produced. The tungsten volume fraction within the modified lines was determined between 15.. 50 vol.%. The electrical conductivity in the paths reached a level of {sigma}=10{sup 5}-10{sup 6} S/m, which is only one or two orders of magnitude below the value of bulk tungsten. (orig.)

  4. [Basic studies on CaO-P2O5-MgO-SiO2-CaF system glass ceramics. 2. Ultrastructural study on interface between culture cells and glass ceramics].

    Science.gov (United States)

    Hara, Y; Yoshimoto, Y; Abe, T; Maeda, K; Akamine, A; Aono, M

    1989-06-01

    The aim of this study was to determine biocompatibility of glass ceramics and adhesion of cultured cells to glass ceramics. Four established cultured cell lines, human fibrosarcoma cells (HT-1080), human gingival carcinoma cells (Ca9-22), human osteosarcoma cells (NY) and mouse osteoblasts (MC3T3-E1), were used. For phase-contrast and electron microscopic observation they were cultured on substrates of glass ceramics or polystyrene coverslips as a control. The results obtained were as follows. Glass ceramics caused neither cellular degeneration nor death, as revealed by phase-contrast microscopy. By transmission electron microscopy an amorphous structure similar to the basal lamina was observed at the interface between the substrates and Ca9-22, and between glass ceramics and NY. A similar structure sometimes existed between the substrates and MC3T3-E1. On the other hand HT-1080 showed no such structure. The findings suggest that the biocompatibility of glass ceramics was satisfactory. Furthermore, from the clinical point of view it seems to be possible to close the material-tissue interface with epithelial, fibrocytic and osteocytic cells.

  5. Imparting Icephobicity with Substrate Flexibility

    Science.gov (United States)

    Schutzius, Thomas; Vasileiou, Thomas; Poulikakos, Dimos

    2017-11-01

    Ice accumulation poses serious safety and performance issues for modern infrastructure. Rationally designed superhydrophobic surfaces have demonstrated potential as a passive means to mitigate ice accretion; however, further studies on solutions that reduce impalement and contact time for impacting supercooled droplets are urgently needed. Here we demonstrate the collaborative effect of substrate flexibility and surface texture on enhancing icephobicity and repelling viscous droplets. We first investigate the influence of increased viscosity on impalement resistance and droplet-substrate contact time. Then we examine the effect of droplet partial solidification on recoil by impacting supercooled water droplets onto surfaces containing ice nucleation promoters. We demonstrate a passive method for shedding partially solidified droplets that does not rely on the classic recoil mechanism. Using an energy-based model, we identify a previously unexplored mechanism whereby the substrate oscillation governs the rebound process by efficiently absorbing the droplet kinetic energy and rectifying it back, allowing for droplet recoil. This mechanism applies for a range of droplet viscosities and ice slurries, which do not rebound from rigid superhydrophobic substrates. Partial support of the Swiss National Science Foundation under Grant No. 162565 and the European Research Council under Advanced Grant No. 669908 (INTICE) is acknowledged.

  6. Dynamic crack arrest in ceramics and ceramic composites

    Science.gov (United States)

    Kobayashi, A. S.; Yang, K. H.

    1989-01-01

    The results of past dynamic crack arrest experiments involving structural ceramics and ceramic composites are reviewed and analyzed. The lack of dynamic crack arrest in very brittle materials is discussed and contrasted with dynamic crack arrest in somewhat brittle metallic and polymeric materials. Numerical analyses show that the lack of crack arrest is due to reduced dynamic fracture resistance of the material and is not due to the kinetic energy.

  7. Integrated Ceramic Membrane System for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Joseph; Lim, Hankwon; Drnevich, Raymond

    2010-08-05

    Phase I was a technoeconomic feasibility study that defined the process scheme for the integrated ceramic membrane system for hydrogen production and determined the plan for Phase II. The hydrogen production system is comprised of an oxygen transport membrane (OTM) and a hydrogen transport membrane (HTM). Two process options were evaluated: 1) Integrated OTM-HTM reactor – in this configuration, the HTM was a ceramic proton conductor operating at temperatures up to 900°C, and 2) Sequential OTM and HTM reactors – in this configuration, the HTM was assumed to be a Pd alloy operating at less than 600°C. The analysis suggested that there are no technical issues related to either system that cannot be managed. The process with the sequential reactors was found to be more efficient, less expensive, and more likely to be commercialized in a shorter time than the single reactor. Therefore, Phase II focused on the sequential reactor system, specifically, the second stage, or the HTM portion. Work on the OTM portion was conducted in a separate program. Phase IIA began in February 2003. Candidate substrate materials and alloys were identified and porous ceramic tubes were produced and coated with Pd. Much effort was made to develop porous substrates with reasonable pore sizes suitable for Pd alloy coating. The second generation of tubes showed some improvement in pore size control, but this was not enough to get a viable membrane. Further improvements were made to the porous ceramic tube manufacturing process. When a support tube was successfully coated, the membrane was tested to determine the hydrogen flux. The results from all these tests were used to update the technoeconomic analysis from Phase I to confirm that the sequential membrane reactor system can potentially be a low-cost hydrogen supply option when using an existing membrane on a larger scale. Phase IIB began in October 2004 and focused on demonstrating an integrated HTM/water gas shift (WGS) reactor to

  8. Ceramics for fusion devices

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1984-01-01

    Ceramics are required for a number of applications in fusion devices, among the most critical of which are magnetic coil insulators, windows for RF heating systems, and structural uses. Radiation effects dominate consideration of candidate materials, although good pre-irradiation properties are a requisite. Materials and components can be optimized by careful control of chemical and microstructural content, and application of brittle material design and testing techniques. Future directions for research and development should include further extension of the data base in the areas of electrical, structural, and thermal properties; establishment of a fission neutron/fusion neutron correlation including transmutation gas effects; and development of new materials tailored to meet the specific needs of fusion reactors

  9. Agglomeration of ceramic powders

    Science.gov (United States)

    Cawley, James D.; Larosa, Judith; Dirkse, Fredrick

    1989-01-01

    A research program directed at a critical comparison of numerical models for power agglomeration with experimental observations is currently underway. Central to this program is the quantitative characterization of the distribution of mass within an agglomerate as a function of time. Current experiments are designed to restrict agglomeration to a surface, which is oriented perpendicular to the force of gravity. These experiments are discussed with reference to: their significance to ceramic processing; artifacts which may be avoided in microgravity experiments; and the comparison of information available in real space (from optical microscopy) to that in reciprocal space (from light scattering). The principle machine requirement appears to be a need to obtain information at small scattering angles.

  10. Creep in electronic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Routbort, J. L.; Goretta, K. C.; Arellano-Lopez, A. R.

    2000-04-27

    High-temperature creep measurements combined with microstructural investigations can be used to elucidate deformation mechanisms that can be related to the diffusion kinetics and defect chemistry of the minority species. This paper will review the theoretical basis for this correlation and illustrate it with examples from some important electronic ceramics having a perovskite structure. Recent results on BaTiO{sub 3}, (La{sub 1{minus}x}Sr){sub 1{minus}y}MnO{sub 3+{delta}}, YBa{sub 2}Cu{sub 3}O{sub x}, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub x}, (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} and Sr(Fe,Co){sub 1.5}O{sub x} will be presented.

