WorldWideScience

Sample records for underlying brain disturbance

  1. Forest disturbances under climate change

    Czech Academy of Sciences Publication Activity Database

    Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, Jan; Ascoli, D.; Petr, M.; Honkaniemi, J.; Lexer, M. J.; Trotsiuk, V.; Mairota, P.; Svoboda, M.; Fabrika, M.; Nagel, T.A.; Reyer, C. P. O.

    2017-01-01

    Roč. 7, č. 6 (2017), s. 395-402 ISSN 1758-678X R&D Projects: GA MŠk(CZ) LD15158 Institutional support: RVO:67985939 Keywords : climate change * disturbance * forest Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 19.304, year: 2016

  2. Structural Brain Network Disturbances in the Psychosis Spectrum

    NARCIS (Netherlands)

    van Dellen, Edwin; Bohlken, Marc M; Draaisma, Laurijn; Tewarie, Prejaas K; van Lutterveld, Remko; Mandl, René; Stam, Cornelis J; Sommer, Iris E

    2016-01-01

    BACKGROUND: Individuals with subclinical psychotic symptoms provide a unique window on the pathophysiology of psychotic experiences as these individuals are free of confounders such as hospitalization, negative and cognitive symptoms and medication use. Brain network disturbances of white matter

  3. Disturbed oscillatory brain dynamics in subcortical ischemic vascular dementia

    Directory of Open Access Journals (Sweden)

    van Straaten Elisabeth CW

    2012-07-01

    Full Text Available Abstract Background White matter hyperintensities (WMH can lead to dementia but the underlying physiological mechanisms are unclear. We compared relative oscillatory power from electroencephalographic studies (EEGs of 17 patients with subcortical ischemic vascular dementia, based on extensive white matter hyperintensities (SIVD-WMH with 17 controls to investigate physiological changes underlying this diagnosis. Results Differences between the groups were large, with a decrease of relative power of fast activity in patients (alpha power 0.25 ± 0.12 versus 0.38 ± 0.13, p = 0.01; beta power 0.08 ± 0.04 versus 0.19 ± 0.07; p Conclusions This pattern of disturbance in oscillatory brain activity indicate loss of connections between neurons, providing a first step in the understanding of cognitive dysfunction in SIVD-WMH.

  4. Sleep-wake disturbances after traumatic brain injury.

    Science.gov (United States)

    Ouellet, Marie-Christine; Beaulieu-Bonneau, Simon; Morin, Charles M

    2015-07-01

    Sleep-wake disturbances are extremely common after a traumatic brain injury (TBI). The most common disturbances are insomnia (difficulties falling or staying asleep), increased sleep need, and excessive daytime sleepiness that can be due to the TBI or other sleep disorders associated with TBI, such as sleep-related breathing disorder or post-traumatic hypersomnia. Sleep-wake disturbances can have a major effect on functional outcomes and on the recovery process after TBI. These negative effects can exacerbate other common sequelae of TBI-such as fatigue, pain, cognitive impairments, and psychological disorders (eg, depression and anxiety). Sleep-wake disturbances associated with TBI warrant treatment. Although evidence specific to patients with TBI is still scarce, cognitive-behavioural therapy and medication could prove helpful to alleviate sleep-wake disturbances in patients with a TBI. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Optimal Transmission Line Switching under Geomagnetic Disturbances

    International Nuclear Information System (INIS)

    Lu, Mowen; Nagarajan, Harsha; Yamangil, Emre; Bent, Russell; Backhaus, Scott

    2017-01-01

    Recently, there have been increasing concerns about how geomagnetic disturbances (GMDs) impact electrical power systems. Geomagnetically-induced currents (GICs) can saturate transformers, induce hot spot heating and increase reactive power losses. These effects can potentially cause catastrophic damage to transformers and severely impact the ability of a power system to deliver power. To address this problem, we develop a model of GIC impacts to power systems that includes 1) GIC thermal capacity of transformers as a function of normal Alternating Current (AC) and 2) reactive power losses as a function of GIC. We also use this model to derive an optimization problem that protects power systems from GIC impacts through line switching, generator dispatch, and load shedding. We then employ state-of-the-art convex relaxations of AC power flow equations to lower bound the objective. We demonstrate the approach on a modified RTS96 system and UIUC 150-bus system and show that line switching is an effective means to mitigate GIC impacts. We also provide a sensitivity analysis of decisions with respect to GMD direction.

  6. Traumatic brain injury and disturbed sleep and wakefulness.

    Science.gov (United States)

    Baumann, Christian R

    2012-09-01

    Traumatic brain injury is a frequent condition worldwide, and sleep-wake disturbances often complicate the course after the injuring event. Current evidence suggests that the most common sleep-wake disturbances following traumatic brain injury include excessive daytime sleepiness and posttraumatic hypersomnia, that is, increased sleep need per 24 h. The neuromolecular basis of posttraumatic sleep pressure enhancement is not entirely clear. First neuropathological and clinical studies suggest that impaired hypocretin (orexin) signalling might contribute to sleepiness, but direct or indirect traumatic injury also to other sleep-wake modulating systems in the brainstem and the mesencephalon is likely. Posttraumatic insomnia may be less common than posttraumatic sleepiness, but studies on its frequency revealed conflicting results. Furthermore, insomnia is often associated with psychiatric comorbidities, and some patients with posttraumatic disruption of their circadian rhythm may be misdiagnosed as insomnia patients. The pathophysiology of posttraumatic circadian sleep disorders remains elusive; however, there is some evidence that reduced evening melatonin production due to traumatic brain damage may cause disruption of circadian regulation of sleep and wakefulness.

  7. Analytical Assessment for Transient Stability Under Stochastic Continuous Disturbances

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Ping [Hohai Univ., Nanjing (China); Li, Hongyu [Hohai Univ., Nanjing (China); Gan, Chun [The Univ. of Tennessee, Knoxville, TN (United States); Liu, Yong [The Univ. of Tennessee, Knoxville, TN (United States); Yu, Yiping [Hohai Univ., Nanjing (China); Liu, Yilu [Univ. of Tennessee, Knoxville, TN (United States)

    2017-06-28

    Here, with the growing integration of renewable power generation, plug-in electric vehicles, and other sources of uncertainty, increasing stochastic continuous disturbances are brought to power systems. The impact of stochastic continuous disturbances on power system transient stability attracts significant attention. To address this problem, this paper proposes an analytical assessment method for transient stability of multi-machine power systems under stochastic continuous disturbances. In the proposed method, a probability measure of transient stability is presented and analytically solved by stochastic averaging. Compared with the conventional method (Monte Carlo simulation), the proposed method is many orders of magnitude faster, which makes it very attractive in practice when many plans for transient stability must be compared or when transient stability must be analyzed quickly. Also, it is found that the evolution of system energy over time is almost a simple diffusion process by the proposed method, which explains the impact mechanism of stochastic continuous disturbances on transient stability in theory.

  8. Aberrant brain-stem morphometry associated with sleep disturbance in drug-naïve subjects with Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Lee JH

    2016-08-01

    Full Text Available Ji Han Lee,1 Won Sang Jung,2 Woo Hee Choi,3 Hyun Kook Lim4 1Washington University in St Louis, St Louis, MO, USA; 2Department of Radiology, 3Department of Nuclear Medicine, 4Department of Psychiatry, Saint Vincent Hospital, College of Medicine, The Catholic University of Korea, Suwon, South Korea Objective: Among patients with Alzheimer’s disease (AD, sleep disturbances are common and serious noncognitive symptoms. Previous studies of AD patients have identified deformations in the brain stem, which may play an important role in the regulation of sleep. The aim of this study was to further investigate the relationship between sleep disturbances and alterations in brain stem morphology in AD.Materials and methods: In 44 patients with AD and 40 healthy elderly controls, sleep disturbances were measured using the Neuropsychiatry Inventory sleep subscale. We employed magnetic resonance imaging-based automated segmentation tools to examine the relationship between sleep disturbances and changes in brain stem morphology.Results: Analyses of the data from AD subjects revealed significant correlations between the Neuropsychiatry Inventory sleep-subscale scores and structural alterations in the left posterior lateral region of the brain stem, as well as normalized brain stem volumes. In addition, significant group differences in posterior brain stem morphology were observed between the AD group and the control group.Conclusion: This study is the first to analyze an association between sleep disturbances and brain stem morphology in AD. In line with previous findings, this study lends support to the possibility that brain stem structural abnormalities might be important neurobiological mechanisms underlying sleep disturbances associated with AD. Further longitudinal research is needed to confirm these findings. Keywords: Alzheimer’s disease, sleep, brain stem, MRI, shape analysis

  9. Modeling dynamic behavior of superconducting maglev systems under external disturbances

    Science.gov (United States)

    Huang, Chen-Guang; Xue, Cun; Yong, Hua-Dong; Zhou, You-He

    2017-08-01

    For a maglev system, vertical and lateral displacements of the levitation body may simultaneously occur under external disturbances, which often results in changes in the levitation and guidance forces and even causes some serious malfunctions. To fully understand the effect of external disturbances on the levitation performance, in this work, we build a two-dimensional numerical model on the basis of Newton's second law of motion and a mathematical formulation derived from magnetoquasistatic Maxwell's equations together with a nonlinear constitutive relation between the electric field and the current density. By using this model, we present an analysis of dynamic behavior for two typical maglev systems consisting of an infinitely long superconductor and a guideway of different arrangements of infinitely long parallel permanent magnets. The results show that during the vertical movement, the levitation force is closely associated with the flux motion and the moving velocity of the superconductor. After being disturbed at the working position, the superconductor has a disturbance-induced initial velocity and then starts to periodically vibrate in both lateral and vertical directions. Meanwhile, the lateral and vertical vibration centers gradually drift along their vibration directions. The larger the initial velocity, the faster their vibration centers drift. However, the vertical drift of the vertical vibration center seems to be independent of the direction of the initial velocity. In addition, due to the lateral and vertical drifts, the equilibrium position of the superconductor in the maglev systems is not a space point but a continuous range.

  10. Neuropsychiatric Disturbances and Hypopituitarism After Traumatic Brain Injury in an Elderly Man

    Directory of Open Access Journals (Sweden)

    Yi-Cheng Chang

    2006-01-01

    Full Text Available Neuropsychiatric or cognitive disturbances are common complications after traumatic brain injury. They are commonly regarded as irreversible sequelae of organic brain injuries. We report a case of hypopituitarism in a 77-year-old man who presented with long-term neuropsychiatric disturbances, including cognitive impairment, disturbed sleep patterns, personality change, loss of affect, and visual and auditory hallucinations after a traumatic subdural hemorrhage. The treatment response to hormone replacement therapy was nearly complete. Hypopituitarism is rarely considered in patients who sustain traumatic brain injury and the neuropsychiatric manifestations of posttraumatic hypopituitarism have rarely been reported. This case highlights the importance of hypopituitarism as a potential reversible cause of neuropsychiatric disturbances after traumatic brain injury.

  11. Optimization of Vehicular Trajectories under Gaussian Noise Disturbances

    Directory of Open Access Journals (Sweden)

    Joan Garcia-Haro

    2012-12-01

    Full Text Available Nowadays, research on Vehicular Technology aims at automating every single mechanical element of vehicles, in order to increase passengers’ safety, reduce human driving intervention and provide entertainment services on board. Automatic trajectory tracing for vehicles under especially risky circumstances is a field of research that is currently gaining enormous attention. In this paper, we show some results on how to develop useful policies to execute maneuvers by a vehicle at high speeds with the mathematical optimization of some already established mobility conditions of the car. We also study how the presence of Gaussian noise on measurement sensors while maneuvering can disturb motion and affect the final trajectories. Different performance criteria for the optimization of such maneuvers are presented, and an analysis is shown on how path deviations can be minimized by using trajectory smoothing techniques like the Kalman Filter. We finalize the paper with a discussion on how communications can be used to implement these schemes.

  12. Radiation-induced apoptosis and developmental disturbance of the brain

    Energy Technology Data Exchange (ETDEWEB)

    Inouye, Minoru [Nagoya Univ. (Japan). Research Inst. of Environmental Medicine

    1995-03-01

    The developing mammalian brain is highly susceptible to ionizing radiation. A significant increase in small head size and mental retardation has been noted in prenatally exposed survivors of the atomic bombing, with the highest risk in those exposed during 8-15 weeks after fertilization. This stage corresponds to day 13 of pregnancy for mice and day 15 for rats in terms of brain development. The initial damage produced by radiation at this stage is cell death in the ventricular zone (VZ) of the brain mantle, the radiosensitive germinal cell population. During histogenesis of the cerebellum the external granular layer (EGL) is also radiosensitive. Although extensive cell death results in microcephaly and histological abnormlity, both VZ and EGL have an ability to recover from a considerable cell loss and form the normal structure of the central nervous system. The number of cell deaths to induce tissue abnormalities in adult brain rises in the range of 15-25% of the germinal cell population; and the threshold doses are about 0.3 Gy for cerebral defects and 1 Gy for cerebellar anomalies in both mice and rats. A similar threshold level is suggested in human cases in induction of mental retardation. Radiation-induced cell death in the VZ and EGL has been revealed as apoptosis, by the nuclear and cytoplasmic condensation, transglutaminase activation, required macromolecular synthesis, and internucleosomal DNA cleavage. Apoptosis of the germinal cell is assumed to eliminate acquired genetic damage. Once an abnormality in DNA has been induced and fixed in a germinal cell, it would be greatly amplified during future proliferation. These cells would commit suicide when injured for replacement by healthy cells, rather than undertake DNA repair. In fact they show very slow repair of cellular damage. Thus the high sensitivity of undifferentiated neural cells to the lethal effect of radiation may constitute a biological defense mechanism. (author) 69 refs.

  13. Radiation-induced apoptosis and developmental disturbance of the brain

    International Nuclear Information System (INIS)

    Inouye, Minoru

    1995-01-01

    The developing mammalian brain is highly susceptible to ionizing radiation. A significant increase in small head size and mental retardation has been noted in prenatally exposed survivors of the atomic bombing, with the highest risk in those exposed during 8-15 weeks after fertilization. This stage corresponds to day 13 of pregnancy for mice and day 15 for rats in terms of brain development. The initial damage produced by radiation at this stage is cell death in the ventricular zone (VZ) of the brain mantle, the radiosensitive germinal cell population. During histogenesis of the cerebellum the external granular layer (EGL) is also radiosensitive. Although extensive cell death results in microcephaly and histological abnormlity, both VZ and EGL have an ability to recover from a considerable cell loss and form the normal structure of the central nervous system. The number of cell deaths to induce tissue abnormalities in adult brain rises in the range of 15-25% of the germinal cell population; and the threshold doses are about 0.3 Gy for cerebral defects and 1 Gy for cerebellar anomalies in both mice and rats. A similar threshold level is suggested in human cases in induction of mental retardation. Radiation-induced cell death in the VZ and EGL has been revealed as apoptosis, by the nuclear and cytoplasmic condensation, transglutaminase activation, required macromolecular synthesis, and internucleosomal DNA cleavage. Apoptosis of the germinal cell is assumed to eliminate acquired genetic damage. Once an abnormality in DNA has been induced and fixed in a germinal cell, it would be greatly amplified during future proliferation. These cells would commit suicide when injured for replacement by healthy cells, rather than undertake DNA repair. In fact they show very slow repair of cellular damage. Thus the high sensitivity of undifferentiated neural cells to the lethal effect of radiation may constitute a biological defense mechanism. (author) 69 refs

  14. The Developmental Course of Sleep Disturbances Across Childhood Relates to Brain Morphology at Age 7: The Generation R Study.

    Science.gov (United States)

    Kocevska, Desana; Muetzel, Ryan L; Luik, Annemarie I; Luijk, Maartje P C M; Jaddoe, Vincent W; Verhulst, Frank C; White, Tonya; Tiemeier, Henning

    2017-01-01

    Little is known about the impact of sleep disturbances on the structural properties of the developing brain. This study explored associations between childhood sleep disturbances and brain morphology at 7 years. Mothers from the Generation R cohort reported sleep disturbances in 720 children at ages 2 months, 1.5, 2, 3, and 6 years. T1-weighted Magnetic Resonance Imaging (MRI) images were used to assess brain structure at 7 years. Associations of sleep disturbances at each age and of sleep disturbance trajectories with brain volumes (total brain volume, cortical and subcortical grey matter, white matter) were tested with linear regressions. To assess regional differences, sleep disturbance trajectories were tested as determinants for cortical thickness in whole-brain analyses. Sleep disturbances followed a declining trend from toddlerhood onwards. Infant sleep was not associated with brain morphology at age 7. Per SD sleep disturbances (one frequent symptom or two less frequent symptoms) at 2 and 3 years of age, children had -6.3 (-11.7 to -0.8) cm3 and -6.4 (-11.7 to -1.7) cm3 smaller grey matter volumes, respectively. Sleep disturbances at age 6 years were associated with global brain morphology (grey matter: -7.3 (-12.1 to -2.6), p value = .01). Consistently, trajectory analyses showed that more adverse developmental course of childhood sleep disturbances are associated with smaller grey matter volumes and thinner dorsolateral prefrontal cortex. Sleep disturbances from age 2 years onwards are associated with smaller grey matter volumes. Thinner prefrontal cortex in children with adverse sleep disturbance trajectories may reflect effects of sleep disturbances on brain maturation. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  15. Usefulness of Magnetic Resonance Imaging of the brain for diagnosis of sleep disturbances - preliminary report

    International Nuclear Information System (INIS)

    Brodziak, A.; Ziolko, E.; Kwiatkowska, A.; Muc-Wierzgon, M.; Wojtek, P.; Trejtowicz, D.

    2006-01-01

    We studied sleep disturbances reported by patients admitted to the Department of Internal Medicine. According to history of disease in each case the sleep disturbances had a chronic character and lasted several months. All patients received the questionnaire we designed. The idea of the questionnaire was to objectively assess the disorder. We assumed that there are rational medical indications for MRI of the brain examination in the selected group of 10 patients. Our study proved that this imaging technique (MRI) is very useful in detection of ischemic lesions related to long-term sleep disturbances. Lesions of the type are observed in most patients with such disturbances. The lesions we found in the so called 'sleep areas' have also been discussed in other papers published recently. (author)

  16. Connectomic disturbances in attention-deficit/hyperactivity disorder: a whole-brain tractography analysis.

    Science.gov (United States)

    Hong, Soon-Beom; Zalesky, Andrew; Fornito, Alex; Park, Subin; Yang, Young-Hui; Park, Min-Hyeon; Song, In-Chan; Sohn, Chul-Ho; Shin, Min-Sup; Kim, Bung-Nyun; Cho, Soo-Churl; Han, Doug Hyun; Cheong, Jae Hoon; Kim, Jae-Won

    2014-10-15

    Few studies have sought to identify, in a regionally unbiased way, the precise cortical and subcortical regions that are affected by white matter abnormalities in attention-deficit/hyperactivity disorder (ADHD). This study aimed to derive a comprehensive, whole-brain characterization of connectomic disturbances in ADHD. Using diffusion tensor imaging, whole-brain tractography, and an imaging connectomics approach, we characterized altered white matter connectivity in 71 children and adolescents with ADHD compared with 26 healthy control subjects. White matter differences were further delineated between patients with (n = 40) and without (n = 26) the predominantly hyperactive/impulsive subtype of ADHD. A significant network comprising 25 distinct fiber bundles linking 23 different brain regions spanning frontal, striatal, and cerebellar brain regions showed altered white matter structure in ADHD patients (p attentional disturbances. Attention-deficit/hyperactivity disorder subtypes were differentiated by a right-lateralized network (p attentional performance underscore the functional importance of these connectomic disturbances for the clinical phenotype of ADHD. A distributed pattern of white matter microstructural integrity separately involving frontal, striatal, and cerebellar brain regions, rather than direct frontostriatal connectivity, appears to be disrupted in children and adolescents with ADHD. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. Railway line capacity consumption of different railway signalling systems under scheduled and disturbed conditions

    NARCIS (Netherlands)

    Goverde, R.M.P.; Corman, F.; D'Ariano, A.

    2013-01-01

    This paper evaluates the capacity consumption on a Dutch railway line both under scheduled and disturbed traffic conditions. For the scheduled condition the standard UIC compression method is used, while the computation of capacity consumption under disturbed conditions requires multiple simulation

  18. Resting State Brain Network Disturbances Related to Hypomania and Depression in Medication-Free Bipolar Disorder.

    Science.gov (United States)

    Spielberg, Jeffrey M; Beall, Erik B; Hulvershorn, Leslie A; Altinay, Murat; Karne, Harish; Anand, Amit

    2016-12-01

    Research on resting functional brain networks in bipolar disorder (BP) has been unable to differentiate between disturbances related to mania or depression, which is necessary to understand the mechanisms leading to each state. Past research has also been unable to elucidate the impact of BP-related network disturbances on the organizational properties of the brain (eg, communication efficiency). Thus, the present work sought to isolate network disturbances related to BP, fractionate these into components associated with manic and depressive symptoms, and characterize the impact of disturbances on network function. Graph theory was used to analyze resting functional magnetic resonance imaging data from 60 medication-free patients meeting the criteria for BP and either a current hypomanic (n=30) or depressed (n=30) episode and 30 closely age/sex-matched healthy controls. Correction for multiple comparisons was carried out. Compared with controls, BP patients evidenced hyperconnectivity in a network involving right amygdala. Fractionation revealed that (hypo)manic symptoms were associated with hyperconnectivity in an overlapping network and disruptions in the brain's 'small-world' network organization. Depressive symptoms predicted hyperconnectivity in a network involving orbitofrontal cortex along with a less resilient global network organization. Findings provide deeper insight into the differential pathophysiological processes associated with hypomania and depression, along with the particular impact these differential processes have on network function.

  19. Brain mechanisms underlying human communication

    Directory of Open Access Journals (Sweden)

    Matthijs L Noordzij

    2009-07-01

    Full Text Available Human communication has been described as involving the coding-decoding of a conventional symbol system, which could be supported by parts of the human motor system (i.e. the “mirror neurons system”. However, this view does not explain how these conventions could develop in the first place. Here we target the neglected but crucial issue of how people organize their non-verbal behavior to communicate a given intention without pre-established conventions. We have measured behavioral and brain responses in pairs of subjects during communicative exchanges occurring in a real, interactive, on-line social context. In two fMRI studies, we found robust evidence that planning new communicative actions (by a sender and recognizing the communicative intention of the same actions (by a receiver relied on spatially overlapping portions of their brains (the right posterior superior temporal sulcus. The response of this region was lateralized to the right hemisphere, modulated by the ambiguity in meaning of the communicative acts, but not by their sensorimotor complexity. These results indicate that the sender of a communicative signal uses his own intention recognition system to make a prediction of the intention recognition performed by the receiver. This finding supports the notion that our communicative abilities are distinct from both sensorimotor processes and language abilities.

  20. Brain mechanisms underlying human communication.

    Science.gov (United States)

    Noordzij, Matthijs L; Newman-Norlund, Sarah E; de Ruiter, Jan Peter; Hagoort, Peter; Levinson, Stephen C; Toni, Ivan

    2009-01-01

    Human communication has been described as involving the coding-decoding of a conventional symbol system, which could be supported by parts of the human motor system (i.e. the "mirror neurons system"). However, this view does not explain how these conventions could develop in the first place. Here we target the neglected but crucial issue of how people organize their non-verbal behavior to communicate a given intention without pre-established conventions. We have measured behavioral and brain responses in pairs of subjects during communicative exchanges occurring in a real, interactive, on-line social context. In two fMRI studies, we found robust evidence that planning new communicative actions (by a sender) and recognizing the communicative intention of the same actions (by a receiver) relied on spatially overlapping portions of their brains (the right posterior superior temporal sulcus). The response of this region was lateralized to the right hemisphere, modulated by the ambiguity in meaning of the communicative acts, but not by their sensorimotor complexity. These results indicate that the sender of a communicative signal uses his own intention recognition system to make a prediction of the intention recognition performed by the receiver. This finding supports the notion that our communicative abilities are distinct from both sensorimotor processes and language abilities.

  1. Bodily Experience in Schizophrenia : Factors Underlying a Disturbed Sense of Body Ownership

    NARCIS (Netherlands)

    Klaver, Maayke; Dijkerman, H Chris

    2016-01-01

    Emerging evidence is now challenging the view that patients diagnosed with schizophrenia experience a selective deficit in their sense of agency. Additional disturbances seem to exist in their sense of body ownership. However, the factors underlying this disturbance in body ownership remain elusive.

  2. Circadian rhythm disturbance after radiotherapy for brain tumor in infantile period

    International Nuclear Information System (INIS)

    Kubota, Masaya; Shinozaki, Masako; Sasaki, Hideo.

    1993-01-01

    We report a 19-year-old man suffering from circadian sleep-wake (S-W) rhythm disturbance after total tumor resection and whole brain irradiation. The patient was diagnosed as having astrocytoma in the right temporal lobe by CT scan and angiography at the age of 6 months. After total tumor resection and whole brain irradiation ( 60 Co 60 Gy), he showed profound psychomotor retardation, endoclinologic dysfunction including hypothyroidism and growth hormone deficiency, and S-W rhythm disturbance. At the age of 19, brain MRI revealed asymmetrical low intensity in the hypothalamic region. On endoclinological examination panhypopituitarism due to primary hypothalamic lesion was evident. His S-W rhythm was disturbed; i.e., sleep periods were dispersedly distributed throughout 24 hours. So he showed a lethargic tendency in the daytime. All-day polysomnography revealed abnormal sleep structure such as the absence of sleep spindle and hump, peripheral apnea, snoring and low oxygen saturation. After L-thyroxine supplementation his daily activity improved gradually. The decrease in short time sleep and tendency of a free-running rhythm were observed and oxygen saturation improved remarkably. Peripheral apnea and snoring disappeared. This wakening effect of L-thyroxine administration may be due to improvement of hypothyroidism symptom such as myxoedematous pharynx. It also seems related to the alteration of the central S-W rhythm regulation, because free-running rhythm appeared after L-thyroxine administration. Vitamin B 12 (VB 12 ), which has been reported to be effective for S-W rhythm disorders, was not effective for our patient's free-running rhythm. Compared with the patients responding to VB 12 , our patient's organic brain damage was more evident radiologically and endoclinologically. Following the hypothesis that VB 12 has a potential to reinforce the entrainment of circadian rhythm, our patient's organic brain damage may include entrainment system. (author)

  3. Torsional Vibration of a Shafting System under Electrical Disturbances

    Directory of Open Access Journals (Sweden)

    Ling Xiang

    2012-01-01

    Full Text Available Torsional vibration responses of a nonlinear shafting system are studied by a modified Riccati torsional transfer matrix combining with the Newmark-β method. Firstly, the system is modeled as a chain consisting of an elastic spring with concentrated mass points, from which a multi-segment lumped mass model is established. Secondly, accumulated errors are eliminated from the eigenfrequencies and responses of the system's torsional vibration by this newly developed procedure. The incremental transfer matrix method, combining the modified Riccati torsional transfer matrix with Newmark-β method, is further applied to solve the dynamical equations for the torsional vibration of the nonlinear shafting system. Lastly, the shafting system of a turbine-generator is employed as an illustrating example, and simulation analysis has been performed on the transient responses of the shaft's torsional vibrations during typical power network disturbances, such as three-phase short circuit, two-phase short circuit and asynchronous juxtaposition. The results validate the present method and are instructive for the design of a turbo-generator shaft.

  4. Functional hierarchy underlies preferential connectivity disturbances in schizophrenia.

    Science.gov (United States)

    Yang, Genevieve J; Murray, John D; Wang, Xiao-Jing; Glahn, David C; Pearlson, Godfrey D; Repovs, Grega; Krystal, John H; Anticevic, Alan

    2016-01-12

    Schizophrenia may involve an elevated excitation/inhibition (E/I) ratio in cortical microcircuits. It remains unknown how this regulatory disturbance maps onto neuroimaging findings. To address this issue, we implemented E/I perturbations within a neural model of large-scale functional connectivity, which predicted hyperconnectivity following E/I elevation. To test predictions, we examined resting-state functional MRI in 161 schizophrenia patients and 164 healthy subjects. As predicted, patients exhibited elevated functional connectivity that correlated with symptom levels, and was most prominent in association cortices, such as the fronto-parietal control network. This pattern was absent in patients with bipolar disorder (n = 73). To account for the pattern observed in schizophrenia, we integrated neurobiologically plausible, hierarchical differences in association vs. sensory recurrent neuronal dynamics into our model. This in silico architecture revealed preferential vulnerability of association networks to E/I imbalance, which we verified empirically. Reported effects implicate widespread microcircuit E/I imbalance as a parsimonious mechanism for emergent inhomogeneous dysconnectivity in schizophrenia.

  5. Patterns of plant species diversity during succession under different disturbance regimes.

    Science.gov (United States)

    Denslow, Julie Sloan

    1980-07-01

    I suggest that between-community variations in diversity patterns during succession in plant communities are due to the effects of selection on life history strategies under different disturbance regimes. Natural disturbances to plant communities are simultaneously a source of mortality for some individuals and a source of establishment sites for others. The plant community consists of a mosaic of disturbance patches (gaps) of different environmental conditions. The composition of the mosaic is described by the size-frequency distribution of the gaps and is dependent on the rates and scales of disturbance. The life-history strategies of plant species dependent on some form of disturbance for establishment of propagules should reflect this size-frequency distribution of disturbance patches. An extension of island biogeographic theory to encompass relative habitat area predicts that a community should be most rich in species adapted to growth and establishment in the spatially most common patch types. Changes in species diversity during succession following large scale disturbance reflect the prevalent life history patterns under historically common disturbance regimes. Communities in which the greatest patch area is in large-scale clearings (e.g. following fire) are most diverse in species establishing seedlings in xeric, high light conditions. Species diversity decreases during succession. Communities in which such large patches are rare are characterized by a large number of species that reach the canopy through small gaps and realtively few which regenerate in the large clearings. Diversity increases during succession following a large scale disturbance.Evidence from communities characterized by different disturbance regimes is summarized from the literature. This hypothesis provides an evolutionary mechanism with which to examine the changes in plant community structure during succession. Diversity peaks occurring at "intermediate levels" of disturbance as

  6. Early functional and morphological brain disturbances in late-onset intrauterine growth restriction.

    Science.gov (United States)

    Starčević, Mirta; Predojević, Maja; Butorac, Dražan; Tumbri, Jasna; Konjevoda, Paško; Kadić, Aida Salihagić

    2016-02-01

    To determine whether the brain disturbances develop in late-onset intrauterine growth restriction (IUGR) before blood flow redistribution towards the fetal brain (detected by Doppler measurements in the middle cerebral artery and umbilical artery). Further, to evaluate predictive values of Doppler arterial indices and umbilical cord blood gases and pH for early functional and/or morphological brain disturbances in late-onset IUGR. This cohort study included 60 singleton term pregnancies with placental insufficiency caused late-onset IUGR (IUGR occurring after 34 gestational weeks). Umbilical artery resistance index (URI), middle cerebral artery resistance index (CRI), and cerebroumbilical (C/U) ratio (CRI/URI) were monitored once weekly. Umbilical blood cord samples (arterial and venous) were collected for the analysis of pO2, pCO2 and pH. Morphological neurological outcome was evaluated by cranial ultrasound (cUS), whereas functional neurological outcome by Amiel-Tison Neurological Assessment at Term (ATNAT). 50 fetuses had C/U ratio>1, and 10 had C/U ratio≤1; among these 10 fetuses, 9 had abnormal neonatal cUS findings and all 10 had non-optimal ATNAT. However, the total number of abnormal neurological findings was much higher. 32 neonates had abnormal cUS (53.37%), and 42 (70.00%) had non-optimal ATNAT. Furthermore, Doppler indices had higher predictive validity for early brain disturbances than umbilical cord blood gases and pH. C/U ratio had the highest predictive validity with threshold for adverse neurological outcome at value 1.13 (ROC analysis), i.e., 1.18 (party machine learning algorithm). Adverse neurological outcome at average values of C/U ratios>1 confirmed that early functional and/or structural brain disturbances in late-onset IUGR develop even before activation of fetal cardiovascular compensatory mechanisms, i.e., before Doppler signs of blood flow redistribution between the fetal brain and the placenta. Copyright © 2015 Elsevier Ireland Ltd

  7. Ethylene glycol ethers induce apoptosis and disturb glucose metabolism in the rat brain.

    Science.gov (United States)

    Pomierny, Bartosz; Krzyżanowska, Weronika; Niedzielska, Ewa; Broniowska, Żaneta; Budziszewska, Bogusława

    2016-02-01

    Ethylene glycol ethers (EGEs) are compounds widely used in industry and household products, but their potential, adverse effect on brain is poorly understood, so far. The aim of the present study was to determine whether 4-week administration of 2-buthoxyethanol (BE), 2-phenoxyethanol (PHE), and 2-ethoxyethanol (EE) induces apoptotic process in the rat hippocampus and frontal cortex, and whether their adverse effect on the brain cells can result from disturbances in the glucose metabolism. Experiments were conducted on 40 rats, exposed to BE, PHE, EE, saline or sunflower oil for 4 weeks. Markers of apoptosis and glucose metabolism were determined in frontal cortex and hippocampus by western blot, ELISA, and fluorescent-based assays. BE and PHE, but not EE, increased expression of the active form of caspase-3 in the examined brain regions. BE and PHE increased caspase-9 level in the cortex and PHE also in the hippocampus. BE and PHE increased the level of pro-apoptotic proteins (Bax, Bak) and/or reduced the concentration of anti-apoptotic proteins (Bcl-2, Bcl-xL); whereas, the effect of BE was observed mainly in the cortex and that of PHE in the hippocampus. It has also been found that PHE increased brain glucose level, and both BE and PHE elevated pyruvate and lactate concentration. It can be concluded that chronic treatment with BE and PHE induced mitochondrial pathway of apoptosis, and disturbed glucose metabolism in the rat brain. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  8. Brain network disturbance related to posttraumatic stress and traumatic brain injury in veterans.

    Science.gov (United States)

    Spielberg, Jeffrey M; McGlinchey, Regina E; Milberg, William P; Salat, David H

    2015-08-01

    Understanding the neural causes and consequences of posttraumatic stress disorder (PTSD) and mild traumatic brain injury (mTBI) is a high research priority, given the high rates of associated disability and suicide. Despite remarkable progress in elucidating the brain mechanisms of PTSD and mTBI, a comprehensive understanding of these conditions at the level of brain networks has yet to be achieved. The present study sought to identify functional brain networks and topological properties (measures of network organization and function) related to current PTSD severity and mTBI. Graph theoretic tools were used to analyze resting-state functional magnetic resonance imaging data from 208 veterans of Operation Enduring Freedom, Operation Iraqi Freedom, and Operation New Dawn, all of whom had experienced a traumatic event qualifying for PTSD criterion A. Analyses identified brain networks and topological network properties linked to current PTSD symptom severity, mTBI, and the interaction between PTSD and mTBI. Two brain networks were identified in which weaker connectivity was linked to higher PTSD re-experiencing symptoms, one of which was present only in veterans with comorbid mTBI. Re-experiencing was also linked to worse functional segregation (necessary for specialized processing) and diminished influence of key regions on the network, including the hippocampus. Findings of this study demonstrate that PTSD re-experiencing symptoms are linked to weakened connectivity in a network involved in providing contextual information. A similar relationship was found in a separate network typically engaged in the gating of working memory, but only in veterans with mTBI. Published by Elsevier Inc.

  9. Developmental disturbances of the fetal brain in guinea-pigs caused by methylmercury

    Energy Technology Data Exchange (ETDEWEB)

    Inouye, Minoru; Kajiwara, Yuji

    1988-08-01

    Pregnant guinea-pigs of Hartley strain were orally administered methylmercuric chloride once at a dose of 7.5 mg Hg/animal (weighing 500-800 g) on one of days 21, 28, 35, 42 or 49 (3-7 weeks) of gestation. They were killed on day 63 (9 weeks) and their fetuses were removed. Both maternal and fetal blood, brain, liver and kidney, and fetal hair, urine, gastric content and amniotic fluid as well, were sampled for mercury analysis. The fetal brains were also examined pathologically. The maternal kidney contained mercury at a high concentration but the fetal kidney did not. The mercury concentration was strikingly high in the fetal hair, but fairly low in the urine, gastric contents and amniotic fluid. Mercury distributed unevenly in various brain regions of both dams and fetuses after treatment at 6 and 7 weeks of pregnancy (3 and 2 weeks before sampling). The concentration was high in the neopallium and archipallium, followed by the paleopallium, diencephalon and mesencephalon, but low in the rhombencephalon, including cerebellum. Mercury contents were relatively low and distributed almost evenly in various brain regions of both the dams and fetuses following treatment at 3, 4 and 5 weeks of pregnancy. Morphologically, the fetal brains were disturbed in the development following treatment at 3, 4 and 5 weeks of pregnancy. The cerebral cortex was thinned, the nucleus caudatus putamen and the hippocampal formation were reduced in size, and the lateral ventricles were dilated. However, the histological architecture of the cerebral cortex was not strikingly maldeveloped; only a slight disarrangement of the cellular alignment was noted. Following treatment at 6 and 7 weeks of pregnancy, focal degeneration of the neuronal cells was observed in the fetal neocortex; the severe cases showed spongy degeneration and dysgenetic hydrocephalus.

  10. Study of landscape change under forest harvesting and climate warming-induced fire disturbance

    Science.gov (United States)

    S. He Hong; David J. Mladenoff; Eric J. Gustafson

    2002-01-01

    We examined tree species responses under forest harvesting and an increased fire disturbance scenario due to climate warming in northern Wisconsin where northern hardwood and boreal forests are currently predominant. Individual species response at the ecosystem scale was simulated with a gap model, which integrates soil, climate and species data, stratified by...

  11. Fundamental Dynamical Modes Underlying Human Brain Synchronization

    Directory of Open Access Journals (Sweden)

    Catalina Alvarado-Rojas

    2012-01-01

    Full Text Available Little is known about the long-term dynamics of widely interacting cortical and subcortical networks during the wake-sleep cycle. Using large-scale intracranial recordings of epileptic patients during seizure-free periods, we investigated local- and long-range synchronization between multiple brain regions over several days. For such high-dimensional data, summary information is required for understanding and modelling the underlying dynamics. Here, we suggest that a compact yet useful representation is given by a state space based on the first principal components. Using this representation, we report, with a remarkable similarity across the patients with different locations of electrode placement, that the seemingly complex patterns of brain synchrony during the wake-sleep cycle can be represented by a small number of characteristic dynamic modes. In this space, transitions between behavioral states occur through specific trajectories from one mode to another. These findings suggest that, at a coarse level of temporal resolution, the different brain states are correlated with several dominant synchrony patterns which are successively activated across wake-sleep states.

  12. Value of MRI of the brain in patients with systemic lupus erythematosus and neurologic disturbance

    International Nuclear Information System (INIS)

    Jennings, J.E.; Sundgren, P.C.; Maly, P.; Attwood, J.; McCune, J.

    2004-01-01

    Our objective was to review the frequency and pattern of signal abnormalities seen on conventional MRI in patients with suspected neuropsychiatric systemic lupus erythematosus (NP-SLE). We reviewed 116 MRI examinations of the brain performed on 85 patients with SLE, (81 women, four men, aged 21-78 years, mean 40.6 years) presenting with neurological disturbances. MRI was normal or nearly normal in 34%. In 60% high-signal lesions were observed on T2-weighted images, frequently in the frontal and parietal subcortical white matter. Infarct-like lesions involving gray and white matter were demonstrated in 21 of cases. Areas of restricted diffusion were seen in 12 of the 67 patients who underwent diffusion-weighted imaging. Other abnormalities included loss of brain volume, hemorrhage, meningeal enhancement, and bilateral high signal in occipital white-matter. The MRI findings alone did not allow us to distinguish between thromboembolic and inflammatory events in many patients. Some patients with normal MRI improved clinically while on immunosuppressive therapy. More sensitive and/or specific imaging methods, such as spectroscopy and perfusion-weighted imaging, should be investigated in these subgroups of patients with suspected NP-SLE. (orig.)

  13. CORRECTION OF DISTURBED NEUROIMMUNE INTERACTIONS IN EXPERIMENTAL TRAUMATIC BRAIN INJURY BY MEANS OF RECOMBINANT INTERLEUKIN 2

    Directory of Open Access Journals (Sweden)

    S. N. Shanin

    2018-01-01

    Full Text Available Traumatic brain injury (TBI commonly proceeds as a severe disease with high morbidity that can lead to neurological disorders in some of these patients. TBI is associated by multidirectional abnormalities of immune system, which affect quantity and functions of T-, B-, and NK-lymphocytes leading to infectious complications or autosensibilization. Restoration of the disturbances in neuroimmune interactions after TBI may be achieved by means of immunomodulators that have neuroprotective properties and may potentially initiate regenerative CNS activity. IL-2 is a cytokine that possesses neurooperative and neuroprotective properties. In immune system, IL-2 is produced by T-cells in response to antigen stimuli; in CNS, by brain cells. Lack of IL-2 production by both T-lymphocytes and brain cells increases a possibility of autoimmune and inflammatory pathologies. The objective of present study was to evaluate possible effects of human recombinant IL-2 (rIL-2, Roncoleukin®, Biothech Ltd., Russia upon state and correction of immune and neuro-endocrine TBI consequences. The study was performed in adult Wistar rats. Mechanical TBI was produced by the dropping load model. 72 hours after inflicting the TBI, r-IL-2, at dose 30 mg/kg was injected once a day for three times. The animals from control group received 0.15M NaCl solution over the same period. The results have shown that, within first hours and days after TBI, corticosterone levels showed a sharp increase, whereas testosterone concentrations were decreased.In parallel, an increase in cytotoxic and proliferative activity of splenocytes was revealed, as well as increased number of splenocytes at their late apoptotic stage. Three daily injections of rIL-2 resulted into a significant increase in corticosterone and testosterone levels in injured animals on the day 7 after TBI. The animals treated with rIL-2 have exhibited more rapid normalization of cytotoxic and proliferative activity of splenocytes

  14. A Coordinating Strategy for Biofuel Supply Chain under Disturbance Using Revenue Sharing Contract Approach

    Directory of Open Access Journals (Sweden)

    Nana Geng

    2018-05-01

    Full Text Available Biofuel is considered to be an important alternative energy in the future transportation. Its development is supported by the rest of the world. However, biofuel industry development is still very slow. From the previous research it is known that the supply chain coordination and other problems need to be solved to promote the supply chain ability. This paper studies biodiesel supply chain coordination problem from the view of disturbance management. It gives a disturbed coordination strategy which contains the optimal order quantity and the contract parameters. This paper has then verified the disturbed coordination strategy through using the actual data of Jiangsu Yueda Kate New Energy Co. Ltd. The result shows that when the market demand and the recovery cost are simultaneously disturbed, the coordination can make the biodiesel supply chain robust and the new strategy under the revenue sharing contract is better than the original one.

  15. The effect of natural disturbances on the risk from hydrogeomorphic hazards under climate change

    Science.gov (United States)

    Scheidl, Christian; Thaler, Thomas; Seidl, Rupert; Rammer, Werner; Kohl, Bernhard; Markart, Gerhard

    2017-04-01

    Recent storm events in Austria show once more how floods, sediment transport processes and debris flows constitute a major threat in alpine regions with a high density of population and an increasing spatial development. As protection forests have a major control function on runoff and erosion, they directly affect the risk from such hydrogeomorphic processes. However, research on future climate conditions, with an expected increase of the global average surface temperature of 3-5°C by 2100, compared to the first decade of the 20th century, raises a number of open questions for a sustainable and improved hazard management in mountain forests. For Europe, for instance, a climate-induced increase in forest disturbances like wildfire, wind, and insect's outbreaks is highly likely for the coming decades. Especially in protection forests, future scenarios of such climate induced natural disturbances and their impact on the protective effect remain an unresolved issue. Combining methods from forestry, hydrology and geotechnical engineering our project uses an integral approach to simulate possible effects of natural disturbances on hydrogeomorphic hazards in the perspective of future protection forest developments. With the individual-based forest landscape and disturbance model (iLand) we conduct an ensemble of forest landscape simulations, assessing the impact of future changes in natural disturbance regimes in four selected torrential catchments. These catchments are situated in two different forest growth areas. Drainage rate simulations are based on the conceptual hydrological model (ZEMOKOST), whereas simulations of the effect of forest disturbances on hillslope erosion processes are conducted by the Distributed Hydrology Soil Vegetation Model (DHSVM). Beside process based simulations, we also emphasis to identify the risk perception and adaptive capacity to mitigate a probable loss of protection functions in forests. For this reason, a postal survey among

  16. Idaho forest carbon projections from 2017 to 2117 under forest disturbance and climate change scenarios

    Science.gov (United States)

    Hudak, A. T.; Crookston, N.; Kennedy, R. E.; Domke, G. M.; Fekety, P.; Falkowski, M. J.

    2017-12-01

    Commercial off-the-shelf lidar collections associated with tree measures in field plots allow aboveground biomass (AGB) estimation with high confidence. Predictive models developed from such datasets are used operationally to map AGB across lidar project areas. We use a random selection of these pixel-level AGB predictions as training for predicting AGB annually across Idaho and western Montana, primarily from Landsat time series imagery processed through LandTrendr. At both the landscape and regional scales, Random Forests is used for predictive AGB modeling. To project future carbon dynamics, we use Climate-FVS (Forest Vegetation Simulator), the tree growth engine used by foresters to inform forest planning decisions, under either constant or changing climate scenarios. Disturbance data compiled from LandTrendr (Kennedy et al. 2010) using TimeSync (Cohen et al. 2010) in forested lands of Idaho (n=509) and western Montana (n=288) are used to generate probabilities of disturbance (harvest, fire, or insect) by land ownership class (public, private) as well as the magnitude of disturbance. Our verification approach is to aggregate the regional, annual AGB predictions at the county level and compare them to annual county-level AGB summarized independently from systematic, field-based, annual inventories conducted by the US Forest Inventory and Analysis (FIA) Program nationally. This analysis shows that when federal lands are disturbed the magnitude is generally high and when other lands are disturbed the magnitudes are more moderate. The probability of disturbance in corporate lands is higher than in other lands but the magnitudes are generally lower. This is consistent with the much higher prevalence of fire and insects occurring on federal lands, and greater harvest activity on private lands. We found large forest carbon losses in drier southern Idaho, only partially offset by carbon gains in wetter northern Idaho, due to anticipated climate change. Public and

  17. Role of Fish Oil against Physiological Disturbances in Rats Brain Induced by Sodium Fluoride and/or Gamma Rays

    International Nuclear Information System (INIS)

    Said, U.Z.; El-Tahawy, N.A.; Ibrahim, F.R.; Kamal, G.M.; EL-Sayed, T.M.

    2015-01-01

    The impacts of environmental and occupational exposure to ionizing radiation and to long-term intake of high levels of fluoride have caused health problems and increasingly alarming in recent years. Fish oil omega-3 (polyunsaturated fatty acids essential fatty acids) is found in the highest concentrations in fish oil, claim a plethora of health benefits. The objective of the present study was to evaluate the role of fish oil rich in omega-3 fatty acids on sodium fluoride (NaF) and or gamma (γ) rays in inducing neurological and biochemical disturbances in rat’s brain cerebral hemispheres. The results revealed that whole body exposure to γ- radiation at 6 Gy applied as fractionated doses (1.5 Gy x 4 times) and/or chronic receipt of NaF solution (0.13 mg/Kg/day) for a period of 28 days, significantly increased brain fluoride and calcium content, decreased level of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) and induced brain oxidative stress which led to neurotransmitters dysfunction. Supplementation of treated rats with fish oil, via gavages, at a dose of 400 mg/kg body wt has significantly modulated oxidative stress and neurotransmitters alterations. It could be concluded that EPA and DHA, found in fish oil, could possibly protect brain from damaging free radicals and consequently minimize the severity of brain biochemical disturbances

  18. Biofuel production system with operation flexibility: Evaluation of economic and environmental performance under external disturbance

    Science.gov (United States)

    Kou, Nannan

    Biomass derived liquid hydrocarbon fuel (biofuel) has been accepted as an effective way to mitigate the reliance on petroleum and reduce the greenhouse gas emissions. An increasing demand for second generation biofuels, produced from ligno-cellulosic feedstock and compatible with current infrastructure and vehicle technologies, addresses two major challenges faced by the current US transportation sector: energy security and global warming. However, biofuel production is subject to internal disturbances (feedstock supply and commodity market) and external factors (energy market). The biofuel industry has also heavily relied on government subsidy during the early development stages. In this dissertation, I investigate how to improve the economic and environmental performance of biorefineries (and biofuel plant), as well as enhance its survivability under the external disturbances. Three types of disturbance are considered: (1) energy market fluctuation, (2) subsidy policy uncertainty, and (3) extreme weather conditions. All three factors are basically volatile, dynamic, and even unpredictable, which makes them difficult to model and have been largely ignored to date. Instead, biofuel industry and biofuel research are intensively focused on improving feedstock conversion efficiency and capital cost efficiency while assuming these advancements alone will successfully generate higher profit and thus foster the biofuel industry. The collapse of the largest corn ethanol biofuel company, Verasun Energy, in 2008 calls into question this efficiency-driven approach. A detailed analysis has revealed that although the corn ethanol plants operated by Verasun adopted the more efficient (i.e. higher ethanol yield per bushel of corn and lower capital cost) dry-mill technology, they could not maintain a fair profit margin under fluctuating market condition which made ethanol production unprofitable. This is because dry-mill plant converts a single type of biomass feedstock (corn

  19. Effects of Flood Control Strategies on Flood Resilience Under Sociohydrological Disturbances

    Science.gov (United States)

    Sung, Kyungmin; Jeong, Hanseok; Sangwan, Nikhil; Yu, David J.

    2018-04-01

    A community capacity to cope with flood hazards, or community flood resilience, emerges from the interplay of hydrological and social processes. This interplay can be significantly influenced by the flood control strategy adopted by a society, i.e., how a society sets its desired flood protection level and strives to achieve this goal. And this interplay can be further complicated by rising land-sea level differences, seasonal water level fluctuations, and economic change. But not much research has been done on how various forms of flood control strategies affect human-flood interactions under these disturbances and therefore flood resilience in the long run. The current study is an effort to address these issues by developing a conceptual model of human-flood interaction mediated by flood control strategies. Our model extends the existing model of Yu et al. (2017), who investigated the flood resilience of a community-based flood protection system in coastal Bangladesh. The major extensions made in this study are inclusions of various forms of flood control strategies (both adaptive and nonadaptive ones), the challenge of rising land-sea level differences, and various high tide level scenarios generated from modifying the statistical variances and averages. Our results show that adaptive forms of flood control strategies tend to outperform nonadaptive ones for maintaining the model community's flood protection system. Adaptive strategies that dynamically adjust target flood protection levels through close monitoring of flood damages and social memories of flood risk can help the model community deal with various disturbances.

  20. Does an ant-dispersed plant, Viola reichenbachiana, suffer from reduced seed dispersal under inundation disturbances?

    NARCIS (Netherlands)

    Prinzing, A.; Dauber, J.; Hammer, E.; Hammouti, N.; Bohning-Gaese, K.

    2008-01-01

    Many plant species use ants as seed dispersers. This dispersal mode is considered to be susceptible to disturbances, but the effect of natural, small-scale disturbances is still unknown. We investigated how small-scale disturbances due to inundation affect seed dispersal in Viola reichenbachiana, a

  1. Segmental sensory disturbance in brain stem infarctions of the lateral lower pons and lateral medulla

    International Nuclear Information System (INIS)

    Matsumoto, Sadayuki; Yamasaki, Masahiro; Maya, Kiyomi; Imai, Terukuni; Okuda, Bungo.

    1987-01-01

    We reported on seven cases of brainstem infarctions of the lateral lower pons and lateral medulla, the sensory deficit manifested over the trunk or the leg namely segmental sensory disturbances. All patients showed dissociated sensory disturbance of pain and temperature with retained deep sensations except two cases in which touch was also slightly impaired. The sensory distribution was classified into two types. The first ''crossed type'', ipsilatral face and contralateral trunk and leg below the level was involved in 4 cases, and the second ''unilateral type'' contralateral face and trunk above the level in 3 cases. Clinico-anatomical evaluation was executed by MRI. Lesions were detected in the lateral lower pons in two cases and in the lateral medulla in one case. The location of lesions by MRI revealed more lateral lesions showed ''crossed type'' of segmental sensory disturbance and more medial lesions ''unilateral type''. It was shown that the segmental sensory disturbance could be explained by the partial involvement of the lateral spinothalamic tract, which is arranged with the fibers from the sacral segments most lateral. We considered it very important to differentiate the segmental sensory disturbance by brainstem lesion in practical clinical diagnosis. We also emphasize the type of segmental sensory disturbance could be a localizing sign in the lateral brainstem as such, ''crossed type'' indicating the lesion of the lateral portion and ''unilateral type'' the medial portion of the lateral lower brainstem. (author)

  2. PSO-based PID Speed Control of Traveling Wave Ultrasonic Motor under Temperature Disturbance

    Science.gov (United States)

    Arifin Mat Piah, Kamal; Yusoff, Wan Azhar Wan; Azmi, Nur Iffah Mohamed; Romlay, Fadhlur Rahman Mohd

    2018-03-01

    Traveling wave ultrasonic motors (TWUSMs) have a time varying dynamics characteristics. Temperature rise in TWUSMs remains a problem particularly in sustaining optimum speed performance. In this study, a PID controller is used to control the speed of TWUSM under temperature disturbance. Prior to developing the controller, a linear approximation model which relates the speed to the temperature is developed based on the experimental data. Two tuning methods are used to determine PID parameters: conventional Ziegler-Nichols(ZN) and particle swarm optimization (PSO). The comparison of speed control performance between PSO-PID and ZN-PID is presented. Modelling, simulation and experimental work is carried out utilizing Fukoku-Shinsei USR60 as the chosen TWUSM. The results of the analyses and experimental work reveal that PID tuning using PSO-based optimization has the advantage over the conventional Ziegler-Nichols method.

  3. Structure of magnetic field disturbances under development of disruptive instability in the ''Tokamak-6''

    International Nuclear Information System (INIS)

    Merezhkin, V.G.

    1978-01-01

    The structure and dynamics of disturbances of a poloidal field during the development of the breakaway instability in the Tokamak-6 are investigated. The behaviour of the symmetric and dipole field component, and the peculiarities of the structure of screw disturbances in a minor and major breakaways are analyzed. It was established that the structure of screw disturbances in minor breakaways is unchangeable and that the rearrangement in major breakaways is of a discrete nature. The relationship between the symmetric and screw components of disturbances of the poloidal field at the forward front of the disturbance increase was revealed. Data on the increments, scales and structure of screw disturbances, the ratios between the symmetric and screw components of field disturbances, and also on the magnitude of energy losses in typical breakaways are given

  4. Neuroendocrine Disturbances after Brain Damage: An Important and Often Undiagnosed Disorder

    Directory of Open Access Journals (Sweden)

    Fatih Tanriverdi

    2015-04-01

    Full Text Available Traumatic brain injury (TBI is a common and significant public health problem all over the world. Until recently, TBI has been recognized as an uncommon cause of hypopituitarism. The studies conducted during the last 15 years revealed that TBI is a serious cause of hypopituitarism. Although the underlying pathophysiology has not yet been fully clarified, new data indicate that genetic predisposition, autoimmunity and neuroinflammatory changes may play a role in the development of hypopituitarism. Combative sports, including boxing and kickboxing, both of which are characterized by chronic repetitive head trauma, have been shown as new causes of neuroendocrine abnormalities, mainly hypopituitarism, for the first time during the last 10 years. Most patients with TBI-induced pituitary dysfunction remain undiagnosed and untreated because of the non-specific and subtle clinical manifestations of hypopituitarism. Replacement of the deficient hormones, of which GH is the commonest hormone lost, may not only reverse the clinical manifestations and neurocognitive dysfunction, but may also help posttraumatic disabled patients resistant to classical treatment who have undiagnosed hypopituitarism and GH deficiency in particular. Therefore, early diagnosis, which depends on the awareness of TBI as a cause of neuroendocrine abnormalities among the medical community, is crucially important.

  5. Small-scale variations in leaf shape under anthropogenic disturbance in dioecious forest forb mercurialis perennis: A geometric morphometric examination

    Directory of Open Access Journals (Sweden)

    Vujić Vukica

    2016-01-01

    Full Text Available Plants are exposed to increasing levels of diverse human activities that have profound effects on their overall morphology and, specifically, on leaf morphology. Anthropogenic disturbances in urban and suburban forest recreational sites are attracting growing research interest. To explore the persisting recreational impact on leaf shape and size, we conducted a field study on the dioecious forb Mercurialis perennis L. (Euphorbiaceae, typical for undisturbed understory communities. We selected adjacent sites in a suburban forest, which experience contrasting regimes of disturbance by human trampling under otherwise concordant natural conditions. Patterns of leaf shape and size variation and putative sex-specific response to disturbance were analyzed using a geometric morphometric approach. In addition to leaf-level data, plant height, internode and leaf number were analyzed to explore the same response at the whole-plant level. The results show significant variations associated with disturbance at both levels: plants growing under a heavy disturbance regime had shorter stems with a greater number of wider and shorter leaves. Significant differences between sites were also found for leaf size, with larger leaves observed in an undisturbed site. The effects of sex and sex x site interaction on leaf size and shape were nonsignificant, pointing to the absence of sexual dimorphism and sex-specific response to disturbance. Contrary to leaf shape and size, all three analyzed shoot traits showed highly significant sexual dimorphism, with male plants being higher and having higher leaf and internode count. [Projekat Ministarstva nauke Republike Srbije, br. 173025

  6. Dynamic modelling and adaptive robust tracking control of a space robot with two-link flexible manipulators under unknown disturbances

    Science.gov (United States)

    Yang, Xinxin; Ge, Shuzhi Sam; He, Wei

    2018-04-01

    In this paper, both the closed-form dynamics and adaptive robust tracking control of a space robot with two-link flexible manipulators under unknown disturbances are developed. The dynamic model of the system is described with assumed modes approach and Lagrangian method. The flexible manipulators are represented as Euler-Bernoulli beams. Based on singular perturbation technique, the displacements/joint angles and flexible modes are modelled as slow and fast variables, respectively. A sliding mode control is designed for trajectories tracking of the slow subsystem under unknown but bounded disturbances, and an adaptive sliding mode control is derived for slow subsystem under unknown slowly time-varying disturbances. An optimal linear quadratic regulator method is proposed for the fast subsystem to damp out the vibrations of the flexible manipulators. Theoretical analysis validates the stability of the proposed composite controller. Numerical simulation results demonstrate the performance of the closed-loop flexible space robot system.

  7. Monitoring and Assessment of Military Installation Land Condition under Training Disturbance Using Remote Sensing

    Science.gov (United States)

    Rijal, Santosh

    Various military training activities are conducted in more than 11.3 million hectares of land (> 5,500 training sites) in the United States (U.S.). These training activities directly and indirectly degrade the land. Land degradation can impede continuous military training. In order to sustain long term training missions and Army combat readiness, the environmental conditions of the military installations need to be carefully monitored and assessed. Furthermore, the National Environmental Policy Act of 1969 (NEPA) and the U.S. Army Regulation 200-2 require the DoD to minimize the environmental impacts of training and document the environmental consequences of their actions. To achieve these objectives, the Department of Army initiated an Integrated Training Area Management (ITAM) program to manage training lands through assessing their environmental requirements and establishing policies and procedures to achieve optimum, sustainable use of training lands. One of the programs under ITAM, Range and Training Land Assessment (RTLA) was established to collect field-based data for monitoring installation's environmental condition. Due to high cost and inefficiencies involved in the collection of field data, the RTLA program was stopped in several military installations. Therefore, there has been a strong need to develop an efficient and low cost remote sensing based methodology for assessing and monitoring land conditions of military installations. It is also important to make a long-term assessment of installation land condition for understanding cumulative impacts of continuous military training activities. Additionally, it is unclear that compared to non-military land condition, to what extent military training activities have led to the degradation of land condition for military installations. The first paper of this dissertation developed a soil erosion relevant and image derived cover factor (ICF) based on linear spectral mixture (LSM) analysis to assess and

  8. Classification of Underlying Causes of Power Quality Disturbances: Deterministic versus Statistical Methods

    Directory of Open Access Journals (Sweden)

    Emmanouil Styvaktakis

    2007-01-01

    Full Text Available This paper presents the two main types of classification methods for power quality disturbances based on underlying causes: deterministic classification, giving an expert system as an example, and statistical classification, with support vector machines (a novel method as an example. An expert system is suitable when one has limited amount of data and sufficient power system expert knowledge; however, its application requires a set of threshold values. Statistical methods are suitable when large amount of data is available for training. Two important issues to guarantee the effectiveness of a classifier, data segmentation, and feature extraction are discussed. Segmentation of a sequence of data recording is preprocessing to partition the data into segments each representing a duration containing either an event or a transition between two events. Extraction of features is applied to each segment individually. Some useful features and their effectiveness are then discussed. Some experimental results are included for demonstrating the effectiveness of both systems. Finally, conclusions are given together with the discussion of some future research directions.

  9. Morphology in the total electron content under geomagnetic disturbed conditions: results from global ionosphere maps

    Directory of Open Access Journals (Sweden)

    Zhao Biqiang

    2007-07-01

    Full Text Available Using 8-year global ionosphere maps (GIMs of TEC products from the Jet Propulsion Laboratory (JPL, we make a statistical study on the morphology of the global ionospheric behaviors with respect to the geomagnetic disturbances. Results show that the behaviors of TEC during geomagnetic storm present clear seasonal and local time variations under geomagnetic control in a similar way as those of NmF2 (Field and Rishbeth, 1997. A negative phase of TEC occurs with high probability in the summer hemisphere and most prominent near the geomagnetic poles, while a positive phase is obvious in the winter hemisphere and in the far pole region. A negative storm effect toward lower latitudes tends to occur from post-midnight to the morning sector and recedes to high latitude in the afternoon. A positive storm effect is separated by geomagnetic latitudes and magnetic local time. Furthermore, ionospheric responses at different local time sectors with respect to the storm commencement shows very different developing processes corresponding to the evolution of the geomagnetic storm. A daytime positive storm effect is shown to be more prominent in the American region than those in the Asian and European regions, which may suggest a longitudinal effect of the ionospheric storm.

  10. Morphology in the total electron content under geomagnetic disturbed conditions: results from global ionosphere maps

    Directory of Open Access Journals (Sweden)

    Z. Biqiang

    2007-07-01

    Full Text Available Using 8-year global ionosphere maps (GIMs of TEC products from the Jet Propulsion Laboratory (JPL, we make a statistical study on the morphology of the global ionospheric behaviors with respect to the geomagnetic disturbances. Results show that the behaviors of TEC during geomagnetic storm present clear seasonal and local time variations under geomagnetic control in a similar way as those of NmF2 (Field and Rishbeth, 1997. A negative phase of TEC occurs with high probability in the summer hemisphere and most prominent near the geomagnetic poles, while a positive phase is obvious in the winter hemisphere and in the far pole region. A negative storm effect toward lower latitudes tends to occur from post-midnight to the morning sector and recedes to high latitude in the afternoon. A positive storm effect is separated by geomagnetic latitudes and magnetic local time. Furthermore, ionospheric responses at different local time sectors with respect to the storm commencement shows very different developing processes corresponding to the evolution of the geomagnetic storm. A daytime positive storm effect is shown to be more prominent in the American region than those in the Asian and European regions, which may suggest a longitudinal effect of the ionospheric storm.

  11. Hypocretinergic and cholinergic contributions to sleep-wake disturbances in a mouse model of traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Hannah E. Thomasy

    2017-01-01

    Full Text Available Disorders of sleep and wakefulness occur in the majority of individuals who have experienced traumatic brain injury (TBI, with increased sleep need and excessive daytime sleepiness often reported. Behavioral and pharmacological therapies have limited efficacy, in part, because the etiology of post-TBI sleep disturbances is not well understood. Severity of injuries resulting from head trauma in humans is highly variable, and as a consequence so are their sequelae. Here, we use a controlled laboratory model to investigate the effects of TBI on sleep-wake behavior and on candidate neurotransmitter systems as potential mediators. We focus on hypocretin and melanin-concentrating hormone (MCH, hypothalamic neuropeptides important for regulating sleep and wakefulness, and two potential downstream effectors of hypocretin actions, histamine and acetylcholine. Adult male C57BL/6 mice (n=6–10/group were implanted with EEG recording electrodes and baseline recordings were obtained. After baseline recordings, controlled cortical impact was used to induce mild or moderate TBI. EEG recordings were obtained from the same animals at 7 and 15 days post-surgery. Separate groups of animals (n=6–8/group were used to determine effects of TBI on the numbers of hypocretin and MCH-producing neurons in the hypothalamus, histaminergic neurons in the tuberomammillary nucleus, and cholinergic neurons in the basal forebrain. At 15 days post-TBI, wakefulness was decreased and NREM sleep was increased during the dark period in moderately injured animals. There were no differences between groups in REM sleep time, nor were there differences between groups in sleep during the light period. TBI effects on hypocretin and cholinergic neurons were such that more severe injury resulted in fewer cells. Numbers of MCH neurons and histaminergic neurons were not altered under the conditions of this study. Thus, we conclude that moderate TBI in mice reduces wakefulness and increases

  12. [Experimental study of acute brain swelling under acute intracranial hypertension (author's transl)].

    Science.gov (United States)

    Shigemori, M; Watanabe, M; Kuramoto, S

    1976-12-01

    There are many problems about the cause, pathophysiology and treatment of acute brain swelling under intracranial hypertension frequently encountered in the neurosurgical clinics. Generally, rapid increase of the cerebral vasoparesis caused by unknown etiology is thought to be the main cause of acute brain swelling under intracranial hypertension. Moreover, disturbance of the cerebral venous circulatory system is discussed recently by many authors. But, research from the point of systemic respiration and hemodynamics is necessary for resolving these problems. This experiment was designed to study the effects of respiration and hemodynamics on the cerebral vasoparesis. Using 22 adult dogs, acute intracranial hypertension was produced by epidural balloon inflation sustained at the level of 300 - 400 mmH2O. Simultaneously with measurement of intracranial pressure at the epidural space, superior sagittal sinus pressure, respirogram, systemic blood pressure (femoral artery), central venous pressure, common carotid blood flow, EKG and bipolar lead EEG were monitored continuously. The experimental group was divided by the respiratory loading into 5 groups as follows: control (6 cases), 10% CO2 hypercapnia (4 cases), 10% O2 hypoxia (4 cases), stenosis of airway (5 cases), 100% O2-controled respiration (3 cases). 1) Cerebral vasoparesis under acute intracranial hypertension took place earlier and showed more rapid progression in groups of stenosis of airway, hypercapnia and hypoxia than control group of spontaneous respiration in room air. No occurrence of cerebral vasoparesis was found out in a group of 100% O2 controlled respiration. It is proved that increased airway resistance or asphyxia, hypercapnia and hypoxia have strictly reference to the occurrence and progression of cerebral vasoparesis and for the prevention of cerebral vasoparesis, correct 100% O2 cont rolled respiration is effective. 2) From the hemodynamic change, the progression of rapid increase of cerebral

  13. Quantitative Susceptibility Mapping Indicates a Disturbed Brain Iron Homeostasis in Neuromyelitis Optica ? A Pilot Study

    OpenAIRE

    Doring, Thomas Martin; Granado, Vanessa; Rueda, Fernanda; Deistung, Andreas; Reichenbach, Juergen R.; Tukamoto, Gustavo; Gasparetto, Emerson Leandro; Schweser, Ferdinand

    2016-01-01

    Dysregulation of brain iron homeostasis is a hallmark of many neurodegenerative diseases and can be associated with oxidative stress. The objective of this study was to investigate brain iron in patients with Neuromyelitis Optica (NMO) using quantitative susceptibility mapping (QSM), a quantitative iron-sensitive MRI technique. 12 clinically confirmed NMO patients (6 female and 6 male; age 35.4y±14.2y) and 12 age- and sex-matched healthy controls (7 female and 5 male; age 33.9±11.3y) underwen...

  14. Whole-brain structural topology in adult attention-deficit/hyperactivity disorder: Preserved global – disturbed local network organization

    Directory of Open Access Journals (Sweden)

    Justina Sidlauskaite

    2015-01-01

    Full Text Available Prior studies demonstrate altered organization of functional brain networks in attention-deficit/hyperactivity disorder (ADHD. However, the structural underpinnings of these functional disturbances are poorly understood. In the current study, we applied a graph-theoretic approach to whole-brain diffusion magnetic resonance imaging data to investigate the organization of structural brain networks in adults with ADHD and unaffected controls using deterministic fiber tractography. Groups did not differ in terms of global network metrics — small-worldness, global efficiency and clustering coefficient. However, there were widespread ADHD-related effects at the nodal level in relation to local efficiency and clustering. The affected nodes included superior occipital, supramarginal, superior temporal, inferior parietal, angular and inferior frontal gyri, as well as putamen, thalamus and posterior cerebellum. Lower local efficiency of left superior temporal and supramarginal gyri was associated with higher ADHD symptom scores. Also greater local clustering of right putamen and lower local clustering of left supramarginal gyrus correlated with ADHD symptom severity. Overall, the findings indicate preserved global but altered local network organization in adult ADHD implicating regions underpinning putative ADHD-related neuropsychological deficits.

  15. Whole-brain structural topology in adult attention-deficit/hyperactivity disorder: Preserved global - disturbed local network organization.

    Science.gov (United States)

    Sidlauskaite, Justina; Caeyenberghs, Karen; Sonuga-Barke, Edmund; Roeyers, Herbert; Wiersema, Jan R

    2015-01-01

    Prior studies demonstrate altered organization of functional brain networks in attention-deficit/hyperactivity disorder (ADHD). However, the structural underpinnings of these functional disturbances are poorly understood. In the current study, we applied a graph-theoretic approach to whole-brain diffusion magnetic resonance imaging data to investigate the organization of structural brain networks in adults with ADHD and unaffected controls using deterministic fiber tractography. Groups did not differ in terms of global network metrics - small-worldness, global efficiency and clustering coefficient. However, there were widespread ADHD-related effects at the nodal level in relation to local efficiency and clustering. The affected nodes included superior occipital, supramarginal, superior temporal, inferior parietal, angular and inferior frontal gyri, as well as putamen, thalamus and posterior cerebellum. Lower local efficiency of left superior temporal and supramarginal gyri was associated with higher ADHD symptom scores. Also greater local clustering of right putamen and lower local clustering of left supramarginal gyrus correlated with ADHD symptom severity. Overall, the findings indicate preserved global but altered local network organization in adult ADHD implicating regions underpinning putative ADHD-related neuropsychological deficits.

  16. Cerebral perfusion and neuropsychological follow up in mild traumatic brain injury : Acute versus chronic disturbances?

    NARCIS (Netherlands)

    Metting, Zwany; Spikman, Jacoba M.; Rodiger, Lars A.; van der Naalt, Joukje

    In a subgroup of patients with mild traumatic brain injury (TBI) residual symptoms, interfering with outcome and return to work, are found. With neuropsychological assessment cognitive deficits can be demonstrated although the pathological underpinnings of these cognitive deficits are not fully

  17. Quantitative Susceptibility Mapping Indicates a Disturbed Brain Iron Homeostasis in Neuromyelitis Optica - A Pilot Study.

    Directory of Open Access Journals (Sweden)

    Thomas Martin Doring

    Full Text Available Dysregulation of brain iron homeostasis is a hallmark of many neurodegenerative diseases and can be associated with oxidative stress. The objective of this study was to investigate brain iron in patients with Neuromyelitis Optica (NMO using quantitative susceptibility mapping (QSM, a quantitative iron-sensitive MRI technique. 12 clinically confirmed NMO patients (6 female and 6 male; age 35.4y±14.2y and 12 age- and sex-matched healthy controls (7 female and 5 male; age 33.9±11.3y underwent MRI of the brain at 3 Tesla. Quantitative maps of the effective transverse relaxation rate (R2* and magnetic susceptibility were calculated and a blinded ROI-based group comparison analysis was performed. Normality of the data and differences between patients and controls were tested by Kolmogorov-Smirnov and t-test, respectively. Correlation with age was studied using Spearman's rank correlation and an ANCOVA-like analysis. Magnetic susceptibility values were decreased in the red nucleus (p0.95; between -15 and -22 ppb depending on reference region with a trend toward increasing differences with age. R2* revealed significantly decreased relaxation in the optic radiations of five of the 12 patients (p<0.0001; -3.136±0.567 s-1. Decreased relaxation in the optic radiation is indicative for demyelination, which is in line with previous findings. Decreased magnetic susceptibility in the red nucleus is indicative for a lower brain iron concentration, a chemical redistribution of iron into less magnetic forms, or both. Further investigations are necessary to elucidate the pathological cause or consequence of this finding.

