WorldWideScience

Sample records for underlying biochemical network

  1. Characterizing multistationarity regimes in biochemical reaction networks.

    Directory of Open Access Journals (Sweden)

    Irene Otero-Muras

    Full Text Available Switch like responses appear as common strategies in the regulation of cellular systems. Here we present a method to characterize bistable regimes in biochemical reaction networks that can be of use to both direct and reverse engineering of biological switches. In the design of a synthetic biological switch, it is important to study the capability for bistability of the underlying biochemical network structure. Chemical Reaction Network Theory (CRNT may help at this level to decide whether a given network has the capacity for multiple positive equilibria, based on their structural properties. However, in order to build a working switch, we also need to ensure that the bistability property is robust, by studying the conditions leading to the existence of two different steady states. In the reverse engineering of biological switches, knowledge collected about the bistable regimes of the underlying potential model structures can contribute at the model identification stage to a drastic reduction of the feasible region in the parameter space of search. In this work, we make use and extend previous results of the CRNT, aiming not only to discriminate whether a biochemical reaction network can exhibit multiple steady states, but also to determine the regions within the whole space of parameters capable of producing multistationarity. To that purpose we present and justify a condition on the parameters of biochemical networks for the appearance of multistationarity, and propose an efficient and reliable computational method to check its satisfaction through the parameter space.

  2. BioNessie - a grid enabled biochemical networks simulation environment

    OpenAIRE

    Liu, X.; Jiang, J.; Ajayi, O.; Gu, X.; Gilbert, D.; Sinnott, R.O.

    2008-01-01

    The simulation of biochemical networks provides insight and understanding about the underlying biochemical processes and pathways used by cells and organisms. BioNessie is a biochemical network simulator which has been developed at the University of Glasgow. This paper describes the simulator and focuses in particular on how it has been extended to benefit from a wide variety of high performance compute resources across the UK through Grid technologies to support larger scale simulations.

  3. RMBNToolbox: random models for biochemical networks

    Directory of Open Access Journals (Sweden)

    Niemi Jari

    2007-05-01

    Full Text Available Abstract Background There is an increasing interest to model biochemical and cell biological networks, as well as to the computational analysis of these models. The development of analysis methodologies and related software is rapid in the field. However, the number of available models is still relatively small and the model sizes remain limited. The lack of kinetic information is usually the limiting factor for the construction of detailed simulation models. Results We present a computational toolbox for generating random biochemical network models which mimic real biochemical networks. The toolbox is called Random Models for Biochemical Networks. The toolbox works in the Matlab environment, and it makes it possible to generate various network structures, stoichiometries, kinetic laws for reactions, and parameters therein. The generation can be based on statistical rules and distributions, and more detailed information of real biochemical networks can be used in situations where it is known. The toolbox can be easily extended. The resulting network models can be exported in the format of Systems Biology Markup Language. Conclusion While more information is accumulating on biochemical networks, random networks can be used as an intermediate step towards their better understanding. Random networks make it possible to study the effects of various network characteristics to the overall behavior of the network. Moreover, the construction of artificial network models provides the ground truth data needed in the validation of various computational methods in the fields of parameter estimation and data analysis.

  4. Optimal Information Processing in Biochemical Networks

    Science.gov (United States)

    Wiggins, Chris

    2012-02-01

    A variety of experimental results over the past decades provide examples of near-optimal information processing in biological networks, including in biochemical and transcriptional regulatory networks. Computing information-theoretic quantities requires first choosing or computing the joint probability distribution describing multiple nodes in such a network --- for example, representing the probability distribution of finding an integer copy number of each of two interacting reactants or gene products while respecting the `intrinsic' small copy number noise constraining information transmission at the scale of the cell. I'll given an overview of some recent analytic and numerical work facilitating calculation of such joint distributions and the associated information, which in turn makes possible numerical optimization of information flow in models of noisy regulatory and biochemical networks. Illustrating cases include quantification of form-function relations, ideal design of regulatory cascades, and response to oscillatory driving.

  5. Hierarchical thinking in network biology: the unbiased modularization of biochemical networks.

    Science.gov (United States)

    Papin, Jason A; Reed, Jennifer L; Palsson, Bernhard O

    2004-12-01

    As reconstructed biochemical reaction networks continue to grow in size and scope, there is a growing need to describe the functional modules within them. Such modules facilitate the study of biological processes by deconstructing complex biological networks into conceptually simple entities. The definition of network modules is often based on intuitive reasoning. As an alternative, methods are being developed for defining biochemical network modules in an unbiased fashion. These unbiased network modules are mathematically derived from the structure of the whole network under consideration.

  6. Conservation Laws in Biochemical Reaction Networks

    DEFF Research Database (Denmark)

    Mahdi, Adam; Ferragut, Antoni; Valls, Claudia

    2017-01-01

    We study the existence of linear and nonlinear conservation laws in biochemical reaction networks with mass-action kinetics. It is straightforward to compute the linear conservation laws as they are related to the left null-space of the stoichiometry matrix. The nonlinear conservation laws...... are difficult to identify and have rarely been considered in the context of mass-action reaction networks. Here, using the Darboux theory of integrability, we provide necessary structural (i.e., parameterindependent) conditions on a reaction network to guarantee the existence of nonlinear conservation laws...

  7. Biochemical Network Stochastic Simulator (BioNetS: software for stochastic modeling of biochemical networks

    Directory of Open Access Journals (Sweden)

    Elston Timothy C

    2004-03-01

    Full Text Available Abstract Background Intrinsic fluctuations due to the stochastic nature of biochemical reactions can have large effects on the response of biochemical networks. This is particularly true for pathways that involve transcriptional regulation, where generally there are two copies of each gene and the number of messenger RNA (mRNA molecules can be small. Therefore, there is a need for computational tools for developing and investigating stochastic models of biochemical networks. Results We have developed the software package Biochemical Network Stochastic Simulator (BioNetS for efficientlyand accurately simulating stochastic models of biochemical networks. BioNetS has a graphical user interface that allows models to be entered in a straightforward manner, and allows the user to specify the type of random variable (discrete or continuous for each chemical species in the network. The discrete variables are simulated using an efficient implementation of the Gillespie algorithm. For the continuous random variables, BioNetS constructs and numerically solvesthe appropriate chemical Langevin equations. The software package has been developed to scale efficiently with network size, thereby allowing large systems to be studied. BioNetS runs as a BioSpice agent and can be downloaded from http://www.biospice.org. BioNetS also can be run as a stand alone package. All the required files are accessible from http://x.amath.unc.edu/BioNetS. Conclusions We have developed BioNetS to be a reliable tool for studying the stochastic dynamics of large biochemical networks. Important features of BioNetS are its ability to handle hybrid models that consist of both continuous and discrete random variables and its ability to model cell growth and division. We have verified the accuracy and efficiency of the numerical methods by considering several test systems.

  8. On the Adaptive Design Rules of Biochemical Networks in Evolution

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2007-01-01

    Full Text Available Biochemical networks are the backbones of physiological systems of organisms. Therefore, a biochemical network should be sufficiently robust (not sensitive to tolerate genetic mutations and environmental changes in the evolutionary process. In this study, based on the robustness and sensitivity criteria of biochemical networks, the adaptive design rules are developed for natural selection in the evolutionary process. This will provide insights into the robust adaptive mechanism of biochemical networks in the evolutionary process. We find that if a mutated biochemical network satisfies the robustness and sensitivity criteria of natural selection, there is a high probability for the biochemical network to prevail during natural selection in the evolutionary process. Since there are various mutated biochemical networks that can satisfy these criteria but have some differences in phenotype, the biochemical networks increase their diversities in the evolutionary process. The robustness of a biochemical network enables co-option so that new phenotypes can be generated in evolution. The proposed robust adaptive design rules of natural selection gain much insight into the evolutionary mechanism and provide a systematic robust biochemical circuit design method of biochemical networks for biotechnological and therapeutic purposes in the future.

  9. Structuring evolution: biochemical networks and metabolic diversification in birds.

    Science.gov (United States)

    Morrison, Erin S; Badyaev, Alexander V

    2016-08-25

    Recurrence and predictability of evolution are thought to reflect the correspondence between genomic and phenotypic dimensions of organisms, and the connectivity in deterministic networks within these dimensions. Direct examination of the correspondence between opportunities for diversification imbedded in such networks and realized diversity is illuminating, but is empirically challenging because both the deterministic networks and phenotypic diversity are modified in the course of evolution. Here we overcome this problem by directly comparing the structure of a "global" carotenoid network - comprising of all known enzymatic reactions among naturally occurring carotenoids - with the patterns of evolutionary diversification in carotenoid-producing metabolic networks utilized by birds. We found that phenotypic diversification in carotenoid networks across 250 species was closely associated with enzymatic connectivity of the underlying biochemical network - compounds with greater connectivity occurred the most frequently across species and were the hotspots of metabolic pathway diversification. In contrast, we found no evidence for diversification along the metabolic pathways, corroborating findings that the utilization of the global carotenoid network was not strongly influenced by history in avian evolution. The finding that the diversification in species-specific carotenoid networks is qualitatively predictable from the connectivity of the underlying enzymatic network points to significant structural determinism in phenotypic evolution.

  10. 'BioNessie(G) - a grid enabled biochemical networks simulation environment

    OpenAIRE

    Liu, X; Jiang, J; Ajayi, O; Gu, X; Gilbert, D; Sinnott, R

    2008-01-01

    The simulation of biochemical networks provides insight and understanding about the underlying biochemical processes and pathways used by cells and organisms. BioNessie is a biochemical network simulator which has been developed at the University of Glasgow. This paper describes the simulator and focuses in particular on how it has been extended to benefit from a wide variety of high performance compute resources across the UK through Grid technologies to support larger scal...

  11. Biophysical constraints on the computational capacity of biochemical signaling networks

    Science.gov (United States)

    Wang, Ching-Hao; Mehta, Pankaj

    Biophysics fundamentally constrains the computations that cells can carry out. Here, we derive fundamental bounds on the computational capacity of biochemical signaling networks that utilize post-translational modifications (e.g. phosphorylation). To do so, we combine ideas from the statistical physics of disordered systems and the observation by Tony Pawson and others that the biochemistry underlying protein-protein interaction networks is combinatorial and modular. Our results indicate that the computational capacity of signaling networks is severely limited by the energetics of binding and the need to achieve specificity. We relate our results to one of the theoretical pillars of statistical learning theory, Cover's theorem, which places bounds on the computational capacity of perceptrons. PM and CHW were supported by a Simons Investigator in the Mathematical Modeling of Living Systems Grant, and NIH Grant No. 1R35GM119461 (both to PM).

  12. Biochemical and secondary metabolites changes under moisture ...

    African Journals Online (AJOL)

    The study showed the importance of carbohydrate and nitrogen cycle related metabolites in mediating tolerance in cassava by affecting their phenotypic expression in the plant. Keywords: Hydrothermal stress, bio-chemicals, pigments, secondary metabolites, cassava. African Journal of Biotechnology, Vol 13(31) 3173-3186 ...

  13. HSimulator: Hybrid Stochastic/Deterministic Simulation of Biochemical Reaction Networks

    Directory of Open Access Journals (Sweden)

    Luca Marchetti

    2017-01-01

    Full Text Available HSimulator is a multithread simulator for mass-action biochemical reaction systems placed in a well-mixed environment. HSimulator provides optimized implementation of a set of widespread state-of-the-art stochastic, deterministic, and hybrid simulation strategies including the first publicly available implementation of the Hybrid Rejection-based Stochastic Simulation Algorithm (HRSSA. HRSSA, the fastest hybrid algorithm to date, allows for an efficient simulation of the models while ensuring the exact simulation of a subset of the reaction network modeling slow reactions. Benchmarks show that HSimulator is often considerably faster than the other considered simulators. The software, running on Java v6.0 or higher, offers a simulation GUI for modeling and visually exploring biological processes and a Javadoc-documented Java library to support the development of custom applications. HSimulator is released under the COSBI Shared Source license agreement (COSBI-SSLA.

  14. Mean field interaction in biochemical reaction networks

    KAUST Repository

    Tembine, Hamidou; Tempone, Raul; Vilanova, Pedro

    2011-01-01

    In this paper we establish a relationship between chemical dynamics and mean field game dynamics. We show that chemical reaction networks can be studied using noisy mean field limits. We provide deterministic, noisy and switching mean field limits

  15. Mean field interaction in biochemical reaction networks

    KAUST Repository

    Tembine, Hamidou

    2011-09-01

    In this paper we establish a relationship between chemical dynamics and mean field game dynamics. We show that chemical reaction networks can be studied using noisy mean field limits. We provide deterministic, noisy and switching mean field limits and illustrate them with numerical examples. © 2011 IEEE.

  16. Autocatalytic sets in a partitioned biochemical network.

    Science.gov (United States)

    Smith, Joshua I; Steel, Mike; Hordijk, Wim

    2014-01-01

    In previous work, RAF theory has been developed as a tool for making theoretical progress on the origin of life question, providing insight into the structure and occurrence of self-sustaining and collectively autocatalytic sets within catalytic polymer networks. We present here an extension in which there are two "independent" polymer sets, where catalysis occurs within and between the sets, but there are no reactions combining polymers from both sets. Such an extension reflects the interaction between nucleic acids and peptides observed in modern cells and proposed forms of early life. We present theoretical work and simulations which suggest that the occurrence of autocatalytic sets is robust to the partitioned structure of the network. We also show that autocatalytic sets remain likely even when the molecules in the system are not polymers, and a low level of inhibition is present. Finally, we present a kinetic extension which assigns a rate to each reaction in the system, and show that identifying autocatalytic sets within such a system is an NP-complete problem. Recent experimental work has challenged the necessity of an RNA world by suggesting that peptide-nucleic acid interactions occurred early in chemical evolution. The present work indicates that such a peptide-RNA world could support the spontaneous development of autocatalytic sets and is thus a feasible alternative worthy of investigation.

  17. Modeling stochasticity in biochemical reaction networks

    International Nuclear Information System (INIS)

    Constantino, P H; Vlysidis, M; Smadbeck, P; Kaznessis, Y N

    2016-01-01

    Small biomolecular systems are inherently stochastic. Indeed, fluctuations of molecular species are substantial in living organisms and may result in significant variation in cellular phenotypes. The chemical master equation (CME) is the most detailed mathematical model that can describe stochastic behaviors. However, because of its complexity the CME has been solved for only few, very small reaction networks. As a result, the contribution of CME-based approaches to biology has been very limited. In this review we discuss the approach of solving CME by a set of differential equations of probability moments, called moment equations. We present different approaches to produce and to solve these equations, emphasizing the use of factorial moments and the zero information entropy closure scheme. We also provide information on the stability analysis of stochastic systems. Finally, we speculate on the utility of CME-based modeling formalisms, especially in the context of synthetic biology efforts. (topical review)

  18. Propagating semantic information in biochemical network models

    Directory of Open Access Journals (Sweden)

    Schulz Marvin

    2012-01-01

    Full Text Available Abstract Background To enable automatic searches, alignments, and model combination, the elements of systems biology models need to be compared and matched across models. Elements can be identified by machine-readable biological annotations, but assigning such annotations and matching non-annotated elements is tedious work and calls for automation. Results A new method called "semantic propagation" allows the comparison of model elements based not only on their own annotations, but also on annotations of surrounding elements in the network. One may either propagate feature vectors, describing the annotations of individual elements, or quantitative similarities between elements from different models. Based on semantic propagation, we align partially annotated models and find annotations for non-annotated model elements. Conclusions Semantic propagation and model alignment are included in the open-source library semanticSBML, available on sourceforge. Online services for model alignment and for annotation prediction can be used at http://www.semanticsbml.org.

  19. Computing with competition in biochemical networks.

    Science.gov (United States)

    Genot, Anthony J; Fujii, Teruo; Rondelez, Yannick

    2012-11-16

    Cells rely on limited resources such as enzymes or transcription factors to process signals and make decisions. However, independent cellular pathways often compete for a common molecular resource. Competition is difficult to analyze because of its nonlinear global nature, and its role remains unclear. Here we show how decision pathways such as transcription networks may exploit competition to process information. Competition for one resource leads to the recognition of convex sets of patterns, whereas competition for several resources (overlapping or cascaded regulons) allows even more general pattern recognition. Competition also generates surprising couplings, such as correlating species that share no resource but a common competitor. The mechanism we propose relies on three primitives that are ubiquitous in cells: multiinput motifs, competition for a resource, and positive feedback loops.

  20. Efficient Parallel Statistical Model Checking of Biochemical Networks

    Directory of Open Access Journals (Sweden)

    Paolo Ballarini

    2009-12-01

    Full Text Available We consider the problem of verifying stochastic models of biochemical networks against behavioral properties expressed in temporal logic terms. Exact probabilistic verification approaches such as, for example, CSL/PCTL model checking, are undermined by a huge computational demand which rule them out for most real case studies. Less demanding approaches, such as statistical model checking, estimate the likelihood that a property is satisfied by sampling executions out of the stochastic model. We propose a methodology for efficiently estimating the likelihood that a LTL property P holds of a stochastic model of a biochemical network. As with other statistical verification techniques, the methodology we propose uses a stochastic simulation algorithm for generating execution samples, however there are three key aspects that improve the efficiency: first, the sample generation is driven by on-the-fly verification of P which results in optimal overall simulation time. Second, the confidence interval estimation for the probability of P to hold is based on an efficient variant of the Wilson method which ensures a faster convergence. Third, the whole methodology is designed according to a parallel fashion and a prototype software tool has been implemented that performs the sampling/verification process in parallel over an HPC architecture.

  1. Automated analysis of information processing, kinetic independence and modular architecture in biochemical networks using MIDIA.

    Science.gov (United States)

    Bowsher, Clive G

    2011-02-15

    Understanding the encoding and propagation of information by biochemical reaction networks and the relationship of such information processing properties to modular network structure is of fundamental importance in the study of cell signalling and regulation. However, a rigorous, automated approach for general biochemical networks has not been available, and high-throughput analysis has therefore been out of reach. Modularization Identification by Dynamic Independence Algorithms (MIDIA) is a user-friendly, extensible R package that performs automated analysis of how information is processed by biochemical networks. An important component is the algorithm's ability to identify exact network decompositions based on both the mass action kinetics and informational properties of the network. These modularizations are visualized using a tree structure from which important dynamic conditional independence properties can be directly read. Only partial stoichiometric information needs to be used as input to MIDIA, and neither simulations nor knowledge of rate parameters are required. When applied to a signalling network, for example, the method identifies the routes and species involved in the sequential propagation of information between its multiple inputs and outputs. These routes correspond to the relevant paths in the tree structure and may be further visualized using the Input-Output Path Matrix tool. MIDIA remains computationally feasible for the largest network reconstructions currently available and is straightforward to use with models written in Systems Biology Markup Language (SBML). The package is distributed under the GNU General Public License and is available, together with a link to browsable Supplementary Material, at http://code.google.com/p/midia. Further information is at www.maths.bris.ac.uk/~macgb/Software.html.

  2. Coarse-graining stochastic biochemical networks: adiabaticity and fast simulations

    Energy Technology Data Exchange (ETDEWEB)

    Nemenman, Ilya [Los Alamos National Laboratory; Sinitsyn, Nikolai [Los Alamos National Laboratory; Hengartner, Nick [Los Alamos National Laboratory

    2008-01-01

    We propose a universal approach for analysis and fast simulations of stiff stochastic biochemical kinetics networks, which rests on elimination of fast chemical species without a loss of information about mesoscoplc, non-Poissonian fluctuations of the slow ones. Our approach, which is similar to the Born-Oppenhelmer approximation in quantum mechanics, follows from the stochastic path Integral representation of the cumulant generating function of reaction events. In applications with a small number of chemIcal reactions, It produces analytical expressions for cumulants of chemical fluxes between the slow variables. This allows for a low-dimensional, Interpretable representation and can be used for coarse-grained numerical simulation schemes with a small computational complexity and yet high accuracy. As an example, we derive the coarse-grained description for a chain of biochemical reactions, and show that the coarse-grained and the microscopic simulations are in an agreement, but the coarse-gralned simulations are three orders of magnitude faster.

  3. An efficient algorithm for computing fixed length attractors based on bounded model checking in synchronous Boolean networks with biochemical applications.

    Science.gov (United States)

    Li, X Y; Yang, G W; Zheng, D S; Guo, W S; Hung, W N N

    2015-04-28

    Genetic regulatory networks are the key to understanding biochemical systems. One condition of the genetic regulatory network under different living environments can be modeled as a synchronous Boolean network. The attractors of these Boolean networks will help biologists to identify determinant and stable factors. Existing methods identify attractors based on a random initial state or the entire state simultaneously. They cannot identify the fixed length attractors directly. The complexity of including time increases exponentially with respect to the attractor number and length of attractors. This study used the bounded model checking to quickly locate fixed length attractors. Based on the SAT solver, we propose a new algorithm for efficiently computing the fixed length attractors, which is more suitable for large Boolean networks and numerous attractors' networks. After comparison using the tool BooleNet, empirical experiments involving biochemical systems demonstrated the feasibility and efficiency of our approach.

  4. Least-squares methods for identifying biochemical regulatory networks from noisy measurements

    Directory of Open Access Journals (Sweden)

    Heslop-Harrison Pat

    2007-01-01

    Full Text Available Abstract Background We consider the problem of identifying the dynamic interactions in biochemical networks from noisy experimental data. Typically, approaches for solving this problem make use of an estimation algorithm such as the well-known linear Least-Squares (LS estimation technique. We demonstrate that when time-series measurements are corrupted by white noise and/or drift noise, more accurate and reliable identification of network interactions can be achieved by employing an estimation algorithm known as Constrained Total Least Squares (CTLS. The Total Least Squares (TLS technique is a generalised least squares method to solve an overdetermined set of equations whose coefficients are noisy. The CTLS is a natural extension of TLS to the case where the noise components of the coefficients are correlated, as is usually the case with time-series measurements of concentrations and expression profiles in gene networks. Results The superior performance of the CTLS method in identifying network interactions is demonstrated on three examples: a genetic network containing four genes, a network describing p53 activity and mdm2 messenger RNA interactions, and a recently proposed kinetic model for interleukin (IL-6 and (IL-12b messenger RNA expression as a function of ATF3 and NF-κB promoter binding. For the first example, the CTLS significantly reduces the errors in the estimation of the Jacobian for the gene network. For the second, the CTLS reduces the errors from the measurements that are corrupted by white noise and the effect of neglected kinetics. For the third, it allows the correct identification, from noisy data, of the negative regulation of (IL-6 and (IL-12b by ATF3. Conclusion The significant improvements in performance demonstrated by the CTLS method under the wide range of conditions tested here, including different levels and types of measurement noise and different numbers of data points, suggests that its application will enable

  5. Modelling biochemical networks with intrinsic time delays: a hybrid semi-parametric approach

    Directory of Open Access Journals (Sweden)

    Oliveira Rui

    2010-09-01

    Full Text Available Abstract Background This paper presents a method for modelling dynamical biochemical networks with intrinsic time delays. Since the fundamental mechanisms leading to such delays are many times unknown, non conventional modelling approaches become necessary. Herein, a hybrid semi-parametric identification methodology is proposed in which discrete time series are incorporated into fundamental material balance models. This integration results in hybrid delay differential equations which can be applied to identify unknown cellular dynamics. Results The proposed hybrid modelling methodology was evaluated using two case studies. The first of these deals with dynamic modelling of transcriptional factor A in mammalian cells. The protein transport from the cytosol to the nucleus introduced a delay that was accounted for by discrete time series formulation. The second case study focused on a simple network with distributed time delays that demonstrated that the discrete time delay formalism has broad applicability to both discrete and distributed delay problems. Conclusions Significantly better prediction qualities of the novel hybrid model were obtained when compared to dynamical structures without time delays, being the more distinctive the more significant the underlying system delay is. The identification of the system delays by studies of different discrete modelling delays was enabled by the proposed structure. Further, it was shown that the hybrid discrete delay methodology is not limited to discrete delay systems. The proposed method is a powerful tool to identify time delays in ill-defined biochemical networks.

  6. The alterations in biochemical signaling of hippocampal network activity in the autism brain The alterations in biochemical signaling of hippocampal network activity in the autism brain The alterations in biochemical signaling of hippocampal network activity in the autism brain

    Institute of Scientific and Technical Information of China (English)

    田允; 黄继云; 王锐; 陶蓉蓉; 卢应梅; 廖美华; 陆楠楠; 李静; 芦博; 韩峰

    2012-01-01

    Autism is a highly heritable neurodevelopmental condition characterized by impaired social interaction and communication. However, the role of synaptic dysfunction during development of autism remains unclear. In the present study, we address the alterations of biochemical signaling in hippocampal network following induction of the autism in experimental animals. Here, the an- imal disease model and DNA array being used to investigate the differences in transcriptome or- ganization between autistic and normal brain by gene co--expression network analysis.

  7. Interspecific Competition Underlying Mutualistic Networks

    Science.gov (United States)

    Maeng, Seong Eun; Lee, Jae Woo; Lee, Deok-Sun

    2012-03-01

    Multiple classes of interactions may exist affecting one another in a given system. For the mutualistic networks of plants and pollinating animals, it has been known that the degree distribution is broad but often deviates from power-law form more significantly for plants than animals. To illuminate the origin of such asymmetry, we study a model network in which links are assigned under generalized preferential-selection rules between two groups of nodes and find the sensitive dependence of the resulting connectivity pattern on the model parameters. The nonlinearity of preferential selection can come from interspecific interactions among animals and among plants. The model-based analysis of real-world mutualistic networks suggests that a new animal determines its partners not only by their abundance but also under the competition with existing animal species, which leads to the stretched-exponential degree distributions of plants.

  8. Silicon mediated biochemical changes in wheat under salinized and ...

    African Journals Online (AJOL)

    Silicon (Si) can alleviate salinity damage, a major threat to agriculture that causes instability in wheat production. We report on the effects of silicon (150 mg L-1) on the morphological, physiological and biochemical traits in wheat (Triticum aestivum L.) cultivars (salt sensitive; Auqab-2000 and salt tolerant; SARC-5) differing ...

  9. A variational principle for computing nonequilibrium fluxes and potentials in genome-scale biochemical networks.

    Science.gov (United States)

    Fleming, R M T; Maes, C M; Saunders, M A; Ye, Y; Palsson, B Ø

    2012-01-07

    We derive a convex optimization problem on a steady-state nonequilibrium network of biochemical reactions, with the property that energy conservation and the second law of thermodynamics both hold at the problem solution. This suggests a new variational principle for biochemical networks that can be implemented in a computationally tractable manner. We derive the Lagrange dual of the optimization problem and use strong duality to demonstrate that a biochemical analogue of Tellegen's theorem holds at optimality. Each optimal flux is dependent on a free parameter that we relate to an elementary kinetic parameter when mass action kinetics is assumed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. BIOCHEMICAL PROCESSES IN CHERNOZEM SOIL UNDER DIFFERENT FERTILIZATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Ecaterina Emnova

    2012-06-01

    Full Text Available The paper deals with the evaluation of the intensity of certain soil biochemical processes (e.g. soil organic C mineralization at Organic and mixed Mineral+Organic fertilization of typical chernozem in crop rotation dynamics (for 6 years by use of eco-physiological indicators of biological soil quality: microbial biomass carbon, basal soil respiration, as well as, microbial and metabolic quotients. Soil sampling was performed from a long-term field crop experiment, which has been established in 1971 at the Balti steppe (Northern Moldova. The crop types had a more considerable impact on the soil microbial biomass accumulation and community biochemical activity compared to long-term Organic or mixed Mineral + Organic fertilizers amendments. The Org fertilization system doesn’t make it possible to avoid the loss of organic C in arable typical chernozem. The organic fertilizer (cattle manure is able to mitigate the negative consequences of long-term mineral fertilization.

  11. Distinct configurations of protein complexes and biochemical pathways revealed by epistatic interaction network motifs

    LENUS (Irish Health Repository)

    Casey, Fergal

    2011-08-22

    Abstract Background Gene and protein interactions are commonly represented as networks, with the genes or proteins comprising the nodes and the relationship between them as edges. Motifs, or small local configurations of edges and nodes that arise repeatedly, can be used to simplify the interpretation of networks. Results We examined triplet motifs in a network of quantitative epistatic genetic relationships, and found a non-random distribution of particular motif classes. Individual motif classes were found to be associated with different functional properties, suggestive of an underlying biological significance. These associations were apparent not only for motif classes, but for individual positions within the motifs. As expected, NNN (all negative) motifs were strongly associated with previously reported genetic (i.e. synthetic lethal) interactions, while PPP (all positive) motifs were associated with protein complexes. The two other motif classes (NNP: a positive interaction spanned by two negative interactions, and NPP: a negative spanned by two positives) showed very distinct functional associations, with physical interactions dominating for the former but alternative enrichments, typical of biochemical pathways, dominating for the latter. Conclusion We present a model showing how NNP motifs can be used to recognize supportive relationships between protein complexes, while NPP motifs often identify opposing or regulatory behaviour between a gene and an associated pathway. The ability to use motifs to point toward underlying biological organizational themes is likely to be increasingly important as more extensive epistasis mapping projects in higher organisms begin.

  12. A probabilistic approach to identify putative drug targets in biochemical networks.

    NARCIS (Netherlands)

    Murabito, E.; Smalbone, K.; Swinton, J.; Westerhoff, H.V.; Steuer, R.

    2011-01-01

    Network-based drug design holds great promise in clinical research as a way to overcome the limitations of traditional approaches in the development of drugs with high efficacy and low toxicity. This novel strategy aims to study how a biochemical network as a whole, rather than its individual

  13. Hidden long evolutionary memory in a model biochemical network

    Science.gov (United States)

    Ali, Md. Zulfikar; Wingreen, Ned S.; Mukhopadhyay, Ranjan

    2018-04-01

    We introduce a minimal model for the evolution of functional protein-interaction networks using a sequence-based mutational algorithm, and apply the model to study neutral drift in networks that yield oscillatory dynamics. Starting with a functional core module, random evolutionary drift increases network complexity even in the absence of specific selective pressures. Surprisingly, we uncover a hidden order in sequence space that gives rise to long-term evolutionary memory, implying strong constraints on network evolution due to the topology of accessible sequence space.

  14. Reduced linear noise approximation for biochemical reaction networks with time-scale separation: The stochastic tQSSA+

    Science.gov (United States)

    Herath, Narmada; Del Vecchio, Domitilla

    2018-03-01

    Biochemical reaction networks often involve reactions that take place on different time scales, giving rise to "slow" and "fast" system variables. This property is widely used in the analysis of systems to obtain dynamical models with reduced dimensions. In this paper, we consider stochastic dynamics of biochemical reaction networks modeled using the Linear Noise Approximation (LNA). Under time-scale separation conditions, we obtain a reduced-order LNA that approximates both the slow and fast variables in the system. We mathematically prove that the first and second moments of this reduced-order model converge to those of the full system as the time-scale separation becomes large. These mathematical results, in particular, provide a rigorous justification to the accuracy of LNA models derived using the stochastic total quasi-steady state approximation (tQSSA). Since, in contrast to the stochastic tQSSA, our reduced-order model also provides approximations for the fast variable stochastic properties, we term our method the "stochastic tQSSA+". Finally, we demonstrate the application of our approach on two biochemical network motifs found in gene-regulatory and signal transduction networks.

  15. Validation of artificial neural network models for predicting biochemical markers associated with male infertility.

    Science.gov (United States)

    Vickram, A S; Kamini, A Rao; Das, Raja; Pathy, M Ramesh; Parameswari, R; Archana, K; Sridharan, T B

    2016-08-01

    Seminal fluid is the secretion from many glands comprised of several organic and inorganic compounds including free amino acids, proteins, fructose, glucosidase, zinc, and other scavenging elements like Mg(2+), Ca(2+), K(+), and Na(+). Therefore, in the view of development of novel approaches and proper diagnosis to male infertility, overall understanding of the biochemical and molecular composition and its role in regulation of sperm quality is highly desirable. Perhaps this can be achieved through artificial intelligence. This study was aimed to elucidate and predict various biochemical markers present in human seminal plasma with three different neural network models. A total of 177 semen samples were collected for this research (both fertile and infertile samples) and immediately processed to prepare a semen analysis report, based on the protocol of the World Health Organization (WHO [2010]). The semen samples were then categorized into oligoasthenospermia (n=35), asthenospermia (n=35), azoospermia (n=22), normospermia (n=34), oligospermia (n=34), and control (n=17). The major biochemical parameters like total protein content, fructose, glucosidase, and zinc content were elucidated by standard protocols. All the biochemical markers were predicted by using three different artificial neural network (ANN) models with semen parameters as inputs. Of the three models, the back propagation neural network model (BPNN) yielded the best results with mean absolute error 0.025, -0.080, 0.166, and -0.057 for protein, fructose, glucosidase, and zinc, respectively. This suggests that BPNN can be used to predict biochemical parameters for the proper diagnosis of male infertility in assisted reproductive technology (ART) centres. AAS: absorption spectroscopy; AI: artificial intelligence; ANN: artificial neural networks; ART: assisted reproductive technology; BPNN: back propagation neural network model; DT: decision tress; MLP: multilayer perceptron; PESA: percutaneous

  16. Simulations of biopolymer networks under shear

    NARCIS (Netherlands)

    Huisman, Elisabeth Margaretha

    2011-01-01

    In this thesis we present a new method to simulate realistic three-dimensional networks of biopolymers under shear. These biopolymer networks are important for the structural functions of cells and tissues. We use the method to analyze these networks under shear, and consider the elastic modulus,

  17. Physiological and biochemical relationship under drought stress in ...

    African Journals Online (AJOL)

    Yomi

    2012-01-24

    Jan 24, 2012 ... Some statistical procedures like correlation, stepwise regression, factor analysis and cluster analysis were used to study the relationship between wheat grain yield and some physiological parameters under drought conditions. Results reveal that the ratio fv/fm of chlorophyll fluorescence is the most.

  18. Physiological and biochemical relationship under drought stress in ...

    African Journals Online (AJOL)

    Some statistical procedures like correlation, stepwise regression, factor analysis and cluster analysis were used to study the relationship between wheat grain yield and some physiological parameters under drought conditions. Results reveal that the ratio fv/fm of chlorophyll fluorescence is the most effective parameter to ...

  19. Identification of neutral biochemical network models from time series data

    Directory of Open Access Journals (Sweden)

    Maia Marco

    2009-05-01

    Full Text Available Abstract Background The major difficulty in modeling biological systems from multivariate time series is the identification of parameter sets that endow a model with dynamical behaviors sufficiently similar to the experimental data. Directly related to this parameter estimation issue is the task of identifying the structure and regulation of ill-characterized systems. Both tasks are simplified if the mathematical model is canonical, i.e., if it is constructed according to strict guidelines. Results In this report, we propose a method for the identification of admissible parameter sets of canonical S-systems from biological time series. The method is based on a Monte Carlo process that is combined with an improved version of our previous parameter optimization algorithm. The method maps the parameter space into the network space, which characterizes the connectivity among components, by creating an ensemble of decoupled S-system models that imitate the dynamical behavior of the time series with sufficient accuracy. The concept of sloppiness is revisited in the context of these S-system models with an exploration not only of different parameter sets that produce similar dynamical behaviors but also different network topologies that yield dynamical similarity. Conclusion The proposed parameter estimation methodology was applied to actual time series data from the glycolytic pathway of the bacterium Lactococcus lactis and led to ensembles of models with different network topologies. In parallel, the parameter optimization algorithm was applied to the same dynamical data upon imposing a pre-specified network topology derived from prior biological knowledge, and the results from both strategies were compared. The results suggest that the proposed method may serve as a powerful exploration tool for testing hypotheses and the design of new experiments.

  20. Identification of neutral biochemical network models from time series data.

    Science.gov (United States)

    Vilela, Marco; Vinga, Susana; Maia, Marco A Grivet Mattoso; Voit, Eberhard O; Almeida, Jonas S

    2009-05-05

    The major difficulty in modeling biological systems from multivariate time series is the identification of parameter sets that endow a model with dynamical behaviors sufficiently similar to the experimental data. Directly related to this parameter estimation issue is the task of identifying the structure and regulation of ill-characterized systems. Both tasks are simplified if the mathematical model is canonical, i.e., if it is constructed according to strict guidelines. In this report, we propose a method for the identification of admissible parameter sets of canonical S-systems from biological time series. The method is based on a Monte Carlo process that is combined with an improved version of our previous parameter optimization algorithm. The method maps the parameter space into the network space, which characterizes the connectivity among components, by creating an ensemble of decoupled S-system models that imitate the dynamical behavior of the time series with sufficient accuracy. The concept of sloppiness is revisited in the context of these S-system models with an exploration not only of different parameter sets that produce similar dynamical behaviors but also different network topologies that yield dynamical similarity. The proposed parameter estimation methodology was applied to actual time series data from the glycolytic pathway of the bacterium Lactococcus lactis and led to ensembles of models with different network topologies. In parallel, the parameter optimization algorithm was applied to the same dynamical data upon imposing a pre-specified network topology derived from prior biological knowledge, and the results from both strategies were compared. The results suggest that the proposed method may serve as a powerful exploration tool for testing hypotheses and the design of new experiments.

  1. Thermodynamically based constraints for rate coefficients of large biochemical networks.

    Science.gov (United States)

    Vlad, Marcel O; Ross, John

    2009-01-01

    Wegscheider cyclicity conditions are relationships among the rate coefficients of a complex reaction network, which ensure the compatibility of kinetic equations with the conditions for thermodynamic equilibrium. The detailed balance at equilibrium, that is the equilibration of forward and backward rates for each elementary reaction, leads to compatibility between the conditions of kinetic and thermodynamic equilibrium. Therefore, Wegscheider cyclicity conditions can be derived by eliminating the equilibrium concentrations from the conditions of detailed balance. We develop matrix algebra tools needed to carry out this elimination, reexamine an old derivation of the general form of Wegscheider cyclicity condition, and develop new derivations which lead to more compact and easier-to-use formulas. We derive scaling laws for the nonequilibrium rates of a complex reaction network, which include Wegscheider conditions as a particular case. The scaling laws for the rates are used for clarifying the kinetic and thermodynamic meaning of Wegscheider cyclicity conditions. Finally, we discuss different ways of using Wegscheider cyclicity conditions for kinetic computations in systems biology.

  2. Efficient Characterization of Parametric Uncertainty of Complex (Biochemical Networks.

    Directory of Open Access Journals (Sweden)

    Claudia Schillings

    2015-08-01

    Full Text Available Parametric uncertainty is a particularly challenging and relevant aspect of systems analysis in domains such as systems biology where, both for inference and for assessing prediction uncertainties, it is essential to characterize the system behavior globally in the parameter space. However, current methods based on local approximations or on Monte-Carlo sampling cope only insufficiently with high-dimensional parameter spaces associated with complex network models. Here, we propose an alternative deterministic methodology that relies on sparse polynomial approximations. We propose a deterministic computational interpolation scheme which identifies most significant expansion coefficients adaptively. We present its performance in kinetic model equations from computational systems biology with several hundred parameters and state variables, leading to numerical approximations of the parametric solution on the entire parameter space. The scheme is based on adaptive Smolyak interpolation of the parametric solution at judiciously and adaptively chosen points in parameter space. As Monte-Carlo sampling, it is "non-intrusive" and well-suited for massively parallel implementation, but affords higher convergence rates. This opens up new avenues for large-scale dynamic network analysis by enabling scaling for many applications, including parameter estimation, uncertainty quantification, and systems design.

  3. Biochemical changes in rats under the influence of cesium chloride

    Directory of Open Access Journals (Sweden)

    N. M. Melnikova

    2013-04-01

    Full Text Available Cesium is lately accumulated actively in the environment, but its influence on human and ani­mal organism is the least studied among heavy metals. It is shown that the action of cesium chloride in rats caused significant changes in blood chemistry, which are characterized by a decrease of total protein content, pH, an increase in the level of urea, creatinine, glucose and total hemoglobin. The results showed that potassium content in all the studied organs and tissues of poisoned rats decreases under the action of cesium chloride. Histological examination of the heart tissue in rats poisoned with cesium chloride indicates the onset of pathology of cardiovascular system. It was found out that use of the drug “Asparkam” reduces the negative effect of cesium chloride on the body of rats.

  4. Biochemical mechanisms of signaling: perspectives in plants under arsenic stress.

    Science.gov (United States)

    Islam, Ejazul; Khan, Muhammad Tahir; Irem, Samra

    2015-04-01

    Plants are the ultimate food source for humans, either directly or indirectly. Being sessile in nature, they are exposed to various biotic and abiotic stresses because of changing climate that adversely effects their growth and development. Contamination of heavy metals is one of the major abiotic stresses because of anthropogenic as well as natural factors which lead to increased toxicity and accumulation in plants. Arsenic is a naturally occurring metalloid toxin present in the earth crust. Due to its presence in terrestrial and aquatic environments, it effects the growth of plants. Plants can tolerate arsenic using several mechanisms like phytochelation, vacuole sequestration and activation of antioxidant defense systems. Several signaling mechanisms have evolved in plants that involve the use of proteins, calcium ions, hormones, reactive oxygen species and nitric oxide as signaling molecules to cope with arsenic toxicity. These mechanisms facilitate plants to survive under metal stress by activating their defense systems. The pathways by which these stress signals are perceived and responded is an unexplored area of research and there are lots of gaps still to be filled. A good understanding of these signaling pathways can help in raising the plants which can perform better in arsenic contaminated soil and water. In order to increase the survival of plants in contaminated areas there is a strong need to identify suitable gene targets that can be modified according to needs of the stakeholders using various biotechnological techniques. This review focuses on the signaling mechanisms of plants grown under arsenic stress and will give an insight of the different sensory systems in plants. Furthermore, it provides the knowledge about several pathways that can be exploited to develop plant cultivars which are resistant to arsenic stress or can reduce its uptake to minimize the risk of arsenic toxicity through food chain thus ensuring food security. Copyright © 2015

  5. Synchronization analysis of coloured delayed networks under ...

    Indian Academy of Sciences (India)

    This paper investigates synchronization of coloured delayed networks under decentralized pinning intermittent control. To begin with, the time delays are taken into account in the coloured networks. In addition, we propose a decentralized pinning intermittent control for coloured delayed networks, which is different from that ...

  6. Credal Networks under Maximum Entropy

    OpenAIRE

    Lukasiewicz, Thomas

    2013-01-01

    We apply the principle of maximum entropy to select a unique joint probability distribution from the set of all joint probability distributions specified by a credal network. In detail, we start by showing that the unique joint distribution of a Bayesian tree coincides with the maximum entropy model of its conditional distributions. This result, however, does not hold anymore for general Bayesian networks. We thus present a new kind of maximum entropy models, which are computed sequentially. ...

  7. Identification of alterations in the Jacobian of biochemical reaction networks from steady state covariance data at two conditions.

    Science.gov (United States)

    Kügler, Philipp; Yang, Wei

    2014-06-01

    Model building of biochemical reaction networks typically involves experiments in which changes in the behavior due to natural or experimental perturbations are observed. Computational models of reaction networks are also used in a systems biology approach to study how transitions from a healthy to a diseased state result from changes in genetic or environmental conditions. In this paper we consider the nonlinear inverse problem of inferring information about the Jacobian of a Langevin type network model from covariance data of steady state concentrations associated to two different experimental conditions. Under idealized assumptions on the Langevin fluctuation matrices we prove that relative alterations in the network Jacobian can be uniquely identified when comparing the two data sets. Based on this result and the premise that alteration is locally confined to separable parts due to network modularity we suggest a computational approach using hybrid stochastic-deterministic optimization for the detection of perturbations in the network Jacobian using the sparsity promoting effect of [Formula: see text]-penalization. Our approach is illustrated by means of published metabolomic and signaling reaction networks.

  8. CADLIVE toolbox for MATLAB: automatic dynamic modeling of biochemical networks with comprehensive system analysis.

    Science.gov (United States)

    Inoue, Kentaro; Maeda, Kazuhiro; Miyabe, Takaaki; Matsuoka, Yu; Kurata, Hiroyuki

    2014-09-01

    Mathematical modeling has become a standard technique to understand the dynamics of complex biochemical systems. To promote the modeling, we had developed the CADLIVE dynamic simulator that automatically converted a biochemical map into its associated mathematical model, simulated its dynamic behaviors and analyzed its robustness. To enhance the feasibility by CADLIVE and extend its functions, we propose the CADLIVE toolbox available for MATLAB, which implements not only the existing functions of the CADLIVE dynamic simulator, but also the latest tools including global parameter search methods with robustness analysis. The seamless, bottom-up processes consisting of biochemical network construction, automatic construction of its dynamic model, simulation, optimization, and S-system analysis greatly facilitate dynamic modeling, contributing to the research of systems biology and synthetic biology. This application can be freely downloaded from http://www.cadlive.jp/CADLIVE_MATLAB/ together with an instruction.

  9. Emergence of switch-like behavior in a large family of simple biochemical networks.

    Directory of Open Access Journals (Sweden)

    Dan Siegal-Gaskins

    2011-05-01

    Full Text Available Bistability plays a central role in the gene regulatory networks (GRNs controlling many essential biological functions, including cellular differentiation and cell cycle control. However, establishing the network topologies that can exhibit bistability remains a challenge, in part due to the exceedingly large variety of GRNs that exist for even a small number of components. We begin to address this problem by employing chemical reaction network theory in a comprehensive in silico survey to determine the capacity for bistability of more than 40,000 simple networks that can be formed by two transcription factor-coding genes and their associated proteins (assuming only the most elementary biochemical processes. We find that there exist reaction rate constants leading to bistability in ∼90% of these GRN models, including several circuits that do not contain any of the TF cooperativity commonly associated with bistable systems, and the majority of which could only be identified as bistable through an original subnetwork-based analysis. A topological sorting of the two-gene family of networks based on the presence or absence of biochemical reactions reveals eleven minimal bistable networks (i.e., bistable networks that do not contain within them a smaller bistable subnetwork. The large number of previously unknown bistable network topologies suggests that the capacity for switch-like behavior in GRNs arises with relative ease and is not easily lost through network evolution. To highlight the relevance of the systematic application of CRNT to bistable network identification in real biological systems, we integrated publicly available protein-protein interaction, protein-DNA interaction, and gene expression data from Saccharomyces cerevisiae, and identified several GRNs predicted to behave in a bistable fashion.

  10. Scalable rule-based modelling of allosteric proteins and biochemical networks.

    Directory of Open Access Journals (Sweden)

    Julien F Ollivier

    2010-11-01

    Full Text Available Much of the complexity of biochemical networks comes from the information-processing abilities of allosteric proteins, be they receptors, ion-channels, signalling molecules or transcription factors. An allosteric protein can be uniquely regulated by each combination of input molecules that it binds. This "regulatory complexity" causes a combinatorial increase in the number of parameters required to fit experimental data as the number of protein interactions increases. It therefore challenges the creation, updating, and re-use of biochemical models. Here, we propose a rule-based modelling framework that exploits the intrinsic modularity of protein structure to address regulatory complexity. Rather than treating proteins as "black boxes", we model their hierarchical structure and, as conformational changes, internal dynamics. By modelling the regulation of allosteric proteins through these conformational changes, we often decrease the number of parameters required to fit data, and so reduce over-fitting and improve the predictive power of a model. Our method is thermodynamically grounded, imposes detailed balance, and also includes molecular cross-talk and the background activity of enzymes. We use our Allosteric Network Compiler to examine how allostery can facilitate macromolecular assembly and how competitive ligands can change the observed cooperativity of an allosteric protein. We also develop a parsimonious model of G protein-coupled receptors that explains functional selectivity and can predict the rank order of potency of agonists acting through a receptor. Our methodology should provide a basis for scalable, modular and executable modelling of biochemical networks in systems and synthetic biology.

  11. Strategies for optical transport network recovery under epidemic network failures

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Fagertun, Anna Manolova; Kosteas, Vasileios

    2015-01-01

    The current trend in deploying automatic control plane solutions for increased flexibility in the optical transport layer leads to numerous advantages for both the operators and the customers, but also pose challenges related to the stability of the network and its ability to operate in a robust...... manner under different failure scenarios. This work evaluates two rerouting strategies and proposes four policies for failure handling in a connection-oriented optical transport network, under generalized multiprotocol label switching control plane. The performance of the strategies and the policies......, and that there exist a clear trade-off between policy performance and network resource consumption, which must be addressed by network operators for improved robustness of their transport infrastructures. Applying proactive methods for avoiding areas where epidemic failures spread results in 50% less connections...

  12. Shape, size, and robustness: feasible regions in the parameter space of biochemical networks.

    Directory of Open Access Journals (Sweden)

    Adel Dayarian

    2009-01-01

    Full Text Available The concept of robustness of regulatory networks has received much attention in the last decade. One measure of robustness has been associated with the volume of the feasible region, namely, the region in the parameter space in which the system is functional. In this paper, we show that, in addition to volume, the geometry of this region has important consequences for the robustness and the fragility of a network. We develop an approximation within which we could algebraically specify the feasible region. We analyze the segment polarity gene network to illustrate our approach. The study of random walks in the parameter space and how they exit the feasible region provide us with a rich perspective on the different modes of failure of this network model. In particular, we found that, between two alternative ways of activating Wingless, one is more robust than the other. Our method provides a more complete measure of robustness to parameter variation. As a general modeling strategy, our approach is an interesting alternative to Boolean representation of biochemical networks.

  13. A moment-convergence method for stochastic analysis of biochemical reaction networks.

    Science.gov (United States)

    Zhang, Jiajun; Nie, Qing; Zhou, Tianshou

    2016-05-21

    Traditional moment-closure methods need to assume that high-order cumulants of a probability distribution approximate to zero. However, this strong assumption is not satisfied for many biochemical reaction networks. Here, we introduce convergent moments (defined in mathematics as the coefficients in the Taylor expansion of the probability-generating function at some point) to overcome this drawback of the moment-closure methods. As such, we develop a new analysis method for stochastic chemical kinetics. This method provides an accurate approximation for the master probability equation (MPE). In particular, the connection between low-order convergent moments and rate constants can be more easily derived in terms of explicit and analytical forms, allowing insights that would be difficult to obtain through direct simulation or manipulation of the MPE. In addition, it provides an accurate and efficient way to compute steady-state or transient probability distribution, avoiding the algorithmic difficulty associated with stiffness of the MPE due to large differences in sizes of rate constants. Applications of the method to several systems reveal nontrivial stochastic mechanisms of gene expression dynamics, e.g., intrinsic fluctuations can induce transient bimodality and amplify transient signals, and slow switching between promoter states can increase fluctuations in spatially heterogeneous signals. The overall approach has broad applications in modeling, analysis, and computation of complex biochemical networks with intrinsic noise.

  14. A moment-convergence method for stochastic analysis of biochemical reaction networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiajun [School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275 (China); Nie, Qing [Department of Mathematics, University of California at Irvine, Irvine, California 92697 (United States); Zhou, Tianshou, E-mail: mcszhtsh@mail.sysu.edu.cn [School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275 (China); Guangdong Province Key Laboratory of Computational Science and School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275 (China)

    2016-05-21

    Traditional moment-closure methods need to assume that high-order cumulants of a probability distribution approximate to zero. However, this strong assumption is not satisfied for many biochemical reaction networks. Here, we introduce convergent moments (defined in mathematics as the coefficients in the Taylor expansion of the probability-generating function at some point) to overcome this drawback of the moment-closure methods. As such, we develop a new analysis method for stochastic chemical kinetics. This method provides an accurate approximation for the master probability equation (MPE). In particular, the connection between low-order convergent moments and rate constants can be more easily derived in terms of explicit and analytical forms, allowing insights that would be difficult to obtain through direct simulation or manipulation of the MPE. In addition, it provides an accurate and efficient way to compute steady-state or transient probability distribution, avoiding the algorithmic difficulty associated with stiffness of the MPE due to large differences in sizes of rate constants. Applications of the method to several systems reveal nontrivial stochastic mechanisms of gene expression dynamics, e.g., intrinsic fluctuations can induce transient bimodality and amplify transient signals, and slow switching between promoter states can increase fluctuations in spatially heterogeneous signals. The overall approach has broad applications in modeling, analysis, and computation of complex biochemical networks with intrinsic noise.

  15. Biochemical components and dry matter of lemon and mandarin hybrids under salt stress

    Directory of Open Access Journals (Sweden)

    Francisco V. da S. Sá

    Full Text Available ABSTRACT The objective was to study the biochemical changes and dry matter content in lemon and mandarin hybrids under salt stress during rootstock formation. For this, a study was conducted in randomized complete block, using a 2 x 5 factorial scheme, with two salinity levels (0.3 and 4.0 dS m-1 applied in five citrus rootstock genotypes (1. TSKC x CTARG - 019; 2. LRF; 3. TSKC x (LCR x TR - 040; 4. LCRSTC and 5. LVK, with three replicates and four plants per plot. At 90 days after sowing, saline treatments started to be applied and continued until 120 days after sowing, the moment in which the plants were collected for evaluation of biochemical characteristics and phytomass accumulation. The increase in water salinity negatively affected the biochemical components and dry matter accumulation of citrus genotypes. The genotypes TSKC x (LCR x TR - 040, LCRSTC and LVK were the least affected by salt stress, standing out as the materials most tolerant to salinity.

  16. Glycinebetaine-induced modulation in some biochemical and physiological attributes of okra under salt

    International Nuclear Information System (INIS)

    Saeed, H.M.; Mirza, J.I.

    2016-01-01

    Role of glycinebetaine (GB) in okra (Abelmoschus esculentus L. Moench) cv. Subz-pari plants grown under salinity stress was investigated under field conditions. The crop was planted under varying levels (0, 200 and 400 mg NaCl per kg of soil) of salinity stress. Foliar application of 75 mM GB was employed at two phases i.e. after 30 and 60 days of sowing. Imposition of salinity stress significantly increased leaf GB and proline contents but significantly reduced leaf chlorophyll content and physiological characteristics such as rate of photosynthesis (Pn), rate of transpiration (E), stomatal conductance (gs) and leaf relative water content (LRWC). Exogenous application of GB significantly increased GB content but decreased proline content of leaves and improved various gas exchange characteristics/physiological parameters. The present results thus indicated that foliar application of GB (75 mM) can modulate various biochemical and gas exchange parameters of okra, grown under salt stress. (author)

  17. Modularization of biochemical networks based on classification of Petri net t-invariants.

    Science.gov (United States)

    Grafahrend-Belau, Eva; Schreiber, Falk; Heiner, Monika; Sackmann, Andrea; Junker, Björn H; Grunwald, Stefanie; Speer, Astrid; Winder, Katja; Koch, Ina

    2008-02-08

    Structural analysis of biochemical networks is a growing field in bioinformatics and systems biology. The availability of an increasing amount of biological data from molecular biological networks promises a deeper understanding but confronts researchers with the problem of combinatorial explosion. The amount of qualitative network data is growing much faster than the amount of quantitative data, such as enzyme kinetics. In many cases it is even impossible to measure quantitative data because of limitations of experimental methods, or for ethical reasons. Thus, a huge amount of qualitative data, such as interaction data, is available, but it was not sufficiently used for modeling purposes, until now. New approaches have been developed, but the complexity of data often limits the application of many of the methods. Biochemical Petri nets make it possible to explore static and dynamic qualitative system properties. One Petri net approach is model validation based on the computation of the system's invariant properties, focusing on t-invariants. T-invariants correspond to subnetworks, which describe the basic system behavior.With increasing system complexity, the basic behavior can only be expressed by a huge number of t-invariants. According to our validation criteria for biochemical Petri nets, the necessary verification of the biological meaning, by interpreting each subnetwork (t-invariant) manually, is not possible anymore. Thus, an automated, biologically meaningful classification would be helpful in analyzing t-invariants, and supporting the understanding of the basic behavior of the considered biological system. Here, we introduce a new approach to automatically classify t-invariants to cope with network complexity. We apply clustering techniques such as UPGMA, Complete Linkage, Single Linkage, and Neighbor Joining in combination with different distance measures to get biologically meaningful clusters (t-clusters), which can be interpreted as modules. To find

  18. Modularization of biochemical networks based on classification of Petri net t-invariants

    Directory of Open Access Journals (Sweden)

    Grunwald Stefanie

    2008-02-01

    Full Text Available Abstract Background Structural analysis of biochemical networks is a growing field in bioinformatics and systems biology. The availability of an increasing amount of biological data from molecular biological networks promises a deeper understanding but confronts researchers with the problem of combinatorial explosion. The amount of qualitative network data is growing much faster than the amount of quantitative data, such as enzyme kinetics. In many cases it is even impossible to measure quantitative data because of limitations of experimental methods, or for ethical reasons. Thus, a huge amount of qualitative data, such as interaction data, is available, but it was not sufficiently used for modeling purposes, until now. New approaches have been developed, but the complexity of data often limits the application of many of the methods. Biochemical Petri nets make it possible to explore static and dynamic qualitative system properties. One Petri net approach is model validation based on the computation of the system's invariant properties, focusing on t-invariants. T-invariants correspond to subnetworks, which describe the basic system behavior. With increasing system complexity, the basic behavior can only be expressed by a huge number of t-invariants. According to our validation criteria for biochemical Petri nets, the necessary verification of the biological meaning, by interpreting each subnetwork (t-invariant manually, is not possible anymore. Thus, an automated, biologically meaningful classification would be helpful in analyzing t-invariants, and supporting the understanding of the basic behavior of the considered biological system. Methods Here, we introduce a new approach to automatically classify t-invariants to cope with network complexity. We apply clustering techniques such as UPGMA, Complete Linkage, Single Linkage, and Neighbor Joining in combination with different distance measures to get biologically meaningful clusters (t

  19. Parametric sensitivity analysis for biochemical reaction networks based on pathwise information theory.

    Science.gov (United States)

    Pantazis, Yannis; Katsoulakis, Markos A; Vlachos, Dionisios G

    2013-10-22

    Stochastic modeling and simulation provide powerful predictive methods for the intrinsic understanding of fundamental mechanisms in complex biochemical networks. Typically, such mathematical models involve networks of coupled jump stochastic processes with a large number of parameters that need to be suitably calibrated against experimental data. In this direction, the parameter sensitivity analysis of reaction networks is an essential mathematical and computational tool, yielding information regarding the robustness and the identifiability of model parameters. However, existing sensitivity analysis approaches such as variants of the finite difference method can have an overwhelming computational cost in models with a high-dimensional parameter space. We develop a sensitivity analysis methodology suitable for complex stochastic reaction networks with a large number of parameters. The proposed approach is based on Information Theory methods and relies on the quantification of information loss due to parameter perturbations between time-series distributions. For this reason, we need to work on path-space, i.e., the set consisting of all stochastic trajectories, hence the proposed approach is referred to as "pathwise". The pathwise sensitivity analysis method is realized by employing the rigorously-derived Relative Entropy Rate, which is directly computable from the propensity functions. A key aspect of the method is that an associated pathwise Fisher Information Matrix (FIM) is defined, which in turn constitutes a gradient-free approach to quantifying parameter sensitivities. The structure of the FIM turns out to be block-diagonal, revealing hidden parameter dependencies and sensitivities in reaction networks. As a gradient-free method, the proposed sensitivity analysis provides a significant advantage when dealing with complex stochastic systems with a large number of parameters. In addition, the knowledge of the structure of the FIM can allow to efficiently address

  20. Flows in networks under fuzzy conditions

    CERN Document Server

    Bozhenyuk, Alexander Vitalievich; Kacprzyk, Janusz; Rozenberg, Igor Naymovich

    2017-01-01

    This book offers a comprehensive introduction to fuzzy methods for solving flow tasks in both transportation and networks. It analyzes the problems of minimum cost and maximum flow finding with fuzzy nonzero lower flow bounds, and describes solutions to minimum cost flow finding in a network with fuzzy arc capacities and transmission costs. After a concise introduction to flow theory and tasks, the book analyzes two important problems. The first is related to determining the maximum volume for cargo transportation in the presence of uncertain network parameters, such as environmental changes, measurement errors and repair work on the roads. These parameters are represented here as fuzzy triangular, trapezoidal numbers and intervals. The second problem concerns static and dynamic flow finding in networks under fuzzy conditions, and an effective method that takes into account the network’s transit parameters is presented here. All in all, the book provides readers with a practical reference guide to state-of-...

  1. CDMA coverage under mobile heterogeneous network load

    NARCIS (Netherlands)

    Saban, D.; van den Berg, Hans Leo; Boucherie, Richardus J.; Endrayanto, A.I.

    2002-01-01

    We analytically investigate coverage (determined by the uplink) under non-homogeneous and moving traffic load of third generation UMTS mobile networks. In particular, for different call assignment policies, we investigate cell breathing and the movement of the coverage gap occurring between cells

  2. Linear analysis near a steady-state of biochemical networks: control analysis, correlation metrics and circuit theory

    Directory of Open Access Journals (Sweden)

    Qian Hong

    2008-05-01

    Full Text Available Abstract Background: Several approaches, including metabolic control analysis (MCA, flux balance analysis (FBA, correlation metric construction (CMC, and biochemical circuit theory (BCT, have been developed for the quantitative analysis of complex biochemical networks. Here, we present a comprehensive theory of linear analysis for nonequilibrium steady-state (NESS biochemical reaction networks that unites these disparate approaches in a common mathematical framework and thermodynamic basis. Results: In this theory a number of relationships between key matrices are introduced: the matrix A obtained in the standard, linear-dynamic-stability analysis of the steady-state can be decomposed as A = SRT where R and S are directly related to the elasticity-coefficient matrix for the fluxes and chemical potentials in MCA, respectively; the control-coefficients for the fluxes and chemical potentials can be written in terms of RT BS and ST BS respectively where matrix B is the inverse of A; the matrix S is precisely the stoichiometric matrix in FBA; and the matrix eAt plays a central role in CMC. Conclusion: One key finding that emerges from this analysis is that the well-known summation theorems in MCA take different forms depending on whether metabolic steady-state is maintained by flux injection or concentration clamping. We demonstrate that if rate-limiting steps exist in a biochemical pathway, they are the steps with smallest biochemical conductances and largest flux control-coefficients. We hypothesize that biochemical networks for cellular signaling have a different strategy for minimizing energy waste and being efficient than do biochemical networks for biosynthesis. We also discuss the intimate relationship between MCA and biochemical systems analysis (BSA.

  3. Propagation of kinetic uncertainties through a canonical topology of the TLR4 signaling network in different regions of biochemical reaction space

    Directory of Open Access Journals (Sweden)

    St Laurent Georges

    2010-03-01

    Full Text Available Abstract Background Signal transduction networks represent the information processing systems that dictate which dynamical regimes of biochemical activity can be accessible to a cell under certain circumstances. One of the major concerns in molecular systems biology is centered on the elucidation of the robustness properties and information processing capabilities of signal transduction networks. Achieving this goal requires the establishment of causal relations between the design principle of biochemical reaction systems and their emergent dynamical behaviors. Methods In this study, efforts were focused in the construction of a relatively well informed, deterministic, non-linear dynamic model, accounting for reaction mechanisms grounded on standard mass action and Hill saturation kinetics, of the canonical reaction topology underlying Toll-like receptor 4 (TLR4-mediated signaling events. This signaling mechanism has been shown to be deployed in macrophages during a relatively short time window in response to lypopolysaccharyde (LPS stimulation, which leads to a rapidly mounted innate immune response. An extensive computational exploration of the biochemical reaction space inhabited by this signal transduction network was performed via local and global perturbation strategies. Importantly, a broad spectrum of biologically plausible dynamical regimes accessible to the network in widely scattered regions of parameter space was reconstructed computationally. Additionally, experimentally reported transcriptional readouts of target pro-inflammatory genes, which are actively modulated by the network in response to LPS stimulation, were also simulated. This was done with the main goal of carrying out an unbiased statistical assessment of the intrinsic robustness properties of this canonical reaction topology. Results Our simulation results provide convincing numerical evidence supporting the idea that a canonical reaction mechanism of the TLR4

  4. Reliability of lifeline networks under seismic hazard

    International Nuclear Information System (INIS)

    Selcuk, A. Sevtap; Yuecemen, M. Semih

    1999-01-01

    Lifelines, such as pipelines, transportation, communication and power transmission systems, are networks which extend spatially over large geographical regions. The quantification of the reliability (survival probability) of a lifeline under seismic threat requires attention, as the proper functioning of these systems during or after a destructive earthquake is vital. In this study, a lifeline is idealized as an equivalent network with the capacity of its elements being random and spatially correlated and a comprehensive probabilistic model for the assessment of the reliability of lifelines under earthquake loads is developed. The seismic hazard that the network is exposed to is described by a probability distribution derived by using the past earthquake occurrence data. The seismic hazard analysis is based on the 'classical' seismic hazard analysis model with some modifications. An efficient algorithm developed by Yoo and Deo (Yoo YB, Deo N. A comparison of algorithms for terminal pair reliability. IEEE Transactions on Reliability 1988; 37: 210-215) is utilized for the evaluation of the network reliability. This algorithm eliminates the CPU time and memory capacity problems for large networks. A comprehensive computer program, called LIFEPACK is coded in Fortran language in order to carry out the numerical computations. Two detailed case studies are presented to show the implementation of the proposed model

  5. Complex networks under dynamic repair model

    Science.gov (United States)

    Chaoqi, Fu; Ying, Wang; Kun, Zhao; Yangjun, Gao

    2018-01-01

    Invulnerability is not the only factor of importance when considering complex networks' security. It is also critical to have an effective and reasonable repair strategy. Existing research on network repair is confined to the static model. The dynamic model makes better use of the redundant capacity of repaired nodes and repairs the damaged network more efficiently than the static model; however, the dynamic repair model is complex and polytropic. In this paper, we construct a dynamic repair model and systematically describe the energy-transfer relationships between nodes in the repair process of the failure network. Nodes are divided into three types, corresponding to three structures. We find that the strong coupling structure is responsible for secondary failure of the repaired nodes and propose an algorithm that can select the most suitable targets (nodes or links) to repair the failure network with minimal cost. Two types of repair strategies are identified, with different effects under the two energy-transfer rules. The research results enable a more flexible approach to network repair.

  6. Soil Biochemical Changes Induced by Poultry Litter Application and Conservation Tillage under Cotton Production Systems

    Directory of Open Access Journals (Sweden)

    Seshadri Sajjala

    2012-07-01

    Full Text Available Problems arising from conventional tillage (CT systems (such as soil erosion, decrease of organic matter, environmental damage etc. have led many farmers to the adoption of no-till (NT systems that are more effective in improving soil physical, chemical and microbial properties. Results from this study clearly indicated that NT, mulch tillage (MT, and winter rye cover cropping systems increased the activity of phosphatase, β-glucosidase and arylsulfatase at a 0–10 cm soil depth but decreased the activity of these enzymes at 10–20 cm. The increase in enzyme activity was a good indicator of intensive soil microbial activity in different soil management practices. Poultry litter (PL application under NT, MT, and rye cropping system could be considered as effective management practices due to the improvement in carbon (C content and the biochemical quality at the soil surface. The activities of the studied enzymes were highly correlated with soil total nitrogen (STN soil organic carbon (SOC at the 0–10 cm soil depth, except for acid phosphatase where no correlation was observed. This study revealed that agricultural practices such as tillage, PL, and cover crop cropping system have a noticeable positive effect on soil biochemical activities under cotton production.

  7. Biochemical basis of drought tolerance in hybrid Populus grown under field production conditions. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Tschaplinski, T.J.; Tuskan, G.A. [Oak Ridge National Lab., TN (United States); Wierman, C. [Boise Cascade Corp., Wallula, WA (United States)

    1997-04-01

    The purpose of this cooperative effort was to assess the use of osmotically active compounds as molecular selection criteria for drought tolerance in Populus in a large-scale field trial. It is known that some plant species, and individuals within a plant species, can tolerate increasing stress associated with reduced moisture availability by accumulating solutes. The biochemical matrix of such metabolites varies among species and among individuals. The ability of Populus clones to tolerate drought has equal value to other fiber producers, i.e., the wood products industry, where irrigation is used in combination with other cultural treatments to obtain high dry weight yields. The research initially involved an assessment of drought stress under field conditions and characterization of changes in osmotic constitution among the seven clones across the six moisture levels. The near-term goal was to provide a mechanistic basis for clonal differences in productivity under various irrigation treatments over time.

  8. HRSSA – Efficient hybrid stochastic simulation for spatially homogeneous biochemical reaction networks

    International Nuclear Information System (INIS)

    Marchetti, Luca; Priami, Corrado; Thanh, Vo Hong

    2016-01-01

    This paper introduces HRSSA (Hybrid Rejection-based Stochastic Simulation Algorithm), a new efficient hybrid stochastic simulation algorithm for spatially homogeneous biochemical reaction networks. HRSSA is built on top of RSSA, an exact stochastic simulation algorithm which relies on propensity bounds to select next reaction firings and to reduce the average number of reaction propensity updates needed during the simulation. HRSSA exploits the computational advantage of propensity bounds to manage time-varying transition propensities and to apply dynamic partitioning of reactions, which constitute the two most significant bottlenecks of hybrid simulation. A comprehensive set of simulation benchmarks is provided for evaluating performance and accuracy of HRSSA against other state of the art algorithms.

  9. HRSSA – Efficient hybrid stochastic simulation for spatially homogeneous biochemical reaction networks

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Luca, E-mail: marchetti@cosbi.eu [The Microsoft Research – University of Trento Centre for Computational and Systems Biology (COSBI), Piazza Manifattura, 1, 38068 Rovereto (Italy); Priami, Corrado, E-mail: priami@cosbi.eu [The Microsoft Research – University of Trento Centre for Computational and Systems Biology (COSBI), Piazza Manifattura, 1, 38068 Rovereto (Italy); University of Trento, Department of Mathematics (Italy); Thanh, Vo Hong, E-mail: vo@cosbi.eu [The Microsoft Research – University of Trento Centre for Computational and Systems Biology (COSBI), Piazza Manifattura, 1, 38068 Rovereto (Italy)

    2016-07-15

    This paper introduces HRSSA (Hybrid Rejection-based Stochastic Simulation Algorithm), a new efficient hybrid stochastic simulation algorithm for spatially homogeneous biochemical reaction networks. HRSSA is built on top of RSSA, an exact stochastic simulation algorithm which relies on propensity bounds to select next reaction firings and to reduce the average number of reaction propensity updates needed during the simulation. HRSSA exploits the computational advantage of propensity bounds to manage time-varying transition propensities and to apply dynamic partitioning of reactions, which constitute the two most significant bottlenecks of hybrid simulation. A comprehensive set of simulation benchmarks is provided for evaluating performance and accuracy of HRSSA against other state of the art algorithms.