  11. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2003-01-01

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Processing of perovskites of LSC, LSF and LSCF composition for evaluation of mechanical properties as a function of environment are begun. The studies are to be in parallel with LSFCO composition to characterize the segregation of cations and slow crack growth in environmental conditions. La{sub 1-x}Sr{sub x}FeO{sub 3-d} has also been characterized for paramagnetic ordering at room temperature and the evolution of magnetic moments as a function of temperature are investigated. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport.

  12. Laser treatment of dental ceramic/cement layers: transmitted energy, temperature effects and surface characterisation.

    Science.gov (United States)

    Pich, Olena; Franzen, René; Gutknecht, Norbert; Wolfart, Stefan

    2015-02-01

    In the present paper, we investigate the behaviour of different dental materials under laser irradiation. We have used e.max Ceram, e.max ZirCAD, and e.max Press dental ceramics and glass ionomer cement Ketac Cem in the present study. The dental ceramics were prepared in the form of samples with thickness of 0.5-2 mm. We used two lasers [solid-state laser (Er:YAG, Fidelis III+, Fotona) and an 810- nm diode laser (FOX, A.R.C)] for the transillumination of ceramic samples. It has been shown that the laser energy transmitted through the ceramic material decreases to 30-40% of the original values along with an increase in the thickness of the irradiated sample. Pigmented ceramic samples show more laser energy loss compared to the samples containing no pigment. We investigated the temperature evolution in composite sandwiched ceramic/cement samples under laser treatment. The increase in the irradiation time and laser power led to a temperature increase of up to 80 °C. The surfaces of irradiated ceramic samples were examined with X-ray photoelectron spectroscopy to evaluate changes in chemical composition, such as a decrease in the C signal, accompanied by a strong increase in the Zr peak for the Er:YAG laser, while the 810-nm diode laser showed no change in the ratio of elements on the surface.

  13. Recent progress in ceramic joining

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E.

    1998-09-01

    Both fundamental and practical aspects of ceramic joining are understood well enough for many, if not most, applications requiring moderate strengths at room temperature. This paper argues that the two greatest needs in ceramic joining are for techniques to join buried interfaces by selective heating, and methods for joining ceramics for use at temperatures of 800 to 1,200 C. Heating with microwave radiation or with high-energy electron beams has been used to join buried ceramic interfaces, for example SiC to SiC. Joints with varying levels of strength at temperatures of 600 to 1,000 C have been made using four techniques: (1) transient liquid phase bonding; (2) joining with refractory braze alloys; (3) joining with refractory glass compositions; and (4) joining using preceramic polymers. Joint strengths as high as 550 MPa at 1,000 C have been reported for silicon nitride-silicon nitride bonds tested in four-point flexure.

  14. Metals and Ceramics Information Center.

    Science.gov (United States)

    1981-07-01

    Specialization CURRENT AWARENESS BULLETIN (Continued) Noton, B. R. Program Manager Report on Conference Pattee , H. E. Staff Metallurgist Metals...Welding Duckworth, W. H. Staff Engineer Ceramics Pattee , H. Staff Engineer Welding HANDBOOKS /DATABOOKS Hucek, H. J. Staff Metallurgist Mechanical

  15. Moessbauer studies of Inca ceramics

    International Nuclear Information System (INIS)

    Wagner, U.; Wagner, F.E.; Marticorena, B.; Salazar, R.; Schwabe, R.; Riederer, J.

    1986-01-01

    To obtain information on the firing of Inca ceramics, 7 samples from different locations were studied by Moessbauer spectroscopy including a detailed laboratory refiring procedure. The glaze typical for the surface of this ware was studied by Moessbauer scattering. (Auth.)

  16. Inorganic glass ceramic slip rings

    Science.gov (United States)

    Glossbrenner, E. W.; Cole, S. R.

    1972-01-01

    Prototypes of slip rings have been fabricated from ceramic glass, a material which is highly resistant to deterioration due to high temperature. Slip ring assemblies were not structurally damaged by mechanical tests and performed statisfactorily for 200 hours.

  17. Initial Examination of Low Velocity Sphere Impact of Glass Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Morrissey, Timothy G [ORNL; Fox, Ethan E [ORNL; Wereszczak, Andrew A [ORNL; Ferber, Mattison K [ORNL

    2012-06-01

    . (3) Spheres with a lower elastic modulus require less force to initiate fracture in Resistan{trademark}-G1 from quasi-static spherical indentation. This indicates that friction is affecting ring crack initiation in Resistan{trademark}-G1. Friction also affected ring crack initiation in Starphire{reg_sign} soda-lime silicate and BOROFLOAT{reg_sign} borosilicate glasses. Among these three materials, friction was the most pronounced (largest slope in the RCIF-elastic modulus graph) in the Starphire{reg_sign} and least pronounced in the BOROFLOAT{reg_sign}. The reason for this is not understood, but differences in deformation behavior under high contact stresses could be a cause or contributor to this. (4) The force necessary to initiate contact-induced fracture is higher under dynamic conditions than it is under quasi-static conditions in Resistan{trademark}-L and Resistan{trademark}-G1 glass ceramics. This is a trend observed too in Starphire{reg_sign} and BOROFLOAT{reg_sign}. (5) There is a subtle indication there was intra-tile differences in spherical indentation-induced ring crack initiation forces. This is not a material property nor is it exclusive to glass-ceramic Resistan{trademark}-G1 glass ceramic, rather, it is a statistical mechanical response to an accumulated history of processing and handling of that specific tile.

  18. Geopolymers for Structural Ceramic Applications

    Science.gov (United States)

    2006-08-31

    Stow, Ohio 44224 Abstract Geopolymers , also called geo- cements and low-temperature synthesized glasses, are a class of cementious materials that do...Applications of geopolymers have included ceramic matrix composites,ŕ, 3 waste encapsulation 9-11and alternative cements .7,12,14 As adhesives...and H. Schneider, The American Ceramic Society, Westerville, OH, 2003. 3J. Bell and W. M. Kriven, "Nanoporosity in geopolymeric cements " pp. 590-591

  19. Ceramic Repair Without Hydrofluoric Acid.

    Science.gov (United States)

    Bergoli, César Dalmolin; de Carvalho, Rodrigo Furtado; Luz, Julio Nogueira; Luz, Murilo Souza; Meincke, Débora Könzgen; Saavedra, Guilherme de Siqueira Ferreira

    To evaluate the bond strength between composite resin and feldspathic ceramic following repair protocols with and without hydrofluoric acid and aging by thermocycling. Forty-eight glass feldspathic ceramic blocks (8 x 8 x 6 mm) were divided into three groups on the basis of their surface repair treatment: 1. 10% hydrofluoric acid + Signum Ceramic Primer I + Signum Ceramic Primer II (control group); 2. abrasive rubber tips + Signum Ceramic Primer I + Signum Ceramic Primer II (test group); 3. Signum Ceramic Primer I + Signum Ceramic Primer II (negative control group). The treated surface of each block was built up with composite and then sectioned to produce nontrimmed bars (adhesive area = 1 mm²). Half of the bars from each group were aged by 6000 cycles of 30-s immersions in water baths at 5°C and 55°C, with a transfer time of 2 s. The other bars were immediately subjected to microtensile bond strength testing. The mean bond strength for each block was then recorded and submitted to two-way ANOVA and Tukey's test (α = 0.05). The aging protocol influenced the bond strength values of all groups (p = 0.000). The non-aged groups submitted to surface treatment protocols 1 (13.1 ± 2.5 MPa) and 2 (11.5 ± 5.1 MPa) presented the highest bond strength values. The interface bond strength of all groups was susceptible to aging. Surface treatment protocol 2, with abrasive rubber tips and no hydrofluoric acid, appeared to be the most promising option, as the resulting bond strength values were similar to those of the control group.

