WorldWideScience

Sample records for underground storage fields

  1. Underground Storage Tank (working)

    Data.gov (United States)

    Vermont Center for Geographic Information — Database contains information on ownership and system construction for underground storage tank facilities statewide. Database was developed in early 1990's for...

  2. 18 CFR 157.213 - Underground storage field facilities.

    Science.gov (United States)

    2010-04-01

    ... the storage reservoir boundary, as defined by fluid contacts or natural geological barriers; the... REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES... 7 OF THE NATURAL GAS ACT Interstate Pipeline Blanket Certificates and Authorization Under Section 7...

  3. Regulated underground storage tanks

    International Nuclear Information System (INIS)

    1992-06-01

    This guidance package is designed to assist DOE Field operations by providing thorough guidance on the underground storage tank (UST) regulations. [40 CFR 280]. The guidance uses tables, flowcharts, and checklists to provide a ''roadmap'' for DOE staff who are responsible for supervising UST operations. This package is tailored to address the issues facing DOE facilities. DOE staff should use this guidance as: An overview of the regulations for UST installation and operation; a comprehensive step-by-step guidance for the process of owning and operating an UST, from installation to closure; and a quick, ready-reference guide for any specific topic concerning UST ownership or operation

  4. Underground hydrogen storage. Final report. [Salt caverns, excavated caverns, aquifers and depleted fields

    Energy Technology Data Exchange (ETDEWEB)

    Foh, S.; Novil, M.; Rockar, E.; Randolph, P.

    1979-12-01

    The technical and economic feasibility of storing hydrogen in underground storage reservoirs is evaluated. The past and present technology of storing gases, primarily natural gas is reviewed. Four types of reservoirs are examined: salt caverns, excavated caverns, aquifers, and depleted fields. A technical investigation of hydrogen properties reveals that only hydrogen embrittlement places a limit on the underground storage by hydrogen. This constraint will limit reservoir pressures to 1200 psi or less. A model was developed to determine economic feasibility. After making reasonable assumptions that a utility might make in determining whether to proceed with a new storage operation, the model was tested and verified on natural gas storage. A parameteric analysis was made on some of the input parameters of the model to determine the sensitivity of the cost of service to them. Once the model was verified it was used to compute the cost of service of storing hydrogen in the four reservoir types. The costs of service for hydrogen storage ranged from 26 to 150% of the cost of the gas stored. The study concludes that it is now both safe and economic to store hydrogen in underground reservoirs.

  5. Underground storage tanks

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Environmental contamination from leaking underground storage tanks poses a significant threat to human health and the environment. An estimated five to six million underground storage tanks containing hazardous substances or petroleum products are in use in the US. Originally placed underground as a fire prevention measure, these tanks have substantially reduced the damages from stored flammable liquids. However, an estimated 400,000 underground tanks are thought to be leaking now, and many more will begin to leak in the near future. Products released from these leaking tanks can threaten groundwater supplies, damage sewer lines and buried cables, poison crops, and lead to fires and explosions. As required by the Hazardous and Solid Waste Amendments (HSWA), the EPA has been developing a comprehensive regulatory program for underground storage tanks. The EPA proposed three sets of regulations pertaining to underground tanks. The first addressed technical requirements for petroleum and hazardous substance tanks, including new tank performance standards, release detection, release reporting and investigation, corrective action, and tank closure. The second proposed regulation addresses financial responsibility requirements for underground petroleum tanks. The third addressed standards for approval of state tank programs

  6. Underground Storage Tanks in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Underground storage tank (UST) sites which store petroleum in Iowa. Includes sites which have been reported to DNR, and have active or removed underground storage...

  7. Underground Storage Tanks - Storage Tank Locations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Storage Tank Location is a DEP primary facility type, and its sole sub-facility is the storage tank itself. Storage tanks are aboveground or underground, and are...

  8. Underground storage tank program

    International Nuclear Information System (INIS)

    Lewis, M.W.

    1994-01-01

    Underground storage tanks, UST'S, have become a major component of the Louisville District's Environmental Support Program. The District's Geotechnical and Environmental Engineering Branch has spear-headed an innovative effort to streamline the time, effort and expense for removal, replacement, upgrade and associated cleanup of USTs at military and civil work installations. This program, called Yank-A-Tank, creates generic state-wide contracts for removal, remediation, installation and upgrade of storage tanks for which individual delivery orders are written under the basic contract. The idea is to create a ''JOC type'' contract containing all the components of work necessary to remove, reinstall or upgrade an underground or above ground tank. The contract documents contain a set of generic specifications and unit price books in addition to the standard ''boiler plate'' information. Each contract requires conformance to the specific regulations for the state in which it is issued. The contractor's bid consists of a bid factor which in the multiplier used with the prices in the unit price book. The solicitation is issued as a Request for Proposal (RPP) which allows the government to select a contractor based on technical qualification an well as bid factor. Once the basic contract is awarded individual delivery orders addressing specific areas of work are scoped, negotiated and awarded an modifications to the original contract. The delivery orders utilize the prepriced components and the contractor's factor to determine the value of the work

  9. Underground storage of heat

    International Nuclear Information System (INIS)

    Despois, J.; Nougarede, F.

    1976-01-01

    The interest laying in heat storage is envisaged taking account of the new energy context, with a view to optimizing the use of production means of heat sources hardly modulated according to the demand. In such a way, a natural medium, without any constructions cost but only an access cost is to be used. So, porous and permeable rocky strata allowing the use of a pressurized water flow as a transfer fluid are well convenient. With such a choice high temperatures (200 deg C) may be obtained, that are suitable for long transmissions. A mathematical model intended for solving the conservation equations in the case of heat storage inside a confined water layer is discussed. An approach of the operating conditions of storage may involve either a line-up arrangement (with the hot drilling at the center, the cold drillings being aligned on both sides) or a radial arrangement (with cold drillings at the peripheral edge encircling the hot drilling at the center of the layer). The three principal problems encountered are: starting drilling, and the circuit insulation and control [fr

  10. A new principle for underground pumped hydroelectric storage

    DEFF Research Database (Denmark)

    Olsen, Jan; Paasch, Kasper; Lassen, Benny

    2015-01-01

    This paper presents the basic idea, design considerations and field test results for a novel concept of an energy storage system. The system is of the underground pumped hydro storage (UPHS) type where energy is stored by lifting a mass of soil through the pumping of water into an underground cav...

  11. Underground storage of nuclear waste

    International Nuclear Information System (INIS)

    Russell, J.E.

    1977-06-01

    The objective of the National Waste Terminal Storage (NWTS) Program is to provide facilities in various deep geologic formations at multiple locations in the United States which will safely dispose of commerical radioactive waste. The NWTS Program is being administered for the Energy Research and Development Administration (ERDA) by the Office of Waste Isolation (OWI), Union Carbide Corporation, Nuclear Division. OWI manages projects that will lead to the location, construction, and operation of repositories, including all surface and underground engineering and facility design projects and technical support projects. 7 refs., 5 figs

  12. Underground storage tank management plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations.

  13. Underground storage tank management plan

    International Nuclear Information System (INIS)

    1994-09-01

    The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations

  14. State Certification of Underground Storage Tanks

    National Research Council Canada - National Science Library

    Granetto, Paul

    1998-01-01

    .... The audit was performed in response to a Senate Armed Services Committee inquiry about whether state environmental regulatory agencies would be able to certify that DoD underground storage tanks...

  15. Leaking Underground Storage Tank Sites in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Leaking Underground Storage Tank (LUST) sites where petroleum contamination has been found. There may be more than one LUST site per UST site.

  16. 40 CFR 280.230 - Operating an underground storage tank or underground storage tank system.

    Science.gov (United States)

    2010-07-01

    ... underground storage tank or underground storage tank system. (a) Operating an UST or UST system prior to...) Operating an UST or UST system after foreclosure. The following provisions apply to a holder who, through..., the purchaser must decide whether to operate or close the UST or UST system in accordance with...

  17. Energy Policy Act of 2005 and Underground Storage Tanks (USTs)

    Science.gov (United States)

    The Energy Policy Act of 2005 significantly affected federal and state underground storage tank programs, required major changes to the programs, and is aimed at reducing underground storage tank releases to our environment.

  18. Reflection Phenomena in Underground Pumped Storage Reservoirs

    Directory of Open Access Journals (Sweden)

    Elena Pummer

    2018-04-01

    Full Text Available Energy storage through hydropower leads to free surface water waves in the connected reservoirs. The reason for this is the movement of water between reservoirs at different elevations, which is necessary for electrical energy storage. Currently, the expansion of renewable energies requires the development of fast and flexible energy storage systems, of which classical pumped storage plants are the only technically proven and cost-effective technology and are the most used. Instead of classical pumped storage plants, where reservoirs are located on the surface, underground pumped storage plants with subsurface reservoirs could be an alternative. They are independent of topography and have a low surface area requirement. This can be a great advantage for energy storage expansion in case of environmental issues, residents’ concerns and an unusable terrain surface. However, the reservoirs of underground pumped storage plants differ in design from classical ones for stability and space reasons. The hydraulic design is essential to ensure their satisfactory hydraulic performance. The paper presents a hybrid model study, which is defined here as a combination of physical and numerical modelling to use the advantages and to compensate for the disadvantages of the respective methods. It shows the analysis of waves in ventilated underground reservoir systems with a great length to height ratio, considering new operational aspects from energy supply systems with a great percentage of renewable energies. The multifaceted and narrow design of the reservoirs leads to complex free surface flows; for example, undular and breaking bores arise. The results show excessive wave heights through wave reflections, caused by the impermeable reservoir boundaries. Hence, their knowledge is essential for a successful operational and constructive design of the reservoirs.

  19. Leak detection for underground storage tanks

    International Nuclear Information System (INIS)

    Durgin, P.B.; Young, T.M.

    1993-01-01

    This symposium was held in New Orleans, Louisiana on January 29, 1992. The purpose of this conference was to provide a forum for exchange of state-of-the-art information on leak detection for underground storage tanks that leaked fuel. A widespread concern was protection of groundwater supplies from these leaking tanks. In some cases, the papers report on research that was conducted two or three years ago but has never been adequately directed to the underground storage tank leak-detection audience. In other cases, the papers report on the latest leak-detection research. The symposium was divided into four sessions that were entitled: Internal Monitoring; External Monitoring; Regulations and Standards; and Site and Risk Evaluation. Individual papers have been cataloged separately for inclusion in the appropriate data bases

  20. Underground storage of natural gas and LPG

    International Nuclear Information System (INIS)

    1990-01-01

    The Symposium attended by over 200 participants from 23 member countries of the Economic Commission for Europe (ECE), representatives from Australia, Iraq, Israel, Kuwait as well as from 5 international organizations, provided an opportunity for existing and prospective gas markets in the ECE region to exchange experience and information on current trends and developments in natural gas and liquefied petroleum gas underground storage, especially in technical and regulatory matters, including economic, market and social considerations, that influence the planning, development and operations of gas storage facilities. Environmental and safety factors associated with such operations were also examined. A separate abstract was prepared for each of the presented papers. Refs, figs and tabs

  1. Underground gas storage in the World - Cedigaz survey

    International Nuclear Information System (INIS)

    Benquey, R.

    2010-01-01

    The 2010 edition of 'Underground Gas Storage in the World' provides an update to the previous survey released by CEDIGAZ in 2006. At that time, 610 underground gas storage (UGS) facilities were in operation worldwide, with a working capacity of 319 billion cubic metres (bcm). As of 1 January 2010, this number had reached 642 facilities with a working gas capacity of 333 bcm, or 10.8% of world gas consumption. By 2020, the global UGS demand is expected to grow at a pace of 3.3% per year, and according to the projects identified, more than 760 UGS sites could be active in the world with a total working capacity of approximately 465 bcm. In this survey, CEDIGAZ analyses the following trends which characterise the rapid development of underground gas storage in the world: - the strong dynamics of the European storage market, where 127 projects could add 75 bcm of working capacity by 2020, - the continued development of the UGS market in the United States (49 projects), encouraged by market-based rates allowed by the FERC, and rapid permitting processes, - the development of facilities in countries with little or no storage capacities at present, in Asia/Oceania, the C.I.S., and Eastern Europe in particular. This survey provides an analysis of the recent evolutions in the technic-economic aspects of the underground gas storage business, as well as an overview of the UGS markets and their developments in the world, country by country. A specific section is dedicated to the analysis of future UGS needs in Europe by 2020: - Technic-economic aspects of UGS: This part of the survey analyses the latest technical improvements and research axes in the field of underground gas storage. As it is more difficult to build greenfield storage facilities, a lot of work has been done to improve the performance and flexibility of existing storage sites. This section also deals with the evolution of investment and operational costs in storage over the last few years. Furthermore, the

  2. Underground storage of natural gas in Italy

    International Nuclear Information System (INIS)

    Henking, E.

    1992-01-01

    After first relating the importance of natural gas storage to the viability of Italian industrial activities, this paper discusses the geo-physical nature of different types of underground cavities which can be used for natural gas storage. These include depleted petroleum and natural gas reservoirs, aquifers and abandoned mines. Attention is given to the geologic characteristics and physical characteristics such as porosity, permeability and pressure that determine the suitability of any given storage area, and to the techniques used to resolve problems relative to partially depleted reservoirs, e.g., the presence of oil, water and salt. A review is made of Italy's main storage facilities. This review identifies the various types of storage techniques, major equipment, operating and maintenance practices. A look is then given at Italy's plans for the development of new facilities to meet rising demand expected to reach 80 billion cubic meters/year by the turn of the century. The operating activities of the two leading participants, SNAM and AGIP, in Italy's natural gas industry are highlighted. Specific problems which contribute to the high operating costs of natural gas storage are identified and a review is made of national normatives governing gas storage. The report comes complete with a glossary of the relative terminology and units of measure

  3. 100-N Area underground storage tank closures

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, C.A.

    1993-08-01

    This report describes the removal/characterization actions concerning underground storage tanks (UST) at the 100-N Area. Included are 105-N-LFT, 182-N-1-DT, 182-N-2-DT, 182-N-3-DT, 100-N-SS-27, and 100-N-SS-28. The text of this report gives a summary of remedial activities. In addition, correspondence relating to UST closures can be found in Appendix B. Appendix C contains copies of Unusual Occurrence Reports, and validated sampling data results comprise Appendix D.

  4. 100-N Area underground storage tank closures

    International Nuclear Information System (INIS)

    Rowley, C.A.

    1993-01-01

    This report describes the removal/characterization actions concerning underground storage tanks (UST) at the 100-N Area. Included are 105-N-LFT, 182-N-1-DT, 182-N-2-DT, 182-N-3-DT, 100-N-SS-27, and 100-N-SS-28. The text of this report gives a summary of remedial activities. In addition, correspondence relating to UST closures can be found in Appendix B. Appendix C contains copies of Unusual Occurrence Reports, and validated sampling data results comprise Appendix D

  5. Coupling Geothermal Heat Pumps with Underground Seasonal Thermal Energy Storage

    Science.gov (United States)

    2017-03-21

    EW-201135) Coupling Geothermal Heat Pumps with Underground Seasonal Thermal Energy Storage March 2017 This document has been cleared for...09/2011-03/2017 4. TITLE AND SUBTITLE Coupling Geothermal Heat Pumps with Underground Seasonal Thermal Energy Storage 5a...v ACRONYMS AND ABBREVIATIONS AGWT American Ground Water Trust AHU Air Handling Unit ATES Aquifer Thermal Energy Storage BTES Borehole

  6. Storage of high-level wastes, investigations in underground laboratories

    International Nuclear Information System (INIS)

    Ouzounian, G.

    1999-01-01

    This article reviews the different collaborations made by ANDRA (national agency for the management of radioactive wastes) in the fields of underground radioactive waste storage. ANDRA has taken part in various experimental research programs performed in laboratories such as Mol in Belgium, Aspo in Sweden, Pinawa in Canada and Grimsel in Switzerland. This article details the experiments led at Mol since 1984. ANDRA is commissioned by the 30.12.91 decree to study the possibility of storage in deep geological layers. A thorough knowledge of the matter requires the building of underground laboratories in order to test and validate technological choices on a real scale. 6 themes will have to be investigated: 1) the capacity to seal up the storage facility after its use in order to assure the protection of man and environment, 2) the effects of geological perturbations on the confining properties of the site, 3) the confining ability of the Callovian-Oxfordian geological formation, 4) the transfer of radionuclides from the geological formation to the biosphere, 5) the constructing possibility of an underground storage facility, and 6) the possibility of retrieving the stored packages. (A.C.)

  7. An Underground Storage Tank Integrated Demonstration report

    International Nuclear Information System (INIS)

    Quadrel, M.J.; Hunter, V.L.; Young, J.K.; Lini, D.C.; Goldberg, C.

    1993-04-01

    The Waste Characterization Data and Technology Development Needs Assessment provides direct support to the Underground Storage Tank Integrated Demonstration (UST-ID). Key users of the study's products may also include individuals and programs within the US Department of Energy (DOE) Office of Technology Development (EM-50), the Office of Waste Operations (EM-30), and the Office of Environmental Restoration (EM-40). The goal of this work is to provide the UST-ID with a procedure for allocating funds across competing characterization technologies in a timely and defensible manner. It resulted in three primary products: 1. It organizes and summarizes information on underground storage tank characterization data needs. 2. It describes current technology development activity related to each need and flags areas where technology development may be beneficial. 3. It presents a decision process, with supporting software, for evaluating, prioritizing, and integrating possible technology development funding packages. The data presented in this document can be readily updated as the needs of the Waste Operations and Environmental Restoration programs mature and as new and promising technology development options emerge

  8. Finite Element Optimised Back Analysis of In Situ Stress Field and Stability Analysis of Shaft Wall in the Underground Gas Storage

    Directory of Open Access Journals (Sweden)

    Yifei Yan

    2016-01-01

    Full Text Available A novel optimised back analysis method is proposed in this paper. The in situ stress field of an underground gas storage (UGS reservoir in a Turkey salt cavern is analysed by the basic theory of elastic mechanics. A finite element method is implemented to optimise and approximate the objective function by systematically adjusting boundary loads. Optimising calculation is performed based on a novel method to reduce the error between measurement and calculation as much as possible. Compared with common back analysis methods such as regression method, the method proposed can further improve the calculation precision. By constructing a large circular geometric model, the effect of stress concentration is eliminated and a minimum difference between computed and measured stress can be guaranteed in the rectangular objective region. The efficiency of the proposed method is investigated and confirmed by its capability on restoring in situ stress field, which agrees well with experimental results. The characteristics of stress distribution of chosen UGS wells are obtained based on the back analysis results and by applying the corresponding fracture criterion, the shaft walls are proven safe.

  9. Using underground gas storage to replace the swing capacity of the giant natural gas field of Groningen in the Netherlands. A reservoir performance feasibility study.

    Science.gov (United States)

    Juez-Larre, Joaquim; Remmelts, Gijs; Breunese, Jaap; Van Gessel, Serge; Leeuwenburgh, Olwijn

    2017-04-01

    In this study we probe the ultimate potential Underground Gas Storage (UGS) capacity of the Netherlands by carrying out a detailed feasibility study on inflow performances of all available onshore natural gas reservoirs. The Netherlands is one of the largest natural gas producers in Western Europe. The current decline of its national production and looming production restrictions on its largest field of Groningen -owing to its induced seismicity- have recently made necessary to upgrade the two largest UGS of Norg and Grijpskerk. The joined working volume of these two UGS is expected to replace the swing capacity of the Groningen field to continue guaranteeing the security of supply of low calorific natural gas. The question is whether the current UGS configuration will provide the expected working storage capacity unrestricted by issues on reservoir performances and/or induced seismicity. This matter will be of paramount importance in the near future when production restrictions and/or the advance state of depletion of the Groningen field will turn the Netherlands into a net importer of high calorific natural gas. By then, the question will be whether the current UGS will still be economically attractive to continue operating, or if additional/alternative types of UGS will be needed?. Hence the characterization and ranking of the best potential reservoirs available today is of paramount importance for future UGS developments. We built an in-house automated module based on the application of the traditional inflow performance relationship analysis to screen the performances of 156 natural gas reservoirs in onshore Netherlands. Results enable identifying the 72 best candidates with an ultimate total working volume capacity of 122±30 billion Sm3. A detailed sensitivity analysis shows the impact of variations in the reservoir properties or wellbore/tubing configurations on withdrawal performances and storage capacity. We validate our predictions by comparing them to

  10. Permanent Closure of the TAN-664 Underground Storage Tank

    Energy Technology Data Exchange (ETDEWEB)

    Bradley K. Griffith

    2011-12-01

    This closure package documents the site assessment and permanent closure of the TAN-664 gasoline underground storage tank in accordance with the regulatory requirements established in 40 CFR 280.71, 'Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.'

  11. Underground Gas Storage in the World 2013 (fifth edition)

    International Nuclear Information System (INIS)

    Cornot-Gandolphe, Sylvie

    2013-06-01

    Since its first publication in 1990, 'Underground Gas Storage in the World' has been the industry's reference on underground gas storage (UGS). The updated 2013 edition includes in-depth CEDIGAZ's analyses of the latest developments and trends in the storage industry all over the world as well as extensive country analyses with complete datasets including current, under construction and planned Underground Gas Storage facilities in 48 countries. It describes the 688 existing storage facilities in the world and the 236 projects under construction and planned. Future storage demand and its main drivers are presented at global and regional levels. The study builds on the CEDIGAZ Underground Gas Storage Database, the only worldwide Underground Gas Storage database to be updated every year. This document summarizes the key findings of the Survey which includes four main parts: The first part gives an overview of underground gas storage in the world at the beginning of 2013 and analyzes future storage needs by 2030, at regional and international levels. The second part focuses on new trends and issues emerging or developing in key storage markets. It analyzes the emerging storage market in China, reviews the storage business climate in Europe, examines Gazprom's storage strategy in Europe, and reviews recent trends in storage development in the United States. The third part gives some fundamental background on technical, economic and regulatory aspects of gas storage. The fourth part gives a countrywide analysis of the 48 countries in the world holding underground gas storage facilities or planning storage projects. 48 countries are surveyed with 688 existing UGS facilities, 256 projects under construction or planned

  12. 40 CFR 280.220 - Ownership of an underground storage tank or underground storage tank system or facility or...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Ownership of an underground storage... underground storage tank system is located. 280.220 Section 280.220 Protection of Environment ENVIRONMENTAL... as defined in § 280.210; and (b) Does not engage in petroleum production, refining, and marketing as...

  13. Underground storage tanks containing hazardous chemicals

    International Nuclear Information System (INIS)

    Wise, R.F.; Starr, J.W.; Maresca, J.W. Jr.; Hillger, R.W.; Tafuri, A.N.

    1991-01-01

    The regulations issued by the United States Environmental Protection Agency in 1988 require, with several exceptions, that underground storage tank systems containing petroleum fuels and hazardous chemicals be routinely tested for releases. This paper summarizes the release detection regulations for tank systems containing chemicals and gives a preliminary assessment of the approaches to release detection currently being used. To make this assessment, detailed discussions were conducted with providers and manufacturers of leak detection equipment and testing services, owners or operators of different types of chemical storage tank systems, and state and local regulators. While these discussions were limited to a small percentage of each type of organization, certain observations are sufficiently distinctive and important that they are reported for further investigation and evaluation. To make it clearer why certain approaches are being used, this paper also summarizes the types of chemicals being stored, the effectiveness of several leak detection testing systems, and the number and characteristics of the tank systems being used to store these products

  14. Performance Analysis of Depleted Oil Reservoirs for Underground Gas Storage

    Directory of Open Access Journals (Sweden)

    Dr. C.I.C. Anyadiegwu

    2014-02-01

    Full Text Available The performance of underground gas storage in depleted oil reservoir was analysed with reservoir Y-19, a depleted oil reservoir in Southern region of the Niger Delta. Information on the geologic and production history of the reservoir were obtained from the available field data of the reservoir. The verification of inventory was done to establish the storage capacity of the reservoir. The plot of the well flowing pressure (Pwf against the flow rate (Q, gives the deliverability of the reservoir at various pressures. Results of the estimated properties signified that reservoir Y-19 is a good candidate due to its storage capacity and its flow rate (Q of 287.61 MMscf/d at a flowing pressure of 3900 psig

  15. ADVANCED UNDERGROUND GAS STORAGE CONCEPTS REFRIGERATED-MINED CAVERN STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill-withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. Five regions of the U.S.A. were studied for underground storage development and PB-KBB reviewed the literature to determine if the geology of these regions was suitable for siting hard rock storage caverns. Area gas market conditions in these regions were also studied to determine the need for such storage. Based on an analysis of many factors, a possible site was determined to be in Howard and Montgomery Counties, Maryland. The area has compatible geology and a gas industry infrastructure for the nearby market populous of Baltimore and Washington D.C.. As Gas temperature is lowered, the compressibility of the gas reaches an optimum value. The compressibility of the gas, and the resultant gas density, is a function of temperature and pressure. This relationship can be used to commercial advantage by reducing the size of a storage cavern for a given working volume of natural gas. This study looks at this relationship and and the potential for commercialization of the process in a storage application. A conceptual process design, and cavern design were developed for various operating conditions. Potential site locations were considered

  16. Acoustic imaging of underground storage tank wastes

    International Nuclear Information System (INIS)

    Mech, S.J.

    1995-09-01

    Acoustics is a potential tool to determine the properties of high level wastes stored in Underground Storage Tanks. Some acoustic properties were successfully measured by a limited demonstration conducted in 114-TX. This accomplishment provides the basis for expanded efforts to qualify techniques which depend on the acoustic properties of tank wastes. This work is being sponsored by the Department of Energy under the Office of Science and Technology. In FY-1994, limited Tank Waste Remediation Systems EM-30 support was available at Hanford and Los Alamos National Laboratory. The Massachusetts Institute of Technology (MIT) and Earth Resources Laboratory (ERL) were engaged for analysis support, and Elohi Geophysics, Inc. for seismic testing services. Westinghouse-Hanford Company provided the testing and training, supplied the special engineering and safety analysis equipment and procedures, and provided the trained operators for the actual tank operations. On 11/9/94, limited in-tank tests were successfully conducted in tank 114-TX. This stabilized Single Shell Tank was reported as containing 16.8 feet of waste, the lower 6.28 feet of which contained interstitial liquid. Testing was conducted over the lower 12 feet, between two Liquid Observation Wells thirty feet apart. The ''quick-look'' data was reviewed on-site by MIT and Elohi

  17. Underground gas storage in the World - 2013 (fifth Edition)

    International Nuclear Information System (INIS)

    Cornot-Gandolphe, Sylvie

    2013-07-01

    Since its first publication in 1990, 'Underground Gas Storage in the World' has been the industry's reference on underground gas storage (UGS). The updated 2013 edition includes in-depth CEDIGAZ's analyses of the latest developments and trends in the storage industry all over the world as well as extensive country analyses with complete datasets including current, under construction and planned Underground Gas Storage facilities in 48 countries. It describes the 688 existing storage facilities in the world and the 236 projects under construction and planned. Future storage demand and its main drivers are presented at global and regional levels. 'Underground Gas Storage in the World 2013' builds on the CEDIGAZ Underground Gas Storage Database, the only worldwide Underground Gas Storage database to be updated every year. The Survey includes four main parts: The first part gives an overview of underground gas storage in the world at the beginning of 2013 and analyzes future storage needs by 2030, at regional and international levels. The second part focuses on new trends and issues emerging or developing in key storage markets. It analyzes the emerging storage market in China, reviews the storage business climate in Europe, examines Gazprom's storage strategy in Europe, and reviews recent trends in storage development in the United States. The third part gives some fundamental background on technical, economic and regulatory aspects of gas storage. The fourth part gives a countrywide analysis of the 48 countries in the world holding underground gas storage facilities or planning storage projects. 48 countries surveyed, 688 existing UGS facilities, 256 projects under construction or planned. The document includes 70 tables, 72 charts and figures, 44 country maps. The countries surveyed are: Europe : Albania, Austria, Belgium, Bosnia, Bulgaria, Croatia, Czech Republic, Denmark, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Netherlands, Poland

  18. Viewing Systems for Large Underground Storage Tanks

    International Nuclear Information System (INIS)

    Heckendorn, F.M.; Robinson, C.W.; Anderson, E.K.; Pardini, A.F.

    1996-01-01

    Specialized remote video systems have been successfully developed and deployed in a number of large radiological Underground Storage Tanks (USTs)that tolerate the hostile tank interior, while providing high resolution video to a remotely located operator. The deployment is through 100 mm (4 in) tank openings, while incorporating full video functions of the camera, lights, and zoom lens. The usage of remote video minimizes the potential for personnel exposure to radiological and hazardous conditions, and maximizes the quality of the visual data used to assess the interior conditions of both tank and contents. The robustness of this type of remote system has a direct effect on the potential for radiological exposure that personnel may encounter. The USTs typical of the Savannah River and Hanford Department Of Energy - (DOE) sites are typically 4.5 million liter (1.2 million gal) units under earth. or concrete overburden with limited openings to the surface. The interior is both highly contaminated and radioactive with a wide variety of nuclear processing waste material. Some of the tanks are -flammable rated -to Class 1, Division 1,and personnel presence at or near the openings should be minimized. The interior of these USTs must be assessed periodically as part of the ongoing management of the tanks and as a step towards tank remediation. The systems are unique in their deployment technology, which virtually eliminates the potential for entrapment in a tank, and their ability to withstand flammable environments. A multiplicity of components used within a common packaging allow for cost effective and appropriate levels of technology, with radiation hardened components on some units and lesser requirements on other units. All units are completely self contained for video, zoom lens, lighting, deployment,as well as being self purging, and modular in construction

  19. Underground storage development in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Sponheuer, T.

    1990-01-01

    As the demand for gas in the Federal Republic of Germany is increasingly dependent upon temperature, underground storage is becoming a more and more important tool for the adjustment of supply load factors to the patterns of gas demand. Total working gas capacity is expected to double by the year 2000. Capacity requirements must be planned for a design winter, but allowances must also be made for operational flexibility, but management of incidents and the decrease in deliverability mainly from porous rock storage fields towards the end of the withdrawal season. Storage development potential in the Federal Republic of Germany is adequate for these requirements. However, the substantial uncertainties associated with the various factors determining future storage needs, administrative and licensing procedures, difficulties with regard to storage site acceptance by the general public and the resulting long project lead times confront gas companies from the Federal Republic of Germany with a complex planning problem and a major technical and commercial challenge, considering the estimated capital outlay of 4 to 5 billion DM in 1988 Deutschmarks. To master this challenge and to be able to provide secure and competitive gas supplies, the gas industry must continue to operate in a market economy which remains undistorted by new legislation and regulation. (author). 11 figs

  20. The underground storages of carbon dioxide. Juridical aspects

    International Nuclear Information System (INIS)

    Bersani, F.

    2006-04-01

    In the framework of the reduction of the carbon dioxide emissions in the air, the underground storage of the CO 2 is studied. Some experimentation are already realized in the world and envisaged in France. This document aims to study the juridical aspects of these first works in France. After a presentation of the realization conditions and some recalls on the carbon dioxide its capture and storage, the natural CO 2 underground storages and the first artificial storages are discussed. The CO 2 waste qualification, in the framework of the environmental legislation is then detailed with a special task on the Lacq region. The problem of the sea underground storages is also presented. (A.L.B.)

  1. Aims, organization and activities of the consortium for underground storage

    International Nuclear Information System (INIS)

    Stucky, G.

    1977-01-01

    The consortium of Swiss authorities interested in underground storage (the petroleum oil and gas industries, for fuel storage; the nuclear industry for radioactive waste disposal), was initiated in 1972. The author outlines the motives behind the formation of the consortium and outlines its structure and objectives. The envisaged projects are outlined. (F.Q.)

  2. Numerical modeling of underground storage system for natural gas

    Science.gov (United States)

    Ding, J.; Wang, S.

    2017-12-01

    Natural gas is an important type of base-load energy, and its supply needs to be adjusted according to different demands in different seasons. For example, since natural gas is increasingly used to replace coal for winter heating, the demand for natural gas in winter is much higher than that in other seasons. As storage systems are the essential tools for balancing seasonal supply and demand, the design and simulation of natural gas storage systems form an important research direction. In this study, a large-scale underground storage system for natural gas is simulated based on theoretical analysis and finite element modeling.It is proven that the problem of axi-symmetric Darcy porous flow of ideal gas is governed by the Boussinesq equation. In terms of the exact solution to the Boussinesq equation, the basic operating characteristics of the underground storage system is analyzed, and it is demonstrated that the propagation distance of the pore pressure is proportional to the 1/4 power of the mass flow rate and to the 1/2 power of the propagation time. This quantitative relationship can be used to guide the overall design of natural gas underground storage systems.In order to fully capture the two-way coupling between pore pressure and elastic matrix deformation, a poro-elastic finite element model for natural gas storage is developed. Based on the numerical model, the dynamic processes of gas injection, storage and extraction are simulated, and the corresponding time-dependent surface deformations are obtained. The modeling results not only provide a theoretical basis for real-time monitoring for the operating status of the underground storage system through surface deformation measurements, but also demonstrate that a year-round balance can be achieved through periodic gas injection and extraction.This work is supported by the CAS "100 talents" Program and the National Natural Science Foundation of China (41371090).

  3. Life cycle analysis of underground thermal energy storage

    NARCIS (Netherlands)

    Tomasetta, Camilla; van Ree, Derk; Griffioen, Jasper

    2015-01-01

    Underground Thermal Energy Storage (UTES) systems are used to buffer the seasonal difference between heat and cold supply and demand and, therefore, represent an interesting option to conserve energy. Even though UTES are considered environmental friendly solutions they are not completely free of

  4. VOLUMETRIC LEAK DETECTION IN LARGE UNDERGROUND STORAGE TANKS - VOLUME I

    Science.gov (United States)

    A set of experiments was conducted to determine whether volumetric leak detection system presently used to test underground storage tanks (USTs) up to 38,000 L (10,000 gal) in capacity could meet EPA's regulatory standards for tank tightness and automatic tank gauging systems whe...

  5. Underground storage tank 511-D1U1 closure plan

    Energy Technology Data Exchange (ETDEWEB)

    Mancieri, S.; Giuntoli, N.

    1993-09-01

    This document contains the closure plan for diesel fuel underground storage tank 511-D1U1 and appendices containing supplemental information such as staff training certification and task summaries. Precision tank test data, a site health and safety plan, and material safety data sheets are also included.

  6. Underground or aboveground storage tanks - A critical decision

    International Nuclear Information System (INIS)

    Rizzo, J.A.

    1992-01-01

    With the 1988 promulgation of the comprehensive Resource Conservation and Recovery Act (RCRA) regulations for underground storage of petroleum and hazardous substances, many existing underground storage tank (UST) owners have been considering making the move to aboveground storage. While on the surface, this may appear to be the cure-all to avoiding the underground leakage dilemma, there are many other new and different issues to consider with aboveground storage. The greatest misconception is that by storing materials above ground, there is no risk of subsurface environmental problems. It should be noted that with the aboveground storage tank (AGST) systems, there is still considerable risk of environmental contamination, either by the failure of onground tank bottoms or the spillage of product onto the ground surface where it subsequently finds its way to the ground water. In addition, there are added safety concerns that must be addressed. The greatest interest in AGSTs comes from managers with small volumes of used oil, fresh oil, solvents, chemicals, or heating oil. Dealing with small capacity tanks is not so different than large bulk storage - and, in fact, it lends itself to more options, such as portable storage, tank within tank configurations and inside installations. So what are the other specific areas of concern besides environmental to be addressed when making the decision between underground and aboveground tanks? The primary issues that will be addressed in this presentation are: (1) safety; (2) product losses; (3) cost comparison of USTs vs AGSTs; (4) space availability/accessibility; (5) precipitation handling; (6) aesthetics and security; (7) pending and existing regulations

  7. Silos. Optimisation of underground storages' management

    International Nuclear Information System (INIS)

    Formaggio, M.

    1997-01-01

    The operation of Silos in the optimization of storages' management at Snam is presented, together with an assessment of the benefits obtained through closer attention and higher commitment of the staff, as well as better communication between Dispatching and other organizational functions. Silos has proven to be a useful decision-making tool, while applying traditional risk-assessment methods. (au)

  8. From clay bricks to deep underground storage

    International Nuclear Information System (INIS)

    2012-05-01

    This booklet issued by the Swiss National Cooperative for the Disposal of Radioactive Waste NAGRA takes a look at the use of clay strata for the storage of radioactive wastes in deep-lying repositories. First of all, a geological foray is made concerning the history of the use of clay and its multifarious uses. The characteristics of clay and its composition are examined and its formation in the geological past is explained. In particular Opalinus clay is looked at and the structures to be found are discussed. The clay's various properties and industrial uses are examined and its sealing properties are examined. Also, Bentonite clay is mentioned and work done by Nagra and co-researchers is noted

  9. Salt creep design consideration for underground nuclear waste storage

    International Nuclear Information System (INIS)

    Li, W.T.; Wu, C.L.; Antonas, N.J.

    1983-01-01

    This paper summarizes the creep consideration in the design of nuclear waste storage facilities in salt, describes the non-linear analysis method for evaluating the design adequacy, and presents computational results for the current storage design. The application of rock mechanics instrumentation to assure the appropriateness of the design is discussed. It also describes the design evolution of such a facility, starting from the conceptual design, through the preliminary design, to the detailed design stage. The empirical design method, laboratory tests and numerical analyses, and the underground in situ tests have been incorporated in the design process to assure the stability of the underground openings, retrievability of waste during the operation phase and encapsulation of waste after decommissioning

  10. Indian Country Leaking Underground Storage Tanks, Region 9, 2016

    Science.gov (United States)

    This GIS dataset contains point features that represent Leaking Underground Storage Tanks in US EPA Region 9 Indian Country. This dataset contains facility name and locational information, status of LUST case, operating status of facility, inspection dates, and links to No Further Action letters for closed LUST cases. This database contains 1230 features, with 289 features having a LUST status of open, closed with no residual contamination, or closed with residual contamination.

  11. Polymers for subterranean containment barriers for underground storage tanks (USTs)

    International Nuclear Information System (INIS)

    Heiser, J.H.; Colombo, P.; Clinton, J.

    1992-12-01

    The US Department of Energy (DOE) set up the Underground Storage Tank Integrated Demonstration Program (USTID) to demonstrate technologies for the retrieval and treatment of tank waste, and closure of underground storage tanks (USTs). There are more than 250 underground storage tanks throughout the DOE complex. These tanks contain a wide variety of wastes including high level, low level, transuranic, mixed and hazardous wastes. Many of the tanks have performed beyond the designed lifetime resulting in leakage and contamination of the local geologic media and groundwater. To mitigate this problem it has been proposed that an interim subterranean containment barrier be placed around the tanks. This would minimize or prevent future contamination of soil and groundwater in the event that further tank leakages occur before or during remediation. Use of interim subterranean barriers can also provide sufficient time to evaluate and select appropriate remediation alternatives. The DOE Hanford site was chosen as the demonstration site for containment barrier technologies. A panel of experts for the USTID was convened in February, 1992, to identify technologies for placement of subterranean barriers. The selection was based on the ability of candidate grouts to withstand high radiation doses, high temperatures and aggressive tank waste leachates. The group identified and ranked nine grouting technologies that have potential to place vertical barriers and five for horizontal barriers around the tank. The panel also endorsed placement technologies that require minimal excavation of soil surrounding the tanks

  12. Closure report for underground storage tank 161-R1U1 and its associated underground piping

    Energy Technology Data Exchange (ETDEWEB)

    Mallon, B.J.; Blake, R.G.

    1994-05-01

    Underground storage tank (UST) 161-31 R at the Lawrence Livermore National Laboratory (LLNL) was registered with the State Water Resources Control Board on June 27, 1984. UST 161-31R was subsequently renamed UST 161-R1U1 (Fig. A-1, Appendix A). UST 161-R1U1 was installed in 1976, and had a capacity of 383 gallons. This tank system consisted of a fiberglass reinforced plastic tank, approximately 320 feet of polyvinyl chloride (PVC) underground piping from Building 161, and approximately 40 feet of PVC underground piping from Building 160. The underground piping connected laboratory drains and sinks inside Buildings 160 and 161 to UST 161-R1U1. The wastewater collected in UST 161-R1U1, contained organic solvents, metals, inorganic acids, and radionuclides, most of which was produced within Building 161. On June 28, 1989, the UST 161-R1U1 piping system.around the perimeter of Building 161 failed a precision test performed by Gary Peters Enterprises (Appendix B). The 161-R1U1 tank system was removed from service after the precision test. In July 1989, additional hydrostatic tests and helium leak detection tests were performed (Appendix B) to determine the locations of the piping failures in the Building 161 piping system. The locations of the piping system failures are shown in Figure A-2 (Appendix A). On July 11, 1989, LLNL submitted an Unauthorized Release Report to Alameda County Department of Environmental Health (ACDEH), Appendix C.

  13. Advancing the US Department of Energy's Technologies through the Underground Storage Tank: Integrated Demonstration Program

    International Nuclear Information System (INIS)

    Gates, T.E.

    1993-01-01

    The principal objective of the Underground Storage Tank -- Integrated Demonstration Program is the demonstration and continued development of technologies suitable for the remediation of waste stored in underground storage tanks. The Underground Storage Tank Integrated Demonstration Program is the most complex of the integrated demonstration programs established under the management of the Office of Technology Development. The Program has the following five participating sites: Oak Ridge, Idaho, Fernald, Savannah River, and Hanford. Activities included within the Underground Storage Tank -- Integrated Demonstration are (1) characterizating radioactive and hazardous waste constituents, (2) determining the need and methodology for improving the stability of the waste form, (3) determining the performance requirements, (4) demonstrating barrier performance by instrumented field tests, natural analog studies, and modeling, (5) determining the need and method for destroying and stabilizing hazardous waste constituents, (6) developing and evaluating methods for retrieving, processing (pretreatment and treatment), and storing the waste on an interim basis, and (7) defining and evaluating waste packages, transportation options, and ultimate closure techniques including site restoration. The eventual objective is the transfer of new technologies as a system to full-scale remediation at the US Department of Energy complexes and sites in the private sector

  14. CO2 underground storage and potential of CDM

    International Nuclear Information System (INIS)

    Shigetomi, N.; Shibuya, Y.; Nakano, M.; Akai, M.

    2005-01-01

    Carbon dioxide (CO 2 ) underground storage technologies are being used as a means to mitigate the increase in CO 2 concentration in the atmosphere. Indonesia is an oil producing and exporting country. Its reserve-production ratio which is estimated based on the current production volume is approximately 19 years. Energy demand in the future is expected to be on the rise in Indonesia. In addition, in light of the interest in enhanced oil recovery (EOR), CO 2 underground storage is also being explored. Activities to initiate the Clean Development Mechanism (CDM), which is one of the Kyoto Mechanisms, have also been actively promoted in developing countries. This paper examined an EOR operation which used CO 2 separated and recovered from waste gas at coal-fired power plants which have the highest CO 2 emission rates among human-induced CO 2 emission sources in Indonesia. The paper discussed EOR, its characteristics and features as well as case studies with specific sites in order to clarify issues and conditions for promoting CO 2 underground storage technologies into CDM. It was concluded that it is necessary to conduct additional studies on the profitability of the operation while conducting verification at the CO 2 separation and recovery site and the CO 2 storage site and consulting with relevant stakeholders of EOR operation. In addition, it was suggested that procedures should be put in place to promote the EOR operation into a CDM project by coordinating with the host country and offering it incentives. 3 refs., 1 tab., 2 figs

  15. Underground pumped hydroelectric storage (UPHS). Midyear program report

    Energy Technology Data Exchange (ETDEWEB)

    Blomquist, C.A.; Frigo, A.A.; Tam, S.W.

    1979-04-01

    The midyear program report on underground pumped hydroelectric storage (UPHS) delineates program management and support elements through milestones, work proposal and authorization chart tasks, and activities for FY79 and 80. The section on subcontractors and their assigned tasks details the operating characteristcs of single- and double-stage, reversible, Franccis-type pump turbines. System studies are discussed in terms of machinery costs, plant sizes, and pump-turbine efficiencies, and results and conclusions are presented. In general, the utilization of advanced turbomachinery seems to be justified for UPHS plants.

  16. Underground storage tanks soft waste dislodging and conveyance

    International Nuclear Information System (INIS)

    Wellner, A.F.

    1993-10-01

    Currently 140 million liters (37 million gallons) of waste are stored in the single shell underground storage tanks (SSTs) at Hanford. The wastes contain both hazardous and radioactive constituents. This paper focuses on the Westinghouse Hanford Company's testing program for soft waste dislodging and conveyance technology. This program was initialized to investigate methods of dislodging and conveying soft waste. The main focus was on using air jets, water jets, and/or mechanical blades to dislodge the waste and air conveyance to convey the dislodged waste. These waste dislodging and conveyance technologies would be used in conjunction with a manipulator based retrieval system

  17. Coupling Geothermal Heat Pumps with Underground Seasonal Thermal Energy Storage (EW-201135)

    Science.gov (United States)

    2017-03-01

    FINAL REPORT Coupling Geothermal Heat Pumps with Underground Seasonal Thermal Energy Storage ESTCP Project EW-201135 MARCH 2017...TITLE AND SUBTITLE Coupling Geothermal Heat Pumps with Underground Seasonal Thermal Energy Storage 5a. CONTRACT NUMBER 5b...LIST OF FIGURES Page Figure 2.1. Borehole Thermal Energy Storage (BTES) Overview ............................................................ 8

  18. Coupling Geothermal Heat Pumps (GHP) With Underground Seasonal Thermal Energy Storage (USTES)

    Science.gov (United States)

    2017-03-21

    TECHNICAL GUIDANCE Coupling Geothermal Heat Pumps (GHP) With Underground Seasonal Thermal Energy Storage (USTES) ESTCP Project EW-201135 MARCH...Geothermal Heat Pumps with Underground Seasonal Thermal Energy Storage 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...Geothermal Heat Pumps, thermal , energy storage Page Intentionally Left Blank i TECHNICAL & ENVIRONMENTAL

  19. Closure report for underground storage tank 141-R3U1 and its associated underground piping

    International Nuclear Information System (INIS)

    Mallon, B.J.; Blake, R.G.

    1994-03-01

    Underground storage tank UST 141-R3U1 at Lawrence Livermore National Laboratory (LLNL), was registered with the State Water Resources Control Board on June 27, 1984. This tank system consisted of a concrete tank, lined with polyvinyl chloride, and approximately 100 feet of PVC underground piping. UST 141-R3U1 had a capacity of 450 gallons. The underground piping connected three floor drains and one sink inside Building 141 to UST 141-R3U1. The wastewater collected in UST 141-R3U1 contained organic solvents, metals, and inorganic acids. On November 30, 1987, the 141-R3U1 tank system failed a precision tank test. The 141-R3U1 tank system was subsequently emptied and removed from service pending further precision tests to determine the location of the leak within the tank system. A precision tank test on February 5, 1988, was performed to confirm the November 30, 1987 test. Four additional precision tests were performed on this tank system between February 25, 1988, and March 6, 1988. The leak was located where the inlet piping from Building 141 penetrates the concrete side of UST 141-R3U1. The volume of wastewater that entered the backfill and soil around and/or beneath UST 141-R3U1 is unknown. On December 13, 1989, the LLNL Environmental Restoration Division submitted a plan to close UST 141-R3U1 and its associated piping to the Alameda County Department of Environmental Health. UST 141-R3U1 was closed as an UST, and shall be used instead as additional secondary containment for two aboveground storage tanks

  20. ULTimateCO2 project: Field experiment in an underground rock laboratory to study the well integrity in the context of CO2 geological storage

    NARCIS (Netherlands)

    Manceau, J.C.; Audigane, P.; Claret, F.; Parmentier, M.; Tambach, T.J.; Wasch, L.; Gherardi, F.; Dimier, A.; Ukelis, O.; Jeandel, E.; Cladt, F.; Zorn, R.; Yalamas, T.; Nussbaum, C.; Laurent, A.; Fierz, T.; Pieedevache, M.