  10. Dynamic Modeling of Cell-Free Biochemical Networks Using Effective Kinetic Models

    Directory of Open Access Journals (Sweden)

    Joseph A. Wayman

    2015-03-01

    Full Text Available Cell-free systems offer many advantages for the study, manipulation and modeling of metabolism compared to in vivo processes. Many of the challenges confronting genome-scale kinetic modeling can potentially be overcome in a cell-free system. For example, there is no complex transcriptional regulation to consider, transient metabolic measurements are easier to obtain, and we no longer have to consider cell growth. Thus, cell-free operation holds several significant advantages for model development, identification and validation. Theoretically, genome-scale cell-free kinetic models may be possible for industrially important organisms, such as E. coli, if a simple, tractable framework for integrating allosteric regulation with enzyme kinetics can be formulated. Toward this unmet need, we present an effective biochemical network modeling framework for building dynamic cell-free metabolic models. The key innovation of our approach is the integration of simple effective rules encoding complex allosteric regulation with traditional kinetic pathway modeling. We tested our approach by modeling the time evolution of several hypothetical cell-free metabolic networks. We found that simple effective rules, when integrated with traditional enzyme kinetic expressions, captured complex allosteric patterns such as ultrasensitivity or non-competitive inhibition in the absence of mechanistic information. Second, when integrated into network models, these rules captured classic regulatory patterns such as product-induced feedback inhibition. Lastly, we showed, at least for the network architectures considered here, that we could simultaneously estimate kinetic parameters and allosteric connectivity from synthetic data starting from an unbiased collection of possible allosteric structures using particle swarm optimization. However, when starting with an initial population that was heavily enriched with incorrect structures, our particle swarm approach could converge

  11. Application of approximate pattern matching in two dimensional spaces to grid layout for biochemical network maps.

    Science.gov (United States)

    Inoue, Kentaro; Shimozono, Shinichi; Yoshida, Hideaki; Kurata, Hiroyuki

    2012-01-01

    For visualizing large-scale biochemical network maps, it is important to calculate the coordinates of molecular nodes quickly and to enhance the understanding or traceability of them. The grid layout is effective in drawing compact, orderly, balanced network maps with node label spaces, but existing grid layout algorithms often require a high computational cost because they have to consider complicated positional constraints through the entire optimization process. We propose a hybrid grid layout algorithm that consists of a non-grid, fast layout (preprocessor) algorithm and an approximate pattern matching algorithm that distributes the resultant preprocessed nodes on square grid points. To demonstrate the feasibility of the hybrid layout algorithm, it is characterized in terms of the calculation time, numbers of edge-edge and node-edge crossings, relative edge lengths, and F-measures. The proposed algorithm achieves outstanding performances compared with other existing grid layouts. Use of an approximate pattern matching algorithm quickly redistributes the laid-out nodes by fast, non-grid algorithms on the square grid points, while preserving the topological relationships among the nodes. The proposed algorithm is a novel use of the pattern matching, thereby providing a breakthrough for grid layout. This application program can be freely downloaded from http://www.cadlive.jp/hybridlayout/hybridlayout.html.

  12. Application of approximate pattern matching in two dimensional spaces to grid layout for biochemical network maps.

    Directory of Open Access Journals (Sweden)

    Kentaro Inoue

    Full Text Available BACKGROUND: For visualizing large-scale biochemical network maps, it is important to calculate the coordinates of molecular nodes quickly and to enhance the understanding or traceability of them. The grid layout is effective in drawing compact, orderly, balanced network maps with node label spaces, but existing grid layout algorithms often require a high computational cost because they have to consider complicated positional constraints through the entire optimization process. RESULTS: We propose a hybrid grid layout algorithm that consists of a non-grid, fast layout (preprocessor algorithm and an approximate pattern matching algorithm that distributes the resultant preprocessed nodes on square grid points. To demonstrate the feasibility of the hybrid layout algorithm, it is characterized in terms of the calculation time, numbers of edge-edge and node-edge crossings, relative edge lengths, and F-measures. The proposed algorithm achieves outstanding performances compared with other existing grid layouts. CONCLUSIONS: Use of an approximate pattern matching algorithm quickly redistributes the laid-out nodes by fast, non-grid algorithms on the square grid points, while preserving the topological relationships among the nodes. The proposed algorithm is a novel use of the pattern matching, thereby providing a breakthrough for grid layout. This application program can be freely downloaded from http://www.cadlive.jp/hybridlayout/hybridlayout.html.

  13. Nonequilibrium steady state of biochemical cycle kinetics under non-isothermal conditions

    Science.gov (United States)

    Jin, Xiao; Ge, Hao

    2018-04-01

    The nonequilibrium steady state of isothermal biochemical cycle kinetics has been extensively studied, but that under non-isothermal conditions has been much less extensively investigated. When the heat exchange between subsystems is slow, the isothermal assumption of the whole system breaks down, as is true for many types of living organisms. Here, starting with a four-state model of molecular transporter across the cell membrane, we generalize the nonequilibrium steady-state theory of isothermal biochemical cycle kinetics to the circumstances with non-uniform temperatures of subsystems in terms of general master equation models. We obtain a new thermodynamic relationship between the chemical reaction rates and thermodynamic potentials in non-isothermal circumstances, based on the overdamped dynamics along the continuous reaction coordinate. We show that the entropy production can vary up to 3% in real cells, even when the temperature difference across the cell membrane is only approximately 1 K. We then decompose the total thermodynamic driving force into its thermal and chemical components and predict that the net flux of molecules transported by the molecular transporter can potentially go against the temperature gradient in the absence of a chemical driving force. Furthermore, we demonstrate that the simple application of the isothermal transition-state rate formula for each chemical reaction in terms of only the reactant’ temperature is not thermodynamically consistent. Therefore, we mathematically derive several revised reaction rate formulas that are not only consistent with the new thermodynamic relationship but also approximate the exact reaction rate better than Kramers’ rate formula under isothermal conditions.

  14. Supply chain network design under uncertainty

    DEFF Research Database (Denmark)

    Govindan, Kannan; Fattahi, Mohammad; Keyvanshokooh, Esmaeil

    2017-01-01

    Supply chain network design (SCND) is one of the most crucial planning problems in supply chain management (SCM). Nowadays, design decisions should be viable enough to function well under complex and uncertain business environments for many years or decades. Therefore, it is essential to make...... programming, risk-averse stochastic programming, robust optimization, and fuzzy mathematical programming are explored in terms of mathematical modeling and solution approaches. Finally, the drawbacks and missing aspects of the related literature are highlighted and a list of potential issues for future...

  15. Effect of Shading on Physiological, Biochemical and Behaviour Changes in Crossbred Calves Under Hot Climatic Conditions

    International Nuclear Information System (INIS)

    Teama, F.E.I.; Gad, A.E.; El-Tarabany, A.A.

    2012-01-01

    The purpose of this study was to investigate the importance and the effect of shading and non-shading house on physiological changes, body weight (BW), average daily gain (ADG), total antioxidant and thyroid hormones in crossbred calves under hot conditions. Thirty six growing crossbred calves (Friesian x Baladi) aged 8-10 months were divided into two groups (each 18 calves); the first group was maintained in shaded house and the second in house without shade (climatic house). The period of study was 79 days during hot conditions. Performance variables (BW, ADG) were measured and the blood samples were collected to assess some biochemical parameters including antioxidants such as total antioxidant (TA), catalase (CAT), total protein, thyroid hormones (T3, T4) and immunoglobulin factor (IgG). Respiration rates and behaviour parameters (feeding, drinking, standing, lying and agonistic) were also measured during the study. The data indicated that the shaded calves had higher ADG (P<0.05) and final BW than non-shaded ones. Also, a significant improvement in total protein levels and globulins were recorded in shaded house calves as compared to non-shaded ones. The same result was obtained for T3 level whereas non-significant changes were observed for T4 level as well as the level of IgG at different times. The present data indicated that using shaded house will decrease the effect of heat stress on calves which will increase the animal performance through improving BW and ADG as well as some biochemical parameters in addition to T3 hormonal level.

  16. Network Formation under the Threat of Disruption

    NARCIS (Netherlands)

    Hoyer, B.

    2013-01-01

    The studies in this thesis are focused on the impact the presence of a network disruptor has on network formation models. In particular, we build two theoretical models to study the effect of network disruption on network formation and test the effect network disruption has on equilibrium selection

  17. Escherichia coli under Ionic Silver Stress: An Integrative Approach to Explore Transcriptional, Physiological and Biochemical Responses.

    Directory of Open Access Journals (Sweden)

    Claire Saulou-Bérion

    Full Text Available For a better understanding of the systemic effect of sub-lethal micromolar concentrations of ionic silver on Escherichia coli, we performed a multi-level characterization of cells under Ag+-mediated stress using an integrative biology approach combining physiological, biochemical and transcriptomic data. Physiological parameters, namely bacterial growth and survival after Ag+ exposure, were first quantified and related to the accumulation of intracellular silver, probed for the first time by nano secondary ion mass spectroscopy at sub-micrometer lateral resolution. Modifications in E. coli biochemical composition were evaluated under Ag+-mediated stress by in situ synchrotron Fourier-transform infrared microspectroscopy and a comprehensive transcriptome response was also determined. Using multivariate statistics, correlations between the physiological parameters, the extracellular concentration of AgNO3 and the intracellular silver content, gene expression profiles and micro-spectroscopic data were investigated. We identified Ag+-dependent regulation of gene expression required for growth (e.g. transporter genes, transcriptional regulators, ribosomal proteins, for ionic silver transport and detoxification (e.g. copA, cueO, mgtA, nhaR and for coping with various types of stress (dnaK, pspA, metA,R, oxidoreductase genes. The silver-induced shortening of the acyl chain of fatty acids, mostly encountered in cell membrane, was highlighted by microspectroscopy and correlated with the down-regulated expression of genes involved in fatty acid transport (fadL and synthesis/modification of lipid A (lpxA and arnA. The increase in the disordered secondary structure of proteins in the presence of Ag+ was assessed through the conformational shift shown for amides I and II, and further correlated with the up-regulated expression of peptidase (hfq and chaperone (dnaJ, and regulation of transpeptidase expression (ycfS and ycbB. Interestingly, as these

  18. Physiological and Biochemical Responses of Lavandula angustifolia to Salinity Under Mineral Foliar Application

    Science.gov (United States)

    Chrysargyris, Antonios; Michailidi, Evgenia; Tzortzakis, Nikos

    2018-01-01

    Saline water has been proposed as a solution to partially cover plant water demands due to scarcity of irrigation water in hot arid areas. Lavender (Lavandula angustifolia Mill.) plants were grown hydroponically under salinity (0–25–50–100 mM NaCl). The overcome of salinity stress was examined by K, Zn, and Si foliar application for the plant physiological and biochemical characteristics. The present study indicated that high (100 mM NaCl) salinity decreased plant growth, content of phenolics and antioxidant status and essential oil (EO) yield, while low-moderate salinity levels maintained the volatile oil profile in lavender. The integrated foliar application of K and Zn lighten the presumable detrimental effects of salinity in terms of fresh biomass, antioxidant capacity, and EO yield. Moderate salinity stress along with balanced concentration of K though foliar application changed the primary metabolites pathways in favor of major volatile oil constituents biosynthesis and therefore lavender plant has the potential for cultivation under prevalent semi-saline conditions. Zn and Si application, had lesser effects on the content of EO constituents, even though altered salinity induced changings. Our results have demonstrated that lavender growth/development and EO production may be affected by saline levels, whereas mechanisms for alteration of induced stress are of great significance considering the importance of the oil composition, as well. PMID:29731759

  19. Biochemical and anatomical changes and yield reduction in rice (Oryza sativa L.) under varied salinity regimes.

    Science.gov (United States)

    Hakim, M A; Juraimi, Abdul Shukor; Hanafi, M M; Ismail, Mohd Razi; Selamat, Ahmad; Rafii, M Y; Latif, M A

    2014-01-01

    Five Malaysian rice (Oryza sativa L.) varieties, MR33, MR52, MR211, MR219, and MR232, were tested in pot culture under different salinity regimes for biochemical response, physiological activity, and grain yield. Three different levels of salt stresses, namely, 4, 8, and 12 dS m(-1), were used in a randomized complete block design with four replications under glass house conditions. The results revealed that the chlorophyll content, proline, sugar content, soluble protein, free amino acid, and yield per plant of all the genotypes were influenced by different salinity levels. The chlorophyll content was observed to decrease with salinity level but the proline increased with salinity levels in all varieties. Reducing sugar and total sugar increased up to 8 dS m(-1) and decreased up to 12 dS m(-1). Nonreducing sugar decreased with increasing the salinity levels in all varieties. Soluble protein and free amino acid also decreased with increasing salinity levels. Cortical cells of MR211 and MR232 did not show cell collapse up to 8 dS m(-1) salinity levels compared to susceptible checks (IR20 and BRRI dhan29). Therefore, considering all parameters, MR211 and MR232 showed better salinity tolerance among the tested varieties. Both cluster and principal component analyses depict the similar results.

  20. Biochemical and Anatomical Changes and Yield Reduction in Rice (Oryza sativa L. under Varied Salinity Regimes

    Directory of Open Access Journals (Sweden)

    M. A. Hakim

    2014-01-01

    Full Text Available Five Malaysian rice (Oryza sativa L. varieties, MR33, MR52, MR211, MR219, and MR232, were tested in pot culture under different salinity regimes for biochemical response, physiological activity, and grain yield. Three different levels of salt stresses, namely, 4, 8, and 12 dS m−1, were used in a randomized complete block design with four replications under glass house conditions. The results revealed that the chlorophyll content, proline, sugar content, soluble protein, free amino acid, and yield per plant of all the genotypes were influenced by different salinity levels. The chlorophyll content was observed to decrease with salinity level but the proline increased with salinity levels in all varieties. Reducing sugar and total sugar increased up to 8 dS m−1 and decreased up to 12 dS m−1. Nonreducing sugar decreased with increasing the salinity levels in all varieties. Soluble protein and free amino acid also decreased with increasing salinity levels. Cortical cells of MR211 and MR232 did not show cell collapse up to 8 dS m−1 salinity levels compared to susceptible checks (IR20 and BRRI dhan29. Therefore, considering all parameters, MR211 and MR232 showed better salinity tolerance among the tested varieties. Both cluster and principal component analyses depict the similar results.

  1. Patterns of Stochastic Behavior in Dynamically Unstable High-Dimensional Biochemical Networks

    Directory of Open Access Journals (Sweden)

    Simon Rosenfeld

    2009-01-01

    Full Text Available The question of dynamical stability and stochastic behavior of large biochemical networks is discussed. It is argued that stringent conditions of asymptotic stability have very little chance to materialize in a multidimensional system described by the differential equations of chemical kinetics. The reason is that the criteria of asymptotic stability (Routh- Hurwitz, Lyapunov criteria, Feinberg’s Deficiency Zero theorem would impose the limitations of very high algebraic order on the kinetic rates and stoichiometric coefficients, and there are no natural laws that would guarantee their unconditional validity. Highly nonlinear, dynamically unstable systems, however, are not necessarily doomed to collapse, as a simple Jacobian analysis would suggest. It is possible that their dynamics may assume the form of pseudo-random fluctuations quite similar to a shot noise, and, therefore, their behavior may be described in terms of Langevin and Fokker-Plank equations. We have shown by simulation that the resulting pseudo-stochastic processes obey the heavy-tailed Generalized Pareto Distribution with temporal sequence of pulses forming the set of constituent-specific Poisson processes. Being applied to intracellular dynamics, these properties are naturally associated with burstiness, a well documented phenomenon in the biology of gene expression.

  2. Set-base dynamical parameter estimation and model invalidation for biochemical reaction networks.

    Science.gov (United States)

    Rumschinski, Philipp; Borchers, Steffen; Bosio, Sandro; Weismantel, Robert; Findeisen, Rolf

    2010-05-25

    Mathematical modeling and analysis have become, for the study of biological and cellular processes, an important complement to experimental research. However, the structural and quantitative knowledge available for such processes is frequently limited, and measurements are often subject to inherent and possibly large uncertainties. This results in competing model hypotheses, whose kinetic parameters may not be experimentally determinable. Discriminating among these alternatives and estimating their kinetic parameters is crucial to improve the understanding of the considered process, and to benefit from the analytical tools at hand. In this work we present a set-based framework that allows to discriminate between competing model hypotheses and to provide guaranteed outer estimates on the model parameters that are consistent with the (possibly sparse and uncertain) experimental measurements. This is obtained by means of exact proofs of model invalidity that exploit the polynomial/rational structure of biochemical reaction networks, and by making use of an efficient strategy to balance solution accuracy and computational effort. The practicability of our approach is illustrated with two case studies. The first study shows that our approach allows to conclusively rule out wrong model hypotheses. The second study focuses on parameter estimation, and shows that the proposed method allows to evaluate the global influence of measurement sparsity, uncertainty, and prior knowledge on the parameter estimates. This can help in designing further experiments leading to improved parameter estimates.

  3. The influence of Metisevit on biochemical and morphological indicators of blood of piglets under nitrate loading

    Directory of Open Access Journals (Sweden)

    B. Gutyj

    2017-07-01

    Full Text Available The article presents the results of research on the influence of the developed complex preparation Metisevit on the dynamics of morphological and biochemical blood indicators of piglets under nitrate loading. The research established that sodium nitrate intoxication causes disbalance of the physiological level of hematological indicators of the tested animals’ organisms. This was indicated by the manifestations of subclinical chronic nitrate-nitrite toxicosis: the increase in the level of nitrates, nitrites and methemoglobin in the blood. After prolonged feeding of the piglets with sodium nitrate at a dose of 0.3 g nitrate ion/kg, the concentration of nitrates and nitrites in the blood serum reached its maximum on the 60th day of the experiment. Also, the number of leukocytes and erythrocytes in the blood increased, and the activity of aspartate- and alanineaminotransferase in the blood serum increased. We rank the extent of liver intoxication with nitrates according to intensity of aminotransferase in the blood serum of the tested piglets. The normalization of morphological and biochemical blood indicators of piglets under nitrate-nitrite intoxication requires usage of a preparation which contains vitamins, zeolites and antioxidants. If the fodder contains high doses of nitrates, 1.0 mg/kg dose of Metisevit is added to the fodder for preventing subclinical nitrate-nitrite toxicosis. Metisevit contains the following agents: phenozan acid, methionine, zeolite, selenium, vitamins E and C. The research conducted proved the feasibility of using Metisevit for preventing chronic nitrate-nitrite toxicosis in piglets. This preparation caused a decrease in the concentration of nitrates, nitrites and in the level of methemoglobin in the blood of piglets. Usage of Metisevit on piglets showed normalization of the number of erythrocytes and hemoglobin in the blood on the 10th day, and normalization of ASAT and ALAT on 30th and 90th days. The mechanism of

  4. Network Performance Improvement under Epidemic Failures in Optical Transport Networks

    DEFF Research Database (Denmark)

    Fagertun, Anna Manolova; Ruepp, Sarah Renée

    2013-01-01

    In this paper we investigate epidemic failure spreading in large- scale GMPLS-controlled transport networks. By evaluating the effect of the epidemic failure spreading on the network, we design several strategies for cost-effective network performance improvement via differentiated repair times....... First we identify the most vulnerable and the most strategic nodes in the network. Then, via extensive simulations we show that strategic placement of resources for improved failure recovery has better performance than randomly assigning lower repair times among the network nodes. Our OPNET simulation...... model can be used during the network planning process for facilitating cost- effective network survivability design....

  5. Biochemical indicators of root damage in rice (Oryza sativa) genotypes under zinc deficiency stress.

    Science.gov (United States)

    Lee, Jae-Sung; Wissuwa, Matthias; Zamora, Oscar B; Ismail, Abdelbagi M

    2017-11-01

    Zn deficiency is one of the major soil constraints currently limiting rice production. Although recent studies demonstrated that higher antioxidant activity in leaf tissue effectively protects against Zn deficiency stress, little is known about whether similar tolerance mechanisms operate in root tissue. In this study we explored root-specific responses of different rice genotypes to Zn deficiency. Root solute leakage and biomass reduction, antioxidant activity, and metabolic changes were measured using plants grown in Zn-deficient soil and hydroponics. Solute leakage from roots was higher in sensitive genotypes and linked to membrane damage caused by Zn deficiency-induced oxidative stress. However, total root antioxidant activity was four-fold lower than in leaves and did not differ between sensitive and tolerant genotypes. Root metabolite analysis using gas chromatography-mass spectrometry and high performance liquid chromatography indicated that Zn deficiency triggered the accumulation of glycerol-3-phosphate and acetate in sensitive genotypes, while less or no accumulation was seen in tolerant genotypes. We suggest that these metabolites may serve as biochemical indicators of root damage under Zn deficiency.

  6. Bio-chemical remediation of under-ground water contaminated by uranium in-situ leaching

    International Nuclear Information System (INIS)

    Wang Qingliang; Li Qian; Zhang Hongcan; Hu Eming; Chen Yongbo

    2014-01-01

    In the process of uranium in-situ leaching, it was serious that strong acid, uranium and heavy metals, and SO_4"2"-, NO_3"- could contaminate underground water. To remedy these pollutants, conventional methods are high-cost and low-efficient, so a bio-chemical remediation method was proposed to cope with the under-ground water pollution in this study. The results showed, in the chemical treatment with Ca(OH)_2 neutralization, pH went up from 2.0 to 7.0, the removal rates of U, Mn"2"+, Zn"2"+, Pb"2"+, SO_4"2"-, NO_3"- were 91.5%, 78.3%, 85.1%, 100%, 71.4% and 2.6% respectively, SO_4"2"- and NO_3"- need to be treated again by bio-method. In the biological process, the Hydraulic Retention Time (HRT) of bioreactor was controlled at 42 h, and 100% NO_3"- and 70% SO_4"2"- in the contaminated water were removed; Acidithiobacillus ferrooxidans (A. f) liquid to H_2S showed better absorption effect, can fully meet the process requirements of H_2S removal. (authors)

  7. Biochemical and physiological characterization of three rice cultivars under different daytime temperature conditions

    Directory of Open Access Journals (Sweden)

    Alefsi David Sanchez-Reinoso

    2014-12-01

    Full Text Available Heat stress due to high daytime temperatures is one of the main limiting factors in rice (Oryza sativa L. yield in Colombia. Thus, the objective of the present research was to analyze the effect of three different daytime temperatures (25, 35, and 40 °C on the physiological responses of three Colombian rice cultivars (F60, F733, and F473, thereby contributing to the knowledge of rice acclimation mechanisms. For 10 d, eight plants of each of the three cultivars were subjected daily to 5 h periods of 35 and 40 °C. The control treatment corresponded to normal growth conditions (25 °C. Thermal stress was assessed based on a series of physiological and biochemical parameters. The 35 °C treatment produced photosynthetic and respiratory differences in all three cultivars. At 40 °C, 'F60' displayed the lowest photosynthetic rate and the highest respiratory rate. Although this cultivar experienced particularly strong electrolyte leakage and changes in proline when subjected to the high-temperature treatments, similar trends were observed in 'F733' and 'F473'. At 40 °C, the concentration of malondialdehyde (MDA was lower in 'F473' than in the other cultivars. These results may explain the poor agronomic performance of 'F60' in the field under daytime heat stress. The methodologies employed in the present work may be useful in Colombian rice breeding programs, particularly for the selection of heat-tolerant breeding stocks.

  8. Physiological and biochemical principles underlying volume-targeted therapy--the "Lund concept".

    Science.gov (United States)

    Nordström, Carl-Henrik

    2005-01-01

    The optimal therapy of sustained increase in intracranial pressure (ICP) remains controversial. The volume-targeted therapy ("Lund concept") discussed in this article focuses on the physiological volume regulation of the intracranial compartments. The balance between effective transcapillary hydrostatic and osmotic pressures constitutes the driving force for transcapillary fluid exchange. The low permeability for sodium and chloride combined with the high crystalloid osmotic pressure (approximately 5700 mmHg) on both sides of the blood-brain barrier (BBB) counteracts fluid exchange across the intact BBB. Additionally, variations in systemic blood pressure generally are not transmitted to these capillaries because cerebral intracapillary hydrostatic pressure (and blood flow) is physio-logically tightly autoregulated. Under pathophysiological conditions, the BBB may be partially disrupted. Transcapillary water exchange is then determined by the differences in hydrostatic and colloid osmotic pressure between the intra- and extracapillary compartments. Pressure autoregulation of cerebral blood flow is likely to be impaired in these conditions. A high cerebral perfusion pressure accordingly increases intracapillary hydrostatic pressure and leads to increased intracerebral water content and an increase in ICP. The volume-targeted "Lund concept" has been evaluated in experimental and clinical studies to examine the physiological and biochemical (utilizing intracerebral microdialysis) effects, and the clinical experiences have been favorable.

  9. Dynamics of Clinical and Biochemical Parameters in Patients with Liver Cirrhosis Under the Influence of Complex Therapy with Ursodeoxycholic Acid

    Directory of Open Access Journals (Sweden)

    M.I. Shved

    2013-11-01

    Full Text Available It was studied dynamics of clinical and biochemical parameters in patients with liver cirrhosis under the influence of complex treatment using ursosan. It is found that the inclusion of ursosan in complex treatment improves clinical and laboratory parameters, significantly reduces the manifestations of general inflammatory liver syndrome, which prevents the progression of the disease.

  10. Biochemical impacts of Hg in Mytilus galloprovincialis under present and predicted warming scenarios.

    Science.gov (United States)

    Coppola, Francesca; Almeida, Ângela; Henriques, Bruno; Soares, Amadeu M V M; Figueira, Etelvina; Pereira, Eduarda; Freitas, Rosa

    2017-12-01

    The interest in the consequences of climate change on the physiological and biochemical functioning of marine organisms is increasing, but the indirect and interactive effects resulting from warming on bioconcentration and responsiveness to pollutants are still poorly explored, particularly in terms of cellular responses. The present study investigated the impacts of Hg in Mytilus galloprovincialis under control (17°C) and warming (21°C) conditions, assessing mussels Hg bioconcentration capacity, metabolic and oxidative status after 14 and 28days of exposure. Results obtained showed greater impacts in mussels exposed for 28days in comparison to 14days of exposure. Furthermore, our findings revealed that the increase in temperature from 17 to 21°C reduced the bioconcentration of Hg by M. galloprovincialis, which may explain higher mortality rates at 17°C in comparison to 21°C. Lower Hg concentration at 21°C in mussels tissue may result from valves closure for longer periods, identified by reduced energy reserves consumption at higher temperature, which in turn might also contributed to higher oxidative stress in organisms exposed to this condition. The highest LPO levels observed in mussels exposed to higher temperatures alone indicate that warming conditions will greatly affect M. galloprovincialis. Furthermore, the present study showed that the impacts induced by the combination of Hg and warming were similar to the ones caused by increased temperature acting alone, mainly due to increased antioxidant defenses in organisms under combined effects of Hg and warming, suggesting that warming was the factor that mostly contributed to oxidative stress in mussels. Although higher mortality was observed in individuals exposed to 17°C and Hg compared to organisms exposed to Hg at 21°C, the oxidative stress induced at higher temperature may generate negative consequences on mussels reproductive and feeding capacity, growth and, consequently, on population

  11. The stochastic network dynamics underlying perceptual discrimination

    Directory of Open Access Journals (Sweden)

    Genis Prat-Ortega

    2015-04-01

    Full Text Available The brain is able to interpret streams of high-dimensional ambiguous information and yield coherent percepts. The mechanisms governing sensory integration have been extensively characterized using time-varying visual stimuli (Britten et al. 1996; Roitman and Shadlen 2002, but some of the basic principles regarding the network dynamics underlying this process remain largely unknown. We captured the basic features of a neural integrator using three canonical one-dimensional models: (1 the Drift Diffusion Model (DDM, (2 the Perfect Integrator (PI which is a particular case of the DDM where the bounds are set to infinity and (3 the double-well potential (DW which captures the dynamics of the attractor networks (Wang 2002; Roxin and Ledberg 2008. Although these models has been widely studied (Bogacz et al. 2006; Roxin and Ledberg 2008; Gold and Shadlen 2002, it has been difficult to experimentally discriminate among them because most of the observables measured are only quantitatively different among these models (e.g. psychometric curves. Here we aim to find experimentally measurable quantities that can yield qualitatively different behaviors depending on the nature of the underlying network dynamics. We examined the categorization dynamics of these models in response to fluctuating stimuli of different duration (T. On each time step, stimuli are drawn from a Gaussian distribution N(μ, σ and the two stimulus categories are defined by μ > 0 and μ < 0. Psychometric curves can therefore be obtained by quantifying the probability of the integrator to yield one category versus μ . We find however that varying σ can reveal more clearly the differences among the different integrators. In the small σ regime, both the DW and the DDM perform transient integration and exhibit a decaying stimulus reverse correlation kernel revealing a primacy effect (Nienborg and Cumming 2009; Wimmer et al. 2015 . In the large σ regime, the integration in the DDM

  12. Optimization of temporal networks under uncertainty

    CERN Document Server

    Wiesemann, Wolfram

    2012-01-01

    Many decision problems in Operations Research are defined on temporal networks, that is, workflows of time-consuming tasks whose processing order is constrained by precedence relations. For example, temporal networks are used to model projects, computer applications, digital circuits and production processes. Optimization problems arise in temporal networks when a decision maker wishes to determine a temporal arrangement of the tasks and/or a resource assignment that optimizes some network characteristic (e.g. the time required to complete all tasks). The parameters of these optimization probl

  13. Microbial and biochemical alterations due to storage of deep-sea sediments under ambient tropical conditions

    Digital Repository Service at National Institute of Oceanography (India)

    Das, A.; Fernandes, C.E.G.; Naik, S.S.; Mourya, B.S.; Sujith, P.P.; Sharma, R; LokaBharathi, P.A.

    -tight polythene containers. Changes in microbial and biochemical parameters were monitored once in every two months for a year. Bacterial counts and ATP decreased from ~108 to ~107 g-1 and ~103 to ~101 ng g-1 dry sediment respectively, within 8-10 months before...

  14. Biochemical principles underlying the stable maintenance of LTP by the CaMKII/NMDAR complex.

    Science.gov (United States)

    Lisman, John; Raghavachari, Sridhar

    2015-09-24

    Memory involves the storage of information at synapses by an LTP-like process. This information storage is synapse specific and can endure for years despite the turnover of all synaptic proteins. There must, therefore, be special principles that underlie the stability of LTP. Recent experimental results suggest that LTP is maintained by the complex of CaMKII with the NMDAR. Here we consider the specifics of the CaMKII/NMDAR molecular switch, with the goal of understanding the biochemical principles that underlie stable information storage by synapses. Consideration of a variety of experimental results suggests that multiple principles are involved. One switch requirement is to prevent spontaneous transitions from the off to the on state. The highly cooperative nature of CaMKII autophosphorylation by Ca(2+) (Hill coefficient of 8) and the fact that formation of the CaMKII/NMDAR complex requires release of CaMKII from actin are mechanisms that stabilize the off state. The stability of the on state depends critically on intersubunit autophosphorylation, a process that restores any loss of pT286 due to phosphatase activity. Intersubunit autophosphorylation is also important in explaining why on state stability is not compromised by protein turnover. Recent evidence suggests that turnover occurs by subunit exchange. Thus, stability could be achieved if a newly inserted unphosphorylated subunit was autophosphorylated by a neighboring subunit. Based on other recent work, we posit a novel mechanism that enhances the stability of the on state by protection of pT286 from phosphatases. We posit that the binding of the NMNDAR to CaMKII forces pT286 into the catalytic site of a neighboring subunit, thereby protecting pT286 from phosphatases. A final principle concerns the role of structural changes. The binding of CaMKII to the NMDAR may act as a tag to organize the binding of further proteins that produce the synapse enlargement that underlies late LTP. We argue that these

  15. Fruit development, pigmentation and biochemical properties of wax apple as affected by localized Application of GA3 under field conditions

    OpenAIRE

    Khandaker, Mohammad Moneruzzaman; Boyce, Amru Nasrulhaq; Osman, Normaniza; Golam, Faruq; Rahman, M. Motior; Sofian-Azirun, M.

    2013-01-01

    This study investigated the effects of gibberellin (GA3) on the fruit development, pigmentation and biochemical properties of wax apple. The wax apple trees were rubbing treated with 0, 20, 50 and 100 mgGA3/l under field conditions. The localized application (rubbing) of 50 mg GA3/l significantly increased the fruit set, fruit length and diameter, color development, weight and yieldcompared to the control. In addition, GA3 treatments significantly reduced the fruit drop. With regard to the fr...

  16. Robustness Analysis of Real Network Topologies Under Multiple Failure Scenarios

    DEFF Research Database (Denmark)

    Manzano, M.; Marzo, J. L.; Calle, E.

    2012-01-01

    on topological characteristics. Recently approaches also consider the services supported by such networks. In this paper we carry out a robustness analysis of five real backbone telecommunication networks under defined multiple failure scenarios, taking into account the consequences of the loss of established......Nowadays the ubiquity of telecommunication networks, which underpin and fulfill key aspects of modern day living, is taken for granted. Significant large-scale failures have occurred in the last years affecting telecommunication networks. Traditionally, network robustness analysis has been focused...... connections. Results show which networks are more robust in response to a specific type of failure....

  17. Network conditioning under conflicting goals: Accident causation

    International Nuclear Information System (INIS)

    Jouse, W.C.

    1992-01-01

    Networks based on the Barto-Sutton architecture (BSA) of neural-like elements have an information-processing structure that is analogous to the cognitive structure of a human. Given a set of explicitly stated rules of conduct, such networks develop a set of skills that is capable of satisfying the rules. In this sense, the network acts as a translator of rules into skill-based behavior. The BSA acquires its skills through casual, correlation-based scheduling. Stated briefly, it first constructs an internal representation, or model, of the rules of conduct, and then uses the model to correct deficiencies in its skill. It learns in a manner that closely resembles classical conditioning, shifting the onset of signals associated with unconditioned stimuli forward in time to coincide with the onset of conditioning stimuli. The low-level positive reinforcement the network receives from enhancing its operational efficiency is immediate and direct. In the absence of countervailing influences, this continuous pressure is sufficient to discount the recollection of past failures and leads to accidents with a predictable regularity

  18. Video interpretability rating scale under network impairments

    Science.gov (United States)

    Kreitmair, Thomas; Coman, Cristian

    2014-01-01

    This paper presents the results of a study of the impact of network transmission channel parameters on the quality of streaming video data. A common practice for estimating the interpretability of video information is to use the Motion Imagery Quality Equation (MIQE). MIQE combines a few technical features of video images (such as: ground sampling distance, relative edge response, modulation transfer function, gain and signal-to-noise ratio) to estimate the interpretability level. One observation of this study is that the MIQE does not fully account for video-specific parameters such as spatial and temporal encoding, which are relevant to appreciating degradations caused by the streaming process. In streaming applications the main artifacts impacting the interpretability level are related to distortions in the image caused by lossy decompression of video data (due to loss of information and in some cases lossy re-encoding by the streaming server). One parameter in MIQE that is influenced by network transmission errors is the Relative Edge Response (RER). The automated calculation of RER includes the selection of the best edge in the frame, which in case of network errors may be incorrectly associated with a blocked region (e.g. low resolution areas caused by loss of information). A solution is discussed in this document to address this inconsistency by removing corrupted regions from the image analysis process. Furthermore, a recommendation is made on how to account for network impairments in the MIQE, such that a more realistic interpretability level is estimated in case of streaming applications.

  19. Biochemical and morphological changes in rat lung tissue under the influence of external ionizing radiation

    International Nuclear Information System (INIS)

    Uzlenkova, N.Je.; Mamotyuk, Je.M.; Gusakova, V.A.; Kononenko, O.K.

    2006-01-01

    Single external x-ray exposure at minimum and mean lethal doses was established to cause a long activation of biochemical processes in the connective tissue of the rat lungs. Morphological and ultrastructure changes in the tissue of the lungs at early terms after x-ray and gamma-radiation exposure were due to development of destructive and degenerative reactions. The long-term changes were characterized by growth of connective tissue and formation of areas of fibrous changes in the structure of the lungs

  20. Antagonistic neural networks underlying differentiated leadership roles

    Science.gov (United States)

    Boyatzis, Richard E.; Rochford, Kylie; Jack, Anthony I.

    2014-01-01

    The emergence of two distinct leadership roles, the task leader and the socio-emotional leader, has been documented in the leadership literature since the 1950s. Recent research in neuroscience suggests that the division between task-oriented and socio-emotional-oriented roles derives from a fundamental feature of our neurobiology: an antagonistic relationship between two large-scale cortical networks – the task-positive network (TPN) and the default mode network (DMN). Neural activity in TPN tends to inhibit activity in the DMN, and vice versa. The TPN is important for problem solving, focusing of attention, making decisions, and control of action. The DMN plays a central role in emotional self-awareness, social cognition, and ethical decision making. It is also strongly linked to creativity and openness to new ideas. Because activation of the TPN tends to suppress activity in the DMN, an over-emphasis on task-oriented leadership may prove deleterious to social and emotional aspects of leadership. Similarly, an overemphasis on the DMN would result in difficulty focusing attention, making decisions, and solving known problems. In this paper, we will review major streams of theory and research on leadership roles in the context of recent findings from neuroscience and psychology. We conclude by suggesting that emerging research challenges the assumption that role differentiation is both natural and necessary, in particular when openness to new ideas, people, emotions, and ethical concerns are important to success. PMID:24624074

  1. Antagonistic Neural Networks Underlying Differentiated Leadership Roles

    Directory of Open Access Journals (Sweden)

    Richard Eleftherios Boyatzis

    2014-03-01

    Full Text Available The emergence of two distinct leadership roles, the task leader and the socio-emotional leader, has been documented in the leadership literature since the 1950’s. Recent research in neuroscience suggests that the division between task oriented and socio-emotional oriented roles derives from a fundamental feature of our neurobiology: an antagonistic relationship between two large-scale cortical networks -- the Task Positive Network (TPN and the Default Mode Network (DMN. Neural activity in TPN tends to inhibit activity in the DMN, and vice versa. The TPN is important for problem solving, focusing of attention, making decisions, and control of action. The DMN plays a central role in emotional self-awareness, social cognition, and ethical decision making. It is also strongly linked to creativity and openness to new ideas. Because activation of the TPN tends to suppress activity in the DMN, an over-emphasis on task oriented leadership may prove deleterious to social and emotional aspects of leadership. Similarly, an overemphasis on the DMN would result in difficulty focusing attention, making decisions and solving known problems. In this paper, we will review major streams of theory and research on leadership roles in the context of recent findings from neuroscience and psychology. We conclude by suggesting that emerging research challenges the assumption that role differentiation is both natural and necessary, in particular when openness to new ideas, people, emotions, and ethical concerns are important to success.

  2. Antagonistic neural networks underlying differentiated leadership roles.

    Science.gov (United States)

    Boyatzis, Richard E; Rochford, Kylie; Jack, Anthony I

    2014-01-01

    The emergence of two distinct leadership roles, the task leader and the socio-emotional leader, has been documented in the leadership literature since the 1950s. Recent research in neuroscience suggests that the division between task-oriented and socio-emotional-oriented roles derives from a fundamental feature of our neurobiology: an antagonistic relationship between two large-scale cortical networks - the task-positive network (TPN) and the default mode network (DMN). Neural activity in TPN tends to inhibit activity in the DMN, and vice versa. The TPN is important for problem solving, focusing of attention, making decisions, and control of action. The DMN plays a central role in emotional self-awareness, social cognition, and ethical decision making. It is also strongly linked to creativity and openness to new ideas. Because activation of the TPN tends to suppress activity in the DMN, an over-emphasis on task-oriented leadership may prove deleterious to social and emotional aspects of leadership. Similarly, an overemphasis on the DMN would result in difficulty focusing attention, making decisions, and solving known problems. In this paper, we will review major streams of theory and research on leadership roles in the context of recent findings from neuroscience and psychology. We conclude by suggesting that emerging research challenges the assumption that role differentiation is both natural and necessary, in particular when openness to new ideas, people, emotions, and ethical concerns are important to success.

  3. [Simulation of vegetation indices optimizing under retrieval of vegetation biochemical parameters based on PROSPECT + SAIL model].

    Science.gov (United States)

    Wu, Ling; Liu, Xiang-Nan; Zhou, Bo-Tian; Liu, Chuan-Hao; Li, Lu-Feng

    2012-12-01

    This study analyzed the sensitivities of three vegetation biochemical parameters [chlorophyll content (Cab), leaf water content (Cw), and leaf area index (LAI)] to the changes of canopy reflectance, with the effects of each parameter on the wavelength regions of canopy reflectance considered, and selected three vegetation indices as the optimization comparison targets of cost function. Then, the Cab, Cw, and LAI were estimated, based on the particle swarm optimization algorithm and PROSPECT + SAIL model. The results showed that retrieval efficiency with vegetation indices as the optimization comparison targets of cost function was better than that with all spectral reflectance. The correlation coefficients (R2) between the measured and estimated values of Cab, Cw, and LAI were 90.8%, 95.7%, and 99.7%, and the root mean square errors of Cab, Cw, and LAI were 4.73 microg x cm(-2), 0.001 g x cm(-2), and 0.08, respectively. It was suggested that to adopt vegetation indices as the optimization comparison targets of cost function could effectively improve the efficiency and precision of the retrieval of biochemical parameters based on PROSPECT + SAIL model.

  4. Robustness analysis of interdependent networks under multiple-attacking strategies

    Science.gov (United States)

    Gao, Yan-Li; Chen, Shi-Ming; Nie, Sen; Ma, Fei; Guan, Jun-Jie

    2018-04-01

    The robustness of complex networks under attacks largely depends on the structure of a network and the nature of the attacks. Previous research on interdependent networks has focused on two types of initial attack: random attack and degree-based targeted attack. In this paper, a deliberate attack function is proposed, where six kinds of deliberate attacking strategies can be derived by adjusting the tunable parameters. Moreover, the robustness of four types of interdependent networks (BA-BA, ER-ER, BA-ER and ER-BA) with different coupling modes (random, positive and negative correlation) is evaluated under different attacking strategies. Interesting conclusions could be obtained. It can be found that the positive coupling mode can make the vulnerability of the interdependent network to be absolutely dependent on the most vulnerable sub-network under deliberate attacks, whereas random and negative coupling modes make the vulnerability of interdependent network to be mainly dependent on the being attacked sub-network. The robustness of interdependent network will be enhanced with the degree-degree correlation coefficient varying from positive to negative. Therefore, The negative coupling mode is relatively more optimal than others, which can substantially improve the robustness of the ER-ER network and ER-BA network. In terms of the attacking strategies on interdependent networks, the degree information of node is more valuable than the betweenness. In addition, we found a more efficient attacking strategy for each coupled interdependent network and proposed the corresponding protection strategy for suppressing cascading failure. Our results can be very useful for safety design and protection of interdependent networks.

  5. Effects of pulsed magnetic field treatment of soybean seeds on calli growth, cell damage, and biochemical changes under salt stress.

    Science.gov (United States)

    Radhakrishnan, Ramalingam; Leelapriya, Thasari; Kumari, Bollipo Diana Ranjitha

    2012-12-01

    The effects of magnetic field (MF) treatments of soybean seeds on calli growth, cell damage, and biochemical changes under salt stress were investigated under controlled conditions. Soybean seeds were exposed to a 1.0 Hz sinusoidal uniform pulsed magnetic field (PMF) of 1.5 µT for 5 h/day for 20 days. Non-treated seeds were considered as controls. For callus regeneration, the embryonic axis explants were taken from seeds and inoculated in a saline medium with a concentration of 10 mM NaCl for calli growth analysis and biochemical changes. The combined treatment of MF and salt stress was found to significantly increase calli fresh weight, total soluble sugar, total protein, and total phenol contents, but it decreased the ascorbic acid, lipid peroxidation, and catalase activity of calli from magnetically exposed seeds compared to the control calli. PMF treatment significantly improved calli tolerance to salt stress in terms of an increase in flavonoid, flavone, flavonole, alkaloid, saponin, total polyphenol, genistein, and daidzein contents under salt stress. The results suggest that PMF treatment of soybean seeds has the potential to counteract the adverse effects of salt stress on calli growth by improving primary and secondary metabolites under salt stress conditions. Copyright © 2012 Wiley Periodicals, Inc.

  6. Biochemical and seminal parameters of lambs fed palm kernel cake under grazing system

    Directory of Open Access Journals (Sweden)

    Lopes César Mugabe

    Full Text Available ABSTRACT This study aimed to assess the effects of palm kernel cake on semen quality and biochemical parameters of Santa Inês lambs. A total of 40 animals with 24.10±2.72 kg body weight and five months old were assigned in a completely randomized design into four groups and 10 replicates. The animals were subjected to four levels of palm kernel cake (0, 15, 30, and 45% based on dry matter. The trial lasted 90 days foregone by 15 days for adaptation. Blood samples were collected every 45 days from jugular vein using vacuum tubes without anticoagulant. Total serum cholesterol, triglycerides, high-density lipoprotein, low-density lipoprotein, and very-low-density lipoprotein were assessed. Once the animals reached puberty at a mean age of 225 days, the semen samples were collected by electroejaculator once a week for three sequence weeks and assessed for volume, color, aspect, wave motion, motility, sperm concentration, sperm vigor, total of spermatozoa per ejaculate, viable spermatozoa per mL, and sperm morphology. The data were subjected to analysis of variance and followed by regression analysis. Non-parametric data were analysed by Kruskal-Wallis test. Total cholesterol, high-density lipoprotein, triglycerides, and very-low-density lipoprotein were linearly increased. There was no difference for low-density lipoprotein. Diets did not affect mass motility, sperm motility, vigor, total spermatozoa per ejaculate, viability sperm per mL, and minor and total sperm defects. Sperm concentration increased linearly. Negative quadratic effects were observed for major sperm defects. Supplementation of diets with palm kernel cake up to 45% on dry matter enhance biochemical parameters and do not impair the qualitative variables of lamb sperm.

  7. Line and lattice networks under deterministic interference models

    NARCIS (Netherlands)

    Goseling, Jasper; Gastpar, Michael; Weber, Jos H.

    Capacity bounds are compared for four different deterministic models of wireless networks, representing four different ways of handling broadcast and superposition in the physical layer. In particular, the transport capacity under a multiple unicast traffic pattern is studied for a 1-D network of

  8. Asymptotic stability of a genetic network under impulsive control

    International Nuclear Information System (INIS)

    Li Fangfei; Sun Jitao

    2010-01-01

    The study of the stability of genetic network is an important motif for the understanding of the living organism at both molecular and cellular levels. In this Letter, we provide a theoretical method for analyzing the asymptotic stability of a genetic network under impulsive control. And the sufficient conditions of its asymptotic stability under impulsive control are obtained. Finally, an example is given to illustrate the effectiveness of the obtained method.

  9. Dynamic Modeling of Cell-Free Biochemical Networks Using Effective Kinetic Models

    Science.gov (United States)

    2015-03-03

    based whole-cell models of E. coli [6]. Conversely , highly abstracted kinetic frameworks, such as the cybernetic framework, represented a paradigm shift...metabolic objective function has been the optimization of biomass formation [18], although other metabolic objectives have also been estimated [19...experimental data. Toward these questions, we explored five hypothetical cell-free networks. Each network shared the same enzymatic connectivity, but

  10. Hematological and biochemical changes in rabbits exposed to castor oil (Ricinus communis under experimental conditions

    Directory of Open Access Journals (Sweden)

    Sahar M. Ahmed

    2017-11-01

    Full Text Available In the last few decades there has been an exponential growth in the field of herbal medicine. One such medicinal plant is Ricinus communis (Euphorbiaceae, which is commonly known as castor. All parts of the plant are important phloem, bark, leaves, flowers, seed and oil. The study was conducted on 15 mature rabbitsof either sex of 1-2 kg body weight and 1-2 years old. The animals were divided into three groups of 5 animals each. Animals of group I were exposed orally to ricin extract at a dose rate of 0.5 mg /kg b.wt. daily for 14 days, while those of group II were exposed orally to aqueous leaves extract 0.5mg /kg b.wt daily for 14 day, mean while those of group III were left as a control group not exposed. The dependent parameters in the study were hemoglobin (Hb concentration, total erythrocytes count, packed cells volume (PCV%, erythrocytes indices mean corpuscular volume (MCV, mean corpuscular hemoglobin (MCH, mean corpuscular hemoglobin concentration (MCHC, Total and differential leucocytes count (TLC and DLC, in addition to some biochemical tests of blood serum which obtained at day 14th post exposure. The results of the study were revealed that the ricin extract and leaf extract exhibited an effects on hematological pictures as the erythrocytes counts, erythrocytes indices, Hb concentration and PCV% decreased and the obvious effects were in the 14th day. Ricin extract was less effects on many dependent parameters in comparison with aqueous leaf extract. Total leucocytes count, neutrophils % was increased in both ricin and leaf extract, and the increasing were higher in the 7th day in Ricin extract group. The lymphocytes% was decreased. While monocytes, eosinophils, and basophils % did not show any significant changes in all groups. Neutrophil /lymphocyte (N/l, and monocyte /lymphocyte (M/l increased in both exposed groups. Cholesterol (Chol, Triglyceride (TGwere increased, while total protein (TPwas decreased, Albumin (Alb, Cortisol

  11. Effect of Salicylic acid on some Growth and Biochemical Parameters of Wheat and Maize Plants under Salt Stress in Vitro

    Directory of Open Access Journals (Sweden)

    Z. Dashagha

    2014-04-01

    Full Text Available In this study, the difference between the resistance of wheat plants (c3 and maize (c4 the salinity was investigated. Research on environmental stresses (Hakimi, 2008 show thatstresses are considered as Limiting factors in crop production.and some phenolic compounds such as salicylic acid are used to improve or alleviate the negative effects of stress. In this study, plants were grown in plastic pots and the plants treated with salicylic acid, after two weeks and seven days later salinity was exerted.The effect of salinity treatmenton both plants, for some morphological and biochemical characteristics were studied. In biochemical tests, lipid peroxidation under salinity and salicylic acid treatments has increased for weat which represents the effect of salinity on the plant and the activetion of the defense mechanism, Howweverthese factors have reduced formaize. Moreover, the increase in total chlorophyll and flavonoids in wheatchlorophyll in wheat and maize shows the role of these pigments in quenching hydrogen peroxide and other active Oxygen types. This increases has not been concideralle in maize. The effect of treatment on the weight of … and root of both plants differed under the investigated concentration.

  12. Vulnerability of complex networks under intentional attack with incomplete information

    International Nuclear Information System (INIS)

    Wu, J; Deng, H Z; Tan, Y J; Zhu, D Z

    2007-01-01

    We study the vulnerability of complex networks under intentional attack with incomplete information, which means that one can only preferentially attack the most important nodes among a local region of a network. The known random failure and the intentional attack are two extreme cases of our study. Using the generating function method, we derive the exact value of the critical removal fraction f c of nodes for the disintegration of networks and the size of the giant component. To validate our model and method, we perform simulations of intentional attack with incomplete information in scale-free networks. We show that the attack information has an important effect on the vulnerability of scale-free networks. We also demonstrate that hiding a fraction of the nodes information is a cost-efficient strategy for enhancing the robustness of complex networks

  13. Multistage Logistic Network Optimization under Disruption Risk

    OpenAIRE

    Rusman, Muhammad

    2013-01-01

    Getting over disruptions risk has been a challenging issue for many companies under the globalization that will link to potential external source such as demand uncertainties, natural disasters, and terrorist attacks. The disruption is an unexpected event that disturbs normal flows of products and materials within a supply chain. The disruption at one members of supply chain will propagate the offers and finally affect significant impacts on the entire chain. If we look back...

  14. Soil biochemical properties of grassland ecosystems under anthropogenic emission of nitrogen compounds

    Science.gov (United States)

    Kudrevatykh, Irina; Ivashchenko, Kristina; Ananyeva, Nadezhda

    2016-04-01

    Inflow of pollutants in terrestrial ecosystems nowadays increases dramatically, that might be led to disturbance of natural biogeochemical cycles and landscapes structure. Production of nitrogen fertilizers is one of the air pollution sources, namely by nitrogen compounds (NH4+, NO3-, NO2-). Air pollution by nitrogen compounds of terrestrial ecosystems might be affected on soil biochemical properties, which results increasing mineral nitrogen content in soil, changing soil P/N and Al/Ca ratios, and, finally, the deterioration of soil microbial community functioning. The research is focused on the assessment of anthropogenic emission of nitrogen compounds on soil properties of grassland ecosystems in European Russia. Soil samples (Voronic Chernozem Pachic, upper 10 cm mineral layer, totally 10) were taken from grassland ecosystem: near (5-10 m) nitrogen fertilizer factory (NFF), and far from it (20-30 km, served as a control) in Tula region. In soil samples the NH4+ and NO3- (Kudeyarov's photocolorimetric method), P, Ca, Al (X-ray fluorescence method) contents were measured. Soil microbial biomass carbon (Cmic) was analyzed by substrate-induced respiration method. Soil microbial respiration (MR) was assessed by CO2 rate production. Soil microbial metabolic quotient (qCO2) was calculated as MR/Cmic ratio. Near NFF the soil ammonium and nitrate nitrogen contents were a strongly varied, variation coefficient (CV) was 42 and 86This study was supported by Russian Foundation of Basic Research Grant No. 14-04-00098, 15-44-03220, 15-04-00915.

  15. Some biochemical and hematological changes in female rats under protein malnutrition

    International Nuclear Information System (INIS)

    EL-Sherbiny, E.M.; El-Mahdy, A.A.; Bayoumi, M.M.

    2006-01-01

    The aim of this study was to clarify the effect of low and high dietary protein on some biochemical and hematological parameters in blood of female albino rats. A total number of 75 albino female rats were equally divided into 3 groups, the first group was fed 20% protein diet and served as control and the second and third groups were fed 5% and 65% protein for 5 weeks and served as low and high protein dietary groups, respectively. The results showed high significant decreases in serum growth hormone, ferritin levels and iron concentration in group II and there was significant increase in unsaturated iron binding capacity (UIBC) in group III, compared to control group. Studies of total protein and its fractions revealed high significant decreases in total protein, albumin, alpha-1-globulin, beta-globulin as well as gamma globulin in group II and significant increases in total protein, alpha-1- globulin, beta-globulin and gamma-globulin in group III, compared to normal control group. The hematological investigations in group II revealed significant decreases in hemoglobin value, total leukocyte count, platelets, mean corpuscular hemoglobin concentration (MCHC), erythrocytic count and mean corpuscular volume (MCV). On the other hand, there was significant increase in total leukocyte count in group III if compared to control group

  16. Biochemical and Hematological Profiles of Common Carp (Cyprinus Carpio under Sublethal Effects of Trivalent Chromium

    Directory of Open Access Journals (Sweden)

    Zeynab Abedi

    2016-07-01

    Full Text Available Background: In natural waters and/or aquaculture facilities, fish are often exposed to chromium waste and demonstrate cumulative deleterious effects. To our knowledge, there are no studies concerning the effects of trivalent Cr on C. carpio hematology. This study presents hematological and some biochemical parameters of common carp, Cyprinus carpio, affected by sublethal concentration of trivalent chromium. Methods: The fish in the experimental aquaria (three replicates each were exposed to a sublethal chromium chloride concentration of 2 mg L−1, which was prepared as stock solution and added depending on the volume of the aquaria to obtain the required concentration. After a period of 28 days, parameters such as hematocrit (Hct, hemoglobin (Hb, lymphocytes (Lym, neutrophils (Neu, total protein (TP, albumin, immunoglobulin M (IgM, glucose, red and white blood cells (RBC and WBC, mean corpuscular volume (MCV, mean corpuscular hemoglobin (MCH, and mean corpuscular hemoglobin concentration (MCHC were examined. Results: Chromium exposure for 28 days significantly (P0.05 between the Cr-exposed fish and the control. Conclusion: Hematological indices of fish, caused by chromium toxicity to C. carpio, can be secondary responses to toxicants, including exposure to low concentrations of heavy metals, which reflect the launch of stress reaction in the affected fish.

  17. Soil biochemical properties and microbial resilience in agroforestry systems: effects on wheat growth under controlled drought and flooding conditions.

    Science.gov (United States)

    Rivest, David; Lorente, Miren; Olivier, Alain; Messier, Christian

    2013-10-01

    Agroforestry is increasingly viewed as an effective means of maintaining or even increasing crop and tree productivity under climate change while promoting other ecosystem functions and services. This study focused on soil biochemical properties and resilience following disturbance within agroforestry and conventional agricultural systems and aimed to determine whether soil differences in terms of these biochemical properties and resilience would subsequently affect crop productivity under extreme soil water conditions. Two research sites that had been established on agricultural land were selected for this study. The first site included an 18-year-old windbreak, while the second site consisted in an 8-year-old tree-based intercropping system. In each site, soil samples were used for the determination of soil nutrient availability, microbial dynamics and microbial resilience to different wetting-drying perturbations and for a greenhouse pot experiment with wheat. Drying and flooding were selected as water stress treatments and compared to a control. These treatments were initiated at the beginning of the wheat anthesis period and maintained over 10 days. Trees contributed to increase soil nutrient pools, as evidenced by the higher extractable-P (both sites), and the higher total N and mineralizable N (tree-based intercropping site) found in the agroforestry compared to the conventional agricultural system. Metabolic quotient (qCO2) was lower in the agroforestry than in the conventional agricultural system, suggesting higher microbial substrate use efficiency in agroforestry systems. Microbial resilience was higher in the agroforestry soils compared to soils from the conventional agricultural system (windbreak site only). At the windbreak site, wheat growing in soils from agroforestry system exhibited higher aboveground biomass and number of grains per spike than in conventional agricultural system soils in the three water stress treatments. At the tree

  18. Analysis of Network Topologies Underlying Ethylene Growth Response Kinetics.

    Science.gov (United States)

    Prescott, Aaron M; McCollough, Forest W; Eldreth, Bryan L; Binder, Brad M; Abel, Steven M

    2016-01-01

    Most models for ethylene signaling involve a linear pathway. However, measurements of seedling growth kinetics when ethylene is applied and removed have resulted in more complex network models that include coherent feedforward, negative feedback, and positive feedback motifs. The dynamical responses of the proposed networks have not been explored in a quantitative manner. Here, we explore (i) whether any of the proposed models are capable of producing growth-response behaviors consistent with experimental observations and (ii) what mechanistic roles various parts of the network topologies play in ethylene signaling. To address this, we used computational methods to explore two general network topologies: The first contains a coherent feedforward loop that inhibits growth and a negative feedback from growth onto itself (CFF/NFB). In the second, ethylene promotes the cleavage of EIN2, with the product of the cleavage inhibiting growth and promoting the production of EIN2 through a positive feedback loop (PFB). Since few network parameters for ethylene signaling are known in detail, we used an evolutionary algorithm to explore sets of parameters that produce behaviors similar to experimental growth response kinetics of both wildtype and mutant seedlings. We generated a library of parameter sets by independently running the evolutionary algorithm many times. Both network topologies produce behavior consistent with experimental observations, and analysis of the parameter sets allows us to identify important network interactions and parameter constraints. We additionally screened these parameter sets for growth recovery in the presence of sub-saturating ethylene doses, which is an experimentally-observed property that emerges in some of the evolved parameter sets. Finally, we probed simplified networks maintaining key features of the CFF/NFB and PFB topologies. From this, we verified observations drawn from the larger networks about mechanisms underlying ethylene

  19. Analysis of Network Topologies Underlying Ethylene Growth Response Kinetics

    Directory of Open Access Journals (Sweden)

    Aaron M. Prescott

    2016-08-01

    underlying ethylene signaling. Analysis of each network topology results in predictions about changes that occur in network components that can be experimentally tested to give insights into which, if either, network underlies ethylene responses.

  20. Physiological and biochemical responses of Salix integra Thunb. under copper stress as affected by soil flooding.

    Science.gov (United States)

    Cao, Yini; Ma, Chuanxin; Chen, Guangcai; Zhang, Jianfeng; Xing, Baoshan

    2017-06-01

    To explore the joint effect of copper (Cu) and flooding on Salix integra Thunb. (S. integra), the physiological and biochemical parameters of the seedlings grown in Cu amended soil (50, 150, 450 mg kg -1 ) with or without the flooding for 60 days were evaluated. The results suggested that the flooding significantly inhibited the root growth in terms of root length and root tips. The Cu exposures of 50 and 150 mg kg -1 notably enhanced the root growth as compared to the control. Majority of Cu was accumulated in S. integra roots, while flooding significantly reduced the Cu content, except the 150 mg kg -1 Cu treatment, but the iron (Fe) and manganese (Mn) content on the root surface were both markedly increased relative to non-flooded control. The malonaldehyde (MDA) and glutathione (GSH) contents in leaves showed a dose-response upon Cu exposure. Soil flooding enhanced the GSH level, which displayed 4.50-49.59% increases compared to its respective non-flooded treatment, while no difference was evident on MDA contents between the flooding and the non-flooded treatments. Both superoxide dismutase (SOD) and peroxidase (POD) activities were boosted while the catalase (CAT) was suppressed with increasing Cu exposure dose, and soil flooding reduced the POD and CAT activities. The elevated Cu level caused the evident increases of root calcium (Ca), potassium (K), and sulfur (S) concentrations and decreases of root phosphorus (P), sodium (Na), and zinc (Zn) concentrations. Soil flooding increased the concentrations of Fe, S, Na, Ca, and magnesium (Mg) in S. integra root. Taken together, our results suggested S. integra has high tolerance to the joint stress from Cu and flooding. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Biochemical parameters in the blood of grass snakes (Natrix natrix in ecosystems under varying degrees of anthropogenic influence

    Directory of Open Access Journals (Sweden)

    V. Y. Gasso

    2016-09-01

    Full Text Available The grass snake Natrix natrix (Linnaeus, 1758 is a partly hygrophilous species, distributed throughoutUkraine. This snake may be considered as a test object for environmental biomonitoring. Modern biochemical methods make it possible to obtain new scientific data on the effects of anthropogenic pressure on reptiles. Blood is a sensitive and informative indicator of the condition of an organism as it responds quickly to most changes in exogenous and endogenous factors, and reflects negative influences on both individual and, indirectly, populations. Changes in biochemical parameters may be used as biomarkers of the state of health of reptiles in ecosystems under varying degrees of anthropogenic pressure. Due the increase in anthropogenic influence the development and introduction of new methods of perceptual research, collection of up-to-date information and development of a database of reptile biochemical parameters have become an urgent priority. We collected mature individuals of the grass snake in floodplain ecosystems on the right bank of the Dnieper River in Dnipropetrovsk city. Grass snakes from floodplain habitats on the left bank of theSamaraRiver (O.L. Belgard Prysamarskii International Biosphere Station, Novomoskovsk district, Dnipropetrovsk province were studied as the control specimens. Our study demonstrated statistically significant differences between snakes from the study sites in the amount of albumin, urea and urea nitrogen, and inorganic phosphorus, as well as in alanine aminotransferase (ALT and alkaline phosphatise (AP activity. The amount of albumin in the blood serum of specimens from the anthropogenically transformed areas was significantly lower (by 25% than in that of the snakes caught in the control habitats. Decrease of the albumin concentration usually indicates abnormal processes in the kidneys and liver. According to the changes observed in the concentration of albumin, a corresponding increase in the albumin to

  2. Effect of Dietary Supplementation of Curcuma Longa on the Biochemical Profile and Meat Characteristics of Broiler Rabbits under Summer Stress

    Directory of Open Access Journals (Sweden)

    Basavaraj

    2011-02-01

    Full Text Available Eighteen four week’s old weaned broiler rabbits of comparable body weights were allotted to three dietary treatment groups of six rabbits in each group namely T0 (basal control diet, T1 (basal diet added with turmeric rhizome powder, TRP, at the ratio of 150mgand T2 (basal diet added with TRP at the ratio of 300mg/100g diet. Different hematological and serum biochemical parameters such as packed cell volume, Hemoglobin, total erythrocyte count and total leukocyte count and serum total protein, albumin, cholesterol, alkaline phosphatase, alanine transaminase and aspartate transaminase due to the dietary inclusion of turmeric powder rhizome supplementation at 0, 0.15 and 0.30 percent did not show significant difference between the treatment groups. Carcass parameters and chemical composition of meat were closer to the standard values. The results of the study indicated no beneficial effect of dietary inclusion of turmeric (Curcuma longa rhizome powder at 0, 0.15 and 0.30 per cent on blood biochemical and meat characteristics of broiler rabbits reared under summer stress [Veterinary World 2011; 4(1.000: 15-18

  3. Influence of season and sex on hemato-biochemical traits in adult turkeys under arid tropical environment

    Directory of Open Access Journals (Sweden)

    Anil Gattani

    2016-05-01

    Full Text Available Aim: The objective of this study was to evaluate the effect of season and sex on hemato-biochemical parameters of turkey (Meleagris gallopavo in the arid tropical environment. Materials and Methods: The experiment was conducted on 20-week old turkeys consisting of 20 males and 20 females. Blood was collected from all turkeys during January and May. Hemoglobin (Hb, red blood cell (RBC, packed cell volume (PCV, mean corpuscular volume (MCV, mean corpuscular hemoglobin (MCH, and mean corpuscular hemoglobin concentration (MCHC were estimated in whole blood and glucose, protein, albumin, globulin, A/G ratio, calcium, phosphorus, alanine aminotransferase (ALT, and aspartate aminotransferase (AST in serum. Result: Season has significant (p<0.05 effect on Hb concentration, RBC, and PCV in both male and female. Male has significantly higher (p<0.05 Hb concentration, RBC, and PCV. There is no significant effect of sex, and season was observed on MCV, MCH, and MCHC. Glucose, protein, albumin, globulin, and A/G ratio were significantly (p<0.05 affected by season and sex. AST and ALT were significantly (p<0.05 affected by season in both sexes. There is no significant difference was recorded on calcium, phosphorus due to season and sex. Conclusion: Under arid tropical environment, turkey hemato-biochemical parameters are influenced by both sex and season.

  4. Energy network dispatch optimization under emergency of local energy shortage

    International Nuclear Information System (INIS)

    Cai, Tianxing; Zhao, Chuanyu; Xu, Qiang

    2012-01-01

    The consequence of short-time energy shortage under extreme conditions, such as earthquake, tsunami, and hurricane, may cause local areas to suffer from delayed rescues, widespread power outages, tremendous economic losses, and even public safety threats. In such urgent events of local energy shortage, agile energy dispatching through an effective energy transportation network, targeting the minimum energy recovery time, should be a top priority. In this paper, a novel methodology is developed for energy network dispatch optimization under emergency of local energy shortage, which includes four stages of work. First, emergency-area-centered energy network needs to be characterized, where the capacity, quantity, and availability of various energy sources are determined. Second, the energy initial situation under emergency conditions needs to be identified. Then, the energy dispatch optimization is conducted based on a developed MILP (mixed-integer linear programming) model in the third stage. Finally, the sensitivity of the minimum dispatch time with respect to uncertainty parameters is characterized by partitioning the entire space of uncertainty parameters into multiple subspaces. The efficacy of the developed methodology is demonstrated via a case study with in-depth discussions. -- Highlights: ► Address the energy network dispatch problem under emergency of local energy shortage. ► Minimize the energy restoration time for the entire energy network under emergency events. ► Develop a new MILP model and a sensitivity analysis method with respect to uncertainties.

  5. Trade networks evolution under the conditions of stock market globalization

    Directory of Open Access Journals (Sweden)

    Kopylova Olga Volodymyrivna

    2016-12-01

    Full Text Available The modern perception of the stock market in terms of information technologies rapid development and under the institutionalists influence has been significantly modified and becomes multifaceted. It was detected that the main function of the market is activated, information asymmetry is minimized and more advanced financial architecture space is formed through trade networks. Formation of the modern trade networks has started on the basis of the old infrastructure, that had the highest tendency to self-organization and adaptation. The proposed architecture of trade networks of the stock market has a very clear vector of subordination – from top to bottom and has a number of positive points.

  6. Robust Optimization of Fourth Party Logistics Network Design under Disruptions

    Directory of Open Access Journals (Sweden)

    Jia Li

    2015-01-01

    Full Text Available The Fourth Party Logistics (4PL network faces disruptions of various sorts under the dynamic and complex environment. In order to explore the robustness of the network, the 4PL network design with consideration of random disruptions is studied. The purpose of the research is to construct a 4PL network that can provide satisfactory service to customers at a lower cost when disruptions strike. Based on the definition of β-robustness, a robust optimization model of 4PL network design under disruptions is established. Based on the NP-hard characteristic of the problem, the artificial fish swarm algorithm (AFSA and the genetic algorithm (GA are developed. The effectiveness of the algorithms is tested and compared by simulation examples. By comparing the optimal solutions of the 4PL network for different robustness level, it is indicated that the robust optimization model can evade the market risks effectively and save the cost in the maximum limit when it is applied to 4PL network design.