  20. Extruded ceramic honeycomb and method

    Science.gov (United States)

    Day, J. Paul

    1995-04-04

    Extruded low-expansion ceramic honeycombs comprising beta-spodumene solid solution as the principal crystal phase and with less than 7 weight percent of included mullite are produced by compounding an extrusion batch comprising a lithium aluminosilicate glass powder and a clay additive, extruding a green honeycomb body from the batch, and drying and firing the green extruded cellular honeycomb to crystallize the glass and clay into a low-expansion spodumene ceramic honeycomb body.

  1. Ceramics as nuclear reactor fuels

    International Nuclear Information System (INIS)

    Reeve, K.D.

    1975-01-01

    Ceramics are widely accepted as nuclear reactor fuel materials, for both metal clad ceramic and all-ceramic fuel designs. Metal clad UO 2 is used commercially in large tonnages in five different power reactor designs. UO 2 pellets are made by familiar ceramic techniques but in a reactor they undergo complex thermal and chemical changes which must be thoroughly understood. Metal clad uranium-plutonium dioxide is used in present day fast breeder reactors, but may eventually be replaced by uranium-plutonium carbide or nitride. All-ceramic fuels, which are necessary for reactors operating above about 750 0 C, must incorporate one or more fission product retentive ceramic coatings. BeO-coated BeO matrix dispersion fuels and silicate glaze coated UO 2 -SiO 2 have been studied for specialised applications, but the only commercial high temperature fuel is based on graphite in which small fuel particles, each coated with vapour deposited carbon and silicon carbide, are dispersed. Ceramists have much to contribute to many aspects of fuel science and technology. (author)

  2. Method for Waterproofing Ceramic Materials

    Science.gov (United States)

    Cagliostro, Domenick E. (Inventor); Hsu, Ming-Ta S. (Inventor)

    1998-01-01

    Hygroscopic ceramic materials which are difficult to waterproof with a silane, substituted silane or silazane waterproofing agent, such as an alumina containing fibrous, flexible and porous, fibrous ceramic insulation used on a reentry space vehicle, are rendered easy to waterproof if the interior porous surface of the ceramic is first coated with a thin coating of silica. The silica coating is achieved by coating the interior surface of the ceramic with a silica precursor converting the precursor to silica either in-situ or by oxidative pyrolysis and then applying the waterproofing agent to the silica coated ceramic. The silica precursor comprises almost any suitable silicon containing material such as a silane, silicone, siloxane, silazane and the like applied by solution, vapor deposition and the like. If the waterproofing is removed by e.g., burning, the silica remains and the ceramic is easily rewaterproofed. An alumina containing TABI insulation which absorbs more that five times its weight of water, absorbs less than 10 wt. % water after being waterproofed according to the method of the invention.

  3. Microwave sintering of ceramic materials

    Science.gov (United States)

    Karayannis, V. G.

    2016-11-01

    In the present study, the potential of microwave irradiation as an innovative energy- efficient alternative to conventional heating technologies in ceramic manufacturing is reviewed, addressing the advantages/disadvantages, while also commenting on future applications of possible commercial interest. Ceramic materials have been extensively studied and used due to several advantages they exhibit. Sintering ceramics using microwave radiation, a novel technology widely employed in various fields, can be an efficient, economic and environmentally-friendlier approach, to improve the consolidation efficiency and reduce the processing cycle-time, in order to attain substantial energy and cost savings. Microwave sintering provides efficient internal heating, as energy is supplied directly and penetrates the material. Since energy transfer occurs at a molecular level, heat is generated throughout the material, thus avoiding significant temperature gradients between the surface and the interior, which are frequently encountered at high heating rates upon conventional sintering. Thus, rapid, volumetric and uniform heating of various raw materials and secondary resources for ceramic production is possible, with limited grain coarsening, leading to accelerated densification, and uniform and fine-grained microstructures, with enhanced mechanical performance. This is particularly important for manufacturing large-size ceramic products of quality, and also for specialty ceramic materials such as bioceramics and electroceramics. Critical parameters for the process optimization, including the electromagnetic field distribution, microwave-material interaction, heat transfer mechanisms and material transformations, should be taken into consideration.

  4. Immobilization of fission products in phosphate ceramic waste forms

    International Nuclear Information System (INIS)

    Singh, D.; Wagh, A.

    1997-01-01

    Argonne National Laboratory (ANL) is developing chemically bonded phosphate ceramics (CBPCs) to treat low-level mixed wastes, particularly those containing volatiles and pyrophorics that cannot be treated by conventional thermal processes. This work was begun under ANL''s Laboratory Directed Research and Development funds, followed by further development with support from EM-50''s Mixed Waste Focus Area

  5. Study of the Wavelength Dependence in Laser Ablation of Advanced Ceramics and Glass-Ceramic Materials in the Nanosecond Range.

    Science.gov (United States)

    Sola, Daniel; Peña, Jose I

    2013-11-19

    In this work, geometrical dimensions and ablation yields as a function of the machining method and reference position were studied when advanced ceramics and glass-ceramic materials were machined with pulsed lasers in the nanosecond range. Two laser systems, emitting at 1064 and 532 nm, were used. It was shown that the features obtained depend on whether the substrate is processed by means of pulse bursts or by grooves. In particular, when the samples were processed by grooves, machined depth, removed volume and ablation yields reached their maximum, placing the sample out of focus. It was shown that these characteristics do not depend on the processing conditions, the wavelength or the optical configuration, and that this is intrinsic behavior of the processing method. Furthermore, the existence of a close relation between material hardness and ablation yields was demonstrated.

  6. Microleakage patterns of porcelain and castable ceramic laminate veneers.

    Science.gov (United States)

    Tjan, A H; Dunn, J R; Sanderson, I R

    1989-03-01

    This investigation evaluated the microleakage of conventional porcelain and Dicor castable ceramic laminate veneers bonded either entirely on acid-etched enamel or with the cervical margins on dentin. Three brands of light-activated composite resin cement systems were used and compared. Laminate veneers were bonded to extracted human maxillary central incisors and the extent of the marginal microleakage was measured. The findings indicated minimal marginal microleakage under both types of ceramic veneers bonded to all-enamel preparations. A markedly greater leakage at the dentin-composite resin interface was observed in veneers with cervical margins placed on dentin.

  7. Carbon glass-ceramics and their radiation resistance

    International Nuclear Information System (INIS)

    Virgil'ev, Yu. S.