  18. Robust consensus algorithm for multi-agent systems with exogenous disturbances under convergence conditions

    Science.gov (United States)

    Jiang, Yulian; Liu, Jianchang; Tan, Shubin; Ming, Pingsong

    2014-09-01

    In this paper, a robust consensus algorithm is developed and sufficient conditions for convergence to consensus are proposed for a multi-agent system (MAS) with exogenous disturbances subject to partial information. By utilizing H∞ robust control, differential game theory and a design-based approach, the consensus problem of the MAS with exogenous bounded interference is resolved and the disturbances are restrained, simultaneously. Attention is focused on designing an H∞ robust controller (the robust consensus algorithm) based on minimisation of our proposed rational and individual cost functions according to goals of the MAS. Furthermore, sufficient conditions for convergence of the robust consensus algorithm are given. An example is employed to demonstrate that our results are effective and more capable to restrain exogenous disturbances than the existing literature.

  19. Brain Regions Underlying Word Finding Difficulties in Temporal Lobe Epilepsy

    Science.gov (United States)

    Trebuchon-Da Fonseca, Agnes; Guedj, Eric; Alario, F-Xavier; Laguitton, Virginie; Mundler, Olivier; Chauvel, Patrick; Liegeois-Chauvel, Catherine

    2009-01-01

    Word finding difficulties are often reported by epileptic patients with seizures originating from the language dominant cerebral hemisphere, for example, in temporal lobe epilepsy. Evidence regarding the brain regions underlying this deficit comes from studies of peri-operative electro-cortical stimulation, as well as post-surgical performance.…

  20. Zinc movement in the brain under kainate-induced seizures.

    Science.gov (United States)

    Takeda, Atsushi; Hirate, Maki; Tamano, Haruna; Oku, Naoto

    2003-05-01

    On the basis of the evidence that elimination of 65Zn from the brain of epilepsy (EL) mice is facilitated by induction of seizures, zinc movement in the brain was studied in mice injected with kainate (12 mg/kg x 3), which exhibited status epilepticus within 120 min after the last injection of kainate. Zinc concentrations in the brain were determined 24 h after the last injection of kainate. Zinc concentrations in the hippocampus, amygdala and cerebral cortex, in which zinc-containing glutamatergic neuron terminals exist, were significantly decreased by the treatment with kainate, while that in the cerebellum was not decreased. Timm's stain in the brain was extensively attenuated 24 h after the last injection of kainate. These results indicate that zinc homeostasis in the brain is affected by kainate-induced seizures. In the hippocampus of rats injected with kainate (10 mg/kg), furthermore, the release of zinc and glutamate into the extracellular fluid was studied using in vivo microdialysis. The levels of zinc and glutamate in the perfusate were increased along with seizure severity after injection of kainate. It is likely that zinc concentration in the synaptic vesicles is decreased by the excess excitation of glutamatergic neurons. The present study suggests that the excessive release of zinc and glutamate from the neuron terminals under kainate-induced seizures is associated with the loss of zinc from the brain.

  1. Contribution of seagrass plants to CO2 capture in a tropical seagrass meadow under experimental disturbance.

    Science.gov (United States)

    Deyanova, Diana; Gullström, Martin; Lyimo, Liberatus D; Dahl, Martin; Hamisi, Mariam I; Mtolera, Matern S P; Björk, Mats

    2017-01-01

    Coastal vegetative habitats are known to be highly productive environments with a high ability to capture and store carbon. During disturbance this important function could be compromised as plant photosynthetic capacity, biomass, and/or growth are reduced. To evaluate effects of disturbance on CO2 capture in plants we performed a five-month manipulative experiment in a tropical seagrass (Thalassia hemprichii) meadow exposed to two intensity levels of shading and simulated grazing. We assessed CO2 capture potential (as net CO2 fixation) using areal productivity calculated from continuous measurements of diel photosynthetic rates, and estimates of plant morphology, biomass and productivity/respiration (P/R) ratios (from the literature). To better understand the plant capacity to coping with level of disturbance we also measured plant growth and resource allocation. We observed substantial reductions in seagrass areal productivity, biomass, and leaf area that together resulted in a negative daily carbon balance in the two shading treatments as well as in the high-intensity simulated grazing treatment. Additionally, based on the concentrations of soluble carbohydrates and starch in the rhizomes, we found that the main reserve sources for plant growth were reduced in all treatments except for the low-intensity simulated grazing treatment. If permanent, these combined adverse effects will reduce the plants' resilience and capacity to recover after disturbance. This might in turn have long-lasting and devastating effects on important ecosystem functions, including the carbon sequestration capacity of the seagrass system.

  2. Dynamic responses of a wind turbine drivetrain under turbulent wind and voltage disturbance conditions

    Directory of Open Access Journals (Sweden)

    Chengwu Li

    2016-05-01

    Full Text Available Wind energy is known as one of the most efficient clean renewable energy sources and has attracted extensive research interests in both academic and industry fields. In this study, the effects of turbulent wind and voltage disturbance on a wind turbine drivetrain are analyzed, and a wind turbine drivetrain dynamic model combined with the electric model of a doubly fed induction generator is established. The proposed model is able to account for the dynamic interaction between turbulent wind, voltage disturbance, and mechanical system. Also, the effects of time-varying meshing stiffness, transmission error, and bearing stiffness are included in the mechanical part of the coupled dynamic model. From the resultant model, system modes are computed. In addition, by considering the actual control strategies in the simulation process, the effects of turbulent wind and voltage disturbance on the geared rotor system are analyzed. The computational results show that the turbulent wind and voltage disturbance can cause adverse effects on the wind turbine drivetrain, especially the gearbox. A series of parametric studies are also performed to understand the influences of generator and gearbox parameters on the drivetrain system dynamics. Finally, the appropriate generator parameters having a positive effect on the gearbox in alleviating the extreme loads and the modeling approach for investigating the transient performance of generator are discussed.

  3. Thermospheric/ionospheric disturbances under quiet and magneto-perturbed conditions

    Science.gov (United States)

    Zakharov, Ivan G.; Mozgovaya, O. L.

    2003-04-01

    The basic mechanisms of ionospheric storms (IS) are investigated sufficiently full. Despite of it a quantitative forecast of ionospheric disturbance is not always satisfactory. One of the possible causes can be related to the insufficient account of a background ionospheric. In particualr using electron concentration Ne in the peak of F2-region and total electron content are shown, that the amplitude of a IS positive phase for similar magnetic storms can differ by ~1,5 times. Hence a cause of distinction can be variations in the thermosphere conditions, not reflected by known activity indices. For further research we used the incoherent scatter radar data of the Institute of ionosphere in height range 200-1000 km in the very quiet periods coming to the geomagnetic disturbance. A steady periodic disturbance in Ne during quiet conditions in all heights is established, which can be identified as tidal moda m=6. The amplitude of wave is ~15%, the phase changes with a height. The storm onset leads to an increase of the amplitudes approximately twice without a change in the phase. An ionospheric disturbance in very quiet conditions can lead to additional complicating an ionosphere reaction to magnetic storm.

  4. Alteration of the irisin–brain-derived neurotrophic factor axis contributes to disturbance of mood in COPD patients

    Directory of Open Access Journals (Sweden)

    Papp C

    2017-07-01

    Full Text Available Csaba Papp,1 Krisztian Pak,2 Tamas Erdei,2 Bela Juhasz,2 Ildiko Seres,3 Anita Szentpéteri,3 Laszlo Kardos,4 Maria Szilasi,5 Rudolf Gesztelyi,2 Judit Zsuga1 1Department of Health Systems Management and Quality Management for Health Care, Faculty of Public Health, 2Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, 3Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4Department of Clinical Pharmacology, Infectious Diseases and Allergology, Kenezy Gyula Teaching County Hospital and Outpatient Clinic, 5Department of Pulmonology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary Abstract: COPD is accompanied by limited physical activity, worse quality of life, and increased prevalence of depression. A possible link between COPD and depression may be irisin, a myokine, expression of which in the skeletal muscle and brain positively correlates with physical activity. Irisin enhances the synthesis of brain-derived neurotrophic factor (BDNF, a neurotrophin involved in reward-related processes. Thus, we hypothesized that mood disturbances accompanying COPD are reflected by the changes in the irisin–BDNF axis. Case history, routine laboratory parameters, serum irisin and BDNF levels, pulmonary function, and disease-specific quality of life, measured by St George’s Respiratory Questionnaire (SGRQ, were determined in a cohort of COPD patients (n=74. Simple and then multiple linear regression were used to evaluate the data. We found that mood disturbances are associated with lower serum irisin levels (SGRQ’s Impacts score and reciprocal of irisin showed a strong positive association; β: 419.97; 95% confidence interval [CI]: 204.31, 635.63; P<0.001. This association was even stronger among patients in the lower 50% of BDNF levels (β: 434.11; 95% CI: 166.17, 702.05; P=0.002, while it became weaker for patients in the higher 50% of BDNF concentrations (β: 373.49; 95% CI: -74.91, 821.88; P=0

  5. Evolution of growth hormone neurosecretory disturbance after cranial irradiation for childhood brain tumours: a prospective study

    International Nuclear Information System (INIS)

    Spoudeas, H.A.; Hindmarsh, P.C.; Brook, C.G.D.; Matthews, D.R.

    1996-01-01

    To determine the aetiopathology of post-irradiation growth hormone (GH) deficiency, we performed a mixed longitudinal analysis of 56 24 h serum GH concentration profiles and 45 paired insulin-induced hypoglycaemia tests (ITT) in 35 prepubertal children, aged 1.5-11.8 years, with brain tumours in the posterior foss (n = 25) or cerebral hemispheres (n 10). Assessments were made before (n = 16), 1 year (n = 25) and 2 to 5 years (n = 15) after a cranial irradiation (DXR) dose of at least 30 Gy. Fourier transforms, occupancy percentage, first-order derivatives (FOD) and mean concentrations were determined from the GH profiles taken after neurosurgery but before radiotherapy (n = 16) and in three treatment groups: Group 1: neurosurgery only without DXR 9n 9); Group 2: ≥ 30 Gy DXR only (n = 22); Group 3: ≥ 30 Gy DXR with additional chemotherapy (n = 9). Results were compared with those from 26 short normally growing (SN) children. (author)

  6. Moringa oleifera phytochemicals protect the brain against experimental nicotine-induced neurobehavioral disturbances and cerebellar degeneration.

    Science.gov (United States)

    Omotoso, Gabriel Olaiya; Gbadamosi, Ismail Temitayo; Olajide, Olayemi Joseph; Dada-Habeeb, Shakirat Opeyemi; Arogundade, Tolulope Timothy; Yawson, Emmanuel Olusola

    2018-03-01

    Nicotine is a neuro-stimulant that has been implicated in the pathophysiology of many brain diseases. The need to prevent or alleviate the resulting dysfunction is therefore paramount, which has also given way to the use of medicinal plants in the management of brain conditions. This study was designed to determine the histomorphological and neurobehavioural changes in the cerebellum of Wistar rats following nicotine insult and how such injuries respond to Moringa intervention. Twenty-four adult male Wistar rats were divided into 4 groups. Group A and B were orally treated with normal saline and Moringa oleifera respectively for twenty-eight days; Group C was treated with nicotine while group D was treated orally with Moringa oleifera and intraperitoneally with nicotine for twenty-eight days. Animals were subjected to the open field test on the last day of treatment. 24 h after last day treatment, the animals were anesthetized and perfusion fixation was carried out. The cerebellum was excised and post-fixed in 4% paraformaldehyde and thereafter put through routine histological procedures. Results revealed cytoarchitectural distortion and extreme chromatolysis in neuronal cells of the cerebellar cortical layers in the nicotine-treated group. The Purkinje cells of the cerebellum of animals in this group were degenerated. There were also reduced locomotor activities in the group. Moringa was able to prevent the chromatolysis, distortion of the cerebellar cortical cells and neurobehavioural deficit. Our result suggests that Moringa oleifera could prevent nicotine-induced cerebellar injury in Wistar rats, with the possibility of ameliorating the clinical features presented in associated cerebellar pathology. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Using perturbations to identify the brain circuits underlying active vision.

    Science.gov (United States)

    Wurtz, Robert H

    2015-09-19

    The visual and oculomotor systems in the brain have been studied extensively in the primate. Together, they can be regarded as a single brain system that underlies active vision--the normal vision that begins with visual processing in the retina and extends through the brain to the generation of eye movement by the brainstem. The system is probably one of the most thoroughly studied brain systems in the primate, and it offers an ideal opportunity to evaluate the advantages and disadvantages of the series of perturbation techniques that have been used to study it. The perturbations have been critical in moving from correlations between neuronal activity and behaviour closer to a causal relation between neuronal activity and behaviour. The same perturbation techniques have also been used to tease out neuronal circuits that are related to active vision that in turn are driving behaviour. The evolution of perturbation techniques includes ablation of both cortical and subcortical targets, punctate chemical lesions, reversible inactivations, electrical stimulation, and finally the expanding optogenetic techniques. The evolution of perturbation techniques has supported progressively stronger conclusions about what neuronal circuits in the brain underlie active vision and how the circuits themselves might be organized.

  8. Nonlinear modeling and stability analysis of hydro-turbine governing system with sloping ceiling tailrace tunnel under load disturbance

    International Nuclear Information System (INIS)

    Guo, Wencheng; Yang, Jiandong; Wang, Mingjiang; Lai, Xu

    2015-01-01

    Highlights: • Novel nonlinear mathematical model of hydro-turbine governing system is proposed. • Hopf bifurcation analysis on the governing system is conducted. • Stability of the system under load disturbance is studied. • Influence of four factors on stability is analyzed. • Optimization methods of improving system stability are put forward. - Abstract: In order to overcome the problem of nonlinear dynamics of hydro-turbine governing system with sloping ceiling tailrace tunnel, which is caused by the interface movement of the free surface-pressurized flow in the tailrace tunnel, and the difficulty of analyzing the stability of system, this paper uses the Hopf bifurcation theory to study the stability of hydro-turbine governing system of hydropower station with sloping ceiling tailrace tunnel. Firstly, a novel and rational nonlinear mathematical model of the hydro-turbine governing system is proposed. This model contains the dynamic equation of pipeline system which can accurately describe the motion characteristics of the interface of free surface-pressurized flow in sloping ceiling tailrace tunnel. According to the nonlinear mathematical model, the existence and direction of Hopf bifurcation of the nonlinear dynamic system are analyzed. Furthermore, the algebraic criterion of the occurrence of Hopf bifurcation is derived. Then the stability domain and bifurcation diagram of hydro-turbine governing system are drawn by the algebraic criterion, and the characteristics of stability under different state parameters are investigated. Finally, the influence of step load value, ceiling slope angle and section form of tailrace tunnel and water depth at the interface in tailrace tunnel on stability are analyzed based on stable domain. The results indicate that: The Hopf bifurcation of hydro-turbine governing system with sloping ceiling tailrace tunnel is supercritical. The phase space trajectories of characteristic variables stabilize at the equilibrium points

  9. [Changes in vegetation and soil characteristics under tourism disturbance in lakeside wetland of northwest Yunnan Plateau, Southwest China].

    Science.gov (United States)

    Tang, Ming-Yan; Yang, Yong-Xing

    2014-05-01

    The characteristics of vegetation and soil were investigated in Bita Lake and Shudu Lake wetlands in northwest Yunnan Plateau under tourism disturbance. The 22 typical plots in the wetlands were classified into 4 types by TWINSPAN, including primary wetland, light degradation, moderate degradation, and severe degradation. Along the degradation gradient, the plant community density, coverage, species number and Shannon diversity index increased and the plant height decreased in Bita Lake and Shudu Lake wetlands, and Whittaker diversity index increased in Bita Lake wetland. Plant species number, soil organic matter, total nitrogen, porosity, available nitrogen, available phosphorus and available potassium contents were higher in Shudu Lake wetland than in Bita Lake wetland, but the plant density, height, soil total potassium and pH were opposite. Canonical correspondence analysis (CCA) by importance values of 42 plants and 11 soil variables showed that soil organic matter, total nitrogen and total potassium were the key factors on plant species distribution in Bita Lake and Shudu Lake wetlands under tourism disturbance. TWINSPAN classification and analysis of vegetation-soil characteristics indicated the effects of tourism disturbance in Bita Lake wetland were larger than in Shudu Lake wetland.

  10. Future 400 kV Algerian network and radio electric disturbances in dry weather and under rain

    Directory of Open Access Journals (Sweden)

    Brahami M.

    2007-01-01

    Full Text Available The development of the electrical power networks to very high voltage (V.H.V reveals problems involved in the high electric fields; it is essential to consider it in the design of installations in order to avoid or to mitigate some problematic or dangerous effects. Among the most important harmful effects, we can note the "radio interference disturbances". The principal aim of this paper is the use of a simulation programme using an analytical method based on the theory of propagation modes, made by one of the authors, for determination and calculation of the exact profile of disturbance field of actual high voltage lines (220 kV and in project (400 kV in dry weather and under rain. Specific software called "effect corona" was developed for this purpose.

  11. The role of melatonin in radiation induced biochemical disturbances in brain and thyroid gland in adult male albino rats

    International Nuclear Information System (INIS)

    Abdel Kader, S.M.; EI-Sherbiny, E.M.

    2007-01-01

    Radiation induced changes in adult male albino male rats before and after melatonin administration were monitored to detect some biochemical changes in brain and thyroid gland. The parameters monitored were dopamine (DA), norepinephdne (NE) and gamma aminobutyric acid (GABA) in brain and triiodothyronine (T 3 ) thyroxine (T 4 ) and thyroid stimulating hormone (TSH) in serum of irradiated adult male albino rats before and after intraperitoneal injection of melatonin. Results indicated that 6.0 Gy whole body γ-irradiated rats showed gradual and significant decrease in DA, NE and GABA contents in different brain areas under investigation (cerebellum, pons+medulla oblongata, corpus striatum, cerebral cortex, hypothalamus, midbrain and hippocampus). The maximum effect of whole body γ-irradiation was observed after 21 days. Moreover, gradual and significant decrease in serum T 3 and T 4 levels were recorded after γ-irradiation. However, TSH level showed significant elevation throughout the experimental period. Melatonin at a dose level of 15 mg/kg b.wt. was intraperitoneally injected daily 30 minutes after 6.0 Gy whole body γ-irradiation, ameliorated DA, NE and GABA contents in different brain areas compared to those measured in irradiated rats. Moreover, melatonin gradually attenuated the effect of γ-irradiation on serum T 3 and T 4 levels to reach nearly the control level at day 21 after melatonin injection. However, melatonin ameliorated the elevated TSH level induced by γ-irradiation to reach its corresponding control value at day 21

  12. Combined motor disturbances following severe traumatic brain injury: an integrative long-term treatment approach.

    Science.gov (United States)

    Keren, O; Reznik, J; Groswasser, Z

    2001-07-01

    Patients surviving severe traumatic brain injury (TBI) often suffer from residual impairments in motor control, communication skills, cognition and social behaviour. These distinctly hamper their capability to return to their 'pre-trauma' activity. Comprehensive and integrated rehabilitation programmes initiate, during the acute phase, a prolonged treatment process which starts at the most sophisticated medical systems. There is no clear end point for the treatment of these patients, since the recovery process and the rehabilitation activity may continue for years, even after patients return home to live with their families. The inherent inability to make a firm early prediction regarding outcome of patients and the late appearance of additional symptoms stress the need for a comprehensive close long-term follow-up. The following presentation concerns the description of the treatment strategy and long-term improvement of a 22-year-old male who suffered from very severe TBI. On admission to the emergency room, he was in the decerebrated position and his Glasgow Coma Scale (GCS) was at the lowest (3). The focus of this presentation is on the recovery of motor function. The initial motor disabilities included weakness in all four limbs, in particular left hemiplegia, and right hemiparesis with severe bilateral ataxic elements and a marked tremor of the right arm. Range of motion was limited in hips, and he suffered from stiff trunk and neck. Goals of physiotherapy were directed towards improving range of motion (ROM) and active movement. Casting, use of orthoses, biofeedback, hydrotherapy, hippotherapy, medication and nerve blocks for reducing spasticity were timely applied during the process. The motor improvement in this very severe TBI patient who is now over 3 years post-injury still continues and has a functional meaning. He has succeeded in being able to stand up by himself from a chair and is able to walk unaided and without orthoses for very short distances

  13. Cortical Auditory Disorders: A Case of Non-Verbal Disturbances Assessed with Event-Related Brain Potentials

    Directory of Open Access Journals (Sweden)

    Sönke Johannes

    1998-01-01

    Full Text Available In the auditory modality, there has been a considerable debate about some aspects of cortical disorders, especially about auditory forms of agnosia. Agnosia refers to an impaired comprehension of sensory information in the absence of deficits in primary sensory processes. In the non-verbal domain, sound agnosia and amusia have been reported but are frequently accompanied by language deficits whereas pure deficits are rare. Absolute pitch and musicians’ musical abilities have been associated with left hemispheric functions. We report the case of a right handed sound engineer with the absolute pitch who developed sound agnosia and amusia in the absence of verbal deficits after a right perisylvian stroke. His disabilities were assessed with the Seashore Test of Musical Functions, the tests of Wertheim and Botez (Wertheim and Botez, Brain 84, 1961, 19–30 and by event-related potentials (ERP recorded in a modified 'oddball paradigm’. Auditory ERP revealed a dissociation between the amplitudes of the P3a and P3b subcomponents with the P3b being reduced in amplitude while the P3a was undisturbed. This is interpreted as reflecting disturbances in target detection processes as indexed by the P3b. The findings that contradict some aspects of current knowledge about left/right hemispheric specialization in musical processing are discussed and related to the literature concerning cortical auditory disorders.

  14. Cortical auditory disorders: a case of non-verbal disturbances assessed with event-related brain potentials.

    Science.gov (United States)

    Johannes, Sönke; Jöbges, Michael E.; Dengler, Reinhard; Münte, Thomas F.

    1998-01-01

    In the auditory modality, there has been a considerable debate about some aspects of cortical disorders, especially about auditory forms of agnosia. Agnosia refers to an impaired comprehension of sensory information in the absence of deficits in primary sensory processes. In the non-verbal domain, sound agnosia and amusia have been reported but are frequently accompanied by language deficits whereas pure deficits are rare. Absolute pitch and musicians' musical abilities have been associated with left hemispheric functions. We report the case of a right handed sound engineer with the absolute pitch who developed sound agnosia and amusia in the absence of verbal deficits after a right perisylvian stroke. His disabilities were assessed with the Seashore Test of Musical Functions, the tests of Wertheim and Botez (Wertheim and Botez, Brain 84, 1961, 19-30) and by event-related potentials (ERP) recorded in a modified 'oddball paradigm'. Auditory ERP revealed a dissociation between the amplitudes of the P3a and P3b subcomponents with the P3b being reduced in amplitude while the P3a was undisturbed. This is interpreted as reflecting disturbances in target detection processes as indexed by the P3b. The findings that contradict some aspects of current knowledge about left/right hemispheric specialization in musical processing are discussed and related to the literature concerning cortical auditory disorders.

  15. Disturbance of visual search by stimulating to posterior parietal cortex in the brain using transcranial magnetic stimulation

    Science.gov (United States)

    Iramina, Keiji; Ge, Sheng; Hyodo, Akira; Hayami, Takehito; Ueno, Shoogo

    2009-04-01

    In this study, we applied a transcranial magnetic stimulation (TMS) to investigate the temporal aspect for the functional processing of visual attention. Although it has been known that right posterior parietal cortex (PPC) in the brain has a role in certain visual search tasks, there is little knowledge about the temporal aspect of this area. Three visual search tasks that have different difficulties of task execution individually were carried out. These three visual search tasks are the "easy feature task," the "hard feature task," and the "conjunction task." To investigate the temporal aspect of the PPC involved in the visual search, we applied various stimulus onset asynchronies (SOAs) and measured the reaction time of the visual search. The magnetic stimulation was applied on the right PPC or the left PPC by the figure-eight coil. The results show that the reaction times of the hard feature task are longer than those of the easy feature task. When SOA=150 ms, compared with no-TMS condition, there was a significant increase in target-present reaction time when TMS pulses were applied. We considered that the right PPC was involved in the visual search at about SOA=150 ms after visual stimulus presentation. The magnetic stimulation to the right PPC disturbed the processing of the visual search. However, the magnetic stimulation to the left PPC gives no effect on the processing of the visual search.

  16. Sediment Dynamics Within Buffer Zone and Sinkhole Splay Areas Under Extreme Soil Disturbance Conditions.

    Science.gov (United States)

    Schoonover, Jon E; Crim, Jackie F; Williard, Karl W J; Groninger, John W; Zaczek, James J; Pattumma, Klairoong

    2015-09-01

    Sedimentation dynamics were assessed in sinkholes within training areas at Ft. Knox Military Installation, a karst landscape subjected to decades of tracked vehicle use and extreme soil disturbance. Sinkholes sampled were sediment-laden and behaved as intermittent ponds. Dendrogeomorphic analyses were conducted using willow trees (Salix spp.) located around the edge of 18 sinkholes to estimate historical sedimentation rates, and buried bottles were installed in 20 sinkholes at the center, outer edge, and at the midpoint between the center and edge to estimate annual sedimentation rates. Sedimentation data were coupled with vegetation characteristics of sinkhole buffers to determine relationships among these variables. The dendrogeomorphic method estimated an average accumulation rate of 1.27 cm year(-1) translating to a sediment loss rate of 46.1 metric ton year(-1) from the training areas. However, sediment export to sinkholes was estimated to be much greater (118.6 metric ton year(-1)) via the bottle method. These data suggest that the latter method provided a more accurate estimate since accumulation was greater in the center of sinkholes compared to the periphery where dendrogeomorphic data were collected. Vegetation data were not tightly correlated with sedimentation rates, suggesting that further research is needed to identify a viable proxy for direct measures of sediment accumulation in this extreme deposition environment. Mitigation activities for the sinkholes at Ft. Knox's tank training area, and other heavily disturbed karst environments where extreme sedimentation exists, should consider focusing on flow path and splay area management.

  17. Corticonic models of brain mechanisms underlying cognition and intelligence

    Science.gov (United States)

    Farhat, Nabil H.

    underlying intelligence and other higher level brain functions.

  18. Advanced modelling of doubly fed induction generator wind turbine under network disturbance

    DEFF Research Database (Denmark)

    Seman, S.; Iov, Florin; Niiranen, J.

    This paper presents a variable speed wind turbine simulator. The simulator is used for a 2 MW wind turbine transient behavior study during a short-term symmetrical network disturbance. The mechanical part of wind turbine model consists of the rotor aerodynamic model, the wind turbine control...... converter, the model of the main transformer and a simple model of the grid. The simulation results obtained by means of the detailed wind turbine model are compared with the results obtained from a simplified simulator with an analytical model and FEM model of DFIG. The comparison of the results shows...... and the drive train model. The Doubly Fed Induction Generator (DFIG) is represented by an analytical two-axis model with constant lumped parameters and by Finite Element Method (FEM) based model. The model of the DFIG is coupled with the model of the passive crowbar protected and DTC controlled frequency...

  19. Dual-loop control strategy for DFIG-based Wind turbines under grid voltage disturbances

    DEFF Research Database (Denmark)

    Zhu, Rongwu; Chen, Zhe; Tang, Yi

    2016-01-01

    , but also decay the stator transient flux, and avoid the accumulation of the stator transient flux. Moreover, the proposed strategy can obtain nearly constant stator active power and electromagnetic torque, which may prolong the lifetime of the drive train. A case study on a typical 2-MW DFIG-based wind......For a multimegawatts doubly-fed induction generator (DFIG), the grid voltage disturbances may affect the stator flux and induce the transient stator flux, due to the direct connection of the stator and the grid. The accumulation of the transient stator flux caused by the variations of the stator...... turbine demonstrating the effectiveness of the proposed control methods is verified with simulations in MATLAB/Simulink. The proposed control methods are also experimentally validated using a scaled-down 7.5-kW DFIG. The simulation and experimental results clearly validate the effectiveness...

  20. Tools for determining critical levels of atmospheric ammonia under the influence of multiple disturbances

    International Nuclear Information System (INIS)

    Pinho, P.; Llop, E.; Ribeiro, M.C.; Cruz, C.; Soares, A.; Pereira, M.J.; Branquinho, C.

    2014-01-01

    Critical levels (CLEs) of atmospheric ammonia based on biodiversity changes have been mostly calculated using small-scale single-source approaches, to avoid interference by other factors, which also influence biodiversity. Thus, it is questionable whether these CLEs are valid at larger spatial scales, in a multi- disturbances context. To test so, we sampled lichen diversity and ammonia at 80 sites across a region with a complex land-cover including industrial and urban areas. At a regional scale, confounding factors such as industrial pollutants prevailed, masking the CLEs. We propose and use a new tool to calculate CLEs by stratifying ammonia concentrations into classes, and focusing on the highest diversity values. Based on the significant correlations between ammonia and biodiversity, we found the CLE of ammonia for Mediterranean evergreen woodlands to be 0.69 μg m −3 , below the previously accepted value of 1.9 μg m −3 , and below the currently accepted pan-European CLE of 1.0 μg m −3 . - Highlights: • Biodiversity responds to multiple disturbances. • This prevents calculation regional critical levels of atmospheric ammonia. • We propose a tool to overcome that, based on the maximum biodiversity observed. • Critical level for Mediterranean evergreen woodlands was revised down to 0.69 μg m −3 . - Critical levels of atmospheric ammonia have not been calculated at a regional scale. Using a new method, we revised down the current Mediterranean evergreen woodlands critical level to 0.69 μg m −3

  1. Clinical application of synthesized brain surface imaging for preoperative simulation of brain biopsy under local anesthesia

    International Nuclear Information System (INIS)

    Ogura, Yuko; Katada, Kazuhiro; Imai, Fumihiro; Fujisawa, Kazuhisa; Takeshita, Gen; Kanno, Tetsuo; Koga, Sukehiko

    1994-01-01

    Surface anatomy scanning (SAS) is the technique which permits the direct visualization of brain surface structures, including cortical sulci, guri, subcortical lesions as well as skin markings for craniotomy. A synthesized brain surface image is a technique that combines MR angiography (MRA) with SAS, and it proposed by us for detecting cerebral superficial veins with these surface structures on the same image. The purpose of this report is to present the result of applying the synthesized brain surface image to the preoperative simulation of biopsy under local anesthesia in 2 cases of multiple metastatic brain tumors. The parameters for SAS were TR/TE=50/40 msec, flip angle=60deg by the fast T 2 technique using refocused FID in steady-state (STERF technique). SAS images were processed by gray scale reversal. The MRA data were acquired with two-dimensional time of flight (TOF) sequence after intravenous administration of Gd-DTPA. Before imaging, the water-filled plastic tubes were placed on the patients scalp as markings for craniotomy. Their positions were planned by the neurosurgeons. On SAS, the markings for burr-hole appeared located above the tumors. However on the synthesized brain surface images, the positions of burr-hole were considered to be inadequate, since superficial cerebral vein and sinus were also visualized in the area of the markings. From these results, the positions of burr-hole were reset to avoid the venous structures, and so as to include the lesions in operations. The biopsies were performed successfully and safely because the venous structure could be excluded from the operative field. By this technique it was easy to confirm the relationships among lesions, skin markings and venous structures. The technique described appears to be a useful method for preoperative simulation of biopsies for multiple metastatic brain tumors under local anesthesia. (author)

  2. Perception of Barriers to the Diagnosis and Receipt of Treatment for Neuropsychiatric Disturbances After Traumatic Brain Injury.

    Science.gov (United States)

    Albrecht, Jennifer S; O'Hara, Lyndsay M; Moser, Kara A; Mullins, C Daniel; Rao, Vani

    2017-12-01

    To explore perceptions of barriers and facilitators to the diagnosis and receipt of treatment for neuropsychiatric disturbances (NPDs) after traumatic brain injury (TBI). Qualitative study using semistructured interviews and focus groups. A clinic specializing in the treatment of TBI NPDs, an urban trauma center, and a large urban academic hospital. A sample (N=33) of health care providers (n=10) who treat individuals with TBI, persons with TBI (n=18), and caregivers (n=5). Not applicable. Topic guides for the interviews and focus groups were guided by previous literature, clinical experience, and the goals of the project and focused on the 3 most common TBI NPDs: depression, anxiety, and posttraumatic stress disorder. The interviews and focus groups were audio-recorded and transcribed verbatim. We performed a conventional content analysis on the transcripts and grouped concepts into overall themes, incorporating feedback from stakeholders. Patient education, insurance, provider type, time since TBI, caregiver support, and recognition or screening for TBI NPDs were the most frequently mentioned barriers or facilitators to the diagnosis and treatment of TBI NPDs by both interview and focus group participants. We grouped these and other frequently mentioned concepts into 3 broad themes: education, access, and support. Each of these themes is explored in depth and supported with direct quotations. This study explored patient, caregiver, and health care provider and identified barriers and facilitators to the diagnosis and receipt of treatment for TBI NPDs. Barriers included poor provider education on TBI NPDs and limited access to care due to lack of insurance, transportation, and income. Facilitators included patient education on TBI NPDs and strong caregiver support. Future studies should develop and pilot interventions aimed at quality of care that address the identified barriers and facilitators. Copyright © 2017 American Congress of Rehabilitation Medicine

  3. The Development of Neuroendocrine Disturbances over Time: Longitudinal Findings in Patients after Traumatic Brain Injury and Subarachnoid Hemorrhage

    Directory of Open Access Journals (Sweden)

    Anna Kopczak

    2015-12-01

    Full Text Available Previous reports suggest that neuroendocrine disturbances in patients with traumatic brain injury (TBI or aneurysmal subarachnoid hemorrhage (SAH may still develop or resolve months or even years after the trauma. We investigated a cohort of n = 168 patients (81 patients after TBI and 87 patients after SAH in whom hormone levels had been determined at various time points to assess the course and pattern of hormonal insufficiencies. Data were analyzed using three different criteria: (1 patients with lowered basal laboratory values; (2 patients with lowered basal laboratory values or the need for hormone replacement therapy; (3 diagnosis of the treating physician. The first hormonal assessment after a median time of three months after the injury showed lowered hormone laboratory test results in 35% of cases. Lowered testosterone (23.1% of male patients, lowered estradiol (14.3% of female patients and lowered insulin-like growth factor I (IGF-I values (12.1% were most common. Using Criterion 2, a higher prevalence rate of 55.6% of cases was determined, which correlated well with the prevalence rate of 54% of cases using the physicians’ diagnosis as the criterion. Intraindividual changes (new onset insufficiency or recovery were predominantly observed for the somatotropic axis (12.5%, the gonadotropic axis in women (11.1% and the corticotropic axis (10.6%. Patients after TBI showed more often lowered IGF-I values at first testing, but normal values at follow-up (p < 0.0004. In general, most patients remained stable. Stable hormone results at follow-up were obtained in 78% (free thyroxine (fT4 values to 94.6% (prolactin values.

  4. Functional network connectivity underlying food processing: disturbed salience and visual processing in overweight and obese adults.

    Science.gov (United States)

    Kullmann, Stephanie; Pape, Anna-Antonia; Heni, Martin; Ketterer, Caroline; Schick, Fritz; Häring, Hans-Ulrich; Fritsche, Andreas; Preissl, Hubert; Veit, Ralf

    2013-05-01

    In order to adequately explore the neurobiological basis of eating behavior of humans and their changes with body weight, interactions between brain areas or networks need to be investigated. In the current functional magnetic resonance imaging study, we examined the modulating effects of stimulus category (food vs. nonfood), caloric content of food, and body weight on the time course and functional connectivity of 5 brain networks by means of independent component analysis in healthy lean and overweight/obese adults. These functional networks included motor sensory, default-mode, extrastriate visual, temporal visual association, and salience networks. We found an extensive modulation elicited by food stimuli in the 2 visual and salience networks, with a dissociable pattern in the time course and functional connectivity between lean and overweight/obese subjects. Specifically, only in lean subjects, the temporal visual association network was modulated by the stimulus category and the salience network by caloric content, whereas overweight and obese subjects showed a generalized augmented response in the salience network. Furthermore, overweight/obese subjects showed changes in functional connectivity in networks important for object recognition, motivational salience, and executive control. These alterations could potentially lead to top-down deficiencies driving the overconsumption of food in the obese population.

  5. Common and distinct brain networks underlying verbal and visual creativity.

    Science.gov (United States)

    Zhu, Wenfeng; Chen, Qunlin; Xia, Lingxiang; Beaty, Roger E; Yang, Wenjing; Tian, Fang; Sun, Jiangzhou; Cao, Guikang; Zhang, Qinglin; Chen, Xu; Qiu, Jiang

    2017-04-01

    Creativity is imperative to the progression of human civilization, prosperity, and well-being. Past creative researches tends to emphasize the default mode network (DMN) or the frontoparietal network (FPN) somewhat exclusively. However, little is known about how these networks interact to contribute to creativity and whether common or distinct brain networks are responsible for visual and verbal creativity. Here, we use functional connectivity analysis of resting-state functional magnetic resonance imaging data to investigate visual and verbal creativity-related regions and networks in 282 healthy subjects. We found that functional connectivity within the bilateral superior parietal cortex of the FPN was negatively associated with visual and verbal creativity. The strength of connectivity between the DMN and FPN was positively related to both creative domains. Visual creativity was negatively correlated with functional connectivity within the precuneus of the pDMN and right middle frontal gyrus of the FPN, and verbal creativity was negatively correlated with functional connectivity within the medial prefrontal cortex of the aDMN. Critically, the FPN mediated the relationship between the aDMN and verbal creativity, and it also mediated the relationship between the pDMN and visual creativity. Taken together, decreased within-network connectivity of the FPN and DMN may allow for flexible between-network coupling in the highly creative brain. These findings provide indirect evidence for the cooperative role of the default and executive control networks in creativity, extending past research by revealing common and distinct brain systems underlying verbal and visual creative cognition. Hum Brain Mapp 38:2094-2111, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Circadian rhythm disturbance after radiotherapy for brain tumor in infantile period; Clinical effect of L-thyroxine and vitamin B[sub 12

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Masaya; Shinozaki, Masako (Metropolitan Medical Center for the Severely Handicapped, Fuchu, Tokyo (Japan)); Sasaki, Hideo

    1993-08-01

    We report a 19-year-old man suffering from circadian sleep-wake (S-W) rhythm disturbance after total tumor resection and whole brain irradiation. The patient was diagnosed as having astrocytoma in the right temporal lobe by CT scan and angiography at the age of 6 months. After total tumor resection and whole brain irradiation ([sup 60]Co 60 Gy), he showed profound psychomotor retardation, endoclinologic dysfunction including hypothyroidism and growth hormone deficiency, and S-W rhythm disturbance. At age 19, brain MRI revealed asymmetrical low intensity in the hypothalamic region. On endoclinological examination panhypopituitarism due to primary hypothalamic lesion was evident. His S-W rhythm was disturbed; i.e., sleep periods were dispersedly distributed throughout 24 hours. He showed a lethargic tendency in the daytime. All-day polysomnography revealed abnormal sleep structure such as the absence of sleep spindle and hump, peripheral apnea, snoring and low oxygen saturation. After L-thyroxine supplementation his daily activity improved gradually. The decrease in short time sleep and tendency of a free-running rhythm were observed and oxygen saturation improved remarkably. Peripheral apnea and snoring disappeared. This wakening effect of L-thyroxine administration may be due to improvement of hypothyroidism symptom such as myxoedematous pharynx. It also seems related to the alteration of the central S-W rhythm regulation, because free-running rhythm appeared after L-thyroxine administration. Vitamin B[sub 12] (VB[sub 12]), which has been reported to be effective for S-W rhythm disorders, was not effective for our patient's free-running rhythm. Compared with the patients responding to VB[sub 12], our patient's organic brain damage was more evident radiologically and endoclinologically. Following the hypothesis that VB[sub 12] has a potential to reinforce the entrainment of circadian rhythm, our patient's organic brain damage may include entrainment

  7. Neuroendocrine Disturbances One to Five or More Years after Traumatic Brain Injury and Aneurysmal Subarachnoid Hemorrhage: Data from the German Database on Hypopituitarism.

    Science.gov (United States)

    Krewer, Carmen; Schneider, Manfred; Schneider, Harald Jörn; Kreitschmann-Andermahr, Ilonka; Buchfelder, Michael; Faust, Michael; Berg, Christian; Wallaschofski, Henri; Renner, Caroline; Uhl, Eberhard; Koenig, Eberhard; Jordan, Martina; Stalla, Günter Karl; Kopczak, Anna

    2016-08-15

    Neuroendocrine disturbances are common after traumatic brain injury (TBI) and aneurysmal subarachnoid hemorrhage (SAH), but only a few data exist on long-term anterior pituitary deficiencies after brain injury. We present data from the Structured Data Assessment of Hypopituitarism after TBI and SAH, a multi-center study including 1242 patients. We studied a subgroup of 351 patients, who had sustained a TBI (245) or SAH (106) at least 1 year before endocrine assessment (range 1-55 years) in a separate analysis. The highest prevalence of neuroendocrine disorders was observed 1-2 years post-injury, and it decreased over time only to show another maximum in the long-term phase in patients with brain injury occurring ≥5 years prior to assessment. Gonadotropic and somatotropic insufficiencies were most common. In the subgroup from 1 to 2 years after brain injury (n = 126), gonadotropic insufficiency was the most common hormonal disturbance (19%, 12/63 men) followed by somatotropic insufficiency (11.5%, 7/61), corticotropic insufficiency (9.2%, 11/119), and thyrotropic insufficiency (3.3%, 4/122). In patients observed ≥ 5 years after brain injury, the prevalence of somatotropic insufficiency increased over time to 24.1%, whereas corticotropic and thyrotrophic insufficiency became less frequent (2.5% and 0%, respectively). The prevalence differed regarding the diagnostic criteria (laboratory values vs. physician`s diagnosis vs. stimulation tests). Our data showed that neuroendocrine disturbances are frequent even years after TBI or SAH, in a cohort of patients who are still on medical treatment.

  8. Brain network response underlying decisions about abstract reinforcers.

    Science.gov (United States)

    Mills-Finnerty, Colleen; Hanson, Catherine; Hanson, Stephen Jose

    2014-12-01

    Decision making studies typically use tasks that involve concrete action-outcome contingencies, in which subjects do something and get something. No studies have addressed decision making involving abstract reinforcers, where there are no action-outcome contingencies and choices are entirely hypothetical. The present study examines these kinds of choices, as well as whether the same biases that exist for concrete reinforcer decisions, specifically framing effects, also apply during abstract reinforcer decisions. We use both General Linear Model as well as Bayes network connectivity analysis using the Independent Multi-sample Greedy Equivalence Search (IMaGES) algorithm to examine network response underlying choices for abstract reinforcers under positive and negative framing. We find for the first time that abstract reinforcer decisions activate the same network of brain regions as concrete reinforcer decisions, including the striatum, insula, anterior cingulate, and VMPFC, results that are further supported via comparison to a meta-analysis of decision making studies. Positive and negative framing activated different parts of this network, with stronger activation in VMPFC during negative framing and in DLPFC during positive, suggesting different decision making pathways depending on frame. These results were further clarified using connectivity analysis, which revealed stronger connections between anterior cingulate, insula, and accumbens during negative framing compared to positive. Taken together, these results suggest that not only do abstract reinforcer decisions rely on the same brain substrates as concrete reinforcers, but that the response underlying framing effects on abstract reinforcers also resemble those for concrete reinforcers, specifically increased limbic system connectivity during negative frames. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Functional brain networks underlying detection and integration of disconfirmatory evidence.

    Science.gov (United States)

    Lavigne, Katie M; Metzak, Paul D; Woodward, Todd S

    2015-05-15

    .g., 17s after trial onset) the hemodynamic responses associated with all three networks were simultaneously active. These findings highlight distinct cognitive processes and corresponding functional brain networks underlying stages of disconfirmatory evidence integration, and demonstrate the power of multivariate and multi-experiment methodology in cognitive neuroscience. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Sleep disturbances and memory impairment among pregnant women consuming khat: An under-recognized problem

    Directory of Open Access Journals (Sweden)

    Md. Dilshad Manzar

    2017-01-01

    Full Text Available Khat (Catha edulis is a evergreen flowering shrub that is cultivated at high altitudes, especially in East Africa and the southwest of the Arabian Peninsula. The plant contains alkaloids, of which cathinone and cathine have structural similarity and pharmacological action similar to amphetamines. The leaves are, therefore, consumed in some regions as a psychoactive stimulant due to cultural beliefs and misperceptions on the health benefits of khat consumption. This resulted in a growing prevalence of khat consumption among pregnant women. The myriad of physiological changes associated with pregnancy impairs sleep and memory. Moreover, khat has also been shown to have adverse effects on memory and sleep. Therefore, its use during pregnancy may further aggravate those impairments. The purpose of this mini-review is to summarize the changes in sleep and memory during pregnancy and the evidence supporting a relationship between khat consumption and neurocognitive deficits and sleep dysfunctions. The misperceptions of beneficial effects of khat, the high prevalence of consumption among pregnant women, and the possibility of under-reporting of khat abuse do necessitate the development of alternative methodologies to identify cases of unreported khat abuse in pregnant women. It is proposed that screening for sleep problems and memory deficits may help identify under-reported cases of khat abuse in pregnant women.

  11. Imaging of Brain Connectivity in Dementia: Clinical Implications for Diagnosis of its Underlying Diseases

    NARCIS (Netherlands)

    R. Meijboom (Rozanna)

    2017-01-01

    markdownabstractIn this thesis we investigated the use of advanced magnetic resonance imaging (MRI) techniques in identifying subtle brain abnormalities, associating brain abnormalities with disease symptomatology, and improving early (differential) diagnosis in several diseases underlying dementia.

  12. Melatonin disturbs SUMOylation mediated crosstalk between c-Myc and Nestin via MT1 activation and promotes the sensitivity of Paclitaxel in brain cancer stem cells.

    Science.gov (United States)

    Lee, Hyemin; Lee, Hyo-Jung; Jung, Ji Hoon; Shin, Eun Ah; Kim, Sung-Hoon

    2018-04-14

    Here the underlying antitumor mechanism of melatonin and its potency as a sensitizer of Paclitaxel was investigated in X02 cancer stem cells. Melatonin suppressed sphere formation and induced G2/M arrest in X02 cells expressing Nestin, CD133, CXCR4 and SOX-2 as biomarkers of stemness. Furthermore, melatonin reduced the expression of CDK2, CDK4, cyclin D1, cyclin E, and c-Myc and upregulated cyclin B1 in X02 cells. Notably, genes of c-Myc related mRNAs were differentially expressed in melatonin treated X02 cells by microarray analysis. Consistently, melatonin reduced the expression of c-Myc at mRNA and protein levels, which was blocked by MG132. Of note, overexpression of c-Myc increased the expression of Nestin, while overexpression of Nestin enhanced c-Myc through crosstalk despite different locations, nucleus and cytoplasm. Interestingly, melatonin attenuated small ubiquitin-related modifier-1 (SUMO-1) more than SUMO-2 or SUMO-3 and disturbed nuclear translocation of Nestin for direct binding to c-Myc by SUMOylation of SUMO-1 protein by immunofluorescence and immunoprecipitation. Also, melatonin reduced trimethylated histone H3K4me3 and H3K36me3 more than dimethylation in X02 cells by Western blotting and Chromatin immunoprecipitation assay. Notably, melatonin upregulated MT1, not MT2, in X02 cells and melatonin receptor inhibitor Luzindole blocked the ability of melatonin to decrease the expression of Nestin, p-c-Myc(S62) and c-Myc. Furthermore, melatonin promoted cytotoxicity, sub G1 accumulation and apoptotic body formation by Paclitaxcel in X02 cells. Taken together, these findings suggest that melatonin inhibits stemness via suppression of c-Myc, Nestin, and histone methylation via MT1 activation and promotes anticancer effect of Paclitaxcel in brain cancer stem cells. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Sympathetic arousal, but not disturbed executive functioning, mediates the impairment of cognitive flexibility under stress.

    Science.gov (United States)

    Marko, Martin; Riečanský, Igor

    2018-05-01

    Cognitive flexibility emerges from an interplay of multiple cognitive systems, of which lexical-semantic and executive are thought to be the most important. Yet this has not been addressed by previous studies demonstrating that such forms of flexible thought deteriorate under stress. Motivated by these shortcomings, the present study evaluated several candidate mechanisms implied to mediate the impairing effects of stress on flexible thinking. Fifty-seven healthy adults were randomly assigned to psychosocial stress or control condition while assessed for performance on cognitive flexibility, working memory capacity, semantic fluency, and self-reported cognitive interference. Stress response was indicated by changes in skin conductance, hearth rate, and state anxiety. Our analyses showed that acute stress impaired cognitive flexibility via a concomitant increase in sympathetic arousal, while this mediator was positively associated with semantic fluency. Stress also decreased working memory capacity, which was partially mediated by elevated cognitive interference, but neither of these two measures were associated with cognitive flexibility or sympathetic arousal. Following these findings, we conclude that acute stress impairs cognitive flexibility via sympathetic arousal that modulates lexical-semantic and associative processes. In particular, the results indicate that stress-level of sympathetic activation may restrict the accessibility and integration of remote associates and bias the response competition towards prepotent and dominant ideas. Importantly, our results indicate that stress-induced impairments of cognitive flexibility and executive functions are mediated by distinct neurocognitive mechanisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. An adaptable walking-skid for seabed ROV under strong current disturbance

    Science.gov (United States)

    Si, Jianting; Chin, Chengsiong

    2014-09-01

    This paper proposed a new concept of an adaptable multi-legged skid design for retro-fitting to a remotely-operated vehicle (ROV) during high tidal current underwater pipeline inspection. The sole reliance on propeller-driven propulsion for ROV is replaced with a proposed low cost biomimetic solution in the form of an attachable hexapod walking skid. The advantage of this adaptable walking skid is the high stability in positioning and endurances to strong current on the seabed environment. The computer simulation flow studies using Solidworks Flow Simulation shown that the skid attachment in different compensation postures caused at least four times increase in overall drag, and negative lift forces on the seabed ROV to achieve a better maneuvering and station keeping under the high current condition (from 0.5 m/s to 5.0 m/s). A graphical user interface is designed to interact with the user during robot-in-the-loop testing and kinematics simulation in the pool.

  15. Fixed position holding control for self-propulsion barges under disturbance condition; Gairanka ni okeru jiko baji no teiten hoji seigyo ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kijima, K; Murata, W; Furukawa, Y [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1996-04-10

    In direct hoisting work in suspension bridge construction, since a cable crane directly hoists a bridge beam block put on a barge on the sea, precise fixed position holding function is required for a barge. The control system was then designed on the basis of an ILQ control theory, and the effect of change in time constant as design parameter on fixed position holding performance was studied. In addition, the critical disturbance for fixed position holding control was studied through numerical simulation under various disturbance conditions using the above designed control system. As a result, in the design of control systems on the basis of an ILQ control theory, the precise control system could be designed by diminishing, in particular, the time constant for state variable around a z axis among time constants according to the extent of disturbance. The control performance was largely affected by response delay period from sensing of disturbance to beginning of control. 3 refs., 7 figs., 2 tabs.

  16. Disturbing forest disturbances

    Energy Technology Data Exchange (ETDEWEB)

    Volney, W.J.A.; Hirsch, K.G. [Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, AB (Canada)

    2005-10-01

    This paper described the role that disturbances play in maintaining the ecological integrity of Canadian boreal forests. Potential adaptation options to address the challenges that these disturbances present were also examined. Many forest ecosystems need fire for regeneration, while other forests rely on a cool, wet disintegration process driven by insects and commensal fungi feeding on trees to effect renewal. While there are characteristic natural, temporal and spatial patterns to these disturbances, recent work has demonstrated that the disturbances are being perturbed by climatic change that has been compounded by anthropogenic disturbances in forests. Fire influences species composition and age structure, regulates forest insects and diseases, affects nutrient cycling and energy fluxes, and maintains the productivity of different habitats. Longer fire seasons as a result of climatic change will lead to higher intensity fires that may more easily evade initial attacks and become problematic. Fire regimes elevated beyond the range of natural variation will have a dramatic effect on the regional distribution and functioning of forest ecosystems and pose a threat to the safety and prosperity of people. While it was acknowledged that if insect outbreaks were to be controlled on the entire forest estate, the productivity represented by dead wood would be lost, it was suggested that insects such as the forest tent caterpillar and the spruce bud worm may also pose a greater threat as the climate gets warmer and drier. Together with fungal associates, saproxylic arthropods are active in nutrient cycling and ultimately determine the fertility of forest sites. It was suggested that the production of an age class structure and forest mosaic would render the forest landscape less vulnerable to the more negative aspects of climate change on vegetation response. It was concluded that novel management design paradigms are needed to successfully reduce the risk from threats

  17. Common resting brain dynamics indicate a possible mechanism underlying zolpidem response in severe brain injury

    Science.gov (United States)

    Williams, Shawniqua T; Conte, Mary M; Goldfine, Andrew M; Noirhomme, Quentin; Gosseries, Olivia; Thonnard, Marie; Beattie, Bradley; Hersh, Jennifer; Katz, Douglas I; Victor, Jonathan D; Laureys, Steven; Schiff, Nicholas D

    2013-01-01

    Zolpidem produces paradoxical recovery of speech, cognitive and motor functions in select subjects with severe brain injury but underlying mechanisms remain unknown. In three diverse patients with known zolpidem responses we identify a distinctive pattern of EEG dynamics that suggests a mechanistic model. In the absence of zolpidem, all subjects show a strong low frequency oscillatory peak ∼6–10 Hz in the EEG power spectrum most prominent over frontocentral regions and with high coherence (∼0.7–0.8) within and between hemispheres. Zolpidem administration sharply reduces EEG power and coherence at these low frequencies. The ∼6–10 Hz activity is proposed to arise from intrinsic membrane properties of pyramidal neurons that are passively entrained across the cortex by locally-generated spontaneous activity. Activation by zolpidem is proposed to arise from a combination of initial direct drug effects on cortical, striatal, and thalamic populations and further activation of underactive brain regions induced by restoration of cognitively-mediated behaviors. DOI: http://dx.doi.org/10.7554/eLife.01157.001 PMID:24252875

  18. Migration of two antibiotics during resuspension under simulated wind-wave disturbances in a water-sediment system.

    Science.gov (United States)

    Li, Shu; Huang, Zheng; Wang, Yi; Liu, Yu-Qing; Luo, Ran; Shang, Jing-Ge; Liao, Qian-Jia-Hua

    2018-02-01

    In this study, the migration of antibiotics (norfloxacin, NOR; and sulfamethoxazole, SMX) under simulated resuspension conditions across the sediment-water interface were quantified for two locations in China: point A, located in Meiliang Bay of Lake Taihu, and point B, located in Dapukou of Lake Taihu. The concentrations of suspended solids (SS) in the overlying water amounted to 100, 500, and 1000 mg/L during background, moderate, and strong simulated wind-wave disturbances, respectively. At each SS level, the initial concentrations of the two antibiotics were set to 1, 5, and 10 mg/L. The results showed that both resuspended SS and the initial concentration of antibiotics could influence the migration of NOR in the water-sediment system. Specifically, both higher SS and initial antibiotic concentrations were associated with higher rates of migration and accumulation of NOR from water to sediment. In contrast, the migration of SMX in the water-sediment system was not impacted by SS or initial antibiotic concentration. The adsorption capacities of sediments for NOR and SMX were significantly different at both locations, possibly reflecting differences in cation exchange capacity (CEC) and organic material (OM) contents. In general, higher CEC and OM values were found in sediments with a higher adsorption capacity for the antibiotics. When CEC and OM values of sediments were higher, the adsorption capacity reached up to 51.73 mg/kg. Large differences in the migration from water to sediment were observed for the two antibiotics, with NOR migration rates higher than those of SMX. The accumulation of NOR in surface sediment during resuspension was about 14 times higher than that of SMX. The main reason for this is that the chemical adsorption of NOR is seldom reversible. Overall, this study demonstrates that resuspension of NOR and SMX attached to sediments under simulated wind-wave disturbances can promote the migration of the antibiotics from water to sediment

  19. Brain-computer interfacing under distraction: an evaluation study

    Science.gov (United States)

    Brandl, Stephanie; Frølich, Laura; Höhne, Johannes; Müller, Klaus-Robert; Samek, Wojciech

    2016-10-01

    Objective. While motor-imagery based brain-computer interfaces (BCIs) have been studied over many years by now, most of these studies have taken place in controlled lab settings. Bringing BCI technology into everyday life is still one of the main challenges in this field of research. Approach. This paper systematically investigates BCI performance under 6 types of distractions that mimic out-of-lab environments. Main results. We report results of 16 participants and show that the performance of the standard common spatial patterns (CSP) + regularized linear discriminant analysis classification pipeline drops significantly in this ‘simulated’ out-of-lab setting. We then investigate three methods for improving the performance: (1) artifact removal, (2) ensemble classification, and (3) a 2-step classification approach. While artifact removal does not enhance the BCI performance significantly, both ensemble classification and the 2-step classification combined with CSP significantly improve the performance compared to the standard procedure. Significance. Systematically analyzing out-of-lab scenarios is crucial when bringing BCI into everyday life. Algorithms must be adapted to overcome nonstationary environments in order to tackle real-world challenges.

  20. DSOGI-PLL Based Power Control Method to Mitigate Control Errors Under Disturbances of Grid Connected Hybrid Renewable Power Systems

    Directory of Open Access Journals (Sweden)

    Mehmet Emin Meral

    2018-01-01

    Full Text Available The control of power converter devices is one of the main research lines in interfaced renewable energy sources, such as solar cells and wind turbines. Therefore, suitable control algorithms should be designed in order to regulate power or current properly and attain a good power quality for some disturbances, such as voltage sag/swell, voltage unbalances and fluctuations, long interruptions, and harmonics. Various synchronisation techniques based control strategies are implemented for the hybrid power system applications under unbalanced conditions in literature studies. In this paper, synchronisation algorithms based Proportional-Resonant (PR power/current controller is applied to the hybrid power system (solar cell + wind turbine + grid, and Dual Second Order Generalized Integrator-Phase Locked Loop (DSOGI-PLL based PR controller in stationary reference frame provides a solution to overcome these problems. The influence of various cases, such as unbalance, and harmonic conditions, is examined, analysed and compared to the PR controllers based on DSOGI-PLL and SRF-PLL. The results verify the effectiveness and correctness of the proposed DSOGI-PLL based power control method.

  1. Interactions of landscape disturbances and climate change dictate ecological pattern and process: spatial modeling of wildfire, insect, and disease dynamics under future climates

    Science.gov (United States)

    Loehman, Rachel A.; Keane, Robert E.; Holsinger, Lisa M.; Wu, Zhiwei

    2016-01-01

    ContextInteractions among disturbances, climate, and vegetation influence landscape patterns and ecosystem processes. Climate changes, exotic invasions, beetle outbreaks, altered fire regimes, and human activities may interact to produce landscapes that appear and function beyond historical analogs.ObjectivesWe used the mechanistic ecosystem-fire process model FireBGCv2 to model interactions of wildland fire, mountain pine beetle (Dendroctonus ponderosae), and white pine blister rust (Cronartium ribicola) under current and future climates, across three diverse study areas.MethodsWe assessed changes in tree basal area as a measure of landscape response over a 300-year simulation period for the Crown of the Continent in north-central Montana, East Fork of the Bitterroot River in western Montana, and Yellowstone Central Plateau in western Wyoming, USA.ResultsInteracting disturbances reduced overall basal area via increased tree mortality of host species. Wildfire decreased basal area more than beetles or rust, and disturbance interactions modeled under future climate significantly altered landscape basal area as compared with no-disturbance and current climate scenarios. Responses varied among landscapes depending on species composition, sensitivity to fire, and pathogen and beetle suitability and susceptibility.ConclusionsUnderstanding disturbance interactions is critical for managing landscapes because forest responses to wildfires, pathogens, and beetle attacks may offset or exacerbate climate influences, with consequences for wildlife, carbon, and biodiversity.

  2. Connectome-harmonic decomposition of human brain activity reveals dynamical repertoire re-organization under LSD.

    Science.gov (United States)

    Atasoy, Selen; Roseman, Leor; Kaelen, Mendel; Kringelbach, Morten L; Deco, Gustavo; Carhart-Harris, Robin L

    2017-12-15

    Recent studies have started to elucidate the effects of lysergic acid diethylamide (LSD) on the human brain but the underlying dynamics are not yet fully understood. Here we used 'connectome-harmonic decomposition', a novel method to investigate the dynamical changes in brain states. We found that LSD alters the energy and the power of individual harmonic brain states in a frequency-selective manner. Remarkably, this leads to an expansion of the repertoire of active brain states, suggestive of a general re-organization of brain dynamics given the non-random increase in co-activation across frequencies. Interestingly, the frequency distribution of the active repertoire of brain states under LSD closely follows power-laws indicating a re-organization of the dynamics at the edge of criticality. Beyond the present findings, these methods open up for a better understanding of the complex brain dynamics in health and disease.

  3. A rapid compensation method for launch data of long-range rockets under influence of the Earth's disturbing gravity field

    Directory of Open Access Journals (Sweden)

    Baolin MA

    2017-06-01

    Full Text Available Regarding the rapid compensation of the influence of the Earth’ s disturbing gravity field upon trajectory calculation, the key point lies in how to derive the analytical solutions to the partial derivatives of the state of burnout point with respect to the launch data. In view of this, this paper mainly expounds on two issues: one is based on the approximate analytical solution to the motion equation for the vacuum flight section of a long-range rocket, deriving the analytical solutions to the partial derivatives of the state of burnout point with respect to the changing rate of the final-stage pitch program; the other is based on the initial positioning and orientation error propagation mechanism, proposing the analytical calculation formula for the partial derivatives of the state of burnout point with respect to the launch azimuth. The calculation results of correction data are simulated and verified under different circumstances. The simulation results are as follows: (1 the accuracy of approximation between the analytical solutions and the results attained via the difference method is higher than 90%, and the ratio of calculation time between them is lower than 0.2%, thus demonstrating the accuracy of calculation of data corrections and advantages in calculation speed; (2 after the analytical solutions are compensated, the longitudinal landing deviation of the rocket is less than 20 m and the lateral landing deviation of the rocket is less than 10 m, demonstrating that the corrected data can meet the requirements for the hit accuracy of a long-range rocket.

  4. The Coupled Effect of Loading Rate and Grain Size on Tensile Strength of Sandstones under Dynamic Disturbance

    Directory of Open Access Journals (Sweden)

    Miao Yu

    2017-01-01

    Full Text Available It is of significance to comprehend the effects of rock microstructure on the tensile strength under different loading rates caused by mining disturbance. So, in this paper, three kinds of sandstones drilled from surrounding rocks in Xiao Jihan Coal to simulate the in situ stress state, whose average grain size is 30 μm (fine grain, FG, 105 μm (medium grain, MG, and 231 μm (Coarse grain, CG, are selected with the calculation of optical microscopic technique and moreover processed to Brazilian disc (BD to study the mechanical response of samples. The dynamic Brazilian tests of samples with three kinds of grain sizes are conducted with the Split Hopkinson Pressure Bar (SHPB driven by pendulum hammer, which can produce four different velocities (V=2.0 m/s, 2.5 m/s, 3.3 m/s, and 4.2 m/s when the incident bar is impacted by pendulum hammer. The incident wave produced by pendulum hammer is a slowly rising stress wave, which allows gradual stress accumulation in the specimen and maintains the load at both ends of the specimen in an equilibrium state. The results show that the dynamic strength of three kinds of BD samples represented loading rates dependence, and FG sandstones are more sensitive for loading rates than MG and CG samples. Moreover, the peak strength is observed to increase linearly with an increasing stress rates, and the relationship between the dynamic BD strength and stress rates can be built through a linear equation. Finally, the failure modes of different grain sizes are discussed and explained by microfailure mechanism.

  5. Designing a capacitated multi-configuration logistics network under disturbances and parameter uncertainty: a real-world case of a drug supply chain

    Science.gov (United States)

    Shishebori, Davood; Babadi, Abolghasem Yousefi

    2018-03-01

    This study investigates the reliable multi-configuration capacitated logistics network design problem (RMCLNDP) under system disturbances, which relates to locating facilities, establishing transportation links, and also allocating their limited capacities to the customers conducive to provide their demand on the minimum expected total cost (including locating costs, link constructing costs, and also expected costs in normal and disturbance conditions). In addition, two types of risks are considered; (I) uncertain environment, (II) system disturbances. A two-level mathematical model is proposed for formulating of the mentioned problem. Also, because of the uncertain parameters of the model, an efficacious possibilistic robust optimization approach is utilized. To evaluate the model, a drug supply chain design (SCN) is studied. Finally, an extensive sensitivity analysis was done on the critical parameters. The obtained results show that the efficiency of the proposed approach is suitable and is worthwhile for analyzing the real practical problems.

  6. Brain mineralocorticoid receptors as resilience factor under adverse life conditions?

    NARCIS (Netherlands)

    Kanatsou, S.

    2016-01-01

    Studies in human cohorts have underlined the importance of gene-environment interactions for brain structure and function during development and in adulthood. Such interactions can make the difference between staying healthy or succumbing to disease, e.g. depression or posttraumatic stress disorder.

  7. Brain-computer interfacing under distraction: an evaluation study

    DEFF Research Database (Denmark)

    Brandl, Stephanie; Frølich, Laura; Höhne, Johannes

    2016-01-01

    Objective. While motor-imagery based brain-computer interfaces (BCIs) have been studied over many years by now, most of these studies have taken place in controlled lab settings. Bringing BCI technology into everyday life is still one of the main challenges in this field of research. Approach...

  8. Brain networks underlying mental imagery of auditory and visual information.

    Science.gov (United States)

    Zvyagintsev, Mikhail; Clemens, Benjamin; Chechko, Natalya; Mathiak, Krystyna A; Sack, Alexander T; Mathiak, Klaus

    2013-05-01

    Mental imagery is a complex cognitive process that resembles the experience of perceiving an object when this object is not physically present to the senses. It has been shown that, depending on the sensory nature of the object, mental imagery also involves correspondent sensory neural mechanisms. However, it remains unclear which areas of the brain subserve supramodal imagery processes that are independent of the object modality, and which brain areas are involved in modality-specific imagery processes. Here, we conducted a functional magnetic resonance imaging study to reveal supramodal and modality-specific networks of mental imagery for auditory and visual information. A common supramodal brain network independent of imagery modality, two separate modality-specific networks for imagery of auditory and visual information, and a common deactivation network were identified. The supramodal network included brain areas related to attention, memory retrieval, motor preparation and semantic processing, as well as areas considered to be part of the default-mode network and multisensory integration areas. The modality-specific networks comprised brain areas involved in processing of respective modality-specific sensory information. Interestingly, we found that imagery of auditory information led to a relative deactivation within the modality-specific areas for visual imagery, and vice versa. In addition, mental imagery of both auditory and visual information widely suppressed the activity of primary sensory and motor areas, for example deactivation network. These findings have important implications for understanding the mechanisms that are involved in generation of mental imagery. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Impacts and underlying factors of landscape-scale, historical disturbance of mountain forest identified using archival documents

    Czech Academy of Sciences Publication Activity Database

    Brůna, Josef; Wild, Jan; Svoboda, M.; Heurich, M.; Müllerová, Jana

    2013-01-01

    Roč. 2013, č. 305 (2013), s. 294-306 ISSN 0378-1127 R&D Projects: GA ČR GAP504/10/0843 Institutional support: RVO:67985939 Keywords : mountain forests * disturbance * historical range of variability Subject RIV: EF - Botanics Impact factor: 2.667, year: 2013

  10. Brain dynamics underlying the nonlinear threshold for access to consciousness.

    Science.gov (United States)

    Del Cul, Antoine; Baillet, Sylvain; Dehaene, Stanislas

    2007-10-01

    When a flashed stimulus is followed by a backward mask, subjects fail to perceive it unless the target-mask interval exceeds a threshold duration of about 50 ms. Models of conscious access postulate that this threshold is associated with the time needed to establish sustained activity in recurrent cortical loops, but the brain areas involved and their timing remain debated. We used high-density recordings of event-related potentials (ERPs) and cortical source reconstruction to assess the time course of human brain activity evoked by masked stimuli and to determine neural events during which brain activity correlates with conscious reports. Target-mask stimulus onset asynchrony (SOA) was varied in small steps, allowing us to ask which ERP events show the characteristic nonlinear dependence with SOA seen in subjective and objective reports. The results separate distinct stages in mask-target interactions, indicating that a considerable amount of subliminal processing can occur early on in the occipito-temporal pathway (270 ms) and highly distributed fronto-parieto-temporal activation as a correlate of conscious reportability.

  11. The 'selfish brain' is regulated by aquaporins and autophagy under nutrient deprivation.

    Science.gov (United States)

    Ye, Qiao; Wu, Yonghong; Gao, Yan; Li, Zhihui; Li, Weiguang; Zhang, Chenggang

    2016-05-01

    The brain maintains its mass and physiological functional capacity compared with other organs under harsh conditions such as starvation, a mechanism termed the 'selfish brain' theory. To further investigate this phenomenon, mice were examined following water and/or food deprivation. Although the body weights of the mice, the weight of the organs except the brain and blood glucose levels were significantly reduced in the absence of water and/or food, the brain weight maintained its original state. Furthermore, no significant differences in the water content of the brain or its energy balance were observed when the mice were subjected to water and/or food deprivation. To further investigate the mechanism underlying the brain maintenance of water and substance homeostasis, the expression levels of aquaporins (AQPs) and autophagy‑specific protein long‑chain protein 3 (LC3) were examined. During the process of water and food deprivation, no significant differences in the transcriptional levels of AQPs were observed. However, autophagy activity levels were initially stimulated, then suppressed in a time‑dependent manner. LC3 and AQPs have important roles for the survival of the brain under conditions of food and water deprivation, which provided further understanding of the mechanism underlying the 'selfish brain' phenomenon. Although not involved in the energy regulation of the 'selfish brain', AQPs were observed to have important roles in water and food deprivation, specifically with regards to the control of water content. Additionally, the brain exhibits an 'unselfish strategy' using autophagy during water and/or food deprivation. The present study furthered current understanding of the 'selfish brain' theory, and identified additional regulating target genes of AQPs and autophagy, with the aim of providing a basis for the prevention of nutrient shortage in humans and animals.

  12. The International Research Training Group on "Brain-Behavior Relationship of Normal and Disturbed Emotions in Schizophrenia and Autism" as an Example of German-American Cooperation in Doctoral Training

    Science.gov (United States)

    Schneider, Frank; Gur, Ruben C.

    2008-01-01

    The International Research Training Group "Brain-Behavior Relationship of Normal and Disturbed Emotions in Schizophrenia and Autism" (IRTG 1328), funded by the German Research Council (DFG), is a German-American cooperation. Its major aims are interdisciplinary and international scientific cooperation and the support of young scientists…

  13. The influence of antioxidants on the disturbance of the brain activity induced by low-level ionizing radiation

    International Nuclear Information System (INIS)

    Godukhin, O.V.; Arkhipov, V.I.; Shipakina, T.G.; Kalemenev, S.V.; Burlakova, E.B.