  7. Analysis and Reduction of Complex Networks Under Uncertainty.

    Energy Technology Data Exchange (ETDEWEB)

    Ghanem, Roger G [University of Southern California

    2014-07-31

    This effort was a collaboration with Youssef Marzouk of MIT, Omar Knio of Duke University (at the time at Johns Hopkins University) and Habib Najm of Sandia National Laboratories. The objective of this effort was to develop the mathematical and algorithmic capacity to analyze complex networks under uncertainty. Of interest were chemical reaction networks and smart grid networks. The statements of work for USC focused on the development of stochastic reduced models for uncertain networks. The USC team was led by Professor Roger Ghanem and consisted of one graduate student and a postdoc. The contributions completed by the USC team consisted of 1) methodology and algorithms to address the eigenvalue problem, a problem of significance in the stability of networks under stochastic perturbations, 2) methodology and algorithms to characterize probability measures on graph structures with random flows. This is an important problem in characterizing random demand (encountered in smart grid) and random degradation (encountered in infrastructure systems), as well as modeling errors in Markov Chains (with ubiquitous relevance !). 3) methodology and algorithms for treating inequalities in uncertain systems. This is an important problem in the context of models for material failure and network flows under uncertainty where conditions of failure or flow are described in the form of inequalities between the state variables.

  8. Switching performance of OBS network model under prefetched real traffic

    Science.gov (United States)

    Huang, Zhenhua; Xu, Du; Lei, Wen

    2005-11-01

    Optical Burst Switching (OBS) [1] is now widely considered as an efficient switching technique in building the next generation optical Internet .So it's very important to precisely evaluate the performance of the OBS network model. The performance of the OBS network model is variable in different condition, but the most important thing is that how it works under real traffic load. In the traditional simulation models, uniform traffics are usually generated by simulation software to imitate the data source of the edge node in the OBS network model, and through which the performance of the OBS network is evaluated. Unfortunately, without being simulated by real traffic, the traditional simulation models have several problems and their results are doubtable. To deal with this problem, we present a new simulation model for analysis and performance evaluation of the OBS network, which uses prefetched IP traffic to be data source of the OBS network model. The prefetched IP traffic can be considered as real IP source of the OBS edge node and the OBS network model has the same clock rate with a real OBS system. So it's easy to conclude that this model is closer to the real OBS system than the traditional ones. The simulation results also indicate that this model is more accurate to evaluate the performance of the OBS network system and the results of this model are closer to the actual situation.

  9. Robustness of Dengue Complex Network under Targeted versus Random Attack

    Directory of Open Access Journals (Sweden)

    Hafiz Abid Mahmood Malik

    2017-01-01

    Full Text Available Dengue virus infection is one of those epidemic diseases that require much consideration in order to save the humankind from its unsafe impacts. According to the World Health Organization (WHO, 3.6 billion individuals are at risk because of the dengue virus sickness. Researchers are striving to comprehend the dengue threat. This study is a little commitment to those endeavors. To observe the robustness of the dengue network, we uprooted the links between nodes randomly and targeted by utilizing different centrality measures. The outcomes demonstrated that 5% targeted attack is equivalent to the result of 65% random assault, which showed the topology of this complex network validated a scale-free network instead of random network. Four centrality measures (Degree, Closeness, Betweenness, and Eigenvector have been ascertained to look for focal hubs. It has been observed through the results in this study that robustness of a node and links depends on topology of the network. The dengue epidemic network presented robust behaviour under random attack, and this network turned out to be more vulnerable when the hubs of higher degree have higher probability to fail. Moreover, representation of this network has been projected, and hub removal impact has been shown on the real map of Gombak (Malaysia.

  10. Time course of physiological, biochemical, and gene expression changes under short-term salt stress in Brassica juncea L.

    Directory of Open Access Journals (Sweden)

    Manish Pandey

    2017-06-01

    Full Text Available Salinity-imposed limitations on plant growth are manifested through osmotic and ionic imbalances. However, because salinity-induced responses vary considerably among crop plants, monitoring of such responses at an early stage has relevance. In this study, physiological (seed germination, seed vigor index, root length, shoot length, fresh weight, dry weight and biochemical attributes (osmoprotectants, K+/Na+ ratio were analyzed for a time-course assessment of salt responses in Indian mustard (Brassica juncea L. with an emphasis on early monitoring. The results showed strong correlations for total soluble sugars at germination phase (24 h, proline content in the seedling establishment phase (48 h and various physiological parameters including seed vigor index (R2 = 0.901, shoot length (R2 = 0.982, and fresh weight (R2 = 0.980 at 72 h (adaptation under stress. In addition, transcriptional changes were observed under NaCl treatment for key genes belonging to the family of selective ion transporters (NHX, HKT and abscisic acid synthesis (AAO-3. The status of mitochondrial respiration was also examined as a probe for salinity tolerance at an early stage. The results suggested that although all the analyzed parameters showed correlations (negative or positive with salt stress magnitude, their critical response times differed, with most of the studied biochemical, physiological, or molecular markers providing valuable information only after radicle emergence, whereas mitochondrial respiration via alternative oxidase was useful for the early detection of salt responses.

  11. Physiological and biochemical response to Omega-3 plus as a dietary supplement to growing goats under hot summer conditions

    Directory of Open Access Journals (Sweden)

    Fatma Edrees Ibrahim Teama

    2016-04-01

    Full Text Available ABSTRACT The objective of the present study was to assess the effect of dietary supplementation of Omega-3 plus on some the physiological and biochemical traits in growing Baladi goats under hot summer conditions. Thirty-four growing male goats (4-5 months old were randomly divided into two equal groups. Animals in group 1 were fed a concentrate feed mixture (CFM, which was the control group. Goats in group 2 (the experimental group were offered Omega-3 plus (1,000 mg/animal day-1 (30% fish oil, containing 18% eicosapentaenoic acid and 12% docosahexaenoic acid + 100 mg wheat germ oil (0.22% tocopherols daily in addition to the basal diet for four months (the experimental period during the hot summer season. Body weight (BW changes of both groups were recorded monthly during the experiment. Blood samples were collected monthly, and total protein, immunoglobulin G (IgG, total cholesterol, triglycerides, liver enzymes (AST and ALT, blood urea nitrogen, serum creatinine, and thyroid hormones (T3 and T4 were estimated. A significant increase in the live BW of growing goats was recorded as a result of dietary supplementation of Omega-3 plus. Total protein, IgG, and T3 levels were higher than those obtained with control. In contrast, total cholesterol, triglycerides, urea, ALT, and AST levels were significantly reduced. The serum concentration of creatinine and T4 levels was indistinguishable from those of control. Addition of Omega-3 plus as a dietary supplement to growing goats under hot summer conditions increases their daily weight gain and improves their general physiological and biochemical status by decreasing total cholesterol, triglycerides, urea, ALT, and AST. It is thus suggested that Omega-3 plus should be used as a supplement in the growth period of goats.

  12. Microbiological and biochemical changes in pearl spot (Etroplus suratensis Bloch) stored under modified atmospheres.

    Science.gov (United States)

    Lalitha, K V; Sonaji, E R; Manju, S; Jose, L; Gopal, T K S; Ravisankar, C N

    2005-01-01

    This study aimed to determine the effect of packaging [air, modified atmosphere (MA)] on microbial growth, sensory and chemical parameters and also on shelf life of fresh pearl spot (Etroplus suratensis Bloch) and on the selection of microbial association. Fresh pearl spot (whole, gutted) were packaged under both 100% air and MAs (40%CO(2)/60% O(2), 50%CO(2)/50%O(2), 60% CO(2)/40%O(2), 70% CO(2)/30% O(2) and 40% CO(2)/30% O(2)/30% N(2)) and stored at 0 degrees C. Microbial growth (counts of total aerobic bacteria, H(2)S-producing bacteria, Lactic acid bacteria, Brochothrix thermosphacta, yeast and mould), chemical spoilage indicators (pH, total volatile basic nitrogen) and sensory characteristics were monitored. Microbial changes in Pearl spot packed under 100% air and 40% CO(2)/30%O(2)/30% N(2) were similar. The total volatile basic nitrogen values increased, but the values never exceeded the acceptability limit of 25 mg 100 g(-1). MA 60% CO(2) : 40%O(2) was found to be better with a shelf life of 21 days whereas air stored samples had a shelf-life of 12-14 days only. Storage of pearl spot under MAs 60% CO(2) : 40%O(2) is a promising method to extend shelf-life. Longer shelf life expands the market potential of pearl spot and reduces waste during distribution and retail display.

  13. Efficient Characterization of Parametric Uncertainty of Complex (Bio)chemical Networks.

    Science.gov (United States)

    Schillings, Claudia; Sunnåker, Mikael; Stelling, Jörg; Schwab, Christoph

    2015-08-01

    Parametric uncertainty is a particularly challenging and relevant aspect of systems analysis in domains such as systems biology where, both for inference and for assessing prediction uncertainties, it is essential to characterize the system behavior globally in the parameter space. However, current methods based on local approximations or on Monte-Carlo sampling cope only insufficiently with high-dimensional parameter spaces associated with complex network models. Here, we propose an alternative deterministic methodology that relies on sparse polynomial approximations. We propose a deterministic computational interpolation scheme which identifies most significant expansion coefficients adaptively. We present its performance in kinetic model equations from computational systems biology with several hundred parameters and state variables, leading to numerical approximations of the parametric solution on the entire parameter space. The scheme is based on adaptive Smolyak interpolation of the parametric solution at judiciously and adaptively chosen points in parameter space. As Monte-Carlo sampling, it is "non-intrusive" and well-suited for massively parallel implementation, but affords higher convergence rates. This opens up new avenues for large-scale dynamic network analysis by enabling scaling for many applications, including parameter estimation, uncertainty quantification, and systems design.

  14. Inferring the gene network underlying the branching of tomato inflorescence.

    Directory of Open Access Journals (Sweden)

    Laura Astola

    Full Text Available The architecture of tomato inflorescence strongly affects flower production and subsequent crop yield. To understand the genetic activities involved, insight into the underlying network of genes that initiate and control the sympodial growth in the tomato is essential. In this paper, we show how the structure of this network can be derived from available data of the expressions of the involved genes. Our approach starts from employing biological expert knowledge to select the most probable gene candidates behind branching behavior. To find how these genes interact, we develop a stepwise procedure for computational inference of the network structure. Our data consists of expression levels from primary shoot meristems, measured at different developmental stages on three different genotypes of tomato. With the network inferred by our algorithm, we can explain the dynamics corresponding to all three genotypes simultaneously, despite their apparent dissimilarities. We also correctly predict the chronological order of expression peaks for the main hubs in the network. Based on the inferred network, using optimal experimental design criteria, we are able to suggest an informative set of experiments for further investigation of the mechanisms underlying branching behavior.

  15. Physio-biochemical and morphological characters of halophyte legume shrub, Acacia ampliceps seedlings in response to salt stress under greenhouse

    Directory of Open Access Journals (Sweden)

    Cattarin eTheerawitaya

    2015-08-01

    Full Text Available Acacia ampliceps (salt wattle, a leguminous shrub, has been introduced in salt-affected areas in northeast of Thailand for remediation of saline soils. However, the defense mechanisms underlying salt tolerance A. ampliceps are unknown. We investigated various physio-biochemical and morphological attributes of A. ampliceps in response to varying levels of salt treatment (200 to 600 mM NaCl. Seedlings of A. ampliceps (252 cm in plant height raised from seeds were treated with 200 mM (mild stress, 400 and 600 mM (extreme stress of salt treatment (NaCl under greenhouse conditions. Na+ and Ca2+ contents in the leaf tissues increased significantly under salt treatment, whereas K+ content declined in salt-stressed plants. Free proline and soluble sugar contents in plant grown under extreme salt stress (600 mM NaCl for 9 days significantly increased by 28.7 (53.33 mol g1 FW and 3.2 (42.11 mg g1 DW folds, respectively over the control, thereby playing a major role as osmotic adjustment. Na+ enrichment in the phyllode tissues of salt-stressed seedlings positively related to total chlorophyll degradation (R2=0.72. Photosynthetic pigments and chlorophyll fluorescence in salt-stressed plants increased under mild salt stress (200 mM NaCl. However, these declined under high level of salinity (400-600 mM NaCl, consequently resulting in reduced net photosynthetic rate (R2=0.81 and plant dry weight (R2= 0.91. The study concludes that A. ampliceps has an osmotic adjustment and Na+ compartmentation as effective salt defense mechanisms, and thus it could be an excellent species to grow in salt-affected soils.

  16. Noise transmission and delay-induced stochasticoscillations in biochemical network motifs

    Institute of Scientific and Technical Information of China (English)

    Liu Sheng-Jun; Wang Qi; Liu Bo; Yan Shi-Wei; Fumihiko Sakata

    2011-01-01

    With the aid of stochastic delayed-feedback differential equations,we derive an analytic expression for the power spectra of reacting molecules included in a generic biological network motif that is incorporated with a feedback mechanism and time delays in gene regulation.We systematically analyse the effects of time delays,the feedback mechanism,and biological stochasticity on the power spectra.It has been clarified that the time delays together with the feedback mechanism can induce stochastic oscillations at the molecular level and invalidate the noise addition rule for a modular description of the noise propagator.Delay-induced stochastic resonance can be expected,which is related to the stability loss of the reaction systems and Hopf bifurcation occurring for solutions of the corresponding deterministic reaction equations.Through the analysis of the power spectrum,a new approach is proposed to estimate the oscillation period.

  17. Noise transmission and delay-induced stochastic oscillations in biochemical network motifs

    International Nuclear Information System (INIS)

    Liu Sheng-Jun; Wang Qi; Liu Bo; Yan Shi-Wei; Sakata Fumihiko

    2011-01-01

    With the aid of stochastic delayed-feedback differential equations, we derive an analytic expression for the power spectra of reacting molecules included in a generic biological network motif that is incorporated with a feedback mechanism and time delays in gene regulation. We systematically analyse the effects of time delays, the feedback mechanism, and biological stochasticity on the power spectra. It has been clarified that the time delays together with the feedback mechanism can induce stochastic oscillations at the molecular level and invalidate the noise addition rule for a modular description of the noise propagator. Delay-induced stochastic resonance can be expected, which is related to the stability loss of the reaction systems and Hopf bifurcation occurring for solutions of the corresponding deterministic reaction equations. Through the analysis of the power spectrum, a new approach is proposed to estimate the oscillation period. (interdisciplinary physics and related areas of science and technology)

  18. Mineral Content and Biochemical Variables of Aloe vera L. under Salt Stress

    Science.gov (United States)

    Murillo-Amador, Bernardo; Córdoba-Matson, Miguel Víctor; Villegas-Espinoza, Jorge Arnoldo; Hernández-Montiel, Luis Guillermo; Troyo-Diéguez, Enrique; García-Hernández, José Luis

    2014-01-01

    Despite the proven economic importance of Aloe vera, studies of saline stress and its effects on the biochemistry and mineral content in tissues of this plant are scarce. The objective of this study was to grow Aloe under NaCl stress of 0, 30, 60, 90 and 120 mM and compare: (1) proline, total protein, and enzyme phosphoenolpyruvate carboxylase (PEP-case) in chlorenchyma and parenchyma tissues, and (2) ion content (Na, K, Ca, Mg, Cl, Fe, P. N, Zn, B, Mn, and Cu) in roots, stems, leaves and sprouts. Proline and PEP-case increased as salinity increased in both parenchyma and chlorenchyma, while total protein increased in parenchyma and decreased in chlorenchyma, although at similar salt concentrations total protein was always higher in chlorenchyma. As salinity increased Na and Cl ions increased in roots, stems, leaves, while K decreased only significantly in sprouts. Salinity increases typically caused mineral content in tissue to decrease, or not change significantly. In roots, as salinity increased Mg decreased, while all other minerals failed to show a specific trend. In stems, the mineral concentrations that changed were Fe and P which increased with salinity while Cu decreased. In leaves, Mg, Mn, N, and B decreased with salinity, while Cu increased. In sprouts, the minerals that decreased with increasing salinity were Mg, Mn, and Cu. Zinc did not exhibit a trend in any of the tissues. The increase in protein, proline and PEP-case activity, as well as the absorption and accumulation of cations under moderate NaCl stress caused osmotic adjustment which kept the plant healthy. These results suggest that Aloe may be a viable crop for soil irrigated with hard water or affected by salinity at least at concentrations used in the present study. PMID:24736276

  19. Wireless Networks under a Backoff Attack: A Game Theoretical Perspective.

    Science.gov (United States)

    Parras, Juan; Zazo, Santiago

    2018-01-30

    We study a wireless sensor network using CSMA/CA in the MAC layer under a backoff attack: some of the sensors of the network are malicious and deviate from the defined contention mechanism. We use Bianchi's network model to study the impact of the malicious sensors on the total network throughput, showing that it causes the throughput to be unfairly distributed among sensors. We model this conflict using game theory tools, where each sensor is a player. We obtain analytical solutions and propose an algorithm, based on Regret Matching, to learn the equilibrium of the game with an arbitrary number of players. Our approach is validated via simulations, showing that our theoretical predictions adjust to reality.

  20. Wireless Networks under a Backoff Attack: A Game Theoretical Perspective

    Directory of Open Access Journals (Sweden)

    Juan Parras

    2018-01-01

    Full Text Available We study a wireless sensor network using CSMA/CA in the MAC layer under a backoff attack: some of the sensors of the network are malicious and deviate from the defined contention mechanism. We use Bianchi’s network model to study the impact of the malicious sensors on the total network throughput, showing that it causes the throughput to be unfairly distributed among sensors. We model this conflict using game theory tools, where each sensor is a player. We obtain analytical solutions and propose an algorithm, based on Regret Matching, to learn the equilibrium of the game with an arbitrary number of players. Our approach is validated via simulations, showing that our theoretical predictions adjust to reality.

  1. Enzymatic activity of granulations tissues under low doses of radiation. Biochemical analysis in rats

    International Nuclear Information System (INIS)

    Tosoni, Guilherme Monteiro; Boscolo, Frab Norberto; Cury, Jaime Aparecido; Watanabe, Plauto Christopher Aranha

    1994-01-01

    This paper was designed to investigate in the rat subcutaneous sponge-induced granulation tissue under low doses of X-ray, the activity of alkaline phosphatase, 5'nucleotide phosphodiesterase and adenosine triphosphatase (ATPase) enzymes. One hundred and fourteen Wistar rats were divided into three groups, as follows: Group I as control, Group II that received single 7,14 R in split-dosis immediately after sponge-implantation at the third and fifth days postoperatively. Biopsies were taken after 7, 11, 14, 21 and 28 days and the activity of the three enzymes was determined. The results have shown that in Group II alkaline phosphatase had higher activity in the 14th day of tissue evolution when compared to Groups I and III . The 5'nucleotide phosphodiesterase activity in Group I was similar in all days checked, although in Group II the enzyme showed higher activity in 7th day and lower in 21st. In Group III the activity was higher after 14 and 7 days and lower after 28 and 21 days. There was no observation of changing in adenosine triphosphatase (ATPase) activity when the three groups were compared. (author)

  2. Stochastic Online Learning in Dynamic Networks under Unknown Models

    Science.gov (United States)

    2016-08-02

    The key is to develop online learning strategies at each individual node. Specifically, through local information exchange with its neighbors, each...infinitely repeated game with incomplete information and developed a dynamic pricing strategy referred to as Competitive and Cooperative Demand Learning...Stochastic Online Learning in Dynamic Networks under Unknown Models This research aims to develop fundamental theories and practical algorithms for

  3. Security Evaluation of the Cyber Networks under Advanced Persistent Threats

    NARCIS (Netherlands)

    Yang, L.; Li, Pengdeng; Yang, Xiaofan; Tang, Yuan Yan

    2017-01-01

    Advanced persistent threats (APTs) pose a grave threat to cyberspace, because they deactivate all the conventional cyber defense mechanisms. This paper addresses the issue of evaluating the security of the cyber networks under APTs. For this purpose, a dynamic model capturing the APT-based

  4. Biochemical alterations in inflammatory reactive chondrocytes: evidence for intercellular network communication

    Directory of Open Access Journals (Sweden)

    Eva Skiöldebrand

    2018-01-01

    Full Text Available Chondrocytes are effectively involved in the pathophysiological processes of inflammation in joints. They form cellular processes in the superficial layer of the articular cartilage and form gap junction coupled syncytium to facilitate cell-to-cell communication. However, very little is known about their physiological cellular identity and communication. The aim with the present work is to evaluate the physiological behavior after stimulation with the inflammatory inducers interleukin-1β and lipopolysaccharide. The cytoskeleton integrity and intracellular Ca2+ release were assessed as indicators of inflammatory state. Cytoskeleton integrity was analyzed through cartilage oligomeric matrix protein and actin labeling with an Alexa 488-conjugated phalloidin probe. Ca2+ responses were assessed through the Ca2+ sensitive fluorophore Fura-2/AM. Western blot analyses of several inflammatory markers were performed. The results show reorganization of the actin filaments. Glutamate, 5-hydoxytryptamine, and ATP evoked intracellular Ca2+ release changed from single peaks to oscillations after inflammatory induction in the chondrocytes. The expression of toll-like receptor 4, the glutamate transporters GLAST and GLT-1, and the matrix metalloproteinase-13 increased. This work demonstrates that chondrocytes are a key part in conditions that lead to inflammation in the cartilage. The inflammatory inducers modulate the cytoskeleton, the Ca2+ signaling, and several inflammatory parameters. In conclusion, our data show that the cellular responses to inflammatory insults from healthy and inflammatory chondrocytes resemble those previously observed in astrocyte and cardiac fibroblasts networks.

  5. Effect of Silicic Acid on some Anatomical and Biochemical Characteristics of Pelargonium graveolens under Salinity Stress

    Directory of Open Access Journals (Sweden)

    fateme hasanvand

    2017-08-01

    and Discussion: In current study salinity decreased the number of leaf and leaf area and Si increased these characteristics. In general, decrease in the leaf area can result in a reduction in size of individual leaf of plants, decrease in the production of leaves and fall the old leaves. It also reduce the growth rate of leaf in salinity which causes osmotic effect around the roots (rhizosphere. Over time, the rate of cell division and elongation decreased, and finally this changes leads to decrease in the final size of leaf. In this study, salinity increased electrolyte leakage and the use of silicic acid prevents electrolyte leakage. Probably saturation of phospholipids with increasing salinity increased, as a result the fluidity of membrane decreased and finally increased the electrolyte leakage, silicic acid absorbed in plant and deposited in the cell membrane, causing the silica hardened. This causes in stress condition, cell membrane maintains stability and significantly reduced the amount of electrolyte leakage. In this study application Si in various concentrations under salinity stress brought a significant decrease in MDA compared with salinity alone. Salinity increased the MDA and EL so that application of1 mM silicic acid decreased EL to 16.7 and 11.9 percent plants grown in 4 and 6 dS/m EC, respectively, compared with controls. Application of 1 mM silicic acid decreased the MDA to 23.6 and 35 percent plants grown in 4 and 6 dS/m EC, respectively, compared with controls. Therefore, the present results indicate that Si can effectively ameliorate membrane lipid peroxidation, thus protecting plants from oxidative stress. Salinity affected on leaf anatomy and chloroplast ultrastructure, photosynthesis also affected by these factors. Reduction in chlorophyll at height salinity levels due to chloroplast destructive. The results showed that salinity decreased the density and stomatal index in plants and silicic acid increased these characteristics. Salinity

  6. Common and distinct brain networks underlying verbal and visual creativity.

    Science.gov (United States)

    Zhu, Wenfeng; Chen, Qunlin; Xia, Lingxiang; Beaty, Roger E; Yang, Wenjing; Tian, Fang; Sun, Jiangzhou; Cao, Guikang; Zhang, Qinglin; Chen, Xu; Qiu, Jiang

    2017-04-01

    Creativity is imperative to the progression of human civilization, prosperity, and well-being. Past creative researches tends to emphasize the default mode network (DMN) or the frontoparietal network (FPN) somewhat exclusively. However, little is known about how these networks interact to contribute to creativity and whether common or distinct brain networks are responsible for visual and verbal creativity. Here, we use functional connectivity analysis of resting-state functional magnetic resonance imaging data to investigate visual and verbal creativity-related regions and networks in 282 healthy subjects. We found that functional connectivity within the bilateral superior parietal cortex of the FPN was negatively associated with visual and verbal creativity. The strength of connectivity between the DMN and FPN was positively related to both creative domains. Visual creativity was negatively correlated with functional connectivity within the precuneus of the pDMN and right middle frontal gyrus of the FPN, and verbal creativity was negatively correlated with functional connectivity within the medial prefrontal cortex of the aDMN. Critically, the FPN mediated the relationship between the aDMN and verbal creativity, and it also mediated the relationship between the pDMN and visual creativity. Taken together, decreased within-network connectivity of the FPN and DMN may allow for flexible between-network coupling in the highly creative brain. These findings provide indirect evidence for the cooperative role of the default and executive control networks in creativity, extending past research by revealing common and distinct brain systems underlying verbal and visual creative cognition. Hum Brain Mapp 38:2094-2111, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Timing of product introduction in network economies under heterogeneous demand

    DEFF Research Database (Denmark)

    Winther, Christian Dahl

    This paper studies the introduction of a new and incompatible technology in a spatial market with network externalities. In competition with an established network, the entrant chooses how long to do research and a level of product differentiation, which determine the adoption patterns of consumers...... level of product differentiation that should be chosen by the sponsor of the new technology in equilibrium. Third, the formal relationship between these variables are derived under compatibility.  Fourth, the entering firm's problem is solved by numerical methods to gain insight into the optimal linkage...... between research time and product design....

  8. Functional brain networks underlying detection and integration of disconfirmatory evidence.

    Science.gov (United States)

    Lavigne, Katie M; Metzak, Paul D; Woodward, Todd S

    2015-05-15

    .g., 17s after trial onset) the hemodynamic responses associated with all three networks were simultaneously active. These findings highlight distinct cognitive processes and corresponding functional brain networks underlying stages of disconfirmatory evidence integration, and demonstrate the power of multivariate and multi-experiment methodology in cognitive neuroscience. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Seasonal Patterns of Soil Respiration and Related Soil Biochemical Properties under Nitrogen Addition in Winter Wheat Field

    Science.gov (United States)

    Liang, Guopeng; Houssou, Albert A.; Wu, Huijun; Cai, Dianxiong; Wu, Xueping; Gao, Lili; Li, Jing; Wang, Bisheng; Li, Shengping

    2015-01-01

    Understanding the changes of soil respiration under increasing N fertilizer in cropland ecosystems is crucial to accurately predicting global warming. This study explored seasonal variations of soil respiration and its controlling biochemical properties under a gradient of Nitrogen addition during two consecutive winter wheat growing seasons (2013–2015). N was applied at four different levels: 0, 120, 180 and 240 kg N ha-1 year-1 (denoted as N0, N12, N18 and N24, respectively). Soil respiration exhibited significant seasonal variation and was significantly affected by soil temperature with Q10 ranging from 2.04 to 2.46 and from 1.49 to 1.53 during 2013–2014 and 2014–2015 winter wheat growing season, respectively. Soil moisture had no significant effect on soil respiration during 2013–2014 winter wheat growing season but showed a significant and negative correlation with soil respiration during 2014–2015 winter wheat growing season. Soil respiration under N24 treatment was significantly higher than N0 treatment. Averaged over the two growing seasons, N12, N18 and N24 significantly increased soil respiration by 13.4, 16.4 and 25.4% compared with N0, respectively. N addition also significantly increased easily extractable glomalin-related soil protein (EEG), soil organic carbon (SOC), total N, ammonium N and nitrate N contents. In addition, soil respiration was significantly and positively correlated with β-glucosidase activity, EEG, SOC, total N, ammonium N and nitrate N contents. The results indicated that high N fertilization improved soil chemical properties, but significantly increased soil respiration. PMID:26629695

  10. Seasonal Patterns of Soil Respiration and Related Soil Biochemical Properties under Nitrogen Addition in Winter Wheat Field.

    Science.gov (United States)

    Liang, Guopeng; Houssou, Albert A; Wu, Huijun; Cai, Dianxiong; Wu, Xueping; Gao, Lili; Li, Jing; Wang, Bisheng; Li, Shengping

    2015-01-01

    Understanding the changes of soil respiration under increasing N fertilizer in cropland ecosystems is crucial to accurately predicting global warming. This study explored seasonal variations of soil respiration and its controlling biochemical properties under a gradient of Nitrogen addition during two consecutive winter wheat growing seasons (2013-2015). N was applied at four different levels: 0, 120, 180 and 240 kg N ha(-1) year(-1) (denoted as N0, N12, N18 and N24, respectively). Soil respiration exhibited significant seasonal variation and was significantly affected by soil temperature with Q10 ranging from 2.04 to 2.46 and from 1.49 to 1.53 during 2013-2014 and 2014-2015 winter wheat growing season, respectively. Soil moisture had no significant effect on soil respiration during 2013-2014 winter wheat growing season but showed a significant and negative correlation with soil respiration during 2014-2015 winter wheat growing season. Soil respiration under N24 treatment was significantly higher than N0 treatment. Averaged over the two growing seasons, N12, N18 and N24 significantly increased soil respiration by 13.4, 16.4 and 25.4% compared with N0, respectively. N addition also significantly increased easily extractable glomalin-related soil protein (EEG), soil organic carbon (SOC), total N, ammonium N and nitrate N contents. In addition, soil respiration was significantly and positively correlated with β-glucosidase activity, EEG, SOC, total N, ammonium N and nitrate N contents. The results indicated that high N fertilization improved soil chemical properties, but significantly increased soil respiration.

  11. Mixed Transportation Network Design under a Sustainable Development Perspective

    Directory of Open Access Journals (Sweden)

    Jin Qin

    2013-01-01

    Full Text Available A mixed transportation network design problem considering sustainable development was studied in this paper. Based on the discretization of continuous link-grade decision variables, a bilevel programming model was proposed to describe the problem, in which sustainability factors, including vehicle exhaust emissions, land-use scale, link load, and financial budget, are considered. The objective of the model is to minimize the total amount of resources exploited under the premise of meeting all the construction goals. A heuristic algorithm, which combined the simulated annealing and path-based gradient projection algorithm, was developed to solve the model. The numerical example shows that the transportation network optimized with the method above not only significantly alleviates the congestion on the link, but also reduces vehicle exhaust emissions within the network by up to 41.56%.

  12. Mixed Transportation Network Design under a Sustainable Development Perspective

    Science.gov (United States)

    Qin, Jin; Ni, Ling-lin; Shi, Feng

    2013-01-01

    A mixed transportation network design problem considering sustainable development was studied in this paper. Based on the discretization of continuous link-grade decision variables, a bilevel programming model was proposed to describe the problem, in which sustainability factors, including vehicle exhaust emissions, land-use scale, link load, and financial budget, are considered. The objective of the model is to minimize the total amount of resources exploited under the premise of meeting all the construction goals. A heuristic algorithm, which combined the simulated annealing and path-based gradient projection algorithm, was developed to solve the model. The numerical example shows that the transportation network optimized with the method above not only significantly alleviates the congestion on the link, but also reduces vehicle exhaust emissions within the network by up to 41.56%. PMID:23476142

  13. Analytic Treatment of Deep Neural Networks Under Additive Gaussian Noise

    KAUST Repository

    Alfadly, Modar

    2018-01-01

    Despite the impressive performance of deep neural networks (DNNs) on numerous vision tasks, they still exhibit yet-to-understand uncouth behaviours. One puzzling behaviour is the reaction of DNNs to various noise attacks, where it has been shown that there exist small adversarial noise that can result in a severe degradation in the performance of DNNs. To rigorously treat this, we derive exact analytic expressions for the first and second moments (mean and variance) of a small piecewise linear (PL) network with a single rectified linear unit (ReLU) layer subject to general Gaussian input. We experimentally show that these expressions are tight under simple linearizations of deeper PL-DNNs, especially popular architectures in the literature (e.g. LeNet and AlexNet). Extensive experiments on image classification show that these expressions can be used to study the behaviour of the output mean of the logits for each class, the inter-class confusion and the pixel-level spatial noise sensitivity of the network. Moreover, we show how these expressions can be used to systematically construct targeted and non-targeted adversarial attacks. Then, we proposed a special estimator DNN, named mixture of linearizations (MoL), and derived the analytic expressions for its output mean and variance, as well. We employed these expressions to train the model to be particularly robust against Gaussian attacks without the need for data augmentation. Upon training this network on a loss that is consolidated with the derived output probabilistic moments, the network is not only robust under very high variance Gaussian attacks but is also as robust as networks that are trained with 20 fold data augmentation.

  14. Node vulnerability of water distribution networks under cascading failures

    International Nuclear Information System (INIS)

    Shuang, Qing; Zhang, Mingyuan; Yuan, Yongbo

    2014-01-01

    Water distribution networks (WDNs) are important in modern lifeline system. Its stability and reliability are critical for guaranteeing high living quality and continuous operation of urban functions. The aim of this paper is to evaluate the nodal vulnerability of WDNs under cascading failures. Vulnerability is defined to analyze the effects of the consequent failures. A cascading failure is a step-by-step process which is quantitatively investigated by numerical simulation with intentional attack. Monitored pressures in different nodes and flows in different pipes have been used to estimate the network topological structure and the consequences of nodal failure. Based on the connectivity loss of topological structure, the nodal vulnerability has been evaluated. A load variation function is established to record the nodal failure reason and describe the relative differences between the load and the capacity. The proposed method is validated by an illustrative example. The results revealed that the network vulnerability should be evaluated with the consideration of hydraulic analysis and network topology. In the case study, 70.59% of the node failures trigger the cascading failures with different failure processes. It is shown that the cascading failures result in severe consequences in WDNs. - Highlights: • The aim of this paper is to evaluate the nodal vulnerability of water distribution networks under cascading failures. • Monitored pressures and flows have been used to estimate the network topological structure and the consequences of nodal failure. • Based on the connectivity loss of topological structure, the nodal vulnerability has been evaluated. • A load variation function is established to record the failure reason and describe the relative differences between load and capacity. • The results show that 70.59% of the node failures trigger the cascading failures with different failure processes

  15. Analytic Treatment of Deep Neural Networks Under Additive Gaussian Noise

    KAUST Repository

    Alfadly, Modar M.

    2018-04-12

    Despite the impressive performance of deep neural networks (DNNs) on numerous vision tasks, they still exhibit yet-to-understand uncouth behaviours. One puzzling behaviour is the reaction of DNNs to various noise attacks, where it has been shown that there exist small adversarial noise that can result in a severe degradation in the performance of DNNs. To rigorously treat this, we derive exact analytic expressions for the first and second moments (mean and variance) of a small piecewise linear (PL) network with a single rectified linear unit (ReLU) layer subject to general Gaussian input. We experimentally show that these expressions are tight under simple linearizations of deeper PL-DNNs, especially popular architectures in the literature (e.g. LeNet and AlexNet). Extensive experiments on image classification show that these expressions can be used to study the behaviour of the output mean of the logits for each class, the inter-class confusion and the pixel-level spatial noise sensitivity of the network. Moreover, we show how these expressions can be used to systematically construct targeted and non-targeted adversarial attacks. Then, we proposed a special estimator DNN, named mixture of linearizations (MoL), and derived the analytic expressions for its output mean and variance, as well. We employed these expressions to train the model to be particularly robust against Gaussian attacks without the need for data augmentation. Upon training this network on a loss that is consolidated with the derived output probabilistic moments, the network is not only robust under very high variance Gaussian attacks but is also as robust as networks that are trained with 20 fold data augmentation.

  16. Effect of plant-derived smoke solutions on physiological and biochemical attributes of maize (Zea mays L.) under salt stress

    International Nuclear Information System (INIS)

    Waheed, M.A.; Shakir, S.K.; Rehman, S.U.; Khan, M.D.

    2016-01-01

    Among abiotic stresses, salinity is an important factor reducing crop yield. Plant-derived smoke solutions have been used as growth promoters since last two decades. The present study was conducted to investigate the effect of Cymbopogon jwaracusa smoke extracts (1:100 and 1:400) on physiological and biochemical aspects of maize (Zea mays L.) under salt stress (100, 150, 200 and 250 mM). Results showed that seed germination percentage was improved up to 93% with smoke as compared to control (70%), while seedling vigor in term of root and shoot fresh weights and dry weights were also significantly increased in seeds primed with smoke extracts. Similarly, in case of alleviating solutions, there occurred a significant alleviation in the adverse effects of salt solutions when mixed smoke in all studied end points. Application of smoke solution has also increased the level of K+ and Ca+2 while reduced the level of Na+ content in maize. In addition, the levels of photosynthetic pigments, total nitrogen and protein contents were also alleviated with the application of smoke as compared to salt. There occurred an increase in the activities of Anti-oxidant in response of salt stress but overcome with the smoke application. It can be concluded that plant-derived smoke solution has the potential to alleviate the phytotoxic effects of saline condition and can increased the productivity in plants. (author)

  17. The dtudy of physiological and biochemical responses of Agrostis stolonifera and Festuca arundinacea Schreb. under drought stress

    Directory of Open Access Journals (Sweden)

    Mohammad Hassan Alibiglouei

    2014-12-01

    Full Text Available Drought stress is a main limiting factor of turfgrass growth in arid and semi-arid regions. Therefore, in this study, the physiological and biochemical changes in two turfgrass species Agrostis stolonifera and Festuca arundinacea schreb during drought stress (70-75 centibar in a 40-day period and recovery were investigated. Control plants during drought stress were regularly irrigated at soil field capacity (20-25 centibar. The results showed that leaf relative water content and leaf chlorophyll content with long-term stress decreased. Electrolyte leakage and proline during drought stress significantly increased and in recovery stage, the level of electrolyte leakage and proline reached to the control. The activity of peroxidase and superoxide dismutase in two turfgrass significantly increased after 30 days and then significantly reduced. In F. arundinacea schreb the activity of ascorbat peroxidase after 20 days significantly increased and then significantly reduced. Also, in F. arundinacea schreb species the activity of catalase increased during drought stress and in recovery stage the activity of catalase reduced. In studied species during drought stress and recovery stage, the activity of ascorbat peroxidase and catalase significantly increased compared to the control. These results suggested that the resistant species F. arundinacea schreb, under drought stress had a low level of electrolyte leakage, higher level of relative water content and chlorophyll destruction was less than A. stolonifera.

  18. Fruit development, pigmentation and biochemical properties of wax apple as affected by localized Application of GA3 under field conditions

    Directory of Open Access Journals (Sweden)

    Mohammad Moneruzzaman Khandaker

    2013-02-01

    Full Text Available This study investigated the effects of gibberellin (GA3 on the fruit development, pigmentation and biochemical properties of wax apple. The wax apple trees were rubbing treated with 0, 20, 50 and 100 mgGA3/l under field conditions. The localized application (rubbing of 50 mg GA3/l significantly increased the fruit set, fruit length and diameter, color development, weight and yieldcompared to the control. In addition, GA3 treatments significantly reduced the fruit drop. With regard to the fruit quality, 50 mg/l GA3 treatment increased the juice content, K+, TSS, total sugar and sugar acid ratio of wax apple fruits. In addition, higher vitamin C, phenol, flavonoid, anthocyanin, carotene content, PAL and antioxidant activities were recorded in the treated fruits. There was a positive correlation between the peel colour and TSS content and between the PAL activity and anthocyanin formation in the GA3-treated fruit. It was concluded that rubbing with 50 mg/L GA3 at inflorescence developing point of phloem once a week from the tiny inflorescence bud until the flower opening resulted in better yield and quality of wax apple fruits and could be an effective technique to safe the environment from excessive spray.

  19. Soil restoration under pasture after lignite mining - management effects on soil biochemical properties and their relationships with herbage yields

    Energy Technology Data Exchange (ETDEWEB)

    Ross, D.J.; Speir, T.W.; Cowling, J.C.; Feltham, C.W. (DSIR, Lower Hutt (New Zealand))

    1992-01-01

    The recovery of soil biochemical properties under grazed, grass-clover pasture after simulated lignite mining was studied over a 5-year period in a mesic Typic Dystrochrept soil at Waimumu, Southland, New Zealand. Restoration procedures involved four replacement treatments, after A,B and C horizon materials had been separately removed, from all except the control, and stockpiled for 2-3 weeks. Replacement treatment markedly influenced the recovery of herbage production and soil organic C and total N contents, N mineralization, microbial biomass (as indicated by mineral-N flush) and invertase and sulphatase activities. The effectiveness of replacement treatments decreased in the order: 1. control (no stripping or replacement). 2. A,B and C horizon materials replaced in the same order. 3. A,B and C horizon materials each mixed with an equal amount of siltstone overburden and replaced in order, 4. A and B horizon materials mixed before replacing over C horizon materials. Ripping increased herbage production, net N mineralization and microbial biomass. Fertilizer N also stimulated herbage production but depressed clover growth. Increases in soil invertase and, to a lesser extent, sulphatase activity were closely related to changes in herbage production. Microbial biomass increased more rapidly than soil organic C in early stages in the trial. Rates of net N mineralization suggest that N availability would have limited pasture growth.

  20. The Network Structure Underlying the Earth Observation Assessment

    Science.gov (United States)

    Vitkin, S.; Doane, W. E. J.; Mary, J. C.

    2017-12-01

    The Earth Observations Assessment (EOA 2016) is a multiyear project designed to assess the effectiveness of civil earth observation data sources (instruments, sensors, models, etc.) on societal benefit areas (SBAs) for the United States. Subject matter experts (SMEs) provided input and scored how data sources inform products, product groups, key objectives, SBA sub-areas, and SBAs in an attempt to quantify the relationships between data sources and SBAs. The resulting data were processed by Integrated Applications Incorporated (IAI) using MITRE's PALMA software to create normalized relative impact scores for each of these relationships. However, PALMA processing obscures the natural network representation of the data. Any network analysis that might identify patterns of interaction among data sources, products, and SBAs is therefore impossible. Collaborating with IAI, we cleaned and recreated a network from the original dataset. Using R and Python we explore the underlying structure of the network and apply frequent itemset mining algorithms to identify groups of data sources and products that interact. We reveal interesting patterns and relationships in the EOA dataset that were not immediately observable from the EOA 2016 report and provide a basis for further exploration of the EOA network dataset.

  1. Sustainable and Resilient Supply Chain Network Design under Disruption Risks

    Directory of Open Access Journals (Sweden)

    Sonia Irshad Mari

    2014-09-01

    Full Text Available Sustainable supply chain network design is a rich area for academic research that is still in its infancy and has potential to affect supply chain performance. Increasing regulations for carbon and waste management are forcing firms to consider their supply chains from ecological and social objectives, but in reality, however, facilities and the links connecting them are disrupted from time to time, due to poor weather, natural or manmade disasters or a combination of any other factors. Supply chain systems drop their sustainability objectives while coping with these unexpected disruptions. Hence, the new challenges for supply chain managers are to design an efficient and effective supply chain network that will be resilient enough to bounce back from any disruption and that also should have sufficient vigilance to offer same sustainability under a disruption state. This paper focuses on ecological sustainability, because an environmental focus in a supply chain system is more important and also links with other pillars of sustainability, as the products need to be produced, packed and transported in an ethical way, which should not harm social balance and the environment. Owing to importance of the considered issue, this paper attempts to introduce a network optimization model for a sustainable and resilient supply chain network by incorporating (1 sustainability via carbon emissions and embodied carbon footprints and (2 resilience by incorporating location-specific risks. The proposed goal programming (GP model optimizes the total cost, while considering the resilience and sustainability of the supply chain network.

  2. Prioritization of Candidate Genes in QTL Regions for Physiological and Biochemical Traits Underlying Drought Response in Barley (Hordeum vulgare L.

    Directory of Open Access Journals (Sweden)

    Kornelia Gudys

    2018-06-01

    Full Text Available Drought is one of the most adverse abiotic factors limiting growth and productivity of crops. Among them is barley, ranked fourth cereal worldwide in terms of harvested acreage and production. Plants have evolved various mechanisms to cope with water deficit at different biological levels, but there is an enormous challenge to decipher genes responsible for particular complex phenotypic traits, in order to develop drought tolerant crops. This work presents a comprehensive approach for elucidation of molecular mechanisms of drought tolerance in barley at the seedling stage of development. The study includes mapping of QTLs for physiological and biochemical traits associated with drought tolerance on a high-density function map, projection of QTL confidence intervals on barley physical map, and the retrievement of positional candidate genes (CGs, followed by their prioritization based on Gene Ontology (GO enrichment analysis. A total of 64 QTLs for 25 physiological and biochemical traits that describe plant water status, photosynthetic efficiency, osmoprotectant and hormone content, as well as antioxidant activity, were positioned on a consensus map, constructed using RIL populations developed from the crosses between European and Syrian genotypes. The map contained a total of 875 SNP, SSR and CGs, spanning 941.86 cM with resolution of 1.1 cM. For the first time, QTLs for ethylene, glucose, sucrose, maltose, raffinose, α-tocopherol, γ-tocotrienol content, and catalase activity, have been mapped in barley. Based on overlapping confidence intervals of QTLs, 11 hotspots were identified that enclosed more than 60% of mapped QTLs. Genetic and physical map integration allowed the identification of 1,101 positional CGs within the confidence intervals of drought response-specific QTLs. Prioritization resulted in the designation of 143 CGs, among them were genes encoding antioxidants, carboxylic acid biosynthesis enzymes, heat shock proteins, small auxin

  3. Impact of seasonal thermal stress on physiological and blood biochemical parameters in pigs under different dietary energy levels.

    Science.gov (United States)

    Pathak, P K; Roychoudhury, R; Saharia, J; Borah, M C; Dutta, D J; Bhuyan, R; Kalita, D

    2018-06-01

    The present study was formulated to find out the status of important season related thermal stress biomarkers of pure-bred (Hampshire) and crossbred (50% Hampshire × 50% local) pigs under the agro-climatic condition of Assam State, India. The experiment was also aimed to study the role of different level of energy ration (110, 100, and 90% energy of NRC feeding standard for pig) in variation of physiological and biochemical parameters in two genetic groups of pigs in different seasons. The metabolizable energy value were 3260, 2936.5, and 3585.8 kcal/kg in grower ration and 3260.2, 2936.6, and 3587 kcal/kg in finisher ration for normal energy (NE), low energy (LE) and high energy (HE), respectively. Both the genetic group of animals were housed separately under intensive system of management. Each pen was measuring 10' × 12' along with an outer enclosure. Six weaned piglets (almost similar body weight of average 10.55 kg) of each group were kept in a separate pen. However, after attainment of 35 kg body weight, the animals of a group were divided in two pens of three animals each. The present experiment indicated that average ambient temperature during summer months (27.33-29.51 °C) was above the comfort zone for pigs (22 °C). The significantly (P energy (HE) ration during summer season. Serum triiodothyronine (T 3 ) and thyroxine (T 4 ) concentrations were significantly (P energy level of the ration might be helpful to minimize the effects of thermal stress during summer.

  4. Optimal Intermittent Operation of Water Distribution Networks under Water Shortage

    Directory of Open Access Journals (Sweden)

    mohamad Solgi

    2017-07-01

    Full Text Available Under water shortage conditions, it is necessary to exercise water consumption management practices in water distribution networks (WDN. Intermittent supply of water is one such practice that makes it possible to supply consumption nodal demands with the required pressure via water cutoff to some consumers during certain hours of the day. One of the most important issues that must be observed in this management practice is the equitable and uniform water distribution among the consumers. In the present study, uniformity in water distribution and minimum supply of water to all consumers are defined as justice and equity, respectively. Also, an optimization model has been developed to find an optimal intermittent supply schedule that ensures maximum number of demand nodes are supplied with water while the constraints on the operation of water distribution networks are also observed. To show the efficiency of the proposed model, it has been used in the Two-Loop distribution network under several different scenarios of water shortage. The optimization model has been solved using the honey bee mating optimization algorithm (HBMO linked to the hydraulic simulator EPANET. The results obtained confirm the efficiency of the proposed model in achieving an optimal intermittent supply schedule. Moreover, the model is found capable of distributing the available water in an equitable and just manner among all the consumers even under severe water shoratges.

  5. Brain network response underlying decisions about abstract reinforcers.

    Science.gov (United States)

    Mills-Finnerty, Colleen; Hanson, Catherine; Hanson, Stephen Jose

    2014-12-01

    Decision making studies typically use tasks that involve concrete action-outcome contingencies, in which subjects do something and get something. No studies have addressed decision making involving abstract reinforcers, where there are no action-outcome contingencies and choices are entirely hypothetical. The present study examines these kinds of choices, as well as whether the same biases that exist for concrete reinforcer decisions, specifically framing effects, also apply during abstract reinforcer decisions. We use both General Linear Model as well as Bayes network connectivity analysis using the Independent Multi-sample Greedy Equivalence Search (IMaGES) algorithm to examine network response underlying choices for abstract reinforcers under positive and negative framing. We find for the first time that abstract reinforcer decisions activate the same network of brain regions as concrete reinforcer decisions, including the striatum, insula, anterior cingulate, and VMPFC, results that are further supported via comparison to a meta-analysis of decision making studies. Positive and negative framing activated different parts of this network, with stronger activation in VMPFC during negative framing and in DLPFC during positive, suggesting different decision making pathways depending on frame. These results were further clarified using connectivity analysis, which revealed stronger connections between anterior cingulate, insula, and accumbens during negative framing compared to positive. Taken together, these results suggest that not only do abstract reinforcer decisions rely on the same brain substrates as concrete reinforcers, but that the response underlying framing effects on abstract reinforcers also resemble those for concrete reinforcers, specifically increased limbic system connectivity during negative frames. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Evolution of cooperation under social pressure in multiplex networks.

    Science.gov (United States)

    Pereda, María

    2016-09-01

    In this work, we aim to contribute to the understanding of human prosocial behavior by studying the influence that a particular form of social pressure, "being watched," has on the evolution of cooperative behavior. We study how cooperation emerges in multiplex complex topologies by analyzing a particular bidirectionally coupled dynamics on top of a two-layer multiplex network (duplex). The coupled dynamics appears between the prisoner's dilemma game in a network and a threshold cascade model in the other. The threshold model is intended to abstract the behavior of a network of vigilant nodes that impose the pressure of being observed altering hence the temptation to defect of the dilemma. Cooperation or defection in the game also affects the state of a node of being vigilant. We analyze these processes on different duplex networks structures and assess the influence of the topology, average degree and correlated multiplexity, on the outcome of cooperation. Interestingly, we find that the social pressure of vigilance may impact cooperation positively or negatively, depending on the duplex structure, specifically the degree correlations between layers is determinant. Our results give further quantitative insights in the promotion of cooperation under social pressure.

  7. Development of Shale Gas Supply Chain Network under Market Uncertainties

    Directory of Open Access Journals (Sweden)

    Jorge Chebeir

    2017-02-01

    Full Text Available The increasing demand of energy has turned the shale gas and shale oil into one of the most promising sources of energy in the United States. In this article, a model is proposed to address the long-term planning problem of the shale gas supply chain under uncertain conditions. A two-stage stochastic programming model is proposed to describe and optimize the shale gas supply chain network. Inherent uncertainty in final products’ prices, such as natural gas and natural gas liquids (NGL, is treated through the utilization of a scenario-based method. A binomial option pricing model is utilized to approximate the stochastic process through the generation of scenario trees. The aim of the proposed model is to generate an appropriate and realistic supply chain network configuration as well as scheduling of different operations throughout the planning horizon of a shale gas development project.

  8. Analysis and Reduction of Complex Networks Under Uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Knio, Omar M

    2014-04-09

    This is a collaborative proposal that aims at developing new methods for the analysis and reduction of complex multiscale networks under uncertainty. The approach is based on combining methods of computational singular perturbation (CSP) and probabilistic uncertainty quantification. In deterministic settings, CSP yields asymptotic approximations of reduced-dimensionality “slow manifolds” on which a multiscale dynamical system evolves. Introducing uncertainty raises fundamentally new issues, particularly concerning its impact on the topology of slow manifolds, and means to represent and quantify associated variability. To address these challenges, this project uses polynomial chaos (PC) methods to reformulate uncertain network models, and to analyze them using CSP in probabilistic terms. Specific objectives include (1) developing effective algorithms that can be used to illuminate fundamental and unexplored connections among model reduction, multiscale behavior, and uncertainty, and (2) demonstrating the performance of these algorithms through applications to model problems.

  9. Connection Management and Recovery Strategies under Epidemic Network Failures in Optical Transport Networks

    DEFF Research Database (Denmark)

    Fagertun, Anna Manolova; Ruepp, Sarah Renée

    2014-01-01

    The current trend in deploying automatic control plane solutions for increased flexibility in the optical transport layer leads to numerous advantages for both the operators and the customers, but also pose challenges related to the stability of the network and its ability to operate in a robust...... manner under attacks. This work proposes four policies for failure handling in a connection-oriented optical transport network, under Generalized MultiProtocol Label Switching control plane, and evaluates their performance under multiple correlated large-scale failures. We employ the Susceptible...... of their transport infrastructures. Applying proactive methods for avoiding areas where epidemic failures spread results in 50% less connections requiring recovery, which translates in improved quality of service to customers....

  10. Optimal Retrofit Scheme for Highway Network under Seismic Hazards

    Directory of Open Access Journals (Sweden)

    Yongxi Huang

    2014-06-01

    Full Text Available Many older highway bridges in the United States (US are inadequate for seismic loads and could be severely damaged or collapsed in a relatively small earthquake. According to the most recent American Society of Civil Engineers’ infrastructure report card, one-third of the bridges in the US are rated as structurally deficient and many of these structurally deficient bridges are located in seismic zones. To improve this situation, at-risk bridges must be identified and evaluated and effective retrofitting programs should be in place to reduce their seismic vulnerabilities. In this study, a new retrofit strategy decision scheme for highway bridges under seismic hazards is developed and seamlessly integrate the scenario-based seismic analysis of bridges and the traffic network into the proposed optimization modeling framework. A full spectrum of bridge retrofit strategies is considered based on explicit structural assessment for each seismic damage state. As an empirical case study, the proposed retrofit strategy decision scheme is utilized to evaluate the bridge network in one of the active seismic zones in the US, Charleston, South Carolina. The developed modeling framework, on average, will help increase network throughput traffic capacity by 45% with a cost increase of only $15million for the Mw 5.5 event and increase the capacity fourfold with a cost of only $32m for the Mw 7.0 event.

  11. Modeling the Propagation of Mobile Phone Virus under Complex Network

    Science.gov (United States)

    Yang, Wei; Wei, Xi-liang; Guo, Hao; An, Gang; Guo, Lei

    2014-01-01

    Mobile phone virus is a rogue program written to propagate from one phone to another, which can take control of a mobile device by exploiting its vulnerabilities. In this paper the propagation model of mobile phone virus is tackled to understand how particular factors can affect its propagation and design effective containment strategies to suppress mobile phone virus. Two different propagation models of mobile phone viruses under the complex network are proposed in this paper. One is intended to describe the propagation of user-tricking virus, and the other is to describe the propagation of the vulnerability-exploiting virus. Based on the traditional epidemic models, the characteristics of mobile phone viruses and the network topology structure are incorporated into our models. A detailed analysis is conducted to analyze the propagation models. Through analysis, the stable infection-free equilibrium point and the stability condition are derived. Finally, considering the network topology, the numerical and simulation experiments are carried out. Results indicate that both models are correct and suitable for describing the spread of two different mobile phone viruses, respectively. PMID:25133209

  12. The effect of triazole induced photosynthetic pigments and biochemical constituents of Zea mays L. (Maize) under drought stress

    Science.gov (United States)

    Rajasekar, Mahalingam; Rabert, Gabriel Amalan; Manivannan, Paramasivam

    2016-06-01

    In this investigation, pot culture experiment was carried out to estimate the ameliorating effect of triazole compounds, namely Triadimefon (TDM), Tebuconazole (TBZ), and Propiconazole (PCZ) on drought stress, photosynthetic pigments, and biochemical constituents of Zea mays L. (Maize). From 30 days after sowing (DAS), the plants were subjected to 4 days interval drought (DID) stress and drought with TDM at 15 mg l-1, TBZ at 10 mg l-1, and PCZ at 15 mg l-1. Irrigation at 1-day interval was kept as control. Irrigation performed on alternative day. The plant samples were collected on 40, 50, and 60 DAS and separated into root, stem, and leaf for estimating the photosynthetic pigments and biochemical constituents. Drought and drought with triazole compounds treatment increased the biochemical glycine betaine content, whereas the protein and the pigments contents chlorophyll-a, chlorophyll-b, total chlorophyll, carotenoid, and anthocyanin decreased when compared to control. The triazole treatment mitigated the adverse effects of drought stress by increasing the biochemical potentials and paved the way to overcome drought stress in corn plant.

  13. Adaptive neural network motion control for aircraft under uncertainty conditions

    Science.gov (United States)

    Efremov, A. V.; Tiaglik, M. S.; Tiumentsev, Yu V.

    2018-02-01

    We need to provide motion control of modern and advanced aircraft under diverse uncertainty conditions. This problem can be solved by using adaptive control laws. We carry out an analysis of the capabilities of these laws for such adaptive systems as MRAC (Model Reference Adaptive Control) and MPC (Model Predictive Control). In the case of a nonlinear control object, the most efficient solution to the adaptive control problem is the use of neural network technologies. These technologies are suitable for the development of both a control object model and a control law for the object. The approximate nature of the ANN model was taken into account by introducing additional compensating feedback into the control system. The capabilities of adaptive control laws under uncertainty in the source data are considered. We also conduct simulations to assess the contribution of adaptivity to the behavior of the system.

  14. Jasmonic acid Modulates the Physio-Biochemical Attributes, Antioxidant Enzyme Activity and Gene Expression in Glycine max under Nickel Toxicity

    Directory of Open Access Journals (Sweden)

    Geetika eSirhindi

    2016-05-01

    Full Text Available In present study, we evaluated the effects of Jasmonic acid (JA on physio-biochemical attributes, antioxidant enzyme activity and gene expression in soybean (Glycine max L. plants subjected to nickel (Ni stress. Ni stress decreases the shoot and root length and chlorophyll content by 37.23%, 38.31% and 39.21% respectively over the control. However, application of JA was found to improve the chlorophyll content and growth of Ni-stressed seedlings in terms of root and shoot length. Plants supplemented with Jasmonate restores the chlorophyll fluorescence, which was disturbed by Ni stress. The present study demonstrated increase in proline, glycinebetaine, total protein and total soluble sugar (TSS by 33.09%, 51.26%, 22.58% and 49.15% respectively under Ni toxicity as compared to control. Supplementation of JA to Ni stressed plants further enhanced the above parameters. Ni stress increases hydrogen peroxide (H2O2 by 68.49%, lipid peroxidation (MDA by 50.57% and NADPH oxidase by 50.92% over the control. Supplementation of JA minimizes the accumulation of H2O2, MDA and NADPH oxidase, which helps in stabilization of biomolecules. The activities of superoxide dismutase (SOD, peroxidase (POD, catalase (CAT and ascorbate peroxidase (APX increases by 40.04%, 28.22%, 48.53% and 56.79% respectively over the control in Ni treated seedlings and further enhancement in the antioxidant activity was observed by the application of JA. Ni treated soybean seedlings showed increase in expression of Fe-SOD by 77.62%, CAT by 15.25%, POD by 58.33% and APX by 80.58% over the control. Nevertheless, application of JA further enhanced the expression of the above genes in the present study. Our results signified that Ni stress caused negative impacts on soybean seedlings, but, co-application of JA facilitate the seedlings to combat the detrimental effects of Ni through enhanced osmolytes and osmoprotectants, antioxidant enzyme activity and gene expression.

  15. Effect of abscisic acid on biochemical constituents, enzymatic and non enzymatic antioxidant status of lettuce (Lactuca sativa L. under varied irrigation regimes

    Directory of Open Access Journals (Sweden)

    Mohamed A. Al Muhairi

    2015-12-01

    Full Text Available Economically important vegetable crop lettuce (Lactuca sativa L. of family Asteraceae was selected for the present investigation. It is being cultivated in UAE due to its commercial importance. In lettuce cultivation, the major problem is the requirement of large quantities of irrigation water. The present study was aimed to reduce the water consumption of lettuce cultivation; for that, a varied irrigation regime was used with the application of abscisic acid (ABA. The parameters studied were biochemical constituents, antioxidant potential and antioxidant enzymes’ activities in lettuce plants under drought stress and its response to ABA under stress. Drought stress caused an increase in the biochemical constituents like proline and amino acid contents when compared with control and also increased under individual ABA treatments and treatments under drought stress. The non-enzymatic antioxidant molecules like ascorbate and α-tocopherol showed significant increase under drought condition in lettuce. ABA slightly reduced these contents. The antioxidant enzymes like superoxide dismutase, catalase and peroxidase showed significant increase under drought condition and ABA caused significant enhancement in these antioxidant enzymes under drought stress and also in unstressed conditions, thereby protecting the plants from the deleterious effects of drought stress. From the results of this investigation, it can be concluded that ABA in 10 mg g−1 can be used as a potential tool to minimise the drought stress effects in lettuce cultivation.

  16. Effects of nanomolar cadmium concentrations on water plants - comparison of biochemical and biophysical mechanisms of toxicity under environmentally relevant conditions

    OpenAIRE

    Andresen, Elisa

    2014-01-01

    In this thesis, the effects of the highly toxic heavy metal cadmium (Cd) on the rootless aquatic model plant Ceratophyllum demersum are investigated on the biochemical and biophysical level. The experiments were carried out using environmentally relevant conditions, i.e. light and temperature followed a sinusoidal cycle, a low biomass to water ratio resembled the situation in oligotrophic lakes and a continuous exchange of the defined nutrient solution ensured that metal uptake into the plant...

  17. Designing container shipping network under changing demand and freight rates

    Directory of Open Access Journals (Sweden)

    C. Chen

    2010-03-01

    Full Text Available This paper focuses on the optimization of container shipping network and its operations under changing cargo demand and freight rates. The problem is formulated as a mixed integer non-linear programming problem (MINP with an objective of maximizing the average unit ship-slot profit at three stages using analytical methodology. The issues such as empty container repositioning, ship-slot allocating, ship sizing, and container configuration are simultaneously considered based on a series of the matrices of demand for a year. To solve the model, a bi-level genetic algorithm based method is proposed. Finally, numerical experiments are provided to illustrate the validity of the proposed model and algorithms. The obtained results show that the suggested model can provide a more realistic solution to the issues on the basis of changing demand and freight rates and arrange a more effective approach to the optimization of container shipping network structures and operations than does the model based on the average demand.

  18. Joint Secrecy for D2D Communications Underlying Cellular Networks

    KAUST Repository

    Hyadi, Amal

    2018-01-15

    In this work, we investigate the ergodic secrecy rate region of a block-fading spectrum-sharing system, where a D2D communication is underlying a cellular channel. We consider that both the primary and the secondary transmissions require their respective transmitted messages to be kept secret from a common eavesdropper under a joint secrecy constraint. The presented results are for three different scenarios, each corresponding to a particular requirement of the cellular system. First, we consider the case of a fair cellular system, and we show that the impact of jointly securing the transmissions can be balanced between the primary and the secondary systems. The second scenario examines the case when the primary network is demanding and requires the secondary transmission to be at a rate that is decodable by the primary receiver, while the last scenario assumes a joint transmission of artificial noise by the primary and the secondary transmitters. For each scenario, we present an achievable ergodic secrecy rate region that can be used as an indicator for the cellular and the D2D systems to agree under which terms the spectrum will be shared.

  19. Work of scientific and technological information under network environment

    International Nuclear Information System (INIS)

    Chen Yingxi; Huang Daifu; Yang Lifeng

    2010-01-01

    With the development of internet and information technology, the work of scientific and technological information is faced with great challenge. This article expounds the new changes of scientific and technological information in enterprise under network environment by giving a minute description on the situation the work faced and characteristic of the work. Not only does it carry out enthusiastic discussion upon problems which are present in the work of scientific and technological information in the company, but puts forward proposals and specific measures as well. Service theory is also offered by adjusting and reforming the resources construction, service ways and the job of providing contents. We should take vigorous action to the research work of scientific and technological information, changing the information directional service into knowledge providing service. (authors)

  20. Network formation under heterogeneous costs: The multiple group model

    NARCIS (Netherlands)

    Kamphorst, J.J.A.; van der Laan, G.

    2007-01-01

    It is widely recognized that the shape of networks influences both individual and aggregate behavior. This raises the question which types of networks are likely to arise. In this paper we investigate a model of network formation, where players are divided into groups and the costs of a link between

  1. Dopamine D1 signaling organizes network dynamics underlying working memory.

    Science.gov (United States)

    Roffman, Joshua L; Tanner, Alexandra S; Eryilmaz, Hamdi; Rodriguez-Thompson, Anais; Silverstein, Noah J; Ho, New Fei; Nitenson, Adam Z; Chonde, Daniel B; Greve, Douglas N; Abi-Dargham, Anissa; Buckner, Randy L; Manoach, Dara S; Rosen, Bruce R; Hooker, Jacob M; Catana, Ciprian

    2016-06-01

    Local prefrontal dopamine signaling supports working memory by tuning pyramidal neurons to task-relevant stimuli. Enabled by simultaneous positron emission tomography-magnetic resonance imaging (PET-MRI), we determined whether neuromodulatory effects of dopamine scale to the level of cortical networks and coordinate their interplay during working memory. Among network territories, mean cortical D1 receptor densities differed substantially but were strongly interrelated, suggesting cross-network regulation. Indeed, mean cortical D1 density predicted working memory-emergent decoupling of the frontoparietal and default networks, which respectively manage task-related and internal stimuli. In contrast, striatal D1 predicted opposing effects within these two networks but no between-network effects. These findings specifically link cortical dopamine signaling to network crosstalk that redirects cognitive resources to working memory, echoing neuromodulatory effects of D1 signaling on the level of cortical microcircuits.

  2. BIOCHEMICAL STATUS OF BLOOD SERUM OF RAINBOW TROUT Oncorhynchus mykiss (Walbaum, 1792 UNDER DIFFERENT KEEPING AND FEEDING CONDITIONS

    Directory of Open Access Journals (Sweden)

    Edhem Hasković

    2013-01-01

    Full Text Available We analyzed the blood serum of the rainbow trout in relation to various physico-chemical properties of water and diet composition. Fish were reared in two ponds that were supplied by water from different sources. The identified differences in the biochemical parameters are caused by different environmental factors in ponds and different feed composition. Low oxygen values caused by different temperatures is a key stress factor of the noted differences. Statistically significant differences are noted for AST (aspartate aminotransferase, ALT (alanine aminotransferase, triglycerides, urea and iron (0.00. Evident were also different mineral concentrations of Ca and P (0.05 as well as glucose and cholesterol (0.05.

  3. Effect of maltose and trehalose on growth, yield and some biochemical components of wheat plant under water stress

    Directory of Open Access Journals (Sweden)

    Hemmat A. Ibrahim

    2016-12-01

    Full Text Available In the greenhouse experiment, wheat plants (Triticum aestivum L. cv. Giza 168 were treated with 10 mM of maltose and trehalose as foliar spray using Tween 20 as wetting agent at 15, 30 and 45 days post sowing with two times of irrigation at 10 and 20 days intervals. Two samples were taken after 45 and 120 days from planting. At the first sample date, plant height, shoot fresh and dry weights and leaf area were recorded. At harvesting time (the second sample no. of spikes/plant, no. of spikelets/plant and weight of 1000 grains were taken. Chemical analyses were conducted in leaves at the first sample date for determination of phenolic compounds, flavonoids, amino acids, reducing sugars, total soluble sugars, protein, proline, PAL, POD, ascorbate peroxidase, catalase, PPO and MDA. The obtained results indicated that maltose and trehalose had significant and positive effect on most growth parameters. Opposite trend was found in plant height, no. of spike/plant and weight of 1000 grains by drought treatment. Maltose and trehalose treatments enhanced in the most biochemical components whereas they decreased PAL and catalase activity. Variable trends in amino acids and ascorbate peroxidase were observed by drought. However, the drought has more stimulative effect in most cases than the first time period of irrigation. The results concluded that foliar applications with maltose or trehalose induced water stress tolerance in wheat plants. Maltose treatment gave the best results in most morphological parameters, grains yield and biochemical components than trehalose treatment.

  4. Molecular and elemental effects underlying the biochemical action of transcranial direct current stimulation (tDCS) in appetite control

    Science.gov (United States)

    Surowka, Artur D.; Ziomber, Agata; Czyzycki, Mateusz; Migliori, Alessandro; Kasper, Kaja; Szczerbowska-Boruchowska, Magdalena

    2018-04-01

    Recent studies highlight that obesity may alter the electric activity in brain areas triggering appetite and craving. Transcranial direct current brain stimulation (tDCS) has recently emerged as a safe alternative for treating food addiction via modulating cortical excitability without any high-risk surgical procedure to be utilized. As for anodal-type tDCS (atDCS), we observe increased excitability and spontaneous firing of the cortical neurons, whilst for the cathodal-type tDCS (ctDCS) a significant decrease is induced. Unfortunately, for the method to be fully used in a clinical setting, its biochemical action mechanism must be precisely defined, although it is proposed that molecular remodelling processes play in concert with brain activity changes involving the ions of: Na, Cl, K and Ca. Herein, we proposed for the first time Fourier transform infrared (FTIR) and synchrotron X-ray fluorescence (SRXRF) microprobes for a combined molecular and elemental analysis in the brain areas implicated appetite control, upon experimental treatment by either atDCS or ctDCS. The study, although preliminary, shows that by stimulating the prefrontal cortex in the rats fed high-caloric nutrients, the feeding behavior can be significantly changed, resulting in significantly inhibited appetite. Both, atDCS and ctDCS produced significant molecular changes involving qualitative and structural properties of lipids, whereas atDCS was found with a somewhat more significant effect on protein secondary structure in all the brain areas investigated. Also, tDCS was reported to reduce surface masses of Na, Cl, K, and Ca in almost all brain areas investigated, although the atDCS deemed to have a stronger neuro-modulating effect. Taken together, one can report that tDCS is an effective treatment technique, and its action mechanism in the appetite control seems to involve a variety of lipid-, protein- and metal/non-metal-ion-driven biochemical changes, regardless the current polarization.