    1995-01-01

    Structural carbon materials (SCMs) hold great promise for use in numerous plasma-facing components of fusion reactors. One possible candidate for this use is carbon glass-ceramic. Therefore, it is not surprising that there is considerable interest in studying its properties and their variations upon exposure to different radiations, such as neutrons, high-energy electrons, and light ions (H + , D + , and He + ). Here, the authors summarize data accumulated to date on the structure and properties of commercial carbon glass-ceramics and their behavior under irradiation with neutrons, electrons, and some ions

  8. Instantaneous heat flux flowing into ceramic combustion chamber wall surface of low heat rejection engine; Shanetsu engine no ceramic nenshoshitsu hekimen eno shunji netsuryusoku

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Y.; Hagihara, Y. [Musashi Institute of Technology, Tokyo (Japan); Kimura, S. [Nissan Motor Co. Ltd., Tokyo (Japan); Adachi, K. [Daido Hoxan Inc., Sapporo (Japan); Nagano, H. [Riso Kagaku Corp., Tokyo (Japan); Ishii, A. [Mitani Sangyo Co. Ltd., Tokyo (Japan)

    1998-08-25

    To evaluate the effectiveness of low heat rejection engine under heat loss condition, instantaneous heat fluxes flowing into ceramic piston surface and aluminum alloy (Loex) piston surface using thin film thermocouple were measured, and both were compared. As a result, in the working stroke, the instantaneous heat flux flowing into ceramic piston surface was larger than the instantaneous heat flux flowing into Loex piston surface. Accordingly, it became clear that reduction of heat loss was not effected when ceramics that thermal conductivity is small was used for combustion chamber wall. 21 refs., 14 figs.

  9. Valorization of rice straw waste: an alternative ceramic raw material

    Directory of Open Access Journals (Sweden)

    Á. Guzmán A

    2015-03-01

    Full Text Available In the production of rice a large amount of solid residue is produced, for which alternative utilizations are scarce or are not commonly applied in industry. Rice straw (RS is a waste product of rice harvest that is generated in equal or greater quantities than the rice itself. RS is frequently burned in open air, which makes it a significant source of pollution. In the search for possible uses of RS, it should be noted that its ash (RSA is particularly rich in silica, alkaline and alkaline earth metals and may be used as a source of alkalis and silica for the production of triaxial ceramics. The present research work proposes the production of a ceramic raw material from RS for its use in the fabrication of ceramic materials for the construction industry. Based on the chemical and mineralogical composition of RSA created under different thermal conditions, the most suitable RSA for this purpose was that obtained from treating RS at a temperature of 800 ºC for a time of 2 h. The resulting RSA presented high contents of SiO2 (79.62%, alkaline oxides (K2O (10.53% and alkaline earth oxides (CaO (2.80%. It is concluded that RSA is a new alternative ceramic raw material that can be used as a replacement for the fluxing (mainly feldspar and inert (quartz materials that are used in the production of triaxial ceramics.

  10. Effect of Surface Treatments on Leakage of Zirconium Oxide Ceramics

    Directory of Open Access Journals (Sweden)

    Göknil Alkan Demetoğlu

    2016-08-01

    Full Text Available Objective: The aim of this pilot study was to compare the effects of pretreatments on leakage of zirconia ceramics. Materials and Methods: The speciments divided into 6 groups that were subsequently treated as follows: group 1, no treatment (control; group 2, the ceramic surfaces were airborne-particle abraded with 110 μm aluminum-oxide (Al2O3 particles; group 3, after abrasion of the surfaces with 110 μm Al2O3 particles, silica coating using 30 μm (Al2O3 particles modified by silica (rocatec system and application of the silane coupling agent (espe-sil; group 4, ceramic surfaces irritated with neodymium-doped yttrium aluminium garnet (Nd:YAG laser [fidelis plus 3 foton (Ljubljana, Slovenia] at 20 hz, 100 mj, 2 w, 100 μs; group 5, ceramic surfaces irritated with Nd:YAG laser at fidelis plus 3 fotona (Ljubljana, Slovenia at 20 hz, 100 mj, 2 w, 100 μs; group 6; application of a zirconia primer (z-prime plus bisco, IL, USA agent. And all ceramics tested for leakage. Results: For marginal leakage, score 0 was found in all groups. Conclusion: No significant differences were found in marginal leakage under all conditions.

  11. Ceramic Composite Mechanical Fastener System for High-Temperature Structural Assemblies, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Under Phase I, the feasibility of a novel thermal stress-free ceramic composite mechanical fastener system suitable for assembly of high-temperature composite...

  12. Exoelectron emission from magnesium borate glass ceramics

    International Nuclear Information System (INIS)

    Kawamoto, Takamichi; Yanagisawa, Hideo; Nakamichi, Hiroshi; Kikuchi, Riichi; Kawanishi, Masaharu.

    1986-01-01

    Thermally stimulated exoelectron emission (TSEE) of a magnesium borate glass ceramics was investigated for its application to dosemetric use. It has been found that the TSEE glow patterns of the magnesium borate glass ceramics as well as a Li 2 B 4 O 7 glass ceramics depend on the kind of the radiation used and that the heat resistance of the magnesium borate glass ceramics is higher than that of the Li 2 B 4 O 7 glass ceramics. Therefore, the TSEE glow patterns of the magnesium borate glass ceramics indicate a possibility to be used as the dose measurement for each kind of radiation in the mixed radiation field. (author)

  13. All-ceramic crowns: bonding or cementing?

    Science.gov (United States)

    Pospiech, Peter

    2002-12-01

    Despite the wide variety of all-ceramic systems available today, the majority of dental practitioners hesitate to recommend and insert all-ceramic crowns. This article regards the nature of the ceramic materials, the principles of bonding and adhesion, and the clinical problems of the acid-etch technique for crowns. Advantages and disadvantages are discussed, and the influences of different factors on the strength of all-ceramic crowns are presented. Finally, the conclusion is drawn that conventional cementing of all-ceramic crowns is possible when the specific properties of the ceramics are taken into consideration.

  14. Temperature Measurement of Ceramic Materials Using a Multiwavelength Pyrometer

    Science.gov (United States)

    Ng, Daniel; Fralick, Gustave

    1999-01-01

    The surface temperatures of several pure ceramic materials (alumina, beryllia, magnesia, yittria and spinel) in the shape of pellets were measured using a multiwavelength pyrometer. In one of the measurements, radiation signal collection is provided simply by an optical fiber. In the other experiments, a 4.75 inch (12 cm) parabolic mirror collects the signal for the spectrometer. Temperature measurement using the traditional one- and two-color pyrometer for these ceramic materials is difficult because of their complex optical properties, such as low emissivity which varies with both temperature and wavelength. In at least one of the materials, yittria, the detected optical emission increased as the temperature was decreased due to such emissivity variation. The reasons for such changes are not known. The multiwavelength pyrometer has demonstrated its ability to measure surface temperatures under such conditions. Platinum electrodes were embedded in the ceramic pellets for resistance measurements as the temperature changed.