    2013-01-01

    Wells drilled through low-permeable caprock are potential connections between the CO2 storage reservoir and overlying sensitive targets like aquifers and targets located at the surface. The wellbore integrity can be compromised due to in situ operations, including drilling, completion, operations

  1. RCRA closure plan for underground storage tank 105-C

    International Nuclear Information System (INIS)

    Miles, W.C. Jr.

    1990-01-01

    A Reactor Department program for repairing heat exchangers created a low level radioactive waste, which was held in underground storage tank (UST) 105-C, hereafter referred to as the tank. According to Procedures used at the facility, the waste's pH was adjusted to the 8.0--12.0 range before shipping it to the SRS Waste Management Department. For this reason, area personnel did not anticipate that the waste which is currently contained in the tank would have corrosive hazardous characteristic. However, recent analysis indicates that waste contained in the tank has a pH of greater than 12.5, thereby constituting a hazardous waste. Because the Department of Energy-Savannah River Office (DOE-SR) could not prove that the hazardous waste had been stored in the tank for less than 90 days, the State of South Carolina Department of Health and Environmental Control (SCDHEC) alleged that DOE-SR was in violation of the 1976 Code of Laws of South Carolina. As agreed in Settlement Agreement 90-74-SW between the DOE and SCDHEC, this is the required closure plan for Tank 105-C. The purpose of this document is to present SCDHEC with an official plan for closing the underground storage tank. Upon approval by SCDHEC, the schedule for closure will be an enforceable portion of this agreement

  2. Large underground radioactive waste storage tanks successfully cleaned at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Billingsley, K.; Burks, B.L.; Johnson, M.; Mims, C.; Powell, J.; Hoesen, D. van

    1998-05-01

    Waste retrieval operations were successfully completed in two large underground radioactive waste storage tanks in 1997. The US Department of Energy (DOE) and the Gunite Tanks Team worked cooperatively during two 10-week waste removal campaigns and removed approximately 58,300 gallons of waste from the tanks. About 100 gallons of a sludge and liquid heel remain in each of the 42,500 gallon tanks. These tanks are 25 ft. in diameter and 11 ft. deep, and are located in the North Tank Farm in the center of Oak Ridge National Laboratory. Less than 2% of the radioactive contaminants remain in the tanks, proving the effectiveness of the Radioactive Tank Cleaning System, and accomplishing the first field-scale cleaning of contaminated underground storage tanks with a robotic system in the DOE complex

  3. Underground Storage Tank Integrated Demonstration (UST-ID)

    International Nuclear Information System (INIS)

    1994-02-01

    The DOE complex currently has 332 underground storage tanks (USTs) that have been used to process and store radioactive and chemical mixed waste generated from weapon materials production. Very little of the over 100 million gallons of high-level and low-level radioactive liquid waste has been treated and disposed of in final form. Two waste storage tank design types are prevalent across the DOE complex: single-shell wall and double-shell wall designs. They are made of stainless steel, concrete, and concrete with carbon steel liners, and their capacities vary from 5000 gallons (19 m 3 ) to 10 6 gallons (3785 m 3 ). The tanks have an overburden layer of soil ranging from a few feet to tens of feet. Responding to the need for remediation of tank waste, driven by Federal Facility Compliance Agreements (FFCAs) at all participating sites, the Underground Storage Tank Integrated Demonstration (UST-ID) Program was created by the US DOE Office of Technology Development in February 1991. Its mission is to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat to concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to the public and the regulators. The UST-ID has focused on five DOE locations: the Hanford Site, which is the host site, in Richland, Washington; the Fernald Site in Fernald, Ohio; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site in Savannah River, South Carolina

  4. Long-term behaviour of waste-forms in the near-field environment of a deep underground storage site, overview

    International Nuclear Information System (INIS)

    Toulhoat, P.; Lassabatere, Th.; Galle, Ch.; Cranga, M.; Trotignon, L.; Maillard, S.; Iracane, D.

    1997-01-01

    CEA (French Atomic Energy Commission) is responsible for the achievement of high activity and/or long life waste conditioning processes. Various waste-forms are used (glass, bitumen, etc...). ANDRA (French National Agency for Nuclear Waste Management) has to integrate the long-term durability of such waste-forms in the conception of a deep disposal and the assessment of its long-term confinement performances. The influence of near-field and of the boundary conditions imposed by the far-field on the long-term evolution is being more and more documented. Transport properties and reactivity of silica in the near field is one of the best examples of such effects. A coherent framework with relevant successive events (site re-saturation, chemical evolution of the engineered barrier, overpack corrosion) and a thorough analysis of hierarchized couplings are necessary to evaluate the long term durability of waste-form, and finally, to deliver a near-field-integrated source-term of radionuclides versus lime. We present hereafter some preliminary results obtained in the framework of the CEA 'C3P' project - long-term behaviour of waste-forms in their near-field environment. (authors)

  5. Permanent Closure of MFC Biodiesel Underground Storage Tank 99ANL00013

    Energy Technology Data Exchange (ETDEWEB)

    Kerry L. Nisson

    2012-10-01

    This closure package documents the site assessment and permanent closure of the Materials and Fuels Complex biodiesel underground storage tank 99ANL00013 in accordance with the regulatory requirements established in 40 CFR 280.71, “Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.”

  6. 30 CFR 57.4160 - Underground electric substations and liquid storage facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground electric substations and liquid... Underground electric substations and liquid storage facilities. The requirements of this standard apply to...) Electric substations. (2) Unburied, combustible liquid storage tanks. (3) Any group of containers used for...

  7. Robotic system for remote inspection of underground storage tanks

    International Nuclear Information System (INIS)

    Griebenow, B.L.; Martinson, L.M.

    1990-01-01

    Westinghouse Idaho Nuclear Company, Inc. (WINCO), operates the Idaho Chemical Processing Plant (ICPP) for the US Department of Energy (DOE). WINCO's mission is to process government owned spent nuclear fuel. The process involves dissolving the fuel and extracting off uranium. The waste from this process is temporarily stored at the ICPP in underground storage tanks. The tanks were put in service between 1953 and 1966 and are operating 10 to 15 years beyond their design life. Five of the tanks will be replaced by 1998. The integrity of the remaining six tanks must be verified to continue their use until they can be replaced at a later data. In order to verify the tank integrity, a complete corrosion analysis must be performed. This analysis will require a remote visual inspection of the tank surfaces

  8. Microbial Life in an Underground Gas Storage Reservoir

    Science.gov (United States)

    Bombach, Petra; van Almsick, Tobias; Richnow, Hans H.; Zenner, Matthias; Krüger, Martin

    2015-04-01

    While underground gas storage is technically well established for decades, the presence and activity of microorganisms in underground gas reservoirs have still hardly been explored today. Microbial life in underground gas reservoirs is controlled by moderate to high temperatures, elevated pressures, the availability of essential inorganic nutrients, and the availability of appropriate chemical energy sources. Microbial activity may affect the geochemical conditions and the gas composition in an underground reservoir by selective removal of anorganic and organic components from the stored gas and the formation water as well as by generation of metabolic products. From an economic point of view, microbial activities can lead to a loss of stored gas accompanied by a pressure decline in the reservoir, damage of technical equipment by biocorrosion, clogging processes through precipitates and biomass accumulation, and reservoir souring due to a deterioration of the gas quality. We present here results from molecular and cultivation-based methods to characterize microbial communities inhabiting a porous rock gas storage reservoir located in Southern Germany. Four reservoir water samples were obtained from three different geological horizons characterized by an ambient reservoir temperature of about 45 °C and an ambient reservoir pressure of about 92 bar at the time of sampling. A complementary water sample was taken at a water production well completed in a respective horizon but located outside the gas storage reservoir. Microbial community analysis by Illumina Sequencing of bacterial and archaeal 16S rRNA genes indicated the presence of phylogenetically diverse microbial communities of high compositional heterogeneity. In three out of four samples originating from the reservoir, the majority of bacterial sequences affiliated with members of the genera Eubacterium, Acetobacterium and Sporobacterium within Clostridiales, known for their fermenting capabilities. In

  9. Specialized video systems for use in underground storage tanks

    International Nuclear Information System (INIS)

    Heckendom, F.M.; Robinson, C.W.; Anderson, E.K.; Pardini, A.F.

    1994-01-01

    The Robotics Development Groups at the Savannah River Site and the Hanford site have developed remote video and photography systems for deployment in underground radioactive waste storage tanks at Department of Energy (DOE) sites as a part of the Office of Technology Development (OTD) program within DOE. Figure 1 shows the remote video/photography systems in a typical underground storage tank environment. Viewing and documenting the tank interiors and their associated annular spaces is an extremely valuable tool in characterizing their condition and contents and in controlling their remediation. Several specialized video/photography systems and robotic End Effectors have been fabricated that provide remote viewing and lighting. All are remotely deployable into and from the tank, and all viewing functions are remotely operated. Positioning all control components away from the facility prevents the potential for personnel exposure to radiation and contamination. Overview video systems, both monaural and stereo versions, include a camera, zoom lens, camera positioner, vertical deployment system, and positional feedback. Each independent video package can be inserted through a 100 mm (4 in.) diameter opening. A special attribute of these packages is their design to never get larger than the entry hole during operation and to be fully retrievable. The End Effector systems will be deployed on the large robotic Light Duty Utility Arm (LDUA) being developed by other portions of the OTD-DOE programs. The systems implement a multi-functional ''over the coax'' design that uses a single coaxial cable for all data and control signals over the more than 900 foot cable (or fiber optic) link

  10. A basic study on underground storage of LNG

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-Kyu; Lee, Kyung-Han; Kang, Sun-Duck [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    In 1997, import of LNG was 11,378 thousand of about 2.3 billion US dollars. The demand of LNG(Liquefied Natural Gas) in Korea has been increased since 1987 with the rate of 20% annually. It is also estimated that this trend will be continued until 2010. Long-term estimation says that demand will increase with 9.1% and total demand of 2010 will be 23 million ton that is four times larger than that of 1994. Bases of unloading and store of LNG is necessary to complete the network of LNG distribution system to cover all of the country from import to final supply terminal at home. The construction plan of LNG bases with 49 tanks was published and is going on now at three bases, Pyungtaek, Incheon and Tongyoung. The total cost for this construction will be over 5,400 billion Won. All the LNG tanks are planned to build on the surface. The construction of LNG tanks on the surfaces is conventional but it damage the surface green area and is very vulnerable on safety, especially in Korea Peninsula with potentially unstable of military confrontation. And Korea is so small and limited in available land that it is not easy to find proper places for construction of more LNG tanks on surface. Underground LNG stores in rock will be a good alternative for tanks on surface in the view points of environmental and safety. It is also reported that it can be cheaper than that of on surfaces. It is well known that bed rocks in Korea is good to build underground structure like LNG stores. This report is basic research to seek for the possibility of LNG store construction in underground rocks. The important two questions on it is that whether it is possible technically and economically or not. The technical focus in this report is the stability of underground cavern for storage of LNG, energy conservation in operation, tightness against leakage of stored gas to surface and safety. Some statistic on LNG in Korea is given for this study with its future. (author). 25 refs., 36 tabs., 88 figs.

  11. Advanced Underground Gas Storage Concepts: Refrigerated-Mined Cavern Storage, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    none

    1998-09-30

    Over the past 40 years, cavern storage of LPG's, petrochemicals, such as ethylene and propylene, and other petroleum products has increased dramatically. In 1991, the Gas Processors Association (GPA) lists the total U.S. underground storage capacity for LPG's and related products of approximately 519 million barrels (82.5 million cubic meters) in 1,122 separate caverns. Of this total, 70 are hard rock caverns and the remaining 1,052 are caverns in salt deposits. However, along the eastern seaboard of the U.S. and the Pacific northwest, salt deposits are not available and therefore, storage in hard rocks is required. Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. Competing methods include LNG facilities and remote underground storage combined with pipeline transportation to the area. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. DOE has identified five regions, that have not had favorable geological conditions for underground storage development: New England, Mid-Atlantic (NY/NJ), South Atlantic (DL/MD/VA), South Atlantic (NC/SC/GA), and the Pacific Northwest (WA/OR). PB-KBB reviewed published literature and in-house databases of the geology of these regions to determine suitability of hard rock formations for siting

  12. Lower Colorado River GRP Underground Storage Tank Sites (Closed), Nevada, 2012, Nevada Division of Environmental Protection Bureau of Corrective Actions

    Data.gov (United States)

    U.S. Environmental Protection Agency — The BCA layers are derived from a database for Federally Regulated Underground Storage Tanks (UST) and a database for Remediation and Leaking Underground Storage...

  13. Lower Colorado River GRP Underground Storage Tank Sites (Open), Nevada, 2012, Nevada Division of Environmental Protection Bureau of Corrective Actions

    Data.gov (United States)

    U.S. Environmental Protection Agency — The BCA layers are derived from a database for Federally Regulated Underground Storage Tanks (UST) and a database for Remediation and Leaking Underground Storage...

  14. Using virtual objects to aid underground storage tank teleoperation

    International Nuclear Information System (INIS)

    Anderson, R.J.; Davies, B.

    1994-01-01

    In this paper we describe an algorithm by which obstructions and surface features in an underground storage tank can be modeled and used to generate virtual barrier function for a real-time telerobotic system, which provides an aid to the operator for both real-time obstacle avoidance and for surface tracking. The algorithm requires that the slave's tool and every object in the waste storage tank be decomposed into convex polyhedral primitives, with the waste surface modeled by triangular prisms. Intrusion distance and extraction vectors are then derived at every time step by applying Gilbert's polyhedra distance algorithm, which has been adapted for the task. This information is then used to determine the compression and location of nonlinear virtual spring-dampers whose total force is summed and applied to the manipulator/teleoperator system. Experimental results using a PUMA 560 and a simulated waste surface validate the approach, showing that it is possible to compute the algorithm and generate smooth, realistic pseudo forces for the teleoperator system using standard VME bus hardware

  15. The underground nuclear wastes storage; Le stockage des dechets nucleaires en site profond

    Energy Technology Data Exchange (ETDEWEB)

    Nifenecker, H. [Institut des Sciences Nucleaires, CNRS/IN2P3, 38 - Grenoble (France); Ouzounian, G. [Agence Nationale pour la Gestion des Dechets Radioactifs ANDRA, 92 - Chatenay Malabry (France)

    2002-07-01

    In the radioactive wastes management, the underground storage seems to be the long dated solution and the reference strategy. Then this storage has to be studied in term of accidental diffusion of radionuclides in the geologic site and in the food chain transfer. This document presents analytical models of diffusion which may help physicists to evaluate underground storage sites and the impacts on the environment and the human health. (A.L.B.)

  16. Underground storage tank - Integrated Demonstration Technical Task Plan master schedule

    International Nuclear Information System (INIS)

    Johnson, C.M.

    1994-08-01

    This document provides an integrated programmatic schedule (i.e., Master Schedule) for the U.S. Department of Energy (DOE) Underground Storage Tank-Integrated Demonstration (UST-ID) Program. It includes top-level schedule and related information for the DOE Office of Technology Development (EM-50) UST-ID activities. The information is based upon the fiscal year (FY) 1994 technical task plans (TTPS) and has been prepared as a baseline information resource for program participants. The Master Schedule contains Level 0 and Level 1 program schedules for the UST-ID Program. This document is one of a number of programmatic documents developed to support and manage the UST-ID activities. It is composed of the following sections: Program Overview - provides a summary background of the UST-ID Program. This summary addresses the mission, scope, and organizational structure of the program; Activity Description - provides a programmatic description of UST-ID technology development activities and lists the key milestones for the UST-ID systems. Master Schedules - contains the Level 0 and Level 1 programmatic schedules for the UST-ID systems. References - lists the UST-ID programmatic documents used as a basis for preparing the Master Schedule. The appendixes contain additional details related to site-specific technology applications

  17. Plan of deep underground construction for investigations on high-level radioactive waste storage

    International Nuclear Information System (INIS)

    Mayanovskij, M.S.

    1996-01-01

    The program of studies of the Japanese PNC corporation on construction of deep underground storage for high-level radioactive wastes is presented. The program is intended for 20 years. The total construction costs equal about 20 billion yen. The total cost of the project is equal to 60 billion yen. The underground part is planned to reach 1000 m depth

  18. EVALUATION OF VOLUMETRIC LEAK DETECTION METHODS USED IN UNDERGROUND STORAGE TANKS

    Science.gov (United States)

    In the spring and summer of 1987, the United States Environmental Protection Agency (EPA) evaluated the performance of 25 commercially available volumetric test methods for the detection of small leaks in underground storage tanks containing gasoline. Performance was estimated by...

  19. Leaking Underground Storage Tank Points, Region 9 Indian Country, 2017, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — This GIS dataset contains point features that represent Leaking Underground Storage Tanks in US EPA Region 9 Indian Country. This dataset contains facility name and...

  20. Secondary Containment for Underground Storage Tank Systems - 2005 Energy Policy Act

    Science.gov (United States)

    These grant guidelines implement the secondary containment provision in Section 9003(i)(1) of the Solid Waste Disposal Act, enacted by the Underground Storage Tank Compliance Act, part of the Energy Policy Act of 2005.

  1. Preliminary proposed seismic design and evaluation criteria for new and existing underground hazardous materials storage tanks

    International Nuclear Information System (INIS)

    Kennedy, R.P.

    1991-01-01

    The document provides a recommended set of deterministic seismic design and evaluation criteria for either new or existing underground hazardous materials storage tanks placed in either the high hazard or moderate hazard usage catagories of UCRL-15910. The criteria given herein are consistent with and follow the same philosophy as those given in UCRL-15910 for the US Department of Energy facilities. This document is intended to supplement and amplify upon Reference 1 for underground hazardous materials storage tanks

  2. Integral Safety Assessment of Underground Storage of CO2 in Barendrecht, the Netherlands

    International Nuclear Information System (INIS)

    Vijgen, L.; Nitert, M.; Buijtendijk, B.; Van Dalen, A.

    2009-10-01

    The DCMR Environmental Protection Agency Rijnmond in the Netherlands conducted an Integral Safety Assessment of Underground Storage of CO2 in Barendrecht, the Netherlands, in cooperation with the involved safety and supervision authorities. The following aspects of the entire storage project and its safety issues have been examined: the compressor station in Pernis; the underground pipes between the compressor station and the injection locations; and the injection locations Barendrecht-Ziedewij and Barendrecht. [nl

  3. Estimating Residual Solids Volume In Underground Storage Tanks

    International Nuclear Information System (INIS)

    Clark, Jason L.; Worthy, S. Jason; Martin, Bruce A.; Tihey, John R.

    2014-01-01

    The Savannah River Site liquid waste system consists of multiple facilities to safely receive and store legacy radioactive waste, treat, and permanently dispose waste. The large underground storage tanks and associated equipment, known as the 'tank farms', include a complex interconnected transfer system which includes underground transfer pipelines and ancillary equipment to direct the flow of waste. The waste in the tanks is present in three forms: supernatant, sludge, and salt. The supernatant is a multi-component aqueous mixture, while sludge is a gel-like substance which consists of insoluble solids and entrapped supernatant. The waste from these tanks is retrieved and treated as sludge or salt. The high level (radioactive) fraction of the waste is vitrified into a glass waste form, while the low-level waste is immobilized in a cementitious grout waste form called saltstone. Once the waste is retrieved and processed, the tanks are closed via removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. The comprehensive liquid waste disposition system, currently managed by Savannah River Remediation, consists of 1) safe storage and retrieval of the waste as it is prepared for permanent disposition; (2) definition of the waste processing techniques utilized to separate the high-level waste fraction/low-level waste fraction; (3) disposition of LLW in saltstone; (4) disposition of the HLW in glass; and (5) closure state of the facilities, including tanks. This paper focuses on determining the effectiveness of waste removal campaigns through monitoring the volume of residual solids in the waste tanks. Volume estimates of the residual solids are performed by creating a map of the residual solids on the waste tank bottom using video and still digital images. The map is then used to calculate the volume of solids remaining in the waste tank. The ability to

  4. Estimating Residual Solids Volume In Underground Storage Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Jason L.; Worthy, S. Jason; Martin, Bruce A.; Tihey, John R.

    2014-01-08

    The Savannah River Site liquid waste system consists of multiple facilities to safely receive and store legacy radioactive waste, treat, and permanently dispose waste. The large underground storage tanks and associated equipment, known as the 'tank farms', include a complex interconnected transfer system which includes underground transfer pipelines and ancillary equipment to direct the flow of waste. The waste in the tanks is present in three forms: supernatant, sludge, and salt. The supernatant is a multi-component aqueous mixture, while sludge is a gel-like substance which consists of insoluble solids and entrapped supernatant. The waste from these tanks is retrieved and treated as sludge or salt. The high level (radioactive) fraction of the waste is vitrified into a glass waste form, while the low-level waste is immobilized in a cementitious grout waste form called saltstone. Once the waste is retrieved and processed, the tanks are closed via removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. The comprehensive liquid waste disposition system, currently managed by Savannah River Remediation, consists of 1) safe storage and retrieval of the waste as it is prepared for permanent disposition; (2) definition of the waste processing techniques utilized to separate the high-level waste fraction/low-level waste fraction; (3) disposition of LLW in saltstone; (4) disposition of the HLW in glass; and (5) closure state of the facilities, including tanks. This paper focuses on determining the effectiveness of waste removal campaigns through monitoring the volume of residual solids in the waste tanks. Volume estimates of the residual solids are performed by creating a map of the residual solids on the waste tank bottom using video and still digital images. The map is then used to calculate the volume of solids remaining in the waste tank. The

  5. Assessment of condition of underground collector lines situated inside the technological complexes of underground storage facilities

    Directory of Open Access Journals (Sweden)

    Anton Misany

    2006-10-01

    Full Text Available The evaluation of status of underground gas pipeline systems operating for several decades becomes a decisive factor of the decision making for their further safe and reliable operation. The decision becomes crucial especially in cases when piping is installed within a facility without the cathodic protection. The evaluation and inspection of underground gas manifolds requires a specific approach tailored for the respective manifolds.In 2003 NAFTA, the company initiated an extensive plan of the underground gas manifolds diagnostics and evaluation. The results were presented within the Working Committee WOC2 at the 23rd World Gas Congress in Amsterdam.

  6. Structural analysis of underground gunite storage tanks. Environmental Restoration Program

    International Nuclear Information System (INIS)

    1995-08-01

    This report documents the structural analysis of the 50-ft diameter underground gunite storage tanks constructed in 1943 and located in the Oak Ridge National Laboratory (ORNL) South Tank Farm, known as Facility 3507 in the 3500-3999 area. The six gunite tanks (W-5 through W-10) are spaced in a 2 x 3 matrix at 60 ft on centers with 6 ft of soil cover. Each tank (Figures 1, 2, and 3) has an inside diameter of 50 ft, a 12-ft vertical sidewall having a thickness of 6 in. (there is an additional 1.5-in. inner liner for much of the height), and a spherical domed roof (nominal thickness is 10 in.) rising another 6 ft, 3 in. at the center of the tank. The thickness of both the sidewall and the domed roof increases to 30 in. near their juncture. The tank floor is nominally 3-in. thick, except at the juncture with the wall where the thickness increases to 9 in. The tanks are constructed of gunite (a mixture of Portland cement, sand, and water in the form of a mortar) sprayed from the nozzle of a cement gun against a form or a solid surface. The floor and the dome are reinforced with one layer of welded wire mesh and reinforcing rods placed in the radial direction. The sidewall is reinforced with three layers of welded wire mesh, vertical 1/2-in. rods, and 21 horizontal rebar hoops (attached to the vertical rods) post-tensioned to 35,000 psi stress. The haunch at the sidewall/roof junction is reinforced with 17 horizontal rebar hoops post-tensioned with 35,000 to 40,000 psi stress. The yield strength of the post-tensioning steel rods is specified to be 60,000 psi, and all other steel is 40,000 psi steel. The specified 28-day design strength of the gunite is 5,000 psi

  7. Challenges to and proposals for underground gas storage (UGS business in China

    Directory of Open Access Journals (Sweden)

    Gangxiong Zhang

    2017-05-01

    Full Text Available Underground gas storage (UGS is one of the major storage and peak-shaving means in the world among numerous storage ways via gas fields, small-scale LNG, etc. With the rapid development of natural gas industry in China, the seasonal peak-shaving issues are increasingly prominent, so how to achieve sustainable development of UGS business has become a major problem at present. In view of this, we studied the present status and trend of UGS development abroad and analyzed the following challenges encountered by UGS in China. (1 UGS construction falls behind the world and peak-shaving capacity is insufficient. (2 There is lack of quality gas sources for storage and the complicated geological conditions make the cost of UGS construction high. (3 UGS construction is still at the preliminary stage, so experience is not enough in safety and scientific operation and management. (4 UGS construction, management and operation are not unified as a whole, so its maximum efficiency fails to be exerted. (5 The economic benefit of UGS is difficult to be shown without independent cost accounting. Based on the experience of other countries, some proposals were put forward on UGS development under the actual present situation: to strengthen strategic UGS layout, intensify storage site screening in key areas and steadily promote UGS construction; to establish professional UGS technical and management teams and intensify the research of key technologies; and to set up a complete and rationally-distributed UGS construction, operation and management system.

  8. Diversity and abundance of bacteria in an underground oil-storage cavity.

    Science.gov (United States)

    Watanabe, Kazuya; Kodama, Yumiko; Kaku, Nobuo

    2002-08-28

    Microorganisms inhabiting subterranean oil fields have recently attracted much attention. Since intact groundwater can easily be obtained from the bottom of underground oil-storage cavities without contamination by surface water, studies on such oil-storage cavities are expected to provide valuable information to understand microbial ecology of subterranean oil fields. DNA was extracted from the groundwater obtained from an oil-storage cavity situated at Kuji in Iwate, Japan, and 16S rRNA gene (16S rDNA) fragments were amplified by PCR using combinations of universal and Bacteria-specific primers. The sequence analysis of 154 clones produced 31 different bacterial sequence types (a unique clone or group of clones with sequence similarity of > 98). Major sequence types were related to Desulfotomaculum, Acetobacterium, Desulfovibrio, Desulfobacula, Zoogloea and Thiomicrospira denitrificans. The abundance in the groundwater of bacterial populations represented by these major sequence types was assessed by quantitative competitive PCR using specific primers, showing that five rDNA types except for that related to Desulfobacula shared significant proportions (more than 1%) of the total bacterial rDNA. Bacteria inhabiting the oil-storage cavity were unexpectedly diverse. A phylogenetic affiliation of cloned 16S rDNA sequences suggests that bacteria exhibiting different types of energy metabolism coexist in the cavity.

  9. Relevance of deep-subsurface microbiology for underground gas storage and geothermal energy production.

    Science.gov (United States)

    Gniese, Claudia; Bombach, Petra; Rakoczy, Jana; Hoth, Nils; Schlömann, Michael; Richnow, Hans-Hermann; Krüger, Martin

    2014-01-01

    This chapter gives the reader an introduction into the microbiology of deep geological systems with a special focus on potential geobiotechnological applications and respective risk assessments. It has been known for decades that microbial activity is responsible for the degradation or conversion of hydrocarbons in oil, gas, and coal reservoirs. These processes occur in the absence of oxygen, a typical characteristic of such deep ecosystems. The understanding of the responsible microbial processes and their environmental regulation is not only of great scientific interest. It also has substantial economic and social relevance, inasmuch as these processes directly or indirectly affect the quantity and quality of the stored oil or gas. As outlined in the following chapter, in addition to the conventional hydrocarbons, new interest in such deep subsurface systems is rising for different technological developments. These are introduced together with related geomicrobiological topics. The capture and long-termed storage of large amounts of carbon dioxide, carbon capture and storage (CCS), for example, in depleted oil and gas reservoirs, is considered to be an important options to mitigate greenhouse gas emissions and global warming. On the other hand, the increasing contribution of energy from natural and renewable sources, such as wind, solar, geothermal energy, or biogas production leads to an increasing interest in underground storage of renewable energies. Energy carriers, that is, biogas, methane, or hydrogen, are often produced in a nonconstant manner and renewable energy may be produced at some distance from the place where it is needed. Therefore, storing the energy after its conversion to methane or hydrogen in porous reservoirs or salt caverns is extensively discussed. All these developments create new research fields and challenges for microbiologists and geobiotechnologists. As a basis for respective future work, we introduce the three major topics, that is

  10. Underground gas storage Lobodice geological model development based on 3D seismic interpretation

    International Nuclear Information System (INIS)

    Kopal, L.

    2015-01-01

    Aquifer type underground gas storage (UGS) Lobodice was developed in the Central Moravian part of Carpathian foredeep in Czech Republic 50 years ago. In order to improve knowledge about UGS geological structure 3D seismic survey was performed in 2009. Reservoir is rather shallow (400 - 500 m below surface) it is located in complicated locality so limitations for field acquisition phase were abundant. This article describes process work flow from 3D seismic field data acquisition to geological model creation. The outcomes of this work flow define geometry of UGS reservoir, its tectonics, structure spill point, cap rock and sealing features of the structure. Improving of geological knowledge about the reservoir enables less risky new well localization for UGS withdrawal rate increasing. (authors)

  11. Structural analysis of ORNL underground gunite waste storage tanks

    International Nuclear Information System (INIS)

    Fricke, K.E.

    1995-01-01

    The North Tank Farm (NTF) and the South Tank Farm (STF) located at ORNL contains 8 underground waste storage tanks which were built around 1943. The tanks were used to collect and store the liquid portion of the radioactive and/or hazardous chemical wastes produced as part of normal facility operations at ORNL, but are no longer part of the active Low Level Liquid Waste system of the Laboratory. The tanks were constructed of gunite. The six STF tanks are 50 ft in diameter, and have a 12 ft sidewall, and an arched dome rising another 6.25 ft. The sidewall are 6 in. thick and have an additional 1.5 in. gunite liner on the inside. There is a thickened ring at the wall-dome juncture. The dome consists of two 5 in. layers of gunite. The two tanks in the NTF are similar, but smaller, having a 25 ft diameter, no inner liner, and a dome thickness of 3.5 in. Both sets of tanks have welded wire mesh and vertical rebars in the walls, welded wire mesh in the domes, and horizontal reinforcing hoop bars pre-tensioned to 35 to 40 ksi stress in the walls and thickened ring. The eight tanks are entirely buried under a 6 ft layer of soil cover. The present condition of the tanks is not accurately known, since access to them is extremely limited. In order to evaluate the structural capability of the tanks, a finite element analysis of each size tank was performed. Both static and seismic loads were considered. Three sludge levels, empty, half-full, and full were evaluated. In the STF analysis, the effects of wall deterioration and group spacing were evaluated. These analyses found that the weakest element in the tanks is the steel resisting the circumferential (or hoop) forces in the dome ring, a fact verified separately by an independent reviewer. However, the hoop steel has an adequate demand/capacity ratio. Buckling of the dome and the tank walls is not a concern

  12. Adaptation of magnesian cements to underground storage of nuclear wastes

    International Nuclear Information System (INIS)

    Dufournet, F.

    1987-01-01

    The aim of this thesis is the experimental study of magnesium oxychloride cements as filling materials for underground granitic cavities containing high level radioactive wastes. After a bibliographic study, mechanical properties are examined before and after setting, in function of the ratio MgO/MgCl 2 . Then behavior with water is investigated: swelling, cracking and leaching [fr

  13. Earthquake related displacement fields near underground facilities

    International Nuclear Information System (INIS)

    Pratt, H.R.; Zandt, G.; Bouchon, M.

    1979-04-01

    Relative displacements of rock masses are evaluated in terms of geological evidence, seismological evidence, data from simulation experiments, and analytical predictive models. Numerical models have been developed to determine displacement fields as a function of depth, distance, and azimuth from an earthquake source. Computer calculations for several types of faults indicate that displacements decrease rapidly with distance from the fault, but that displacements can either increase or decrease as a function of depth depending on the type and geometry of the fault. For long shallow vertical strike-slip faults the displacement decreases markedly with depth. For square strike slip faults and for dip slip faults displacement does not decrease as markedly with depth. Geologic structure, material properties, and depth affect the seismic source spectrum. Amplification of the high frequencies of shear waves is larger by a factor of about 2 for layered geologic models than for an elastic half space

  14. Geological Feasibility of Underground Oil Storage in Jintan Salt Mine of China

    Directory of Open Access Journals (Sweden)

    Xilin Shi

    2017-01-01

    Full Text Available A number of large underground oil storage spaces will be constructed in deep salt mines in China in the coming years. According to the general geological survey, the first salt cavern oil storage base of China is planned to be built in Jintan salt mine. In this research, the geological feasibility of the salt mine for oil storage is identified in detail as follows. (1 The characteristics of regional structure, strata sediment, and impermeable layer distribution of Jintan salt mine were evaluated and analyzed. (2 The tightness of cap rock was evaluated in reviews of macroscopic geology and microscopic measuring. (3 According to the geological characteristics of Jintan salt mine, the specific targeted formation for building underground oil storage was chosen, and the sealing of nonsalt interlayers was evaluated. (4 Based on the sonar measuring results of the salt caverns, the characteristics of solution mining salt caverns were analyzed. In addition, the preferred way of underground oil storage construction was determined. (5 Finally, the results of closed well observation in solution mining salt caverns were assessed. The research results indicated that Jintan salt mine has the basic geological conditions for building large-scale underground oil storage.

  15. The underground retrievable storage (URS) high-level waste management concept

    International Nuclear Information System (INIS)

    Ramspott, L.D.

    1991-01-01

    This papers presents the concept of long-term underground retrievable storage (URS) of spent reactor fuel in unsaturated rock. Emplacement would be incremental and the system is planned to be experimental and flexible. The rationale for retrievability is examined, and a technical basis for 300-year retrievability is presented. Maximum isolation is the rationale for underground as opposed to surface storage. Although the potential repository site at Yucca Mountain Nevada would be suitable for a URS, alternate sites are discussed. The technical issues involved in licensing a URS for 300 years are simpler than licensing a 10,000 year repository. 16 refs

  16. Report from SG 1.2: use of 3-D seismic data in exploration, production and underground storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The objective of this study was to investigate the experience gained from using 3D and 4D techniques in exploration, production and underground storage. The use of 3D seismic data is increasing and considerable progress in the application of such data has been achieved in recent years. 3D is now in extensive use in exploration, field and storage development planning and reservoir management. By using 4D (or time-lapse) seismic data from a given producing area, it is also possible to monitor gas movement as a function of time in a gas field or storage. This emerging technique is therefore very useful in reservoir management, in order to obtain increased recovery, higher production, and to reduce the risk of infill wells. These techniques can also be used for monitoring underground gas storage. The study gives recommendations on the use of 3D and 4D seismic in the gas industry. For this purpose, three specific questionnaires were proposed: the first one dedicated to exploration, development and production of gas fields (Production questionnaire), the second one dedicated to gas storages (Storage questionnaire) and the third one dedicated to the servicing companies. The main results are: - The benefit from 3D is clear for both producing and storage operators in improving structural shape, fault pattern and reservoir knowledge. The method usually saves wells and improve gas volume management. - 4D seismic is an emerging technique with high potential benefits for producers. Research in 4D must focus on the integration of seismic methodology and interpretation of results with production measurements in reservoir models. (author)

  17. Use of carbon dioxide in underground natural gas storage processes

    Directory of Open Access Journals (Sweden)

    Nagy Stanislaw

    2006-10-01

    Full Text Available The possibility of use of carbon dioxide in gas storage processes is presented. The model of mixing process between CO2 and methane in porous media is given. The process of injection of carbon dioxide into a lower part of storage near the water –gas contact is modeled. The example of changes in the mixing zone is presented and discussed.

  18. Correction: Large-scale electricity storage utilizing reversible solid oxide cells combined with underground storage of CO2 and CH4

    DEFF Research Database (Denmark)

    Jensen, Søren Højgaard; Graves, Christopher R.; Mogensen, Mogens Bjerg

    2017-01-01

    Correction for ‘Large-scale electricity storage utilizing reversible solid oxide cells combined with underground storage of CO2 and CH4’ by S. H. Jensen et al., Energy Environ. Sci., 2015, 8, 2471–2479.......Correction for ‘Large-scale electricity storage utilizing reversible solid oxide cells combined with underground storage of CO2 and CH4’ by S. H. Jensen et al., Energy Environ. Sci., 2015, 8, 2471–2479....

  19. Bedrock instability of underground storage systems in the Czech Republic, Central Europe

    Czech Academy of Sciences Publication Activity Database

    Nováková, Lucie; Brož, Milan; Záruba, J.; Sosna, K.; Najser, J.; Rukavičková, L.; Franěk, J.; Rudajev, V.

    2016-01-01

    Roč. 13, č. 2 (2016), s. 315-325 ISSN 1672-7975 R&D Projects: GA MPO(CZ) FR-TI1/367 Institutional support: RVO:67985891 ; RVO:67985530 Keywords : underground storage * instability * seismicity * Bohemian Massif Subject RIV: DD - Geochemistry Impact factor: 0.796, year: 2016

  20. Instability risk analysis and risk assessment system establishment of underground storage caverns in bedded salt rock

    Science.gov (United States)

    Jing, Wenjun; Zhao, Yan

    2018-02-01

    Stability is an important part of geotechnical engineering research. The operating experiences of underground storage caverns in salt rock all around the world show that the stability of the caverns is the key problem of safe operation. Currently, the combination of theoretical analysis and numerical simulation are the mainly adopts method of reserve stability analysis. This paper introduces the concept of risk into the stability analysis of underground geotechnical structure, and studies the instability of underground storage cavern in salt rock from the perspective of risk analysis. Firstly, the definition and classification of cavern instability risk is proposed, and the damage mechanism is analyzed from the mechanical angle. Then the main stability evaluating indicators of cavern instability risk are proposed, and an evaluation method of cavern instability risk is put forward. Finally, the established cavern instability risk assessment system is applied to the analysis and prediction of cavern instability risk after 30 years of operation in a proposed storage cavern group in the Huai’an salt mine. This research can provide a useful theoretical base for the safe operation and management of underground storage caverns in salt rock.

  1. VOLUMETRIC LEAK DETECTION IN LARGE UNDERGROUND STORAGE TANKS - VOLUME II: APPENDICES A-E

    Science.gov (United States)

    The program of experiments conducted at Griffiss Air Force Base was devised to expand the understanding of large underground storage tank behavior as it impacts the performance of volumetric leak detection testing. The report addresses three important questions about testing the ...

  2. 76 FR 46798 - Compatibility of Underground Storage Tank Systems With Biofuel Blends; Correction

    Science.gov (United States)

    2011-08-03

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-UST-2010-0651; FRL-9447-3] Compatibility of Underground Storage Tank Systems With Biofuel Blends; Correction AGENCY: Environmental Protection Agency (EPA). ACTION: Notice; correction. SUMMARY: This document contains a typographical correction to the guidance which was...

  3. RCRA corrective action for underground storage tanks -- Subtitle C for Subtitle I

    International Nuclear Information System (INIS)

    1995-08-01

    The purpose of this report is to provide guidance to DOE and DOE contractor personnel responsible for planning and implementation of corrective measures addressing cleanup of releases of hazardous materials or regulated substances from underground storage tanks regulated under RCRA Subtitle C or Subtitle I

  4. Extensive optimisation analyses of the piping of two large underground gas storage ariel compressors

    NARCIS (Netherlands)

    Eijk, A.; Korst, H.J.C.; Ploumen, G.; Heyer, D.

    2007-01-01

    Two large identical 6-cylinder Ariel JGB/6 compressors of each 7.5 Mw, are used for the underground gas storage (UGS) plant of Essent in Epe, Germany. The compressors can be operated at a wide range of operating conditions, e.g. variable suction and discharge pressures, 2-stage mode during gas

  5. Paradigms of underground gas storage operation; Paradigmas del funcionamiento de un almacenamiento subterraneo de gas

    Energy Technology Data Exchange (ETDEWEB)

    Bonoris, Patricia; Vizcarra, Rodolfo; Buciak, Jorge [Companias Asociadas Petroleras S.A. (Argentina)

    2004-07-01

    The main objective of the study was to determine, for the underground storage of gas, the Current Useful Volume and Maximum Useful Current of operation, as well as have an acceptable interpretation that allows calculating the investment needed to reach this Maximum Usable Volume.

  6. Lower Colorado River GRP Leaking Underground Storage Tank Sites (Open), Nevada, 2012, Nevada Division of Environmental Protection Bureau of Corrective Actions

    Data.gov (United States)

    U.S. Environmental Protection Agency — The BCA layers are derived from a database for Federally Regulated Underground Storage Tanks (UST) and a database for Remediation and Leaking Underground Storage...

  7. Lower Colorado River GRP Leaking Underground Storage Tank Sites (Closed), Nevada, 2012, Nevada Division of Environmental Protection Bureau of Corrective Actions

    Data.gov (United States)

    U.S. Environmental Protection Agency — The BCA layers are derived from a database for Federally Regulated Underground Storage Tanks (UST) and a database for Remediation and Leaking Underground Storage...

  8. Treatment of radioactive wastes from DOE underground storage tanks

    International Nuclear Information System (INIS)

    Collins, J.L.; Egan, B.Z.; Spencer, B.B.; Chase, C.W.; Anderson, K.K.; Bell, J.T.

    1994-01-01

    Bench-scale batch tests have been conducted with sludge and supernate tank waste from the Melton Valley Storage Tank (MVST) Facility at Oak Ridge National Laboratory (ORNL) to evaluate separation technology process for use in a comprehensive sludge processing flow sheet as a means of concentrating the radionuclides and reducing the volumes of storage tank waste at national sites for final disposal. This paper discusses the separation of the sludge solids and supernate, the basic washing of the sludge solids, the acidic dissolution of the sludge solids, and the removal of the radionuclides from the supernate

  9. 30 CFR 57.4462 - Storage of combustible liquids underground.

    Science.gov (United States)

    2010-07-01

    ....4462 Section 57.4462 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL... containers or storage tanks shall be— (1) Capable of withstanding working pressures and stresses and... withstanding working pressures and stresses; (2) Compatible with the type of liquid stored; and (3) Maintained...

  10. New perspectives for underground storage of surplus LPG within the framework of a strategy to optimize the production rate of a gas condensate field; Perspectives nouvelles de stockage souterrain du GPL en surplus dans le cadre d'une strategie d'optimisation de la production d'un champ de gaz a condensat

    Energy Technology Data Exchange (ETDEWEB)

    Terkmani, M. [Sonatrach, Direction Production, Hydra (Algeria)

    2000-07-01

    Most of the algerian natural gas reserves, as well as those of many other countries, are made up of gas - condensate which needs to be processed in surface facilities where it is split into three different fluids: dry gas, LPG and condensate. The relative proportion of each fluid is fixed and cannot be altered. Therefore any disturbance due to technical, commercial or conjuncture reasons that would reduce or block the dispatching of one of them will have a negative impact on the producing performance of the field. In case circumstances would lead to the necessity of reducing or totally suppressing the dispatching of LPG, then one one of the following unpleasant decisions would have to be taken: - Flare surplus LPG in order to avoid reducing or suppressing condensate and dry gas production. - Reduce or suppress condensate and dry gas production in order to avoid producing any surplus LPG. The alternative to avoid either decision lies in the availability of a sufficient storage capacity for the surplus LPG. Among conventional technics for underground or surface storage none seems fit for LPG because of an almost certain risk of economic failure in the context of the problem to be solved. The aim of this paper is to present a possible solution to solve this problem through a new underground storage concept that would offer enough flexibility to store the required volume of LPG whatever its importance, at a very low investment cost whatever the size of the volumes to be stored, with the possibility to start immediately the production of stored LPG as soon as the disturbance is over. This solution lies in the possibility to inject LPG into the gas reservoir from which it is produced by means of one or several producers temporarily converted into LPG injection wells. (author)

  11. STORAGE AND RECOVERY OF SECONDARY WASTE COMING FROM MUNICIPAL WASTE INCINERATION PLANTS IN UNDERGROUND MINE

    Directory of Open Access Journals (Sweden)

    Waldemar Korzeniowski

    2016-09-01

    Full Text Available Regarding current and planned development of municipal waste incineration plants in Poland there is an important problem of the generated secondary waste management. The experience of West European countries in mining shows that waste can be stored successfully in the underground mines, but especially in salt mines. In Poland there is a possibility to set up the underground storage facility in the Salt Mine “Kłodawa”. The mine today is capable to locate over 3 million cubic meters and in the future it can increase significantly. Two techniques are proposed: 1 – storage of packaged waste, 2 – waste recovery as selfsolidifying paste with mining technology for rooms backfilling. Assuming the processing capacity of the storage facility as 100 000 Mg of waste per year, “Kłodawa” mine will be able to accept around 25 % of currently generated waste coming from the municipal waste incineration plants and the current volume of the storage space is sufficient for more than 20 years. Underground storage and waste recovery in mining techniques are beneficial for the economy and environment.

  12. Underground storage tank 431-D1U1, Closure Plan

    Energy Technology Data Exchange (ETDEWEB)

    Mancieri, S.

    1993-09-01

    This document contains information about the decommissioning of Tank 431-D1U1. This tank was installed in 1965 for diesel fuel storage. This tank will remain in active usage until closure procedures begin. Soils and ground water around the tank will be sampled to check for leakage. Appendices include; proof of proper training for workers, health and safety briefing record, task hazard analysis summary, and emergency plans.

  13. The electrostatic properties of Fiber-Reinforced-Plastics double wall underground storage gasoline tanks

    International Nuclear Information System (INIS)

    Li, Yipeng; Liu, Quanzhen; Meng, He; Sun, Lifu; Zhang, Yunpeng

    2013-01-01

    At present Fiber Reinforced Plastics (FRP) double wall underground storage gasoline tanks are wildly used. An FRP product with a resistance of more than 10 11 Ω is a static non-conductor, so it is difficult for the static electricity in the FRP product to decay into the earth. In this paper an experimental system was built to simulate an automobile gasoline filling station. Some electrostatic parameters of the gasoline, including volume charge density, were tested when gasoline was unloaded into a FRP double wall underground storage tank. Measurements were taken to make sure the volume charge density in the oil-outlet was similar to the volume charge density in the tank. In most cases the volume charge density of the gasoline was more than 22.7 μC m −3 , which is likely to cause electrostatic discharge in FRP double wall underground storage gasoline tanks. On the other hand, it would be hard to ignite the vapor by electrostatic discharge since the vapor pressure in the tanks is over the explosion limit. But when the tank is repaired or re-used, the operators must pay attention to the static electricity and some measurements should be taken to avoid electrostatic accident. Besides the relaxation time of charge in the FRP double wall gasoline storage tanks should be longer.