  5. A bilateral frontoparietal network underlies visuospatial analogical reasoning.

    Science.gov (United States)

    Watson, Christine E; Chatterjee, Anjan

    2012-02-01

    Our ability to reason by analogy facilitates problem solving and allows us to communicate ideas efficiently. In this study, we examined the neural correlates of analogical reasoning and, more specifically, the contribution of rostrolateral prefrontal cortex (RLPFC) to reasoning. This area of the brain has been hypothesized to integrate relational information, as in analogy, or the outcomes of subgoals, as in multi-tasking and complex problem solving. Using fMRI, we compared visuospatial analogical reasoning to a control task that was as complex and difficult as the analogies and required the coordination of subgoals but not the integration of relations. We found that analogical reasoning more strongly activated bilateral RLPFC, suggesting that anterior prefrontal cortex is preferentially recruited by the integration of relational knowledge. Consistent with the need for inhibition during analogy, bilateral, and particularly right, inferior frontal gyri were also more active during analogy. Finally, greater activity in bilateral inferior parietal cortex during the analogy task is consistent with recent evidence for the neural basis of spatial relation knowledge. Together, these findings indicate that a network of frontoparietal areas underlies analogical reasoning; we also suggest that hemispheric differences may emerge depending on the visuospatial or verbal/semantic nature of the analogies. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Gaussian process regression for sensor networks under localization uncertainty

    Science.gov (United States)

    Jadaliha, M.; Xu, Yunfei; Choi, Jongeun; Johnson, N.S.; Li, Weiming

    2013-01-01

    In this paper, we formulate Gaussian process regression with observations under the localization uncertainty due to the resource-constrained sensor networks. In our formulation, effects of observations, measurement noise, localization uncertainty, and prior distributions are all correctly incorporated in the posterior predictive statistics. The analytically intractable posterior predictive statistics are proposed to be approximated by two techniques, viz., Monte Carlo sampling and Laplace's method. Such approximation techniques have been carefully tailored to our problems and their approximation error and complexity are analyzed. Simulation study demonstrates that the proposed approaches perform much better than approaches without considering the localization uncertainty properly. Finally, we have applied the proposed approaches on the experimentally collected real data from a dye concentration field over a section of a river and a temperature field of an outdoor swimming pool to provide proof of concept tests and evaluate the proposed schemes in real situations. In both simulation and experimental results, the proposed methods outperform the quick-and-dirty solutions often used in practice.

  7. Analyzing Bullwhip Effect in Supply Networks under Exogenous Uncertainty

    Directory of Open Access Journals (Sweden)

    Mitra Darvish

    2014-05-01

    Full Text Available This paper explains a model for analyzing and measuring the propagation of order amplifications (i.e. bullwhip effect for a single-product supply network topology considering exogenous uncertainty and linear and time-invariant inventory management policies for network entities. The stream of orders placed by each entity of the network is characterized assuming customer demand is ergodic. In fact, we propose an exact formula in order to measure the bullwhip effect in the addressed supply network topology considering the system in Markovian chain framework and presenting a matrix of network member relationships and relevant order sequences. The formula turns out using a mathematical method called frequency domain analysis. The major contribution of this paper is analyzing the bullwhip effect considering exogenous uncertainty in supply networks and using the Fourier transform in order to simplify the relevant calculations. We present a number of numerical examples to assess the analytical results accuracy in quantifying the bullwhip effect.

  8. Robustness of networks against propagating attacks under vaccination strategies

    International Nuclear Information System (INIS)

    Hasegawa, Takehisa; Masuda, Naoki

    2011-01-01

    We study the effect of vaccination on the robustness of networks against propagating attacks that obey the susceptible–infected–removed model. By extending the generating function formalism developed by Newman (2005 Phys. Rev. Lett. 95 108701), we analytically determine the robustness of networks that depends on the vaccination parameters. We consider the random defense where nodes are vaccinated randomly and the degree-based defense where hubs are preferentially vaccinated. We show that, when vaccines are inefficient, the random graph is more robust against propagating attacks than the scale-free network. When vaccines are relatively efficient, the scale-free network with the degree-based defense is more robust than the random graph with the random defense and the scale-free network with the random defense

  9. Biochemical Changes of the Organism of Apodemus flavicollis (Rodentia: Muridae Under Conditions of Environmental Anthropogenic Pollution by Heavy Metals in Northern Areas of Ukraine

    Directory of Open Access Journals (Sweden)

    Svitlana V. Zadyra

    2014-04-01

    Full Text Available The present research dedicates the integral assessment of biochemistry indexes of nature populations of rodents under conditions of environment pollution by heavy metals. The raised content in soils of mobile forms Pb, Cd, Cr, Ni and Co was revealed оn distance of 500 m to the South-West from Tripillya Thermal Power Plant (Kyiv region, Ukraine. That’s considerably (3–5 times exceeds levels for territory of Kaniv Nature Reserve (Cherkassy region, Ukraine. Territory of National Nature Park “Holosiivsky” (Kyiv, Ukraine characterized by rather increased content of active form of researched heavy metals especially Pb. Increase of the concentration of diene conjugates (3–7 times and malonic dialdehyde (2–4 times in yellow-necked mouse liver (Apodemus flavicollis of under pollution by heavy metals has been discovered. Insignificant increasing of content of Schiff basis in liver cells of rodents in region of impact of Tripillya TPP (in 2 times in spring and in summer, in autumn – in 2.5 times was detected. Seasonal dynamics of the maintenance of lipid peroxidation has been revealed. The registered changes of biochemical indicators testify about presence ecological-biochemical stress in an organism of the yellow-necked mouse in the district of influence of Tripillya TPP.

  10. Functional neural networks underlying response inhibition in adolescents and adults.

    Science.gov (United States)

    Stevens, Michael C; Kiehl, Kent A; Pearlson, Godfrey D; Calhoun, Vince D

    2007-07-19

    This study provides the first description of neural network dynamics associated with response inhibition in healthy adolescents and adults. Functional and effective connectivity analyses of whole brain hemodynamic activity elicited during performance of a Go/No-Go task were used to identify functionally integrated neural networks and characterize their causal interactions. Three response inhibition circuits formed a hierarchical, inter-dependent system wherein thalamic modulation of input to premotor cortex by fronto-striatal regions led to response suppression. Adolescents differed from adults in the degree of network engagement, regional fronto-striatal-thalamic connectivity, and network dynamics. We identify and characterize several age-related differences in the function of neural circuits that are associated with behavioral performance changes across adolescent development.

  11. Stabilization of Networked Control Systems Under Feedback-based Communication

    National Research Council Canada - National Science Library

    Zhang, Lei; Hristu-Varsakelis, Dimitrios

    2004-01-01

    We study the stabilization of a networked control system (NSC) in which multiple sensors and actuators of a physical plant share a communication medium to exchange information with a remote controller...

  12. Analysis of Network Vulnerability Under Joint Node and Link Attacks

    Science.gov (United States)

    Li, Yongcheng; Liu, Shumei; Yu, Yao; Cao, Ting

    2018-03-01

    The security problem of computer network system is becoming more and more serious. The fundamental reason is that there are security vulnerabilities in the network system. Therefore, it’s very important to identify and reduce or eliminate these vulnerabilities before they are attacked. In this paper, we are interested in joint node and link attacks and propose a vulnerability evaluation method based on the overall connectivity of the network to defense this attack. Especially, we analyze the attack cost problem from the attackers’ perspective. The purpose is to find the set of least costs for joint links and nodes, and their deletion will lead to serious network connection damage. The simulation results show that the vulnerable elements obtained from the proposed method are more suitable for the attacking idea of the malicious persons in joint node and link attack. It is easy to find that the proposed method has more realistic protection significance.

  13. Biochemical and molecular characterization of the antioxidative system of Coffea sp. under cold conditions in genotypes with contrasting tolerance.

    Science.gov (United States)

    Fortunato, Ana S; Lidon, Fernando C; Batista-Santos, Paula; Leitão, António Eduardo; Pais, Isabel P; Ribeiro, Ana I; Ramalho, José Cochicho

    2010-03-15

    Low positive temperature (chilling) is frequently linked to the promotion of oxidative stress conditions, and is of particular importance in the coffee plant due to its severe impact on growth, development, photosynthesis and production. Nevertheless, some acclimation ability has been reported within the Coffea genus, and is possibly related to oxidative stress control. Using an integrated biochemical and molecular approach, the characterization of the antioxidative system of genotypes with different cold acclimation abilities was performed. Experiments were carried out using 1.5-year-old coffee seedlings of Coffea canephora cv. Apoatã, C. arabica cv. Catuaí, C. dewevrei and 2 hybrids, Icatu (C. arabicaxC. canephora) and Piatã (C. dewevreixC. arabica) subjected to a gradual cold treatment and a recovery period. Icatu showed the greatest ability to control oxidative stress, as reflected by the enhancement of several antioxidative components (Cu,Zn-SOD and APX activities; ascorbate, alpha-tocopherol and chlorogenic acids (CGAs) contents) and lower reactive oxygen species contents (H(2)O(2) and OH). Gene expression studies show that GRed, DHAR and class III and IV chitinases might also be involved in the cold acclimation ability of Icatu. Catuaí showed intermediate acclimation ability through the reinforcement of some antioxidative molecules, usually to a lesser extent than that observed in Icatu. On the other hand, C. dewevrei showed the poorest response in terms of antioxidant accumulation, and also showed the greatest increase in OH values. The difference in the triggering of antioxidative traits supports the hypothesis of its importance to cold (and photoinhibition) tolerance in Coffea sp. and could provide a useful probe to identify tolerant genotypes. Copyright 2009 Elsevier GmbH. All rights reserved.

  14. Brain networks underlying mental imagery of auditory and visual information.

    Science.gov (United States)

    Zvyagintsev, Mikhail; Clemens, Benjamin; Chechko, Natalya; Mathiak, Krystyna A; Sack, Alexander T; Mathiak, Klaus

    2013-05-01

    Mental imagery is a complex cognitive process that resembles the experience of perceiving an object when this object is not physically present to the senses. It has been shown that, depending on the sensory nature of the object, mental imagery also involves correspondent sensory neural mechanisms. However, it remains unclear which areas of the brain subserve supramodal imagery processes that are independent of the object modality, and which brain areas are involved in modality-specific imagery processes. Here, we conducted a functional magnetic resonance imaging study to reveal supramodal and modality-specific networks of mental imagery for auditory and visual information. A common supramodal brain network independent of imagery modality, two separate modality-specific networks for imagery of auditory and visual information, and a common deactivation network were identified. The supramodal network included brain areas related to attention, memory retrieval, motor preparation and semantic processing, as well as areas considered to be part of the default-mode network and multisensory integration areas. The modality-specific networks comprised brain areas involved in processing of respective modality-specific sensory information. Interestingly, we found that imagery of auditory information led to a relative deactivation within the modality-specific areas for visual imagery, and vice versa. In addition, mental imagery of both auditory and visual information widely suppressed the activity of primary sensory and motor areas, for example deactivation network. These findings have important implications for understanding the mechanisms that are involved in generation of mental imagery. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. Reliability of Broadcast Communications Under Sparse Random Linear Network Coding

    OpenAIRE

    Brown, Suzie; Johnson, Oliver; Tassi, Andrea

    2018-01-01

    Ultra-reliable Point-to-Multipoint (PtM) communications are expected to become pivotal in networks offering future dependable services for smart cities. In this regard, sparse Random Linear Network Coding (RLNC) techniques have been widely employed to provide an efficient way to improve the reliability of broadcast and multicast data streams. This paper addresses the pressing concern of providing a tight approximation to the probability of a user recovering a data stream protected by this kin...

  16. Some scale-free networks could be robust under selective node attacks

    Science.gov (United States)

    Zheng, Bojin; Huang, Dan; Li, Deyi; Chen, Guisheng; Lan, Wenfei

    2011-04-01

    It is a mainstream idea that scale-free network would be fragile under the selective attacks. Internet is a typical scale-free network in the real world, but it never collapses under the selective attacks of computer viruses and hackers. This phenomenon is different from the deduction of the idea above because this idea assumes the same cost to delete an arbitrary node. Hence this paper discusses the behaviors of the scale-free network under the selective node attack with different cost. Through the experiments on five complex networks, we show that the scale-free network is possibly robust under the selective node attacks; furthermore, the more compact the network is, and the larger the average degree is, then the more robust the network is; with the same average degrees, the more compact the network is, the more robust the network is. This result would enrich the theory of the invulnerability of the network, and can be used to build robust social, technological and biological networks, and also has the potential to find the target of drugs.

  17. Effect of foliar application of α-tocopherol on vegetative growth and some biochemical constituents of two soybean genotypes under salt stress

    Science.gov (United States)

    Rahmawati, N.; Damanik, R. I. M.

    2018-02-01

    Foliar spray of plant growth regulating compounds including antioxidants is an effective strategy to overcome the adverse effects of environmental constraints on different plants. A field experiment was conducted on May - July 2017 at the experimental farm in Paluh Merbau Village Deli Serdang (EC 6 - 7 dS/m). The aim was to study the effects of foliar spray of α-tocopherol (0, 250, 500, 500 ppm) on vegetative growth and some chemical constituents of 2 soybean genotypes (Grobogan x Grobogan and Grobogan x Anjasmoro) under salt stress (EC 6 - 7 dS/m). Most of morphological and biochemical parameters were significantly affected by application of α-tocopherol. The α-tocopherol at 500 ppm recorded the best value of root fresh weight, shoot and root dry weight, number of leaves, chlorophyll b, and soluble protein content. There was significant difference found between plants treated with α-tocopherol in terms of number of branch, shoot fresh weight, and chlorophyll a. Soybean genotypes showed diverse morphology and physiological responses to salt stress. Grobogan x Anjasmoro genotype was salt-sensitive based on all variable, while Grobogan x Grobogan genotype was more tolerant based on morphological and biochemical characters.

  18. A dynamically coupled allosteric network underlies binding cooperativity in Src kinase.

    Science.gov (United States)

    Foda, Zachariah H; Shan, Yibing; Kim, Eric T; Shaw, David E; Seeliger, Markus A

    2015-01-20

    Protein tyrosine kinases are attractive drug targets because many human diseases are associated with the deregulation of kinase activity. However, how the catalytic kinase domain integrates different signals and switches from an active to an inactive conformation remains incompletely understood. Here we identify an allosteric network of dynamically coupled amino acids in Src kinase that connects regulatory sites to the ATP- and substrate-binding sites. Surprisingly, reactants (ATP and peptide substrates) bind with negative cooperativity to Src kinase while products (ADP and phosphopeptide) bind with positive cooperativity. We confirm the molecular details of the signal relay through the allosteric network by biochemical studies. Experiments on two additional protein tyrosine kinases indicate that the allosteric network may be largely conserved among these enzymes. Our work provides new insights into the regulation of protein tyrosine kinases and establishes a potential conduit by which resistance mutations to ATP-competitive kinase inhibitors can affect their activity.

  19. Salience network dynamics underlying successful resistance of temptation

    Science.gov (United States)

    Nomi, Jason S; Calhoun, Vince D; Stelzel, Christine; Paschke, Lena M; Gaschler, Robert; Goschke, Thomas; Walter, Henrik; Uddin, Lucina Q

    2017-01-01

    Abstract Self-control and the ability to resist temptation are critical for successful completion of long-term goals. Contemporary models in cognitive neuroscience emphasize the primary role of prefrontal cognitive control networks in aligning behavior with such goals. Here, we use gaze pattern analysis and dynamic functional connectivity fMRI data to explore how individual differences in the ability to resist temptation are related to intrinsic brain dynamics of the cognitive control and salience networks. Behaviorally, individuals exhibit greater gaze distance from target location (e.g. higher distractibility) during presentation of tempting erotic images compared with neutral images. Individuals whose intrinsic dynamic functional connectivity patterns gravitate toward configurations in which salience detection systems are less strongly coupled with visual systems resist tempting distractors more effectively. The ability to resist tempting distractors was not significantly related to intrinsic dynamics of the cognitive control network. These results suggest that susceptibility to temptation is governed in part by individual differences in salience network dynamics and provide novel evidence for involvement of brain systems outside canonical cognitive control networks in contributing to individual differences in self-control. PMID:29048582

  20. Dynamical Response of Networks Under External Perturbations: Exact Results

    Science.gov (United States)

    Chinellato, David D.; Epstein, Irving R.; Braha, Dan; Bar-Yam, Yaneer; de Aguiar, Marcus A. M.

    2015-04-01

    We give exact statistical distributions for the dynamic response of influence networks subjected to external perturbations. We consider networks whose nodes have two internal states labeled 0 and 1. We let nodes be frozen in state 0, in state 1, and the remaining nodes change by adopting the state of a connected node with a fixed probability per time step. The frozen nodes can be interpreted as external perturbations to the subnetwork of free nodes. Analytically extending and to be smaller than 1 enables modeling the case of weak coupling. We solve the dynamical equations exactly for fully connected networks, obtaining the equilibrium distribution, transition probabilities between any two states and the characteristic time to equilibration. Our exact results are excellent approximations for other topologies, including random, regular lattice, scale-free and small world networks, when the numbers of fixed nodes are adjusted to take account of the effect of topology on coupling to the environment. This model can describe a variety of complex systems, from magnetic spins to social networks to population genetics, and was recently applied as a framework for early warning signals for real-world self-organized economic market crises.

  1. Gene network inference and biochemical assessment delineates GPCR pathways and CREB targets in small intestinal neuroendocrine neoplasia.

    Directory of Open Access Journals (Sweden)

    Ignat Drozdov

    Full Text Available Small intestinal (SI neuroendocrine tumors (NET are increasing in incidence, however little is known about their biology. High throughput techniques such as inference of gene regulatory networks from microarray experiments can objectively define signaling machinery in this disease. Genome-wide co-expression analysis was used to infer gene relevance network in SI-NETs. The network was confirmed to be non-random, scale-free, and highly modular. Functional analysis of gene co-expression modules revealed processes including 'Nervous system development', 'Immune response', and 'Cell-cycle'. Importantly, gene network topology and differential expression analysis identified over-expression of the GPCR signaling regulators, the cAMP synthetase, ADCY2, and the protein kinase A, PRKAR1A. Seven CREB response element (CRE transcripts associated with proliferation and secretion: BEX1, BICD1, CHGB, CPE, GABRB3, SCG2 and SCG3 as well as ADCY2 and PRKAR1A were measured in an independent SI dataset (n = 10 NETs; n = 8 normal preparations. All were up-regulated (p<0.035 with the exception of SCG3 which was not differently expressed. Forskolin (a direct cAMP activator, 10(-5 M significantly stimulated transcription of pCREB and 3/7 CREB targets, isoproterenol (a selective ß-adrenergic receptor agonist and cAMP activator, 10(-5 M stimulated pCREB and 4/7 targets while BIM-53061 (a dopamine D(2 and Serotonin [5-HT(2] receptor agonist, 10(-6 M stimulated 100% of targets as well as pCREB; CRE transcription correlated with the levels of cAMP accumulation and PKA activity; BIM-53061 stimulated the highest levels of cAMP and PKA (2.8-fold and 2.5-fold vs. 1.8-2-fold for isoproterenol and forskolin. Gene network inference and graph topology analysis in SI NETs suggests that SI NETs express neural GPCRs that activate different CRE targets associated with proliferation and secretion. In vitro studies, in a model NET cell system, confirmed that transcriptional

  2. On library information resources construction under network environment

    International Nuclear Information System (INIS)

    Guo Huifang; Wang Jingjing

    2014-01-01

    Information resources construction is the primary task and critical measures for libraries. In the 2lst century, the knowledge economy era, with the continuous development of computer network technology, information resources have become an important part of libraries which have been a significant indicator of its capacity construction. The development of socialized Information, digitalization and internalization has put forward new requirements for library information resources construction. This paper describes the impact of network environment on construction of library information resources and proposes the measures of library information resources. (authors)

  3. Performance in wireless networks and industrial wireless networks on control processes in real time under industrial environments

    Directory of Open Access Journals (Sweden)

    Juan F. Monsalve-Posada

    2015-01-01

    Full Text Available The growing use of Ethernet networks on the industrial automation pyramid has led many companies to develop new devices to operate in requirements of this level, nowadays it is called Industrial Ethernet network, on the market there are various sensors and actuators to industrial scale equipped with this technology, many of these devices are very expensive. In this paper, the performance of two wireless networks is evaluated, the first network has conventional Ethernet devices, and the second network has Industrial Ethernet devices. For the process we vary four parameters such as distance, number of bytes, the signal to noise ratio, and the packet error rate, and then we measure delays and compare with metric statistics results, Box Plot graphs were used for the analysis. Finally, we conclude that under the parameters and conditions tested, wireless networks can serve as a communication system in control applications with allowable delays of up to 50 ms, in addition, the results show a better performance of Industrial Ethernet networks over conventional networks, with differences in the RTT of milliseconds. Therefore, it is recommended to establish what risk is for the process to control these delays to determine if the equipment conventional applies, since under certain features like humidity and temperature can operate properly for a considerable time and at lower cost than devices to Industrial Ethernet.

  4. Shelf-life of chilled fresh Mediterranean swordfish (Xiphias gladius) stored under various packaging conditions: microbiological, biochemical and sensory attributes.

    Science.gov (United States)

    Pantazi, D; Papavergou, A; Pournis, N; Kontominas, M G; Savvaidis, I N

    2008-02-01

    The present work evaluated the effect of air, vacuum and modified atmosphere packaging (MAP) on the shelf-life of chilled Mediterranean swordfish (Xiphias gladius). Fresh swordfish slices were stored in air, under vacuum and MAP (40%/30%/30%, CO(2)/N(2)/O(2)) under refrigeration (4 degrees C) for a period of 16 days. Of the three treatments used (vacuum, MAP and air), both MAP and vacuum packaging (VP) were the most effective for inhibiting growth of aerobic microflora in swordfish samples until days 9-10 of refrigerated storage. Of the microbial species determined, both Pseudomonas spp. and H(2)S-producing bacteria (including Shewanella putrefaciens) were dominant in swordfish samples stored in air, whereas growth of these species was partly inhibited under VP and MAP conditions. Lactic acid bacteria (LAB) and Enterobacteriaceae were also found to be members of the final swordfish microbial flora, irrespective of packaging conditions throughout the entire storage period. Of the chemical freshness indices determined, thiobarbituric acid (TBA) values were variable in swordfish samples, indicative of no specific oxidative rancidity trend. Trimethylamine nitrogen (TMA-N) values of swordfish samples stored in air, under VP and MAP exceeded the limit value of 5mgN/100g fish muscle after days 7, 8-9 and 11 days of storage, respectively. In a similar trend, total volatile basic nitrogen (TVB-N) for swordfish samples stored in air, under VP and MAP exceeded the limit value of 25mgN/100g fish muscle after 7-8, 10 and 12 days of storage, respectively. Sensory analyses (odor and taste attributes) indicated a shelf-life of ca. 7 days for air, 9 days for VP and 11-12 days for the MA-packaged swordfish samples.

  5. Similarity between community structures of different online social networks and its impact on underlying community detection

    Science.gov (United States)

    Fan, W.; Yeung, K. H.

    2015-03-01

    As social networking services are popular, many people may register in more than one online social network. In this paper we study a set of users who have accounts of three online social networks: namely Foursquare, Facebook and Twitter. Community structure of this set of users may be reflected in these three online social networks. Therefore, high correlation between these reflections and the underlying community structure may be observed. In this work, community structures are detected in all three online social networks. Also, we investigate the similarity level of community structures across different networks. It is found that they show strong correlation with each other. The similarity between different networks may be helpful to find a community structure close to the underlying one. To verify this, we propose a method to increase the weights of some connections in networks. With this method, new networks are generated to assist community detection. By doing this, value of modularity can be improved and the new community structure match network's natural structure better. In this paper we also show that the detected community structures of online social networks are correlated with users' locations which are identified on Foursquare. This information may also be useful for underlying community detection.

  6. Real-time relationship between PKA biochemical signal network dynamics and increased action potential firing rate in heart pacemaker cells

    Science.gov (United States)

    Yaniv, Yael; Ganesan, Ambhighainath; Yang, Dongmei; Ziman, Bruce D.; Lyashkov, Alexey E.; Levchenko, Andre; Zhang, Jin; Lakatta, Edward G.

    2015-01-01

    cAMP-PKA protein kinase is a key nodal signaling pathway that regulates a wide range of heart pacemaker cell functions. These functions are predicted to be involved in regulation of spontaneous action potential (AP) generation of these cells. Here we investigate if the kinetics and stoichiometry of increase in PKA activity match the increase in AP firing rate in response to β-adrenergic receptor (β-AR) stimulation or phosphodiesterase (PDE) inhibition, that alter the AP firing rate of heart sinoatrial pacemaker cells. In cultured adult rabbit pacemaker cells infected with an adenovirous expressing the FRET sensor AKAR3, the EC50 in response to graded increases in the intensity of β-AR stimulation (by Isoproterenol) the magnitude of the increases in PKA activity and the spontaneous AP firing rate were similar (0.4±0.1nM vs. 0.6±0.15nM, respectively). Moreover, the kinetics (t1/2) of the increases in PKA activity and spontaneous AP firing rate in response to β-AR stimulation or PDE inhibition were tightly linked. We characterized the system rate-limiting biochemical reactions by integrating these experimentally derived data into mechanistic-computational model. Model simulations predicted that phospholamban phosphorylation is a potent target of the increase in PKA activity that links to increase in spontaneous AP firing rate. In summary, the kinetics and stoichiometry of increases in PKA activity in response to a physiological (β-AR stimulation) or pharmacological (PDE inhibitor) stimuli match those of changes in the AP firing rate. Thus Ca2+-cAMP/PKA-dependent phosphorylation limits the rate and magnitude of increase in spontaneous AP firing rate. PMID:26241846

  7. A study on the evolution of crack networks under thermal fatigue loading

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Taheri, Said

    2008-01-01

    The crack network is a typical cracking morphology caused by thermal fatigue loading. It was pointed out that the crack network appeared under relatively small temperature fluctuations and did not grow deeply. In this study, the mechanism of evolution of crack network and its influence on crack growth was examined by numerical calculation. First, the stress field near two interacting cracks was investigated. It was shown that there are stress-concentration and stress-shielding zones around interacting cracks, and that cracks can form a network under the bi-axial stress condition. Secondly, a Monte Carlo simulation was developed in order to simulate the initiation and growth of cracks under thermal fatigue loading and the evolution of the crack network. The local stress field formed by pre-existing cracks was evaluated by the body force method and its role in the initiation and growth of cracks was considered. The simulation could simulate the evolution of the crack network and change in number of cracks observed in the experiments. It was revealed that reduction in the stress intensity factor due to stress feature in the depth direction under high cycle thermal fatigue loading plays an important role in the evolution of the crack network and that mechanical interaction between cracks in the network affects initiation rather than growth of cracks. The crack network appears only when the crack growth in the depth direction is interrupted. It was concluded that the emergence of the crack network is preferable for the structural integrity of cracked components

  8. Robust collaborative process interactions under system crash and network failures

    NARCIS (Netherlands)

    Wang, Lei; Wombacher, Andreas; Ferreira Pires, Luis; van Sinderen, Marten J.; Chi, Chihung

    2013-01-01

    With the possibility of system crashes and network failures, the design of robust client/server interactions for collaborative process execution is a challenge. If a business process changes its state, it sends messages to the relevant processes to inform about this change. However, server crashes

  9. Identification of gene networks underlying dystocia in dairy cattle

    Science.gov (United States)

    Dystocia is a trait with a high impact in the dairy industry. Among its risk factors are calf weight, gestation length, breed and conformation. Biological networks have been proposed to capture the genetic architecture of complex traits, where GWAS show limitations. The objective of this study was t...

  10. Phase resetting reveals network dynamics underlying a bacterial cell cycle.

    Science.gov (United States)

    Lin, Yihan; Li, Ying; Crosson, Sean; Dinner, Aaron R; Scherer, Norbert F

    2012-01-01

    Genomic and proteomic methods yield networks of biological regulatory interactions but do not provide direct insight into how those interactions are organized into functional modules, or how information flows from one module to another. In this work we introduce an approach that provides this complementary information and apply it to the bacterium Caulobacter crescentus, a paradigm for cell-cycle control. Operationally, we use an inducible promoter to express the essential transcriptional regulatory gene ctrA in a periodic, pulsed fashion. This chemical perturbation causes the population of cells to divide synchronously, and we use the resulting advance or delay of the division times of single cells to construct a phase resetting curve. We find that delay is strongly favored over advance. This finding is surprising since it does not follow from the temporal expression profile of CtrA and, in turn, simulations of existing network models. We propose a phenomenological model that suggests that the cell-cycle network comprises two distinct functional modules that oscillate autonomously and couple in a highly asymmetric fashion. These features collectively provide a new mechanism for tight temporal control of the cell cycle in C. crescentus. We discuss how the procedure can serve as the basis for a general approach for probing network dynamics, which we term chemical perturbation spectroscopy (CPS).

  11. Will electrical cyber-physical interdependent networks undergo first-order transition under random attacks?

    Science.gov (United States)

    Ji, Xingpei; Wang, Bo; Liu, Dichen; Dong, Zhaoyang; Chen, Guo; Zhu, Zhenshan; Zhu, Xuedong; Wang, Xunting

    2016-10-01

    Whether the realistic electrical cyber-physical interdependent networks will undergo first-order transition under random failures still remains a question. To reflect the reality of Chinese electrical cyber-physical system, the "partial one-to-one correspondence" interdependent networks model is proposed and the connectivity vulnerabilities of three realistic electrical cyber-physical interdependent networks are analyzed. The simulation results show that due to the service demands of power system the topologies of power grid and its cyber network are highly inter-similar which can effectively avoid the first-order transition. By comparing the vulnerability curves between electrical cyber-physical interdependent networks and its single-layer network, we find that complex network theory is still useful in the vulnerability analysis of electrical cyber-physical interdependent networks.

  12. Convergence and approximate calculation of average degree under different network sizes for decreasing random birth-and-death networks

    Science.gov (United States)

    Long, Yin; Zhang, Xiao-Jun; Wang, Kui

    2018-05-01

    In this paper, convergence and approximate calculation of average degree under different network sizes for decreasing random birth-and-death networks (RBDNs) are studied. First, we find and demonstrate that the average degree is convergent in the form of power law. Meanwhile, we discover that the ratios of the back items to front items of convergent reminder are independent of network link number for large network size, and we theoretically prove that the limit of the ratio is a constant. Moreover, since it is difficult to calculate the analytical solution of the average degree for large network sizes, we adopt numerical method to obtain approximate expression of the average degree to approximate its analytical solution. Finally, simulations are presented to verify our theoretical results.

  13. Coverage-maximization in networks under resource constraints.

    Science.gov (United States)

    Nandi, Subrata; Brusch, Lutz; Deutsch, Andreas; Ganguly, Niloy

    2010-06-01

    Efficient coverage algorithms are essential for information search or dispersal in all kinds of networks. We define an extended coverage problem which accounts for constrained resources of consumed bandwidth B and time T . Our solution to the network challenge is here studied for regular grids only. Using methods from statistical mechanics, we develop a coverage algorithm with proliferating message packets and temporally modulated proliferation rate. The algorithm performs as efficiently as a single random walker but O(B(d-2)/d) times faster, resulting in significant service speed-up on a regular grid of dimension d . The algorithm is numerically compared to a class of generalized proliferating random walk strategies and on regular grids shown to perform best in terms of the product metric of speed and efficiency.

  14. Biochemical and ultrastructural changes in pollen of Zea mays L. grown under enhanced UV-B radiation

    International Nuclear Information System (INIS)

    Santos, A.; Almeida, J.M.; Santos, I.; Salema, R.

    1998-01-01

    The influence of ultraviolet-B (UV-B) radiation on the development of the male gametophyte was studied in Zea mays L. cv. LG12 grown in a growth chamber under PAR light supplemented with UV-B radiation and compared with a second set of plants grown under PAR light. Pollen samples collected from both groups of plants were cultured on germination medium and it was found that UV-B had no effect on pollen germination. Total pollen protein content was not affected but UV-B absorbing pigments increased. Some ultrastructural alterations were observed in pollen and pollen tubes, in particular large amounts of electron dense deposits were seen throughout the cytoplasm and in association with the pollen wall. In mature spikes of UV-B treated plants, anthers retained numerous pollen grains in their loculi while anthers of control plants were almost empty. UV-B treatment delayed flowering by 2±3 d. These results show that UV-B treatment of maize plants interferes with flowering, pollen ultrastructure and anther maturation even though pollen germination is unaffected. The significant increase of UV-B absorbing pigments in pollen grains could represent a defence mechanism that enables plants to complete their reproductive cycle. (author)

  15. Defense strategies for asymmetric networked systems under composite utilities

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Nageswara S. [ORNL; Ma, Chris Y. T. [Hang Seng Management College, Hon Kong; Hausken, Kjell [University of Stavanger, Norway; He, Fei [Texas A& M University, Kingsville, TX, USA; Yau, David K. Y. [Singapore University of Technology and Design; Zhuang, Jun [University at Buffalo (SUNY)

    2017-11-01

    We consider an infrastructure of networked systems with discrete components that can be reinforced at certain costs to guard against attacks. The communications network plays a critical, asymmetric role of providing the vital connectivity between the systems. We characterize the correlations within this infrastructure at two levels using (a) aggregate failure correlation function that specifies the infrastructure failure probability giventhe failure of an individual system or network, and (b) first order differential conditions on system survival probabilities that characterize component-level correlations. We formulate an infrastructure survival game between an attacker and a provider, who attacks and reinforces individual components, respectively. They use the composite utility functions composed of a survival probability term and a cost term, and the previously studiedsum-form and product-form utility functions are their special cases. At Nash Equilibrium, we derive expressions for individual system survival probabilities and the expected total number of operational components. We apply and discuss these estimates for a simplified model of distributed cloud computing infrastructure

  16. Network of vascular diseases, death and biochemical characteristics in a set of 4,197 patients with type 1 diabetes (The FinnDiane Study

    Directory of Open Access Journals (Sweden)

    Wadén Johan

    2009-10-01

    Full Text Available Background Cardiovascular disease is the main cause of premature death in patients with type 1 diabetes. Patients with diabetic kidney disease have an increased risk of heart attack or stroke. Accurate knowledge of the complex inter-dependencies between the risk factors is critical for pinpointing the best targets for research and treatment. Therefore, the aim of this study was to describe the association patterns between clinical and biochemical features of diabetic complications. Methods Medical records and serum and urine samples of 4,197 patients with type 1 diabetes were collected from health care centers in Finland. At baseline, the mean diabetes duration was 22 years, 52% were male, 23% had kidney disease (urine albumin excretion over 300 mg/24 h or end-stage renal disease and 8% had a history of macrovascular events. All-cause mortality was evaluated after an average of 6.5 years of follow-up (25,714 patient years. The dataset comprised 28 clinical and 25 biochemical variables that were regarded as the nodes of a network to assess their mutual relationships. Results The networks contained cliques that were densely inter-connected (r > 0.6, including cliques for high-density lipoprotein (HDL markers, for triglycerides and cholesterol, for urinary excretion and for indices of body mass. The links between the cliques showed biologically relevant interactions: an inverse relationship between HDL cholesterol and the triglyceride clique (r P -16, a connection between triglycerides and body mass via C-reactive protein (r > 0.3, P -16 and intermediate-density cholesterol as the connector between lipoprotein metabolism and albuminuria (r > 0.3, P -16. Aging and macrovascular disease were linked to death via working ability and retinopathy. Diabetic kidney disease, serum creatinine and potassium, retinopathy and blood pressure were inter-connected. Blood pressure correlations indicated accelerated vascular aging in individuals with kidney disease

  17. Effects of Bacillus subtilis on some physiological and biochemical parameters of Triticum aestivum L. (wheat) under salinity.

    Science.gov (United States)

    Lastochkina, Oksana; Pusenkova, Ludmila; Yuldashev, Ruslan; Babaev, Marat; Garipova, Svetlana; Blagova, Dar'ya; Khairullin, Ramil; Aliniaeifard, Sasan

    2017-12-01

    Endophytic strain Bacillus subtilis (B. subtilis) 10-4, producing indole-3-acetic acid (IAA) and siderofores but not active in phosphate solubilization, exerted a protective effect on Triticum aestivum L. (wheat) plant grown under salinity (2% NaCl) stress. Exposure to salt stress resulted in an essential increase of proline (Pro) and malondialdehyde (MDA) level in the seedlings. At the same time the seedlings inoculated with B. subtilis 10-4 were characterized by decreased level of stress-induced Pro and MDA accumulation. It was revealed that both B. subtilis 10-4 and salinity caused increase in the content of endogenous salicylic acid (SA) in wheat seedlings as compared to SA content in the control, while B. subtilis 10-4 suppressed stress-induced SA accumulation. Water storage capacity (WSC) in leaf tissues was increased and stress-induced hydrolysis of statolite starch in root cap cells of the germinal roots was reduced by B. subtilis 10-4. The obtained data indicated that the activation of the defense reactions induced by B. subtilis 10-4 induced defense reactions may be connected with their ability to decrease the level of stress-induced oxidative and osmotic stress in seedlings and with the increase of endogenous SA level that can make a significant contribution to the implementation of the protective effect of B. subtilis 10-4 and is manifested in the improvement of plant growth, WSC of leaves and slowing down of the process of statolite starch hydrolysis under salinity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. The study of protein biomarkers to understand the biochemical processes underlying beef color development in young bulls.

    Science.gov (United States)

    Gagaoua, Mohammed; Terlouw, E M Claudia; Picard, Brigitte

    2017-12-01

    This study investigates relationships between 21 biomarkers and meat color traits of Longissimus thoracis muscles of young Aberdeen Angus and Limousin bulls. The relationships found allowed to propose metabolic processes underlying meat color. The color coordinates were related with several biomarkers. The relationships were in some cases breed-dependent and the variability explained in the regression models varied between 31 and 56%. The correlations between biomarkers and color parameters were sometimes opposite between breeds. The PCA using the 21 biomarkers and the instrumental color coordinates showed that these variables discriminated efficiently between the two studied breeds. Results are coherent with earlier studies on other beef breeds showing that several proteins belonging to different but partly related biological pathways involved in muscle contraction, metabolism, heat stress and apoptosis are related to beef color. The results suggest that in future, biomarkers may be used to classify meat cuts sampled early post-mortem according to their forthcoming color. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Evaluation of Chlorophyll Fluorescence and Biochemical Traits of Lettuce under Drought Stress and Super Absorbent or Bentonite Application

    Directory of Open Access Journals (Sweden)

    Akram Valizadeh Ghale Beig

    2014-03-01

    Full Text Available The effects of two superabsorbents (natural-bentonite and (synthetic-A 200 on the chlorophyll fluorescence index, proline accumulation, phenolic compounds, antioxidant activity and total carbohydrate in lettuce (Lactuca sativa L. was evaluated. For this purpose, a factorial experiment using completely randomized design with superabsorbents at 3 levels (0, 0.15, 0.30 w/w%, drought stress at 2 levels (60 and 100% of field capacity and 4 replicates was conducted. Results showed that photosystem photochemical efficiency (Fv/Fm II under drought stress (60% FC as well as lower levels of bentonite superabsorbent polymer reduced. The minimum and maximum proline content were obtained in 0.3% bentonite, 100% FC and 0 benetonite, 60% FC, respectively. The lowest and highest phenolic compounds was corresponded to the highest levels in both super absorbents and control respectively, so that the super absorbent and bentonite, reduced phenolic compounds by 62.65 and 66.21% compared to control. 0 and 0.15 wt % bentonite in high drought stress (60% FC showed the highest and 0.3 wt % bentonite and 100% FC attained the lowest level of antioxidant activity. Control bentonite treatment beds at 60% FC and beds containing 0.3 wt. % bentonite in 100% FC, showed the lowest and the highest total carbohydrate content respectively. Results of this study indicate that bentonite can reduce the negative effects of drought stress similar to artificial super absorbent.

  20. Lipid droplets accumulation and other biochemical changes induced in the fungal pathogen Ustilago maydis under nitrogen-starvation.

    Science.gov (United States)

    Aguilar, Lucero Romero; Pardo, Juan Pablo; Lomelí, Mónica Montero; Bocardo, Oscar Ivan Luqueño; Juárez Oropeza, Marco A; Guerra Sánchez, Guadalupe

    2017-10-01

    In many organisms, the growth under nitrogen-deprivation or a poor nitrogen source impacts on the carbon flow distribution and causes accumulation of neutral lipids, which are stored as lipid droplets (LDs). Efforts are in progress to find the mechanism of LDs synthesis and degradation, and new organisms capable of accumulating large amounts of lipids for biotechnological applications. In this context, when Ustilago maydis was cultured in the absence of a nitrogen source, there was a large accumulation of lipid bodies containing mainly triacylglycerols. The most abundant fatty acids in lipid bodies at the stationary phase were palmitic, linoleic, and oleic acids, and they were synthesized de novo by the fatty-acid synthase. In regard to the production of NADPH for the synthesis of fatty acids, the cytosolic NADP + -dependent isocitrate dehydrogenase and the glucose-6-phosphate and 6-phosphogluconate dehydrogenases couple showed the highest specific activities, with a lower activity of the malic enzyme. The ATP-citrate lyase activity was not detected in any of the culture conditions, which points to a different mechanism for the transfer of acetyl-CoA into the cytosol. Protein and RNA contents decreased when U. maydis was grown without a nitrogen source. Due to the significant accumulation of triacylglycerols and the particular composition of fatty acids, U. maydis can be considered an alternative model for biotechnological applications.

  1. Electromechanical properties of carbon nanotube networks under compression

    Czech Academy of Sciences Publication Activity Database

    Slobodian, P.; Říha, Pavel; Olejník, R.; Sáha, P.

    2011-01-01

    Roč. 22, č. 12 (2011), s. 124006 ISSN 0957-0233 R&D Projects: GA AV ČR IAA200600803 Grant - others:Interní grantová agentura UTB(CZ) IGA/12/FT/10/D; OP VaVpI(XE) CZ.1.05/2.1.00/03.0111 Institutional research plan: CEZ:AV0Z20600510 Keywords : carbon nanotube network * compression * electrical conductivity * stress sensor Subject RIV: JB - Sensor s, Measurment, Regulation Impact factor: 1.494, year: 2011

  2. Systems biology and the origins of life? part II. Are biochemical networks possible ancestors of living systems? networks of catalysed chemical reactions: non-equilibrium, self-organization and evolution.

    Science.gov (United States)

    Ricard, Jacques

    2010-01-01

    The present article discusses the possibility that catalysed chemical networks can evolve. Even simple enzyme-catalysed chemical reactions can display this property. The example studied is that of a two-substrate proteinoid, or enzyme, reaction displaying random binding of its substrates A and B. The fundamental property of such a system is to display either emergence or integration depending on the respective values of the probabilities that the enzyme has bound one of its substrate regardless it has bound the other substrate, or, specifically, after it has bound the other substrate. There is emergence of information if p(A)>p(AB) and p(B)>p(BA). Conversely, if p(A)equilibrium. Moreover, in such systems, emergence results in an increase of the energy level of the ternary EAB complex that becomes closer to the transition state of the reaction, thus leading to the enhancement of catalysis. Hence a drift from quasi-equilibrium is, to a large extent, responsible for the production of information and enhancement of catalysis. Non-equilibrium of these simple systems must be an important aspect that leads to both self-organization and evolutionary processes. These conclusions can be extended to networks of catalysed chemical reactions. Such networks are, in fact, networks of networks, viz. meta-networks. In this formal representation, nodes are chemical reactions catalysed by poorly specific proteinoids, and links can be identified to the transport of metabolites from proteinoid to proteinoid. The concepts of integration and emergence can be applied to such situations and can be used to define the identity of these networks and therefore their evolution. Defined as open non-equilibrium structures, such biochemical networks possess two remarkable properties: (1) the probability of occurrence of their nodes is dependant upon the input and output of matter in, and from, the system and (2) the probability of occurrence of the nodes is strictly linked to their degree of

  3. Effect of salinity on gene expression, morphological and biochemical characteristics of stevia rebaudiana Bertoni under in vitro conditions.

    Science.gov (United States)

    Fallah, F; Nokhasi, F; Ghaheri, M; Kahrizi, D; Beheshti Ale Agha, A; Ghorbani, T; Kazemi, E; Ansarypour, Z

    2017-08-15

    Stevia rebaudiana Bertoni is a famous medicinal plant for its low calorific value compounds which are named steviol glycosides (SGs) and they are 150-300 times sweeter than sugar. Among various SGs, stevioside and rebaudioside A considered to be the main sweetening compounds.  Soil salinity is one of the most essential stress in the world. Salinity affects the survival and yield of crops. In current study the effects of salinity and osmotic stress caused by different concentration of NaCl (0, 20, 40, 60 and 80 mM) on morphological traits, genes expressionand amount of both stevioside and rebaudioside Aunder in vitro conditions has been investigated. The morphological traits such as bud numbers, root numbers, shoot length (after 15 and 30 days) were evaluated. With increasing salinity, the values of all studied morphological traits decreased. To investigation of UGT74G1 and UGT76G1 genes expression that are involved in the synthesis of SGs, RT-PCR was done and there were significant differences between all media. The highest expression of both genes was observed in plantlets grown on MS media (with NaCl-free). Also, the lowest amounts of gene expression of the both genes were seen in MS+ 60 mM NaCl. Based on HPLC results, the highest amount of both stevioside and rebaudioside A were observed in plantlets grown in MS media (with NaCl-free). Finally, it can be concluded that stevia can survive under salt stress, but it has the best performance in the lower salinity.

  4. Bistable responses in bacterial genetic networks: Designs and dynamical consequences

    Science.gov (United States)

    Tiwari, Abhinav; Ray, J. Christian J.; Narula, Jatin; Igoshin, Oleg A.

    2011-01-01

    A key property of living cells is their ability to react to stimuli with specific biochemical responses. These responses can be understood through the dynamics of underlying biochemical and genetic networks. Evolutionary design principles have been well studied in networks that display graded responses, with a continuous relationship between input signal and system output. Alternatively, biochemical networks can exhibit bistable responses so that over a range of signals the network possesses two stable steady states. In this review, we discuss several conceptual examples illustrating network designs that can result in a bistable response of the biochemical network. Next, we examine manifestations of these designs in bacterial master-regulatory genetic circuits. In particular, we discuss mechanisms and dynamic consequences of bistability in three circuits: two-component systems, sigma-factor networks, and a multistep phosphorelay. Analyzing these examples allows us to expand our knowledge of evolutionary design principles for networks with bistable responses. PMID:21385588

  5. Feasibility of Optical Packet Switched WDM Networks without Packet Synchronisation Under Bursty Traffic Conditions

    DEFF Research Database (Denmark)

    Fjelde, Tina; Hansen, Peter Bukhave; Kloch, Allan

    1999-01-01

    We show that complex packet synchronisation may be avoided in optical packetswitched networks. Detailed traffic analysis demonstrates that packet lossratios of 1e-10 are feasible under bursty traffic conditions for a highcapacity network consisting of asynchronously operated add-drop switch...

  6. Physiological And Blood Biochemical Responses To Dried Live Yeast Plus Vitamin E As A Dietary Supplement To Bovine Baladi Calves Under Hot Summer Conditions

    International Nuclear Information System (INIS)

    ABDALLA, E.B.; EL-MASRY, K.A.; TEAMA, F.E.; EMARA, S.S.

    2009-01-01

    The experiment was designed to study the effect of supplemented dried live yeast (DLY) + vitamin E to the diet of growing calves under hot summer conditions in Egypt. Six bovine Baladi calves with 115 kg initial body weight and 8-10 months old were used during two periods. In the first period, the calves were offered the concentrated basal diet only for one month and considered as a control period. In the second period, the calves were fed the same basal diet which supplemented with 15 g dried live yeast (Saccharomyces cerevisiae) + 600 IU vitamin E (alpha- tocopherol) per calf daily for one month and considered as a treated period. Body weight was recorded at the beginning and the end of each period, and daily gain was calculated for each animal. Blood samples were collected from each animal at the end of each period to determine some blood biochemical parameters and T 3 and T 4 concentrations as well as some immunological indices.The results showed that supplementation of DLY + 600 IU vitamin E to the diet of calves reduced significantly (P 3 and T 4 levels and improved feed efficiency and daily gain. It is concluded that supplementation of growing calves with 15 g DLY + 600 IU vitamin E / calf / day under Egyptian hot summer conditions reduced the effect of heat stress as shown by a decline in RT and modified most blood constituents and thyroid function which leads to an improvement in growing calves

  7. Identifiability of tree-child phylogenetic networks under a probabilistic recombination-mutation model of evolution.

    Science.gov (United States)

    Francis, Andrew; Moulton, Vincent

    2018-06-07

    Phylogenetic networks are an extension of phylogenetic trees which are used to represent evolutionary histories in which reticulation events (such as recombination and hybridization) have occurred. A central question for such networks is that of identifiability, which essentially asks under what circumstances can we reliably identify the phylogenetic network that gave rise to the observed data? Recently, identifiability results have appeared for networks relative to a model of sequence evolution that generalizes the standard Markov models used for phylogenetic trees. However, these results are quite limited in terms of the complexity of the networks that are considered. In this paper, by introducing an alternative probabilistic model for evolution along a network that is based on some ground-breaking work by Thatte for pedigrees, we are able to obtain an identifiability result for a much larger class of phylogenetic networks (essentially the class of so-called tree-child networks). To prove our main theorem, we derive some new results for identifying tree-child networks combinatorially, and then adapt some techniques developed by Thatte for pedigrees to show that our combinatorial results imply identifiability in the probabilistic setting. We hope that the introduction of our new model for networks could lead to new approaches to reliably construct phylogenetic networks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Information Diffusion in Facebook-Like Social Networks Under Information Overload

    Science.gov (United States)

    Li, Pei; Xing, Kai; Wang, Dapeng; Zhang, Xin; Wang, Hui

    2013-07-01

    Research on social networks has received remarkable attention, since many people use social networks to broadcast information and stay connected with their friends. However, due to the information overload in social networks, it becomes increasingly difficult for users to find useful information. This paper takes Facebook-like social networks into account, and models the process of information diffusion under information overload. The term view scope is introduced to model the user information-processing capability under information overload, and the average number of times a message appears in view scopes after it is generated is proposed to characterize the information diffusion efficiency. Through theoretical analysis, we find that factors such as network structure and view scope number have no impact on the information diffusion efficiency, which is a surprising result. To verify the results, we conduct simulations and provide the simulation results, which are consistent with the theoretical analysis results perfectly.

  9. Memory under stress: from single systems to network changes.

    Science.gov (United States)

    Schwabe, Lars

    2017-02-01

    Stressful events have profound effects on learning and memory. These effects are mainly mediated by catecholamines and glucocorticoid hormones released from the adrenals during stressful encounters. It has been known for long that both catecholamines and glucocorticoids influence the functioning of the hippocampus, a critical hub for episodic memory. However, areas implicated in other forms of memory, such as the insula or the dorsal striatum, can be affected by stress as well. Beyond changes in single memory systems, acute stress triggers the reconfiguration of large scale neural networks which sets the stage for a shift from thoughtful, 'cognitive' control of learning and memory toward more reflexive, 'habitual' processes. Stress-related alterations in amygdala connectivity with the hippocampus, dorsal striatum, and prefrontal cortex seem to play a key role in this shift. The bias toward systems proficient in threat processing and the implementation of well-established routines may facilitate coping with an acute stressor. Overreliance on these reflexive systems or the inability to shift flexibly between them, however, may represent a risk factor for psychopathology in the long-run. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  10. Signaling mechanisms underlying the robustness and tunability of the plant immune network

    Science.gov (United States)

    Kim, Yungil; Tsuda, Kenichi; Igarashi, Daisuke; Hillmer, Rachel A.; Sakakibara, Hitoshi; Myers, Chad L.; Katagiri, Fumiaki

    2014-01-01

    Summary How does robust and tunable behavior emerge in a complex biological network? We sought to understand this for the signaling network controlling pattern-triggered immunity (PTI) in Arabidopsis. A dynamic network model containing four major signaling sectors, the jasmonate, ethylene, PAD4, and salicylate sectors, which together explain up to 80% of the PTI level, was built using data for dynamic sector activities and PTI levels under exhaustive combinatorial sector perturbations. Our regularized multiple regression model had a high level of predictive power and captured known and unexpected signal flows in the network. The sole inhibitory sector in the model, the ethylene sector, was central to the network robustness via its inhibition of the jasmonate sector. The model's multiple input sites linked specific signal input patterns varying in strength and timing to different network response patterns, indicating a mechanism enabling tunability. PMID:24439900

  11. An effective method to improve the robustness of small-world networks under attack

    International Nuclear Information System (INIS)

    Zhang Zheng-Zhen; Xu Wen-Jun; Lin Jia-Ru; Zeng Shang-You

    2014-01-01

    In this study, the robustness of small-world networks to three types of attack is investigated. Global efficiency is introduced as the network coefficient to measure the robustness of a small-world network. The simulation results prove that an increase in rewiring probability or average degree can enhance the robustness of the small-world network under all three types of attack. The effectiveness of simultaneously increasing both rewiring probability and average degree is also studied, and the combined increase is found to significantly improve the robustness of the small-world network. Furthermore, the combined effect of rewiring probability and average degree on network robustness is shown to be several times greater than that of rewiring probability or average degree individually. This means that small-world networks with a relatively high rewiring probability and average degree have advantages both in network communications and in good robustness to attacks. Therefore, simultaneously increasing rewiring probability and average degree is an effective method of constructing realistic networks. Consequently, the proposed method is useful to construct efficient and robust networks in a realistic scenario. (interdisciplinary physics and related areas of science and technology)

  12. Utilization of extended bayesian networks in decision making under uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Van Eeckhout, Edward M [Los Alamos National Laboratory; Leishman, Deborah A [Los Alamos National Laboratory; Gibson, William L [Los Alamos National Laboratory

    2009-01-01

    Bayesian network tool (called IKE for Integrated Knowledge Engine) has been developed to assess the probability of undesirable events. The tool allows indications and observables from sensors and/or intelligence to feed directly into hypotheses of interest, thus allowing one to quantify the probability and uncertainty of these events resulting from very disparate evidence. For example, the probability that a facility is processing nuclear fuel or assembling a weapon can be assessed by examining the processes required, establishing the observables that should be present, then assembling information from intelligence, sensors and other information sources related to the observables. IKE also has the capability to determine tasking plans, that is, prioritize which observable should be collected next to most quickly ascertain the 'true' state and drive the probability toward 'zero' or 'one.' This optimization capability is called 'evidence marshaling.' One example to be discussed is a denied facility monitoring situation; there is concern that certain process(es) are being executed at the site (due to some intelligence or other data). We will show how additional pieces of evidence will then ascertain with some degree of certainty the likelihood of this process(es) as each piece of evidence is obtained. This example shows how both intelligence and sensor data can be incorporated into the analysis. A second example involves real-time perimeter security. For this demonstration we used seismic, acoustic, and optical sensors linked back to IKE. We show how these sensors identified and assessed the likelihood of 'intruder' versus friendly vehicles.

  13. Extra-capacity versus protection for supply networks under attack

    International Nuclear Information System (INIS)

    Bricha, Naji; Nourelfath, Mustapha

    2014-01-01

    This article develops a game-theoretical model to deal with the protection of facilities, in the context of the capacitated fixed-charge location and capacity acquisition problem. A set of investment alternatives is available for direct protection of facilities. Furthermore, extra-capacity of neighbouring functional facilities can be used after attacks to avoid the backlog of demands and backorders. The proposed model considers a non-cooperative two-period game between the players, and an algorithm is presented to determine the equilibrium solution and the optimal defender strategy under capacity constraints. A method is developed to evaluate the utilities of the defender and the attacker. The benefit of the proposed approach is illustrated using a numerical example. The defence strategy of our model is compared to other strategies, and the obtained results clearly indicate the superiority of our model in finding the best trade-off between direct protection investment and extra-capacity deployment

  14. Microwave irradiation and citric acid assisted seed germination and phytoextraction of nickel (Ni) by Brassica napus L.: morpho-physiological and biochemical alterations under Ni stress.

    Science.gov (United States)

    Farid, Mujahid; Ali, Shafaqat; Rizwan, Muhammad; Saeed, Rashid; Tauqeer, Hafiz Muhammad; Sallah-Ud-Din, Rasham; Azam, Ahmed; Raza, Nighat

    2017-09-01

    The complex bio-geochemistry of soil allows pollutant to persist for a longer period of time which further decreased the fertility and natural composition of land. Nickel, an inorganic pollutant, coming from a wide range of industrial and manufacturing units possesses serious threat to soil degradation and crop productivity around the world. The present study was carried to evaluate the combined role of microwave irradiation (MR) and citric acid (CA) on the phytoextraction potential of Brassica napus L. under Ni stress. An initial seed germination test was conducted to select effective time scale of MR exposure. Highest seed germination was observed at exposure of 2.45 GHz frequency for 30 s. Healthy seeds of B. napus L. genotype Faisal Canola (RBN-03060) treated with MR at 2.45 GHz for 30 s were sown in plastic pots filled with 5 kg of soil. Nickel and CA applied exogenously in solution form with different combinations to both MR-treated and untreated B. napus plants. The MR-treated plants showed higher growth, biomass, photosynthetic pigments (Chl a, b, total, and carotenoids) and activities of antioxidant enzymes (SOD, POD, APX, CAT) as compared to untreated plants who showed higher reactive oxygen species (MDA, H 2 O 2 ) and electrolyte leakage. Increasing Ni concentration significantly decreased the physiological and biochemical attributes of B. napus both in MR-treated and untreated plants. The addition of CA alleviated Ni-induced toxic effects in both MR-treated and untreated plants by improving antioxidant defense system. The degree of Ni stress mitigation was higher in MR-treated plants. The Ni concentration was higher in root, stem, and leaves of MR-treated plants under CA application as compared to untreated plants. The present study concluded that seeds treated with MR before sowing showed higher accumulation and concentration of Ni from soil, and this phenomenon boosted with the application of CA.

  15. Network optimization including gas lift and network parameters under subsurface uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Schulze-Riegert, R.; Baffoe, J.; Pajonk, O. [SPT Group GmbH, Hamburg (Germany); Badalov, H.; Huseynov, S. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE; Trick, M. [SPT Group, Calgary, AB (Canada)

    2013-08-01

    Optimization of oil and gas field production systems poses a great challenge to field development due to complex and multiple interactions between various operational design parameters and subsurface uncertainties. Conventional analytical methods are capable of finding local optima based on single deterministic models. They are less applicable for efficiently generating alternative design scenarios in a multi-objective context. Practical implementations of robust optimization workflows integrate the evaluation of alternative design scenarios and multiple realizations of subsurface uncertainty descriptions. Production or economic performance indicators such as NPV (Net Present Value) are linked to a risk-weighted objective function definition to guide the optimization processes. This work focuses on an integrated workflow using a reservoir-network simulator coupled to an optimization framework. The work will investigate the impact of design parameters while considering the physics of the reservoir, wells, and surface facilities. Subsurface uncertainties are described by well parameters such as inflow performance. Experimental design methods are used to investigate parameter sensitivities and interactions. Optimization methods are used to find optimal design parameter combinations which improve key performance indicators of the production network system. The proposed workflow will be applied to a representative oil reservoir coupled to a network which is modelled by an integrated reservoir-network simulator. Gas-lift will be included as an explicit measure to improve production. An objective function will be formulated for the net present value of the integrated system including production revenue and facility costs. Facility and gas lift design parameters are tuned to maximize NPV. Well inflow performance uncertainties are introduced with an impact on gas lift performance. Resulting variances on NPV are identified as a risk measure for the optimized system design. A

  16. Epidemic Survivability: Characterizing Networks Under Epidemic-like Failure Propagation Scenarios

    DEFF Research Database (Denmark)

    Manzano, Marc; Calle, Eusebi; Ripoll, Jordi

    2013-01-01

    Epidemics theory has been used in different contexts in order to describe the propagation of diseases, human interactions or natural phenomena. In computer science, virus spreading has been also characterized using epidemic models. Although in the past the use of epidemic models...... in telecommunication networks has not been extensively considered, nowadays, with the increasing computation capacity and complexity of operating systems of modern network devices (routers, switches, etc.), the study of possible epidemic-like failure scenarios must be taken into account. When epidemics occur......, such as in other multiple failure scenarios, identifying the level of vulnerability offered by a network is one of the main challenges. In this paper, we present epidemic survivability, a new network measure that describes the vulnerability of each node of a network under a specific epidemic intensity. Moreover...

  17. The research on optimization of auto supply chain network robust model under macroeconomic fluctuations

    International Nuclear Information System (INIS)

    Guo, Chunxiang; Liu, Xiaoli; Jin, Maozhu; Lv, Zhihan

    2016-01-01

    Considering the uncertainty of the macroeconomic environment, the robust optimization method is studied for constructing and designing the automotive supply chain network, and based on the definition of robust solution a robust optimization model is built for integrated supply chain network design that consists of supplier selection problem and facility location–distribution problem. The tabu search algorithm is proposed for supply chain node configuration, analyzing the influence of the level of uncertainty on robust results, and by comparing the performance of supply chain network design through the stochastic programming model and robustness optimize model, on this basis, determining the rational layout of supply chain network under macroeconomic fluctuations. At last the contrastive test result validates that the performance of tabu search algorithm is outstanding on convergence and computational time. Meanwhile it is indicated that the robust optimization model can reduce investment risks effectively when it is applied to supply chain network design.

  18. Capacity planning of link restorable optical networks under dynamic change of traffic

    Science.gov (United States)

    Ho, Kwok Shing; Cheung, Kwok Wai

    2005-11-01

    Future backbone networks shall require full-survivability and support dynamic changes of traffic demands. The Generalized Survivable Networks (GSN) was proposed to meet these challenges. GSN is fully-survivable under dynamic traffic demand changes, so it offers a practical and guaranteed characterization framework for ASTN / ASON survivable network planning and bandwidth-on-demand resource allocation 4. The basic idea of GSN is to incorporate the non-blocking network concept into the survivable network models. In GSN, each network node must specify its I/O capacity bound which is taken as constraints for any allowable traffic demand matrix. In this paper, we consider the following generic GSN network design problem: Given the I/O bounds of each network node, find a routing scheme (and the corresponding rerouting scheme under failure) and the link capacity assignment (both working and spare) which minimize the cost, such that any traffic matrix consistent with the given I/O bounds can be feasibly routed and it is single-fault tolerant under the link restoration scheme. We first show how the initial, infeasible formal mixed integer programming formulation can be transformed into a more feasible problem using the duality transformation of the linear program. Then we show how the problem can be simplified using the Lagrangian Relaxation approach. Previous work has outlined a two-phase approach for solving this problem where the first phase optimizes the working capacity assignment and the second phase optimizes the spare capacity assignment. In this paper, we present a jointly optimized framework for dimensioning the survivable optical network with the GSN model. Experiment results show that the jointly optimized GSN can bring about on average of 3.8% cost savings when compared with the separate, two-phase approach. Finally, we perform a cost comparison and show that GSN can be deployed with a reasonable cost.

  19. Uranium mining and metallurgy library information service under the network environment

    International Nuclear Information System (INIS)

    Tang Lilei

    2012-01-01

    This paper analyzes the effect of the network environment on the uranium mining and metallurgy of the information service. Introduces some measures such as strengthening professional characteristic literature resources construction, changing the service mode, building up information navigation, deepening service, meet the individual needs of users, raising librarian's quality, promoting the co-construction and sharing of library information resources, and puts forward the development idea of uranium mining and metallurgy library information service under the network environment. (author)

  20. Selenium Supplementation Affects Physiological and Biochemical Processes to Improve Fodder Yield and Quality of Maize (Zea mays L.) under Water Deficit Conditions

    Science.gov (United States)

    Nawaz, Fahim; Naeem, Muhammad; Ashraf, Muhammad Y.; Tahir, Muhammad N.; Zulfiqar, Bilal; Salahuddin, Muhammad; Shabbir, Rana N.; Aslam, Muhammad

    2016-01-01

    Climate change is one of the most complex challenges that pose serious threats to livelihoods of poor people who rely heavily on agriculture and livestock particularly in climate-sensitive developing countries of the world. The negative effects of water scarcity, due to climate change, are not limited to productivity food crops but have far-reaching consequences on livestock feed production systems. Selenium (Se) is considered essential for animal health and has also been reported to counteract various abiotic stresses in plants, however, understanding of Se regulated mechanisms for improving nutritional status of fodder crops remains elusive. We report the effects of exogenous selenium supply on physiological and biochemical processes that may influence green fodder yield and quality of maize (Zea mays L.) under drought stress conditions. The plants were grown in lysimeter tanks under natural conditions and were subjected to normal (100% field capacity) and water stress (60% field capacity) conditions. Foliar spray of Se was carried out before the start of tasseling stage (65 days after sowing) and was repeated after 1 week, whereas, water spray was used as a control. Drought stress markedly reduced the water status, pigments and green fodder yield and resulted in low forage quality in water stressed maize plants. Nevertheless, exogenous Se application at 40 mg L-1 resulted in less negative leaf water potential (41%) and enhanced relative water contents (30%), total chlorophyll (53%), carotenoid contents (60%), accumulation of total free amino acids (40%) and activities of superoxide dismutase (53%), catalase (30%), peroxidase (27%), and ascorbate peroxidase (27%) with respect to control under water deficit conditions. Consequently, Se regulated processes improved fodder yield (15%) and increased crude protein (47%), fiber (10%), nitrogen free extract (10%) and Se content (36%) but did not affect crude ash content in water stressed maize plants. We propose that Se

  1. Selenium Supplementation Affects Physiological and Biochemical Processes to Improve Fodder Yield and Quality of Maize (Zea mays L.) under Water Deficit Conditions.

    Science.gov (United States)

    Nawaz, Fahim; Naeem, Muhammad; Ashraf, Muhammad Y; Tahir, Muhammad N; Zulfiqar, Bilal; Salahuddin, Muhammad; Shabbir, Rana N; Aslam, Muhammad

    2016-01-01

    Climate change is one of the most complex challenges that pose serious threats to livelihoods of poor people who rely heavily on agriculture and livestock particularly in climate-sensitive developing countries of the world. The negative effects of water scarcity, due to climate change, are not limited to productivity food crops but have far-reaching consequences on livestock feed production systems. Selenium (Se) is considered essential for animal health and has also been reported to counteract various abiotic stresses in plants, however, understanding of Se regulated mechanisms for improving nutritional status of fodder crops remains elusive. We report the effects of exogenous selenium supply on physiological and biochemical processes that may influence green fodder yield and quality of maize ( Zea mays L.) under drought stress conditions. The plants were grown in lysimeter tanks under natural conditions and were subjected to normal (100% field capacity) and water stress (60% field capacity) conditions. Foliar spray of Se was carried out before the start of tasseling stage (65 days after sowing) and was repeated after 1 week, whereas, water spray was used as a control. Drought stress markedly reduced the water status, pigments and green fodder yield and resulted in low forage quality in water stressed maize plants. Nevertheless, exogenous Se application at 40 mg L -1 resulted in less negative leaf water potential (41%) and enhanced relative water contents (30%), total chlorophyll (53%), carotenoid contents (60%), accumulation of total free amino acids (40%) and activities of superoxide dismutase (53%), catalase (30%), peroxidase (27%), and ascorbate peroxidase (27%) with respect to control under water deficit conditions. Consequently, Se regulated processes improved fodder yield (15%) and increased crude protein (47%), fiber (10%), nitrogen free extract (10%) and Se content (36%) but did not affect crude ash content in water stressed maize plants. We propose that

  2. Selenium Supplementation Affects Physiological and Biochemical Processes to Improve Fodder Yield and Quality of Maize (Zea mays L. under Water Deficit Conditions

    Directory of Open Access Journals (Sweden)

    Fahim Nawaz

    2016-09-01

    Full Text Available Climate change is one of the most complex challenges that pose serious threats to livelihoods of poor people who rely heavily on agriculture and livestock particularly in climate-sensitive developing countries of the world. The negative effects of water scarcity, due to climate change, are not limited to productivity food crops but have far-reaching consequences on livestock feed production systems. Selenium (Se is considered essential for animal health and has also been reported to counteract various abiotic stresses in plants however, understanding of Se regulated mechanisms for improving nutritional status of fodder crops remains elusive. We report the effects of exogenous selenium (Se supply on physiological and biochemical processes that may influence green fodder yield and quality of maize (Zea mays L. under drought stress conditions. The plants were grown in lysimeter tanks under natural conditions and were subjected to normal (100% field capacity and water stress (60% field capacity conditions. Foliar spray of Se was carried out before the start of tasseling stage (65 days after sowing and was repeated after one week, whereas water spray was used as a control. Drought stress markedly reduced the water status, pigments and green fodder yield and resulted in low forage quality in water stressed maize plants. Nevertheless, exogenous Se application at 40 mg L-1 resulted in less negative leaf water potential (41% and enhanced relative water contents (30%, total chlorophyll (53%, carotenoid contents (60%, accumulation of total free amino acids (40% and activities of superoxide dismutase (53%, catalase (30%, peroxidase (27% and ascorbate peroxidase (27% with respect to control under water deficit conditions. Consequently, Se regulated processes improved fodder yield (15% and increased crude protein (47%, fibre (10%, nitrogen free extract (10% and Se content (36% but did not affect crude ash content in water stressed maize plants. We propose

  3. A performance study of unmanned aerial vehicle-based sensor networks under cyber attack

    Science.gov (United States)

    Puchaty, Ethan M.

    In UAV-based sensor networks, an emerging area of interest is the performance of these networks under cyber attack. This study seeks to evaluate the performance trade-offs from a System-of-Systems (SoS) perspective between various UAV communications architecture options in the context two missions: tracking ballistic missiles and tracking insurgents. An agent-based discrete event simulation is used to model a sensor communication network consisting of UAVs, military communications satellites, ground relay stations, and a mission control center. Network susceptibility to cyber attack is modeled with probabilistic failures and induced data variability, with performance metrics focusing on information availability, latency, and trustworthiness. Results demonstrated that using UAVs as routers increased network availability with a minimal latency penalty and communications satellite networks were best for long distance operations. Redundancy in the number of links between communication nodes helped mitigate cyber-caused link failures and add robustness in cases of induced data variability by an adversary. However, when failures were not independent, redundancy and UAV routing were detrimental in some cases to network performance. Sensitivity studies indicated that long cyber-caused downtimes and increasing failure dependencies resulted in build-ups of failures and caused significant degradations in network performance.