  15. Characterization of Si Ge thermoelectric ceramics obtained by the conventional processing

    International Nuclear Information System (INIS)

    Alves, Lucas Maximo

    1997-01-01

    Thermo electrical ceramics were prepared from Si 80 Ge 20 alloy by Czochralski crystal growth, under electrical field. The alloy was smashed and milled, obtaining the powder. Measurements of particle size, surface area, X-ray diffraction, and specific heat of this powder obtained from alloy were done. In this latest measurement, the anharmonicity phenomena were verified. This same ceramic powder, was doped with boron; to obtain type-p semiconductor ceramic powder, and after this, was pressed and the compacts were sintered in quartz bulbs at 1200 deg C 2 hours. The microstructural, chemical and thermoelectrical characterization of the ceramics obtained, were done too. The final material showed a mean density of (2.9 ± 0.4)g/cm 3 and found a thermoelectrical power of (53.1± 0.7) μV/K. The porosity of this material can be reduced during the ceramic processing to increase the thermoelectrical power. (author)

  16. Effect of CVD-diamond coatings on the tribological performance of cemented tungsten carbide substrates

    Directory of Open Access Journals (Sweden)

    Kaleem Ahmad Najar

    2016-06-01

    Full Text Available A comparison has been documented between nanocrystalline diamond (NCD and microcrystalline diamond (MCD coatings deposited on cemented tungsten carbide (WC-Co substrates with architectures of WC-Co/NCD & WC-Co/MCD, using hot filament chemical vapor deposition (HFCVD technique. In the present work, the frictional characteristics were studied using ball-on-disc type linear reciprocating micro-tribometer, under the application of 1–10N normal loads, when sliding against smooth alumina (Al2O3 ceramic ball for the total duration of 15min, under dry sliding conditions. Nanoindentation tests were also conducted using Berkovich nanoindenter for the purpose of measurement of hardness and elastic modulus values. The average coefficients of friction of MCD and NCD coatings decrease from 0.37 – 0.32 and 0.3 – 0.27 respectively, when the load is increased from 1–10N. However, for conventional WC-Co substrate the average coefficient of friction increases from 0.60–0.75, under the same input operating conditions. The wear tracks formed on the surfaces of CVD-diamond coatings and WC-Co substrate, after friction measurement were characterised using Raman spectroscopy and scanning electron microscopy (SEM techniques. However, the compositional analysis for the formation of tribo-layer observed on the wear tracks of CVD-diamond coatings was confirmed using energy dispersive spectroscopy (EDS technique. Therefore, maintaining an appropriate level of normal load and using appropriate type of diamond coating, friction may be kept to some lower value to improve mechanical processes.

  17. [Preliminary study of bonding strength between diatomite-based dental ceramic and veneering porcelains].

    Science.gov (United States)

    Lu, Xiao-li; Gao, Mei-qin; Cheng, Yu-ye; Zhang, Fei-min

    2015-04-01

    In order to choose the best veneering porcelain for diatomite-based dental ceramic substrate, the bonding strength between diatomite-based dental ceramics and veneering porcelains was measured, and the microstructure and elements distribution of interface were analyzed. The coefficient of thermal expansion (CTE) of diatomite-based dental ceramics was detected by dilatometry. Three veneering porcelain materials were selected with the best CTE matching including alumina veneering porcelain (group A), titanium porcelain veneering porcelain (group B), and E-max veneering porcelain (group C). Shear bonding strength was detected. SEM and EDS were used to observe the interface microstructure and element distribution. Statistical analysis was performed using SPSS 17.0 software package. The CTE of diatomite-based dental ceramics at 25-500 degrees centigrade was 8.85×10-6K-1. The diatomite-based substrate ceramics combined best with group C. Shear bonding strength between group A and C and group B and C both showed significant differences(Pveneer.

  18. Structure, chemistry and adhesion of ion-plated metal/ceramic interfaces

    International Nuclear Information System (INIS)

    Rigsbee, J.M.; Scott, P.A.; Knipe, R.K.; Ju, C.P.

    1985-01-01

    Cu and Ti elemental films have been deposited onto cordierite-type ceramic substrates by ion-plating. This paper presents the initial results of a research program which addresses how the structure and chemistry of the metal/ceramic interface is modified as a function of the deposition process parameters and the substrate surface roughness. While evaporated Cu films on polished substrates had essentially zero adhesion, films deposited with an applied substrate bias showed increasing adhesive strength with increasing bias. Microchemical analysis indicated that this enhanced adhesion is directly correlated with the development of a chemically graded interface region. The adhesive strength of the ion plated Cu films was also found to be improved with increasing substrate smoothness. Although the generally superior adhesion of Ti was evident for films either evaporated or deposited with low bias voltage/current, this adhesion actually decreased for films deposited with high bias voltage/current. This effect results from the formation of a compound at the Ti/ceramic interface region. Results indicate that the thickness of this apparently brittle compound plays a critical role in film adhesion. (author)

  19. Autoradiographic techniques to determine noble metal distribution in automotive catalyst substrates

    International Nuclear Information System (INIS)

    Lange, W.H.

    1976-01-01

    The distribution of noble metals in the ceramic substrates of automotive catalytic converter systems is important to the functional characteristics of the systems. A radiotracer technique involving microtomy of bead substrate samples and autoradiography using the resultant thin sections was developed to produce detailed images of the metal distributions. The method is particularly valuable to determine the distribution of one metal in the presence of another to aid in the development of more efficient systems

  20. Properties of PZT thick film made on LTCC substrates with dielectric intermediate layers

    Science.gov (United States)

    DÄ browski, Arkadiusz; Golonka, Leszek

    2016-11-01

    Results of experiments on application of various interlayers between LTCC (Low Temperature Cofired Ceramics) substrate and thick-film PZT (Lead Zirconate - Titanate) are described in this work. Thick-film intermediate layers were based on several dielectric materials: TiN, Al2O3, SiC, TiO2, SiC, YSZ, BN. Seven screen printable pastes were prepared on the base of powders of mentioned materials with addition of glass and organic vehicle. The substrates were made of 951 (DuPont), CeramTapeGC (CeramTec) and HL2000 (Heraeus) LTCC tapes. Sandwich type transducers, consisting of barrier layer, gold bottom electrode, PZT layer and silver top electrode were prepared and characterized. Basic piezoelectric parameters - permittivity, effective charge constant (d33(eff)) and remanent polarization were determined. The best properties were obtained for substrates made of 951. In general, interlayers based on TiO2, SiC and Al2O3 improved permittivity and charge constant comparing to bare substrates. For example, for 951 substrate the PZT layer exhibited d33(eff) equal to 160, 215, 250 and 230 pC/N for bare substrate, TiO2 interlayer, SiC interlayer and Al2O3 interlayer, respectively. In case of CeramTape GC substrates determined permittivity was equal to 215, 245, 235 and 275 for bare substrate, TiO2 interlayer, SiC interlayer and Al2O3 interlayer, respectively. In case of TiN and BN materials the parameters were considerably deteriorated.

  1. Low cost porous MgO substrates for oxygen transport membranes

    DEFF Research Database (Denmark)

    Kothanda Ramachandran, Dhavanesan; Søgaard, Martin; Clemens, F.