  14. Reducing drinking water supply chemical contamination: risks from underground storage tanks.

    Science.gov (United States)

    Enander, Richard T; Hanumara, R Choudary; Kobayashi, Hisanori; Gagnon, Ronald N; Park, Eugene; Vallot, Christopher; Genovesi, Richard

    2012-12-01

    Drinking water supplies are at risk of contamination from a variety of physical, chemical, and biological sources. Ranked among these threats are hazardous material releases from leaking or improperly managed underground storage tanks located at municipal, commercial, and industrial facilities. To reduce human health and environmental risks associated with the subsurface storage of hazardous materials, government agencies have taken a variety of legislative and regulatory actions--which date back more than 25 years and include the establishment of rigorous equipment/technology/operational requirements and facility-by-facility inspection and enforcement programs. Given a history of more than 470,000 underground storage tank releases nationwide, the U.S. Environmental Protection Agency continues to report that 7,300 new leaks were found in federal fiscal year 2008, while nearly 103,000 old leaks remain to be cleaned up. In this article, we report on an alternate evidence-based intervention approach for reducing potential releases from the storage of petroleum products (gasoline, diesel, kerosene, heating/fuel oil, and waste oil) in underground tanks at commercial facilities located in Rhode Island. The objective of this study was to evaluate whether a new regulatory model can be used as a cost-effective alternative to traditional facility-by-facility inspection and enforcement programs for underground storage tanks. We conclude that the alternative model, using an emphasis on technical assistance tools, can produce measurable improvements in compliance performance, is a cost-effective adjunct to traditional facility-by-facility inspection and enforcement programs, and has the potential to allow regulatory agencies to decrease their frequency of inspections among low risk facilities without sacrificing compliance performance or increasing public health risks. © 2012 Society for Risk Analysis.

  15. Assessment of feasible strategies for seasonal underground hydrogen storage in a saline aquifer

    Science.gov (United States)

    Sáinz-García, Alvaro; Abarca, Elena; Rubí, Violeta; Grandia, Fidel

    2017-04-01

    Renewable energies are unsteady, which results in temporary mismatches between demand and supply. The conversion of surplus energy to hydrogen and its storage in geological formations is one option to balance this energy gap. This study evaluates the feasibility of seasonal storage of hydrogen produced from wind power in Castilla-León region (northern Spain). A 3D multiphase numerical model is used to test different extraction well configurations during three annual injection-production cycles in a saline aquifer. Results demonstrate that underground hydrogen storage in saline aquifers can be operated with reasonable recovery ratios. A maximum hydrogen recovery ratio of 78%, which represents a global energy efficiency of 30%, has been estimated. Hydrogen upconing emerges as the major risk on saline aquifer storage. However, shallow extraction wells can minimize its effects. Steeply dipping geological structures are key for an efficient hydrogen storage.

  16. The Cigeo project: an industrial storage site for radioactive wastes in deep underground

    International Nuclear Information System (INIS)

    Krieguer, Jean-Marie

    2017-01-01

    In 2006, France has decided to store its high-level and long-lived radioactive wastes, mostly issued from the nuclear industry, in a deep geological underground disposal site. This document presents the Cigeo project, a deep underground disposal site (located in the East of France) for such radioactive wastes, which construction is to be started in 2021 (subject to authorization in 2018). After a brief historical review of the project, started 20 years ago, the document presents the radioactive waste disposal context, the ethical choice of underground storage (in France and elsewhere) for these types of radioactive wastes, the disposal site safety and financing aspects, the progressive development of the underground facilities and, of most importance, its reversibility. In a second part, the various works around the site are presented (transport, buildings, water and power supply, etc.) together with a description of the various radioactive wastes (high and intermediate level and long-lived wastes and their packaging) that will be disposed in the site. The different steps of the project are then reviewed (the initial design and initial construction phases, the pilot industrial phase (expected in 2030), the operating phase, and the ultimate phases that will consist in the definitive closure of the site and its monitoring), followed by an extensive description of the various installations of surface and underground facilities, their architecture and their equipment

  17. Coalmines as Underground Pumped Storage Power Plants (UPP) - A Contribution to a Sustainable Energy Supply?

    Science.gov (United States)

    Luick, H.; Niemann, A.; Perau, E.; Schreiber, U.

    2012-04-01

    research project, funded by Mercator Research Center Ruhr has been performed to investigate the field of application of coal mines for underground pumped storage plants (UPP). In further research, in co-operation with the Ruhrkohle AG coal mines in the Ruhr Area will be investigated (Niemann, 2011). The coal mine "Prosper-Haniel" is located in the northern part of the Ruhr Area and shafts have a maximum depth of 1,159 m. It will be closed in 2018. In principal two different designs had been investigated (Luick 2011). The first is a closed system in which water circulates isolated from surrounding groundwater in drifts and shafts supported by casings. The second one is an open system, with a varying groundwater table at a defined depth. Problems resulting from this are the stability of the surrounding rock, its porosity and fissurization, composition of mine waters, the necessity of new drifts and shafts or the upgrading of old ones. In addition, the configuration and arrangement of turbines, pumps and ventilation shafts play an important role. The presentation gives an outline towards problems and challenges which have to be solved in order to establish an innovative contribution for future energy storage.

  18. [A microbiological study of an underground gas storage in the process of gas extraction].

    Science.gov (United States)

    Ivanova, A E; Borzenkov, I A; Tarasov, A L; Milekhina, E I; Beliaev, S S

    2007-01-01

    The numbers of microorganisms belonging to ecologically significant groups and the rates of terminal microbial processes of sulfate reduction and methanogenesis were determined in the liquid phase of an underground gas storage (UGS) in the period of gas extraction. The total number of microorganisms in water samples from the operation and injection wells reached 2.1 x 10(6) cells/ml. Aerobic organotrophs (including hydrocarbon- and oil-oxidizing ones) and various anaerobic microorganisms (fermenting bacteria, methanogens, acetogens, sulfate-, nitrate-, and iron-reducing bacteria) were constituent parts of the community. The radioisotopic method showed that, in all the UGS units, the terminal stages of organic matter decomposition included sulfate reduction and methanogenesis, with the maximal rate of these processes recorded in the aqueous phase of above-ground technological equipment which the gas enters from the operation wells. A comparative analysis by these parameters of different anaerobic ecotopes, including natural hydrocarbon fields, allows us to assess the rate of these processes in the UGS as high throughout the annual cycle of its operation. The data obtained indicate the existence in the UGS of a bacterial community that is unique in its diversity and metabolic capacities and able to make a certain contribution to the geochemistry of organic and inorganic compounds in the natural and technogenic ecosystem of the UGS and thus influence the industrial gas composition.

  19. Model based, sensor directed remediation of underground storage tanks

    International Nuclear Information System (INIS)

    Christensen, B.; Drotning, W.; Thunborg, S.

    1991-01-01

    Sensor rich, intelligent robots which function with respect to models of their environment have significant potential to reduce the time and cost for the cleanup of hazardous waste while increasing operator safety. Sandia National Laboratories is performing experimental investigations into the application of intelligent robot control technology to the problem of removing waste stored tanks. This paper describes the experimental environment employed at Saudi with particular attention to the computing and software control environment. Intelligent system control is achieved though the integration of extensive geometric and kinematic world models with real-time sensor based control. All operator interactions with the system are validate all operator commands before execution to provide a safe operation. Sensing is used to add information to the robot system's world model and to allow sensor based sensor control during selected operations. The results of a first Critical Feature Test are reported and the potential for applying advanced intelligent control concepts to the removal of waste in storage tanks is discussed

  20. Heat pipe cooling system for underground, radioactive waste storage tanks

    International Nuclear Information System (INIS)

    Cooper, K.C.; Prenger, F.C.

    1980-02-01

    An array of 37 heat pipes inserted through the central hole at the top of a radioactive waste storage tank will remove 100,000 Btu/h with a heat sink of 70 0 F atmospheric air. Heat transfer inside the tank to the heat pipe is by natural convection. Heat rejection to outside air utilizes a blower to force air past the heat pipe condenser. The heat pipe evaporator section is axially finned, and is constructed of stainless steel. The working fluid is ammonia. The finned pipes are individually shrouded and extend 35 ft down into the tank air space. The hot tank air enters the shroud at the top of the tank and flows downward as it is cooled, with the resulting increased density furnishing the pressure difference for circulation. The cooled air discharges at the center of the tank above the sludge surface, flows radially outward, and picks up heat from the radioactive sludge. At the tank wall the heated air rises and then flows inward to comple the cycle

  1. Studies concerning the conditions for underground storage of short-lived radioactive wastes

    International Nuclear Information System (INIS)

    Carlsson, T.; Jacobsson, A.; Linder, P.; Holmberg, K.E.

    1978-08-01

    Studies concerning the conditions for underground storage of short-lived radioactive wastes at different places are reported. Thus a literature study of the different factors affecting the radionuclide migration in the ground is reported as well as experiments, in which the distribution constant for radionuclide migration have been determined. Furthermore measuring methods for the determination of different migration parameters are described. (E.R.)

  2. RECOMMENDATIONS ON THE MONITORING SYSTEM OF UNDERGROUND GAS STORAGE (in Russian

    Directory of Open Access Journals (Sweden)

    Victor NORDIN

    2014-07-01

    Full Text Available The article in accordance with the "process approach" ISO 9000 is substantiated the necessity of creating underground gas storage system monitoring and control, including objects, parameters, methods, frequency and corrective action, on the basis of which made structural formula monitoring cycle. Qualimetrical approach allows to define complex criteria of an estimation of efficiency of operation, which will help to make timely and effective management decisions, including from the perspective of environmental protection.

  3. Decision and systems analysis for underground storage tank waste retrieval systems and tank waste remediation system

    International Nuclear Information System (INIS)

    Berry, D.L.; Jardine, L.J.

    1993-10-01

    Hanford's underground storage tanks (USTs) pose one of the most challenging hazardous and radioactive waste problems for the Department of Energy (DOE). Numerous schemes have been proposed for removing the waste from the USTs, but the technology options for doing this are largely unproven. To help assess the options, an Independent Review Group (IRG) was established to conduct a broad review of retrieval systems and the tank waste remediation system. The IRG consisted of the authors of this report. The IRG's Preliminary Report assessed retrieval systems for underground storage tank wastes at Hanford in 1992. Westinghouse Hanford Company (WHC) concurred with the report's recommendation that a tool should be developed for evaluating retrieval concepts. The report recommended that this tool include (1) important considerations identified previously by the IRG, (2) a means of documenting important decisions concerning retrieval systems, and (3) a focus on evaluations and assessments for the Tank Waste Remediation System (TWRS) and the Underground Storage Tank-Integrated Demonstration (UST-ID)

  4. Underground storage with floating cover. An overview; Erdbeckenspeicher mit schwimmender Abdeckung. Eine Uebersicht

    Energy Technology Data Exchange (ETDEWEB)

    Heller, A.; Maureschat, G.; Duer, K. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Buildings and Energy

    1998-12-31

    A number of underground stores have been developed in recent years in Denmark. The development has been subsidised with funds of `Development program renewable energy` launched by the Danish Ministry for Environment and Energy. First experience reports on underground storage show that more emphasis must be put on the development of storage sealing and cover construction. Hence research works currently focuses on the investigation of liner material and further development of floating cover constructions. The target is the development of underground storage using solar energy for heating that can compete with conventional heating systems technically and economically. (orig.) [Deutsch] In Daenemark hat man in den letzten Jahren eine Reihe von Erdbeckenspeichern entwickelt. Die Entwicklung wird mit Mitteln aus dem `Entwicklungsprogramm Erneuerbare Energie` vom daenischen Umwelt- und Energieministerium finanziell gefoerdert. Die ersten Erfahrungen mit Erdbeckenspeichern haben gezeigt, dass ein verstaerkter Einsatz bei der Entwicklung von Abdichtungen des Speichers und von Deckelkonstruktionen gefordert ist. Deshalb wird in Daenemark aktuell mit der Untersuchung von Linermaterialien und der Weiterentwicklung von schwimmenden Deckelkonstruktionen gearbeitet. Das Ziel dieser Arbeit ist es, Erdbeckenspeicher zu entwickeln, die die Ausnutzung von Sonnenenergie zur Waermeversorgung im Vergleich mit herkoemmlicher Waermeversorgung sowohl technisch als auch oekonomisch konkurrenzfaehig macht. (orig.)

  5. Corrective Action Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Cox, D. H.

    2000-01-01

    The Area 25 Underground Storage Tanks site Corrective Action Unit (CAU) 135 will be closed by unrestricted release decontamination and verification survey, in accordance with the Federal Facility Agreement and Consert Order (FFACO, 1996). The CAU includes one Corrective Action Site (CAS). The Area 25 Underground Storage Tanks, (CAS 25-02-01), referred to as the Engine-Maintenance Assembly and Disassembly (E-MAD) Waste Holdup Tanks and Vault, were used to receive liquid waste from all of the radioactive drains at the E-MAD Facility. Based on the results of the Corrective Action Investigation conducted in June 1999 discussed in the Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada (DOE/NV,1999a), one sample from the radiological survey of the concrete vault interior exceeded radionuclide preliminary action levels. The analytes from the sediment samples that exceeded the preliminary action levels are polychlorinated biphenyls, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons as diesel-range organics, and radionuclides. Unrestricted release decontamination and verification involves removal of concrete and the cement-lined pump sump from the vault. After verification that the contamination has been removed, the vault will be repaired with concrete, as necessary. The radiological- and chemical-contaminated pump sump and concrete removed from the vault would be disposed of at the Area 5 Radioactive Waste Management Site. The vault interior will be field surveyed following removal of contaminated material to verify that unrestricted release criteria have been achieved

  6. Corrective Action Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. H. Cox

    2000-07-01

    The Area 25 Underground Storage Tanks site Corrective Action Unit (CAU) 135 will be closed by unrestricted release decontamination and verification survey, in accordance with the Federal Facility Agreement and Consert Order (FFACO, 1996). The CAU includes one Corrective Action Site (CAS). The Area 25 Underground Storage Tanks, (CAS 25-02-01), referred to as the Engine-Maintenance Assembly and Disassembly (E-MAD) Waste Holdup Tanks and Vault, were used to receive liquid waste from all of the radioactive drains at the E-MAD Facility. Based on the results of the Corrective Action Investigation conducted in June 1999 discussed in the Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada (DOE/NV,1999a), one sample from the radiological survey of the concrete vault interior exceeded radionuclide preliminary action levels. The analytes from the sediment samples that exceeded the preliminary action levels are polychlorinated biphenyls, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons as diesel-range organics, and radionuclides. Unrestricted release decontamination and verification involves removal of concrete and the cement-lined pump sump from the vault. After verification that the contamination has been removed, the vault will be repaired with concrete, as necessary. The radiological- and chemical-contaminated pump sump and concrete removed from the vault would be disposed of at the Area 5 Radioactive Waste Management Site. The vault interior will be field surveyed following removal of contaminated material to verify that unrestricted release criteria have been achieved.

  7. A research on the excavation and maintenance of underground energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hee-Soon; Chung, So-Keul; Ryu, Chang-Ha [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    CAES which is called as a compressed air energy storage was firstly developed at Huntorf, Gen-nan in 1978. The capacity of that system was 290MW, and it can be treated as a first commercial power plant. CAES has a lot of merits, such as saving the unit price of power generation, averaging the peak demand, improvement of maintenance, enlarging the benefit of dynamic use. According to the literature survey, the unlined rock cavern should be proposed to be a reasonable storing style as a method of compressed air storage in Korea. In this study, the most important techniques were evaluated through the investigation of the foreign construction case studies, especially on the unlined rock caverns in hard rock mass. We decided the hill of the Korea Institute of Geology, Mining and Materials as CAES site. If we construct the underground spaces in this site, the demand for electricity nearby Taejon should be considered. So we could determine the capacity of the power plant as a 350MW. This capacity needs a underground space of 200,000, and we can conclude 4 parallel tunnels 550m deep from the surface through the numerical studies. Design parameters were achieved from 300m depth boring job and image processing job. Moreover the techniques for determination of joint characteristics from the images could be obtained. Blasting pattern was designed on the underground spaces, and automatic gas control system and thermomechanical characteristics on caverns were also studied. And finally the following research items could be proposed for future researches. (1) Establishment of criteria for selection of optimal tunnel type. (2) Evaluation of water tightening ability. (3) Investigation of Lining type. (4) Development of techniques for site investigation in deep underground project. (5) Evaluation of construction techniques for underground space and shaft. (6) Investigation of long-term maintenance for pressured tunnel. (author). 14 refs.

  8. Large-scale electricity storage utilizing reversible solid oxide cells combined with underground storage of CO2 and CH4

    DEFF Research Database (Denmark)

    Jensen, Søren Højgaard; Graves, Christopher R.; Mogensen, Mogens Bjerg

    2015-01-01

    , but unfortunately it is limited to mountainous regions and therefore difficult to expand. Emerging technologies like adiabatic compressed air energy storage (ACAES) or storage using conventional power-to-gas (P2G) technology combined with underground gas storage can be more widely deployed, but unfortunately...

  9. Numerical modeling of gas mixing and bio-chemical transformations during underground hydrogen storage within the project H2STORE

    Science.gov (United States)

    Hagemann, B.; Feldmann, F.; Panfilov, M.; Ganzer, L.

    2015-12-01

    The change from fossil to renewable energy sources is demanding an increasing amount of storage capacities for electrical energy. A promising technological solution is the storage of hydrogen in the subsurface. Hydrogen can be produced by electrolysis using excessive electrical energy and subsequently converted back into electricity by fuel cells or engine generators. The development of this technology starts with adding small amounts of hydrogen to the high pressure natural gas grid and continues with the creation of pure underground hydrogen storages. The feasibility of hydrogen storage in depleted gas reservoirs is investigated in the lighthouse project H2STORE financed by the German Ministry for Education and Research. The joint research project has project members from the University of Jena, the Clausthal University of Technology, the GFZ Potsdam and the French National Center for Scientic Research in Nancy. The six sub projects are based on laboratory experiments, numerical simulations and analytical work which cover the investigation of mineralogical, geochemical, physio-chemical, sedimentological, microbiological and gas mixing processes in reservoir and cap rocks. The focus in this presentation is on the numerical modeling of underground hydrogen storage. A mathematical model was developed which describes the involved coupled hydrodynamic and microbiological effects. Thereby, the bio-chemical reaction rates depend on the kinetics of microbial growth which is induced by the injection of hydrogen. The model has been numerically implemented on the basis of the open source code DuMuX. A field case study based on a real German gas reservoir was performed to investigate the mixing of hydrogen with residual gases and to discover the consequences of bio-chemical reactions.

  10. Underground seasonal storage of industrial waste heat; Saisonale Speicherung industrieller Abwaerme im Untergrund

    Energy Technology Data Exchange (ETDEWEB)

    Reuss, M.; Mueller, J. [Bayerische Landesanstalt fuer Landtechnik, TU Muenchen-Weihenstephan, Freising (Germany)

    1998-12-31

    The thermal efficiency of subject systems, especially at higher temperatures is influenced by heat and humidity transport underground. Thermal conductivity and specific thermal capacity depend on the humidity content of the soil. A simulation model was developed that describes the coupled heat and humidity transport in the temperature range up to 90 C. This model will be validated in laboratory and field tests and then be used for designing and analysing underground stores. Pilot plants for the storage of industrial waste heat were designed and planned on the basis of this simulation. In both cases these are cogeneration plants whose waste heat was to be used for space heating and as process energy. Both plants have a very high demand of electric energy which is mostly supplied by the cogeneration plant. The waste heat is put into the store during the summer. In the winter heat is supplied by both the store and the cogeneration plant. In both cases the store has a volume of approx. 15,000 cubic metres with 140 and 210 pits located in a depth of 30 and 40 metres. The plants are used to carry out extensive measurements for the validation of simulation models. (orig.) [Deutsch] Die thermische Leistungsfaehigkeit solcher Systeme wird insbesondere im hoeheren Temperaturbereich durch den Waerme- und Feuchtetransport im Untergrund beeinflusst. Sowohl die Waermeleitfaehigkeit als auch die spezifische Waermekapazitaet sind vom Feuchtegehalt des Bodens abhaengig. Es wurde ein Simulationsmodell entwickelt, das den gekoppelten Waerme- und Feuchtetransport im Temperaturbereich bis 90 C beschreibt. Dieses Modell wird an Labor- und Feldexperimenten validiert und dient dann zur Auslegung und Analyse von Erdwaermesonden-Speichern. Basierend auf diesen theoretischen Grundlagenarbeiten wurden Pilotanlagen zur saisonalen Speicherung industrieller Abwaerme ausgelegt und geplant. In beiden Faellen handelt es sich um Kraft/Waermekopplungsanlagen, deren Abwaerme zur Gebaeudeheizung und

  11. Water chemical evolution in Underground Pumped Storage Hydropower plants and induced consequences

    Science.gov (United States)

    Pujades, Estanislao; Orban, Philippe; Jurado, Anna; Ayora, Carlos; Brouyère, Serge; Dassargues, Alain

    2017-04-01

    Underground Pumped Storage Hydropower (UPSH) using abandoned mines is an alternative to manage the electricity production in flat regions. UPSH plants consist of two reservoirs; the upper reservoir is located at the surface or at shallow depth, while the lower reservoir is underground. These plants have potentially less constraints that the classical Pumped Storage Hydropower plants because more sites are available and impacts on landscape, land use, environment and society seem lower. Still, it is needed to consider the consequences of the groundwater exchanges occurring between the underground reservoir and surrounding porous media. Previous studies have been focused on the influence of these groundwater exchanges on the efficiency and on groundwater flow impacts. However, hydrochemical variations induced by the surface exposure of pumped water and their consequences have not been yet addressed. The objective of this work is to evaluate the hydrochemical evolution of the water in UPSH plants and its effects on the environment and on the UPSH efficiency. The problem is studied numerically by means of reactive transport modelling. Different scenarios are considered varying the chemical properties of the surrounding porous medium and groundwater. Results show that the dissolution and/or precipitation of some compounds may affect (1) the groundwater quality, and (2) the efficiency and the useful life of the used pumps and turbines of the UPSH system.

  12. Design and operation problems related to water curtain system for underground water-sealed oil storage caverns

    Directory of Open Access Journals (Sweden)

    Zhongkui Li

    2016-10-01

    Full Text Available The underground water-sealed storage technique is critically important and generally accepted for the national energy strategy in China. Although several small underground water-sealed oil storage caverns have been built in China since the 1970s, there is still a lack of experience for large-volume underground storage in complicated geological conditions. The current design concept of water curtain system and the technical instruction for system operation have limitations in maintaining the stability of surrounding rock mass during the construction of the main storage caverns, as well as the long-term stability. Although several large-scale underground oil storage projects are under construction at present in China, the design concepts and construction methods, especially for the water curtain system, are mainly based on the ideal porosity medium flow theory and the experiences gained from the similar projects overseas. The storage projects currently constructed in China have the specific features such as huge scale, large depth, multiple-level arrangement, high seepage pressure, complicated geological conditions, and high in situ stresses, which are the challenging issues for the stability of the storage caverns. Based on years' experiences obtained from the first large-scale (millions of cubic meters underground water-sealed oil storage project in China, some design and operation problems related to water curtain system during project construction are discussed. The drawbacks and merits of the water curtain system are also presented. As an example, the conventional concept of “filling joints with water” is widely used in many cases, as a basic concept for the design of the water curtain system, but it is immature. In this paper, the advantages and disadvantages of the conventional concept are pointed out, with respect to the long-term stability as well as the safety of construction of storage caverns. Finally, new concepts and principles

  13. High-temperature acquifer thermal storage and underground heat storage; IEA ECES Annex 12: Hochtemperatur-Erdwaermesonden- und Aquiferwaermespeicher

    Energy Technology Data Exchange (ETDEWEB)

    Sanner, B.; Knoblich, K. [Giessen Univ. (Germany). Inst. fuer Angewandte Geowissenschaften; Koch, M.; Adinolfi, M. [Stuttgart Univ. (Germany). Inst. fuer Siedlungswasserbau, Wasserguete und Abfallwirtschaft

    1998-12-31

    Heat storage is essential for the reconciliation of heat supply and demand. The earth has already proved to be an excellent medium for storing large amounts of heat over longer periods of time, for instance during the cold and hot season. The efficiency of the storage is the better the lower storage losses are at high temperature levels. Unfortunately this can not be easily achieved. While thermal underground stores, which are widely used for cold storage, have proved to perform quite well at temperatures between 10 C - 40 C, it has been rather difficult to achieve similar results at higher temperatures up to 150 C as test and demonstration plants of the 1980s proved. This issue has again attracted so much interest that the IEA launched a project on high temperature underground storage in December 1998. (orig.) [Deutsch] Waermespeicherung ist von entscheidender Bedeutung, wenn es darum geht, ein Waermeangebot mit einer Waermenachfrage zeitlich zur Deckung zu bringen. Der Untergrund hat sich schon seit vielen Jahren als ein geeignetes Medium erwiesen, groessere Waermepumpen ueber laengere Zeitraeume wie etwa die kalten und warmen Jahreszeiten zu speichern. Die Effizienz eines solchen Speichers steigt mit der Hoehe des erreichten Temperaturniveaus und mit sinkenden Speicherverlusten, was leider eher gegenlaeufige Erscheinungen sind. Waehrend thermische Untergrundspeicher im Temperaturbereich von 10-40 C inzwischen erfolgreich demonstriert wurden und vor allem zur Kaeltespeicherung auch bereits vielfach eingesetzt werden, haben hoehere Temperaturen bis etwa 150 C in den Versuchs- und Demonstrationsanlagen der 80er Jahre vielfaeltige Probleme bereitet. Im Gefolge eines erneuten Interesses an unterirdischer thermischer Energiespeicherung wurde im Dezember 1997 ein Vorhaben des IEA Energiespeicherprogramms zu Untergrund-Waermespeichern hoeherer Temperatur eingerichtet. (orig.)

  14. Underground storage tank waste retrieval strategies using a high-pressure waterjet scarifier

    International Nuclear Information System (INIS)

    Hatchell, B.K.; Smalley, J.T.

    1996-01-01

    The Retrieval Process Development and Enhancements Program (RPD ampersand E) is sponsored by the U.S. Department of Energy Office of Science and Technology to investigate existing and emerging retrieval processes suitable for the retrieval of high-level radioactive waste inside underground storage tanks. This program, represented by industry, national laboratories, and academia, seeks to provide a technical and cost basis to support site-remediation decisions. Part of this program has involved the development of a high-pressure waterjet dislodging system and pneumatic conveyance integrated as a scarifier, Industry has used high-pressure waterjet technology for many years to mine, cut, clean, and scarify materials with a broad range of properties. The scarifier was developed as an alternate means of retrieving waste inside Hanford single-shell tanks, particularly hard, stubborn waste. Simulant materials representative of tank waste have been used to test the performance of the scarifier over a wide range of waste types. This technology has been shown to mobilize and convey the waste simulants at desired retrieval rates while operating within the space envelope and the dynamic loading constraints of proposed deployment devices. A testing program has been initiated to investigate system deployment techniques to determine appropriate mining strategies, level of control, sensor requirements, and address integration issues associated with deploying the scarifier by a long robotic manipulator arm. A test facility denoted the Hydraulics Testbed (HTB) is being constructed to achieve these objectives and to allow longer-duration, multiple-pass tests on large waste fields using a versatile gantry-style manipulator. Mining strategy tests with materials simulating salt cake and sludge waste forms will be conducted. This paper will describe the testbed facility and testing program and present initial test results to date

  15. Selecting Formation-Accumulator for Industrial Waste Disposal of Arbuzovsky Underground Gas Storage Facility

    Directory of Open Access Journals (Sweden)

    A.S. Garayshin

    2017-03-01

    Full Text Available In domestic and foreign practice of constructing underground gas storage facilities, industrial sewage, as a rule, is pumped back into the reservoirs-gas storage facilities. Underground disposal of liquid waste is the most rational way to maintain and improve the ecological environment. When selecting the horizon for disposal of industrial waste, the authors considered the lower part of the sedimentary cover and, in the first place, the Bobrikovian horizon, as well as carbonates of the Turnaisian stage. In the sedimentary cover of the Middle-Upper Carboniferous complex studied by drilling, there are twelve major water-bearing horizons and complexes, separated by regional and local confining strata. Regional water confining bodies in this sedimentary stratum are gypsum-anhydrite layers of the Upper and Lower Permian and mature packs of mudstones, argillaceous limestones and dense dolomites in carboniferous sediments. According to the degree of hydrodynamic activity, zones of active (free, hampered and very difficult (stagnant regimes are distinguished in the section of the sedimentary cover. There are aquifers of Quaternary and Upper Permian sediments in the zone of active water exchange. The lower boundary of the active water exchange zone passes along the roof of the gypsum-anhydrite stratum of the Kazanian stage of the Upper Permian. As an object for industrial waste disposal in the operation of underground gas storage, the Bobrikovian is the most promising reservoir. It has the best reservoir properties and is reliably isolated from overlying deposits. Due to high mineralization, waters of the Bobrikovian horizon of the Librovichian superhorizon of the lower Visean stage are unsuitable for domestic, potable, production, technical and balneological purposes.

  16. Closure Report for Underground Storage Tank 2310-U at the Pine Ridge West Repeater Station

    International Nuclear Information System (INIS)

    1994-07-01

    This document represents the Closure Report for Underground Storage Tank (UST) 2310-U at the Pine Ridge West Repeater Station, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Tank 2310-U was a 200-gal gasoline UST which serviced the emergency generator at the Repeater Station. The tank was situated in a shallow tank bay adjacent to the Repeater Station along the crest of Pine Ridge. The tank failed a tightness test in October 1989 and was removed in November 1989. The purpose of this report is to document completion of soil corrective action, present supporting analytical data, and request closure for this site

  17. Underground Pumped Hydroelectric Storage (UPHS). Program report, April 1-September 30, 1979. ANL Activity No. 49964

    Energy Technology Data Exchange (ETDEWEB)

    Blomquist, C.A.; Frigo, A.A.; Tam, S.W.; Clinch, J.M.

    1979-10-01

    The Argonne National Laboratory Underground Pumped Hydroelectric Storage activities for the second half of FY 1979 are described. Activities include program management and support, subcontract work, and systems studies. Information is given on the preliminary design, hydraulic performance, and cost of high-head, 350-MW capacity, single- and two-stage reversible, Francis-type pump turbines. Similar information is also presented on 350- and 500-MW capacity, multistage, unregulated, reversible, pump turbines. An assessment of the application potential of controlled-flow rate pumps and pump turbines is included. The effects of the charge/discharge ratio of a pumped stoage plant is also discussed.

  18. Tank Waste Remediation System Inactive Miscellaneous Underground Storage Tanks Program Plan

    International Nuclear Information System (INIS)

    Gustavson, R.D.

    1995-12-01

    The Program Management Plan (PMP) describes the approach that will be used to manage the Tank Waste Remediation System (TWRS) Inactive Miscellaneous Underground Storage Tank (IMUST) Program. The plan describes management, technical, and administrative control systems that will be used to plan and control the IMUSTs Program performance. The technical data to determine the IMUSTs status for inclusion in the Single Shell Tank Farm Controlled Clean and Stable (CCS) Program. The second is to identify and implement surveillance, characterization, stabilization, and modifications to support CCS prior to final closure

  19. Efficiency and impacts of hythane (CH4+H2) underground storage

    Science.gov (United States)

    Sáinz-García, Alvaro; Abarca, Elena; Grandia, Fidel

    2016-04-01

    The foreseen increase share of renewable energy production requires energy storage to mitigate shortage periods of energy supply. Hydrogen is an efficient energy carrier that can be transported and storage. A very promising way to store large amounts of hydrogen is underground geological reservoirs. Hydrogen can be stored, among other options, as a mixture of natural gas and less than 20% of hydrogen (hythane) to avoid damages on the existing infrastructure for gas transport. This technology is known as power-to-gas and is being considered by a number of European countries (Simon et al., 2015). In this study, the feasibility of a deep aquifer to store CH4-H2 mixtures in the Lower Triassic of the Paris Basin is numerically analyzed. The solubility of gas mixture in the groundwater is extremely low (Panfilov, 2015) and, therefore, gas and water are considered immiscible and non-reactive. An immiscible multiphase flow model is developed using the coefficient-form PDE interface of the finite element method code, COMSOL Multiphysics. The modelled domain is a 2D section of 2500 x 290 m resembling the Lower Triassic aquifer of the Paris basin, consisting of 2 layers of sandstone separated by a layer of conglomerates. The domain dips 0.5% from east to west. The top of the aquifer is 500 m-deep and the lateral boundaries are assumed to be open. This case is considered conservative compared to a dome-like geological trap, which could be more favorable to retain higher gas concentration. A number of cycles of gas production and injection were modelled. An automatic shut-down of the pump is implemented in case pressure on the well exceeds an upper or lower threshold. The influence of the position of the well, the uncertain residual gas saturation and the regional flow are studied. The model shows that both gas and aquifer properties have a significant impact on storage. Due to its low viscosity, the mobility of the hythane is quite high and gas expands significantly, reducing

  20. 3rd Sino-German Conference “Underground Storage of CO2 and Energy”

    CERN Document Server

    Xie, Heping; Were, Patrick

    2013-01-01

    Anthropogenic greenhouse gas emissions, energy security and sustainability are three of the greatest contemporary global challenges today. This year the Sino-German Cooperation Group “Underground Storage of CO2 and Energy”, is meeting on the 21-23 May 2013 for the second time in Goslar, Germany, to convene its 3rd Sino-German conference on the theme “Clean Energy Systems in the Subsurface: Production, Storage and Conversion”.   This volume is a collection of diverse quality scientific works from different perspectives elucidating on the current developments in CO2 geologic sequestration research to reduce greenhouse emissions including measures to monitor surface leakage, groundwater quality and the integrity of caprock, while ensuring a sufficient supply of clean energy. The contributions herein have been structured into 6 major thematic research themes: Integrated Energy and Environmental Utilization of Geo-reservoirs: Law, Risk Management & Monitoring CO2 for Enhanced Gas and Oil Recovery, Coa...

  1. Feasibility of underground storage/disposal of noble gas fission products

    International Nuclear Information System (INIS)

    Winar, R.M.; Trevorrow, L.E.; Steindler, M.J.

    1979-08-01

    The quantities of 85 Kr that can be released to the environment from nuclear energy production are to be limited after 1983 by Federal regulations. Although procedures for collecting the 85 Kr released in the nuclear fuel cycle have been developed to the point that they are commercially available, procedures for terminal disposal of the collected gas are still being examined for their feasibility. In this work, the possibilities of underground disposal of 85 Kr by several techniques were evaluated. It was concluded that (1) disposal of 85 Kr as a solution in water or other solvents in deep wells would have the major disadvantages of liquid migration and the requirement of extremely large volumes of solvent; (2) disposal as bubbles entrained in cement grout injected underground presents the uncertainty of gaseous migration through permeable solid grout; (3) disposal by injection into abandoned oil fields would be favored by solubility of krypton in residual hydrocarbons, but has the disadvantages that such fields contain numerous shafts offering avenues of escape and also that the fields may be reworked in the future for their hydrocarbon residues; (4) underground retention of 85 Kr injected as a gas may be promising, given the right lithology, through entrapment in interstices between fine sand grains held together by the interfacial tension of wetted surfaces. 9 figures, 5 tables

  2. Going underground

    Energy Technology Data Exchange (ETDEWEB)

    Winqvist, T.; Mellgren, K.-E. (eds.)

    1988-01-01

    Contains over 100 short articles on underground structures and tunneling based largely on Swedish experience. Includes papers on underground workers - attitudes and prejudices, health investigations, the importance of daylight, claustrophobia; excavation, drilling and blasting; hydroelectric power plants; radioactive waste disposal; district heating; oil storage; and coal storage.

  3. Feasibility studies for pump and treat technology at leaking underground storage tank sites in Michigan

    International Nuclear Information System (INIS)

    O'Brien, J.M.; Pekas, B.S.

    1993-01-01

    Releases from underground storage tanks have resulted in impacts to groundwater at thousands of sites across the US. Investigations of these sites were initiated on a national basis with the implementation of federal laws that became effective December 22, 1989 (40 CFR 280). Completion of these investigations has led to a wave of design and installation of pump and treat aquifer restoration systems where impacts to groundwater have been confirmed. The purpose of this paper is to provide managers with a demonstration of some of the techniques that can be used by the consulting industry in evaluating the feasibility of pump and treat systems. With knowledge of these tools, managers can better evaluate proposals for system design and their cost effectiveness. To evaluate the effectiveness of typical pump and treat systems for leaking underground storage tank (LUST) sites in Michigan, ten sites where remedial design had been completed were randomly chosen for review. From these ten, two sites were selected that represented the greatest contrast in the types of site conditions encountered. A release of gasoline at Site 1 resulted in contamination of groundwater and soil with benzene, toluene, ethylbenzene, and xylenes

  4. DOE underground storage tank waste remediation chemical processing hazards. Part I: Technology dictionary

    International Nuclear Information System (INIS)

    DeMuth, S.F.

    1996-10-01

    This document has been prepared to aid in the development of Regulating guidelines for the Privatization of Hanford underground storage tank waste remediation. The document has been prepared it two parts to facilitate their preparation. Part II is the primary focus of this effort in that it describes the technical basis for established and potential chemical processing hazards associated with Underground Storage Tank (UST) nuclear waste remediation across the DOE complex. The established hazards involve those at Sites for which Safety Analysis Reviews (SARs) have already been prepared. Potential hazards are those involving technologies currently being developed for future applications. Part I of this document outlines the scope of Part II by briefly describing the established and potential technologies. In addition to providing the scope, Part I can be used as a technical introduction and bibliography for Regulatory personnel new to the UST waste remediation, and in particular Privatization effort. Part II of this document is not intended to provide examples of a SAR Hazards Analysis, but rather provide an intelligence gathering source for Regulatory personnel who must eventually evaluate the Privatization SAR Hazards Analysis

  5. Tools for Inspecting and Sampling Waste in Underground Radioactive Storage Tanks with Small Access Riser Openings

    International Nuclear Information System (INIS)

    Nance, T.A.

    1998-01-01

    Underground storage tanks with 2 inches to 3 inches diameter access ports at the Department of Energy's Savannah River Site have been used to store radioactive solvents and sludge. In order to close these tanks, the contents of the tanks need to first be quantified in terms of volume and chemical and radioactive characteristics. To provide information on the volume of waste contained within the tanks, a small remote inspection system was needed. This inspection system was designed to provide lighting and provide pan and tilt capabilities in an inexpensive package with zoom abilities and color video. This system also needed to be utilized inside of a plastic tent built over the access port to contain any contamination exiting from the port. This system had to be build to travel into the small port opening, through the riser pipe, into the tank evacuated space, and out of the riser pipe and access port with no possibility of being caught and blocking the access riser. Long thin plates were found in many access riser pipes that blocked the inspection system from penetrating into the tank interiors. Retrieval tools to clear the plates from the tanks using developed sampling devices while providing safe containment for the samples. This paper will discuss the inspection systems, tools for clearing access pipes, and solvent sampling tools developed to evaluate the tank contents of the underground solvent storage tanks

  6. Integrated underground gas storage of CO2 and CH4 for renewable energy storage for a test case in China

    Science.gov (United States)

    Kühn, Michael; Li, Qi; Nakaten, Natalie, Christine; Kempka, Thomas

    2017-04-01

    Integration and further development of the energy supply system in China is a major challenge for the years to come. Part of the strategy is the implementation of a low carbon energy system based on carbon dioxide capture and storage (CCS). The innovative idea presented here is based on an extension of the power-to-gas-to-power (PGP) technology by establishing a closed carbon dioxide cycle [1]. Thereto, hydrogen generated from excess renewable energy is transformed into methane for combustion in a combined cycle gas power plant. To comply with the fluctuating energy demand, carbon dioxide produced during methane combustion and required for the methanation process as well as excess methane are temporarily stored in two underground reservoirs located close to each other [2]. Consequently, renewable energy generation units can be operated even if energy demand is below consumption, while stored energy can be fed into the grid as energy demand exceeds production [3]. We studied a show case for Xinjiang in China [4] to determine the energy demand of the entire process chain based on numerical computer simulations for the operation of the CO2 and CH4 storage reservoirs, and to ascertain the pressure regimes present in the storage formations during the injection and production phases of the annual cycle. [1] Streibel M., Nakaten N., Kempka T., Kühn M. (2013) Analysis of an integrated carbon cycle for storage of renewables. Energy Procedia 40, 202-211. doi: 10.1016/j.egypro.2013.08.024. [2] Kühn M., Streibel M., Nakaten N.C., Kempka T. (2014) Integrated Underground Gas Storage of CO2 and CH4 to Decarbonise the "Power-to-gas-to-gas-to-power" Technology. Energy Procedia 59, 9-15. doi: 10.1016/j.egypro.2014.10.342 [3] Kühn M., Nakaten N.C., Streibel M., Kempka T. (2014) CO2 Geological Storage and Utilization for a Carbon Neutral "Power-to-gas-to-power" Cycle to Even Out Fluctuations of Renewable Energy Provision. Energy Procedia 63, 8044-8049. doi: 10.1016/j.egypro.2014

  7. International Conference on Underground Pumped Hydro and Compressed Air Energy Storage, San Francisco, CA, September 20-22, 1982, Collection of Technical Papers

    Science.gov (United States)

    1982-08-01

    Topics discussed include an assessment of the market potential of compressed air energy storage (CAES) systems, turbocompressor considerations in CAES plants, subsurface geological considerations in siting an underground pumped hydro (UPH) project, and the preliminary assessment of waste heat recovery system for CAES plants. Also considered are CAES caverns design for leakage, simulation of the champagne effect in CAES plants, design of wells and piping for an aquifer CAES plant, various aspects of the Huntor CAES facility, low-pressure CAES, subsurface instrumentation plan for the Pittsfield CAES field test facility, and the feasibility of UPH storage in the Netherlands.

  8. A GIS Based 3D Online Decision Assistance System for Underground Energy Storage in Northern Germany

    Science.gov (United States)

    Nolde, M.; Schwanebeck, M.; Biniyaz, E.; Duttmann, R.

    2014-12-01

    We would like to present a GIS-based 3D online decision assistance system for underground energy storage. Its aim is to support the local land use planning authorities through pre-selection of possible sites for thermal, electrical and substantial underground energy storages. Since the extension of renewable energies has become legal requirement in Germany, the underground storing of superfluously produced green energy (such as during a heavy wind event) in the form of compressed air, gas or heated water has become increasingly important. However, the selection of suitable sites is a complex task. The assistance system uses data of geological features such as rock layers, salt caverns and faults enriched with attribute data such as rock porosity and permeability. This information is combined with surface data of the existing energy infrastructure, such as locations of wind and biogas stations, power line arrangement and cable capacity, and energy distribution stations. Furthermore, legal obligations such as protected areas on the surface and current underground mining permissions are used for the decision finding process. Not only the current situation but also prospective scenarios, such as expected growth in produced amount of energy are incorporated in the system. The decision process is carried out via the 'Analytic Hierarchy Process' (AHP) methodology of the 'Multi Object Decision Making' (MODM) approach. While the process itself is completely automated, the user has full control of the weighting of the different factors via the web interface. The system is implemented as an online 3D server GIS environment, with no software needed to be installed on the user side. The results are visualized as interactive 3d graphics. The implementation of the assistance system is based exclusively on free and open source software, and utilizes the 'Python' programming language in combination with current web technologies, such as 'HTML5', 'CSS3' and 'JavaScript'. It is

  9. Geochemistry research planning for the underground storage of high-level nuclear waste

    International Nuclear Information System (INIS)

    Apps, J.A.

    1983-09-01

    This report is a preliminary attempt to plan a comprehensive program of geochemistry research aimed at resolving problems connected with the underground storage of high-level nuclear waste. The problems and research needs were identified in a companion report to this one. The research needs were taken as a point of departure and developed into a series of proposed projects with estimated manpowers and durations. The scope of the proposed research is based on consideration of an underground repository as a multiple barrier system. However, the program logic and organization reflect conventional strategies for resolving technological problems. The projects were scheduled and the duration of the program, critical path projects and distribution of manpower determined for both full and minimal programs. The proposed research was then compared with ongoing research within DOE, NRC and elsewhere to identify omissions in current research. Various options were considered for altering the scope of the program, and hence its cost and effectiveness. Finally, recommendations were made for dealing with omissions and uncertainties arising from program implementation. 11 references, 6 figures, 4 tables

  10. Biodegradation of cis-1,2-Dichloroethene in Simulated Underground Thermal Energy Storage Systems.

    Science.gov (United States)

    Ni, Zhuobiao; van Gaans, Pauline; Smit, Martijn; Rijnaarts, Huub; Grotenhuis, Tim

    2015-11-17

    Underground thermal energy storage (UTES) use has showed a sharp rise in numbers in the last decades, with aquifer thermal energy storage (ATES) and borehole thermal energy storage (BTES) most widely used. In many urban areas with contaminated aquifers, there exists a desire for sustainable heating and cooling with UTES and a need for remediation. We investigated the potential synergy between UTES and bioremediation with batch experiments to simulate the effects of changing temperature and liquid exchange that occur in ATES systems, and of only temperature change occurring in BTES systems on cis-DCE reductive dechlorination. Compared to the natural situation (NS) at a constant temperature of 10 °C, both UTES systems with 25/5 °C for warm and cold well performed significantly better in cis-DCE (cis-1,2-dichloroethene) removal. The overall removal efficiency under mimicked ATES and BTES conditions were respectively 13 and 8.6 times higher than in NS. Inoculation with Dehalococcoides revealed that their initial presence is a determining factor for the dechlorination process. Temperature was the dominating factor when Dehalococcoides abundance was sufficient. Stimulated biodegradation was shown to be most effective in the mimicked ATES warm well because of the combined effect of suitable temperature, sustaining biomass growth, and regular cis-DCE supply.

  11. Corrective action baseline report for underground storage tank 2331-U Building 9201-1

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of this report is to provide baseline geochemical and hydrogeologic data relative to corrective action for underground storage tank (UST) 2331-U at the Building 9201-1 Site. Progress in support of the Building 9201-1 Site has included monitoring well installation and baseline groundwater sampling and analysis. This document represents the baseline report for corrective action at the Building 9201-1 site and is organized into three sections. Section 1 presents introductory information relative to the site, including the regulatory initiative, site description, and progress to date. Section 2 includes the summary of additional monitoring well installation activities and the results of baseline groundwater sampling. Section 3 presents the baseline hydrogeology and planned zone of influence for groundwater remediation

  12. Assessment of concentration mechanisms for organic wastes in underground storage tanks at Hanford

    International Nuclear Information System (INIS)

    Gerber, M.A.; Burger, L.L.; Nelson, D.A.; Ryan, J.L.; Zollars, R.L.

    1992-09-01

    Pacific Northwest Laboratory (PNL) has conducted an initial conservative evaluation of physical and chemical processes that could lead to significant localized concentrations of organic waste constituents in the Hanford underground storage tanks (USTs). This evaluation was part of ongoing studies at Hanford to assess potential safety risks associated with USTs containing organics. Organics in the tanks could pose a potential problem if localized concentrations are high enough to propagate combustion and are in sufficient quantity to produce a large heat and/or gas release if in contact with a suitable oxidant. The major sources of oxidants are oxygen in the overhead gas space of the tanks and sodium nitrate and nitrite either as salt cake solids or dissolved in the supernatant and interstitial liquids

  13. Review of sensors for the in situ chemical characterization of the Hanford underground storage tanks

    International Nuclear Information System (INIS)

    Kyle, K.R.; Mayes, E.L.

    1994-01-01

    Lawrence Livermore National Laboratory (LLNL), in the Technical Task Plan (TTP) SF-2112-03 subtask 2, is responsible for the conceptual design of a Raman probe for inclusion in the in-tank cone penetrometer. As part of this task, LLNL is assigned the further responsibility of generating a report describing a review of sensor technologies other than Raman that can be incorporated in the in-tank cone penetrometer for the chemical analysis of the tank environment. These sensors would complement the capabilities of the Raman probe, and would give information on gaseous, liquid, and solid state species that are insensitive to Raman interrogation. This work is part of a joint effort involving several DOE laboratories for the design and development of in-tank cone penetrometer deployable systems for direct UST waste characterization at Westinghouse Hanford Company (WHC) under the auspices of the U.S. Department of Energy (DOE) Underground Storage Tank Integrated Demonstration (UST-ID)

  14. Review of sensors for the in situ chemical characterization of the Hanford underground storage tanks

    Energy Technology Data Exchange (ETDEWEB)

    Kyle, K.R.; Mayes, E.L.