  4. A Nondominated Genetic Algorithm Procedure for Multiobjective Discrete Network Design under Demand Uncertainty

    Directory of Open Access Journals (Sweden)

    Bian Changzhi

    2015-01-01

    Full Text Available This paper addresses the multiobjective discrete network design problem under demand uncertainty. The OD travel demands are supposed to be random variables with the given probability distribution. The problem is formulated as a bilevel stochastic optimization model where the decision maker’s objective is to minimize the construction cost, the expectation, and the standard deviation of total travel time simultaneously and the user’s route choice is described using user equilibrium model on the improved network under all scenarios of uncertain demand. The proposed model generates globally near-optimal Pareto solutions for network configurations based on the Monte Carlo simulation and nondominated sorting genetic algorithms II. Numerical experiments implemented on Nguyen-Dupuis test network show trade-offs among construction cost, the expectation, and standard deviation of total travel time under uncertainty are obvious. Investment on transportation facilities is an efficient method to improve the network performance and reduce risk under demand uncertainty, but it has an obvious marginal decreasing effect.

  5. Dynamics of the cell-cycle network under genome-rewiring perturbations

    International Nuclear Information System (INIS)

    Katzir, Yair; Elhanati, Yuval; Braun, Erez; Averbukh, Inna

    2013-01-01

    The cell-cycle progression is regulated by a specific network enabling its ordered dynamics. Recent experiments supported by computational models have shown that a core of genes ensures this robust cycle dynamics. However, much less is known about the direct interaction of the cell-cycle regulators with genes outside of the cell-cycle network, in particular those of the metabolic system. Following our recent experimental work, we present here a model focusing on the dynamics of the cell-cycle core network under rewiring perturbations. Rewiring is achieved by placing an essential metabolic gene exclusively under the regulation of a cell-cycle's promoter, forcing the cell-cycle network to function under a multitasking challenging condition; operating in parallel the cell-cycle progression and a metabolic essential gene. Our model relies on simple rate equations that capture the dynamics of the relevant protein–DNA and protein–protein interactions, while making a clear distinction between these two different types of processes. In particular, we treat the cell-cycle transcription factors as limited ‘resources’ and focus on the redistribution of resources in the network during its dynamics. This elucidates the sensitivity of its various nodes to rewiring interactions. The basic model produces the correct cycle dynamics for a wide range of parameters. The simplicity of the model enables us to study the interface between the cell-cycle regulation and other cellular processes. Rewiring a promoter of the network to regulate a foreign gene, forces a multitasking regulatory load. The higher the load on the promoter, the longer is the cell-cycle period. Moreover, in agreement with our experimental results, the model shows that different nodes of the network exhibit variable susceptibilities to the rewiring perturbations. Our model suggests that the topology of the cell-cycle core network ensures its plasticity and flexible interface with other cellular processes

  6. Securing ad hoc wireless sensor networks under Byzantine attacks by implementing non-cryptographic method

    Directory of Open Access Journals (Sweden)

    Shabir Ahmad Sofi

    2017-05-01

    Full Text Available Ad Hoc wireless sensor network (WSN is a collection of nodes that do not need to rely on predefined infrastructure to keep the network connected. The level of security and performance are always somehow related to each other, therefore due to limited resources in WSN, cryptographic methods for securing the network against attacks is not feasible. Byzantine attacks disrupt the communication between nodes in the network without regard to its own resource consumption. This paper discusses the performance of cluster based WSN comparing LEACH with Advanced node based clusters under byzantine attacks. This paper also proposes an algorithm for detection and isolation of the compromised nodes to mitigate the attacks by non-cryptographic means. The throughput increases after using the algorithm for isolation of the malicious nodes, 33% in case of Gray Hole attack and 62% in case of Black Hole attack.

  7. Modelling the Cost Performance of a Given Logistics Network Operating Under Regular and Irregular Conditions

    NARCIS (Netherlands)

    Janic, M.

    2009-01-01

    This paper develops an analytical model for the assessment of the cost performance of a given logistics network operating under regular and irregular (disruptive) conditions. In addition, the paper aims to carry out a sensitivity analysis of this cost with respect to changes of the most influencing

  8. Robustness of the Drinking Water Distribution Network under Changing Future Demand

    NARCIS (Netherlands)

    Agudelo-Vera, C.; Blokker, M.; Vreeburg, J.; Bongard, T.; Hillegers, S.; Van der Hoek, J.P.

    2014-01-01

    A methodology to determine the robustness of the drinking water distribution system is proposed. The performance of three networks under ten future demand scenarios was tested, using head loss and residence time as indicators. The scenarios consider technological and demographic changes. Daily

  9. Bayesian networks for clinical decision support: A rational approach to dynamic decision-making under uncertainty

    NARCIS (Netherlands)

    Gerven, M.A.J. van

    2007-01-01

    This dissertation deals with decision support in the context of clinical oncology. (Dynamic) Bayesian networks are used as a framework for (dynamic) decision-making under uncertainty and applied to a variety of diagnostic, prognostic, and treatment problems in medicine. It is shown that the proposed

  10. Creating and Using a Computer Networking and Systems Administration Laboratory Built under Relaxed Financial Constraints

    Science.gov (United States)

    Conlon, Michael P.; Mullins, Paul

    2011-01-01

    The Computer Science Department at Slippery Rock University created a laboratory for its Computer Networks and System Administration and Security courses under relaxed financial constraints. This paper describes the department's experience designing and using this laboratory, including lessons learned and descriptions of some student projects…

  11. Biochemical acclimation, stomatal limitation and precipitation patterns underlie decreases in photosynthetic stimulation of Soybean (Glycine max) at elevated [CO2] and temperatures under fully open air field conditions

    Science.gov (United States)

    The net effect of elevated [CO2] and temperature on photosynthetic acclimation and plant productivity is poorly resolved. We assessed the effects of canopy warming and fully open air [CO2] enrichment on 1) the acclimation of two biochemical parameters that frequently limit photosynthesis (A), the ma...

  12. Suppression of anomalous synchronization and nonstationary behavior of neural network under small-world topology

    Science.gov (United States)

    Boaretto, B. R. R.; Budzinski, R. C.; Prado, T. L.; Kurths, J.; Lopes, S. R.

    2018-05-01

    It is known that neural networks under small-world topology can present anomalous synchronization and nonstationary behavior for weak coupling regimes. Here, we propose methods to suppress the anomalous synchronization and also to diminish the nonstationary behavior occurring in weakly coupled neural network under small-world topology. We consider a network of 2000 thermally sensitive identical neurons, based on the model of Hodgkin-Huxley in a small-world topology, with the probability of adding non local connection equal to p = 0 . 001. Based on experimental protocols to suppress anomalous synchronization, as well as nonstationary behavior of the neural network dynamics, we make use of (i) external stimulus (pulsed current); (ii) biologic parameters changing (neuron membrane conductance changes); and (iii) body temperature changes. Quantification analysis to evaluate phase synchronization makes use of the Kuramoto's order parameter, while recurrence quantification analysis, particularly the determinism, computed over the easily accessible mean field of network, the local field potential (LFP), is used to evaluate nonstationary states. We show that the methods proposed can control the anomalous synchronization and nonstationarity occurring for weak coupling parameter without any effect on the individual neuron dynamics, neither in the expected asymptotic synchronized states occurring for large values of the coupling parameter.

  13. Phenotypic stability and plasticity in GMP-derived cells as determined by their underlying regulatory network.

    Science.gov (United States)

    Ramírez, Carlos; Mendoza, Luis

    2018-04-01

    Blood cell formation has been recognized as a suitable system to study celular differentiation mainly because of its experimental accessibility, and because it shows characteristics such as hierarchical and gradual bifurcated patterns of commitment, which are present in several developmental processes. Although hematopoiesis has been extensively studied and there is a wealth of molecular and cellular data about it, it is not clear how the underlying molecular regulatory networks define or restrict cellular differentiation processes. Here, we infer the molecular regulatory network that controls the differentiation of a blood cell subpopulation derived from the granulocyte-monocyte precursor (GMP), comprising monocytes, neutrophils, eosinophils, basophils and mast cells. We integrate published qualitative experimental data into a model to describe temporal expression patterns observed in GMP-derived cells. The model is implemented as a Boolean network, and its dynamical behavior is studied. Steady states of the network can be clearly identified with the expression profiles of monocytes, mast cells, neutrophils, basophils, and eosinophils, under wild-type and mutant backgrounds. All scripts are publicly available at https://github.com/caramirezal/RegulatoryNetworkGMPModel. lmendoza@biomedicas.unam.mx. Supplementary data are available at Bioinformatics online.

  14. Formal Models of the Network Co-occurrence Underlying Mental Operations.

    Science.gov (United States)

    Bzdok, Danilo; Varoquaux, Gaël; Grisel, Olivier; Eickenberg, Michael; Poupon, Cyril; Thirion, Bertrand

    2016-06-01

    Systems neuroscience has identified a set of canonical large-scale networks in humans. These have predominantly been characterized by resting-state analyses of the task-unconstrained, mind-wandering brain. Their explicit relationship to defined task performance is largely unknown and remains challenging. The present work contributes a multivariate statistical learning approach that can extract the major brain networks and quantify their configuration during various psychological tasks. The method is validated in two extensive datasets (n = 500 and n = 81) by model-based generation of synthetic activity maps from recombination of shared network topographies. To study a use case, we formally revisited the poorly understood difference between neural activity underlying idling versus goal-directed behavior. We demonstrate that task-specific neural activity patterns can be explained by plausible combinations of resting-state networks. The possibility of decomposing a mental task into the relative contributions of major brain networks, the "network co-occurrence architecture" of a given task, opens an alternative access to the neural substrates of human cognition.

  15. Formal Models of the Network Co-occurrence Underlying Mental Operations.

    Directory of Open Access Journals (Sweden)

    Danilo Bzdok

    2016-06-01

    Full Text Available Systems neuroscience has identified a set of canonical large-scale networks in humans. These have predominantly been characterized by resting-state analyses of the task-unconstrained, mind-wandering brain. Their explicit relationship to defined task performance is largely unknown and remains challenging. The present work contributes a multivariate statistical learning approach that can extract the major brain networks and quantify their configuration during various psychological tasks. The method is validated in two extensive datasets (n = 500 and n = 81 by model-based generation of synthetic activity maps from recombination of shared network topographies. To study a use case, we formally revisited the poorly understood difference between neural activity underlying idling versus goal-directed behavior. We demonstrate that task-specific neural activity patterns can be explained by plausible combinations of resting-state networks. The possibility of decomposing a mental task into the relative contributions of major brain networks, the "network co-occurrence architecture" of a given task, opens an alternative access to the neural substrates of human cognition.

  16. A method for under-sampled ecological network data analysis: plant-pollination as case study

    Directory of Open Access Journals (Sweden)

    Peter B. Sorensen

    2012-01-01

    Full Text Available In this paper, we develop a method, termed the Interaction Distribution (ID method, for analysis of quantitative ecological network data. In many cases, quantitative network data sets are under-sampled, i.e. many interactions are poorly sampled or remain unobserved. Hence, the output of statistical analyses may fail to differentiate between patterns that are statistical artefacts and those which are real characteristics of ecological networks. The ID method can support assessment and inference of under-sampled ecological network data. In the current paper, we illustrate and discuss the ID method based on the properties of plant-animal pollination data sets of flower visitation frequencies. However, the ID method may be applied to other types of ecological networks. The method can supplement existing network analyses based on two definitions of the underlying probabilities for each combination of pollinator and plant species: (1, pi,j: the probability for a visit made by the i’th pollinator species to take place on the j’th plant species; (2, qi,j: the probability for a visit received by the j’th plant species to be made by the i’th pollinator. The method applies the Dirichlet distribution to estimate these two probabilities, based on a given empirical data set. The estimated mean values for pi,j and qi,j reflect the relative differences between recorded numbers of visits for different pollinator and plant species, and the estimated uncertainty of pi,j and qi,j decreases with higher numbers of recorded visits.

  17. Learning gene networks under SNP perturbations using eQTL datasets.

    Directory of Open Access Journals (Sweden)

    Lingxue Zhang

    2014-02-01

    Full Text Available The standard approach for identifying gene networks is based on experimental perturbations of gene regulatory systems such as gene knock-out experiments, followed by a genome-wide profiling of differential gene expressions. However, this approach is significantly limited in that it is not possible to perturb more than one or two genes simultaneously to discover complex gene interactions or to distinguish between direct and indirect downstream regulations of the differentially-expressed genes. As an alternative, genetical genomics study has been proposed to treat naturally-occurring genetic variants as potential perturbants of gene regulatory system and to recover gene networks via analysis of population gene-expression and genotype data. Despite many advantages of genetical genomics data analysis, the computational challenge that the effects of multifactorial genetic perturbations should be decoded simultaneously from data has prevented a widespread application of genetical genomics analysis. In this article, we propose a statistical framework for learning gene networks that overcomes the limitations of experimental perturbation methods and addresses the challenges of genetical genomics analysis. We introduce a new statistical model, called a sparse conditional Gaussian graphical model, and describe an efficient learning algorithm that simultaneously decodes the perturbations of gene regulatory system by a large number of SNPs to identify a gene network along with expression quantitative trait loci (eQTLs that perturb this network. While our statistical model captures direct genetic perturbations of gene network, by performing inference on the probabilistic graphical model, we obtain detailed characterizations of how the direct SNP perturbation effects propagate through the gene network to perturb other genes indirectly. We demonstrate our statistical method using HapMap-simulated and yeast eQTL datasets. In particular, the yeast gene network

  18. Enhancing network performance under single link failure with AS-disjoint BGP extension

    DEFF Research Database (Denmark)

    Manolova, Anna Vasileva; Romeral, S.; Ruepp, Sarah Renée

    2009-01-01

    In this paper we propose an enhancement of the BGP protocol for obtaining AS-disjoint paths in GMPLS multi-domain networks. We evaluate the benefits of having AS-disjoint paths under single inter-domain link failure for two main applications: routing of future connection requests during routing...... protocol re-convergence and applying multi-domain restoration as survivability mechanism in case of a single link failure. The proposed BGP modification is a simple and effective solution for disjoint path selection in connection-oriented multi-domain networks. Our results show that applying the proper...

  19. Changes in biochemical parameters of oral fluid in patients during the orthodontic treatment with a bracket system under the action of a developed mucosal gel with probiotic.

    Science.gov (United States)

    Voronkova, Anna V; Smaglyuk, Lyubov V

    2018-01-01

    Introduction: Many research studies involving orthodontic patients focus on changes in levels of oral microbiocenosis after bracket placement. Based upon this the objective of the current study was to determine the effect of the developed mucosal gel with probiotics on the biochemical parameters of the oral fluid of patients during the orthodontic treatment with a bracket system. The aim: Aim of our study is to determine the effect of the developed mucosal gel with probiotics on the biochemical parameters of the oral fluid of patients during the orthodontic treatment with a bracket system. Materials and methods: 45 patients at the age of 18-24, with 15 people in each group (control, main and comparison group) were examined. The main group was presented by patients who, in order to prevent dysbiosis of the oral cavity during orthodontic treatment, were prescribed local use of the developed mucosal gel with probiotic. The statistical processing of the results of the study was carried out using methods of variation statistics using the EXCEL program (the standard package of Microsoft Office). Results: According to the results of biochemical studies, it was found that the use of orthodontic treatment of mucosal gel with probiotic in patients with crowded teeth contributes to the strengthening of antioxidant protection, an increase in nonspecific resistance, decrease in inflammation and normalization of microbiocenosis of the oral cavity. Conclusion: These studies indicated that the use of the developed mucosal gel with probiotic in patients with maxillofacial anomalies from the first day after fixation, as indicated by the level of biochemical markers of inflammation.

  20. Stochastic noncooperative and cooperative evolutionary game strategies of a population of biological networks under natural selection.

    Science.gov (United States)

    Chen, Bor-Sen; Yeh, Chin-Hsun

    2017-12-01

    We review current static and dynamic evolutionary game strategies of biological networks and discuss the lack of random genetic variations and stochastic environmental disturbances in these models. To include these factors, a population of evolving biological networks is modeled as a nonlinear stochastic biological system with Poisson-driven genetic variations and random environmental fluctuations (stimuli). To gain insight into the evolutionary game theory of stochastic biological networks under natural selection, the phenotypic robustness and network evolvability of noncooperative and cooperative evolutionary game strategies are discussed from a stochastic Nash game perspective. The noncooperative strategy can be transformed into an equivalent multi-objective optimization problem and is shown to display significantly improved network robustness to tolerate genetic variations and buffer environmental disturbances, maintaining phenotypic traits for longer than the cooperative strategy. However, the noncooperative case requires greater effort and more compromises between partly conflicting players. Global linearization is used to simplify the problem of solving nonlinear stochastic evolutionary games. Finally, a simple stochastic evolutionary model of a metabolic pathway is simulated to illustrate the procedure of solving for two evolutionary game strategies and to confirm and compare their respective characteristics in the evolutionary process. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Emergence of amplitude death scenario in a network of oscillators under repulsive delay interaction

    International Nuclear Information System (INIS)

    Bera, Bidesh K.; Hens, Chittaranjan; Ghosh, Dibakar

    2016-01-01

    Highlights: • Amplitude death is observed using repulsive mean coupling. • Analytical conditions for amplitude death are derived. • Effect of asymmetry time delay coupling for death is discussed. - Abstract: We report the existence of amplitude death in a network of identical oscillators under repulsive mean coupling. Amplitude death appears in a globally coupled network of identical oscillators with instantaneous repulsive mean coupling only when the number of oscillators is more than two. We further investigate that, amplitude death may emerge even in two coupled oscillators as well as network of oscillators if we introduce delay time in the repulsive mean coupling. We have analytically derived the region of amplitude death island and find out how strength of delay controls the death regime in two coupled or a large network of coupled oscillators. We have verified our results on network of delayed Mackey–Glass systems where parameters are set in hyperchaotic regime. We have also tested our coupling approach in two paradigmatic limit cycle oscillators: Stuart–Landau and Van der Pol oscillators.

  2. Emergence of amplitude death scenario in a network of oscillators under repulsive delay interaction

    Energy Technology Data Exchange (ETDEWEB)

    Bera, Bidesh K., E-mail: bideshbera18@gmail.com [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108 (India); Hens, Chittaranjan, E-mail: chittaranjanhens@gmail.com [Department of Mathematics, Bar-Ilan University, Ramat Gan 52900 (Israel); Ghosh, Dibakar, E-mail: dibakar@isical.ac.in [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108 (India)

    2016-07-15

    Highlights: • Amplitude death is observed using repulsive mean coupling. • Analytical conditions for amplitude death are derived. • Effect of asymmetry time delay coupling for death is discussed. - Abstract: We report the existence of amplitude death in a network of identical oscillators under repulsive mean coupling. Amplitude death appears in a globally coupled network of identical oscillators with instantaneous repulsive mean coupling only when the number of oscillators is more than two. We further investigate that, amplitude death may emerge even in two coupled oscillators as well as network of oscillators if we introduce delay time in the repulsive mean coupling. We have analytically derived the region of amplitude death island and find out how strength of delay controls the death regime in two coupled or a large network of coupled oscillators. We have verified our results on network of delayed Mackey–Glass systems where parameters are set in hyperchaotic regime. We have also tested our coupling approach in two paradigmatic limit cycle oscillators: Stuart–Landau and Van der Pol oscillators.

  3. An Automation System for Optimizing a Supply Chain Network Design under the Influence of Demand Uncertainty

    OpenAIRE

    Polany, Rany

    2012-01-01

    This research develops and applies an integrated hierarchical framework for modeling a multi-echelon supply chain network design, under the influence of demand uncertainty. The framework is a layered integration of two levels: macro, high-level scenario planning combined with micro, low-level Monte Carlo simulation of uncertainties in demand. To facilitate rapid simulation of the effects of demand uncertainty, the integrated framework was implemented as a dashboard automation system using Mic...

  4. A Nondominated Genetic Algorithm Procedure for Multiobjective Discrete Network Design under Demand Uncertainty

    OpenAIRE

    Changzhi, Bian

    2015-01-01

    This paper addresses the multiobjective discrete network design problem under demand uncertainty. The OD travel demands are supposed to be random variables with the given probability distribution. The problem is formulated as a bilevel stochastic optimization model where the decision maker’s objective is to minimize the construction cost, the expectation, and the standard deviation of total travel time simultaneously and the user’s route choice is described using user equilibrium model on the...

  5. Experimental study and artificial neural network modeling of tartrazine removal by photocatalytic process under solar light.

    Science.gov (United States)

    Sebti, Aicha; Souahi, Fatiha; Mohellebi, Faroudja; Igoud, Sadek

    2017-07-01

    This research focuses on the application of an artificial neural network (ANN) to predict the removal efficiency of tartrazine from simulated wastewater using a photocatalytic process under solar illumination. A program is developed in Matlab software to optimize the neural network architecture and select the suitable combination of training algorithm, activation function and hidden neurons number. The experimental results of a batch reactor operated under different conditions of pH, TiO 2 concentration, initial organic pollutant concentration and solar radiation intensity are used to train, validate and test the networks. While negligible mineralization is demonstrated, the experimental results show that under sunlight irradiation, 85% of tartrazine is removed after 300 min using only 0.3 g/L of TiO 2 powder. Therefore, irradiation time is prolonged and almost 66% of total organic carbon is reduced after 15 hours. ANN 5-8-1 with Bayesian regulation back-propagation algorithm and hyperbolic tangent sigmoid transfer function is found to be able to predict the response with high accuracy. In addition, the connection weights approach is used to assess the importance contribution of each input variable on the ANN model response. Among the five experimental parameters, the irradiation time has the greatest effect on the removal efficiency of tartrazine.

  6. Strategies for a better performance of RPL under mobility in wireless sensor networks

    Science.gov (United States)

    Latib, Z. A.; Jamil, A.; Alduais, N. A. M.; Abdullah, J.; Audah, L. H. M.; Alias, R.

    2017-09-01

    A Wireless Sensor Network (WSN) is usually stationary, which the network comprises of static nodes. The increase demand for mobility in various applications such as environmental monitoring, medical, home automation, and military, raises the question how IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) would perform under these mobility applications. This paper aims to understand performance of RPL and come out with strategies for a better performance of RPL in mobility scenarios. Because of this, this paper evaluates the performance of the RPL protocol under three different scenarios: sink and sensor nodes are static, static sink and mobile sensor nodes, and sink and sensor nodes are mobile. The network scenarios are implemented in Cooja simulator. A WSN consists of 25 sensor nodes and one sink node is configured in the simulation environment. The simulation is varied over different packet rates and ContikiMAC's Clear Channel Assessment (CCA) rate. As the performance metric, RPL is evaluated in term of packet delivery ratio (PDR), power consumption and packet rates. The simulation results show RPL provides a poor PDR in the mobility scenarios when compared to the static scenario. In addition, RPL consumes more power and increases duty-cycle rate to support mobility when compared to the static scenario. Based on the findings, we suggest three strategies for a better performance of RPL in mobility scenarios. First, RPL should operates at a lower packet rates when implemented in the mobility scenarios. Second, RPL should be implemented with a higher duty-cycle rate. Lastly, the sink node should be positioned as much as possible in the center of the mobile network.

  7. BISEN: Biochemical simulation environment

    NARCIS (Netherlands)

    Vanlier, J.; Wu, F.; Qi, F.; Vinnakota, K.C.; Han, Y.; Dash, R.K.; Yang, F.; Beard, D.A.

    2009-01-01

    The Biochemical Simulation Environment (BISEN) is a suite of tools for generating equations and associated computer programs for simulating biochemical systems in the MATLAB® computing environment. This is the first package that can generate appropriate systems of differential equations for

  8. Carboxylated multi-walled carbon nanotubes aggravated biochemical and subcellular damages in leaves of broad bean (Vicia faba L.) seedlings under combined stress of lead and cadmium

    International Nuclear Information System (INIS)

    Wang, Chengrun; Liu, Haitao; Chen, Jinyun; Tian, Yuan; Shi, Jian; Li, Dongdong; Guo, Chen; Ma, Qingping

    2014-01-01

    Highlights: • MWCNTs-COOH disturb mineral elements and cause oxidative damages in the leaves. • Cd and Pb combination result in reduction of mineral elements and enrichment of Na, involving in toxicity mechanisms. • MWCNTs-COOH facilitate Cd and Pb uptake, and aggravate biochemical and subcellular damages. - Abstract: Increasing industrialization of multi-walled carbon nanotubes (MWCNTs) would inevitably lead to their release into the environment and combination with heavy metals. However, studies concerning the combined effects of MWCNTs and heavy metals on agricultural crops are limited. Herein, effects and mechanisms of carboxylated MWCNTs (MWCNTs-COOH) (2.5, 5 and 10 mg/L) and their combination with 20 μM Pb and 5 μM Cd (shortened as Pb + Cd) on Vicia faba L. seedlings were investigated. The results showed that the MWCNTs-COOH disturbed the imbalance of nutrient elements, and caused oxidative stress and damages in the leaves. Additionally, the combination of MWCNTs-COOH with Pb + Cd resulted in enrichment of Pb and Cd, and deterioration of oxidative damages compared with the treatments of MWCNTs-COOH or Pb + Cd alone in the leaves. As the results, the concentrations of MWCNTs-COOH not only caused oxidative stress, but also exacerbated the biochemical and subcellular damages due to the treatment of Pb + Cd in the leaves. It also suggests that persistent release of MWCNTs-COOH into the environment may cause phytotoxicity and aggravate ecological risks due to combination of heavy metals

  9. Biochemical acclimation, stomatal limitation and precipitation patterns underlie decreases in photosynthetic stimulation of soybean (Glycine max) at elevated [CO₂] and temperatures under fully open air field conditions.

    Science.gov (United States)

    Rosenthal, David M; Ruiz-Vera, Ursula M; Siebers, Matthew H; Gray, Sharon B; Bernacchi, Carl J; Ort, Donald R

    2014-09-01

    The net effect of elevated [CO2] and temperature on photosynthetic acclimation and plant productivity is poorly resolved. We assessed the effects of canopy warming and fully open air [CO2] enrichment on (1) the acclimation of two biochemical parameters that frequently limit photosynthesis (A), the maximum carboxylation capacity of Rubisco (Vc,max) and the maximum potential linear electron flux through photosystem II (Jmax), (2) the associated responses of leaf structural and chemical properties related to A, as well as (3) the stomatal limitation (l) imposed on A, for soybean over two growing seasons in a conventionally managed agricultural field in Illinois, USA. Acclimation to elevated [CO2] was consistent over two growing seasons with respect to Vc,max and Jmax. However, elevated temperature significantly decreased Jmax contributing to lower photosynthetic stimulation by elevated CO2. Large seasonal differences in precipitation altered soil moisture availability modulating the complex effects of elevated temperature and CO2 on biochemical and structural properties related to A. Elevated temperature also reduced the benefit of elevated [CO2] by eliminating decreases in stomatal limitation at elevated [CO2]. These results highlight the critical importance of considering multiple environmental factors (i.e. temperature, moisture, [CO2]) when trying to predict plant productivity in the context of climate change. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Determinants of investment under incentive regulation: The case of the Norwegian electricity distribution networks

    International Nuclear Information System (INIS)

    Poudineh, Rahmatallah; Jamasb, Tooraj

    2016-01-01

    Investment in electricity networks, as regulated natural monopolies, is among the highest regulatory and energy policy priorities. The electricity sector regulators adopt different incentive mechanisms to ensure that the firms undertake sufficient investment to maintain and modernise the grid. Thus, an effective regulatory treatment of investment requires understanding the response of companies to the regulatory incentives. This study analyses the determinants of investment in electricity distribution networks using a panel dataset of 129 Norwegian companies observed from 2004 to 2010. A Bayesian Model Averaging approach is used to provide a robust statistical inference by taking into account the uncertainties around model selection and estimation. The results show that three factors drive nearly all network investments: investment rate in previous period, socio-economic costs of energy not supplied and finally useful life of assets. The results indicate that Norwegian companies have, to some degree, responded to the investment incentives provided by the regulatory framework. However, some of the incentives do not appear to be effective in driving the investments. - Highlights: • This paper investigates determinants of investment under incentive regulation. • We apply a Bayesian model averaging technique to deal with model uncertainty. • Dataset comprises 129 Norwegian electricity network companies from 2004 to 2010. • The results show that firms have generally responded to investment incentives. • However, some of the incentives do not appear to have been effective.

  11. A mathematical framework for modelling and evaluating natural gas pipeline networks under hydrogen injection

    Energy Technology Data Exchange (ETDEWEB)

    Tabkhi, F.; Azzaro-Pantel, C.; Pibouleau, L.; Domenech, S. [Laboratoire de Genie Chimique, UMR5503 CNRS/INP/UPS, 5 rue Paulin Talabot F-BP1301, 31106 Toulouse Cedex 1 (France)

    2008-11-15

    This article presents the framework of a mathematical formulation for modelling and evaluating natural gas pipeline networks under hydrogen injection. The model development is based on gas transport through pipelines and compressors which compensate for the pressure drops by implying mainly the mass and energy balances on the basic elements of the network. The model was initially implemented for natural gas transport and the principle of extension for hydrogen-natural gas mixtures is presented. The objective is the treatment of the classical fuel minimizing problem in compressor stations. The optimization procedure has been formulated by means of a nonlinear technique within the General Algebraic Modelling System (GAMS) environment. This work deals with the adaptation of the current transmission networks of natural gas to the transport of hydrogen-natural gas mixtures. More precisely, the quantitative amount of hydrogen that can be added to natural gas can be determined. The studied pipeline network, initially proposed in [1] is revisited here for the case of hydrogen-natural gas mixtures. Typical quantitative results are presented, showing that the addition of hydrogen to natural gas decreases significantly the transmitted power: the maximum fraction of hydrogen that can be added to natural gas is around 6 mass% for this example. (author)

  12. Core regulatory network motif underlies the ocellar complex patterning in Drosophila melanogaster

    Science.gov (United States)

    Aguilar-Hidalgo, D.; Lemos, M. C.; Córdoba, A.

    2015-03-01

    During organogenesis, developmental programs governed by Gene Regulatory Networks (GRN) define the functionality, size and shape of the different constituents of living organisms. Robustness, thus, is an essential characteristic that GRNs need to fulfill in order to maintain viability and reproducibility in a species. In the present work we analyze the robustness of the patterning for the ocellar complex formation in Drosophila melanogaster fly. We have systematically pruned the GRN that drives the development of this visual system to obtain the minimum pathway able to satisfy this pattern. We found that the mechanism underlying the patterning obeys to the dynamics of a 3-nodes network motif with a double negative feedback loop fed by a morphogenetic gradient that triggers the inhibition in a French flag problem fashion. A Boolean modeling of the GRN confirms robustness in the patterning mechanism showing the same result for different network complexity levels. Interestingly, the network provides a steady state solution in the interocellar part of the patterning and an oscillatory regime in the ocelli. This theoretical result predicts that the ocellar pattern may underlie oscillatory dynamics in its genetic regulation.

  13. A multi-period distribution network design model under demand uncertainty

    Science.gov (United States)

    Tabrizi, Babak H.; Razmi, Jafar

    2013-05-01

    Supply chain management is taken into account as an inseparable component in satisfying customers' requirements. This paper deals with the distribution network design (DND) problem which is a critical issue in achieving supply chain accomplishments. A capable DND can guarantee the success of the entire network performance. However, there are many factors that can cause fluctuations in input data determining market treatment, with respect to short-term planning, on the one hand. On the other hand, network performance may be threatened by the changes that take place within practicing periods, with respect to long-term planning. Thus, in order to bring both kinds of changes under control, we considered a new multi-period, multi-commodity, multi-source DND problem in circumstances where the network encounters uncertain demands. The fuzzy logic is applied here as an efficient tool for controlling the potential customers' demand risk. The defuzzifying framework leads the practitioners and decision-makers to interact with the solution procedure continuously. The fuzzy model is then validated by a sensitivity analysis test, and a typical problem is solved in order to illustrate the implementation steps. Finally, the formulation is tested by some different-sized problems to show its total performance.

  14. Synchronisation of networked Kuramoto oscillators under stable Lévy noise

    Science.gov (United States)

    Kalloniatis, Alexander C.; Roberts, Dale O.

    2017-01-01

    We study the Kuramoto model on several classes of network topologies examining the dynamics under the influence of Lévy noise. Such noise exhibits heavier tails than Gaussian and allows us to understand how 'shocks' influence the individual oscillator and collective system behaviour. Skewed α-stable Lévy noise, equivalent to fractional diffusion perturbations, are considered. We perform numerical simulations for Erdős-Rényi (ER) and Barabási-Albert (BA) scale free networks of size N = 1000 while varying the Lévy index α for the noise. We find that synchrony now assumes a surprising variety of forms, not seen for Gaussian-type noise, and changing with α: a noise-generated drift, a smooth α dependence of the point of cross-over of ER and BA networks in the degree of synchronisation, and a severe loss of synchronisation at low values of α. We also show that this robustness of the BA network across most values of α can also be understood as a consequence of the Laplacian of the graph working within the fractional Fokker-Planck equation of the linearised system, close to synchrony, with both eigenvalues and eigenvectors alternately contributing in different regimes of α.

  15. How does the quality of life and the underlying biochemical indicators correlate with the performance in academic examinations in a group of medical students of Sri Lanka?

    Directory of Open Access Journals (Sweden)

    Manjula Hettiarachchi

    2014-02-01

    Full Text Available Background: Individual variation of examination performance depends on many modifiable and non-modifiable factors, including pre-examination anxiety. Medical students’ quality of life (QoL and certain biochemical changes occurring while they are preparing for examinations has not been explored. Purpose: We hypothesize that these parameters would determine the examination performance among medical students. Methods: Fourth-year medical students (n=78 from the University of Ruhuna, Sri Lanka, were invited. Their pre- and post-exam status of QoL, using the World Health Organization Quality of Life (WHOQOL-BREF questionnaire, and the level of biochemical marker levels (i.e., serum levels of thyroid profile including thyroglobulin, cortisol and ferritin were assessed. Differences between the scores of QoL and serum parameters were compared with their performance at the examination. Results: The mean QoL score was significantly lower at pre-exam (56.19±8.1 when compared with post-exam (61.7±7.1 levels (p<0.001. The median serum TSH level prior to the exam (0.9 mIU/L; interquartile range 0.74–1.4 mIU/L was significantly lower (p=0.001 when compared with the level after the exam (median of 2.7 mIU/L; IQR 1.90–3.60. The mean±SD fT4 level was significantly higher before the exam (19.48±0.4 pmol/L at study entry vs. 17.43±0.3 pmol/L after the exam; p<0.001. Median serum ferritin (SF level prior to the exam (43.15 (23.5–63.3 µg/L was significantly lower (p≤0.001 when compared with after-exam status (72.36 (49.9–94.9 µg/L. However, there was no difference in mean serum cortisol levels (16.51±0.7 at pre-exam and 15.88±0.7 at post-exam, respectively; p=0.41. Conclusions: Students had higher fT4 and low ferritin levels on pre-exam biochemical assessment. It was evident that students who perform better at the examination had significantly higher QoL scores at each domain tested through the questionnaire (Physical health, Psychological

  16. Analysis of Informationization Construction of Business Financial Management under the Network Economy

    Science.gov (United States)

    Dong, Yahui; Zhang, Pengwei; Li, Wei

    To strengthen the informationization construction of the financial management has great significance to the achievement of business management informationization, and under the network economic environment, it is an important task of the financial management that how to conduct informationization construction of traditional financial management to provide true, reliable and complete financial information system for the business managers. This paper thoroughly researches the problem of financial information orientation management (FIOM) by taking the method of combining theory with practice. This paper puts forward the thinking method of financial information management, makes the new contents of E-finance. At last, this paper rebuilds the system of finance internal control from four aspects such as control of organization and management, system development control and safety control of network system.

  17. A Neural Network Model to Learn Multiple Tasks under Dynamic Environments

    Science.gov (United States)

    Tsumori, Kenji; Ozawa, Seiichi

    When environments are dynamically changed for agents, the knowledge acquired in an environment might be useless in future. In such dynamic environments, agents should be able to not only acquire new knowledge but also modify old knowledge in learning. However, modifying all knowledge acquired before is not efficient because the knowledge once acquired may be useful again when similar environment reappears and some knowledge can be shared among different environments. To learn efficiently in such environments, we propose a neural network model that consists of the following modules: resource allocating network, long-term & short-term memory, and environment change detector. We evaluate the model under a class of dynamic environments where multiple function approximation tasks are sequentially given. The experimental results demonstrate that the proposed model possesses stable incremental learning, accurate environmental change detection, proper association and recall of old knowledge, and efficient knowledge transfer.

  18. Complex network analysis of phase dynamics underlying oil-water two-phase flows

    Science.gov (United States)

    Gao, Zhong-Ke; Zhang, Shan-Shan; Cai, Qing; Yang, Yu-Xuan; Jin, Ning-De

    2016-01-01

    Characterizing the complicated flow behaviors arising from high water cut and low velocity oil-water flows is an important problem of significant challenge. We design a high-speed cycle motivation conductance sensor and carry out experiments for measuring the local flow information from different oil-in-water flow patterns. We first use multivariate time-frequency analysis to probe the typical features of three flow patterns from the perspective of energy and frequency. Then we infer complex networks from multi-channel measurements in terms of phase lag index, aiming to uncovering the phase dynamics governing the transition and evolution of different oil-in-water flow patterns. In particular, we employ spectral radius and weighted clustering coefficient entropy to characterize the derived unweighted and weighted networks and the results indicate that our approach yields quantitative insights into the phase dynamics underlying the high water cut and low velocity oil-water flows. PMID:27306101

  19. Under-Frequency Load Shedding Technique Considering Event-Based for an Islanded Distribution Network

    Directory of Open Access Journals (Sweden)

    Hasmaini Mohamad

    2016-06-01

    Full Text Available One of the biggest challenge for an islanding operation is to sustain the frequency stability. A large power imbalance following islanding would cause under-frequency, hence an appropriate control is required to shed certain amount of load. The main objective of this research is to develop an adaptive under-frequency load shedding (UFLS technique for an islanding system. The technique is designed considering an event-based which includes the moment system is islanded and a tripping of any DG unit during islanding operation. A disturbance magnitude is calculated to determine the amount of load to be shed. The technique is modeled by using PSCAD simulation tool. A simulation studies on a distribution network with mini hydro generation is carried out to evaluate the UFLS model. It is performed under different load condition: peak and base load. Results show that the load shedding technique have successfully shed certain amount of load and stabilized the system frequency.

  20. Short-term incorporation of organic manures and biofertilizers influences biochemical and microbial characteristics of soils under an annual crop [Turmeric (Curcuma longa L.)].

    Science.gov (United States)

    Dinesh, R; Srinivasan, V; Hamza, S; Manjusha, A

    2010-06-01

    The study was conducted to determine whether short-term incorporation of organic manures and biofertilizers influence biochemical and microbial variables reflecting soil quality. For the study, soils were collected from a field experiment conducted on turmeric (Curcuma longa L.) involving organic nutrient management (ONM), chemical nutrient management (CNM) and integrated nutrient management (INM). The findings revealed that application of organic manures and biofertilizers (ONM and INM) positively influenced microbial biomass C, N mineralization, soil respiration and enzymes activities. Contrarily, greater metabolic quotient levels in CNM indicated a stressed soil microbial community. Principal component analysis indicated the strong relationship between microbial activity and the availability of labile and easily mineralizable organic matter. The findings imply that even short-term incorporation of organic manures and biofertilizers promoted soil microbial and enzyme activities and these parameters are sensitive enough to detect changes in soil quality due to short-term incorporation of biological fertilizers. (c) 2010 Elsevier Ltd. All rights reserved.

  1. Network structure underlying resolution of conflicting non-verbal and verbal social information.

    Science.gov (United States)

    Watanabe, Takamitsu; Yahata, Noriaki; Kawakubo, Yuki; Inoue, Hideyuki; Takano, Yosuke; Iwashiro, Norichika; Natsubori, Tatsunobu; Takao, Hidemasa; Sasaki, Hiroki; Gonoi, Wataru; Murakami, Mizuho; Katsura, Masaki; Kunimatsu, Akira; Abe, Osamu; Kasai, Kiyoto; Yamasue, Hidenori

    2014-06-01

    Social judgments often require resolution of incongruity in communication contents. Although previous studies revealed that such conflict resolution recruits brain regions including the medial prefrontal cortex (mPFC) and posterior inferior frontal gyrus (pIFG), functional relationships and networks among these regions remain unclear. In this functional magnetic resonance imaging study, we investigated the functional dissociation and networks by measuring human brain activity during resolving incongruity between verbal and non-verbal emotional contents. First, we found that the conflict resolutions biased by the non-verbal contents activated the posterior dorsal mPFC (post-dmPFC), bilateral anterior insula (AI) and right dorsal pIFG, whereas the resolutions biased by the verbal contents activated the bilateral ventral pIFG. In contrast, the anterior dmPFC (ant-dmPFC), bilateral superior temporal sulcus and fusiform gyrus were commonly involved in both of the resolutions. Second, we found that the post-dmPFC and right ventral pIFG were hub regions in networks underlying the non-verbal- and verbal-content-biased resolutions, respectively. Finally, we revealed that these resolution-type-specific networks were bridged by the ant-dmPFC, which was recruited for the conflict resolutions earlier than the two hub regions. These findings suggest that, in social conflict resolutions, the ant-dmPFC selectively recruits one of the resolution-type-specific networks through its interaction with resolution-type-specific hub regions. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  2. Network interactions underlying mirror feedback in stroke: A dynamic causal modeling study

    Directory of Open Access Journals (Sweden)

    Soha Saleh

    2017-01-01

    Full Text Available Mirror visual feedback (MVF is potentially a powerful tool to facilitate recovery of disordered movement and stimulate activation of under-active brain areas due to stroke. The neural mechanisms underlying MVF have therefore been a focus of recent inquiry. Although it is known that sensorimotor areas can be activated via mirror feedback, the network interactions driving this effect remain unknown. The aim of the current study was to fill this gap by using dynamic causal modeling to test the interactions between regions in the frontal and parietal lobes that may be important for modulating the activation of the ipsilesional motor cortex during mirror visual feedback of unaffected hand movement in stroke patients. Our intent was to distinguish between two theoretical neural mechanisms that might mediate ipsilateral activation in response to mirror-feedback: transfer of information between bilateral motor cortices versus recruitment of regions comprising an action observation network which in turn modulate the motor cortex. In an event-related fMRI design, fourteen chronic stroke subjects performed goal-directed finger flexion movements with their unaffected hand while observing real-time visual feedback of the corresponding (veridical or opposite (mirror hand in virtual reality. Among 30 plausible network models that were tested, the winning model revealed significant mirror feedback-based modulation of the ipsilesional motor cortex arising from the contralesional parietal cortex, in a region along the rostral extent of the intraparietal sulcus. No winning model was identified for the veridical feedback condition. We discuss our findings in the context of supporting the latter hypothesis, that mirror feedback-based activation of motor cortex may be attributed to engagement of a contralateral (contralesional action observation network. These findings may have important implications for identifying putative cortical areas, which may be targeted with

  3. Serviceability Assessment for Cascading Failures in Water Distribution Network under Seismic Scenario

    Directory of Open Access Journals (Sweden)

    Qing Shuang

    2016-01-01

    Full Text Available The stability of water service is a hot point in industrial production, public safety, and academic research. The paper establishes a service evaluation model for the water distribution network (WDN. The serviceability is measured in three aspects: (1 the functionality of structural components under disaster environment; (2 the recognition of cascading failure process; and (3 the calculation of system reliability. The node and edge failures in WDN are interrelated under seismic excitations. The cascading failure process is provided with the balance of water supply and demand. The matrix-based system reliability (MSR method is used to represent the system events and calculate the nonfailure probability. An example is used to illustrate the proposed method. The cascading failure processes with different node failures are simulated. The serviceability is analyzed. The critical node can be identified. The result shows that the aged network has a greater influence on the system service under seismic scenario. The maintenance could improve the antidisaster ability of WDN. Priority should be given to controlling the time between the initial failure and the first secondary failure, for taking postdisaster emergency measures within this time period can largely cut down the spread of cascade effect in the whole WDN.

  4. Relative localization in wireless sensor networks for measurement of electric fields under HVDC transmission lines.

    Science.gov (United States)

    Cui, Yong; Wang, Qiusheng; Yuan, Haiwen; Song, Xiao; Hu, Xuemin; Zhao, Luxing

    2015-02-04

    In the wireless sensor networks (WSNs) for electric field measurement system under the High-Voltage Direct Current (HVDC) transmission lines, it is necessary to obtain the electric field distribution with multiple sensors. The location information of each sensor is essential to the correct analysis of measurement results. Compared with the existing approach which gathers the location information by manually labelling sensors during deployment, the automatic localization can reduce the workload and improve the measurement efficiency. A novel and practical range-free localization algorithm for the localization of one-dimensional linear topology wireless networks in the electric field measurement system is presented. The algorithm utilizes unknown nodes' neighbor lists based on the Received Signal Strength Indicator (RSSI) values to determine the relative locations of nodes. The algorithm is able to handle the exceptional situation of the output permutation which can effectively improve the accuracy of localization. The performance of this algorithm under real circumstances has been evaluated through several experiments with different numbers of nodes and different node deployments in the China State Grid HVDC test base. Results show that the proposed algorithm achieves an accuracy of over 96% under different conditions.

  5. Relative Localization in Wireless Sensor Networks for Measurement of Electric Fields under HVDC Transmission Lines

    Directory of Open Access Journals (Sweden)

    Yong Cui

    2015-02-01

    Full Text Available In the wireless sensor networks (WSNs for electric field measurement system under the High-Voltage Direct Current (HVDC transmission lines, it is necessary to obtain the electric field distribution with multiple sensors. The location information of each sensor is essential to the correct analysis of measurement results. Compared with the existing approach which gathers the location information by manually labelling sensors during deployment, the automatic localization can reduce the workload and improve the measurement efficiency. A novel and practical range-free localization algorithm for the localization of one-dimensional linear topology wireless networks in the electric field measurement system is presented. The algorithm utilizes unknown nodes’ neighbor lists based on the Received Signal Strength Indicator (RSSI values to determine the relative locations of nodes. The algorithm is able to handle the exceptional situation of the output permutation which can effectively improve the accuracy of localization. The performance of this algorithm under real circumstances has been evaluated through several experiments with different numbers of nodes and different node deployments in the China State Grid HVDC test base. Results show that the proposed algorithm achieves an accuracy of over 96% under different conditions.

  6. Identifying gene coexpression networks underlying the dynamic regulation of wood-forming tissues in Populus under diverse environmental conditions.

    Science.gov (United States)

    Zinkgraf, Matthew; Liu, Lijun; Groover, Andrew; Filkov, Vladimir

    2017-06-01

    Trees modify wood formation through integration of environmental and developmental signals in complex but poorly defined transcriptional networks, allowing trees to produce woody tissues appropriate to diverse environmental conditions. In order to identify relationships among genes expressed during wood formation, we integrated data from new and publically available datasets in Populus. These datasets were generated from woody tissue and include transcriptome profiling, transcription factor binding, DNA accessibility and genome-wide association mapping experiments. Coexpression modules were calculated, each of which contains genes showing similar expression patterns across experimental conditions, genotypes and treatments. Conserved gene coexpression modules (four modules totaling 8398 genes) were identified that were highly preserved across diverse environmental conditions and genetic backgrounds. Functional annotations as well as correlations with specific experimental treatments associated individual conserved modules with distinct biological processes underlying wood formation, such as cell-wall biosynthesis, meristem development and epigenetic pathways. Module genes were also enriched for DNase I hypersensitivity footprints and binding from four transcription factors associated with wood formation. The conserved modules are excellent candidates for modeling core developmental pathways common to wood formation in diverse environments and genotypes, and serve as testbeds for hypothesis generation and testing for future studies. No claim to original US government works. New Phytologist © 2017 New Phytologist Trust.

  7. COMPONENT SUPPLY MODEL FOR REPAIR ACTIVITIES NETWORK UNDER CONDITIONS OF PROBABILISTIC INDEFINITENESS.

    Directory of Open Access Journals (Sweden)

    Victor Yurievich Stroganov

    2017-02-01

    Full Text Available This article contains the systematization of the major production functions of repair activities network and the list of planning and control functions, which are described in the form of business processes (BP. Simulation model for analysis of the delivery effectiveness of components under conditions of probabilistic uncertainty was proposed. It has been shown that a significant portion of the total number of business processes is represented by the management and planning of the parts and components movement. Questions of construction of experimental design techniques on the simulation model in the conditions of non-stationarity were considered.

  8. Hypothalamus-Related Resting Brain Network Underlying Short-Term Acupuncture Treatment in Primary Hypertension

    Directory of Open Access Journals (Sweden)

    Hongyan Chen

    2013-01-01

    Full Text Available The present study attempted to explore modulated hypothalamus-seeded resting brain network underlying the cardiovascular system in primary hypertensive patients after short-term acupuncture treatment. Thirty right-handed patients (14 male were divided randomly into acupuncture and control groups. The acupuncture group received a continuous five-day acupuncture treatment and undertook three resting-state fMRI scans and 24-hour ambulatory blood pressure monitoring (ABPM as well as SF-36 questionnaires before, after, and one month after acupuncture treatment. The control group undertook fMRI scans and 24-hour ABPM. For verum acupuncture, average blood pressure (BP and heart rate (HR decreased after treatment but showed no statistical differences. There were no significant differences in BP and HR between the acupuncture and control groups. Notably, SF-36 indicated that bodily pain (P = 0.005 decreased and vitality (P = 0.036 increased after acupuncture compared to the baseline. The hypothalamus-related brain network showed increased functional connectivity with the medulla, brainstem, cerebellum, limbic system, thalamus, and frontal lobes. In conclusion, short-term acupuncture did not decrease BP significantly but appeared to improve body pain and vitality. Acupuncture may regulate the cardiovascular system through a complicated brain network from the cortical level, the hypothalamus, and the brainstem.

  9. Converging models of schizophrenia - Network alterations of prefrontal cortex underlying cognitive impairments

    Science.gov (United States)

    Sakurai, Takeshi; Gamo, Nao J; Hikida, Takatoshi; Kim, Sun-Hong; Murai, Toshiya; Tomoda, Toshifumi; Sawa, Akira

    2015-01-01

    The prefrontal cortex (PFC) and its connections with other brain areas are crucial for cognitive function. Cognitive impairments are one of the core symptoms associated with schizophrenia, and manifest even before the onset of the disorder. Altered neural networks involving PFC contribute to cognitive impairments in schizophrenia. Both genetic and environmental risk factors affect the development of the local circuitry within PFC as well as development of broader brain networks, and make the system vulnerable to further insults during adolescence, leading to the onset of the disorder in young adulthood. Since spared cognitive functions correlate with functional outcome and prognosis, a better understanding of the mechanisms underlying cognitive impairments will have important implications for novel therapeutics for schizophrenia focusing on cognitive functions. Multidisciplinary approaches, from basic neuroscience to clinical studies, are required to link molecules, circuitry, networks, and behavioral phenotypes. Close interactions among such fields by sharing a common language on connectomes, behavioral readouts, and other concepts are crucial for this goal. PMID:26408506

  10. Spatially Nonlinear Interdependence of Alpha-Oscillatory Neural Networks under Chan Meditation

    Directory of Open Access Journals (Sweden)

    Pei-Chen Lo

    2013-01-01

    Full Text Available This paper reports the results of our investigation of the effects of Chan meditation on brain electrophysiological behaviors from the viewpoint of spatially nonlinear interdependence among regional neural networks. Particular emphasis is laid on the alpha-dominated EEG (electroencephalograph. Continuous-time wavelet transform was adopted to detect the epochs containing substantial alpha activities. Nonlinear interdependence quantified by similarity index S(X∣Y, the influence of source signal Y on sink signal X, was applied to the nonlinear dynamical model in phase space reconstructed from multichannel EEG. Experimental group involved ten experienced Chan-Meditation practitioners, while control group included ten healthy subjects within the same age range, yet, without any meditation experience. Nonlinear interdependence among various cortical regions was explored for five local neural-network regions, frontal, posterior, right-temporal, left-temporal, and central regions. In the experimental group, the inter-regional interaction was evaluated for the brain dynamics under three different stages, at rest (stage R, pre-meditation background recording, in Chan meditation (stage M, and the unique Chakra-focusing practice (stage C. Experimental group exhibits stronger interactions among various local neural networks at stages M and C compared with those at stage R. The intergroup comparison demonstrates that Chan-meditation brain possesses better cortical inter-regional interactions than the resting brain of control group.

  11. xHeinz: an algorithm for mining cross-species network modules under a flexible conservation model

    NARCIS (Netherlands)

    El-Kebir, Mohammed; Soueidan, Hayssam; Hume, Thomas; Beisser, Daniela; Dittrich, Marcus; Müller, Tobias; Blin, Guillaume; Heringa, Jaap; Nikolski, Macha; Wessels, Lodewyk F.A.; Klau, G.W.

    2015-01-01

    Motivation: Integrative network analysis methods provide robust interpretations of differential high-throughput molecular profile measurements. They are often used in a biomedical context - to generate novel hypotheses about the underlying cellular processes or to derive biomarkers for

  12. Deciding where to attend: Large-scale network mechanisms underlying attention and intention revealed by graph-theoretic analysis.

    Science.gov (United States)

    Liu, Yuelu; Hong, Xiangfei; Bengson, Jesse J; Kelley, Todd A; Ding, Mingzhou; Mangun, George R

    2017-08-15

    The neural mechanisms by which intentions are transformed into actions remain poorly understood. We investigated the network mechanisms underlying spontaneous voluntary decisions about where to focus visual-spatial attention (willed attention). Graph-theoretic analysis of two independent datasets revealed that regions activated during willed attention form a set of functionally-distinct networks corresponding to the frontoparietal network, the cingulo-opercular network, and the dorsal attention network. Contrasting willed attention with instructed attention (where attention is directed by external cues), we observed that the dorsal anterior cingulate cortex was allied with the dorsal attention network in instructed attention, but shifted connectivity during willed attention to interact with the cingulo-opercular network, which then mediated communications between the frontoparietal network and the dorsal attention network. Behaviorally, greater connectivity in network hubs, including the dorsolateral prefrontal cortex, the dorsal anterior cingulate cortex, and the inferior parietal lobule, was associated with faster reaction times. These results, shown to be consistent across the two independent datasets, uncover the dynamic organization of functionally-distinct networks engaged to support intentional acts. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Deformation and concentration fluctuations under stretching in a polymer network with free chains. The ''butterfly'' effect

    International Nuclear Information System (INIS)

    Ramzi, A.

    1994-06-01

    Small Angle Neutron Scattering gives access to concentration fluctuations of mobile labeled polymer chains embedded in a polymer network. At rest they appear progressively larger than for random mixing, with increasing ratio. Under uniaxial stretching, they decrease towards ideal mixing along the direction perpendicular to stretching, and can grow strongly along the parallel one, including the zero scattering vector q limit. This gives rise to intensity contours with double-winged patterns, in the shape of the figure '8', or of 'butterfly'. Random crosslinking and end-linking of monodisperse chains have both been studied. The strength of the 'butterfly' effect increases with the molecular weight of the free chains, the crosslinking ratio, the network heterogeneity, and the elongation ratio. Eventually, the signal collapses on an 'asymptotic' function I(q), of increasing correlation length with the elongation ratio. Deformation appears heterogeneous, maximal for soft areas, where the mobile chains localize preferentially. This could be due to spontaneous fluctuations, or linked to frozen fluctuations of the crosslink density. However, disagreement with the corresponding theoretical expressions makes it necessary to account for the spatial correlations of crosslink density, and their progressive unscreening as displayed by the asymptotic behavior. Networks containing pending labeled chains and free labeled stars lead to more precise understanding of the diffusion of free species and the heterogeneity of the deformation. It seems that the latter occurs even without diffusion for heterogeneous enough networks. In extreme cases (of the crosslinking parameters), the spatial correlations display on apparent fractal behavior, of dimensions 2 to 2.5, which is discussed here in terms of random clusters. 200 refs., 95 figs., 21 tabs., 10 appends

  14. Modeling of uncertainties in biochemical reactions.

    Science.gov (United States)

    Mišković, Ljubiša; Hatzimanikatis, Vassily

    2011-02-01

    Mathematical modeling is an indispensable tool for research and development in biotechnology and bioengineering. The formulation of kinetic models of biochemical networks depends on knowledge of the kinetic properties of the enzymes of the individual reactions. However, kinetic data acquired from experimental observations bring along uncertainties due to various experimental conditions and measurement methods. In this contribution, we propose a novel way to model the uncertainty in the enzyme kinetics and to predict quantitatively the responses of metabolic reactions to the changes in enzyme activities under uncertainty. The proposed methodology accounts explicitly for mechanistic properties of enzymes and physico-chemical and thermodynamic constraints, and is based on formalism from systems theory and metabolic control analysis. We achieve this by observing that kinetic responses of metabolic reactions depend: (i) on the distribution of the enzymes among their free form and all reactive states; (ii) on the equilibrium displacements of the overall reaction and that of the individual enzymatic steps; and (iii) on the net fluxes through the enzyme. Relying on this observation, we develop a novel, efficient Monte Carlo sampling procedure to generate all states within a metabolic reaction that satisfy imposed constrains. Thus, we derive the statistics of the expected responses of the metabolic reactions to changes in enzyme levels and activities, in the levels of metabolites, and in the values of the kinetic parameters. We present aspects of the proposed framework through an example of the fundamental three-step reversible enzymatic reaction mechanism. We demonstrate that the equilibrium displacements of the individual enzymatic steps have an important influence on kinetic responses of the enzyme. Furthermore, we derive the conditions that must be satisfied by a reversible three-step enzymatic reaction operating far away from the equilibrium in order to respond to

  15. Radiation effect on pregnant rats receiving progesterone and Biochemical changes during pregnancy in rats under effect of gamma rays. Vol. 4

    International Nuclear Information System (INIS)

    Abdel-Wahab, M.F.; Abdel-Aziz, S.M.; Abdel-Gawad, I.I.

    1996-01-01

    The following terms were carried out to provide a comprehensive picture of the radiation induced biochemical changes in pregnant rats with and without progesterone injections. 1- serum total proteins. Animals irradiated on the third day and sacrificed on day 8, 14, 18, and 21 showed non-significant increase in serum total proteins on the day 8 of gestation in irradiated animals as compared to control animals, while on the other days serum total proteins increased significantly in irradiated animals compared to control animals. 2- serum total lipids. Animals irradiated on the third day of gestation and 8 th day all showed significant increase in serum total lipids with exception of those on the 14 th which showed nonsignificant change. Those on the 21 st showed a reverse effect of decrease. 3- serum progesterone. It is evident that animals irradiated on third day sacrificed on day 8, 14, 18, and 21 showed non-significant change in serum progesterone on the day 8, but on the other days it is significantly decreased compared to control levels. 4-Calcium. Animals irradiated on the third day and sacrificed on the 8 th day change in calcium level, others showed a significant decrease compared to control level. 8 figs., 2 tabs

  16. Radiation effect on pregnant rats receiving progesterone and Biochemical changes during pregnancy in rats under effect of gamma rays. Vol. 4

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Wahab, M F; Abdel-Aziz, S M; Abdel-Gawad, I I [Radioisotope Department, Atomic Energy Authority, Dokki, (Egypt)

    1996-03-01

    The following terms were carried out to provide a comprehensive picture of the radiation induced biochemical changes in pregnant rats with and without progesterone injections. 1- serum total proteins. Animals irradiated on the third day and sacrificed on day 8, 14, 18, and 21 showed non-significant increase in serum total proteins on the day 8 of gestation in irradiated animals as compared to control animals, while on the other days serum total proteins increased significantly in irradiated animals compared to control animals. 2- serum total lipids. Animals irradiated on the third day of gestation and 8{sup th} day all showed significant increase in serum total lipids with exception of those on the 14{sup th} which showed nonsignificant change. Those on the 21{sup st} showed a reverse effect of decrease. 3- serum progesterone. It is evident that animals irradiated on third day sacrificed on day 8, 14, 18, and 21 showed non-significant change in serum progesterone on the day 8, but on the other days it is significantly decreased compared to control levels. 4-Calcium. Animals irradiated on the third day and sacrificed on the 8{sup th} day change in calcium level, others showed a significant decrease compared to control level. 8 figs., 2 tabs.

  17. Genetic polymorphisms of antioxidant enzymes CAT and SOD affect the outcome of clinical, biochemical, and anthropometric variables in people with obesity under a dietary intervention.

    Science.gov (United States)

    Hernández-Guerrero, César; Parra-Carriedo, Alicia; Ruiz-de-Santiago, Diana; Galicia-Castillo, Oscar; Buenrostro-Jáuregui, Mario; Díaz-Gutiérrez, Carmen

    2018-01-01

    Genetic polymorphisms of antioxidant enzymes CAT, GPX, and SOD are involved in the etiology of obesity and its principal comorbidities. The aim of the present study was to analyze the effect of aforementioned SNPs over the output of several variables in people with obesity after a nutritional intervention. The study included 92 Mexican women, which received a dietary intervention by 3 months. Participants were genotyped and stratified into two groups: (1) carriers; mutated homozygous plus heterozygous (CR) and (2) homozygous wild type (WT). A comparison between CR and WT was done in clinical (CV), biochemical (BV), and anthropometric variables (AV), at the beginning and at the end of the intervention. Participants ( n  = 92) showed statistically significant differences ( p  T GPX1 (rs1050450), - 251A>G SOD1 (rs2070424), and - 262C>T CAT (rs1001179). (B) Only CR showed statistically changes ( p  T CAT (rs7943316) and 47C>T SOD2 (rs4880). The dietary intervention effect was statistically significantly between the polymorphisms of 47C>T SOD2 and BMI, SBP, TBARS, total cholesterol, and C-LCL ( p  T CAT (rs7943316) and SBP, DBP, total cholesterol, and atherogenic index ( p  CAT enzymes.

  18. Memory networks supporting retrieval effort and retrieval success under conditions of full and divided attention.

    Science.gov (United States)

    Skinner, Erin I; Fernandes, Myra A; Grady, Cheryl L

    2009-01-01

    We used a multivariate analysis technique, partial least squares (PLS), to identify distributed patterns of brain activity associated with retrieval effort and retrieval success. Participants performed a recognition memory task under full attention (FA) or two different divided attention (DA) conditions during retrieval. Behaviorally, recognition was disrupted when a word, but not digit-based distracting task, was performed concurrently with retrieval. PLS was used to identify patterns of brain activation that together covaried with the three memory conditions and which were functionally connected with activity in the right hippocampus to produce successful memory performance. Results indicate that activity in the right dorsolateral frontal cortex increases during conditions of DA at retrieval, and that successful memory performance in the DA-digit condition is associated with activation of the same network of brain regions functionally connected to the right hippocampus, as under FA, which increases with increasing memory performance. Finally, DA conditions that disrupt successful memory performance (DA-word) interfere with recruitment of both retrieval-effort and retrieval-success networks.

  19. Secure Distributed Detection under Energy Constraint in IoT-Oriented Sensor Networks

    Directory of Open Access Journals (Sweden)

    Guomei Zhang

    2016-12-01

    Full Text Available We study the secure distributed detection problems under energy constraint for IoT-oriented sensor networks. The conventional channel-aware encryption (CAE is an efficient physical-layer secure distributed detection scheme in light of its energy efficiency, good scalability and robustness over diverse eavesdropping scenarios. However, in the CAE scheme, it remains an open problem of how to optimize the key thresholds for the estimated channel gain, which are used to determine the sensor’s reporting action. Moreover, the CAE scheme does not jointly consider the accuracy of local detection results in determining whether to stay dormant for a sensor. To solve these problems, we first analyze the error probability and derive the optimal thresholds in the CAE scheme under a specified energy constraint. These results build a convenient mathematic framework for our further innovative design. Under this framework, we propose a hybrid secure distributed detection scheme. Our proposal can satisfy the energy constraint by keeping some sensors inactive according to the local detection confidence level, which is characterized by likelihood ratio. In the meanwhile, the security is guaranteed through randomly flipping the local decisions forwarded to the fusion center based on the channel amplitude. We further optimize the key parameters of our hybrid scheme, including two local decision thresholds and one channel comparison threshold. Performance evaluation results demonstrate that our hybrid scheme outperforms the CAE under stringent energy constraints, especially in the high signal-to-noise ratio scenario, while the security is still assured.

  20. Secure Distributed Detection under Energy Constraint in IoT-Oriented Sensor Networks.

    Science.gov (United States)

    Zhang, Guomei; Sun, Hao

    2016-12-16

    We study the secure distributed detection problems under energy constraint for IoT-oriented sensor networks. The conventional channel-aware encryption (CAE) is an efficient physical-layer secure distributed detection scheme in light of its energy efficiency, good scalability and robustness over diverse eavesdropping scenarios. However, in the CAE scheme, it remains an open problem of how to optimize the key thresholds for the estimated channel gain, which are used to determine the sensor's reporting action. Moreover, the CAE scheme does not jointly consider the accuracy of local detection results in determining whether to stay dormant for a sensor. To solve these problems, we first analyze the error probability and derive the optimal thresholds in the CAE scheme under a specified energy constraint. These results build a convenient mathematic framework for our further innovative design. Under this framework, we propose a hybrid secure distributed detection scheme. Our proposal can satisfy the energy constraint by keeping some sensors inactive according to the local detection confidence level, which is characterized by likelihood ratio. In the meanwhile, the security is guaranteed through randomly flipping the local decisions forwarded to the fusion center based on the channel amplitude. We further optimize the key parameters of our hybrid scheme, including two local decision thresholds and one channel comparison threshold. Performance evaluation results demonstrate that our hybrid scheme outperforms the CAE under stringent energy constraints, especially in the high signal-to-noise ratio scenario, while the security is still assured.

  1. Modulation of attention network activation under antidepressant agents in healthy subjects.

    Science.gov (United States)

    Graf, Heiko; Abler, Birgit; Hartmann, Antonie; Metzger, Coraline D; Walter, Martin

    2013-07-01

    While antidepressants are supposed to exert similar effects on mood and drive via various mechanisms of action, diverging effects are observed regarding side-effects and accordingly on neural correlates of motivation, emotion, reward and salient stimuli processing as a function of the drugs impact on neurotransmission. In the context of erotic stimulation, a unidirectional modulation of attentional functioning despite opposite effects on sexual arousal has been suggested for the selective serotonin reuptake-inhibitor (SSRI) paroxetine and the selective dopamine and noradrenaline reuptake-inhibitor (SDNRI) bupropion. To further elucidate the effects of antidepressant-related alterations of neural attention networks, we investigated 18 healthy males under subchronic administration (7 d) of paroxetine (20 mg), bupropion (150 mg) and placebo within a randomized placebo-controlled cross-over double-blind functional magnetic resonance imaging (fMRI) design during an established preceding attention task. Neuropsychological effects beyond the fMRI-paradigm were assessed by measuring alertness and divided attention. Comparing preceding attention periods of salient vs. neutral pictures, we revealed congruent effects of both drugs vs. placebo within the anterior midcingulate cortex, dorsolateral prefrontal cortex, anterior prefrontal cortex, superior temporal gyrus, anterior insula and the thalamus. Relatively decreased activation in this network was paralleled by slower reaction times in the divided attention task in both verum conditions compared to placebo. Our results suggest similar effects of antidepressant treatments on behavioural and neural attentional functioning by diverging neurochemical pathways. Concurrent alterations of brain regions within a fronto-parietal and cingulo-opercular attention network for top-down control could point to basic neural mechanisms of antidepressant action irrespective of receptor profiles.

  2. Biocomputional construction of a gene network under acid stress in Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Li, Yi; Rao, Nini; Yang, Feng; Zhang, Ying; Yang, Yang; Liu, Han-ming; Guo, Fengbiao; Huang, Jian

    2014-01-01

    Acid stress is one of the most serious threats that cyanobacteria have to face, and it has an impact at all levels from genome to phenotype. However, very little is known about the detailed response mechanism to acid stress in this species. We present here a general analysis of the gene regulatory network of Synechocystis sp. PCC 6803 in response to acid stress using comparative genome analysis and biocomputational prediction. In this study, we collected 85 genes and used them as an initial template to predict new genes through co-regulation, protein-protein interactions and the phylogenetic profile, and 179 new genes were obtained to form a complete template. In addition, we found that 11 enriched pathways such as glycolysis are closely related to the acid stress response. Finally, we constructed a regulatory network for the intricate relationship of these genes and summarize the key steps in response to acid stress. This is the first time a bioinformatic approach has been taken systematically to gene interactions in cyanobacteria and the elaboration of their cell metabolism and regulatory pathways under acid stress, which is more efficient than a traditional experimental study. The results also provide theoretical support for similar research into environmental stresses in cyanobacteria and possible industrial applications. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  3. SoxB1-driven transcriptional network underlies neural-specific interpretation of morphogen signals.

    Science.gov (United States)

    Oosterveen, Tony; Kurdija, Sanja; Ensterö, Mats; Uhde, Christopher W; Bergsland, Maria; Sandberg, Magnus; Sandberg, Rickard; Muhr, Jonas; Ericson, Johan

    2013-04-30

    The reiterative deployment of a small cadre of morphogen signals underlies patterning and growth of most tissues during embyogenesis, but how such inductive events result in tissue-specific responses remains poorly understood. By characterizing cis-regulatory modules (CRMs) associated with genes regulated by Sonic hedgehog (Shh), retinoids, or bone morphogenetic proteins in the CNS, we provide evidence that the neural-specific interpretation of morphogen signaling reflects a direct integration of these pathways with SoxB1 proteins at the CRM level. Moreover, expression of SoxB1 proteins in the limb bud confers on mesodermal cells the potential to activate neural-specific target genes upon Shh, retinoid, or bone morphogenetic protein signaling, and the collocation of binding sites for SoxB1 and morphogen-mediatory transcription factors in CRMs faithfully predicts neural-specific gene activity. Thus, an unexpectedly simple transcriptional paradigm appears to conceptually explain the neural-specific interpretation of pleiotropic signaling during vertebrate development. Importantly, genes induced in a SoxB1-dependent manner appear to constitute repressive gene regulatory networks that are directly interlinked at the CRM level to constrain the regional expression of patterning genes. Accordingly, not only does the topology of SoxB1-driven gene regulatory networks provide a tissue-specific mode of gene activation, but it also determines the spatial expression pattern of target genes within the developing neural tube.