    1995-01-01

    The effects of daily intraperitoneal injections of α-tocopherol (30 mg/kg per day) and synthetic antioxidant IHFAN-30 (30 mg/day) in rats were compared during low-level ionizing radiation (10 days, dose rate 5 mGy/h, total dose 1.2 Gy). There were analysed: (1) amplitude of population spike of hippocampal slices; (2) endogenous phosphorilation in vitro of hippocamplal synaptic proteins in the presense of cAMP; (3) formation, manifestation and reduction of food-procuring reflex. The findings showed that antioxidants made some correction of the functional state of pippocampal slices and cAMP-dependent phosphorylation system activity in brain cells from irradiated animals. No influence on training and memory functions was detected. 12 refs.; 3 figs

  14. Influence of upstream disturbance on the draft-tube flow of Francis turbine under part-load conditions

    Science.gov (United States)

    Chen, Ting; Zheng, Xianghao; Zhang, Yu-ning; Li, Shengcai

    2018-02-01

    Owing to the part-load operations for the enhancement of grid flexibility, the Francis turbine often suffers from severe low-frequency and large-amplitude hydraulic instability, which is mostly pertinent to the highly unsteady swirling vortex rope in the draft tube. The influence of disturbances in the upstream (e.g., large-scale vortex structures in the spiral casing) on the draft-tube vortex flow is not well understood yet. In the present paper, the influence of the upstream disturbances on the vortical flow in the draft tube is studied based on the vortex identification method and the analysis of several important parameters (e.g., the swirl number and the velocity profile). For a small guide vane opening (representing the part-load condition), the vortices triggered in the spiral casing propagate downstream and significantly affect the swirling vortex-rope precession in the draft tube, leading to the changes of the intensity and the processional frequency of the swirling vortex rope. When the guide vane opening approaches the optimum one (representing the full-load condition), the upstream disturbance becomes weaker and thus its influences on the downstream flow are very limited.

  15. Brain systems underlying encounter expectancy bias in spider phobia.

    Science.gov (United States)

    Aue, Tatjana; Hoeppli, Marie-Eve; Piguet, Camille; Hofstetter, Christoph; Rieger, Sebastian W; Vuilleumier, Patrik

    2015-06-01

    Spider-phobic individuals are characterized by exaggerated expectancies to be faced with spiders (so-called encounter expectancy bias). Whereas phobic responses have been linked to brain systems mediating fear, little is known about how the recruitment of these systems relates to exaggerated expectancies of threat. We used fMRI to examine spider-phobic and control participants while they imagined visiting different locations in a forest after having received background information about the likelihood of encountering different animals (spiders, snakes, and birds) at these locations. Critically, imagined encounter expectancies modulated brain responses differently in phobics as compared with controls. Phobics displayed stronger negative modulation of activity in the lateral prefrontal cortex, precuneus, and visual cortex by encounter expectancies for spiders, relative to snakes or birds (within-participants analysis); these effects were not seen in controls. Between-participants correlation analyses within the phobic group further corroborated the hypothesis that these phobia-specific modulations may underlie irrationality in encounter expectancies (deviations of encounter expectancies from objective background information) in spider phobia; the greater the negative modulation a phobic participant displayed in the lateral prefrontal cortex, precuneus, and visual cortex, the stronger was her bias in encounter expectancies for spiders. Interestingly, irrationality in expectancies reflected in frontal areas relied on right rather than left hemispheric deactivations. Our data accord with the idea that expectancy biases in spider phobia may reflect deficiencies in cognitive control and contextual integration that are mediated by right frontal and parietal areas.

  16. Quantifying Forest and Coastal Disturbance from Industrial Mining Using Satellite Time Series Analysis Under Very Cloudy Conditions

    Science.gov (United States)

    Alonzo, M.; Van Den Hoek, J.; Ahmed, N.

    2015-12-01

    The open-pit Grasberg mine, located in the highlands of Western Papua, Indonesia, and operated by PT Freeport Indonesia (PT-FI), is among the world's largest in terms of copper and gold production. Over the last 27 years, PT-FI has used the Ajkwa River to transport an estimated 1.3 billion tons of tailings from the mine into the so-called Ajkwa Deposition Area (ADA). The ADA is the product of aggradation and lateral expansion of the Ajkwa River into the surrounding lowland rainforest and mangroves, which include species important to the livelihoods of indigenous Papuans. Mine tailings that do not settle in the ADA disperse into the Arafura Sea where they increase levels of suspended particulate matter (SPM) and associated concentrations of dissolved copper. Despite the mine's large-scale operations, ecological impact of mine tailings deposition on the forest and estuarial ecosystems have received minimal formal study. While ground-based inquiries are nearly impossible due to access restrictions, assessment via satellite remote sensing is promising but hindered by extreme cloud cover. In this study, we characterize ridgeline-to-coast environmental impacts along the Ajkwa River, from the Grasberg mine to the Arafura Sea between 1987 and 2014. We use "all available" Landsat TM and ETM+ images collected over this time period to both track pixel-level vegetation disturbance and monitor changes in coastal SPM levels. Existing temporal segmentation algorithms are unable to assess both acute and protracted trajectories of vegetation change due to pervasive cloud cover. In response, we employ robust, piecewise linear regression on noisy vegetation index (NDVI) data in a manner that is relatively insensitive to atmospheric contamination. Using this disturbance detection technique we constructed land cover histories for every pixel, based on 199 image dates, to differentiate processes of vegetation decline, disturbance, and regrowth. Using annual reports from PT-FI, we show

  17. Artificial neural networks for control of a grid-connected rectifier/inverter under disturbance, dynamic and power converter switching conditions.

    Science.gov (United States)

    Li, Shuhui; Fairbank, Michael; Johnson, Cameron; Wunsch, Donald C; Alonso, Eduardo; Proaño, Julio L

    2014-04-01

    Three-phase grid-connected converters are widely used in renewable and electric power system applications. Traditionally, grid-connected converters are controlled with standard decoupled d-q vector control mechanisms. However, recent studies indicate that such mechanisms show limitations in their applicability to dynamic systems. This paper investigates how to mitigate such restrictions using a neural network to control a grid-connected rectifier/inverter. The neural network implements a dynamic programming algorithm and is trained by using back-propagation through time. To enhance performance and stability under disturbance, additional strategies are adopted, including the use of integrals of error signals to the network inputs and the introduction of grid disturbance voltage to the outputs of a well-trained network. The performance of the neural-network controller is studied under typical vector control conditions and compared against conventional vector control methods, which demonstrates that the neural vector control strategy proposed in this paper is effective. Even in dynamic and power converter switching environments, the neural vector controller shows strong ability to trace rapidly changing reference commands, tolerate system disturbances, and satisfy control requirements for a faulted power system.

  18. Effects of naltrexone in postnatal rats on the recovery of disturbed brain and lymphatic tissues after X-irradiation or ethylnitrosourea treatment in utero

    International Nuclear Information System (INIS)

    Schmahl, W.G.; Plendl, J.; Reinoehl-Kompa, S.

    1987-01-01

    The role of endogenous opioid systems in preweaning development after intrauterine exposure to X-irradiation or ethylnitrosourea (ENU) was explored in rats using naltrexone, a potent antagonist of beta-endorphin. After daily s.c. injections of 50 mg/kg naltrexone only the prenatally untreated controls had body weights increased by 11% from control level on day 28 (weaning). In the X-irradiated as well as the ENU-treated pups no significant effects of naltrexone on body weight gain were observed. However, brain weight increased in all animals under the influence of naltrexone, irrespective of prenatal treatment or the severity of brain lesions: 9.5% above control values in untreated offspring and 14% after X-irradiation (1 Gy) on gestation day 14. The brain weight of ENU-treated rats (50 mg/kg on gest. day 14) was 13% higher after postnatal naltrexone application than that of their postnatally untreated counterparts. ENU (80 mg/kg) effects on the brain when given on gestation day 18 were ameliorated to 9.2% by naltrexone in the weaning period. Naltrexone significantly increased the thymus weight in controls. Prenatally treated animals also showed an increased thymus weight at weaning, presumably due to compensatory growth. In these cases naltrexone revealed a suppressive effect on the thymus, whereas spleen weight was apparently not influenced by naltrexone treatment. These results provide compelling evidence that endogenous opioid systems play a crucial role not only in normal development, but also in reparative growth events of the brain after prenatal injuries. The thymus, predominantly containing T-lymphocytes, seems to represent another sensitive system which is regulated under the influence of opioids

  19. Effects of naltrexone in postnatal rats on the recovery of disturbed brain and lymphatic tissues after X-irradiation or ethylnitrosourea treatment in utero

    Energy Technology Data Exchange (ETDEWEB)

    Schmahl, W.G.; Plendl, J.; Reinoehl-Kompa, S.

    1987-01-01

    The role of endogenous opioid systems in preweaning development after intrauterine exposure to X-irradiation or ethylnitrosourea (ENU) was explored in rats using naltrexone, a potent antagonist of beta-endorphin. After daily s.c. injections of 50 mg/kg naltrexone only the prenatally untreated controls had body weights increased by 11% from control level on day 28 (weaning). In the X-irradiated as well as the ENU-treated pups no significant effects of naltrexone on body weight gain were observed. However, brain weight increased in all animals under the influence of naltrexone, irrespective of prenatal treatment or the severity of brain lesions: 9.5% above control values in untreated offspring and 14% after X-irradiation (1 Gy) on gestation day 14. The brain weight of ENU-treated rats (50 mg/kg on gest. day 14) was 13% higher after postnatal naltrexone application than that of their postnatally untreated counterparts. ENU (80 mg/kg) effects on the brain when given on gestation day 18 were ameliorated to 9.2% by naltrexone in the weaning period. Naltrexone significantly increased the thymus weight in controls. Prenatally treated animals also showed an increased thymus weight at weaning, presumably due to compensatory growth. In these cases naltrexone revealed a suppressive effect on the thymus, whereas spleen weight was apparently not influenced by naltrexone treatment. These results provide compelling evidence that endogenous opioid systems play a crucial role not only in normal development, but also in reparative growth events of the brain after prenatal injuries. The thymus, predominantly containing T-lymphocytes, seems to represent another sensitive system which is regulated under the influence of opioids.

  20. Climate change and forest disturbances

    Science.gov (United States)

    Virginia H. Dale; Linda A. Joyce; Steve McNulty; Ronald P. Neilson; Matthew P. Ayres; Michael D. Flannigan; Paul J. Hanson; Lloyd C. Irland; Ariel E. Lugo; Chris J. Peterson; Daniel Simberloff; Frederick J. Swanson; Brian J. Stocks; Michael Wotton

    2001-01-01

    This article examines how eight disturbances influence forest structure, composition, and function, and how climate change may influence the severity, frequency, and magnitude of disturbances to forests. We focus on examples from the United States, although these influences occur worldwide. We also consider options for coping with disturbance under changing climate....

  1. Dynamics of Gut-Brain Communication Underlying Hunger.

    Science.gov (United States)

    Beutler, Lisa R; Chen, Yiming; Ahn, Jamie S; Lin, Yen-Chu; Essner, Rachel A; Knight, Zachary A

    2017-10-11

    Communication between the gut and brain is critical for homeostasis, but how this communication is represented in the dynamics of feeding circuits is unknown. Here we describe nutritional regulation of key neurons that control hunger in vivo. We show that intragastric nutrient infusion rapidly and durably inhibits hunger-promoting AgRP neurons in awake, behaving mice. This inhibition is proportional to the number of calories infused but surprisingly independent of macronutrient identity or nutritional state. We show that three gastrointestinal signals-serotonin, CCK, and PYY-are necessary or sufficient for these effects. In contrast, the hormone leptin has no acute effect on dynamics of these circuits or their sensory regulation but instead induces a slow modulation that develops over hours and is required for inhibition of feeding. These findings reveal how layers of visceral signals operating on distinct timescales converge on hypothalamic feeding circuits to generate a central representation of energy balance. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The inhibition of the kynurenine pathway prevents behavioral disturbances and oxidative stress in the brain of adult rats subjected to an animal model of schizophrenia.

    Science.gov (United States)

    Réus, Gislaine Z; Becker, Indianara R T; Scaini, Giselli; Petronilho, Fabricia; Oses, Jean P; Kaddurah-Daouk, Rima; Ceretta, Luciane B; Zugno, Alexandra I; Dal-Pizzol, Felipe; Quevedo, João; Barichello, Tatiana

    2018-02-02

    Evidence has shown that the kynurenine pathway (KP) plays a role in the onset of oxidative stress and also in the pathophysiology of schizophrenia. The aim of this study was to use a pharmacological animal model of schizophrenia induced by ketamine to investigate if KP inhibitors could protect the brains of Wistar rats against oxidative stress and behavioral changes. Ketamine, injected at the dose of 25mg/kg, increased spontaneous locomotor activity. However, the inhibitors of tryptophan 2,3-dioxygenase (TDO), indoleamine 2,3-dioxygenase (IDO) and kynurenine-3-monooxygenase (KMO) were able to reverse these changes. In addition, the IDO inhibitor prevented lipid peroxidation, and decreased the levels of protein carbonyl in the prefrontal cortex (PFC), hippocampus and striatum. It also increased the activity of superoxide dismutase (SOD) in the hippocampus, as well as increasing the levels of catalase activity in the PFC and hippocampus. The TDO inhibitor prevented lipid damage in the striatum and reduced the levels of protein carbonyl in the hippocampus and striatum. Also, the TDO inhibitor increased the levels of SOD activity in the striatum and CAT activity in the hippocampus of ketamine-induced pro-oxidant effects. Lipid damage was not reversed by the KMO inhibitor. The KMO inhibitor increased the levels of SOD activity in the hippocampus, and reduced the levels of protein carbonyl while elevating the levels of CAT activity in the striatum of rats that had been injected with ketamine. Our findings revealed that the KP pathway could be a potential mechanism by which a schizophrenia animal model induced by ketamine could cause interference by producing behavioral disturbance and inducing oxidative stress in the brain, suggesting that the inhibition of the KP pathway could be a potential target in treating schizophrenia. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. To favor survival under food shortage, the brain disables costly memory.

    Science.gov (United States)

    Plaçais, Pierre-Yves; Preat, Thomas

    2013-01-25

    The brain regulates energy homeostasis in the organism. Under resource shortage, the brain takes priority over peripheral organs for energy supply. But can the brain also down-regulate its own consumption to favor survival? We show that the brain of Drosophila specifically disables the costly formation of aversive long-term memory (LTM) upon starvation, a physiological state required for appetitive LTM formation. At the neural circuit level, the slow oscillations normally triggered in two pairs of dopaminergic neurons to enable aversive LTM formation were abolished in starved flies. Transient artificial activation of these neurons during training restored LTM formation in starved flies but at the price of a reduced survival. LTM formation is thus subject to adaptive plasticity that helps survival under food shortage.

  4. Summary and implications of out-of-pile investigations of local cooling disturbances in LMFBR subassembly geometry under single-phase and boiling conditions

    International Nuclear Information System (INIS)

    Huber, F.; Peppler, W.

    1985-05-01

    The consequences of local cooling disturbances in subassemblies of LMFBRs have been investigated out-of-pile at KfK. Flow and temperature distributions in the disturbed region as well as cooling under boiling conditions up to loss of cooling were investigated. Fission gas release was simulated by gas injection. A total of 16 different blockages in 20 test set-ups were used, four of them under sodium and the rest under water conditions. Mainly planar plates of different sizes and arrangements were used as blockages. In some of the experiments performed in water also porous blockages were investigated. The test sections consisted of electrically heated pin bundles with a thermal-hydraulic characteristic corresponding to that of an SNR 300 subassembly. With different parameter settings the single-phase tests in water furnished a multitude of test results on flow and temperature fields and on the behaviour of gas in the recirculation zone. In the experiments involving boiling two boiling patterns were observed: steady-state boiling and oscillating boiling. With increasing boiling intensity the boiling region grew to some extent, but it remained always confined to the blocked zone because of the relatively cold sodium flow around this zone. In the experiments simulating fission gas release it was found that under certain conditions gas accumulates in the reverse flow region behind a blockage and leads to loss of cooling. (orig./GL) [de

  5. Electric field versus neutral wind control of the equatorial anomaly under quiet and disturbed condition: A global perspective from SUNDIAL 86

    International Nuclear Information System (INIS)

    Abdu, M.A.; Sobral, J.H.A.; Trivedi, N.B.; Reddy, B.M.; Fejer, B.G.; Szuszczewicz, E.P.; Walker, G.O.; Kikuchi, T.

    1990-01-01

    Developments of equatorial Ionization Anomaly (EIA) under quiescent and disturbed ionospheric conditions are investigated using the data collected from the low-latitude network of ionosondes and magnetometers operated at different longitude sectors of the globe as a part of the SUNDIAL 86 campaign (22 September to 3 October, 1986). Based on case studies of EIA developments, attention is focused on identifiying the EIA response to changes in the electric fields associated with the equatorial electrojet and counter electrojet events. The response time of the EIA to electric field changes is found to vary from 2.5 to 4 h. An anomalous EIA development observed in the morning sector on September 23 suggested possible electric field penetration to low latitude during a substorm energy storage/Dst development phase. The analysis also shows that the afternoon EIA could be inhibited due to equatorward blowing disturbed neutral winds. The results of the present analysis emphasize the need for pursuing further investigations for the response of EIA to magnetosphere-induced disturbances

  6. Daytime, low latitude, vertical ExB drift velocities, inferred from ground-based magnetometer observations in the Peruvian, Philippine and Indian longitude sectors under quiet and disturbed conditions

    CERN Document Server

    Anderson, D; Chau, J; Yumoto, K; Bhattacharya, A; Alex, S

    2006-01-01

    Daytime, low latitude, vertical ExB drift velocities, inferred from ground-based magnetometer observations in the Peruvian, Philippine and Indian longitude sectors under quiet and disturbed conditions

  7. Brain neurotransmitters and hippocampal proteome in pigs under stress and environmental enrichment

    Directory of Open Access Journals (Sweden)

    Laura Arroyo

    2017-06-01

    Full Text Available Stress and wellbeing are psychological conditions that are mediated by the central nervous system. In the brain, stress is mediated mainly by the hypothalamus, which will activate the hypothalamic-pituitary-adrenal (HPA axis, leading to the secretion of cortisol, the paradigmatic stress hormone. Other brain areas as the amygdala, the hippocampus or the prefrontal cortex (PFC are involved in emotions such as happiness, anxiety and fear. Communication between brain areas is achieved by chemical neurotransmitters (NTs, which are secreted by presynaptic neurons to reach postsynaptic neurons, where they will cause a variation in membrane polarization and other cell signaling actions, leading to physiological responses. Amongst these NTs, catecholamines (noradrenaline and dopamine and serotonin play an important role. On the other hand, the adverse effects of stress may be counteracted by housing the individuals under environmental enrichment conditions. This long-term situation should have an effect, not only on NTs, but also on the brain proteome. Under the hypothesis that different stress situations will lead to changes in NT composition that will be specific for crucial brain areas, we have tested the effects of transport stress, handling stress at the slaughterhouse, and the stress-susceptible genotype (Ryr1 on the amine NT concentration in amygdala, hippocampus, PFC and hypothalamus of pigs. The effects of living under environmentally enriched or control conditions on the NT concentration in several brain regions and on the hippocampus proteome has been also analyzed. In conclusion, genetic factors as well as management conditions related to housing, transport and slaughterhouse alter in different degree the catecholaminergic and the serotoninergic neurotransmission in the brain, and give clues about how different individual types are able to react to external challenges. Likewise, environmental enrichment leads to changes in the proteome

  8. Transcriptome, carbohydrate, and phytohormone analysis of Petunia hybrida reveals a complex disturbance of plant functional integrity under mild chilling stress

    Science.gov (United States)

    Bauerfeind, Martin Andreas; Winkelmann, Traud; Franken, Philipp; Druege, Uwe

    2015-01-01

    Cultivation of chilling-tolerant ornamental crops at lower temperature could reduce the energy demands of heated greenhouses. To provide a better understanding of how sub-optimal temperatures (12°C vs. 16°C) affect growth of the sensitive Petunia hybrida cultivar ‘SweetSunshine Williams’, the transcriptome, carbohydrate metabolism, and phytohormone homeostasis were monitored in aerial plant parts over 4 weeks by use of a microarray, enzymatic assays and GC-MS/MS. The data revealed three consecutive phases of chilling response. The first days were marked by a strong accumulation of sugars, particularly in source leaves, preferential up-regulation of genes in the same tissue and down-regulation of several genes in the shoot apex, especially those involved in the abiotic stress response. The midterm phase featured a partial normalization of carbohydrate levels and gene expression. After 3 weeks of chilling exposure, a new stabilized balance was established. Reduced hexose levels in the shoot apex, reduced ratios of sugar levels between the apex and source leaves and a higher apical sucrose/hexose ratio, associated with decreased activity and expression of cell wall invertase, indicate that prolonged chilling induced sugar accumulation in source leaves at the expense of reduced sugar transport to and reduced sucrose utilization in the shoot. This was associated with reduced levels of indole-3-acetic acid and abscisic acid in the apex and high numbers of differentially, particularly up-regulated genes, especially in the source leaves, including those regulating histones, ethylene action, transcription factors, and a jasmonate-ZIM-domain protein. Transcripts of one Jumonji C domain containing protein and one expansin accumulated in source leaves throughout the chilling period. The results reveal a dynamic and complex disturbance of plant function in response to mild chilling, opening new perspectives for the comparative analysis of differently tolerant cultivars

  9. Brain tissue partial pressure of oxygen predicts the outcome of severe traumatic brain injury under mild hypothermia treatment

    Directory of Open Access Journals (Sweden)

    Sun H

    2016-08-01

    Full Text Available Hongtao Sun,1,* Maohua Zheng,2,* Yanmin Wang,1 Yunfeng Diao,1 Wanyong Zhao,1 Zhengjun Wei1 1Sixth Department of Neurosurgery, Affiliated Hospital of Logistics University of People’s Armed Police Force, Tianjin, 2Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, People’s Republic of China *These authors contributed equally to this work Objective: The aim of this study was to investigate the clinical significance and changes of brain tissue partial pressure of oxygen (PbtO2 in the course of mild hypothermia treatment (MHT for treating severe traumatic brain injury (sTBI. Methods: There were 68 cases with sTBI undergoing MHT. PbtO2, intracranial pressure (ICP, jugular venous oxygen saturation (SjvO2, and cerebral perfusion pressure (CPP were continuously monitored, and clinical outcomes were evaluated using the Glasgow Outcome Scale score. Results: Of 68 patients with sTBI, PbtO2, SjvO2, and CPP were obviously increased, but decreased ICP level was observed throughout the MHT. PbtO2 and ICP were negatively linearly correlated, while there was a positive linear correlation between PbtO2 and SjvO2. Monitoring CPP and SjvO2 was performed under normal circumstances, and a large proportion of patients were detected with low PbtO2. Decreased PbtO2 was also found after MHT. Conclusion: Continuous PbtO2 monitoring could be introduced to evaluate the condition of regional cerebral oxygen metabolism, thereby guiding the clinical treatment and predicting the outcome. Keywords: severe traumatic brain injury, hypothermia, brain tissue partial pressure of oxygen, therapy

  10. Reduced astrocyte density underlying brain volume reduction in activity-based anorexia rats

    NARCIS (Netherlands)

    Frintrop, Linda; Liesbrock, Johanna; Paulukat, Lisa; Johann, Sonja; Kas, Martien J; Tolba, Rene; Heussen, Nicole; Neulen, Joseph; Konrad, Kerstin; Herpertz-Dahlmann, Beate; Beyer, Cordian; Seitz, Jochen

    2017-01-01

    OBJECTIVES: Severe grey and white matter volume reductions were found in patients with anorexia nervosa (AN) that were linked to neuropsychological deficits while their underlying pathophysiology remains unclear. For the first time, we analysed the cellular basis of brain volume changes in an animal

  11. At risk of being risky: The relationship between "brain age" under emotional states and risk preference.

    Science.gov (United States)

    Rudolph, Marc D; Miranda-Domínguez, Oscar; Cohen, Alexandra O; Breiner, Kaitlyn; Steinberg, Laurence; Bonnie, Richard J; Scott, Elizabeth S; Taylor-Thompson, Kim; Chein, Jason; Fettich, Karla C; Richeson, Jennifer A; Dellarco, Danielle V; Galván, Adriana; Casey, B J; Fair, Damien A

    2017-04-01

    Developmental differences regarding decision making are often reported in the absence of emotional stimuli and without context, failing to explain why some individuals are more likely to have a greater inclination toward risk. The current study (N=212; 10-25y) examined the influence of emotional context on underlying functional brain connectivity over development and its impact on risk preference. Using functional imaging data in a neutral brain-state we first identify the "brain age" of a given individual then validate it with an independent measure of cortical thickness. We then show, on average, that "brain age" across the group during the teen years has the propensity to look younger in emotional contexts. Further, we show this phenotype (i.e. a younger brain age in emotional contexts) relates to a group mean difference in risk perception - a pattern exemplified greatest in young-adults (ages 18-21). The results are suggestive of a specified functional brain phenotype that relates to being at "risk to be risky." Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. ALTERATIONS IN BRAIN CREATINE CONCENTRATIONS UNDER LONG-TERM SOCIAL ISOLATION (EXPERIMENTAL STUDY).

    Science.gov (United States)

    Koshoridze, N; Kuchukashvili, Z; Menabde, K; Lekiashvili, Sh; Koshoridze, M

    2016-02-01

    Stress represents one of the main problems of modern humanity. This study was done for understanding more clearly alterations in creatine content of the brain under psycho-emotional stress induced by long-term social isolation. It was shown that under 30 days social isolation creatine amount in the brain was arisen, while decreasing concentrations of synthesizing enzymes (AGAT, GAMT) and creatine transporter protein (CrT). Another important point was that such changes were accompanied by down-regulation of creatine kinase (CK), therefore the enzyme's concentration was lowered. In addition, it was observed that content of phosphocreatine (PCr) and ATP were also reduced, thus indicating down-regulation of energy metabolism of brain that is really a crucial point for its normal functioning. To sum up the results it can be underlined that long-term social isolation has negative influence on energy metabolism of brain; and as a result reduce ATP content, while increase of free creatine concentration, supposedly maintaining maximal balance for ATP amount, but here must be also noted that up-regulated oxidative pathways might have impact on blood brain barrier, resulting on its permeability.

  13. Modulating conscious movement intention by noninvasive brain stimulation and the underlying neural mechanisms.

    Science.gov (United States)

    Douglas, Zachary H; Maniscalco, Brian; Hallett, Mark; Wassermann, Eric M; He, Biyu J

    2015-05-06

    Conscious intention is a fundamental aspect of the human experience. Despite long-standing interest in the basis and implications of intention, its underlying neurobiological mechanisms remain poorly understood. Using high-definition transcranial DC stimulation (tDCS), we observed that enhancing spontaneous neuronal excitability in both the angular gyrus and the primary motor cortex caused the reported time of conscious movement intention to be ∼60-70 ms earlier. Slow brain waves recorded ∼2-3 s before movement onset, as well as hundreds of milliseconds after movement onset, independently correlated with the modulation of conscious intention by brain stimulation. These brain activities together accounted for 81% of interindividual variability in the modulation of movement intention by brain stimulation. A computational model using coupled leaky integrator units with biophysically plausible assumptions about the effect of tDCS captured the effects of stimulation on both neural activity and behavior. These results reveal a temporally extended brain process underlying conscious movement intention that spans seconds around movement commencement. Copyright © 2015 Douglas et al.

  14. A Synchronization Scheme for Single-Phase Grid-Tied Inverters Under Harmonic Distortion and Grid Disturbances

    DEFF Research Database (Denmark)

    Hadjidemetriou, Lenos; Kyriakides, Elias; Yang, Yongheng

    2016-01-01

    Synchronization is a crucial aspect in grid-tied systems, including single-phase photovoltaic inverters, and it can affect the overall performance of the system. Among prior-art synchronization schemes, the Multi Harmonic Decoupling Cell Phase-Locked Loop (MHDC-PLL) presents a fast response under...

  15. Predictability of prototype flash flood events in the Western Mediterranean under uncertainties of the precursor upper-level disturbance: the HYDROPTIMET case studies

    Directory of Open Access Journals (Sweden)

    R. Romero

    2005-01-01

    uncertainty in the representation of the upper-level disturbance and the necessity to cope with it within the operational context when attempting to issue short to mid-range numerical weather predictions of these high impact weather events, a systematic exploration of the predictability of the three selected case studies subject to uncertainties in the representation of the upper-level precursor disturbance is carried out in this paper. The study is based on an ensemble of mesoscale numerical simulations of each event with the MM5 non-hydrostatic model after perturbing in a systematic way the upper-level disturbance, in the sense of displacing slightly this disturbance upstream/downstream along the zonal direction and intensifying/weakening its amplitude. These perturbations are guided by a previous application of the MM5-adjoint model, which consistently shows high sensitivities of the dynamical control of the heavy rain to the flow configuration about the upper-level disturbance on the day before, thus confirming the precursor characteristics of this agent. The perturbations are introduced to the initial conditions by applying a potential vorticity (PV inversion procedure to the positive PV anomaly associated with the upper-level disturbance, and then using the inverted fields (wind, temperature and geopotential to modify under a physically consistent balance the model initial fields. The results generally show that the events dominated by mesoscale low-level disturbances (Catalogne and last stage of the Piémont episode are very sensitive to the initial uncertainties, such that the heavy rain location and magnitude are in some of the experiments strongly changed in response to the 'forecast errors' of the cyclone trajectory, intensity, shape and translational speed. In contrast, the other situations (Cévennes and initial stage of the Piémont episode, dominated by a larger scale system wich basically acts to guarantee the establishment and persistence of the southerly LLJ

  16. The effect of the diazepam to the free radical under the brain radiation injury

    International Nuclear Information System (INIS)

    Huo Hongmei; Wang Chen; Zhang Zhilin

    2007-01-01

    Objective: To study the effect of the diazepam on free radical under in the brain radiation injury in the early stage. Methods: A model of whole brain radiation injury in wakefulness was established in the Sprague-Dawley rat. Diazepam was given intraperitoneally 30 minutes before radiation. The brain tissue homogenate was prepared respectively while the rats were executed 6 hours, 1 day, 1 week, 1 month after irradiation. The contents of the superoxide dismutase (SOD) and the malondialdehyde (MDA) in the tissue homogenate were measured by chemical colorimetry. Results: Diazepam could increase the vigor of SOD and reduce the MDA contents after irradiated. Conclusions: Diazepam has certain neuroprotection effect on radiation injury and decreasing the level of the free radicals. (authors)

  17. State-and-transition simulation modeling to compare outcomes of alternative management scenarios under two natural disturbance regimes in a forested landscape in northeastern Wisconsin, USA

    Directory of Open Access Journals (Sweden)

    Amanda Swearingen

    2015-07-01

    Full Text Available Comparisons of the potential outcomes of multiple land management strategies and an understanding of the influence of potential increases in climate-related disturbances on these outcomes are essential for long term land management and conservation planning. To provide these insights, we developed an approach that uses collaborative scenario development and state-and-transition simulation modeling to provide land managers and conservation practitioners with a comparison of potential landscapes resulting from alternative management scenarios and climate conditions, and we have applied this approach in the Wild Rivers Legacy Forest (WRLF area in northeastern Wisconsin. Three management scenarios were developed with input from local land managers, scientists, and conservation practitioners: 1 continuation of current management, 2 expanded working forest conservation easements, and 3 cooperative ecological forestry. Scenarios were modeled under current climate with contemporary probabilities of natural disturbance and under increased probability of windthrow and wildfire that may result from climate change in this region. All scenarios were modeled for 100 years using the VDDT/TELSA modeling suite. Results showed that landscape composition and configuration were relatively similar among scenarios, and that management had a stronger effect than increased probability of windthrow and wildfire. These findings suggest that the scale of the landscape analysis used here and the lack of differences in predominant management strategies between ownerships in this region play significant roles in scenario outcomes. The approach used here does not rely on complex mechanistic modeling of uncertain dynamics and can therefore be used as starting point for planning and further analysis.

  18. Brain tissue partial pressure of oxygen predicts the outcome of severe traumatic brain injury under mild hypothermia treatment.

    Science.gov (United States)

    Sun, Hongtao; Zheng, Maohua; Wang, Yanmin; Diao, Yunfeng; Zhao, Wanyong; Wei, Zhengjun

    2016-01-01

    The aim of this study was to investigate the clinical significance and changes of brain tissue partial pressure of oxygen (PbtO2) in the course of mild hypothermia treatment (MHT) for treating severe traumatic brain injury (sTBI). There were 68 cases with sTBI undergoing MHT. PbtO2, intracranial pressure (ICP), jugular venous oxygen saturation (SjvO2), and cerebral perfusion pressure (CPP) were continuously monitored, and clinical outcomes were evaluated using the Glasgow Outcome Scale score. Of 68 patients with sTBI, PbtO2, SjvO2, and CPP were obviously increased, but decreased ICP level was observed throughout the MHT. PbtO2 and ICP were negatively linearly correlated, while there was a positive linear correlation between PbtO2 and SjvO2. Monitoring CPP and SjvO2 was performed under normal circumstances, and a large proportion of patients were detected with low PbtO2. Decreased PbtO2 was also found after MHT. Continuous PbtO2 monitoring could be introduced to evaluate the condition of regional cerebral oxygen metabolism, thereby guiding the clinical treatment and predicting the outcome.

  19. Comparison of vertical E × B drift velocities and ground-based magnetometer observations of DELTA H in the low latitude under geomagnetically disturbed conditions

    Science.gov (United States)

    Prabhu, M.; Unnikrishnan, K.

    2018-04-01

    In the present work, we analyzed the daytime vertical E × B drift velocities obtained from Jicamarca Unattended Long-term Ionosphere Atmosphere (JULIA) radar and ΔH component of geomagnetic field measured as the difference between the magnitudes of the horizontal (H) components between two magnetometers deployed at two different locations Jicamarca, and Piura in Peru for 22 geomagnetically disturbed events in which either SC has occurred or Dstmax values of daytime vertical E × B drift velocity and peak value of ΔH for the three consecutive days of the events. It was observed that 45% of the events have daytime vertical E × B drift velocity peak in the magnitude range 10-20 m/s and 20-30 m/s and 20% have peak ΔH in the magnitude range 50-60 nT and 80-90 nT. It was observed that the time of occurrence of the peak value of both the vertical E × B drift velocity and the ΔH have a maximum (40%) probability in the same time range 11:00-13:00 LT. We also investigated the correlation between E × B drift velocity and Dst index and the correlation between delta H and Dst index. A strong positive correlation is found between E × B drift and Dst index as well as between delta H and Dst Index. Three different techniques of data analysis - linear, polynomial (order 2), and polynomial (order 3) regression analysis were considered. The regression parameters in all the three cases were calculated using the Least Square Method (LSM), using the daytime vertical E × B drift velocity and ΔH. A formula was developed which indicates the relationship between daytime vertical E × B drift velocity and ΔH, for the disturbed periods. The E × B drift velocity was then evaluated using the formulae thus found for the three regression analysis and validated for the 'disturbed periods' of 3 selected events. The E × B drift velocities estimated by the three regression analysis have a fairly good agreement with JULIA radar observed values under different seasons and solar activity

  20. Modulating Conscious Movement Intention by Noninvasive Brain Stimulation and the Underlying Neural Mechanisms

    OpenAIRE

    Douglas, Zachary H.; Maniscalco, Brian; Hallett, Mark; Wassermann, Eric M.; He, Biyu J.

    2015-01-01

    Conscious intention is a fundamental aspect of the human experience. Despite long-standing interest in the basis and implications of intention, its underlying neurobiological mechanisms remain poorly understood. Using high-definition transcranial DC stimulation (tDCS), we observed that enhancing spontaneous neuronal excitability in both the angular gyrus and the primary motor cortex caused the reported time of conscious movement intention to be ∼60–70 ms earlier. Slow brain waves recorded ∼2–...

  1. General anesthetics inhibit erythropoietin induction under hypoxic conditions in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Tomoharu Tanaka

    Full Text Available Erythropoietin (EPO, originally identified as a hematopoietic growth factor produced in the kidney and fetal liver, is also endogenously expressed in the central nervous system (CNS. EPO in the CNS, mainly produced in astrocytes, is induced under hypoxic conditions in a hypoxia-inducible factor (HIF-dependent manner and plays a dominant role in neuroprotection and neurogenesis. We investigated the effect of general anesthetics on EPO expression in the mouse brain and primary cultured astrocytes.BALB/c mice were exposed to 10% oxygen with isoflurane at various concentrations (0.10-1.0%. Expression of EPO mRNA in the brain was studied, and the effects of sevoflurane, halothane, nitrous oxide, pentobarbital, ketamine, and propofol were investigated. In addition, expression of HIF-2α protein was studied by immunoblotting. Hypoxia-induced EPO mRNA expression in the brain was significantly suppressed by isoflurane in a concentration-dependent manner. A similar effect was confirmed for all other general anesthetics. Hypoxia-inducible expression of HIF-2α protein was also significantly suppressed with isoflurane. In the experiments using primary cultured astrocytes, isoflurane, pentobarbital, and ketamine suppressed hypoxia-inducible expression of HIF-2α protein and EPO mRNA.Taken together, our results indicate that general anesthetics suppress activation of HIF-2 and inhibit hypoxia-induced EPO upregulation in the mouse brain through a direct effect on astrocytes.

  2. Brain Events Underlying Episodic Memory Changes in Aging: A Longitudinal Investigation of Structural and Functional Connectivity.

    Science.gov (United States)

    Fjell, Anders M; Sneve, Markus H; Storsve, Andreas B; Grydeland, Håkon; Yendiki, Anastasia; Walhovd, Kristine B

    2016-03-01

    Episodic memories are established and maintained by close interplay between hippocampus and other cortical regions, but degradation of a fronto-striatal network has been suggested to be a driving force of memory decline in aging. We wanted to directly address how changes in hippocampal-cortical versus striatal-cortical networks over time impact episodic memory with age. We followed 119 healthy participants (20-83 years) for 3.5 years with repeated tests of episodic verbal memory and magnetic resonance imaging for quantification of functional and structural connectivity and regional brain atrophy. While hippocampal-cortical functional connectivity predicted memory change in young, changes in cortico-striatal functional connectivity were related to change in recall in older adults. Within each age group, effects of functional and structural connectivity were anatomically closely aligned. Interestingly, the relationship between functional connectivity and memory was strongest in the age ranges where the rate of reduction of the relevant brain structure was lowest, implying selective impacts of the different brain events on memory. Together, these findings suggest a partly sequential and partly simultaneous model of brain events underlying cognitive changes in aging, where different functional and structural events are more or less important in various time windows, dismissing a simple uni-factorial view on neurocognitive aging. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Histological Architecture Underlying Brain-Immune Cell-Cell Interactions and the Cerebral Response to Systemic Inflammation.

    Science.gov (United States)

    Shimada, Atsuyoshi; Hasegawa-Ishii, Sanae

    2017-01-01

    Although the brain is now known to actively interact with the immune system under non-inflammatory conditions, the site of cell-cell interactions between brain parenchymal cells and immune cells has been an open question until recently. Studies by our and other groups have indicated that brain structures such as the leptomeninges, choroid plexus stroma and epithelium, attachments of choroid plexus, vascular endothelial cells, cells of the perivascular space, circumventricular organs, and astrocytic endfeet construct the histological architecture that provides a location for intercellular interactions between bone marrow-derived myeloid lineage cells and brain parenchymal cells under non-inflammatory conditions. This architecture also functions as the interface between the brain and the immune system, through which systemic inflammation-induced molecular events can be relayed to the brain parenchyma at early stages of systemic inflammation during which the blood-brain barrier is relatively preserved. Although brain microglia are well known to be activated by systemic inflammation, the mechanism by which systemic inflammatory challenge and microglial activation are connected has not been well documented. Perturbed brain-immune interaction underlies a wide variety of neurological and psychiatric disorders including ischemic brain injury, status epilepticus, repeated social defeat, and neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Proinflammatory status associated with cytokine imbalance is involved in autism spectrum disorders, schizophrenia, and depression. In this article, we propose a mechanism connecting systemic inflammation, brain-immune interface cells, and brain parenchymal cells and discuss the relevance of basic studies of the mechanism to neurological disorders with a special emphasis on sepsis-associated encephalopathy and preterm brain injury.

  4. At risk of being risky: The relationship between “brain age” under emotional states and risk preference

    OpenAIRE

    Marc D. Rudolph; Oscar Miranda-Domínguez; Alexandra O. Cohen; Kaitlyn Breiner; Laurence Steinberg; Richard J. Bonnie; Elizabeth S. Scott; Kim Taylor-Thompson; Jason Chein; Karla C. Fettich; Jennifer A. Richeson; Danielle V. Dellarco; Adriana Galván; B.J. Casey; Damien A. Fair

    2017-01-01

    Developmental differences regarding decision making are often reported in the absence of emotional stimuli and without context, failing to explain why some individuals are more likely to have a greater inclination toward risk. The current study (N = 212; 10–25y) examined the influence of emotional context on underlying functional brain connectivity over development and its impact on risk preference. Using functional imaging data in a neutral brain-state we first identify the “brain age” of a ...

  5. Age-related similarities and differences in brain activity underlying reversal learning

    Directory of Open Access Journals (Sweden)

    Kaoru eNashiro

    2013-05-01

    Full Text Available The ability to update associative memory is an important aspect of episodic memory and a critical skill for social adaptation. Previous research with younger adults suggests that emotional arousal alters brain mechanisms underlying memory updating; however, it is unclear whether this applies to older adults. Given that the ability to update associative information declines with age, it is important to understand how emotion modulates the brain processes underlying memory updating in older adults. The current study investigated this question using reversal learning tasks, where younger and older participants (age ranges 19-35 and 61-78 respectively learn a stimulus–outcome association and then update their response when contingencies change. We found that younger and older adults showed similar patterns of activation in the frontopolar OFC and the amygdala during emotional reversal learning. In contrast, when reversal learning did not involve emotion, older adults showed greater parietal cortex activity than did younger adults. Thus, younger and older adults show more similarities in brain activity during memory updating involving emotional stimuli than during memory updating not involving emotional stimuli.

  6. Memory, Cognition and the Endogenous Evoked Potentials of the Brain: the Estimation of the Disturbance of Cognitive Functions and Capacity of Working Memory Without the Psychological Testing.

    Science.gov (United States)

    Gnezditskiy, V V; Korepina, O S; Chatskaya, A V; Klochkova, O I

    2017-01-01

    Cognition, cognitive and memory impairments is widely discussed in the literature, especially in the psycho physiological and the neurologic. In essence, this literature is dedicated to the psycho physiological tests, different scales. However, instrument neurophysiologic methods not so widely are used for these purposes. This review is dedicated to the instrument methods of neurophysiology, in particular to the endogenous evoked potentials method Р 300 (by characteristic latency 300 ms), in the estimation of cognitive functions and memory, to their special features dependent on age and to special features to their changes with the pathology. Method cognitive EP - Р 300 is the response of the brain, recorded under the conditions of the identification of the significant distinguishing stimulus, it facilitates the inspection of cognitive functions and memory in the healthy persons and patients with different manifestation of cognitive impairments. In the review it is shown on the basis of literature and our own data, that working (operative) memory and the capacity of the working memory it can be evaluated with the aid of the indices Р 300 within the normal subject and with the pathology. Testing with the estimation of working memory according to latent period of the peak Р 300 can be carried out and when conducting psychological testing is not possible for any reasons. Together with these cognitive EP are used for evidence pharmacotherapy of many neurotropic drugs.

  7. Brain activation for response inhibition under gaming cue distraction in internet gaming disorder

    Directory of Open Access Journals (Sweden)

    Gin-Chung Liu

    2014-01-01

    Full Text Available We evaluated neural substrates related to the loss of control in college students with internet gaming disorder (IGD. We hypothesized that deficit in response inhibition under gaming cue distraction was the possible mechanism for the loss of control internet use. Eleven cases of IGD and 11 controls performed Go/NoGo tasks with/without gaming distraction in the functional magnetic resonance imaging scanner. When the gaming picture was shown as background while individuals were performing Go/NoGo tasks, the IGD group committed more commission errors. The control group increased their brain activations more over the right dorsolateral prefrontal cortex (DLPFC and superior parietal lobe under gaming cue distraction in comparison with the IGD group. Furthermore, brain activation of the right DLPFC and superior parietal lobe were negatively associated with performance of response inhibition among the IGD group. The results suggest that the function of response inhibition was impaired under gaming distraction among the IGD group, and individuals with IGD could not activate right DLPFC and superior parietal lobe to keep cognitive control and attention allocation for response inhibition under gaming cue distraction. This mechanism should be addressed in any intervention for IGD.

  8. Disturbed spontaneous brain activity pattern in patients with primary angle-closure glaucoma using amplitude of low-frequency fluctuation: a fMRI study

    Directory of Open Access Journals (Sweden)

    Huang X

    2015-07-01

    Full Text Available Xin Huang,1,* Yu-Lin Zhong,1,* Xian-Jun Zeng,2 Fuqing Zhou,2 Xin-Hua Liu,1 Pei-Hong Hu,1 Chong-Gang Pei,1 Yi Shao,1 Xi-Jian Dai21Department of Ophthalmology, 2Department of Radiology, The First Affiliated Hospital of Nanchang University, Nangchang, Jiangxi, People’s Republic of China*These authors contributed equally to this workObjective: The aim of this study is to use amplitude of low-frequency fluctuation (ALFF as a method to explore the local features of spontaneous brain activity in patients with primary angle -closure glaucoma (PACG and ALFFs relationship with the behavioral performances.Methods: A total of twenty one patients with PACG (eight males and 13 females, and twenty one healthy subjects (nine males and twelve females closely matched in age, sex, and education, each underwent a resting-state functional magnetic resonance imaging scan. The ALFF method was used to assess the local features of spontaneous brain activity. The correlation analysis was used to explore the relationships between the observed mean ALFF signal values of the different areas in PACG patients and the thickness of the retinal nerve fiber layer (RNFL. Results: Compared with the healthy subjects, patients with PACG had significant lower ALFF areas in the left precentral gyrus, bilateral middle frontal gyrus, bilateral superior frontal gyrus, right precuneus, and right angular gyrus, and higher areas in the right precentral gyrus. In the PACG group, there were significant negative correlations between the mean ALFF signal value of the right middle frontal gyrus and the left mean RNFL thickness (r=-0.487, P=0.033, and between the mean ALFF signal value of the left middle frontal gyrus and the right mean RNFL thickness (r=-0.504, P=0.020. Conclusion: PACG mainly involved in the dysfunction in the frontal lobe, which may reflect the underlying pathologic mechanism of PACG.Keywords: angle-closure glaucoma, amplitude of low-frequency fluctuation, functional

  9. Hypothalamus-Related Resting Brain Network Underlying Short-Term Acupuncture Treatment in Primary Hypertension

    Directory of Open Access Journals (Sweden)

    Hongyan Chen

    2013-01-01

    Full Text Available The present study attempted to explore modulated hypothalamus-seeded resting brain network underlying the cardiovascular system in primary hypertensive patients after short-term acupuncture treatment. Thirty right-handed patients (14 male were divided randomly into acupuncture and control groups. The acupuncture group received a continuous five-day acupuncture treatment and undertook three resting-state fMRI scans and 24-hour ambulatory blood pressure monitoring (ABPM as well as SF-36 questionnaires before, after, and one month after acupuncture treatment. The control group undertook fMRI scans and 24-hour ABPM. For verum acupuncture, average blood pressure (BP and heart rate (HR decreased after treatment but showed no statistical differences. There were no significant differences in BP and HR between the acupuncture and control groups. Notably, SF-36 indicated that bodily pain (P = 0.005 decreased and vitality (P = 0.036 increased after acupuncture compared to the baseline. The hypothalamus-related brain network showed increased functional connectivity with the medulla, brainstem, cerebellum, limbic system, thalamus, and frontal lobes. In conclusion, short-term acupuncture did not decrease BP significantly but appeared to improve body pain and vitality. Acupuncture may regulate the cardiovascular system through a complicated brain network from the cortical level, the hypothalamus, and the brainstem.

  10. Numerical simulation of an excited round jet under helical disturbances by three-dimensional discrete vortex method; Helical kakuran ni yoru reiki enkei funryu no uzuho simulation

    Energy Technology Data Exchange (ETDEWEB)

    Izawa, S.; Kiya, M.; Mochizuki, O. [Hokkaido University, Sapporo (Japan)

    1998-09-25

    The evolution of vortical structure in an impulsively started round jet has been studied numerically by means of a three-dimensional vortex blob method. The viscous diffusion of vorticity is approximated by a core spreading model originally proposed by Leonard (1980). The jet is forced by axisymmetric, helical and multiple disturbances. The multiple disturbances are combinations of two helical disturbances of the same mode rotating in the opposite directions. The multiple disturbances are found to enhance both the generation of small-scale structures and the growth rate of the jet. The small-scale structures have highly organized spatial distributions. The core spreading method is effective in aquiring the core overlapping in regions of high extensional rate of strain. 21 refs., 12 figs.

  11. Morphological covariance in anatomical MRI scans can identify discrete neural pathways in the brain and their disturbances in persons with neuropsychiatric disorders.

    Science.gov (United States)

    Bansal, Ravi; Hao, Xuejun; Peterson, Bradley S

    2015-05-01

    We hypothesize that coordinated functional activity within discrete neural circuits induces morphological organization and plasticity within those circuits. Identifying regions of morphological covariation that are independent of morphological covariation in other regions therefore may therefore allow us to identify discrete neural systems within the brain. Comparing the magnitude of these variations in individuals who have psychiatric disorders with the magnitude of variations in healthy controls may allow us to identify aberrant neural pathways in psychiatric illnesses. We measured surface morphological features by applying nonlinear, high-dimensional warping algorithms to manually defined brain regions. We transferred those measures onto the surface of a unit sphere via conformal mapping and then used spherical wavelets and their scaling coefficients to simplify the data structure representing these surface morphological features of each brain region. We used principal component analysis (PCA) to calculate covariation in these morphological measures, as represented by their scaling coefficients, across several brain regions. We then assessed whether brain subregions that covaried in morphology, as identified by large eigenvalues in the PCA, identified specific neural pathways of the brain. To do so, we spatially registered the subnuclei for each eigenvector into the coordinate space of a Diffusion Tensor Imaging dataset; we used these subnuclei as seed regions to track and compare fiber pathways with known fiber pathways identified in neuroanatomical atlases. We applied these procedures to anatomical MRI data in a cohort of 82 healthy participants (42 children, 18 males, age 10.5 ± 2.43 years; 40 adults, 22 males, age 32.42 ± 10.7 years) and 107 participants with Tourette's Syndrome (TS) (71 children, 59 males, age 11.19 ± 2.2 years; 36 adults, 21 males, age 37.34 ± 10.9 years). We evaluated the construct validity of the identified covariation in morphology

  12. Glucose metabolism in different regions of the rat brain under hypokinetic stress influence

    Science.gov (United States)

    Konitzer, K.; Voigt, S.

    1980-01-01

    Glucose metabolism in rats kept under long term hypokinetic stress was studied in 7 brain regions. Determination was made of the regional levels of glucose, lactate, glutamate, glutamine, aspartate, gamma-aminobutyrate and the incorporation of C-14 from plasma glucose into these metabolites, in glycogen and protein. From the content and activity data the regional glucose flux was approximated quantitatively. Under normal conditions the activity gradient cortex and frontal pole cerebellum, thalamus and mesencephalon, hypothalamus and pons and medulla is identical with that of the regional blood supply (measured with I131 serum albumin as the blood marker). Within the first days of immobilization a functional hypoxia occurred in all brain regions and the utilization of cycle amino acids for protein synthesis was strongly diminished. After the first week of stress the capillary volumes of all regions increased, aerobic glucose metabolism was enhanced (factors 1.3 - 2.0) and the incorporation of glucose C-14 via cycle amino acids into protein was considerably potentiated. The metabolic parameters normalized between the 7th and 11th week of stress. Blood supply and metabolic rate increased most in the hypothalamus.

  13. The Impact of Reading Intervention on Brain Responses Underlying Language in Children With Autism.

    Science.gov (United States)

    Murdaugh, Donna L; Deshpande, Hrishikesh D; Kana, Rajesh K

    2016-01-01

    Deficits in language comprehension have been widely reported in children with autism spectrum disorders (ASD), with behavioral and neuroimaging studies finding increased reliance on visuospatial processing to aid in language comprehension. However, no study to date, has taken advantage of this strength in visuospatial processing to improve language comprehension difficulties in ASD. This study used a translational neuroimaging approach to test the role of a visual imagery-based reading intervention in improving the brain circuitry underlying language processing in children with ASD. Functional magnetic resonance imaging (MRI), in a longitudinal study design, was used to investigate intervention-related change in sentence comprehension, brain activation, and functional connectivity in three groups of participants (age 8-13 years): an experimental group of ASD children (ASD-EXP), a wait-list control group of ASD children (ASD-WLC), and a group of typically developing control children. After intervention, the ASD-EXP group showed significant increase in activity in visual and language areas and right-hemisphere language area homologues, putamen, and thalamus, suggestive of compensatory routes to increase proficiency in reading comprehension. Additionally, ASD children who had the most improvement in reading comprehension after intervention showed greater functional connectivity between left-hemisphere language areas, the middle temporal gyrus and inferior frontal gyrus while reading high imagery sentences. Thus, the findings of this study, which support the principles of dual coding theory [Paivio 2007], suggest the potential of a strength-based reading intervention in changing brain responses and facilitating better reading comprehension in ASD children. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  14. Brain Responses Underlying Anthropomorphism, Agency, and Social Attribution in Autism Spectrum Disorder.

    Science.gov (United States)

    Ammons, Carla J; Doss, Constance F; Bala, David; Kana, Rajesh K

    2018-01-01

    Theory of Mind (ToM), the ability to attribute mental states to oneself and others, is frequently impaired in Autism Spectrum Disorder (ASD) and may result from altered activation of social brain regions. Conversely, Typically Developing (TD) individuals overextend ToM and show a strong tendency to anthropomorphize and interpret biological motion in the environment. Less is known about how the degree of anthropomorphism influences intentional attribution and engagement of the social brain in ASD. This fMRI study examines the extent of anthropomorphism, its role in social attribution, and the underlying neural responses in ASD and TD using a series of human stick figures and geometrical shapes. 14 ASD and 14 TD adults watched videos of stick figures and triangles interacting in random or socially meaningful ways while in an fMRI scanner. In addition, they completed out-of-scanner measures of ToM skill and real-world social deficits. Whole brain statistical analysis was performed for regression and within and between group comparisons of all conditions using SPM12's implementation of the general linear model. ToM network regions were activated in response to social movement and human-like characters in ASD and TD. In addition, greater ToM ability was associated with increased TPJ and MPFC activity while watching stick figures; whereas more severe social symptoms were associated with reduced right TPJ activation in response to social movement. These results suggest that degree of anthropomorphism does not differentially affect social attribution in ASD and highlights the importance of TPJ in ToM and social attribution.

  15. A de novo Ser111Thr variant in aquaporin-4 in a patient with intellectual disability, transient signs of brain ischemia, transient cardiac hypertrophy, and progressive gait disturbance

    DEFF Research Database (Denmark)

    Berland, Siren; Toft-Bertelsen, Trine L; Aukrust, Ingvild

    2018-01-01

    Aquaporin-4, encoded by AQP4, is the major water channel in the central nervous system and plays an important role in the brain's water balance, including edema formation and clearance. Using genomic copy-number analysis and trio-exome sequencing, we investigated a male patient with intellectual...

  16. Reduced astrocyte density underlying brain volume reduction in activity-based anorexia rats

    Science.gov (United States)

    Frintrop, Linda; Liesbrock, Johanna; Paulukat, Lisa; Johann, Sonja; Kas, Martien J; Tolba, Rene; Heussen, Nicole; Neulen, Joseph; Konrad, Kerstin; Herpertz-Dahlmann, Beate; Beyer, Cordian; Seitz, Jochen

    2018-04-01

    Severe grey and white matter volume reductions were found in patients with anorexia nervosa (AN) that were linked to neuropsychological deficits while their underlying pathophysiology remains unclear. For the first time, we analysed the cellular basis of brain volume changes in an animal model (activity-based anorexia, ABA). Female rats had 24 h/day running wheel access and received reduced food intake until a 25% weight reduction was reached and maintained for 2 weeks. In ABA rats, the volumes of the cerebral cortex and corpus callosum were significantly reduced compared to controls by 6% and 9%, respectively. The number of GFAP-positive astrocytes in these regions decreased by 39% and 23%, total astrocyte-covered area by 83% and 63%. In neurons no changes were observed. The findings were complemented by a 60% and 49% reduction in astrocyte (GFAP) mRNA expression. Volumetric brain changes in ABA animals mirror those in human AN patients. These alterations are associated with a reduction of GFAP-positive astrocytes as well as GFAP expression. Reduced astrocyte functioning could help explain neuronal dysfunctions leading to symptoms of rigidity and impaired learning. Astrocyte loss could constitute a new research target for understanding and treating semi-starvation and AN.

  17. Brain magnetic resonance imaging findings in cryptogenic stroke patients under 60 years with patent foramen ovale

    Energy Technology Data Exchange (ETDEWEB)

    Boutet, Claire, E-mail: claire.boutet@chu-st-etienne.fr [Department of Radiology, University Hospital of Saint-Etienne (France); Thrombosis Research Group EA 3065, Jean Monnet University, Saint-Etienne (France); Rouffiange-Leclair, Laure, E-mail: laurerouffiange@hotmail.com [Department of Radiology, University Hospital of Saint-Etienne (France); Garnier, Pierre, E-mail: pierre.garnier@chu-st-etienne.fr [Thrombosis Research Group EA 3065, Jean Monnet University, Saint-Etienne (France); Department of Neurology, University Hospital of Saint-Etienne (France); Quenet, Sara, E-mail: sara.quenet@chu-st-etienne.fr [Thrombosis Research Group EA 3065, Jean Monnet University, Saint-Etienne (France); Delsart, Daphné, E-mail: daphne.delsart@hotmail.fr [Thrombosis Research Group EA 3065, Jean Monnet University, Saint-Etienne (France); Department of Therapeutic Medicine, CHU Saint-Etienne, Hôpital Nord, Saint-Etienne (France); Inserm, CIE3, F-42055 Saint-Etienne (France); Varvat, Jérôme, E-mail: jvarvat@9online.fr [Thrombosis Research Group EA 3065, Jean Monnet University, Saint-Etienne (France); Department of Neurology, University Hospital of Saint-Etienne (France); Epinat, Magali, E-mail: magali.epinat@chu-st-etienne.fr [Thrombosis Research Group EA 3065, Jean Monnet University, Saint-Etienne (France); Department of Neurology, University Hospital of Saint-Etienne (France); Schneider, Fabien, E-mail: fabien.schneider@univ-st-etienne.fr [Department of Radiology, University Hospital of Saint-Etienne (France); Thrombosis Research Group EA 3065, Jean Monnet University, Saint-Etienne (France); Antoine, Jean-Christophe, E-mail: j.christophe.antoine@chu-st-etienne.fr [Department of Neurology, University Hospital of Saint-Etienne (France); Lyon Neuroscience Research Center, INSERM U1028 – CNRS UMR5292 (France); EA 4338, Jean Monnet University, Saint-Etienne (France); and others

    2014-05-15

    Purpose: To compare magnetic resonance imaging (MRI) brain feature in cryptogenic stroke patients with patent foramen ovale (PFO), cryptogenic stroke patients without PFO and patients with cardioembolic stroke. Materials and methods: The ethics committee required neither institutional review board approval nor informed patient consent for retrospective analyses of the patients’ medical records and imaging data. The patients’ medical files were retrospectively reviewed in accordance with human subject research protocols. Ninety-two patients under 60 years of age were included: 15 with cardioembolic stroke, 32 with cryptogenic stroke with PFO and 45 with cryptogenic stroke without PFO. Diffusion-weighted imaging of brain MRI was performed by a radiologist blinded to clinical data. Univariate, Fischer's exact test for qualitative data and non-parametric Wilcoxon test for quantitative data were used. Results: There was no statistically significant difference found between MRI features of patients with PFO and those with cardioembolic stroke (p < .05). Patients without PFO present more corticosubcortical single lesions (p < .05) than patients with PFO. Patients with PFO have more often subcortical single lesions larger than 15 mm, involvement of posterior cerebral arterial territory and intracranial occlusion (p < .05) than patients with cryptogenic stroke without PFO. Conclusion: Our study suggests a cardioembolic mechanism in ischemic stroke with PFO.

  18. Brain Maturation, Cognition and Voice Pattern in a Gender Dysphoria Case under Pubertal Suppression.

    Science.gov (United States)

    Schneider, Maiko A; Spritzer, Poli M; Soll, Bianca Machado Borba; Fontanari, Anna M V; Carneiro, Marina; Tovar-Moll, Fernanda; Costa, Angelo B; da Silva, Dhiordan C; Schwarz, Karine; Anes, Maurício; Tramontina, Silza; Lobato, Maria I R

    2017-01-01

    Introduction: Gender dysphoria (GD) (DMS-5) is a condition marked by increasing psychological suffering that accompanies the incongruence between one's experienced or expressed gender and one's assigned gender. Manifestation of GD can be seen early on during childhood and adolescence. During this period, the development of undesirable sexual characteristics marks an acute suffering of being opposite to the sex of birth. Pubertal suppression with gonadotropin releasing hormone analogs (GnRHa) has been proposed for these individuals as a reversible treatment for postponing the pubertal development and attenuating psychological suffering. Recently, increased interest has been observed on the impact of this treatment on brain maturation, cognition and psychological performance. Objectives: The aim of this clinical report is to review the effects of puberty suppression on the brain white matter (WM) during adolescence. WM Fractional anisotropy, voice and cognitive functions were assessed before and during the treatment. MRI scans were acquired before, and after 22 and 28 months of hormonal suppression. Methods: We performed a longitudinal evaluation of a pubertal transgender girl undergoing hormonal treatment with GnRH analog. Three longitudinal magnetic resonance imaging (MRI) scans were performed for diffusion tensor imaging (DTI), regarding Fractional Anisotropy (FA) for regions of interest analysis. In parallel, voice samples for acoustic analysis as well as executive functioning with the Wechsler Intelligence Scale (WISC-IV) were performed. Results: During the follow-up, white matter fractional anisotropy did not increase, compared to normal male puberty effects on the brain. After 22 months of pubertal suppression, operational memory dropped 9 points and remained stable after 28 months of follow-up. The fundamental frequency of voice varied during the first year; however, it remained in the female range. Conclusion: Brain white matter fractional anisotropy

  19. Complex network inference from P300 signals: Decoding brain state under visual stimulus for able-bodied and disabled subjects

    Science.gov (United States)

    Gao, Zhong-Ke; Cai, Qing; Dong, Na; Zhang, Shan-Shan; Bo, Yun; Zhang, Jie

    2016-10-01

    Distinguishing brain cognitive behavior underlying disabled and able-bodied subjects constitutes a challenging problem of significant importance. Complex network has established itself as a powerful tool for exploring functional brain networks, which sheds light on the inner workings of the human brain. Most existing works in constructing brain network focus on phase-synchronization measures between regional neural activities. In contrast, we propose a novel approach for inferring functional networks from P300 event-related potentials by integrating time and frequency domain information extracted from each channel signal, which we show to be efficient in subsequent pattern recognition. In particular, we construct brain network by regarding each channel signal as a node and determining the edges in terms of correlation of the extracted feature vectors. A six-choice P300 paradigm with six different images is used in testing our new approach, involving one able-bodied subject and three disabled subjects suffering from multiple sclerosis, cerebral palsy, traumatic brain and spinal-cord injury, respectively. We then exploit global efficiency, local efficiency and small-world indices from the derived brain networks to assess the network topological structure associated with different target images. The findings suggest that our method allows identifying brain cognitive behaviors related to visual stimulus between able-bodied and disabled subjects.

  20. Why are you draining your brain? Factors underlying decisions of graduating Lebanese medical students to migrate.

    Science.gov (United States)

    Akl, Elie A; Maroun, Nancy; Major, Stella; Afif, Claude; Chahoud, Bechara; Choucair, Jacques; Sakr, Mazen; Schünemann, Holger J

    2007-03-01

    In the context of a worldwide physician brain drain phenomenon, Lebanon has the highest emigration factor in the Middle East and North Africa. In this manuscript we aim to identify and develop a conceptual framework for the factors underlying the decisions of graduating Lebanese medical students to train abroad. We conducted two focus groups and seven semi-structured individual interviews with 23 students. In the deductive analysis (based on the push-pull theory), students reported push factors in Lebanon and pull factors abroad related to five dimensions. They focused predominantly on how training abroad provides them with a competitive advantage in an oversaturated Lebanese job market. An inductive analysis revealed the following emerging concepts: repel factors abroad and retain factors locally; societal expectations that students should train abroad; marketing of abroad training; and an established culture of migration. The marketing of abroad training and the culture of migration are prevalent in the academic institutions.

  1. Prospect theory on the brain? Toward a cognitive neuroscience of decision under risk.

    Science.gov (United States)

    Trepel, Christopher; Fox, Craig R; Poldrack, Russell A

    2005-04-01

    Most decisions must be made without advance knowledge of their consequences. Economists and psychologists have devoted much attention to modeling decisions made under conditions of risk in which options can be characterized by a known probability distribution over possible outcomes. The descriptive shortcomings of classical economic models motivated the development of prospect theory (D. Kahneman, A. Tversky, Prospect theory: An analysis of decision under risk. Econometrica, 4 (1979) 263-291; A. Tversky, D. Kahneman, Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5 (4) (1992) 297-323) the most successful behavioral model of decision under risk. In the prospect theory, subjective value is modeled by a value function that is concave for gains, convex for losses, and steeper for losses than for gains; the impact of probabilities are characterized by a weighting function that overweights low probabilities and underweights moderate to high probabilities. We outline the possible neural bases of the components of prospect theory, surveying evidence from human imaging, lesion, and neuropharmacology studies as well as animal neurophysiology studies. These results provide preliminary suggestions concerning the neural bases of prospect theory that include a broad set of brain regions and neuromodulatory systems. These data suggest that focused studies of decision making in the context of quantitative models may provide substantial leverage towards a fuller understanding of the cognitive neuroscience of decision making.

  2. Interleukin 6-Mediated Endothelial Barrier Disturbances Can Be Attenuated by Blockade of the IL6 Receptor Expressed in Brain Microvascular Endothelial Cells.

    Science.gov (United States)

    Blecharz-Lang, Kinga G; Wagner, Josephin; Fries, Alexa; Nieminen-Kelhä, Melina; Rösner, Jörg; Schneider, Ulf C; Vajkoczy, Peter

    2018-02-10

    Compromised blood-brain barrier (BBB) by dysregulation of cellular junctions is a hallmark of many cerebrovascular disorders due to the pro-inflammatory cytokines action. Interleukin 6 (IL6) is implicated in inflammatory processes and in secondary brain injury after subarachnoid hemorrhage (SAH) but its role in the maintenance of cerebral endothelium still requires a precise elucidation. Although IL6 has been shown to exert pro-inflammatory action on brain microvascular endothelial cells (ECs), the expression of one of the IL6 receptors, the IL6R is controversially discussed. In attempt to reach more clarity in this issue, we present here an evident baseline expression of the IL6R in BBB endothelium in vivo and in an in vitro model of the BBB, the cEND cell line. A significantly increased expression of IL6R and its ligand was observed in BBB capillaries 2 days after experimental SAH in mice. In vitro, we saw IL6 administration resulting in an intracellular and extracellular elevation of IL6 protein, which was accompanied by a reduced expression of tight and adherens junctions, claudin-5, occludin, and vascular-endothelial (VE-) cadherin. By functional assays, we could demonstrate IL6-incubated brain ECs to lose their endothelial integrity that can be attenuated by inhibiting the IL6R. Blockade of the IL6R by a neutralizing antibody has reconstituted the intercellular junction expression to the control level and caused a restoration of the transendothelial electrical resistance of the cEND cell monolayer. Our findings add depth to the current understanding of the involvement of the endothelial IL6R in the loss of EC integrity implicating potential therapy options.

  3. Critical Role of Peripheral Vasoconstriction in Fatal Brain Hyperthermia Induced by MDMA (Ecstasy) under Conditions That Mimic Human Drug Use

    Science.gov (United States)

    Kim, Albert H.; Wakabayashi, Ken T.; Baumann, Michael H.; Shaham, Yavin

    2014-01-01

    MDMA (Ecstasy) is an illicit drug used by young adults at hot, crowed “rave” parties, yet the data on potential health hazards of its abuse remain controversial. Here, we examined the effect of MDMA on temperature homeostasis in male rats under standard laboratory conditions and under conditions that simulate drug use in humans. We chronically implanted thermocouple microsensors in the nucleus accumbens (a brain reward area), temporal muscle, and facial skin to measure temperature continuously from freely moving rats. While focusing on brain hyperthermia, temperature monitoring from the two peripheral locations allowed us to evaluate the physiological mechanisms (i.e., intracerebral heat production and heat loss via skin surfaces) that underlie MDMA-induced brain temperature responses. Our data confirm previous reports on high individual variability and relatively weak brain hyperthermic effects of MDMA under standard control conditions (quiet rest, 22−23°C), but demonstrate dramatic enhancements of drug-induced brain hyperthermia during social interaction (exposure to male conspecific) and in warm environments (29°C). Importantly, we identified peripheral vasoconstriction as a critical mechanism underlying the activity- and state-dependent potentiation of MDMA-induced brain hyperthermia. Through this mechanism, which prevents proper heat dissipation to the external environment, MDMA at a moderate nontoxic dose (9 mg/kg or ∼1/5 of LD50 in rats) can cause fatal hyperthermia under environmental conditions commonly encountered by humans. Our results demonstrate that doses of MDMA that are nontoxic under cool, quiet conditions can become highly dangerous under conditions that mimic recreational use of MDMA at rave parties or other hot, crowded venues. PMID:24899699

  4. Disturbance by optimal discrimination

    Science.gov (United States)

    Kawakubo, Ryûitirô; Koike, Tatsuhiko

    2018-03-01

    We discuss the disturbance by measurements which unambiguously discriminate between given candidate states. We prove that such an optimal measurement necessarily changes distinguishable states indistinguishable when the inconclusive outcome is obtained. The result was previously shown by Chefles [Phys. Lett. A 239, 339 (1998), 10.1016/S0375-9601(98)00064-4] under restrictions on the class of quantum measurements and on the definition of optimality. Our theorems remove these restrictions and are also applicable to infinitely many candidate states. Combining with our previous results, one can obtain concrete mathematical conditions for the resulting states. The method may have a wide variety of applications in contexts other than state discrimination.