    1994-07-29

    Lawrence Livermore National Laboratory (LLNL), in the Technical Task Plan (TTP) SF-2112-03 subtask 2, is responsible for the conceptual design of a Raman probe for inclusion in the in-tank cone penetrometer. As part of this task, LLNL is assigned the further responsibility of generating a report describing a review of sensor technologies other than Raman that can be incorporated in the in-tank cone penetrometer for the chemical analysis of the tank environment. These sensors would complement the capabilities of the Raman probe, and would give information on gaseous, liquid, and solid state species that are insensitive to Raman interrogation. This work is part of a joint effort involving several DOE laboratories for the design and development of in-tank cone penetrometer deployable systems for direct UST waste characterization at Westinghouse Hanford Company (WHC) under the auspices of the U.S. Department of Energy (DOE) Underground Storage Tank Integrated Demonstration (UST-ID).

  15. Safety issue resolution strategy plan for inactive miscellaneous underground storage tanks

    International Nuclear Information System (INIS)

    Wang, O.S.; Powers, T.B.

    1994-09-01

    The purpose of this strategy plan is to identify, confirm, and resolve safely issues associated with inactive miscellaneous underground storage tanks (MUSTs) using a risk-based priority approach. Assumptions and processes to assess potential risks and operational concerns are documented in this report. Safety issue priorities are ranked based on a number of considerations including risk ranking and cost effectiveness. This plan specifies work scope and recommends schedules for activities related to resolving safety issues, such as collecting historical data, searching for authorization documents, performing Unreviewed Safety Question (USQ) screening and evaluation, identifying safety issues, imposing operational controls and monitoring, characterizing waste contents, mitigating and resolving safety issues, and fulfilling other remediation requirements consistent with the overall Tank Waste Remediation System strategy. Recommendations for characterization and remediation are also recommended according to the order of importance and practical programmatic consideration

  16. Acoustic imaging of underground storage tank wastes: A feasibility study. Final report

    International Nuclear Information System (INIS)

    Turpening, R.; Zhu, Z.; Caravana, C.; Matarese, J.

    1995-01-01

    The objectives for this underground storage tank (UST) imaging investigation are: (1) to assess the feasibility of using acoustic methods in UST wastes, if shown to be feasible, develop and assess imaging strategies; (2) to assess the validity of using chemical simulants for the development of acoustic methods and equipment. This investigation examined the velocity of surrogates, both salt cake and sludge surrogates. In addition collected seismic cross well data in a real tank (114-TX) on the Hanford Reservation. Lastly, drawing on the knowledge of the simulants and the estimates of the velocities of the waste in tank 114-TX the authors generated a hypothetical model of waste in a tank and showed that non-linear travel time tomographic imaging would faithfully image that stratigraphy

  17. Assessment of concentration mechanisms for organic wastes in underground storage tanks at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.A.; Burger, L.L.; Nelson, D.A.; Ryan, J.L. (Pacific Northwest Lab., Richland, WA (United States)); Zollars, R.L. (Washington State Univ., Pullman, WA (United States))

    1992-09-01

    Pacific Northwest Laboratory (PNL) has conducted an initial conservative evaluation of physical and chemical processes that could lead to significant localized concentrations of organic waste constituents in the Hanford underground storage tanks (USTs). This evaluation was part of ongoing studies at Hanford to assess potential safety risks associated with USTs containing organics. Organics in the tanks could pose a potential problem if localized concentrations are high enough to propagate combustion and are in sufficient quantity to produce a large heat and/or gas release if in contact with a suitable oxidant. The major sources of oxidants are oxygen in the overhead gas space of the tanks and sodium nitrate and nitrite either as salt cake solids or dissolved in the supernatant and interstitial liquids.

  18. Optimal use of the Gaz de France underground gas storage facilities; Utilisation optimale des stockages souterrains de Gaz de France

    Energy Technology Data Exchange (ETDEWEB)

    Favret, F.; Rouyer, E.; Bayen, D.; Corgier, B. [Gaz de France (GDF), 75 - Paris (France)

    2000-07-01

    This paper describes the tools developed by Gaz de France to optimize the use of its whole set of underground gas storage facilities. After a short introduction about the context and the purposes, the methodology and the models are detailed. The operational results obtained during the last three years are presented, and some conclusions and perspectives are given. (authors)

  19. Preliminary results of continuous GPS monitoring of surface deformation at the Aquistore underground CO2 storage site

    Science.gov (United States)

    Craymer, M. R.; Henton, J. A.; Piraszewski, M.; Silliker, J.; Samsonov, S. V.

    2013-12-01

    Aquistore is a demonstration project for the underground storage of CO2 at a depth of ~3350 m near Estevan, Saskatchewan, Canada. An objective of the project is to design, adapt, and test non-seismic monitoring methods that have not been systematically utilized to date for monitoring CO2 storage projects, and to integrate the data from these various monitoring tools to obtain quantitative estimates of the change in subsurface fluid distributions, pressure changes and associated surface deformation. Monitoring methods being applied include satellite-, surface- and wellbore-based monitoring systems and comprise natural- and controlled-source electromagnetic methods, gravity monitoring, GPS, synthetic aperture radar interferometry (InSAR), tiltmeter array analysis, and chemical tracer studies. Here we focus on the GPS monitoring of surface deformation. Five of the planned thirteen GPS monitoring stations were installed in November 2012 and results subsequently processed on a weekly basis. The first GPS results prior to CO2 injection have just been determined using both precise point positioning (PPP) and baseline processing with the Bernese GPS Software. The time series of the five sites are examined, compared and analysed with respect to monument stability, seasonal signals and estimates of expected regional ground motion. The individual weekly network solutions are combined together in a cumulative 4D network solution to provide a preliminary local velocity field in the immediately vicinity of the injection well. The results are compared to those from InSAR.

  20. Monitoring induced seismicity from underground gas storage: first steps in Italy

    Science.gov (United States)

    Mucciarelli, Marco; Priolo, Enrico

    2013-04-01

    The supply of natural gas and its storage are focal points of the Italian politics of energy production and will have increasing importance in the coming years. About a dozen reservoirs are currently in use and fifteen are in development or awaiting approval. Some of these are found in the vicinity of geological structures that are seismically active. The assessment of seismic hazard (both for natural background and induced seismicity) for a geological gas storage facility has a number of unconventional aspects that must be recognized and traced in a clear, ordered way and using guidelines and rules that leave less room as possible for interpretation by the individual applicant / verification body. Similarly, for control and monitoring there are not clearly defined procedures or standard instrumentation, let alone tools for analysing and processing data. Finally, governmental organizations in charge of permission grants and operative control tend to have appropriate scientific knowledge only in certain areas and not in others (e.g. the seismic one), and the establishment of an independent multidisciplinary inspection body appears desirable. The project StoHaz (https://sites.google.com/site/s2stohaz/home) aims to initiate a series of actions to overcome these deficiencies and allow to define procedures and standards for the seismic hazard assessment and control of the activities of natural gas storage in underground reservoirs. OGS will take advantage of the experience gained with the design, installation and maintenance of the seismic network monitoring the Collalto reservoir, at the moment the only example in Italy of a public research institution monitoring independently the activities of a private gas storage company.

  1. Electric field analysis of extra high voltage (EHV) underground cables using finite element method

    DEFF Research Database (Denmark)

    Kumar, Mantosh; Bhaskar, Mahajan Sagar; Padmanaban, Sanjeevikumar

    2017-01-01

    used for the insulator due electrical, thermal or environmental stress. Most of these problems are related to the electric field stress on the insulation of the underground cables. The objective of the electric field analysis by using different numerical techniques is to find electric field stress...... electric field stress and other parameters of EHV underground cables with given boundary conditions using 2-D electric field analysis software package (IES-ELECTRO module) which is based on the finite element method (FEM).......Transmission and Distribution of electric power through underground cables is a viable alternative to overhead lines, particularly in residential or highly populated areas. The electrical stresses are consequences of regular voltages and over voltages and the thermal stresses are related to heat...

  2. Fiscal 2000 report on result of R and D of underground storage technology for carbon dioxide; 2000 nendo nisanka tanso chichu choryu gijutsu kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-01

    This paper presents the fiscal 2000 results of R and D of underground storage technology for carbon dioxide. As basic experiments, a measurement apparatus was manufactured for simulating the pressure and temperature conditions in aquifers to measure the rate at which CO{sub 2} is dissolved in water and the reactivity between CO{sub 2} and rocks, with the basic performance verified. Methods were investigated and classified that monitor environmental impact and safety. For the purpose of anticipating the long-term behaviors of CO{sub 2} sequestered underground, a simulator was developed, extracting, from investigation of the literature, natural phenomena required for the anticipation. As the system studies, examination was conducted for analysis of the energy balance of the underground storage technology, rational design (safety and economy) of an entire system ranging from source to storage point, investigation from social and economic perspectives, and estimation of the effect of suppressing global warming. In the injection experiment, Minami-Nagaoka natural gas field was selected as a prospective experiment site from the characteristics of the cap rock and aquifer. One injection well was drilled to a depth of 1,230 m, with investigations performed such as physical well-logging and core sampling. Existing data were utilized in the simulation study of CO{sub 2} behavior underground during the injection period. The information of the basic geophysical survey/exploratory well by the Japan National Oil Corporation was collected and compiled, with the preliminary geological study undertaken in the areas described. (NEDO)

  3. Characterization of underground storage tank sludge using fourier transform infrared photoacoustic spectroscopy

    International Nuclear Information System (INIS)

    Luo, S.; Bajic, S.J.; Jones, R.W.

    1994-01-01

    Analysis of underground storage tank (UST) contents is critical for the determination of proper disposal protocols and storage procedures of nuclear waste materials. Tank volume reduction processes during the 1940's and 50's have produced a waste form that compositionally varies widely and has a consistency that ranges from paste like sludge to saltcake. The heterogeneity and chemical reactivity of the waste form makes analysis difficult by most conventional methods which require extensive sample preparation. In this paper, a method is presented to characterize nuclear waste from UST's at the Westinghouse Hanford Site in Washington State, using Fourier transform infrared-photoacoustic spectroscopy (FTIR-PAS). FTIR-PAS measurements on milligram amounts of surrogate sludge samples have been used to accurately identify phosphate, sulfate, nitrite, nitrate and ferrocyanide components. A simple sample preparation method was followed to provide a reproducible homogeneous sample for quantitative analysis. The sample preparation method involved freeze drying the sludge sample prior to analysis to prevent the migration of soluble species. Conventional drying (e.g., air or, oven) leads to the formation of crystals near the surface where evaporation occurs. Sample preparation as well as the analytical utility of this method will be discussed

  4. Heat storage in underground caverns - measurements and simulations; Speicherung von Waerme in Grubenraeumen - Messung und Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Schaberg, A.; Krause, H.; Poetke, W. [TU Bergakademie Freiberg (Germany). Inst. fuer Waermetechnik und Technische Thermodynamik

    1997-12-01

    Among the different discussed underground concepts for longterm storing of solar or waste heat old waterfilled mines can be an interesting solution. To examine the temperature behaviour of this storage type a testing store is built in a mine belonging to the Freiberg University of Mining and Technology in Saxonia. In a longterm project temperatures are measured inside the water volume and in the adjacent rock. The temperature behaviour depends on the operating conditions. Inside the water volume temperature stratification can be observed. During loading and standstill heat is transported into the rock surrounding. A certain part of this amount of heat can be discharged again. For designing and optimizing this storage type a numerical modell is developed. The modell is validated with experimental data from the testing plant. (orig.) [Deutsch] Unter den verschiedenen, in der Diskussion stehenden Untegrund-Waermespeichern fuer Solarwaerme oder Abwaerme bieten sich auch geflutete Gruben als Waermespeicher an. Zur Untersuchung des Temperaturverhaltens dieses Speichertyps ist im Saechsischen Lehr- und Besucherbergwerk der TU Bergakademie Freiberg ein Versuchsspeicher errichtet worden. In einem Langzeitversuch wird das Temperaturfeld im Wasser und im angrenzenden Gestein aufgezeichnet. Das Temperaturverhalten ist von den Betriebsgroessen abhaengig. Im Grubenwasser stellt sich eine stabile Temperaturschichtung ein. Waehrend der Beladung und der Stillstandszeiten wird Waerme in die Gesteinsumgebung transportiert. Ein Teil dieser Waermemenge kann wider entspeichert werden. Zur Auslegung und Optimierung von Gruben-Waermespeichern ist ein numerisches Modell entwickelt worden. Das Modell ist anhand der Messergebnisse des Versuchsspeichers validiert worden. (orig.)

  5. Report on technical feasibility of underground pumped hydroelectric storage in a marble quarry site in the Northeast United States

    Energy Technology Data Exchange (ETDEWEB)

    Chas. T. Main, Inc.

    1982-03-01

    The technical and economic aspects of constructing a very high head underground hydroelectric pumped storage were examined at a prefeasibility level. Excavation of existing caverns in the West Rutland Vermont marble quarry would be used to construct the underground space. A plant capacity of 1200 MW and 12 h of continuous capacity were chosen as plant operating conditions. The site geology, plant design, and electrical and mechanical equipment required were considered. The study concluded that the cost of the 1200 MW underground pumped storage hydro electric project at this site even with the proposed savings from marketable material amounts to between $581 and $595 per kilowatt of installed capacity on a January 1982 pricing level. System studies performed by the planning group of the New England Power System indicate that the system could economically justify up to about $442 per kilowatt on an energy basis with no credit for capacity. To accommodate the plant with the least expensive pumping energy, a coal and nuclear generation mix of approximately 65% would have to be available before the project becomes feasible. It is not expected that this condition can be met before the year 2000 or beyond. It is therefore concluded that the West Rutland underground pumped storage facility is uneconomic at this time. Several variables however could have marked influence on future planning and should be examined on periodic basis.

  6. The swelling of clays and its effects on underground storage works

    International Nuclear Information System (INIS)

    Gaombalet, J.

    2004-03-01

    The aim of this work is to study the swelling of clays and more generally the clayey media in relation to storage. Different types of clays, natural or reworked, have been studied in a rheological point of view, with the aim to result in behavior laws allowing to reproduce some identified phenomena. The first part of this work is a presentation of the concept of geological underground storage. The second part deals with clays. They are studied at a microscopic level and their macroscopic behavior are presented too. In the third part, the equations of the couplings: mechanics/transport in the porous media in general and applied to clays are formulated. Three types of clays have particularly been studied: a stiff clay, a plastic clay and a reworked clay. The following part deals with the swelling of clays. The analysis carried out through a bibliographical study has led us to propose a behavior law for the swelling-retirement. This part concerns essentially the mechanics. The behavior model, which integrates the swelling, involves the concentration of the ions present in solution in the interstitial water. Concerning the transport, of water or ions, the research of coherent models have led us to revise some models described in the second part and concerning the transport of solutions in porous media. The last part concerns the computerized simulation. It begins by a brief description of the computer code. We show how the equations described in the work are dealt with in the computer code. At last, some storage applications (computerized simulation) are given. (O.M.)

  7. Storage of oil above ground for underground: Regulations, costs, and risks

    International Nuclear Information System (INIS)

    Lively-Diebold, B.; Driscoll, W.; Ameer, P.; Watson, S.

    1993-01-01

    Some owners of underground storage tank systems (USTs) appear to be replacing their systems with aboveground storage tank systems (ASTs) without full knowledge of the US Government environmental regulations that apply to facilities with ASTs, and their associated costs. This paper discusses the major federal regulatory requirements for USTs and ASTS, and presents the compliance costs for new tank systems that range in capacity from 1,000 to 10,000 gallons. The costs of two model UST system and two model AST systems are considered for new oil storage capacity, expansion of existing capacity, and replacement of an existing UST or AS T. For new capacity, ASTs are less expensive than USTs, although ASTs do have significant regulatory compliance costs that range from an estimated $8,000 to $14,000 in present value terms, depending on the size and type of system. For expanded or replacement capacity, ASTs are in all but one case less expensive than USTS; the exception is the expansion of capacity at an existing UST facility. In this case, the cost of a protected steel tank UST system is comparable to the cost of an AST system. Considering the present value of all costs over a 30 year useful life, the cost for an AST with a concrete dike is less than the cost of an AST with an earthen dike, for the tank sizes considered. This is because concrete dikes are cost competitive for small tanks, and the costs to clean up a release are higher for earthen dikes, due to the cost of disposal and replacement of oil-contaminated soil. The cost analyses presented here are not comprehensive, and are intended primarily for illustrative purposes. Only the major costs of tank purchase, installation, and regulatory compliance were considered

  8. Estimating fault stability and sustainable fluid pressures for underground storage of CO2 in porous rock

    International Nuclear Information System (INIS)

    Streit, J.E.; Hillis, R.R.

    2004-01-01

    Geomechanical modelling of fault stability is an integral part of Australia's GEODISC research program to ensure the safe storage of carbon dioxide in subsurface reservoirs. Storage of CO 2 in deep saline formations or depleted hydrocarbon reservoirs requires estimates of sustainable fluid pressures that will not induce fracturing or create fault permeability that could lead to CO 2 escape. Analyses of fault stability require the determination of fault orientations, ambient pore fluid pressures and in situ stresses in a potential storage site. The calculation of effective stresses that act on faults and reservoir rocks lead then to estimates of fault slip tendency and fluid pressures sustainable during CO 2 storage. These parameters can be visualized on 3D images of fault surfaces or in 2D projections. Faults that are unfavourably oriented for reactivation can be identified from failure plots. In depleted oil and gas fields, modelling of fault and rock stability needs to incorporate changes of the pre-production stresses that were induced by hydrocarbon production and associated pore pressure depletion. Such induced stress changes influence the maximum sustainable formation pressures and CO 2 storage volumes. Hence, determination of in situ stresses and modelling of fault stability are essential prerequisites for the safe engineering of subsurface CO 2 injection and the modelling of storage capacity. (author)

  9. Underground natural gas storage reservoir management: Phase 2. Final report, June 1, 1995--March 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, I.; Anthony, R.V.

    1996-12-31

    Gas storage operators are facing increased and more complex responsibilities for managing storage operations under Order 636 which requires unbundling of storage from other pipeline services. Low cost methods that improve the accuracy of inventory verification are needed to optimally manage this stored natural gas. Migration of injected gas out of the storage reservoir has not been well documented by industry. The first portion of this study addressed the scope of unaccounted for gas which may have been due to migration. The volume range was estimated from available databases and reported on an aggregate basis. Information on working gas, base gas, operating capacity, injection and withdrawal volumes, current and non-current revenues, gas losses, storage field demographics and reservoir types is contained among the FERC Form 2, EIA Form 191, AGA and FERC Jurisdictional databases. The key elements of this study show that gas migration can result if reservoir limits have not been properly identified, gas migration can occur in formation with extremely low permeability (0.001 md), horizontal wellbores can reduce gas migration losses and over-pressuring (unintentionally) storage reservoirs by reinjecting working gas over a shorter time period may increase gas migration effects.

  10. Detection of underground structures using UAV and field spectroscopy for defence and security in Cyprus

    Science.gov (United States)

    Melillos, George; Themistocleous, Kyriacos; Prodromou, Maria; Hadjimitsis, Diofantos G.

    2017-10-01

    The purpose of this paper is to present the results obtained from unmanned aerial vehicle (UAV) and field spectroscopy campaigns for detecting underground structures. Underground structures can affect their surrounding landscapes in different ways, such as soil moisture content, soil composition and vegetation vigor. The last is often observed on the ground as a crop mark; a phenomenon which can be used as a proxy to denote the presence of underground non-visible structures. A number of vegetation indices such as the Normalized Difference Vegetation Index (NDVI), Simple Ratio (SR), Difference Vegetation Index (DVI) and Soil Adjusted Vegetation Index (SAVI) were utilized for the development of a vegetation index-based procedure aiming at the detection of underground military structures by using existing vegetation indices or other in-band algorithms. The measurements were taken at the following test areas such as: (a) vegetation area covered with the vegetation (barley), in the presence of an underground military structure (b) vegetation area covered with the vegetation (barley), in the absence of an underground military structure.

  11. Evaluation of risk perception and public acceptance of CO{sub 2} underground storage by factor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tokushige, K.; Akimoto, K.; Uno, M.; Tomoda, T. [Reseach Inst. of Innovative Technology for the Earth, Kyoto (Japan)

    2005-07-01

    Although the technology of carbon dioxide (CO{sub 2}) capture and storage is being developed around the world as an option to mitigate greenhouse gases, public acceptance will be needed before widespread adoption of the technology. This study analyzed how the general public perceives the technology, and also evaluated what kinds of information would affect public acceptance. Since discrepancies may exist between the public reaction and the expert judgment, this study will be useful in improving communication among the public, experts and policy-makers. A questionnaire survey was conducted based on the semantic differential method in order to evaluate risk perception by the public. It included a cognitive map of risk perception of 20 risk-associated items, which included not only CO{sub 2} underground storage, but also daily life activities (smoking and bicycling) and other major global warming mitigation options such as nuclear power, wind power, and photovoltaics. The purpose for this was to identify the relative position of its perception among these options and activities. The respondents were 138 university students. The map consisted of two-factor axes, namely dread risk and unknown risk. A third axis of public acceptance was added to reveal how differences in the risk perception affected the public acceptance. Although the initial risk perception was large for CO{sub 2} underground storage, the risk perception decreased by providing known information on the technology. The map revealed that dread risk and unknown risk perceptions of CO{sub 2} underground storage were smaller and larger, respectively, than those of nuclear power generation. It was concluded that public acceptance of CO{sub 2} underground storage must be increased in order to decrease the unknown risk perception. 6 refs., 3 tabs., 1 fig.

  12. Removal of CO2 by storage in the deep underground, chemical utilization and biofixation. Options for the Netherlands

    International Nuclear Information System (INIS)

    Over, J.A.; De Vries, J.E.; Stork, J.

    1999-07-01

    The Utrecht University in Utrecht, Netherlands, initially put the subject of CO2-storage on the agenda as a possible necessary policy element. During 1990/1991 a number of research institutes and engineering consultants carried out several studies. Also in 1991 the lEA Greenhouse Gas Group (IEA GHG) was initiated, including participation from The Netherlands. The Netherlands Agency for Energy and the Environment (Novem) and the Dutch Ministry of Economic Affairs both attended the meetings of the Executive Committee (ExCo) from the start. This Group started paying attention to the subject of CO2-capturing at large point sources (electricity stations). They then went subsequently from capturing from other (smaller and/or more diffuse) sources, ranking relative to other large scale options to combat or reduce CO2-emissions (i.e. vast areas of forest) to influence and controlling other 'greenhouse gases' such as methane. During 1992/1993 Novem prepared - on request of the Ministry of Economic Affairs - research proposals for investigations and demonstration projects, having a 10 to 15 year horizon, with regard to CO2-capturing technologies. In the beginning of 1994, the Dutch Ministry of Environment (VROM) put more emphasis on demonstration of the feasibility of CO2-storage. When the first 'Kok-government' (the so-called 'Purple Cabinet') came into being, attention shifted to studies on CO2-storage; the central question being whether there would be sufficient potential capacity if the necessity to store CO2 would ever occur. Within this framework Novem was authorized by the Ministry of Economic Affairs to carry out an investigation program on possibilities of CO2-storage. The present publication deals with the results of these studies. The main subject of investigation were: Storage in underground formations (depleted gas fields and aquifers) and the conditions under which this is feasible; Possibilities for enhanced gas recovery by carbon dioxide injection and its

  13. Underground storage tank management plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-09-01

    The Underground Storage Tank (UST) Program at the Oak Ridge Y-12 Plant was established to locate UST systems at the facility and to ensure that all operating UST systems are free of leaks. UST systems have been removed or upgraded in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance. With the closure of a significant portion of the USTs, the continuing mission of the UST Management Program is to manage the remaining active UST systems and continue corrective actions in a safe regulatory compliant manner. This Program outlines the compliance issues that must be addressed, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Program provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. The plan is divided into three major sections: (1) regulatory requirements, (2) active UST sites, and (3) out-of-service UST sites. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Program, and the procedures and guidance for compliance

  14. Revised cost savings estimate with uncertainty for enhanced sludge washing of underground storage tank waste

    Energy Technology Data Exchange (ETDEWEB)

    DeMuth, S.

    1998-09-01

    Enhanced Sludge Washing (ESW) has been selected to reduce the amount of sludge-based underground storage tank (UST) high-level waste at the Hanford site. During the past several years, studies have been conducted to determine the cost savings derived from the implementation of ESW. The tank waste inventory and ESW performance continues to be revised as characterization and development efforts advance. This study provides a new cost savings estimate based upon the most recent inventory and ESW performance revisions, and includes an estimate of the associated cost uncertainty. Whereas the author`s previous cost savings estimates for ESW were compared against no sludge washing, this study assumes the baseline to be simple water washing which more accurately reflects the retrieval activity along. The revised ESW cost savings estimate for all UST waste at Hanford is $6.1 B {+-} $1.3 B within 95% confidence. This is based upon capital and operating cost savings, but does not include development costs. The development costs are assumed negligible since they should be at least an order of magnitude less than the savings. The overall cost savings uncertainty was derived from process performance uncertainties and baseline remediation cost uncertainties, as determined by the author`s engineering judgment.

  15. Implementation plan for underground waste storage tank surveillance and stabilization improvements

    Energy Technology Data Exchange (ETDEWEB)

    Dukelow, G.T.; Maupin, V.D.; Mihalik, L.A.; Washenfelder, D.J.

    1989-04-01

    Several studies have addressed the need to upgrade the methods currently used for surveillance of underground waste storage tanks, particularly single-shell tanks (SST), which are susceptible to leaks and intrusions. Fifty tasks were proposed to enhance the existing surveillance program; however, prudent budget management dictates that only the tasks with the highest potential for success be selected and funded. This plan identifies fourteen inexpensive improvements that may be implemented in less than two years. Recent developments stress the need to complete interim stabilization of these tanks more quickly than now budgeted and to identify methods to salvage or eliminate the interstitial liquid left behind after saltwell jet-pumping. The plan calls for the use of available resources to remove saltwell liquid from SSTs as rapidly as possible rather than committing to new surveillance technologies that might not lead to near-term improvements. This plan describes the selection criteria and provides cost estimates and schedules for implementing the recommendations of the task forces. The proposed improvements result in completion of jet-pumping in FY 1994, two years ahead of the current FY 1996 milestone. While the accelerated plan requires more funding in the early years, the total cost will be the same as completing the work in FY 1996.

  16. Underground storage tank management plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The Underground Storage Tank (UST) Program at the Oak Ridge Y-12 Plant was established to locate UST systems at the facility and to ensure that all operating UST systems are free of leaks. UST systems have been removed or upgraded in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance. With the closure of a significant portion of the USTs, the continuing mission of the UST Management Program is to manage the remaining active UST systems and continue corrective actions in a safe regulatory compliant manner. This Program outlines the compliance issues that must be addressed, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Program provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. The plan is divided into three major sections: (1) regulatory requirements, (2) active UST sites, and (3) out-of-service UST sites. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Program, and the procedures and guidance for compliance.

  17. Steam reforming as a method to treat Hanford underground storage tank (UST) wastes

    International Nuclear Information System (INIS)

    Miller, J.E.; Kuehne, P.B.

    1995-07-01

    This report summarizes a Sandia program that included partnerships with Lawrence Livermore National Laboratory and Synthetica Technologies, Inc. to design and test a steam reforming system for treating Hanford underground storage tank (UST) wastes. The benefits of steam reforming the wastes include the resolution of tank safety issues and improved radionuclide separations. Steam reforming destroys organic materials by first gasifying, then reacting them with high temperature steam. Tests indicate that up to 99% of the organics could be removed from the UST wastes by steam exposure. In addition, it was shown that nitrates in the wastes could be destroyed by steam exposure if they were first distributed as a thin layer on a surface. High purity alumina and nickel alloys were shown to be good candidates for materials to be used in the severe environment associated with steam reforming the highly alkaline, high nitrate content wastes. Work was performed on designing, building, and demonstrating components of a 0.5 gallon per minute (gpm) system suitable for radioactive waste treatment. Scale-up of the unit to 20 gpm was also considered and is feasible. Finally, process demonstrations conducted on non-radioactive waste surrogates were carried out, including a successful demonstration of the technology at the 0.1 gpm scale

  18. Study of certain economic aspects of turbomachinery for underground pumped hydroelectric storage plants

    Energy Technology Data Exchange (ETDEWEB)

    Tam, S.W.; Clinch, J.M.

    1979-12-01

    The economics of underground pumped hydroelectric storage (UPHS) were analyzed in two ways. First, the cost effects of a variety of machinery-related factors on a UPHS plant were estimated. Second, four actual turbomachinery options were evaluated in terms of those factors. Preliminary conclusions about UPHS costs are as follows: the use of advanced turbomachinery is more economical than the use of state-of-art turbomachinery; plant-construction cost and the cost of the turbomachinery itself decrease as the operating head increases (The lowest costs now occur at a head range of 1200 to 1500 m for a UPHS plant designed on the single-drop principle. A machine's high charge/discharge ratio also lowers construction cost.); and pump/turbine efficiencies and charge/discharge ratios represent very important design parameters for UPHS applications. One of the advanced options considered, a two-stage reversible pump/turbine engineered for Argonne by the Allis-Chalmers Hydro-Turbine Division, appears to have the most cost-effective design for high-head applications (1000 to 2000 m). Further development of the two-stage concept promises future heads greater than 1500 m.

  19. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage.

    KAUST Repository

    Balk, Melike

    2010-08-03

    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5-0.8 microm in diameter, and 2-8 microm in length, growing as single cells or in pairs. The cells grew optimally at 37 degrees C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H(2)/CO(2) to acetate, usually as the only product. Succinate was decarboxylated to propionate. The isolate was able to respire with (per)chlorate, nitrate, and CO(2). The G+C content of the DNA was 42.6 mol%. Based on the 16S rRNA gene sequence analysis, strain An4 was most closely related to Sporomusa ovata (98% similarity). The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell-free extracts.

  20. Hydrogen underground storage in siliciclastic reservoirs - intention and topics of the H2STORE project

    Science.gov (United States)

    Pudlo, Dieter; Ganzer, Leonhard; Henkel, Steven; Liebscher, Axel; Kühn, Michael; De Lucia, Marco; Panfilov, Michel; Pilz, Peter; Reitenbach, Viktor; Albrecht, Daniel; Würdemann, Hilke; Gaupp, Reinhard

    2013-04-01

    The transfer of energy supply from nuclear and CO2-emitting power generation to renewable energy production sources is strongly reliant to the potential of storing high capacities of energy in a safe and reliable way in time spans of several months. One conceivable option can be the storage of hydrogen and (related) synthetic natural gas (SNG) production in appropriate underground structures, like salt caverns and pore space reservoirs. Successful storage of hydrogen in the form of town gas in salt caverns has been proven in several demonstration projects and can be considered as state of the art technology. However, salt structures have only limited importance for hydrogen storage due to only small cavern volumes and the limited occurrence of salt deposits suitable for flushing of cavern constructions. Thus, regarding potential high-volume storage sites, siliciclastic deposits like saline aquifers and depleted gas reservoirs are of increasing interest. Motivated by a project call and sponsored by the German government the H2STORE ("Hydrogen to Store") collaborative project will investigate the feasibility and the requirements for pore space storage of hydrogen. Thereby depleted gas reservoirs are a major concern of this study. This type of geological structure is chosen because of their well investigated geological settings and proved sealing capacities, which already enable a present (and future) use as natural (and synthetic) reservoir gas storages. Nonetheless hydrogen and hydrocarbon in porous media exhibit major differences in physico-chemical behaviour, essentially due to the high diffusivity and reactivity of hydrogen. The biotic and abiotic reactions of hydrogen with rocks and fluids will be necessary observed in siliciclastic sediments which consist of numerous inorganic and organic compounds and comprise original formation fluids. These features strongly control petrophysical behaviour (e.g. porosity, permeability) and therefore fluid (hydrogen

  1. Sampling and analysis plan for site assessment during the closure or replacement of nonradioactive underground storage tanks

    Energy Technology Data Exchange (ETDEWEB)

    Gitt, M.J.

    1990-08-01

    The Tank Management Program is responsible for closure or replacement of nonradioactive underground storage tanks throughout the Idaho National Engineering Laboratory (INEL). A Sampling and Analysis Plan (SAP) has been developed that complies with EPA regulations and with INEL Tank Removal Procedures for sampling activities associated with site assessment during these closure or replacement activities. The SAP will ensure that all data are valid, and it also will function as a Quality Assurance Project Plan. 18 refs., 8 figs., 11 tabs.

  2. First Results of Continuous GPS Monitoring of Surface Deformation at the Aquistore Underground CO2 Storage Site

    Science.gov (United States)

    Craymer, M. R.; Ferland, R.; Piraszewski, M.; Samsonov, S. V.; Czarnogorska, M.

    2014-12-01

    Aquistore is a demonstration project for the underground storage of CO2 at a depth of ~3350 m near Estevan, Saskatchewan, Canada. An objective of the project is to design, adapt, and test non-seismic monitoring methods that have not been systematically utilized to date for monitoring CO2 storage projects, and to integrate the data from these various monitoring tools to obtain quantitative estimates of the change in subsurface fluid distributions, pressure changes and associated surface deformation. Monitoring methods being applied include satellite-, surface- and wellbore-based monitoring systems and comprise natural- and controlled-source electromagnetic methods, gravity monitoring, GPS, synthetic aperture radar interferometry (InSAR), tiltmeter array analysis, and chemical tracer studies. Here we focus on the GPS monitoring of surface deformation. Five GPS monitoring stations were installed in 2012 and another six in 2013, some collocated on top of InSAR retroreflectors. The GPS data from these stations have been processed on a weekly basis in both baseline processing mode using the Bernese GPS Software and precise point positioning mode using CSRS-PPP. Here we present the first complete results with 1-2 years of data at all sites prior to CO2 injection. The time series of these sites are examined, compared and analysed with respect to monument stability, seasonal signals and estimates of expected regional ground motion. The individual weekly network solutions have also been combined together in a cumulative 4D network solution to provide a preliminary local velocity field in the immediately vicinity of the injection well. These results are also compared to those obtained independently from InSAR, in particular the direct comparison of GPS and InSAR at the retroreflectors.

  3. Los Alamos National Laboratory environmental restoration program group audit report for underground storage tank removal: Audit ER-92- 04, July 22--August 11, 1992

    International Nuclear Information System (INIS)

    Gillespie, P.F.

    1992-01-01

    Audit ER-92-04 was conducted on activities being performed by Waste Management (EM-7), Environmental Protection (EM-8), and Environmental Restoration (EM-13) groups for the LANL's underground storage tank removal program. Scope of the audit was limited to an evaluation of the implementation of the State of New Mexico requirements for underground storage-tank removal. Activities were evaluated using requirements specified in the State of New Mexico Environmental Improvement Board Underground Storage Tank Regulations, EIB/USTR. Two recommendations are made: (1) that a single organization be given the responsibility and authority for the implementation of the program, and (2) that the requirements of the NM State environmental improvement board underground storage tank regulations be reviewed and a Los Alamos procedure written to address requirements and interfaces not contained in SOP-EM7-D ampersand D-001

  4. Thermoluminescence response of calcic bentonite subjected to conditions of high nuclear waste underground storage.

    Science.gov (United States)

    Dies, J; Miralles, L; Tarrasa, F; Pueyo, J J; de las Cuevas, C

    2002-01-01

    Bentonite is regarded as a backfilling material for underground storage facilities of highly radioactive nuclear waste built on granite formations. In these facilities, bentonite will be subjected to a gradient of temperature and dose rate, achieving a very high integrated dose and, therefore, changes in its structure and physical properties may take place. Two experiments to discriminate between the thermal and the irradiation effect were performed. In the first (named BIC 2A), samples were subjected to temperature while in the second (named BIC-2B) the combined effect of temperature and irradiation was studied. The experimental conditions were: a thermal gradient between 130 degrees C and 90 degrees C, a maximum dose rate of 3.5 kGy.h(-1) and a gradient of the integrated dose between 1.75 MGy and 10 MGy. Both experiments lasted a total of 124 days. An irradiation source of 60Co with an activity close to 300,000 Ci, and bentonite samples of 200 mm in length and 50 mm in diameter were used. After the experiment, the samples were ground and two fractions were obtained: a fine fraction (80 microm). The results are described of thermoluminescence analyses on the two fractions obtained which showed that the coarse fraction can be 100 times more sensitive to radiation than the fine fraction. On the other hand, the heated and irradiated samples showed a thermoluminescence response around 50 times greater than the samples that were only heated. In addition to this, the temperature and dose rate conditions are relevant parameters in the generation and stabilisation of radiation induced defects. Finally, the response of samples heated and irradiated for two months was quite similar to that obtained on samples heated and irradiated for four months, indicating a saturation phenomenon.

  5. Thermal hardening of saturated clays. Application to underground storage of radioactive wastes

    International Nuclear Information System (INIS)

    Picard, Jean-Marc

    1994-01-01

    Saturated clays submitted to constant mechanical loading and slow temperature increase frequently undergo irreversible contractions. This phenomena is described here by means of a change of plastic limits induced by temperature only, called thermal hardening. Constitutive laws adapted to this kind of plastic behaviour can be formulated within a general framework that satisfies thermodynamical principles. It shows that this coupling results from the presence of a latent heat during the isothermal hardening of plastic limits. A thermomechanical extension of Cam Clay model is then proposed and used in the analysis of laboratory thermomechanical tests performed on clay materials. Making use of tests already published, we show the adequacy of the concept of thermal hardening for clay behaviour. Some clay from deep geological formation considered for the disposal of radioactive waste exhibit thermal hardening in laboratory tests. The consequences for the underground storage facilities during the thermal loading created by the waste are investigated by means of in situ tests as well as numerical computation. The measurement around a heating probe buried in the clay mass demonstrate the significance of thermo-hydro-mechanical couplings. An accurate understanding of in situ measurements is achieved by means of numerical modeling in which the interaction between the various loading of the tests (excavation, pore pressure seepage, and heating) is carefully taken into account. Thermal hardening of the clay appears to be of little influence in these in situ tests. On the other hand, the magnitude of thermo-hydro-mechanical couplings observed in situ are higher than might have been expected from laboratory tests. A more accurate prediction is obtained if one takes into account the more stiffer behaviour of clays when they are subjected to small deformations. (authors)

  6. Deep underground disposal of radioactive wastes: Near field effects

    International Nuclear Information System (INIS)

    1985-01-01

    This report reviews the important near-field effects of the disposal of wastes in deep rock formations. The basic characteristics of waste form, container and package, buffer and backfill materials and potential host-rock types are discussed from the perspective of the performance requirements of the total repository system. Effects of waste emplacement on the separate system components and on the system as a whole are discussed. The effects include interactions between groundwater and brines and the other system components, thermal and thermo-mechanical effects, and chemical and geochemical reactions. Special consideration is given to the radiation field that exists in proximity to the waste containers and also to the coupled effects of different phenomena

  7. Report of working committee 1 ''exploration, production, treatment and underground storage of natural gas''; Rapport du comite de travail 1 ''exploration, production, traitement et stockage souterrain du gaz naturel

    Energy Technology Data Exchange (ETDEWEB)

    Rekdal, Ottar

    2000-07-01

    This report describes the activities of Working Committee 1 during the triennium 1997 - 2000. The first part of the report gives an overview of the current situation world-wide within the basic activities of the committee, i.e. exploration, production, treatment and underground storage of natural gas. In the second part of the report analyses of three prioritized topics important to the industry are described: - Improving the performance of existing gas storages; - Use of 3-D seismic data in exploration, production and underground storage. - Development of small-scale offshore gas fields. The report will be presented during the WOC 1 sessions at the World Gas Conference 2000, together with papers selected by the committee. Other relevant papers will be presented during the poster session. Furthermore, the committee will organize a round table session addressing reductions of greenhouse gas emissions along the gas chain. Representatives from industry, environmental organisations and politicians will take part in this round table discussion. (author)

  8. Work plan and health and safety plan for Building 3019B underground storage tank at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Burman, S.N.; Brown, K.S.; Landguth, D.C.

    1992-08-01

    As part of the Underground Storage Tank Program at the Department of Energy's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, this Health and Safety Plan has been developed for removal of the 110-gal leaded fuel underground storage tank (UST) located in the Building 3019B area at ORNL This Health and Safety Plan was developed by the Measurement Applications and Development Group of the Health and Safety Research Division at ORNL The major components of the plan follow: (1) A project description that gives the scope and objectives of the 110-gal tank removal project and assigns responsibilities, in addition to providing emergency information for situations occurring during field operations; (2) a health and safety plan in Sect. 15 for the Building 3019B UST activities, which describes general site hazards and particular hazards associated with specific tasks, personnel protection requirements and mandatory safety procedures; and (3) discussion of the proper form completion and reporting requirements during removal of the UST. This document addresses Occupational Safety and Health Administration (OSHA) requirements in 29 CFR 1910.120 with respect to all aspects of health and safety involved in a UST removal. In addition, the plan follows the Environmental Protection Agency (EPA) QAMS 005/80 (1980) format with the inclusion of the health and safety section (Sect. 15).

  9. Work plan and health and safety plan for Building 3019B underground storage tank at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Burman, S.N.; Brown, K.S.; Landguth, D.C.

    1992-08-01

    As part of the Underground Storage Tank Program at the Department of Energy`s Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, this Health and Safety Plan has been developed for removal of the 110-gal leaded fuel underground storage tank (UST) located in the Building 3019B area at ORNL This Health and Safety Plan was developed by the Measurement Applications and Development Group of the Health and Safety Research Division at ORNL The major components of the plan follow: (1) A project description that gives the scope and objectives of the 110-gal tank removal project and assigns responsibilities, in addition to providing emergency information for situations occurring during field operations; (2) a health and safety plan in Sect. 15 for the Building 3019B UST activities, which describes general site hazards and particular hazards associated with specific tasks, personnel protection requirements and mandatory safety procedures; and (3) discussion of the proper form completion and reporting requirements during removal of the UST. This document addresses Occupational Safety and Health Administration (OSHA) requirements in 29 CFR 1910.120 with respect to all aspects of health and safety involved in a UST removal. In addition, the plan follows the Environmental Protection Agency (EPA) QAMS 005/80 (1980) format with the inclusion of the health and safety section (Sect. 15).

  10. Geomechanical problems of an underground storage of spent nuclear fuel and their mathematic modelling

    Czech Academy of Sciences Publication Activity Database

    Blaheta, Radim; Byczanski, Petr; Šňupárek, Richard; Hájek, Antonín

    2007-01-01

    Roč. 12, č. 1 (2007), s. 140-146 ISSN 1335-1788 Institutional research plan: CEZ:AV0Z30860518 Keywords : mathematical modelling * thermo-mechanical processes * underground deposition Subject RIV: BA - General Mathematics

  11. FY 1999 research and development results. Preparatory study for the underground thermal energy storage system; 1999 nendo chichu jiban chikunetsu system gijutsu sendo kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    The study is conducted for the underground thermal energy storage system which utilizes heat capacity of the underground, e.g., aquifer, to exchange heat with the underground, and the FY 1999 results are described. For establishment of the concept of the underground heat storage systems, 2 sites are selected for each of Tokyo, Osaka and Sapporo for the study as the geological ground models, for their weather characteristics. Two cases are considered for the site where underground heat exchangers are installed, open space and immediately below a building. The heat-storage system comprises a high-efficiency heat pump, water heat-storage tank and cooling tower. The evaluation results indicate that energy saving rate of 37% or more and CO2 reduction rate of 9.5% or more are achievable in all areas except Sapporo, i.e., Tokyo and Osaka. The economic evaluation results indicate that the simple pay-out period is around 100 years for Tokyo and Osaka, and 80 years for Sapporo. The underground heat storage system is approximately 10% lower in life-cycle cost than the conventional system, 3 versus 3.3 billion yen for the period of 60 years. (NEDO)

  12. Evaluation of the effectiveness of natural attenuation at two leaking underground storage tank sites in New Zealand

    International Nuclear Information System (INIS)

    Vidovich, M.M.; McConchie, J.A.; Schiess, S.

    2000-01-01

    The effectiveness of natural attenuation (NA) as a remedial approach for managing contaminated groundwater caused by two leaking underground storage tanks (USTs) was evaluated. The primary indicators used related to plume characterisation and migration. Statistical analyses of the plumes, using a Mann-Kendall test, indicated decreasing contaminant concentrations. Secondary indicators included an estimation of NA rates and an evaluation of the changes in groundwater geochemistry as a result of intrinsic bioremediation of the fuel hydrocarbons. Analysis of the data indicates that NA of dissolved hydrocarbons has been occurring and preventing the migration of the dissolved benzene, toluene, ethylbenzene and xylenes (BTEX) plume at both sites

  13. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 1: Executive summary

    Science.gov (United States)

    1981-05-01

    A preliminary design study of water compensated Compressed Air Energy Storage (CAES) and Underground Pumped Hydroelectric (UPH) plants for siting in geological conditions suitable for hard rock excavations was performed. The study was divided into five primary tasks as follows: establishment of design criteria and analysis of impact on power system; selection of site and establishment of site characteristics; formulation of design approaches; assessment of environmental and safety aspects; and preparation of preliminary design of plant. The salient aspects considered and the conclusions reached during the consideration of the five primary tasks for both CAES and UPH are presented.

  14. Revised corrective action plan for underground storage tank 2331-U at the Building 9201-1 Site

    International Nuclear Information System (INIS)

    Bohrman, D.E.; Ingram, E.M.

    1993-09-01

    This document represents the Corrective Action Plan for underground storage tank (UST) 2331-U, previously located at Building 9201-1, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Tank 2331-U, a 560-gallon UST, was removed on December 14, 1988. This document presents a comprehensive summary of all environmental assessment investigations conducted at the Building 9201-1 Site and the corrective action measures proposed for remediation of subsurface petroleum product contamination identified at the site. This document is written in accordance with the regulatory requirements of the Tennessee Department of Environment and Conservation (TDEC) Rule 1200-1-15-.06(7)

  15. 30 CFR 57.4262 - Underground transformer stations, combustible liquid storage and dispensing areas, pump rooms...

    Science.gov (United States)

    2010-07-01

    ... liquid storage and dispensing areas, pump rooms, compressor rooms, and hoist rooms. 57.4262 Section 57... storage and dispensing areas, pump rooms, compressor rooms, and hoist rooms. Transformer stations, storage and dispensing areas for combustible liquids, pump rooms, compressor rooms, and hoist rooms shall be...

  16. Feasibility and economic consequences of retrievable storage of radioactive waste in the deep underground

    International Nuclear Information System (INIS)

    Prij, J.; Heijdra, J.J.

    1995-01-01

    The economic consequences of retrievable storage have been investigated by comparing two extreme options of retrievable storage. In one option the storage facility is kept in operation, using minimal backfill of the storage galleries. In the other option the storage facility is completely backfilled, sealed and abandoned. In the second option construction of a new mine will be necessary in case of retrieval. The point in time has been determined when the second option will be cheapter than the first. This has been done for clary, granite and rocksalt as host formation, and both for vitrified waste and spent fuel. (orig.)