  4. Priority Queue Based Reactive Buffer Management Policy for Delay Tolerant Network under City Based Environments.

    Directory of Open Access Journals (Sweden)

    Qaisar Ayub

    Full Text Available Delay Tolerant Network (DTN multi-copy routing protocols are privileged to create and transmit multiple copies of each message that causes congestion and some messages are dropped. This process is known as reactive drop because messages were dropped re-actively to overcome buffer overflows. The existing reactive buffer management policies apply a single metric to drop source, relay and destine messages. Hereby, selection to drop a message is dubious because each message as source, relay or destine may have consumed dissimilar magnitude of network resources. Similarly, DTN has included time to live (ttl parameter which defines lifetime of message. Hence, when ttl expires then message is automatically destroyed from relay nodes. However, time-to-live (ttl is not applicable on messages reached at their destinations. Moreover, nodes keep replicating messages till ttl expires even-though large number of messages has already been dispersed. In this paper, we have proposed Priority Queue Based Reactive Buffer Management Policy (PQB-R for DTN under City Based Environments. The PQB-R classifies buffered messages into source, relay and destine queues. Moreover, separate drop metric has been applied on individual queue. The experiment results prove that proposed PQB-R has reduced number of messages transmissions, message drop and increases delivery ratio.

  5. Priority Queue Based Reactive Buffer Management Policy for Delay Tolerant Network under City Based Environments.

    Science.gov (United States)

    Ayub, Qaisar; Ngadi, Asri; Rashid, Sulma; Habib, Hafiz Adnan

    2018-01-01

    Delay Tolerant Network (DTN) multi-copy routing protocols are privileged to create and transmit multiple copies of each message that causes congestion and some messages are dropped. This process is known as reactive drop because messages were dropped re-actively to overcome buffer overflows. The existing reactive buffer management policies apply a single metric to drop source, relay and destine messages. Hereby, selection to drop a message is dubious because each message as source, relay or destine may have consumed dissimilar magnitude of network resources. Similarly, DTN has included time to live (ttl) parameter which defines lifetime of message. Hence, when ttl expires then message is automatically destroyed from relay nodes. However, time-to-live (ttl) is not applicable on messages reached at their destinations. Moreover, nodes keep replicating messages till ttl expires even-though large number of messages has already been dispersed. In this paper, we have proposed Priority Queue Based Reactive Buffer Management Policy (PQB-R) for DTN under City Based Environments. The PQB-R classifies buffered messages into source, relay and destine queues. Moreover, separate drop metric has been applied on individual queue. The experiment results prove that proposed PQB-R has reduced number of messages transmissions, message drop and increases delivery ratio.

  6. Automatic Railway Traffic Object Detection System Using Feature Fusion Refine Neural Network under Shunting Mode

    Directory of Open Access Journals (Sweden)

    Tao Ye

    2018-06-01

    Full Text Available Many accidents happen under shunting mode when the speed of a train is below 45 km/h. In this mode, train attendants observe the railway condition ahead using the traditional manual method and tell the observation results to the driver in order to avoid danger. To address this problem, an automatic object detection system based on convolutional neural network (CNN is proposed to detect objects ahead in shunting mode, which is called Feature Fusion Refine neural network (FR-Net. It consists of three connected modules, i.e., the depthwise-pointwise convolution, the coarse detection module, and the object detection module. Depth-wise-pointwise convolutions are used to improve the detection in real time. The coarse detection module coarsely refine the locations and sizes of prior anchors to provide better initialization for the subsequent module and also reduces search space for the classification, whereas the object detection module aims to regress accurate object locations and predict the class labels for the prior anchors. The experimental results on the railway traffic dataset show that FR-Net achieves 0.8953 mAP with 72.3 FPS performance on a machine with a GeForce GTX1080Ti with the input size of 320 × 320 pixels. The results imply that FR-Net takes a good tradeoff both on effectiveness and real time performance. The proposed method can meet the needs of practical application in shunting mode.

  7. Time-Series Analyses of Transcriptomes and Proteomes Reveal Molecular Networks Underlying Oil Accumulation in Canola.

    Science.gov (United States)

    Wan, Huafang; Cui, Yixin; Ding, Yijuan; Mei, Jiaqin; Dong, Hongli; Zhang, Wenxin; Wu, Shiqi; Liang, Ying; Zhang, Chunyu; Li, Jiana; Xiong, Qing; Qian, Wei

    2016-01-01

    Understanding the regulation of lipid metabolism is vital for genetic engineering of canola ( Brassica napus L.) to increase oil yield or modify oil composition. We conducted time-series analyses of transcriptomes and proteomes to uncover the molecular networks associated with oil accumulation and dynamic changes in these networks in canola. The expression levels of genes and proteins were measured at 2, 4, 6, and 8 weeks after pollination (WAP). Our results show that the biosynthesis of fatty acids is a dominant cellular process from 2 to 6 WAP, while the degradation mainly happens after 6 WAP. We found that genes in almost every node of fatty acid synthesis pathway were significantly up-regulated during oil accumulation. Moreover, significant expression changes of two genes, acetyl-CoA carboxylase and acyl-ACP desaturase, were detected on both transcriptomic and proteomic levels. We confirmed the temporal expression patterns revealed by the transcriptomic analyses using quantitative real-time PCR experiments. The gene set association analysis show that the biosynthesis of fatty acids and unsaturated fatty acids are the most significant biological processes from 2-4 WAP and 4-6 WAP, respectively, which is consistent with the results of time-series analyses. These results not only provide insight into the mechanisms underlying lipid metabolism, but also reveal novel candidate genes that are worth further investigation for their values in the genetic engineering of canola.

  8. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean.

    Science.gov (United States)

    Fang, Chao; Ma, Yanming; Wu, Shiwen; Liu, Zhi; Wang, Zheng; Yang, Rui; Hu, Guanghui; Zhou, Zhengkui; Yu, Hong; Zhang, Min; Pan, Yi; Zhou, Guoan; Ren, Haixiang; Du, Weiguang; Yan, Hongrui; Wang, Yanping; Han, Dezhi; Shen, Yanting; Liu, Shulin; Liu, Tengfei; Zhang, Jixiang; Qin, Hao; Yuan, Jia; Yuan, Xiaohui; Kong, Fanjiang; Liu, Baohui; Li, Jiayang; Zhang, Zhiwu; Wang, Guodong; Zhu, Baoge; Tian, Zhixi

    2017-08-24

    Soybean (Glycine max [L.] Merr.) is one of the most important oil and protein crops. Ever-increasing soybean consumption necessitates the improvement of varieties for more efficient production. However, both correlations among different traits and genetic interactions among genes that affect a single trait pose a challenge to soybean breeding. To understand the genetic networks underlying phenotypic correlations, we collected 809 soybean accessions worldwide and phenotyped them for two years at three locations for 84 agronomic traits. Genome-wide association studies identified 245 significant genetic loci, among which 95 genetically interacted with other loci. We determined that 14 oil synthesis-related genes are responsible for fatty acid accumulation in soybean and function in line with an additive model. Network analyses demonstrated that 51 traits could be linked through the linkage disequilibrium of 115 associated loci and these links reflect phenotypic correlations. We revealed that 23 loci, including the known Dt1, E2, E1, Ln, Dt2, Fan, and Fap loci, as well as 16 undefined associated loci, have pleiotropic effects on different traits. This study provides insights into the genetic correlation among complex traits and will facilitate future soybean functional studies and breeding through molecular design.

  9. The formation of space network in structure of polyallyl cinnamates under UV- and γ-irradiation

    International Nuclear Information System (INIS)

    Yagudeev, T.

    2003-01-01

    Influence of UV- and γ-irradiation on polyallyl cinnamates (PAC) structure are investigated. UV-irradiation of polymers samples carried out by lamp PRK-2 at 25-30 deg. C.; 60 Co was used for γ-irradiation: mean value of dose power - 50 μR/s; average energy of γ-quantum E γ =1.25 MeV. It was shown that under various kinds of irradiation polyallyl cinnamates forms space networks and samples of PAC kept itself physico-mechanical properties (light transparent - 90 %), or increase its (microhardness reach 150 %). It can be concluded that such polymers may find application for creation of elements of laser optics

  10. Exploring the genetics underlying autoimmune diseases with network analysis and link prediction

    KAUST Repository

    Alanis Lobato, Gregorio; Cannistraci, Carlo; Ravasi, Timothy

    2014-01-01

    Ever since the first Genome Wide Association Study (GWAS) was carried out we have seen an important number of discoveries of biological and clinical relevance. However, there are some scientists that consider that these research outcomes and their utility are far from what was expected from this experimental design. We instead believe that the thousands of genetic variants associated with complex disorders by means of GWASs are an extremely valuable source of information that needs to be mined in a different way. Based on this philosophy, we followed a holistic perspective to analyze GWAS data and explored the structural properties of the network representation of one of these datasets with the aim to advance our understanding of the genetic intricacies underlying autoimmune human diseases. The simplicity, computational efficiency and precision of the tools proposed in this paper represent a new means to address GWAS data and contribute to the better exploitation of these rich sources of information. © 2014 IEEE.

  11. Exploring the genetics underlying autoimmune diseases with network analysis and link prediction

    KAUST Repository

    Alanis Lobato, Gregorio

    2014-02-01

    Ever since the first Genome Wide Association Study (GWAS) was carried out we have seen an important number of discoveries of biological and clinical relevance. However, there are some scientists that consider that these research outcomes and their utility are far from what was expected from this experimental design. We instead believe that the thousands of genetic variants associated with complex disorders by means of GWASs are an extremely valuable source of information that needs to be mined in a different way. Based on this philosophy, we followed a holistic perspective to analyze GWAS data and explored the structural properties of the network representation of one of these datasets with the aim to advance our understanding of the genetic intricacies underlying autoimmune human diseases. The simplicity, computational efficiency and precision of the tools proposed in this paper represent a new means to address GWAS data and contribute to the better exploitation of these rich sources of information. © 2014 IEEE.

  12. Effect of Chemical and Biological Phosphorus on Antioxidant Enzymes Activity and Some Biochemical Traits of Spring Safflower (Carthamus tinctorius L. under Water Deficit Stress Conditions

    Directory of Open Access Journals (Sweden)

    S. Heshmati

    2016-05-01

    Full Text Available To study the effects of biological and chemical phosphorus on antioxidant enzyme activity in safflower under water deficit conditions, an experiment was conducted in 2012 at the Research Field of the Faculty of Agriculture, Shahed University, Tehran, Iran. The experimental design was a split-factorial with three replicates. The main factor was the three levels of irrigation treatment: full irrigation (irrigation up to 50% soil moisture depletion relative to field capacity, water stress in the vegetative and flowering stages (irrigation up to 75% soil moisture depletion relative to field capacity. The sub-factor was the six treatments resulting from three levels of phosphate chemical fertilizer (0, 50, and 100 kg ha-1 Triple Super Phosphate, each at two levels of Barvar-2 bio-fertilizer (with and without inoculation with Barvar-2. According to the results of our experiment, antioxidant enzyme activity is affected by high levels of chemical phosphorus when there is no inoculation with biofertilizer (Barvar 2 under water stress in the vegetative and flowering stages. The results showed that inoculation with Barvar 2 in the absence of added chemical phosphorus increases the catalase activity and soluble protein concentration under drought stress in the vegetative and flowering stages. Also, using chemical phosphorus followed by Barvar 2 led to increase in the polyphenol oxidase activity and superoxide dismutase activity under these conditions. Inoculation with Barvar 2 in the absence of added chemical phosphorus significantly decreased the amount of malondialdehyde under stress condition at the flowering stage. It was demonstrated that inoculation with a biological fertilizer (Barvar 2 followed by application of a chemical phosphorus fertilizer under drought conditions could decrease the detrimental effects of drought stress on spring safflower.

  13. Real-time relationship between PKA biochemical signal network dynamics and increased action potential firing rate in heart pacemaker cells: Kinetics of PKA activation in heart pacemaker cells.

    Science.gov (United States)

    Yaniv, Yael; Ganesan, Ambhighainath; Yang, Dongmei; Ziman, Bruce D; Lyashkov, Alexey E; Levchenko, Andre; Zhang, Jin; Lakatta, Edward G

    2015-09-01

    cAMP-PKA protein kinase is a key nodal signaling pathway that regulates a wide range of heart pacemaker cell functions. These functions are predicted to be involved in regulation of spontaneous action potential (AP) generation of these cells. Here we investigate if the kinetics and stoichiometry of increase in PKA activity match the increase in AP firing rate in response to β-adrenergic receptor (β-AR) stimulation or phosphodiesterase (PDE) inhibition, that alters the AP firing rate of heart sinoatrial pacemaker cells. In cultured adult rabbit pacemaker cells infected with an adenovirus expressing the FRET sensor AKAR3, the EC50 in response to graded increases in the intensity of β-AR stimulation (by Isoproterenol) the magnitude of the increases in PKA activity and the spontaneous AP firing rate were similar (0.4±0.1nM vs. 0.6±0.15nM, respectively). Moreover, the kinetics (t1/2) of the increases in PKA activity and spontaneous AP firing rate in response to β-AR stimulation or PDE inhibition were tightly linked. We characterized the system rate-limiting biochemical reactions by integrating these experimentally derived data into a mechanistic-computational model. Model simulations predicted that phospholamban phosphorylation is a potent target of the increase in PKA activity that links to increase in spontaneous AP firing rate. In summary, the kinetics and stoichiometry of increases in PKA activity in response to a physiological (β-AR stimulation) or pharmacological (PDE inhibitor) stimuli match those of changes in the AP firing rate. Thus Ca(2+)-cAMP/PKA-dependent phosphorylation limits the rate and magnitude of increase in spontaneous AP firing rate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The Performance Evaluation of an IEEE 802.11 Network Containing Misbehavior Nodes under Different Backoff Algorithms

    Directory of Open Access Journals (Sweden)

    Trong-Minh Hoang

    2017-01-01

    Full Text Available Security of any wireless network is always an important issue due to its serious impacts on network performance. Practically, the IEEE 802.11 medium access control can be violated by several native or smart attacks that result in downgrading network performance. In recent years, there are several studies using analytical model to analyze medium access control (MAC layer misbehavior issue to explore this problem but they have focused on binary exponential backoff only. Moreover, a practical condition such as the freezing backoff issue is not included in the previous models. Hence, this paper presents a novel analytical model of the IEEE 802.11 MAC to thoroughly understand impacts of misbehaving node on network throughput and delay parameters. Particularly, the model can express detailed backoff algorithms so that the evaluation of the network performance under some typical attacks through numerical simulation results would be easy.

  15. Biochemical component identification by plasmonic improved whispering gallery mode optical resonance based sensor

    Science.gov (United States)

    Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Saetchnikov, Anton V.; Schweiger, Gustav; Ostendorf, Andreas

    2014-05-01

    Experimental data on detection and identification of variety of biochemical agents, such as proteins, microelements, antibiotic of different generation etc. in both single and multi component solutions under varied in wide range concentration analyzed on the light scattering parameters of whispering gallery mode optical resonance based sensor are represented. Multiplexing on parameters and components has been realized using developed fluidic sensor cell with fixed in adhesive layer dielectric microspheres and data processing. Biochemical component identification has been performed by developed network analysis techniques. Developed approach is demonstrated to be applicable both for single agent and for multi component biochemical analysis. Novel technique based on optical resonance on microring structures, plasmon resonance and identification tools has been developed. To improve a sensitivity of microring structures microspheres fixed by adhesive had been treated previously by gold nanoparticle solution. Another technique used thin film gold layers deposited on the substrate below adhesive. Both biomolecule and nanoparticle injections caused considerable changes of optical resonance spectra. Plasmonic gold layers under optimized thickness also improve parameters of optical resonance spectra. Biochemical component identification has been also performed by developed network analysis techniques both for single and for multi component solution. So advantages of plasmon enhancing optical microcavity resonance with multiparameter identification tools is used for development of a new platform for ultra sensitive label-free biomedical sensor.

  16. Transformações bioquímicas de abacaxi minimamente processado armazenado sob atmosfera modificada Biochemical modifications of pineapple minimally processed under modified atmosphere

    Directory of Open Access Journals (Sweden)

    Mônica Elisabeth Torres Prado

    2004-12-01

    Full Text Available Realizou-se estudo sobre a influência da atmosfera modificada com diferentes concentrações de gases durante o armazenamento de abacaxi cv. Smooth cayennne minimamente processado, por oito dias, à temperatura de 5ºC e 85% de UR. Foram realizadas análises de açúcares neutros, celulose, hemicelulose e poliuronídeos totais na parede celular. O abacaxi minimamente processado foi acondicionado sob duas Atmosferas Modificadas Ativas, uma com 5% de O2 e 5% de CO2 (AM1,outra com 2% de O2 e 10% de CO2 (AM2,e uma Atmosfera Modificada Passiva (Controle durante 8 dias de armazenamento. O uso de atmosferas modificadas ativas permitiu que o abacaxi minimamente processado sofresse menor degradação da parede celular com menor solubilização das hemiceluloses. Abacaxis minimamente processados e armazenados sob atmosfera modificada obtiveram uma vida de prateleira média de 6 dias, a 5º C.Pineapples minimally processed were, stored eight days (5ºC and 85% RH under passive and active atmosphere (MA. Neutral sugars, cellulose, hemicellulose, and total polyuronide analysis in cell wall were done. Two different active MA were tested: 5% of O2 + 5% of CO2 (MA1 and 2% of O2 + 10% of CO2 (MA2 and one passive MA (Control; during eight days of storage. Pineapples minimally processed stored under active modified atmosphere showed degradation of cell wall and less solubilization of hemicelluloses, besides being more effective in control of ethanol production and formation of off flavours. Pineapples minimally processed stored under modified atmosphere, showed life average of 6 days under refrigeration at 5ºC.

  17. Two-terminal reliability of a mobile ad hoc network under the asymptotic spatial distribution of the random waypoint model

    International Nuclear Information System (INIS)

    Chen, Binchao; Phillips, Aaron; Matis, Timothy I.

    2012-01-01

    The random waypoint (RWP) mobility model is frequently used in describing the movement pattern of mobile users in a mobile ad hoc network (MANET). As the asymptotic spatial distribution of nodes under a RWP model exhibits central tendency, the two-terminal reliability of the MANET is investigated as a function of the source node location. In particular, analytical expressions for one and two hop connectivities are developed as well as an efficient simulation methodology for two-terminal reliability. A study is then performed to assess the effect of nodal density and network topology on network reliability.

  18. Design of real-time voice over internet protocol system under bandwidth network

    Science.gov (United States)

    Zhang, Li; Gong, Lina

    2017-04-01

    With the increasing bandwidth of the network and network convergence accelerating, VoIP means of communication across the network is becoming increasingly popular phenomenon. The real-time identification and analysis for VOIP flow over backbone network become the urgent needs and research hotspot of network operations management. Based on this, the paper proposes a VoIP business management system over backbone network. The system first filters VoIP data stream over backbone network and further resolves the call signaling information and media voice. The system can also be able to design appropriate rules to complete real-time reduction and presentation of specific categories of calls. Experimental results show that the system can parse and process real-time backbone of the VoIP call, and the results are presented accurately in the management interface, VoIP-based network traffic management and maintenance provide the necessary technical support.

  19. Coarse-grained simulation of a real-time process control network under peak load

    International Nuclear Information System (INIS)

    George, A.D.; Clapp, N.E. Jr.

    1992-01-01

    This paper presents a simulation study on the real-time process control network proposed for the new ANS reactor system at ORNL. A background discussion is provided on networks, modeling, and simulation, followed by an overview of the ANS process control network, its three peak-load models, and the results of a series of coarse-grained simulation studies carried out on these models using implementations of 802.3, 802.4, and 802.5 standard local area networks

  20. Take it of leave it : Mechanisms underlying bacterial bistable regulatory networks

    NARCIS (Netherlands)

    Siebring, Jeroen; Sorg, Robin; Herber, Martijn; Kuipers, Oscar; Filloux, Alain A.M.

    2012-01-01

    Bistable switches occur in regulatory networks that can exist in two distinct stable states. Such networks allow distinct switching of individual cells. In bacteria these switches coexist with regulatory networks that respond gradually to environmental input. Bistable switches play key roles in high

  1. A risk analysis for gas transport network planning expansion under regulatory uncertainty in Western Europe

    Energy Technology Data Exchange (ETDEWEB)

    Pelletier, C.; Wortmann, J.C. [Information System Cluster, Faculty of Economics and Business, Rijksuniversiteit Groningen, Landleven 5, Postbus 800, 9700 AV Groningen (Netherlands)

    2009-02-15

    The natural gas industry in Western Europe went through drastic changes induced by the unbundling of the national companies, followed by the liberalization of gas trade and the regulation of gas transmission. Natural gas transmission is operated through a network of interconnected grids, and is capacity constrained. Each of the grids is locally regulated in terms of price limits on transportation services. Local tariff differences may induce unnatural gas routing within a network, creating congestion in some part of it. This phenomena is referred to as the Jepma effect. Following Jepma (2001. Gaslevering onder druk. Stichting JIN. Available at: www.jiqweb.org (52pp) (in Dutch)) this may lead to misguided investment decisions. In this paper a multi-stage linear program is used to simulate the repartition of the natural gas flow in an interconnected grid system on a succession of contracting periods. By this simulation, the risk linked to infrastructure investment is assessed. The risk measured can be seen as the probability of a negative present net value for the investment. The model is applied on an example of two grids that are on alternative routes serving same destinations. When applied to a specific situation of North-West Europe (Germany and The Netherlands), the model clearly demonstrates that the risks turn out to be too high to invest: there are hardly any scenarios under which an acceptable ROI will be realized. Given the current tariff policy and current publicly available forecasts of demand and supply, it is unlikely that market forces will attract additional investments in transportation capacity. This reluctance to invest can be prohibitive for further growth of supply if the demand would increase significantly. (author)

  2. Functional brain networks involved in decision-making under certain and uncertain conditions

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, Danielle C.; Moss, Mark B.; Killiany, Ronald J. [Boston University School of Medicine, Department of Anatomy and Neurobiology, Boston, MA (United States); Mian, Asim Z. [Boston University School of Medicine, Department of Radiology, Boston, MA (United States); Budson, Andrew E. [VA Boston Healthcare System, Boston, MA (United States)

    2018-01-15

    The aim of this study was to describe imaging markers of decision-making under uncertain conditions in normal individuals, in order to provide baseline activity to compare to impaired decision-making in pathological states. In this cross-sectional study, 19 healthy subjects ages 18-35 completed a novel decision-making card-matching task using a Phillips T3 Scanner and a 32-channel head coil. Functional data were collected in six functional runs. In one condition of the task, the participant was certain of the rule to apply to match the cards; in the other condition, the participant was uncertain. We performed cluster-based comparison of the two conditions using FSL fMRI Expert Analysis Tool and network-based analysis using MATLAB. The uncertain > certain comparison yielded three clusters - a midline cluster that extended through the midbrain, the thalamus, bilateral prefrontal cortex, the striatum, and bilateral parietal/occipital clusters. The certain > uncertain comparison yielded bilateral clusters in the insula, parietal and temporal lobe, as well as a medial frontal cluster. A larger, more connected functional network was found in the uncertain condition. The involvement of the insula, parietal cortex, temporal cortex, ventromedial prefrontal cortex, and orbitofrontal cortex of the certain condition reinforces the notion that certainty is inherently rewarding. For the uncertain condition, the involvement of the prefrontal cortex, parietal cortex, striatum, thalamus, amygdala, and hippocampal involvement was expected, as these are areas involved in resolving uncertainty and rule updating. The involvement of occipital cortical involvement and midbrain involvement may be attributed to increased visual attention and increased motor control. (orig.)

  3. A risk analysis for gas transport network planning expansion under regulatory uncertainty in Western Europe

    International Nuclear Information System (INIS)

    Pelletier, C.; Wortmann, J.C.

    2009-01-01

    The natural gas industry in Western Europe went through drastic changes induced by the unbundling of the national companies, followed by the liberalization of gas trade and the regulation of gas transmission. Natural gas transmission is operated through a network of interconnected grids, and is capacity constrained. Each of the grids is locally regulated in terms of price limits on transportation services. Local tariff differences may induce unnatural gas routing within a network, creating congestion in some part of it. This phenomena is referred to as the Jepma effect. Following Jepma (2001. Gaslevering onder druk. Stichting JIN. Available at: www.jiqweb.org (52pp) (in Dutch)) this may lead to misguided investment decisions. In this paper a multi-stage linear program is used to simulate the repartition of the natural gas flow in an interconnected grid system on a succession of contracting periods. By this simulation, the risk linked to infrastructure investment is assessed. The risk measured can be seen as the probability of a negative present net value for the investment. The model is applied on an example of two grids that are on alternative routes serving same destinations. When applied to a specific situation of North-West Europe (Germany and The Netherlands), the model clearly demonstrates that the risks turn out to be too high to invest: there are hardly any scenarios under which an acceptable ROI will be realized. Given the current tariff policy and current publicly available forecasts of demand and supply, it is unlikely that market forces will attract additional investments in transportation capacity. This reluctance to invest can be prohibitive for further growth of supply if the demand would increase significantly. (author)

  4. Functional brain networks involved in decision-making under certain and uncertain conditions

    International Nuclear Information System (INIS)

    Farrar, Danielle C.; Moss, Mark B.; Killiany, Ronald J.; Mian, Asim Z.; Budson, Andrew E.

    2018-01-01

    The aim of this study was to describe imaging markers of decision-making under uncertain conditions in normal individuals, in order to provide baseline activity to compare to impaired decision-making in pathological states. In this cross-sectional study, 19 healthy subjects ages 18-35 completed a novel decision-making card-matching task using a Phillips T3 Scanner and a 32-channel head coil. Functional data were collected in six functional runs. In one condition of the task, the participant was certain of the rule to apply to match the cards; in the other condition, the participant was uncertain. We performed cluster-based comparison of the two conditions using FSL fMRI Expert Analysis Tool and network-based analysis using MATLAB. The uncertain > certain comparison yielded three clusters - a midline cluster that extended through the midbrain, the thalamus, bilateral prefrontal cortex, the striatum, and bilateral parietal/occipital clusters. The certain > uncertain comparison yielded bilateral clusters in the insula, parietal and temporal lobe, as well as a medial frontal cluster. A larger, more connected functional network was found in the uncertain condition. The involvement of the insula, parietal cortex, temporal cortex, ventromedial prefrontal cortex, and orbitofrontal cortex of the certain condition reinforces the notion that certainty is inherently rewarding. For the uncertain condition, the involvement of the prefrontal cortex, parietal cortex, striatum, thalamus, amygdala, and hippocampal involvement was expected, as these are areas involved in resolving uncertainty and rule updating. The involvement of occipital cortical involvement and midbrain involvement may be attributed to increased visual attention and increased motor control. (orig.)

  5. Functional MRI as a tool for investigating networks underlying the orienting reflex

    International Nuclear Information System (INIS)

    Lagopoulos, J.; Ward, P.B.; Rennie, C.; University of Sydney,; Williams, L.; Gordon, E.

    2001-01-01

    Full text: The 'Orienting Reflex' (OR) indexed by skin conductance response (SCR) is a physiological response to novel stimuli, orienting the organism to examine the stimulus in detail. The OR is also associated with lowering of thresholds in sensory-motor networks and preparation for action. The specific anatomical origins of the OR have long been speculated upon, and have primarily been derived from lesion studies on animals. Our group have developed a system to simultaneously acquire a measure of electrodermal orienting (SCR) with fMRI whilst the subject is undertaking an auditory oddball paradigm. The spatial and temporal resolution achievable with fMRI allows elucidation of the networks underlying the generation of ORs and their consequent inhibition with stimulus repetition. We tested five right handed healthy volunteers on an event related FMR paradigm using echoplanar MR images acquired on a 1.5T MRI scanner retrofitted with advanced NMR hardware using a standard head coil. The auditory oddball paradigm was delivered to the volunteers using a Silent Scan system with a button press response for target detection. SCR data was acquired simultaneously using an SCR device specifically designed for use in an MR environment. The significance (p<0.001)activation maps for the targets associated with an OR vs targets which did not elicit an OR, indicate a unilateral activation in the anterior thalamus, anterior cingulate gyrus and lateral orbitofrontal cortex. Target stimuli with no OR (versus background stimuli) revealed activations bilaterally in the supramarginal gyrus, the right thalamus and the anterior cingulate gyrus. Copyright (2001) Australian Neuroscience Society

  6. Neural networks underlying language and social cognition during self-other processing in Autism spectrum disorders.

    Science.gov (United States)

    Kana, Rajesh K; Sartin, Emma B; Stevens, Carl; Deshpande, Hrishikesh D; Klein, Christopher; Klinger, Mark R; Klinger, Laura Grofer

    2017-07-28

    The social communication impairments defining autism spectrum disorders (ASD) may be built upon core deficits in perspective-taking, language processing, and self-other representation. Self-referential processing entails the ability to incorporate self-awareness, self-judgment, and self-memory in information processing. Very few studies have examined the neural bases of integrating self-other representation and semantic processing in individuals with ASD. The main objective of this functional MRI study is to examine the role of language and social brain networks in self-other processing in young adults with ASD. Nineteen high-functioning male adults with ASD and 19 age-sex-and-IQ-matched typically developing (TD) control participants made "yes" or "no" judgments of whether an adjective, presented visually, described them (self) or their favorite teacher (other). Both ASD and TD participants showed significantly increased activity in the medial prefrontal cortex (MPFC) during self and other processing relative to letter search. Analyses of group differences revealed significantly reduced activity in left inferior frontal gyrus (LIFG), and left inferior parietal lobule (LIPL) in ASD participants, relative to TD controls. ASD participants also showed significantly weaker functional connectivity of the anterior cingulate cortex (ACC) with several brain areas while processing self-related words. The LIFG and IPL are important regions functionally at the intersection of language and social roles; reduced recruitment of these regions in ASD participants may suggest poor level of semantic and social processing. In addition, poor connectivity of the ACC may suggest the difficulty in meeting the linguistic and social demands of this task in ASD. Overall, this study provides new evidence of the altered recruitment of the neural networks underlying language and social cognition in ASD. Published by Elsevier Ltd.

  7. A Simple Approach to Study Designs in Complex Biochemical ...

    Indian Academy of Sciences (India)

    Somdatta Sinha

    Protein sequences. • Biochemical & Genetic information. REVERSE ENGINEERING. LARGE NETWORKS. FORWARD ENGINEERING. All designs that are not physically forbidden are realizable, but not all realizable designs are functionally effective. (in relation to context and constraints of the system and environment).

  8. Insights into the mechanisms underlying mercury-induced oxidative stress in gills of wild fish (Liza aurata) combining "1H NMR metabolomics and conventional biochemical assays

    International Nuclear Information System (INIS)

    Cappello, Tiziana; Brandão, Fátima; Guilherme, Sofia; Santos, Maria Ana; Maisano, Maria; Mauceri, Angela; Canário, João; Pacheco, Mário; Pereira, Patrícia

    2016-01-01

    Oxidative stress has been described as a key pathway to initiate mercury (Hg) toxicity in fish. However, the mechanisms underlying Hg-induced oxidative stress in fish still need to be clarified. To this aim, environmental metabolomics in combination with a battery of conventional oxidative stress biomarkers were applied to the gills of golden grey mullet (Liza aurata) collected from Largo do Laranjo (LAR), a confined Hg contaminated area, and São Jacinto (SJ), selected as reference site (Aveiro Lagoon, Portugal). Higher accumulation of inorganic Hg and methylmercury was found in gills of fish from LAR relative to SJ. Nuclear magnetic resonance (NMR)-based metabolomics revealed changes in metabolites related to antioxidant protection, namely depletion of reduced glutathione (GSH) and its constituent amino acids, glutamate and glycine. The interference of Hg with the antioxidant protection of gills was corroborated through oxidative stress endpoints, namely the depletion of glutathione peroxidase and superoxide dismutase activities at LAR. The increase of total glutathione content (reduced glutathione + oxidized glutathione) at LAR, in parallel with GSH depletion aforementioned, indicates the occurrence of massive GSH oxidation under Hg stress, and an inability to carry out its regeneration (glutathione reductase activity was unaltered) or de novo synthesis. Nevertheless, the results suggest the occurrence of alternative mechanisms for preventing lipid peroxidative damage, which may be associated with the enhancement of membrane stabilization/repair processes resulting from depletion in the precursors of phosphatidylcholine (phosphocholine and glycerophosphocholine), as highlighted by NMR spectroscopy. However, the observed decrease in taurine may be attributable to alterations in the structure of cell membranes or interference in osmoregulatory processes. Overall, the novel concurrent use of metabolomics and conventional oxidative stress endpoints demonstrated to

  9. Insights into the mechanisms underlying mercury-induced oxidative stress in gills of wild fish (Liza aurata) combining {sup 1}H NMR metabolomics and conventional biochemical assays

    Energy Technology Data Exchange (ETDEWEB)

    Cappello, Tiziana, E-mail: tcappello@unime.it [Department of Biological and Environmental Sciences, University of Messina, 98166 Messina (Italy); Brandão, Fátima, E-mail: fatimabrandao@ua.pt [Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro (Portugal); Guilherme, Sofia; Santos, Maria Ana [Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro (Portugal); Maisano, Maria; Mauceri, Angela [Department of Biological and Environmental Sciences, University of Messina, 98166 Messina (Italy); Canário, João [Centro de Química Estrutural, Instítuto Superíor Técnico, Universidade de Lisboa, 1049-001 Lisbon (Portugal); Pacheco, Mário; Pereira, Patrícia [Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro (Portugal)

    2016-04-01

    Oxidative stress has been described as a key pathway to initiate mercury (Hg) toxicity in fish. However, the mechanisms underlying Hg-induced oxidative stress in fish still need to be clarified. To this aim, environmental metabolomics in combination with a battery of conventional oxidative stress biomarkers were applied to the gills of golden grey mullet (Liza aurata) collected from Largo do Laranjo (LAR), a confined Hg contaminated area, and São Jacinto (SJ), selected as reference site (Aveiro Lagoon, Portugal). Higher accumulation of inorganic Hg and methylmercury was found in gills of fish from LAR relative to SJ. Nuclear magnetic resonance (NMR)-based metabolomics revealed changes in metabolites related to antioxidant protection, namely depletion of reduced glutathione (GSH) and its constituent amino acids, glutamate and glycine. The interference of Hg with the antioxidant protection of gills was corroborated through oxidative stress endpoints, namely the depletion of glutathione peroxidase and superoxide dismutase activities at LAR. The increase of total glutathione content (reduced glutathione + oxidized glutathione) at LAR, in parallel with GSH depletion aforementioned, indicates the occurrence of massive GSH oxidation under Hg stress, and an inability to carry out its regeneration (glutathione reductase activity was unaltered) or de novo synthesis. Nevertheless, the results suggest the occurrence of alternative mechanisms for preventing lipid peroxidative damage, which may be associated with the enhancement of membrane stabilization/repair processes resulting from depletion in the precursors of phosphatidylcholine (phosphocholine and glycerophosphocholine), as highlighted by NMR spectroscopy. However, the observed decrease in taurine may be attributable to alterations in the structure of cell membranes or interference in osmoregulatory processes. Overall, the novel concurrent use of metabolomics and conventional oxidative stress endpoints demonstrated to

  10. IMPACT OF FOLIAR APPLICATION OF ASCORBIC ACID AND α-TOCOPHEROL ON ANTIOXIDANT ACTIVITY AND SOME BIOCHEMICAL ASPECTS OF FLAX CULTIVARS UNDER SALINITY STRESS

    Directory of Open Access Journals (Sweden)

    Hala M.S. El-Bassiouny

    2015-05-01

    Full Text Available ABSTRACT The interactive effects of saline water (2000, 4000 and 6000 mg/l and foliar application of 400 mg/l of ascorbic acid (Asc or α – tocopherol (α-Toco on three flax cultivars (Sakha 3, Giza 8 and Ariane were conducted during two successive seasons (2011 and 2012. The results showed that, total soluble carbohydrates, free amino acids, proline contents were significantly increased with increasing salinity levels in all three tested cultivars except free amino acid content of Giza 8 which showed a non significant decrease. While, nucleic acids (DNA and RNA showed significant decreases compared with the corresponding controls. Moreover, applications of vitamins (Asc or α-Toco as foliar spraying increased all mentioned contents compared to the corresponding salinity levels. On the other hand, lipid peroxidation, and activity levels of polyphenol oxidase (PPO, peroxidase (POX and catalase (CAT enzymes showed progressive significant increases with increasing salinity levels of all tested three cultivars, while the behaviour of superoxide dismutase (SOD activity showed an opposite response as compared with the control in Sakha 3 and Giza 8. Treatments with Asc or α-Toco induced significant reduction in lipid peroxidation and activities of PPO and POX of all three tested cultivars. Meanwhile, SOD increased in all three cultivars, and CAT activities increased only in Sakha 3 cultivar under salt stress as compared with reference controls. Some modifications are observed in protein patterns hence some proteins were disappeared, while certain other proteins were selectively increased and synthesis of a new set of proteins were induced, some of these responses were observed under treatments and salinity, while others were induced by either treatments or salinity.

  11. Study Under AC Stimulation on Excitement Properties of Weighted Small-World Biological Neural Networks with Side-Restrain Mechanism

    International Nuclear Information System (INIS)

    Yuan Wujie; Luo Xiaoshu; Jiang Pinqun

    2007-01-01

    In this paper, we propose a new model of weighted small-world biological neural networks based on biophysical Hodgkin-Huxley neurons with side-restrain mechanism. Then we study excitement properties of the model under alternating current (AC) stimulation. The study shows that the excitement properties in the networks are preferably consistent with the behavior properties of a brain nervous system under different AC stimuli, such as refractory period and the brain neural excitement response induced by different intensities of noise and coupling. The results of the study have reference worthiness for the brain nerve electrophysiology and epistemological science.

  12. Effect of KH2PO4 on gene expression, morphological and biochemical characteristics of stevia rebaudiana Bertoni under in vitro conditions.

    Science.gov (United States)

    Kahrizi, D; Ghari, S M; Ghaheri, M; Fallah, F; Ghorbani, T; Beheshti Ale Agha, A; Kazemi, E; Ansarypour, Z

    2017-08-15

    Stevia rebaudiana is one of the most important biologically sourced and low-calorie sweeteners Bertoni that has a lot of steviol glycosides. Tissue culture is the best for propagation of stevia and micro nutrients can affect both morphological traits and steviol glycosides production. Therefore, the effect of different concentrations of KH2PO4on stevia growth factors and gene expression had been studied by tissue culture methods, RT-PCR and HPLC. According the results, bud numbers had increased significantly in MS + 0.034 mMKH2PO4 media and the highest measured length was seen in plants grown under MS + 0.034 mM KH2PO4 treatment. Also, the highest growth rate (1.396 mm/d) was observed in MS + 0.034 mMKH2PO4.The best concentration of KH2PO4 for expression of UGT74G1 was 0.00425mMand the best one for UGT76G1 expression was 0.017mM. Interestingly, the best media for both stevioside and rebaudioside A accumulation was 0.017mM KH2PO4containing media. There was positive correlation between the best media for gene expression and the best one for steviol glycosides production.

  13. Effect of priming on growth, biochemical parameters and mineral composition of different cultivars of coriander (Coriandrum sativum L. under salt stress

    Directory of Open Access Journals (Sweden)

    Ben Fredj Meriem

    2014-08-01

    Full Text Available At Higher Institute of Agriculture of Chott Mariem, Sousse, Tunisia, this study was conducted to evaluate the interactive effect of salinity and seed priming on coriander. The experiment was carried out in completely randomized design with three replications consisting of four coriander genotypes (Tunisian cv, Algerian cv, Syrian cv and Egyptian cv at two seed conditions (seed priming with 4 g/l NaCl for 12h or no seed priming. Results revealed that seed priming and salinity had significantly (p≤0.05 affected all the parameters under study. On the first hand, salinity stress had adversely affected growth, chlorophyll content, mineral composition (K+ and Ca2+ of coriander in all genotypes. Also, it activated Na+ accumulation and synthesis of proline, soluble sugars and proteins. However, seed priming with NaCl had diminished the negative impact of salt stress in all cultivars and primed plants showed better response to salinity compared to unprimed plants. Maximum values were recorded in tolerant cultivar which is Tunisian one whereas minimum values were noted in sensitive cultivar (Algerian cv.

  14. QoS Parameters Evaluation in a VPN-MPLS Diffserv Network under a Complete Free Software Emulation Environment

    Directory of Open Access Journals (Sweden)

    Miroslava Aracely Zapata Rodríguez

    2017-12-01

    Full Text Available The use of Virtual Private Network – Multi Protocol Label Switching (VPN-MPLS networks has become very common inside enterprises thanks to their multiple advantages; such as, the private communication across a public network infrastructure between geographically diverse sites. This leads to a need for an efficient network in terms of Quality of Service (QoS to guarantee reliability and security of information. However, the implementation of a VPN-MPLS network is neither easy nor cheap for small and medium companies; hence, in most cases, it is required the use of emulators that are not free either. In this paper, we analyze a VPN-MPLS network in terms of QoS metrics: delay, jitter and packet loss. This evaluation was performed in a virtual environment using only free software tools under two test scenarios, with and without Differentiated Services (DiffServ. The results showed that a VPN-MPLS DiffServ network reduces the delay by approximately 96.78% in VoIP, 39.21% in Data and 66.83% in Streaming; furthermore, the jitter was reduced by approximately 27.88% in VoIP and 41.09% in Data.

  15. Complex network inference from P300 signals: Decoding brain state under visual stimulus for able-bodied and disabled subjects

    Science.gov (United States)

    Gao, Zhong-Ke; Cai, Qing; Dong, Na; Zhang, Shan-Shan; Bo, Yun; Zhang, Jie

    2016-10-01

    Distinguishing brain cognitive behavior underlying disabled and able-bodied subjects constitutes a challenging problem of significant importance. Complex network has established itself as a powerful tool for exploring functional brain networks, which sheds light on the inner workings of the human brain. Most existing works in constructing brain network focus on phase-synchronization measures between regional neural activities. In contrast, we propose a novel approach for inferring functional networks from P300 event-related potentials by integrating time and frequency domain information extracted from each channel signal, which we show to be efficient in subsequent pattern recognition. In particular, we construct brain network by regarding each channel signal as a node and determining the edges in terms of correlation of the extracted feature vectors. A six-choice P300 paradigm with six different images is used in testing our new approach, involving one able-bodied subject and three disabled subjects suffering from multiple sclerosis, cerebral palsy, traumatic brain and spinal-cord injury, respectively. We then exploit global efficiency, local efficiency and small-world indices from the derived brain networks to assess the network topological structure associated with different target images. The findings suggest that our method allows identifying brain cognitive behaviors related to visual stimulus between able-bodied and disabled subjects.

  16. Reliable design of a closed loop supply chain network under uncertainty: An interval fuzzy possibilistic chance-constrained model

    Science.gov (United States)

    Vahdani, Behnam; Tavakkoli-Moghaddam, Reza; Jolai, Fariborz; Baboli, Arman

    2013-06-01

    This article seeks to offer a systematic approach to establishing a reliable network of facilities in closed loop supply chains (CLSCs) under uncertainties. Facilities that are located in this article concurrently satisfy both traditional objective functions and reliability considerations in CLSC network designs. To attack this problem, a novel mathematical model is developed that integrates the network design decisions in both forward and reverse supply chain networks. The model also utilizes an effective reliability approach to find a robust network design. In order to make the results of this article more realistic, a CLSC for a case study in the iron and steel industry has been explored. The considered CLSC is multi-echelon, multi-facility, multi-product and multi-supplier. Furthermore, multiple facilities exist in the reverse logistics network leading to high complexities. Since the collection centres play an important role in this network, the reliability concept of these facilities is taken into consideration. To solve the proposed model, a novel interactive hybrid solution methodology is developed by combining a number of efficient solution approaches from the recent literature. The proposed solution methodology is a bi-objective interval fuzzy possibilistic chance-constraint mixed integer linear programming (BOIFPCCMILP). Finally, computational experiments are provided to demonstrate the applicability and suitability of the proposed model in a supply chain environment and to help decision makers facilitate their analyses.

  17. Anatomy and computational modeling of networks underlying cognitive-emotional interaction

    Directory of Open Access Journals (Sweden)

    Yohan Joshua John

    2013-04-01

    Full Text Available The classical dichotomy between cognition and emotion equated the first with rationality or logic and the second with irrational behaviors. The idea that cognition and emotion are separable, antagonistic forces competing for dominance of mind has been hard to displace despite abundant evidence to the contrary. For instance, it is now known that a pathological absence of emotion leads to profound impairment of decision making. Behavioral observations of this kind are corroborated at the mechanistic level: neuroanatomical studies reveal that brain areas typically described as underlying either cognitive or emotional processes are linked in ways that imply complex interactions that do not resemble a simple mutual antagonism. Instead, physiological studies and network simulations suggest that top-down signals from prefrontal cortex realize ``cognitive control'' in part by either suppressing or promoting emotional responses controlled by the amygdala, in a way that facilitates adaptation to changing task demands. Behavioral, anatomical, and physiological data suggest that emotion and cognition are equal partners in enabling a continuum or matrix of flexible behaviors that are subserved by multiple brain regions acting in concert. Here we focus on neuroanatomical data that highlight circuitry that structures cognitive-emotional interactions by directly or indirectly linking prefrontal areas with the amygdala. We also present an initial computational circuit model, based on anatomical, physiological and behavioral data to explicitly frame the learning and performance mechanisms by which cognition and emotion interact to achieve flexible behavior.

  18. Anatomy and computational modeling of networks underlying cognitive-emotional interaction.

    Science.gov (United States)

    John, Yohan J; Bullock, Daniel; Zikopoulos, Basilis; Barbas, Helen

    2013-01-01

    The classical dichotomy between cognition and emotion equated the first with rationality or logic and the second with irrational behaviors. The idea that cognition and emotion are separable, antagonistic forces competing for dominance of mind has been hard to displace despite abundant evidence to the contrary. For instance, it is now known that a pathological absence of emotion leads to profound impairment of decision making. Behavioral observations of this kind are corroborated at the mechanistic level: neuroanatomical studies reveal that brain areas typically described as underlying either cognitive or emotional processes are linked in ways that imply complex interactions that do not resemble a simple mutual antagonism. Instead, physiological studies and network simulations suggest that top-down signals from prefrontal cortex realize "cognitive control" in part by either suppressing or promoting emotional responses controlled by the amygdala, in a way that facilitates adaptation to changing task demands. Behavioral, anatomical, and physiological data suggest that emotion and cognition are equal partners in enabling a continuum or matrix of flexible behaviors that are subserved by multiple brain regions acting in concert. Here we focus on neuroanatomical data that highlight circuitry that structures cognitive-emotional interactions by directly or indirectly linking prefrontal areas with the amygdala. We also present an initial computational circuit model, based on anatomical, physiological, and behavioral data to explicitly frame the learning and performance mechanisms by which cognition and emotion interact to achieve flexible behavior.

  19. Integrated Strategic Planning of Global Production Networks and Financial Hedging under Uncertain Demands and Exchange Rates

    Directory of Open Access Journals (Sweden)

    Achim Koberstein

    2013-11-01

    Full Text Available In this paper, we present a multi-stage stochastic programming model that integrates financial hedging decisions into the planning of strategic production networks under uncertain exchange rates and product demands. This model considers the expenses of production plants and the revenues of markets in different currency areas. Financial portfolio planning decisions for two types of financial instruments, forward contracts and options, are represented explicitly by multi-period decision variables and a multi-stage scenario tree. Using an illustrative example, we analyze the impact of exchange-rate and demand volatility, the level of investment expenses and interest rate spreads on capacity location and dimensioning decisions. In particular, we show that, in the illustrative example, the exchange-rate uncertainty cannot be completely eliminated by financial hedging in the presence of demand uncertainty. In this situation, we find that the integrated model can result in better strategic planning decisions for a risk-averse decision maker compared to traditional modeling approaches.

  20. A hybrid solution approach for a multi-objective closed-loop logistics network under uncertainty

    Science.gov (United States)

    Mehrbod, Mehrdad; Tu, Nan; Miao, Lixin

    2015-06-01

    The design of closed-loop logistics (forward and reverse logistics) has attracted growing attention with the stringent pressures of customer expectations, environmental concerns and economic factors. This paper considers a multi-product, multi-period and multi-objective closed-loop logistics network model with regard to facility expansion as a facility location-allocation problem, which more closely approximates real-world conditions. A multi-objective mixed integer nonlinear programming formulation is linearized by defining new variables and adding new constraints to the model. By considering the aforementioned model under uncertainty, this paper develops a hybrid solution approach by combining an interactive fuzzy goal programming approach and robust counterpart optimization based on three well-known robust counterpart optimization formulations. Finally, this paper compares the results of the three formulations using different test scenarios and parameter-sensitive analysis in terms of the quality of the final solution, CPU time, the level of conservatism, the degree of closeness to the ideal solution, the degree of balance involved in developing a compromise solution, and satisfaction degree.

  1. Spontaneous default mode network phase-locking moderates performance perceptions under stereotype threat.

    Science.gov (United States)

    Forbes, Chad E; Leitner, Jordan B; Duran-Jordan, Kelly; Magerman, Adam B; Schmader, Toni; Allen, John J B

    2015-07-01

    This study assessed whether individual differences in self-oriented neural processing were associated with performance perceptions of minority students under stereotype threat. Resting electroencephalographic activity recorded in white and minority participants was used to predict later estimates of task errors and self-doubt on a presumed measure of intelligence. We assessed spontaneous phase-locking between dipole sources in left lateral parietal cortex (LPC), precuneus/posterior cingulate cortex (P/PCC), and medial prefrontal cortex (MPFC); three regions of the default mode network (DMN) that are integral for self-oriented processing. Results revealed that minorities with greater LPC-P/PCC phase-locking in the theta band reported more accurate error estimations. All individuals experienced less self-doubt to the extent they exhibited greater LPC-MPFC phase-locking in the alpha band but this effect was driven by minorities. Minorities also reported more self-doubt to the extent they overestimated errors. Findings reveal novel neural moderators of stereotype threat effects on subjective experience. Spontaneous synchronization between DMN regions may play a role in anticipatory coping mechanisms that buffer individuals from stereotype threat. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  2. Mesoporous Three-Dimensional Graphene Networks for Highly Efficient Solar Desalination under 1 sun Illumination.

    Science.gov (United States)

    Kim, Kwanghyun; Yu, Sunyoung; An, Cheolwon; Kim, Sung-Wook; Jang, Ji-Hyun

    2018-05-09

    Solar desalination via thermal evaporation of seawater is one of the most promising technologies for addressing the serious problem of global water scarcity because it does not require additional supporting energy other than infinite solar energy for generating clean water. However, low efficiency and a large amount of heat loss are considered critical limitations of solar desalination technology. The combination of mesoporous three-dimensional graphene networks (3DGNs) with a high solar absorption property and water-transporting wood pieces with a thermal insulation property has exhibited greatly enhanced solar-to-vapor conversion efficiency. 3DGN deposited on a wood piece provides an outstanding value of solar-to-vapor conversion efficiency, about 91.8%, under 1 sun illumination and excellent desalination efficiency of 5 orders salinity decrement. The mass-producible 3DGN enriched with many mesopores efficiently releases the vapors from an enormous area of the surface by heat localization on the top surface of the wood piece. Because the efficient solar desalination device made by 3DGN on the wood piece is highly scalable and inexpensive, it could serve as one of the main sources for the worldwide supply of purified water achieved via earth-abundant materials without an extra supporting energy source.

  3. K Coverage Probability of 5G Wireless Cognitive Radio Network under Shadow Fading Effects

    Directory of Open Access Journals (Sweden)

    Ankur S. Kang

    2016-09-01

    Full Text Available Land mobile communication is burdened with typical propagation constraints due to the channel characteristics in radio systems.Also,the propagation characteristics vary form place to place and also as the mobile unit moves,from time to time.Hence,the tramsmission path between transmitter and receiver varies from simple direct LOS to the one which is severely obstructed by buildings,foliage and terrain.Multipath propagation and shadow fading effects affect the signal strength of an arbitrary Transmitter-Receiver due to the rapid fluctuations in the phase and amplitude of signal which also determines the average power over an area of tens or hundreds of meters.Shadowing introduces additional fluctuations,so the received local mean power varies around the area –mean.The present section deals with the performance analysis of fifth generation wireless cognitive radio network on the basis of signal and interference level based k coverage probability under the shadow fading effects.

  4. A neural network underlying intentional emotional facial expression in neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Kelly A. Gola

    2017-01-01

    Full Text Available Intentional facial expression of emotion is critical to healthy social interactions. Patients with neurodegenerative disease, particularly those with right temporal or prefrontal atrophy, show dramatic socioemotional impairment. This was an exploratory study examining the neural and behavioral correlates of intentional facial expression of emotion in neurodegenerative disease patients and healthy controls. One hundred and thirty three participants (45 Alzheimer's disease, 16 behavioral variant frontotemporal dementia, 8 non-fluent primary progressive aphasia, 10 progressive supranuclear palsy, 11 right-temporal frontotemporal dementia, 9 semantic variant primary progressive aphasia patients and 34 healthy controls were video recorded while imitating static images of emotional faces and producing emotional expressions based on verbal command; the accuracy of their expression was rated by blinded raters. Participants also underwent face-to-face socioemotional testing and informants described participants' typical socioemotional behavior. Patients' performance on emotion expression tasks was correlated with gray matter volume using voxel-based morphometry (VBM across the entire sample. We found that intentional emotional imitation scores were related to fundamental socioemotional deficits; patients with known socioemotional deficits performed worse than controls on intentional emotion imitation; and intentional emotional expression predicted caregiver ratings of empathy and interpersonal warmth. Whole brain VBMs revealed a rightward cortical atrophy pattern homologous to the left lateralized speech production network was associated with intentional emotional imitation deficits. Results point to a possible neural mechanisms underlying complex socioemotional communication deficits in neurodegenerative disease patients.

  5. Ear Detection under Uncontrolled Conditions with Multiple Scale Faster Region-Based Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2017-04-01

    Full Text Available Ear detection is an important step in ear recognition approaches. Most existing ear detection techniques are based on manually designing features or shallow learning algorithms. However, researchers found that the pose variation, occlusion, and imaging conditions provide a great challenge to the traditional ear detection methods under uncontrolled conditions. This paper proposes an efficient technique involving Multiple Scale Faster Region-based Convolutional Neural Networks (Faster R-CNN to detect ears from 2D profile images in natural images automatically. Firstly, three regions of different scales are detected to infer the information about the ear location context within the image. Then an ear region filtering approach is proposed to extract the correct ear region and eliminate the false positives automatically. In an experiment with a test set of 200 web images (with variable photographic conditions, 98% of ears were accurately detected. Experiments were likewise conducted on the Collection J2 of University of Notre Dame Biometrics Database (UND-J2 and University of Beira Interior Ear dataset (UBEAR, which contain large occlusion, scale, and pose variations. Detection rates of 100% and 98.22%, respectively, demonstrate the effectiveness of the proposed approach.

  6. Macroporous Double-Network Hydrogel for High-Efficiency Solar Steam Generation Under 1 sun Illumination.

    Science.gov (United States)

    Yin, Xiangyu; Zhang, Yue; Guo, Qiuquan; Cai, Xiaobing; Xiao, Junfeng; Ding, Zhifeng; Yang, Jun

    2018-04-04

    Solar steam generation is one of the most promising solar-energy-harvesting technologies to address the issue of water shortage. Despite intensive efforts to develop high-efficiency solar steam generation devices, challenges remain in terms of the relatively low solar thermal efficiency, complicated fabrications, high cost, and difficulty in scaling up. Herein, a double-network hydrogel with a porous structure (p-PEGDA-PANi) is demonstrated for the first time as a flexible, recyclable, and efficient photothermal platform for low-cost and scalable solar steam generation. As a novel photothermal platform, the p-PEGDA-PANi involves all necessary properties of efficient broadband solar absorption, exceptional hydrophilicity, low heat conductivity, and porous structure for high-efficiency solar steam generation. As a result, the hydrogel-based solar steam generator exhibits a maximum solar thermal efficiency of 91.5% with an evaporation rate of 1.40 kg m -2 h -1 under 1 sun illumination, which is comparable to state-of-the-art solar steam generation devices. Furthermore, the good durability and environmental stability of the p-PEGDA-PANi hydrogel enables a convenient recycling and reusing process toward real-life applications. The present research not only provides a novel photothermal platform for solar energy harvest but also opens a new avenue for the application of the hydrogel materials in solar steam generation.

  7. The study of diffusion in network-forming liquids under pressure and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Hung, P.K. [Department of Computational Physics, Hanoi University of Technology, 1Dai Co Viet, Hanoi (Viet Nam); Kien, P.H., E-mail: phkien80@gmail.com [Department of Physics, Thainguyen University of Education, 20 Luong Ngoc Quyen, Thainguyen (Viet Nam); San, L.T.; Hong, N.V. [Department of Computational Physics, Hanoi University of Technology, 1Dai Co Viet, Hanoi (Viet Nam)

    2016-11-15

    In this paper, the molecular dynamics simulation is applied to investigate the diffusion in silica liquids under different temperature and pressure. We show that the diffusion is controlled by the rate of effective SiO{sub x}→SiO{sub x±1} and OSi{sub y}→OSi{sub y±1} reaction. With increasing the pressure, the rate of reaction increases and the Si–O bond is weaker. Moreover, the reactions are not uniformly distributed in the space, but instead they happen frequently or rarely in separate regions. We also reveal two motion types: free and correlation motion. The correlation motion concerns the moving of a group of atoms which is similar to that of the diffusion of a super-molecule in the liquid. A detailed analysis of the movement of atoms from specified set shows the clustering of them which indicates structure and dynamics heterogeneity. Further, we find that the correlation motion is very important for the diffusion in network-forming liquid. The observed phenomena such as diffusion anomaly, dynamics heterogeneity and dynamical slowdown are originated from the correlation motion of atom.

  8. Robust stability analysis of switched Hopfield neural networks with time-varying delay under uncertainty

    International Nuclear Information System (INIS)

    Huang He; Qu Yuzhong; Li Hanxiong

    2005-01-01

    With the development of intelligent control, switched systems have been widely studied. Here we try to introduce some ideas of the switched systems into the field of neural networks. In this Letter, a class of switched Hopfield neural networks with time-varying delay is investigated. The parametric uncertainty is considered and assumed to be norm bounded. Firstly, the mathematical model of the switched Hopfield neural networks is established in which a set of Hopfield neural networks are used as the individual subsystems and an arbitrary switching rule is assumed; Secondly, robust stability analysis for such switched Hopfield neural networks is addressed based on the Lyapunov-Krasovskii approach. Some criteria are given to guarantee the switched Hopfield neural networks to be globally exponentially stable for all admissible parametric uncertainties. These conditions are expressed in terms of some strict linear matrix inequalities (LMIs). Finally, a numerical example is provided to illustrate our results

  9. Hybrid optical CDMA-FSO communications network under spatially correlated gamma-gamma scintillation

    DEFF Research Database (Denmark)

    Jurado-Navas, Antonio; Raddo, Thiago R.; Garrido-Balsells, José María

    2016-01-01

    In this paper, we propose a new hybrid network solution based on asynchronous optical code-division multiple-access (OCDMA) and free-space optical (FSO) technologies for last-mile access networks, where fiber deployment is impractical. The architecture of the proposed hybrid OCDMA-FSO network...... is thoroughly described. The users access the network in a fully asynchronous manner by means of assigned fast frequency hopping (FFH)-based codes. In the FSO receiver, an equal gain-combining technique is employed along with intensity modulation and direct detection. New analytical formalisms for evaluating...... can successfully achieve error-free ABER levels for the three scenarios considered as long as forward error correction (FEC) algorithms are employed. Therefore, OCDMA-FSO networks can be a prospective alternative to deliver high-speed communication services to access networks with deficient fiber...

  10. Restorability on 3-connected WDM Networks Under Single and Dual Physical Link Failures

    DEFF Research Database (Denmark)

    Gutierrez Lopez, Jose Manuel; Jensen, Michael; Riaz, Tahir

    2013-01-01

    This work studies the influence the network interconnection has over restoration techniques. The way physical links are distributed to interconnect network nodes has a great impact on parameters such as path distances when failures occur and restoration is applied. The work focuses on single and ...... to network planning, the trade-off network length vs. performance of the different topological options is studied. The results show how 3-connected graphs could provide a reasonable trade-off between costs, link failure rates, and restored path parameters....

  11. Efficient network disintegration under incomplete information: the comic effect of link prediction

    Science.gov (United States)

    Tan, Suo-Yi; Wu, Jun; Lü, Linyuan; Li, Meng-Jun; Lu, Xin

    2016-01-01

    The study of network disintegration has attracted much attention due to its wide applications, including suppressing the epidemic spreading, destabilizing terrorist network, preventing financial contagion, controlling the rumor diffusion and perturbing cancer networks. The crux of this matter is to find the critical nodes whose removal will lead to network collapse. This paper studies the disintegration of networks with incomplete link information. An effective method is proposed to find the critical nodes by the assistance of link prediction techniques. Extensive experiments in both synthetic and real networks suggest that, by using link prediction method to recover partial missing links in advance, the method can largely improve the network disintegration performance. Besides, to our surprise, we find that when the size of missing information is relatively small, our method even outperforms than the results based on complete information. We refer to this phenomenon as the “comic effect” of link prediction, which means that the network is reshaped through the addition of some links that identified by link prediction algorithms, and the reshaped network is like an exaggerated but characteristic comic of the original one, where the important parts are emphasized. PMID:26960247

  12. Functional network connectivity underlying food processing: disturbed salience and visual processing in overweight and obese adults.

    Science.gov (United States)

    Kullmann, Stephanie; Pape, Anna-Antonia; Heni, Martin; Ketterer, Caroline; Schick, Fritz; Häring, Hans-Ulrich; Fritsche, Andreas; Preissl, Hubert; Veit, Ralf

    2013-05-01

    In order to adequately explore the neurobiological basis of eating behavior of humans and their changes with body weight, interactions between brain areas or networks need to be investigated. In the current functional magnetic resonance imaging study, we examined the modulating effects of stimulus category (food vs. nonfood), caloric content of food, and body weight on the time course and functional connectivity of 5 brain networks by means of independent component analysis in healthy lean and overweight/obese adults. These functional networks included motor sensory, default-mode, extrastriate visual, temporal visual association, and salience networks. We found an extensive modulation elicited by food stimuli in the 2 visual and salience networks, with a dissociable pattern in the time course and functional connectivity between lean and overweight/obese subjects. Specifically, only in lean subjects, the temporal visual association network was modulated by the stimulus category and the salience network by caloric content, whereas overweight and obese subjects showed a generalized augmented response in the salience network. Furthermore, overweight/obese subjects showed changes in functional connectivity in networks important for object recognition, motivational salience, and executive control. These alterations could potentially lead to top-down deficiencies driving the overconsumption of food in the obese population.

  13. Study and Application of Remote Data Moving Transmission under the Network Convergence

    Science.gov (United States)

    Zhiguo, Meng; Du, Zhou

    The data transmission is an important problem in remote applications. Advance of network convergence has help to select and use data transmission model. The embedded system and data management platform is a key of the design. With communication module, interface technology and the transceiver which has independent intellectual property rights connected broadband network and mobile network seamlessly. Using the distribution system of mobile base station to realize the wireless transmission, using public networks to implement the data transmission, making the distant information system break through area restrictions and realizing transmission of the moving data, it has been fully recognized in long-distance medical care applications.

  14. Efficient network disintegration under incomplete information: the comic effect of link prediction

    Science.gov (United States)

    Tan, Suo-Yi; Wu, Jun; Lü, Linyuan; Li, Meng-Jun; Lu, Xin

    2016-03-01

    The study of network disintegration has attracted much attention due to its wide applications, including suppressing the epidemic spreading, destabilizing terrorist network, preventing financial contagion, controlling the rumor diffusion and perturbing cancer networks. The crux of this matter is to find the critical nodes whose removal will lead to network collapse. This paper studies the disintegration of networks with incomplete link information. An effective method is proposed to find the critical nodes by the assistance of link prediction techniques. Extensive experiments in both synthetic and real networks suggest that, by using link prediction method to recover partial missing links in advance, the method can largely improve the network disintegration performance. Besides, to our surprise, we find that when the size of missing information is relatively small, our method even outperforms than the results based on complete information. We refer to this phenomenon as the “comic effect” of link prediction, which means that the network is reshaped through the addition of some links that identified by link prediction algorithms, and the reshaped network is like an exaggerated but characteristic comic of the original one, where the important parts are emphasized.

  15. Contracting for Competitive Supply Chains under Network Externalities and Demand Uncertainty

    Directory of Open Access Journals (Sweden)

    Xiaojing Liu

    2016-01-01

    Full Text Available Based on network externalities and demand uncertainty environment, supply chain competition model is built; we identify the valid mechanism for the alternative range of profit-sharing contracts and also analyze the effect of product substitutability coefficient and network externalities on the alliance and profit-sharing contract. The results show that the vertical alliance contributes profit improvement to both the manufacturer and the retailer when the impact of network externalities on the product substitutability is not strong. However, vertical alliance will be out of operation when the effect of network externalities on the product substitutability is strong.

  16. Book Review - V Pogoretskyy, Freedom of Transit and Access to Gas Pipeline Networks Under WTO Law (Cambridge University Press, 2017)

    NARCIS (Netherlands)

    Marhold, Anna

    2017-01-01

    In Freedom of Transit and Access to Pipeline Networks under WTO Law, the author appropriately introduces the topic by stating that energy is featuring increasingly prominently as a topic in international trade law. Indeed, while being a dormant issue in the World Trade Organization (“WTO” forum for

  17. Minimizing Redundant Messages and Improving Search Efficiency under Highly Dynamic Mobile P2P Network

    Directory of Open Access Journals (Sweden)

    Ajay Arunachalam

    2016-02-01

    Full Text Available Resource Searching is one of the key functional tasks in large complex networks. With the P2P architecture, millions of peers connect together instantly building a communication pattern. Searching in mobile networks faces additional limitations and challenges. Flooding technique can cope up with the churn and searches aggressively by visiting almost all the nodes. But it exponentially increases the network traffic and thus does not scale well. Further the duplicated query messages consume extra battery power and network bandwidth. The blind flooding also suffers from long delay problem in P2P networks. In this paper, we propose optimal density based flooding resource discovery schemes. Our first model takes into account local graph topology information to supplement the resource discovery process while in our extended version we also consider the neighboring node topology information along with the local node information to further effectively use the mobile and network resources. Our proposed method reduces collision at the same time minimizes effect of redundant messages and failures. Overall the methods reduce network overhead, battery power consumption, query delay, routing load, MAC load and bandwidth usage while also achieving good success rate in comparison to the other techniques. We also perform a comprehensive analysis of the resource discovery schemes to verify the impact of varying node speed and different network conditions.

  18. High Frequency Resonance Damping of DFIG based Wind Power System under Weak Network

    DEFF Research Database (Denmark)

    Song, Yipeng; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    When operating in a micro or weak grid which has a relatively large network impedance, the Doubly Fed Induction Generator (DFIG) based wind power generation system is prone to suffer high frequency resonance due to the impedance interaction between DFIG system and the parallel compensated network...

  19. Distribution planning for a divergent n-echelon network without intermediate stocks under service restrictions

    NARCIS (Netherlands)

    Verrijdt, J.H.C.M.; Kok, de A.G.

    1995-01-01

    In this paper we discuss a periodic review control policy for general N-echelon distribution networks without batch size or capacity constraints. Only stockpoints at the end of the network are allowed to hold stock, whereas the intermediate stockpoints act as pure distribution centers that allocate

  20. A Regularizer Approach for RBF Networks Under the Concurrent Weight Failure Situation.

    Science.gov (United States)

    Leung, Chi-Sing; Wan, Wai Yan; Feng, Ruibin

    2017-06-01

    Many existing results on fault-tolerant algorithms focus on the single fault source situation, where a trained network is affected by one kind of weight failure. In fact, a trained network may be affected by multiple kinds of weight failure. This paper first studies how the open weight fault and the multiplicative weight noise degrade the performance of radial basis function (RBF) networks. Afterward, we define the objective function for training fault-tolerant RBF networks. Based on the objective function, we then develop two learning algorithms, one batch mode and one online mode. Besides, the convergent conditions of our online algorithm are investigated. Finally, we develop a formula to estimate the test set error of faulty networks trained from our approach. This formula helps us to optimize some tuning parameters, such as RBF width.

  1. Analysis of the structure of climate networks under El Niño and La Niña conditions

    Science.gov (United States)

    Graciosa, Juan Carlos; Pastor, Marissa

    The El Niño-Southern Oscillation (ENSO) is the most important driver of natural climate variability and is characterized by anomalies in the sea surface temperatures (SST) over the tropical Pacific ocean. It has three phases: neutral, a warming phase or El Niño, and a cooling phase called La Niña. In this research, we modeled the climate under the three phases as a network and characterized its properties. We utilized the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) daily surface temperature reanalysis data from January 1950 to December 2016. A network associated to a month was created using the temperature spanning from the previous month to the succeeding month, for a total of three months worth of data for each network. Each site of the included data was a potential node in the network and the existence of links were determined by the strength of their relationship, which was based on mutual information. Interestingly, we found that climate networks exhibit small-world properties and these are found to be more prominent from October to April, coinciding with observations that El Niño occurrences peak from December to March. During these months, the temperature of a relatively large part of the Pacific ocean and its surrounding areas increase and the anomaly values become synchronized. This synchronization in the temperature anomalies forms links around the Pacific, increasing the clustering in the region and in effect, that of the entire network.