  5. Copper exposure induces oxidative injury, disturbs the antioxidant system and changes the Nrf2/ARE (CuZnSOD) signaling in the fish brain: Protective effects of myo-inositol

    International Nuclear Information System (INIS)

    Jiang, Wei-Dan; Liu, Yang; Hu, Kai; Jiang, Jun; Li, Shu-Hong; Feng, Lin; Zhou, Xiao-Qiu

    2014-01-01

    Highlights: • Cu exposure increased ROS production, lipid and protein oxidation of fish brain. • Cu exposure caused depletion of some antioxidants in the brain of fish. • Cu exposure up-regulated mRNA levels of brain CuZnSOD, GPx1a and GR genes in fish. • Cu exposure induced Nrf2 nuclear translocation and binding to ARE in fish brain. • Myo-inositol can inhibit Cu-induced toxic effects in the brain of fish. - Abstract: The brain is the center of the nervous system in all vertebrates, and homeostasis of the brain is crucial for fish survival. Copper (Cu) is essential for normal cellular processes in most eukaryotic organisms but is toxic in excess. Although Cu is indicated as a potent neurotoxicant, information regarding its threat to fish brain and underlying mechanisms is still scarce. In accordance, the objective of this study was to assess the effects and the potential mechanism of Cu toxicity by evaluating brain oxidative status, the enzymatic and mRNA levels of antioxidant genes, as well as the Nrf2/ARE signaling in the brain of fish after Cu exposure. The protective effects of myo-inositol (MI) against subsequent Cu exposure were also investigated. The results indicate that induction of oxidative stress by Cu is shown by increases in brain ROS production, lipid peroxidation and protein oxidation, which are accompanied by depletions of antioxidants, including total superoxide dismutase (T-SOD), CuZnSOD, glutathione-S-transferase (GST) and glutathione reductase (GR) activities and glutathione (GSH) content. Cu exposure increased the catalase (CAT) and glutathione peroxidase (GPx) activities. Further molecular results showed that Cu exposure up-regulated CuZnSOD, GPx1a and GR mRNA levels, suggesting an adaptive mechanism against stress. Moreover, Cu exposure increased fish brain Nrf2 nuclear accumulation and increased its ability of binding to ARE (CuZnSOD), which supported the increased CuZnSOD mRNA levels. In addition, Cu exposure caused increases of

  6. Copper exposure induces oxidative injury, disturbs the antioxidant system and changes the Nrf2/ARE (CuZnSOD) signaling in the fish brain: Protective effects of myo-inositol

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Wei-Dan; Liu, Yang [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Hu, Kai [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Jiang, Jun [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Li, Shu-Hong [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Feng, Lin, E-mail: fenglin@sicau.edu.cn [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Zhou, Xiao-Qiu, E-mail: xqzhouqq@tom.com [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan (China)

    2014-10-15

    Highlights: • Cu exposure increased ROS production, lipid and protein oxidation of fish brain. • Cu exposure caused depletion of some antioxidants in the brain of fish. • Cu exposure up-regulated mRNA levels of brain CuZnSOD, GPx1a and GR genes in fish. • Cu exposure induced Nrf2 nuclear translocation and binding to ARE in fish brain. • Myo-inositol can inhibit Cu-induced toxic effects in the brain of fish. - Abstract: The brain is the center of the nervous system in all vertebrates, and homeostasis of the brain is crucial for fish survival. Copper (Cu) is essential for normal cellular processes in most eukaryotic organisms but is toxic in excess. Although Cu is indicated as a potent neurotoxicant, information regarding its threat to fish brain and underlying mechanisms is still scarce. In accordance, the objective of this study was to assess the effects and the potential mechanism of Cu toxicity by evaluating brain oxidative status, the enzymatic and mRNA levels of antioxidant genes, as well as the Nrf2/ARE signaling in the brain of fish after Cu exposure. The protective effects of myo-inositol (MI) against subsequent Cu exposure were also investigated. The results indicate that induction of oxidative stress by Cu is shown by increases in brain ROS production, lipid peroxidation and protein oxidation, which are accompanied by depletions of antioxidants, including total superoxide dismutase (T-SOD), CuZnSOD, glutathione-S-transferase (GST) and glutathione reductase (GR) activities and glutathione (GSH) content. Cu exposure increased the catalase (CAT) and glutathione peroxidase (GPx) activities. Further molecular results showed that Cu exposure up-regulated CuZnSOD, GPx1a and GR mRNA levels, suggesting an adaptive mechanism against stress. Moreover, Cu exposure increased fish brain Nrf2 nuclear accumulation and increased its ability of binding to ARE (CuZnSOD), which supported the increased CuZnSOD mRNA levels. In addition, Cu exposure caused increases of

  7. Surprise responses in the human brain demonstrate statistical learning under high concurrent cognitive demand

    Science.gov (United States)

    Garrido, Marta Isabel; Teng, Chee Leong James; Taylor, Jeremy Alexander; Rowe, Elise Genevieve; Mattingley, Jason Brett

    2016-06-01

    The ability to learn about regularities in the environment and to make predictions about future events is fundamental for adaptive behaviour. We have previously shown that people can implicitly encode statistical regularities and detect violations therein, as reflected in neuronal responses to unpredictable events that carry a unique prediction error signature. In the real world, however, learning about regularities will often occur in the context of competing cognitive demands. Here we asked whether learning of statistical regularities is modulated by concurrent cognitive load. We compared electroencephalographic metrics associated with responses to pure-tone sounds with frequencies sampled from narrow or wide Gaussian distributions. We showed that outliers evoked a larger response than those in the centre of the stimulus distribution (i.e., an effect of surprise) and that this difference was greater for physically identical outliers in the narrow than in the broad distribution. These results demonstrate an early neurophysiological marker of the brain's ability to implicitly encode complex statistical structure in the environment. Moreover, we manipulated concurrent cognitive load by having participants perform a visual working memory task while listening to these streams of sounds. We again observed greater prediction error responses in the narrower distribution under both low and high cognitive load. Furthermore, there was no reliable reduction in prediction error magnitude under high-relative to low-cognitive load. Our findings suggest that statistical learning is not a capacity limited process, and that it proceeds automatically even when cognitive resources are taxed by concurrent demands.

  8. Increased seroreactivity to glioma-expressed antigen 2 in brain tumor patients under radiation.

    Directory of Open Access Journals (Sweden)

    Sabrina M Heisel

    Full Text Available BACKGROUND: Surgery and radiation are the mainstays of therapy for human gliomas that are the most common primary brain tumors. Most recently, cell culture and animal studies provided the first convincing evidence that radiation not only eliminates tumor cells, but also modulates the immune response and likely improves anti-tumor immunotherapy. METHODOLOGY/PRINCIPAL FINDINGS: We present an in vivo study that analyzes the effects of radiation on the immune response in tumor patients. As readout system, we utilized the reactivity of glioma patients' sera against antigen GLEA2 as the most frequent antigen immunogenic in glioblastoma patients. We established an ELISA assay to analyze reactivity of 24 glioblastoma patients over a period of several months. As control we used 30 sera from healthy donors as well as 30 sera from lung cancer patients. We compared the course of GLEA2 seroreactivity at different times prior, during and after radiation. The GLEA2 seroreactivity was increased by the time of surgery, decreased after surgery, increased again under radiation, and slightly decreased after radiation. CONCLUSIONS/SIGNIFICANCE: Our results provide in vivo evidence for an increased antibody response against tumor antigens under radiation. Antigens that become immunogenic with an increased antibody response as result of radiation can serve as ideal targets for immunotherapy of human tumors.

  9. Icariin reverses corticosterone-induced depression-like behavior, decrease in hippocampal brain-derived neurotrophic factor (BDNF) and metabolic network disturbances revealed by NMR-based metabonomics in rats.

    Science.gov (United States)

    Gong, Meng-Juan; Han, Bin; Wang, Shu-mei; Liang, Sheng-wang; Zou, Zhong-jie

    2016-05-10

    Previously published reports have revealed the antidepressant-like effects of icariin in a chronic mild stress model of depression and in a social defeat stress model in mice. However, the therapeutic effect of icariin in an animal model of glucocorticoid-induced depression remains unclear. This study aimed to investigate antidepressant-like effect and the possible mechanisms of icariin in a rat model of corticosterone (CORT)-induced depression by using a combination of behavioral and biochemical assessments and NMR-based metabonomics. The depression model was established by subcutaneous injections of CORT for 21 consecutive days in rats, as evidenced by reduced sucrose intake and hippocampal brain-derived neurotrophic factor (BDNF) levels, together with an increase in immobility time in a forced swim test (FST). Icariin significantly increased sucrose intake and hippocampal BDNF level and decreased the immobility time in FST in CORT-induced depressive rats, suggesting its potent antidepressant activity. Moreover, metabonomic analysis identified eight, five and three potential biomarkers associated with depression in serum, urine and brain tissue extract, respectively. These biomarkers are primarily involved in energy metabolism, lipid metabolism, amino acid metabolism and gut microbe metabolism. Icariin reversed the pathological process of CORT-induced depression, partially via regulation of the disturbed metabolic pathways. These results provide important mechanistic insights into the protective effects of icariin against CORT-induced depression and metabolic dysfunction. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Voxel-based lesion analysis of brain regions underlying reading and writing.

    Science.gov (United States)

    Baldo, Juliana V; Kacinik, Natalie; Ludy, Carl; Paulraj, Selvi; Moncrief, Amber; Piai, Vitória; Curran, Brian; Turken, And; Herron, Tim; Dronkers, Nina F

    2018-03-20

    The neural basis of reading and writing has been a source of inquiry as well as controversy in the neuroscience literature. Reading has been associated with both left posterior ventral temporal zones (termed the "visual word form area") as well as more dorsal zones, primarily in left parietal cortex. Writing has also been associated with left parietal cortex, as well as left sensorimotor cortex and prefrontal regions. Typically, the neural basis of reading and writing are examined in separate studies and/or rely on single case studies exhibiting specific deficits. Functional neuroimaging studies of reading and writing typically identify a large number of activated regions but do not necessarily identify the core, critical hubs. Last, due to constraints on the functional imaging environment, many previous studies have been limited to measuring the brain activity associated with single-word reading and writing, rather than sentence-level processing. In the current study, the brain correlates of reading and writing at both the single- and sentence-level were studied in a large sample of 111 individuals with a history of chronic stroke using voxel-based lesion symptom mapping (VLSM). VLSM provides a whole-brain, voxel-by-voxel statistical analysis of the role of distinct regions in a particular behavior by comparing performance of individuals with and without a lesion at every voxel. Rather than comparing individual cases or small groups with particular behavioral dissociations in reading and writing, VLSM allowed us to analyze data from a large, well-characterized sample of stroke patients exhibiting a wide range of reading and writing impairments. The VLSM analyses revealed that reading was associated with a critical left inferior temporo-occipital focus, while writing was primarily associated with the left supramarginal gyrus. Separate VLSM analyses of single-word versus sentence-level reading showed that sentence-level reading was uniquely associated with anterior

  11. Irreversible amnesia in rats and edible snails under conditions of associative memory reconsolidation disturbance caused by NMDA-glutamate receptor antagonist.

    Science.gov (United States)

    Storozheva, Z I; Solntseva, S V; Nikitin, V P; Proshin, A T; Sherstnev, V V

    2011-01-01

    The effect of MK-801, an antagonist to NMDA-glutamate receptors, on reconsolidation of olfactory discrimination task in rats and taste discrimination in edible snails was examined. Twenty-four hours after conditioning, the animals received a single systemic injection of MK-801 followed by a reminding conditional stimulus. Disturbances in retrieval of the acquired task were observed 10 days after injection followed by a reminding procedure. Repeated conditioning of these animals did not restore the task. Injection of MK-801 without reminding stimulation had no effect on task retention. Thus, disturbances of NMDA-dependent reconsolidation of the associative memory in animals of different taxonomic groups irreversibly eliminated long-term memory.

  12. Recurrent De Novo Mutations Disturbing the GTP/GDP Binding Pocket of RAB11B Cause Intellectual Disability and a Distinctive Brain Phenotype.

    Science.gov (United States)

    Lamers, Ideke J C; Reijnders, Margot R F; Venselaar, Hanka; Kraus, Alison; Jansen, Sandra; de Vries, Bert B A; Houge, Gunnar; Gradek, Gyri Aasland; Seo, Jieun; Choi, Murim; Chae, Jong-Hee; van der Burgt, Ineke; Pfundt, Rolph; Letteboer, Stef J F; van Beersum, Sylvia E C; Dusseljee, Simone; Brunner, Han G; Doherty, Dan; Kleefstra, Tjitske; Roepman, Ronald

    2017-11-02

    The Rab GTPase family comprises ∼70 GTP-binding proteins, functioning in vesicle formation, transport and fusion. They are activated by a conformational change induced by GTP-binding, allowing interactions with downstream effectors. Here, we report five individuals with two recurrent de novo missense mutations in RAB11B; c.64G>A; p.Val22Met in three individuals and c.202G>A; p.Ala68Thr in two individuals. An overlapping neurodevelopmental phenotype, including severe intellectual disability with absent speech, epilepsy, and hypotonia was observed in all affected individuals. Additionally, visual problems, musculoskeletal abnormalities, and microcephaly were present in the majority of cases. Re-evaluation of brain MRI images of four individuals showed a shared distinct brain phenotype, consisting of abnormal white matter (severely decreased volume and abnormal signal), thin corpus callosum, cerebellar vermis hypoplasia, optic nerve hypoplasia and mild ventriculomegaly. To compare the effects of both variants with known inactive GDP- and active GTP-bound RAB11B mutants, we modeled the variants on the three-dimensional protein structure and performed subcellular localization studies. We predicted that both variants alter the GTP/GDP binding pocket and show that they both have localization patterns similar to inactive RAB11B. Evaluation of their influence on the affinity of RAB11B to a series of binary interactors, both effectors and guanine nucleotide exchange factors (GEFs), showed induction of RAB11B binding to the GEF SH3BP5, again similar to inactive RAB11B. In conclusion, we report two recurrent dominant mutations in RAB11B leading to a neurodevelopmental syndrome, likely caused by altered GDP/GTP binding that inactivate the protein and induce GEF binding and protein mislocalization. Copyright © 2017 American Society of Human Genetics. All rights reserved.

  13. Brain Cholesterol Synthesis and Metabolism is Progressively Disturbed in the R6/1 Mouse Model of Huntington's Disease: A Targeted GC-MS/MS Sterol Analysis.

    Science.gov (United States)

    Kreilaus, Fabian; Spiro, Adena S; Hannan, Anthony J; Garner, Brett; Jenner, Andrew M

    2015-01-01

    Cholesterol has essential functions in neurological processes that require tight regulation of synthesis and metabolism. Perturbed cholesterol homeostasis has been demonstrated in Huntington's disease, however the exact role of these changes in disease pathogenesis is not fully understood. This study aimed to comprehensively examine changes in cholesterol biosynthetic precursors, metabolites and oxidation products in the striatum and cortex of the R6/1 transgenic mouse model of Huntington's disease. We also aimed to characterise the progression of the physical phenotype in these mice. GC-MS/MS was used to quantify a broad range of sterols in the striatum and cortex of R6/1 and wild type mice at 6, 12, 20, 24 and 28 weeks of age. Motor dysfunction was assessed over 28 weeks using the RotaRod and the hind-paw clasping tests. 24(S)-Hydroxycholesterol and 27-hydroxycholesterol were the major cholesterol metabolites that significantly changed in R6/1 mice. These changes were specifically localised to the striatum and were detected at the end stages of the disease. Cholesterol synthetic precursors (lathosterol and lanosterol) were significantly reduced in the cortex and striatum by 6 weeks of age, prior to the onset of motor dysfunction, as well as the cognitive and affective abnormalities previously reported. Elevated levels of desmosterol, a substrate of delta(24)-sterol reductase (DHCR24), were also detected in R6/1 mice at the end time-point. Female R6/1 mice exhibited a milder weight loss and hind paw clasping phenotype compared to male R6/1 mice, however, no difference in the brain sterol profile was detected between sexes. Several steps in cholesterol biosynthetic and metabolic pathways are differentially altered in the R6/1 mouse brain as the disease progresses and this is most severe in the striatum. This provides further insights into early molecular mediators of HD onset and disease progression and identifies candidate molecular targets for novel therapeutic

  14. The Functional Architecture of the Brain Underlies Strategic Deception in Impression Management.

    Science.gov (United States)

    Luo, Qiang; Ma, Yina; Bhatt, Meghana A; Montague, P Read; Feng, Jianfeng

    2017-01-01

    Impression management, as one of the most essential skills of social function, impacts one's survival and success in human societies. However, the neural architecture underpinning this social skill remains poorly understood. By employing a two-person bargaining game, we exposed three strategies involving distinct cognitive processes for social impression management with different levels of strategic deception. We utilized a novel adaptation of Granger causality accounting for signal-dependent noise (SDN), which captured the directional connectivity underlying the impression management during the bargaining game. We found that the sophisticated strategists engaged stronger directional connectivity from both dorsal anterior cingulate cortex and retrosplenial cortex to rostral prefrontal cortex, and the strengths of these directional influences were associated with higher level of deception during the game. Using the directional connectivity as a neural signature, we identified the strategic deception with 80% accuracy by a machine-learning classifier. These results suggest that different social strategies are supported by distinct patterns of directional connectivity among key brain regions for social cognition.

  15. Brain biomarkers based assessment of cognitive workload in pilots under various task demands.

    Science.gov (United States)

    Gentili, Rodolphe J; Rietschel, Jeremy C; Jaquess, Kyle J; Lo, Li-Chuan; Prevost, Michael; Miller, Matt W; Mohler, Jessica M; Oh, Hyuk; Tan, Ying Ying; Hatfield, Bradley D

    2014-01-01

    Cognitive workload is an important element of cognitive-motor performance such as that exhibited during the piloting of an aircraft. Namely, an increase in task demands on the pilot can elevate cognitive information processing and, thus, the risk of human error. As such, there is a need to develop methods that reliably assess mental workload in pilots within operational settings. The present study contributes to this research goal by identifying physiological and brain biomarkers of cognitive workload and attentional reserve during a simulated aircraft piloting task under three progressive levels of challenge. A newly developed experimental method was employed by which electroencephalography (EEG) was acquired via a dry (i.e., gel-free sensors) system using few scalp sites. Self-reported responses to surveys and piloting performance indicators were analyzed. The findings revealed that as the challenge (task demands) increased, the perceived mental load increased, attentional reserve was attenuated, and task performance decreased. Such an increase in task demands was also reflected by changes in heart rate variability (HRV), as well as in the amplitude of the P300 component of event-related potentials to auditory probes, and in the spectral power of specific EEG frequency bands. This work provides a first step towards a long-term goal to develop a composite system of biomarkers for real-time cognitive workload assessment and state assessment of pilots in operational settings.

  16. The Brain Mechanisms Underlying the Cognitive Benefits of Bilingualism may be Extraordinarily Difficult to Discover

    Directory of Open Access Journals (Sweden)

    Kenneth R. Paap

    2014-12-01

    Full Text Available The hypothesis that coordinating two or more languages leads to an enhancement in executive functioning has been intensely studied for the past decade with very mixed results. The purpose of this review and analysis is to consider why it has been (and will continue to be difficult to discover the brain mechanisms underlying any cognitive benefits to bilingualism. Six reasons are discussed: 1 the phenomenon may not actually exist; 2 the cognitive neuroscientists investigating bilingual advantages may have been studying the wrong component of executive functioning; 3 most experiments use risky small numbers of participants and are underpowered; 4 the neural differences between groups do not align with the behavioral differences; 5 neural differences sometimes suffer from valence ambiguity, that is, disagreements whether “more” implies better or worse functioning and 6 neural differences often suffer from kind ambiguity, that is, disagreements regarding what type of mental events the pattern of activation in a region-of-interest actually reflects.

  17. The Functional Architecture of the Brain Underlies Strategic Deception in Impression Management

    Directory of Open Access Journals (Sweden)

    Qiang Luo

    2017-11-01

    Full Text Available Impression management, as one of the most essential skills of social function, impacts one's survival and success in human societies. However, the neural architecture underpinning this social skill remains poorly understood. By employing a two-person bargaining game, we exposed three strategies involving distinct cognitive processes for social impression management with different levels of strategic deception. We utilized a novel adaptation of Granger causality accounting for signal-dependent noise (SDN, which captured the directional connectivity underlying the impression management during the bargaining game. We found that the sophisticated strategists engaged stronger directional connectivity from both dorsal anterior cingulate cortex and retrosplenial cortex to rostral prefrontal cortex, and the strengths of these directional influences were associated with higher level of deception during the game. Using the directional connectivity as a neural signature, we identified the strategic deception with 80% accuracy by a machine-learning classifier. These results suggest that different social strategies are supported by distinct patterns of directional connectivity among key brain regions for social cognition.

  18. Reward optimization in the primate brain: a probabilistic model of decision making under uncertainty.

    Directory of Open Access Journals (Sweden)

    Yanping Huang

    Full Text Available A key problem in neuroscience is understanding how the brain makes decisions under uncertainty. Important insights have been gained using tasks such as the random dots motion discrimination task in which the subject makes decisions based on noisy stimuli. A descriptive model known as the drift diffusion model has previously been used to explain psychometric and reaction time data from such tasks but to fully explain the data, one is forced to make ad-hoc assumptions such as a time-dependent collapsing decision boundary. We show that such assumptions are unnecessary when decision making is viewed within the framework of partially observable Markov decision processes (POMDPs. We propose an alternative model for decision making based on POMDPs. We show that the motion discrimination task reduces to the problems of (1 computing beliefs (posterior distributions over the unknown direction and motion strength from noisy observations in a bayesian manner, and (2 selecting actions based on these beliefs to maximize the expected sum of future rewards. The resulting optimal policy (belief-to-action mapping is shown to be equivalent to a collapsing decision threshold that governs the switch from evidence accumulation to a discrimination decision. We show that the model accounts for both accuracy and reaction time as a function of stimulus strength as well as different speed-accuracy conditions in the random dots task.

  19. At risk of being risky: The relationship between “brain age” under emotional states and risk preference

    Directory of Open Access Journals (Sweden)

    Marc D. Rudolph

    2017-04-01

    Full Text Available Developmental differences regarding decision making are often reported in the absence of emotional stimuli and without context, failing to explain why some individuals are more likely to have a greater inclination toward risk. The current study (N = 212; 10–25y examined the influence of emotional context on underlying functional brain connectivity over development and its impact on risk preference. Using functional imaging data in a neutral brain-state we first identify the “brain age” of a given individual then validate it with an independent measure of cortical thickness. We then show, on average, that “brain age” across the group during the teen years has the propensity to look younger in emotional contexts. Further, we show this phenotype (i.e. a younger brain age in emotional contexts relates to a group mean difference in risk perception − a pattern exemplified greatest in young-adults (ages 18–21. The results are suggestive of a specified functional brain phenotype that relates to being at “risk to be risky.”

  20. At risk of being risky: the relationship between “brain age” under emotional states and risk preference

    Science.gov (United States)

    Rudolph, Marc D.; Miranda-Dominguez, Oscar; Cohen, Alexandra O.; Breiner, Kaitlyn; Steinberg, Laurence; Bonnie, Richard J.; Scott, Elizabeth S.; Taylor-Thompson, Kim A.; Chein, Jason; Fettich, Karla C.; Richeson, Jennifer A.; Dellarco, Danielle V.; Galván, Adriana; Casey, BJ; Fair, Damien A.

    2017-01-01

    Developmental differences regarding decision making are often reported in the absence of emotional stimuli and without context, failing to explain why some individuals are more likely to have a greater inclination toward risk. The current study (N=212; 10–25y) examined the influence of emotional context on underlying functional brain connectivity over development and its impact on risk preference. Using functional imaging data in a neutral brain-state we first identify the “brain age” of a given individual then validate it with an independent measure of cortical thickness. We then show, on average, that “brain age” across the group during the teen years has the propensity to look younger in emotional contexts. Further, we show this phenotype (i.e. a younger brain age in emotional contexts) relates to a group mean difference in risk perception – a pattern exemplified greatest in young-adults (ages 18–21). The results are suggestive of a specified functional brain phenotype that relates to being at “risk to be risky.” PMID:28279917

  1. Numerical Models of Human Circulatory System under Altered Gravity: Brain Circulation

    Science.gov (United States)

    Kim, Chang Sung; Kiris, Cetin; Kwak, Dochan; David, Tim

    2003-01-01

    A computational fluid dynamics (CFD) approach is presented to model the blood flow through the human circulatory system under altered gravity conditions. Models required for CFD simulation relevant to major hemodynamic issues are introduced such as non-Newtonian flow models governed by red blood cells, a model for arterial wall motion due to fluid-wall interactions, a vascular bed model for outflow boundary conditions, and a model for auto-regulation mechanism. The three-dimensional unsteady incompressible Navier-Stokes equations coupled with these models are solved iteratively using the pseudocompressibility method and dual time stepping. Moving wall boundary conditions from the first-order fluid-wall interaction model are used to study the influence of arterial wall distensibility on flow patterns and wall shear stresses during the heart pulse. A vascular bed modeling utilizing the analogy with electric circuits is coupled with an auto-regulation algorithm for multiple outflow boundaries. For the treatment of complex geometry, a chimera overset grid technique is adopted to obtain connectivity between arterial branches. For code validation, computed results are compared with experimental data for steady and unsteady non-Newtonian flows. Good agreement is obtained for both cases. In sin-type Gravity Benchmark Problems, gravity source terms are added to the Navier-Stokes equations to study the effect of gravitational variation on the human circulatory system. This computational approach is then applied to localized blood flows through a realistic carotid bifurcation and two Circle of Willis models, one using an idealized geometry and the other model using an anatomical data set. A three- dimensional anatomical Circle of Willis configuration is reconstructed from human-specific magnetic resonance images using an image segmentation method. The blood flow through these Circle of Willis models is simulated to provide means for studying gravitational effects on the brain

  2. Implications of recurrent disturbance for genetic diversity.

    Science.gov (United States)

    Davies, Ian D; Cary, Geoffrey J; Landguth, Erin L; Lindenmayer, David B; Banks, Sam C

    2016-02-01

    Exploring interactions between ecological disturbance, species' abundances and community composition provides critical insights for ecological dynamics. While disturbance is also potentially an important driver of landscape genetic patterns, the mechanisms by which these patterns may arise by selective and neutral processes are not well-understood. We used simulation to evaluate the relative importance of disturbance regime components, and their interaction with demographic and dispersal processes, on the distribution of genetic diversity across landscapes. We investigated genetic impacts of variation in key components of disturbance regimes and spatial patterns that are likely to respond to climate change and land management, including disturbance size, frequency, and severity. The influence of disturbance was mediated by dispersal distance and, to a limited extent, by birth rate. Nevertheless, all three disturbance regime components strongly influenced spatial and temporal patterns of genetic diversity within subpopulations, and were associated with changes in genetic structure. Furthermore, disturbance-induced changes in temporal population dynamics and the spatial distribution of populations across the landscape resulted in disrupted isolation by distance patterns among populations. Our results show that forecast changes in disturbance regimes have the potential to cause major changes to the distribution of genetic diversity within and among populations. We highlight likely scenarios under which future changes to disturbance size, severity, or frequency will have the strongest impacts on population genetic patterns. In addition, our results have implications for the inference of biological processes from genetic data, because the effects of dispersal on genetic patterns were strongly mediated by disturbance regimes.

  3. Effects of low-dose X-irradiation on the developing brain, 19. Developmental disturbance of cerebral neocortex in rats. gamma. -irradiated on day 15 of gestation

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, K.; Fukui, Y.; Hayasaka, I.; Hayasaka, S.; Ito, Y.; Kameyama, Y.

    1987-03-01

    F344/DuCrj rats were irradiated with gamma-rays in a single dose of either 0.27 or 0.48 Gy at day 15 of gestation. Their neonates were autopsied at week 6 or 12 after birth for morphological observation of the cerebrum. The weight of brain had significantly decreased in a dose-dependent manner at weeks 6 and 12 in both irradiated groups. The thickness of the neocortex had also significantly decreased in both groups at week 6; however, the significant decrease at week 12 was confined to the group with 0.48 Gy. There was no difference in the cell density between the groups. Observations for dendrites in the base of pyramidal cells of the 5th layer of cerebral cortex showed that irradiation influenced the decrease in the number of dendrites directly arising in the reticulum, but did not influence the branching index. Electron microscopy showed that irradiation with 0.48 Gy influenced neither synapse density nor synaptic length.

  4. Elimination of zinc-65 from the brain under kainate-induced seizures.

    Science.gov (United States)

    Takeda, Atsushi; Hirate, Maki; Oku, Naoto

    2004-04-01

    On the basis of the previous evidence that 65Zn concentrations in the brain of EL (epilepsy) mice was affected by induction of seizures, 65Zn movement in the brain was quantitatively evaluated in ddY mice treated with kainate. Six days after intravenous injection of 65ZnCl2, mice were intraperitoneally injected with kainate (10 mg/kg x 6 times in 2 weeks). Myoclonic jerks were observed during treatment with kainate. Twenty days after 65Zn injection, 65Zn distribution in the brain was compared between the kainite-treated and control mice. 65Zn distribution in the brain of the kainate-treated mice was overall lower than in the control mice. 65Zn concentration was significantly decreased in the frontal cortex, hippocampal CA1, thalamus and hypothalamus by treatment with kainate. These results demonstrate that kainate-induced seizures are linked to decreased zinc concentrations in the brain.

  5. Effects of diabetes on brain metabolism - is brain glycogen a significant player?

    DEFF Research Database (Denmark)

    Sickmann, Helle M; Waagepetersen, Helle S.

    2015-01-01

    Brain glycogen, being an intracellular glucose reservoir, contributes to maintain energy and neurotransmitter homeostasis under physiological as well as pathological conditions. Under conditions with a disturbance in systemic glucose metabolism such as in diabetes, the supply of glucose to the br......Brain glycogen, being an intracellular glucose reservoir, contributes to maintain energy and neurotransmitter homeostasis under physiological as well as pathological conditions. Under conditions with a disturbance in systemic glucose metabolism such as in diabetes, the supply of glucose...... to the brain may be affected and have important impacts on brain metabolism and neurotransmission. This also implies that brain glycogen may serve an essential role in the diabetic state to sustain appropriate brain function. There are two main types of diabetes; type 1 and type 2 diabetes and both types may...... understanding of how brain energy and neurotransmitter metabolism is affected in diabetes. There will be a particular focus on the role of brain glycogen to support glycolytic and TCA cycle activity as well as glutamate-glutamine cycle in type 1 and type 2 diabetes....

  6. The affection of the disturbance of the hydrodynamics of blood in case of stress on pathological increase of level of low density lipoproteins in blood. The formation of cylindrical plaques, and their participation in the development of acute ischemic disorders of heart and brain.

    Science.gov (United States)

    Rusanov, S E

    2017-09-01

    In this article is given the new insight about the affection of stress on the increase of level of low density lipoproteins (LDL) in the blood, which is connected with the disturbance of hydrodynamics in the bloodstream, the attention was paid to the cylindrical cholesterol plaque, and it's classification. The disturbance of hydrodynamics of blood under the stress leads to the formation of a cylindrical cholesterol plaque, which repeats the contour of the vessel, and leads to the ischemic disorders of the heart and brain. The cylindrical cholesterol plaque goes through several stages of development: friable, yielding, dense, old. In the case of destruction of friable, fresh cholesterol plaque, releases a big quantity of low-density lipoproteins. This leads to the pathological increase of level of LDL in the blood. In the case of long disturbance of hydrodynamics, occurs the formation of strong links between low-density lipoproteins. Yielding cholesterol plaque is formed. Further maturation of cylindrical cholesterol plaque, leads to it's densifying and damage. We may emphasize, that short periods of strong contraction and expansion of vessels lead to the increase of level of LDL in the blood. Self-dependent restoration of normal level of LDL in blood occurs in the case of restoration of pressure in the limits of numbers, which are specific for particular person, and which don't exceed the physiological standard. Among patients with long duration of stress, the duration of vasospasm increases. LDL, without having a possibility to crumble, begin to stick together and form the yielding cylindrical plaque. It is characterized by having of not so strong connection with the vascular wall, and maintains only at the expanse of iteration of the vascular wall, it has cylindrical shape, is elastic and yellow. The thickness and length of walls depends on the degree of cross-clamping during the time of formation of yielding cylindrical plaque. In the case of stopping of spasm

  7. Mechanical characterization of the P56 mouse brain under large-deformation dynamic indentation

    Science.gov (United States)

    MacManus, David B.; Pierrat, Baptiste; Murphy, Jeremiah G.; Gilchrist, Michael D.

    2016-02-01

    The brain is a complex organ made up of many different functional and structural regions consisting of different types of cells such as neurons and glia, as well as complex anatomical geometries. It is hypothesized that the different regions of the brain exhibit significantly different mechanical properties, which may be attributed to the diversity of cells and anisotropy of neuronal fibers within individual brain regions. The regional dynamic mechanical properties of P56 mouse brain tissue in vitro and in situ at velocities of 0.71-4.28 mm/s, up to a deformation of 70 μm are presented and discussed in the context of traumatic brain injury. The experimental data obtained from micro-indentation measurements were fit to three hyperelastic material models using the inverse Finite Element method. The cerebral cortex elicited a stiffer response than the cerebellum, thalamus, and medulla oblongata regions for all velocities. The thalamus was found to be the least sensitive to changes in velocity, and the medulla oblongata was most compliant. The results show that different regions of the mouse brain possess significantly different mechanical properties, and a significant difference also exists between the in vitro and in situ brain.

  8. The functional highly sensitive brain: a review of the brain circuits underlying sensory processing sensitivity and seemingly related disorders.

    Science.gov (United States)

    Acevedo, Bianca; Aron, Elaine; Pospos, Sarah; Jessen, Dana

    2018-04-19

    During the past decade, research on the biological basis of sensory processing sensitivity (SPS)-a genetically based trait associated with greater sensitivity and responsivity to environmental and social stimuli-has burgeoned. As researchers try to characterize this trait, it is still unclear how SPS is distinct from seemingly related clinical disorders that have overlapping symptoms, such as sensitivity to the environment and hyper-responsiveness to incoming stimuli. Thus, in this review, we compare the neural regions implicated in SPS with those found in fMRI studies of-Autism Spectrum Disorder (ASD), Schizophrenia (SZ) and Post-Traumatic Stress Disorder (PTSD) to elucidate the neural markers and cardinal features of SPS versus these seemingly related clinical disorders. We propose that SPS is a stable trait that is characterized by greater empathy, awareness, responsivity and depth of processing to salient stimuli. We conclude that SPS is distinct from ASD, SZ and PTSD in that in response to social and emotional stimuli, SPS differentially engages brain regions involved in reward processing, memory, physiological homeostasis, self-other processing, empathy and awareness. We suggest that this serves species survival via deep integration and memory for environmental and social information that may subserve well-being and cooperation.This article is part of the theme issue 'Diverse perspectives on diversity: multi-disciplinary approaches to taxonomies of individual differences'. © 2018 The Authors.

  9. The in vitro blood-brain barrier model under OGD condition

    DEFF Research Database (Denmark)

    Tornabene, Erica; Helms, Hans Christian Cederberg; Berndt, Philipp

    Introduction - The blood-brain barrier (BBB) is a physical, transport and metabolic barrier which plays a key role in preventing uncontrolled exchanges between blood and brain, ensuring an optimal environment for neurons activity. This extent interface is created by the endothelial cells forming...... the wall of brain capillaries. The restrictive nature of the BBB is due to the presence of tight junctions, which seal the paracellular space, a low number of endocytotic vesicles and the presence of efflux transporters, resulting in a very tight layer. Ischemic insult and the subsequent reperfusion...... of therapies to treat this devastating disease. Materials and Methods - Primary cultures of endothelial cells from bovine brain microvessels were cocultured with rat astrocytes in transwell inserts. At day 11, cells were treated with 4h of OGD by changing the culture medium with glucose-free medium...

  10. Decrease in fMRI brain activation during working memory performed after sleeping under 10 lux light.

    Science.gov (United States)

    Kang, Seung-Gul; Yoon, Ho-Kyoung; Cho, Chul-Hyun; Kwon, Soonwook; Kang, June; Park, Young-Min; Lee, Eunil; Kim, Leen; Lee, Heon-Jeong

    2016-11-09

    The aim of this study was to investigate the effect of exposure to dim light at night (dLAN) when sleeping on functional brain activation during a working-memory tasks. We conducted the brain functional magnetic resonance imaging (fMRI) analysis on 20 healthy male subjects. All participants slept in a polysomnography laboratory without light exposure on the first and second nights and under a dim-light condition of either 5 or 10 lux on the third night. The fMRI scanning was conducted during n-back tasks after second and third nights. Statistical parametric maps revealed less activation in the right inferior frontal gyrus (IFG) after exposure to 10-lux light. The brain activity in the right and left IFG areas decreased more during the 2-back task than during the 1- or 0-back task in the 10-lux group. The exposure to 5-lux light had no significant effect on brain activities. The exposure to dLAN might influence the brain function which is related to the cognition.

  11. miR-98 and let-7g* protect the blood-brain barrier under neuroinflammatory conditions.

    Science.gov (United States)

    Rom, Slava; Dykstra, Holly; Zuluaga-Ramirez, Viviana; Reichenbach, Nancy L; Persidsky, Yuri

    2015-12-01

    Pathologic conditions in the central nervous system, regardless of the underlying injury mechanism, show a certain level of blood-brain barrier (BBB) impairment. Endothelial dysfunction is the earliest event in the initiation of vascular damage caused by inflammation due to stroke, atherosclerosis, trauma, or brain infections. Recently, microRNAs (miRNAs) have emerged as a class of gene expression regulators. The relationship between neuroinflammation and miRNA expression in brain endothelium remains unexplored. Previously, we showed the BBB-protective and anti-inflammatory effects of glycogen synthase kinase (GSK) 3β inhibition in brain endothelium in in vitro and in vivo models of neuroinflammation. Using microarray screening, we identified miRNAs induced in primary human brain microvascular endothelial cells after exposure to the pro-inflammatory cytokine, tumor necrosis factor-α, with/out GSK3β inhibition. Among the highly modified miRNAs, let-7 and miR-98 were predicted to target the inflammatory molecules, CCL2 and CCL5. Overexpression of let-7 and miR-98 in vitro and in vivo resulted in reduced leukocyte adhesion to and migration across endothelium, diminished expression of pro-inflammatory cytokines, and increased BBB tightness, attenuating barrier 'leakiness' in neuroinflammation conditions. For the first time, we showed that miRNAs could be used as a therapeutic tool to prevent the BBB dysfunction in neuroinflammation.

  12. Effect of bulk modulus on deformation of the brain under rotational accelerations

    Science.gov (United States)

    Ganpule, S.; Daphalapurkar, N. P.; Cetingul, M. P.; Ramesh, K. T.

    2018-01-01

    Traumatic brain injury such as that developed as a consequence of blast is a complex injury with a broad range of symptoms and disabilities. Computational models of brain biomechanics hold promise for illuminating the mechanics of traumatic brain injury and for developing preventive devices. However, reliable material parameters are needed for models to be predictive. Unfortunately, the properties of human brain tissue are difficult to measure, and the bulk modulus of brain tissue in particular is not well characterized. Thus, a wide range of bulk modulus values are used in computational models of brain biomechanics, spanning up to three orders of magnitude in the differences between values. However, the sensitivity of these variations on computational predictions is not known. In this work, we study the sensitivity of a 3D computational human head model to various bulk modulus values. A subject-specific human head model was constructed from T1-weighted MRI images at 2-mm3 voxel resolution. Diffusion tensor imaging provided data on spatial distribution and orientation of axonal fiber bundles for modeling white matter anisotropy. Non-injurious, full-field brain deformations in a human volunteer were used to assess the simulated predictions. The comparison suggests that a bulk modulus value on the order of GPa gives the best agreement with experimentally measured in vivo deformations in the human brain. Further, simulations of injurious loading suggest that bulk modulus values on the order of GPa provide the closest match with the clinical findings in terms of predicated injured regions and extent of injury.

  13. The Dimensionality of Body Image Disturbance.

    Science.gov (United States)

    Galgan, Richard J.; And Others

    1987-01-01

    Examined personality variables in 75 male and 75 female college students. Found two dimensions underlying body image disturbance variables, one loading on body image dissatisfaction and one loading on body image disturbance. Low negative correlation between two factors suggests that distortion and dissatisfaction are fairly distinct and that body…

  14. Clinical course of brain stroke in the persons exposed to ionizing radiation under the production conditions

    International Nuclear Information System (INIS)

    Bouchmanov, A.

    2000-01-01

    The purpose was to study the risk factors and clinical course of brain strokes in professionally exposed workers being employed in plutonium production in comparison with a control group. The method and materials of study -clinical supervision and clinical database creation on 162 cases of brain stroke (128 males and 34 females) developed among professionally exposed workers. Age of patient varied from 21 to 68 years (in average -51.6 y.). The control group consisted of patients with the same diagnosis, worked on the same enterprise, but non-exposed to radiation. Data on the totally accumulated dose of external gamma radiation were received on the base of the individual dosimeters (from 0.1 cSv to 52 cSv, in average about 13 cSv); the plutonium-239 body content was estimated accordingly to the level of urine radionuclide excretion (from 0.4 kBq to 1.6 kBq, in average about 0.33 kBq). Muscle's hypertinsion and pathological great-toe reflexes in paretic legs and hands, hemianopsia, impressive and ataxic aphasia prevailed in the patients with ischemic brain strokes in system of internal carotid artery, exposed to radiation. The changes of muscle's tension, ataxia and nystagmus were marked more often in the professionals with ischemic brain strokes in system of vertebrobasilar artery. The illness proceeded more easy and with smaller frequency of frustration of consciousness and algesthesia, irrespective of a type ischemic brain strokes in the people exposed to ionizing radiation, than in patients of non-irradiated group. It was found that the arterial hypertension appeared to be the main risk factor for the brain stroke in both groups of patients (in 81.48% and 91.15% of cases). There was no marked differences in significance of risk factors and in main clinical parameters of various types of ischemic brain strokes among the patients professionally exposed to radiation in comparison with a control group. (author)

  15. Visuospatial Attention Disturbance in Duchenne Muscular Dystrophy

    Science.gov (United States)

    De Moura, Maria Clara Drummond Soares; do Valle, Luiz Eduardo Ribeiro; Resende, Maria Bernadete Dutra; Pinto, Katia Osternack

    2010-01-01

    Aim: The cognitive deficits present in the Duchenne muscular dystrophy (DMD) are not yet well characterized. Attention, considered to be the brain mechanism responsible for the selection of sensory stimuli, could be disturbed in DMD, contributing, at least partially, to the observed global cognitive deficit. The aim of this study was to…

  16. Fatty acid composition of total lipids and phospholipids of muscular tissue and brain of rats under the impact of vibration

    Directory of Open Access Journals (Sweden)

    N. M. Kostyshyn

    2016-06-01

    Full Text Available Fatty acids are important structural components of biological membranes, energy substrate of cells involved in fixing phospholipid bilayer proteins, and acting as regulators and modulators of enzymatic activity. Under the impact of vibration oscillations there can occur shifts in the ratio of different groups of fatty acids, and degrees of their saturation may change. The imbalance between saturated, monounsaturated and polyunsaturated fatty acids, which occurs later in the cell wall, disrupts fluidity and viscosity of lipid phase and causes abnormal cellular metabolism. Aim. In order to study the impact of vibration on the level of fatty acids of total lipids in muscular tissue and fatty acid composition of phospholipids in muscles and brain, experimental animals have been exposed to vertical vibration oscillations with different frequency for 28 days. Methods and results. Tissues fragments of hip quadriceps and brain of rats were used for obtaining methyl esters of fatty acids studied by the method of gas-liquid chromatography. It was found that the lipid content, ratio of its separate factions and fatty acid composition in muscular tissue and brain of animals with the action of vibration considerably varies. With the increase of vibration acceleration tendency to increase in absolute quantity of total lipids fatty acids can be observed at the account of increased level of saturated and monounsaturated ones. These processes are caused by activation of self-defense mechanisms of the body under the conditions of deviations from stabilized physiological norm, since adaptation requires certain structural and energy costs. Increase in the relative quantity of saturated and monounsaturated fatty acids in phospholipids of muscles and brain and simultaneous reduction in concentration of polyunsaturated fatty acids are observed. Conclusion. These changes indicate worsening of structural and functional organization of muscles and brain cell membranes of

  17. Different brain activation under left and right ventricular stimulation: an fMRI study in anesthetized rats.

    Science.gov (United States)

    Suzuki, Hideaki; Sumiyoshi, Akira; Kawashima, Ryuta; Shimokawa, Hiroaki

    2013-01-01

    Myocardial ischemia in the anterior wall of the left ventricule (LV) and in the inferior wall and/or right ventricle (RV) shows different manifestations that can be explained by the different innervations of cardiac afferent nerves. However, it remains unclear whether information from different areas of the heart, such as the LV and RV, are differently processed in the brain. In this study, we investigated the brain regions that process information from the LV or RV using cardiac electrical stimulation and functional magnetic resonance imaging (fMRI) in anesthetized rats because the combination of these two approaches cannot be used in humans. An electrical stimulation catheter was inserted into the LV or RV (n = 12 each). Brain fMRI scans were recorded during LV or RV stimulation (9 Hz and 0.3 ms width) over 10 blocks consisting of alternating periods of 2 mA for 30 sec followed by 0.2 mA for 60 sec. The validity of fMRI signals was confirmed by first and second-level analyses and temporal profiles. Increases in fMRI signals were observed in the anterior cingulate cortex and the right somatosensory cortex under LV stimulation. In contrast, RV stimulation activated the right somatosensory cortex, which was identified more anteriorly compared with LV stimulation but did not activate the anterior cingulate cortex. This study provides the first evidence for differences in brain activation under LV and RV stimulation. These different brain processes may be associated with different clinical manifestations between anterior wall and inferoposterior wall and/or RV myocardial ischemia.

  18. Tributyltin induces oxidative damage, inflammation and apoptosis via disturbance in blood–brain barrier and metal homeostasis in cerebral cortex of rat brain: An in vivo and in vitro study

    International Nuclear Information System (INIS)

    Mitra, Sumonto; Gera, Ruchi; Siddiqui, Waseem A.; Khandelwal, Shashi

    2013-01-01

    Highlights: • Sustainable blood–brain barrier disruption was found by single acute dose of TBTC (up to 1 week). • Imbalance in essential metal homeostasis in the cortical tissue may lead to oxidative stress. • Astroglial activation and inflammation resulted in neuronal loss. • TBTC primarily induced apoptosis as found in in-vitro study via activation of calcium, p38 signaling, ROS and caspases. • Calcium inhibitors and anti-oxidants showed protective efficacy in TBTC induced cell death. - Abstract: Tributyltin (TBT), a member of the organotin family, is primarily used for its biocidal activity. Persistent environmental levels of TBT pose threat to the ecosystem. Since neurotoxic influence of TBT remains elusive, we therefore, studied its effect on cerebral cortex of male Wistar rats. A single oral dose of Tributyltin-Chloride (TBTC) (10, 20, 30 mg/kg) was administered and the animals were sacrificed on day 3 and day 7. Blood–brain barrier permeability remained disrupted significantly till day 7 with all the doses of TBTC. Pro-oxidant metal levels (Fe, Cu) were increased with a concomitant decrease in Zn. ROS generation was substantially raised resulting in oxidative damage (increased protein carbonylation and lipid peroxidation) with marked decline in tissue antioxidant status (GSH/GSSG levels). Protein expression studies indicated astrocyte activation, upregulation of inflammatory molecules (IL-6, Cox-2 and NF-κB) and simultaneous elevation in the apoptotic index (Bax/Bcl2). Neurodegeneration was evident by reduced neurofilament expression and increased calpain cleaved Tau levels. The in-vitro study demonstrated involvement of calcium and signaling molecules (p38), with downstream activation of caspase-3 and -8, and apoptotic cell death was evident by nuclear fragmentation, DNA laddering and Annexin V binding experiments. Ca 2+ inhibitors (BAPTA-AM, EGTA, and RR) and free radical scavengers (NAC and biliprotein [C-PC]) increased cell viability (MTT

  19. Neurobiological basis of parenting disturbance.

    Science.gov (United States)

    Newman, Louise K; Harris, Melissa; Allen, Joanne

    2011-02-01

    It has been proposed that early attachment relationships shape the structure and reactivity of social brain structures that underlie later social capacities. We provide a review of the literature surrounding the development of neurological regulatory systems during infancy and outline recent research suggesting these systems go on to underlie adaptive parental responses. We review evidence in the peer-reviewed psychiatric literature including (i) observational human literature on the neurobiological and social sequelae of early parenting experiences, (ii) experimental animal literature on the effects of early maternal care on neurological development, (iii) experimental animal literature on the neurobiological underpinnings of parenting behaviours, (iv) observational and fMRI evidence on the neurobiological correlates of parenting behaviours, (v) functional and volumetric imaging studies on adults affected by borderline personality disorder. The development of infant regulatory systems is influenced by early parenting experiences. These frontolimbic regulatory systems are also heavily implicated in normal parental responses to infant cues. These frontolimbic disturbances are also observed in studies of borderline personality disorder; a disorder associated with poor emotional regulation, early trauma and disturbed parenting. While the current literature is limited to animal models of abnormal care giving, existing disorders associated with deficits in regulatory capacity and abnormal frontolimbic functioning may yet provide a human model of the neurobiology of parenting disturbance.

  20. Tributyltin induces oxidative damage, inflammation and apoptosis via disturbance in blood-brain barrier and metal homeostasis in cerebral cortex of rat brain: an in vivo and in vitro study.

    Science.gov (United States)

    Mitra, Sumonto; Gera, Ruchi; Siddiqui, Waseem A; Khandelwal, Shashi

    2013-08-09

    Tributyltin (TBT), a member of the organotin family, is primarily used for its biocidal activity. Persistent environmental levels of TBT pose threat to the ecosystem. Since neurotoxic influence of TBT remains elusive, we therefore, studied its effect on cerebral cortex of male Wistar rats. A single oral dose of Tributyltin-Chloride (TBTC) (10, 20, 30mg/kg) was administered and the animals were sacrificed on day 3 and day 7. Blood-brain barrier permeability remained disrupted significantly till day 7 with all the doses of TBTC. Pro-oxidant metal levels (Fe, Cu) were increased with a concomitant decrease in Zn. ROS generation was substantially raised resulting in oxidative damage (increased protein carbonylation and lipid peroxidation) with marked decline in tissue antioxidant status (GSH/GSSG levels). Protein expression studies indicated astrocyte activation, upregulation of inflammatory molecules (IL-6, Cox-2 and NF-κB) and simultaneous elevation in the apoptotic index (Bax/Bcl2). Neurodegeneration was evident by reduced neurofilament expression and increased calpain cleaved Tau levels. The in-vitro study demonstrated involvement of calcium and signaling molecules (p38), with downstream activation of caspase-3 and -8, and apoptotic cell death was evident by nuclear fragmentation, DNA laddering and Annexin V binding experiments. Ca(2+) inhibitors (BAPTA-AM, EGTA, and RR) and free radical scavengers (NAC and biliprotein [C-PC]) increased cell viability (MTT assay), signifying specific roles of Ca(2+) and ROS. Significance of p38 signaling was evaluated on pro-apoptotic proteins by using SB203580, a selective p38 inhibitor. Our data collectively illustrates that TBTC can disrupt BBB, induce oxidative stress, cause cell death and initiate neurodegeneration in rat brain. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Clear signals or mixed messages: inter-individual emotion congruency modulates brain activity underlying affective body perception

    Science.gov (United States)

    de Gelder, B.

    2016-01-01

    The neural basis of emotion perception has mostly been investigated with single face or body stimuli. However, in daily life one may also encounter affective expressions by groups, e.g. an angry mob or an exhilarated concert crowd. In what way is brain activity modulated when several individuals express similar rather than different emotions? We investigated this question using an experimental design in which we presented two stimuli simultaneously, with same or different emotional expressions. We hypothesized that, in the case of two same-emotion stimuli, brain activity would be enhanced, while in the case of two different emotions, one emotion would interfere with the effect of the other. The results showed that the simultaneous perception of different affective body expressions leads to a deactivation of the amygdala and a reduction of cortical activity. It was revealed that the processing of fearful bodies, compared with different-emotion bodies, relied more strongly on saliency and action triggering regions in inferior parietal lobe and insula, while happy bodies drove the occipito-temporal cortex more strongly. We showed that this design could be used to uncover important differences between brain networks underlying fearful and happy emotions. The enhancement of brain activity for unambiguous affective signals expressed by several people simultaneously supports adaptive behaviour in critical situations. PMID:27025242

  2. Clear signals or mixed messages: inter-individual emotion congruency modulates brain activity underlying affective body perception.

    Science.gov (United States)

    de Borst, A W; de Gelder, B

    2016-08-01

    The neural basis of emotion perception has mostly been investigated with single face or body stimuli. However, in daily life one may also encounter affective expressions by groups, e.g. an angry mob or an exhilarated concert crowd. In what way is brain activity modulated when several individuals express similar rather than different emotions? We investigated this question using an experimental design in which we presented two stimuli simultaneously, with same or different emotional expressions. We hypothesized that, in the case of two same-emotion stimuli, brain activity would be enhanced, while in the case of two different emotions, one emotion would interfere with the effect of the other. The results showed that the simultaneous perception of different affective body expressions leads to a deactivation of the amygdala and a reduction of cortical activity. It was revealed that the processing of fearful bodies, compared with different-emotion bodies, relied more strongly on saliency and action triggering regions in inferior parietal lobe and insula, while happy bodies drove the occipito-temporal cortex more strongly. We showed that this design could be used to uncover important differences between brain networks underlying fearful and happy emotions. The enhancement of brain activity for unambiguous affective signals expressed by several people simultaneously supports adaptive behaviour in critical situations. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  3. Expression of annexin and Annexin-mRNA in rat brain under influence of steroid drugs

    NARCIS (Netherlands)

    Voermans, PH; Go, KG; ter Horst, GJ; Ruiters, MHJ; Solito, E; Parente, L; James, HE; Marshall, LF; Reulen, HJ; Baethmann, A; Marmarou, A; Ito, U; Hoff, JT; Kuroiwa, T; Czernicki, Z

    1997-01-01

    Brain tissue of rats pretreated with methylprednisolone or with the 21-aminosteroid U74389F, and that of untreated control rats, was assessed for the expression of Annexin-l (Anx-1) and the transcription of its mRNA. For this purpose Anx-1 cDNA was amplified and simultaneously a T7-RNA-polymerase

  4. Exploring Mechanisms Underlying Impaired Brain Function in Gulf War Illness through Advanced Network Analysis

    Science.gov (United States)

    2017-10-01

    networks of the brain responsible for visual processing, mood regulation, motor coordination, sensory processing, and language command, but increased...4    For each subject, the rsFMRI voxel time-series were temporally shifted to account for differences in slice acquisition times...responsible for visual processing, mood regulation, motor coordination, sensory processing, and language command, but increased connectivity in

  5. Tracking functional brain changes in patients with depression under psychodynamic psychotherapy using individualized stimuli.

    Directory of Open Access Journals (Sweden)

    Daniel Wiswede

    Full Text Available OBJECTIVE: Neurobiological models of depression posit limbic hyperactivity that should normalize after successful treatment. For psychotherapy, though, brain changes in patients with depression show substantial variability. Two critical issues in relevant studies concern the use of unspecific stimulation experiments and relatively short treatment protocols. Therefore changes in brain reactions to individualized stimuli were studied in patients with depression after eight months of psychodynamic psychotherapy. METHODS: 18 unmedicated patients with recurrent major depressive disorder were confronted with individualized and clinically derived content in a functional MRI experiment before (T1 and after eight months (T2 of psychodynamic therapy. A control group of 17 healthy subjects was also tested twice without intervention. The experimental stimuli were sentences describing each participant's dysfunctional interpersonal relationship patterns derived from clinical interviews based on Operationalized Psychodynamic Diagnostics (OPD. RESULTS: At T1 patients showed enhanced activation compared to controls in several limbic and subcortical regions, including amygdala and basal ganglia, when confronted with OPD sentences. At T2 the differences in brain activity between patients and controls were no longer apparent. Concurrently, patients had improved significantly in depression scores. CONCLUSIONS: Using ecologically valid stimuli, this study supports the model of limbic hyperactivity in depression that normalizes after treatment. Without a control group of untreated patients measured twice, though, changes in patients' brain activity could also be attributed to other factors than psychodynamic therapy.

  6. Common brain regions underlying different arithmetic operations as revealed by conjunct fMRI-BOLD activation.

    Science.gov (United States)

    Fehr, Thorsten; Code, Chris; Herrmann, Manfred

    2007-10-03

    The issue of how and where arithmetic operations are represented in the brain has been addressed in numerous studies. Lesion studies suggest that a network of different brain areas are involved in mental calculation. Neuroimaging studies have reported inferior parietal and lateral frontal activations during mental arithmetic using tasks of different complexities and using different operators (addition, subtraction, etc.). Indeed, it has been difficult to compare brain activation across studies because of the variety of different operators and different presentation modalities used. The present experiment examined fMRI-BOLD activity in participants during calculation tasks entailing different arithmetic operations -- addition, subtraction, multiplication and division -- of different complexities. Functional imaging data revealed a common activation pattern comprising right precuneus, left and right middle and superior frontal regions during all arithmetic operations. All other regional activations were operation specific and distributed in prominently frontal, parietal and central regions when contrasting complex and simple calculation tasks. The present results largely confirm former studies suggesting that activation patterns due to mental arithmetic appear to reflect a basic anatomical substrate of working memory, numerical knowledge and processing based on finger counting, and derived from a network originally related to finger movement. We emphasize that in mental arithmetic research different arithmetic operations should always be examined and discussed independently of each other in order to avoid invalid generalizations on arithmetics and involved brain areas.

  7. Clinical course of brain stroke in the persons exposed to ionizing radiation under the production conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bouchmanov, A. [State Research Center of Russia, Moscow (Russian Federation). Inst. of Biophysics

    2000-05-01

    The purpose was to study the risk factors and clinical course of brain strokes in professionally exposed workers being employed in plutonium production in comparison with a control group. The method and materials of study -clinical supervision and clinical database creation on 162 cases of brain stroke (128 males and 34 females) developed among professionally exposed workers. Age of patient varied from 21 to 68 years (in average -51.6 y.). The control group consisted of patients with the same diagnosis, worked on the same enterprise, but non-exposed to radiation. Data on the totally accumulated dose of external gamma radiation were received on the base of the individual dosimeters (from 0.1 cSv to 52 cSv, in average about 13 cSv); the plutonium-239 body content was estimated accordingly to the level of urine radionuclide excretion (from 0.4 kBq to 1.6 kBq, in average about 0.33 kBq). Muscle's hypertinsion and pathological great-toe reflexes in paretic legs and hands, hemianopsia, impressive and ataxic aphasia prevailed in the patients with ischemic brain strokes in system of internal carotid artery, exposed to radiation. The changes of muscle's tension, ataxia and nystagmus were marked more often in the professionals with ischemic brain strokes in system of vertebrobasilar artery. The illness proceeded more easy and with smaller frequency of frustration of consciousness and algesthesia, irrespective of a type ischemic brain strokes in the people exposed to ionizing radiation, than in patients of non-irradiated group. It was found that the arterial hypertension appeared to be the main risk factor for the brain stroke in both groups of patients (in 81.48% and 91.15% of cases). There was no marked differences in significance of risk factors and in main clinical parameters of various types of ischemic brain strokes among the patients professionally exposed to radiation in comparison with a control group. (author)

  8. Brain correlates of craving for online gaming under cue exposure in subjects with Internet gaming addiction and in remitted subjects.

    Science.gov (United States)

    Ko, Chih-Hung; Liu, Gin-Chung; Yen, Ju-Yu; Chen, Chiao-Yun; Yen, Cheng-Fang; Chen, Cheng-Sheng

    2013-05-01

    This study aimed to evaluate brain correlates of cue-induced craving to play online games in subjects with Internet gaming addiction (IGA), subjects in remission from IGA and controls. The craving response was assessed by event-related design of functional magnetic resonance images (fMRIs). Fifteen subjects with IGA, 15 in remission from IGA and 15 controls were recruited in this study. The subjects were arranged to view the gaming screenshots and neutral images under investigation of fMRIs. The results showed that bilateral dorsolateral prefrontal cortex (DLPFC), precuneus, left parahippocampus, posterior cingulate and right anterior cingulate were activated in response to gaming cues in the IGA group and their activation was stronger in the IGA group than those in the control group. Their region-of-interest was also positively correlated with subjective gaming urge under cue exposure. These activated brain areas represent the brain circuit corresponding to the mechanism of substance use disorder. Thus, it would suggest that the mechanism of IGA is similar to substance use disorder. Furthermore, the IGA group had stronger activation over right DLPFC and left parahippocampus than did the remission group. The two areas would be candidate markers for current addiction to online gaming and should be investigated in future studies. © 2011 The Authors, Addiction Biology © 2011 Society for the Study of Addiction.

  9. [STUDYING THE ROLE OF BRAIN MELANOCORTIN RECEPTORS IN THE SUPPRESSING OF FOOD INTAKE UNDER ETHER STRESS IN MICE].

    Science.gov (United States)

    Bazhan, N M; Kulikova, E V; Makarova, E N; Yakovleva, T V; Kazantseva, A Yu

    2015-12-01

    Melanocortin (MC) system regulates food intake under the rest conditions. Stress inhibits food intake. It is not clear whether brain MC system is involved in stress-induced anorexia in mice. The aim of the work was to investigate the effect of pharmacological blockade and activation of brain MC receptors on food intake under stress. C57B1/6J male mice were subjected to ether stress (0.5 minute ether anesthesia) before the administration of saline solution or synthetic non-selective blocker (SHU9119) or agonist (Melanotan II) of MC receptors into the lateral brain ventricle. Food intake was pre-stimulated with 17 hours of fasting in all mice. Ether stress decreased food intake, increased the plasma corticosterone level and hypothalamic mRNA AgRP (natural MC receptor antagonist) level at 1 hour after the stress. Pharmacological blockade of the MC receptors weakened stress-induced anorexia and decreased mRNA AgRP level in the hypothalamus. Pharmacological stimulation of the MC receptors enhanced ether stress-induced anorexia and hypercortisolism. Thus, our data demonstrated that the central MC system was involved in the development of stress-induced anorexia in mice.

  10. [NO and H2S brain systems of the Japanese shore crab Hemigrapsus sanguineus under conditions of anoxia].

    Science.gov (United States)

    Kotsiuba, E P

    2012-01-01

    The topography and dynamics of the activity of the enzymes of the synthesis of nitric oxide (NO) and hydrogen sulfide (H2S) in the brain of the Japanese shore crab Hemigrapsus sanguineus after 1, 6, and 12 h ofanoxia was studied histochemically and immunocytochemically. Changes in the activity and number of NO- and CBS-immune-positive cells that take place due to anoxia and the intensity of which depends on the duration of the influence were revealed. The fact that the balance between the nitric oxide and hydrogen sulfide systems in the brain of the crabs H. sanguineus is preserved indicates the joint participation of those systems in the central regulation of adaptive mechanisms under the influence of anoxia and, apparently, plays an important role in the adaptation of these hydrobionts to oxygen deficit.

  11. Brain glucose transport and phosphorylation under acute insulin-induced hypoglycemia in mice: an 18F-FDG PET study.

    Science.gov (United States)

    Alf, Malte F; Duarte, João M N; Schibli, Roger; Gruetter, Rolf; Krämer, Stefanie D

    2013-12-01

    We addressed the questions of how cerebral glucose transport and phosphorylation change under acute hypoglycemia and what the underlying mechanisms of adaptation are. Quantitative (18)F-FDG PET combined with the acquisition of real-time arterial input function was performed on mice. Hypoglycemia was induced and maintained by insulin infusion. PET data were analyzed with the 2-tissue-compartment model for (18)F-FDG, and the results were evaluated with Michaelis-Menten saturation kinetics. Glucose clearance from plasma to brain (K1,glc) and the phosphorylation rate constant increased with decreasing plasma glucose (Gp), in particular at a Gp of less than 2.5 mmol/L. Estimated cerebral glucose extraction ratios taking into account an increased cerebral blood flow (CBF) at a Gp of less than 2 mmol/L were between 0.14 and 0.79. CBF-normalized K1,glc values were in agreement with saturation kinetics. Phosphorylation rate constants indicated intracellular glucose depletion at a Gp of less than 2-3 mmol/L. When brain regions were compared, glucose transport under hypoglycemia was lowest in the hypothalamus. Alterations in glucose transport and phosphorylation, as well as intracellular glucose depletion, under acute hypoglycemia can be modeled by saturation kinetics taking into account an increase in CBF. Distinct transport kinetics in the hypothalamus may be involved in its glucose-sensing function.

  12. Timing of the brain events underlying access to consciousness during the attentional blink.

    Science.gov (United States)

    Sergent, Claire; Baillet, Sylvain; Dehaene, Stanislas

    2005-10-01

    In the phenomenon of attentional blink, identical visual stimuli are sometimes fully perceived and sometimes not detected at all. This phenomenon thus provides an optimal situation to study the fate of stimuli not consciously perceived and the differences between conscious and nonconscious processing. We correlated behavioral visibility ratings and recordings of event-related potentials to study the temporal dynamics of access to consciousness. Intact early potentials (P1 and N1) were evoked by unseen words, suggesting that these brain events are not the primary correlates of conscious perception. However, we observed a rapid divergence around 270 ms, after which several brain events were evoked solely by seen words. Thus, we suggest that the transition toward access to consciousness relates to the optional triggering of a late wave of activation that spreads through a distributed network of cortical association areas.

  13. Genetic Variation Underlying Traumatic Brain injury (TBI) and Late Onset Alzheimer’s Disease (LOAD)

    Science.gov (United States)

    2017-10-01

    Stable trajectory, Decliners were more likely women , older, less educated, from non-White ancestry population and APOE-ε4 carriers. The highest annual...with slightly higher rates for women compared to males (rates= 4.0 versus 3.8) and the highest rates achieved by subjects with a Caribbean-Hispanic... Single nucleotide polymorphism (dbSNP) Deoxyribonucleic acid (DNA) The Department of Defense and Veterans Brain Injury Center (DVBIC) Genome

  14. Large-scale brain networks underlying language acquisition in early infancy

    Directory of Open Access Journals (Sweden)

    Fumitaka eHomae

    2011-05-01

    Full Text Available A critical issue in human development is that of whether the language-related areas in the left frontal and temporal regions work as a functional network in preverbal infants. Here, we used 94-channel near-infrared spectroscopy (NIRS to reveal the functional networks in the brains of sleeping 3-month-old infants with and without presenting speech sounds. During the first 3 min, we measured spontaneous brain activation (period 1. After period 1, we provided stimuli by playing Japanese sentences for 3 min (period 2. Finally, we measured brain activation for 3 min without providing the stimulus (period 3, as in period 1. We found that not only the bilateral temporal and temporoparietal regions but also the prefrontal and occipital regions showed oxygenated hemoglobin (oxy-Hb signal increases and deoxygenated hemoglobin (deoxy-Hb signal decreases when speech sounds were presented to infants. By calculating time-lagged cross-correlations and coherences of oxy-Hb signals between channels, we tested the functional connectivity for the 3 periods. The oxy-Hb signals in neighboring channels, as well as their homologous channels in the contralateral hemisphere, showed high correlation coefficients in period 1. Similar correlations were observed in period 2; however, the number of channels showing high correlations was higher in the ipsilateral hemisphere, especially in the anterior-posterior direction. The functional connectivity in period 3 showed a close relationship between the frontal and temporal regions, which was less prominent in period 1, indicating that these regions form the functional networks and work as a hysteresis system that has memory of the previous inputs. We propose a hypothesis that the spatiotemporally large-scale brain networks, including the frontal and temporal regions, underlie speech processing in infants and they might play important roles in language acquisition during infancy.

  15. Quantitative assessment of postoperative blood collection in brain tumor surgery under valproate medication.

    Science.gov (United States)

    Psaras, T; Will, B E; Schoeber, W; Rona, S; Mittelbronn, M; Honegger, J B

    2008-11-01

    The aim of the study was to evaluate whether valproate (VPA) increases the risk of bleeding complications in patients undergoing brain tumor surgery. A retrospective chart review of 85 patients operated on between January and December 2005 was performed. 19 patients received VPA, 22 patients were given other anti-epileptic drugs (AEDs), 44 patients received no AEDs. Data analyzed included intraoperative blood loss, transfusion, important comorbidity factors and concomitant diseases. Preoperative and postoperative laboratory data included hemoglobin, hematocrit, fibrinogen, platelet count, INR, prothrombin time, partial thromboplastin time and RBC count. The tumor volume was evaluated by preoperative MRI and CT scans of the brain. All 85 patients underwent a native CT scan of the brain on the first day after the operation. The volume of the resection cavity and the volume of blood were documented. We could show that the volume of the tumor had a significant effect on the amount of blood in the tumor cavity, whereas VPA medication had no effect. In our dataset, we found that tumor size had a significant effect on postoperative blood volume. In contrast, no serious bleeding complications occurred in the patients receiving VPA. Therefore, the present study does not provide any evidence for the need to discontinue VPA medication prior to and during surgery.

  16. Aparecimento de plantas espontâneas com e sem perturbação do solo em condições mediterrânicas Appearance of spontaneous plants from disturbed and undisturbed soil under mediterranean conditions

    Directory of Open Access Journals (Sweden)

    José Manuel Godinho Calado

    2008-12-01

    results provide evidence that soil disturbance in autumn before crop establishment to control the spontaneous flora increases significantly the appearance of spontaneous plants under Mediterranean conditions and that this increase is even more pronounced in years with higher accumulated precipitation. This allows the conclusion that production systems based on low soil disturbance and especially no-till are able to decrease the population density of weeds in winter crops.

  17. Content of NCAM in the brain and pancreas of rats in response to endointoxication under conditions of experimental chronic pancreatitis

    Directory of Open Access Journals (Sweden)

    V. A. Makarchuk

    2014-08-01

    Full Text Available The study was undertaken to examine the influence of chronic pancreatitis on the distribution of neuronal cell adhesion molecule (NCAM in the pancreas and various brain regions of rats under the conditions of endogenous intoxication. The study was conducted using 36 white nonlinear male rats (6 months old, 190–220 g. To develop the state of chronic pancreatitis, animals were subjected tolaparotomy under general anesthesia and prolonged occlusion of the pancreatic duct. The morphological examination of pancreatic tissue hasbeen performed to confirm the chronic pancreatitis development in animals. Biochemical evaluation of the pancreatic fibrosis has been performed by measuring plasma levels of hyaluronic acid, hydroxyproline and protein-free hydroxyproline. The intensity of free radical oxidation has been assessed by the change in the concentration of TBA-active products in plasma. The level of endotoxemia has been determinedby the content of average weight molecules in plasma. Protein fractions were extracted from the pancreas and various parts of the rat brain and the levels of soluble (sNCAM and membrane (mNCAM proteins were studied with the use of the competitive ELISA. Total protein in the obtained fractions was measured by the Bradford assay. Occlusion of the pancreatic duct resultedin significant atrophy of acinar tissue, fibrosis and disfunction of the pancreas along with the decreasing in the antioxidant defense of animals. The present study shows developing of endointoxication in experimentalrats, signified by considerable increase of molecules with average weight in plasma due to the activation of lipid peroxidation. It was established that, as a result of the experimental pancreas dysfunction, significant redistribution of soluble and membrane forms of NCAM took place, more especially in the cerebellum and thalamus of rats; it caused changing of cell-cell adhesion in these brain regions. Multidirectional NCAM distribution in the

  18. Molecular mechanisms underlying the regulation of brain-derived neurotrophic factor (BDNF) translation in dendrites

    OpenAIRE

    Pinheiro, Vera Lúcia Margarido

    2010-01-01

    Dissertação de mestrado em Biologia Celular e Molecular apresentada ao Departamento de Ciências da Vida da Faculdade de Ciências e Tecnologia da Universidade de Coimbra A especificidade espacial e temporal subjacente à diversidade de processos de plasticidade sináptica que ocorrem no sistema nervoso central está profundamente relacionada com a disponibilidade da proteína brain-derived neurotrophic factor (BDNF) em domínios sub-celulares distintos, especialmente na área pós-sinápti...

  19. Brain Transcriptome Profiling Analysis of Nile Tilapia (Oreochromis niloticus Under Long-Term Hypersaline Stress

    Directory of Open Access Journals (Sweden)

    Yan Liu

    2018-03-01

    Full Text Available The fish brain plays an important role in controlling growth, development, reproduction, and adaptation to environmental change. However, few studies stem from the perspective of whole transcriptome change in a fish brain and its response to long-term hypersaline stress. This study compares the differential transcriptomic responses of juvenile Nile tilapia (Oreochromis niloticus maintained for 8 weeks in brackish water (16 practical salinity units, psu and in freshwater. Fish brains from each treatment were collected for RNA-seq analysis to identify potential genes and pathways responding to hypersaline stress. A total of 27,089 genes were annotated, and 391 genes were expressed differently in the salinity treatment. Ten pathways containing 40 differentially expressed genes were identified in the tilapia brain. Antigen processing and presentation and phagosome were the two principally affected pathways in the immune system. Thirty-one of 40 genes were involved in various expressions associated with environmental information processing pathways such as neuroactive ligand-receptor interaction, cytokine-cytokine receptor interaction, the Jak-STAT signaling pathway, cell adhesion molecules (CAMs, and the PI3K-Akt signaling pathway, which are the upstream pathways for modulation of immunity and osmoregulation. The most-changed genes (>5-fold were all down-regulated, including four growth hormone/prolactin gene families, i.e., prolactin precursor (−10.62, prolactin-1 (−11, somatotropin (−10.15, somatolactin-like (−6.18, and two other genes [thyrotropin subunit beta (−7.73 and gonadotropin subunit beta-2 (−5.06] that stimulated prolactin release in tilapia. The downregulation pattern of these genes corroborates the decrease in tilapia immunity with increasing salinity and reveals an adaptive mechanism of tilapia to long-term hypersaline stress. Ovarian steroidogenesis, isoquinoline alkaloid biosynthesis, and phenylalanine metabolism are the

  20. The intermediate disturbance hypothesis applies to tropical forests, but disturbance contributes little to tree diversity.