  17. RADIATION SAFETY JUSTIFICATION FOR THE LONG-TERM STORAGE OF GAS CONDENSATE IN THE UNDERGROUND RESERVOURS FORMED BY THE NUCLEAR EXPLOSION TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    I. K. Romanovich

    2010-01-01

    Full Text Available The paper presents approaches to the safety justification of the gas condensate and brine long-term storage in the underground reservoirs formed by the nuclear explosion technology. Gas condensate and brine are the intermediate level liquid radioactive waste containing isotopes: 3Н, 137Cs and 90Sr, in traces - 239Pu, 235U, 241Am.Safety of the gas condensate and brine long-term storage in the underground reservoirs is assessed on the base of the multi-barrier principle implementation, used during radioactive waste disposal. It is shown that the gas condensate and brine long-term storage in the sealed underground reservoirs formed by nuclear explosion technologies in salt domes does not lead to the surface radioactive contamination and population exposure.

  18. The mechanism study between 3D Space-time deformation and injection or extraction of gas pressure change, the Hutubi Underground gas storage

    Science.gov (United States)

    Xiaoqiang, W.; Li, J.; Daiqing, L.; Li, C.

    2017-12-01

    The surface deformation of underground gas reservoir with the change of injection pressure is an excellent opportunity to study the load response under the action of tectonic movement and controlled load. This paper mainly focuses on the elastic deformation of underground structure caused by the change of the pressure state of reservoir rock under the condition of the irregular change of pressure in the underground gas storage of Hutubi, the largest underground gas storage in Xinjiang, at the same time, it makes a fine study on the fault activities of reservoir and induced earthquakes along with the equilibrium instability caused by the reservoir. Based on the 34 deformation integrated observation points and 3 GPS continuous observation stations constructed in the underground gas storage area of Hutubi, using modern measurement techniques such as GPS observation, precise leveling survey, flow gravity observation and so on, combined with remote sensing technology such as InSAR, the 3d space-time sequence images of the surface of reservoir area under pressure change were obtained. Combined with gas well pressure, physical parameters and regional seismic geology and geophysical data, the numerical simulation and analysis of internal changes of reservoir were carried out by using elastic and viscoelastic model, the deformation mechanical relationship of reservoir was determined and the storage layer under controlled load was basically determined. This research is financially supported by National Natural Science Foundation of China (Grant No.41474016, 41474051, 41474097)

  19. Decision and systems analysis for underground storage tank waste retrieval systems and tank waste remediation system

    Energy Technology Data Exchange (ETDEWEB)

    Bitz, D.A. [Independent Consultant, Kirkland, WA (United States); Berry, D.L. [Sandia National Labs., Albuquerque, NM (United States); Jardine, L.J. [Lawrence Livermore National Lab., CA (United States)

    1994-03-01

    Hanford`s underground tanks (USTs) pose one of the most challenging hazardous and radioactive waste problems for the Department of Energy (DOE). Numerous schemes have been proposed for removing the waste from the USTs, but the technology options for doing this are largely unproven. To help assess the options, an Independent Review Group (IRG) was established to conduct a broad review of retrieval systems and the tank waste remediation system. The IRG consisted of the authors of this report.

  20. Decision and systems analysis for underground storage tank waste retrieval systems and tank waste remediation system

    International Nuclear Information System (INIS)

    Bitz, D.A.; Berry, D.L.; Jardine, L.J.

    1994-03-01

    Hanford's underground tanks (USTs) pose one of the most challenging hazardous and radioactive waste problems for the Department of Energy (DOE). Numerous schemes have been proposed for removing the waste from the USTs, but the technology options for doing this are largely unproven. To help assess the options, an Independent Review Group (IRG) was established to conduct a broad review of retrieval systems and the tank waste remediation system. The IRG consisted of the authors of this report

  1. Public consultation. Third party's access to natural gas underground storages and storage obligations - March 2015. Evolution of the ATS and storage obligations - Appendix. Answer of the Commission for energy regulation to the public consultation of the General Directorate of energy and climate related to third party's access to natural gas underground storages

    International Nuclear Information System (INIS)

    Ladoucette, Philippe De; Chauvet, Christine; Edwige, Catherine; Gassin, Helene; Padova, Yann; Sotura, Jean-Pierre

    2015-01-01

    As a public consultation aims at gathering the opinion of the various actors of the natural gas market about the evolution of legal and regulatory arrangements regarding the third party's access to underground storages (ATS) of gas, and storage obligations of gas providers, this document reports an analysis of the various associated issues by the French General Directorate of Energy and Climate (DGEC). For each issue, a question is asked to the actors after a discussion of associated challenges, stakes and perspectives. These issues notably concern the introduction of a higher storage obligation coupled to a regulation of capacity tariffs in order to ensure a sufficient fill of storages, the introduction of auctions on storage capacities with a compensation mechanism to address an imperfect valorisation of storages. An appendix presents the French storage fleet, outlines that storage valorisation requires different factors to be taken into account, and that storages are in competition with other infrastructures within a context of decrease of gas consumptions at the European level, and shows that the summer-winter spread decrease results in a decrease of capacity subscriptions. A third text proposes the answer made by the Commission for energy regulation on these issues

  2. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 8: Design approaches: UPH

    Science.gov (United States)

    1981-06-01

    The development of the design approaches used to determine the plant and overall layout for a underground pumped hydroelectric (UPH) storage facility having a maximum generating capacity of 2000 MW and a storage capacity of 20,000 MWh is discussed. Key factors were the selection of the high head pump-turbine equipment and the geotechnical considerations relevant to the underground cavern designs. The comparison of pump-turbine alternatives is described leading to the selection for detailed study of both a single-step configurations, using multistage reversible pump-turbines, and a two-step configuration, with single-stage reversible pump-turbines.

  3. Economic feasibility of pipe storage and underground reservoir storage options for power-to-gas load balancing

    International Nuclear Information System (INIS)

    Budny, Christoph; Madlener, Reinhard; Hilgers, Christoph

    2015-01-01

    Highlights: • Study of cost effectiveness of power-to-gas and storage of H 2 and renewable methane. • NPV analysis and Monte Carlo simulation to address fuel and electricity price risks. • Gas sale is compared with power and gas market arbitrage and balancing market gains. • Power-to-gas for linking the balancing markets for power and gas is not profitable. • Pipe storage is the preferred option for temporal arbitrage and balancing energy. - Abstract: This paper investigates the economic feasibility of power-to-gas (P2G) systems and gas storage options for both hydrogen and renewable methane. The study is based on a techno-economic model in which the net present value (NPV) method and Monte Carlo simulation of risks and price forward curves for the electricity and the gas market are used. We study three investment cases: a Base Case where the gas is directly sold in the market, a Storage & Arbitrage Case where temporal arbitrage opportunities between the electricity and the gas market are exploited, and a Storage & Balancing Case where the balancing markets (secondary reserve market for electricity, external balancing market for natural gas) are addressed. The optimal type and size of different centralized and decentralized storage facilities are determined and compared with each other. In a detailed sensitivity and cost analysis, we identify the key factors which could potentially improve the economic viability of the technological concepts assessed. We find that the P2G system used for bridging the balancing markets for power and gas cannot be operated profitably. For both, temporal arbitrage and balancing energy, pipe storage is preferred. Relatively high feed-in tariffs (100 € MW −1 for hydrogen, 130 € MW −1 for methane) are required to render pipe storage for P2G economically viable

  4. Seasonal heat storage in underground caverns. Final report; Saisonale Waermespeicherung in Grubenraeumen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Eikmeier, B.; Mohr, M.; Unger, H.

    1999-11-01

    The solar assisted heat supply of buildings can provide an important contribution in order to achieve the targets of minimization of primary energy consumption and reduction of greenhouse gas emissions. However, the problem of the seasonal divergence between the high solar energy supply in the summer and the high demand in the winter consists; therefore seasonal heat storage is indispensable. Here, a considerable fraction of the investments must be addressed to the central reservoir. An approach towards the reduction of the investment costs for the installation of seasonal storages in the use of cavities, which are already available in mines. In the Ruhr-Area a complex net of subterranean cavities is available. For the cost estimation of solar assisted heat supply with integrated storage in mines, the reference suburban colony 'Essen-Stoppenberg' with 42 double family houses is chosen. The specific storage costs are estimated for different technical options (tunnel- or shaft storage, direct or indirect charging system). In most cases these costs are comparable to other seasonal heat storage projects. With advantageous conditions specific capital expenditures can be achieved, which are lower than those of conventional seasonal storage. However, it must be considered, that the operating costs of pit storages are expected to be higher. (orig.)

  5. Analysis of Underground Storage Tanks System Materials to Increased Leak Potential Associated with E15 Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kass, Michael D [ORNL; Theiss, Timothy J [ORNL; Janke, Christopher James [ORNL; Pawel, Steven J [ORNL

    2012-07-01

    include model year 2001 light-duty vehicles, but specifically prohibited use in motorcycles and off-road vehicles and equipment. UST stakeholders generally consider fueling infrastructure materials designed for use with E0 to be adequate for use with E10, and there are no known instances of major leaks or failures directly attributable to ethanol use. It is conceivable that many compatibility issues, including accelerated corrosion, do arise and are corrected onsite and, therefore do not lead to a release. However, there is some concern that higher ethanol concentrations, such as E15 or E20, may be incompatible with current materials used in standard gasoline fueling hardware. In the summer of 2008, DOE recognized the need to assess the impact of intermediate blends of ethanol on the fueling infrastructure, specifically located at the fueling station. This includes the dispenser and hanging hardware, the underground storage tank, and associated piping. The DOE program has been co-led and funded by the Office of the Biomass Program and Vehicle Technologies Program with technical expertise from the Oak Ridge National Laboratory (ORNL) and the National Renewable Energy Laboratory (NREL). The infrastructure material compatibility work has been supported through strong collaborations and testing at Underwriters Laboratories (UL). ORNL performed a compatibility study investigating the compatibility of fuel infrastructure materials to gasoline containing intermediate levels of ethanol. These results can be found in the ORNL report entitled Intermediate Ethanol Blends Infrastructure Materials Compatibility Study: Elastomers, Metals and Sealants (hereafter referred to as the ORNL intermediate blends material compatibility study). These materials included elastomers, plastics, metals and sealants typically found in fuel dispenser infrastructure. The test fuels evaluated in the ORNL study were SAE standard test fuel formulations used to assess material-fuel compatibility within a

  6. Structural analysis of an underground reinforced concrete waste storage tank due to over-pressurization

    International Nuclear Information System (INIS)

    Xu, J.; Bandyopadhyay, K.; Shteyngart, S.; Eckert, H.

    1993-01-01

    This paper presents the results of a structural analysis performed by use of the finite element method in determining the pressure-carrying capacity of an underground tank which contains nuclear wastes. The tank and surrounding soil were modeled and analyzed using the ABAQUS program. Special emphases were given on determining the effects of soil-containment interaction by employing Coulomb friction model. The effect of material properties was investigated by considering two sets of stress-strain data for the steel plates. In addition, a refined mesh was used to evaluate the strain concentration effects at steel liner thickness discontinuities

  7. Economic efficiency of underground natural gas storage: The case of Canada

    International Nuclear Information System (INIS)

    Charette, Y.

    1990-01-01

    The paper describes the current situation of natural gas storage in Canada and attempts to provide valuable information and analytical tools so that the key players, including government and industry, will be in a better position to make enlightened choices for future investments in natural gas storage. Central to the analysis of the efficiency of storage is the notion of efficient peak-load pricing. It is usually recognized that storage may be efficient or welfare increasing because, with fixed consumption, it may allow the substitution of cheaper off-peak production for more costly production. The theoretical conclusions are used of a number of static peak-load pricing models, as well as investment decision models, to analyze the various costs and benefits of storage. The main conclusion is made that, when storage is possible, the welfare maximizing peak/off-peak price differential can be reduced, and therefore, storage can increase the efficiency of the gas transmission system. 10 refs, 2 figs, 5 tabs

  8. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 5: Site selection

    Science.gov (United States)

    1981-04-01

    A six-step site selection process undertaken to identify and subsequently rank potential sites suitable for either an underground pumped hydroelectric (UPH) facility, or a water-compensated hard-rock cavern compressed air energy storage (CAES) facility is described. The region of study was confined to the service area of the Potomac Electric Power Company (PEPCO) and contiguous areas. Overriding considerations related to geology, environmental impact and transmission-line routing were studies within the context of minimizing plant costs. The selection process led to the identification of several sites suitable for the development of either a CAES or an UPH facility. Design development and site exploration at the selected site are described.

  9. Accessing leaking underground storage tank case studies and publications through the EPA's Computerized On-Line Information System (COLIS)

    International Nuclear Information System (INIS)

    Hillger, R.; Tibay, P.

    1991-01-01

    The US EPA's regulations for underground storage tanks (USTs) require corrective action to be taken in response to leaking USTs. Recent developments of UST programs nationwide as well as the introduction of new technologies to clean up UST sites have increased the diversity of experience levels among personnel involved with this type of work. The EPA's Computerized On-Line Information System (COLIS) has been developed to facilitate technology transfer among the personnel involved in UST cleanup. The system allows for the quick and simple retrieval of data relating to UST incidents, as well as other hazardous waste-related information. The system has been used by response personnel at all levels of government, academia, and private industry. Although it has been in existence for many years, users are just now realizing the potential wealth of information stored in this system. COLIS access can be accomplished via telephone lines utilizing a personal computer and a modem

  10. Processing of hazardous material, or damage treatment method for shallow layer underground storage structure

    International Nuclear Information System (INIS)

    Ito, Hiroshi; Sakaguchi, Takehiko; Nishioka, Yoshihiro.

    1997-01-01

    In radioactive waste processing facilities and shallow layer underground structures for processing hazardous materials, sheet piles having freezing pipes at the joint portions are spiked into soils at the periphery of a damaged portion of the shallow layer underground structure for processing or storing hazardous materials. Liquid nitrogen is injected to the freezing pipes to freeze the joint portions of adjacent sheet piles. With such procedures, continuous waterproof walls are formed surrounding the soils at the peripheries of the damaged portion. Further, freezing pipes are disposed in the surrounding soils, and liquid nitrogen is injected to freeze the soils. The frozen soils are removed, and artificial foundation materials are filled in the space except for the peripheries of the damaged portion after the removal thereof, and liquid suspension is filled in the peripheries of the damaged portion, and restoration steps for closing the damaged portion are applied. Then, the peripheries of the damaged portion are buried again. With such procedures, series of treatments for removing contaminated soils and repairing a damaged portion can be conducted efficiently at a low cost. (T.M.)

  11. Optimal Design of Cogeneration Systems in Industrial Plants Combined with District Heating/Cooling and Underground Thermal Energy Storage

    Directory of Open Access Journals (Sweden)

    Vincenzo Dovì

    2011-12-01

    Full Text Available Combined heat and power (CHP systems in both power stations and large plants are becoming one of the most important tools for reducing energy requirements and consequently the overall carbon footprint of fundamental industrial activities. While power stations employ topping cycles where the heat rejected from the cycle is supplied to domestic and industrial consumers, the plants that produce surplus heat can utilise bottoming cycles to generate electrical power. Traditionally the waste heat available at high temperatures was used to generate electrical power, whereas energy at lower temperatures was either released to the environment or used for commercial or domestic heating. However the introduction of new engines, such as the ones using the organic Rankine cycle, capable of employing condensing temperatures very close to the ambient temperature, has made the generation of electrical power at low temperatures also convenient. On the other hand, district heating is becoming more and more significant since it has been extended to include cooling in the warm months and underground storage of thermal energy to cope with variable demand. These developments imply that electric power generation and district heating/cooling may become alternative and not complementary solutions for waste energy of industrial plants. Therefore the overall energy management requires the introduction of an optimisation algorithm to select the best strategy. In this paper we propose an algorithm for the minimisation of a suitable cost function, for any given variable heat demand from commercial and domestic users, with respect to all independent variables, i.e., temperatures and flowrates of warm fluid streams leaving the plants and volume and nature of underground storage. The results of the preliminary process integration analysis based on pinch technology are used in this algorithm to provide bounds on the values of temperatures.

  12. Porous media experience applicable to field evaluation for compressed air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Allen, R.D.; Gutknecht, P.J.

    1980-06-01

    A survey is presented of porous media field experience that may aid in the development of a compressed air energy storage field demonstration. Work done at PNL and experience of other groups and related industries is reviewed. An overall view of porous media experience in the underground storage of fluids is presented. CAES experience consists of site evaluation and selection processes used by groups in California, Kansas, and Indiana. Reservoir design and field evaluation of example sites are reported. The studies raised questions about compatibility with depleted oil and gas reservoirs, storage space rights, and compressed air regulations. Related experience embraces technologies of natural gas, thermal energy, and geothermal and hydrogen storage. Natural gas storage technology lends the most toward compressed air storage development, keeping in mind the respective differences between stored fluids, physical conditions, and cycling frequencies. Both fluids are injected under pressure into an aquifer to form a storage bubble confined between a suitable caprock structure and partially displaced ground water. State-of-the-art information is summarized as the necessary foundation material for field planning. Preliminary design criteria are given as recommendations for basic reservoir characteristics. These include geometric dimensions and storage matrix properties such as permeability. Suggested ranges are given for injection air temperature and reservoir pressure. The second step in developmental research is numerical modeling. Results have aided preliminary design by analyzing injection effects upon reservoir pressure, temperature and humidity profiles. Results are reported from laboratory experiments on candidate sandstones and caprocks. Conclusions are drawn, but further verification must be done in the field.

  13. Effects of Formation Damage on Productivity of Underground Gas Storage Reservoirs

    Directory of Open Access Journals (Sweden)

    C.I.C. Anyadiegwu

    2013-12-01

    Full Text Available Analysis of the effects of formation damage on the productivity of gas storage reservoirs was performed with depleted oil reservoir (OB-02, located onshore, Niger Delta, Nigeria. Information on the reservoir and the fluids from OB-02 were collected and used to evaluate the deliverabilities of the gas storage reservoir over a 10-year period of operation. The results obtained were used to plot graphs of deliverability against permeability and skin respectively. The graphs revealed that as the permeability decreased, the skin increased, and hence a decrease in deliverability of gas from the reservoir during gas withdrawal. Over the ten years of operating the reservoir for gas storage, the deliverability and permeability which were initially 2.7 MMscf/d and 50 mD, with a skin of 0.2, changed to new values of 0.88 MMscf/d and 24 mD with the skin as 4.1 at the tenth year.

  14. Underground storage of imported water in the San Gorgonio Pass area, southern California

    Science.gov (United States)

    Bloyd, Richard M.

    1971-01-01

    The San Gorgonio Pass ground-water basin is divided into the Beaumont, Banning, Cabazon, San Timoteo, South Beaumont, Banning Bench, and Singleton storage units. The Beaumont storage unit, centrally located in the agency area, is the largest in volume of the storage units. Estimated long-term average annual precipitation in the San Gorgonio Pass Water Agency drainage area is 332,000 acre-feet, and estimated average annual recoverable water is 24,000 acre-feet, less than 10 percent of the total precipitation. Estimated average annual surface outflow is 1,700 acre-feet, and estimated average annual ground-water recharge is 22,000 acre-feet. Projecting tack to probable steady-state conditions, of the 22.000 acre-feet of recharge, 16,003 acre-feet per year became subsurface outflow into Coachella Valley, 6,000 acre-feet into the Redlands area, and 220 acre-feet into Potrero Canyon. After extensive development, estimated subsurface outflow from the area in 1967 was 6,000 acre-feet into the Redlands area, 220 acre-feet into Potrero Canyon, and 800 acre-feet into the fault systems south of the Banning storage unit, unwatered during construction of a tunnel. Subsurface outflow into Coachella Valley in 1967 is probably less than 50 percent of the steady-state flow. An anticipated 17,000 .acre-feet of water per year will be imported by 1980. Information developed in this study indicates it is technically feasible to store imported water in the eastern part of the Beaumont storage unit without causing waterlogging in the storage area and without losing any significant quantity of stored water.

  15. Modelling of seismic reflection data for underground gas storage in the Pečarovci and Dankovci structures - Mura Depression

    Directory of Open Access Journals (Sweden)

    Andrej Gosar

    1995-12-01

    Full Text Available Two antiform structures in the Mura Depression were selected as the most promising in Slovenia for the construction of an underground gas storage facility in an aquifer. Seventeen reflection lines with a total length of 157km were recorded, and three boreholes were drilled. Structural models corresponding to two different horizons (the pre-Tertiary basement and the Badenian-Sarmatianboundary were constructed using the Sierra Mimic program. Evaluation of different velocity data (velocity analysis, sonic log, the down-hole method, and laboratory measurements on cores was carried out in order to perform correct timeto-depth conversion and to estabUsh lateral velocity variations. The porous rock in Pečarovci structure is 70m thick layer of dolomite, occurring at a depth of 1900m, whereas layers of marl, several hundred meter thick, represent the impermeable cap-rock. Due to faults, the Dankovci structure, at a depth of 1200m,where the reservoir rocks consist of thin layers of conglomerate and sandstone,was proved to be less reliable. ID synthetic seismograms were used to correlatethe geological and seismic data at the borehole locations, especially at intervals with thin layers. The raytracing method on 2D models (the Sierra Quik packagewas applied to confirm lateral continuity of some horizons and to improve the interpretation of faults which are the critical factor for gas storage.

  16. Environmental and Economic Impact of Underground Storage Tanks in the United States and Territories

    Science.gov (United States)

    1992-12-01

    Pemex ), the Mexico City based state oil company, has accepted responsibility for the gasoline leak into the sewer system and offered to provide $32.7...owned and operated by Pemex , which crossed the southeast part of the city and supplied one of the main storage and distribution plants with gasoline

  17. 30 CFR 75.1903 - Underground diesel fuel storage facilities and areas; construction and safety precautions.

    Science.gov (United States)

    2010-07-01

    ... HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS... storage; and (4) Maintained to prevent the accumulation of water. (c) Welding or cutting other than that... contained diesel fuel, these practices shall be followed: (1) Cutting or welding shall not be performed on...

  18. Assessment of the potential of the Mainfranken region, northern Bavaria, for underground storage of geothermal energy; Erkundung des regionalen Potentials fuer die Untergrundspeicherung thermischer Energie in Mainfranken (UTEM)

    Energy Technology Data Exchange (ETDEWEB)

    Barthel, R.; Heinrichs, G.; Udluft, P. [Lehr- und Forschungsbereich Hydrogeologie und Umwelt, Inst. fuer Geologie, Univ. Wuerzburg (Germany); Ebert, H.P.; Fricke, J. [Abt. Waermedaemmung/Waermetransport, Bayerisches Zentrum fuer Angewandte Energieforschung e.V., Wuerzburg (Germany)

    1997-12-01

    The following paper presents a research project that is planned as a cooperation of the Geological Institute, University of Wuerzburg and the Bavarian Center of Applied Energy Research. In this project the potentials for underground thermal energy storage will be investigated in the region of Mainfranken, Northern Bavaria (Main = the river `Main`, Franken = Franconia). All aspects of underground storage will be studied with respect to the specific geographical and geological situation of the area. The study will provide a detailed map of possible storage sites, from which several case studies and at least one demonstration projects will result. (orig.) [Deutsch] Im vorliegenden Beitrag wird ein Forschungsprojekt vorgestellt, das gemeinsam vom Institut fuer Geologie der Universitaet Wuerzburg und dem Zentrum fuer Angewandte Energieforschung in Bayern geplant wird. Ziel des Projekts ist die Erkundung des Potentials fuer die Untergrundspeicherung thermischer Energie in Mainfranken (Nordbayern). Alle Aspekte der Untergrundspeicherung werden regionalspezifisch betrachtet. Neben der Erstellung differenzierter Karten geeigneter Standorte sind Fallstudien und Demonstrationsprojekte in Planung. (orig.)

  19. Numerical modeling of the viscoplastic damage behaviour of rocks and application to underground storage facilities

    International Nuclear Information System (INIS)

    Hajdu, A.

    2003-12-01

    The long-term behavior of large, underground works of a civil engineering nature carried out in a rock mass is currently the subject of numerous studies. The object is to attain a better understanding of complex phenomena, such as the convergence of excavated cavities or the outbreak and development of damaged zones in the rock mass neighboring the works, in order to foresee them. This Ph.D. thesis is devoted to the analysis of viscoplastic strain in rocks and to the degradation of their mechanical properties with time, often referred to as deferred damage. A bibliographical record presents the current depth of understanding as regards underlying microstructural phenomena and summarizes the main theories upon which the modeling of these phenomena at the macroscopic scale is based. The formulations enabling a coupling between the viscous effects and the deferred damage are revisited and discussed in detail. One phenomenological model in particular, Lemaitre's viscoplastic constitutive damage law is retained for the numerical modeling. The calculations were performed with the help of a finite element code (CAST3M). Designs of nuclear waste disposal structures at great depth make up the subject of different case studies. The Lemaitre model, originally designed for metallic materials, is next the subject of a theoretical development of which the aim is to better adapt it to the description of the long-term mechanical behavior of rocks. The modifications focus on several points; notably that the hypotheses of anelastic strain at constant volume and of isotropy of damage are rejected. The main characteristics of time-dependent strain in rocks; in particular the phenomena of viscoplastic dilation and contraction as well as the anisotropy induced by damage to the rock matrix are reproduced by the proposed model. A parametric study is then undertaken, using the experimental results obtained on different types of rock, in order to demonstrate the model's capabilities

  20. Coal reserves and resources as well as potentials for underground coal gasification in connection with carbon capture and storage (CCS)

    Science.gov (United States)

    Ilse, Jürgen

    2010-05-01

    . However, these otherwise unprofitable coal deposits can be mined economically by means of underground coal gasification, during which coal is converted into a gaseous product in the deposit. The synthesis gas can be used for electricity generation, as chemical base material or for the production of petrol. This increases the usability of coal resources tremendously. At present the CCS technologies (carbon capture and storage) are a much discussed alternative to other CO2 abatement techniques like efficiency impovements. The capture and subsequent storage of CO2 in the deposits created by the actual underground gasification process seem to be technically feasible.

  1. Understanding the Underground Hydrous Minerals on Mars: Stability Field, Phase Transitions, and Environmental Implications

    Science.gov (United States)

    Wang, A.; Chou, I. M.; Ling, Z.; Sobron, P.

    2017-12-01

    Three types of studies form the bases of our understandings: (1) systematic laboratory experiments on the thermodynamics and kinetic properties of hydrous (Mg, Fe2+, Fe3+, Ca, Al, Na) -sulfates, -chlorides, and -perchlorates, made by this and many other teams. (2) the thermal modeling of two-layer regolith with very different thermal inertia (TI) and its validating observation on Mars [Mellon et al., 2004, 2009]. (3) the mission observations on Mars and the field investigations at analog sites. Following are some examples of these understandings, with more to be presented at AGU. Hydrous salts (sulfates, chlorides, perchlorates) in an enclosure could keep a relatively stable RH%, i.e., they are environmental RH buffers. Underground layers of hydrous salty soils (high TI) on Mars could be considered as a quasi-closed system, equilibrated within their environments. The RH% range kept by them would help to stabilize many hydrous salts. For example, Mg- & Fe3+-sulfates with high hydration degrees (6-20 H2O) were observed in the subsurface layers in a terrestrial hyperarid region and at Gusev on Mars. A general trend was found that the RH% levels kept by hydrous sulfates in an enclosure are much higher than those by hydrous perchlorates and by hydrous chlorides. This implies that in an underground layer of mixed hydrous salts, one type of salts (e.g. sulfates) can provide the necessary RH-buffering for the phase transition of other types,, e.g., the deliquescence of perchlorates or chlorides, to trigger RSL or to provide liquid H2O at relatively warm T. The dehydration rates of hydrous sulfates have a high dependence on cation types. Among them, Mg and Fe2+-sulfate have higher dehydration rates, and ferric sulfates dehydrate much slow. This lab-observation was validated by MER mission observation, i.e., the finding of highly hydrated ferric sulfates, i.e. Fe4.67(SO4)6(OH)2.20H2O, in subsurface at Gusev crater. However, the dehydration rate of hydrous sulfates can also

  2. Underground gas storage Uelsen: Findings from planning, building and commissioning. Part 1: Deposit; Untertagegasspeicher Uelsen: Erkenntnisse aus Planung, Bau und Inbetriebnahme. Teil 1: Lagerstaette

    Energy Technology Data Exchange (ETDEWEB)

    Wallbrecht, J.; Beckmann, H.; Reiser, H.; Wilhelm, R. [BEB Erdgas und Erdoel GmbH, Hannover (Germany)

    1998-12-31

    The underground gas storage at Uelsen which was built as a H-gas storage in a former variegated sandstone gasfield in Western Lower Saxony close to the town of Nordhorn has added to the gas supply system of the BEB Erdgas and Erdoel GmbH. The underground storage is connected to the Bunde-Rheine transport pipeline BEB-grid gas system by a 27 km pipeline and is a consequent expansion of BEB`s underground storage/transport system. Planning, building and commissioning were handled by BEB. Findings to date are described. [Deutsch] Der Untertagegasspeicher (UGS) Uelsen, der in einem ehemaligen Buntsandstein Gasfeld im westlichen Niedersachsen in der Naehe der Stadt Nordhorn als H-Gasspeicher eingerichtet wurde, hat die BEB Erdgas und Erdoel GmbH eine weitere Staerkung ihres Gasversorgungssystems erreicht. Der UGS Uelsen ist ueber eine 27 km lange Anbindungsleitung mit der zum BEB - Ferngasleitungssystems gehoerenden Bunde-Rheine Transportleitung verbunden und stellt eine konsequente Erweiterung des BEB Untertagegasspeicher-/Transportsystems dar. Planung, Bau und Inbetriebnahme erfolgten durch BEB im Rahmen einer integrierten bereichsuebergreifenden Projektbearbeitung. Die hierbei gewonnenen Erkenntnisse werden im Folgenden fuer den Untertagebereich dargestellt. (orig.)

  3. From clay bricks to deep underground storage; vom lehmziegel bis zum tiefenlager -- anwendung von ton

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-05-15

    This booklet issued by the Swiss National Cooperative for the Disposal of Radioactive Waste NAGRA takes a look at the use of clay strata for the storage of radioactive wastes in deep-lying repositories. First of all, a geological foray is made concerning the history of the use of clay and its multifarious uses. The characteristics of clay and its composition are examined and its formation in the geological past is explained. In particular Opalinus clay is looked at and the structures to be found are discussed. The clay's various properties and industrial uses are examined and its sealing properties are examined. Also, Bentonite clay is mentioned and work done by Nagra and co-researchers is noted.

  4. Project on effects of gas in underground storage facilities for radioactive waste (Pegasus project)

    International Nuclear Information System (INIS)

    Haijtink, B.; McMenamin, T.

    1993-01-01

    Whereas the subject of gas generation and gas release from radioactive waste repositories has gained in interest on the international scene, the Commission of the European Communities has increased its research efforts on this issue. In particular, in the fourth five-year R and D programme on management and storage of radioactive waste (1990-94), a framework has been set up in which research efforts on the subject of gas generation and migration, supported by the CEC, are brought together and coordinated. In this project, called Pegasus, about 20 organizations and research institutes are involved. The project covers theoretical and experimental studies of the processes of gas formation and possible gas release from the different waste types, LLW, ILW and HLW, under typical repository conditions in suitable geological formations such as clay, salt and granite. In this report the present status of the various research activities are described and 13 papers have been selected

  5. South Tank Farm underground storage tank inspection using the topographical mapping system for radiological and hazardous environments

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, G.A.; Burks, B.L.; Hoesen, S.D. van

    1997-07-01

    During the winter of 1997 the Topographical Mapping System (TMS) for hazardous and radiological environments and the Interactive Computer-Enhanced Remote-Viewing System (ICERVS) were used to perform wall inspections on underground storage tanks (USTs) W5 and W6 of the South Tank Farm (STF) at Oak Ridge National Laboratory (ORNL). The TMS was designed for deployment in the USTs at the Hanford Site. Because of its modular design, the TMS was also deployable in the USTs at ORNL. The USTs at ORNL were built in the 1940s and have been used to store radioactive waste during the past 50 years. The tanks are constructed with an inner layer of Gunite{trademark} that has been spalling, leaving sections of the inner wall exposed. Attempts to quantify the depths of the spalling with video inspection have proven unsuccessful. The TMS surface-mapping campaign in the STF was initiated to determine the depths of cracks, crevices, and/or holes in the tank walls and to identify possible structural instabilities in the tanks. The development of the TMS and the ICERVS was initiated by DOE for the purpose of characterization and remediation of USTs at DOE sites across the country. DOE required a three-dimensional, topographical mapping system suitable for use in hazardous and radiological environments. The intended application is mapping the interiors of USTs as part of DOE`s waste characterization and remediation efforts, to obtain both baseline data on the content of the storage tank interiors and changes in the tank contents and levels brought about by waste remediation steps. Initially targeted for deployment at the Hanford Site, the TMS has been designed to be a self-contained, compact, and reconfigurable system that is capable of providing rapid variable-resolution mapping information in poorly characterized workspaces with a minimum of operator intervention.

  6. South Tank Farm underground storage tank inspection using the topographical mapping system for radiological and hazardous environments

    International Nuclear Information System (INIS)

    Armstrong, G.A.; Burks, B.L.; Hoesen, S.D. van

    1997-07-01

    During the winter of 1997 the Topographical Mapping System (TMS) for hazardous and radiological environments and the Interactive Computer-Enhanced Remote-Viewing System (ICERVS) were used to perform wall inspections on underground storage tanks (USTs) W5 and W6 of the South Tank Farm (STF) at Oak Ridge National Laboratory (ORNL). The TMS was designed for deployment in the USTs at the Hanford Site. Because of its modular design, the TMS was also deployable in the USTs at ORNL. The USTs at ORNL were built in the 1940s and have been used to store radioactive waste during the past 50 years. The tanks are constructed with an inner layer of Gunite trademark that has been spalling, leaving sections of the inner wall exposed. Attempts to quantify the depths of the spalling with video inspection have proven unsuccessful. The TMS surface-mapping campaign in the STF was initiated to determine the depths of cracks, crevices, and/or holes in the tank walls and to identify possible structural instabilities in the tanks. The development of the TMS and the ICERVS was initiated by DOE for the purpose of characterization and remediation of USTs at DOE sites across the country. DOE required a three-dimensional, topographical mapping system suitable for use in hazardous and radiological environments. The intended application is mapping the interiors of USTs as part of DOE's waste characterization and remediation efforts, to obtain both baseline data on the content of the storage tank interiors and changes in the tank contents and levels brought about by waste remediation steps. Initially targeted for deployment at the Hanford Site, the TMS has been designed to be a self-contained, compact, and reconfigurable system that is capable of providing rapid variable-resolution mapping information in poorly characterized workspaces with a minimum of operator intervention

  7. Assessment of ground-water contamination from a leaking underground storage tank at a defense supply center near Richmond, Virginia

    International Nuclear Information System (INIS)

    Powell, J.D.; Wright, W.G.

    1990-01-01

    During 1988-89, 24 wells were installed in the vicinity of the post-exchange gasoline station on the Defense General Supply Center, near Richmond, Virginia, to collect and analyze groundwater samples for the presence of gasoline contamination from a leaking underground storage tank. Concentrations of total petroleum hydrocarbons and benzene were as high as 8.2 mg/L and 9,000 microg/L, respectively, in water from wells in the immediate vicinity of the former leaking tank, and benzene concentrations were as high as 2,300 microg/L in a well 600 ft down gradient from the gasoline station. Groundwater flow rate are estimated to be about 60 to 80 ft/yr; on the basis of these flow rates, the contaminants may have been introduced into the groundwater as long as 7-10 yrs ago. Groundwater might infiltrate a subsurface storm sewer, where the sewer is below the water table, and discharge into a nearby stream. Preliminary risk assessment for the site identified no potential human receptors to the groundwater contamination because there were no groundwater users identified in the area. Remediation might be appropriate if exposure of future potential users is concern. Alternatives discussed for remediation of groundwater contamination in the upper aquifer at the PX Service Station include no-action, soil vapor extraction, and groundwater pumping and treatment alternatives

  8. Economic competitiveness of underground coal gasification combined with carbon capture and storage in the Bulgarian energy network

    Energy Technology Data Exchange (ETDEWEB)

    Nakaten, Natalie Christine

    2014-11-15

    Underground coal gasification (UCG) allows for exploitation of deep-seated coal seams not economically exploitable by conventional coal mining. Aim of the present study is to examine UCG economics based on coal conversion into a synthesis gas to fuel a combined cycle gas turbine power plant (CCGT) with CO2 capture and storage (CCS). Thereto, a techno-economic model is developed for UCG-CCGT-CCS costs of electricity (COE) determination which, considering sitespecific data of a selected target area in Bulgaria, sum up to 72 Euro/MWh in total. To quantify the impact of model constraints on COE, sensitivity analyses are undertaken revealing that varying geological model constraints impact COE with 0.4% to 4%, chemical with 13%, technical with 8% to 17% and market-dependent with 2% to 25%. Besides site-specific boundary conditions, UCG-CCGT-CCS economics depend on resources availability and infrastructural characteristics of the overall energy system. Assessing a model based implementation of UCG-CCGT-CCS and CCS power plants into the Bulgarian energy network revealed that both technologies provide essential and economically competitive options to achieve the EU environmental targets and a complete substitution of gas imports by UCG synthesis gas production.

  9. Economic competitiveness of underground coal gasification combined with carbon capture and storage in the Bulgarian energy network

    International Nuclear Information System (INIS)

    Nakaten, Natalie Christine

    2014-01-01

    Underground coal gasification (UCG) allows for exploitation of deep-seated coal seams not economically exploitable by conventional coal mining. Aim of the present study is to examine UCG economics based on coal conversion into a synthesis gas to fuel a combined cycle gas turbine power plant (CCGT) with CO2 capture and storage (CCS). Thereto, a techno-economic model is developed for UCG-CCGT-CCS costs of electricity (COE) determination which, considering sitespecific data of a selected target area in Bulgaria, sum up to 72 Euro/MWh in total. To quantify the impact of model constraints on COE, sensitivity analyses are undertaken revealing that varying geological model constraints impact COE with 0.4% to 4%, chemical with 13%, technical with 8% to 17% and market-dependent with 2% to 25%. Besides site-specific boundary conditions, UCG-CCGT-CCS economics depend on resources availability and infrastructural characteristics of the overall energy system. Assessing a model based implementation of UCG-CCGT-CCS and CCS power plants into the Bulgarian energy network revealed that both technologies provide essential and economically competitive options to achieve the EU environmental targets and a complete substitution of gas imports by UCG synthesis gas production.

  10. Site status monitoring report and Site Ranking Form for underground storage tank 2331-U at Building 9201-1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The purpose of this document is to present potentiometric, groundwater quality and vapor monitoring data required for site status monitoring of underground storage tank (UST) 2331-U at the Building 9201-1 Site. Site status monitoring has been conducted at the site as part of a Monitoring Only program approved by the Tennessee Department of Environment and Conservation (TDEC) based on review and approval of Site Ranking (Site Ranking Form approved May 23, 1994). This document presents the results of the fourth semiannual site status monitoring that was performed in April 1996. Site status monitoring and preparation of this report have been conducted in accordance with the requirements of TDEC Rule 1200-1-15 and the TDEC UST Reference Handbook, Second Edition (TDEC 1994) Technical Guidance Document (TGD) 007. This document is organized into three sections with two Appendices. Section 1 presents introductory information relative to the site including the regulatory initiative and a site description. Section 2 includes the results of measurement and sampling of monitoring wells GW-193, GW-657, GW-707, GW-708, GW-808, GW-809, and GW-810. Section 3 presents data from vapor monitoring conducted in subsurface utilities present at the site. Appendix A contains the original analytical laboratory results for environmental and quality control samples.

  11. Initial laboratory studies into the chemical and radiological aging of organic materials in underground storage tanks at the Hanford Complex

    International Nuclear Information System (INIS)

    Samuels, W.D.; Camaioni, D.M.; Babad, H.

    1994-01-01

    The underground storage tanks at the Hanford Complex contain wastes generated over many years from plutonium production and recovery processes, and mixed wastes from radiological degradation processes. The chemical changes of the organic materials used in the extraction processes have a direct bearing on several specific safety issues, including potential energy releases from these tanks. The major portion of organic materials that have been added to the tanks consists of tributyl phosphate, dibutyl phosphate, butyl alcohol, hexone (methyl isobutyl ketone), normal paraffin hydrocarbons (NPH), ethylenediaminetetraacetic acid (EDTA), hydroxyethylethylenediaminetriadetic acid (HEDTA), other complexants, and lesser quantities of ion exchange polymers and minor organic compounds. A study of how thermal and radiological processes that may have changed the composition of organic tanks constituents has been initiated after a review of the open literature revealed little information was available about the rates and products of these processes under basic pH conditions. This paper will detail the initial findings as they relate to gas generation, e.g. H 2 , CO, NH 3 , CH 4 , and to changes in the composition of the organic and inorganic components brought about by ''Aging'' processes

  12. Initial laboratory studies into the chemical and radiological aging of organic materials in underground storage tanks at the Hanford Complex

    Energy Technology Data Exchange (ETDEWEB)

    Samuels, W.D.; Camaioni, D.M. [Pacific Northwest Lab., Richland, WA (United States); Babad, H. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-03-01

    The underground storage tanks at the Hanford Complex contain wastes generated over many years from plutonium production and recovery processes, and mixed wastes from radiological degradation processes. The chemical changes of the organic materials used in the extraction processes have a direct bearing on several specific safety issues, including potential energy releases from these tanks. The major portion of organic materials that have been added to the tanks consists of tributyl phosphate, dibutyl phosphate, butyl alcohol, hexone (methyl isobutyl ketone), normal paraffin hydrocarbons (NPH), ethylenediaminetetraacetic acid (EDTA), hydroxyethylethylenediaminetriadetic acid (HEDTA), other complexants, and lesser quantities of ion exchange polymers and minor organic compounds. A study of how thermal and radiological processes that may have changed the composition of organic tanks constituents has been initiated after a review of the open literature revealed little information was available about the rates and products of these processes under basic pH conditions. This paper will detail the initial findings as they relate to gas generation, e.g. H{sub 2}, CO, NH{sub 3}, CH{sub 4}, and to changes in the composition of the organic and inorganic components brought about by ``Aging`` processes.

  13. Lawrence Livermore National Laboratory underground coal gasification data base. [US DOE-supported field tests; data

    Energy Technology Data Exchange (ETDEWEB)

    Cena, R. J.; Thorsness, C. B.

    1981-08-21

    The Department of Energy has sponsored a number of field projects to determine the feasibility of converting the nation's vast coal reserves into a clean efficient energy source via underground coal gasification (UCG). Due to these tests, a significant data base of process information has developed covering a range of coal seams (flat subbituminous, deep flat bituminous and steeply dipping subbituminous) and processing techniques. A summary of all DOE-sponsored tests to data is shown. The development of UCG on a commercial scale requires involvement from both the public and private sectors. However, without detailed process information, accurate assessments of the commercial viability of UCG cannot be determined. To help overcome this problem the DOE has directed the Lawrence Livermore National Laboratory (LLNL) to develop a UCG data base containing raw and reduced process data from all DOE-sponsored field tests. It is our intent to make the data base available upon request to interested parties, to help them assess the true potential of UCG.

  14. Design issues for compressed air energy storage in sealed underground cavities

    Directory of Open Access Journals (Sweden)

    P. Perazzelli

    2016-06-01

    Full Text Available Compressed air energy storage (CAES systems represent a new technology for storing very large amount of energy. A peculiarity of the systems is that gas must be stored under a high pressure (p = 10–30 MPa. A lined rock cavern (LRC in the form of a tunnel or shaft can be used within this pressure range. The rock mass surrounding the opening resists the internal pressure and the lining ensures gas tightness. The present paper investigates the key aspects of technical feasibility of shallow LRC tunnels or shafts under a wide range of geotechnical conditions. Results show that the safety with respect to uplift failure of the rock mass is a necessary but not a sufficient condition for assessing feasibility. The deformation of the rock mass should also be kept sufficiently small to preserve the integrity of the lining and, especially, its tightness. If the rock is not sufficiently stiff, buckling or fatigue failure of the steel lining becomes more decisive when evaluating the feasible operating air pressure. The design of the concrete plug that seals the compressed air stored in the container is another demanding task. Numerical analyses indicate that in most cases, the stability of the rock mass under the plug loading is not a decisive factor for plug design.

  15. Risk analysis and prospective geology in matters of underground storage of the nuclear industrial wastes

    International Nuclear Information System (INIS)

    Marsily, G. de; Ledoux, E.; Masure, P.

    1983-01-01

    The principal choice concerning the radioactive waste management is to bury it in geological formations. To substantiate the validity of this choice and to persuade the public opinion of it, we must assess the risks the future populations may run. It is, therefore, necessary to foresee the behaviour and the interactions of three types of surroundings: 1. the wastes, their packaging and wrappings; 2. the geological system of confinements; 3. the external environment. A review is given of the hypothesis and methods of forecasting used or considered in this field, with a special emphasis on the prospective geology and the probabilistic approaches. (AF)

  16. Current use of wild plants with edible underground storage organs in a rural population of Patagonia: between tradition and change.

    Science.gov (United States)

    Ochoa, Juan José; Ladio, Ana Haydee

    2015-09-25

    Edible plants with underground storage organs (USOs) are neglected resources. We studied the local ecological knowledge edible plants with (USOs) in rural populations of North-Patagonia in order to establish how people are utilizing these plants. Some aspect of corpus-praxis-cosmos complex associated to the local ecological knowledge was documented and discussed. In addition, variation in this ecological knowledge due to age, gender, family structure, ethnic self-determination was also evaluated. Semi-structured interviews were conducted with 51 inhabitants in order to study the relationship between the current use of plants with USOs and the age, sex, family group composition and ethnic self-identification of interviewees. In addition, the Cultural Importance Index for each species was calculated. The current richness of known species in these populations is a total of 9 plants. Plants with USOs tend to be used more frequently as the age of the interviewee increases. Women and men showed no differences in the average richness of species cited. The interviewees who share their homes with other generations use these plants more frequently than those who live alone. Our results indicate that the interviewees who identified themselves as belonging to the Mapuche people use these plants more frequently. For the Mapuche people, wild plants have constituted material and symbolic resources of great importance in their historical subsistence. In addition, they are currently being redefined as elements which present a connection with ancestral practices, produce a strong relationship with the 'land', and become markers which identify the 'natural' (historical) ways of their people; these are key elements in the current political processes of identity revaluation. This research is valuable to stimulate cultural revival and health promotion programs in the communities with their own local, cultural food.

  17. Detection of leaks in underground storage tanks using electrical resistance methods: 1996 results

    International Nuclear Information System (INIS)

    Ramirez, A.; Daily, W.