  2. Learning Physics-based Models in Hydrology under the Framework of Generative Adversarial Networks

    Science.gov (United States)

    Karpatne, A.; Kumar, V.

    2017-12-01

    Generative adversarial networks (GANs), that have been highly successful in a number of applications involving large volumes of labeled and unlabeled data such as computer vision, offer huge potential for modeling the dynamics of physical processes that have been traditionally studied using simulations of physics-based models. While conventional physics-based models use labeled samples of input/output variables for model calibration (estimating the right parametric forms of relationships between variables) or data assimilation (identifying the most likely sequence of system states in dynamical systems), there is a greater opportunity to explore the full power of machine learning (ML) methods (e.g, GANs) for studying physical processes currently suffering from large knowledge gaps, e.g. ground-water flow. However, success in this endeavor requires a principled way of combining the strengths of ML methods with physics-based numerical models that are founded on a wealth of scientific knowledge. This is especially important in scientific domains like hydrology where the number of data samples is small (relative to Internet-scale applications such as image recognition where machine learning methods has found great success), and the physical relationships are complex (high-dimensional) and non-stationary. We will present a series of methods for guiding the learning of GANs using physics-based models, e.g., by using the outputs of physics-based models as input data to the generator-learner framework, and by using physics-based models as generators trained using validation data in the adversarial learning framework. These methods are being developed under the broad paradigm of theory-guided data science that we are developing to integrate scientific knowledge with data science methods for accelerating scientific discovery.

  3. Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin.

    Science.gov (United States)

    Rowe, James H; Topping, Jennifer F; Liu, Junli; Lindsey, Keith

    2016-07-01

    Understanding the mechanisms regulating root development under drought conditions is an important question for plant biology and world agriculture. We examine the effect of osmotic stress on abscisic acid (ABA), cytokinin and ethylene responses and how they mediate auxin transport, distribution and root growth through effects on PIN proteins. We integrate experimental data to construct hormonal crosstalk networks to formulate a systems view of root growth regulation by multiple hormones. Experimental analysis shows: that ABA-dependent and ABA-independent stress responses increase under osmotic stress, but cytokinin responses are only slightly reduced; inhibition of root growth under osmotic stress does not require ethylene signalling, but auxin can rescue root growth and meristem size; osmotic stress modulates auxin transporter levels and localization, reducing root auxin concentrations; PIN1 levels are reduced under stress in an ABA-dependent manner, overriding ethylene effects; and the interplay among ABA, ethylene, cytokinin and auxin is tissue-specific, as evidenced by differential responses of PIN1 and PIN2 to osmotic stress. Combining experimental analysis with network construction reveals that ABA regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  4. anthropometric and biochemical assessment among under five

    African Journals Online (AJOL)

    DR. AMIN

    calcium, albumin, total protein, and hemoglobin were used for the assessment to extract relevant ... Keywords: Children aged 1-5 years old, Nutritional status, Malnutrition, Serum protein. .... insecurity, mothers poor education background was.

  5. Cascading failure of interdependent networks with different coupling preference under targeted attack

    International Nuclear Information System (INIS)

    Chen, Zhen; Du, Wen-Bo; Cao, Xian-Bin; Zhou, Xing-Lian

    2015-01-01

    Cascading failure is one of the most central topics in the field of complex networks. In this paper, the cascading failure model is extended to the case of interdependent networks, and the effect of coupling preference on systems robustness is intensively investigated. It is found that the performance of coupling preference on robustness is dependent on coupling probability. Disassortative coupling is more robust for sparse coupling while assortative coupling performs better for dense coupling. We provide an explanation for this constructive phenomenon via examining cascading process from the microscopic point of view. Our work can be useful to the design and optimization of interdependent networked systems.

  6. Near-optimal Downlink precoding of a MISO system for a secondary network under the SINR constraints of a primary network

    KAUST Repository

    Park, Kihong

    2013-04-01

    In this paper, we study a multiple-input single-output cognitive radio (CR) system where only the primary base station (BS) has multiple antennas. We consider a rate maximization problem of the secondary network under signal-to-interference-plus-noise-ratio constraints on the primary network in order to guarantee the quality-of-service for the latter network. While the interference due to the secondary transmission in the conventional underlay CR approach may severely degrade the performance of the primary network, we propose a primary BS-aided approach in which the primary BS helps relay the secondary users\\' signals instead of allowing them to communicate with each other via a direct path between them. In addition, an algorithm to find a near-optimal beamforming solution at the primary BS is proposed. Finally, based on some selected numerical results, we show that the proposed scheme outperforms the conventional underlay CR configuration over a wide transmit power range. © 2013 IEEE.

  7. Schizophrenia alters intra-network functional connectivity in the caudate for detecting speech under informational speech masking conditions.

    Science.gov (United States)

    Zheng, Yingjun; Wu, Chao; Li, Juanhua; Li, Ruikeng; Peng, Hongjun; She, Shenglin; Ning, Yuping; Li, Liang

    2018-04-04

    Speech recognition under noisy "cocktail-party" environments involves multiple perceptual/cognitive processes, including target detection, selective attention, irrelevant signal inhibition, sensory/working memory, and speech production. Compared to health listeners, people with schizophrenia are more vulnerable to masking stimuli and perform worse in speech recognition under speech-on-speech masking conditions. Although the schizophrenia-related speech-recognition impairment under "cocktail-party" conditions is associated with deficits of various perceptual/cognitive processes, it is crucial to know whether the brain substrates critically underlying speech detection against informational speech masking are impaired in people with schizophrenia. Using functional magnetic resonance imaging (fMRI), this study investigated differences between people with schizophrenia (n = 19, mean age = 33 ± 10 years) and their matched healthy controls (n = 15, mean age = 30 ± 9 years) in intra-network functional connectivity (FC) specifically associated with target-speech detection under speech-on-speech-masking conditions. The target-speech detection performance under the speech-on-speech-masking condition in participants with schizophrenia was significantly worse than that in matched healthy participants (healthy controls). Moreover, in healthy controls, but not participants with schizophrenia, the strength of intra-network FC within the bilateral caudate was positively correlated with the speech-detection performance under the speech-masking conditions. Compared to controls, patients showed altered spatial activity pattern and decreased intra-network FC in the caudate. In people with schizophrenia, the declined speech-detection performance under speech-on-speech masking conditions is associated with reduced intra-caudate functional connectivity, which normally contributes to detecting target speech against speech masking via its functions of suppressing masking-speech signals.

  8. Resting-state functional under-connectivity within and between large-scale cortical networks across three low-frequency bands in adolescents with autism.

    Science.gov (United States)

    Duan, Xujun; Chen, Heng; He, Changchun; Long, Zhiliang; Guo, Xiaonan; Zhou, Yuanyue; Uddin, Lucina Q; Chen, Huafu

    2017-10-03

    Although evidence is accumulating that autism spectrum disorder (ASD) is associated with disruption of functional connections between and within brain networks, it remains largely unknown whether these abnormalities are related to specific frequency bands. To address this question, network contingency analysis was performed on brain functional connectomes obtained from 213 adolescent participants across nine sites in the Autism Brain Imaging Data Exchange (ABIDE) multisite sample, to determine the disrupted connections between and within seven major cortical networks in adolescents with ASD at Slow-5, Slow-4 and Slow-3 frequency bands and further assess whether the aberrant intra- and inter-network connectivity varied as a function of ASD symptoms. Overall under-connectivity within and between large-scale intrinsic networks in ASD was revealed across the three frequency bands. Specifically, decreased connectivity strength within the default mode network (DMN), between DMN and visual network (VN), ventral attention network (VAN), and between dorsal attention network (DAN) and VAN was observed in the lower frequency band (slow-5, slow-4), while decreased connectivity between limbic network (LN) and frontal-parietal network (FPN) was observed in the higher frequency band (slow-3). Furthermore, weaker connectivity within and between specific networks correlated with poorer communication and social interaction skills in the slow-5 band, uniquely. These results demonstrate intrinsic under-connectivity within and between multiple brain networks within predefined frequency bands in ASD, suggesting that frequency-related properties underlie abnormal brain network organization in the disorder. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Measures of Biochemical Sociology

    Science.gov (United States)

    Snell, Joel; Marsh, Mitchell

    2008-01-01

    In a previous article, the authors introduced a new sub field in sociology that we labeled "biochemical sociology." We introduced the definition of a sociology that encompasses sociological measures, psychological measures, and biological indicators Snell & Marsh (2003). In this article, we want to demonstrate a research strategy that would assess…

  10. Multi-operator collaboration for green cellular networks under roaming price consideration

    KAUST Repository

    Ghazzai, Hakim; Yaacoub, Elias E.; Alouini, Mohamed-Slim

    2014-01-01

    This paper investigates the collaboration between multiple mobile operators to optimize the energy efficiency of cellular networks. Our framework studies the case of LTE-Advanced networks deployed in the same area and owning renewable energy generators. The objective is to reduce the CO2 emissions of cellular networks via collaborative techniques and using base station sleeping strategy while respecting the network quality of service. Low complexity and practical algorithm is employed to achieve green goals during low traffic periods. Cooperation decision criteria are also established basing on derived roaming prices and profit gains of competitive mobile operators. Our numerical results show a significant save in terms of CO2 compared to the non-collaboration case and that cooperative mobile operator exploiting renewables are more awarded than traditional operators.

  11. Multi-operator collaboration for green cellular networks under roaming price consideration

    KAUST Repository

    Ghazzai, Hakim

    2014-09-01

    This paper investigates the collaboration between multiple mobile operators to optimize the energy efficiency of cellular networks. Our framework studies the case of LTE-Advanced networks deployed in the same area and owning renewable energy generators. The objective is to reduce the CO2 emissions of cellular networks via collaborative techniques and using base station sleeping strategy while respecting the network quality of service. Low complexity and practical algorithm is employed to achieve green goals during low traffic periods. Cooperation decision criteria are also established basing on derived roaming prices and profit gains of competitive mobile operators. Our numerical results show a significant save in terms of CO2 compared to the non-collaboration case and that cooperative mobile operator exploiting renewables are more awarded than traditional operators.

  12. PERFORMANCE ANALYSIS OF DSR ROUTING PROTOCOL UNDER ENERGY BASED SELFISH ATTACK IN MOBILE AD HOC NETWORKS

    Directory of Open Access Journals (Sweden)

    T.V.P.Sundararajan

    2010-06-01

    Full Text Available Mobile Ad hoc Networks (MANETs rely on the cooperation of all participating nodes to provide the fundamental operations such as routing and data forwarding. However, due to the open structure and scarcely available battery-based energy, node misbehaviors may exist.[1]. One such routing misbehavior is that some selfish nodes will participate in the route discovery and maintenance processes but refuse to forward data packets. This paper pointed out Energy based selfish nodes (EBSN where these selfish nodes tend to use the network but do not cooperate, saving battery life for their own communications [2],[3]. We present a simulation study of the effects of Energy based selfish nodes (EBSN on DSR routing protocol and its impact over network performance in terms of throughput and delay of a mobile ad hoc network where a defined percentage of nodes were misbehaving.

  13. Analysis of a Data Communication Network’s Performance under Varying Retransmission Disciplines

    Science.gov (United States)

    1990-09-01

    The routing table is updated using delay information transmitted via congestion/routing up- date packets ( CRUP ) or through delay measurement...previous delay, plus or minus a threshold value, a CRUP is generated and flooded over the network. Upon receipt of a CRUP the ROUTING function up- dates...DDN topology is very large, accounting for the time delay for the full network to be updated, whereas adjacent PSN’s receive CRUP packets virtually

  14. Uplink Interference Analysis for Two-tier Cellular Networks with Diverse Users under Random Spatial Patterns

    OpenAIRE

    Bao, Wei; Liang, Ben

    2013-01-01

    Multi-tier architecture improves the spatial reuse of radio spectrum in cellular networks, but it introduces complicated heterogeneity in the spatial distribution of transmitters, which brings new challenges in interference analysis. In this work, we present a stochastic geometric model to evaluate the uplink interference in a two-tier network considering multi-type users and base stations. Each type of tier-1 users and tier-2 base stations are modeled as independent homogeneous Poisson point...

  15. Hybrid optical CDMA-FSO communications network under spatially correlated gamma-gamma scintillation.

    Science.gov (United States)

    Jurado-Navas, Antonio; Raddo, Thiago R; Garrido-Balsells, José María; Borges, Ben-Hur V; Olmos, Juan José Vegas; Monroy, Idelfonso Tafur

    2016-07-25

    In this paper, we propose a new hybrid network solution based on asynchronous optical code-division multiple-access (OCDMA) and free-space optical (FSO) technologies for last-mile access networks, where fiber deployment is impractical. The architecture of the proposed hybrid OCDMA-FSO network is thoroughly described. The users access the network in a fully asynchronous manner by means of assigned fast frequency hopping (FFH)-based codes. In the FSO receiver, an equal gain-combining technique is employed along with intensity modulation and direct detection. New analytical formalisms for evaluating the average bit error rate (ABER) performance are also proposed. These formalisms, based on the spatially correlated gamma-gamma statistical model, are derived considering three distinct scenarios, namely, uncorrelated, totally correlated, and partially correlated channels. Numerical results show that users can successfully achieve error-free ABER levels for the three scenarios considered as long as forward error correction (FEC) algorithms are employed. Therefore, OCDMA-FSO networks can be a prospective alternative to deliver high-speed communication services to access networks with deficient fiber infrastructure.

  16. Flexible investment under uncertainty in smart distribution networks with demand side response: Assessment framework and practical implementation

    International Nuclear Information System (INIS)

    Schachter, Jonathan A.; Mancarella, Pierluigi; Moriarty, John; Shaw, Rita

    2016-01-01

    Classical deterministic models applied to investment valuation in distribution networks may not be adequate for a range of real-world decision-making scenarios as they effectively ignore the uncertainty found in the most important variables driving network planning (e.g., load growth). As greater uncertainty is expected from growing distributed energy resources in distribution networks, there is an increasing risk of investing in too much or too little network capacity and hence causing the stranding and inefficient use of network assets; these costs are then passed on to the end-user. An alternative emerging solution in the context of smart grid development is to release untapped network capacity through Demand-Side Response (DSR). However, to date there is no approach able to quantify the value of ‘smart’ DSR solutions against ‘conventional’ asset-heavy investments. On these premises, this paper presents a general real options framework and a novel probabilistic tool for the economic assessment of DSR for smart distribution network planning under uncertainty, which allows the modeling and comparison of multiple investment strategies, including DSR and capacity reinforcements, based on different cost and risk metrics. In particular the model provides an explicit quantification of the economic value of DSR against alternative investment strategies. Through sensitivity analysis it is able to indicate the maximum price payable for DSR service such that DSR remains economically optimal against these alternatives. The proposed model thus provides Regulators with clear insights for overseeing DSR contractual arrangements. Further it highlights that differences exist in the economic perspective of the regulated DNO business and of customers. Our proposed model is therefore capable of highlighting instances where a particular investment strategy is favorable to the DNO but not to its customers, or vice-versa, and thus aspects of the regulatory framework which may

  17. Thermo-economic optimization of secondary distribution network of low temperature district heating network under local conditions of South Korea

    DEFF Research Database (Denmark)

    Park, Byung Sik; Imran, Muhammad; Hoon, Im-Yong

    2017-01-01

    . The corresponding heat loss from secondary network, pumping power and area of domestic hot water heat exchanger unit for each supply temperature and temperature difference for required heating load of the apartment complex are calculated. Results indicate that when supply temperature is decreased from 65 °C to 45...... apartment. The Apartment complex has 15 floors, 4 apartments on each floor and each apartment has heating surface area of 85 m2. The supply temperature of the hot water is reduced from 65 °C to 45 °C and the temperature difference between supply and return line is varied from 18 °C to 27 °C...... °C, area of heat exchanger is increased by 68.2%, pumping power is also increased by 9.8% and heat loss is reduced by 15.6%. These results correspond to a temperature difference of 20 °C, the standard temperature difference in South Korea residential heating system. Economic assessment...

  18. Estimating the Theoretical Value for LAN Network Throughput Based Power Line Communications Technology Under the Homeplug 1.0 Standard

    Directory of Open Access Journals (Sweden)

    Martha Fabiola Contreras Higuera

    2013-06-01

    Full Text Available Power Line Communications (PLC refers to a group of technologies that allow to establish communication processes under the use of the grid as a physical means of transmission. The use of the grid as a physical means of transmission of information is not a new idea. Until a few years ago, the use of PLC had been limited to the implementation of solutions of control, automation and monitoring of sensors; which did not require a high bandwidth for its operation.During the late 1990s due to the new technological developments and the need to implement new alternatives for transfer of information, it was possible to reach speeds on the order of the Mbps, establishing the possibility of making use of the electricity network as a network of access. The current state of technology PLC allows to reach speeds of up to 200Mbps, which has enabled the transformation of the grid in a true network of band wide, capable of supporting data, voice and video provided by a telecommunications operator. The use of PLC-based network adapters allow easily design LANs and broadband communications through the electrical network, making any outlet in a point of connection for the user, without the need for wiring additional to existing ones.  The electrical network is a structure which so far has been exclusively used for the transport of electrical energy. However, it is possible to make use of this network in processes of communication and transmission of information such as: voice, data and video; Bearing in mind that grid had not been designed for this purpose. The performance is without doubt one of the aspects of greatest interest in the global analysis in networks LAN, due to the effect it produces on the end user. Basically, the most common parameters for evaluating the performance of a network are: Throughput, use of the canal and various measures of retardation. In this article is presented a simple analysis of the HomePlug 1.0 standard applied to the

  19. Multidimensional biochemical information processing of dynamical patterns.

    Science.gov (United States)

    Hasegawa, Yoshihiko

    2018-02-01

    Cells receive signaling molecules by receptors and relay information via sensory networks so that they can respond properly depending on the type of signal. Recent studies have shown that cells can extract multidimensional information from dynamical concentration patterns of signaling molecules. We herein study how biochemical systems can process multidimensional information embedded in dynamical patterns. We model the decoding networks by linear response functions, and optimize the functions with the calculus of variations to maximize the mutual information between patterns and output. We find that, when the noise intensity is lower, decoders with different linear response functions, i.e., distinct decoders, can extract much information. However, when the noise intensity is higher, distinct decoders do not provide the maximum amount of information. This indicates that, when transmitting information by dynamical patterns, embedding information in multiple patterns is not optimal when the noise intensity is very large. Furthermore, we explore the biochemical implementations of these decoders using control theory and demonstrate that these decoders can be implemented biochemically through the modification of cascade-type networks, which are prevalent in actual signaling pathways.

  20. Wireless Powered Relaying Networks Under Imperfect Channel State Information: System Performance and Optimal Policy for Instantaneous Rate

    Directory of Open Access Journals (Sweden)

    D. T. Do

    2017-09-01

    Full Text Available In this investigation, we consider wireless powered relaying systems, where energy is scavenged by a relay via radio frequency (RF signals. We explore hybrid time switching-based and power splitting-based relaying protocol (HTPSR and compare performance of Amplify-and-Forward (AF with Decode-and-Forward (DF scheme under imperfect channel state information (CSI. Most importantly, the instantaneous rate, achievable bit error rate (BER are determined in the closed-form expressions under the impact of imperfect CSI. Through numerical analysis, we evaluate system insights via different parameters such as power splitting (PS and time switching (TS ratio of the considered HTPSR which affect outage performance and BER. It is noted that DF relaying networks outperform AF relaying networks. Besides that, the numerical results are given to prove the optimization problems of PS and TS ratio to obtain optimal instantaneous rate.

  1. SYNCHRONIZATION OF HETEROGENEOUS OSCILLATORS UNDER NETWORK MODIFICATIONS: PERTURBATION AND OPTIMIZATION OF THE SYNCHRONY ALIGNMENT FUNCTION

    Science.gov (United States)

    Taylor, Dane; Skardal, Per Sebastian; Sun, Jie

    2016-01-01

    Synchronization is central to many complex systems in engineering physics (e.g., the power-grid, Josephson junction circuits, and electro-chemical oscillators) and biology (e.g., neuronal, circadian, and cardiac rhythms). Despite these widespread applications—for which proper functionality depends sensitively on the extent of synchronization—there remains a lack of understanding for how systems can best evolve and adapt to enhance or inhibit synchronization. We study how network modifications affect the synchronization properties of network-coupled dynamical systems that have heterogeneous node dynamics (e.g., phase oscillators with non-identical frequencies), which is often the case for real-world systems. Our approach relies on a synchrony alignment function (SAF) that quantifies the interplay between heterogeneity of the network and of the oscillators and provides an objective measure for a system’s ability to synchronize. We conduct a spectral perturbation analysis of the SAF for structural network modifications including the addition and removal of edges, which subsequently ranks the edges according to their importance to synchronization. Based on this analysis, we develop gradient-descent algorithms to efficiently solve optimization problems that aim to maximize phase synchronization via network modifications. We support these and other results with numerical experiments. PMID:27872501

  2. Neural network configuration and efficiency underlies individual differences in spatial orientation ability.

    Science.gov (United States)

    Arnold, Aiden E G F; Protzner, Andrea B; Bray, Signe; Levy, Richard M; Iaria, Giuseppe

    2014-02-01

    Spatial orientation is a complex cognitive process requiring the integration of information processed in a distributed system of brain regions. Current models on the neural basis of spatial orientation are based primarily on the functional role of single brain regions, with limited understanding of how interaction among these brain regions relates to behavior. In this study, we investigated two sources of variability in the neural networks that support spatial orientation--network configuration and efficiency--and assessed whether variability in these topological properties relates to individual differences in orientation accuracy. Participants with higher accuracy were shown to express greater activity in the right supramarginal gyrus, the right precentral cortex, and the left hippocampus, over and above a core network engaged by the whole group. Additionally, high-performing individuals had increased levels of global efficiency within a resting-state network composed of brain regions engaged during orientation and increased levels of node centrality in the right supramarginal gyrus, the right primary motor cortex, and the left hippocampus. These results indicate that individual differences in the configuration of task-related networks and their efficiency measured at rest relate to the ability to spatially orient. Our findings advance systems neuroscience models of orientation and navigation by providing insight into the role of functional integration in shaping orientation behavior.

  3. A Markov random walk under constraint for discovering overlapping communities in complex networks

    International Nuclear Information System (INIS)

    Jin, Di; Yang, Bo; Liu, Dayou; He, Dongxiao; Liu, Jie; Baquero, Carlos

    2011-01-01

    The detection of overlapping communities in complex networks has motivated recent research in relevant fields. Aiming to address this problem, we propose a Markov-dynamics-based algorithm, called UEOC, which means 'unfold and extract overlapping communities'. In UEOC, when identifying each natural community that overlaps, a Markov random walk method combined with a constraint strategy, which is based on the corresponding annealed network (degree conserving random network), is performed to unfold the community. Then, a cutoff criterion with the aid of a local community function, called conductance, which can be thought of as the ratio between the number of edges inside the community and those leaving it, is presented to extract this emerged community from the entire network. The UEOC algorithm depends on only one parameter whose value can be easily set, and it requires no prior knowledge of the hidden community structures. The proposed UEOC has been evaluated both on synthetic benchmarks and on some real-world networks, and has been compared with a set of competing algorithms. The experimental result has shown that UEOC is highly effective and efficient for discovering overlapping communities

  4. Common and distinct brain networks underlying panic and social anxiety disorders.

    Science.gov (United States)

    Kim, Yong-Ku; Yoon, Ho-Kyoung

    2018-01-03

    Although panic disorder (PD) and phobic disorders are independent anxiety disorders with distinct sets of diagnostic criteria, there is a high level of overlap between them in terms of pathogenesis and neural underpinnings. Functional connectivity research using resting-state functional magnetic resonance imaging (rsfMRI) shows great potential in identifying the similarities and differences between PD and phobias. Understanding common and distinct networks between PD and phobic disorders is critical for identifying both specific and general neural characteristics of these disorders. We review recent rsfMRI studies and explore the clinical relevance of resting-state functional connectivity (rsFC) in PD and phobias. Although findings differ between studies, there are some meaningful, consistent findings. Social anxiety disorder (SAD) and PD share common default mode network alterations. Alterations within the sensorimotor network are observed primarily in PD. Increased connectivity in the salience network is consistently reported in SAD. This review supports hypotheses that PD and phobic disorders share common rsFC abnormalities and that the different clinical phenotypes between the disorders come from distinct brain functional network alterations. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Dynamic Fault Diagnosis for Semi-Batch Reactor under Closed-Loop Control via Independent Radial Basis Function Neural Network

    OpenAIRE

    Abdelkarim M. Ertiame; D. W. Yu; D. L. Yu; J. B. Gomm

    2015-01-01

    In this paper, a robust fault detection and isolation (FDI) scheme is developed to monitor a multivariable nonlinear chemical process called the Chylla-Haase polymerization reactor, when it is under the cascade PI control. The scheme employs a radial basis function neural network (RBFNN) in an independent mode to model the process dynamics, and using the weighted sum-squared prediction error as the residual. The Recursive Orthogonal Least Squares algorithm (ROLS) is emplo...

  6. One-dimensional model of cable-in-conduit superconductors under cyclic loading using artificial neural networks

    International Nuclear Information System (INIS)

    Lefik, M.; Schrefler, B.A.

    2002-01-01

    An artificial neural network with two hidden layers is trained to define a mechanical constitutive relation for superconducting cable under transverse cyclic loading. The training is performed using a set of experimental data. The behaviour of the cable is strongly non-linear. Irreversible phenomena result with complicated loops of hysteresis. The performance of the ANN, which is applied as a tool for storage, interpolation and interpretation of experimental data is investigated, both from numerical, as well as from physical viewpoints

  7. Optimal design of supply chain network under uncertainty environment using hybrid analytical and simulation modeling approach

    Science.gov (United States)

    Chiadamrong, N.; Piyathanavong, V.

    2017-12-01

    Models that aim to optimize the design of supply chain networks have gained more interest in the supply chain literature. Mixed-integer linear programming and discrete-event simulation are widely used for such an optimization problem. We present a hybrid approach to support decisions for supply chain network design using a combination of analytical and discrete-event simulation models. The proposed approach is based on iterative procedures until the difference between subsequent solutions satisfies the pre-determined termination criteria. The effectiveness of proposed approach is illustrated by an example, which shows closer to optimal results with much faster solving time than the results obtained from the conventional simulation-based optimization model. The efficacy of this proposed hybrid approach is promising and can be applied as a powerful tool in designing a real supply chain network. It also provides the possibility to model and solve more realistic problems, which incorporate dynamism and uncertainty.

  8. Integrative network analysis highlights biological processes underlying GLP-1 stimulated insulin secretion: A DIRECT study

    DEFF Research Database (Denmark)

    Gudmundsdottir, Valborg; Pedersen, Helle Krogh; Allebrandt, Karla Viviani

    2018-01-01

    Glucagon-like peptide 1 (GLP-1) stimulated insulin secretion has a considerable heritable component as estimated from twin studies, yet few genetic variants influencing this phenotype have been identified. We performed the first genome-wide association study (GWAS) of GLP-1 stimulated insulin...... secretion in non-diabetic individuals from the Netherlands Twin register (n = 126). This GWAS was enhanced using a tissue-specific protein-protein interaction network approach. We identified a beta-cell protein-protein interaction module that was significantly enriched for low gene scores based on the GWAS...... P-values and found support at the network level in an independent cohort from Tübingen, Germany (n = 100). Additionally, a polygenic risk score based on SNPs prioritized from the network was associated (P

  9. A Decision Processing Algorithm for CDC Location Under Minimum Cost SCM Network

    Science.gov (United States)

    Park, N. K.; Kim, J. Y.; Choi, W. Y.; Tian, Z. M.; Kim, D. J.

    Location of CDC in the matter of network on Supply Chain is becoming on the high concern these days. Present status of methods on CDC has been mainly based on the calculation manually by the spread sheet to achieve the goal of minimum logistics cost. This study is focused on the development of new processing algorithm to overcome the limit of present methods, and examination of the propriety of this algorithm by case study. The algorithm suggested by this study is based on the principle of optimization on the directive GRAPH of SCM model and suggest the algorithm utilizing the traditionally introduced MST, shortest paths finding methods, etc. By the aftermath of this study, it helps to assess suitability of the present on-going SCM network and could be the criterion on the decision-making process for the optimal SCM network building-up for the demand prospect in the future.

  10. Lifetime prediction for organic coating under alternating hydrostatic pressure by artificial neural network

    Science.gov (United States)

    Tian, Wenliang; Meng, Fandi; Liu, Li; Li, Ying; Wang, Fuhui

    2017-01-01

    A concept for prediction of organic coatings, based on the alternating hydrostatic pressure (AHP) accelerated tests, has been presented. An AHP accelerated test with different pressure values has been employed to evaluate coating degradation. And a back-propagation artificial neural network (BP-ANN) has been established to predict the service property and the service lifetime of coatings. The pressure value (P), immersion time (t) and service property (impedance modulus |Z|) are utilized as the parameters of the network. The average accuracies of the predicted service property and immersion time by the established network are 98.6% and 84.8%, respectively. The combination of accelerated test and prediction method by BP-ANN is promising to evaluate and predict coating property used in deep sea. PMID:28094340

  11. Decentralized supply chain network design: monopoly, duopoly and oligopoly competitions under uncertainty

    Science.gov (United States)

    Seyedhosseini, Seyed Mohammad; Fahimi, Kaveh; Makui, Ahmad

    2017-12-01

    This paper presents the competitive supply chain network design problem in which n decentralized supply chains simultaneously enter the market with no existing rival chain, shape their networks and set wholesale and retail prices in competitive mode. The customer demand is elastic and price dependent, customer utility function is based on the Hoteling model and the chains produce identical or highly substitutable products. We construct a solution algorithm based on bi-level programming and possibility theory. In the proposed bi-level model, the inner part sets the prices based on simultaneous extra- and Stackleberg intra- chains competitions, and the outer part shapes the networks in cooperative competitions. Finally, we use a real-word study to discuss the effect of the different structures of the competitors on the equilibrium solution. Moreover, sensitivity analyses are conducted and managerial insights are offered.

  12. Sustainable and Resilient Garment Supply Chain Network Design with Fuzzy Multi-Objectives under Uncertainty

    Directory of Open Access Journals (Sweden)

    Sonia Irshad Mari

    2016-10-01

    Full Text Available Researchers and practitioners are taking more interest in developing sustainable garment supply chains in recent times. On the other hand, the supply chain manager drops sustainability objectives while coping with unexpected natural and man-made disruption risks. Hence, supply chain managers are now trying to develop sustainable supply chains that are simultaneously resilient enough to cope with disruption risks. Owing to the importance of the considered issue, this study proposed a network optimization model for a sustainable and resilient supply chain network by considering sustainability via embodied carbon footprints and carbon emissions and resilience by considering resilience index. In this paper, initially, a possibilistic fuzzy multi-objective sustainable and resilient supply chain network model is developed for the garment industry considering economic, sustainable, and resilience objectives. Secondly, a possibilistic fuzzy linguistic weight-based interactive solution method is proposed. Finally, a numerical case example is presented to show the applicability of the proposed model and solution methodology.

  13. Energy consumption analysis for various memristive networks under different learning strategies

    Science.gov (United States)

    Deng, Lei; Wang, Dong; Zhang, Ziyang; Tang, Pei; Li, Guoqi; Pei, Jing

    2016-02-01

    Recently, various memristive systems emerge to emulate the efficient computing paradigm of the brain cortex; whereas, how to make them energy efficient still remains unclear, especially from an overall perspective. Here, a systematical and bottom-up energy consumption analysis is demonstrated, including the memristor device level and the network learning level. We propose an energy estimating methodology when modulating the memristive synapses, which is simulated in three typical neural networks with different synaptic structures and learning strategies for both offline and online learning. These results provide an in-depth insight to create energy efficient brain-inspired neuromorphic devices in the future.

  14. Thermo-Mechanical Properties of Semi-Degradable Poly(β-amino ester)-co-Methyl Methacrylate Networks under Simulated Physiological Conditions

    Science.gov (United States)

    Safranski, David L.; Crabtree, Jacob C.; Huq, Yameen R.; Gall, Ken

    2011-01-01

    Poly(β-amino ester) networks are being explored for biomedical applications, but they may lack the mechanical properties necessary for long term implantation. The objective of this study is to evaluate the effect of adding methyl methacrylate on networks' mechanical properties under simulated physiological conditions. The networks were synthesized in two parts: (1) a biodegradable crosslinker was formed from a diacrylate and amine, (2) and then varying concentrations of methyl methacrylate were added prior to photopolymerizing the network. Degradation rate, mechanical properties, and glass transition temperature were studied as a function of methyl methacrylate composition. The crosslinking density played a limited role on mechanical properties for these networks, but increasing methyl methacrylate concentration improved the toughness by several orders of magnitude. Under simulated physiological conditions, networks showed increasing toughness or sustained toughness as degradation occurred. This work establishes a method of creating degradable networks with tailorable toughness while undergoing partial degradation. PMID:21966028

  15. Domain wall network as QCD vacuum and the chromomagnetic trap formation under extreme conditions

    International Nuclear Information System (INIS)

    Nedelko, Sergei N.; Voronin, Vladimir E.

    2015-01-01

    The ensemble of Euclidean gluon field configurations represented by the domain wall network is considered. A single domain wall is given by the sine-Gordon kink for the angle between chromomagnetic and chromoelectric components of the gauge field. The domain wall separates the regions with Abelian self-dual and anti-self-dual fields. The network of the domain wall defects is introduced as a combination of multiplicative and additive superpositions of kinks. The character of the spectrum and eigenmodes of color-charged fluctuations in the presence of the domain wall network is discussed. Conditions for the formation of a stable thick domain wall junction (the chromomagnetic trap) during heavy-ion collisions are discussed, and the spectrum of color-charged quasi-particles inside the trap is evaluated. An important observation is the existence of the critical size L c of a single trap stable against gluon tachyonic modes. The size L c is related to the value of gluon condensate left angle g 2 F 2 right angle. The growth of large lumps of merged chromomagnetic traps and the concept of the confinement-deconfinement transition in terms of the ensemble of domain wall networks are outlined. (orig.)

  16. A risk analysis for gas transport network planning expansion under regulatory uncertainty in Western Europe

    NARCIS (Netherlands)

    Pelletier, 27736; Wortmann, J.C.; Noteboom, H.J.

    The natural gas industry in Western Europe went through drastic changes induced by the unbundling of the national companies, followed by the liberalization of gas trade and the regulation of gas transmission. Natural gas transmission is operated through a network of interconnected grids, and is

  17. Radio/antenna mounting system for wireless networking under row-crop agriculture conditions

    Science.gov (United States)

    Interest in and deployment of wireless monitoring systems is increasing in many diverse environments, including row-crop agricultural fields. While many studies have been undertaken to evaluate various aspects of wireless monitoring and networking, such as electronic hardware components, data-colle...

  18. Configuring heterogeneous wireless sensor networks under quality-of-service constraints

    NARCIS (Netherlands)

    Hoes, R.J.H.

    2009-01-01

    Wireless sensor networks (WSNs) are useful for a diversity of applications, such as structural monitoring of buildings, farming, assistance in rescue operations, in-home entertainment systems or to monitor people's health. A WSN is a large collection of small sensor devices that provide a detailed

  19. Exploring Mechanisms Underlying Impaired Brain Function in Gulf War Illness through Advanced Network Analysis

    Science.gov (United States)

    2017-10-01

    networks of the brain responsible for visual processing, mood regulation, motor coordination, sensory processing, and language command, but increased...4    For each subject, the rsFMRI voxel time-series were temporally shifted to account for differences in slice acquisition times...responsible for visual processing, mood regulation, motor coordination, sensory processing, and language command, but increased connectivity in

  20. Understanding the Validity of Data: A Knowledge-Based Network Underlying Research Expertise in Scientific Disciplines

    Science.gov (United States)

    Roberts, Ros

    2016-01-01

    This article considers what might be taught to meet a widely held curriculum aim of students being able to understand research in a discipline. Expertise, which may appear as a "chain of practice," is widely held to be underpinned by networks of understanding. Scientific research expertise is considered from this perspective. Within…

  1. The feasibility of implementing an ecological network in The Netherlands under conditions of global change

    NARCIS (Netherlands)

    Bakker, M.M.; Alam, S.J.; Dijk, van J.; Rounsevell, T.; Spek, T.; Brink, van den A.

    2015-01-01

    Context Both global change and policy reform will affect the implementation of the National Ecological Network (NEN) in the Netherlands. Global change refers to a combination of changing groundwater tables arising from climate change and improved economic prospects for farming. Policy reform refers

  2. The feasibility of implementing an ecological network in The Netherlands under conditions of global change

    NARCIS (Netherlands)

    Bakker, Martha; Alam, Shah Jamal; van Dijk, Jerry; Rounsevell, Mark; Spek, Teun; van den Brink, Adri

    2015-01-01

    Context: Both global change and policy reform will affect the implementation of the National Ecological Network (NEN) in the Netherlands. Global change refers to a combination of changing groundwater tables arising from climate change and improved economic prospects for farming. Policy reform refers

  3. OPSquare : assessment of a novel flat optical data center network architecture under realistic data center traffic

    NARCIS (Netherlands)

    Miao, W.; Yan, F.; Raz, O.; Calabretta, N.

    2016-01-01

    The performances of OPSquare flat data-center network based on flow-controlled optical switches are investigated. Results show <1E-6 packet loss and <2µs end-to-end latency for 0.3 load when scaling to 40960 servers with 32×32 optical switches.

  4. Coordinated control to mitigate over voltage and under voltage in LV networks

    NARCIS (Netherlands)

    Viyathukattuva Mohamed Ali, M.M.; Nguyen, H.P.; Cobben, J.F.G.

    2016-01-01

    Increasing penetration of distributed renewable energy resources (DRES) and smart loads into the LV network lead to new power quality challenges. Important power quality challenges are overvoltage and undervoltage. A number of solutions are already developed to mitigate these voltage variations. In

  5. The effect of dietary folic acid on biochemical parameters and gene expression of three heat shock proteins (HSPs) of blunt snout bream (Megalobrama amblycephala) fingerling under acute high temperature stress.

    Science.gov (United States)

    Sesay, Daniella Fatmata; Habte-Tsion, Habte-Michael; Zhou, Qunlan; Ren, Mingchun; Xie, Jun; Liu, Bo; Chen, Ruli; Pan, Liangkun

    2017-08-01

    The effects of dietary folic acid on biochemical parameters and gene expression of three heat shock proteins (HSPs) of blunt snout bream (Megalobrama amblycephala) fingerling under acute high temperature stress. Six dietary folic acid groups (0.0, 0.5, 1.0, 2.0, 5.0, and 10.0) mg/kg diets were designed and assigned into 18 tanks in three replicates each (300 l/tank) and were administered for 10 weeks in a re-circulated water system. The fingerlings with an initial weight of 27.0 ± 0.03 g were fed with their respective diets four times daily. At the end of the experiment, samples were collected before challenge, 0, 24, 72 h, and 7 days. Serum total protein (TP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), cortisol, glucose, complement C3 (C3), complement C4 (C4, immunoglobulin M (IgM) hepatic superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and the expression of heat shock protein 60 (HSP60), 70 (HSP70), and 90 (HSP90) were studied. The results showed that fish fed with dietary folic acid between 1.0, 2.0, and 5.0 mg/kg significantly (P stress, 0, 24, 72 h, and 7 days significantly (P  0.05) of the three HSPs. However, there were statistical significant interactive effect between dietary folic acid inclusion level and temperature duration on serum C3 and C4 (P  0.05). The present results indicate that supplementation of basal diet from 1.0 mg/kg; 2.0 and 5.0 mg/kg can enhance acute high temperature resistance ability in M. amblycephala fingerling to some degree and improve physiological response, immune and antioxidant capacities, and expression level of three HSPs.

  6. Dynamic behavior of dual cross-linked nanoparticle networks under oscillatory shear

    International Nuclear Information System (INIS)

    Iyer, Balaji V S; Yashin, Victor V; Balazs, Anna C

    2014-01-01

    Via computer simulations, we investigate the linear and nonlinear viscoelastic response of polymer grafted nanoparticle networks subject to oscillatory shear at different amplitudes and frequencies. The individual nanoparticles are composed of a rigid spherical core and a corona of grafted polymers that encompass reactive end groups. With the overlap of the coronas on adjacent particles, the reactive end groups form permanent or labile bonds, and thus form a ‘dual cross-linked’ network. The existing labile bonds between particles can break and reform depending on the bond rupture rate, extent of deformation and the frequency of oscillation. We study how the viscoelastic behavior of the material depends on the energy of the labile bonds and identify the network characteristics that give rise to the observed viscoelastic response. We observe that with an increase in labile bond energy, the storage modulus increases while the loss modulus shows a more complex response depending on the labile bond energy. Specifically, in the case of the samples with the weaker labile bonds, the loss modulus increases monotonically, while for the samples with the stronger labile bonds, the loss modulus exhibits a minimum with an increase in frequency. We show that an increase in the storage modulus corresponds to an enhancement in the average number of bonds in the samples and the characteristics of the loss modulus depend on both the bond kinetics and the mobility of the particles in the network. Furthermore, we determine that the effective contribution of the bonds to the storage modulus decreases with increase in strain amplitude. In particular, while bond formation at small amplitude drives an increase in storage modulus, at large amplitudes it promotes clustering and formation of voids leading to strain softening. Our simulations provide a mesoscopic picture of how the nature of labile bonds affects the performance of cross-linked polymer-grafted nanoparticle networks. (paper)

  7. Networking

    OpenAIRE

    Rauno Lindholm, Daniel; Boisen Devantier, Lykke; Nyborg, Karoline Lykke; Høgsbro, Andreas; Fries, de; Skovlund, Louise

    2016-01-01

    The purpose of this project was to examine what influencing factor that has had an impact on the presumed increasement of the use of networking among academics on the labour market and how it is expressed. On the basis of the influence from globalization on the labour market it can be concluded that the globalization has transformed the labour market into a market based on the organization of networks. In this new organization there is a greater emphasis on employees having social qualificati...

  8. Spike Pattern Structure Influences Synaptic Efficacy Variability Under STDP and Synaptic Homeostasis. II: Spike Shuffling Methods on LIF Networks

    Directory of Open Access Journals (Sweden)

    Zedong Bi

    2016-08-01

    Full Text Available Synapses may undergo variable changes during plasticity because of the variability of spike patterns such as temporal stochasticity and spatial randomness. Here, we call the variability of synaptic weight changes during plasticity to be efficacy variability. In this paper, we investigate how four aspects of spike pattern statistics (i.e., synchronous firing, burstiness/regularity, heterogeneity of rates and heterogeneity of cross-correlations influence the efficacy variability under pair-wise additive spike-timing dependent plasticity (STDP and synaptic homeostasis (the mean strength of plastic synapses into a neuron is bounded, by implementing spike shuffling methods onto spike patterns self-organized by a network of excitatory and inhibitory leaky integrate-and-fire (LIF neurons. With the increase of the decay time scale of the inhibitory synaptic currents, the LIF network undergoes a transition from asynchronous state to weak synchronous state and then to synchronous bursting state. We first shuffle these spike patterns using a variety of methods, each designed to evidently change a specific pattern statistics; and then investigate the change of efficacy variability of the synapses under STDP and synaptic homeostasis, when the neurons in the network fire according to the spike patterns before and after being treated by a shuffling method. In this way, we can understand how the change of pattern statistics may cause the change of efficacy variability. Our results are consistent with those of our previous study which implements spike-generating models on converging motifs. We also find that burstiness/regularity is important to determine the efficacy variability under asynchronous states, while heterogeneity of cross-correlations is the main factor to cause efficacy variability when the network moves into synchronous bursting states (the states observed in epilepsy.

  9. Local biochemical and morphological differences in human Achilles tendinopathy

    DEFF Research Database (Denmark)

    Pingel, Jessica; Fredberg, U.; Qvortrup, Klaus

    2012-01-01

    The incidence of Achilles tendinopathy is high and underlying etiology as well as biochemical and morphological pathology associated with the disease is largely unknown. The aim of the present study was to describe biochemical and morphological differences in chronic Achilles tendinopathy....... The expressions of growth factors, inflammatory mediators and tendon morphology were determined in both chronically diseased and healthy tendon parts....

  10. Targeted energy transfers and passive acoustic wave redirection in a two-dimensional granular network under periodic excitation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yijing, E-mail: yzhng123@illinois.edu; Moore, Keegan J.; Vakakis, Alexander F. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); McFarland, D. Michael [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2015-12-21

    We study passive pulse redirection and nonlinear targeted energy transfer in a granular network composed of two semi-infinite, ordered homogeneous granular chains mounted on linear elastic foundations and coupled by weak linear stiffnesses. Periodic excitation in the form of repetitive half-sine pulses is applied to one of the chains, designated as the “excited chain,” whereas the other chain is initially at rest and is regarded as the “absorbing chain.” We show that passive pulse redirection and targeted energy transfer from the excited to the absorbing chain can be achieved by macro-scale realization of the spatial analog of the Landau-Zener quantum tunneling effect. This is realized by finite stratification of the elastic foundation of the excited chain and depends on the system parameters (e.g., the percentage of stratification) and on the parameters of the periodic excitation. Utilizing empirical mode decomposition and numerical Hilbert transforms, we detect the existence of two distinct nonlinear phenomena in the periodically forced network; namely, (i) energy localization in the absorbing chain due to sustained 1:1 resonance capture leading to irreversible pulse redirection from the excited chain, and (ii) continuous energy exchanges in the form of nonlinear beats between the two chains in the absence of resonance capture. Our results extend previous findings of transient passive energy redirection in impulsively excited granular networks and demonstrate that steady state passive pulse redirection in these networks can be robustly achieved under periodic excitation.

  11. Performance of Overlaid MIMO Cellular Networks with TAS/MRC under Hybrid-Access Small Cells and Poisson Field Interference

    KAUST Repository

    AbdelNabi, Amr A.

    2018-02-12

    This paper presents new approaches to characterize the achieved performance of hybrid control-access small cells in the context of two-tier multi-input multi-output (MIMO) cellular networks with random interference distributions. The hybrid scheme at small cells (such as femtocells) allows for sharing radio resources between the two network tiers according to the densities of small cells and their associated users, as well as the observed interference power levels in the two network tiers. The analysis considers MIMO transceivers at all nodes, for which antenna arrays can be utilized to implement transmit antenna selection (TAS) and receive maximal ratio combining (MRC) under MIMO point-to-point channels. Moreover, it tar-gets network-level models of interference sources inside each tier and between the two tiers, which are assumed to follow Poisson field processes. To fully capture the occasions for Poisson field distribution on MIMO spatial domain. Two practical scenarios of interference sources are addressed including highly-correlated or uncorrelated transmit antenna arrays of the serving macrocell base station. The analysis presents new analytical approaches that can characterize the downlink outage probability performance in any tier. Furthermore, the outage performance in high signal-to-noise (SNR) regime is also obtained, which can be useful to deduce diversity and/or coding gains.

  12. Performance of Overlaid MIMO Cellular Networks with TAS/MRC under Hybrid-Access Small Cells and Poisson Field Interference

    KAUST Repository

    AbdelNabi, Amr A.; Al-Qahtani, Fawaz S.; Radaydeh, Redha Mahmoud Mesleh; Shaqfeh, Mohammad; Manna, Raed F.

    2018-01-01

    This paper presents new approaches to characterize the achieved performance of hybrid control-access small cells in the context of two-tier multi-input multi-output (MIMO) cellular networks with random interference distributions. The hybrid scheme at small cells (such as femtocells) allows for sharing radio resources between the two network tiers according to the densities of small cells and their associated users, as well as the observed interference power levels in the two network tiers. The analysis considers MIMO transceivers at all nodes, for which antenna arrays can be utilized to implement transmit antenna selection (TAS) and receive maximal ratio combining (MRC) under MIMO point-to-point channels. Moreover, it tar-gets network-level models of interference sources inside each tier and between the two tiers, which are assumed to follow Poisson field processes. To fully capture the occasions for Poisson field distribution on MIMO spatial domain. Two practical scenarios of interference sources are addressed including highly-correlated or uncorrelated transmit antenna arrays of the serving macrocell base station. The analysis presents new analytical approaches that can characterize the downlink outage probability performance in any tier. Furthermore, the outage performance in high signal-to-noise (SNR) regime is also obtained, which can be useful to deduce diversity and/or coding gains.

  13. Computational Analysis of Molecular Interaction Networks Underlying Change of HIV-1 Resistance to Selected Reverse Transcriptase Inhibitors.

    Science.gov (United States)

    Kierczak, Marcin; Dramiński, Michał; Koronacki, Jacek; Komorowski, Jan

    2010-12-12

    Despite more than two decades of research, HIV resistance to drugs remains a serious obstacle in developing efficient AIDS treatments. Several computational methods have been developed to predict resistance level from the sequence of viral proteins such as reverse transcriptase (RT) or protease. These methods, while powerful and accurate, give very little insight into the molecular interactions that underly acquisition of drug resistance/hypersusceptibility. Here, we attempt at filling this gap by using our Monte Carlo feature selection and interdependency discovery method (MCFS-ID) to elucidate molecular interaction networks that characterize viral strains with altered drug resistance levels. We analyzed a number of HIV-1 RT sequences annotated with drug resistance level using the MCFS-ID method. This let us expound interdependency networks that characterize change of drug resistance to six selected RT inhibitors: Abacavir, Lamivudine, Stavudine, Zidovudine, Tenofovir and Nevirapine. The networks consider interdependencies at the level of physicochemical properties of mutating amino acids, eg,: polarity. We mapped each network on the 3D structure of RT in attempt to understand the molecular meaning of interacting pairs. The discovered interactions describe several known drug resistance mechanisms and, importantly, some previously unidentified ones. Our approach can be easily applied to a whole range of problems from the domain of protein engineering. A portable Java implementation of our MCFS-ID method is freely available for academic users and can be obtained at: http://www.ipipan.eu/staff/m.draminski/software.htm.

  14. Integrative network analysis highlights biological processes underlying GLP-1 stimulated insulin secretion: A DIRECT study.

    Directory of Open Access Journals (Sweden)

    Valborg Gudmundsdottir

    Full Text Available Glucagon-like peptide 1 (GLP-1 stimulated insulin secretion has a considerable heritable component as estimated from twin studies, yet few genetic variants influencing this phenotype have been identified. We performed the first genome-wide association study (GWAS of GLP-1 stimulated insulin secretion in non-diabetic individuals from the Netherlands Twin register (n = 126. This GWAS was enhanced using a tissue-specific protein-protein interaction network approach. We identified a beta-cell protein-protein interaction module that was significantly enriched for low gene scores based on the GWAS P-values and found support at the network level in an independent cohort from Tübingen, Germany (n = 100. Additionally, a polygenic risk score based on SNPs prioritized from the network was associated (P < 0.05 with glucose-stimulated insulin secretion phenotypes in up to 5,318 individuals in MAGIC cohorts. The network contains both known and novel genes in the context of insulin secretion and is enriched for members of the focal adhesion, extracellular-matrix receptor interaction, actin cytoskeleton regulation, Rap1 and PI3K-Akt signaling pathways. Adipose tissue is, like the beta-cell, one of the target tissues of GLP-1 and we thus hypothesized that similar networks might be functional in both tissues. In order to verify peripheral effects of GLP-1 stimulation, we compared the transcriptome profiling of ob/ob mice treated with liraglutide, a clinically used GLP-1 receptor agonist, versus baseline controls. Some of the upstream regulators of differentially expressed genes in the white adipose tissue of ob/ob mice were also detected in the human beta-cell network of genes associated with GLP-1 stimulated insulin secretion. The findings provide biological insight into the mechanisms through which the effects of GLP-1 may be modulated and highlight a potential role of the beta-cell expressed genes RYR2, GDI2, KIAA0232, COL4A1 and COL4A2 in GLP-1 stimulated

  15. Improved methods for the mathematically controlled comparison of biochemical systems

    Directory of Open Access Journals (Sweden)

    Schwacke John H

    2004-06-01

    Full Text Available Abstract The method of mathematically controlled comparison provides a structured approach for the comparison of alternative biochemical pathways with respect to selected functional effectiveness measures. Under this approach, alternative implementations of a biochemical pathway are modeled mathematically, forced to be equivalent through the application of selected constraints, and compared with respect to selected functional effectiveness measures. While the method has been applied successfully in a variety of studies, we offer recommendations for improvements to the method that (1 relax requirements for definition of constraints sufficient to remove all degrees of freedom in forming the equivalent alternative, (2 facilitate generalization of the results thus avoiding the need to condition those findings on the selected constraints, and (3 provide additional insights into the effect of selected constraints on the functional effectiveness measures. We present improvements to the method and related statistical models, apply the method to a previously conducted comparison of network regulation in the immune system, and compare our results to those previously reported.

  16. Multivoxel Patterns Reveal Functionally Differentiated Networks Underlying Auditory Feedback Processing of Speech

    DEFF Research Database (Denmark)

    Zheng, Zane Z.; Vicente-Grabovetsky, Alejandro; MacDonald, Ewen N.

    2013-01-01

    The everyday act of speaking involves the complex processes of speech motor control. An important component of control is monitoring, detection, and processing of errors when auditory feedback does not correspond to the intended motor gesture. Here we show, using fMRI and converging operations...... within a multivoxel pattern analysis framework, that this sensorimotor process is supported by functionally differentiated brain networks. During scanning, a real-time speech-tracking system was used to deliver two acoustically different types of distorted auditory feedback or unaltered feedback while...... human participants were vocalizing monosyllabic words, and to present the same auditory stimuli while participants were passively listening. Whole-brain analysis of neural-pattern similarity revealed three functional networks that were differentially sensitive to distorted auditory feedback during...

  17. A new multi objective optimization model for designing a green supply chain network under uncertainty

    Directory of Open Access Journals (Sweden)

    Mohammad Mahdi Saffar

    2015-01-01

    Full Text Available Recently, researchers have focused on how to minimize the negative effects of industrial activities on environment. Consequently, they work on mathematical models, which minimize the environmental issues as well as optimizing the costs. In the field of supply chain network design, most managers consider economic and environmental issues, simultaneously. This paper introduces a bi-objective supply chain network design, which uses fuzzy programming to obtain the capability of resisting uncertain conditions. The design considers production, recovery, and distribution centers. The advantage of using this model includes the optimal facilities, locating them and assigning the optimal facilities to them. It also chooses the type and the number of technologies, which must be bought. The fuzzy programming converts the multi objective model to an auxiliary crisp model by Jimenez approach and solves it with ε-constraint. For solving large size problems, the Multi Objective Differential Evolutionary algorithm (MODE is applied.

  18. BWR-plant simulator and its neural network companion with programming under mat lab environment

    International Nuclear Information System (INIS)

    Ghenniwa, Fatma Suleiman

    2008-01-01

    Stand alone nuclear power plant simulators, as well as building blocks based nuclear power simulator are available from different companies throughout the world. In this work, a review of such simulators has been explored for both types. Also a survey of the possible authoring tools for such simulators development has been performed. It is decided, in this research, to develop prototype simulator based on components building blocks. Further more, the authoring tool (Mat lab software) has been selected for programming. It has all the basic tools required for the simulator development similar to that developed by specialized companies for simulator like MMS, APROS and others. Components simulations, as well as integrated components for power plant simulation have been demonstrated. Preliminary neural network reactor model as part of a prepared neural network modules library has been used to demonstrate module order shuffling during simulation. The developed components library can be refined and extended for further development. (author)

  19. The improving of the heat networks operating process under the conditions of the energy efficiency providing

    Directory of Open Access Journals (Sweden)

    Blinova Tatiana

    2016-01-01

    Full Text Available Among the priorities it is important to highlight the modernization and improvement of energy efficiency of housing and communal services, as well as the transition to the principle of using the most efficient technologies used in reproduction (construction, creation of objects of municipal infrastructure and housing modernization. The main hypothesis of this study lies in the fact that in modern conditions the realization of the most important priorities of the state policy in the sphere of housing and communal services, is possible in the conditions of use of the most effective control technologies for the reproduction of thermal networks. It is possible to raise the level of information security Heat Distribution Company, and other market participants by improving business processes through the development of organizational and economic mechanism in the conditions of complex monitoring of heat network operation processes

  20. Dynamics of random Boolean networks under fully asynchronous stochastic update based on linear representation.

    Directory of Open Access Journals (Sweden)

    Chao Luo

    Full Text Available A novel algebraic approach is proposed to study dynamics of asynchronous random Boolean networks where a random number of nodes can be updated at each time step (ARBNs. In this article, the logical equations of ARBNs are converted into the discrete-time linear representation and dynamical behaviors of systems are investigated. We provide a general formula of network transition matrices of ARBNs as well as a necessary and sufficient algebraic criterion to determine whether a group of given states compose an attractor of length[Formula: see text] in ARBNs. Consequently, algorithms are achieved to find all of the attractors and basins in ARBNs. Examples are showed to demonstrate the feasibility of the proposed scheme.

  1. Integrated forward/reverse logistics network design under uncertainty with pricing for collection of used products

    DEFF Research Database (Denmark)

    Fattahi, Mohammad; Govindan, Kannan

    2017-01-01

    This paper addresses design and planning of an integrated forward/reverse logistics network over a planning horizon with multiple tactical periods. In the network, demand for new products and potential return of used products are stochastic. Furthermore, collection amounts of used products...... with different quality levels are assumed dependent on offered acquisition prices to customer zones. A uniform distribution function defines the expected price of each customer zone for one unit of each used product. Using two-stage stochastic programming, a mixed-integer linear programming model is proposed....... To cope with demand and potential return uncertainty, Latin Hypercube Sampling method is applied to generate fan of scenarios and then, backward scenario reduction technique is used to reduce the number of scenarios. Due to the problem complexity, a novel simulation-based simulated annealing algorithm...

  2. Adaptive Chemical Networks under Non-Equilibrium Conditions: The Evaporating Droplet.

    Science.gov (United States)

    Armao, Joseph J; Lehn, Jean-Marie

    2016-10-17

    Non-volatile solutes in an evaporating drop experience an out-of-equilibrium state due to non-linear concentration effects and complex flow patterns. Here, we demonstrate a small molecule chemical reaction network that undergoes a rapid adaptation response to the out-of-equilibrium conditions inside the droplet leading to control over the molecular constitution and spatial arrangement of the deposition pattern. Adaptation results in a pronounced coffee stain effect and coupling to chemical concentration gradients within the drop is demonstrated. Amplification and suppression of network species are readily identifiable with confocal fluorescence microscopy. We anticipate that these observations will contribute to the design and exploration of out-of-equilibrium chemical systems, as well as be useful towards the development of point-of-care medical diagnostics and controlled deposition of small molecules through inkjet printing. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Strong geomagnetic activity forecast by neural networks under dominant southern orientation of the interplanetary magnetic field

    Czech Academy of Sciences Publication Activity Database

    Valach, F.; Bochníček, Josef; Hejda, Pavel; Revallo, M.

    2014-01-01

    Roč. 53, č. 4 (2014), s. 589-598 ISSN 0273-1177 R&D Projects: GA AV ČR(CZ) IAA300120608; GA MŠk OC09070 Institutional support: RVO:67985530 Keywords : geomagnetic activity * interplanetary magnetic field * artificial neural network * ejection of coronal mass * X-ray flares Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.358, year: 2014

  4. Large-scale brain networks underlying language acquisition in early infancy

    Directory of Open Access Journals (Sweden)

    Fumitaka eHomae

    2011-05-01

    Full Text Available A critical issue in human development is that of whether the language-related areas in the left frontal and temporal regions work as a functional network in preverbal infants. Here, we used 94-channel near-infrared spectroscopy (NIRS to reveal the functional networks in the brains of sleeping 3-month-old infants with and without presenting speech sounds. During the first 3 min, we measured spontaneous brain activation (period 1. After period 1, we provided stimuli by playing Japanese sentences for 3 min (period 2. Finally, we measured brain activation for 3 min without providing the stimulus (period 3, as in period 1. We found that not only the bilateral temporal and temporoparietal regions but also the prefrontal and occipital regions showed oxygenated hemoglobin (oxy-Hb signal increases and deoxygenated hemoglobin (deoxy-Hb signal decreases when speech sounds were presented to infants. By calculating time-lagged cross-correlations and coherences of oxy-Hb signals between channels, we tested the functional connectivity for the 3 periods. The oxy-Hb signals in neighboring channels, as well as their homologous channels in the contralateral hemisphere, showed high correlation coefficients in period 1. Similar correlations were observed in period 2; however, the number of channels showing high correlations was higher in the ipsilateral hemisphere, especially in the anterior-posterior direction. The functional connectivity in period 3 showed a close relationship between the frontal and temporal regions, which was less prominent in period 1, indicating that these regions form the functional networks and work as a hysteresis system that has memory of the previous inputs. We propose a hypothesis that the spatiotemporally large-scale brain networks, including the frontal and temporal regions, underlie speech processing in infants and they might play important roles in language acquisition during infancy.

  5. Behavior Analysis of Bank into E-Commerce under Network Externalities

    Institute of Scientific and Technical Information of China (English)

    CUI Jisheng; ZHUANG Lei

    2017-01-01

    With the advent of Internet financial innovation,many commercial banks quietly have started to enter into the E-commercial in order to prevent oligarchs from eroding financial market.From the perspective of industrial division,this paper reveals the nature of a phenomenon that E-commercial enterprises and banks have stepped into each other's field,which E-commerce of banks can give full play to network effects.Then it uues game theory to analyze the motions of banks to involve into E-commerce and the short-term competitive equilibrium of large incumbent E-commercial enterprises as well.For individual rationality,the dominant strategy of banks and E-commercial enterprises is (enter,counterattack).Considering network externalities,it constructs a competing model on banks and incumbent E-commercial enterprises and simulates competitive trends and balanced results of their behaviors,which illustrates that banks can obtain network effect after choosing E-commerce strategy.

  6. Probabilistic Optimal Power Dispatch in Multi-Carrier Networked Microgrids under Uncertainties

    Directory of Open Access Journals (Sweden)

    Vahid Amir

    2017-11-01

    Full Text Available A microgrid (MG is a small-scale version of the power system which makes possible the integration of renewable resources as well as achieving maximum demand side management (DSM utilization. The future power system will be faced with severe uncertainties owing to penetration of renewable resources. Consequently, the uncertainty assessment of system performance is essential. The conventional energy scheduling in an MG may not be suitable for active distribution networks. Hence, this study focuses on the probabilistic analysis of optimal power dispatch considering economic aspects in a multi-carrier networked microgrid. The aim is to study the impact of uncertain behavior of loads, renewable resources, and electricity market on the optimal management of a multi-carrier networked microgrid. Furthermore, a novel time-based demand side management is proposed in order to reshape the load curve, as well as preventing the excessive use of energy in peak hours. The optimization model is formulated as a mixed integer nonlinear program (MINLP and is solved using MATLAB and GAMS software. Results show that the energy sharing capability between MCMGs and MCMGs and the main grids as well as utilization of demand side management can decrease operating costs for smart distribution grids.

  7. Energy consumption analysis for various memristive networks under different learning strategies

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Lei; Wang, Dong [Center for Brain Inspired Computing Research (CBICR), Department of Precision Instrument, Tsinghua University, Beijing 100084 (China); Zhang, Ziyang; Tang, Pei [Optical Memory National Engineering Research Center, Department of Precision Instrument, Tsinghua University, Beijing 100084 (China); Li, Guoqi, E-mail: liguoqi@mail.tsinghua.edu.cn [Center for Brain Inspired Computing Research (CBICR), Department of Precision Instrument, Tsinghua University, Beijing 100084 (China); Pei, Jing, E-mail: peij@mail.tsinghua.edu.cn [Center for Brain Inspired Computing Research (CBICR), Department of Precision Instrument, Tsinghua University, Beijing 100084 (China); Optical Memory National Engineering Research Center, Department of Precision Instrument, Tsinghua University, Beijing 100084 (China)

    2016-02-22

    Highlights: • Estimation methodology for energy consumed by memristor is established. • Energy comparisons for different learning strategies in various networks are touched. • Less-pulses and low-power-first modulation methods are energy efficient. • Proper decreasing the memristor modulation precision reduces the energy consumption. • Helpful solutions for power improving in memristive systems are proposed. - Abstract: Recently, various memristive systems emerge to emulate the efficient computing paradigm of the brain cortex; whereas, how to make them energy efficient still remains unclear, especially from an overall perspective. Here, a systematical and bottom-up energy consumption analysis is demonstrated, including the memristor device level and the network learning level. We propose an energy estimating methodology when modulating the memristive synapses, which is simulated in three typical neural networks with different synaptic structures and learning strategies for both offline and online learning. These results provide an in-depth insight to create energy efficient brain-inspired neuromorphic devices in the future.

  8. Actors and networks in resource conflict resolution under climate change in rural Kenya

    Science.gov (United States)

    Ngaruiya, Grace W.; Scheffran, Jürgen

    2016-05-01

    The change from consensual decision-making arrangements into centralized hierarchical chieftaincy schemes through colonization disrupted many rural conflict resolution mechanisms in Africa. In addition, climate change impacts on land use have introduced additional socio-ecological factors that complicate rural conflict dynamics. Despite the current urgent need for conflict-sensitive adaptation, resolution efficiency of these fused rural institutions has hardly been documented. In this context, we analyse the Loitoktok network for implemented resource conflict resolution structures and identify potential actors to guide conflict-sensitive adaptation. This is based on social network data and processes that are collected using the saturation sampling technique to analyse mechanisms of brokerage. We find that there are three different forms of fused conflict resolution arrangements that integrate traditional institutions and private investors in the community. To effectively implement conflict-sensitive adaptation, we recommend the extension officers, the council of elders, local chiefs and private investors as potential conduits of knowledge in rural areas. In conclusion, efficiency of these fused conflict resolution institutions is aided by the presence of holistic resource management policies and diversification in conflict resolution actors and networks.

  9. Resistance and resistance fluctuations in random resistor networks under biased percolation.

    Science.gov (United States)

    Pennetta, Cecilia; Reggiani, L; Trefán, Gy; Alfinito, E

    2002-06-01

    We consider a two-dimensional random resistor network (RRN) in the presence of two competing biased processes consisting of the breaking and recovering of elementary resistors. These two processes are driven by the joint effects of an electrical bias and of the heat exchange with a thermal bath. The electrical bias is set up by applying a constant voltage or, alternatively, a constant current. Monte Carlo simulations are performed to analyze the network evolution in the full range of bias values. Depending on the bias strength, electrical failure or steady state are achieved. Here we investigate the steady state of the RRN focusing on the properties of the non-Ohmic regime. In constant-voltage conditions, a scaling relation is found between /(0) and V/V(0), where is the average network resistance, (0) the linear regime resistance, and V0 the threshold value for the onset of nonlinearity. A similar relation is found in constant-current conditions. The relative variance of resistance fluctuations also exhibits a strong nonlinearity whose properties are investigated. The power spectral density of resistance fluctuations presents a Lorentzian spectrum and the amplitude of fluctuations shows a significant non-Gaussian behavior in the prebreakdown region. These results compare well with electrical breakdown measurements in thin films of composites and of other conducting materials.

  10. Distributed Fault-Tolerant Control of Networked Uncertain Euler-Lagrange Systems Under Actuator Faults.

    Science.gov (United States)

    Chen, Gang; Song, Yongduan; Lewis, Frank L

    2016-05-03

    This paper investigates the distributed fault-tolerant control problem of networked Euler-Lagrange systems with actuator and communication link faults. An adaptive fault-tolerant cooperative control scheme is proposed to achieve the coordinated tracking control of networked uncertain Lagrange systems on a general directed communication topology, which contains a spanning tree with the root node being the active target system. The proposed algorithm is capable of compensating for the actuator bias fault, the partial loss of effectiveness actuation fault, the communication link fault, the model uncertainty, and the external disturbance simultaneously. The control scheme does not use any fault detection and isolation mechanism to detect, separate, and identify the actuator faults online, which largely reduces the online computation and expedites the responsiveness of the controller. To validate the effectiveness of the proposed method, a test-bed of multiple robot-arm cooperative control system is developed for real-time verification. Experiments on the networked robot-arms are conduced and the results confirm the benefits and the effectiveness of the proposed distributed fault-tolerant control algorithms.

  11. Hybrid Access Femtocells in Overlaid MIMO Cellular Networks with Transmit Selection under Poisson Field Interference

    KAUST Repository

    Abdel Nabi, Amr A

    2017-09-21

    This paper analyzes the performance of hybrid control-access schemes for small cells (such as femtocells) in the context of two-tier overlaid cellular networks. The proposed hybrid access schemes allow for sharing the same downlink resources between the small-cell network and the original macrocell network, and their mode of operations are characterized considering post-processed signal-to-interference-plus-noise ratios (SINRs) or pre-processed interference-aware operation. The work presents a detailed treatment of achieved performance of a desired user that benefits from MIMO arrays configuration through the use of transmit antenna selection (TAS) and maximal ratio combining (MRC) in the presence of Poisson field interference processes on spatial links. Furthermore, based on the interference awareness at the desired user, two TAS approaches are treated, which are the signal-to-noise (SNR)-based selection and SINR-based selection. The analysis is generalized to address the cases of highly-correlated and un-correlated aggregated interference on different transmit channels. In addition, the effect of delayed TAS due to imperfect feedback and the impact of arbitrary TAS processing are investigated. The analytical results are validated by simulations, to clarify some of the main outcomes herein.