    Science.gov (United States)

    Bongers, Frans; Poorter, Lourens; Hawthorne, William D; Sheil, Douglas

    2009-08-01

    The intermediate disturbance hypothesis (IDH) predicts local species diversity to be maximal at an intermediate level of disturbance. Developed to explain species maintenance and diversity patterns in species-rich ecosystems such as tropical forests, tests of IDH in tropical forest remain scarce, small-scale and contentious. We use an unprecedented large-scale dataset (2504 one-hectare plots and 331,567 trees) to examine whether IDH explains tree diversity variation within wet, moist and dry tropical forests, and we analyse the underlying mechanism by determining responses within functional species groups. We find that disturbance explains more variation in diversity of dry than wet tropical forests. Pioneer species numbers increase with disturbance, shade-tolerant species decrease and intermediate species are indifferent. While diversity indeed peaks at intermediate disturbance levels little variation is explained outside dry forests, and disturbance is less important for species richness patterns in wet tropical rain forests than previously thought.

  1. Interaction of historical and nonhistorical disturbances maintains native plant communities.

    Science.gov (United States)

    Davies, K W; Svejcar, T J; Bates, J D

    2009-09-01

    Historical disturbance regimes are often considered a critical element in maintaining native plant communities. However, the response of plant communities to disturbance may be fundamentally altered as a consequence of invasive plants, climate change, or prior disturbances. The appropriateness of historical disturbance patterns under modern conditions and the interactions among disturbances are issues that ecologists must address to protect and restore native plant communities. We evaluated the response of Artemisia tridentata ssp. wyomingensis (Beetle & A. Young) S.L. Welsh plant communities to their historical disturbance regime compared to other disturbance regimes. The historical disturbance regime of these plant communities was periodic fires with minimal grazing by large herbivores. We also investigated the influence of prior disturbance (grazing) on the response of these communities to subsequent disturbance (burning). Treatments were: (1) ungrazed (livestock grazing excluded since 1936) and unburned, (2) grazed and unburned, (3) ungrazed and burned (burned in 1993), and (4) grazed and burned. The ungrazed-burned treatment emulated the historical disturbance regime. Vegetation cover, density, and biomass production were measured the 12th, 13th, and 14th year post-burning. Prior to burning the presence of Bromus tectorum L., an exotic annual grass, was minimal (resilience to more severe disturbances. Modern deviations from historical conditions can alter ecosystem response to disturbances, thus restoring the historical disturbance regime may not be an appropriate strategy for all ecosystems.

  2. Brain systems underlying attentional control and emotional distraction during working memory encoding.

    Science.gov (United States)

    Ziaei, Maryam; Peira, Nathalie; Persson, Jonas

    2014-02-15

    Goal-directed behavior requires that cognitive operations can be protected from emotional distraction induced by task-irrelevant emotional stimuli. The brain processes involved in attending to relevant information while filtering out irrelevant information are still largely unknown. To investigate the neural and behavioral underpinnings of attending to task-relevant emotional stimuli while ignoring irrelevant stimuli, we used fMRI to assess brain responses during attentional instructed encoding within an emotional working memory (WM) paradigm. We showed that instructed attention to emotion during WM encoding resulted in enhanced performance, by means of increased memory performance and reduced reaction time, compared to passive viewing. A similar performance benefit was also demonstrated for recognition memory performance, although for positive pictures only. Functional MRI data revealed a network of regions involved in directed attention to emotional information for both positive and negative pictures that included medial and lateral prefrontal cortices, fusiform gyrus, insula, the parahippocampal gyrus, and the amygdala. Moreover, we demonstrate that regions in the striatum, and regions associated with the default-mode network were differentially activated for emotional distraction compared to neutral distraction. Activation in a sub-set of these regions was related to individual differences in WM and recognition memory performance, thus likely contributing to performing the task at an optimal level. The present results provide initial insights into the behavioral and neural consequences of instructed attention and emotional distraction during WM encoding. © 2013.

  3. Sudden Ionospheric Disturbances (SID)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sudden ionospheric disturbances (SID) are caused by solar flare enhanced X-rays in the 1 to 10 angstrom range. Solar flares can produce large increases of ionization...

  4. Depression Disturbs Germany

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The suicide of Robert Enke,the goalkeeper of the Germany national football team who had battled depression for years,stunned the country and cast depression into the national spotlight as a disturbing disease.

  5. Disturbance in the neural circuitry underlying positive emotional processing in post-traumatic stress disorder (PTSD). An fMRI study.

    Science.gov (United States)

    Jatzko, Alexander; Schmitt, Andrea; Demirakca, Traute; Weimer, Erik; Braus, Dieter F

    2006-03-01

    This study was designed to investigate the circuitry underlying movie-induced positive emotional processing in subjects with chronic PTSD. Ten male subjects with chronic PTSD and ten matched controls were studied. In an fMRI-paradigm a sequence of a wellknown Walt Disney cartoon with positive emotional valence was shown. PTSD subjects showed an increased activation in the right posterior temporal, precentral and superior frontal cortex. Controls recruited more emotion-related regions bilateral in the temporal pole and areas of the left fusiform and parahippocampal gyrus. This pilot study is the first to reveal alterations in the processing of positive emotions in PTSD possibly reflecting a neuronal correlate of the symptom of emotional numbness in PTSD.

  6. Analysis of disturbance

    International Nuclear Information System (INIS)

    Ciala-Wein, H.; Stegmaier, W.

    1977-12-01

    The analyses of disturbances are the supposition for the development of processes and plants. They are very important in the field of nuclear testing plants. In this report are described the possibilities to register the circumstances of the disturbance in a pilot waste processing facility and a computer programme to interpret them. This is a first scheme and it will be necessary to complete it. (orig.) [de

  7. Sorption and desorption of 125I-, 137Cs+, 85Sr2+ and 152,154Eu3+ on disturbed soils under dynamic flow and static batch conditions

    International Nuclear Information System (INIS)

    Palagyi, S.; Vodickova, H.

    2009-01-01

    Sorption of radionuclides on homogenized soils (under 2.5 mm grain size) from synthetic groundwater of 8 x 10 -3 M ionic strength and pH 8.5 has been studied under dynamic (flow) and static (batch) conditions. The corresponding water-soluble compounds, as carriers in the 10 -6 mol/dm 3 concentration, ere added into the SGW prior to the experiments. Soil samples were taken rom several locations around the environment of the High Level Waste Storage facility at Nuclear Research Institute Rez plc in 5-100 cm depth. The dynamic experiments were carried out in columns made of PP+PE injection syringes of 7.8 cm length and 2.1 cm in diameter. A multi-head peristaltic pump was used or pumping the water upward through the columns at a seepage velocity of bout 0.06 cm/min in average. The radioactive nuclides were added into the water stream individually in a form of a short pulse in 0.1 cm 3 of demineralized water. Dynamic desorption experiments were performed with the same experimental arrangement using a mixture of 10 -2 N H 2 SO 4 and 10 -2 N NO 3 in a volume ratio of 2 : 1. Retardation, distribution and hydrodynamic dispersion coefficients during transport of radionuclides were determined by he evaluation of the integral form of a simple advection-dispersion equation, used for fitting experimental data and modeling the theoretical sorption breakthrough and desorption displacement curves. The static experiments were realized in 100 cm 3 plastic bottles stirring 5 g of soil samples with SGW occasionally in a soil to SGW ratio of 1 : 10 (m/V). Kinetic parameters including equilibrium sorption activity, activity transfer rate constants and sorption half-times were also determined. The results of dynamic experiments were compared with static sorption experiments. (author)

  8. Speech and Language Disturbances in Neurology Practice

    Directory of Open Access Journals (Sweden)

    Oğuz Tanrıdağ

    2009-12-01

    Full Text Available Despite the well-known facts discerned from interesting cases of speech and language disturbances over thousands of years, the scientific background and the limitless discussions for nearly 150 years, this field has been considered one of the least important subjects in neurological sciences. In this review, we first analyze the possible causes for this “stepchild” attitude towards this subject and we then summarize the practical aspects concerning speech and language disturbances. Our underlying expectation with this review is to explain the facts concerning those disturbances that might offer us opportunities to better understand the nervous system and the affected patients

  9. Emergent coordination underlying learning to reach to grasp with a brain-machine interface.

    Science.gov (United States)

    Vaidya, Mukta; Balasubramanian, Karthikeyan; Southerland, Joshua; Badreldin, Islam; Eleryan, Ahmed; Shattuck, Kelsey; Gururangan, Suchin; Slutzky, Marc; Osborne, Leslie; Fagg, Andrew; Oweiss, Karim; Hatsopoulos, Nicholas G

    2018-04-01

    The development of coordinated reach-to-grasp movement has been well studied in infants and children. However, the role of motor cortex during this development is unclear because it is difficult to study in humans. We took the approach of using a brain-machine interface (BMI) paradigm in rhesus macaques with prior therapeutic amputations to examine the emergence of novel, coordinated reach to grasp. Previous research has shown that after amputation, the cortical area previously involved in the control of the lost limb undergoes reorganization, but prior BMI work has largely relied on finding neurons that already encode specific movement-related information. In this study, we taught macaques to cortically control a robotic arm and hand through operant conditioning, using neurons that were not explicitly reach or grasp related. Over the course of training, stereotypical patterns emerged and stabilized in the cross-covariance between the reaching and grasping velocity profiles, between pairs of neurons involved in controlling reach and grasp, and to a comparable, but lesser, extent between other stable neurons in the network. In fact, we found evidence of this structured coordination between pairs composed of all combinations of neurons decoding reach or grasp and other stable neurons in the network. The degree of and participation in coordination was highly correlated across all pair types. Our approach provides a unique model for studying the development of novel, coordinated reach-to-grasp movement at the behavioral and cortical levels. NEW & NOTEWORTHY Given that motor cortex undergoes reorganization after amputation, our work focuses on training nonhuman primates with chronic amputations to use neurons that are not reach or grasp related to control a robotic arm to reach to grasp through the use of operant conditioning, mimicking early development. We studied the development of a novel, coordinated behavior at the behavioral and cortical level, and the neural

  10. Antioxidant and oxidative stress parameters in brain of Heteropneustes fossilis under air exposure condition; role of mitochondrial electron transport chain.

    Science.gov (United States)

    Paital, Biswaranjan

    2013-09-01

    Many fishes are exposed to air in their natural habitat or during their commercial handling. In natural habitat or during commercial handling, the cat fish Heteropneustes fossilis is exposed to air for >24h. Data on its oxidative metabolism in the above condition are not available. Oxidative stress (OS) indices (lipid and protein oxidation), toxic reactive oxygen species (ROS: H2O2) generation, antioxidative status (levels of superoxide dismutase, catalase, glutathione peroxidase and reductase, ascorbic acid and non-protein sulfhydryl) and activities of electron transport chain (ETC) enzymes (complex I-IV) were investigated in brain tissue of H. fossilis under air exposure condition (0, 3, 6, 12 and 18 h at 25°C). Decreased activities of antioxidant (except catalase) and ETC enzymes (except complex II) with increased H2O2 and OS levels were observed in the tissue under water deprivation condition. Positive correlation was observed for complex II activity and non-protein thiol groups with time period of air exposure. The critical time period to induce OS and to reduce most of the studied antioxidant level in brain was found to be 3-6h air exposure. The data can be useful to minimize the stress generated during commercial handling of the live fishes those exposed to air in general and H. fossilis in particular. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Large Scale Functional Brain Networks Underlying Temporal Integration of Audio-Visual Speech Perception: An EEG Study.

    Science.gov (United States)

    Kumar, G Vinodh; Halder, Tamesh; Jaiswal, Amit K; Mukherjee, Abhishek; Roy, Dipanjan; Banerjee, Arpan

    2016-01-01

    Observable lip movements of the speaker influence perception of auditory speech. A classical example of this influence is reported by listeners who perceive an illusory (cross-modal) speech sound (McGurk-effect) when presented with incongruent audio-visual (AV) speech stimuli. Recent neuroimaging studies of AV speech perception accentuate the role of frontal, parietal, and the integrative brain sites in the vicinity of the superior temporal sulcus (STS) for multisensory speech perception. However, if and how does the network across the whole brain participates during multisensory perception processing remains an open question. We posit that a large-scale functional connectivity among the neural population situated in distributed brain sites may provide valuable insights involved in processing and fusing of AV speech. Varying the psychophysical parameters in tandem with electroencephalogram (EEG) recordings, we exploited the trial-by-trial perceptual variability of incongruent audio-visual (AV) speech stimuli to identify the characteristics of the large-scale cortical network that facilitates multisensory perception during synchronous and asynchronous AV speech. We evaluated the spectral landscape of EEG signals during multisensory speech perception at varying AV lags. Functional connectivity dynamics for all sensor pairs was computed using the time-frequency global coherence, the vector sum of pairwise coherence changes over time. During synchronous AV speech, we observed enhanced global gamma-band coherence and decreased alpha and beta-band coherence underlying cross-modal (illusory) perception compared to unisensory perception around a temporal window of 300-600 ms following onset of stimuli. During asynchronous speech stimuli, a global broadband coherence was observed during cross-modal perception at earlier times along with pre-stimulus decreases of lower frequency power, e.g., alpha rhythms for positive AV lags and theta rhythms for negative AV lags. Thus, our

  12. Disturbance recording system

    International Nuclear Information System (INIS)

    Chandra, A.K.; Deshpande, S.V.; Mayya, A.; Vaidya, U.W.; Premraj, M.K.; Patil, N.B.

    1994-01-01

    A computerized system for disturbance monitoring, recording and display has been developed for use in nuclear power plants and is versatile enough to be used where ever a large number of parameters need to be recorded, e.g. conventional power plants, chemical industry etc. The Disturbance Recording System (DRS) has been designed to continuously monitor a process plant and record crucial parameters. The DRS provides a centralized facility to monitor and continuously record 64 process parameters scanned every 1 sec for 5 days. The system also provides facility for storage of 64 parameters scanned every 200 msec during 2 minutes prior to and 3 minutes after a disturbance. In addition the system can initiate, on demand, the recording of 8 parameters at a fast rate of every 5 msec for a period of 5 sec. and thus act as a visicorder. All this data is recorded in non-volatile memory and can be displayed, printed/plotted and used for subsequent analysis. Since data can be stored densely on floppy disks, the volume of space required for archival storage is also low. As a disturbance recorder, the DRS allows the operator to view the state of the plant prior to occurrence of the disturbance and helps in identifying the root cause. (author). 10 refs., 7 figs

  13. The influence of age and mild cognitive impairment on associative memory performance and underlying brain networks.

    Science.gov (United States)

    Oedekoven, Christiane S H; Jansen, Andreas; Keidel, James L; Kircher, Tilo; Leube, Dirk

    2015-12-01

    Associative memory is essential to everyday activities, such as the binding of faces and corresponding names to form single bits of information. However, this ability often becomes impaired with increasing age. The most important neural substrate of associative memory is the hippocampus, a structure crucially implicated in the pathogenesis of Alzheimer's disease (AD). The main aim of this study was to compare neural correlates of associative memory in healthy aging and mild cognitive impairment (MCI), an at-risk state for AD. We used fMRI to investigate differences in brain activation and connectivity between young controls (n = 20), elderly controls (n = 32) and MCI patients (n = 21) during associative memory retrieval. We observed lower hippocampal activation in MCI patients than control groups during a face-name recognition task, and the magnitude of this decrement was correlated with lower associative memory performance. Further, increased activation in precentral regions in all older adults indicated a stronger involvement of the task positive network (TPN) with age. Finally, functional connectivity analysis revealed a stronger link of hippocampal and striatal components in older adults in comparison to young controls, regardless of memory impairment. In elderly controls, this went hand-in-hand with a stronger activation of striatal areas. Increased TPN activation may be linked to greater reliance on cognitive control in both older groups, while increased functional connectivity between the hippocampus and the striatum may suggest dedifferentiation, especially in elderly controls.

  14. Common and distinct brain networks underlying panic and social anxiety disorders.

    Science.gov (United States)

    Kim, Yong-Ku; Yoon, Ho-Kyoung

    2018-01-03

    Although panic disorder (PD) and phobic disorders are independent anxiety disorders with distinct sets of diagnostic criteria, there is a high level of overlap between them in terms of pathogenesis and neural underpinnings. Functional connectivity research using resting-state functional magnetic resonance imaging (rsfMRI) shows great potential in identifying the similarities and differences between PD and phobias. Understanding common and distinct networks between PD and phobic disorders is critical for identifying both specific and general neural characteristics of these disorders. We review recent rsfMRI studies and explore the clinical relevance of resting-state functional connectivity (rsFC) in PD and phobias. Although findings differ between studies, there are some meaningful, consistent findings. Social anxiety disorder (SAD) and PD share common default mode network alterations. Alterations within the sensorimotor network are observed primarily in PD. Increased connectivity in the salience network is consistently reported in SAD. This review supports hypotheses that PD and phobic disorders share common rsFC abnormalities and that the different clinical phenotypes between the disorders come from distinct brain functional network alterations. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Brain activity underlying the recovery of meaning from degraded speech: A functional near-infrared spectroscopy (fNIRS) study.

    Science.gov (United States)

    Wijayasiri, Pramudi; Hartley, Douglas E H; Wiggins, Ian M

    2017-08-01

    The purpose of this study was to establish whether functional near-infrared spectroscopy (fNIRS), an emerging brain-imaging technique based on optical principles, is suitable for studying the brain activity that underlies effortful listening. In an event-related fNIRS experiment, normally-hearing adults listened to sentences that were either clear or degraded (noise vocoded). These sentences were presented simultaneously with a non-speech distractor, and on each trial participants were instructed to attend either to the speech or to the distractor. The primary region of interest for the fNIRS measurements was the left inferior frontal gyrus (LIFG), a cortical region involved in higher-order language processing. The fNIRS results confirmed findings previously reported in the functional magnetic resonance imaging (fMRI) literature. Firstly, the LIFG exhibited an elevated response to degraded versus clear speech, but only when attention was directed towards the speech. This attention-dependent increase in frontal brain activation may be a neural marker for effortful listening. Secondly, during attentive listening to degraded speech, the haemodynamic response peaked significantly later in the LIFG than in superior temporal cortex, possibly reflecting the engagement of working memory to help reconstruct the meaning of degraded sentences. The homologous region in the right hemisphere may play an equivalent role to the LIFG in some left-handed individuals. In conclusion, fNIRS holds promise as a flexible tool to examine the neural signature of effortful listening. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Non-stationary discharge patterns in motor cortex under subthalamic nucleus deep brain stimulation.

    Science.gov (United States)

    Santaniello, Sabato; Montgomery, Erwin B; Gale, John T; Sarma, Sridevi V

    2012-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) directly modulates the basal ganglia (BG), but how such stimulation impacts the cortex upstream is largely unknown. There is evidence of cortical activation in 6-hydroxydopamine (OHDA)-lesioned rodents and facilitation of motor evoked potentials in Parkinson's disease (PD) patients, but the impact of the DBS settings on the cortical activity in normal vs. Parkinsonian conditions is still debated. We use point process models to analyze non-stationary activation patterns and inter-neuronal dependencies in the motor and sensory cortices of two non-human primates during STN DBS. These features are enhanced after treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which causes a consistent PD-like motor impairment, while high-frequency (HF) DBS (i.e., ≥100 Hz) strongly reduces the short-term patterns (period: 3-7 ms) both before and after MPTP treatment, and elicits a short-latency post-stimulus activation. Low-frequency DBS (i.e., ≤50 Hz), instead, has negligible effects on the non-stationary features. Finally, by using tools from the information theory [i.e., receiver operating characteristic (ROC) curve and information rate (IR)], we show that the predictive power of these models is dependent on the DBS settings, i.e., the probability of spiking of the cortical neurons (which is captured by the point process models) is significantly conditioned on the timely delivery of the DBS input. This dependency increases with the DBS frequency and is significantly larger for high- vs. low-frequency DBS. Overall, the selective suppression of non-stationary features and the increased modulation of the spike probability suggest that HF STN DBS enhances the neuronal activation in motor and sensory cortices, presumably because of reinforcement mechanisms, which perhaps involve the overlap between feedback antidromic and feed-forward orthodromic responses along the BG-thalamo-cortical loop.

  17. HDAC4: a key factor underlying brain developmental alterations in CDKL5 disorder.

    Science.gov (United States)

    Trazzi, Stefania; Fuchs, Claudia; Viggiano, Rocchina; De Franceschi, Marianna; Valli, Emanuele; Jedynak, Paulina; Hansen, Finn K; Perini, Giovanni; Rimondini, Roberto; Kurz, Thomas; Bartesaghi, Renata; Ciani, Elisabetta

    2016-09-15

    Cyclin-dependent kinase-like 5 (CDKL5) is a Ser/Thr protein kinase predominantly expressed in the brain. Mutations of the CDKL5 gene lead to CDKL5 disorder, a neurodevelopmental pathology that shares several features with Rett Syndrome and is characterized by severe intellectual disability. The phosphorylation targets of CDKL5 are largely unknown, which hampers the discovery of therapeutic strategies for improving the neurological phenotype due to CDKL5 mutations. Here, we show that the histone deacetylase 4 (HDAC4) is a direct phosphorylation target of CDKL5 and that CDKL5-dependent phosphorylation promotes HDAC4 cytoplasmic retention. Nuclear HDAC4 binds to chromatin as well as to MEF2A transcription factor, leading to histone deacetylation and altered neuronal gene expression. By using a Cdkl5 knockout (Cdkl5 -/Y) mouse model, we found that hypophosphorylated HDAC4 translocates to the nucleus of neural precursor cells, thereby reducing histone 3 acetylation. This effect was reverted by re-expression of CDKL5 or by inhibition of HDAC4 activity through the HDAC4 inhibitor LMK235. In Cdkl5 -/Y mice treated with LMK235, defective survival and maturation of neuronal precursor cells and hippocampus-dependent memory were fully normalized. These results demonstrate a critical role of HDAC4 in the neurodevelopmental alterations due to CDKL5 mutations and suggest the possibility of HDAC4-targeted pharmacological interventions. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Brain Mechanisms Underlying Reactive Aggression in Borderline Personality Disorder-Sex Matters.

    Science.gov (United States)

    Herpertz, Sabine C; Nagy, Krisztina; Ueltzhöffer, Kai; Schmitt, Ruth; Mancke, Falk; Schmahl, Christian; Bertsch, Katja

    2017-08-15

    Aggression in borderline personality disorder (BPD) is thought to be mediated through emotion dysregulation via high trait anger. Until now, data comparing anger and aggression in female and male patients with BPD have been widely missing on the behavioral and particularly the brain levels. Thirty-three female and 23 male patients with BPD and 30 healthy women and 26 healthy men participated in this functional magnetic resonance imaging study. We used a script-driven imagery task consisting of narratives of both interpersonal rejection and directing physical aggression toward others. While imagining both interpersonal rejection and acting out aggressively, a sex × group interaction was found in which male BPD patients revealed higher activity in the left amygdala than female patients. In the aggression phase, men with BPD exhibited higher activity in the lateral orbitofrontal and dorsolateral prefrontal cortices compared with healthy men and female patients. Positive connectivity between amygdala and posterior middle cingulate cortex was found in female patients but negative connectivity was found in male patients with BPD. Negative modulatory effects of trait anger on amygdala-dorsolateral prefrontal cortex and amygdala-lateral orbitofrontal cortex coupling were shown in male BPD patients, while in female patients trait anger positively modulated dorsolateral prefrontal cortex-amygdala coupling. Trait aggression was found to positively modulate connectivity of the left amygdala to the posterior thalamus in male but not female patients. Data suggest poor top-down adjustment of behavior in male patients with BPD despite their efforts at control. Female patients appear to be less aroused through rejection and to successfully dampen aggressive tension during the imagination of aggressive behavior. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. Dynamics of brain activity underlying working memory for music in a naturalistic condition.

    Science.gov (United States)

    Burunat, Iballa; Alluri, Vinoo; Toiviainen, Petri; Numminen, Jussi; Brattico, Elvira

    2014-08-01

    We aimed at determining the functional neuroanatomy of working memory (WM) recognition of musical motifs that occurs while listening to music by adopting a non-standard procedure. Western tonal music provides naturally occurring repetition and variation of motifs. These serve as WM triggers, thus allowing us to study the phenomenon of motif tracking within real music. Adopting a modern tango as stimulus, a behavioural test helped to identify the stimulus motifs and build a time-course regressor of WM neural responses. This regressor was then correlated with the participants' (musicians') functional magnetic resonance imaging (fMRI) signal obtained during a continuous listening condition. In order to fine-tune the identification of WM processes in the brain, the variance accounted for by the sensory processing of a set of the stimulus' acoustic features was pruned from participants' neurovascular responses to music. Motivic repetitions activated prefrontal and motor cortical areas, basal ganglia, medial temporal lobe (MTL) structures, and cerebellum. The findings suggest that WM processing of motifs while listening to music emerges from the integration of neural activity distributed over cognitive, motor and limbic subsystems. The recruitment of the hippocampus stands as a novel finding in auditory WM. Effective connectivity and agglomerative hierarchical clustering analyses indicate that the hippocampal connectivity is modulated by motif repetitions, showing strong connections with WM-relevant areas (dorsolateral prefrontal cortex - dlPFC, supplementary motor area - SMA, and cerebellum), which supports the role of the hippocampus in the encoding of the musical motifs in WM, and may evidence long-term memory (LTM) formation, enabled by the use of a realistic listening condition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Sleep disturbances in Parkinsonism.

    Science.gov (United States)

    Askenasy, J J M

    2003-02-01

    The present article is meant to suggest an approach to the guidelines for the therapy of sleep disturbances in Parkinson's Disease (PD) patients.The factors affecting the quality of life in PD patients are depression, sleep disturbances and dependence. A large review of the literature on sleep disturbances in PD patients, provided the basis for the following classification of the sleep-arousal disturbances in PD patients. We suggest a model based on 3 steps in the treatment of sleep disturbances in PD patients. This model allowing the patient, the spouse or the caregiver a quiet sleep at night, may postpone the retirement and the institutionalization of the PD patient. I. Correct diagnosis of sleep disorders based on detailed anamnesis of the patient and of the spouse or of the caregiver. One week recording on a symptom diary (log) by the patient or the caregiver. Correct diagnosis of sleep disorders co morbidities. Selection of the most appropriate sleep test among: polysomnography (PSG), multiple sleep latency test (MSLT), multiple wake latency test (MWLT), Epworth Sleepiness Scale, actigraphy or video-PSG. II. The nonspecific therapeutic approach consists in: a) Checking the sleep effect on motor performance, is it beneficial, worse or neutral. b) Psycho-physical assistance. c) Dopaminergic adjustment is necessary owing to the progression of the nigrostriatal degeneration and the increased sensitivity of the terminals, which alter the normal modulator mechanisms of the motor centers in PD patients. Among the many neurotransmitters of the nigro-striatal pathway one can distinguish two with a major influence on REM and NonREM sleep. REM sleep corresponds to an increased cholinergic receptor activity and a decreased dopaminergic activity. This is the reason why REM sleep deprivation by suppressing cholinergic receptor activity ameliorates PD motor symptoms. L-Dopa and its agonists by suppressing cholinergic receptors suppress REM sleep. The permanent adjustment

  1. Encoding-related brain activity dissociates between the recollective processes underlying successful recall and recognition: a subsequent-memory study.

    Science.gov (United States)

    Sadeh, Talya; Maril, Anat; Goshen-Gottstein, Yonatan

    2012-07-01

    The subsequent-memory (SM) paradigm uncovers brain mechanisms that are associated with mnemonic activity during encoding by measuring participants' neural activity during encoding and classifying the encoding trials according to performance in the subsequent retrieval phase. The majority of these studies have converged on the notion that the mechanism supporting recognition is mediated by familiarity and recollection. The process of recollection is often assumed to be a recall-like process, implying that the active search for the memory trace is similar, if not identical, for recall and recognition. Here we challenge this assumption and hypothesize - based on previous findings obtained in our lab - that the recollective processes underlying recall and recognition might show dissociative patterns of encoding-related brain activity. To this end, our design controlled for familiarity, thereby focusing on contextual, recollective processes. We found evidence for dissociative neurocognitive encoding mechanisms supporting subsequent-recall and subsequent-recognition. Specifically, the contrast of subsequent-recognition versus subsequent-recall revealed activation in the Parahippocampal cortex (PHc) and the posterior hippocampus--regions associated with contextual processing. Implications of our findings and their relation to current cognitive models of recollection are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Thalamo–cortical network underlying deep brain stimulation of centromedian thalamic nuclei in intractable epilepsy: a multimodal imaging analysis

    Directory of Open Access Journals (Sweden)

    Kim SH

    2017-10-01

    Full Text Available Seong Hoon Kim,1 Sung Chul Lim,1 Dong Won Yang,1 Jeong Hee Cho,1 Byung-Chul Son,2 Jiyeon Kim,3 Seung Bong Hong,4 Young-Min Shon4 1Department of Neurology, 2Department of Neurosurgery, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, 3Department of Neurology, Korea University Ansan Hospital, College of Medicine, Korea University, Ansan, 4Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea Objective: Deep brain stimulation (DBS of the centromedian thalamic nucleus (CM can be an alternative treatment option for intractable epilepsy patients. Since CM may be involved in widespread cortico-subcortical networks, identification of the cortical sub-networks specific to the target stimuli may provide further understanding on the underlying mechanisms of CM DBS. Several brain structures have distinguishing brain connections that may be related to the pivotal propagation and subsequent clinical effect of DBS.Methods: To explore core structures and their connections relevant to CM DBS, we applied electroencephalogram (EEG and diffusion tensor imaging (DTI to 10 medically intractable patients – three generalized epilepsy (GE and seven multifocal epilepsy (MFE patients unsuitable for resective surgery. Spatiotemporal activation pattern was mapped from scalp EEG by delivering low-frequency stimuli (5 Hz. Structural connections between the CM and the cortical activation spots were assessed using DTI.Results: We confirmed an average 72% seizure reduction after CM DBS and its clinical efficiency remained consistent during the observation period (mean 21 months. EEG data revealed sequential source propagation from the anterior cingulate, followed by the frontotemporal regions bilaterally. In addition, maximal activation was found in the left cingulate gyrus and the right medial frontal cortex during the right and left CM stimulation, respectively

  3. [Neurobiological foundations underlying normal and disturbed sexuality].

    Science.gov (United States)

    Krüger, T H C; Kneer, J

    2017-05-01

    Sexual functions are regulated by hormonal and neurochemical factors as well as neuronal networks. An understanding of these basic principles is necessary for the diagnostics, counselling and treatment of sexual problems. Description of essential mechanisms of sexual function on a neurochemical and neuronal level. Literature search, selection and discussion of relevant studies. Analogous to the dual control model there are primary inhibitory (e. g. serotonin) and excitatory neurotransmitter systems (e.g. sex steroids and dopamine). Moreover, neuronal structures have been identified that are responsible for processing sexual stimuli. These networks are altered in subjects with sexual disorders or by pharmacological treatment, e. g. antiandrogens and selective serotonin reuptake inhibitors (SSRI) CONCLUSION: Knowledge of the neurobiology of sexuality forms the foundations for the treatment of sexual dysfunctions in psychiatry and other disciplines.

  4. Ionospheric disturbances under low solar activity conditions

    Czech Academy of Sciences Publication Activity Database

    Burešová, Dalia; Laštovička, Jan; Hejda, Pavel; Bochníček, Josef

    2014-01-01

    Roč. 54, č. 2 (2014), s. 185-196 ISSN 0273-1177 R&D Projects: GA ČR(CZ) GAP209/11/1908 Institutional support: RVO:68378289 ; RVO:67985530 Keywords : ionosphere * solar minimum * magnetic storm s * ionospheric variability Subject RIV: DG - Athmosphere Sciences, Meteorology; DG - Athmosphere Sciences, Meteorology (GFU-E) Impact factor: 1.358, year: 2014 http://www.sciencedirect.com/science/article/pii/S027311771400221X

  5. The mating brain: early maturing sneaker males maintain investment into the brain also under fast body growth in Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Kotrschal, Alexander; Trombley, Susanne; Rogell, Björn; Brannström, Ioana; Foconi, Eric; Schmitz, Monika; Kolm, Niclas

    It has been suggested that mating behaviours require high levels of cognitive ability. However, since investment into mating and the brain both are costly features, their relationship is likely characterized by energetic trade-offs. Empirical data on the subject remains equivocal. We investigated if early sexual maturation was associated with brain development in Atlantic salmon ( Salmo salar ), in which males can either stay in the river and sexually mature at a small size (sneaker males) or migrate to the sea and delay sexual maturation until they have grown much larger (anadromous males). Specifically, we tested how sexual maturation may induce plastic changes in brain development by rearing juveniles on either natural or ad libitum feeding levels. After their first season we compared brain size and brain region volumes across both types of male mating tactics and females. Body growth increased greatly across both male mating tactics and females during ad libitum feeding as compared to natural feeding levels. However, despite similar relative increases in body size, early maturing sneaker males maintained larger relative brain size during ad libitum feeding levels as compared to anadromous males and females. We also detected several differences in the relative size of separate brain regions across feeding treatments, sexes and mating strategies. For instance, the relative size of the cognitive centre of the brain, the telencephalon, was largest in sneaker males. Our data support that a large relative brain size is maintained in individuals that start reproduction early also during fast body growth. We propose that the cognitive demands during complex mating behaviours maintain a high level of investment into brain development in reproducing individuals.

  6. "THE EVALUATION OF THE POSSIBLE EFFECT OF POSITIVE END EXPIRATORY PRESSURE (PEEP) ON PHARMACOKINETICS OF PHENYTOIN IN PATIENTS WITH ACUTE BRAIN INJURY UNDER MECHANICAL VENTILATION."

    OpenAIRE

    "Elham Hadidi; Mojtaba Mojtahedzadeh; Mohammad Reza Rouini; Behzad Eftekhar; Mohammad Abdollahi; Atabak Najafi; Mohammad R. Khajavi; Saeed Rezaee; Reza Ghaffari; Minoo Afshar"

    2005-01-01

    Positive ventilation has shown to have an influence on pharmacokinetic and disposition of some drugs.Beacause phenytoin with a narrow therapautic range, is the most commonly used drug for prophylaxis and treatment of early seizures after acute brain injuries, in the present study the effect of short term PEEP (5-10 cm H2O for at least 8 hours) on phenytoin serum concentration and pharmacokinetic parameters such as Vmax and clearance in brain injured patients under mechanical ventilation was e...

  7. Blood supply to the brain and. beta. -endorphin and acth levels under the influence of thyrotrophin releasing hormone

    Energy Technology Data Exchange (ETDEWEB)

    Mirzoyan, R.S.; Ganshina, T.S.; Mirzoyan, R.A.; Ragimov, K.S.

    1985-08-01

    The authors studied beta-endorphin because of its possible mediator role in terms of the cerebrovascular effects of thyrotrophin releasing hormone (TRH), and also because of data in the literature on antagonistic relations between TRH and the endogenous opioid system of the brain. Beta-endorphin was determined by radioimmunoassay; its level was determined after its separation from the beta-lipotrophin fraction. The investigation showed that TRH has a marked depressant effect on cerebrovascular vasoconstrictor refleces. Elevation of the blood ACTH level causes an increase in BP and in the tone of the cerebral vessels. An absence of correlation between the beta-endorphin and ACTH levels in the blood and CSF under the influence of TRH is shown.

  8. Differential associations between impulsivity and risk-taking and brain activations underlying working memory in adolescents.

    Science.gov (United States)

    Panwar, Karni; Rutherford, Helena J V; Mencl, W Einar; Lacadie, Cheryl M; Potenza, Marc N; Mayes, Linda C

    2014-11-01

    Increased impulsivity and risk-taking are common during adolescence and relate importantly to addictive behaviors. However, the extent to which impulsivity and risk-taking relate to brain activations that mediate cognitive processing is not well understood. Here we examined the relationships between impulsivity and risk-taking and the neural correlates of working memory. Neural activity was measured in 18 adolescents (13-18 years) while they engaged in a working memory task that included verbal and visuospatial components that each involved encoding, rehearsal and recognition stages. Risk-taking and impulsivity were assessed using the Balloon Analogue Risk Task (BART) and the adolescent version of the Barratt Impulsiveness Scale-11 (BIS-11A), respectively. We found overlapping as well as distinct regions subserving the different stages of verbal and visuospatial working memory. In terms of risk-taking, we found a positive correlation between BART scores and activity in subcortical regions (e.g., thalamus, dorsal striatum) recruited during verbal rehearsal, and an inverse correlation between BART scores and cortical regions (e.g., parietal and temporal regions) recruited during visuospatial rehearsal. The BIS-11A evidenced that motor impulsivity was associated with activity in regions recruited during all stages of working memory, while attention and non-planning impulsivity was only associated with activity in regions recruited during recognition. In considering working memory, impulsivity and risk-taking together, both impulsivity and risk-taking were associated with activity in regions recruited during rehearsal; however, during verbal rehearsal, differential correlations were found. Specifically, positive correlations were found between: (1) risk-taking and activity in subcortical regions, including the thalamus and dorsal striatum; and, (2) motor impulsivity and activity in the left inferior frontal gyrus, insula, and dorsolateral prefrontal cortex. Therefore

  9. Differential associations between impulsivity and risk-taking and brain activations underlying working memory in adolescents

    Science.gov (United States)

    Panwar, Karni; Rutherford, Helena J.V.; Mencl, W. Einar; Lacadie, Cheryl M.; Potenza, Marc N.; Mayes, Linda C.

    2014-01-01

    Increased impulsivity and risk-taking are common during adolescence and relate importantly to addictive behaviors. However, the extent to which impulsivity and risk-taking relate to brain activations that mediate cognitive processing is not well understood. Here we examined the relationships between impulsivity and risk-taking and the neural correlates of working memory. Neural activity was measured in 18 adolescents (13–18 years) while they engaged in a working memory task that included verbal and visuospatial components that each involved encoding, rehearsal and recognition stages. Risk-taking and impulsivity were assessed using the Balloon Analogue Risk Task (BART) and the adolescent version of the Barratt Impulsiveness Scale -11 (BIS-11A), respectively. We found overlapping as well as distinct regions subserving the different stages of verbal and visuospatial working memory. In terms of risk-taking, we found a positive correlation between BART scores and activity in subcortical regions (e.g., thalamus, dorsal striatum) recruited during verbal rehearsal, and an inverse correlation between BART scores and cortical regions (e.g., parietal and temporal regions) recruited during visuospatial rehearsal. The BIS-11A evidenced that motor impulsivity was associated with activity in regions recruited during all stages of working memory, while attention and non-planning impulsivity was only associated with activity in regions recruited during recognition. In considering working memory, impulsivity and risk-taking together, both impulsivity and risk-taking were associated with activity in regions recruited during rehearsal; however, during verbal rehearsal, differential correlations were found. Specifically, positive correlations were found between: (1) risk-taking and activity in subcortical regions, including the thalamus and dorsal striatum; and, (2) motor impulsivity and activity in the left inferior frontal gyrus, insula, dorsolateral and ventrolateral prefrontal

  10. Nutritional disturbances by adolescent

    OpenAIRE

    Stassart, Martine

    2011-01-01

    The nutritional disturbances are frequent by adolescents. That is a psychological defense against dependance toward the mother but also a middle to remain in a childish position i.e. either as a fat baby - in the fall of obesity- or as the ideal pre- or bisexual great child - in the case of anorexia.

  11. Cross Talk Between Brain Innate Immunity and Serotonin Signaling Underlies Depressive-Like Behavior Induced by Alzheimer's Amyloid-β Oligomers in Mice.

    Science.gov (United States)

    Ledo, Jose Henrique; Azevedo, Estefania P; Beckman, Danielle; Ribeiro, Felipe C; Santos, Luis E; Razolli, Daniela S; Kincheski, Grasielle C; Melo, Helen M; Bellio, Maria; Teixeira, Antonio L; Velloso, Licio A; Foguel, Debora; De Felice, Fernanda G; Ferreira, Sergio T

    2016-11-30

    Considerable clinical and epidemiological evidence links Alzheimer's disease (AD) and depression. However, the molecular mechanisms underlying this connection are largely unknown. We reported recently that soluble Aβ oligomers (AβOs), toxins that accumulate in AD brains and are thought to instigate synapse damage and memory loss, induce depressive-like behavior in mice. Here, we report that the mechanism underlying this action involves AβO-induced microglial activation, aberrant TNF-α signaling, and decreased brain serotonin levels. Inactivation or ablation of microglia blocked the increase in brain TNF-α and abolished depressive-like behavior induced by AβOs. Significantly, we identified serotonin as a negative regulator of microglial activation. Finally, AβOs failed to induce depressive-like behavior in Toll-like receptor 4-deficient mice and in mice harboring a nonfunctional TLR4 variant in myeloid cells. Results establish that AβOs trigger depressive-like behavior via a double impact on brain serotonin levels and microglial activation, unveiling a cross talk between brain innate immunity and serotonergic signaling as a key player in mood alterations in AD. Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the main cause of dementia in the world. Brain accumulation of amyloid-β oligomers (AβOs) is a major feature in the pathogenesis of AD. Although clinical and epidemiological data suggest a strong connection between AD and depression, the underlying mechanisms linking these two disorders remain largely unknown. Here, we report that aberrant activation of the brain innate immunity and decreased serotonergic tonus in the brain are key players in AβO-induced depressive-like behavior in mice. Our findings may open up new possibilities for the development of effective therapeutics for AD and depression aimed at modulating microglial function. Copyright © 2016 the authors 0270-6474/16/3612106-11$15.00/0.

  12. Disturbance regimes and the historical range and variation in terrestrial ecosystems

    Science.gov (United States)

    Robert Keane

    2017-01-01

    Disturbances are major drivers of ecological dynamics and it is the cumulative effects of disturbances across space and time that define a disturbance regime and dictate biodiversity by influencing the ranges of vegetation structures, compositions, and processes on landscapes. This range and variation of landscape characteristics under historical disturbance regimes...

  13. Functional brain networks and white matter underlying theory-of-mind in autism.

    Science.gov (United States)

    Kana, Rajesh K; Libero, Lauren E; Hu, Christi P; Deshpande, Hrishikesh D; Colburn, Jeffrey S

    2014-01-01

    Human beings constantly engage in attributing causal explanations to one's own and to others' actions, and theory-of-mind (ToM) is critical in making such inferences. Although children learn causal attribution early in development, children with autism spectrum disorders (ASDs) are known to have impairments in the development of intentional causality. This functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) study investigated the neural correlates of physical and intentional causal attribution in people with ASDs. In the fMRI scanner, 15 adolescents and adults with ASDs and 15 age- and IQ-matched typically developing peers made causal judgments about comic strips presented randomly in an event-related design. All participants showed robust activation in bilateral posterior superior temporal sulcus at the temporo-parietal junction (TPJ) in response to intentional causality. Participants with ASDs showed lower activation in TPJ, right inferior frontal gyrus and left premotor cortex. Significantly weaker functional connectivity was also found in the ASD group between TPJ and motor areas during intentional causality. DTI data revealed significantly reduced fractional anisotropy in ASD participants in white matter underlying the temporal lobe. In addition to underscoring the role of TPJ in ToM, this study found an interaction between motor simulation and mentalizing systems in intentional causal attribution and its possible discord in autism.

  14. Functional brain networks involved in decision-making under certain and uncertain conditions

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, Danielle C.; Moss, Mark B.; Killiany, Ronald J. [Boston University School of Medicine, Department of Anatomy and Neurobiology, Boston, MA (United States); Mian, Asim Z. [Boston University School of Medicine, Department of Radiology, Boston, MA (United States); Budson, Andrew E. [VA Boston Healthcare System, Boston, MA (United States)

    2018-01-15

    The aim of this study was to describe imaging markers of decision-making under uncertain conditions in normal individuals, in order to provide baseline activity to compare to impaired decision-making in pathological states. In this cross-sectional study, 19 healthy subjects ages 18-35 completed a novel decision-making card-matching task using a Phillips T3 Scanner and a 32-channel head coil. Functional data were collected in six functional runs. In one condition of the task, the participant was certain of the rule to apply to match the cards; in the other condition, the participant was uncertain. We performed cluster-based comparison of the two conditions using FSL fMRI Expert Analysis Tool and network-based analysis using MATLAB. The uncertain > certain comparison yielded three clusters - a midline cluster that extended through the midbrain, the thalamus, bilateral prefrontal cortex, the striatum, and bilateral parietal/occipital clusters. The certain > uncertain comparison yielded bilateral clusters in the insula, parietal and temporal lobe, as well as a medial frontal cluster. A larger, more connected functional network was found in the uncertain condition. The involvement of the insula, parietal cortex, temporal cortex, ventromedial prefrontal cortex, and orbitofrontal cortex of the certain condition reinforces the notion that certainty is inherently rewarding. For the uncertain condition, the involvement of the prefrontal cortex, parietal cortex, striatum, thalamus, amygdala, and hippocampal involvement was expected, as these are areas involved in resolving uncertainty and rule updating. The involvement of occipital cortical involvement and midbrain involvement may be attributed to increased visual attention and increased motor control. (orig.)

  15. Functional brain networks involved in decision-making under certain and uncertain conditions

    International Nuclear Information System (INIS)

    Farrar, Danielle C.; Moss, Mark B.; Killiany, Ronald J.; Mian, Asim Z.; Budson, Andrew E.

    2018-01-01

    The aim of this study was to describe imaging markers of decision-making under uncertain conditions in normal individuals, in order to provide baseline activity to compare to impaired decision-making in pathological states. In this cross-sectional study, 19 healthy subjects ages 18-35 completed a novel decision-making card-matching task using a Phillips T3 Scanner and a 32-channel head coil. Functional data were collected in six functional runs. In one condition of the task, the participant was certain of the rule to apply to match the cards; in the other condition, the participant was uncertain. We performed cluster-based comparison of the two conditions using FSL fMRI Expert Analysis Tool and network-based analysis using MATLAB. The uncertain > certain comparison yielded three clusters - a midline cluster that extended through the midbrain, the thalamus, bilateral prefrontal cortex, the striatum, and bilateral parietal/occipital clusters. The certain > uncertain comparison yielded bilateral clusters in the insula, parietal and temporal lobe, as well as a medial frontal cluster. A larger, more connected functional network was found in the uncertain condition. The involvement of the insula, parietal cortex, temporal cortex, ventromedial prefrontal cortex, and orbitofrontal cortex of the certain condition reinforces the notion that certainty is inherently rewarding. For the uncertain condition, the involvement of the prefrontal cortex, parietal cortex, striatum, thalamus, amygdala, and hippocampal involvement was expected, as these are areas involved in resolving uncertainty and rule updating. The involvement of occipital cortical involvement and midbrain involvement may be attributed to increased visual attention and increased motor control. (orig.)

  16. Spatiotemporal dissociation of brain activity underlying threat and reward in social anxiety disorder.

    Science.gov (United States)

    A Richey, John; Ghane, Merage; Valdespino, Andrew; Coffman, Marika C; Strege, Marlene V; White, Susan W; Ollendick, Thomas H

    2017-01-01

    Social anxiety disorder (SAD) involves abnormalities in social motivation, which may be independent of well-documented differences in fear and arousal systems. Yet, the neurobiology underlying motivational difficulties in SAD is not well understood. The aim of the current study was to spatiotemporally dissociate reward circuitry dysfunction from alterations in fear and arousal-related neural activity during anticipation and notification of social and non-social reward and punishment. During fMRI acquisition, non-depressed adults with social anxiety disorder (SAD; N = 21) and age-, sex- and IQ-matched control subjects (N = 22) completed eight runs of an incentive delay task, alternating between social and monetary outcomes and interleaved in alternating order between gain and loss outcomes. Adults with SAD demonstrated significantly reduced neural activity in ventral striatum during the anticipation of positive but not negative social outcomes. No differences between the SAD and control groups were observed during anticipation of monetary gain or loss outcomes or during anticipation of negative social images. However, consistent with previous work, the SAD group demonstrated amygdala hyper-activity upon notification of negative social outcomes. Degraded anticipatory processing in bilateral ventral striatum in SAD was constrained exclusively to anticipation of positive social information and dissociable from the effects of negative social outcomes previously observed in the amygdala. Alterations in anticipation-related neural signals may represent a promising target for treatment that is not addressed by available evidence-based interventions, which focus primarily on fear extinction and habituation processes. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  17. Deep Brain Stimulation for Tremor Associated with Underlying Ataxia Syndromes: A Case Series and Discussion of Issues

    Directory of Open Access Journals (Sweden)

    Genko Oyama

    2014-07-01

    Full Text Available Background: Deep brain stimulation (DBS has been utilized to treat various symptoms in patients suffering from movement disorders such as Parkinson's disease, dystonia, and essential tremor. Though ataxia syndromes have not been formally or frequently addressed with DBS, there are patients with ataxia and associated medication refractory tremor or dystonia who may potentially benefit from therapy.Methods: A retrospective database review was performed, searching for cases of ataxia where tremor and/or dystonia were addressed by utilizing DBS at the University of Florida Center for Movement Disorders and Neurorestoration between 2008 and 2011. Five patients were found who had DBS implantation to address either medication refractory tremor or dystonia. The patient's underlying diagnoses included spinocerebellar ataxia type 2 (SCA2, fragile X associated tremor ataxia syndrome (FXTAS, a case of idiopathic ataxia (ataxia not otherwise specified [NOS], spinocerebellar ataxia type 17 (SCA17, and a senataxin mutation (SETX.Results: DBS improved medication refractory tremor in the SCA2 and the ataxia NOS patients. The outcome for the FXTAS patient was poor. DBS improved dystonia in the SCA17 and SETX patients, although dystonia did not improve in the lower extremities of the SCA17 patient. All patients reported a transient gait dysfunction postoperatively, and there were no reports of improvement in ataxia‐related symptoms.Discussion: DBS may be an option to treat tremor, inclusive of dystonic tremor in patients with underlying ataxia; however, gait and other symptoms may possibly be worsened.Erratum published on July 27, 2016

  18. The content of catecholamines in the adrenal glands and sections of the brain under hypokinesia and injection of some neurotropic agents

    Science.gov (United States)

    Melnik, B. E.; Paladiy, E. S.

    1980-01-01

    The dynamics of catecholamine content were studied in the adrenal glands and in various region of the brain of white rats under hypokinesia and injections of neurotropic agents. Profound changes in body catecholamine balance occured as a result of prolonged acute restriction of motor activity. Adrenalin retention increased and noradrenanalin retention decreased in the adrenal glands, hypothalamus, cerebral hemispheres, cerebellum and medulla oblongata. Observed alterations in catecholamine retention varied depending upon the type of neurotropic substance utilized. Mellipramine increased catecholamine retention in the tissues under observation while spasmolytin brought about an increase in adrenalin concentration in the adrenals and a decrease in the brain.

  19. Postoperative circadian disturbances

    DEFF Research Database (Denmark)

    Gögenur, Ismail

    2010-01-01

    ) in urine the first night after both minor and major surgery. This delay after major surgery was correlated to the duration of surgery. The amplitude in the melatonin rhythm was unchanged the first night but increased in the second night after major surgery. The amplitude in AMT6s was reduced the first...... night after minimally invasive surgery. The core body temperature rhythm was disturbed after both major and minor surgery. There was a change in the sleep wake cycle with a significantly increased duration of REM-sleep in the day and evening time after major surgery compared with preoperatively....... There was also a shift in the autonomic nervous balance after major surgery with a significantly increased number of myocardial ischaemic episodes during the nighttime period. The circadian activity rhythm was also disturbed after both minor and major surgery. The daytime AMT6s excretion in urine after major...

  20. 300 Area Disturbance Report

    Energy Technology Data Exchange (ETDEWEB)

    LL Hale; MK Wright; NA Cadoret

    1999-01-07

    The objective of this study was to define areas of previous disturbance in the 300 Area of the U.S. Department of Energy (DOE) Hanford Site to eliminate these areas from the cultural resource review process, reduce cultural resource monitoring costs, and allow cultural resource specialists to focus on areas where subsurface disturbance is minimal or nonexistent. Research into available sources suggests that impacts from excavations have been significant wherever the following construction activities have occurred: building basements and pits, waste ponds, burial grounds, trenches, installation of subsurface pipelines, power poles, water hydrants, and well construction. Beyond the areas just mentioned, substrates in the' 300 Area consist of a complex, multidimen- sional mosaic composed of undisturbed stratigraphy, backfill, and disturbed sediments; Four Geographic Information System (GIS) maps were created to display known areas of disturbance in the 300 Area. These maps contain information gleaned from a variety of sources, but the primary sources include the Hanford GIS database system, engineer drawings, and historic maps. In addition to these maps, several assumptions can be made about areas of disturbance in the 300 Area as a result of this study: o o Buried pipelines are not always located where they are mapped. As a result, cultural resource monitors or specialists should not depend on maps depicting subsurface pipelines for accurate locations of previous disturbance. Temporary roads built in the early 1940s were placed on layers of sand and gravel 8 to 12 in. thick. Given this information, it is likely that substrates beneath these early roads are only minimally disturbed. Building foundations ranged from concrete slabs no more than 6 to 8 in. thick to deeply excavated pits and basements. Buildings constructed with slab foundations are more numerous than may be expected, and minimally disturbed substrates may be expected in these locations. Historic

  1. Rehabilitation of disturbed land

    Energy Technology Data Exchange (ETDEWEB)

    Bell, L.C. [Australian Centre for Minesite Rehabilitation Research, Kenmore, Qld. (Australia)

    1996-12-31

    This chapter discusses the objectives of rehabilitation of lands in Australian disturbed by mining. It gives advice on rehabilitation planning and outlines the factors influencing post-mining land use and rehabilitation strategies, including climate, topography, hydrology, properties of soils, overburden and mineral processing wastes, flora and fauna and social considerations. Finally, the key elements of a rehabilitation plan are discussed, namely: landscape reconstruction; selective handling of overburden; and establishment and maintenance of a vegetative cover. 12 figs., 1 tab.

  2. Saffron extracts effect on processes in brain structures under exposure to x-ray irradiation of medium dose

    International Nuclear Information System (INIS)

    Rzaeva, A.

    2012-01-01

    Full text : Process of ionizing radiation on live organism is accompanied by interaction of free radicals (FR) with molecules of proteins, nucleic acids and lipids. In its turn, FR occurs subsequently by excitation and ionization of molecules. Besides all, ionizing radiation becomes the reason of accumulation in body tissues of toxic products (radio toxic) that strengthen beam effect. Endogenous antioxidatic system (EAS) of an organism plays a significant role in detoxication of redundant quantity of FR formed in cells. Ionizing radiation influences negatively to high-grade functioning of basic EAS enzymes. Besides, during radiation injuries, the level of FR increases. In case of its exhaustion and lack insertion of natural antioxidants (bioantioxidants) to organism plays a therapeutic role. Thus, in our work we used saffron extract in experiments with the purpose of studying its effect on the activity of antioxidant enzymes at radiation influence. Determination of proteins has been carried out with Lowry method. In the result of carried-out researches, it has been detected fixed dynamics of activity change of antioxidant enzymes in various brain structures of white rats within x-ray irradiation at medium dose, and joint impact of x-ray radiation of saffron extract. Under exposure to X-ray irradiation of medium dose in some brain structures decreasing of catalase activity was revealed. Tendency towards decreasing is more developed on the 3th day of irradiation. As opposed to catalase activity GPO activity was increased. Insertion of saffron extract to experimental animals (for 21 days before irradiation) conducive to prevention the decreasing of catalase activity stabilizes GPO activity and exerts an effective influence. Thereby, bioantioxidants have significant role in the regulation of processes occurred in tissues and cells under the influence of extreme factors. Antioxidant protection system of organism carries out continuous protection of organism from toxic

  3. Cerebral Glucose Metabolism and Sedation in Brain-injured Patients: A Microdialysis Study.

    Science.gov (United States)

    Hertle, Daniel N; Santos, Edgar; Hagenston, Anna M; Jungk, Christine; Haux, Daniel; Unterberg, Andreas W; Sakowitz, Oliver W

    2015-07-01

    Disturbed brain metabolism is a signature of primary damage and/or precipitates secondary injury processes after severe brain injury. Sedatives and analgesics target electrophysiological functioning and are as such well-known modulators of brain energy metabolism. Still unclear, however, is how sedatives impact glucose metabolism and whether they differentially influence brain metabolism in normally active, healthy brain and critically impaired, injured brain. We therefore examined and compared the effects of anesthetic drugs under both critical (1 mmol/L) extracellular brain glucose levels. We performed an explorative, retrospective analysis of anesthetic drug administration and brain glucose concentrations, obtained by bedside microdialysis, in 19 brain-injured patients. Our investigations revealed an inverse linear correlation between brain glucose and both the concentration of extracellular glutamate (Pearson r=-0.58, P=0.01) and the lactate/glucose ratio (Pearson r=-0.55, P=0.01). For noncritical brain glucose levels, we observed a positive linear correlation between midazolam dose and brain glucose (Pbrain glucose levels, extracellular brain glucose was unaffected by any type of sedative. These findings suggest that the use of anesthetic drugs may be of limited value in attempts to influence brain glucose metabolism in injured brain tissue.

  4. Understanding health-related quality of life in caregivers of civilians and service members/veterans with traumatic brain injury: Establishing the reliability and validity of PROMIS Fatigue and Sleep Disturbance item banks.

    Science.gov (United States)

    Carlozzi, Noelle E; Ianni, Phillip A; Tulsky, David S; Brickell, Tracey A; Lange, Rael T; French, Louis M; Cella, David; Kallen, Michael A; Miner, Jennifer A; Kratz, Anna L

    2018-06-19

    To examine the reliability and validity of Patient Reported Outcomes Measurement Information System (PROMIS) measures of sleep disturbance and fatigue in TBI caregivers and to determine the severity of fatigue and sleep disturbance in these caregivers. Cross-sectional survey data collected through an online data capture platform. Four rehabilitation hospitals and Walter Reed National Military Medical Center. Caregivers (N=560) of civilians (n=344) and service member/veterans (n=216) with TBI. Not Applicable MAIN OUTCOME MEASURES: PROMIS sleep and fatigue measures administered as both computerized adaptive tests (CATs) and 4-item short forms (SFs). For both samples, floor and ceiling effects for the PROMIS measures were low (internal consistency was very good (all alphas ≥0.80), and test-retest reliability was acceptable (all r≥0.70 except for the fatigue CAT in the service member/veteran sample r=0.63). Convergent validity was supported by moderate correlations between the PROMIS and related measures. Discriminant validity was supported by low correlations between PROMIS measures and measures of dissimilar constructs. PROMIS scores indicated significantly worse sleep and fatigue for those caring for someone with high levels versus low levels of impairment. Findings support the reliability and validity of the PROMIS CAT and SF measures of sleep disturbance and fatigue in caregivers of civilians and service members/veterans with TBI. Copyright © 2018. Published by Elsevier Inc.

  5. Memory and learning disturbances in multiple sclerosis

    International Nuclear Information System (INIS)

    Izquierdo, Guillermo; Mir, Jordi; Gonzalez, Manuel; Martinez-Parra, Carlos; Campoy, Francisco Jr

    1991-01-01

    Thirty-five patients with definite multiple sclerosis (MS) were studied. They underwent neuropsychological testing and magnetic resonance imaging (MRI). The MRI findings at different brain areas levels were compared with the neuropsychological findings. A quantitative system was used to measure MRI-MS lesions. In this series, a positive correlation was established between memory and learning disturbances measured by Battery 144, and the lesions measured by MRI (total, hemispheric and , particularly, periventricular lesions). MRI can detect MS lesions, and this study shows that a correlation between MRI and neuropsychological findings is possible if quantitative methods are used to distinguish different MS involvement areas in relation to neuropsychological tasks. These findings suggest that hemispheric lesions in MS produce cognitive disturbances and MRI could be a useful tool in predicting memory and learning impairment. (author). 20 refs.; 1 fig.; 2 tabs

  6. Upregulation of transcription factor NRF2-mediated oxidative stress response pathway in rat brain under short-term chronic hypobaric hypoxia.

    Science.gov (United States)

    Sethy, Niroj Kumar; Singh, Manjulata; Kumar, Rajesh; Ilavazhagan, Govindasamy; Bhargava, Kalpana

    2011-03-01

    Exposure to high altitude (and thus hypobaric hypoxia) induces electrophysiological, metabolic, and morphological modifications in the brain leading to several neurological clinical syndromes. Despite the known fact that hypoxia episodes in brain are a common factor for many neuropathologies, limited information is available on the underlying cellular and molecular mechanisms. In this study, we investigated the temporal effect of short-term (0-12 h) chronic hypobaric hypoxia on global gene expression of rat brain followed by detailed canonical pathway analysis and regulatory network identification. Our analysis revealed significant alteration of 33, 17, 53, 81, and 296 genes (p stress response pathway and genes were detected at all time points suggesting activation of NRF2-ARE antioxidant defense system. The results were further validated by assessing the expression levels of selected genes in temporal as well as brain regions with quantitative RT-PCR and western blot. In conclusion, our whole brain approach with temporal monitoring of gene expression patterns during hypobaric hypoxia has resulted in (1) deciphering sequence of pathways and signaling networks activated during onset of hypoxia, and (2) elucidation of NRF2-orchestrated antioxidant response as a major intrinsic defense mechanism. The results of this study will aid in better understanding and management of hypoxia-induced brain pathologies.

  7. Temporal entrainment of cognitive functions: musical mnemonics induce brain plasticity and oscillatory synchrony in neural networks underlying memory.

    Science.gov (United States)

    Thaut, Michael H; Peterson, David A; McIntosh, Gerald C

    2005-12-01

    In a series of experiments, we have begun to investigate the effect of music as a mnemonic device on learning and memory and the underlying plasticity of oscillatory neural networks. We used verbal learning and memory tests (standardized word lists, AVLT) in conjunction with electroencephalographic analysis to determine differences between verbal learning in either a spoken or musical (verbal materials as song lyrics) modality. In healthy adults, learning in both the spoken and music condition was associated with significant increases in oscillatory synchrony across all frequency bands. A significant difference between the spoken and music condition emerged in the cortical topography of the learning-related synchronization. When using EEG measures as predictors during learning for subsequent successful memory recall, significantly increased coherence (phase-locked synchronization) within and between oscillatory brain networks emerged for music in alpha and gamma bands. In a similar study with multiple sclerosis patients, superior learning and memory was shown in the music condition when controlled for word order recall, and subjects were instructed to sing back the word lists. Also, the music condition was associated with a significant power increase in the low-alpha band in bilateral frontal networks, indicating increased neuronal synchronization. Musical learning may access compensatory pathways for memory functions during compromised PFC functions associated with learning and recall. Music learning may also confer a neurophysiological advantage through the stronger synchronization of the neuronal cell assemblies underlying verbal learning and memory. Collectively our data provide evidence that melodic-rhythmic templates as temporal structures in music may drive internal rhythm formation in recurrent cortical networks involved in learning and memory.

  8. miR-Let7A Controls the Cell Death and Tight Junction Density of Brain Endothelial Cells under High Glucose Condition.

    Science.gov (United States)

    Song, Juhyun; Yoon, So Ra; Kim, Oh Yoen

    2017-01-01

    Hyperglycemia-induced stress in the brain of patients with diabetes triggers the disruption of blood-brain barrier (BBB), leading to diverse neurological diseases including stroke and dementia. Recently, the role of microRNA becomes an interest in the research for deciphering the mechanism of brain endothelial cell damage under hyperglycemia. Therefore, we investigated whether mircoRNA Let7A (miR-Let7A) controls the damage of brain endothelial (bEnd.3) cells against high glucose condition. Cell viability, cell death marker expressions (p-53, Bax, and cleaved poly ADP-ribose polymerase), the loss of tight junction proteins (ZO-1 and claudin-5), proinflammatory response (interleukin-6, tumor necrosis factor- α ), inducible nitric oxide synthase, and nitrite production were confirmed using MTT, reverse transcription-PCR, quantitative-PCR, Western blotting, immunofluorescence, and Griess reagent assay. miR-Let7A overexpression significantly prevented cell death and loss of tight junction proteins and attenuated proinflammatory response and nitrite production in the bEnd.3 cells under high glucose condition. Taken together, we suggest that miR-Let7A may attenuate brain endothelial cell damage by controlling cell death signaling, loss of tight junction proteins, and proinflammatory response against high glucose stress. In the future, the manipulation of miR-Let7A may be a novel solution in controlling BBB disruption which leads to the central nervous system diseases.

  9. Sleep Disturbances in Neurodevelopmental Disorders.

    Science.gov (United States)

    Robinson-Shelton, Althea; Malow, Beth A

    2016-01-01

    Sleep disturbances are extremely prevalent in children with neurodevelopmental disorders compared to typically developing children. The diagnostic criteria for many neurodevelopmental disorders include sleep disturbances. Sleep disturbance in this population is often multifactorial and caused by the interplay of genetic, neurobiological and environmental overlap. These disturbances often present either as insomnia or hypersomnia. Different sleep disorders present with these complaints and based on the clinical history and findings from diagnostic tests, an appropriate diagnosis can be made. This review aims to provide an overview of causes, diagnosis, and treatment of sleep disturbances in neurodevelopmental disorders that present primarily with symptoms of hypersomnia and/or insomnia.

  10. Defining Disturbance for Microbial Ecology.

    Science.gov (United States)

    Plante, Craig J

    2017-08-01

    Disturbance can profoundly modify the structure of natural communities. However, microbial ecologists' concept of "disturbance" has often deviated from conventional practice. Definitions (or implicit usage) have frequently included climate change and other forms of chronic environmental stress, which contradict the macrobiologist's notion of disturbance as a discrete event that removes biomass. Physical constraints and disparate biological characteristics were compared to ask whether disturbances fundamentally differ in microbial and macroorganismal communities. A definition of "disturbance" for microbial ecologists is proposed that distinguishes from "stress" and other competing terms, and that is in accord with definitions accepted by plant and animal ecologists.

  11. Sleep disturbance induces neuroinflammation and impairment of learning and memory.

    Science.gov (United States)

    Zhu, Biao; Dong, Yuanlin; Xu, Zhipeng; Gompf, Heinrich S; Ward, Sarah A P; Xue, Zhanggang; Miao, Changhong; Zhang, Yiying; Chamberlin, Nancy L; Xie, Zhongcong

    2012-12-01

    Hospitalized patients can develop cognitive function decline, the mechanisms of which remain largely to be determined. Sleep disturbance often occurs in hospitalized patients, and neuroinflammation can induce learning and memory impairment. We therefore set out to determine whether sleep disturbance can induce neuroinflammation and impairment of learning and memory in rodents. Five to 6-month-old wild-type C57BL/6J male mice were used in the studies. The mice were placed in rocking cages for 24 h, and two rolling balls were present in each cage. The mice were tested for learning and memory function using the Fear Conditioning Test one and 7 days post-sleep disturbance. Neuroinflammation in the mouse brain tissues was also determined. Of the Fear Conditioning studies at one day and 7 days after sleep disturbance, twenty-four hour sleep disturbance decreased freezing time in the context test, which assesses hippocampus-dependent learning and memory; but not the tone test, which assesses hippocampus-independent learning and memory. Sleep disturbance increased pro-inflammatory cytokine IL-6 levels and induced microglia activation in the mouse hippocampus, but not the cortex. These results suggest that sleep disturbance induces neuroinflammation in the mouse hippocampus, and impairs hippocampus-dependent learning and memory in mice. Pending further studies, these findings suggest that sleep disturbance-induced neuroinflammation and impairment of learning and memory may contribute to the development of cognitive function decline in hospitalized patients. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Disturbance maintains alternative biome states.

    Science.gov (United States)

    Dantas, Vinícius de L; Hirota, Marina; Oliveira, Rafael S; Pausas, Juli G

    2016-01-01

    Understanding the mechanisms controlling the distribution of biomes remains a challenge. Although tropical biome distribution has traditionally been explained by climate and soil, contrasting vegetation types often occur as mosaics with sharp boundaries under very similar environmental conditions. While evidence suggests that these biomes are alternative states, empirical broad-scale support to this hypothesis is still lacking. Using community-level field data and a novel resource-niche overlap approach, we show that, for a wide range of environmental conditions, fire feedbacks maintain savannas and forests as alternative biome states in both the Neotropics and the Afrotropics. In addition, wooded grasslands and savannas occurred as alternative grassy states in the Afrotropics, depending on the relative importance of fire and herbivory feedbacks. These results are consistent with landscape scale evidence and suggest that disturbance is a general factor driving and maintaining alternative biome states and vegetation mosaics in the tropics. © 2015 John Wiley & Sons Ltd/CNRS.

  13. Model reduction of nonlinear systems subject to input disturbances

    KAUST Repository

    Ndoye, Ibrahima; Laleg-Kirati, Taous-Meriem

    2017-01-01

    The method of convex optimization is used as a tool for model reduction of a class of nonlinear systems in the presence of disturbances. It is shown that under some conditions the nonlinear disturbed system can be approximated by a reduced order

  14. Temporal evolution of brain reorganization under cross-modal training: insights into the functional architecture of encoding and retrieval networks

    Science.gov (United States)

    Likova, Lora T.

    2015-03-01

    This study is based on the recent discovery of massive and well-structured cross-modal memory activation generated in the primary visual cortex (V1) of totally blind people as a result of novel training in drawing without any vision (Likova, 2012). This unexpected functional reorganization of primary visual cortex was obtained after undergoing only a week of training by the novel Cognitive-Kinesthetic Method, and was consistent across pilot groups of different categories of visual deprivation: congenitally blind, late-onset blind and blindfolded (Likova, 2014). These findings led us to implicate V1 as the implementation of the theoretical visuo-spatial 'sketchpad' for working memory in the human brain. Since neither the source nor the subsequent 'recipient' of this non-visual memory information in V1 is known, these results raise a number of important questions about the underlying functional organization of the respective encoding and retrieval networks in the brain. To address these questions, an individual totally blind from birth was given a week of Cognitive-Kinesthetic training, accompanied by functional magnetic resonance imaging (fMRI) both before and just after training, and again after a two-month consolidation period. The results revealed a remarkable temporal sequence of training-based response reorganization in both the hippocampal complex and the temporal-lobe object processing hierarchy over the prolonged consolidation period. In particular, a pattern of profound learning-based transformations in the hippocampus was strongly reflected in V1, with the retrieval function showing massive growth as result of the Cognitive-Kinesthetic memory training and consolidation, while the initially strong hippocampal response during tactile exploration and encoding became non-existent. Furthermore, after training, an alternating patch structure in the form of a cascade of discrete ventral regions underwent radical transformations to reach complete functional

  15. Smith predictor-based multiple periodic disturbance compensation for long dead-time processes

    Science.gov (United States)

    Tan, Fang; Li, Han-Xiong; Shen, Ping

    2018-05-01

    Many disturbance rejection methods have been proposed for processes with dead-time, while these existing methods may not work well under multiple periodic disturbances. In this paper, a multiple periodic disturbance rejection is proposed under the Smith predictor configuration for processes with long dead-time. One feedback loop is added to compensate periodic disturbance while retaining the advantage of the Smith predictor. With information of the disturbance spectrum, the added feedback loop can remove multiple periodic disturbances effectively. The robust stability can be easily maintained through the rigorous analysis. Finally, simulation examples demonstrate the effectiveness and robustness of the proposed method for processes with long dead-time.