    1996-10-01

    This document provides a summary of a field experiment performed under a 15m diameter steel tank mockup located at the Hanford Reservation, Washington. The purpose of this test was to image a contaminant plume as it develops in soil under a tank already contaminated by previous leakage and to determine whether contaminant plumes can be detected without the benefit of background data. Measurements of electrical resistance were made before and during a salt water release. These measurements were made in soil which contained the remnants of salt water plumes released during previous tests in 1994 and in 1995. About 11,150 liters of saline solution were released along a portion of the tank's edge in 1996. Changes in electrical resistivity due to release of salt water conducted in 1996 were determined in two ways: (1) changes relative to the 1996 pre-spill data, and (2) changes relative to data collected near the middle of the 1996 spill after the release flow rate was increased. In both cases, the observed resistivity changes show clearly defined anomalies caused by the salt water release. These results indicate that when a plume develops over an existing plume and in a geologic environment similar to the test site environment, the resulting resistivity changes are easily detectable. Three dimensional tomographs of the resistivity of the soil under the tank show that the salt water release caused a region of low soil resistivity which can be observed directly without the benefit of comparing the tomograph to tomographs or data collected before the spill started. This means that it may be possible to infer the presence of pre-existing plumes if there is other data showing that the regions of low resistivity are correlated with the presence of contaminated soil. However, this approach does not appear reliable in defining the total extent of the plume due to the confounding effect that natural heterogeneity has on our ability to define the margins of the anomaly

  18. Underground gas storage Uelsen: Findings from planning, building and commissioning the surface buildings and structures; Untertagegasspeicher (UGS) Uelsen: Erkenntnisse aus Planung, Bau und Inbetriebnahme der obertaegigen Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Focke, H.; Brueggmann, R.; Mende, F.; Steinkraus, D.; Wauer, R. [BEB Erdgas und Erdoel GmbH, Hannover (Germany)

    1998-12-31

    The article describes the concepts of the plants and equipment and the specific features of the underground storage at Uelsen. The underground storage will be purpose-built as an H-gas storage in a nearly depleted sandstone deposit. At a nominal deliverability of 250.000 cubic m/h (Vn) the storage at Uelsen has more potential for expansion. This potential was taken into account by designing appropriate pressure stages, capacities, performance characteristics and space. (orig.). [Deutsch] Die nachfolgende Veroeffentlichung stellt das anlagentechnische Grundkonzept und die spezifischen Besonderheiten des UGS Uelsen dar. Der im suedwestlichen Niedersachsen als H-Gasspeicher in einer nahezu ausgefoerderten Buntsandsteinlagerstaette eingerichtete UGS Uelsen wird in mehreren Ausbaustufen bedarfsgerecht fertiggestellt. Bei einer Nennentnahmekapazitaet von 450.000 m{sup 3}/h (Vn) und einer Nenninjektionsleistung von 250.000 m{sup 3}/h (Vn) weist der UGS Uelsen noch weiteres Potential fuer Erweiterungen auf. Dieses Ausbaupotential wurde bei der Planung und dem Bau der bestehenden Anlagen durch Festlegung entsprechender Druckstufen, Kapazitaeten, Leistungsgroessen und Platzanordnungen beruecksichtigt. (orig.)

  19. Integrated Resistivity and Ground Penetrating Radar Observations of Underground Seepage of Hot Water at Blawan-Ijen Geothermal Field

    OpenAIRE

    Maryanto, Sukir; Suciningtyas, Ika Karlina Laila Nur; Dewi, Cinantya Nirmala; Rachmansyah, Arief

    2016-01-01

    Geothermal resource investigation was accomplished for Blawan-Ijen geothermal system. Blawan geothermal field which located in the northern part of Ijen caldera presents hydrothermal activity related with Pedati fault and local graben. There were about 21 hot springs manifestations in Blawan-Ijen area with calculated temperature about 50°C. We have performed several geophysical studies of underground seepage of hot water characterization. The geoelectric resistivity and GPR methods are used i...

  20. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 8: Design approaches - UPH. Appendix B: Shafts

    Science.gov (United States)

    1981-04-01

    An assessment of shaft requirements for an underground pumped hydroelectric (UPH) facility is documented. Shaft requirements for both the construction and the permanent operation phases of the facility are outlined. Possible shaft arrangements are developed and the design of shaft linings is discussed. Methods of shaft sinking are reviewed. Alternative schedules for the sinking of the shafts are described and a preferred schedule selected. The material presented and also the cost estimates are based on the requirements for a 2000 MW plant providing 20,000 MWh of storage with a nominal head of 4600 ft. Studies subsequently carried out, including power plant design, head optimization analyses for the overall UPH surface and underground configuration, and further refinement of selected designs, have modified some of the material given.

  1. Preliminary design study of Underground Pumped Hydro and compressed-air energy storage in hard rock. Volume 8: Design approaches. UPH, Appendix D: Power plant

    Science.gov (United States)

    1981-06-01

    Studies were undertaken to determine power plant arrangements for a single stage reversible pump turbine two step underground pumped hydro (UPH) installation and for a multi-stage reversible pump turbine single step (MSRPT) UPH installation. Arrangements consist of: the underground powerhouses; transformer galleries; associated mechanical and electrical equipment; the administration and control building; hoist head frames; the access; draft tube and bus tunnels; and the switchyard. Primary considerations including the number and size of pump turbine and motor generator units, starting methods, transformers, high voltage connections, geotechnical and construction aspects and safety were studied. A feasibility analysis to minimize costs was conducted. The study led to the selection of suitable equipment and layouts for the powerhouses, transformer galleries, and associated facilities. The material presented and also the cost estimates are based on the requirements for a 2000 MW plant providing 20,000 MWh of storage with a nominal head of 4600 ft.

  2. Streamlined approach for environmental restoration closure report for Corrective Action Unit No. 456: Underground storage tank release site 23-111-1, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1998-04-01

    The underground storage tank (UST) release site 23-111-1 is located in Mercury, Nevada. The site is in Area 23 of the Nevada Test Site, (NTS) located on the north side of Building 111. The tank associated with the release was closed in place using cement grout on September 6, 1990. The tank was not closed by removal due to numerous active underground utilities, a high-voltage transformer pad, and overhead power lines. Soil samples collected below the tank bottom at the time of tank closure activities exceeded the Nevada Administrative Code Action Level of 100 milligrams per kilogram (mg/kg) for petroleum hydrocarbons. Maximum concentrations detected were 119 mg/kg. Two passive venting wells were subsequently installed at the tank ends to monitor the progress of biodegradation at the site. Quarterly air sampling from the wells was completed for approximately one year, but was discontinued since data indicated that considerable biodegradation was not occurring at the site

  3. Mesotoga infera sp. nov., a mesophilic member of the order Thermotogales, isolated from an underground gas storage aquifer.

    Science.gov (United States)

    Ben Hania, Wajdi; Postec, Anne; Aüllo, Thomas; Ranchou-Peyruse, Anthony; Erauso, Gaël; Brochier-Armanet, Céline; Hamdi, Moktar; Ollivier, Bernard; Saint-Laurent, Stéphanie; Magot, Michel; Fardeau, Marie-Laure

    2013-08-01

    Strain VNs100(T), a novel mesophilic, anaerobic, rod-coccoid-shaped bacterium, having a sheath-like outer structure (toga), was isolated from a water sample collected in the area of an underground gas storage aquifer. It was non-motile with cells appearing singly (2-4 µm long × 1-2 µm wide), in pairs or as long chains and stained Gram-negative. Strain VNs100(T) was heterotrophic, able to use arabinose, cellobiose, fructose, galactose, glucose, lactose, lactate, mannose, maltose, raffinose, ribose, sucrose and xylose as energy sources only in the presence of elemental sulfur as terminal electron acceptor. Acetate, CO2 and sulfide were the end products of sugar metabolism. Hydrogen was not detected. Elemental sulfur, but not thiosulfate, sulfate or sulfite, were reduced to sulfide. Strain VNs100(T) grew at temperatures between 30 and 50 °C (optimum 45 °C), at pH values between 6.2 and 7.9 (optimum 7.3-7.5) and at NaCl concentrations between 0 and 15 g l(-1) (optimum 2 g l(-1)). The DNA G+C content was 47.5 mol%. The main cellular fatty acid was C16 : 0. Phylogenetic analysis of the small subunit rRNA gene sequence indicated that strain VNs100(T) had as its closest relatives 'Mesotoga sulfurireducens' (97.1 % similarity) and Mesotoga prima (similarity of 97.1 % and 97.7 % with each of its two genes, respectively) within the order Thermotogales. Hybridization between strain VNS100(T) and 'M. sulfurireducens' and between strain VNS100(T) and M. prima showed 12.9 % and 20.6 % relatedness, respectively. Based on phenotypic, phylogenetic and taxonomic characteristics, strain VNs100(T) is proposed as a representative of a novel species of the genus Mesotoga in the family Thermotogaceae, order Thermotogales. The name Mesotoga infera sp. nov. is proposed. The type strain is VNs100(T) (= DSM 25546(T) = JCM 18154(T)).

  4. Integrated Resistivity and Ground Penetrating Radar Observations of Underground Seepage of Hot Water at Blawan-Ijen Geothermal Field

    Directory of Open Access Journals (Sweden)

    Sukir Maryanto

    2016-01-01

    Full Text Available Geothermal resource investigation was accomplished for Blawan-Ijen geothermal system. Blawan geothermal field which located in the northern part of Ijen caldera presents hydrothermal activity related with Pedati fault and local graben. There were about 21 hot springs manifestations in Blawan-Ijen area with calculated temperature about 50°C. We have performed several geophysical studies of underground seepage of hot water characterization. The geoelectric resistivity and GPR methods are used in this research because both of them are very sensitive to detect the presence of hot water. These preliminary studies have established reliable methods for hydrothermal survey that can accurately investigate the underground seepage of hot water with shallow depth resolution. We have successfully identified that the underground seepage of hot water in Blawan geothermal field is following the fault direction and river flow which is evidenced by some hot spring along the Banyu Pahit river with resistivity value less than 40 Ωm and medium conductivity.

  5. Review of excavation methods and their implications for the near-field barrier of a deep underground repository

    International Nuclear Information System (INIS)

    Young, D.K.

    1993-01-01

    The report reviews excavation techniques for use in the construction of deep underground radioactive waste repositories, gives a summary of responses of the host rock to excavation and the means of measuring that response and discusses techniques for predicting that response. The review of excavation techniques included technical developments and current practice. To this end an extensive database was developed reviewing major excavations in rock types relevant to disposal and the techniques employed. Creation of an underground opening alters the properties of the rock mass around it. This study identifies stress, displacement, rock mass deformability and permeability as key parameters and reviews how they may be determined. Finally the report discusses the techniques available for predicting the behaviour of the near-field host rock. This concentrates on methods of numerical analysis since existing empirical or analytical methods are not considered suitable. (author)

  6. Analysis of a Near-field Earthquake Record at the Deep Underground Research Tunnel

    International Nuclear Information System (INIS)

    Yun, Kwan Hee; Park, Dong Hee; Shim, Taek Mo

    2009-01-01

    On October 29, 2008, a moderate earthquake (M=3.4, 36.35 N 127.25 E) occurred near the city of Daejon where an underground testing facilities called 'KURT (KAERI Underground Research Tunnel)' was located inside KAERI. Even though this earthquake did not trigger a seismic monitoring system of the mock-up Nuclear Power Plant of Hanaro, it was large enough not only to provide nation-wide earthquake data of good quality but also to be widely felt by the people uncomfortably around Daejon. In addition, this earthquake provides a good chance to obtain a nearfield broadband seismogram of frequency up to 200Hz recorded at the three-component geophones at the deep underground tunnel of the KURT (-90m). So we compared the seismic records from the KURT with other records from the nearby national seismic network to evaluate the earthquake ground-motion characteristics at the underground facilities for future engineering application. Three nearby seismic stations of the national seismic network jointly operated by Korea Meteorological Administration (KMA), Korea Institute of Geoscience And Mineral Resources (KIGAM), KEPRI, and KINS

  7. METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    WEBER RA

    2009-01-16

    The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient potential energy to break up material and release gas and are assigned to waste group B. These tanks are considered to represent a potential induced flammable gas release hazard, but no spontaneous buoyant displacement flammable gas release hazard. Tanks that are not waste group C tanks and have an energy ratio {ge} 3.0, but that pass the third criterion (buoyancy ratio < 1.0, see below) are also assigned to waste group B. Even though the designation as

  8. METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    FOWLER KD

    2007-12-27

    This document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 7 is the annual update of the calculations of the flammable gas Waste Groups for DSTs and SSTs. The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient

  9. Adaptation des techniques de forage à la recherche et à l'équipement des stockages souterrains de gaz naturel Adapting Drilling Techniques to the Search for and Equipment of Underground Natural-Gas Storage Facilities

    Directory of Open Access Journals (Sweden)

    Grandin J.

    2006-11-01

    search for geological structures suitable for holding this gas, the drilling and equipment of exploration or production wells, their maintenance and the controlling of such storage facilities were entrusted to the Underground Reservoirs Department of the Service for Research and New Technologies. The exploration and development phases of an underground storage facility require the drilling of petroleum-type wells. Such boreholes are used to recover the maximum amount of information concerning the different geological layers crossed and to assess their suitability for storing gas. At the same time, they must be capable of ensuring the optimal and reliable exploitation of the storage facilities under the best possible safety conditions. The practical drilling experience acquired by Gaz de France enabled it to adapt many petroleum drilling techniques to underground storage facilities. At the same time, original procedures were developed to cope with various specific requirements inherent to drilling wells into underground reservoirs, particularly requirements concerning the proper sizing of boreholes and casing cementation quality. This article describes all these adaptations and original developments. Primarily a contribution to the field of Specific Problems in Boreholes for Underground Storage Facilitiesamong petroleum technologies, some of these developments should in turn result in interesting applications in medium-depth oil and gas wells.

  10. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 11: Plant design. UPH

    Science.gov (United States)

    1981-06-01

    The plant design for an underground pumped hydroelectric (UPH) storage facility having maximum generating capacity of 2000 MW and energy storage capacity of 20,000 MWh at a nominal heat of 5000 ft. is presented. The UPH facility is a two step configuration with single-stage reversible pump-turbines, each step consisting of a 1000 MW plant at a nominal head of 2500 ft. The surface facilities and upper reservoir, shafts and hoists, penstocks and hydraulic tunnels, powerhouses, and intermediate and lower reservoirs are described. Details of the power plant electrical and mechanical equipment, including pump-turbine and motor-generator units, are given. The development of the site is outlined together with the construction methods and schedule. The cost estimates and a cost-risk analysis are presented. Plant operation, including unit operation, two-step operation, plant efficiency, and availability, is outlined.

  11. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 2: Project design criteria: UPH

    Science.gov (United States)

    1981-05-01

    The design criteria for an underground pumped hydroelectric (JPH) storage facility having a maximum generating capacity of 2000 MW and a storage capacity of 20,000 MWh at a nominal head of 5000 ft are documented. The UPH facility is a two step configuration with single stage reversible pump turbines, each step consisting of a 1000 MW plant at a nominal head of 2500 ft. Overall design criteria including operating requirements, civil/structural criteria, geotechnical criteria, mechanical criteria and electrical criteria are detailed. Specific requirements are given for the upper reservoir, intake/outlet structure, penstock and draft tubes, powerhouses, transformer galleries, intermediate reservoir, lower reservoir, shafts and hoists, switchyard and surface buildings. The requirements for the power plant electrical and mechanical equipment, including pump turbine and motor generator units, are referred to. Electrical design criteria are given to meet the requirements of two power houses located underground at different depths, but these criteria may not necessarily reflect PEPCO's current engineering practice. The criteria refer to a specific site and take into account the site investigation results. The design criteria given were used as the basis for the plant design.

  12. Characteristics of the forerunner field of underground water regime during the Tangshan earthquake and its focal evolution process

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J.; Wang, Y.; Li, S.

    1980-03-01

    On the basis of data obtained from long-term observations of groundwater regime and taking the Tangshan earthquake as an example, the authors proposed first the principles and approaches for recognizing the precursory anomalies of earthquakes and classified the subsurface water regime into underground water, interlayer water and confined water. For the Tangshan earthquake, the forerunner field of underground water is characterized by its spatial distribution (limited to a certain quadrant), its stages of development in time and the synchronism of anomaly-changes during and after a shock. In addition, this study stresses the importance of the principles mentioned above in predicting the space, time, and magnitude of future earthquakes and discusses the relationship between the focal stress field and regional stress field and the indicator to distinguish them. It is suggested that the former develops progressively and its principal axis of compression stress changes in direction just before an earthquake, thus enabling us to divide the focal process into two basically different stages - brewing and originating stages.

  13. Integrated underground gas storage of CO2 and CH4 to decarbonize the "power-to-gas-to-gas-to-power" technology

    Science.gov (United States)

    Kühn, Michael; Streibel, Martin; Nakaten, Natalie; Kempka, Thomas

    2014-05-01

    Massive roll-out of renewable energy production units (wind turbines and solar panels) leads to date to excess energy which cannot be consumed at the time of production. So far, long-term storage is proposed via the so called 'power-to-gas' technology. Energy is transferred to methane gas and subsequently combusted for power production - 'power-to-gas-to-power' (PGP) - when needed. PGP profits from the existing infrastructure of the gas market and could be deployed immediately. However, major shortcoming is the production of carbon dioxide (CO2) from renewables and its emission into the atmosphere. We present an innovative idea which is a decarbonised extension of the PGP technology. The concept is based on a closed carbon cycle: (1) Hydrogen (H2) is generated from renewable energy by electrolysis and (2) transformed into methane (CH4) with CO2 taken from an underground geological storage. (3) CH4 produced is stored in a second storage underground until needed and (4) combusted in a combined-cycled power plant on site. (5) CO2 is separated during energy production and re-injected into the storage formation. We studied a show case for the cities Potsdam and Brandenburg/Havel in the Federal State of Brandenburg in Germany to determine the energy demand of the entire process chain and the costs of electricity (COE) using an integrated techno-economic modelling approach (Nakaten et al. 2014). Taking all of the individual process steps into account, the calculation shows an overall efficiency of 27.7 % (Streibel et al. 2013) with total COE of 20.43 euro-cents/kWh (Kühn et al. 2013). Although the level of efficiency is lower than for pump and compressed air storage, the resulting costs are similar in magnitude, and thus competitive on the energy storage market. The great advantage of the concept proposed here is that, in contrast to previous PGP approaches, this process is climate-neutral due to CO2 utilisation. For that purpose, process CO2 is temporally stored in an

  14. The use of contained nuclear explosions to create underground reservoirs, and experience of operating these for gas condensate storage

    International Nuclear Information System (INIS)

    Kedrovskij, O.L.; Myasnikov, K.V.; Leonov, E.A.; Romadin, N.M.; Dorodnov, V.F.; Nikiforov, G.A.

    1975-01-01

    Investigations on the creation of underground reservoirs by means of nuclear explosions have been going on in the Soviet Union for many years. In this paper the authors consider three main kinds of sites or formations that can be used for constructing reservoirs by this method, namely, low-permeable rocks, worked-out mines and rock salt formations. Formulae are given for predicting the mechanical effect of an explosion in rocks, taking their strength characteristics into account. Engineering procedures are described for sealing and restoring the emplacement holes, so that they can be used for operating the underground reservoir. Experience with the contruction and operation of a 50 000 m 3 gas-condensate reservoir in a rock salt formation is described. In the appendix to the paper a method is presented for calculating the stability of spherical cavities created by nuclear explosions in rock salt, allowing for the development of elasto-plastic deformations and creep

  15. Field tracer transport experiments at the site of Canada's underground research laboratory

    International Nuclear Information System (INIS)

    Frost, L.H.; Davison, C.C.; Vandergraaf, T.T.; Scheier, N.W.; Kozak, E.T.

    1997-01-01

    To gain a better understanding of the processes affecting solute transport in fractured crystalline rock, groundwater tracer experiments are being performed within natural fracture domains and excavation damage zones at various scales at the site of AECL's Underground Research Laboratory (URL). The main objective of these experiments is to develop and demonstrate methods for characterizing the solute transport properties within fractured crystalline rock. Estimates of these properties are in turn being used in AECL's conceptual and numerical models of groundwater flow and solute transport through the geosphere surrounding a nuclear fuel waste disposal vault in plutonic rock of the Canadian Shield. (author)

  16. The transition from monopoly to competition on natural gas markets in europe. The strategic stakes of underground storage

    International Nuclear Information System (INIS)

    Esnault, B.

    2000-01-01

    The liberalization of the natural gas market permits to the actors the use of the existing distribution networks, which remain managed by ancient monopolies. To manage efficiently a variable demand in spite of the importations and the bottleneck on canalizations, the monopolies have to install storages near the consumption areas. Meanwhile the storages are a rare resource owned by the historical operators, thus it reinforces their market power. The european directive proposes to define an access right to the storage. What kind of legislation should we applied? This thesis analyses the process of deregulation and the storage needs of the different actors. Propositions of regulations are presented. (A.L.B.)

  17. Laboratory and Field Studies of Fracture Flow and Its Extension in Underground Settings

    Science.gov (United States)

    Wang, J. S.; Hudson, J. A.

    2012-12-01

    Basic studies of fracture flow, such as the cubic law, were widely cited for over four decades and used in understanding processes in fractured media. We evaluate the fracture flow law implications and its extensions. The understanding of fluid flow through fractured rocks is important for progress in the many existing and proposed engineering projects dedicated to the support of mankind. Moreover, the characterization of this understanding is crucial during the use of the supporting computer modeling—which is becoming evermore ambitious and ubiquitous. The calculations and resultant outputs need to be validated, both in order to ensure appropriate engineering decisions and because there is increasing emphasis on the use of the Earth's resources, their sustainability and more accountability of engineers' decisions. Within this context, there remain many unknowns: how do we establish the geometrical and hydro-geological properties of fractures in a specific rock mass?; how do we establish the link between the hydro-geological fracture properties and other variables such as the in situ stress state?; and how do we validate the results at the full scale? Concurrently with the laboratory and numerical studies of fracture flows, we have made progresses in developing underground research laboratories (URLs) in both hard and soft rocks, in housing large halls for particle detections at great depths, and in testing the energy and resource recovery capacities and the waste disposal potentials through borehole complexes. In addition to existing worldwide networks for radioactive wastes, we initiate comparisons of different underground laboratories and facilities, including also physics laboratories and borehole complexes. The 2011-2012 findings of a Commission for the International Society for Rock Mechanics on URL Networking are summarized. Side drifts of roadway tunnels, dedicated facilities with tunneling and shafting to reach desired depths, and levels in active and

  18. Fire tests of five-gallon containers used for storage in underground coal mines. Report of Investigations/1985

    Energy Technology Data Exchange (ETDEWEB)

    Perzak, F.J.; Kubala, T.A.; Lazzara, C.P.

    1985-01-01

    The Bureau of Mines conducted a study to develop a standard fire test for 5-gal containers used for storing combustible fluids in underground coal mines. A standard test method was developed which evaluates the performance of the container in a 4-min tray fire. Bureau investigators used the standard test method to evaluate several types of closed 5-gal plastic and metal cans in outdoor tests. Each can tested contained 1 gal of nonfire-resistant (NFR) hydraulic oil. A container failed the test if it lost its contents in any of seven trials. Contents spilled either as a result of thermal rupture or melting.

  19. Preliminary design studies of underground pumped hydro and compressed-air energy storage in hard rock. Volume 10: Environmental studies

    Science.gov (United States)

    1981-04-01

    Results of preliminary environmental assessments for a proposed UPH or CAES demonstration facility are presented. Included are characterizations of the existing environment of the sunshine site in Montgomery County, Maryland, and assessments of environmental impacts and public safety concerns. Elements of the existing environment which are considered sensitive are described. Environmental impacts are identified, rated, and described for both alternative demonstration facilities. Public safety concerns for both alternative demonstration facilities are also identified and discussed. These include, for both UPH and CAES, underground cavern collapse and surface subsidence, explosives, site security, icing, upper reservoir failure, and mechanical failure of plant equipment. In addition, fuel handling and the champagne effect are addressed for CAES.

  20. Center for Theoretical Underground Physics and Related Fields. CETUP2015/ Particle Physics and Cosmology Conference. PPC2015)

    Energy Technology Data Exchange (ETDEWEB)

    Szczerbinska, Barbara [Dakota State Univ., Madison, SD (United States)

    2016-02-22

    For last five years Center for Theoretical Underground Physics and Related Areas (CETUP*) serves as a collaboration point for scientists from around the world interested in theoretical and experimental aspects of underground science. The mission of CETUP* is to promote an organized research in physics, astrophysics, geoscience, geomicrobiology and other fields related to the underground science and provide a stimulating environment for creative thinking and open communication between researches of varying ages and nationalities in dynamic atmosphere of intense scientific interactions. Scientists invited to participate in the program will not only provide theoretical support to the underground science, but they will also examine core questions of the 21st century including: What is dark matter? How well do we know the neutrino parameters?, How have neutrinos shaped the evolution of the universe?, How were the heavy elements made?, What are the fundamental underlying symmetries of the Universe? Is there a Grand Unified Theory of the Universe? How do supernovae explode? Studies of Neutrino Physics and Dark Matter are of high interest to particle and nuclear physicists, astrophysicists and cosmologists. Ongoing and proposed Neutrino and Dark Matter experiments are expected to unveil the answers to fundamental questions about the Universe. This year summer program was focused exactly on these subjects bringing together experts in dark matter, neutrino physics, particle physics, nuclear physics and astrophysics and cosmology. CETUP*2015 consisted of 5 week long program (June 14 – July 18, 2015) covering various theoretical and experimental aspects in these research areas. The two week long session on Dark Matter physics (June 14 – June 26) was followed by two week long program on Neutrino physics (July 6 – July 18). The international conference entitled IXth International Conference on Interconnection Between Particle Physics and Cosmology (PPC) was hosted at CETUP

  1. A review of sorption of radionuclides under the near- and far-field conditions of an underground radioactive waste repository. Pt. 3

    International Nuclear Information System (INIS)

    Berry, J.A.

    1992-01-01

    This report summarises work funded by the Department of the Environment and UK Nirex Ltd in the area of sorption of radionuclides under the near-field and far-field conditions pertaining to the underground disposal of radioactive waste in the UK that was presented and discussed in Part I. The report also summarises comparable research undertaken overseas (presented in Part II). (author)

  2. Streamlined approach for environmental restoration closure report for Corrective Action Unit 464: Historical underground storage tank release sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1998-04-01

    This report addresses the site characterization of two historical underground storage tank petroleum hydrocarbon release sites identified by Corrective Action Site (CAS) Numbers 02-02-03 and 09-02-01. The sites are located at the Nevada Test Site in Areas 2 and 9 and are concrete bunker complexes (Bunker 2-300, and 9-300). Characterization was completed using drilling equipment to delineate the extent of petroleum hydrocarbons at release site 2-300-1 (CAS 02-02-03). Based on site observations, the low hydrocarbon concentrations detected, and the delineation of the vertical and lateral extent of subsurface hydrocarbons, an ''A through K'' evaluation was completed to support a request for an Administrative Closure of the site

  3. Streamlined approach for environmental restoration closure report for Corrective Action Unit 464: Historical underground storage tank release sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This report addresses the site characterization of two historical underground storage tank petroleum hydrocarbon release sites identified by Corrective Action Site (CAS) Numbers 02-02-03 and 09-02-01. The sites are located at the Nevada Test Site in Areas 2 and 9 and are concrete bunker complexes (Bunker 2-300, and 9-300). Characterization was completed using drilling equipment to delineate the extent of petroleum hydrocarbons at release site 2-300-1 (CAS 02-02-03). Based on site observations, the low hydrocarbon concentrations detected, and the delineation of the vertical and lateral extent of subsurface hydrocarbons, an ``A through K`` evaluation was completed to support a request for an Administrative Closure of the site.

  4. Recycling of underground storage tanks: a way-out to the risks; Reciclagem de tanques de combustiveis: solucoes para os riscos envolvidos

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Cristiano J.P.; Santos, Joao David [Companhia Brasileira de Petroleo Ipiranga, Porto Alegre, RS (Brazil)

    2004-07-01

    In petrol stations, the removal of an underground storage tank happens when it becomes unnecessary or inappropriate. Among the several reasons which motivate this removal, we can mention the environmental license process. According to the Resolution CONAMA 273/00, all the petrol stations are subjected to the previous, installation and operation licenses (including the ones in operation). This will cause the substitution of a large number of tanks all over Brazil along the following years. However, so that the license process can be successful, it is necessary that the environmental impacts caused by its implementation are properly managed, avoiding safety problems and providing that there won't be any damage to the environment. This work shows alternatives for the recycling of the tank, the destination of residue and the maintenance of safety all over the process. (author)

  5. Geomechanical research in the underground laboratory at Mol

    International Nuclear Information System (INIS)

    Neerdael, B.; De Bruyn, D.

    1989-01-01

    Within the European Community programme on Management and Storage of radioactive waste, investigations about the rock mechanical behaviour of natural clays are carried out including laboratory and in-situ tests under ambient and elevated temperature conditions performed in the scope of the underground laboratory at Mol. Items related to stress field and clay fracturation are developed

  6. The underground heat storage for solar-assisted district heating in Neckarsulm. First measuring results; Der Erdsonden-Waermespeicher fuer die solarunterstuetzte Nahwaermeversorgung in Neckarsulm. Erste Messergebnisse

    Energy Technology Data Exchange (ETDEWEB)

    Seiwald, H.; Hahne, E. [Stuttgart Univ. (Germany). Inst. fuer Thermodynamik und Waermetechnik

    1998-12-31

    A solar-assisted district heating system with seasonal underground heat storage is currently under construction in Neckarsulm (Baden-Wurttemberg). In the new residential area approximately 1,300 flats are going to be built during the next years. The overall energy demand (hot water and space heating) is supposed to be covered by 50% with solar energy. During the first phase the project will be subsidised in the frame of the BMBF programme `Solarthermie 2000, Teilprogramm III`. A solar plant consisting of 2,700 square metres of collectors, a buffer tank (100 cubic metre) and an underground heat storage with a volume of approx. 20,000 cubic metres will be constructed by the end of 1998. It will be the first plant in Germany where thermal energy generated of solar energy is stored at high temperatures (up to 80 C) directly in the earth and utilised without a heat pump. (orig.) [Deutsch] In Neckarsulm (Baden-Wuerttemberg) befindet sich derzeit eine solar unterstuetzte Nahwaermeversorgung mit saisonalem Endsonden-Waermespeicher im Aufbau. Im Neubaugebiet Amorbach werden in den naechsten Jahren rund 1300 Wohneinheiten entstehen, deren Gesamtwaermebedarf (Warmwasser und Raumheizung) zu rund 50% mit Sonnenenergie gedeckt werden soll. In der ersten Phase wird das Projekt im Rahmen des BMBF-Programms `Solarthermie 2000, Teilprogramm III` gefoerdert. Bis Ende 1998 wird eine Solaranlage bestehend aus 2.700 m{sup 2} Kollektoren, einem Pufferspeicher (100 m{sup 3}) und einem Endsonden-Waermespeicher mit einem Volumen von ca. 20.000 m{sup 3} erstellt. Damit wird in Deutschland erstmalig eine Anlage realisiert, bei der solar erzeugte Waerme auf hohem Temperaturniveau (bis zu 80 C) direkt im Erdreich gespeichert und ohne Waermepumpe genutzt werden soll. (orig.)

  7. Evaluating Fuel Leak and Aging Infrastructure at Red Hill, Hawaii, the Largest Underground Fuel Storage Facility in the United States

    Science.gov (United States)

    Learn about how EPA Region 9, Hawaii’s Department of Health, U.S. Navy, and Defense Logistics Agency are working tprotect human health and the environment at the Red Hill Bulk Fuel Storage Facility in Hawaii.

  8. Structural analysis within the Rožná and Olší uranium deposits (Strážek Moldanubicum) for the estimation of deformation and stress conditions of underground gas storage

    Czech Academy of Sciences Publication Activity Database

    Ptáček, Jiří; Melichar, R.; Hájek, Antonín; Koníček, Petr; Souček, Kamil; Staš, Lubomír; Kříž, P.; Lazárek, J.

    2013-01-01

    Roč. 10, č. 2 (2013), s. 237-246 ISSN 1214-9705 Institutional support: RVO:68145535 Keywords : structural analysis * deformation * stress * underground gas storage Subject RIV: DH - Mining , incl. Coal Mining Impact factor: 0.667, year: 2013 http://www.irsm.cas.cz/materialy/acta_content/2013_02/acta_170_13_Ptacek_237-246.pdf

  9. Mechanical stability of a salt cavern submitted to rapid pressure variations: Application to the underground storage of natural gas, compressed air and hydrogen

    International Nuclear Information System (INIS)

    Djizanne-Djakeun, Hippolyte

    2014-01-01

    Salt caverns used for the underground storage of large volumes of natural gas are in high demand given the ever-increasing energy needs. The storage of renewable energy is also envisaged in these salt caverns for example, storage of compressed air and hydrogen mass storage. In both cases, salt caverns are more solicited than before because they are subject to rapid injection and withdrawal rates. These new operating modes raise new mechanical problems, illustrated in particular by sloughing, and falling of overhanging blocks at cavern wall. Indeed, to the purely mechanical stress related to changes in gas pressure variations, repeated dozens of degrees Celsius of temperature variation are superimposed; causes in particular during withdrawal, additional tensile stresses whom may lead to fractures at cavern wall; whose evolution could be dangerous. The mechanical behavior of rock salt is known: it is elasto-viscoplastic, nonlinear and highly thermo sensitive. The existing rock salt constitutive laws and failures and damages criteria have been used to analyze the behavior of caverns under the effects of these new loading. The study deals with the thermo mechanics of rocks and helps to analyze the effects of these new operations modes on the structural stability of salt caverns. The approach was to firstly design and validate a thermodynamic model of the behavior of gas in the cavern. This model was used to analyze blowout in gas salt cavern. Then, with the thermo mechanical coupling, to analyze the effects of rapid withdrawal, rapid injection and daily cycles on the structural stability of caverns. At the experimental level, we sought the optimal conditions to the occurrence and the development of cracks on a pastille and a block of rock salt. The creep behavior of rock salt specimens in triaxial extension also was analyzed. (author)

  10. Underground coal gasification: Development of theory, laboratory experimentation, interpretation, and correlation with the Hanna field tests: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gunn, R.D.; Krantz, W.B.

    1987-03-01

    The following report is a description of a 7 year effort to develop a theoretical understanding of the underground coal gasification process. The approach used is one of the mathematical model development from known chemical and principles, simplification of the models to isolate important effects, and through validation of models to isolate important effects, and through validation of models with laboratory experiments and field test data. Chapter I contains only introductory material. Chapter II describes the development of two models for reverse combustion: a combustion model and a linearized model for combustion front instability. Both models are required for realistic field predictions. Chapter III contains a discussion of a successful forward gasification model. Chapter IV discusses the spalling-enhanced-drying model is applicable to prediction of cavity growth and subsidence. Chapter VI decribes the correct use of energy and material balances for the analysis of UCG field test data. Chapter VII shows how laboratory experiments were used to validate the models for reverse combustion and forward gasification. It is also shown that laboratory combustion tube experiments can be used to simulate gas compositions expected from field tests. Finally, Chapter VII presents results from a comprehensive economic analysis of UCG involving 1296 separate cases. 37 refs., 49 figs., 12 tabs.

  11. Water management issues in the underground gasification of coal and the subsequent use of the voids for long-term carbon dioxide storage

    Energy Technology Data Exchange (ETDEWEB)

    Younger, P.L. [Newcastle Univ., Newcastle Upon Tyne (United Kingdom). Newcastle Inst. for Research on Sustainability; Gonzalez, G. [Newcastle Univ., Newcastle Upon Tyne (United Kingdom). Sir Joseph Swan Inst. for Energy Research; Amezaga, J.M. [Newcastle Univ., Newcastle Upon Tyne (United Kingdom). School of Civil Engineering and Geosciences, Hydrogeochemical Engineering Research and Outreach

    2010-07-01

    A coupled underground coal gasification (UCG) and carbon capture and storage (CCS) technology was discussed. The technologies can be coupled so that voids created by mining can be uses as carbon dioxide (CO{sub 2}) storage sites. UCG involves the in-situ gasification of coal using directionally-drilled wells. The gasification is achieved by spontaneous combustion initiated by the injection of steam and oxygen. The rate of UCG is controlled by varying the availability of oxygen. The syngas produced during the process is drawn to the surface via neighbouring production boreholes where it can then be transported by pipeline for use in range of applications. Voids created by the UCG process will collapse, leaving high permeability zones isolated from the surface by low permeability superincumbent strata. The UCG goaf and relaxed roof strata will have permeabilities 1 to 3 orders of magnitude greater than the permeabilities of deep saline aquifers or hydrocarbon reservoirs. The void volume needed to store the CO{sub 2} produced from the syngas can be 4 or 5 times the volume occupied by the extracted coal. Risks for groundwater arising from UCG are groundwater depletion, contamination, and gas leakage. Prudent site selection and the use of an effective risk assessment framework are needed to ensure the successful implementation of UCG-CCS processes. 11 refs., 2 figs.

  12. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 4: System planning studies

    Science.gov (United States)

    1981-04-01

    Preliminary design and planning studies of water compensated compressed air energy storage (CAES) and underground pumped hydroelectric (UPH) power plants are presented. The costs of the CAES and UPH plant designs, and the results of economic evaluations performed for the PEPCO system are presented. The PEPCO system planning analysis was performed in parallel stages with plant design development. Analyses performed early in the project indicated a requirement for 1000 MW/10,000 MWH of energy storage on a daily operating schedule, with economic installation in two segments of 500 MW in 1990 and 1997. The analysis was updated eighteen months later near the end of the project to reflect the impact of new growth projections and revised plant costs. The revised results indicated economic installations for either UPH or CAES of approximately 675 MW/6750 MWH on a daily cycle, installed in blocks of approximately 225 MW in 1990, 1993 and 1995. Significant savings in revenue requirements and oil fuel over the combustion turbine alternative were identified for both CAES and UPH.

  13. Hoe Creek II field experiment on underground coal gasification, preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Aiman, W.R.; Thorsness, C.B.; Hill, R.W.; Rozsa, R.B.; Cena, R.; Gregg, D.W.; Stephens, D.R.

    1978-02-27

    A second in-situ coal gasification experiment was performed by Lawrence Livermore Laboratory at Hoe Creek in Wyoming. The Linked Vertical Wells scheme for in-situ coal gasification was used. The experiment took 100 days for air flow testing, reverse combustion linking, forward combustion gasification, and post-burn steam flow. Air was used for gasification except for a 2-day test with oxygen and steam. Reverse combustion linking took 14 days at 1.6 m/day. Air requirements for linking were 0.398 Mgmol per meter of link assuming a single direct link. The coal pyrolysed during linking was 17 m/sup 3/, which corresponds to a single link 1.0 m in diameter. There was, however, strong evidence of at least two linkage paths. The detected links stayed below the 3 m level in the 7.6 coal seam; however, the product flow from the forward-burn gasification probably followed the coal-overburden interface not the reverse burn channels at the 3 m level. A total of 232 Mgmols (194 Mscf) of gas was produced with heating value above 125 kJ/mol (140 Btu/scf) for significant time periods and an average of 96 kJ/mol (108 Btu/scf). During the oxygen-steam test the heating value was above 270 kJ/gmol (300 Btu/scf) twice and averaged 235 kJ/gmol (265 Btu/scf). The coal recovery was 1310 m/sup 3/ (1950 ton). Gasification was terminated because of decreasing product quality not because of burn through. The product quality decreased because of increasing underground heat loss.

  14. Influence of frequency-dependent soil electrical parameters on the evaluation of lightning electromagnetic fields in air and underground

    Science.gov (United States)

    Delfino, Federico; Procopio, Renato; Rossi, Mansueto; Rachidi, Farhad

    2009-06-01

    This paper is aimed at analyzing the influence of the frequency-dependent behavior of the ground electrical parameters (conductivity and ground permittivity) on the electromagnetic field radiated by a cloud-to-ground lightning return stroke. Both radiation in air (over the conducting ground plane) and underground are considered in the analysis. The adopted method is based on the classical Sommerfeld's theory and takes advantage of an efficient ad hoc numerical procedure to face with the slow converging Sommerfeld's integrals. This feature allows the electromagnetic field to be computed without any sort of mathematical approximation and, since it is carried out in the frequency domain, can be used either if the ground permittivity and conductivity are considered constant or if they vary with the working frequency with any functional law. Simulations have been performed to identify the cases in which the approximation of constant ground permittivity and conductivity leads to satisfactory results. It is shown that for soils with water contents of 2% to 10% (ground conductivities in the order of 0.001 to 0.01 S/m), the assumption of constant electrical parameters appears to be reasonable. However, for either very poorly conducting soils (10-4 S/m or so) or highly conducting soils (10-1 S/m), the electromagnetic field components appear to be significantly affected by the frequency dependence of the ground electrical parameters.

  15. The swelling of clays and its effects on underground storage works; Le Gonflement des argiles et ses effets sur les ouvrages souterrains de stockage

    Energy Technology Data Exchange (ETDEWEB)

    Gaombalet, J

    2004-03-15

    The aim of this work is to study the swelling of clays and more generally the clayey media in relation to storage. Different types of clays, natural or reworked, have been studied in a rheological point of view, with the aim to result in behavior laws allowing to reproduce some identified phenomena. The first part of this work is a presentation of the concept of geological underground storage. The second part deals with clays. They are studied at a microscopic level and their macroscopic behavior are presented too. In the third part, the equations of the couplings: mechanics/transport in the porous media in general and applied to clays are formulated. Three types of clays have particularly been studied: a stiff clay, a plastic clay and a reworked clay. The following part deals with the swelling of clays. The analysis carried out through a bibliographical study has led us to propose a behavior law for the swelling-retirement. This part concerns essentially the mechanics. The behavior model, which integrates the swelling, involves the concentration of the ions present in solution in the interstitial water. Concerning the transport, of water or ions, the research of coherent models have led us to revise some models described in the second part and concerning the transport of solutions in porous media. The last part concerns the computerized simulation. It begins by a brief description of the computer code. We show how the equations described in the work are dealt with in the computer code. At last, some storage applications (computerized simulation) are given. (O.M.)

  16. Functional response of a near-surface soil microbial community to a simulated underground CO2 storage leak.

    Directory of Open Access Journals (Sweden)

    Sergio E Morales

    Full Text Available Understanding the impacts of leaks from geologic carbon sequestration, also known as carbon capture and storage, is key to developing effective strategies for carbon dioxide (CO2 emissions management and mitigation of potential negative effects. Here, we provide the first report on the potential effects of leaks from carbon capture and storage sites on microbial functional groups in surface and near-surface soils. Using a simulated subsurface CO2 storage leak scenario, we demonstrate how CO2 flow upward through the soil column altered both the abundance (DNA and activity (mRNA of microbial functional groups mediating carbon and nitrogen transformations. These microbial responses were found to be seasonally dependent and correlated to shifts in atmospheric conditions. While both DNA and mRNA levels were affected by elevated CO2, they did not react equally, suggesting two separate mechanisms for soil microbial community response to high CO2 levels. The results did not always agree with previous studies on elevated atmospheric (rather than subsurface CO2 using FACE (Free-Air CO2 Enrichment systems, suggesting that microbial community response to CO2 seepage from the subsurface might differ from its response to atmospheric CO2 increases.

  17. Swedish mines. Underground exploitation methods

    International Nuclear Information System (INIS)

    Paucard, A.

    1960-01-01

    Between 1949 and 1957, 10 engineers of the Mining research and exploitation department of the CEA visited 17 Swedish mines during 5 field trips. This paper presents a compilation of the information gathered during these field trips concerning the different underground mining techniques used in Swedish iron mines: mining with backfilling (Central Sweden and Boliden mines); mining without backfilling (mines of the polar circle area). The following techniques are described successively: pillar drawing and backfilled slices (Ammeberg, Falun, Garpenberg, Boliden group), sub-level pillar drawing (Grangesberg, Bloettberget, Haeksberg), empty room and sub-level pillar drawing (Bodas, Haksberg, Stripa, Bastkarn), storage chamber pillar drawing (Bodas, Haeksberg, Bastkarn), and pillar drawing by block caving (ldkerberget). Reprint of a paper published in Revue de l'Industrie Minerale, vol. 41, no. 12, 1959 [fr

  18. Rationale for the closure of the soil density unreviewed safety question and recommended structural analyses improvements for the Tank Waste Remidiation System underground storage facilities

    International Nuclear Information System (INIS)

    Morris, K.H.

    1998-01-01

    The purpose of this report is twofold. First, this report documents the technical evaluation supporting the Project Hanford Management Contract (PHMC) contractor recommendation to close the Unreviewed Safety Question (USQ) as originally evaluated in TF-94-0260, Soil Compaction Test Data Indicates Soil Density in Excess of Density Used in Tank Qualification Analysis for AP Tank Farm. Second, this report describes the status of existing structural analyses for the Tank Waste Remediation System (TWRS) waste storage structures and outlines the associated technical upgrades being considered by the contractor. This second feature of the report serves to communicate the distinction between the soil density issue which is the topic of the open USQ and other technical issues which are important to the contractor from a programmatic standpoint. Contractor actions to address the latter technical issues would support improvements in day-to-day operations (e.g., provide possible relaxations in soil load restrictions) but are not necessary to close the soil density USQ. Section 2.0 of this report documents the rationale for the PHMC contractor recommendation to the Department of Energy (DOE) to close the soil density USQ. Section 3.0 documents the recommended structural analyses improvements for the double-shell tanks (DSTs) which are the structures associated with the soil density USQ. Sections 4.0 and 5.0 provide, for completeness, the same information for single-shell tanks (SSTs), double-contained receiver tanks (DCRTs), catch tanks and inactive miscellaneous underground storage tanks (IMUSTs). Section 6.0 provides the conclusions of this report

  19. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 1. Executive summary. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    Potomac Electric Power Company (PEPCO) and Acres American Incorporated (AAI) have carried out a preliminary design study of water-compensated Compressed Air Energy Storage (CAES) and Underground Pumped Hydroelectric (UPH) plants for siting in geological conditions suitable for hard rock excavations. The work was carried out over a period of three years and was sponsored by the US Department of Energy (DOE), the Electric Power Research Institute (EPRI) and PEPCO. The study was divided into five primary tasks as follows: establishment of design criteria and analysis of impact on power system; selection of site and establishment of site characteristics; formulation of design approaches; assessment of environmental and safety aspects; and preparation of preliminary design of plant. The salient aspects considered and the conclusions reached during the consideration of the five primary tasks for both CAES and UPH are presented in this Executive Summary, which forms Volume 1 of the series of reports prepared during the study. The investigations and analyses carried out, together with the results and conclusions reached, are described in detail in Volumes 2 through 13 and ten appendices.

  20. Streamlined approach for environmental restoration closure report for Corrective Action Unit 454: Historical underground storage tank release sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1998-04-01

    This report addresses the characterization of three historical underground storage tank (UST) petroleum hydrocarbon release sites identified as 12-B-1, 12-B-3, and 12-COMM-1. The sites are located within the Nevada Test Site in Area 12 at B Tunnel and a former Communications/Power Maintenance Shop. Release Site 12-B-1 was not able to be clean-closed as proposed in the SAFER Plan. However, hydrocarbon impacted soils were excavated down to bedrock. Release Site 12-B-3 was evaluated to verify that the identified release was not associated with the UST removed from the site. Analytical results support the assumption that wood or possibly a roof sealant used as part of the bunker construction could have been the source of hydrocarbons detected. Release Site 12-COMM-1 was not clean closed as proposed in the SAFER Plan. The vertical extent of impacted soils was determined not to extend below a depth of 2.7 m (9 ft) below ground surface (bgs). The lateral extent could not be defined due to the presence of a discontinuous lens of hydrocarbon-impacted soil

  1. Nevada test site underground storage tank number 12-13-1: Nevada division of emergency management case number H931130E corrective action unit 450. Closure report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    The project site was identified as an abandoned Underground Storage Tank (UST) to be closed under the Department of Energy/Nevada Operations Office (DOE/NV) Environmental Restoration Division (ERD) Program during Fiscal Year 1993. The United States Environmental Protection Agency (EPA) requires that before permanent closure is completed an assessment of the site must take place. The Nevada Division of Environmental Protection (NDEP) requires assessment and corrective actions for a petroleum substance in the soil which exceeds 100 milligrams per kilogram (mg/kg). Subsequent to the tank removal, a hydrocarbon release was identified at the site. The release was reported to the NDEP by DOE/NV on November 30, 1993. Nevada Division of Environmental Management (NDEM) Case Number H931130E was assigned. This final closure report documents the assessment and corrective actions taken for the hydrocarbon release identified at the site. The Notification of Closure, EPA Form 7530-1 dated March 22, 1994, is provided in Appendix A. A 45-day report documenting the notification for a hydrocarbon release was submitted to NDEP on April 6, 1994.