    2016-01-01

    This paper delineates the fabrication of porous magnesium oxide (MgO) ceramics with high porosity and gas permeability by warm pressing using pre-calcined MgO powder and fugitive pore former (combination of graphite and polymethyl methacrylate). Effect of pore former on the microstructure......O substrates were measured and correlated. Economic analysis of the MgO substrates was performed and it was found that MgO was much cheaper compared to perovskite and fluorite materials...

  2. Microstructure and fracture analysis of fully ceramic microencapsulated fuel

    International Nuclear Information System (INIS)

    Lee, H. G.; Kim, D. J.; Park, J. Y.; Kim, W. J.; Lee, S. J.

    2015-01-01

    Nuclear fuel enhancing the accident tolerance is satisfied two parts. First, the performance has to be retained compared to the existing UO 2 nuclear fuel and zircaloy cladding system under the normal operation condition. Second, under the severe accident condition, the high temperature structural integrity has to be kept and the generation rate of hydrogen has to be reduced largely. FCM nuclear fuel is composed of tristructural isotropic(TRISO) fuel particle and SiC ceramic matrix. SiC ceramic matrix play an essential part in protecting fission product. In the FCM fuel concept, fission product is doubly protected by TRISO coating layer and SiC ceramic matrix compared to the current commercial UO 2 fuel system. SiC ceramic has excellent properties for fuel application. SiC ceramic has low neutron absorption cross-section, excellent irradiation resistivity and high thermal conductivity. Additionally, the relative thermal conductivity of the SiC ceramic as compared to UO 2 is quite good, reducing operational release of fission products form the fuel. TRISO coating layer which is deposited on UO 2 kernel is consists of PyC/SiC/PyC trialyer and buffer PyC layer. SiC matrix composite with TRISO particle was fabricated by hot pressing. 3 to 20 wt.% of sintering additives were added to investigate reaction between sintering additives and outer PyC layer of TRISO coating layer. The relative densities of all specimens show above 92%. The reaction between sintering additives and PyC is observed in most TRISO particles, the thickness of reactants shows about ten micrometers. The thermal shock resistance of SiC matrix composite was investigated

  3. Structural reliability of alumina-, feldspar-, leucite-, mica- and zirconia-based ceramics.

    Science.gov (United States)

    Tinschert, J; Zwez, D; Marx, R; Anusavice, K J

    2000-09-01

    The objective of this study was to test the hypothesis that industrially manufactured ceramic materials, such as Cerec Mark II and Zirconia-TZP, have a smaller range of fracture strength variation and therefore greater structural reliability than laboratory-processed dental ceramic materials. Thirty bar specimens per material were prepared and tested. The four-point bend test was used to determine the flexure strength of all ceramic materials. The fracture stress values were analyzed by Weibull analysis to determine the Weibull modulus values (m) and the 1 and 5% probabilities of failure. The mean strength and standard deviation values for these ceramics are as follows: (MPa+/-SD) were: Cerec Mark II, 86.3+/-4.3; Dicor, 70.3+/-12.2; In-Ceram Alumina, 429. 3+/-87.2; IPS Empress, 83.9+/-11.3; Vitadur Alpha Core, 131.0+/-9.5; Vitadur Alpha Dentin, 60.7+/-6.8; Vita VMK 68, 82.7+/-10.0; and Zirconia-TZP, 913.0+/-50.2. There was no statistically significant difference among the flexure strength of Cerec Mark II, Dicor, IPS Empress, Vitadur Alpha Dentin, and Vita VMK 68 ceramics (p>0.05). The highest Weibull moduli were associated with Cerec Mark II and Zirconia-TZP ceramics (23.6 and 18.4). Dicor glass-ceramic and In-Ceram Alumina had the lowest m values (5.5 and 5.7), whereas intermediate values were observed for IPS-Empress, Vita VMK 68, Vitadur Alpha Dentin and Vitadur Alpha Core ceramics (8.6, 8.9, 10.0 and 13.0, respectively). Except for In-Ceram Alumina, Vitadur Alpha and Zirconia-TZP core ceramics, most of the investigated ceramic materials fabricated under the condition of a dental laboratory were not stronger or more structurally reliable than Vita VMK 68 veneering porcelain. Only Cerec Mark II and Zirconia-TZP specimens, which were prepared from an industrially optimized ceramic material, exhibited m values greater than 18. Hence, we conclude that industrially prepared ceramics are more structurally reliable materials for dental applications although CAD

  4. Glass Ceramic Formulation Data Package

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Jarrod V.; Rodriguez, Carmen P.; McCloy, John S.; Vienna, John D.; Chung, Chul-Woo

    2012-06-17

    A glass ceramic waste form is being developed for treatment of secondary waste streams generated by aqueous reprocessing of commercial used nuclear fuel (Crum et al. 2012b). The waste stream contains a mixture of transition metals, alkali, alkaline earths, and lanthanides, several of which exceed the solubility limits of a single phase borosilicate glass (Crum et al. 2009; Caurant et al. 2007). A multi-phase glass ceramic waste form allows incorporation of insoluble components of the waste by designed crystallization into durable heat tolerant phases. The glass ceramic formulation and processing targets the formation of the following three stable crystalline phases: (1) powellite (XMoO4) where X can be (Ca, Sr, Ba, and/or Ln), (2) oxyapatite Yx,Z(10-x)Si6O26 where Y is alkaline earth, Z is Ln, and (3) lanthanide borosilicate (Ln5BSi2O13). These three phases incorporate the waste components that are above the solubility limit of a single-phase borosilicate glass. The glass ceramic is designed to be a single phase melt, just like a borosilicate glass, and then crystallize upon slow cooling to form the targeted phases. The slow cooling schedule is based on the centerline cooling profile of a 2 foot diameter canister such as the Hanford High-Level Waste canister. Up to this point, crucible testing has been used for glass ceramic development, with cold crucible induction melter (CCIM) targeted as the ultimate processing technology for the waste form. Idaho National Laboratory (INL) will conduct a scaled CCIM test in FY2012 with a glass ceramic to demonstrate the processing behavior. This Data Package documents the laboratory studies of the glass ceramic composition to support the CCIM test. Pacific Northwest National Laboratory (PNNL) measured melt viscosity, electrical conductivity, and crystallization behavior upon cooling to identify a processing window (temperature range) for melter operation and cooling profiles necessary to crystallize the targeted phases in the

  5. Corrosion resistance of the substrates for the cryogenic gyroscope and electrodeposition of the superconductive niobium coatings

    Science.gov (United States)

    Dubrovskiy, A. R.; Okunev, M. A.; Makarova, O. V.; Kuznetsov, S. A.

    2017-05-01

    The interaction of different materials with the niobium containing melt was investigated. As substrate materials the ceramics, beryllium and carbopyroceram were chosen. Several spherical ceramic and beryllium samples were coated with protective molybdenum and niobium films by magnetron sputtering and PVD, respectively. After the experiment (exposition time 10 min) the exfoliation of molybdenum film from ceramic samples was observed due to interaction of the substrate with the melt. The niobium protective coatings reacted with the melt with niobium oxide formation. The beryllium samples regardless of the shape and the presence of the protective films were dissolved in the niobium containing melt due to more negative electrode potential comparing with niobium one. The carbopyroceram samples were exposed in the melt during 3 and 12 h. It was found that the carbopyroceram not corrodes in the niobium containing melt. The optimal regimes for electrodeposition of smooth uniform niobium coatings with the thickness up to 50 μm on carbopyroceram spheres were found.