  16. Disturbance hydrology: Preparing for an increasingly disturbed future

    Science.gov (United States)

    Mirus, Benjamin B.; Ebel, Brian A.; Mohr, Christian H.; Zegre, Nicolas

    2017-01-01

    This special issue is the result of several fruitful conference sessions on disturbance hydrology, which started at the 2013 AGU Fall Meeting in San Francisco and have continued every year since. The stimulating presentations and discussions surrounding those sessions have focused on understanding both the disruption of hydrologic functioning following discrete disturbances, as well as the subsequent recovery or change within the affected watershed system. Whereas some hydrologic disturbances are directly linked to anthropogenic activities, such as resource extraction, the contributions to this special issue focus primarily on those with indirect or less pronounced human involvement, such as bark-beetle infestation, wildfire, and other natural hazards. However, human activities are enhancing the severity and frequency of these seemingly natural disturbances, thereby contributing to acute hydrologic problems and hazards. Major research challenges for our increasingly disturbed planet include the lack of continuous pre- and post-disturbance monitoring, hydrologic impacts that vary spatially and temporally based on environmental and hydroclimatic conditions, and the preponderance of overlapping or compounding disturbance sequences. In addition, a conceptual framework for characterizing commonalities and differences among hydrologic disturbances is still in its infancy. In this introduction to the special issue, we advance the fusion of concepts and terminology from ecology and hydrology to begin filling this gap. We briefly explore some preliminary approaches for comparing different disturbances and their hydrologic impacts, which provides a starting point for further dialogue and research progress.

  17. Ionizing radiation action of transport systems of Na+ and K+ of neutronal membranes. Potassium ions reaccumulation with brain slices

    International Nuclear Information System (INIS)

    Dvoretsky, A.I.; Shainskaya, A.M.; Ananyeva, T.V.; Kulikova, I.A.

    1990-01-01

    The biological effect of ionizing radiation (IR) on the Na,K pump of the surviving brain cortex slices was investigated. It was shown that IR leads to marked disturbances in the Na,K pump activity and causes essential phasic changes in potassium ion reaccumulation by brain slices in different time after exposure. The possibility of modelling the radiation effect with the help of phospholipase A2 and decylenic acid was shown. The mechanisms of the functional disturbance of Na-K pump of nerve cells after irradiation are under discussion. (author)

  18. Vascular impairment as a pathological mechanism underlying long-lasting cognitive dysfunction after pediatric traumatic brain injury.

    Science.gov (United States)

    Ichkova, Aleksandra; Rodriguez-Grande, Beatriz; Bar, Claire; Villega, Frederic; Konsman, Jan Pieter; Badaut, Jerome

    2017-12-01

    Traumatic brain injury (TBI) is the leading cause of death and disability in children. Indeed, the acute mechanical injury often evolves to a chronic brain disorder with long-term cognitive, emotional and social dysfunction even in the case of mild TBI. Contrary to the commonly held idea that children show better recovery from injuries than adults, pediatric TBI patients actually have worse outcome than adults for the same injury severity. Acute trauma to the young brain likely interferes with the fine-tuned developmental processes and may give rise to long-lasting consequences on brain's function. This review will focus on cerebrovascular dysfunction as an important early event that may lead to long-term phenotypic changes in the brain after pediatric TBI. These, in turn may be associated with accelerated brain aging and cognitive dysfunction. Finally, since no effective treatments are currently available, understanding the unique pathophysiological mechanisms of pediatric TBI is crucial for the development of new therapeutic options. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. An assessment of the iPad 2 as a CT teleradiology tool using brain CT with subtle intracranial hemorrhage under conventional illumination.

    Science.gov (United States)

    Park, Joon Bum; Choi, Hyuk Joong; Lee, Jeong Hun; Kang, Bo Seung

    2013-08-01

    We examined the potential of the iPad 2 as a teleradiologic tool for evaluating brain computed tomography (CT) with subtle hemorrhage in the conventional lighting conditions which are common situations in the remote CT reading. The comparison of the clinician's performance was undertaken through detecting hemorrhage by the iPad 2 and the clinical liquid crystal display (LCD) monitor. We selected 100 brain CT exams performed for head trauma or headache. Fifty had subtle radiological signs of intracranial hemorrhage (ICH), while the other 50 showed no significant abnormality. Five emergency medicine physicians reviewed these brain CT scans using the iPad 2 and the LCD monitor, scoring the probability of ICH on each exam on a five-point scale. Result showed high sensitivities and specificities in both devices. We generated receiver operating characteristic curves and calculated the average area under the curve of the iPad 2 and the LCD (0.935 and 0.900). Using the iPad 2 and reliable internet connectivity, clinicians can provide remote evaluation of brain CT with subtle hemorrhage under suboptimal viewing condition. Considering the distinct advantages of the iPad 2, the popular out-of-hospital use of mobile CT teleradiology would be anticipated soon.

  20. Patterns of diversity and regeneration in unmanaged moist deciduous forests in response to disturbance in Shiwalik Himalayas, India

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar Gautam

    2016-06-01

    Full Text Available We studied vegetation attributes in Indian tropical moist deciduous unmanaged forests to determine the influence of forest disturbances on them. We enumerated 89 species: 72 under moderate disturbance and 54 under least disturbance. The data from 3399 stems [>5 cm diameter at breast height (dbh] decreased linearly along the disturbance gradient. The basal area was largest in least disturbed forests (61 m2/ha and smallest in intensely disturbed forest (41 m2/ha. Under least and moderate disturbance, tree density-diameter distribution had negative exponential curves, whereas highly disturbed forests had unimodal-shaped curves where a few trees 5–10 cm and >50 cm in diameter were recorded. Most tree and shrub layer species under heavy and intense disturbance had impaired regeneration. Moderate disturbance intensity thus apparently benefits species diversity, stand density, and regeneration. Decline in seedlings and saplings, especially tree species, threaten forest regeneration and the maintenance of species diversity of unmanaged tropical forests.

  1. Sleep Disturbances in Mood Disorders.

    Science.gov (United States)

    Rumble, Meredith E; White, Kaitlin Hanley; Benca, Ruth M

    2015-12-01

    The article provides an overview of common and differentiating self-reported and objective sleep disturbances seen in mood-disordered populations. The importance of considering sleep disturbances in the context of mood disorders is emphasized, because a large body of evidence supports the notion that sleep disturbances are a risk factor for onset, exacerbation, and relapse of mood disorders. In addition, potential mechanisms for sleep disturbance in depression, other primary sleep disorders that often occur with mood disorders, effects of antidepressant and mood-stabilizing drugs on sleep, and the adjunctive effect of treating sleep in patients with mood disorders are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Disturbance Hydrology: Preparing for an Increasingly Disturbed Future

    Science.gov (United States)

    Mirus, Benjamin B.; Ebel, Brian A.; Mohr, Christian H.; Zegre, Nicolas

    2017-12-01

    This special issue is the result of several fruitful conference sessions on disturbance hydrology, which started at the 2013 AGU Fall Meeting in San Francisco and have continued every year since. The stimulating presentations and discussions surrounding those sessions have focused on understanding both the disruption of hydrologic functioning following discrete disturbances, as well as the subsequent recovery or change within the affected watershed system. Whereas some hydrologic disturbances are directly linked to anthropogenic activities, such as resource extraction, the contributions to this special issue focus primarily on those with indirect or less pronounced human involvement, such as bark-beetle infestation, wildfire, and other natural hazards. However, human activities are enhancing the severity and frequency of these seemingly natural disturbances, thereby contributing to acute hydrologic problems and hazards. Major research challenges for our increasingly disturbed planet include the lack of continuous pre and postdisturbance monitoring, hydrologic impacts that vary spatially and temporally based on environmental and hydroclimatic conditions, and the preponderance of overlapping or compounding disturbance sequences. In addition, a conceptual framework for characterizing commonalities and differences among hydrologic disturbances is still in its infancy. In this introduction to the special issue, we advance the fusion of concepts and terminology from ecology and hydrology to begin filling this gap. We briefly explore some preliminary approaches for comparing different disturbances and their hydrologic impacts, which provides a starting point for further dialogue and research progress.

  3. Brain atrophy during aging

    International Nuclear Information System (INIS)

    Matsuzawa, Taiju; Yamada, Kenji; Yamada, Susumu; Ono, Shuichi; Takeda, Shunpei; Hatazawa, Jun; Ito, Masatoshi; Kubota, Kazuo

    1985-01-01

    Age-related brain atrophy was investigated in thousands of persons with no neurologic disturbances using X-CT and NMR-CT. Brain atrophy was minimal in 34-35 years old in both sexes, increased exponentially to the increasing age after 34-35 years, and probably resulted in dementia, such as vascular or multi-infarct dementia. Brain atrophy was significantly greater in men than in women at all ages. Brain volumes were maximal in 34-35 years old in both sexes with minimal individual differences which increased proportionally to the increasing age. Remarkable individual differences in the extent of brain atrophy (20 - 30 %) existed among aged subjects. Progression of brain atrophy was closely related to loss of mental activities independently of their ages. Our longitudinal study has revealed that the most important factors promoting brain atrophy during aging was the decrease in the cerebral blood flow. We have classified brain atrophy into sulcal and cisternal enlargement type (type I), ventricular enlargement type (type II) and mixed type (type III) according to the clinical study using NMR-CT. Brain atrophy of type I progresses significantly in almost all of the geriatric disorders. This type of brain atrophy progresses significantly in heavy smokers and drinkers. Therefore this type of brain atrophy might be caused by the decline in the blood flow in anterior and middle cerebral arteries. Brain atrophy of type II was caused by the disturbance of cerebrospinal fluid circulation after cerebral bleeding and subarachnoid bleeding. Brain atrophy of type III was seen in vascular dementia or multi-infarct dementia which was caused by loss of brain matter after multiple infarction, and was seen also in dementia of Alzheimer type in which degeneration of nerve cells results in brain atrophy. NMR-CT can easily detect small infarction (lacunae) and edematous lesions resulting from ischemia and hypertensive encephalopathy. (J.P.N.)

  4. Ionospheric disturbance dynamo

    International Nuclear Information System (INIS)

    Blanc, M.; Richmond, A.D.

    1980-01-01

    A numerical simulation study of the thermospheric winds produced by auroral heating during magnetic storms, and of their global dynamo effects, establishes the main features of the ionospheric disturbanc dynamo. Driven by auroral heating, a Hadley cell is created with equatorward winds blowing above about 120 km at mid-latitudes. The transport of angular momentum by these winds produces a subrotation of the midlatitude thermosphere, or westward motion with respect to the earth. The westward winds in turn drive equatorward Pedersen currents which accumulate charge toward the equator, resulting in the generation of a poleward electric field, a westward E x B drift, and an eastward current. When realistic local time conductivity variations are simulated, the eastward mid-latitude current is found to close partly via lower latitudes, resulting in an 'anti-Sq' type of current vortex. Both electric field and current at low latitudes thus vary in opposition to their normal quiet-day behavior. This total pattern of distrubance winds, electric fields, and currents is superimposed upon the background quiet-day pattern. When the neutral winds are artificially confined on the nightside, the basic pattern of predominantly westward E x B plasma drifts still prevails on the nightside but no longer extends into the dayside. Considerable observational evidence exists, suggesting that the ionospheric disturbance dynamo has an appreciable influence on storm-time ionospheric electric fields at middle and low latitudes

  5. RHYTHM DISTURBANCES DURING COLONOSCOPY

    Directory of Open Access Journals (Sweden)

    D. Jordanov

    2012-08-01

    Full Text Available Purpose: The purpose of this study is to assess the risk of inducing rhythm disturbances of the heart during colonoscopy.Patients and methods used: 80 patients had undergone colonoscopyper formed by two experienced specialists of endoscopy for the period from March to December 2011. The endoscopies were performed without premedication and sedation. Holter was placed on each patient one hour before the endoscopic examination, and the record continued one hour after the manipulation. The blood pressure was measured before, during and after the procedure.Results: During colonoscopy 25 patients (31,25% manifested rhythm disorders. In 15 patients (18,75% sinus tachycardia occurred. In 7 patients (8,75% suptraventricular extra systoles were observed and in 3 patients (3,75% - ventricular extra systoles. No ST-T changes were found. Highest values of the blood pressure were measured before and during the endoscopy, but the values did not exceed 160/105 mmHg. In 10 patients (12,5% a hypotensive reaction was observed, bur the values were not lower than 80/ 50. In 2 patients there was a short bradycardia with a heart frequency 50-55 /min.Conclusions: Our results showed that the rhythm disorders during lower colonoscopy occur in approximately 1/3 of the examined patients, there is an increase or decrease of the blood pressure in some patients, but that doesn’t require physician’s aid and the examination can be carried out safely without monitoring.

  6. Equivalent brain SPECT perfusion changes underlying therapeutic efficiency in pharmacoresistant depression using either high-frequency left or low-frequency right prefrontal rTMS.

    Science.gov (United States)

    Richieri, Raphaëlle; Boyer, Laurent; Padovani, Romain; Adida, Marc; Colavolpe, Cécile; Mundler, Olivier; Lançon, Christophe; Guedj, Eric

    2012-12-03

    Functional neuroimaging studies have suggested similar mechanisms underlying antidepressant effects of distinct therapeutics. This study aimed to determine and compare functional brain patterns underlying the antidepressant response of 2 distinct protocols of repetitive transcranial magnetic stimulation (rTMS). 99mTc-ECD SPECT was performed before and after rTMS of dorsolateral prefrontal cortex in 61 drug-resistant right-handed patients with major depression, using high frequency (10Hz) left-side stimulation in 33 patients, and low frequency (1Hz) right-side stimulation in 28 patients. Efficiency of rTMS response was defined as at least 50% reduction of the baseline Beck Depression Inventory score. We compared the whole-brain voxel-based brain SPECT changes in perfusion after rTMS, between responders and non-responders in the whole sample (pleft- and right-stimulation. Before rTMS, the left- and right-prefrontal stimulation groups did not differ from clinical data and brain SPECT perfusion. rTMS efficiency (evaluated on % of responders) was statistically equivalent in the two groups of patients. In the whole-group of responder patients, a perfusion decrease was found after rTMS, in comparison to non-responders, within the left perirhinal cortex (BA35, BA36). This result was secondarily confirmed separately in the two subgroups, i.e. after either left stimulation (p=0.017) or right stimulation (pbrain functional changes associated to antidepressive efficiency, consisting to a remote brain limbic activity decrease within the left perirhinal cortex. However, these results will have to be confirmed in a double-blind randomized trial using a sham control group. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Sleep disturbances and glucose homeostasis

    NARCIS (Netherlands)

    Barf, R. Paulien; Scheurink, Anton J.W.

    2011-01-01

    Sleep disturbances, induced by either lifestyle, shift work or sleeping disorders, have become more prevalent in our 24/7 Western society. Sleep disturbances are associated with impaired health including metabolic diseases such as obesity and type 2 diabetes. The question remains whether there is a

  8. Myostatin and carbohydrate disturbances.

    Science.gov (United States)

    Assyov, Yavor S; Velikova, Tsvetelina V; Kamenov, Zdravko A

    2017-05-01

    Purpose/aim of the study: Myostatin is a myokine that has been shown to inhibit muscle growth and to have potentially deleterious effects on metabolism. The aim of the current study was to compare its circulating serum levels in subjects from the whole spectrum of carbohydrate disturbances leading to diabetes. A total of 159 age-, sex-, and BMI-matched subjects participated in the study - 50 had normal glucose tolerance (NGT), 60 had prediabetes (PreDM), and 49 had type 2 diabetes mellitus (T2D). Oral glucose tolerance testing was used to determine glucose tolerance. Serum myostatin was quantified by means of ELISA. Circulating serum myostatin levels were highest in patients with T2D, lower in subjects with prediabetes, and lowest in subjects with normoglycemia (all p Myostatin was shown to be positively associated with fasting plasma glucose, HOMA-IR, hepatic enzymes, uric acid, and FINDRISC questionnaire scores in both sexes. ROC analyses determined circulating myostatin levels to be of value for differentiating subjects with T2D (AUC = 0.72, p = 0.002 in men; AUC = 0.70, p = 0.004 in women) in the study population. After adjustment for potential confounders, in a multiple binary logistic regression model, serum myostatin added further information to traditional risk estimates in distinguishing subjects with T2D. Serum myostatin levels are higher with deterioration of carbohydrate tolerance. Furthermore, circulating myostatin is positively associated with traditional biochemical estimates of poor metabolic health. These data add to evidence of the involvement of this myokine in the pathogenesis of T2D.

  9. Beyond Hemispheric Dominance: Brain Regions Underlying the Joint Lateralization of Language and Arithmetic to the Left Hemisphere

    Science.gov (United States)

    Pinel, Philippe; Dehaene, Stanislas

    2010-01-01

    Language and arithmetic are both lateralized to the left hemisphere in the majority of right-handed adults. Yet, does this similar lateralization reflect a single overall constraint of brain organization, such an overall "dominance" of the left hemisphere for all linguistic and symbolic operations? Is it related to the lateralization of specific…

  10. Brain purine metabolism and xanthine dehydrogenase/oxidase conversion in hyperammonemia are under control of NMDA receptors and nitric oxide.

    Science.gov (United States)

    Kaminsky, Yury; Kosenko, Elena

    2009-10-19

    In hyperammonemia, a decrease in brain ATP can be a result of adenine nucleotide catabolism. Xanthine dehydrogenase (XD) and xanthine oxidase (XO) are the end steps in the purine catabolic pathway and directly involved in depletion of the adenylate pool in the cell. Besides, XD can easily be converted to XO to produce reactive oxygen species in the cell. In this study, the effects of acute ammonia intoxication in vivo on brain adenine nucleotide pool and xanthine and hypoxanthine, the end degradation products of adenine nucleotides, during the conversion of XD to XO were studied. Injection of rats with ammonium acetate was shown to lead to the dramatic decrease in the ATP level, adenine nucleotide pool size and adenylate energy charge and to the great increase in hypoxanthine and xanthine 11 min after the lethal dose indicating rapid degradation of adenylates. Conversion of XD to XO in hyperammonemic rat brain was evidenced by elevated XO/XD activity ratio. Injection of MK-801, a NMDA receptor blocker, prevented ammonia-induced catabolism of adenine nucleotides and conversion of XD to XO suggesting that in vivo these processes are mediated by activation of NMDA receptors. The in vitro dose-dependent effects of sodium nitroprusside, a NO donor, on XD and XO activities are indicative of the direct modification of the enzymes by nitric oxide. This is the first report evidencing the increase in brain xanthine and hypoxanthine levels and adenine nucleotide breakdown in acute ammonia intoxication and NMDA receptor-mediated prevention of these alterations.

  11. Sleep in childhood and adolescence: age-specific sleep characteristics, common sleep disturbances and associated difficulties.

    Science.gov (United States)

    Barclay, Nicola L; Gregory, Alice M

    2014-01-01

    Sleep changes throughout the lifespan, with particularly salient alterations occurring during the first few years of life, as well as during the transition from childhood to adolescence. Such changes are partly the result of brain maturation; complex changes in the organisation of the circadian system; as well as changes in daily routine, environmental demands and responsibilities. Despite the automaticity of sleep, given that it is governed by a host of complex mechanisms, there are times when sleep becomes disturbed. Sleep disturbances in childhood are common and may stem from behavioural difficulties or abnormalities in physiological processes-and, in some cases manifest into diagnosable sleep disorders. As well as occurring exclusively, childhood sleep disturbances often co-occur with other difficulties. The purpose of this chapter is to outline the neurobiology of typical sleep/wake processes, and describe changes in sleep physiology and architecture from birth to adulthood. Furthermore, common childhood sleep disorders are described as are their associations with other traits, including all of the syndromes presented in this handbook: ASDs, ADHD, schizophrenia and emotional/behavioural difficulties. Throughout, we attempt to explain possible mechanisms underlying these disorders and their associations.

  12. High Dietary Fructose: Direct or Indirect Dangerous Factors Disturbing Tissue and Organ Functions.

    Science.gov (United States)

    Zhang, Dong-Mei; Jiao, Rui-Qing; Kong, Ling-Dong

    2017-03-29

    High dietary fructose is a major contributor to insulin resistance and metabolic syndrome, disturbing tissue and organ functions. Fructose is mainly absorbed into systemic circulation by glucose transporter 2 (GLUT2) and GLUT5, and metabolized in liver to produce glucose, lactate, triglyceride (TG), free fatty acid (FFA), uric acid (UA) and methylglyoxal (MG). Its extrahepatic absorption and metabolism also take place. High levels of these metabolites are the direct dangerous factors. During fructose metabolism, ATP depletion occurs and induces oxidative stress and inflammatory response, disturbing functions of local tissues and organs to overproduce inflammatory cytokine, adiponectin, leptin and endotoxin, which act as indirect dangerous factors. Fructose and its metabolites directly and/or indirectly cause oxidative stress, chronic inflammation, endothelial dysfunction, autophagy and increased intestinal permeability, and then further aggravate the metabolic syndrome with tissue and organ dysfunctions. Therefore, this review addresses fructose-induced metabolic syndrome, and the disturbance effects of direct and/or indirect dangerous factors on the functions of liver, adipose, pancreas islet, skeletal muscle, kidney, heart, brain and small intestine. It is important to find the potential correlations between direct and/or indirect risk factors and healthy problems under excess dietary fructose consumption.

  13. High Dietary Fructose: Direct or Indirect Dangerous Factors Disturbing Tissue and Organ Functions

    Directory of Open Access Journals (Sweden)

    Dong-Mei Zhang

    2017-03-01

    Full Text Available High dietary fructose is a major contributor to insulin resistance and metabolic syndrome, disturbing tissue and organ functions. Fructose is mainly absorbed into systemic circulation by glucose transporter 2 (GLUT2 and GLUT5, and metabolized in liver to produce glucose, lactate, triglyceride (TG, free fatty acid (FFA, uric acid (UA and methylglyoxal (MG. Its extrahepatic absorption and metabolism also take place. High levels of these metabolites are the direct dangerous factors. During fructose metabolism, ATP depletion occurs and induces oxidative stress and inflammatory response, disturbing functions of local tissues and organs to overproduce inflammatory cytokine, adiponectin, leptin and endotoxin, which act as indirect dangerous factors. Fructose and its metabolites directly and/or indirectly cause oxidative stress, chronic inflammation, endothelial dysfunction, autophagy and increased intestinal permeability, and then further aggravate the metabolic syndrome with tissue and organ dysfunctions. Therefore, this review addresses fructose-induced metabolic syndrome, and the disturbance effects of direct and/or indirect dangerous factors on the functions of liver, adipose, pancreas islet, skeletal muscle, kidney, heart, brain and small intestine. It is important to find the potential correlations between direct and/or indirect risk factors and healthy problems under excess dietary fructose consumption.

  14. Model reduction of nonlinear systems subject to input disturbances

    KAUST Repository

    Ndoye, Ibrahima

    2017-07-10

    The method of convex optimization is used as a tool for model reduction of a class of nonlinear systems in the presence of disturbances. It is shown that under some conditions the nonlinear disturbed system can be approximated by a reduced order nonlinear system with similar disturbance-output properties to the original plant. The proposed model reduction strategy preserves the nonlinearity and the input disturbance nature of the model. It guarantees a sufficiently small error between the outputs of the original and the reduced-order systems, and also maintains the properties of input-to-state stability. The matrices of the reduced order system are given in terms of a set of linear matrix inequalities (LMIs). The paper concludes with a demonstration of the proposed approach on model reduction of a nonlinear electronic circuit with additive disturbances.

  15. Paranormal experience and the COMT dopaminergic gene: a preliminary attempt to associate phenotype with genotype using an underlying brain theory.

    Science.gov (United States)

    Raz, Amir; Hines, Terence; Fossella, John; Castro, Daniella

    2008-01-01

    Paranormal belief and suggestibility seem related. Given our recent findings outlining a putative association between suggestibility and a specific dopaminergic genetic polymorphism, we hypothesized that similar exploratory genetic data may offer supplementary insights into a similar correlation with paranormal belief. With more affordable costs and better technology in the aftermath of the human genome project, genotyping is increasingly ubiquitous. Compelling brain theories guide specific research hypotheses as scientists begin to unravel tentative relationships between phenotype and genotype. In line with a dopaminergic brain theory, we tried to correlate a specific phenotype concerning paranormal belief with a dopaminergic gene (COMT) known for its involvement in prefrontal executive cognition and for a polymorphism that is positively correlated with suggestibility. Although our preliminary findings are inconclusive, the research approach we outline should pave the road to a more scientific account of elucidating paranormal belief.

  16. Contextual and perceptual brain processes underlying moral cognition: a quantitative meta-analysis of moral reasoning and moral emotions.

    Science.gov (United States)

    Sevinc, Gunes; Spreng, R Nathan

    2014-01-01

    Human morality has been investigated using a variety of tasks ranging from judgments of hypothetical dilemmas to viewing morally salient stimuli. These experiments have provided insight into neural correlates of moral judgments and emotions, yet these approaches reveal important differences in moral cognition. Moral reasoning tasks require active deliberation while moral emotion tasks involve the perception of stimuli with moral implications. We examined convergent and divergent brain activity associated with these experimental paradigms taking a quantitative meta-analytic approach. A systematic search of the literature yielded 40 studies. Studies involving explicit decisions in a moral situation were categorized as active (n = 22); studies evoking moral emotions were categorized as passive (n = 18). We conducted a coordinate-based meta-analysis using the Activation Likelihood Estimation to determine reliable patterns of brain activity. Results revealed a convergent pattern of reliable brain activity for both task categories in regions of the default network, consistent with the social and contextual information processes supported by this brain network. Active tasks revealed more reliable activity in the temporoparietal junction, angular gyrus and temporal pole. Active tasks demand deliberative reasoning and may disproportionately involve the retrieval of social knowledge from memory, mental state attribution, and construction of the context through associative processes. In contrast, passive tasks reliably engaged regions associated with visual and emotional information processing, including lingual gyrus and the amygdala. A laterality effect was observed in dorsomedial prefrontal cortex, with active tasks engaging the left, and passive tasks engaging the right. While overlapping activity patterns suggest a shared neural network for both tasks, differential activity suggests that processing of moral input is affected by task demands. The results provide novel

  17. Contextual and perceptual brain processes underlying moral cognition: a quantitative meta-analysis of moral reasoning and moral emotions.

    Directory of Open Access Journals (Sweden)

    Gunes Sevinc

    Full Text Available BACKGROUND AND OBJECTIVES: Human morality has been investigated using a variety of tasks ranging from judgments of hypothetical dilemmas to viewing morally salient stimuli. These experiments have provided insight into neural correlates of moral judgments and emotions, yet these approaches reveal important differences in moral cognition. Moral reasoning tasks require active deliberation while moral emotion tasks involve the perception of stimuli with moral implications. We examined convergent and divergent brain activity associated with these experimental paradigms taking a quantitative meta-analytic approach. DATA SOURCE: A systematic search of the literature yielded 40 studies. Studies involving explicit decisions in a moral situation were categorized as active (n = 22; studies evoking moral emotions were categorized as passive (n = 18. We conducted a coordinate-based meta-analysis using the Activation Likelihood Estimation to determine reliable patterns of brain activity. RESULTS & CONCLUSIONS: Results revealed a convergent pattern of reliable brain activity for both task categories in regions of the default network, consistent with the social and contextual information processes supported by this brain network. Active tasks revealed more reliable activity in the temporoparietal junction, angular gyrus and temporal pole. Active tasks demand deliberative reasoning and may disproportionately involve the retrieval of social knowledge from memory, mental state attribution, and construction of the context through associative processes. In contrast, passive tasks reliably engaged regions associated with visual and emotional information processing, including lingual gyrus and the amygdala. A laterality effect was observed in dorsomedial prefrontal cortex, with active tasks engaging the left, and passive tasks engaging the right. While overlapping activity patterns suggest a shared neural network for both tasks, differential activity suggests that

  18. Brain atrophy during aging

    International Nuclear Information System (INIS)

    Matsuzawa, Taiju; Takeda, Shumpei; Hatazawa, Jun

    1985-01-01

    Age-related brain atrophy was investigated in thousands of persons with no neurologic disturbances using X-CT and NMR-CT and following results were obtained. Brain atrophy was minimal in 34 -- 35 years old in both sexes, increased exponentially to the increasing age after 34 -- 35 years, and probably resulted in dementia, such as vascular or multiinfarct dementia. Brain atrophy was significantly greater in men than in women at all ages. Brain volumes were maximal in 34 -- 35 years old in both sexes with minimal individual differences which increased proportionally to the increasing age. Remarkable individual differences in the extents of brain atrophy (20 -- 30 %) existed among aged subjects. Some aged subjects had little or no atrophy of their brains, as seen in young subjects, and others had markedly shrunken brains associated with senility. From these results there must be pathological factors promoting brain atrophy with a great individual difference. We have studied the relation of intelligence to brain volume, and have ascertained that progression of brain atrophy was closely related to loss of mental activities independently of their ages. Our longitudinal study has revealed that the most important factors promoting brain atrophy during aging was decrease in the cerebral blood flow. MNR-CT can easily detected small infarction (lacunae) and edematous lesions resulting from ischemia and hypertensive encephalopathy, while X-CT can not. Therefore NMR-CT is very useful for detection of subtle changes in the brain. (J.P.N.)

  19. Disturbance Observer based internal Model Controller Design: Applications to Tracking Control of Optical Disk Drive

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyun Taek; Suh, Il Hong [Hanyang University (Korea, Republic of)

    1999-02-01

    A digital tracking controller is proposed for a precise positioning control under a large repetitive and/or non repetitive disturbances. The proposed controller consists of the internal model controller and the disturbance observer to eliminate the modeling uncertainty. A sufficient condition is given for robust stability of the proposed control system. Numerical Examples are illustrated for a precise head positioning of optical disk drives regardless of a torque disturbance and/or output disturbance. (author). 8 refs., 19 figs.

  20. Magnetic resonance imaging based noninvasive measurements of brain hemodynamics in neonates

    DEFF Research Database (Denmark)

    De Vis, Jill B; Alderliesten, Thomas; Hendrikse, Jeroen

    2016-01-01

    Perinatal disturbances of brain hemodynamics can have a detrimental effect on the brain's parenchyma with consequently adverse neurodevelopmental outcome. Noninvasive, reliable tools to evaluate the neonate's brain hemodynamics are scarce. Advances in magnetic resonance imaging have provided new...

  1. Experiences of pathways, outcomes and choice after severe traumatic brain injury under no-fault versus fault-based motor accident insurance.

    Science.gov (United States)

    Harrington, Rosamund; Foster, Michele; Fleming, Jennifer

    2015-01-01

    To explore experiences of pathways, outcomes and choice after motor vehicle accident (MVA) acquired severe traumatic brain injury (sTBI) under fault-based vs no-fault motor accident insurance (MAI). In-depth qualitative interviews with 10 adults with sTBI and 17 family members examined experiences of pathways, outcomes and choice and how these were shaped by both compensable status and interactions with service providers and service funders under a no-fault and a fault-based MAI scheme. Participants were sampled to provide variation in compensable status, injury severity, time post-injury and metropolitan vs regional residency. Interviews were recorded, transcribed and thematically analysed to identify dominant themes under each scheme. Dominant themes emerging under the no-fault scheme included: (a) rehabilitation-focused pathways; (b) a sense of security; and (c) bounded choices. Dominant themes under the fault-based scheme included: (a) resource-rationed pathways; (b) pressured lives; and (c) unknown choices. Participants under the no-fault scheme experienced superior access to specialist rehabilitation services, greater surety of support and more choice over how rehabilitation and life-time care needs were met. This study provides valuable insights into individual experiences under fault-based vs no-fault MAI. Implications for an injury insurance scheme design to optimize pathways, outcomes and choice after sTBI are discussed.

  2. Scaling disturbance instead of richness to better understand anthropogenic impacts on biodiversity.

    Directory of Open Access Journals (Sweden)

    Stephen J Mayor

    Full Text Available A primary impediment to understanding how species diversity and anthropogenic disturbance are related is that both diversity and disturbance can depend on the scales at which they are sampled. While the scale dependence of diversity estimation has received substantial attention, the scale dependence of disturbance estimation has been essentially overlooked. Here, we break from conventional examination of the diversity-disturbance relationship by holding the area over which species richness is estimated constant and instead manipulating the area over which human disturbance is measured. In the boreal forest ecoregion of Alberta, Canada, we test the dependence of species richness on disturbance scale, the scale-dependence of the intermediate disturbance hypothesis, and the consistency of these patterns in native versus exotic species and among human disturbance types. We related field observed species richness in 1 ha surveys of 372 boreal vascular plant communities to remotely sensed measures of human disturbance extent at two survey scales: local (1 ha and landscape (18 km2. Supporting the intermediate disturbance hypothesis, species richness-disturbance relationships were quadratic at both local and landscape scales of disturbance measurement. This suggests the shape of richness-disturbance relationships is independent of the scale at which disturbance is assessed, despite that local diversity is influenced by disturbance at different scales by different mechanisms, such as direct removal of individuals (local or indirect alteration of propagule supply (landscape. By contrast, predictions of species richness did depend on scale of disturbance measurement: with high local disturbance richness was double that under high landscape disturbance.

  3. Temporal and spatial evolution characteristics of disturbance wave in a hypersonic boundary layer due to single-frequency entropy disturbance.

    Science.gov (United States)

    Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing; Shi, Jianqiang

    2014-01-01

    By using a high-order accurate finite difference scheme, direct numerical simulation of hypersonic flow over an 8° half-wedge-angle blunt wedge under freestream single-frequency entropy disturbance is conducted; the generation and the temporal and spatial nonlinear evolution of boundary layer disturbance waves are investigated. Results show that, under the freestream single-frequency entropy disturbance, the entropy state of boundary layer is changed sharply and the disturbance waves within a certain frequency range are induced in the boundary layer. Furthermore, the amplitudes of disturbance waves in the period phase are larger than that in the response phase and ablation phase and the frequency range in the boundary layer in the period phase is narrower than that in these two phases. In addition, the mode competition, dominant mode transformation, and disturbance energy transfer exist among different modes both in temporal and in spatial evolution. The mode competition changes the characteristics of nonlinear evolution of the unstable waves in the boundary layer. The development of the most unstable mode along streamwise relies more on the motivation of disturbance waves in the upstream than that of other modes on this motivation.

  4. Clinical standard of neurosurgical disorder. (9) Disturbance of consciousness

    International Nuclear Information System (INIS)

    Ohta, Tomio

    2009-01-01

    Functional diagnosis of consciousness disturbance (CD) in acute and chronic stages is becoming more important along with the progress of morphological diagnosis by CT and MRI at the stroke and brain lesion. Here described and discussed are the definition of consciousness and unconsciousness, cause and scoring of CD by various scaling and clinical significance of the scale for therapy. The author's definition for consciousness is based on patients' self identity and orientation. The above CD is essentially caused by the increased intracranial pressure, which is evaluable by imaging as the increase is derived from the herniation by tumor or edema mainly through transtentorial (uncal, hippocampal) and/or foraminal (cerebellar tonsillar) pathways. Scaling of CD stands on three factors of validity, reliability and feasibility, of which standards of JCS (Japan coma scale) and GCS (Glasgow coma scale) have been widely employed. In discussion of merit/demerit of JCS and GCS, the author et al. have proposed a new scale ECS (emergency coma scale) with 3 levels of digit code for patient's response and behavior under CD. Therapeutic outcome is greatly affected by acute CD levels evaluable by scaling, in which awakening/alertness relates with mortality, and local symptom/consciousness, with morbidity. ECS is now globally getting around. (K.T.)

  5. Effects of environmental enrichment on growth, aggressive behaviour and brain monoamines of gilthead seabream Sparus aurata reared under different social conditions.

    Science.gov (United States)

    Batzina, Alkisti; Dalla, Christina; Papadopoulou-Daifoti, Zeta; Karakatsouli, Nafsika

    2014-03-01

    The presence of blue or red-brown substrate on the tank bottom has been previously reported as an efficient means of environmental enrichment for gilthead seabream. The present study aimed to investigate whether this enrichment is still beneficial when gilthead seabream is reared under different social conditions (i.e. a lower 4.9 kg m(-3) and a higher 9.7 kg m(-3) density). Water exchange was adjusted according to fish biomass to exclude density effects on water quality. In the enriched tanks single-colour glass gravel was used as substrate (blue and red-brown substrate, or BS and RBS respectively), while control tanks had no gravel. Growth, aggressive behaviour and size distribution results indicated that the lower density created a less favourable social environment. In both densities studied, BS enhanced growth, suppressed aggression and reduced brain serotonergic activity. In the condition of intense social interactions (i.e. the lower density) BS also reduced brain dopaminergic activity. These results along with the negative correlations observed between brain monoamines and fish body mass, indicated that substrate and density effects are socially-induced. However, there may be several biotic and/or abiotic factors interfering with substrate effects that should be investigated before the practical use of a substrate in land-based intensive aquaculture. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Pacing and awareness: brain regulation of physical activity.

    Science.gov (United States)

    Edwards, A M; Polman, R C J

    2013-11-01

    The aim of this current opinion article is to provide a contemporary perspective on the role of brain regulatory control of paced performances in response to exercise challenges. There has been considerable recent conjecture as to the role of the brain during exercise, and it is now broadly accepted that fatigue does not occur without brain involvement and that all voluntary activity is likely to be paced at some level by the brain according to individualised priorities and knowledge of personal capabilities. This article examines the role of pacing in managing and distributing effort to successfully accomplish physical tasks, while extending existing theories on the role of the brain as a central controller of performance. The opinion proposed in this article is that a central regulator operates to control exercise performance but achieves this without the requirement of an intelligent central governor located in the subconscious brain. It seems likely that brain regulation operates at different levels of awareness, such that minor homeostatic challenges are addressed automatically without conscious awareness, while larger metabolic disturbances attract conscious awareness and evoke a behavioural response. This supports the view that the brain regulates exercise performance but that the interpretation of the mechanisms underlying this effect have not yet been fully elucidated.

  7. Fingolimod (FTY720-P Does Not Stabilize the Blood–Brain Barrier under Inflammatory Conditions in an in Vitro Model

    Directory of Open Access Journals (Sweden)

    Michael K. Schuhmann

    2015-12-01

    Full Text Available Breakdown of the blood-brain barrier (BBB is an early hallmark of multiple sclerosis (MS, a progressive inflammatory disease of the central nervous system. Cell adhesion in the BBB is modulated by sphingosine-1-phosphate (S1P, a signaling protein, via S1P receptors (S1P1. Fingolimod phosphate (FTY720-P a functional S1P1 antagonist has been shown to improve the relapse rate in relapsing-remitting MS by preventing the egress of lymphocytes from lymph nodes. However, its role in modulating BBB permeability—in particular, on the tight junction proteins occludin, claudin 5 and ZO-1—has not been well elucidated to date. In the present study, FTY720-P did not change the transendothelial electrical resistance in a rat brain microvascular endothelial cell (RBMEC culture exposed to inflammatory conditions and thus did not decrease endothelial barrier permeability. In contrast, occludin was reduced in RBMEC culture after adding FTY720-P. Additionally, FTY720-P did not alter the amount of endothelial matrix metalloproteinase (MMP-9 and MMP-2 in RBMEC cultures. Taken together, our observations support the assumption that S1P1 plays a dual role in vascular permeability, depending on its ligand. Thus, S1P1 provides a mechanistic basis for FTY720-P-associated disruption of endothelial barriers—such as the blood-retinal barrier—which might result in macular edema.

  8. Similarities and differences between the brain networks underlying allocentric and egocentric spatial learning in rat revealed by cytochrome oxidase histochemistry.

    Science.gov (United States)

    Rubio, S; Begega, A; Méndez, M; Méndez-López, M; Arias, J L

    2012-10-25

    The involvement of different brain regions in place- and response-learning was examined using a water cross-maze. Rats were trained to find the goal from the initial arm by turning left at the choice point (egocentric strategy) or by using environmental cues (allocentric strategy). Although different strategies were required, the same maze and learning conditions were used. Using cytochrome oxidase histochemistry as a marker of cellular activity, the function of the 13 diverse cortical and subcortical regions was assessed in rats performing these two tasks. Our results show that allocentric learning depends on the recruitment of a large functional network, which includes the hippocampal CA3, dentate gyrus, medial mammillary nucleus and supramammillary nucleus. Along with the striatum, these last three structures are also related to egocentric spatial learning. The present study provides evidence for the contribution of these regions to spatial navigation and supports a possible functional interaction between the two memory systems, as their structural convergence may facilitate functional cooperation in the behaviours guided by more than one strategy. In summary, it can be argued that spatial learning is based on dynamic functional systems in which the interaction of brain regions is modulated by task requirements. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Change in the properties of the opiate receptors of the brain under conditions of habituation of rats to morphine

    International Nuclear Information System (INIS)

    Zaitsev, S.V.; Sergeeva, M.G.; Chichenkov, O.N.; Petrov, V.E.; Varfolomeev, S.D.

    1987-01-01

    The influence of prolonged administration of morphine on the properties of the opiate receptors of the rat brain was investigated. For this purpose they conducted an analysis of the isotherms of binding of labeled μ-, σ-, and chi-ligands: morphine, D-Ala 2 , D-Leu 5 -enkephalin, and ethylketocyclazocin, with membrane preparations of the brains of rats tolerant to morphine, as well as the control animals. For a quantitative determination of the dissociation constants of the ligand-receptor complexes (K) and the concentration of the reagents ([Q]), they used differential method and the method of simulation modeling. It was shown that the values of K and [Q] for individual animals are subjected to substantial dispersion, whereas the ratios [Q]/K undergo minor individual fluctuations, both in the control group and in the group of rats tolerant to morphine. This permits the ratio [Q]/K to be singled out as one of the main parameters for comparing the properties of opiate receptors of various groups of animals. Using this criterion, as well as the method of simulated modeling, it was shown that the development of tolerance is accompanied by a change in the properties of the δ-receptors (the ratio [Q]/K decreases by a factor of more than two). In contrast to the δ-receptors, no significant influence of the tolerance on the properties of the μ- and chi-receptors, as well as the ultrahigh-affinity ligand binding sites, was detected

  10. Change in the properties of the opiate receptors of the brain under conditions of habituation of rats to morphine

    Energy Technology Data Exchange (ETDEWEB)

    Zaitsev, S.V.; Sergeeva, M.G.; Chichenkov, O.N.; Petrov, V.E.; Varfolomeev, S.D.

    1987-02-20

    The influence of prolonged administration of morphine on the properties of the opiate receptors of the rat brain was investigated. For this purpose they conducted an analysis of the isotherms of binding of labeled ..mu..-, sigma-, and chi-ligands: morphine, D-Ala/sup 2/, D-Leu/sup 5/-enkephalin, and ethylketocyclazocin, with membrane preparations of the brains of rats tolerant to morphine, as well as the control animals. For a quantitative determination of the dissociation constants of the ligand-receptor complexes (K) and the concentration of the reagents ((Q)), they used differential method and the method of simulation modeling. It was shown that the values of K and (Q) for individual animals are subjected to substantial dispersion, whereas the ratios (Q)/K undergo minor individual fluctuations, both in the control group and in the group of rats tolerant to morphine. This permits the ratio (Q)/K to be singled out as one of the main parameters for comparing the properties of opiate receptors of various groups of animals. Using this criterion, as well as the method of simulated modeling, it was shown that the development of tolerance is accompanied by a change in the properties of the delta-receptors (the ratio (Q)/K decreases by a factor of more than two). In contrast to the delta-receptors, no significant influence of the tolerance on the properties of the ..mu..- and chi-receptors, as well as the ultrahigh-affinity ligand binding sites, was detected.

  11. Sleep disturbance in mental health problems and neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Anderson KN

    2013-05-01

    Full Text Available Kirstie N Anderson1 Andrew J Bradley2,3 1Department of Neurology, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, UK; 2Eli Lilly and Company Limited, Lilly House, Basingstoke, UK; 3Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, UK Abstract: Sleep has been described as being of the brain, by the brain, and for the brain. This fundamental neurobiological behavior is controlled by homeostatic and circadian (24-hour processes and is vital for normal brain function. This review will outline the normal sleep–wake cycle, the changes that occur during aging, and the specific patterns of sleep disturbance that occur in association with both mental health disorders and neurodegenerative disorders. The role of primary sleep disorders such as insomnia, obstructive sleep apnea, and REM sleep behavior disorder as potential causes or risk factors for particular mental health or neurodegenerative problems will also be discussed. Keywords: sleep, mental health, neurodegenerative disorders, cognition

  12. Disturbance and distributions: avoiding exclusion in a warming world

    Directory of Open Access Journals (Sweden)

    Douglas Sheil

    2016-03-01

    Full Text Available I highlight how disturbance determines species distributions and the implications for conservation practice. In particular, I describe opportunities to mitigate some of the threats to species resulting from climate change. Ecological theory shows that disturbance processes can often slow or prevent the exclusion of species by competitors and that different disturbance regimes result in different realized niches. There is much evidence of disturbance influencing where species occur. For example, disturbance can lower the high elevation treeline, thus expanding the area for high elevation vegetation that cannot otherwise persist under tree cover. The role of disturbance in influencing interspecific competition and resulting species persistence and distributions appears unjustly neglected. I identify various implications, including opportunities to achieve in situ conservation by expanding plant species ranges and reducing species vulnerability to competitive exclusion. Suitable frequencies, scales, intensities, spatial configurations, and timings of the right forms of disturbance can improve the persistence of targeted species in a wide range of contexts. Such options could reduce the extinctions likely to be associated with climate change. More generally, these mechanisms and the resulting realizable niche also offer novel insights to understanding and manipulating species distributions.

  13. Measurement of Local Partial Pressure of Oxygen in the Brain Tissue under Normoxia and Epilepsy with Phosphorescence Lifetime Microscopy

    Science.gov (United States)

    Zhang, Cong; Bélanger, Samuel; Pouliot, Philippe; Lesage, Frédéric

    2015-01-01

    In this work a method for measuring brain oxygen partial pressure with confocal phosphorescence lifetime microscopy system is reported. When used in conjunction with a dendritic phosphorescent probe, Oxyphor G4, this system enabled minimally invasive measurements of oxygen partial pressure (pO2) in cerebral tissue with high spatial and temporal resolution during 4-AP induced epileptic seizures. Investigating epileptic events, we characterized the spatio-temporal distribution of the "initial dip" in pO2 near the probe injection site and along nearby arterioles. Our results reveal a correlation between the percent change in the pO2 signal during the "initial dip" and the duration of seizure-like activity, which can help localize the epileptic focus and predict the length of seizure. PMID:26305777

  14. Measurement of Local Partial Pressure of Oxygen in the Brain Tissue under Normoxia and Epilepsy with Phosphorescence Lifetime Microscopy.

    Science.gov (United States)

    Zhang, Cong; Bélanger, Samuel; Pouliot, Philippe; Lesage, Frédéric

    2015-01-01

    In this work a method for measuring brain oxygen partial pressure with confocal phosphorescence lifetime microscopy system is reported. When used in conjunction with a dendritic phosphorescent probe, Oxyphor G4, this system enabled minimally invasive measurements of oxygen partial pressure (pO2) in cerebral tissue with high spatial and temporal resolution during 4-AP induced epileptic seizures. Investigating epileptic events, we characterized the spatio-temporal distribution of the "initial dip" in pO2 near the probe injection site and along nearby arterioles. Our results reveal a correlation between the percent change in the pO2 signal during the "initial dip" and the duration of seizure-like activity, which can help localize the epileptic focus and predict the length of seizure.

  15. Brain activity underlying negative self- and other-perception in adolescents: The role of attachment-derived self-representations.

    Science.gov (United States)

    Debbané, Martin; Badoud, Deborah; Sander, David; Eliez, Stephan; Luyten, Patrick; Vrtička, Pascal

    2017-06-01

    One of teenagers' key developmental tasks is to engage in new and meaningful relationships with peers and adults outside the family context. Attachment-derived expectations about the self and others in terms of internal attachment working models have the potential to shape such social reorientation processes critically and thereby influence adolescents' social-emotional development and social integration. Because the neural underpinnings of this developmental task remain largely unknown, we sought to investigate them by functional magnetic resonance imaging. We asked n = 44 adolescents (ages 12.01-18.84 years) to evaluate positive and negative adjectives regarding either themselves or a close other during an adapted version of the well-established self-other trait-evaluation task. As measures of attachment, we obtained scores reflecting participants' positive versus negative attachment-derived self- and other-models by means of the Relationship Questionnaire. We controlled for possible confounding factors by also obtaining scores reflecting internalizing/externalizing problems, schizotypy, and borderline symptomatology. Our results revealed that participants with a more negative attachment-derived self-model showed increased brain activity during positive and negative adjective evaluation regarding the self, but decreased brain activity during negative adjective evaluation regarding a close other, in bilateral amygdala/parahippocampus, bilateral anterior temporal pole/anterior superior temporal gyrus, and left dorsolateral prefrontal cortex. These findings suggest that a low positivity of the self-concept characteristic for the attachment anxiety dimension may influence neural information processing, but in opposite directions when it comes to self- versus (close) other-representations. We discuss our results in the framework of attachment theory and regarding their implications especially for adolescent social-emotional development and social integration.

  16. Assessment of the computational uncertainty of temperature rise and SAR in the eyes and brain under far-field exposure from 1 to 10 GHz

    International Nuclear Information System (INIS)

    Laakso, Ilkka

    2009-01-01

    This paper presents finite-difference time-domain (FDTD) calculations of specific absorption rate (SAR) values in the head under plane-wave exposure from 1 to 10 GHz using a resolution of 0.5 mm in adult male and female voxel models. Temperature rise due to the power absorption is calculated by the bioheat equation using a multigrid method solver. The computational accuracy is investigated by repeating the calculations with resolutions of 1 mm and 2 mm and comparing the results. Cubically averaged 10 g SAR in the eyes and brain and eye-averaged SAR are calculated and compared to the corresponding temperature rise as well as the recommended limits for exposure. The results suggest that 2 mm resolution should only be used for frequencies smaller than 2.5 GHz, and 1 mm resolution only under 5 GHz. Morphological differences in models seemed to be an important cause of variation: differences in results between the two different models were usually larger than the computational error due to the grid resolution, and larger than the difference between the results for open and closed eyes. Limiting the incident plane-wave power density to smaller than 100 W m -2 was sufficient for ensuring that the temperature rise in the eyes and brain were less than 1 deg. C in the whole frequency range.

  17. Assessment of the computational uncertainty of temperature rise and SAR in the eyes and brain under far-field exposure from 1 to 10 GHz

    Science.gov (United States)

    Laakso, Ilkka

    2009-06-01

    This paper presents finite-difference time-domain (FDTD) calculations of specific absorption rate (SAR) values in the head under plane-wave exposure from 1 to 10 GHz using a resolution of 0.5 mm in adult male and female voxel models. Temperature rise due to the power absorption is calculated by the bioheat equation using a multigrid method solver. The computational accuracy is investigated by repeating the calculations with resolutions of 1 mm and 2 mm and comparing the results. Cubically averaged 10 g SAR in the eyes and brain and eye-averaged SAR are calculated and compared to the corresponding temperature rise as well as the recommended limits for exposure. The results suggest that 2 mm resolution should only be used for frequencies smaller than 2.5 GHz, and 1 mm resolution only under 5 GHz. Morphological differences in models seemed to be an important cause of variation: differences in results between the two different models were usually larger than the computational error due to the grid resolution, and larger than the difference between the results for open and closed eyes. Limiting the incident plane-wave power density to smaller than 100 W m-2 was sufficient for ensuring that the temperature rise in the eyes and brain were less than 1 °C in the whole frequency range.

  18. Assessment of the computational uncertainty of temperature rise and SAR in the eyes and brain under far-field exposure from 1 to 10 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Laakso, Ilkka [Department of Radio Science and Engineering, Helsinki University of Technology, Otakaari 5 A, 02150 Espoo (Finland)], E-mail: ilkka.laakso@tkk.fi

    2009-06-07

    This paper presents finite-difference time-domain (FDTD) calculations of specific absorption rate (SAR) values in the head under plane-wave exposure from 1 to 10 GHz using a resolution of 0.5 mm in adult male and female voxel models. Temperature rise due to the power absorption is calculated by the bioheat equation using a multigrid method solver. The computational accuracy is investigated by repeating the calculations with resolutions of 1 mm and 2 mm and comparing the results. Cubically averaged 10 g SAR in the eyes and brain and eye-averaged SAR are calculated and compared to the corresponding temperature rise as well as the recommended limits for exposure. The results suggest that 2 mm resolution should only be used for frequencies smaller than 2.5 GHz, and 1 mm resolution only under 5 GHz. Morphological differences in models seemed to be an important cause of variation: differences in results between the two different models were usually larger than the computational error due to the grid resolution, and larger than the difference between the results for open and closed eyes. Limiting the incident plane-wave power density to smaller than 100 W m{sup -2} was sufficient for ensuring that the temperature rise in the eyes and brain were less than 1 deg. C in the whole frequency range.

  19. Computer aided analysis of disturbances

    International Nuclear Information System (INIS)

    Baldeweg, F.; Lindner, A.

    1986-01-01

    Computer aided analysis of disturbances and the prevention of failures (diagnosis and therapy control) in technological plants belong to the most important tasks of process control. Research in this field is very intensive due to increasing requirements to security and economy of process control and due to a remarkable increase of the efficiency of digital electronics. This publication concerns with analysis of disturbances in complex technological plants, especially in so called high risk processes. The presentation emphasizes theoretical concept of diagnosis and therapy control, modelling of the disturbance behaviour of the technological process and the man-machine-communication integrating artificial intelligence methods, e.g., expert system approach. Application is given for nuclear power plants. (author)

  20. Managing Sleep Disturbances in Cirrhosis

    Directory of Open Access Journals (Sweden)

    Xun Zhao

    2016-01-01

    Full Text Available Sleep disturbances, particularly daytime sleepiness and insomnia, are common problems reported by patients suffering from liver cirrhosis. Poor sleep negatively impacts patients’ quality of life and cognitive functions and increases mortality. Although sleep disturbances can be an early sign of hepatic encephalopathy (HE, many patients without HE still complain of poor quality sleep. The pathophysiology of these disturbances is not fully understood but is believed to be linked to impaired hepatic melatonin metabolism. This paper provides an overview for the clinician of common comorbidities contributing to poor sleep in patients with liver disease, mainly restless leg syndrome and obstructive sleep apnea. It discusses nondrug and pharmacologic treatment options in these patients, such as the use of light therapy and histamine (H1 blockers.

  1. The Disturbing Student and the Judicial Process

    Science.gov (United States)

    Ragle, John D.; Paine, Gage E.

    2009-01-01

    The Assessment-Intervention of Student Problems (AISP) model is a useful tool for preparing student affairs professionals to assess the problems of disturbed, disturbing, or disturbed/disturbing students and to make appropriate referrals. It is particularly useful because it emphasizes the necessity of developing an integrated system for this…

  2. The Impact of Latino Values and Cultural Beliefs on Brain Donation: Results of a Pilot Study to Develop Culturally Appropriate Materials and Methods to Increase Rates of Brain Donation in this Under-Studied Patient Group.

    Science.gov (United States)

    Bilbrey, Ann Choryan; Humber, Marika B; Plowey, Edward D; Garcia, Iliana; Chennapragada, Lakshmi; Desai, Kanchi; Rosen, Allyson; Askari, Nusha; Gallagher-Thompson, Dolores

    2018-01-01

    Increasing the number of Latino persons with dementia who consent to brain donation (BD) upon death is an important public health goal that has not yet been realized. This study identified the need for culturally sensitive materials to answer questions and support the decision-making process for the family. Information about existing rates of BD was obtained from the Alzheimer's Disease Centers. Several methods of data collection (query NACC database, contacting Centers, focus groups, online survey, assessing current protocol and materials) were used to give the needed background to create culturally appropriate BD materials. A decision was made that a brochure for undecided enrollees would be beneficial to discuss BD with family members. For those needing further details, a step-by-step handout would provide additional information. Through team collaboration and engagement of others in the community who work with Latinos with dementia, we believe this process allowed us to successfully create culturally appropriate informational materials that address a sensitive topic for Hispanic/Latino families. Brain tissue is needed to further knowledge about underlying biological mechanism of neurodegenerative diseases, however it is a sensitive topic. Materials assist with family discussion and facilitate the family's follow-through with BD.

  3. Comparison of brain mechanisms underlying the processing of Chinese characters and pseudo-characters: an event-related potential study.

    Science.gov (United States)

    Wang, Ting; Li, Hong; Zhang, Qinglin; Tu, Shen; Yu, Caiyun; Qiu, Jiang

    2010-04-01

    Most Chinese characters are composed of a semantic radical on the left and a phonetic radical on the right. The semantic radical provides the semantic information; the phonetic radical provides information concerning the pronunciation of the whole character. The pseudo-characters in the study consisted of different sub-lexical parts of real Chinese characters and consequently they also had the semantic radical and the phonetic radical. But they were not readable and had no actual meaning. In order to investigate the spatiotemporal cortical activation patterns underlying the orthographic, phonological and semantic processing of Chinese characters, we used event-related brain potentials (ERPs) to explore the processing of Chinese characters and pseudo-characters when 14 healthy Chinese college students viewed the characters passively. Results showed that both Chinese characters and pseudo-characters elicited an evident negative potential peaking around 120 ms (N120), which appeared to reflect initial orthographic distinction and evaluation. Then, Chinese pseudo-characters elicited a more positive ERP deflection (P220) than did Chinese characters 200-250 ms after onset of the stimuli. It was similar to the recognition potential (RP) and might reflect the integration processes of phonological and semantic processing on the basis of early orthographic information. Dipole source analysis of the difference wave (pseudo-characters minus characters) indicated that a generator localized in the left temporal-occipital junction contributed to this effect, which was possibly related to phonological and perceptual-semantic information integration. Between 350-450 ms, a greater negativity (N360) in pseudo-characters as compared to characters was found over midline fronto-central scalp regions. Dipole analysis localized the generator of N360 in the right parahippocampal cortex. Therefore, the N360 might be an N400 component and reflect the higher-level semantic activation on the

  4. Reaction Wheel Disturbance Model Extraction Software - RWDMES

    Science.gov (United States)

    Blaurock, Carl

    2009-01-01

    The RWDMES is a tool for modeling the disturbances imparted on spacecraft by spinning reaction wheels. Reaction wheels are usually the largest disturbance source on a precision pointing spacecraft, and can be the dominating source of pointing error. Accurate knowledge of the disturbance environment is critical to accurate prediction of the pointing performance. In the past, it has been difficult to extract an accurate wheel disturbance model since the forcing mechanisms are difficult to model physically, and the forcing amplitudes are filtered by the dynamics of the reaction wheel. RWDMES captures the wheel-induced disturbances using a hybrid physical/empirical model that is extracted directly from measured forcing data. The empirical models capture the tonal forces that occur at harmonics of the spin rate, and the broadband forces that arise from random effects. The empirical forcing functions are filtered by a physical model of the wheel structure that includes spin-rate-dependent moments (gyroscopic terms). The resulting hybrid model creates a highly accurate prediction of wheel-induced forces. It accounts for variation in disturbance frequency, as well as the shifts in structural amplification by the whirl modes, as the spin rate changes. This software provides a point-and-click environment for producing accurate models with minimal user effort. Where conventional approaches may take weeks to produce a model of variable quality, RWDMES can create a demonstrably high accuracy model in two hours. The software consists of a graphical user interface (GUI) that enables the user to specify all analysis parameters, to evaluate analysis results and to iteratively refine the model. Underlying algorithms automatically extract disturbance harmonics, initialize and tune harmonic models, and initialize and tune broadband noise models. The component steps are described in the RWDMES user s guide and include: converting time domain data to waterfall PSDs (power spectral

  5. Tandem high-dose chemotherapy and auto-SCT for malignant brain tumors in children under 3 years of age.

    Science.gov (United States)

    Sung, K W; Lim, D H; Lee, S H; Yoo, K H; Koo, H H; Kim, J H; Suh, Y-L; Joung, Y S; Shin, H J

    2013-07-01

    In an effort to improve survival and reduce late adverse effects of radiation therapy (RT), 25 children SCT following six cycles of induction chemotherapy. RT was either not given or deferred until 3 years of age if the patient was in CR after tandem HDCT/auto-SCT. Tumors relapsed or progressed in nine patients (five during induction treatment), and two of these patients survived after receiving salvage treatment, including RT. Two patients died due to toxicities during tandem HDCT/auto-SCT. A total of 16 patients survived to a median follow-up period of 52 months (range 18-96) from the time of diagnosis. Four of these patients did not receive RT, two received local RT (L-RT), three received craniospinal RT (CSRT), and seven received both L-RT and CSRT. The 5-year OS and EFS rates were 67.8±9.4% and 55.5±10.0%, respectively. Neuroendocrine and neurocognitive functions evaluated 3 years after tandem HDCT/auto-SCT were acceptable. Our results indicate that tandem HDCT/auto-SCT may improve survival in young children with malignant brain tumors with an acceptable level of risk of long-term toxicity.

  6. FDTD chiral brain tissue model for specific absorption rate determination under radiation from mobile phones at 900 and 1800 MHz

    Energy Technology Data Exchange (ETDEWEB)

    Zamorano, M; Torres-Silva, H [Departamento de Electronica, Universidad de Tarapaca, 18 de Septiembre 2222, Arica (Chile)

    2006-04-07

    A new electrodynamics model formed by chiral bioplasma, which represents the human head inner structure and makes it possible to analyse its behaviour when it is irradiated by a microwave electromagnetic field from cellular phones, is presented. The finite-difference time-domain (FDTD) numeric technique is used, which allows simulation of the electromagnetic fields, deduced with Maxwell's equations, and allows us to simulate the specific absorption rate (SAR). The results show the SAR behaviour as a function of the input power and the chirality factor. In considering the chiral brain tissue in the proposed human head model, the two more important conclusions of our work are the following: (a) the absorption of the electromagnetic fields from cellular phones is stronger, so the SAR coefficient is higher than that using the classical model, when values of the chiral factor are of order of 1; (b) 'inverse skin effect' shows up at 1800 MHz, with respect to a 900 MHz source.

  7. Mechanisms Underlying Decision-Making as Revealed by Deep-Brain Stimulation in Patients with Parkinson's Disease.

    Science.gov (United States)

    Herz, Damian M; Little, Simon; Pedrosa, David J; Tinkhauser, Gerd; Cheeran, Binith; Foltynie, Tom; Bogacz, Rafal; Brown, Peter

    2018-04-23

    To optimally balance opposing demands of speed and accuracy during decision-making, we must flexibly adapt how much evidence we require before making a choice. Such adjustments in decision thresholds have been linked to the subthalamic nucleus (STN), and therapeutic STN deep-brain stimulation (DBS) has been shown to interfere with this function. Here, we performed continuous as well as closed-loop DBS of the STN while Parkinson's disease patients performed a perceptual decision-making task. Closed-loop STN DBS allowed temporally patterned STN stimulation and simultaneous recordings of STN activity. This revealed that DBS only affected patients' ability to adjust decision thresholds if applied in a specific temporally confined time window during deliberation. Only stimulation in that window diminished the normal slowing of response times that occurred on difficult trials when DBS was turned off. Furthermore, DBS eliminated a relative, time-specific increase in STN beta oscillations and compromised its functional relationship with trial-by-trial adjustments in decision thresholds. Together, these results provide causal evidence that the STN is involved in adjusting decision thresholds in distinct, time-limited processing windows during deliberation. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Gastrointestinal disturbances in marathon runners.

    Science.gov (United States)

    Riddoch, C; Trinick, T

    1988-06-01

    The purpose of this survey was to investigate the prevalence of running-induced gastrointestinal (GI) disturbances in marathon runners. A questionnaire was completed by 471 of the estimated 1,750 competitors in the 1986 Belfast City Marathon. Eighty-three per cent of respondents indicated that they occasionally or frequently suffered one or more GI disturbances during or immediately after running. The urge to have a bowel movement (53%) and diarrhoea (38%) were the most common symptoms, especially among female runners (74% and 68% respectively). Upper GI tract symptoms were experienced more by women than men (p less than 0.05) and more by younger runners than older runners (p less than 0.01). Women also suffered more lower GI tract symptoms than men (p less than 0.05) with younger runners showing a similar trend. Both upper and lower tract symptoms were more common during a "hard" run than an "easy" run (p less than 0.01) and were equally as common both during and after running. Of those runners who suffered GI disturbances, 72% thought that running was the cause and 29% believed their performance to be adversely affected. There was no consensus among sufferers as to the causes of symptoms and a wide variety of "remedies" were suggested. GI disturbances are common amongst long-distance runners and their aetiology is unknown. Medical practitioners should be aware of this when dealing with patients who run.

  9. "THE EVALUATION OF THE POSSIBLE EFFECT OF POSITIVE END EXPIRATORY PRESSURE (PEEP ON PHARMACOKINETICS OF PHENYTOIN IN PATIENTS WITH ACUTE BRAIN INJURY UNDER MECHANICAL VENTILATION."

    Directory of Open Access Journals (Sweden)

    "Elham Hadidi

    2005-04-01

    Full Text Available Positive ventilation has shown to have an influence on pharmacokinetic and disposition of some drugs.Beacause phenytoin with a narrow therapautic range, is the most commonly used drug for prophylaxis and treatment of early seizures after acute brain injuries, in the present study the effect of short term PEEP (5-10 cm H2O for at least 8 hours on phenytoin serum concentration and pharmacokinetic parameters such as Vmax and clearance in brain injured patients under mechanical ventilation was examined. Ten patients with moderate to severe acute brain injury who were placed on mechanical ventilation with an initial PEEP level of 0-5 cm H2O were included in the study. Patients received phenytoin loading dose of 15 mg/kg followed by a maintenance daily dose of 3-7 mg/kg initiated within 12 hours of loading dose. Sampels were taken on two different occasions before and after PEEP elevation. Total phenytoin serum concentrations were determined by HPLC method. A time invarient Michaelis-Menten pharmacokinetic model was used to calculate Vmax and clearance for each patient.Derrived variables were calculated as follows: Vmax, 3.5-6.8 and 3.7-8.2 mg/kg/day; Clearance, 0.1-0.7 and 0.1-1.2 l/kg/day (before and after PEEP elevation, respectively. Our data have shown a wide range of variability (2.6-32.5 mg/l in phenytoin serum concentrations. There were no statistically significant differences in the measured total concentrations (p=0.721 and calculated Vmax and clearance (p=0.285before and after PEEP elevation. Administration of fluid and inotropic agents, limitation in application of higher levels of PEEP and drug interactions, shall be considered as possible explanations for these findings.

  10. Functional connectivity in cortico-subcortical brain networks underlying reward processing in attention-deficit/hyperactivity disorder

    NARCIS (Netherlands)

    Oldehinkel, Marianne; Beckmann, Christian F.; Franke, Barbara; Hartman, Catharina A.; Hoekstra, Pieter J.; Oosterlaan, Jaap; Heslenfeld, Dirk; Buitelaar, Jan K.; Mennes, Maarten

    2016-01-01

    Background: Many patients with attention-deficit/hyperactivity disorder (ADHD) display aberrant reward-related behavior. Task-based fMRI studies have related atypical reward processing in ADHD to altered BOLD activity in regions underlying reward processing such as ventral striatum and orbitofrontal

  11. Trajectory Control of Scale-Free Dynamical Networks with Exogenous Disturbances

    International Nuclear Information System (INIS)

    Yang Hongyong; Zhang Shun; Zong Guangdeng

    2011-01-01

    In this paper, the trajectory control of multi-agent dynamical systems with exogenous disturbances is studied. Suppose multiple agents composing of a scale-free network topology, the performance of rejecting disturbances for the low degree node and high degree node is analyzed. Firstly, the consensus of multi-agent systems without disturbances is studied by designing a pinning control strategy on a part of agents, where this pinning control can bring multiple agents' states to an expected consensus track. Then, the influence of the disturbances is considered by developing disturbance observers, and disturbance observers based control (DOBC) are developed for disturbances generated by an exogenous system to estimate the disturbances. Asymptotical consensus of the multi-agent systems with disturbances under the composite controller can be achieved for scale-free network topology. Finally, by analyzing examples of multi-agent systems with scale-free network topology and exogenous disturbances, the verities of the results are proved. Under the DOBC with the designed parameters, the trajectory convergence of multi-agent systems is researched by pinning two class of the nodes. We have found that it has more stronger robustness to exogenous disturbances for the high degree node pinned than that of the low degree node pinned. (interdisciplinary physics and related areas of science and technology)

  12. Role of Serum Brain Derived Neurotrophic Factor and Central N-Acetylaspartate for Clinical Response under Antidepressive Pharmacotherapy

    Directory of Open Access Journals (Sweden)

    Sarah Nase

    2016-02-01

    Full Text Available Background: The predictive therapeutic value of brain derived neurotrophic factor (BDNF and its changes associated with the use of specific antidepressants are still unclear. In this study, we examined BDNF as a peripheral and NAA as a central biomarker over the time course of antidepressant treatment to specify both of their roles in the response to the medication and clinical outcome. Methods: We examined serum BDNF (ELISA kit in a sample of 76 (47 female and 29 male depressed patients in a naturalistic setting. BDNF was assessed before medication and subsequently after two, four and six weeks of antidepressant treatment. Additionally, in fifteen patients, N-acetylaspartate (NAA was measured in the anterior cingulate cortex (ACC with magnetic resonance spectroscopy (MRS. Over a time course of six weeks BDNF and NAA were also examined in a group of 41 healthy controls. Results: We found significant lower serum BDNF concentrations in depressed patients compared to the sample of healthy volunteers before and after medication. BDNF and clinical symptoms decreased significantly in the patients over the time course of antidepressant treatment. Serum BDNF levels at baseline predicted the symptom outcome after eight weeks. Specifically, responders and remitters had lower serum BDNF at baseline than the nonresponders and nonremitters. NAA was slightly decreased but not significantly lower in depressed patients when compared with healthy controls. During treatment period, NAA showed a tendency to increase. Limitations: A relative high drop-out rate and possibly, a suboptimal observation period for BDNF. Conclusion: Our data confirm serum BDNF as a biomarker of depression with a possible role in response prediction. However, our findings argue against serum BDNF increase being a prerequisite to depressive symptom reduction.

  13. Too big or too narrow? Disturbance characteristics determine the functional resilience in virtual microbial ecosystems

    Science.gov (United States)

    König, Sara; Firle, Anouk-Letizia; Koehnke, Merlin; Banitz, Thomas; Frank, Karin

    2017-04-01

    dramatically. Under recurrent disturbance events, this threshold is shifted to lower disturbance sizes. The more frequent disturbances are recurring, the lower is the critical disturbance size. Our simulation results indicate the importance of spatial characteristics of disturbance events for the functional resilience of microbial ecosystems. Critical values for disturbance size and fragmentation emerge from an interplay between both characteristics. In consequence, a precise definition of the specific disturbance regime is necessary for analysing functional resilience. With this study, we show that we need to consider the influence of fragmentation in terrestrial environments not only on population extincions but also on the resilience of ecosystem functions. Moreover, spatial disturbance characteristics - which are widely discussed on landscape scale - are an important factor on smaller scales, too.

  14. Design of an EEG-based brain-computer interface (BCI) from standard components running in real-time under Windows.

    Science.gov (United States)

    Guger, C; Schlögl, A; Walterspacher, D; Pfurtscheller, G

    1999-01-01

    An EEG-based brain-computer interface (BCI) is a direct connection between the human brain and the computer. Such a communication system is needed by patients with severe motor impairments (e.g. late stage of Amyotrophic Lateral Sclerosis) and has to operate in real-time. This paper describes the selection of the appropriate components to construct such a BCI and focuses also on the selection of a suitable programming language and operating system. The multichannel system runs under Windows 95, equipped with a real-time Kernel expansion to obtain reasonable real-time operations on a standard PC. Matlab controls the data acquisition and the presentation of the experimental paradigm, while Simulink is used to calculate the recursive least square (RLS) algorithm that describes the current state of the EEG in real-time. First results of the new low-cost BCI show that the accuracy of differentiating imagination of left and right hand movement is around 95%.

  15. Age-related alterations of brain network underlying the retrieval of emotional autobiographical memories: an fMRI study using independent component analysis.