  2. Streamlined approach for environmental restoration closure report for Corrective Action Unit 452: Historical underground storage tank release sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This report addresses the site characterization of three historical underground storage tank (UST) petroleum hydrocarbon release sites identified as 25-3101-1, 25-3102-3, and 25-3152-1. The sites are located within the Nevada Test Site in Area 25 at Buildings 3101, 3102, and 3152. The characterization was completed to support administrative closure of the sites. Characterization was completed using drilling equipment to delineate the extent of hydrocarbon impact. Clean closure had been previously attempted at each of these sites using backhoe equipment without success due to adjacent structures, buried utilities, or depth restrictions associated with each site. Although the depth and extent of hydrocarbon impact was determined to be too extensive for clean closure, it was verified through drilling that the sites should be closed through an administrative closure. The Nevada Administrative Code ``A Through K`` evaluation completed for each site supports that there is no significant risk to human health or the environment from the impacted soils remaining at each site.

  3. Closure report: Nevada Test Site Underground Storage Tank (UST) number 25-3123-1: Nevada Division of Emergency Management case number H940825D corrective action unit 450

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    This document has been prepared as a final closure report documenting the assessment and corrective actions taken for the petroleum hydrocarbon release associated with underground storage tank (UST) UST25-3123-1. UST25-3123-1 was located at Area 25 within the Nevada Test Site. The UST was identified as abandoned to be closed under the U.S. Department of Energy/Nevada Operations Office Environmental Restoration Division Program during Fiscal Year 1994. The scope of work for closure of the UST included evaluating site conditions and closing the tank in accordance with all applicable regulations. Site evaluation analytic results of a soil sample collected below the tank showed a diesel concentration of 120 mg/kg at a depth of 3 meters. During remedial excavation, approximately 3.8 cubic meters of hydrocarbon impacted soil was removed. Laboratory analysis of the soil sample collected from the excavation bottom confirms that total petroleum hydrocarbon concentrations greater than 100 mg/kg are no longer present. Therefore, it is requested that the site be closed without further action. 4 refs., 2 figs., 3 tabs.

  4. Evaluation of advanced turbomachinery for underground pumped hydroelectric storage. Part 3. Multistage unregulated pump/turbines for operating heads of 1000 to 1500 m

    Energy Technology Data Exchange (ETDEWEB)

    Frigo, A.A.; Pistner, C.

    1980-08-01

    This is the final report in a series of three on studies of advanced hydraulic turbomachinery for underground pumped hydroelectric storage. All three reports address Francis-type, reversible pump/turbines. The first report covered single-stage regulated units; the second report covered two-stage regulated units; the present report covers multistage unregulated units. Multistage unregulated pump/turbines offer an economically attractive option for heads of 1000 to 1500 m. The feasibility of developing such machines for capacities up to 500 MW and operating heads up to 1500 m has been evaluated. Preliminary designs have been generated for six multistage pump/turbines. The designs are for nominal capacities of 350 and 500 MW and for operating heads of 1000, 1250, and 1500 m. Mechanical, hydraulic, and economic analyses indicate that these machines will behave according to the criteria used to design them and that they can be built at a reasonable cost with no unsolvable problems. Efficiencies of 85.8% and 88.5% in the generating and pumping modes, respectively, can be expected for the 500-MW, 1500-m unit. Performances of the other five machines are at least comparable, and usually better. Over a 1000 to 1500-m head range, specific $/kW costs of the pump/turbines in mid-1978 US dollars vary from 19.0 to 23.1 for the 500-MW machines, and from 21.0 to 24.1 for the 350-MW machines.

  5. Streamlined approach for environmental restoration closure report for Corrective Action Unit 454: Historical underground storage tank release sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This report addresses the characterization of three historical underground storage tank (UST) petroleum hydrocarbon release sites identified as 12-B-1, 12-B-3, and 12-COMM-1. The sites are located within the Nevada Test Site in Area 12 at B Tunnel and a former Communications/Power Maintenance Shop. Release Site 12-B-1 was not able to be clean-closed as proposed in the SAFER Plan. However, hydrocarbon impacted soils were excavated down to bedrock. Release Site 12-B-3 was evaluated to verify that the identified release was not associated with the UST removed from the site. Analytical results support the assumption that wood or possibly a roof sealant used as part of the bunker construction could have been the source of hydrocarbons detected. Release Site 12-COMM-1 was not clean closed as proposed in the SAFER Plan. The vertical extent of impacted soils was determined not to extend below a depth of 2.7 m (9 ft) below ground surface (bgs). The lateral extent could not be defined due to the presence of a discontinuous lens of hydrocarbon-impacted soil.

  6. Establishing the Ohio Petroleum Underground Storage Tank Release Compensation Board: Dispelling the notion of a open-quotes Pot of Goldclose quotes

    International Nuclear Information System (INIS)

    Murray, R.C.; Miller, J.J.

    1993-01-01

    The authors are the Executive Director and the Chief Financial Officer of the Ohio Petroleum Underground Storage Tank Release Compensation Board. Under the guidance of a public-sector governing board, they are responsible for implementing Ohio's UST Financial Assurance Fund program and for managing the resources and priorities necessary to maintain a solvent, practical approach to legislatively-mandated UST corrective action costs in Ohio. The paper will discuss: (1) the challenges of legislating and implementing a state assurance fund; (2) the task of defining the program's mission and coming to terms with open-quotes great expectationsclose quotes of tank owners and clean-up contractors; (3) implementing true cost-controls; how the regulatory back-drop contributes to costs and success; (4) managing the financial assets of an assurance fund and estimating future clean-up needs; (5) the search for the proper mix of financing alternatives, including reinsurance; (6) defining long-term success. The paper will develop the evolution of the essential elements of the Ohio Financial Assurance Fund and focus on the financial management of necessary resources to fulfill the public-sector mission. Managing claim costs and meeting the grassroots expectation of claimants underscore critical development issues: (1) establishing and communicating the Fund's purpose and management philosophy; (2) forging a companion relationship between industry and regulator; (3) how do such funds maintain solvency and dispel the notion that they constitute a open-quotes pot of goldclose quotes for environmental liability?

  7. PRex: An Experiment to Investigate Detection of Near-field Particulate Deposition from a Simulated Underground Nuclear Weapons Test Vent.

    Science.gov (United States)

    Keillor, Martin E; Arrigo, Leah M; Baciak, James E; Chipman, Veraun; Detwiler, Rebecca S; Emer, Dudley F; Kernan, Warnick J; Kirkham, Randy R; MacDougall, Matthew R; Milbrath, Brian D; Rishel, Jeremy P; Seifert, Allen; Seifert, Carolyn E; Smart, John E

    2016-05-01

    A radioactive particulate release experiment to produce a near-field ground deposition representative of small-scale venting from an underground nuclear test was conducted to gather data in support of treaty capability development activities. For this experiment, a CO2-driven "air cannon" was used to inject (140)La, a radioisotope of lanthanum with 1.7-d half-life and strong gamma-ray emissions, into the lowest levels of the atmosphere at ambient temperatures. Witness plates and air samplers were laid out in an irregular grid covering the area where the plume was anticipated to deposit based on climatological wind records. This experiment was performed at the Nevada National Security Site, where existing infrastructure, radiological procedures, and support personnel facilitated planning and execution of the work. A vehicle-mounted NaI(Tl) spectrometer and a polyvinyl toluene-based backpack instrument were used to survey the deposited plume. Hand-held instruments, including NaI(Tl) and lanthanum bromide scintillators and high purity germanium spectrometers, were used to take in situ measurements. Additionally, three soil sampling techniques were investigated and compared. The relative sensitivity and utility of sampling and survey methods are discussed in the context of on-site inspection.

  8. METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    BARKER, S.A.

    2006-07-27

    Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 5 is the annual update of the methodology and calculations of the flammable gas Waste Groups for DSTs and SSTs.

  9. Numerical simulation for the coupled thermo-mechanical performance of a lined rock cavern for underground compressed air energy storage

    Science.gov (United States)

    Zhou, Shu-Wei; Xia, Cai-Chu; Zhao, Hai-Bin; Mei, Song-Hua; Zhou, Yu

    2017-12-01

    Compressed air energy storage (CAES) is a technology that uses compressed air to store surplus electricity generated from low power consumption time for use at peak times. This paper presents a thermo-mechanical modeling for the thermodynamic and mechanical responses of a lined rock cavern used for CAES. The simulation was accomplished in COMSOL Multiphysics and comparisons of the numerical simulation and some analytical solutions validated the thermo-mechanical modeling. Air pressure and temperatures in the sealing layer and concrete lining exhibited a similar trend of ‘up-down-down-up’ in one cycle. Significant temperature fluctuation occurred only in the concrete lining and sealing layer, and no strong fluctuation was observed in the host rock. In the case of steel sealing, principal stresses in the sealing layer were larger than those in the concrete and host rock. The maximum compressive stresses of the three layers and the displacement on the cavern surface increased with the increase of cycle number. However, the maximum tensile stresses exhibited the opposite trend. Polymer sealing achieved a relatively larger air temperature and pressure compared with steel and air-tight concrete sealing. For concrete layer thicknesses of 0 and 0.1 m and an initial air pressure of 4.5 MPa, the maximum rock temperature could reach 135 °C and 123 °C respectively in a 30 day simulation.

  10. Jose f Regional Underground Research Centre: a new and attractive location for interdisciplinary teaching, research and training in the field of nuclear engineering

    International Nuclear Information System (INIS)

    Pacovsky, J.; Vasicek, R.

    2010-10-01

    The Jose f Gallery, located in the central Bohemia region of the Czech Republic (not far from the capital, Prague), was first excavated in 1981 as an exploration complex for the potential mining of gold. In 2007, the gallery was substantially reconstructed to house the Jose f Underground Educational Facility (Jose f UEF), which subsequently became an autonomous workplace under the direction of the Czech Technical University in Prague. At the beginning of 2010, the UEF was renamed the Jose f Regional Underground Research Centre (Jose f URC) which, along with the extensive underground complex, features modern above-ground facilities. One of the most important roles of this research centre is to provide practical -in situ- instruction in the fields of geotechnical engineering, geology, geochemistry, radiochemistry and radioecology. The training of future experts in this authentic underground setting involves the participation of several other Czech universities and numerous experienced specialists from outside the academic sphere. The IAEA has recently added the Jose f URC to its prestigious list of international training centres involved in the Training in and demonstration of waste disposal technologies in underground research facilities - A network of centres of excellence project. In addition to teaching and training, the Jose f URC is heavily involved in a wide range of research and development activities. The Jose f URC underground facilities are currently being used for research purposes as part of several European Union International experimental projects addressing various issues related to deep repository radioactive waste disposal (TIMODAZ - FP6, Forge - FP7, PETRUS II - FP7) as well as for hosting domestic projects supported by the Czech Ministry of Industry and Trade and the Czech Science Foundation. The Jose f URC is also working in close cooperation with the private construction sector providing practical training in underground construction

  11. Jose f Regional Underground Research Centre: a new and attractive location for interdisciplinary teaching, research and training in the field of nuclear engineering

    Energy Technology Data Exchange (ETDEWEB)

    Pacovsky, J.; Vasicek, R., E-mail: Pacovsky@fsv.cvut.c [Czech Technical University in Prague, Faculty of Civil Engineering, Centre of Experimental Geotechnics, Thakurova 7, 166-29 Prague 6 (Czech Republic)

    2010-10-15

    The Jose f Gallery, located in the central Bohemia region of the Czech Republic (not far from the capital, Prague), was first excavated in 1981 as an exploration complex for the potential mining of gold. In 2007, the gallery was substantially reconstructed to house the Jose f Underground Educational Facility (Jose f UEF), which subsequently became an autonomous workplace under the direction of the Czech Technical University in Prague. At the beginning of 2010, the UEF was renamed the Jose f Regional Underground Research Centre (Jose f URC) which, along with the extensive underground complex, features modern above-ground facilities. One of the most important roles of this research centre is to provide practical -in situ- instruction in the fields of geotechnical engineering, geology, geochemistry, radiochemistry and radioecology. The training of future experts in this authentic underground setting involves the participation of several other Czech universities and numerous experienced specialists from outside the academic sphere. The IAEA has recently added the Jose f URC to its prestigious list of international training centres involved in the Training in and demonstration of waste disposal technologies in underground research facilities - A network of centres of excellence project. In addition to teaching and training, the Jose f URC is heavily involved in a wide range of research and development activities. The Jose f URC underground facilities are currently being used for research purposes as part of several European Union International experimental projects addressing various issues related to deep repository radioactive waste disposal (TIMODAZ - FP6, Forge - FP7, PETRUS II - FP7) as well as for hosting domestic projects supported by the Czech Ministry of Industry and Trade and the Czech Science Foundation. The Jose f URC is also working in close cooperation with the private construction sector providing practical training in underground construction

  12. Oil Biosynthesis in Underground Oil-Rich Storage Vegetative Tissue: Comparison of Cyperus esculentus Tuber with Oil Seeds and Fruits.

    Science.gov (United States)

    Yang, Zhenle; Ji, Hongying; Liu, Dantong

    2016-12-01

    Cyperus esculentus is unique in that it can accumulate rich oil in its tubers. However, the underlying mechanism of tuber oil biosynthesis is still unclear. Our transcriptional analyses of the pathways from pyruvate production up to triacylglycerol (TAG) accumulation in tubers revealed many distinct species-specific lipid expression patterns from oil seeds and fruits, indicating that in C. esculentus tuber: (i) carbon flux from sucrose toward plastid pyruvate could be produced mostly through the cytosolic glycolytic pathway; (ii) acetyl-CoA synthetase might be an important contributor to acetyl-CoA formation for plastid fatty acid biosynthesis; (iii) the expression pattern for stearoyl-ACP desaturase was associated with high oleic acid composition; (iv) it was most likely that endoplasmic reticulum (ER)-associated acyl-CoA synthetase played a significant role in the export of fatty acids between the plastid and ER; (v) lipid phosphate phosphatase (LPP)-δ was most probably related to the formation of the diacylglycerol (DAG) pool in the Kennedy pathway; and (vi) diacylglyceroltransacylase 2 (DGAT2) and phospholipid:diacylglycerolacyltransferase 1 (PDAT1) might play crucial roles in tuber oil biosynthesis. In contrast to oil-rich fruits, there existed many oleosins, caleosins and steroleosins with very high transcripts in tubers. Surprisingly, only a single ortholog of WRINKLED1 (WRI1)-like transcription factor was identified and it was poorly expressed during tuber development. Our study not only provides insights into lipid metabolism in tuber tissues, but also broadens our understanding of TAG synthesis in oil plants. Such knowledge is of significance in exploiting this oil-rich species and manipulating other non-seed tissues to enhance storage oil production. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    TU, T.A.

    2007-01-04

    Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771, Flammable Gas Safety Isme Resolution. Appendices A through I provide supporting information. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste and characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 6 is the annual update of the flammable gas Waste Groups for DSTs and SSTs.

  14. FY 2000 report on the results of the advanced R and D for the UTES (underground thermal energy storage) system; 2000 nendo chichu jiban chikunetsu system gijutsu sendo kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    In this study, study was made of the commercialization of the UTES (underground thermal energy storage) system using the underground heat source heat pump system technology as the base, considering that this is a technology suitable for the urban area where the heat demand intensively increases and a lot of exhaust heat and usable heat exist. By the realization of the UTES system technology, it is expected that the system promotes Japan's utilization of the unused energy and contributes to the construction of the CO2 emission control type society for Japan's energy policy and global warming prevention and secondarily to leveling of power loads and elimination of the heat island phenomenon in large cities. As to the UTES system which is aimed at being used for space heating and cooling and hot water supply in buildings, the following two were studied: the indirect system, BTES (borehole thermal energy storage) system, in which heat is collected/radiated from the ground by the heat exchanger installed underground; the direct system, ATES (aquifer thermal energy storage) system, in which the groundwater stored in aquifer is directly pumped up and used. The study was made in the items written below: 1) establishment of an system image of the UTES system; 2) evaluation study of effects of the introduction, practical applicability, etc. 3) extraction of the subjects for development. As a result, system images of the indirect/direct systems were obtained. (NEDO)

  15. Field Evidence for a Low Permeability, High Storage Fault Core at the Santa Susana Field Laboratory

    Science.gov (United States)

    Allègre, V.; Brodsky, E. E.; Parker, B. L.; Cherry, J. A.

    2015-12-01

    In situ measurements of hydrogeologic properties within fault zones are few, in part because of the challenges of measuring the scale-dependent quantities in fractured rock reservoirs. This work aims to fill the gap by utilizing a combination of tidal, barometric and seismic response analyses on pressure head time-series from the Santa Susana Field Laboratory in Southern California. The techniques sample different effective volumes and so allow us to investigate the scale-dependent structure near fault zones. Permeability and specific storage were inverted from tidal response at 14 locations, and specific storage was also computed from barometric efficiencies at 10 locations. In addition, we computed hydro-seismic transfer functions after nine local earthquakes and teleseismic events. We found that permeability computed from tidal response are quite homogeneous within about one and a half orders of magnitude over the site regardless of the presence of moderate to large faults. This result is consistent with the earlier aquifer tests using standard methods. The tidal responses also showed higher variability of specific storage inside the fault zones suggesting that fault damage zone generates a storage architecture. The storage from the tidal responses can be consistently interpreted for the tidal, barometric and seismic responses. However, the observations require that the permeability inside the fault zones at the spatial scale of the seismic response (~meters) is much lower than at the spatial scale of the tidal response (~10's of meters). The result suggests possible sensitivity to the low permeability fault core, which has been historically difficult to measure at the field scale.

  16. Analysis of vadose zone tritium transport from an underground storage tank release using numerical modeling and geostatistics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.H.

    1997-09-01

    Numerical and geostatistical analyses show that the artificial smoothing effect of kriging removes high permeability flow paths from hydrogeologic data sets, reducing simulated contaminant transport rates in heterogeneous vadose zone systems. therefore, kriging alone is not recommended for estimating the spatial distribution of soil hydraulic properties for contaminant transport analysis at vadose zone sites. Vadose zone transport if modeled more effectively by combining kriging with stochastic simulation to better represent the high degree of spatial variability usually found in the hydraulic properties of field soils. However, kriging is a viable technique for estimating the initial mass distribution of contaminants in the subsurface.

  17. Evaluation of advanced hydraulic turbomachinery for underground pumped hydroelectric storage. Part 1. Single-stage regulated pump turbines for operating heads of 500 to 1000 m

    Energy Technology Data Exchange (ETDEWEB)

    Frigo, A.A.; Blomquist, C.A.; Degnan, J.R.

    1979-10-01

    High-head, large-capacity turbomachinery is needed for the concept of underground pumped hydroelectric storage to be technically and economically attractive. Single-stage, reversible, Francis-type pump turbines with adjustable wicket gates appear to offer the most economically attractive option for heads between about 500 and 1000 m. The feasibility of developing these types of machines for capacities up to 500 MW and operating heads up to 1000 m has been evaluated. Preliminary designs have been generated for six single-stage pump turbines. The designs are for capacities of 350 and 500 MW and for operating heads of 500, 750, and 1000 m. The report contains drawings of the machines along with material specifications and hydraulic performance data. Mechanical, hydraulic, and economic analyses indicate that these machines will behave according to the criteria used to design them and that they can be built at a reasonable cost. The stress and deflection responses of the 500-MW, 100-m-head pump turbine, determined by detailed finite element analysis techniques, give solid evidence of the integrity of the conceptual designs of the six units and indicate no unsolvable problems. Results of a life expectancy analysis of the wicket gates indicate that a near infinite life can be expected for these components when they are subjected to normal design loads. Efficiencies of 90.7 and 91.4% in the generating and pumping modes, respectively, can be expected for the 500-MW, 1000-m-head unit. Performances of the other five machines are comparable. The specific costs of the pump turbines in mid-1978 US dollars per kW vary from 19.2 to 11.8 over a head range of from 500 to 1000 m for the 500-MW machines and from 20.0 to 12.3 for the 350-MW machines.

  18. Use of the Modified Light Duty Utility Arm to Perform Nuclear Waste Cleanup of Underground Waste Storage Tanks at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Blank, J.A.; Burks, B.L.; DePew, R.E.; Falter, D.D.; Glassell, R.L.; Glover, W.H.; Killough, S.M.; Lloyd, P.D.; Love, L.J.; Randolph, J.D.; Van Hoesen, S.D.; Vesco, D.P.

    1999-04-01

    The Modified Light Duty Utility Arm (MLDUA) is a selectable seven or eight degree-of-freedom robot arm with a 16.5 ft (5.03 m) reach and a payload capacity of 200 lb. (90.72 kg). The utility arm is controlled in either joystick-based telerobotic mode or auto sequence robotics mode. The MLDUA deployment system deploys the utility arm vertically into underground radioactive waste storage tanks located at Oak Ridge National Laboratory. These tanks are constructed of gunite material and consist of two 25 ft (7.62 m) diameter tanks in the North Tank Farm and six 50 ft (15.24 m) diameter tanks in the South Tank Farm. After deployment inside a tank, the utility arm reaches and grasps the confined sluicing end effecter (CSEE) which is attached to the hose management arm (HMA). The utility arm positions the CSEE within the tank to allow the HMA to sluice the tank's liquid and solid waste from the tank. The MLDUA is used to deploy the characterization end effecter (CEE) and gunite scarifying end effecter (GSEE) into the tank. The CEE is used to survey the tank wall's radiation levels and the physical condition of the walls. The GSEE is used to scarify the tank walls with high-pressure water to remove the wall scale buildup and a thin layer of gunite which reduces the radioactive contamination that is embedded into the gunite walls. The MLDUA is also used to support waste sampling and wall core-sampling operations. Other tools that have been developed for use by the MLDUA include a pipe-plugging end effecter, pipe-cutting end effecter, and pipe-cleaning end effecter. Washington University developed advance robotics path control algorithms for use in the tanks. The MLDUA was first deployed in June 1997 and has operated continuously since then. Operational experience in the first four tanks remediated is presented in this paper.

  19. Use of the Modified Light Duty Utility Arm to Perform Nuclear Waste Cleanup of Underground Waste Storage Tanks at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Blank, J.A.; Burks, B.L.; DePew, R.E.; Falter, D.D.; Glassell, R.L.; Glover, W.H.; Killough, S.M.; Lloyd, P.D.; Love, L.J.; Randolph, J.D.; Van Hoesen, S.D.; Vesco, D.P.

    1999-01-01

    The Modified Light Duty Utility Arm (MLDUA) is a selectable seven or eight degree-of-freedom robot arm with a 16.5 ft (5.03 m) reach and a payload capacity of 200 lb. (90.72 kg). The utility arm is controlled in either joystick-based telerobotic mode or auto sequence robotics mode. The MLDUA deployment system deploys the utility arm vertically into underground radioactive waste storage tanks located at Oak Ridge National Laboratory. These tanks are constructed of gunite material and consist of two 25 ft (7.62 m) diameter tanks in the North Tank Farm and six 50 ft (15.24 m) diameter tanks in the South Tank Farm. After deployment inside a tank, the utility arm reaches and grasps the confined sluicing end effecter (CSEE) which is attached to the hose management arm (HMA). The utility arm positions the CSEE within the tank to allow the HMA to sluice the tank's liquid and solid waste from the tank. The MLDUA is used to deploy the characterization end effecter (CEE) and gunite scarifying end effecter (GSEE) into the tank. The CEE is used to survey the tank wall's radiation levels and the physical condition of the walls. The GSEE is used to scarify the tank walls with high-pressure water to remove the wall scale buildup and a thin layer of gunite which reduces the radioactive contamination that is embedded into the gunite walls. The MLDUA is also used to support waste sampling and wall core-sampling operations. Other tools that have been developed for use by the MLDUA include a pipe-plugging end effecter, pipe-cutting end effecter, and pipe-cleaning end effecter. Washington University developed advance robotics path control algorithms for use in the tanks. The MLDUA was first deployed in June 1997 and has operated continuously since then. Operational experience in the first four tanks remediated is presented in this paper

  20. Mineral resource analysis of the proposed site for underground storage of high-level commercial nuclear waste, Hanford, Washington

    International Nuclear Information System (INIS)

    Leaming, G.F.; Davis, J.D.

    1983-01-01

    Evaluation of known and potential mineral resources of the Hanford Site and vicinity, Washington State, was undertaken as part of a larger program being conducted by the United States Department of of Energy to evaluate the suitability of candidate sites for construction of terminal repositories for high-level nuclear waste. Current mining within 100 km of the Hanford Site is limited to surface-mined diatomaceous earth, sand and gravel, and stone. Occurrences of relatively low-unit-value minerals within 100 km of the candidate site consist of peat, diatomaceous earth, pumicite, quarry rock, and sand and gravel. Such resources are surficial in occurrence and are not concentrated within the Pasco Basin relative to the remainder of the Columbia Plateau. A small, low-pressure natural gas field, in production from 1929 to 1941, is present at the southern edge of the Hanford Site. No other commercial production of fossil fuels has occurred in the area. With the exception of small, low grade gold placers along the Columbia River, no high-unit-value mineral resources are known to occur within 100 km of the candidate site. Economic analysis of the area within 100 km of the candidate site indicates that gross value of known mineral resources and potential, undiscovered natural gas within Columbia River basalts is $470.5 million. Subtraction of estimated exploration, development, production, and wholesale marketing costs from gross value leaves a net value of $33.3 million. Projected net value per area and per capita averages $569/km 2 and $62/current inhabitant. For the remainder of the Columbia Plateau, respective values are $1,195/km 2 or $98/inhabitant. For a mineral-rich state such as New Mexico, comparable net value per area is $17,600/km 2

  1. Resources and geothermal heat in the Netherlands. Annual report 2011. An overview of exploration and exploitation activities and of underground gas storage; Delfstoffen en Aardwarmte in Nederland. Jaarverslag 2011. Een overzicht van opsporings- en winningsactiviteiten en van ondergrondse gasopslag

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-15

    Traditionally, this annual report publishes the activities and results of the exploration and extraction of hydrocarbons in the Netherlands. Starting this year the report will be expanded with the exploration and extraction activities of rock salt and geothermal heat and the underground storage of resources (natural gas, nitrogen, CO2 and water). The first part of the annual report addresses the developments in the year 2011. This part also includes a prognosis for the extraction of natural gas for the next 25 years. Next, a number of tables illustrate developments in the field of licenses and exploration activities (seismic research and drilling) in 2011. The chapter on hydrocarbons is concluded with an overview of the extracted volumes of natural gas, condensate and petroleum and the gas flows in storage facilities. There are new chapters on exploration and extraction of rock salt and geothermal heat. Another new chapter addresses storage of resources. The second part of the annual report illustrates the situation per 1 January 2012 and the developments over the last decades in a number of overviews. The annexes, finally, include general maps of the situation as of 1 January 2012 [Dutch] Het Jaarverslag rapporteert over de activiteiten en resultaten van de opsporing en winning van koolwaterstoffen, steenzout en aardwarmte in Nederland. Daarnaast komt de ondergrondse opslag van stoffen (aardgas, stikstof, CO2 en water) aan de orde. Daarmee worden alle opsporings-, winnings- en opslagactiviteiten in Nederland en het Nederlandse deel van het Continentaal plat, vallend onder het regime van de Mijnbouwwet, gezamenlijk gerapporteerd. Het eerste deel van het jaarverslag gaat in op de ontwikkelingen in het jaar 2011. Zoals in voorgaande jaren richt dit deel zich op de opsporing, winning en de ondergrondse opslag van koolwaterstoffen. Dit betreft een overzicht van de veranderingen in de aardgas- en aardolievoorraden gedurende 2011 en de daaruit volgende situatie per 1

  2. Dynamic Underground Stripping Project

    International Nuclear Information System (INIS)

    Aines, R.; Newmark, R.; McConachie, W.; Udell, K.; Rice, D.; Ramirez, A.; Siegel, W.; Buettner, M.; Daily, W.; Krauter, P.; Folsom, E.; Boegel, A.J.; Bishop, D.; Udell, K.

    1992-01-01

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation and underground imaging techniques for use in rapid cleanup of localized underground spills. Called ''Dynamic Stripping'' to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first 8 months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques before moving the contaminated site in FY 92

  3. A simple computational method for predicting magnetic field in the vicinity of a three-phase underground cable with a fluid-filled steel-pipe enclosure

    International Nuclear Information System (INIS)

    Xu, X.B.; Yang, X.M.

    1994-01-01

    This paper presents a simple computational method for predicting the magnetic field above ground, generated by an underground three-phase pipe-type cable. In the computation, an approximation is made to simplify the problem a Fourier series technique and an iterative procedure are employed to handle the nonlinear B-H characteristic of the steel pipe. To validate the computational method, measurements were made and the numerical results are compared with the measurement data. Also, data of magnetic fields generated by the pipe type cable are compared with those due to the cable in absence of the pipe. The advantages and disadvantages of this simple method are discussed

  4. Decree n. 2006-1034 of the 21 August 2006 relative to the access to the underground storages of the natural gas

    International Nuclear Information System (INIS)

    2006-08-01

    This document presents the 18 articles of the decree, grouped in even chapters: main principles of the storage use, determination and attribution of the access rules to the storage capacities, distribution of the storage capacities, allocation of the storage capacities, obligation of declaration and detention of suppliers stocks, access to the surplus storage capacities and others dispositions. (A.L.B.)

  5. Rokibaar Underground = Rock bar Underground

    Index Scriptorium Estoniae

    2008-01-01

    Rokibaari Underground (Küütri 7, Tartu) sisekujundus, mis pälvis Eesti Sisearhitektide Liidu 2007. a. eripreemia. Sisearhitekt: Margus Mänd (Tammat OÜ). Margus Männist, tema tähtsamad tööd. Plaan, 5 värv. vaadet, foto M. Männist

  6. Addendum 2 to the Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 454: Historical Underground Storage Tank Release Sites, Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Grant Evenson

    2009-05-01

    This document constitutes an addendum to the Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 454: Historical Underground Storage Tank Release Sites, Nevada Test Site, Nevada, April 1998 as described in the document Supplemental Investigation Report for FFACO Use Restrictions, Nevada Test Site, Nevada (SIR) dated November 2008. The SIR document was approved by NDEP on December 5, 2008. The approval of the SIR document constituted approval of each of the recommended UR removals. In conformance with the SIR document, this addendum consists of: • This page that refers the reader to the SIR document for additional information • The cover, title, and signature pages of the SIR document • The NDEP approval letter • The corresponding section of the SIR document This addendum provides the documentation justifying the cancellation of the URs for CASs: • 12-25-08, Spill H950524F (from UST 12-B-1) • 12-25-10, Spill H950919A (from UST 12-COMM-1) These URs were established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and were based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996). Since these URs were established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, these URs were re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006). This re-evaluation consisted of comparing the original data (used to define the need for the URs) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove these URs because contamination is not present at these sites above the risk-based FALs. Requirements for inspecting and maintaining these URs will be

  7. Addendum to the Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 452: Historical Underground Storage Tank Release Sites, Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Grant Evenson

    2009-05-01

    This document constitutes an addendum to the Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 452: Historical Underground Storage Tank Release Sites, Nevada Test Site, Nevada, April 1998 as described in the document Supplemental Investigation Report for FFACO Use Restrictions, Nevada Test Site, Nevada (SIR) dated November 2008. The SIR document was approved by NDEP on December 5, 2008. The approval of the SIR document constituted approval of each of the recommended UR removals. In conformance with the SIR document, this addendum consists of: • This page that refers the reader to the SIR document for additional information • The cover, title, and signature pages of the SIR document • The NDEP approval letter • The corresponding section of the SIR document This addendum provides the documentation justifying the cancellation of the URs for CASs: • 25-25-09, Spill H940825C (from UST 25-3101-1) • 25-25-14, Spill H940314E (from UST 25-3102-3) • 25-25-15, Spill H941020E (from UST 25-3152-1) These URs were established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and were based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996). Since these URs were established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, these URs were re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006). This re-evaluation consisted of comparing the original data (used to define the need for the URs) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove these URs because contamination is not present at these sites above the risk-based FALs

  8. Désulfuration sélective du gaz soutiré d'un stockage souterrain Selective Desulfurization of Gas Withdrawn from an Underground Storage Facility

    Directory of Open Access Journals (Sweden)

    Jaubertou G.

    2006-11-01

    Full Text Available La présence d'H2S constatée dès les premiers soutirages de gaz au stockage souterrain en nappe aquifère de Chémery avait nécessité la mise en place d'unités de désulfuration. Le gaz injecté étant exempt de gaz carbonique, le procédé par voie liquide utilisant la monoéthanolamine avait été retenu. Depuis 1977, le gaz injecté contenant des quantités appréciables de gaz carbonique a rendu inutilisable ce procédé. Parallèlement à l'injection de ce composé acide, la production d'H2S a fortement augmenté. La mise en oeuvre d'une amine sélective (MDEA a permis d'éliminer les composés soufrés en laissant pratiquement inchangée la composition du gaz chargé en C02. Les installations existantes ont pu être conservées, la banalisation des circuits facilitant l'utilisation de cette nouvelle amine. La communication présente les études et essais réalisés ainsi que les résultats d'exploitation qui se sont révélés particulièrement intéressants tant au point de vue technique qu'économique The presence of H2S in the first gas withdrawn from the underground storage aquifer at Chémery, France, required the installation of desulfurization units. Since there was no carton dioxide in the injected gas, a liquid process using monoethanolamine was selected. This process has become unusable since 1977 because the injected gas contains appreciable amounts of carton dioxide. At the same time as the injection of this acid compound, the production of H2S has considerably increased. A selective amine (MDEA was used tg eliminate the sulfur-containing compounds while leaving the composition of the C02-containing gas almost unchanged. The existing installations have been maintained as the result of the standardizing of the circuits for this new amine. This article describes the research and tests performed as well as the operational results which have turned out to be particularly intersting from both the technical and economic stand

  9. Underground Politics

    DEFF Research Database (Denmark)

    Galis, Vasilis; Summerton, Jane

    of various kinds, as well as for identifying and displacing undesired individuals/groups/bodies. A case in point is a recently-established police project (REVA) in Sweden for strengthening the so-called internal border control. Specifically, several underground stations in Stockholm now have checkpoints......Public spaces are often contested sites involving the political use of sociomaterial arrangements to check, control and filter the flow of people (see Virilio 1977, 1996). Such arrangements can include configurations of state-of-the-art policing technologies for delineating and demarcating borders...... status updates on identity checks at the metro stations in Stockholm and reports on locations and time of ticket controls for warning travelers. Thus the attempts by authorities to exert control over the (spatial) arena of the underground is circumvented by the effective developing of an alternative...

  10. Blasting to stabilize abandoned underground mines in eastern and midwestern coal fields: A feasibility study. Open File Report

    International Nuclear Information System (INIS)

    1991-01-01

    The study was designed to assist individuals involved with problem of abandoned mines that are subsiding. The study analyzed the practicality and desirability of using blasting to stabilize subsiding abandoned underground mines. Application of blasting to subsidence problems could provide a valuable alternative technology to classical methods of injecting fill material into abandoned mines to fill voids and prevent subsidence. By blasting, subsidence can be induced in a controlled manner, completed, and the site returned to its desired usage

  11. Compatibility of High-Moisture Storage for Biochemical Conversion of Corn Stover: Storage Performance at Laboratory and Field Scales

    Directory of Open Access Journals (Sweden)

    Lynn M. Wendt

    2018-03-01

    Full Text Available Wet anaerobic storage of corn stover can provide a year-round supply of feedstock to biorefineries meanwhile serving an active management approach to reduce the risks associated with fire loss and microbial degradation. Wet logistics systems employ particle size reduction early in the supply chain through field-chopping which removes the dependency on drying corn stover prior to baling, expands the harvest window, and diminishes the biorefinery size reduction requirements. Over two harvest years, in-field forage chopping was capable of reducing over 60% of the corn stover to a particle size of 6 mm or less. Aerobic and anaerobic storage methods were evaluated for wet corn stover in 100 L laboratory reactors. Of the methods evaluated, traditional ensiling resulted in <6% total solid dry matter loss (DML, about five times less than the aerobic storage process and slightly less than half that of the anaerobic modified-Ritter pile method. To further demonstrate the effectiveness of the anaerobic storage, a field demonstration was completed with 272 dry tonnes of corn stover; DML averaged <5% after 6 months. Assessment of sugar release as a result of dilute acid or dilute alkaline pretreatment and subsequent enzymatic hydrolysis suggested that when anaerobic conditions were maintained in storage, sugar release was either similar to or greater than as-harvested material depending on the pretreatment chemistry used. This study demonstrates that wet logistics systems offer practical benefits for commercial corn stover supply, including particle size reduction during harvest, stability in storage, and compatibility with biochemical conversion of carbohydrates for biofuel production. Evaluation of the operational efficiencies and costs is suggested to quantify the potential benefits of a fully-wet biomass supply system to a commercial biorefinery.

  12. Site-specific standard request for Underground Storage Tanks 1219-U, 1222-U, 2082-U, and 2068-U at the Rust Garage Facility Buildings 9754-1 and 9720-15

    International Nuclear Information System (INIS)

    1994-08-01

    This document is a site-specific standard request for underground storage tanks located at the Rust Garage Facility. These standards are justified based on conclusion derived from the exposure assessment that indicates there is no current or forseeable future human health risk associated with petroleum contaminants on the site, that current and future ecological risks would be generally limited to subsurface species and plant life with roots extending into the area, and that most of the impacted area at the site is covered by asphalt or concrete. The vertical and horizontal extent of soil and ground water contamination are limited to immediate area of the Rust Garage Facility

  13. Method and system for progressive mesh storage and reconstruction using wavelet-encoded height fields

    Science.gov (United States)

    Baxes, Gregory A. (Inventor); Linger, Timothy C. (Inventor)

    2011-01-01

    Systems and methods are provided for progressive mesh storage and reconstruction using wavelet-encoded height fields. A method for progressive mesh storage includes reading raster height field data, and processing the raster height field data with a discrete wavelet transform to generate wavelet-encoded height fields. In another embodiment, a method for progressive mesh storage includes reading texture map data, and processing the texture map data with a discrete wavelet transform to generate wavelet-encoded texture map fields. A method for reconstructing a progressive mesh from wavelet-encoded height field data includes determining terrain blocks, and a level of detail required for each terrain block, based upon a viewpoint. Triangle strip constructs are generated from vertices of the terrain blocks, and an image is rendered utilizing the triangle strip constructs. Software products that implement these methods are provided.

  14. Underground nuclear explosions at Astrakhan, USSR

    International Nuclear Information System (INIS)

    Borg, I.Y.

    1982-01-01

    The three underground nuclear explosions recorded in 1980 and 1981 by Hagfors Observatory in Sweden are in the vicinity of Astrakhan on the Caspian Sea. They are believed to be associated with the development of a gas condensate field discovered in 1973. The gas producing horizons are in limestones at 4000 m depth. They are overlain by bedded, Kungarian salts. Salt domes are recognized in the area. Plans to develop the field are contained in the 11th Five Year Plan (1981-82). The USSR has solicited bids from western contractors to build gas separation and gas processing plant with an annual capacity of 6 billion m 3 . Ultimate expansion plans call for three plants with the total capacity of 18 billion m 3 . By analogy with similar peaceful nuclear explosions described in 1975 by the Soviets at another gas condensate field, the underground cavities are probably designed for storage of unstable, sour condensate after initial separation from the gaseous phases in the field. Assuming that the medium surrounding the explosions is salt, the volume of each cavity is on the order of 50,000 m 3

  15. Compatibility of High-Moisture Storage for Biochemical Conversion of Corn Stover: Storage Performance at Laboratory and Field Scales

    Science.gov (United States)

    Wendt, Lynn M.; Murphy, J. Austin; Smith, William A.; Robb, Thomas; Reed, David W.; Ray, Allison E.; Liang, Ling; He, Qian; Sun, Ning; Hoover, Amber N.; Nguyen, Quang A.

    2018-01-01

    Wet anaerobic storage of corn stover can provide a year-round supply of feedstock to biorefineries meanwhile serving an active management approach to reduce the risks associated with fire loss and microbial degradation. Wet logistics systems employ particle size reduction early in the supply chain through field-chopping which removes the dependency on drying corn stover prior to baling, expands the harvest window, and diminishes the biorefinery size reduction requirements. Over two harvest years, in-field forage chopping was capable of reducing over 60% of the corn stover to a particle size of 6 mm or less. Aerobic and anaerobic storage methods were evaluated for wet corn stover in 100 L laboratory reactors. Of the methods evaluated, traditional ensiling resulted in biofuel production. Evaluation of the operational efficiencies and costs is suggested to quantify the potential benefits of a fully-wet biomass supply system to a commercial biorefinery. PMID:29632861

  16. GHG emissions from slurry and digestates during storage and after field application

    DEFF Research Database (Denmark)

    Baral, Khagendra Raj; Nguyen, Quan Van; Petersen, Søren O.

    , but environmental impacts, such as greenhouse gas (GHG) emissions, during storage and after field application should take into account. Mainly, methane (CH4) is produced during storage and nitrous oxide (N2O) after field application. Currently, direct (CH4, N2O) and indirect (NH3) GHG emissions during storage...... nitrogen (N), and soil water potential (). Short-term N2O emissions, expressed as percentage of total N applied, ranged from 0.24 to 1.4%. Overall, first results indicate that co-digestion of pig slurry and sugar beet pulp may reduce GHG emissions during storage and after field application. The extent...... are determined in a pilot-scale study with digested materials from Maabjerg Bioenergy and Fredericia Wastewater Treatment Facility, using untreated cattle and pig slurry as reference. These and other results will be used to model the effect of temperature and pre-treatment on CH4 emissions. The composition...

  17. Application of a simplified calculation for full-wave microtremor H/ V spectral ratio based on the diffuse field approximation to identify underground velocity structures

    Science.gov (United States)

    Wu, Hao; Masaki, Kazuaki; Irikura, Kojiro; Sánchez-Sesma, Francisco José

    2017-12-01

    Under the diffuse field approximation, the full-wave (FW) microtremor H/ V spectral ratio ( H/ V) is modeled as the square root of the ratio of the sum of imaginary parts of the Green's function of the horizontal components to that of the vertical one. For a given layered medium, the FW H/ V can be well approximated with only surface waves (SW) H/ V of the "cap-layered" medium which consists of the given layered medium and a new larger velocity half-space (cap layer) at large depth. Because the contribution of surface waves can be simply obtained by the residue theorem, the computation of SW H/ V of cap-layered medium is faster than that of FW H/ V evaluated by discrete wavenumber method and contour integration method. The simplified computation of SW H/ V was then applied to identify the underground velocity structures at six KiK-net strong-motion stations. The inverted underground velocity structures were used to evaluate FW H/ Vs which were consistent with the SW H/ Vs of corresponding cap-layered media. The previous study on surface waves H/ Vs proposed with the distributed surface sources assumption and a fixed Rayleigh-to-Love waves amplitude ratio for horizontal motions showed a good agreement with the SW H/ Vs of our study. The consistency between observed and theoretical spectral ratios, such as the earthquake motions of H/ V spectral ratio and spectral ratio of horizontal motions between surface and bottom of borehole, indicated that the underground velocity structures identified from SW H/ V of cap-layered medium were well resolved by the new method.[Figure not available: see fulltext.

  18. A review of sorption of radionuclides under the near- and far-field conditions of an underground radioactive waste repository. Pt. 1

    International Nuclear Information System (INIS)

    Berry, J.A.

    1992-01-01

    This report presents and discusses work funded by the Department of the Environment and UK Nirex Ltd in the area of sorption of radionuclides under near-field and far-field conditions as related to the underground disposal of radioactive waste in the UK. It is intended as a basis for comparison with work undertaken world-wide in the sorption area, presented in Part II of this review. The UK and overseas work are compared in Part III. From lists of reports and papers supplied by DOE (HMIP) and Nirex, those publications believed to be relevant were selected and are listed here by subject. Summaries of all these reports are included in the form of abstracts, or where available, executive summaries. The work presented is further summarised and discussed. Sections on sorption and laboratory experimental methods are included, along with a section on the level of understanding and outstanding issues. (Author)

  19. FIELD IMPLEMENTATION PLAN FOR A WILLISTON BASIN BRINE EXTRACTION AND STORAGE TEST

    Energy Technology Data Exchange (ETDEWEB)

    Hamling, John; Klapperich, Ryan; Stepan, Daniel; Sorensen, James; Pekot, Lawrence; Peck, Wesley; Jacobson, Lonny; Bosshart, Nicholas; Hurley, John; Wilson, William; Kurz, Marc; Burnison, Shaughn; Salako, Olarinre; Musich, Mark; Botnen, Barry; Kalenze, Nicholas; Ayash, Scott; Ge, Jun; Jiang, Tao; Dalkhaa, Chantsalmaa; Oster, Benjamin; Peterson, Kyle; Feole, Ian; Gorecki, Charles; Steadman, Edward

    2016-03-31

    The Energy & Environmental Research Center (EERC) successfully completed all technical work of Phase I, including development of a field implementation plan (FIP) for a brine extraction and storage test (BEST) in the North Dakota portion of the Williston Basin. This implementation plan was commissioned by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) as a proxy for managing formation pressure plumes and measuring/monitoring the movement of differential pressure and CO2 plumes in the subsurface for future saline CO2 storage projects. BEST comprises the demonstration and validation of active reservoir management (ARM) strategies and extracted brine treatment technologies. Two prospective commercial brine injection sites were evaluated for BEST to satisfy DOE’s goals. Ultimately, an active saltwater disposal (SWD) site, Johnsons Corner, was selected because it possesses an ideal combination of key factors making it uniquely suited to host BEST. This site is located in western North Dakota and operated by Nuverra Environmental Solutions (Nuverra), a national leader in brine handling, treatment, and injection. An integrated management approach was used to incorporate local and regional geologic characterization activities with geologic and simulation models, inform a monitoring, verification, and accounting (MVA) plan, and to conduct a risk assessment. This approach was used to design a FIP for an ARM schema and an extracted brine treatment technology test bed facility. The FIP leverages an existing pressure plume generated by two commercial SWD wells. These wells, in conjunction with a new brine extraction well, will be used to conduct the ARM schema. Results of these tests will be quantified based on their impact on the performance of the existing SWD wells and the surrounding reservoir system. Extracted brine will be injected into an underlying deep saline formation through a new injection well. The locations of proposed

  20. Experimental study of thermal field deriving from an underground electrical power cable buried in non-homogeneous soils

    International Nuclear Information System (INIS)

    Lieto Vollaro, Roberto de; Fontana, Lucia; Vallati, Andrea

    2014-01-01

    The electrical cables ampacity mainly depends on the cable system operation temperature. To achieve a better cable utilization and reduce the conservativeness typically employed in buried cable design, an accurate evaluation of the heat dissipation through the cables and the surrounding soil is important. In the traditional method adopted by the International Electrotechnical Commission (IEC) and the Institute of Electrical and Electronics Engineers (IEEE) for the computation of the thermal resistance between an existing underground cable system and the external environment, it is still assumed that the soil is homogeneous and has uniform thermal conductivity. Numerical studies have been conducted to predict the temperature distribution around the cable for various configurations and thermal properties of the soil. The paper presents an experimental study conducted on a scale model to investigate the heat transfer of a buried cable, with different geometrical configurations and thermal properties of the soil, and to validate a simplified model proposed by the authors in 2012 for the calculation of the thermal resistance between the underground pipe or electrical cable and the ground surface, in cases where the filling of the trench is filled with layers of materials with different thermal properties. Results show that experimental data are in good agreement with the numerical ones. -- Highlights: • Heat transfer of a buried cable has been experimentally studied on a scale model. • Different configurations and thermal properties of the soil have been tested. • Authors previously proposed a simplified model and obtained numerical results. • Experimental results and numerical ones previously obtained were in accordance

  1. Compatibility of High-Moisture Storage for Biochemical Conversion of Corn Stover: Storage Performance at Laboratory and Field Scales.