  6. Development of the mitigation method for carbon steel corrosion with ceramics in PWR secondary system

    International Nuclear Information System (INIS)

    Okamura, Masato; Shibasaki, Osamu; Miyazaki, Toyoaki; Kaneko, Tetsuji

    2012-09-01

    To verify the effect of depositing ceramic (TiO 2 , La 2 O 3 , and Y 2 O 3 ) on carbon steel to mitigate corrosion, corrosion tests were conducted under simulated chemistry conditions in a PWR secondary system. Test specimens (STPT410) were prepared with and without deposited ceramics. The ceramics were deposited on the specimens under high-temperature and high-pressure water conditions. Corrosion tests were conducted under high pH conditions (9.8) with a flow rate of 1.0-4.7 m/s at 185 deg. C for 200 hours. At a flow rate of 1.0 m/s, the amount of corrosion of the specimens with the ceramics was less than half of that of the specimens without the ceramics. As the flow rate increased, the amount of corrosion increased. However, even at a flow rate of 4.7 m/s, the amount of corrosion was reduced by approximately 30% by depositing the ceramics. After the corrosion tests, the surfaces of the specimens were analyzed with SEM and XRD. When the deposited ceramic was TiO 2 , the surface was densely covered with fine particles (less than 1 μm). From XRD analysis, these particles were identified as ilmenite (FeTiO 3 ). We consider that ilmenite may play an important role in mitigating the corrosion of carbon steel. (authors)

  7. Irradiation conditions for fiber laser bonding of HAp-glass ceramics with bovine cortical bone.

    Science.gov (United States)

    Tadano, Shigeru; Yamada, Satoshi; Kanaoka, Masaru

    2014-01-01

    Orthopedic implants are widely used to repair bones and to replace articulating joint surfaces. It is important to develop an instantaneous technique for the direct bonding of bone and implant materials. The aim of this study was to develop a technique for the laser bonding of bone with an implant material like ceramics. Ceramic specimens (10 mm diameter and 1 mm thickness) were sintered with hydroxyapatite and MgO-Al2O3-SiO2 glass powders mixed in 40:60 wt% proportions. A small hole was bored at the center of a ceramic specimen. The ceramic specimen was positioned onto a bovine bone specimen and a 5 mm diameter area of the ceramic specimen was irradiated using a fiber laser beam (1070-1080 nm wavelength). As a result, the bone and the ceramic specimens bonded strongly under the irradiation conditions of a 400 W laser power and a 1.0 s exposure time. The maximum shear strength was 5.3 ± 2.3 N. A bonding substance that penetrated deeply into the bone specimen was generated around the hole in the ceramic specimen. On using the fiber laser, the ceramic specimen instantaneously bonded to the bone specimen. Further, the irradiation conditions required for the bonding were investigated.

  8. Disc piezoelectric ceramic transformers.

    Science.gov (United States)

    Erhart, Jirií; Půlpán, Petr; Doleček, Roman; Psota, Pavel; Lédl, Vít

    2013-08-01

    In this contribution, we present our study on disc-shaped and homogeneously poled piezoelectric ceramic transformers working in planar-extensional vibration modes. Transformers are designed with electrodes divided into wedge, axisymmetrical ring-dot, moonie, smile, or yin-yang segments. Transformation ratio, efficiency, and input and output impedances were measured for low-power signals. Transformer efficiency and transformation ratio were measured as a function of frequency and impedance load in the secondary circuit. Optimum impedance for the maximum efficiency has been found. Maximum efficiency and no-load transformation ratio can reach almost 100% and 52 for the fundamental resonance of ring-dot transformers and 98% and 67 for the second resonance of 2-segment wedge transformers. Maximum efficiency was reached at optimum impedance, which is in the range from 500 Ω to 10 kΩ, depending on the electrode pattern and size. Fundamental vibration mode and its overtones were further studied using frequency-modulated digital holographic interferometry and by the finite element method. Complementary information has been obtained by the infrared camera visualization of surface temperature profiles at higher driving power.

  9. Ceramic HEPA Filter Program

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, M A; Bergman, W; Haslam, J; Brown, E P; Sawyer, S; Beaulieu, R; Althouse, P; Meike, A

    2012-04-30

    Potential benefits of ceramic filters in nuclear facilities: (1) Short term benefit for DOE, NRC, and industry - (a) CalPoly HTTU provides unique testing capability to answer questions for DOE - High temperature testing of materials, components, filter, (b) Several DNFSB correspondences and presentations by DNFSB members have highlighted the need for HEPA filter R and D - DNFSB Recommendation 2009-2 highlighted a nuclear facility response to an evaluation basis earthquake followed by a fire (aka shake-n-bake) and CalPoly has capability for a shake-n-bake test; (2) Intermediate term benefit for DOE and industry - (a) Filtration for specialty applications, e.g., explosive applications at Nevada, (b) Spin-off technologies applicable to other commercial industries; and (3) Long term benefit for DOE, NRC, and industry - (a) Across industry, strong desire for better performance filter, (b) Engineering solution to safety problem will improve facility safety and decrease dependence on associated support systems, (c) Large potential life-cycle cost savings, and (d) Facilitates development and deployment of LLNL process innovations to allow continuous ventilation system operation during a fire.

  10. Stress and Reliability Analysis of a Metal-Ceramic Dental Crown

    Science.gov (United States)

    Anusavice, Kenneth J; Sokolowski, Todd M.; Hojjatie, Barry; Nemeth, Noel N.

    1996-01-01

    Interaction of mechanical and thermal stresses with the flaws and microcracks within the ceramic region of metal-ceramic dental crowns can result in catastrophic or delayed failure of these restorations. The objective of this study was to determine the combined influence of induced functional stresses and pre-existing flaws and microcracks on the time-dependent probability of failure of a metal-ceramic molar crown. A three-dimensional finite element model of a porcelain fused-to-metal (PFM) molar crown was developed using the ANSYS finite element program. The crown consisted of a body porcelain, opaque porcelain, and a metal substrate. The model had a 300 Newton load applied perpendicular to one cusp, a load of 30ON applied at 30 degrees from the perpendicular load case, directed toward the center, and a 600 Newton vertical load. Ceramic specimens were subjected to a biaxial flexure test and the load-to-failure of each specimen was measured. The results of the finite element stress analysis and the flexure tests were incorporated in the NASA developed CARES/LIFE program to determine the Weibull and fatigue parameters and time-dependent fracture reliability of the PFM crown. CARES/LIFE calculates the time-dependent reliability of monolithic ceramic components subjected to thermomechanical and/Or proof test loading. This program is an extension of the CARES (Ceramics Analysis and Reliability Evaluation of Structures) computer program.

  11. Statistical process control applied to the manufacturing of beryllia ceramics

    International Nuclear Information System (INIS)

    Ferguson, G.P.; Jech, D.E.; Sepulveda, J.L.