    Science.gov (United States)

    Ge, Ruiyang; Fu, Yan; Wang, Dahua; Yao, Li; Long, Zhiying

    2014-01-01

    Normal aging has been shown to modulate the neural underpinnings of autobiographical memory and emotion processing. Moreover, previous researches have suggested that aging produces a "positivity effect" in autobiographical memory. Although a few imaging studies have investigated the neural mechanism of the positivity effect, the neural substrates underlying the positivity effect in emotional autobiographical memory is unclear. To understand the age-related neural changes in emotional autobiographical memory that underlie the positivity effect, the present functional magnetic resonance imaging (fMRI) study used the independent component analysis (ICA) method to compare brain networks in younger and older adults as they retrieved positive and negative autobiographical events. Compared to their younger counterparts, older adults reported relatively higher positive feelings when retrieving emotional autobiographical events. Imaging data indicated an age-related reversal within the ventromedial prefrontal/anterior cingulate cortex (VMPFC/ACC) and the left amygdala of the brain networks that were engaged in the retrieval of autobiographical events with different valence. The retrieval of negative events compared to positive events induced stronger activity in the VMPFC/ACC and weaker activity in the amygdala for the older adults, whereas the younger adults showed a reversed pattern. Moreover, activity in the VMPFC/ACC within the task-related networks showed a negative correlation with the emotional valence intensity. These results may suggest that the positivity effect in older adults' autobiographical memories is potentially due to age-related changes in controlled emotional processing implemented by the VMPFC/ACC-amygdala circuit.

  16. Left brain, right brain: facts and fantasies.

    Science.gov (United States)

    Corballis, Michael C

    2014-01-01

    Handedness and brain asymmetry are widely regarded as unique to humans, and associated with complementary functions such as a left-brain specialization for language and logic and a right-brain specialization for creativity and intuition. In fact, asymmetries are widespread among animals, and support the gradual evolution of asymmetrical functions such as language and tool use. Handedness and brain asymmetry are inborn and under partial genetic control, although the gene or genes responsible are not well established. Cognitive and emotional difficulties are sometimes associated with departures from the "norm" of right-handedness and left-brain language dominance, more often with the absence of these asymmetries than their reversal.

  17. Estructura poblacional de Taxodium mucronatum en condiciones contrastantes de perturbación en el estado de Querétaro, México Population structure of Taxodium mucronatum under contrasting conditions of disturbance in the State of Querétaro, Mexico

    Directory of Open Access Journals (Sweden)

    E. Gabriela Enríquez-Peña

    2011-03-01

    Full Text Available Taxodium mucronatum es una especie riparia sujeta al efecto de perturbaciones humanas. En 8 sitios bajo condiciones contrastantes de perturbación se comparó la estructura poblacional y el crecimiento individual de la especie por 2 años. Se establecieron 2 cuadrantes de 500 m2 en cada rodal, donde se registró altura, área basal, cobertura, edad, incremento radial, producción de conos y crecimiento de brotes de cada individuo > 5cm de diámetro de circunferencia del tronco a 1.50 metros. La estructura individual denotada por la altura, área basal y cobertura se vio influenciada por la condición de perturbación (MANOVA F= 6.875, p Taxodium mucronatum is a riparian species subjected to anthropocentric pressures. In 8 sites under contrasting disturbance conditions we compared the population structure and individual growth for 2 years, implementing two 500 m2 quadrats in each population where we measured for each individual >5cm the diameter at 1.5m, height, basal area, canopy cover, age, radial growth, cone production and shoot growth. Individual structure denoted by height, basal area and cover was influenced by the disturbance condition (MANOVA F= 6.875, p <.0001, without any relationship between age and diameter of the trees. Prolonged inundations change the radial growth producing a temporal expansion of the stems. Cone production differed significantly (year 2002 F= 6.324, p <.0001; 2003 F= 10.013, p <.0001, with local differences in shoot growth (first and last measurements, Panales [F= 8.324, p= 0.032] and El Trapiche [F= 8.635, p= 0.030]. Temperature, available humidity, inundations, organic matter in the soils and human induced disturbances affect the vegetative growth and reproductive performance of the species.

  18. Response of a Hypersonic Boundary Layer to Freestream Pulse Acoustic Disturbance

    Directory of Open Access Journals (Sweden)

    Zhenqing Wang

    2014-01-01

    Full Text Available The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter.

  19. Response of a hypersonic boundary layer to freestream pulse acoustic disturbance.

    Science.gov (United States)

    Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing

    2014-01-01

    The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter.

  20. Therapeutic brain modulation with targeted large neutral amino acid supplements in the Pah-enu2 phenylketonuria mouse model.

    Science.gov (United States)

    van Vliet, Danique; Bruinenberg, Vibeke M; Mazzola, Priscila N; van Faassen, Martijn Hjr; de Blaauw, Pim; Pascucci, Tiziana; Puglisi-Allegra, Stefano; Kema, Ido P; Heiner-Fokkema, M Rebecca; van der Zee, Eddy A; van Spronsen, Francjan J

    2016-11-01

    Phenylketonuria treatment consists mainly of a Phe-restricted diet, which leads to suboptimal neurocognitive and psychosocial outcomes. Supplementation of large neutral amino acids (LNAAs) has been suggested as an alternative dietary treatment strategy to optimize neurocognitive outcome in phenylketonuria and has been shown to influence 3 brain pathobiochemical mechanisms in phenylketonuria, but its optimal composition has not been established. In order to provide additional pathobiochemical insight and develop optimal LNAA treatment, several targeted LNAA supplements were investigated with respect to all 3 biochemical disturbances underlying brain dysfunction in phenylketonuria. Pah-enu2 (PKU) mice received 1 of 5 different LNAA-supplemented diets beginning at postnatal day 45. Control groups included phenylketonuria mice receiving an isonitrogenic and isocaloric high-protein diet or the AIN-93M diet, and wild-type mice receiving the AIN-93M diet. After 6 wk, brain and plasma amino acid profiles and brain monoaminergic neurotransmitter concentrations were measured. Brain Phe concentrations were most effectively reduced by supplementation of LNAAs, such as Leu and Ile, with a strong affinity for the LNAA transporter type 1. Brain non-Phe LNAAs could be restored on supplementation, but unbalanced LNAA supplementation further reduced brain concentrations of those LNAAs that were not (sufficiently) included in the LNAA supplement. To optimally ameliorate brain monoaminergic neurotransmitter concentrations, LNAA supplementation should include Tyr and Trp together with LNAAs that effectively reduce brain Phe concentrations. The requirement for Tyr supplementation is higher than it is for Trp, and the relative effect of brain Phe reduction is higher for serotonin than it is for dopamine and norepinephrine. The study shows that all 3 biochemical disturbances underlying brain dysfunction in phenylketonuria can be targeted by specific LNAA supplements. The study thus

  1. Detection and classification of power quality disturbances using S-transform and modular neural network

    Energy Technology Data Exchange (ETDEWEB)

    Bhende, C.N.; Mishra, S.; Panigrahi, B.K. [Department of Electrical Engineering, Indian Institute of Technology, New Delhi 110016 (India)

    2008-01-15

    This paper presents an S-transform based modular neural network (NN) classifier for recognition of power quality disturbances. The excellent time - frequency resolution characteristics of the S-transform makes it an attractive candidate for the analysis of power quality (PQ) disturbances under noisy condition and has the ability to detect the disturbance correctly. On the other hand, the performance of wavelet transform (WT) degrades while detecting and localizing the disturbances in the presence of noise. Features extracted by using the S-transform are applied to a modular NN for automatic classification of the PQ disturbances that solves a relatively complex problem by decomposing it into simpler subtasks. Modularity of neural network provides better classification, model complexity reduction and better learning capability, etc. Eleven types of PQ disturbances are considered for the classification. The simulation results show that the combination of the S-transform and a modular NN can effectively detect and classify different power quality disturbances. (author)

  2. Noninvasive Evaluation of Cellular Proliferative Activity in Brain Neurogenic Regions in Rats under Depression and Treatment by Enhanced [18F]FLT-PET Imaging.

    Science.gov (United States)

    Tamura, Yasuhisa; Takahashi, Kayo; Takata, Kumi; Eguchi, Asami; Yamato, Masanori; Kume, Satoshi; Nakano, Masayuki; Watanabe, Yasuyoshi; Kataoka, Yosky

    2016-08-03

    Neural stem cells in two neurogenic regions, the subventricular zone and the subgranular zone (SGZ) of the hippocampal dentate gyrus, can divide and produce new neurons throughout life. Hippocampal neurogenesis is related to emotions, including depression/anxiety, and the therapeutic effects of antidepressants, as well as learning and memory. The establishment of in vivo imaging for proliferative activity of neural stem cells in the SGZ might be used to diagnose depression and to monitor the therapeutic efficacy of antidepressants. Positron emission tomography (PET) imaging with 3'-deoxy-3'-[(18)F]fluoro-l-thymidine ([(18)F]FLT) has been studied to allow visualization of proliferative activity in two neurogenic regions of adult mammals; however, the PET imaging has not been widely used because of lower accumulation of [(18)F]FLT, which does not allow quantitative assessment of the decline in cellular proliferative activity in the SGZ under the condition of depression. We report the establishment of an enhanced PET imaging method with [(18)F]FLT combined with probenecid, an inhibitor of drug transporters at the blood-brain barrier, which can allow the quantitative visualization of neurogenic activity in rats. Enhanced PET imaging allowed us to evaluate reduced cell proliferation in the SGZ of rats with corticosterone-induced depression, and further the recovery of proliferative activity in rats under treatment with antidepressants. This enhanced [(18)F]FLT-PET imaging technique with probenecid can be used to assess the dynamic alteration of neurogenic activity in the adult mammalian brain and may also provide a means for objective diagnosis of depression and monitoring of the therapeutic effect of antidepressant treatment. Adult hippocampal neurogenesis may play a role in major depression and antidepressant therapy. Establishment of in vivo imaging for hippocampal neurogenic activity may be useful to diagnose depression and monitor the therapeutic efficacy of

  3. Disturbances in small bowel motility.

    LENUS (Irish Health Repository)

    Quigley, E M

    2012-02-03

    Recently, the small intestine has become the focus of investigation as a potential site of dysmotility in the irritable bowel syndrome (IBS). A number of motor abnormalities have been defined in some studies, and include \\'clustered\\' contractions, exaggerated post-prandial motor response and disturbances in intestinal transit. The significance of these findings remains unclear. The interpretation of available studies is complicated by differences in subject selection, the direct influence of certain symptoms, such as diarrhoea and constipation, and the interference of compounding factors, such as stress and psychopathology. Dysmotility could also reflect autonomic dysfunction, disturbed CNS control and the response to heightened visceral sensation or central perception. While motor abnormalities may not explain all symptoms in IBS, sensorimotor interactions may be important in symptom pathogenesis and deserve further study.

  4. Reassessment and proposal of synchronization scheme for grid connected static converters under disturbed utility; Nueva evaluación y propuesta de un esquema de sincronización para la conexión a la red de convertidores estáticos de potencia en presencia de

    Directory of Open Access Journals (Sweden)

    Giuseppe Buja

    2015-04-01

    Full Text Available The paper starts by casting new light to the existing Phase Lock Loop (PLL schemes used to synchronize the static converters with the grid under utility disturbances. Two approaches are pursued to detect the fundamental harmonic of the positive-sequence component of the grid voltages in presence of the disturbances. Arithmetical approaches improve the operation of the basic PLL circuit by making robust the PLL algorithm. Structural approaches improve the operation of the basic PLL circuit by adding a block intended to cope with the disturbances. This paper considers the structural approach and shows that it works by either post processing the detected grid quantities or preprocessing the grid voltages. Afterwards, the paper proposes an improved PLL scheme termed as double processing (DP PLL scheme since it includes preprocessing and post processing functionalities. By properly designing the scheme parameters, it is proved that the proposed scheme exhibits superior robustness against the utility disturbances. El artículo realiza una descripción de los principales esquemas de lazos de enganche de fases (PLL según sus siglas en inglés usados para sincronizar convertidores estáticos de potencia en una red eléctrica en presencia de perturbaciones eléctricas. Se profundiza en dos esquemas principales para la detección de la componente de secuencia positiva del armónico fundamental. Un enfoque aritmético mejora la operación del esquema PLL básico haciéndolo más  robusto. Un enfoque estructural mejora la operación del esquema PLL básico por la acción de un bloque auxiliar que elimina el efecto perturbador presente en la red eléctrica. Este artículo considera el enfoque estructural y muestra cómo funciona  tanto la detención de las variables eléctricas post procesadas o el preprocesamiento de la tensión de la red. Posteriormente se propone un esquema de PLL mejorado llamado lazo de enganche de fase con doble procesamiento. Se

  5. Postradiation disturbances of neuroendocrinal interaction

    International Nuclear Information System (INIS)

    Dedov, V.I.

    1980-01-01

    Analysis of data on the disturbances induced by ionizing irradiation in endocrine organs is given on the basis of experimental material. Mechanism and dynamics of the radiation pathology of such organs of endocrine system as hypothalamus, hypophysis, adrenal glands, thyroid, gonads are considered. Necessity of the determination of criteria of injury significance and study of delayed effects of ionizing radiation in perspective investigation of the problems of endocrine radiation pathology is pointed out

  6. Mechanical disturbances in superconducting magnets

    International Nuclear Information System (INIS)

    Sugimoto, Makoto

    1990-03-01

    The stress distribution in a small epoxy-impregnated Nb 3 Sn coil was calculated by the finite element method. Mechanical disturbances due to the electromagnetic force in the magnet are discussed. The coil stability in relation with the stress distribution is also discussed by using the experimental results. To evaluate such stresses, a calculation model was investigated. It was found that the model, which removed the internal bore element in the model magnet, gave a reasonable condition to estimate to stress. A quench mechanism due to mechanical disturbances in superconducting magnets is discussed. According to this mechanism, an internal slit was assumed as the reason for the mechanical disturbance. The internal slit is generated at the boundary between the superconductor and the bore element by the thermally induced stress. When charging a magnet, the induced electromagnetic force results in a stress concentration at the slit, and hence to an enlargement of it. During the enlargement of the internal slit, heat is generated at the top of it. Such heat generation from a mechanical disturbance can induce a quench. Through these investigations, the following coil manufacturing method can be proposed to reduce such stresses: the magnet should be manufactured to separate the bore element from the superconductor and this separation technique can reduce the boundary stress during cool-down. Actually, a thin teflon film at the boundary between the superconductor and the bore element can be used as a separator. Another separation technique is a teflon coating on the internal bore element. The separation technique should result in a stable epoxy-impregnated superconducting magnet. (J.P.N.)

  7. Intermittent fasting is neuroprotective in focal cerebral ischemia by minimizing autophagic flux disturbance and inhibiting apoptosis.

    Science.gov (United States)

    Jeong, Ji Heun; Yu, Kwang Sik; Bak, Dong Ho; Lee, Je Hun; Lee, Nam Seob; Jeong, Young Gil; Kim, Dong Kwan; Kim, Jwa-Jin; Han, Seung-Yun

    2016-11-01

    Previous studies have demonstrated that autophagy induced by caloric restriction (CR) is neuroprotective against cerebral ischemia. However, it has not been determined whether intermittent fasting (IF), a variation of CR, can exert autophagy-related neuroprotection against cerebral ischemia. Therefore, the neuroprotective effect of IF was evaluated over the course of two weeks in a rat model of focal cerebral ischemia, which was induced by middle cerebral artery occlusion and reperfusion (MCAO/R). Specifically, the role of autophagy modulation as a potential underlying mechanism for this phenomenon was investigated. It was demonstrated that IF reduced infarct volume and brain edema, improved neurobehavioral deficits, and rescued neuronal loss after MCAO/R. Furthermore, neuronal apoptosis was decreased by IF in the rat cortex. An increase in the number of autophagosomes (APs) was demonstrated in the cortices of IF-treated rats, using immunofluorescence staining and transmission electron microscopy. Using immunoblots, an IF-induced increase was detected in microtubule-associated protein 1 light chain 3 (LC3)-II, Rab7, and cathepsin D protein levels, which corroborated previous morphological studies. Notably, IF reduced the accumulation of APs and p62, demonstrating that IF attenuated the MCAO/R-induced disturbance of autophagic flux in neurons. The findings of the present study suggest that IF-induced neuroprotection in focal cerebral ischemia is due, at least in part, to the minimization of autophagic flux disturbance and inhibition of apoptosis.

  8. Treating autism spectrum disorder with gluten-free and casein-free diet: the underlying microbiota-gut-brain axis mechanisms

    NARCIS (Netherlands)

    Ciéslińska, Anna; Kostyra, Elzbieta; Savelkoul, H.F.J.

    2017-01-01

    There is a rising interest in the use of dietary interventions to
    ameliorate prevalent brain diseases, including Autism Spectrum
    Disorder (ASD). Nowadays, the existence of communication between
    gut and brain is well accepted and thus diet can influence
    brain functioning. A well-known

  9. Disturbed cortico-amygdalar functional connectivity as pathophysiological correlate of working memory deficits in bipolar affective disorder.

    Science.gov (United States)

    Stegmayer, Katharina; Usher, Juliana; Trost, Sarah; Henseler, Ilona; Tost, Heike; Rietschel, Marcella; Falkai, Peter; Gruber, Oliver

    2015-06-01

    Patients suffering from bipolar affective disorder show deficits in working memory functions. In a previous functional magnetic resonance imaging study, we observed an abnormal hyperactivity of the amygdala in bipolar patients during articulatory rehearsal in verbal working memory. In the present study, we investigated the dynamic neurofunctional interactions between the right amygdala and the brain systems that underlie verbal working memory in both bipolar patients and healthy controls. In total, 18 euthymic bipolar patients and 18 healthy controls performed a modified version of the Sternberg item-recognition (working memory) task. We used the psychophysiological interaction approach in order to assess functional connectivity between the right amygdala and the brain regions involved in verbal working memory. In healthy subjects, we found significant negative functional interactions between the right amygdala and multiple cortical brain areas involved in verbal working memory. In comparison with the healthy control subjects, bipolar patients exhibited significantly reduced functional interactions of the right amygdala particularly with the right-hemispheric, i.e., ipsilateral, cortical regions supporting verbal working memory. Together with our previous finding of amygdala hyperactivity in bipolar patients during verbal rehearsal, the present results suggest that a disturbed right-hemispheric "cognitive-emotional" interaction between the amygdala and cortical brain regions underlying working memory may be responsible for amygdala hyperactivation and affects verbal working memory (deficits) in bipolar patients.

  10. Receptivity of Boundary Layer over a Blunt Wedge due to Freestream Pulse Disturbances at Mach 6

    Directory of Open Access Journals (Sweden)

    Jianqiang Shi

    2016-01-01

    Full Text Available Direct numerical simulation (DNS of a hypersonic compressible flow over a blunt wedge with fast acoustic disturbances in freestream is performed. The receptivity characteristics of boundary layer to freestream pulse acoustic disturbances are numerically investigated at Mach 6, and the frequency effects of freestream pulse wave on boundary layer receptivity are discussed. Results show that there are several main disturbance mode clusters in boundary layer under acoustic pulse wave, and the number of main disturbance clusters decreases along the streamwise. As disturbance wave propagates from upstream to downstream direction, the component of the modes below fundamental frequency decreases, and the component of the modes above second harmonic components increases quickly in general. There are competition and disturbance energy transfer between different boundary layer modes. The nose boundary layer is dominated by the nearby mode of fundamental frequency. The number of the main disturbance mode clusters decreases as the freestream disturbance frequency increases. The frequency range with larger growth narrows along the streamwise. In general, the amplitudes of both fundamental mode and harmonics become larger with the decreasing of freestream disturbance frequency. High frequency freestream disturbance accelerates the decay of disturbance wave in downstream boundary layer.

  11. Information-disturbance tradeoff in quantum measurements

    International Nuclear Information System (INIS)

    Maccone, Lorenzo

    2006-01-01

    We present a simple information-disturbance tradeoff relation valid for any general measurement apparatus: The disturbance between input and output states is lower bounded by the information the apparatus provides in distinguishing these two states

  12. On the number of neurons and time scale of integration underlying the formation of percepts in the brain.

    Science.gov (United States)

    Wohrer, Adrien; Machens, Christian K

    2015-03-01

    All of our perceptual experiences arise from the activity of neural populations. Here we study the formation of such percepts under the assumption that they emerge from a linear readout, i.e., a weighted sum of the neurons' firing rates. We show that this assumption constrains the trial-to-trial covariance structure of neural activities and animal behavior. The predicted covariance structure depends on the readout parameters, and in particular on the temporal integration window w and typical number of neurons K used in the formation of the percept. Using these predictions, we show how to infer the readout parameters from joint measurements of a subject's behavior and neural activities. We consider three such scenarios: (1) recordings from the complete neural population, (2) recordings of neuronal sub-ensembles whose size exceeds K, and (3) recordings of neuronal sub-ensembles that are smaller than K. Using theoretical arguments and artificially generated data, we show that the first two scenarios allow us to recover the typical spatial and temporal scales of the readout. In the third scenario, we show that the readout parameters can only be recovered by making additional assumptions about the structure of the full population activity. Our work provides the first thorough interpretation of (feed-forward) percept formation from a population of sensory neurons. We discuss applications to experimental recordings in classic sensory decision-making tasks, which will hopefully provide new insights into the nature of perceptual integration.

  13. Brain SPECT

    International Nuclear Information System (INIS)

    Feistel, H.

    1991-01-01

    Brain SPECT investigations have gained broad acceptance since the introduction of the lipophilic tracer Tc-99m-HMPAO. Depending on equipment and objectives in different departments, the examinations can be divided into three groups: 1. Under normal conditions and standardised patient preparation the 'rest' SPECT can be performed in every department with a tomographic camera. In cerebrovascular disease there is a demand for determination of either the perfusion reserve in reversible ischemia or prognostic values in completed stroke. In cases of dementia, SPECT may yield useful results according to differential diagnosis. Central cerebral system involvement in immunologic disease may be estimated with higher sensitivity than in conventional brain imaging procedures. In psychiatric diseases there is only a relative indication for brain SPECT, since results during recent years have been contradictory and may be derived only in interventional manner. In brain tumor diagnostics SPECT with Tl-201 possibly permits grading. In inflammatory disease, especially in viral encephalitis, SPECT may be used to obtain early diagnosis. Normal pressure hydrocephalus can be distinguished from other forms of dementia and, consequently, the necessity for shunting surgery can be recognised. 2. In departments equipped for emergency cases an 'acute' SPECT can be performed in illnesses with rapid changing symptoms such as different forms of migraine, transient global amnesia, epileptic seizures (so-called 'ictal SPECT') or urgent forms like trauma. 3. In cooperation with several departments brain SPECT can be practised as an interventional procedure in clinical and in scientific studies. (orig./MG) [de

  14. A Right Brain/Left Brain Model of Acting.

    Science.gov (United States)

    Bowlen, Clark

    Using current right brain/left brain research, this paper develops a model that explains acting's underlying quality--the actor is both himself and the character. Part 1 presents (1) the background of the right brain/left brain theory, (2) studies showing that propositional communication is a left hemisphere function while affective communication…

  15. Disturbance Decoupling of Switched Linear Systems

    NARCIS (Netherlands)

    Yurtseven, E.; Heemels, W.P.M.H.; Camlibel, M.K.

    2010-01-01

    In this paper we consider disturbance decoupling problems for switched linear systems. We will provide necessary and sufficient conditions for three different versions of disturbance decoupling, which differ based on which signals are considered to be the disturbance. In the first version the

  16. Age-related alterations of brain network underlying the retrieval of emotional autobiographical memories: An fMRI study using independent component analysis

    Directory of Open Access Journals (Sweden)

    Ruiyang eGe

    2014-08-01

    Full Text Available Normal aging has been shown to modulate the neural underpinnings of autobiographical memory and emotion processing. Moreover, previous researches have suggested that aging produces a positivity effect in autobiographical memory. Although a few imaging studies have investigated the neural mechanism of the positivity effect, the neural substrates underlying the positivity effect in emotional autobiographical memory is unclear. To understand the age-related neural changes in emotional autobiographical memory that underlie the positivity effect, the present functional magnetic resonance imaging (fMRI study used the independent component analysis (ICA method to compare brain networks in younger and older adults as they retrieved positive and negative autobiographical events. Compared to their younger counterparts, older adults reported relatively higher positive feelings when retrieving emotional autobiographical events. Imaging data indicated an age-related reversal within the ventromedial prefrontal/anterior cingulate cortex (VMPFC/ACC and the left amygdala of the brain networks that were engaged in the retrieval of autobiographical events with different valence. The retrieval of negative events compared to positive events induced stronger activity in the VMPFC/ACC and weaker activity in the amygdala for the older adults, whereas the younger adults showed a reversed pattern. Moreover, activity in the VMPFC/ACC within the task-related networks showed a negative correlation with the emotional valence intensity. These results may suggest that the positivity effect in older adults’ autobiographical memories is potentially due to age-related changes in controlled emotional processing implemented by the VMPFC/ACC-amygdala circuit.

  17. Colorado River basin sensitivity to disturbance impacts

    Science.gov (United States)

    Bennett, K. E.; Urrego-Blanco, J. R.; Jonko, A. K.; Vano, J. A.; Newman, A. J.; Bohn, T. J.; Middleton, R. S.

    2017-12-01

    The Colorado River basin is an important river for the food-energy-water nexus in the United States and is projected to change under future scenarios of increased CO2emissions and warming. Streamflow estimates to consider climate impacts occurring as a result of this warming are often provided using modeling tools which rely on uncertain inputs—to fully understand impacts on streamflow sensitivity analysis can help determine how models respond under changing disturbances such as climate and vegetation. In this study, we conduct a global sensitivity analysis with a space-filling Latin Hypercube sampling of the model parameter space and statistical emulation of the Variable Infiltration Capacity (VIC) hydrologic model to relate changes in runoff, evapotranspiration, snow water equivalent and soil moisture to model parameters in VIC. Additionally, we examine sensitivities of basin-wide model simulations using an approach that incorporates changes in temperature, precipitation and vegetation to consider impact responses for snow-dominated headwater catchments, low elevation arid basins, and for the upper and lower river basins. We find that for the Colorado River basin, snow-dominated regions are more sensitive to uncertainties. New parameter sensitivities identified include runoff/evapotranspiration sensitivity to albedo, while changes in snow water equivalent are sensitive to canopy fraction and Leaf Area Index (LAI). Basin-wide streamflow sensitivities to precipitation, temperature and vegetation are variable seasonally and also between sub-basins; with the largest sensitivities for smaller, snow-driven headwater systems where forests are dense. For a major headwater basin, a 1ºC of warming equaled a 30% loss of forest cover, while a 10% precipitation loss equaled a 90% forest cover decline. Scenarios utilizing multiple disturbances led to unexpected results where changes could either magnify or diminish extremes, such as low and peak flows and streamflow timing

  18. Chronic Sleep Disturbance Impairs Glucose Homeostasis in Rats

    NARCIS (Netherlands)

    Barf, R. Paulien; Meerlo, Peter; Scheurink, Anton J. W.

    2010-01-01

    Epidemiological studies have shown an association between short or disrupted sleep and an increased risk for metabolic disorders. To assess a possible causal relationship, we examined the effects of experimental sleep disturbance on glucose regulation in Wistar rats under controlled laboratory

  19. Impact of global warming on cyclonic disturbances over south Asian ...

    Indian Academy of Sciences (India)

    The model simulations under the scenarios of increasing greenhouse gas concentrations and sulphate aerosols are analysed to study the likely changes in the frequency, intensity and the tracks of cyclonic disturbances forming over north Indian Ocean (Bay of Bengal and Arabian Sea) and the Indian landmass during ...

  20. A Proposal for the Diagnosis of Emotional Disturbance.

    Science.gov (United States)

    Eaves, Ronald C.

    1982-01-01

    The underlying reasons for muddled definitions of emotional disturbance and their resultant befuddled diagnostic processes are discussed in terms of four factors: (1) the impact of theory, (2) societal diversity, (3) benchmarks for decision making, and (4) instrumentation. The author presents a method for diagnosis that is practical, functional,…

  1. Sleep disorders in children with traumatic brain injury: a case of serious neglect.

    Science.gov (United States)

    Stores, Gregory; Stores, Rachel

    2013-09-01

    The aim of this study was to review the basic aspects of sleep disturbance in children with traumatic brain injury (TBI). A search was performed on reports of sleep disturbances in children who had suffered TBI. Adults with TBI were also considered to anticipate the nature and significance of such disturbances in younger patients. Types of reported sleep disturbance were noted and their possible aetiology and management considered. Sleep disturbance has consistently been associated with TBI but the literature suggests that this aspect of patient care is often inadequately considered and there has been little research on the subject, especially in relation to children. Excessive daytime sleepiness is often mentioned, less so insomnia and parasomnias, but there is little information about the specific sleep disorders underlying these problems. Sleep disorders with potentially important developmental consequences have been neglected in the care of children with TBI. Screening for sleep problems should be routine and followed, if indicated, by a detailed diagnosis of the child's underlying specific sleep disorder, the possible aetiology of which includes neuropathology and potential medical, psychological, or psychiatric comorbidities. Appropriate assessments and modern treatment options are now well defined although generally underutilized. Further well-designed research is needed for which guidelines are available. © 2013 Mac Keith Press.

  2. Brain herniation

    Science.gov (United States)

    ... herniation; Uncal herniation; Subfalcine herniation; Tonsillar herniation; Herniation - brain ... Brain herniation occurs when something inside the skull produces pressure that moves brain tissues. This is most ...

  3. History of aphasia: From brain to language

    NARCIS (Netherlands)

    Eling, P.A.T.M.; Whitaker, H.A.; Finger, S.; Boller, F.; Tyler, K.L.

    2009-01-01

    An historical overview is presented that focuses on the changes both in approach and topics with respect to language disturbances due to brain lesions. Early cases of language disorders were described without any theorizing about language or its relation to the brain. Also, three forms of speech

  4. Disturbances in equilibrium function after major earthquake.

    Science.gov (United States)

    Honma, Motoyasu; Endo, Nobutaka; Osada, Yoshihisa; Kim, Yoshiharu; Kuriyama, Kenichi

    2012-01-01

    Major earthquakes were followed by a large number of aftershocks and significant outbreaks of dizziness occurred over a large area. However it is unclear why major earthquake causes dizziness. We conducted an intergroup trial on equilibrium dysfunction and psychological states associated with equilibrium dysfunction in individuals exposed to repetitive aftershocks versus those who were rarely exposed. Greater equilibrium dysfunction was observed in the aftershock-exposed group under conditions without visual compensation. Equilibrium dysfunction in the aftershock-exposed group appears to have arisen from disturbance of the inner ear, as well as individual vulnerability to state anxiety enhanced by repetitive exposure to aftershocks. We indicate potential effects of autonomic stress on equilibrium function after major earthquake. Our findings may contribute to risk management of psychological and physical health after major earthquakes with aftershocks, and allow development of a new empirical approach to disaster care after such events.

  5. [Sleep disturbances in children with autistic spectrum disorders].

    Science.gov (United States)

    Kelmanson, I A

    2015-01-01

    An association between sleep disorders and autistic spectrum disorders in children is considered. Characteristic variants of sleep disorders, including resistance to going to bed, frequent night awakenings, parasomnias, changes in sleep structure, primarily, the decrease in the percentage of rapid eye movement sleep, are presented. Attention is focused on the possibility of the direct relationship between sleep disturbance and the pathogenesis of autistic spectrum disorders. A role of pathological alterations in the production of neuromediators and morphological changes in the brain structures characteristic of autistic spectrum disorders in the genesis of sleep disorders in children is discussed. Possible non-pharmacological and pharmacological approaches are suggested.

  6. A critical view of the quest for brain structural markers of Albert Einstein's special talents (a pot of gold under the rainbow).

    Science.gov (United States)

    Colombo, Jorge A

    2018-06-01

    Assertions regarding attempts to link glial and macrostructural brain events with cognitive performance regarding Albert Einstein, are critically reviewed. One basic problem arises from attempting to draw causal relationships regarding complex, delicately interactive functional processes involving finely tuned molecular and connectivity phenomena expressed in cognitive performance, based on highly variable brain structural events of a single, aged, formalin fixed brain. Data weaknesses and logical flaws are considered. In other instances, similar neuroanatomical observations received different interpretations and conclusions, as those drawn, e.g., from schizophrenic brains. Observations on white matter events also raise methodological queries. Additionally, neurocognitive considerations on other intellectual aptitudes of A. Einstein were simply ignored.

  7. A Delta Operator Approach for the Discrete-Time Active Disturbance Rejection Control on Induction Motors

    Directory of Open Access Journals (Sweden)

    John Cortés-Romero

    2013-01-01

    Full Text Available The problem of active disturbance rejection control of induction motors is tackled by means of a generalized PI observer based discrete-time control, using the delta operator approach as the methodology of analyzing the sampled time process. In this scheme, model uncertainties and external disturbances are included in a general additive disturbance input which is to be online estimated and subsequently rejected via the controller actions. The observer carries out the disturbance estimation, thus reducing the complexity of the controller design. The controller efficiency is tested via some experimental results, performing a trajectory tracking task under load variations.

  8. Climate-driven disturbances in the San Juan River sub-basin of the Colorado River

    Science.gov (United States)

    Bennett, Katrina E.; Bohn, Theodore J.; Solander, Kurt; McDowell, Nathan G.; Xu, Chonggang; Vivoni, Enrique; Middleton, Richard S.

    2018-01-01

    Accelerated climate change and associated forest disturbances in the southwestern USA are anticipated to have substantial impacts on regional water resources. Few studies have quantified the impact of both climate change and land cover disturbances on water balances on the basin scale, and none on the regional scale. In this work, we evaluate the impacts of forest disturbances and climate change on a headwater basin to the Colorado River, the San Juan River watershed, using a robustly calibrated (Nash-Sutcliffe efficiency 0.76) hydrologic model run with updated formulations that improve estimates of evapotranspiration for semi-arid regions. Our results show that future disturbances will have a substantial impact on streamflow with implications for water resource management. Our findings are in contradiction with conventional thinking that forest disturbances reduce evapotranspiration and increase streamflow. In this study, annual average regional streamflow under the coupled climate-disturbance scenarios is at least 6-11 % lower than those scenarios accounting for climate change alone; for forested zones of the San Juan River basin, streamflow is 15-21 % lower. The monthly signals of altered streamflow point to an emergent streamflow pattern related to changes in forests of the disturbed systems. Exacerbated reductions of mean and low flows under disturbance scenarios indicate a high risk of low water availability for forested headwater systems of the Colorado River basin. These findings also indicate that explicit representation of land cover disturbances is required in modeling efforts that consider the impact of climate change on water resources.

  9. Brain mechanisms underlying human communication

    NARCIS (Netherlands)

    Noordzij, Matthijs Leendert; Newman-Norlund, Sarah E.; de Ruiter, Jan Peter; Hagoort, Peter; Levinson, Stephen C.; Toni, Ivan

    2009-01-01

    Human communication has been described as involving the coding-decoding of a conventional symbol system, which could be supported by parts of the human motor system (i.e. the “mirror neurons system”). However, this view does not explain how these conventions could develop in the first place. Here we

  10. Brain networks underlying bistable perception.

    Science.gov (United States)

    Baker, Daniel H; Karapanagiotidis, Theodoros; Coggan, David D; Wailes-Newson, Kirstie; Smallwood, Jonathan

    2015-10-01

    Bistable stimuli, such as the Necker Cube, demonstrate that experience can change in the absence of changes in the environment. Such phenomena can be used to assess stimulus-independent aspects of conscious experience. The current study used resting state functional magnetic resonance imaging (rs-fMRI) to index stimulus-independent changes in neural activity to understand the neural architecture that determines dominance durations during bistable perception (using binocular rivalry and Necker cube stimuli). Anterior regions of the Superior Parietal Lobule (SPL) exhibited robust connectivity with regions of primary sensorimotor cortex. The strength of this region's connectivity with the striatum predicted shorter dominance durations during binocular rivalry, whereas its connectivity to pre-motor cortex predicted longer dominance durations for the Necker Cube. Posterior regions of the SPL, on the other hand, were coupled to associative cortex in the temporal and frontal lobes. The posterior SPL's connectivity to the temporal lobe predicted longer dominance during binocular rivalry. In conjunction with prior work, these data suggest that the anterior SPL contributes to perceptual rivalry through the inhibition of incongruent bottom up information, whereas the posterior SPL influences rivalry by supporting the current interpretation of a bistable stimulus. Our data suggests that the functional connectivity of the SPL with regions of sensory, motor, and associative cortex allows it to regulate the interpretation of the environment that forms the focus of conscious attention at a specific moment in time. Copyright © 2015. Published by Elsevier Inc.

  11. Teen Brain: Still Under Construction

    Science.gov (United States)

    ... report finding that it is a factor in delinquency. Adequate sleep is central to physical and emotional ... other fac- tors, among them, inborn traits, personal history, family, friends, community, and culture.

  12. Brain mechanisms underlying human communication

    NARCIS (Netherlands)

    Noordzij, M.L.; Newman-Norlund, S.E.; Ruiter, J.P.A. de; Hagoort, P.; Levinson, S.C.; Toni, I.

    2009-01-01

    Human communication has been described as involving the coding-decoding of a conventional symbol system, which could be supported by parts of the human motor system (i.e. the "mirror neurons system"). However, this view does not explain how these conventions could develop in the first place. Here we

  13. Hypothalamic Dysfunction of the Thrombospondin Receptor α2δ-1 Underlies the Overeating and Obesity Triggered by Brain-Derived Neurotrophic Factor Deficiency

    Science.gov (United States)

    Cordeira, Joshua W.; Felsted, Jennifer A.; Teillon, Sarah; Daftary, Shabrine; Panessiti, Micaella; Wirth, Jena; Sena-Esteves, Miguel

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) and its receptor, TrkB, are critical components of the neural circuitry controlling appetite and body weight. Diminished BDNF signaling in mice results in severe hyperphagia and obesity. In humans, BDNF haploinsufficiency and the functional Bdnf Val66Met polymorphism have been linked to elevated food intake and body weight. The mechanisms underlying this dysfunction are poorly defined. We demonstrate a chief role of α2δ-1, a calcium channel subunit and thrombospondin receptor, in triggering overeating in mice with central BDNF depletion. We show reduced α2δ-1 cell-surface expression in the BDNF mutant ventromedial hypothalamus (VMH), an energy balance-regulating center. This deficit contributes to the hyperphagia exhibited by BDNF mutant mice because selective inhibition of α2δ-1 by gabapentin infusion into wild-type VMH significantly increases feeding and body weight gain. Importantly, viral-mediated α2δ-1 rescue in BDNF mutant VMH significantly mitigates their hyperphagia, obesity, and liver steatosis and normalizes deficits in glucose homeostasis. Whole-cell recordings in BDNF mutant VMH neurons revealed normal calcium currents but reduced frequency of EPSCs. These results suggest calcium channel-independent effects of α2δ-1 on feeding and implicate α2δ-1–thrombospondin interactions known to facilitate excitatory synapse assembly. Our findings identify a central mechanism mediating the inhibitory effects of BDNF on feeding. They also demonstrate a novel and critical role for α2δ-1 in appetite control and suggest a mechanism underlying weight gain in humans treated with gabapentinoid drugs. PMID:24403154

  14. Alteration of synaptic activity-regulating genes underlying functional improvement by long-term exposure to an enriched environment in the adult brain.

    Science.gov (United States)

    Lee, Min-Young; Yu, Ji Hea; Kim, Ji Yeon; Seo, Jung Hwa; Park, Eun Sook; Kim, Chul Hoon; Kim, Hyongbum; Cho, Sung-Rae

    2013-01-01

    Housing animals in an enriched environment (EE) enhances behavioral function. However, the mechanism underlying this EE-mediated functional improvement and the resultant changes in gene expression have yet to be elucidated. We attempted to investigate the underlying mechanisms associated with long-term exposure to an EE by evaluating gene expression patterns. We housed 6-week-old CD-1 (ICR) mice in standard cages or an EE comprising a running wheel, novel objects, and social interaction for 2 months. Motor and cognitive performances were evaluated using the rotarod test and passive avoidance test, and gene expression profile was investigated in the cerebral hemispheres using microarray and gene set enrichment analysis (GSEA). In behavioral assessment, an EE significantly enhanced rotarod performance and short-term working memory. Microarray analysis revealed that genes associated with neuronal activity were significantly altered by an EE. GSEA showed that genes involved in synaptic transmission and postsynaptic signal transduction were globally upregulated, whereas those associated with reuptake by presynaptic neurotransmitter transporters were downregulated. In particular, both microarray and GSEA demonstrated that EE exposure increased opioid signaling, acetylcholine release cycle, and postsynaptic neurotransmitter receptors but decreased Na+ / Cl- -dependent neurotransmitter transporters, including dopamine transporter Slc6a3 in the brain. Western blotting confirmed that SLC6A3, DARPP32 (PPP1R1B), and P2RY12 were largely altered in a region-specific manner. An EE enhanced motor and cognitive function through the alteration of synaptic activity-regulating genes, improving the efficient use of neurotransmitters and synaptic plasticity by the upregulation of genes associated with postsynaptic receptor activity and downregulation of presynaptic reuptake by neurotransmitter transporters.

  15. Thyroid Hormone-Dependent Formation of a Subcortical Band Heterotopia (SBH) in the Neonatal Brain is not Exacerbated Under Conditions of Low Dietary Iron

    Science.gov (United States)

    Thyroid hormones (TH) are critical for brain development. Modest TH insufficiency in pregnant rats induced by propylthiouracil (PTU) results in formation of a structural abnormality, a subcortical band heterotopia (SBH), in brains of offspring. PTU reduces TH by inhibiting the s...

  16. Specifying the brain anatomy underlying temporo-parietal junction activations for theory of mind: A review using probabilistic atlases from different imaging modalities

    NARCIS (Netherlands)

    Schurz, M.; Tholen, M.G.; Perner, J.; Mars, R.B.; Sallet, J.

    2017-01-01

    In this quantitative review, we specified the anatomical basis of brain activity reported in the Temporo-Parietal Junction (TPJ) in Theory of Mind (ToM) research. Using probabilistic brain atlases, we labeled TPJ peak coordinates reported in the literature. This was carried out for four different

  17. Tracking a major interplanetary disturbance

    International Nuclear Information System (INIS)

    Tappin, S.J.; Hewish, A.; Gapper, G.R.

    1983-01-01

    The severe geomagnetic storm which occurred during 27-29 August 1978 was remarkable because it arrived unexpectedly and was not related to a solar flare or long-lived coronal hole. Observations on 900 celestial radio sources show that the storm was associated with a large-scale region causing enhanced interplanetary scintillation which enveloped the Earth at the same time. The disturbance was first detected on 26 August, when the outer boundary had reached a distance of about 0.8 a.u. from the Sun and it was tracked until 30 August. The enhancement was followed by a fast solar wind stream and its shape suggests that it was a compression zone caused by the birth of the stream. (author)

  18. A case of gait disturbance caused by low-dose gabapentin

    Directory of Open Access Journals (Sweden)

    Kanao-Kanda M

    2016-06-01

    Full Text Available Megumi Kanao-Kanda, Hirotsugu Kanda, Osamu Takahata, Takayuki Kunisawa Department of Anesthesiology and Critical Care Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan Abstract: Gabapentin, an anticonvulsant agent, is now often used for the treatment of neuropathic pain all over the world. It is unclear whether the combined use of gabapentin, sodium valproate, and flunitrazepam results in enhancement of the side effect, a gait disturbance. A 60-year-old man was taking oral sodium valproate for symptomatic epilepsy after a brain contusion and flunitrazepam to relieve insomnia. Oral gabapentin therapy was started for suspected neuropathic pain. Although the initial dose of oral gabapentin (200 mg relieved the pain, the lower extremities became weak, resulting in a gait disturbance. The therapy was restarted with a halved dose, and this resolved the gait disturbance and relieved the pain. Keywords: gabapentin, gait disturbance, side effect, neuropathic pain

  19. Soil disturbance as a grassland restoration measure

    DEFF Research Database (Denmark)

    Schnoor, Tim; Bruun, Hans Henrik; Olsson, Pål Axel

    2015-01-01

    Soil disturbance is recognized as an important driver of biodiversity in dry grasslands, and can therefore be implemented as a restoration measure. However, because community re-assembly following disturbance includes stochastic processes, a focus only on species richness or establishment success...... to experimental disturbance treatments (ploughing or rotavation), and the vegetation was surveyed during four subsequent years of succession. Treated plots were compared with control plots representing untreated grassland, as well as nearby plots characterized by plant communities representing the restoration...

  20. Influence of disturbance on temperate forest productivity

    Science.gov (United States)

    Peters, Emily B.; Wythers, Kirk R.; Bradford, John B.; Reich, Peter B.

    2013-01-01

    Climate, tree species traits, and soil fertility are key controls on forest productivity. However, in most forest ecosystems, natural and human disturbances, such as wind throw, fire, and harvest, can also exert important and lasting direct and indirect influence over productivity. We used an ecosystem model, PnET-CN, to examine how disturbance type, intensity, and frequency influence net primary production (NPP) across a range of forest types from Minnesota and Wisconsin, USA. We assessed the importance of past disturbances on NPP, net N mineralization, foliar N, and leaf area index at 107 forest stands of differing types (aspen, jack pine, northern hardwood, black spruce) and disturbance history (fire, harvest) by comparing model simulations with observations. The model reasonably predicted differences among forest types in productivity, foliar N, leaf area index, and net N mineralization. Model simulations that included past disturbances minimally improved predictions compared to simulations without disturbance, suggesting the legacy of past disturbances played a minor role in influencing current forest productivity rates. Modeled NPP was more sensitive to the intensity of soil removal during a disturbance than the fraction of stand mortality or wood removal. Increasing crown fire frequency resulted in lower NPP, particularly for conifer forest types with longer leaf life spans and longer recovery times. These findings suggest that, over long time periods, moderate frequency disturbances are a relatively less important control on productivity than climate, soil, and species traits.

  1. Different shades of default mode disturbance in schizophrenia: Subnodal covariance estimation in structure and function.

    Science.gov (United States)

    Lefort-Besnard, Jérémy; Bassett, Danielle S; Smallwood, Jonathan; Margulies, Daniel S; Derntl, Birgit; Gruber, Oliver; Aleman, Andre; Jardri, Renaud; Varoquaux, Gaël; Thirion, Bertrand; Eickhoff, Simon B; Bzdok, Danilo

    2018-02-01

    Schizophrenia is a devastating mental disease with an apparent disruption in the highly associative default mode network (DMN). Interplay between this canonical network and others probably contributes to goal-directed behavior so its disturbance is a candidate neural fingerprint underlying schizophrenia psychopathology. Previous research has reported both hyperconnectivity and hypoconnectivity within the DMN, and both increased and decreased DMN coupling with the multimodal saliency network (SN) and dorsal attention network (DAN). This study systematically revisited network disruption in patients with schizophrenia using data-derived network atlases and multivariate pattern-learning algorithms in a multisite dataset (n = 325). Resting-state fluctuations in unconstrained brain states were used to estimate functional connectivity, and local volume differences between individuals were used to estimate structural co-occurrence within and between the DMN, SN, and DAN. In brain structure and function, sparse inverse covariance estimates of network coupling were used to characterize healthy participants and patients with schizophrenia, and to identify statistically significant group differences. Evidence did not confirm that the backbone of the DMN was the primary driver of brain dysfunction in schizophrenia. Instead, functional and structural aberrations were frequently located outside of the DMN core, such as in the anterior temporoparietal junction and precuneus. Additionally, functional covariation analyses highlighted dysfunctional DMN-DAN coupling, while structural covariation results highlighted aberrant DMN-SN coupling. Our findings reframe the role of the DMN core and its relation to canonical networks in schizophrenia. We thus underline the importance of large-scale neural interactions as effective biomarkers and indicators of how to tailor psychiatric care to single patients. © 2017 Wiley Periodicals, Inc.

  2. Composite control for raymond mill based on model predictive control and disturbance observer

    Directory of Open Access Journals (Sweden)

    Dan Niu

    2016-03-01

    Full Text Available In the raymond mill grinding process, precise control of operating load is vital for the high product quality. However, strong external disturbances, such as variations of ore size and ore hardness, usually cause great performance degradation. It is not easy to control the current of raymond mill constant. Several control strategies have been proposed. However, most of them (such as proportional–integral–derivative and model predictive control reject disturbances just through feedback regulation, which may lead to poor control performance in the presence of strong disturbances. For improving disturbance rejection, a control method based on model predictive control and disturbance observer is put forward in this article. The scheme employs disturbance observer as feedforward compensation and model predictive control controller as feedback regulation. The test results illustrate that compared with model predictive control method, the proposed disturbance observer–model predictive control method can obtain significant superiority in disturbance rejection, such as shorter settling time and smaller peak overshoot under strong disturbances.

  3. Thyroid Hormone-Dependent Formation of a Subcortical Band Heterotopia (SBH) in the Neonatal Brain is not Exacerbated Under Conditions of Low Dietary Iron (FeD)

    Science.gov (United States)

    Although the critical role of thyroid hormone (TH) in brain development is well established - severe deficiency producing significant neurological dysfunction - there is a paucity of data on neurological impairments that accompany modest degrees of TH disruption. Quantitative m...

  4. Spatiotemporal psychopathology I: No rest for the brain's resting state activity in depression? Spatiotemporal psychopathology of depressive symptoms.

    Science.gov (United States)

    Northoff, Georg

    2016-01-15

    Despite intense neurobiological investigation in psychiatric disorders like major depressive disorder (MDD), the basic disturbance that underlies the psychopathological symptoms of MDD remains, nevertheless, unclear. Neuroimaging has focused mainly on the brain's extrinsic activity, specifically task-evoked or stimulus-induced activity, as related to the various sensorimotor, affective, cognitive, and social functions. Recently, the focus has shifted to the brain's intrinsic activity, otherwise known as its resting state activity. While various abnormalities have been observed during this activity, their meaning and significance for depression, along with its various psychopathological symptoms, are yet to be defined. Based on findings in healthy brain resting state activity and its particular spatial and temporal structure - defined in a functional and physiological sense rather than anatomical and structural - I claim that the various depressive symptoms are spatiotemporal disturbances of the resting state activity and its spatiotemporal structure. This is supported by recent findings that link ruminations and increased self-focus in depression to abnormal spatial organization of resting state activity. Analogously, affective and cognitive symptoms like anhedonia, suicidal ideation, and thought disorder can be traced to an increased focus on the past, increased past-focus as basic temporal disturbance o the resting state. Based on these findings, I conclude that the various depressive symptoms must be conceived as spatiotemporal disturbances of the brain's resting state's activity and its spatiotemporal structure. Importantly, this entails a new form of psychopathology, "Spatiotemporal Psychopathology" that directly links the brain and psyche, therefore having major diagnostic and therapeutic implications for clinical practice. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Brain Tumors

    Science.gov (United States)

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are ...

  6. Alcohol and the sleeping brain.

    Science.gov (United States)

    Colrain, Ian M; Nicholas, Christian L; Baker, Fiona C

    2014-01-01

    Alcohol acts as a sedative that interacts with several neurotransmitter systems important in the regulation of sleep. Acute administration of large amounts of alcohol prior to sleep leads to decreased sleep-onset latency and changes in sleep architecture early in the night, when blood alcohol levels are high, with subsequent disrupted, poor-quality sleep later in the night. Alcohol abuse and dependence are associated with chronic sleep disturbance, lower slow-wave sleep, and more rapid-eye-movement sleep than normal, that last long into periods of abstinence and may play a role in relapse. This chapter outlines the evidence for acute and chronic alcohol effects on sleep architecture and sleep electroencephalogram, evidence for tolerance with repeated administration, and possible underlying neurochemical mechanisms for alcohol's effects on sleep. Also discussed are sex differences as well as effects of alcohol on sleep homeostasis and circadian regulation. Evidence for the role of sleep disruption as a risk factor for developing alcohol dependence is discussed in the context of research conducted in adolescents. The utility of sleep-evoked potentials in the assessment of the effects of alcoholism on sleep and the brain and in abstinence-mediated recovery is also outlined. The chapter concludes with a series of questions that need to be answered to determine the role of sleep and sleep disturbance in the development and maintenance of problem drinking and the potential beneficial effects of the treatment of sleep disorders for maintenance of abstinence in alcoholism. © 2014 Elsevier B.V. All rights reserved.

  7. Harmonic disturbance location by applying Bayesian inference

    NARCIS (Netherlands)

    Ye, G.; Xiang, Y.; Cuk, V.; Cobben, J.F.G.

    2016-01-01

    Harmonic pollution is one of the most important power quality issues in electric power systems. Correct location of the main harmonic disturbance source is a key step to solve the problem. This paper presents a method to detect the location of harmonic disturbance source in low voltage network

  8. A Full Disturbance Model for Reaction Wheels

    NARCIS (Netherlands)

    Le, M.P.; Ellenbroek, Marcellinus Hermannus Maria; Seiler, R; van Put, P.; Cottaar, E.J.E.

    2014-01-01

    Reaction wheels are rotating devices used for the attitude control of spacecraft. However, reaction wheels also generate undesired disturbances in the form of vibrations, which may have an adverse effect on the pointing accuracy and stability of spacecraft (optical) payloads. A disturbance model for

  9. Nonunity gain minimal-disturbance measurement

    DEFF Research Database (Denmark)

    Sabuncu, Metin; Mišta, L.; Fiurášek, J.

    2007-01-01

    We propose and experimentally demonstrate an optimal nonunity gain Gaussian scheme for partial measurement of an unknown coherent state that causes minimal disturbance of the state. The information gain and the state disturbance are quantified by the noise added to the measurement outcomes...

  10. Instrumentation for Power System Disturbance Monitoring, Data ...

    African Journals Online (AJOL)

    In this paper, the level of instrumentation for power system disturbance monitoring, data acquisition and control in Nigerian Electric Power System; National Electric Power Authority (NEPA) is presented. The need for accurate power system disturbance monitoring is highlighted. A feature of an adequate monitoring, data ...

  11. Transience after disturbance: Obligate species recovery dynamics depend on disturbance duration.

    Science.gov (United States)

    Singer, Alexander; Johst, Karin

    2017-06-01

    After a disturbance event, population recovery becomes an important species response that drives ecosystem dynamics. Yet, it is unclear how interspecific interactions impact species recovery from a disturbance and which role the disturbance duration (pulse or press) plays. Here, we analytically derive conditions that govern the transient recovery dynamics from disturbance of a host and its obligately dependent partner in a two-species metapopulation model. We find that, after disturbance, species recovery dynamics depend on the species' role (i.e. host or obligately dependent species) as well as the duration of disturbance. Host recovery starts immediately after the disturbance. In contrast, for obligate species, recovery depends on disturbance duration. After press disturbance, which allows dynamics to equilibrate during disturbance, obligate species immediately start to recover. Yet, after pulse disturbance, obligate species continue declining although their hosts have already begun to increase. Effectively, obligate species recovery is delayed until a necessary host threshold occupancy is reached. Obligates' delayed recovery arises solely from interspecific interactions independent of dispersal limitations, which contests previous explanations. Delayed recovery exerts a two-fold negative effect, because populations continue declining to even smaller population sizes and the phase of increased risk from demographic stochastic extinction in small populations is prolonged. We argue that delayed recovery and its determinants -species interactions and disturbance duration - have to be considered in biodiversity management. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Disturbing, Disordered or Disturbed? Perspectives on the Definition of Problem Behavior in Educational Settings.

    Science.gov (United States)

    Wood, Frank H., Ed.; Lakin, K. Charlie, Ed.

    The book contains five papers presented at a 1979 topical conference on the definition of emotional disturbance and behavioral disorders in educational settings. The first paper, by F. Wood, is titled "Defining Disturbing, Disordered, and Disturbed Behavior." Topics covered include ambivalence about defining deviant behavior by special educators,…

  13. The multilingual brain

    OpenAIRE

    Engel de Abreu, Pascale

    2013-01-01

    The multilingual brain. Is a multilingual education beneficial for children? What are the optimal conditions under which a child can become perfectly multilingual? The given lecture will focus on the "cognitive advantages" of multilingualism and illustrate the impact that being multilingual has on the cognitive organisation of the brain. Practical questions regarding multilingual education will also be discussed.

  14. Left brain, right brain: facts and fantasies.

    Directory of Open Access Journals (Sweden)

    Michael C Corballis

    2014-01-01

    Full Text Available Handedness and brain asymmetry are widely regarded as unique to humans, and associated with complementary functions such as a left-brain specialization for language and logic and a right-brain specialization for creativity and intuition. In fact, asymmetries are widespread among animals, and support the gradual evolution of asymmetrical functions such as language and tool use. Handedness and brain asymmetry are inborn and under partial genetic control, although the gene or genes responsible are not well established. Cognitive and emotional difficulties are sometimes associated with departures from the "norm" of right-handedness and left-brain language dominance, more often with the absence of these asymmetries than their reversal.

  15. Disturbance analysis in nuclear power plants

    International Nuclear Information System (INIS)

    Sillamaa, M.A.

    Disturbance analysis is any systematic procedure that helps an operator determine what has failed. This paper describes the typical information currently provided in CANDU power plants to help the operator respond to a disturbance. It presents a simplified model of how an operator could get into trouble, and briefly reviews development work on computerized disturbance analysis systems for nuclear power plants being done in various countries including Canada. Disturbance analysis systems promise to be useful tools in helping operators improve their response to complex situations. However, the originality and complexity of the work for a disturbance analysis system and the need to develop operator confidence and management support require a 'walk before you run' approach

  16. Children's sleep disturbance scale in differentiating neurological disorders.

    Science.gov (United States)

    Cohen, Rony; Halevy, Ayelet; Shuper, Avinoam

    2013-12-01

    We use the Sleep Disturbance Scale for Children (SDSC) routinely as a tool for evaluating children's sleep quality in our pediatric neurology clinic. We analyzed at its ability to detect sleep disturbances distinctive to selected neurological disorders. One-hundred and eighty-six children (age range 2-18 years) who were evaluated by the SDSC questionnaire were divided into three groups according to their principal diagnosis: epilepsy, attention deficit hyperactivity disorder, or others. Their responses were analyzed. The average frequency of abnormal total sleep score was 26.9%. The most frequent sleep disorders were excessive somnolence (25.3%), initiating and maintaining sleep (24.7%), and arousal/nightmares (23.1%). There were no significant group differences for total scores or sleep disorder-specific scores; although a sleep-wake transition disorder was more frequent among children with epilepsy (31%). A literature search revealed that the frequency of abnormal total scores in several neurological disorders (e.g., epilepsy, cerebral palsy) ranges between 20% and 30%. The mechanism underlying sleep disturbances in many neurological disorders may be unrelated to that of the primary disease but rather originate from nonspecific or environmental factors (e.g., familial/social customs and habits, temperament, psychological parameters). Although the SDSC is noninformative for studying the effect of a specific neurological disorder on sleep, we still recommend its implementation for screening for sleep disturbances in children with neurological abnormalities. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Recovery of lotic macroinvertebrate communities from disturbance

    Science.gov (United States)

    Wallace, J. Bruce

    1990-09-01

    Ecosystem disturbances produce changes in macrobenthic community structure (abundances, biomass, and production) that persist for a few weeks to many decades. Examples of disturbances with extremely long-term effects on benthic communities include contamination by persistent toxic agents, physical changes in habitats, and altered energy inputs. Stream size, retention, and local geomorphology may ameliorate the influence of disturbances on invertebrates. Disturbances can alter food webs and may select for favorable genotypes (e.g., insecticidal resistance). Introductions of pesticides into lotic ecosystems, which do not result in major physical changes within habitats, illustrate several factors that influence invertebrate recovery time from disturbance. These include: (1) magnitude of original contamination, toxicity, and extent of continued use; (2) spatial scale of the disturbance; (3) persistence of the pesticide; (4) timing of the contamination in relation to the life history stages of the organisms; (5) vagility of populations influenced by pesticides; and (6) position within the drainage network. The ability of macroinvertebrates to recolonize denuded stream habitats may vary greatly depending on regional life histories, dispersal abilities, and position within the stream network (e.g., headwaters vs larger rivers). Although downstream drift is the most frequently cited mechanism of invertebrate recolonization following disturbance in middle- and larger-order streams, evidence is presented that shows aerial recolonization to be potentially important in headwater streams. There is an apparent stochastic element operating for aerial recolonization, depending on the timing of disturbance and flight periods of various taxa. Available evidence indicates that recolonization of invertebrate taxa without an aerial adult stage requires longer periods of time than for those that possess winged, terrestrial adult stages (i.e., most insects). Innovative, manipulative

  18. [A novel proposal explaining sleep disturbance of children in Japan--asynchronization].

    Science.gov (United States)

    Kohyama, Jun

    2008-07-01

    It has been reported that more than half of the children in Japan suffer from daytime sleepiness. In contrast, about one quarter of junior high-school students in Japan complain of insomnia. According to the International Classification of Sleep Disorders (Second edition), these children could be diagnosed as having behaviorally-induced insufficient sleep syndrome due to inadequate sleeping habits. Getting on adequate amount of sleep should solve such problems;however, such a therapeutic approach often fails. Although social factors are involved in these sleep disturbances, I feel that a novel notion - asynchronization - leads to an understanding of the pathophysiology of disturbances in these children. Further, it could contribute to resolve their problems. The essence of asynchronization is a disturbance of various aspects (e.g., cycle, amplitude, phase, and interrelationship) of the biological rhythms that normally exhibits circadian oscillation. The main cause of asynchronization is hypothesized to be the combination of light exposure during night and the lack of light exposure in the morning. Asynchronization results in the disturbance of variable systems. Thus, symptoms of asynchronization include disturbances of the autonomic nervous system (sleepiness, insomnia, disturbance of hormonal excretion, gastrointestinal problems, etc.) and higher brain function (disorientation, loss of sociality, loss of will or motivation, impaired alertness and performance, etc.). Neurological (attention deficit, aggression, impulsiveness, hyperactivity, etc.), psychiatric (depressive disorders, personality disorders, anxiety disorders, etc.) and somatic (tiredness, fatigue, etc.) disturbances could also be symptoms of asynchronization. At the initial phase of asynchronization, disturbances are functional and can be resolved relatively easily, such as by the establishment of a regular sleep-wakefulness cycle;however, without adequate intervention the disturbances could gradually

  19. Brain surgery

    Science.gov (United States)

    Craniotomy; Surgery - brain; Neurosurgery; Craniectomy; Stereotactic craniotomy; Stereotactic brain biopsy; Endoscopic craniotomy ... cut depends on where the problem in the brain is located. The surgeon creates a hole in ...

  20. Brain Malformations

    Science.gov (United States)

    Most brain malformations begin long before a baby is born. Something damages the developing nervous system or causes it ... medicines, infections, or radiation during pregnancy interferes with brain development. Parts of the brain may be missing, ...

  1. Epigenetic regulation of the glucose transporter gene Slc2a1 by β-hydroxybutyrate underlies preferential glucose supply to the brain of fasted mice.

    Science.gov (United States)

    Tanegashima, Kosuke; Sato-Miyata, Yukiko; Funakoshi, Masabumi; Nishito, Yasumasa; Aigaki, Toshiro; Hara, Takahiko

    2017-01-01

    We carried out liquid chromatography-tandem mass spectrometry analysis of metabolites in mice. Those metabolome data showed that hepatic glucose content is reduced, but that brain glucose content is unaffected, during fasting, consistent with the priority given to brain glucose consumption during fasting. The molecular mechanisms for this preferential glucose supply to the brain are not fully understood. We also showed that the fasting-induced production of the ketone body β-hydroxybutyrate (β-OHB) enhances expression of the glucose transporter gene Slc2a1 (Glut1) via histone modification. Upon β-OHB treatment, Slc2a1 expression was up-regulated, with a concomitant increase in H3K9 acetylation at the critical cis-regulatory region of the Slc2a1 gene in brain microvascular endothelial cells and NB2a neuronal cells, shown by quantitative PCR analysis and chromatin immunoprecipitation assay. CRISPR/Cas9-mediated disruption of the Hdac2 gene increased Slc2a1 expression, suggesting that it is one of the responsible histone deacetylases (HDACs). These results confirm that β-OHB is a HDAC inhibitor and show that β-OHB plays an important role in fasting-induced epigenetic activation of a glucose transporter gene in the brain. © 2016 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  2. Handbook of Brain Connectivity

    CERN Document Server

    Jirsa, Viktor K

    2007-01-01

    Our contemporary understanding of brain function is deeply rooted in the ideas of the nonlinear dynamics of distributed networks. Cognition and motor coordination seem to arise from the interactions of local neuronal networks, which themselves are connected in large scales across the entire brain. The spatial architectures between various scales inevitably influence the dynamics of the brain and thereby its function. But how can we integrate brain connectivity amongst these structural and functional domains? Our Handbook provides an account of the current knowledge on the measurement, analysis and theory of the anatomical and functional connectivity of the brain. All contributors are leading experts in various fields concerning structural and functional brain connectivity. In the first part of the Handbook, the chapters focus on an introduction and discussion of the principles underlying connected neural systems. The second part introduces the currently available non-invasive technologies for measuring struct...

  3. Brain Injury Association of America

    Science.gov (United States)

    ... Only) 1-800-444-6443 Welcome to the Brain Injury Association of America (BIAA) Brain injury is not an event or an outcome. ... misunderstood, under-funded neurological disease. People who sustain brain injuries must have timely access to expert trauma ...

  4. Effects of climate change and anthropogenic modification on a disturbance-dependent species in a large riverine system

    Science.gov (United States)

    Zeigler, Sara; Catlin, Daniel H.; Bomberger Brown, M.; Fraser, J.D.; Dinan, Lauren R.; Hunt, Kelsi L.; Jorgensen, Joel G.; Karpanty, Sarah M.

    2017-01-01

    Humans have altered nearly every natural disturbance regime on the planet through climate and land-use change, and in many instances, these processes may have interacting effects. For example, projected shifts in temperature and precipitation will likely influence disturbance regimes already affected by anthropogenic fire suppression or river impoundments. Understanding how disturbance-dependent species respond to complex and interacting environmental changes is important for conservation efforts. Using field-based demographic and movement rates, we conducted a metapopulation viability analysis for piping plovers (Charadrius melodus), a threatened disturbance-dependent species, along the Missouri and Platte rivers in the Great Plains of North America. Our aim was to better understand current and projected future metapopulation dynamics given that natural disturbances (flooding or high-flow events) have been greatly reduced by river impoundments and that climate change could further alter the disturbance regime. Although metapopulation abundance has been substantially reduced under the current suppressed disturbance regime (high-flow return interval ~ 20 yr), it could grow if the frequency of high-flow events increases as predicted under likely climate change scenarios. We found that a four-year return interval would maximize metapopulation abundance, and all subpopulations in the metapopulation would act as sources at a return interval of 15 yr or less. Regardless of disturbance frequency, the presence of even a small, stable source subpopulation buffered the metapopulation and sustained a low metapopulation extinction risk. Therefore, climate change could have positive effects in ecosystems where disturbances have been anthropogenically suppressed when climatic shifts move disturbance regimes toward more historical patterns. Furthermore, stable source populations, even if unintentionally maintained through anthropogenic activities, may be critical for the

  5. Hydrological disturbance diminishes predator control in wetlands.

    Science.gov (United States)

    Dorn, Nathan J; Cook, Mark I

    2015-11-01

    Effects of predators on prey populations can be especially strong in aquatic ecosystems, but disturbances may mediate the strength of predator limitation and even allow outbreaks of some prey populations. In a two-year study we investigated the numerical responses of crayfish (Procambarus fallax) and small fishes (Poeciliidae and Fundulidae) to a brief hydrological disturbance in replicated freshwater wetlands with an experimental drying and large predatory fish reduction. The experiment and an in situ predation assay tested the component of the consumer stress model positing that disturbances release prey from predator limitation. In the disturbed wetlands, abundances of large predatory fish were seasonally reduced, similar to dynamics in the Everglades (southern Florida). Densities of small fish were unaffected by the disturbance, but crayfish densities, which were similar across all wetlands before drying, increased almost threefold in the year after the disturbance. Upon re-flooding, juvenile crayfish survival was inversely related to the abundance of large fish across wetlands, but we found no evidence for enhanced algal food quality. At a larger landscape scale (500 km2 of the Everglades), crayfish densities over eight years were positively correlated with the severity of local dry disturbances (up to 99 days dry) during the preceding dry season. In contrast, densities of small-bodied fishes in the same wetlands were seasonally depressed by dry disturbances. The results from our experimental wetland drought and the observations of crayfish densities in the Everglades represent a large-scale example of prey population release following a hydrological disturbance in a freshwater ecosystem. The conditions producing crayfish pulses in the Everglades appear consistent with the mechanics of the consumer stress model, and we suggest crayfish pulses may influence the number of nesting wading birds in the Everglades.

  6. Animal responses to natural disturbance and climate extremes: a review

    Science.gov (United States)

    Sergio, Fabrizio; Blas, Julio; Hiraldo, Fernando

    2018-02-01

    -preparation for conservationists, as well as mentality changes for all. Under all conditions, disturbances may soon become the defining signatures of most ecosystems and the dynamic leitmotif of modern ecology.

  7. Denitrifying Bioreactors Resist Disturbance from Fluctuating Water Levels

    Directory of Open Access Journals (Sweden)

    Sarah K. Hathaway

    2017-06-01

    Full Text Available Nitrate can be removed from wastewater streams, including subsurface agricultural drainage systems, using woodchip bioreactors to promote microbial denitrification. However, the variations in water flow in these systems could make reliable performance from this microbially-mediated process a challenge. In the current work, the effects of fluctuating water levels on nitrate removal, denitrifying activity, and microbial community composition in laboratory-scale bioreactors were investigated. The performance was sensitive to changing water level. An average of 31% nitrate was removed at high water level and 59% at low water level, despite flow adjustments to maintain a constant theoretical hydraulic retention time. The potential activity, as assessed through denitrifying enzyme assays, averaged 0.0008 mg N2O-N/h/dry g woodchip and did not show statistically significant differences between reactors, sampling depths, or operational conditions. In the denitrifying enzyme assays, nitrate removal consistently exceeded nitrous oxide production. The denitrifying bacterial communities were not significantly different from each other, regardless of water level, meaning that the denitrifying bacterial community did not change in response to disturbance. The overall bacterial communities, however, became more distinct between the two reactors when one reactor was operated with periodic disturbances of changing water height, and showed a stronger effect at the most severely disturbed location. The communities were not distinguishable, though, when comparing the same location under high and low water levels, indicating that the communities in the disturbed reactor were adapted to fluctuating conditions rather than to high or low water level. Overall, these results describe a biological treatment process and microbial community that is resistant to disturbance via water level fluctuations.

  8. An Adaptive Orientation Estimation Method for Magnetic and Inertial Sensors in the Presence of Magnetic Disturbances

    Directory of Open Access Journals (Sweden)

    Bingfei Fan

    2017-05-01

    Full Text Available Magnetic and inertial sensors have been widely used to estimate the orientation of human segments due to their low cost, compact size and light weight. However, the accuracy of the estimated orientation is easily affected by external factors, especially when the sensor is used in an environment with magnetic disturbances. In this paper, we propose an adaptive method to improve the accuracy of orientation estimations in the presence of magnetic disturbances. The method is based on existing gradient descent algorithms, and it is performed prior to sensor fusion algorithms. The proposed method includes stationary state detection and magnetic disturbance severity determination. The stationary state detection makes this method immune to magnetic disturbances in stationary state, while the magnetic disturbance severity determination helps to determine the credibility of magnetometer data under dynamic conditions, so as to mitigate the negative effect of the magnetic disturbances. The proposed method was validated through experiments performed on a customized three-axis instrumented gimbal with known orientations. The error of the proposed method and the original gradient descent algorithms were calculated and compared. Experimental results demonstrate that in stationary state, the proposed method is completely immune to magnetic disturbances, and in dynamic conditions, the error caused by magnetic disturbance is reduced by 51.2% compared with original MIMU gradient descent algorithm.