  12. Optimizing Bus Frequencies under Uncertain Demand: Case Study of the Transit Network in a Developing City

    Directory of Open Access Journals (Sweden)

    Zhengfeng Huang

    2013-01-01

    Full Text Available Various factors can make predicting bus passenger demand uncertain. In this study, a bilevel programming model for optimizing bus frequencies based on uncertain bus passenger demand is formulated. There are two terms constituting the upper-level objective. The first is transit network cost, consisting of the passengers’ expected travel time and operating costs, and the second is transit network robustness performance, indicated by the variance in passenger travel time. The second term reflects the risk aversion of decision maker, and it can make the most uncertain demand be met by the bus operation with the optimal transit frequency. With transit link’s proportional flow eigenvalues (mean and covariance obtained from the lower-level model, the upper-level objective is formulated by the analytical method. In the lower-level model, the above two eigenvalues are calculated by analyzing the propagation of mean transit trips and their variation in the optimal strategy transit assignment process. The genetic algorithm (GA used to solve the model is tested in an example network. Finally, the model is applied to determining optimal bus frequencies in the city of Liupanshui, China. The total cost of the transit system in Liupanshui can be reduced by about 6% via this method.

  13. Hybrid Access Femtocells in Overlaid MIMO Cellular Networks with Transmit Selection under Poisson Field Interference

    KAUST Repository

    Abdel Nabi, Amr A; Al-Qahtani, Fawaz S.; Radaydeh, Redha Mahmoud Mesleh; Shaqfeh, Mohammed

    2017-01-01

    This paper analyzes the performance of hybrid control-access schemes for small cells (such as femtocells) in the context of two-tier overlaid cellular networks. The proposed hybrid access schemes allow for sharing the same downlink resources between the small-cell network and the original macrocell network, and their mode of operations are characterized considering post-processed signal-to-interference-plus-noise ratios (SINRs) or pre-processed interference-aware operation. The work presents a detailed treatment of achieved performance of a desired user that benefits from MIMO arrays configuration through the use of transmit antenna selection (TAS) and maximal ratio combining (MRC) in the presence of Poisson field interference processes on spatial links. Furthermore, based on the interference awareness at the desired user, two TAS approaches are treated, which are the signal-to-noise (SNR)-based selection and SINR-based selection. The analysis is generalized to address the cases of highly-correlated and un-correlated aggregated interference on different transmit channels. In addition, the effect of delayed TAS due to imperfect feedback and the impact of arbitrary TAS processing are investigated. The analytical results are validated by simulations, to clarify some of the main outcomes herein.

  14. Energy consumption analysis for various memristive networks under different learning strategies

    International Nuclear Information System (INIS)

    Deng, Lei; Wang, Dong; Zhang, Ziyang; Tang, Pei; Li, Guoqi; Pei, Jing

    2016-01-01

    Highlights: • Estimation methodology for energy consumed by memristor is established. • Energy comparisons for different learning strategies in various networks are touched. • Less-pulses and low-power-first modulation methods are energy efficient. • Proper decreasing the memristor modulation precision reduces the energy consumption. • Helpful solutions for power improving in memristive systems are proposed. - Abstract: Recently, various memristive systems emerge to emulate the efficient computing paradigm of the brain cortex; whereas, how to make them energy efficient still remains unclear, especially from an overall perspective. Here, a systematical and bottom-up energy consumption analysis is demonstrated, including the memristor device level and the network learning level. We propose an energy estimating methodology when modulating the memristive synapses, which is simulated in three typical neural networks with different synaptic structures and learning strategies for both offline and online learning. These results provide an in-depth insight to create energy efficient brain-inspired neuromorphic devices in the future.

  15. Temporal entrainment of cognitive functions: musical mnemonics induce brain plasticity and oscillatory synchrony in neural networks underlying memory.

    Science.gov (United States)

    Thaut, Michael H; Peterson, David A; McIntosh, Gerald C

    2005-12-01

    In a series of experiments, we have begun to investigate the effect of music as a mnemonic device on learning and memory and the underlying plasticity of oscillatory neural networks. We used verbal learning and memory tests (standardized word lists, AVLT) in conjunction with electroencephalographic analysis to determine differences between verbal learning in either a spoken or musical (verbal materials as song lyrics) modality. In healthy adults, learning in both the spoken and music condition was associated with significant increases in oscillatory synchrony across all frequency bands. A significant difference between the spoken and music condition emerged in the cortical topography of the learning-related synchronization. When using EEG measures as predictors during learning for subsequent successful memory recall, significantly increased coherence (phase-locked synchronization) within and between oscillatory brain networks emerged for music in alpha and gamma bands. In a similar study with multiple sclerosis patients, superior learning and memory was shown in the music condition when controlled for word order recall, and subjects were instructed to sing back the word lists. Also, the music condition was associated with a significant power increase in the low-alpha band in bilateral frontal networks, indicating increased neuronal synchronization. Musical learning may access compensatory pathways for memory functions during compromised PFC functions associated with learning and recall. Music learning may also confer a neurophysiological advantage through the stronger synchronization of the neuronal cell assemblies underlying verbal learning and memory. Collectively our data provide evidence that melodic-rhythmic templates as temporal structures in music may drive internal rhythm formation in recurrent cortical networks involved in learning and memory.

  16. Exploring causal networks underlying fat deposition and muscularity in pigs through the integration of phenotypic, genotypic and transcriptomic data.

    Science.gov (United States)

    Peñagaricano, Francisco; Valente, Bruno D; Steibel, Juan P; Bates, Ronald O; Ernst, Catherine W; Khatib, Hasan; Rosa, Guilherme J M

    2015-09-16

    Joint modeling and analysis of phenotypic, genotypic and transcriptomic data have the potential to uncover the genetic control of gene activity and phenotypic variation, as well as shed light on the manner and extent of connectedness among these variables. Current studies mainly report associations, i.e. undirected connections among variables without causal interpretation. Knowledge regarding causal relationships among genes and phenotypes can be used to predict the behavior of complex systems, as well as to optimize management practices and selection strategies. Here, we performed a multistep procedure for inferring causal networks underlying carcass fat deposition and muscularity in pigs using multi-omics data obtained from an F2 Duroc x Pietrain resource pig population. We initially explored marginal associations between genotypes and phenotypic and expression traits through whole-genome scans, and then, in genomic regions with multiple significant hits, we assessed gene-phenotype network reconstruction using causal structural learning algorithms. One genomic region on SSC6 showed significant associations with three relevant phenotypes, off-midline10th-rib backfat thickness, loin muscle weight, and average intramuscular fat percentage, and also with the expression of seven genes, including ZNF24, SSX2IP, and AKR7A2. The inferred network indicated that the genotype affects the three phenotypes mainly through the expression of several genes. Among the phenotypes, fat deposition traits negatively affected loin muscle weight. Our findings shed light on the antagonist relationship between carcass fat deposition and lean meat content in pigs. In addition, the procedure described in this study has the potential to unravel gene-phenotype networks underlying complex phenotypes.

  17. Simulation studies in biochemical signaling and enzyme reactions

    Science.gov (United States)

    Nelatury, Sudarshan R.; Vagula, Mary C.

    2014-06-01

    Biochemical pathways characterize various biochemical reaction schemes that involve a set of species and the manner in which they are connected. Determination of schematics that represent these pathways is an important task in understanding metabolism and signal transduction. Examples of these Pathways are: DNA and protein synthesis, and production of several macro-molecules essential for cell survival. A sustained feedback mechanism arises in gene expression and production of mRNA that lead to protein synthesis if the protein so synthesized serves as a transcription factor and becomes a repressor of the gene expression. The cellular regulations are carried out through biochemical networks consisting of reactions and regulatory proteins. Systems biology is a relatively new area that attempts to describe the biochemical pathways analytically and develop reliable mathematical models for the pathways. A complete understanding of chemical reaction kinetics is prohibitively hard thanks to the nonlinear and highly complex mechanisms that regulate protein formation, but attempting to numerically solve some of the governing differential equations seems to offer significant insight about their biochemical picture. To validate these models, one can perform simple experiments in the lab. This paper introduces fundamental ideas in biochemical signaling and attempts to take first steps into the understanding of biochemical oscillations. Initially, the two-pool model of calcium is used to describe the dynamics behind the oscillations. Later we present some elementary results showing biochemical oscillations arising from solving differential equations of Elowitz and Leibler using MATLAB software.

  18. A flood-based information flow analysis and network minimization method for gene regulatory networks.

    Science.gov (United States)

    Pavlogiannis, Andreas; Mozhayskiy, Vadim; Tagkopoulos, Ilias

    2013-04-24

    Biological networks tend to have high interconnectivity, complex topologies and multiple types of interactions. This renders difficult the identification of sub-networks that are involved in condition- specific responses. In addition, we generally lack scalable methods that can reveal the information flow in gene regulatory and biochemical pathways. Doing so will help us to identify key participants and paths under specific environmental and cellular context. This paper introduces the theory of network flooding, which aims to address the problem of network minimization and regulatory information flow in gene regulatory networks. Given a regulatory biological network, a set of source (input) nodes and optionally a set of sink (output) nodes, our task is to find (a) the minimal sub-network that encodes the regulatory program involving all input and output nodes and (b) the information flow from the source to the sink nodes of the network. Here, we describe a novel, scalable, network traversal algorithm and we assess its potential to achieve significant network size reduction in both synthetic and E. coli networks. Scalability and sensitivity analysis show that the proposed method scales well with the size of the network, and is robust to noise and missing data. The method of network flooding proves to be a useful, practical approach towards information flow analysis in gene regulatory networks. Further extension of the proposed theory has the potential to lead in a unifying framework for the simultaneous network minimization and information flow analysis across various "omics" levels.

  19. The Interactomic Analysis Reveals Pathogenic Protein Networks in Phomopsis longicolla Underlying Seed Decay of Soybean

    Directory of Open Access Journals (Sweden)

    Shuxian Li

    2018-04-01

    Full Text Available Phomopsis longicolla T. W. Hobbs (syn. Diaporthe longicolla is the primary cause of Phomopsis seed decay (PSD in soybean, Glycine max (L. Merrill. This disease results in poor seed quality and is one of the most economically important seed diseases in soybean. The objectives of this study were to infer protein–protein interactions (PPI and to identify conserved global networks and pathogenicity subnetworks in P. longicolla including orthologous pathways for cell signaling and pathogenesis. The interlog method used in the study identified 215,255 unique PPIs among 3,868 proteins. There were 1,414 pathogenicity related genes in P. longicolla identified using the pathogen host interaction (PHI database. Additionally, 149 plant cell wall degrading enzymes (PCWDE were detected. The network captured five different classes of carbohydrate degrading enzymes, including the auxiliary activities, carbohydrate esterases, glycoside hydrolases, glycosyl transferases, and carbohydrate binding molecules. From the PPI analysis, novel interacting partners were determined for each of the PCWDE classes. The most predominant class of PCWDE was a group of 60 glycoside hydrolases proteins. The glycoside hydrolase subnetwork was found to be interacting with 1,442 proteins within the network and was among the largest clusters. The orthologous proteins FUS3, HOG, CYP1, SGE1, and the g5566t.1 gene identified in this study could play an important role in pathogenicity. Therefore, the P. longicolla protein interactome (PiPhom generated in this study can lead to a better understanding of PPIs in soybean pathogens. Furthermore, the PPI may aid in targeting of genes and proteins for further studies of the pathogenicity mechanisms.

  20. Prefrontal, posterior parietal and sensorimotor network activity underlying speed control during walking

    Directory of Open Access Journals (Sweden)

    Thomas C Bulea

    2015-05-01

    Full Text Available Accumulating evidence suggests cortical circuits may contribute to control of human locomotion. Here, noninvasive electroencephalography (EEG recorded from able-bodied volunteers during a novel treadmill walking paradigm was used to assess neural correlates of walking. A systematic processing method, including a recently developed subspace reconstruction algorithm, reduced movement-related EEG artifact prior to independent component analysis and dipole source localization. We quantified cortical activity while participants tracked slow and fast target speeds across two treadmill conditions: an active mode that adjusted belt speed based on user movements and a passive mode reflecting a typical treadmill. Our results reveal frequency specific, multi-focal task related changes in cortical oscillations elicited by active walking. Low γ band power, localized to the prefrontal and posterior parietal cortices, was significantly increased during double support and early swing phases, critical points in the gait cycle since the active controller adjusted speed based on pelvis position and swing foot velocity. These phasic γ band synchronizations provide evidence that prefrontal and posterior parietal networks, previously implicated in visuo-spatial and somotosensory integration, are engaged to enhance lower limb control during gait. Sustained μ and β band desynchronization within sensorimotor cortex, a neural correlate for movement, was observed during walking thereby validating our methods for isolating cortical activity. Our results also demonstrate the utility of EEG recorded during locomotion for probing the multi-regional cortical networks which underpin its execution. For example, the cortical network engagement elicited by the active treadmill suggests that it may enhance neuroplasticity for more effective motor training.

  1. Transcriptome analysis reveals regulatory networks underlying differential susceptibility to Botrytis cinerea in response to nitrogen availability in Solanum lycopersicum.

    Directory of Open Access Journals (Sweden)

    Andrea eVega

    2015-11-01

    Full Text Available Nitrogen (N is one of the main limiting nutrients for plant growth and crop yield. It is well documented that changes in nitrate availability, the main N source found in agricultural soils, influences a myriad of developmental programs and processes including the plant defense response. Indeed, many agronomical reports indicate that the plant N nutritional status influences their ability to respond effectively when challenged by different pathogens. However, the molecular mechanisms involved in N-modulation of plant susceptibility to pathogens are poorly characterized. In this work, we show that Solanum lycopersicum defense response to the necrotrophic fungus Botrytis cinerea is affected by plant N availability, with higher susceptibility in nitrate-limiting conditions. Global gene expression responses of tomato against B. cinerea under contrasting nitrate conditions reveals that plant primary metabolism is affected by the fungal infection regardless of N regimes. This result suggests that differential susceptibility to pathogen attack under contrasting N conditions is not only explained by a metabolic alteration. We used a systems biology approach to identify the transcriptional regulatory network implicated in plant response to the fungus infection under contrasting nitrate conditions. Interestingly, hub genes in this network are known key transcription factors involved in ethylene and jasmonic acid signaling. This result positions these hormones as key integrators of nitrate and defense against B. cinerea in tomato plants. Our results provide insights into potential crosstalk mechanisms between necrotrophic defense response and N status in plants.

  2. Overview of DFIG-based Wind Power System Resonances under Weak Networks

    DEFF Research Database (Denmark)

    Song, Yipeng; Blaabjerg, Frede

    2017-01-01

    The wind power generation techniques are continuing to develop and increasing numbers of Doubly Fed Induction Generator (DFIG)-based wind power systems are connecting to the on-shore and off-shore grids, local standalone weak networks, and also micro grid applications. The impedances of the weak...... scale of DFIG system with different parameters; 3) L or LCL filter adopted in the Grid Side Converter (GSC); 4) rotor speed; 5) current closed-loop controller parameters and 6) digital control delay will be discussed in this paper. On the basis of the analysis, active damping strategies for HFR using...

  3. A systematic framework for enterprise-wide optimization: Synthesis and design of processing network under uncertainty

    DEFF Research Database (Denmark)

    Quaglia, Alberto; Sarup, Bent; Sin, Gürkan

    2013-01-01

    technologies andproduct portfolio) which is feasible and have optimal performances over the entire uncertainty domain.Through the integration of different methods, tools, algorithms and databases, the framework guidesthe user in dealing with the mathematical complexity of the problems, allowing efficient...... formulationand solution of large and complex enterprise-wide optimization problem. Tools for the analysis of theuncertainty, of its consequences on the decision-making process and for the identification of strategiesto mitigate its impact on network performances are integrated in the framework. A decomposition...

  4. Biochemical Hypermedia: Galactose Metabolism.

    Directory of Open Access Journals (Sweden)

    J.K. Sugai

    2013-05-01

    Full Text Available Introduction: Animations of biochemical processes and virtual laboratory environments lead to true molecular simulations. The use of interactive software’s in education can improve cognitive capacity, better learning and, mainly, it makes information acquisition easier. Material and Methods: This work presents the development of a biochemical hypermedia to understanding of the galactose metabolism. It was developed with the help of concept maps, ISIS Draw, ADOBE Photoshop and FLASH MX Program. Results and Discussion: A step by step animation process shows the enzymatic reactions of galactose conversion to glucose-1-phosphate (to glycogen synthesis, glucose-6-phosphate (glycolysis intermediary, UDP-galactose (substrate to mucopolysaccharides synthesis and collagen’s glycosylation. There are navigation guide that allow scrolling the mouse over the names of the components of enzymatic reactions of via the metabolism of galactose. Thus, explanatory text box, chemical structures and animation of the actions of enzymes appear to navigator. Upon completion of the module, the user’s response to the proposed exercise can be checked immediately through text box with interactive content of the answer. Conclusion: This hypermedia was presented for undergraduate students (UFSC who revealed that it was extremely effective in promoting the understanding of the theme.

  5. Exponential synchronization of delayed neutral-type neural networks with Lévy noise under non-Lipschitz condition

    Science.gov (United States)

    Ma, Shuo; Kang, Yanmei

    2018-04-01

    In this paper, the exponential synchronization of stochastic neutral-type neural networks with time-varying delay and Lévy noise under non-Lipschitz condition is investigated for the first time. Using the general Itô's formula and the nonnegative semi-martingale convergence theorem, we derive general sufficient conditions of two kinds of exponential synchronization for the drive system and the response system with adaptive control. Numerical examples are presented to verify the effectiveness of the proposed criteria.

  6. Network approach for decision making under risk—How do we choose among probabilistic options with the same expected value?

    Science.gov (United States)

    Chen, Yi-Shin

    2018-01-01

    Conventional decision theory suggests that under risk, people choose option(s) by maximizing the expected utility. However, theories deal ambiguously with different options that have the same expected utility. A network approach is proposed by introducing ‘goal’ and ‘time’ factors to reduce the ambiguity in strategies for calculating the time-dependent probability of reaching a goal. As such, a mathematical foundation that explains the irrational behavior of choosing an option with a lower expected utility is revealed, which could imply that humans possess rationality in foresight. PMID:29702665

  7. Network approach for decision making under risk-How do we choose among probabilistic options with the same expected value?

    Science.gov (United States)

    Pan, Wei; Chen, Yi-Shin

    2018-01-01

    Conventional decision theory suggests that under risk, people choose option(s) by maximizing the expected utility. However, theories deal ambiguously with different options that have the same expected utility. A network approach is proposed by introducing 'goal' and 'time' factors to reduce the ambiguity in strategies for calculating the time-dependent probability of reaching a goal. As such, a mathematical foundation that explains the irrational behavior of choosing an option with a lower expected utility is revealed, which could imply that humans possess rationality in foresight.

  8. Network approach for decision making under risk-How do we choose among probabilistic options with the same expected value?

    Directory of Open Access Journals (Sweden)

    Wei Pan

    Full Text Available Conventional decision theory suggests that under risk, people choose option(s by maximizing the expected utility. However, theories deal ambiguously with different options that have the same expected utility. A network approach is proposed by introducing 'goal' and 'time' factors to reduce the ambiguity in strategies for calculating the time-dependent probability of reaching a goal. As such, a mathematical foundation that explains the irrational behavior of choosing an option with a lower expected utility is revealed, which could imply that humans possess rationality in foresight.

  9. The Visualization and Analysis of POI Features under Network Space Supported by Kernel Density Estimation

    Directory of Open Access Journals (Sweden)

    YU Wenhao

    2015-01-01

    Full Text Available The distribution pattern and the distribution density of urban facility POIs are of great significance in the fields of infrastructure planning and urban spatial analysis. The kernel density estimation, which has been usually utilized for expressing these spatial characteristics, is superior to other density estimation methods (such as Quadrat analysis, Voronoi-based method, for that the Kernel density estimation considers the regional impact based on the first law of geography. However, the traditional kernel density estimation is mainly based on the Euclidean space, ignoring the fact that the service function and interrelation of urban feasibilities is carried out on the network path distance, neither than conventional Euclidean distance. Hence, this research proposed a computational model of network kernel density estimation, and the extension type of model in the case of adding constraints. This work also discussed the impacts of distance attenuation threshold and height extreme to the representation of kernel density. The large-scale actual data experiment for analyzing the different POIs' distribution patterns (random type, sparse type, regional-intensive type, linear-intensive type discusses the POI infrastructure in the city on the spatial distribution of characteristics, influence factors, and service functions.

  10. Energy Management Optimization for Cellular Networks under Renewable Energy Generation Uncertainty

    KAUST Repository

    Rached, Nadhir B.

    2017-03-28

    The integration of renewable energy (RE) as an alternative power source for cellular networks has been deeply investigated in literature. However, RE generation is often assumed to be deterministic; an impractical assumption for realistic scenarios. In this paper, an efficient energy procurement strategy for cellular networks powered simultaneously by the smart grid (SG) and locally deployed RE sources characterized by uncertain processes is proposed. For a one-day operation cycle, the mobile operator aims to reduce its total energy cost by optimizing the amounts of energy to be procured from the local RE sources and SG at each time period. Additionally, it aims to determine the amount of extra generated RE to be sold back to SG. A chance constrained optimization is first proposed to deal with the RE generation uncertainty. Then, two convex approximation approaches: Chernoff and Chebyshev methods, characterized by different levels of knowledge about the RE generation, are developed to determine the energy procurement strategy for different risk levels. In addition, their performances are analyzed for various daily scenarios through selected simulation results. It is shown that the higher complex Chernoff method outperforms the Chebyshev one for different risk levels set by the operator.

  11. Characterization of dynamical systems under noise using recurrence networks: Application to simulated and EEG data

    International Nuclear Information System (INIS)

    Puthanmadam Subramaniyam, Narayan; Hyttinen, Jari

    2014-01-01

    In this letter, we study the influence of observational noise on recurrence network (RN) measures, the global clustering coefficient (C) and average path length (L) using the Rössler system and propose the application of RN measures to analyze the structural properties of electroencephalographic (EEG) data. We find that for an appropriate recurrence rate (RR>0.02) the influence of noise on C can be minimized while L is independent of RR for increasing levels of noise. Indications of structural complexity were found for healthy EEG, but to a lesser extent than epileptic EEG. Furthermore, C performed better than L in case of epileptic EEG. Our results show that RN measures can provide insights into the structural properties of EEG in normal and pathological states. - Highlights: • We study the influence of noise on the recurrence network measures C and L. • We propose the application of C and L to healthy and epileptic EEG data. • The influence of noise can be minimized by increasing the recurrence rate. • Measures C and L can describe the structural complexity of EEG data. • In case of epileptic EEG, C performs better than L

  12. Characterization of dynamical systems under noise using recurrence networks: Application to simulated and EEG data

    Energy Technology Data Exchange (ETDEWEB)

    Puthanmadam Subramaniyam, Narayan, E-mail: npsubramaniyam@gmail.com [Department of Electronics and Communications, Tampere University of Technology, Tampere (Finland); BioMediTech, Tampere (Finland); Hyttinen, Jari [Department of Electronics and Communications, Tampere University of Technology, Tampere (Finland); BioMediTech, Tampere (Finland)

    2014-10-24

    In this letter, we study the influence of observational noise on recurrence network (RN) measures, the global clustering coefficient (C) and average path length (L) using the Rössler system and propose the application of RN measures to analyze the structural properties of electroencephalographic (EEG) data. We find that for an appropriate recurrence rate (RR>0.02) the influence of noise on C can be minimized while L is independent of RR for increasing levels of noise. Indications of structural complexity were found for healthy EEG, but to a lesser extent than epileptic EEG. Furthermore, C performed better than L in case of epileptic EEG. Our results show that RN measures can provide insights into the structural properties of EEG in normal and pathological states. - Highlights: • We study the influence of noise on the recurrence network measures C and L. • We propose the application of C and L to healthy and epileptic EEG data. • The influence of noise can be minimized by increasing the recurrence rate. • Measures C and L can describe the structural complexity of EEG data. • In case of epileptic EEG, C performs better than L.

  13. Energy Management Optimization for Cellular Networks under Renewable Energy Generation Uncertainty

    KAUST Repository

    Rached, Nadhir B.; Ghazzai, Hakim; Kadri, Abdullah; Alouini, Mohamed-Slim

    2017-01-01

    The integration of renewable energy (RE) as an alternative power source for cellular networks has been deeply investigated in literature. However, RE generation is often assumed to be deterministic; an impractical assumption for realistic scenarios. In this paper, an efficient energy procurement strategy for cellular networks powered simultaneously by the smart grid (SG) and locally deployed RE sources characterized by uncertain processes is proposed. For a one-day operation cycle, the mobile operator aims to reduce its total energy cost by optimizing the amounts of energy to be procured from the local RE sources and SG at each time period. Additionally, it aims to determine the amount of extra generated RE to be sold back to SG. A chance constrained optimization is first proposed to deal with the RE generation uncertainty. Then, two convex approximation approaches: Chernoff and Chebyshev methods, characterized by different levels of knowledge about the RE generation, are developed to determine the energy procurement strategy for different risk levels. In addition, their performances are analyzed for various daily scenarios through selected simulation results. It is shown that the higher complex Chernoff method outperforms the Chebyshev one for different risk levels set by the operator.

  14. Using a Novel Wireless-Networked Decentralized Control Scheme under Unpredictable Environmental Conditions.

    Science.gov (United States)

    Chang, Chung-Liang; Huang, Yi-Ming; Hong, Guo-Fong

    2015-11-12

    The direction of sunshine or the installation sites of environmental control facilities in the greenhouse result in different temperature and humidity levels in the various zones of the greenhouse, and thus, the production quality of crop is inconsistent. This study proposed a wireless-networked decentralized fuzzy control scheme to regulate the environmental parameters of various culture zones within a greenhouse. The proposed scheme can create different environmental conditions for cultivating different crops in various zones and achieve diversification or standardization of crop production. A star-type wireless sensor network is utilized to communicate with each sensing node, actuator node, and control node in various zones within the greenhouse. The fuzzy rule-based inference system is used to regulate the environmental parameters for temperature and humidity based on real-time data of plant growth response provided by a growth stage selector. The growth stage selector defines the control ranges of temperature and humidity of the various culture zones according to the leaf area of the plant, the number of leaves, and the cumulative amount of light. The experimental results show that the proposed scheme is stable and robust and provides basis for future greenhouse applications.

  15. Using a Novel Wireless-Networked Decentralized Control Scheme under Unpredictable Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Chung-Liang Chang

    2015-11-01

    Full Text Available The direction of sunshine or the installation sites of environmental control facilities in the greenhouse result in different temperature and humidity levels in the various zones of the greenhouse, and thus, the production quality of crop is inconsistent. This study proposed a wireless-networked decentralized fuzzy control scheme to regulate the environmental parameters of various culture zones within a greenhouse. The proposed scheme can create different environmental conditions for cultivating different crops in various zones and achieve diversification or standardization of crop production. A star-type wireless sensor network is utilized to communicate with each sensing node, actuator node, and control node in various zones within the greenhouse. The fuzzy rule-based inference system is used to regulate the environmental parameters for temperature and humidity based on real-time data of plant growth response provided by a growth stage selector. The growth stage selector defines the control ranges of temperature and humidity of the various culture zones according to the leaf area of the plant, the number of leaves, and the cumulative amount of light. The experimental results show that the proposed scheme is stable and robust and provides basis for future greenhouse applications.

  16. Influence maximization in social networks under an independent cascade-based model

    Science.gov (United States)

    Wang, Qiyao; Jin, Yuehui; Lin, Zhen; Cheng, Shiduan; Yang, Tan

    2016-02-01

    The rapid growth of online social networks is important for viral marketing. Influence maximization refers to the process of finding influential users who make the most of information or product adoption. An independent cascade-based model for influence maximization, called IMIC-OC, was proposed to calculate positive influence. We assumed that influential users spread positive opinions. At the beginning, users held positive or negative opinions as their initial opinions. When more users became involved in the discussions, users balanced their own opinions and those of their neighbors. The number of users who did not change positive opinions was used to determine positive influence. Corresponding influential users who had maximum positive influence were then obtained. Experiments were conducted on three real networks, namely, Facebook, HEP-PH and Epinions, to calculate maximum positive influence based on the IMIC-OC model and two other baseline methods. The proposed model resulted in larger positive influence, thus indicating better performance compared with the baseline methods.

  17. Dysfunctional default mode network and executive control network in people with Internet gaming disorder: Independent component analysis under a probability discounting task.

    Science.gov (United States)

    Wang, L; Wu, L; Lin, X; Zhang, Y; Zhou, H; Du, X; Dong, G

    2016-04-01

    The present study identified the neural mechanism of risky decision-making in Internet gaming disorder (IGD) under a probability discounting task. Independent component analysis was used on the functional magnetic resonance imaging data from 19 IGD subjects (22.2 ± 3.08 years) and 21 healthy controls (HC, 22.8 ± 3.5 years). For the behavioral results, IGD subjects prefer the risky to the fixed options and showed shorter reaction time compared to HC. For the imaging results, the IGD subjects showed higher task-related activity in default mode network (DMN) and less engagement in the executive control network (ECN) than HC when making the risky decisions. Also, we found the activities of DMN correlate negatively with the reaction time and the ECN correlate positively with the probability discounting rates. The results suggest that people with IGD show altered modulation in DMN and deficit in executive control function, which might be the reason for why the IGD subjects continue to play online games despite the potential negative consequences. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Experimental Evaluation of Novel Master-Slave Configurations for Position Control under Random Network Delay and Variable Load for Teleoperation

    Directory of Open Access Journals (Sweden)

    Ahmet Kuzu

    2014-01-01

    Full Text Available This paper proposes two novel master-slave configurations that provide improvements in both control and communication aspects of teleoperation systems to achieve an overall improved performance in position control. The proposed novel master-slave configurations integrate modular control and communication approaches, consisting of a delay regulator to address problems related to variable network delay common to such systems, and a model tracking control that runs on the slave side for the compensation of uncertainties and model mismatch on the slave side. One of the configurations uses a sliding mode observer and the other one uses a modified Smith predictor scheme on the master side to ensure position transparency between the master and slave, while reference tracking of the slave is ensured by a proportional-differentiator type controller in both configurations. Experiments conducted for the networked position control of a single-link arm under system uncertainties and randomly varying network delays demonstrate significant performance improvements with both configurations over the past literature.

  19. Interactive network configuration maintains bacterioplankton community structure under elevated CO2 in a eutrophic coastal mesocosm experiment

    Science.gov (United States)

    Lin, Xin; Huang, Ruiping; Li, Yan; Li, Futian; Wu, Yaping; Hutchins, David A.; Dai, Minhan; Gao, Kunshan

    2018-01-01

    There is increasing concern about the effects of ocean acidification on marine biogeochemical and ecological processes and the organisms that drive them, including marine bacteria. Here, we examine the effects of elevated CO2 on the bacterioplankton community during a mesocosm experiment using an artificial phytoplankton community in subtropical, eutrophic coastal waters of Xiamen, southern China. Through sequencing the bacterial 16S rRNA gene V3-V4 region, we found that the bacterioplankton community in this high-nutrient coastal environment was relatively resilient to changes in seawater carbonate chemistry. Based on comparative ecological network analysis, we found that elevated CO2 hardly altered the network structure of high-abundance bacterioplankton taxa but appeared to reassemble the community network of low abundance taxa. This led to relatively high resilience of the whole bacterioplankton community to the elevated CO2 level and associated chemical changes. We also observed that the Flavobacteria group, which plays an important role in the microbial carbon pump, showed higher relative abundance under the elevated CO2 condition during the early stage of the phytoplankton bloom in the mesocosms. Our results provide new insights into how elevated CO2 may influence bacterioplankton community structure.

  20. The Potential Connectivity of Waterhole Networks and the Effectiveness of a Protected Area under Various Drought Scenarios

    Science.gov (United States)

    O’Farrill, Georgina; Gauthier Schampaert, Kim; Rayfield, Bronwyn; Bodin, Örjan; Calmé, Sophie; Sengupta, Raja; Gonzalez, Andrew

    2014-01-01

    Landscape connectivity is considered a priority for ecosystem conservation because it may mitigate the synergistic effects of climate change and habitat loss. Climate change predictions suggest changes in precipitation regimes, which will affect the availability of water resources, with potential consequences for landscape connectivity. The Greater Calakmul Region of the Yucatan Peninsula (Mexico) has experienced a 16% decrease in precipitation over the last 50 years, which we hypothesise has affected water resource connectivity. We used a network model of connectivity, for three large endangered species (Baird’s tapir, white-lipped peccary and jaguar), to assess the effect of drought on waterhole availability and connectivity in a forested landscape inside and adjacent to the Calakmul Biosphere Reserve. We used reported travel distances and home ranges for our species to establish movement distances in our model. Specifically, we compared the effects of 10 drought scenarios on the number of waterholes (nodes) and the subsequent changes in network structure and node importance. Our analysis revealed that drought dramatically influenced spatial structure and potential connectivity of the network. Our results show that waterhole connectivity and suitable habitat (area surrounding waterholes) is lost faster inside than outside the reserve for all three study species, an outcome that may drive them outside the reserve boundaries. These results emphasize the need to assess how the variability in the availability of seasonal water resource may affect the viability of animal populations under current climate change inside and outside protected areas. PMID:24830392

  1. The potential connectivity of waterhole networks and the effectiveness of a protected area under various drought scenarios.

    Directory of Open Access Journals (Sweden)

    Georgina O'Farrill

    Full Text Available Landscape connectivity is considered a priority for ecosystem conservation because it may mitigate the synergistic effects of climate change and habitat loss. Climate change predictions suggest changes in precipitation regimes, which will affect the availability of water resources, with potential consequences for landscape connectivity. The Greater Calakmul Region of the Yucatan Peninsula (Mexico has experienced a 16% decrease in precipitation over the last 50 years, which we hypothesise has affected water resource connectivity. We used a network model of connectivity, for three large endangered species (Baird's tapir, white-lipped peccary and jaguar, to assess the effect of drought on waterhole availability and connectivity in a forested landscape inside and adjacent to the Calakmul Biosphere Reserve. We used reported travel distances and home ranges for our species to establish movement distances in our model. Specifically, we compared the effects of 10 drought scenarios on the number of waterholes (nodes and the subsequent changes in network structure and node importance. Our analysis revealed that drought dramatically influenced spatial structure and potential connectivity of the network. Our results show that waterhole connectivity and suitable habitat (area surrounding waterholes is lost faster inside than outside the reserve for all three study species, an outcome that may drive them outside the reserve boundaries. These results emphasize the need to assess how the variability in the availability of seasonal water resource may affect the viability of animal populations under current climate change inside and outside protected areas.

  2. Validation of Tilt Gain under Realistic Path Loss Model and Network Scenario

    DEFF Research Database (Denmark)

    Nguyen, Huan Cong; Rodriguez, Ignacio; Sørensen, Troels Bundgaard

    2013-01-01

    Despite being a simple and commonly-applied radio optimization technique, the impact on practical network performance from base station antenna downtilt is not well understood. Most published studies based on empirical path loss models report tilt angles and performance gains that are far higher...... than practical experience suggests. We motivate in this paper, based on a practical LTE scenario, that the discrepancy partly lies in the path loss model, and shows that a more detailed semi-deterministic model leads to both lower gains in terms of SINR, outage probability and downlink throughput...... settings, including the use of electrical and/or mechanical antenna downtilt, and therefore it is possible to find multiple optimum tilt profiles in a practical case. A broader implication of this study is that care must be taken when using the 3GPP model to evaluate advanced adaptive antenna techniques...

  3. Hybrid Electromagnetism-Like Algorithm for Dynamic Supply Chain Network Design under Traffic Congestion and Uncertainty

    Directory of Open Access Journals (Sweden)

    Javid Jouzdani

    2016-01-01

    Full Text Available With the constantly increasing pressure of the competitive environment, supply chain (SC decision makers are forced to consider several aspects of business climate. More specifically, they should take into account the endogenous features (e.g., available means of transportation, and the variety of products and exogenous criteria (e.g., the environmental uncertainty, and transportation system conditions. In this paper, a mixed integer nonlinear programming (MINLP model for dynamic design of a supply chain network is proposed. In this model, multiple products and multiple transportation modes, the time value of money, traffic congestion, and both supply-side and demand-side uncertainties are considered. Due to the complexity of such models, conventional solution methods are not applicable; therefore, two hybrid Electromagnetism-Like Algorithms (EMA are designed and discussed for tackling the problem. The numerical results show the applicability of the proposed model and the capabilities of the solution approaches to the MINLP problem.

  4. Characterization of dynamical systems under noise using recurrence networks: Application to simulated and EEG data

    Science.gov (United States)

    Puthanmadam Subramaniyam, Narayan; Hyttinen, Jari

    2014-10-01

    In this letter, we study the influence of observational noise on recurrence network (RN) measures, the global clustering coefficient (C) and average path length (L) using the Rössler system and propose the application of RN measures to analyze the structural properties of electroencephalographic (EEG) data. We find that for an appropriate recurrence rate (RR>0.02) the influence of noise on C can be minimized while L is independent of RR for increasing levels of noise. Indications of structural complexity were found for healthy EEG, but to a lesser extent than epileptic EEG. Furthermore, C performed better than L in case of epileptic EEG. Our results show that RN measures can provide insights into the structural properties of EEG in normal and pathological states.

  5. Advanced modelling of doubly fed induction generator wind turbine under network disturbance

    DEFF Research Database (Denmark)

    Seman, S.; Iov, Florin; Niiranen, J.

    This paper presents a variable speed wind turbine simulator. The simulator is used for a 2 MW wind turbine transient behavior study during a short-term symmetrical network disturbance. The mechanical part of wind turbine model consists of the rotor aerodynamic model, the wind turbine control...... converter, the model of the main transformer and a simple model of the grid. The simulation results obtained by means of the detailed wind turbine model are compared with the results obtained from a simplified simulator with an analytical model and FEM model of DFIG. The comparison of the results shows...... and the drive train model. The Doubly Fed Induction Generator (DFIG) is represented by an analytical two-axis model with constant lumped parameters and by Finite Element Method (FEM) based model. The model of the DFIG is coupled with the model of the passive crowbar protected and DTC controlled frequency...

  6. Distributed detection in UWB sensor networks under non-orthogonal Nakagami-m fading

    KAUST Repository

    Mehbodniya, Abolfazl

    2011-09-01

    Several attractive features of ultra wideband (UWB) communications make it a good candidate for physical-layer of wireless sensor networks (WSN). These features include low power consumption, low complexity and low cost of implementation. In this paper, we present an opportunistic power assignment strategy for distributed detection in parallel fusion WSNs, considering a Nakagami-m fading model for the communication channel and time-hopping (TH) UWB for the transmitter circuit of the sensor nodes. In a parallel fusion WSN, local decisions are made by local sensors and transmitted through wireless channels to a fusion center. The fusion center processes the information and makes the final decision. Simulation results are provided for the global probability of detection error and relative performance gain to evaluate the efficiency of the proposed power assignment strategy in different fading environments. © 2011 IEEE.

  7. Developing a cross-docking network design model under uncertain environment

    Science.gov (United States)

    Seyedhoseini, S. M.; Rashid, Reza; Teimoury, E.

    2015-06-01

    Cross-docking is a logistic concept, which plays an important role in supply chain management by decreasing inventory holding, order packing, transportation costs and delivery time. Paying attention to these concerns, and importance of the congestion in cross docks, we present a mixed-integer model to optimize the location and design of cross docks at the same time to minimize the total transportation and operating costs. The model combines queuing theory for design aspects, for that matter, we consider a network of cross docks and customers where two M/M/c queues have been represented to describe operations of indoor trucks and outdoor trucks in each cross dock. To prepare a perfect illustration for performance of the model, a real case also has been examined that indicated effectiveness of the proposed model.

  8. Quality of electric service in utility distribution networks under electromagnetic compatibility principles. [ENEL

    Energy Technology Data Exchange (ETDEWEB)

    Chizzolini, P.; Lagostena, L.; Mirra, C.; Sani, G. (ENEL, Rome Milan (Italy))

    1989-03-01

    The development of electromagnetic compatibility criteria, being worked out in international standardization activities, requires the establishment of the characteristics of public utility distribution networks as a reference ambient. This is necessary for gauging the immunity levels towards users and for defining the disturbance emission limits. Therefore, it is a new way to look at the quality of electric service. Consequently, it is necessary to check and specify, in an homogeneous manner, the phenomena that affect electric service. Use must be made of experimental tests and of the collection and elaboration of operation data. In addition to testing techniques, this paper describes the checking procedures for the quality of electric service as they are implemented in the information system developed by ENEL (Italian Electricity Board) for distribution activities. The first reference data obtained from the national and international fields about voltage shape and supply continuity are also indicated.

  9. PATs Operating in Water Networks under Unsteady Flow Conditions: Control Valve Manoeuvre and Overspeed Effect

    Directory of Open Access Journals (Sweden)

    Modesto Pérez-Sánchez

    2018-04-01

    Full Text Available The knowledge of transient conditions in water pressurized networks equipped with pump as turbines (PATs is of the utmost importance and necessary for the design and correct implementation of these new renewable solutions. This research characterizes the water hammer phenomenon in the design of PAT systems, emphasizing the transient events that can occur during a normal operation. This is based on project concerns towards a stable and efficient operation associated with the normal dynamic behaviour of flow control valve closure or by the induced overspeed effect. Basic concepts of mathematical modelling, characterization of control valve behaviour, damping effects in the wave propagation and runaway conditions of PATs are currently related to an inadequate design. The precise evaluation of basic operating rules depends upon the system and component type, as well as the required safety level during each operation.

  10. Spectral network based on component cells under the SOPHIA European project

    Energy Technology Data Exchange (ETDEWEB)

    Núñez, Rubén, E-mail: ruben.nunez@ies-def.upm.es; Antón, Ignacio; Askins, Steve; Sala, Gabriel [Instituto de Energía Solar - Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Domínguez, César; Voarino, Philippe [CEA-INES, 50 avenue du Lac Léman, 73375 Le Bourget-du-Lac (France); Steiner, Marc; Siefer, Gerald [Fraunhofer ISE, Heidenhofstr. 2, 79110 Freiburg (Germany); Fucci, Rafaelle; Roca, Franco [ENEA, P.le E.Fermi 1, Località Granatello, 80055 Portici (Italy); Minuto, Alessandro; Morabito, Paolo [RSE, Via Rubattino 54, 20134 Milan (Italy)

    2015-09-28

    In the frame of the European project SOPHIA, a spectral network based on component (also called isotypes) cells has been created. Among the members of this project, several spectral sensors based on component cells and collimating tubes, so-called spectroheliometers, were installed in the last years, allowing the collection of minute-resolution spectral data useful for CPV systems characterization across Europe. The use of spectroheliometers has been proved useful to establish the necessary spectral conditions to perform power rating of CPV modules and systems. If enough data in a given period of time is collected, ideally a year, it is possible to characterize spectrally the place where measurements are taken, in the same way that hours of annual irradiation can be estimated using a pyrheliometer.

  11. Discussion on the nuclear information resources co-constructing and sharing under network information

    International Nuclear Information System (INIS)

    Wu Yang

    2010-01-01

    During the tenth five-year plan, along with the digitization of information, and the development of information transmission network, the co-construction and sharing of China's nuclear industry information is facing a new development opportunities and challenges. This paper is based on the analysis of the nuclear library status and characteristics, combined of the development process of nuclear information resources over the past 20 years. For the characteristic of information sharing and services in the net environment, the problem in the current co-construction and sharing of nuclear information, and the needs of the future nuclear research and development of nuclear production, this paper forecast the work trends of nuclear information, and gives some countermeasure to strength the development of the co-construction and sharing of nuclear information. (author)

  12. Metapopulation modelling of riparian tree species persistence in river networks under climate change.

    Science.gov (United States)

    Van Looy, Kris; Piffady, Jérémy

    2017-11-01

    Floodplain landscapes are highly fragmented by river regulation resulting in habitat degradation and flood regime perturbation, posing risks to population persistence. Climate change is expected to pose supplementary risks in this context of fragmented landscapes, and especially for river systems adaptation management programs are developed. The association of habitat quality and quantity with the landscape dynamics and resilience to human-induced disturbances is still poorly understood in the context of species survival and colonization processes, but essential to prioritize conservation and restoration actions. We present a modelling approach that elucidates network connectivity and landscape dynamics in spatial and temporal context to identify vital corridors and conservation priorities in the Loire river and its tributaries. Alteration of flooding and flow regimes is believed to be critical to population dynamics in river ecosystems. Still, little is known of critical levels of alteration both spatially and temporally. We applied metapopulation modelling approaches for a dispersal-limited tree species, white elm; and a recruitment-limited tree species, black poplar. In different model steps the connectivity and natural dynamics of the river landscape are confronted with physical alterations (dams/dykes) to species survival and then future scenarios for climatic changes and potential adaptation measures are entered in the model and translated in population persistence over the river basin. For the two tree species we highlighted crucial network zones in relation to habitat quality and connectivity. Where the human impact model already shows currently restricted metapopulation development, climate change is projected to aggravate this persistence perspective substantially. For both species a significant drawback to the basin population is observed, with 1/3 for elm and ¼ for poplar after 25 years already. But proposed adaptation measures prove effective to even

  13. Integrated Genomics Reveals Convergent Transcriptomic Networks Underlying Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis.

    Science.gov (United States)

    Kusko, Rebecca L; Brothers, John F; Tedrow, John; Pandit, Kusum; Huleihel, Luai; Perdomo, Catalina; Liu, Gang; Juan-Guardela, Brenda; Kass, Daniel; Zhang, Sherry; Lenburg, Marc; Martinez, Fernando; Quackenbush, John; Sciurba, Frank; Limper, Andrew; Geraci, Mark; Yang, Ivana; Schwartz, David A; Beane, Jennifer; Spira, Avrum; Kaminski, Naftali

    2016-10-15

    Despite shared environmental exposures, idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease are usually studied in isolation, and the presence of shared molecular mechanisms is unknown. We applied an integrative genomic approach to identify convergent transcriptomic pathways in emphysema and IPF. We defined the transcriptional repertoire of chronic obstructive pulmonary disease, IPF, or normal histology lungs using RNA-seq (n = 87). Genes increased in both emphysema and IPF relative to control were enriched for the p53/hypoxia pathway, a finding confirmed in an independent cohort using both gene expression arrays and the nCounter Analysis System (n = 193). Immunohistochemistry confirmed overexpression of HIF1A, MDM2, and NFKBIB members of this pathway in tissues from patients with emphysema or IPF. Using reads aligned across splice junctions, we determined that alternative splicing of p53/hypoxia pathway-associated molecules NUMB and PDGFA occurred more frequently in IPF or emphysema compared with control and validated these findings by quantitative polymerase chain reaction and the nCounter Analysis System on an independent sample set (n = 193). Finally, by integrating parallel microRNA and mRNA-Seq data on the same samples, we identified MIR96 as a key novel regulatory hub in the p53/hypoxia gene-expression network and confirmed that modulation of MIR96 in vitro recapitulates the disease-associated gene-expression network. Our results suggest convergent transcriptional regulatory hubs in diseases as varied phenotypically as chronic obstructive pulmonary disease and IPF and suggest that these hubs may represent shared key responses of the lung to environmental stresses.

  14. Convolutional Neural Network-Based Embarrassing Situation Detection under Camera for Social Robot in Smart Homes.

    Science.gov (United States)

    Yang, Guanci; Yang, Jing; Sheng, Weihua; Junior, Francisco Erivaldo Fernandes; Li, Shaobo

    2018-05-12

    Recent research has shown that the ubiquitous use of cameras and voice monitoring equipment in a home environment can raise privacy concerns and affect human mental health. This can be a major obstacle to the deployment of smart home systems for elderly or disabled care. This study uses a social robot to detect embarrassing situations. Firstly, we designed an improved neural network structure based on the You Only Look Once (YOLO) model to obtain feature information. By focusing on reducing area redundancy and computation time, we proposed a bounding-box merging algorithm based on region proposal networks (B-RPN), to merge the areas that have similar features and determine the borders of the bounding box. Thereafter, we designed a feature extraction algorithm based on our improved YOLO and B-RPN, called F-YOLO, for our training datasets, and then proposed a real-time object detection algorithm based on F-YOLO (RODA-FY). We implemented RODA-FY and compared models on our MAT social robot. Secondly, we considered six types of situations in smart homes, and developed training and validation datasets, containing 2580 and 360 images, respectively. Meanwhile, we designed three types of experiments with four types of test datasets composed of 960 sample images. Thirdly, we analyzed how a different number of training iterations affects our prediction estimation, and then we explored the relationship between recognition accuracy and learning rates. Our results show that our proposed privacy detection system can recognize designed situations in the smart home with an acceptable recognition accuracy of 94.48%. Finally, we compared the results among RODA-FY, Inception V3, and YOLO, which indicate that our proposed RODA-FY outperforms the other comparison models in recognition accuracy.

  15. Global dysrhythmia of cerebro-basal ganglia-cerebellar networks underlies motor tics following striatal disinhibition.

    Science.gov (United States)

    McCairn, Kevin W; Iriki, Atsushi; Isoda, Masaki

    2013-01-09

    Motor tics, a cardinal symptom of Tourette syndrome (TS), are hypothesized to arise from abnormalities within cerebro-basal ganglia circuits. Yet noninvasive neuroimaging of TS has previously identified robust activation in the cerebellum. To date, electrophysiological properties of cerebellar activation and its role in basal ganglia-mediated tic expression remain unknown. We performed multisite, multielectrode recordings of single-unit activity and local field potentials from the cerebellum, basal ganglia, and primary motor cortex using a pharmacologic monkey model of motor tics/TS. Following microinjections of bicuculline into the sensorimotor putamen, periodic tics occurred predominantly in the orofacial region, and a sizable number of cerebellar neurons showed phasic changes in activity associated with tic episodes. Specifically, 64% of the recorded cerebellar cortex neurons exhibited increases in activity, and 85% of the dentate nucleus neurons displayed excitatory, inhibitory, or multiphasic responses. Critically, abnormal discharges of cerebellar cortex neurons and excitatory-type dentate neurons mostly preceded behavioral tic onset, indicating their central origins. Latencies of pathological activity in the cerebellum and primary motor cortex substantially overlapped, suggesting that aberrant signals may be traveling along divergent pathways to these structures from the basal ganglia. Furthermore, the occurrence of tic movement was most closely associated with local field potential spikes in the cerebellum and primary motor cortex, implying that these structures may function as a gate to release overt tic movements. These findings indicate that tic-generating networks in basal ganglia mediated tic disorders extend beyond classical cerebro-basal ganglia circuits, leading to global network dysrhythmia including cerebellar circuits.

  16. Estimation of lost circulation amount occurs during under balanced drilling using drilling data and neural network

    Directory of Open Access Journals (Sweden)

    Pouria Behnoud far

    2017-09-01

    Full Text Available Lost circulation can cause an increase in time and cost of operation. Pipe sticking, formation damage and uncontrolled flow of oil and gas may be consequences of lost circulation. Dealing with this problem is a key factor to conduct a successful drilling operation. Estimation of lost circulation amount is necessary to find a solution. Lost circulation is influenced by different parameters such as mud weight, pump pressure, depth etc. Mud weight, pump pressure and flow rate of mud should be designed to prevent induced fractures and have the least amount of lost circulation. Artificial neural network is useful to find the relations of parameters with lost circulation. Genetic algorithm is applied on the achieved relations to determine the optimum mud weight, pump pressure, and flow rate. In an Iranian oil field, daily drilling reports of wells which are drilled using UBD technique are studied. Asmari formation is the most important oil reservoir of the studied field and UBD is used only in this interval. Three wells with the most, moderate and without lost circulation are chosen. In this article, the effect of mud weight, depth, pump pressure and flow rate of pump on lost circulation in UBD of Asmari formation in one of the Southwest Iranian fields is studied using drilling data and artificial neural network. In addition, the amount of lost circulation is predicted precisely with respect to two of the studied parameters using the presented correlations and the optimum mud weight, pump pressure and flow rate are calculated to minimize the lost circulation amount.

  17. Pore network quantification of sandstones under experimental CO2 injection using image analysis

    Science.gov (United States)

    Berrezueta, Edgar; González-Menéndez, Luís; Ordóñez-Casado, Berta; Olaya, Peter

    2015-04-01

    Automated-image identification and quantification of minerals, pores and textures together with petrographic analysis can be applied to improve pore system characterization in sedimentary rocks. Our case study is focused on the application of these techniques to study the evolution of rock pore network subjected to super critical CO2-injection. We have proposed a Digital Image Analysis (DIA) protocol that guarantees measurement reproducibility and reliability. This can be summarized in the following stages: (i) detailed description of mineralogy and texture (before and after CO2-injection) by optical and scanning electron microscopy (SEM) techniques using thin sections; (ii) adjustment and calibration of DIA tools; (iii) data acquisition protocol based on image capture with different polarization conditions (synchronized movement of polarizers); (iv) study and quantification by DIA that allow (a) identification and isolation of pixels that belong to the same category: minerals vs. pores in each sample and (b) measurement of changes in pore network, after the samples have been exposed to new conditions (in our case: SC-CO2-injection). Finally, interpretation of the petrography and the measured data by an automated approach were done. In our applied study, the DIA results highlight the changes observed by SEM and microscopic techniques, which consisted in a porosity increase when CO2 treatment occurs. Other additional changes were minor: variations in the roughness and roundness of pore edges, and pore aspect ratio, shown in the bigger pore population. Additionally, statistic tests of pore parameters measured were applied to verify that the differences observed between samples before and after CO2-injection were significant.

  18. An Interference Mitigation Scheme of Device-to-Device Communications for Sensor Networks Underlying LTE-A.

    Science.gov (United States)

    Kim, Jeehyeong; Karim, Nzabanita Abdoul; Cho, Sunghyun

    2017-05-10

    Device-to-Device (D2D) communication technology has become a key factor in wireless sensor networks to form autonomous communication links among sensor nodes. Many research results for D2D have been presented to resolve different technical issues of D2D. Nevertheless, the previous works have not resolved the shortage of data rate and limited coverage of wireless sensor networks. Due to bandwidth shortages and limited communication coverage, 3rd Generation Partnership Project (3GPP) has introduced a new Device-to-Device (D2D) communication technique underlying cellular networks, which can improve spectral efficiencies by enabling the direct communication of devices in proximity without passing through enhanced-NodeB (eNB). However, to enable D2D communication in a cellular network presents a challenge with regard to radio resource management since D2D links reuse the uplink radio resources of cellular users and it can cause interference to the receiving channels of D2D user equipment (DUE). In this paper, a hybrid mechanism is proposed that uses Fractional Frequency Reuse (FFR) and Almost Blank Sub-frame (ABS) schemes to handle inter-cell interference caused by cellular user equipments (CUEs) to D2D receivers (DUE-Rxs), reusing the same resources at the cell edge area. In our case, DUE-Rxs are considered as victim nodes and CUEs as aggressor nodes, since our primary target is to minimize inter-cell interference in order to increase the signal to interference and noise ratio (SINR) of the target DUE-Rx at the cell edge area. The numerical results show that the interference level of the target D2D receiver (DUE-Rx) decreases significantly compared to the conventional FFR at the cell edge. In addition, the system throughput of the proposed scheme can be increased up to 60% compared to the conventional FFR.

  19. Implantable biochemical fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Richter, G; Rao, J R

    1978-01-05

    Implantable biochemical fuel cells for the operation of heart pacemakers or artificial hearts convert oxidisable body substances such as glucose on the anode side and reduce the oxygen contained in body fluids at the cathode. The anode and cathode are separated by membranes which are impermeable to albumen and blood corpuscles in body fluids. A chemical shortcircuit cannot occur in practice if, according to the invention, one or more selective oxygen electrodes with carbon as catalyst are arranged so that the mixture which diffuses into the cell from body fluids during operation reaches the fuel cell electrode through the porous oxygen electrode. The membranes used must be permeable to water. Cellulose, polymerised polyvinyl alcohol or an ion exchanger with a buffering capacity between pH5 and 8 act as permeable materials.

  20. Prediction of composite fatigue life under variable amplitude loading using artificial neural network trained by genetic algorithm

    Science.gov (United States)

    Rohman, Muhamad Nur; Hidayat, Mas Irfan P.; Purniawan, Agung

    2018-04-01

    Neural networks (NN) have been widely used in application of fatigue life prediction. In the use of fatigue life prediction for polymeric-base composite, development of NN model is necessary with respect to the limited fatigue data and applicable to be used to predict the fatigue life under varying stress amplitudes in the different stress ratios. In the present paper, Multilayer-Perceptrons (MLP) model of neural network is developed, and Genetic Algorithm was employed to optimize the respective weights of NN for prediction of polymeric-base composite materials under variable amplitude loading. From the simulation result obtained with two different composite systems, named E-glass fabrics/epoxy (layups [(±45)/(0)2]S), and E-glass/polyester (layups [90/0/±45/0]S), NN model were trained with fatigue data from two different stress ratios, which represent limited fatigue data, can be used to predict another four and seven stress ratios respectively, with high accuracy of fatigue life prediction. The accuracy of NN prediction were quantified with the small value of mean square error (MSE). When using 33% from the total fatigue data for training, the NN model able to produce high accuracy for all stress ratios. When using less fatigue data during training (22% from the total fatigue data), the NN model still able to produce high coefficient of determination between the prediction result compared with obtained by experiment.

  1. The role of network bridging organisations in compensation payments for agri-environmental services under the EU Common Agricultural Policy.

    Science.gov (United States)

    Dedeurwaerdere, Tom; Polard, Audrey; Melindi-Ghidi, Paolo

    2015-11-01

    Compensation payments to farmers for the provision of agri-environmental services are a well-established policy scheme under the EU Common Agricultural Policy. However, in spite of the success in most EU countries in the uptake of the programme by farmers, the impact of the scheme on the long term commitment of farmers to change their practices remains poorly documented. To explore this issue, this paper presents the results of structured field interviews and a quantitative survey in the Walloon Region of Belgium. The main finding of this study is that farmers who have periodic contacts with network bridging organisations that foster cooperation and social learning in the agri-environmental landscapes show a higher commitment to change. This effect is observed both for farmers with high and low concern for biodiversity depletion. Support for network bridging organisations is foreseen under the EU Leader programme and the EU regulation 1306/2013, which could open-up interesting opportunities for enhancing the effectiveness of the current payment scheme for agri-environmental services.

  2. Capacity of wireless ad-hoc broadcast networks under realistic channel models

    NARCIS (Netherlands)

    Atici, C.; Sunay, M.O.

    2009-01-01

    In a wireless broadcasting scenario, some of the nodes can help the source node by forwarding the received information. Due to the interference from multiple transmissions, selection of these nodes directly affects the performance of the system under a given total power and hop constraint. In this

  3. Monitoring of biofilm formation and activity in drinking water distribution networks under oligotrophic conditions

    DEFF Research Database (Denmark)

    Boe-Hansen, Rasmus; Martiny, Adam Camillo; Arvin, Erik

    2003-01-01

    In this study, the construction a model distribution system suitable for studies of attached and suspended microbial activity in drinking water under controlled circumstances is outlined. The model system consisted of two loops connected in series with a total of 140 biofilm sampling points...

  4. Deployment-based lifetime optimization model for homogeneous Wireless Sensor Network under retransmission.

    Science.gov (United States)

    Li, Ruiying; Liu, Xiaoxi; Xie, Wei; Huang, Ning

    2014-12-10

    Sensor-deployment-based lifetime optimization is one of the most effective methods used to prolong the lifetime of Wireless Sensor Network (WSN) by reducing the distance-sensitive energy consumption. In this paper, data retransmission, a major consumption factor that is usually neglected in the previous work, is considered. For a homogeneous WSN, monitoring a circular target area with a centered base station, a sensor deployment model based on regular hexagonal grids is analyzed. To maximize the WSN lifetime, optimization models for both uniform and non-uniform deployment schemes are proposed by constraining on coverage, connectivity and success transmission rate. Based on the data transmission analysis in a data gathering cycle, the WSN lifetime in the model can be obtained through quantifying the energy consumption at each sensor location. The results of case studies show that it is meaningful to consider data retransmission in the lifetime optimization. In particular, our investigations indicate that, with the same lifetime requirement, the number of sensors needed in a non-uniform topology is much less than that in a uniform one. Finally, compared with a random scheme, simulation results further verify the advantage of our deployment model.

  5. The influence of age and mild cognitive impairment on associative memory performance and underlying brain networks.

    Science.gov (United States)

    Oedekoven, Christiane S H; Jansen, Andreas; Keidel, James L; Kircher, Tilo; Leube, Dirk

    2015-12-01

    Associative memory is essential to everyday activities, such as the binding of faces and corresponding names to form single bits of information. However, this ability often becomes impaired with increasing age. The most important neural substrate of associative memory is the hippocampus, a structure crucially implicated in the pathogenesis of Alzheimer's disease (AD). The main aim of this study was to compare neural correlates of associative memory in healthy aging and mild cognitive impairment (MCI), an at-risk state for AD. We used fMRI to investigate differences in brain activation and connectivity between young controls (n = 20), elderly controls (n = 32) and MCI patients (n = 21) during associative memory retrieval. We observed lower hippocampal activation in MCI patients than control groups during a face-name recognition task, and the magnitude of this decrement was correlated with lower associative memory performance. Further, increased activation in precentral regions in all older adults indicated a stronger involvement of the task positive network (TPN) with age. Finally, functional connectivity analysis revealed a stronger link of hippocampal and striatal components in older adults in comparison to young controls, regardless of memory impairment. In elderly controls, this went hand-in-hand with a stronger activation of striatal areas. Increased TPN activation may be linked to greater reliance on cognitive control in both older groups, while increased functional connectivity between the hippocampus and the striatum may suggest dedifferentiation, especially in elderly controls.

  6. Curling and closure of graphitic networks under electron-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ugarte, D [Ecole Polytechnique Federale, Lausanne (Switzerland)

    1992-10-22

    The discovery of buckminsterfullerene (C[sub 60]) and its production in macroscopic quantities has stimulated a great deal of research. More recently, attention has turned towards other curved graphitic networks, such as the giant fullerenes (C[sub n], n > 100) and carbon nanotubes. A general mechanism has been proposed in which the graphitic sheets bend in an attempt to eliminate the highly energetic dangling bonds present at the edge of the growing structure. Here, I report the response of carbon soot particles and tubular graphitic structures to intense electron-beam irradiation in a high-resolution electron microscope; such conditions resemble a high-temperature regime, permitting a degree of structural fluidity. With increased irradiation, there is a gradual reorganization of the initial material into quasi-spherical particles composed of concentric graphitic shells. This lends weight to the nucleation scheme proposed for fullerenes, and moreover, suggests that planar graphite may not be the most stable allotrope of carbon in systems of limited size. (Author).

  7. Artificial neural networks based estimation of optical parameters by diffuse reflectance imaging under in vitro conditions

    Directory of Open Access Journals (Sweden)

    Mahmut Ozan Gökkan

    2017-01-01

    Full Text Available Optical parameters (properties of tissue-mimicking phantoms are determined through noninvasive optical imaging. Objective of this study is to decompose obtained diffuse reflectance into these optical properties such as absorption and scattering coefficients. To do so, transmission spectroscopy is firstly used to measure the coefficients via an experimental setup. Next, the optical properties of each characterized phantom are input for Monte Carlo (MC simulations to get diffuse reflectance. Also, a surface image for each single phantom with its known optical properties is obliquely captured due to reflectance-based geometrical setup using CMOS camera that is positioned at 5∘ angle to the phantoms. For the illumination of light, a laser light source at 633nm wavelength is preferred, because optical properties of different components in a biological tissue on that wavelength are nonoverlapped. During in vitro measurements, we prepared 30 different mixture samples adding clinoleic intravenous lipid emulsion (CILE and evans blue (EB dye into a distilled water. Finally, all obtained diffuse reflectance values are used to estimate the optical coefficients by artificial neural networks (ANNs in inverse modeling. For a biological tissue it is found that the simulated and measured values in our results are in good agreement.

  8. Intelligent Management System of Power Network Information Collection Under Big Data Storage

    Directory of Open Access Journals (Sweden)

    Qin Yingying

    2017-01-01

    Full Text Available With the development of economy and society, big data storage in enterprise management has become a problem that can’t be ignored. How to manage and optimize the allocation of tasks better is an important factor in the sustainable development of an enterprise. Now the enterprise information intelligent management has become a hot spot of management mode and concept in the information age. It presents information to the business managers in a more efficient, lower cost, and global form. The system uses the SG-UAP development tools, which is based on Eclipse development environment, and suits for Windows operating system, with Oracle as database development platform, Tomcat network information service for application server. The system uses SOA service-oriented architecture, provides RESTful style service, and HTTP(S as the communication protocol, and JSON as the data format. The system is divided into two parts, the front-end and the backs-end, achieved functions like user login, registration, password retrieving, enterprise internal personnel information management and internal data display and other functions.

  9. Adequacy of the ophthalmology workforce under Ontario's Local Health Integration Networks.

    Science.gov (United States)

    Lin, Tony; Xu, Mark; Hooper, Philip L

    2016-06-01

    To determine the current distribution of ophthalmologists across Ontario's Local Health Integration Networks (LHINs) and the influence on LHIN-specific cataract surgery wait times. Cross-sectional study. Ophthalmologists listed in the College of Physicians and Surgeons (CPSO) database and the Canadian population. A list of ophthalmologists and their practice locations were obtained from the CPSO website. The total population count for Ontario was obtained from the Statistics Canada census. The population counts for the population aged 65 years and older were generated using the Canadian Socioeconomic Information Management System (CANSIM) table 109-5425. Cataract surgery wait times were obtained from the Ontario Ministry of Health. Statistical analysis was completed using Microsoft Excel using StatPlus software. There are currently 3.28 ophthalmologists per 100 000 total population in Ontario. LHIN-specific ratios ranged from 8.87 (Toronto Central) to 1.67 (Central West), with 3 out of 14 LHINs having met the previously recommended ratio of 3.37. Median cataract surgery wait times ranged from 30 to 72 days. Although the number of cataract surgeries performed was positively correlated with the population aged 65 years and older (p < 0.001), there was no statistically significant association between wait times and number of cataract cases per 1000 population (p = 0.41). Although Ontario appears to have a sufficient number of ophthalmologists overall, there is significant variation in the distribution of the ophthalmology workforce at the LHIN level. This variation did not appear to significantly influence LHIN-specific cataract surgery wait times. Copyright © 2016 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  10. Gene networks underlying convergent and pleiotropic phenotypes in a large and systematically-phenotyped cohort with heterogeneous developmental disorders.

    Science.gov (United States)

    Andrews, Tallulah; Meader, Stephen; Vulto-van Silfhout, Anneke; Taylor, Avigail; Steinberg, Julia; Hehir-Kwa, Jayne; Pfundt, Rolph; de Leeuw, Nicole; de Vries, Bert B A; Webber, Caleb

    2015-03-01

    Readily-accessible and standardised capture of genotypic variation has revolutionised our understanding of the genetic contribution to disease. Unfortunately, the corresponding systematic capture of patient phenotypic variation needed to fully interpret the impact of genetic variation has lagged far behind. Exploiting deep and systematic phenotyping of a cohort of 197 patients presenting with heterogeneous developmental disorders and whose genomes harbour de novo CNVs, we systematically applied a range of commonly-used functional genomics approaches to identify the underlying molecular perturbations and their phenotypic impact. Grouping patients into 408 non-exclusive patient-phenotype groups, we identified a functional association amongst the genes disrupted in 209 (51%) groups. We find evidence for a significant number of molecular interactions amongst the association-contributing genes, including a single highly-interconnected network disrupted in 20% of patients with intellectual disability, and show using microcephaly how these molecular networks can be used as baits to identify additional members whose genes are variant in other patients with the same phenotype. Exploiting the systematic phenotyping of this cohort, we observe phenotypic concordance amongst patients whose variant genes contribute to the same functional association but note that (i) this relationship shows significant variation across the different approaches used to infer a commonly perturbed molecular pathway, and (ii) that the phenotypic similarities detected amongst patients who share the same inferred pathway perturbation result from these patients sharing many distinct phenotypes, rather than sharing a more specific phenotype, inferring that these pathways are best characterized by their pleiotropic effects.

  11. [Calculation of soil water erosion modulus based on RUSLE and its assessment under support of artificial neural network].

    Science.gov (United States)

    Li, Yuhuan; Wang, Jing; Zhang, Jixian

    2006-06-01

    With Hengshan County of Shanxi Province in the North Loess Plateau as an example, and by using ETM + and remote sensing data and RUSLE module, this paper quantitatively derived the soil and water loss in loess hilly region based on "3S" technology, and assessed the derivation results under the support of artificial neural network. The results showed that the annual average erosion modulus of Hengshan County was 103.23 t x hm(-2), and the gross erosion loss per year was 4. 38 x 10(7) t. The erosion was increased from northwest to southeast, and varied significantly with topographic position. A slight erosion or no erosion happened in walled basin, flat-headed mountain ridges and sandy area, which always suffered from dropping erosion, while strip erosion often happened on the upslope of mountain ridge and mountaintop flat. Moderate rill erosion always occurred on the middle and down slope of mountain ridge and mountaintop flat, and weighty rushing erosion occurred on the steep ravine and brink. The RUSLE model and artificial neural network technique were feasible and could be propagandized for drainage areas control and preserved practice.

  12. Loss of variation of state detected in soybean metabolic and human myelomonocytic leukaemia cell transcriptional networks under external stimuli

    KAUST Repository

    Sakata, Katsumi

    2016-10-24

    Soybean (Glycine max) is sensitive to flooding stress, and flood damage at the seedling stage is a barrier to growth. We constructed two mathematical models of the soybean metabolic network, a control model and a flooded model, from metabolic profiles in soybean plants. We simulated the metabolic profiles with perturbations before and after the flooding stimulus using the two models. We measured the variation of state that the system could maintain from a state–space description of the simulated profiles. The results showed a loss of variation of state during the flooding response in the soybean plants. Loss of variation of state was also observed in a human myelomonocytic leukaemia cell transcriptional network in response to a phorbol-ester stimulus. Thus, we detected a loss of variation of state under external stimuli in two biological systems, reg