    1991-01-01

    To compete effectively in an international market, scrap and re-work costs must be minimized. Statistical Process Control (SPC) provides powerful tools to optimize production performance. These techniques are currently being applied to the forming, metallizing, and brazing of beryllia ceramic components. This paper describes specific examples of applications of SPC to dry-pressing of beryllium oxide 2x2 substrates, to Mo-Mn refractory metallization, and to metallization and brazing of plasma tubes used in lasers where adhesion strength is critical

  12. Shear bond strength between veneering ceramics and ceria-stabilized zirconia/alumina.

    Science.gov (United States)

    Fischer, Jens; Stawarczyk, Bogna; Sailer, Irena; Hämmerle, Christoph H F

    2010-05-01

    Ceria-stabilized tetragonal ZrO(2)/Al(2)O(3) nanocomposite (Ce-TZP/A) offers superior properties compared to yttria-stabilized zirconia (Y-TZP). However, the bond quality to veneering ceramics has not been investigated. The purpose of this study was to evaluate the bond strength of different veneering ceramics to Ce-TZP/A. Cubes of Ce-TZP/A (NANOZR) (edge length, 10 mm) were layered with veneering ceramics (5 mm in thickness) with or without application of a liner and sheared at the interface. The effect of different surface treatments (polished with 3-mum diamond paste or airborne-particle abraded) was evaluated with 1 veneering ceramic (Cerabien ZR). Shear bond strength of 5 additional veneering ceramics (IPS e.max, Initial ZR, Triceram, Vintage ZR, or VITA VM 9) to polished Ce-TZP/A was measured (n=10). Polished Y-TZP (Hint-ELs ZrO(2) HIP) veneered with 2 ceramics (Cerabien ZR, Vintage ZR) served as the control. Mean shear bond strength values (MPa) were calculated. The means were statistically analyzed with 2-way ANOVA for the effect of surface treatment and liner, 2-way ANOVA for the effect of different veneering ceramic brands and liner, and 3-way ANOVA for the effect of substrate, veneering ceramic brands, and liner, as well as 1-way ANOVA for the differences between the veneering ceramics. A post hoc Scheffé test was used (alpha=.05). The effects of surface treatment (P=.007) or application of liner (Pveneering ceramics showed bond strength values with means ranging between 14.2 +/-1.7 MPa (IPS e.max with liner) and 27.5 +/-4.2 MPa (VITA VM 9). A significant difference was found between the results of shear bond tests with Y-TZP and Ce-TZP/A (P=.022). The application of a liner on Y-TZP had no significant effect. Airborne-particle abrasion is not necessary to enhance the shear bond strength of the evaluated veneering ceramics to Ce-TZP/A. Liners impair the shear bond strength of veneering ceramics to Ce-TZP/A.

  13. Butyrate as preferred substrate for polyhydroxybutyrate production.

    Science.gov (United States)

    Marang, Leonie; Jiang, Yang; van Loosdrecht, Mark C M; Kleerebezem, Robbert

    2013-08-01

    In this study, the suitability of butyrate as substrate for polyhydroxyalkanoate (PHA) production by microbial enrichment cultures was assessed. Two sequencing batch reactors were operated under feast-famine conditions: one fed with butyrate, and another with mixed acetate and butyrate. The obtained results were compared to previous results with acetate as sole substrate. In all three reactors Plasticicumulans acidivorans dominated the enrichment culture. The carbon uptake rate and PHA yield were significantly higher on butyrate than on acetate, resulting in a higher PHA production rate. When both substrates were available the bacteria strongly preferred the uptake of butyrate. Only after butyrate depletion acetate was taken up at a high rate. The molar substrate uptake rate remained the same, suggesting that substrate uptake is the rate-limiting step. The results show that for optimized waste-based PHA production the pre-fermentation process should be directed towards butyrate production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Substrate independent approach for synthesis of graphene platelet networks

    Science.gov (United States)

    Shashurin, A.; Fang, X.; Zemlyanov, D.; Keidar, M.

    2017-06-01

    Graphene platelet networks (GPNs) comprised of randomly oriented graphene flakes two to three atomic layers thick are synthesized using a novel plasma-based approach. The approach uses a substrate capable of withstanding synthesis temperatures around 800 °C, but is fully independent of the substrate material. The synthesis occurs directly on the substrate surface without the necessity of any additional steps. GPNs were synthesized on various substrate materials including silicon (Si), thermally oxidized Si (SiO2), molybdenum (Mo), nickel (Ni) and copper (Cu), nickel-chromium (NiCr) alloy and alumina ceramics (Al2O3). The mismatch between the atomic structures of sp2 honeycomb carbon networks and the substrate material is fully eliminated shortly after the synthesis initiation, namely when about 100 nm thick deposits are formed on the substrate. GPN structures synthesized on a substrate at a temperature of about 800 °C are significantly more porous in comparison to the much denser packed amorphous carbon deposits synthesized at lower temperatures. The method proposed here can potentially revolutionize the area of electrochemical energy storage by offering a single-step direct approach for the manufacture of graphene-based electrodes for non-Faradaic supercapacitors. Mass production can be achieved using this method if a roll-to-roll system is utilized.

  15. Panel report on high temperature ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Nolet, T C [ed.

    1979-01-01

    Fundamental research is reported concerning high temperature ceramics for application in turbines, engines, batteries, gasifiers, MHD, fuel cells, heat exchangers, and hot wall combustors. Ceramics microstructure and behavior are included. (FS)

  16. Tailorable Porous Ceramics via Freeze Casting

    Data.gov (United States)

    National Aeronautics and Space Administration — Freeze casting of ceramics is a novel technique used to produce porous materials. The process involves solidifying a solvent in a ceramic slurry to produce a frozen...

  17. III Advanced Ceramics and Applications Conference

    CERN Document Server

    Gadow, Rainer; Mitic, Vojislav; Obradovic, Nina

    2016-01-01

    This is the Proceedings of III Advanced Ceramics and Applications conference, held in Belgrade, Serbia in 2014. It contains 25 papers on various subjects regarding preparation, characterization and application of advanced ceramic materials.

  18. Reliability of ceramics for heat engine applications

    Science.gov (United States)

    1980-01-01

    The advantages and disadvantages associated with the use of monolithic ceramics in heat engines are discussed. The principle gaps in the state of understanding of ceramic material, failure origins, nondestructive tests as well as life prediction are included.

  19. Cooled Ceramic Turbine Vane, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — N&R Engineering will investigate the feasibility of cooled ceramics, such as ceramic matrix composite (CMC) turbine blade concepts that can decrease specific...

  20. Processing and Material Characterization of Continuous Basalt Fiber Reinforced Ceramic Matrix Composites Using Polymer Derived Ceramics.

    Science.gov (United States)

    Cox, Sarah B.

    2014-01-01

    The need for high performance vehicles in the aerospace industry requires materials which can withstand high loads and high temperatures. New developments in launch pads and infrastructure must also be made to handle this intense environment with lightweight, reusable, structural materials. By using more functional materials, better performance can be seen in the launch environment, and launch vehicle designs which have not been previously used can be considered. The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer matrix composites can be used for temperatures up to 260C. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in the composites. In this study, continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. The oxyacetylene torch testing and three point bend testing have been performed on test panels and the test results are presented.