  9. Mild closed head traumatic brain injury-induced changes in monoamine neurotransmitters in the trigeminal subnuclei of a rat model: mechanisms underlying orofacial allodynias and headache

    Directory of Open Access Journals (Sweden)

    Golam Mustafa

    2017-01-01

    Full Text Available Our recent findings have demonstrated that rodent models of closed head traumatic brain injury exhibit comprehensive evidence of progressive and enduring orofacial allodynias, a hypersensitive pain response induced by non-painful stimulation. These allodynias, tested using thermal hyperalgesia, correlated with changes in several known pain signaling receptors and molecules along the trigeminal pain pathway, especially in the trigeminal nucleus caudalis. This study focused to extend our previous work to investigate the changes in monoamine neurotransmitter immunoreactivity changes in spinal trigeminal nucleus oralis, pars interpolaris and nucleus tractus solitaries following mild to moderate closed head traumatic brain injury, which are related to tactile allodynia, touch-pressure sensitivity, and visceral pain. Our results exhibited significant alterations in the excitatory monoamine, serotonin, in spinal trigeminal nucleus oralis and pars interpolaris which usually modulate tactile and mechanical sensitivity in addition to the thermal sensitivity. Moreover, we also detected a robust alteration in the expression of serotonin, and inhibitory molecule norepinephrine in the nucleus tractus solitaries, which might indicate the possibility of an alteration in visceral pain, and existence of other morbidities related to solitary nucleus dysfunction in this rodent model of mild to moderate closed head traumatic brain injury. Collectively, widespread changes in monoamine neurotransmitter may be related to orofacial allodynhias and headache after traumatic brain injury.

  10. The effect of tryptophan supplemented diets on brain serotonergic activity and plasma cortisol under undisturbed and stressed conditions in grouped-housed Nile tilapia Oreochromis niloticus

    DEFF Research Database (Denmark)

    Martins, C.I.M.; Silva, P.I.M.; Costas, B.

    2013-01-01

    -term supplementation with TRP supplemented diets changes brain serotonergic activity and the stress response associated with slaughter handling in grouped-housed Nile tilapia Oreochromis niloticus. Adult fish (n. =. 108, 490.6. ±. 4.0. g, 12 individuals per tank) were exposed to one of the three treatments...

  11. Oestrogens are Not Related to Emotional Processing : a Study of Regional Brain Activity in Female-to-Male Transsexuals Under Gonadal Suppression

    NARCIS (Netherlands)

    Soleman, Remi S; Staphorsius, A.S.; Cohen-Kettenis, Peggy T; Lambalk, Cornelis B; Veltman, Dick J; van Trotsenburg, M.A.A.; Hompes, Peter G A; Drent, M L; de Ronde, W P; Kreukels, Baudewijntje P C

    Although the prevailing opinion is that emotional processes are influenced by sex hormones, the literature is still inconclusive. The aim of the current study was to examine the effects of gonadal suppression on brain activity during affective picture processing. Twenty-one female-to-male (FtM)

  12. Coping with continuous human disturbance in the wild: insights from penguin heart rate response to various stressors.

    OpenAIRE

    Viblanc, V.A.; Smith, A.D.; Gineste, B.; Groscolas, R.

    2012-01-01

    Abstract Background A central question for ecologists is the extent to which anthropogenic disturbances (e.g. tourism) might impact wildlife and affect the systems under study. From a research perspective, identifying the effects of human disturbance caused by research-related activities is crucial in order to understand and account for potential biases and derive appropriate conclusions from the data. Results Here, we document a case of biological adjustment to chronic human disturbance in a...

  13. [Estimation of Time-Dependent microRNA Expression Patterns in Brain Tissue, Leukocytes, and Blood Plasma of Rats under Photochemically Induced Focal Cerebral Ischemia].

    Science.gov (United States)

    Gusar, V A; Timofeeva, A V; Zhanin, I S; Shram, S I; Pinelis, V G

    2017-01-01

    miRNA expression over different time periods (24 and 48 h) using the quantitative RT-PCR and deep sequencing has been evaluated in a model of photochemically induced thrombosis. A combination of two approaches allowed us to determine the miRNA expression patterns caused by ischemia. Nine miRNAs, including let-7f-5p, miR-221-3p, miR-21-5p, miR-30c-5p, miR-30a-3p, miR-223-3p, miR-23a-3p, miR-22-5p, and miR-99a-5p, were differentially expressed in brain tissue and leukocytes of rats 48 h after onset of ischemia. In addition, six miRNAs were differentially expressed in the brain tissue and blood plasma of rats 24 h after exposure, among which miR-145-3p and miR-375-3p were downregulated and miR-19a-3p, miR-92a-3p, miR-188-5p, and miR-532-5p were upregulated. In our opinion, miR-188-5p and miR-532-5p may be considered to be new potential markers of ischemic injury. The level of miRNA expression tended to increase 48 h after the onset of ischemia in brain tissue and leukocytes, which reflects not only the local response in brain tissue due to inflammation, vascular endothelial dysfunction, and disorders of the permeability of the blood-brain barrier, but also the systemic response of the organism to multifactor molecular processes induced by ischemic injury.

  14. Wind Power Prediction Considering Nonlinear Atmospheric Disturbances

    Directory of Open Access Journals (Sweden)

    Yagang Zhang

    2015-01-01

    Full Text Available This paper considers the effect of nonlinear atmospheric disturbances on wind power prediction. A Lorenz system is introduced as an atmospheric disturbance model. Three new improved wind forecasting models combined with a Lorenz comprehensive disturbance are put forward in this study. Firstly, we define the form of the Lorenz disturbance variable and the wind speed perturbation formula. Then, different artificial neural network models are used to verify the new idea and obtain better wind speed predictions. Finally we separately use the original and improved wind speed series to predict the related wind power. This proves that the corrected wind speed provides higher precision wind power predictions. This research presents a totally new direction in the wind prediction field and has profound theoretical research value and practical guiding significance.

  15. Anthropogenic disturbance on the vegetation in makurunge

    African Journals Online (AJOL)

    Mgina

    landscape in Tanzania that has been severely affected by anthropogenic disturbance ... Fragmentation of habitats formed patches that have reduced plant species population sizes, and ... by the movement of the Inter-Tropical ..... of pollinators.

  16. Sleep disturbances after non-cardiac surgery

    DEFF Research Database (Denmark)

    Rosenberg, Jacob

    2001-01-01

    . The sleep disturbances seem to be related to the magnitude of trauma and thereby to the surgical stress response and/or post-operative opioid administration. Post-operative sleep disturbances may contribute to the development of early post-operative fatigue, episodic hypoxaemia, haemodynamic instability......After major non-cardiac surgery sleep pattern is usually disturbed with initial suppression of rapid eye movement sleep with a subsequent rebound during the first post-operative week. Deep sleep is also suppressed for several days after the operation and subjective sleep quality is impaired...... and altered mental status, all with a potential negative effect on post-operative outcome. Minimizing surgical trauma and avoiding or minimizing use of opioids for pain relief may prevent or reduce post-operative sleep disturbances. Post-operative sleep pattern represents an important research field, since...

  17. Global synchronization of general delayed complex networks with stochastic disturbances

    International Nuclear Information System (INIS)

    Tu Li-Lan

    2011-01-01

    In this paper, global synchronization of general delayed complex networks with stochastic disturbances, which is a zero-mean real scalar Wiener process, is investigated. The networks under consideration are continuous-time networks with time-varying delay. Based on the stochastic Lyapunov stability theory, Ito's differential rule and the linear matrix inequality (LMI) optimization technique, several delay-dependent synchronous criteria are established, which guarantee the asymptotical mean-square synchronization of drive networks and response networks with stochastic disturbances. The criteria are expressed in terms of LMI, which can be easily solved using the Matlab LMI Control Toolbox. Finally, two examples show the effectiveness and feasibility of the proposed synchronous conditions. (general)

  18. Sleep disturbance associated factors in menopausal women

    Directory of Open Access Journals (Sweden)

    Hamid Haghani

    2011-09-01

    Full Text Available Background: Sleep is necessary in life and approximately 1/3 of human life is devoted to sleep. One of the most common problems in menopausal women is sleep disturbance. The aim of this study was to determine frequency of sleep disorders and its related factors in 50 – 60 years old women Methods: A cross-sectional, descriptive study was conducted on 200 eligible women who referred to selected health centers of Tehran University of Medical Sciences (TUMS. Demographic form, ten-point slide to review sexual satisfaction and Pittsburg Sleep Quality Index Questioner (PSQI were used for data collection. Data was analyzed using ANOVA, t-test, and Pearson correlation tests.Results: The mean age of women was 53.6±3.6 year, menopause age 47.8±4, number of children 4.76±2 and partner age was 57.99±6.6. 34.5% of women were satisfied from their sexual relationship and their score was 8-10. Rate of sleep disturbances in this group was about 70%. The results showed that between four variables: economical status, occupation, partner occupation and educational status were significantly associated with sleep disturbance (P=0.002. There was not significant difference between other demographic information and sleep disturbance.Conclusion: The results show high prevalence of sleep disturbance symptoms among menopausal women. According to the relationship between some personal characters and sleep disturbance, health care providers need to consider these variables.

  19. Concepts and Challenges in Disturbance Hydrology

    Science.gov (United States)

    Ebel, B. A.; Mirus, B. B.

    2016-12-01

    Landscape disturbances are increasing, often promoted and enhanced by climate shifts and human activities. Insect infestations, wildfires, earthquakes, urban development, forest harvest, mineral and petroleum resource extraction, and hurricanes are common landscape disturbances that can have profound hydrologic consequences. These cause relatively abrupt changes in the landscape, which alter local processes on plots and hillslopes in addition to coarser-scale processes across watersheds through cross-scale interactions. Shifts in soil properties and cover of vegetation and leaf litter change the water storage or buffering capacity as well as the hydrologic functional connectivity across multiple scales. These changes increase the risk of catastrophic flooding, erosion, and mass movements that degrade water resources, ecosystem services, and protection from hydrologically driven natural hazards. Although it is imperative that we understand the hydrologic effects of these disturbances, several major barriers exist. Four challenges are: (i) overlapping disturbances in space and time with unknown recovery trajectories, (ii) a paucity of long-term recovery records (>5 years duration), (iii) inefficacy of traditional modeling and parameterization approaches, and (iv) lack of pre-disturbance characterization. Examples of these challenges will be presented along with proposed opportunities for improved mechanistic understanding of processes and thresholds in disturbance hydrology.

  20. Numerical modelling of the structure of electromagnetic disturbances generated by acoustic-gravity waves

    International Nuclear Information System (INIS)

    Pogorel'tsev, A.I.; Bidlingmajer, E.R.

    1992-01-01

    A numeric model of electromagnetic field disturbances generated under the interaction of acoustic-gravitational waves with ionospheric plasma is elaborated and vertical structure of the above disturbances is calculated. The estimates shown that electromagnetic disturbances can penetrate into neutral atmosphere and can be recorded through measurements of the variation of magnetic field and electron field vertical component near the earth is surface. A conclusion is made on a feasibility of monitoring of acoustic-gravitational wave activity in the lower thermosphere through land measurements of magnetic and electric field variations

  1. [Sleep disturbances in Parkinson's disease: characteristics, evaluation and therapeutic approaches].

    Science.gov (United States)

    Faludi, Béla; Janszky, József; Komoly, Sámuel; Kovács, Norbert

    2015-07-05

    Parkinson's disease is a well known representent of the movement disorder group of neurological disorders. The diagnosis of Parkinson's disease is based on specific symptoms and signs of movement abnormalities. In addition to classic motor symptoms, Parkinson's disease has characteristic non-motor features, and some of these emerges the classic signs. The authors discuss characteristics and therapeutic interventions in Parkinson's disease related sleep disturbances. The authors reviewed and summarised literature data on sleep disorders in Parkinson's disease published in the PubMed database up to January 2015. Sleep problems are important non-motor complains (insomnia, hypersomnia, REM behaviour disorder, sleep apnea and restless legs syndrome). The neurodegenerative process of the brain-stem, the effect of symptoms of Parkinson's disease on sleep and concomitant sleep disorders constitute the background of the patient's complains. Appropriate diagnosis and therapy of the consequential or concomitant sleep disorders in Parkinson's disease will help to improve the patient's quality of life.

  2. Disturbed vesicular trafficking of membrane proteins in prion disease.

    Science.gov (United States)

    Uchiyama, Keiji; Miyata, Hironori; Sakaguchi, Suehiro

    2013-01-01

    The pathogenic mechanism of prion diseases remains unknown. We recently reported that prion infection disturbs post-Golgi trafficking of certain types of membrane proteins to the cell surface, resulting in reduced surface expression of membrane proteins and abrogating the signal from the proteins. The surface expression of the membrane proteins was reduced in the brains of mice inoculated with prions, well before abnormal symptoms became evident. Prions or pathogenic prion proteins were mainly detected in endosomal compartments, being particularly abundant in recycling endosomes. Some newly synthesized membrane proteins are delivered to the surface from the Golgi apparatus through recycling endosomes, and some endocytosed membrane proteins are delivered back to the surface through recycling endosomes. These results suggest that prions might cause neuronal dysfunctions and cell loss by disturbing post-Golgi trafficking of membrane proteins via accumulation in recycling endosomes. Interestingly, it was recently shown that delivery of a calcium channel protein to the cell surface was impaired and its function was abrogated in a mouse model of hereditary prion disease. Taken together, these results suggest that impaired delivery of membrane proteins to the cell surface is a common pathogenic event in acquired and hereditary prion diseases.

  3. Structural Decoupling and Disturbance Rejection in a Distillation Column

    DEFF Research Database (Denmark)

    Bahar, Mehrdad; Jantzen, Jan; Commault, C.

    1996-01-01

    Introduction, distillation column model, input-output decoupling, disturbance rejection, concluding remarks, references.......Introduction, distillation column model, input-output decoupling, disturbance rejection, concluding remarks, references....

  4. Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests?

    Science.gov (United States)

    Reyer, Christopher P. O.; Bathgate, Stephen; Blennow, Kristina; Borges, Jose G.; Bugmann, Harald; Delzon, Sylvain; Faias, Sonia P.; Garcia-Gonzalo, Jordi; Gardiner, Barry; Gonzalez-Olabarria, Jose Ramon; Gracia, Carlos; Guerra Hernández, Juan; Kellomäki, Seppo; Kramer, Koen; Lexer, Manfred J.; Lindner, Marcus; van der Maaten, Ernst; Maroschek, Michael; Muys, Bart; Nicoll, Bruce; Palahi, Marc; Palma, João HN; Paulo, Joana A.; Peltola, Heli; Pukkala, Timo; Rammer, Werner; Ray, Duncan; Sabaté, Santiago; Schelhaas, Mart-Jan; Seidl, Rupert; Temperli, Christian; Tomé, Margarida; Yousefpour, Rasoul; Zimmermann, Niklaus E.; Hanewinkel, Marc

    2017-03-01

    Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures.

  5. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation.

    Science.gov (United States)

    Barlow, Jos; Lennox, Gareth D; Ferreira, Joice; Berenguer, Erika; Lees, Alexander C; Mac Nally, Ralph; Thomson, James R; Ferraz, Silvio Frosini de Barros; Louzada, Julio; Oliveira, Victor Hugo Fonseca; Parry, Luke; Solar, Ricardo Ribeiro de Castro; Vieira, Ima C G; Aragão, Luiz E O C; Begotti, Rodrigo Anzolin; Braga, Rodrigo F; Cardoso, Thiago Moreira; de Oliveira, Raimundo Cosme; Souza, Carlos M; Moura, Nárgila G; Nunes, Sâmia Serra; Siqueira, João Victor; Pardini, Renata; Silveira, Juliana M; Vaz-de-Mello, Fernando Z; Veiga, Ruan Carlo Stulpen; Venturieri, Adriano; Gardner, Toby A

    2016-07-07

    Concerted political attention has focused on reducing deforestation, and this remains the cornerstone of most biodiversity conservation strategies. However, maintaining forest cover may not reduce anthropogenic forest disturbances, which are rarely considered in conservation programmes. These disturbances occur both within forests, including selective logging and wildfires, and at the landscape level, through edge, area and isolation effects. Until now, the combined effect of anthropogenic disturbance on the conservation value of remnant primary forests has remained unknown, making it impossible to assess the relative importance of forest disturbance and forest loss. Here we address these knowledge gaps using a large data set of plants, birds and dung beetles (1,538, 460 and 156 species, respectively) sampled in 36 catchments in the Brazilian state of Pará. Catchments retaining more than 69–80% forest cover lost more conservation value from disturbance than from forest loss. For example, a 20% loss of primary forest, the maximum level of deforestation allowed on Amazonian properties under Brazil’s Forest Code, resulted in a 39–54% loss of conservation value: 96–171% more than expected without considering disturbance effects. We extrapolated the disturbance-mediated loss of conservation value throughout Pará, which covers 25% of the Brazilian Amazon. Although disturbed forests retained considerable conservation value compared with deforested areas, the toll of disturbance outside Pará’s strictly protected areas is equivalent to the loss of 92,000–139,000 km2 of primary forest. Even this lowest estimate is greater than the area deforested across the entire Brazilian Amazon between 2006 and 2015 (ref. 10). Species distribution models showed that both landscape and within-forest disturbances contributed to biodiversity loss, with the greatest negative effects on species of high conservation and functional value. These results demonstrate an urgent need

  6. Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests?

    Science.gov (United States)

    Reyer, Christopher P O; Bathgate, Stephen; Blennow, Kristina; Borges, Jose G; Bugmann, Harald; Delzon, Sylvain; Faias, Sonia P; Garcia-Gonzalo, Jordi; Gardiner, Barry; Gonzalez-Olabarria, Jose Ramon; Gracia, Carlos; Hernández, Juan Guerra; Kellomäki, Seppo; Kramer, Koen; Lexer, Manfred J; Lindner, Marcus; van der Maaten, Ernst; Maroschek, Michael; Muys, Bart; Nicoll, Bruce; Palahi, Marc; Palma, João HN; Paulo, Joana A; Peltola, Heli; Pukkala, Timo; Rammer, Werner; Ray, Duncan; Sabaté, Santiago; Schelhaas, Mart-Jan; Seidl, Rupert; Temperli, Christian; Tomé, Margarida; Yousefpour, Rasoul; Zimmermann, Niklaus E; Hanewinkel, Marc

    2017-01-01

    Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures. PMID:28855959

  7. Specifying the brain anatomy underlying temporo-parietal junction activations for theory of mind: A review using probabilistic atlases from different imaging modalities.

    Science.gov (United States)

    Schurz, Matthias; Tholen, Matthias G; Perner, Josef; Mars, Rogier B; Sallet, Jerome

    2017-09-01

    In this quantitative review, we specified the anatomical basis of brain activity reported in the Temporo-Parietal Junction (TPJ) in Theory of Mind (ToM) research. Using probabilistic brain atlases, we labeled TPJ peak coordinates reported in the literature. This was carried out for four different atlas modalities: (i) gyral-parcellation, (ii) sulco-gyral parcellation, (iii) cytoarchitectonic parcellation and (iv) connectivity-based parcellation. In addition, our review distinguished between two ToM task types (false belief and social animations) and a nonsocial task (attention reorienting). We estimated the mean probabilities of activation for each atlas label, and found that for all three task types part of TPJ activations fell into the same areas: (i) Angular Gyrus (AG) and Lateral Occpital Cortex (LOC) in terms of a gyral atlas, (ii) AG and Superior Temporal Sulcus (STS) in terms of a sulco-gyral atlas, (iii) areas PGa and PGp in terms of cytoarchitecture and (iv) area TPJp in terms of a connectivity-based parcellation atlas. Beside these commonalities, we also found that individual task types showed preferential activation for particular labels. Main findings for the right hemisphere were preferential activation for false belief tasks in AG/PGa, and in Supramarginal Gyrus (SMG)/PFm for attention reorienting. Social animations showed strongest selective activation in the left hemisphere, specifically in left Middle Temporal Gyrus (MTG). We discuss how our results (i.e., identified atlas structures) can provide a new reference for describing future findings, with the aim to integrate different labels and terminologies used for studying brain activity around the TPJ. Hum Brain Mapp 38:4788-4805, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. A case of gait disturbance caused by low-dose gabapentin

    Science.gov (United States)

    Kanao-Kanda, Megumi; Kanda, Hirotsugu; Takahata, Osamu; Kunisawa, Takayuki

    2016-01-01

    Gabapentin, an anticonvulsant agent, is now often used for the treatment of neuropathic pain all over the world. It is unclear whether the combined use of gabapentin, sodium valproate, and flunitrazepam results in enhancement of the side effect, a gait disturbance. A 60-year-old man was taking oral sodium valproate for symptomatic epilepsy after a brain contusion and flunitrazepam to relieve insomnia. Oral gabapentin therapy was started for suspected neuropathic pain. Although the initial dose of oral gabapentin (200 mg) relieved the pain, the lower extremities became weak, resulting in a gait disturbance. The therapy was restarted with a halved dose, and this resolved the gait disturbance and relieved the pain. PMID:27354808

  9. Circadian Rhythm Disturbances in Mood Disorders: Insights into the Role of the Suprachiasmatic Nucleus

    Science.gov (United States)

    2017-01-01

    Circadian rhythm disturbances are a common symptom among individuals with mood disorders. The suprachiasmatic nucleus (SCN), in the ventral part of the anterior hypothalamus, orchestrates physiological and behavioral circadian rhythms. The SCN consists of self-sustaining oscillators and receives photic and nonphotic cues, which entrain the SCN to the external environment. In turn, through synaptic and hormonal mechanisms, the SCN can drive and synchronize circadian rhythms in extra-SCN brain regions and peripheral tissues. Thus, genetic or environmental perturbations of SCN rhythms could disrupt brain regions more closely related to mood regulation and cause mood disturbances. Here, we review clinical and preclinical studies that provide evidence both for and against a causal role for the SCN in mood disorders. PMID:29230328

  10. Integrating Landsat-derived disturbance maps with FIA inventory data: Applications for state-Level forest resource assessments

    Science.gov (United States)

    Sonja Oswalt; Chengquan Huang; Hua Shi; James Vogelmann; Zhiliang Zhu; Samuel N. Goward; John Coulston

    2009-01-01

    Landsat images have been widely used for assessing forest characteristics and dynamics. Recently, significant progress has been made towards indepth exploration of the rich Landsat archive kept by the U.S. Geological Survey to improve our under standing of forest disturbance and recovery processes. In this study, we used Landsat images to map forest disturbances at...

  11. Interrelation between Neuroendocrine Disturbances and Medical Complications Encountered during Rehabilitation after TBI

    Directory of Open Access Journals (Sweden)

    Caroline I. E. Renner

    2015-09-01

    Full Text Available Traumatic brain injury is not a discrete event but an unfolding sequence of damage to the central nervous system. Not only the acute phase but also the subacute and chronic period after injury, i.e., during inpatient rehabilitation, is characterized by multiple neurotransmitter alterations, cellular dysfunction, and medical complications causing additional secondary injury. Neuroendocrine disturbances also influence neurological outcome and are easily overlooked as they often present with diffuse symptoms such as fatigue, depression, poor concentration, or a decline in overall cognitive function; these are also typical sequelae of traumatic brain injury. Furthermore, neurological complications such as hydrocephalus, epilepsy, fatigue, disorders of consciousness, paroxysmal sympathetic hyperactivity, or psychiatric-behavioural symptoms may mask and/or complicate the diagnosis of neuroendocrine disturbances, delay appropriate treatment and impede neurorehabilitation. The present review seeks to examine the interrelation between neuroendocrine disturbances with neurological complications frequently encountered after moderate to severe TBI during rehabilitation. Common neuroendocrine disturbances and medical complications and their clinical implications are discussed.

  12. Numerical study of wave disturbance in liquid cooling film

    Directory of Open Access Journals (Sweden)

    S.R. Shine

    2013-06-01

    Full Text Available Transient numerical simulations are carried out to investigate the liquid-gas interface characteristics associated with liquid film cooling flows. A two-dimensional axisymmetric multi-phase numerical model using finite volume formulation is developed. The model has been validated against available experimental data for liquid-film cooling flows inside tubes. The model has been used to predict the interface characteristics for a variety of imposed parameters and momentum flux ratios under cold flow conditions wherein both the coolant and mainstream are maintained at the same temperature. Disturbance waves are observed at the liquid-gas interface for coolant flows above a critical value and after a finite distance from the inlet. The distance toward the wave inception point increased with the increase of momentum flux ratio. However, at higher momentum flux ratios, the properties of the disturbance waves did not vary significantly. The parameters related to the liquid-gas interface waves, namely, wave velocity, frequency, amplitude and wave length have been analyzed in detail. Analysis indicates that the liquid entrainment is due to the shearing of the disturbance wave crest.

  13. Peatlands of the Peruvian Puna ecoregion: types, characteristics and disturbance

    Directory of Open Access Journals (Sweden)

    F. Salvador

    2014-05-01

    Full Text Available Peatlands represent one of the most important water resources in the Puna grassland ecoregion, but this fact is not yet widely recognised. Puna peatlands also provide key environmental services such as increasing the regional biodiversity of the Andean Altiplano plateau and contributing to the wellbeing of high-altitude human populations by providing grazing land and cooking fuel. We conducted a study in the Peruvian Puna ecoregion to describe the current condition of peatlands in terms of their vegetation, physical and chemical characteristics and disturbance status. Our results suggest that peat thickness, organic matter and degree of humification are good indicators for identifying peatlands in the Puna ecoregion. In general, the peatland sites that we sampled were dominated by mixtures of cushion and acaulescent rosette forming plants such as Distichia muscoides Nees & Meyen and Plantago tubulosa Decne. These Distichia and Plantago peatland sites were characterised by a mean surface water pH of 6.3, corrected electrical conductivity (K corr. in the range 300–1814 μS cm-1 and presented the following mean exchangeable cation values: Ca2+ 48 mg L-1, Mg2+ 9.6 mg L-1, Na+ 8.2 mg L-1 and K+ 2.1 mg L-1. The most common causes of disturbance we encountered were grazing, peat extraction and roads. Disturbance was most severe in mining sites, where peatlands are especially vulnerable because they are not under legal protection.

  14. Neuronal substrates of sensory gating within the human brain.

    NARCIS (Netherlands)

    Grunwald, T.; Boutros, N.N.; Pezer, N.; Oertzen, J. von; Fernandez, G.S.E.; Schaller, C.; Elger, C.E.

    2003-01-01

    BACKGROUND: For the human brain, habituation to irrelevant sensory input is an important function whose failure is associated with behavioral disturbances. Sensory gating can be studied by recording the brain's electrical responses to repeated clicks: the P50 potential is normally reduced to the

  15. Learning after acquired brain injury. Learning the hard way

    NARCIS (Netherlands)

    Boosman, H.

    2015-01-01

    Background: When the brain has suffered damage, the learning process can be considerably disturbed. Brain damage can influence what is learned, but also how learning takes place. What patients can learn can be viewed in terms of ‘learning ability’ and how patients learn in terms of ‘learning style’.

  16. The linguistics of schizophrenia: thought disturbance as language pathology across positive symptoms

    OpenAIRE

    Wolfram eHinzen; Wolfram eHinzen; Wolfram eHinzen; Joana eRosselló

    2015-01-01

    We hypothesize that linguistic (dis-) organization in the schizophrenic brain plays a much more central role in the pathogenesis of this disease than commonly supposed. Against the standard view, that schizophrenia is a disturbance of thought or selfhood, we argue that the origins of the relevant forms of thought and selfhood at least partially depend on language. The view that they do not is premised by a theoretical conception of language that we here identify as ‘Cartesian’ and contrast wi...

  17. The brain stem function in patients with brain bladder

    International Nuclear Information System (INIS)

    Takahashi, Toshihiro

    1990-01-01

    A syndrome of detrusor-sphincter dyssynergia (DSD) is occasionally found in patients with brain bladder. To evaluate the brain stem function in cases of brain bladder, urodynamic study, dynamic CT scan of the brain stem (DCT) and auditory brainstem response (ABR) were performed. The region of interest of DCT aimed at the posterolateral portion of the pons. The results were analysed in contrast with the presense of DSD in urodynamic study. DCT studies were performed in 13 cases with various brain diseases and 5 control cases without neurological diseases. Abnormal patterns of the time-density curve consisted of low peak value, prolongation of filling time and low rapid washout ratio (low clearance ratio) of the contrast medium. Four of 6 cases with DSD showed at least one of the abnormal patterns of the time-density curve bilaterally. In 7 cases without DSD none showed bilateral abnormality of the curve and in 2 of 7 cases only unilateral abnormality was found. ABR was performed in 8 patients with brain diseases. The interpeak latency of the wave I-V (I-V IPL) was considered to be prolonged in 2 cases with DSD compared to that of 4 without DSD. In 2 cases with DSD who had normal DCT findings, measurement of the I-V IPL was impossible due to abnormal pattern of the ABR wave. Above mentioned results suggests the presence of functional disturbance at the posterolateral portion of the pons in cases of brain bladder with DSD. (author)

  18. Active disturbance rejection controller for chemical reactor

    International Nuclear Information System (INIS)

    Both, Roxana; Dulf, Eva H.; Muresan, Cristina I.

    2015-01-01

    In the petrochemical industry, the synthesis of 2 ethyl-hexanol-oxo-alcohols (plasticizers alcohol) is of high importance, being achieved through hydrogenation of 2 ethyl-hexenal inside catalytic trickle bed three-phase reactors. For this type of processes the use of advanced control strategies is suitable due to their nonlinear behavior and extreme sensitivity to load changes and other disturbances. Due to the complexity of the mathematical model an approach was to use a simple linear model of the process in combination with an advanced control algorithm which takes into account the model uncertainties, the disturbances and command signal limitations like robust control. However the resulting controller is complex, involving cost effective hardware. This paper proposes a simple integer-order control scheme using a linear model of the process, based on active disturbance rejection method. By treating the model dynamics as a common disturbance and actively rejecting it, active disturbance rejection control (ADRC) can achieve the desired response. Simulation results are provided to demonstrate the effectiveness of the proposed method

  19. Active disturbance rejection controller for chemical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Both, Roxana; Dulf, Eva H.; Muresan, Cristina I., E-mail: roxana.both@aut.utcluj.ro [Technical University of Cluj-Napoca, 400114 Cluj-Napoca (Romania)

    2015-03-10

    In the petrochemical industry, the synthesis of 2 ethyl-hexanol-oxo-alcohols (plasticizers alcohol) is of high importance, being achieved through hydrogenation of 2 ethyl-hexenal inside catalytic trickle bed three-phase reactors. For this type of processes the use of advanced control strategies is suitable due to their nonlinear behavior and extreme sensitivity to load changes and other disturbances. Due to the complexity of the mathematical model an approach was to use a simple linear model of the process in combination with an advanced control algorithm which takes into account the model uncertainties, the disturbances and command signal limitations like robust control. However the resulting controller is complex, involving cost effective hardware. This paper proposes a simple integer-order control scheme using a linear model of the process, based on active disturbance rejection method. By treating the model dynamics as a common disturbance and actively rejecting it, active disturbance rejection control (ADRC) can achieve the desired response. Simulation results are provided to demonstrate the effectiveness of the proposed method.

  20. Reduction of brain mitochondrial β-oxidation impairs complex I and V in chronic alcohol intake: the underlying mechanism for neurodegeneration.

    Directory of Open Access Journals (Sweden)

    James Haorah

    Full Text Available Neuropathy and neurocognitive deficits are common among chronic alcohol users, which are believed to be associated with mitochondrial dysfunction in the brain. The specific type of brain mitochondrial respiratory chain complexes (mRCC that are adversely affected by alcohol abuse has not been studied. Thus, we examined the alterations of mRCC in freshly isolated mitochondria from mice brain that were pair-fed the ethanol (4% v/v and control liquid diets for 7-8 weeks. We observed that alcohol intake severely reduced the levels of complex I and V. A reduction in complex I was associated with a decrease in carnitine palmitoyltransferase 1 (cPT1 and cPT2 levels. The mitochondrial outer (cPT1 and inner (cPT2 membrane transporter enzymes are specialized in acylation of fatty acid from outer to inner membrane of mitochondria for ATP production. Thus, our results showed that alterations of cPT1 and cPT2 paralleled a decrease β-oxidation of palmitate and ATP production, suggesting that impairment of substrate entry step (complex I function can cause a negative impact on ATP production (complex V function. Disruption of cPT1/cPT2 was accompanied by an increase in cytochrome C leakage, while reduction of complex I and V paralleled a decrease in depolarization of mitochondrial membrane potential (ΔΨ, monitored by JC-1 fluorescence and ATP production in alcohol intake. We noted that acetyl-L-carnitine (ALC, a cofactor of cPT1 and cPT2 prevented the adverse effects of alcohol while coenzyme Q10 (CoQ10 was not very effective against alcohol insults. These results suggest that understanding the molecular, biochemical, and signaling mechanisms of the CNS mitochondrial β-oxidation such as ALC can mitigate alcohol related neurological disorders.

  1. Reduction of brain mitochondrial β-oxidation impairs complex I and V in chronic alcohol intake: the underlying mechanism for neurodegeneration.

    Science.gov (United States)

    Haorah, James; Rump, Travis J; Xiong, Huangui

    2013-01-01

    Neuropathy and neurocognitive deficits are common among chronic alcohol users, which are believed to be associated with mitochondrial dysfunction in the brain. The specific type of brain mitochondrial respiratory chain complexes (mRCC) that are adversely affected by alcohol abuse has not been studied. Thus, we examined the alterations of mRCC in freshly isolated mitochondria from mice brain that were pair-fed the ethanol (4% v/v) and control liquid diets for 7-8 weeks. We observed that alcohol intake severely reduced the levels of complex I and V. A reduction in complex I was associated with a decrease in carnitine palmitoyltransferase 1 (cPT1) and cPT2 levels. The mitochondrial outer (cPT1) and inner (cPT2) membrane transporter enzymes are specialized in acylation of fatty acid from outer to inner membrane of mitochondria for ATP production. Thus, our results showed that alterations of cPT1 and cPT2 paralleled a decrease β-oxidation of palmitate and ATP production, suggesting that impairment of substrate entry step (complex I function) can cause a negative impact on ATP production (complex V function). Disruption of cPT1/cPT2 was accompanied by an increase in cytochrome C leakage, while reduction of complex I and V paralleled a decrease in depolarization of mitochondrial membrane potential (ΔΨ, monitored by JC-1 fluorescence) and ATP production in alcohol intake. We noted that acetyl-L-carnitine (ALC, a cofactor of cPT1 and cPT2) prevented the adverse effects of alcohol while coenzyme Q10 (CoQ10) was not very effective against alcohol insults. These results suggest that understanding the molecular, biochemical, and signaling mechanisms of the CNS mitochondrial β-oxidation such as ALC can mitigate alcohol related neurological disorders.

  2. Brain Diseases

    Science.gov (United States)

    The brain is the control center of the body. It controls thoughts, memory, speech, and movement. It regulates the function of many organs. When the brain is healthy, it works quickly and automatically. However, ...

  3. The intermediate disturbance hypothesis applies to tropical forests, but disturbance contributes little to tree diversity

    NARCIS (Netherlands)

    Bongers, F.; Poorter, L.; Hawthorne, W.D.; Sheil, D.

    2009-01-01

    The intermediate disturbance hypothesis (IDH) predicts local species diversity to be maximal at an intermediate level of disturbance. Developed to explain species maintenance and diversity patterns in species-rich ecosystems such as tropical forests, tests of IDH in tropical forest remain scarce,

  4. Visually Determined Soil Disturbance Classes Used as Indices of Forest Harvesting Disturbance

    Science.gov (United States)

    W. Michael Aust; James A. Burger; Emily A. Carter; David P. Preston; Steven C. Patterson

    1998-01-01

    Visual estimates of soil and site disturbances are used by foresters, soil scientists, logging supervisors. and machinery operators to minimize harvest disturbances to forest sites, to evaluate compliance with forestry Best Management Practices (BMPs), and to determine the need for ameliorative practices such as tnechanical site preparation. Although estimates are...

  5. Language disturbances from mesencephalo-thalamic infarcts

    International Nuclear Information System (INIS)

    Lazzarino, L.G.; Nicolai, A.; Valassi, F.; Biasizzo, E.

    1991-01-01

    The authors report the cases of two patients with CT-documented paramedian mesencephalo-thalamic infarcts, showing language disturbances. The first patient showed a non fluent, transcortical motor-like aphasia, the other had a fluent but severely paraphasic language disorder. The CT study disclosed that it was the dorso-median thalamic nucleus that was mostly involved in both cases. These findings agree with a few previous pathological studies suggesting that the paramedian thalamic nuclei, particlularly the dorso-median nucleus may play some role in language disturbances. However the anatomical basis for thalamic aphasia remains speculative, taking into account the importantce of cortical connections in the origin of subcortical neuropsychological disturbances. (orig.)

  6. Handling process disturbances in petroleum production

    Energy Technology Data Exchange (ETDEWEB)

    Sten, T; Bodsberg, L; Ingstad, O; Ulleberg, T

    1988-06-01

    Factors of importance in successful handling of major disturbances and crisis situations in petroleum production are discussed. Case studies based on interviews, questionnaires and systematic observations have been undertaken to identify critical factors in human computer design, in operator competence and attitudes and in work organization. It is shown that certain features of the humancomputer interaction become critical when serious disturbances are encountered. Likewise focusing on requirements during disturbances in particular has highlighted some new aspects of operator competence and of the work organization. The results are considered to be useful input to safety management in petroleum process plants, in formation of design specifications and in identifying need for further research regarding safety in offshore production.

  7. Diagnostic orientation in control of disturbance situations

    International Nuclear Information System (INIS)

    Hukki, K.; Norros, L.

    1993-01-01

    The object of the study is diagnostic judgement in the control of dynamic processes. The starting point was the known difficulty process operators have in utilizing knowledge of process dynamics in disturbance situations that require both diagnostic and prognostic actions. A model of the diagnostic judgement process as a construction of coherent interpretation of the situation is outlined, and comprehensive data from simulated disturbance handling by 6 crews of a PWR type nuclear power plant was analysed. The phase of analysis included evaluation of the adequacy of task performance, utilization of available process information, and evaluation of the interpretation of disturbance situations. The results suggest that a functional orientation towards task performance allows a more coherent and comprehensive interpretation of the situation and more adequate task performance. Coherence of interpretation seems to be reflected in a higher subjective certainty compared with crews with an incoherent interpretation. (author). 15 refs, 2 figs, 2 tabs

  8. Psychopathology and hormonal disturbances in eating disorders

    Directory of Open Access Journals (Sweden)

    Pierpaola D’Arista

    2008-09-01

    Full Text Available

    Background: Our aim was to study the relationship between hormonal disturbances and psychopathology in Eating Disorders (ED.

    Methods: Forty-nine women diagnosed as Eating Disorders according to DSM-IV were subjected to control plasma levels of TSH, FT3, FT4, LH, FSH, 17beta-estradiol, prolactin, cortisol, DHEAS, GH and IGF-1. They were also administered by SCL-90R, BAT, DES II questionnaires. We applied multivariate regression models.

    Results: Our results highlight a statistically significant relation between LH, FSH and prolactin decreased levels, mood and thought disturbances (subscales 3, 5, 7, 8 and 9 of SCL-90r which are associated to Body Attitude ( BAT total scale and Dissociative Experiences (DES II total scale.

    Conclusions: Decreased sexual hormones levels could have a role in ED psychological disturbances, not inquired yet

  9. Ionospheric irregularities in periods of meteorological disturbances

    Science.gov (United States)

    Borchevkina, O. P.; Karpov, I. V.

    2017-09-01

    The results of observations of the total electron content (TEC) in periods of storm disturbances of meteorological situation are presented in the paper. The observational results have shown that a passage of a meteorological storm is accompanied by a substantial decrease in values of TEC and critical frequencies of the ionospheric F2 region. The decreases in values of these ionospheric parameters reach 50% and up to 30% in TEC and critical frequency of the F2 layer, respectively, as compared to meteorologically quiet days. Based on qualitative analysis, it is found that the processes related to formation of local regions of thermospheric heating due to a dissipation of AGW coming into the upper atmosphere from the region of the meteorological disturbance in the lower atmosphere are a possible cause of these ionospheric disturbances.

  10. Thermoluminescent Signals Caused by Disturbing Effects

    International Nuclear Information System (INIS)

    German, U.; Weinstein, M.; Ben-Shachar, B.

    1999-01-01

    One of the major sources of uncertainty in the measurement of low radiation doses by means of thermoluminescence dosemeters is the presence of disturbing thermoluminescence signals, especially luminescence caused by visible light, and by materials attached to the heated areas. Glow curves of thermoluminescence dosemeters contain useful information that can improve the accuracy and the reliability of the thermoluminescent measurements. The influence of the various disturbing effects can be recognised in the shape of the glow curves and can sometimes be separated from the exposure. Some examples are presented of signals arising from the two disturbing effects mentioned above, the signal contributed by Teflon used in the TLD-100 cards of Bicron/Harshaw and some abnormal glow curves due to dirt attached to the cards. Subtraction of the contributions due to these effects is suggested to obtain the net exposure signal. (author)

  11. Work Time Control and Sleep Disturbances

    DEFF Research Database (Denmark)

    Salo, Paula; Ala-Mursula, Leena; Rod, Naja Hulvej

    2014-01-01

    OBJECTIVES: Employee control over work times has been associated with favorable psychosocial and health-related outcomes, but the evidence regarding sleep quality remains inconclusive. We examined cross-sectional and prospective associations between work time control and sleep disturbances...... in a large working population, taking into account total hours worked. METHODS: The data were from a full-panel longitudinal cohort study of Finnish public sector employees who responded to questions on work time control and sleep disturbances in years 2000-2001, 2004-2005, 2008-2009, and 2012. The analysis....... RESULTS: Consistently in both cross-sectional and longitudinal models, less control over work time was associated with greater sleep disturbances in the total population and among those working normal 40-hour weeks. Among participants working more than 40 hours a week, work time that was both very high...

  12. Insulin sensitivity : modulation by the brain

    NARCIS (Netherlands)

    Coomans, Claudia Pascalle

    2012-01-01

    The studies in this thesis contribute to the understanding of the role of the brain in insulin sensitivity. We demonstrate that disturbances in circadian rhythm resulting in alterations in SCN output, can contribute to the development of insulin resistance. We also shown that insulin-stimulated

  13. The multilingual brain

    OpenAIRE

    Engel de Abreu, Pascale

    2014-01-01

    The multilingual brain. Is a multilingual education beneficial for children? What are the optimal conditions under which a child can become perfectly multilingual? The given lecture will focus on the "cognitive advantages" of multilingualism and illustrate the impact that being multilingual has on the cognitive organisation of the brain. Practical questions regarding multilingual education will also be discussed. Ass et gutt e Kand méisproocheg ze erzéien? Wat sinn déi optimal Konditio...

  14. Brain Aneurysm

    Science.gov (United States)

    A brain aneurysm is an abnormal bulge or "ballooning" in the wall of an artery in the brain. They are sometimes called berry aneurysms because they ... often the size of a small berry. Most brain aneurysms produce no symptoms until they become large, ...

  15. Brain Development

    Science.gov (United States)

    ... Become a Member Home Early Development & Well-Being Brain Development A child’s brain undergoes an amazing period of development from birth ... neural connections each second. The development of the brain is influenced by many factors, including a child’s ...

  16. North American forest disturbance mapped from a decadal Landsat record

    Science.gov (United States)

    Jeffrey G. Masek; Chengquan Huang; Robert Wolfe; Warren Cohen; Forrest Hall; Jonathan Kutler; Peder. Nelson

    2008-01-01

    Forest disturbance and recovery are critical ecosystem processes, but the spatial pattern of disturbance has never been mapped across North America. The LEDAPS (Landsat Ecosystem Disturbance Adaptive Processing System) project has assembled a wall-to-wall record of stand-clearing disturbance (clearcut harvest, fire) for the United States and Canada for the period 1990-...

  17. Age structure and disturbance legacy of North American forests

    Science.gov (United States)

    Y. Pan; J.M. Chen; R. Birdsey; K. McCullough; L. He; F. Deng

    2011-01-01

    Most forests of the world are recovering from a past disturbance. It is well known that forest disturbances profoundly affect carbon stocks and fluxes in forest ecosystems, yet it has been a great challenge to assess disturbance impacts in estimates of forest carbon budgets. Net sequestration or loss of CO2 by forests after disturbance follows a...

  18. Disturbance ecology and forest management: A review of the literature

    Science.gov (United States)

    Paul Rogers

    1996-01-01

    This review of the disturbance ecology literature, and how it pertains to forest management, is a resource for forest managers and researchers interested in disturbance theory, specific disturbance agents, their interactions, and appropriate methods of inquiry for specific geographic regions. Implications for the future of disturbance ecology-based management are...

  19. Changing Forest Disturbance Regimes and Risk Perceptions in Homer, Alaska

    Science.gov (United States)

    Courtney G. F1int

    2007-01-01

    Forest disturbances caused by insects can lead to other disturbances, risks, and changes across landscapes. Evaluating the human dimensions of such disturbances furthers understanding of integrated changes in natural and social systems. This article examines the effects of changing forest disturbance regimes on local risk perceptions and attitudes in Homer, Alaska....

  20. The interplay between climate change, forests, and disturbances

    Science.gov (United States)

    Virginia H. Dale; Linda A. Joyce; Steve McNulty; Ronald P. Neilson

    2000-01-01

    Climate change affects forests both directly and indirectly through disturbances. Disturbances are a natural and integral part of forest ecosystems, and climate change can alter these natural interactions. When disturbances exceed their natural range of variation, the change in forest structure and function may be extreme. Each disturbance affects forests differently....

  1. Plasma and brain angiotensin concentrations associated with water response behavior in the desert anuran, Scaphiopus couchii under natural conditions in the field.

    Science.gov (United States)

    Johnson, William E; Hillyard, Stanley D; Propper, Catherine R

    2010-12-01

    Terrestrial amphibians obtain water by absorption across a specialized region of the ventral skin and exhibit a behavior, the water absorption response (WR) to place that region in contact with moist surfaces. Spadefoot toads (Scaphiopus couchii) spend dry months of the year in burrows, then emerge during brief periods of summer rainfall and seek water sources for rehydration and reproduction. We tested the hypothesis that these toads have changes in plasma and/or central angiotensin concentrations that are associated with seasonal emergence and WR behavior. Immunoreactive concentrations of combined angiotensin II and III (ir-ANG) were measured in plasma samples and microdissected regions of brain tissue taken from toads moving across the road or toads showing WR behavior in shallow puddles on the road. Plasma ir-ANG concentrations were not significantly different between these groups, but were significantly higher in the periventricular region of the hypothalamus in toads showing WR behavior. Concentrations in other brain regions, while highly variable among individuals, were not different between groups. Within the context of the natural history of a specialized desert toad, these results support the hypothesis that ir-ANG is associated with WR behavior in spadefoot toads in a manner analogous to oral drinking exhibited by other vertebrate clades. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Altered Brain Functional Activity in Infants with Congenital Bilateral Severe Sensorineural Hearing Loss: A Resting-State Functional MRI Study under Sedation

    Directory of Open Access Journals (Sweden)

    Shuang Xia

    2017-01-01

    Full Text Available Early hearing deprivation could affect the development of auditory, language, and vision ability. Insufficient or no stimulation of the auditory cortex during the sensitive periods of plasticity could affect the function of hearing, language, and vision development. Twenty-three infants with congenital severe sensorineural hearing loss (CSSHL and 17 age and sex matched normal hearing subjects were recruited. The amplitude of low frequency fluctuations (ALFF and regional homogeneity (ReHo of the auditory, language, and vision related brain areas were compared between deaf infants and normal subjects. Compared with normal hearing subjects, decreased ALFF and ReHo were observed in auditory and language-related cortex. Increased ALFF and ReHo were observed in vision related cortex, which suggest that hearing and language function were impaired and vision function was enhanced due to the loss of hearing. ALFF of left Brodmann area 45 (BA45 was negatively correlated with deaf duration in infants with CSSHL. ALFF of right BA39 was positively correlated with deaf duration in infants with CSSHL. In conclusion, ALFF and ReHo can reflect the abnormal brain function in language, auditory, and visual information processing in infants with CSSHL. This demonstrates that the development of auditory, language, and vision processing function has been affected by congenital severe sensorineural hearing loss before 4 years of age.

  3. An investigation on motor-driven power steering-based crosswind disturbance compensation for the reduction of driver steering effort

    Science.gov (United States)

    Kim, Kyuwon; Kim, Boemjun; Go, Youngil; Park, Jaeyong; Park, Joonhong; Suh, Insoo; Yi, Kyongsu

    2014-07-01

    This paper describes a lateral disturbance compensation algorithm for an application to a motor-driven power steering (MDPS)-based driver assistant system. The lateral disturbance including wind force and lateral load transfer by bank angle reduces the driver's steering refinement and at the same time increases the possibility of an accident. A lateral disturbance compensation algorithm is designed to determine the motor overlay torque of an MDPS system for reducing the manoeuvreing effort of a human driver under lateral disturbance. Motor overlay torque for the compensation of driver's steering torque induced by the lateral disturbance consists of human torque feedback and feedforward torque. Vehicle-driver system dynamics have been investigated using a combined dynamic model which consists of a vehicle dynamic model, driver steering dynamic model and lateral disturbance model. The human torque feedback input has been designed via the investigation of the vehicle-driver system dynamics. Feedforward input torque is calculated to compensate additional tyre self-aligning torque from an estimated lateral disturbance. The proposed compensation algorithm has been implemented on a developed driver model which represents the driver's manoeuvreing characteristics under the lateral disturbance. The developed driver model has been validated with test data via a driving simulator in a crosswind condition. Human-in-the-loop simulations with a full-scale driving simulator on a virtual test track have been conducted to investigate the real-time performance of the proposed lateral disturbance compensation algorithm. It has been shown from simulation studies and human-in-the-loop simulation results that the driver's manoeuvreing effort and a lateral deviation of the vehicle under the lateral disturbance can be significantly reduced via the lateral disturbance compensation algorithm.

  4. Automated recognition system for power quality disturbances

    Science.gov (United States)

    Abdelgalil, Tarek

    The application of deregulation policies in electric power systems has resulted in the necessity to quantify the quality of electric power. This fact highlights the need for a new monitoring strategy which is capable of tracking, detecting, classifying power quality disturbances, and then identifying the source of the disturbance. The objective of this work is to design an efficient and reliable power quality monitoring strategy that uses the advances in signal processing and pattern recognition to overcome the deficiencies that exist in power quality monitoring devices. The purposed monitoring strategy has two stages. The first stage is to detect, track, and classify any power quality violation by the use of on-line measurements. In the second stage, the source of the classified power quality disturbance must be identified. In the first stage, an adaptive linear combiner is used to detect power quality disturbances. Then, the Teager Energy Operator and Hilbert Transform are utilized for power quality event tracking. After the Fourier, Wavelet, and Walsh Transforms are employed for the feature extraction, two approaches are then exploited to classify the different power quality disturbances. The first approach depends on comparing the disturbance to be classified with a stored set of signatures for different power quality disturbances. The comparison is developed by using Hidden Markov Models and Dynamic Time Warping. The second approach depends on employing an inductive inference to generate the classification rules directly from the data. In the second stage of the new monitoring strategy, only the problem of identifying the location of the switched capacitor which initiates the transients is investigated. The Total Least Square-Estimation of Signal Parameters via Rotational Invariance Technique is adopted to estimate the amplitudes and frequencies of the various modes contained in the voltage signal measured at the facility entrance. After extracting the

  5. PID control with robust disturbance feedback control

    DEFF Research Database (Denmark)

    Kawai, Fukiko; Vinther, Kasper; Andersen, Palle

    2015-01-01

    Disturbance Feedback Control (DFC) is a technique, originally proposed by Fuji Electric, for augmenting existing control systems with an extra feedback for attenuation of disturbances and model errors. In this work, we analyze the robustness and performance of a PID-based control system with DFC...... and performance (if such gains exist). Finally, two different simulation case studies are evaluated and compared. Our numerical studies indicate that better performance can be achieved with the proposed method compared with a conservatively tuned PID controller and comparable performance can be achieved when...... compared with an H-infinity controller....

  6. Left Brain. Right Brain. Whole Brain

    Science.gov (United States)

    Farmer, Lesley S. J.

    2004-01-01

    As the United States student population is becoming more diverse, library media specialists need to find ways to address these distinctive needs. However, some of these differences transcend culture, touching on variations in the brain itself. Most people have a dominant side of the brain, which can affect their personality and learning style.…

  7. Adaptive Disturbance Rejection Control for Automatic Carrier Landing System

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2016-01-01

    Full Text Available An adaptive disturbance rejection algorithm is proposed for carrier landing system in the final-approach. The carrier-based aircraft dynamics and the linearized longitudinal model under turbulence conditions in the final-approach are analyzed. A stable adaptive control scheme is developed based on LDU decomposition of the high-frequency gain matrix, which ensures closed-loop stability and asymptotic output tracking. Finally, simulation studies of a linearized longitudinal-directional dynamics model are conducted to demonstrate the performance of the adaptive scheme.

  8. Research on Francis Turbine Modeling for Large Disturbance Hydropower Station Transient Process Simulation

    Directory of Open Access Journals (Sweden)

    Guangtao Zhang

    2015-01-01

    Full Text Available In the field of hydropower station transient process simulation (HSTPS, characteristic graph-based iterative hydroturbine model (CGIHM has been widely used when large disturbance hydroturbine modeling is involved. However, by this model, iteration should be used to calculate speed and pressure, and slow convergence or no convergence problems may be encountered for some reasons like special characteristic graph profile, inappropriate iterative algorithm, or inappropriate interpolation algorithm, and so forth. Also, other conventional large disturbance hydroturbine models are of some disadvantages and difficult to be used widely in HSTPS. Therefore, to obtain an accurate simulation result, a simple method for hydroturbine modeling is proposed. By this method, both the initial operating point and the transfer coefficients of linear hydroturbine model keep changing during simulation. Hence, it can reflect the nonlinearity of the hydroturbine and be used for Francis turbine simulation under large disturbance condition. To validate the proposed method, both large disturbance and small disturbance simulations of a single hydrounit supplying a resistive, isolated load were conducted. It was shown that the simulation result is consistent with that of field test. Consequently, the proposed method is an attractive option for HSTPS involving Francis turbine modeling under large disturbance condition.

  9. Brain Basics: Know Your Brain

    Science.gov (United States)

    ... however, the brain is beginning to relinquish its secrets. Scientists have learned more about the brain in ... through the activity of these lobes. At the top of each temporal lobe is an area responsible ...

  10. Ameliorating effects of traditional Chinese medicine preparation, Chinese materia medica and active compounds on ischemia/reperfusion-induced cerebral microcirculatory disturbances and neuron damage

    Science.gov (United States)

    Sun, Kai; Fan, Jingyu; Han, Jingyan

    2015-01-01

    Ischemic stroke and ischemia/reperfusion (I/R) injury induced by thrombolytic therapy are conditions with high mortality and serious long-term physical and cognitive disabilities. They have a major impact on global public health. These disorders are associated with multiple insults to the cerebral microcirculation, including reactive oxygen species (ROS) overproduction, leukocyte adhesion and infiltration, brain blood barrier (BBB) disruption, and capillary hypoperfusion, ultimately resulting in tissue edema, hemorrhage, brain injury and delayed neuron damage. Traditional Chinese medicine (TCM) has been used in China, Korea, Japan and other Asian countries for treatment of a wide range of diseases. In China, the usage of compound TCM preparation to treat cerebrovascular diseases dates back to the Han Dynasty. Even thousands of years earlier, the medical formulary recorded many classical prescriptions for treating cerebral I/R-related diseases. This review summarizes current information and underlying mechanisms regarding the ameliorating effects of compound TCM preparation, Chinese materia medica, and active components on I/R-induced cerebral microcirculatory disturbances, brain injury and neuron damage. PMID:26579420

  11. Lateralization of Egocentric and Allocentric Spatial Processing after Parietal Brain Lesions

    Science.gov (United States)

    Iachini, Tina; Ruggiero, Gennaro; Conson, Massimiliano; Trojano, Luigi

    2009-01-01

    The purpose of this paper was to verify whether left and right parietal brain lesions may selectively impair egocentric and allocentric processing of spatial information in near/far spaces. Two Right-Brain-Damaged (RBD), 2 Left-Brain-Damaged (LBD) patients (not affected by neglect or language disturbances) and eight normal controls were submitted…

  12. Modelling natural disturbances in forest ecosystems: a review

    OpenAIRE

    Seidl, Rupert; Fernandes, Paulo M.; Fonseca, Teresa F.; Gillet, François; Jönsson, Anna Maria; Merganičová, Katarína; Netherer, Sigrid; Arpaci, Alexander; Bontemps, Jean-Daniel; Bugmann, Harald

    2011-01-01

    Natural disturbances play a key role in ecosystem dynamics and are important factors for sustainable forest ecosystem management. Quantitative models are frequently employed to tackle the complexities associated with disturbance processes. Here we review the wide variety of approaches to modelling natural disturbances in forest ecosystems, addressing the full spectrum of disturbance modelling from single events to integrated disturbance regimes. We applied a general, process-based framework f...

  13. Harnessing landscape heterogeneity for managing future disturbance risks in forest ecosystems

    Science.gov (United States)

    Seidl, Rupert; Albrich, Katharina; Thom, Dominik; Rammer, Werner

    2018-01-01

    In order to prevent irreversible impacts of climate change on the biosphere it is imperative to phase out the use of fossil fuels. Consequently, the provisioning of renewable resources such as timber and biomass from forests is an ecosystem service of increasing importance. However, risk factors such as changing disturbance regimes are challenging the continuous provisioning of ecosystem services, and are thus a key concern in forest management. We here used simulation modeling to study different risk management strategies in the context of timber production under changing climate and disturbance regimes, focusing on a 8127 ha forest landscape in the Northern Front Range of the Alps in Austria. We show that under a continuation of historical management, disturbances from wind and bark beetles increase by +39.5% on average over 200 years in response to future climate change. Promoting mixed forests and climate-adapted tree species as well as increasing management intensity effectively reduced future disturbance risk. Analyzing the spatial patterns of disturbance on the landscape, we found a highly uneven distribution of risk among stands (Gini coefficients up to 0.466), but also a spatially variable effectiveness of silvicultural risk reduction measures. This spatial variability in the contribution to and control of risk can be used to inform disturbance management: Stands which have a high leverage on overall risk and for which risks can effectively be reduced (24.4% of the stands in our simulations) should be a priority for risk mitigation measures. In contrast, management should embrace natural disturbances for their beneficial effects on biodiversity in areas which neither contribute strongly to landscape-scale risk nor respond positively to risk mitigation measures (16.9% of stands). We here illustrate how spatial heterogeneity in forest landscapes can be harnessed to address both positive and negative effects of changing natural disturbance regimes in

  14. Disturbance effect of music on processing of verbal and spatial memories.

    Science.gov (United States)

    Iwanaga, Makoto; Ito, Takako

    2002-06-01

    The purpose of the present study was to examine the disturbance effect of music on performances of memory tasks. Subjects performed a verbal memory task and a spatial memory task in 4 sound conditions, including the presence of vocal music, instrumental music, a natural sound (murmurings of a stream), and no music. 47 undergraduate volunteers were randomly assigned to perform tasks under each condition. Perceived disturbance was highest under the vocal music condition regardless of the type of task. A disturbance in performance by music was observed only with the verbal memory task under the vocal and the instrumental music conditions. These findings were discussed from the perspectives of the working memory hypothesis and the changing state model.

  15. How does the interaction of presumed timing, location and extent of the underlying brain lesion relate to upper limb function in children with unilateral cerebral palsy?

    Science.gov (United States)

    Mailleux, Lisa; Klingels, Katrijn; Fiori, Simona; Simon-Martinez, Cristina; Demaerel, Philippe; Locus, Marlies; Fosseprez, Eva; Boyd, Roslyn N; Guzzetta, Andrea; Ortibus, Els; Feys, Hilde

    2017-09-01

    Upper limb (UL) function in children with unilateral cerebral palsy (CP) vary largely depending on presumed timing, location and extent of brain lesions. These factors might exhibit a complex interaction and the combined prognostic value warrants further investigation. This study aimed to map lesion location and extent and assessed whether these differ according to presumed lesion timing and to determine the impact of structural brain damage on UL function within different lesion timing groups. Seventy-three children with unilateral CP (mean age 10 years 2 months) were classified according to lesion timing: malformations (N = 2), periventricular white matter (PWM, N = 42) and cortical and deep grey matter (CDGM, N = 29) lesions. Neuroanatomical damage was scored using a semi-quantitative MRI scale. UL function was assessed at body function and activity level. CDGM lesions were more pronounced compared to PWM lesions (p = 0.0003). Neuroanatomical scores were correlated with a higher degree to UL function in the CDGM group (r s  = -0.39 to r s  = -0.84) compared to the PWM group (r rb  = -0.42 to r s  = -0.61). Regression analysis found lesion location and extent to explain 75% and 65% (p < 0.02) respectively, of the variance in AHA performance in the CDGM group, but only 24% and 12% (p < 0.03) in the PWM group. In the CDGM group, lesion location and extent seems to impact more on UL function compared to the PWM group. In children with PWM lesions, other factors like corticospinal tract (re)organization and structural connectivity may play an additional role. Copyright © 2017 European Paediatric Neurology Society. All rights reserved.

  16. Disturbance rejection performance analyses of closed loop control systems by reference to disturbance ratio.

    Science.gov (United States)

    Alagoz, Baris Baykant; Deniz, Furkan Nur; Keles, Cemal; Tan, Nusret

    2015-03-01

    This study investigates disturbance rejection capacity of closed loop control systems by means of reference to disturbance ratio (RDR). The RDR analysis calculates the ratio of reference signal energy to disturbance signal energy at the system output and provides a quantitative evaluation of disturbance rejection performance of control systems on the bases of communication channel limitations. Essentially, RDR provides a straightforward analytical method for the comparison and improvement of implicit disturbance rejection capacity of closed loop control systems. Theoretical analyses demonstrate us that RDR of the negative feedback closed loop control systems are determined by energy spectral density of controller transfer function. In this manner, authors derived design criteria for specifications of disturbance rejection performances of PID and fractional order PID (FOPID) controller structures. RDR spectra are calculated for investigation of frequency dependence of disturbance rejection capacity and spectral RDR analyses are carried out for PID and FOPID controllers. For the validation of theoretical results, simulation examples are presented. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Emotional Disturbance. NICHCY Disability Fact Sheet #5

    Science.gov (United States)

    National Dissemination Center for Children with Disabilities, 2010

    2010-01-01

    The mental health of our children is a natural and important concern for us all. The fact is, many mental disorders have their beginnings in childhood or adolescence, yet may go undiagnosed and untreated for years. "Umbrella" terms such as emotional disturbance, behavioral disorders, or mental illness are used to refer to mental…

  18. Solar Development on Contaminated and Disturbed Lands

    Energy Technology Data Exchange (ETDEWEB)

    Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lee, Courtney [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mosey, Gail [National Renewable Energy Lab. (NREL), Golden, CO (United States); Melius, Jenny [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-12-01

    Land classified as contaminated and disturbed across the United States has the potential to host developments of utility-scale solar power. This report examines the prospect of developing utility- and commercial-scale concentrated solar power (CSP) and solar photovoltaics (PV) technologies on degraded and environmentally contaminated lands. The potential for solar development on contaminated anddisturbed lands was assessed, and for the largest and highest solar resource sites, the economic impacts and feasibility were evaluated. Developing solar power on contaminated and disturbed lands can help create jobs and revitalize local and state economies, and selecting these sites over greenfield sites can potentially have permitting and environmental mitigation advantages. The U.S.Department of Energy (DOE) SunShot goals call for 632 GW of PV and 83 GW of CSP to be deployed by 2050. Conservative land-use estimates of this study (10 acres per megawatt) show that there are disturbed and environmentally contaminated lands throughout the country that could be suitable for utility-scale solar power, and, that there is sufficient land area to meet SunShot solar deployment goals. The purpose of this assessment is to improve the understanding of these sites and facilitate solar developers' selection of contaminated and disturbed sites for development.

  19. Disturbing Practices: Training Workers to Be Lean

    Science.gov (United States)

    Yasukawa, Keiko; Brown, Tony; Black, Stephen

    2014-01-01

    Purpose: The purpose of this paper is to explore the possibilities for expansive learning during organisational change. It considers the introduction of "lean production" as a disturbance to the existing work practices. Design/methodology/approach: The paper considers two case studies of "lean production" training with…

  20. Types and Treatment of Pediatric Sleep Disturbances

    Science.gov (United States)

    Hamilton, Gloria J.

    2009-01-01

    This article provides an overview of pediatric sleep disturbances with emphases on types and treatments. Relationships between sleep disorders and comorbid conditions function to exacerbate and maintain both disorders. An estimated 20% of teenagers experience chronic partial sleep deprivation, resulting in problems with memory, attention, and…

  1. Time Perspective, Mood Disturbance, and Suicide Liberation.

    Science.gov (United States)

    Lennings, C. J.

    1994-01-01

    Assessed 238 university students and 159 high school students on temporal and personality measures. Found that temporal extension, temporal attitude, and impulsivity had comparatively little effect on suicide ideation after controlling effects of mood disturbance. However, negative temporal attitudes appeared to have significant impact on suicide…

  2. Body representation disturbances in anorexia nervosa

    NARCIS (Netherlands)

    Keizer, A.

    2014-01-01

    One of the main symptoms of anorexia nervosa (AN) is a disturbed experience of body size and shape. Although patients are underweight, they experience their body as bigger than it in reality is. Previous studies were mainly conducted by (clinical) psychologists and psychiatrists, and almost

  3. Combine material against electromagnetic pulse disturbance

    International Nuclear Information System (INIS)

    Liu Yan

    2004-01-01

    A novel combined material is introduced, which is hard against electromagnetic pulse disturbance, The attenuation characteristics and the penetration probability of the combine material is discussed in detail. The penetration probability of electromagnetic wave is calculated approximately and the characteristic curve is measured for this material. (authors)

  4. Unusual metaphyseal disturbance in two kittens

    International Nuclear Information System (INIS)

    Gunn-Moore, D.A.; Hagard, G.; Turner, C.; Duncan, A.W.; Barr, F.J.

    1996-01-01

    This report describes the presenting features, radiographic changes, biochemical alterations and clinical progress of two kittens, from separate litters, which were found to have a growth plate disturbance initially diagnosed and treated as vitamin D3-dependent rickets, but subsequently suspected to be a metaphyseal chondrodysplasia

  5. Effectiveness of carnosine on disturbed electrolytes homeostasis ...

    African Journals Online (AJOL)

    We aimed to assess the effect of well known antioxidant carnosine on disturbed plasma and intraerythrocytes electrolytes and Na+-K+-ATPase activity by cisplatin. 24 male albino Wistar rats were selected and divided into 4 groups: Group I = untreated control; Group II = cisplatin control (received cisplatin at a dose of 3 mg/ ...

  6. Geomagnetic response to solar and interplanetary disturbances

    Directory of Open Access Journals (Sweden)

    Maris Georgeta

    2013-07-01

    Full Text Available The space weather discipline involves different physical scenarios, which are characterised by very different physical conditions, ranging from the Sun to the terrestrial magnetosphere and ionosphere. Thanks to the great modelling effort made during the last years, a few Sun-to-ionosphere/thermosphere physics-based numerical codes have been developed. However, the success of the prediction is still far from achieving the desirable results and much more progress is needed. Some aspects involved in this progress concern both the technical progress (developing and validating tools to forecast, selecting the optimal parameters as inputs for the tools, improving accuracy in prediction with short lead time, etc. and the scientific development, i.e., deeper understanding of the energy transfer process from the solar wind to the coupled magnetosphere-ionosphere-thermosphere system. The purpose of this paper is to collect the most relevant results related to these topics obtained during the COST Action ES0803. In an end-to-end forecasting scheme that uses an artificial neural network, we show that the forecasting results improve when gathering certain parameters, such as X-ray solar flares, Type II and/or Type IV radio emission and solar energetic particles enhancements as inputs for the algorithm. Regarding the solar wind-magnetosphere-ionosphere interaction topic, the geomagnetic responses at high and low latitudes are considered separately. At low latitudes, we present new insights into temporal evolution of the ring current, as seen by Burton’s equation, in both main and recovery phases of the storm. At high latitudes, the PCC index appears as an achievement in modelling the coupling between the upper atmosphere and the solar wind, with a great potential for forecasting purposes. We also address the important role of small-scale field-aligned currents in Joule heating of the ionosphere even under non-disturbed conditions. Our scientific results in

  7. Body image disturbance and skin bleaching.

    Science.gov (United States)

    Charles, Christopher A D; McLean, Shua-Kym

    2017-11-01

    This study looks at body image disturbance among Jamaicans who bleach their skin. The hypothesis states that there is a positive relationship between skin bleaching and body image disturbance. The study used a convenience sample of 160 participants with a skin bleaching group (n = 80) and a non-bleaching comparison group (n = 80). The instrument included demographic questions, the body image disturbance questionnaire (BIDQ), and questions about skin bleaching. The results of a t-test revealed that the skin bleaching group (M = 1.5255, SD = 0.42169) was not significantly different from the non-bleaching group (M = 1.4938, SD = 0.74217) in terms of body image disturbance, t(158) = 0.333, p = .740. The participants who bleached did not suffer from body image disturbance. Self-reports revealed that they bleached to acquire beauty, attract a partner, elude the police, and market skin bleaching products. The practice was fashionable and popular and it made some participants feel good, while others were fans of a popular musical artiste who bleached his skin. The majority of participants bleached because of the perceived personal, social, and entrepreneurial benefits of the practice and not because they suffered emotional distress, anxiety, and functional impairment because of their skin colour. However, there was some level of BID among the minority of participants who argued that they bleached because they wanted to be pretty so they were emotionally distressed about there body image and experienced functional impairment. © 2017 The British Psychological Society.

  8. Brain phenotype of transgenic mice overexpressing cystathionine β-synthase.

    Directory of Open Access Journals (Sweden)

    Vinciane Régnier

    Full Text Available The cystathionine β-synthase (CBS gene, located on human chromosome 21q22.3, is a good candidate for playing a role in the Down Syndrome (DS cognitive profile: it is overexpressed in the brain of individuals with DS, and it encodes a key enzyme of sulfur-containing amino acid (SAA metabolism, a pathway important for several brain physiological processes.Here, we have studied the neural consequences of CBS overexpression in a transgenic mouse line (60.4P102D1 expressing the human CBS gene under the control of its endogenous regulatory regions. These mice displayed a ∼2-fold increase in total CBS proteins in different brain areas and a ∼1.3-fold increase in CBS activity in the cerebellum and the hippocampus. No major disturbance of SAA metabolism was observed, and the transgenic mice showed normal behavior in the rotarod and passive avoidance tests. However, we found that hippocampal synaptic plasticity is facilitated in the 60.4P102D1 line.We demonstrate that CBS overexpression has functional consequences on hippocampal neuronal networks. These results shed new light on the function of the CBS gene, and raise the interesting possibility that CBS overexpression might have an advantageous effect on some cognitive functions in DS.

  9. Brain phenotype of transgenic mice overexpressing cystathionine β-synthase.

    Science.gov (United States)

    Régnier, Vinciane; Billard, Jean-Marie; Gupta, Sapna; Potier, Brigitte; Woerner, Stéphanie; Paly, Evelyne; Ledru, Aurélie; David, Sabrina; Luilier, Sabrina; Bizot, Jean-Charles; Vacano, Guido; Kraus, Jan P; Patterson, David; Kruger, Warren D; Delabar, Jean M; London, Jaqueline

    2012-01-01

    The cystathionine β-synthase (CBS) gene, located on human chromosome 21q22.3, is a good candidate for playing a role in the Down Syndrome (DS) cognitive profile: it is overexpressed in the brain of individuals with DS, and it encodes a key enzyme of sulfur-containing amino acid (SAA) metabolism, a pathway important for several brain physiological processes. Here, we have studied the neural consequences of CBS overexpression in a transgenic mouse line (60.4P102D1) expressing the human CBS gene under the control of its endogenous regulatory regions. These mice displayed a ∼2-fold increase in total CBS proteins in different brain areas and a ∼1.3-fold increase in CBS activity in the cerebellum and the hippocampus. No major disturbance of SAA metabolism was observed, and the transgenic mice showed normal behavior in the rotarod and passive avoidance tests. However, we found that hippocampal synaptic plasticity is facilitated in the 60.4P102D1 line. We demonstrate that CBS overexpression has functional consequences on hippocampal neuronal networks. These results shed new light on the function of the CBS gene, and raise the interesting possibility that CBS overexpression might have an advantageous effect on some cognitive functions in DS.