    Science.gov (United States)

    Wendt, Lynn M; Murphy, J Austin; Smith, William A; Robb, Thomas; Reed, David W; Ray, Allison E; Liang, Ling; He, Qian; Sun, Ning; Hoover, Amber N; Nguyen, Quang A

    2018-01-01

    Wet anaerobic storage of corn stover can provide a year-round supply of feedstock to biorefineries meanwhile serving an active management approach to reduce the risks associated with fire loss and microbial degradation. Wet logistics systems employ particle size reduction early in the supply chain through field-chopping which removes the dependency on drying corn stover prior to baling, expands the harvest window, and diminishes the biorefinery size reduction requirements. Over two harvest years, in-field forage chopping was capable of reducing over 60% of the corn stover to a particle size of 6 mm or less. Aerobic and anaerobic storage methods were evaluated for wet corn stover in 100 L laboratory reactors. Of the methods evaluated, traditional ensiling resulted in benefits for commercial corn stover supply, including particle size reduction during harvest, stability in storage, and compatibility with biochemical conversion of carbohydrates for biofuel production. Evaluation of the operational efficiencies and costs is suggested to quantify the potential benefits of a fully-wet biomass supply system to a commercial biorefinery.

  2. About working of the research program on development of underground space of Russia

    International Nuclear Information System (INIS)

    Kartoziya, B.A.

    1995-01-01

    Basic proposition relative to the developed federal program on scientific research in the area of assimilating underground space in Russia are presented. The underground objects are divided by their purpose into four groups: 1) underground objects of house-hold purpose (energy and mining complex, industrial enterprises, storages, garages, etc); 2) underground objects of social purpose (libraries, shops, restaurants, etc); 3) underground objects of ecological purpose (storages, disposal sites for radioactive wastes and hazardous substances, dangerous productions, etc); 4) underground objects of defense purpose. Trends in the scientific-research program formation, relative to underground space assimilation are enumerated. 7 refs

  3. Underground CO{sub 2} Storage: Approach for Favourable Formations in Ebro Basin; AGP de CO{sub 2}: Seleccion de Formaciones Favorables en la Cuenca del Ebro

    Energy Technology Data Exchange (ETDEWEB)

    Campos, R.; Perucha, A.; Recreo, F.

    2008-04-10

    The study of the possibilities of conducting Deep Geological CO{sub 2} Storage inside Spanish territory is being performed through the Strategic Singular Project PS-120000-2005-2 of the National Program of Energy from the Education and Science Ministry, and called CO{sub 2} generation, sequestration and storage advanced technologies, sub project N3 CO{sub 2} Geological Storage This report studies the possibilities the Ebro basin offers for definitive CO{sub 2} storage as one of the Spanish selected areas from previous studies. The study and reinterpretation of the information obtained from the hydrocarbon exploration accomplished in the area has lead to the selection of a series of geological formations. These formations have been chosen attending certain characteristics such as their disposition, extension, depth and porosity. The study has also been conducted considering the characteristics of the geological formations above the CO{sub 2} storage formations so as to guarantee the sealing of the storage. The study includes the approximate estimation of the storage capacity for each of the formations in Megatons of CO{sub 2}, which can be useful in future decision making. Deep geological storage is one of the more relevant international initiatives in order to eliminate or reduce the anthropogenic CO{sub 2} emissions to the atmosphere. (Author) 68 refs.

  4. Gas storage and separation by electric field swing adsorption

    Science.gov (United States)

    Currier, Robert P; Obrey, Stephen J; Devlin, David J; Sansinena, Jose Maria

    2013-05-28

    Gases are stored, separated, and/or concentrated. An electric field is applied across a porous dielectric adsorbent material. A gas component from a gas mixture may be selectively separated inside the energized dielectric. Gas is stored in the energized dielectric for as long as the dielectric is energized. The energized dielectric selectively separates, or concentrates, a gas component of the gas mixture. When the potential is removed, gas from inside the dielectric is released.

  5. The Canfranc Underground Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Amare, J. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Beltran, B. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Carmona, J.M. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Cebrian, S. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Garcia, E. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Irastorza, I.G. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Gomez, H. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Luzon, G. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Martinez, M. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Morales, J. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Ortiz de Solorzano, A. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Pobes, C. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Puimedon, J. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Rodriguez, A. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Ruz, J. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Sarsa, M.L. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Torres, L. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Villar, J.A. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain)

    2005-06-15

    This paper describes the forthcoming enlargement of the Canfranc Underground Laboratory (LSC) which will allow to host new international Astroparticle Physics experiments and therefore to broaden the European underground research area. The new Canfranc Underground Laboratory will operate in coordination (through the ILIAS Project) with the Gran Sasso (Italy), Modane (France) and Boulby (UK) underground laboratories.

  6. Numerical investigation of CO2 storage in hydrocarbon field using a geomechanical-fluid coupling model

    Directory of Open Access Journals (Sweden)

    Guang Li

    2016-09-01

    Full Text Available Increasing pore pressure due to CO2 injection can lead to stress and strain changes of the reservoir. One of the safely standards for long term CO2 storage is whether stress and strain changes caused by CO2 injection will lead to irreversible mechanical damages of the reservoir and impact the integrity of caprock which could lead to CO2 leakage through previously sealing structures. Leakage from storage will compromise both the storage capacity and the perceived security of the project, therefore, a successful CO2 storage project requires large volumes of CO2 to be injected into storage site in a reliable and secure manner. Yougou hydrocarbon field located in Orods basin was chosen as storage site based on it's stable geological structure and low leakage risks. In this paper, we present a fluid pressure and stress-strain variations analysis for CO2 geological storage based on a geomechanical-fluid coupling model. Using nonlinear elasticity theory to describe the geomechanical part of the model, while using the Darcy's law to describe the fluid flow. Two parts are coupled together using the poroelasticity theory. The objectives of our work were: 1 evaluation of the geomechanical response of the reservoir to different CO2 injection scenarios. 2 assessment of the potential leakage risk of the reservoir caused by CO2 injection.

  7. A Review of Energy Storage Technologies

    DEFF Research Database (Denmark)

    Connolly, David

    2010-01-01

    A brief examination into the energy storage techniques currently available for the integration of fluctuating renewable energy was carried out. These included Pumped Hydroelectric Energy Storage (PHES), Underground Pumped Hydroelectric Energy Storage (UPHES), Compressed Air Energy Storage (CAES...

  8. Experimental investigations and geochemical modelling of site-specific fluid-fluid and fluid-rock interactions in underground storage of CO2/H2/CH4 mixtures: the H2STORE project

    Science.gov (United States)

    De Lucia, Marco; Pilz, Peter

    2015-04-01

    Underground gas storage is increasingly regarded as a technically viable option for meeting the energy demand and environmental targets of many industrialized countries. Besides the long-term CO2 sequestration, energy can be chemically stored in form of CO2/CH4/H2 mixtures, for example resulting from excess wind energy. A precise estimation of the impact of such gas mixtures on the mineralogical, geochemical and petrophysical properties of specific reservoirs and caprocks is crucial for site selection and optimization of storage depth. Underground gas storage is increasingly regarded as a technically viable option for meeting environmental targets and the energy demand through storage in form of H2 or CH4, i.e. resulting from excess wind energy. Gas storage in salt caverns is nowadays a mature technology; in regions where favorable geologic structures such as salt diapires are not available, however, gas storage can only be implemented in porous media such as depleted gas and oil reservoirs or suitable saline aquifers. In such settings, a significant amount of in-situ gas components such as CO2, CH4 (and N2) will always be present, making the CO2/CH4/H2 system of particular interest. A precise estimation of the impact of their gas mixtures on the mineralogical, geochemical and petrophysical properties of specific reservoirs and caprocks is therefore crucial for site selection and optimization of storage depth. In the framework of the collaborative research project H2STORE, the feasibility of industrial-scale gas storage in porous media in several potential siliciclastic depleted gas and oil reservoirs or suitable saline aquifers is being investigated by means of experiments and modelling on actual core materials from the evaluated sites. Among them are the Altmark depleted gas reservoir in Saxony-Anhalt and the Ketzin pilot site for CO2 storage in Brandenburg (Germany). Further sites are located in the Molasse basin in South Germany and Austria. In particular, two

  9. Underground layout tradeoff study

    International Nuclear Information System (INIS)

    1988-01-01

    This report presents the results of a technical and economic comparative study of four alternative underground layouts for a nuclear waste geologic repository in salt. The four alternatives considered in this study are (1) separate areas for spent fuel (SF) and commercial high-level waste (CHLW); (2) panel alternation, in which SF and CHLW are emplaced in adjacent panels of rooms; (3) room alternation, in which SF and CHLW are emplaced in adjacent rooms within each panel; and (4) intimate mixture, in which SF and CHLW are emplaced in random order within each storage room. The study concludes that (1) cost is not an important factor; (2) the separate-areas and intimate-mixture alternatives appear, technically, to be more desirable than the other alternatives; and (3) the selection between the separate-areas and intimate mixture alternatives depends upon future resolution of site-specific and reprocessing questions. 5 refs., 6 figs., 12 tabs

  10. Storage of oil field-produced waters alters their chemical and microbiological characteristics.

    Science.gov (United States)

    Hulecki, Jordan C; Foght, Julia M; Fedorak, Phillip M

    2010-05-01

    Many oil fields are in remote locations, and the time required for shipment of produced water samples for microbiological examination may be lengthy. No studies have reported on how storage of oil field waters can change their characteristics. Produced water samples from three Alberta oil fields were collected in sterile, industry-approved 4-l epoxy-lined steel cans, sealed with minimal headspace and stored under anoxic conditions for 14 days at either 4 degrees C or room temperature (ca. 21 degrees C). Storage resulted in significant changes in water chemistry, microbial number estimates and/or community response to amendment with nitrate. During room-temperature storage, activity and growth of sulfate-reducing bacteria (and, to a lesser extent, fermenters and methanogens) in the samples led to significant changes in sulfide, acetate and propionate concentrations as well as a significant increase in most probable number estimates, particularly of sulfate-reducing bacteria. Sulfide production during room-temperature storage was likely to be responsible for the altered response to nitrate amendment observed in microcosms containing sulfidogenic samples. Refrigerated storage suppressed sulfate reduction and growth of sulfate-reducing bacteria. However, declines in sulfide concentrations were observed in two of the three samples stored at 4 degrees C, suggesting abiotic losses of sulfide. In one of the samples stored at room temperature, nitrate amendment led to ammonification. These results demonstrate that storage of oil field water samples for 14 days, such as might occur because of lengthy transport times or delays before analysis in the laboratory, can affect microbial numbers and activity as well as water sample chemistry.

  11. Characteristics on the heat storage and recovery by the underground spiral heat exchange pipe; Chichu maisetsu spiral kan ni yoru chikunetsu shunetsu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Imai, I. [Kure National College of Technology, Hiroshima (Japan); Taga, M. [Kinki University, Osaka (Japan)

    1996-10-27

    The consistency between the experimental value of a soil temperature and the calculation value of a soil temperature given by a non-steady heat conduction equation was confirmed. The experimental value is obtained by laying a spiral heat exchange pipe in the heat-insulated soil box and circulating hot water forcibly in the pipe. The temperature conductivity in soil significantly influences the heat transfer in soil. The storage performance is improved when the temperature conductivity increases because of the contained moisture. As the difference between the initial soil temperature and circulating water temperature becomes greater, the heat storage and recovery values increase. A thermal core heat transfer is done in the spiral pipe. Therefore, the diameter of the pipe little influences the heat storage performance, and the pitch influences largely. About 50 hours after heat is stored, the storage performance is almost the same as for a straight pipe that uses the spiral diameter as a pipe diameter. To obtain the same heat storage value, the spiral pipe is made of fewer materials than the straight pipe and low in price. The spiral pipe is more advantageous than the straight pipe in the necessary motive power and supply heat of a pump. 1 ref., 11 figs., 1 tab.

  12. Numerical modeling of the thermomechanical behavior of networks of underground galleries for the storage of the radioactive waste: approach by homogenization

    International Nuclear Information System (INIS)

    Zokimila, P.

    2005-10-01

    Deep geological disposal is one of the privileged options for the storage of High Level radioactive waste. A good knowledge of the behavior and properties of the potential geological formations as well as theirs evolution in time under the effect of the stress change induced by a possible installation of storage is required. The geological formation host will be subjected to mechanical and thermal solicitations due respectively to the excavation of the disposal tunnels and the release of heat of the canisters of radioactive waste. These thermomechanical solicitations will generate a stress relief in the host layer and disposal tunnels deformations as well as the extension of the damaged zones (EDZ) could cause local and global instabilities. This work aims to develop calculation methods to optimize numerical modeling of the thermoelastic behavior of the disposal at a large scale and to evaluate thermomechanical disturbance induced by storage on the geological formation host. Accordingly, after a presentation of the state of knowledge on the thermomechanical aspects of the rocks related to deep storage, of numerical modeling 2D and 3D of the thermoelastic behavior of individual disposal tunnel and a network of tunnels were carried out by a discrete approach. However, this classical approach is penalizing to study the global behavior of disposal storage. To mitigate that, an approach of numerical modeling, based on homogenization of periodic structures, was proposed. Formulations as numerical procedures were worked out to calculate the effective thermoelastic behavior of an equivalent heterogeneous structure. The model, obtained by this method, was validated with existing methods of homogenization such as the self-consistent model, as well as the Hashin-Shtrikman bounds. The comparison between the effective thermoelastic behavior and current thermoelastic behavior of reference showed a good coherence of the results. For an application to deep geological storage, the

  13. The feasibility of underground pumped storage plants in the active coal mines in the Ruhr district; Zur Machbarkeit untertaegiger Pumpspeicherwerke in den aktiven Steinkohlebergwerken des Ruhrreviers

    Energy Technology Data Exchange (ETDEWEB)

    Niemann, Andre; Wortberg, Timo [Duisburg-Essen Univ., Essen (Germany). Inst. fuer Wasserbau und Wasserwirtschaft; Eilert, Walter [RAG AG, Herne (Germany). Servicebereich Standort- und Geodienste

    2013-08-15

    With the expiration of the coal mining in 2018, the mining is leaving an extensive infrastructure. Shaft depths of up to 1200 m, numerous linings at depth and a large area drainage open perspectives for subsequent use as a subsurface pump storage plant. This could be at the current mining locations a contribution to the energy storage problem. [German] Mit dem Auslaufen des Steinkohlenbaus im Jahre 2018 hinterlaesst der Bergbau eine umfangreiche Infrastruktur. Schachttiefen von bis zu 1200 m, zahlreiche Ausbauten in der Tiefe und eine grossraeumige Wasserhaltung eroeffnen gegebenfalls Perspektiven fuer eine Folgenutzung als untertaegiges Pumpspeicherwerk. Damit koennte an den heutigen Bergbauorten ein Beitrag zur Energiespeicherproblematik verfolgt werden.

  14. Electric Field Manipulated Multilevel Magnetic States Storage in FePt/(011) PMN-PT Heterostructure.

    Science.gov (United States)

    Zhao, Xiaoyu; Wen, Jiahong; Yang, Bo; Zhu, Huachen; Cao, Qingqi; Wang, Dunhui; Qian, Zhenghong; Du, Youwei

    2017-10-18

    In the current information society, the realization of a magnetic storage technique with energy-efficient design and high storage density is greatly desirable. Here, we demonstrate that, without bias magnetic field, different values of remanent magnetization (M r ) can be obtained in a FePt/0.7Pb(Mg 1/3 Nb 2/3 )O 3 -0.3PbTiO 3 (PMN-PT) heterostructure by applying a unipolar electric field across the substrate. These multilevel magnetic signals can serve as writing data bits in a storage device, which remarkably increases the storage density. As for the data reading, these multilevel M r values can be read nondestructively and distinguishably using a commercial giant magnetoresistance magnetic sensor by converting the magnetic signal to voltage signal. Furthermore, these multilevel voltage signals show good retention and switching property, which enables promising applications in electric-writing magnetic-reading memory devices with low power consumption and high storage density.

  15. Prediction of ground motion from underground nuclear weapons tests as it relates to siting of a nuclear waste storage facility at NTS and compatibility with the weapons test program

    International Nuclear Information System (INIS)

    Vortman, L.J. IV.

    1980-04-01

    This report assumes reasonable criteria for NRC licensing of a nuclear waste storage facility at the Nevada Test Site where it would be exposed to ground motion from underground nuclear weapons tests. Prediction equations and their standard deviations have been determined from measurements on a number of nuclear weapons tests. The effect of various independent parameters on standard deviation is discussed. That the data sample is sufficiently large is shown by the fact that additional data have little effect on the standard deviation. It is also shown that coupling effects can be separated out of the other contributions to the standard deviation. An example, based on certain licensing assumptions, shows that it should be possible to have a nuclear waste storage facility in the vicinity of Timber Mountain which would be compatible with a 700 kt weapons test in the Buckboard Area if the facility were designed to withstand a peak vector acceleration of 0.75 g. The prediction equation is a log-log linear equation which predicts acceleration as a function of yield of an explosion and the distance from it

  16. Characterization of the rock salt for the design of underground storage in saline domes; Caracterizacion de la roca sal-gema para el diseno de almacenamientos en domos salinos

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Meyenberg, Lucia [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1987-12-31

    The saline domes are natural geological formations, that have been formed in the underground, through the passage of millions of years. In Europe, they are used for hydrocarbon storage; for instance France is planning to increase, in a short term, its crude storing capacity in domes of 5 to 10 millions cubic meters (60 million of barrel), holding capacity. Additionally, studies are being conducted on the stability of this type of domes, for the storage of nuclear wastes during 100 thousand or 1 million years. [Espanol] Los domos salinos son formaciones geologicas estructurales naturales, que se han constituido en el subsuelo, en el transcurso de millones de anos. En Europa, se aprovechan para almacenar hidrocarburo; por ejemplo, Francia planea aumentar, a corto plazo, su capacidad de almacenamiento de crudo en domos de 5 a 10 millones de metros cubicos (60 millones de barriles). Ademas, se realizan estudios de estabilidad en este tipo de domos, para almacenar desechos nucleares durante 100 mil o 1 millon de anos.

  17. Deriving 3-D Time-Series Ground Deformations Induced by Underground Fluid Flows with InSAR: Case Study of Sebei Gas Fields, China

    Directory of Open Access Journals (Sweden)

    Xiaoge Liu

    2017-11-01

    Full Text Available Multi-temporal Interferometric Synthetic Aperture Radar (MT-InSAR technique has proven to be a powerful tool for the monitoring of time-series ground deformations along the line-of-sight (LOS direction. However, the one-dimensional (1-D measurements cannot provide comprehensive information for interpreting the related geo-hazards. Recently, a novel method has been proposed to map the three-dimensional (3-D deformation associated with underground fluid flows based on single-track InSAR LOS measurements and the deformation modeling associated with the Green’s function. In this study, the method is extended in temporal domain by exploiting the MT-InSAR measurements, and applied for the first time to investigate the 3-D time series deformation over Sebei gas field in Qinghai, Northwest China with 37 Sentinel-1 images acquired during October 2014–July 2017. The estimated 3-D time series deformations provide a more complete view of ongoing deformation processes as compared to the 1-D time series deformations or the 3-D deformation velocities, which is of great importance for assessing the possible geohazards. In addition, the extended method allows for the retrieval of time series of fluid volume changes due to the gas extraction in the Sebei field, which agrees well with those from the PetroChina Qinghai Oilfield Company Yearbooks (PQOCYs. This provides a new way to study the variations of subsurface fluids at unprecedented resolution.

  18. Natural resources and geothermal energy in the Netherlands. Annual report 2012. A review of exploration and production activities and underground storage; Delfstoffen en Aardwarmte in Nederland. Jaarverslag 2012. Een overzicht van opsporings- en winningsactiviteiten en van ondergrondse opslag

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-15

    The annual review reports on the activities and results of exploration and production of hydrocarbons, rock salt and geothermal energy in the Netherlands. Moreover the underground storage of various substances (e.g. natural gas, nitrogen, CO2 and brackish water) is included as well. In this way all the exploration, production and storage activities in the Netherlands and the Netherlands' part of the Continental shelf, related to the realm of the Mining Act, are combined in this report. The first section of the report deals with developments during the year 2012. The section shows the developments in the exploration, production and underground storage of hydrocarbons. It concerns changes in natural gas and oil resource estimates during 2012 and the way these changes affected the situation at 1 January 2013. This section also presents a prognosis for the gas production for the next 25 years. This year the remaining resources of natural gas and oil are reported in accordance with the Petroleum Resource Management System. This system should lead to a uniform classification of all reported resources. Subsequently, a number of tables summarise developments during 2012, with respect to licences and exploration efforts (seismic surveys and wells drilled). This section ends with a summary of the volumes of natural gas, condensate and oil that were produced in 2012. The subsequent chapters report on the exploration for and production of coal, rock salt and geothermal energy and on the underground storage of substances. The second section comprises a large number of annexes that report on the current situation as well as on historical developments during the past decades. Subsequently an overview of the situation as at 1 January 2013 is presented in the final part of the review [Dutch] Het Jaarverslag rapporteert over de activiteiten en resultaten van de opsporing en winning van koolwaterstoffen, steenzout en aardwarmte in Nederland. Daarnaast komt de ondergrondse opslag

  19. Neutron field characterization at the independent spent fuel storage installation of the Trillo nuclear power plant.

    Science.gov (United States)

    Campo, Xandra; Méndez, Roberto; Embid, Miguel; Ortego, Alberto; Novo, Manuel; Sanz, Javier

    2018-05-01

    Neutron fields inside and outside the independent spent fuel storage installation of Trillo Nuclear Power Plant are characterized exhaustively in terms of neutron spectra and ambient dose equivalent, measured by Bonner sphere system and LB6411 monitor. Measurements are consistent with storage casks and building shield characteristics, and also with casks distribution inside the building. Outer values at least five times lower than dose limit for free access area are found. Measurements with LB6411 and spectrometer are consistent with each other. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Electric field induced strain, switching and energy storage behaviour of lead free Barium Zirconium Titanate ceramic

    Science.gov (United States)

    Badapanda, T.; Chaterjee, S.; Mishra, Anupam; Ranjan, Rajeev; Anwar, S.

    2017-09-01

    There is a huge demand of lead-free high performance ceramics with large strain, low hysteresis loss and high-energy storage ability at room temperature. In this context, we investigated the large electric field induced strain, switching behaviour and energy storage properties of BaZr0.05Ti0.95O3 ceramic (BZT) prepared by high energy ball milling technique, reportedly exhibiting a triple point transition near the room temperature. The X-ray diffraction of the BZT ceramic confirms orthorhombic symmetry with space group Amm2 at room temperature. The room temperature dielectric study reveals that there is a negligible variation of dielectric constant and dielectric loss with frequency. The polarization behaviour at various applied electric fields was studied and the energy storage densities were obtained from the integral area of P-E loops. Electric field induced strain behaviour has been studied with due emphasis on the electrostrictive response at room temperature. The ferroelectric and electromechanical properties derived from the P-E and S-E loops suggest that the present ceramic encompass the properties of actuation and energy storage simultaneously.

  1. Seasonal Manure Application Timing and Storage Effects on Field- and Watershed-Level Phosphorus Losses.

    Science.gov (United States)

    Liu, Jian; Veith, Tamie L; Collick, Amy S; Kleinman, Peter J A; Beegle, Douglas B; Bryant, Ray B

    2017-11-01

    Timing of manure application to agricultural soils remains a contentious topic in nutrient management planning, particularly with regard to impacts on nutrient loss in runoff and downstream water quality. We evaluated the effects of seasonal manure application and associated manure storage capacity on phosphorus (P) losses at both field and watershed scales over an 11-yr period, using long-term observed data and an upgraded, variable-source water quality model called Topo-SWAT. At the field level, despite variation in location and crop management, manure applications throughout fall and winter increased annual total P losses by 12 to 16% and dissolved P by 19 to 40% as compared with spring. Among all field-level scenarios, total P loss was substantially reduced through better site targeting (by 48-64%), improving winter soil cover (by 25-46%), and reducing manure application rates (by 1-23%). At the watershed level, a scenario simulating 12 mo of manure storage (all watershed manure applied in spring) reduced dissolved P loss by 5% and total P loss by 2% but resulted in greater P concentrations peaks compared with scenarios simulating 6 mo (fall-spring application) or 3 mo storage (four-season application). Watershed-level impacts are complicated by aggregate effects, both spatial and temporal, of manure storage capacity on variables such as manure application rate and timing, and complexities of field and management. This comparison of the consequences of different manure storage capacities demonstrated a tradeoff between reducing annual P loss through a few high-concentration runoff events and increasing the frequency of low peaks but also increasing the annual loss. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Case histories in scientific and pseudo-scientific mass-media communication in energy/heat production from underground (geogas storage, geothermics, hydrocarbons), in the frame of Nimby Sindrome enhancement in Europe: the proposal of a new European Direct

    Science.gov (United States)

    Quattrocchi, Fedora; Boschi, Enzo

    2014-05-01

    In the frame of energy/heat production from underground, the paper considers some European case histories and the needs of a complex and motley stakeholders community, made by scientific-industry-institutions, involved in the difficult task to study and accept (or refuse) projects strongly impacting the lived territory & underground, in densely populate countries, as Italy, in terms of appropriate public communication and sound deontological behaviour. Successively, the paper recalls years of "scientific" communication within the mass-media, highlighting the positive and negative messages, in comparison to the true and objective experimental data gathered by the real scientific work, as perceived by citizens of medium scholastic culture, which not delve the geologic disciplines, but receive simply the journalistic front-end, very often as sensationalist scoop. The authors retrace case histories of heuristic-participatory communication with the citizenship about the scientific results on challenges raised by certain technologies. The objective and rational communication is often impeded by local interests and by local journalism, which prefers to create sensationalist news more than scientific truths. This path progressively tangles as a consequence of the complex and with conflicting use of underground to produce energy (heat as gas storage, geothermical, unconventional gas exploitation, mining, etc…). Even the chain of renewables meets by now serious issues, exacerbated also by the need to start mining and drilling for the smart grids materials too (metals, rare Earths, etc..). A new text for a smart and innovative European Directivity is discussed, starting from the Italian regulatory issue. The review efforts for a "paper" on both a newspaper or a blog could be more difficult than the review a scientific paper, as a consequence of the peculiar situations behind the scenes and the conflicts of interests staying in the nest in a newspaper article or in a blog

  3. Dynamic Underground Stripping Demonstration Project

    International Nuclear Information System (INIS)

    Aines, R.; Newmark, R.; McConachie, W.; Rice, D.; Ramirez, A.; Siegel, W.; Buettner, M.; Daily, W.; Krauter, P.; Folsom, E.; Boegel, A.J.; Bishop, D.; udel, K.

    1992-03-01

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation and underground imaging techniques for use in rapid cleanup of localized underground spills. Called ''Dynamic Stripping'' to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first 8 months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques before moving to the contaminated site in FY 92

  4. Underground Layout Configuration

    International Nuclear Information System (INIS)

    A. Linden

    2003-01-01

    The purpose of this analysis was to develop an underground layout to support the license application (LA) design effort. In addition, the analysis will be used as the technical basis for the underground layout general arrangement drawings

  5. Electric field detection of coherent synchrotron radiation in a storage ring generated using laser bunch slicing

    International Nuclear Information System (INIS)

    Katayama, I.; Shimosato, H.; Bito, M.; Furusawa, K.; Adachi, M.; Zen, H.; Kimura, S.; Katoh, M.; Shimada, M.; Yamamoto, N.; Hosaka, M.; Ashida, M.

    2012-01-01

    The electric field of coherent synchrotron radiation (CSR) generated by laser bunch slicing in a storage ring has been detected by an electro-optic sampling method. The gate pulses for sampling are sent through a large-mode-area photonic-crystal fiber. The observed electric field profile of the CSR is in good agreement with the spectrum of the CSR observed using Fourier transform far-infrared spectrometry, indicating good phase stability in the CSR. The longitudinal density profiles of electrons modulated by laser pulses were evaluated from the electric field profile.

  6. Influence of spatial discretization, underground water storage and glacier melt on a physically-based hydrological model of the Upper Durance River basin

    Science.gov (United States)

    Lafaysse, M.; Hingray, B.; Etchevers, P.; Martin, E.; Obled, C.

    2011-06-01

    SummaryThe SAFRAN-ISBA-MODCOU hydrological model ( Habets et al., 2008) presents severe limitations for alpine catchments. Here we propose possible model adaptations. For the catchment discretization, Relatively Homogeneous Hydrological Units (RHHUs) are used instead of the classical 8 km square grid. They are defined from the dilineation of hydrological subbasins, elevation bands, and aspect classes. Glacierized and non-glacierized areas are also treated separately. In addition, new modules are included in the model for the simulation of glacier melt, and retention of underground water. The improvement resulting from each model modification is analysed for the Upper Durance basin. RHHUs allow the model to better account for the high spatial variability of the hydrological processes (e.g. snow cover). The timing and the intensity of the spring snowmelt floods are significantly improved owing to the representation of water retention by aquifers. Despite the relatively small area covered by glaciers, accounting for glacier melt is necessary for simulating the late summer low flows. The modified model is robust over a long simulation period and it produces a good reproduction of the intra and interannual variability of discharge, which is a necessary condition for its application in a modified climate context.

  7. Seismic Monitoring of Rockbursts and Underground Blastings for Assessing the Stability of Deep Mine Workings at Kolar Gold Fields,

    Science.gov (United States)

    1995-08-14

    are being put to improve upon the prediction algorithms for short range prediction. Fractal character of microseismic precursor to rockbursts will be...Engineering Geology Vol. 10., Nos 2-4, pp.99-122. 2. Guha, S.K., (1982) - Seismological study of the rockbursts at the Kolar Gold Field, India, Proc. IV...Congress International Association of Engineering Geology , VoI.IV, New Delhi, India. 3. Jha, P.C., and Chouhan, R.K.S., (1994) - Long range rockburst

  8. Underground pipeline corrosion

    CERN Document Server

    Orazem, Mark

    2014-01-01

    Underground pipelines transporting liquid petroleum products and natural gas are critical components of civil infrastructure, making corrosion prevention an essential part of asset-protection strategy. Underground Pipeline Corrosion provides a basic understanding of the problems associated with corrosion detection and mitigation, and of the state of the art in corrosion prevention. The topics covered in part one include: basic principles for corrosion in underground pipelines, AC-induced corrosion of underground pipelines, significance of corrosion in onshore oil and gas pipelines, n

  9. A national assessment of underground natural gas storage: identifying wells with designs likely vulnerable to a single-point-of-failure

    Science.gov (United States)

    Michanowicz, Drew R.; Buonocore, Jonathan J.; Rowland, Sebastian T.; Konschnik, Katherine E.; Goho, Shaun A.; Bernstein, Aaron S.

    2017-05-01

    The leak of processed natural gas (PNG) from October 2015 to February 2016 from the Aliso Canyon storage facility, near Los Angeles, California, was the largest single accidental release of greenhouse gases in US history. The Interagency Task Force on Natural Gas Storage Safety and California regulators recently recommended operators phase out single-point-of-failure (SPF) well designs. Here, we develop a national dataset of UGS well activity in the continental US to assess regulatory data availability and uncertainty, and to assess the prevalence of certain well design deficiencies including single-point-of-failure designs. We identified 14 138 active UGS wells associated with 317 active UGS facilities in 29 states using regulatory and company data. State-level wellbore datasets contained numerous reporting inconsistencies that limited data concatenation. We identified 2715 active UGS wells across 160 facilities that, like the failed well at Aliso Canyon, predated the storage facility, and therefore were not originally designed for gas storage. The majority (88%) of these repurposed wells are located in OH, MI, PA, NY, and WV. Repurposed wells have a median age of 74 years, and the 2694 repurposed wells constructed prior to 1979 are particularly likely to exhibit design-related deficiencies. An estimated 210 active repurposed wells were constructed before 1917—before cement zonal isolation methods were utilized. These wells are located in OH, PA, NY, and WV and represent the highest priority related to potential design deficiencies that could lead to containment loss. This national baseline assessment identifies regulatory data uncertainties, highlights a potentially widespread vulnerability of the natural gas supply chain, and can aid in prioritization and oversight for high-risk wells and facilities.

  10. Underground laboratories in Europe

    International Nuclear Information System (INIS)

    Coccia, E

    2006-01-01

    The only clear evidence today for physics beyond the standard model comes from underground experiments and the future activity of underground laboratories appears challenging and rich. I review here the existing underground research facilities in Europe. I present briefly the main characteristics, scientific activity and perspectives of these Laboratories and discuss the present coordination actions in the framework of the European Union

  11. Entrepreneurial Opportunity in Denmark’s Underground Economy

    DEFF Research Database (Denmark)

    Rezaei, Shahamak; Dana, L-P; Vang, Jan

    Based on interviews with immigrants to Denmark, meetings with stakeholders and with experts in the field, this article addresses issues regarding the underground economy in Denmark. What circumstances and factors characterise specific sectors or breaches to the ones in which undocumented immigrants...... participate in underground economic activities? Is the underground economy a pull factor for irregular/undocumented migration?...

  12. FIELD-DEPLOYABLE SAMPLING TOOLS FOR SPENT NUCLEAR FUEL INTERROGATION IN LIQUID STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Berry, T.; Milliken, C.; Martinez-Rodriguez, M.; Hathcock, D.; Heitkamp, M.

    2012-09-12

    Methodology and field deployable tools (test kits) to analyze the chemical and microbiological condition of aqueous spent fuel storage basins and determine the oxide thickness on the spent fuel basin materials were developed to assess the corrosion potential of a basin. this assessment can then be used to determine the amount of time fuel has spent in a storage basin to ascertain if the operation of the reactor and storage basin is consistent with safeguard declarations or expectations and assist in evaluating general storage basin operations. The test kit was developed based on the identification of key physical, chemical and microbiological parameters identified using a review of the scientific and basin operations literature. The parameters were used to design bench scale test cells for additional corrosion analyses, and then tools were purchased to analyze the key parameters. The tools were used to characterize an active spent fuel basin, the Savannah River Site (SRS) L-Area basin. The sampling kit consisted of a total organic carbon analyzer, an YSI multiprobe, and a thickness probe. The tools were field tested to determine their ease of use, reliability, and determine the quality of data that each tool could provide. Characterization confirmed that the L Area basin is a well operated facility with low corrosion potential.

  13. Sealing efficiency of an argillite-bentonite plug subjected to gas pressure, in the context of deep underground nuclear waste storage

    International Nuclear Information System (INIS)

    Liu, Jiang-Feng

    2013-01-01

    In France, the deep underground nuclear waste repository consists of a natural barrier (in an argillaceous rock named argillite), associated to artificial barriers, including plugs of swelling clay (bentonite)-sand for tunnel sealing purposes. The main objective of this thesis is to assess the sealing efficiency of the bentonite-sand plug in contact with argillite, in presence of both water and gas pressures. To assess the sealing ability of partially water-saturated bentonite/sand plugs, their gas permeability is measured under varying confining pressure (up to 12 MPa). It is observed that tightness to gas is achieved under confinement greater than 9 MPa for saturation levels of at least 86-91%. We than assess the sealing efficiency of the bentonite-sand plug placed in a tube of argillite or of Plexiglas-aluminium (with a smooth or a rough interface). The presence of pressurized gas affects the effective swelling pressure at values P gas from 4 MPa. Continuous gas breakthrough of fully water-saturated bentonite-sand plugs is obtained for gas pressures on the order of full swelling pressure (7-8 MPa), whenever the plug is applied along a smooth interface. Whenever a rough interface is used in contact with the bentonite-sand plug, a gas pressure significantly greater than its swelling pressure is needed for gas to pass continuously. Gas breakthrough tests show that the interface between plug/argillite or the argillite itself are two preferential pathways for gas migration, when the assembly is fully saturated. (author)

  14. Underground laboratory in China

    Science.gov (United States)

    Chen, Heshengc

    2012-09-01

    The underground laboratories and underground experiments of particle physics in China are reviewed. The Jinping underground laboratory in the Jinping mountain of Sichuan, China is the deepest underground laboratory with horizontal access in the world. The rock overburden in the laboratory is more than 2400 m. The measured cosmic-ray flux and radioactivities of the local rock samples are very low. The high-purity germanium experiments are taking data for the direct dark-matter search. The liquid-xenon experiment is under construction. The proposal of the China National Deep Underground Laboratory with large volume at Jinping for multiple discipline research is discussed.

  15. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 9: Design approaches, CAES. Appendix D: Mechanical systems

    Science.gov (United States)

    1981-04-01

    The development of the design approach taken for the mechanical systems included in a compressed air energy storage (CAES) facility were documented. Design approaches developed the fuel oil system, water supply system, waste treatment system, fire protection and safety system, and miscellaneous plant services are based on similar designs for conventional utility plants because the operating characteristics, design parameters, and equipment capabilities for CAES plant mechanical systems are similar to standard utility systems. The design approach for each of these systems develops several alternatives for achieving the CAES plant requirements in each area. The preferred alternative is then expanded into a preliminary system description.

  16. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 8: Design approaches: UPH. Appendix A: Upper reservoir

    Science.gov (United States)

    1981-04-01

    Overriding considerations including operating range, volume and lining of reservoir, embankment design, intake/outlet arrangements and filling and make up water provisions were studied within the context of minimizing facility costs and optimizing the plant layout. The study led to the selection of a reservoir formed by embankment of compacted rockfill together with an intake/outlet structure located in the embankment. The reservoir floor and upstream slopes of the embankment will have an asphalt lining to prevent leakage. The material and cost estimates presented are based on the requirements for a 2000 MW plant providing 20,000 MWh of storage with a nominal head of 4600 ft.

  17. Aquifer exploration for underground gas storage. Results of the Hinrichshagen project, NE Germany; UGS-Eignungspruefung. Ergebnisse der Nacherkundung der Struktur Hinrichshagen

    Energy Technology Data Exchange (ETDEWEB)

    Engelmann, M.; Stoewer, M. [UGS GmbH, Mittenwalde (Germany); Neumann, V.; Zuehlke, M. [GAZPROM Germania GmbH, Berlin (Germany)

    2012-11-15

    Natural gas is a major component of the European energy mix. In 2011, about one third of Germany's import of natural gas was of Russian origin. After completion a maximum of about 55 billion m{sup 3}/a can be transported from Russia to Central and Western Europe via the 1200 km Nord Stream pipeline through the Baltic Sea. The pipeline has currently no storage capacity before its entry-point in Germany. Therefore, suitable geologic structures located in the Northeastern part of Germany were evaluated accordingly. Based on available vintage data the anticline structure of Hinrichshagen was identified as the most suitable storage site. The initial evaluation of the anticline in the 70ies based on ten wells and dozens of km 2D seismic resulted in a proof of suitability and led to a recommendation for further development of a storage site. Although the initial data pool seemed to be very good and the model of the structure and the storage operation was free of any contradictions the decision to perform a second phase of exploration was of vital importance for that project. The wireline programme encompassed a full log suite including FMI and NMR logs. Well tests using reservoir fluid (brine) were performed to check the lateral and vertical interference between the wells. Approx. 310 m cores were gained from the monitor horizon, the seal and the reservoir. The results of core and logging analysis and the interpretation of the high resolution 3D seismic survey built the base of both the static and dynamic model. The initial structural concept of Hinrichshagen anticline had to be revised significantly. The new model shows a tectonically strong faulted and segmented anticline. The main difference compared to the vintage data was the identification of a central fault zone cutting the anticline in a Western and Eastern part, which has previously not been identifiable by the use of both old and new well data only. As a result the working gas capacity was reduced to approx

  18. Earthquake damage to underground facilities

    International Nuclear Information System (INIS)

    Pratt, H.R.; Stephenson, D.E.; Zandt, G.; Bouchon, M.; Hustrulid, W.A.

    1980-01-01

    In order to assess the seismic risk for an underground facility, a data base was established and analyzed to evaluate the potential for seismic disturbance. Substantial damage to underground facilities is usually the result of displacements primarily along pre-existing faults and fractures, or at the surface entrance to these facilities. Evidence of this comes from both earthquakes and large explosions. Therefore, the displacement due to earthquakes as a function of depth is important in the evaluation of the hazard to underground facilities. To evaluate potential displacements due to seismic effects of block motions along pre-existing or induced fractures, the displacement fields surrounding two types of faults were investigated. Analytical models were used to determine relative displacements of shafts and near-surface displacement of large rock masses. Numerical methods were used to determine the displacement fields associated with pure strike-slip and vertical normal faults. Results are presented as displacements for various fault lengths as a function of depth and distance. This provides input to determine potential displacements in terms of depth and distance for underground facilities, important for assessing potential sites and design parameters

  19. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 8: Design approaches. UPH. Appendix E: Lower reservoir

    Science.gov (United States)

    1981-04-01

    Operational, construction, and geotechnical requirements were examined. Overriding considerations including operating range, volume, construction methods, cavern cross section and reservoir layout were studied within the context of minimizing facility costs and optimizing the plant layout. The study led to a preliminary arrangement of fourteen parallel caverns, each 60 ft wide by 85 ft high in cross section and 3610 ft in length. The requirements for and preliminary design of the intermediate reservoir in the case of a two step UPH facility is also described. The design and the cost estimates presented are based on the requirements for a 2000 MW plant providing 20,000 MWh of storage at a nominal head of 4600 ft.

  20. Methane Storage in Nanoporous Media as Observed via High-Field NMR Relaxometry

    Science.gov (United States)

    Papaioannou, A.; Kausik, R.

    2015-08-01

    The storage properties of methane gas in Vycor porous glass (5.7 nm) are characterized in a wide pressure range from 0.7 to 89.7 MPa using nuclear magnetic resonance. We demonstrate the capability of high-field nuclear-magnetic-resonance relaxometry for the determination of the methane-gas storage capacity and the measurement of the hydrogen index, to a high degree of accuracy. This helps determine the excess gas in the pore space which can be identified to exhibit Langmuir properties in the low pressure regime of 0.7 to 39.6 MPa. The Langmuir model enables us to determine the equilibrium density of the monolayer of adsorbed gas to be 8.5% lower than that of liquid methane. We also identify the signatures of multilayer adsorption at the high pressure regime from 39.6 to 89.7 MPa and use the Brunauer-Emmet-Teller theory to determine the number of adsorbed layers of methane gas. We show how these measurements help us differentiate the gas stored in the Vycor pore space into free and adsorbed fractions for the entire pressure range paving way for similar applications such as studying natural-gas storage in gas shale rock or hydrogen storage in carbon nanotubes.

  1. A review of international underground laboratory developments

    International Nuclear Information System (INIS)

    Cheng Jianping; Yue Qian; Wu Shiyong; Shen Manbin

    2011-01-01

    Underground laboratories are essential for various important physics areas such as the search for dark matter, double beta decay, neutrino oscillation, and proton decay. At the same time, they are also a very important location for studying rock mechanics, earth structure evolution,and ecology. It is essential for a nation's basic research capability to construct and develop underground laboratories. In the past, China had no high-quality underground laboratory,in particular no deep underground laboratory,so her scientists could not work independently in major fields such as the search for dark matter,but had to collaborate with foreign scientists and share the space of foreign underground laboratories. In 2009, Tsinghua university collaborated with the Ertan Hydropower Development Company to construct an extremely deep underground laboratory, the first in China and currently the deepest in the world, in the Jinping traffic tunnel which was built to develop hydropower from the Yalong River in Sichuan province. This laboratory is named the China Jinping Underground Laboratory (CJPL) and formally opened on December 12, 2010. It is now a major independent platform in China and can host various leading basic research projects. We present a brief review of the development of various international underground laboratories,and especially describe CJPL in detail. (authors)

  2. Natural and Artificial Methods for Regeneration of Heat Resources for Borehole Heat Exchangers to Enhance the Sustainability of Underground Thermal Storages: A Review

    Directory of Open Access Journals (Sweden)

    Tomasz Sliwa

    2015-09-01

    Full Text Available The concept of borehole heat exchanger (BHE field exploitation is described, along with problems regarding the sustainability of heat resources in rock masses. A BHE field sometimes has problems with the stability of the heat carrier temperature during long-term exploitation. The main reason for this is an insufficient heat stream with which to transfer heat by conduction in rock. Possibilities for the regeneration of heat in rock masses, based on experiences at the Geoenergetics Laboratory (Drilling, Oil and Gas Faculty, AGH University of Science and Technology, are described.

  3. Feasibility of CO{sub 2} geological storage in the Xingou oil field, Jianghan Basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Sanxi [School of Environmental Studies, China University of Geosciences, Wuhan, 430074 (China); Changsha Engineering and Research Institute Ltd. of Nonferrous Metallurgy, Changsha, 410001 (China); Shana, Huimei; Li, Yilian [School of Environmental Studies, China University of Geosciences, Wuhan, 430074 (China); Yang, Zhen; Zhong, Zhaohong [Changsha Engineering and Research Institute Ltd. of Nonferrous Metallurgy, Changsha, 410001 (China)

    2013-07-01

    Geological storage of CO{sub 2} as an effective way of reducing CO{sub 2} output to the atmosphere receives growing attention worldwide. To evaluate the feasibility of this technique in the Xingou oil field of Jianghan Basin in China, 2D and 3D models of CO{sub 2} geological storage were established using TOUGH2 software. Results showed that CO{sub 2} gas can be stored in the deepest reservoir through continuous injection over 50 years, and will remain effectively confined within the space under the second cap-rock during its diffusion over 500 years. Compared with 2D models, 3D models showed that the diffusion process of CO{sub 2} gas in the reservoir will create a mushroom-shaped zone of influence. (authors)

  4. Radionuclides in an underground environment

    International Nuclear Information System (INIS)

    Thompson, J.L.

    1996-01-01

    In the 100 years since Becquerel recognized radioactivity, mankind has been very successful in producing large amounts of radioactive materials. We have been less successful in reaching a consensus on how to dispose of the billions of curies of fission products and transuranics resulting from nuclear weapons testing, electrical power generation, medical research, and a variety of other human endeavors. Many countries, including the United States, favor underground burial as a means of disposing of radioactive wastes. There are, however, serious questions about how such buried wastes may behave in the underground environment and particularly how they might eventually contaminate water, air and soil resources on which we are dependent. This paper describes research done in the United States in the state of Nevada on the behavior of radioactive materials placed underground. During the last thirty years, a series of ''experiments'' conducted for other purposes (testing of nuclear weapons) have resulted in a wide variety of fission products and actinides being injected in rock strata both above and below the water table. Variables which seem to control the movement of these radionuclides include the physical form (occlusion versus surface deposition), the chemical oxidation state, sorption by mineral phases of the host rock, and the hydrologic properties of the medium. The information gained from these studies should be relevant to planning for remediation of nuclear facilities elsewhere in the world and for long-term storage of nuclear wastes

  5. Approche économique de l'exploration des stockages souterrains de gaz en nappe aquifère Economic Approach to Exploration for Underground Gas Storage Facilities in Aquifers

    Directory of Open Access Journals (Sweden)

    Colonna J.

    2006-11-01

    Full Text Available Dans le cadre de la recherche des stockages souterrains de gaz, le Département Réservoirs Souterrains de Gaz de France est amené à établir un programme d'exploration destiné à sélectionner définitivement, et au moindre coût, les structures capables de satisfaire la demande. Cette sélection passe par une estimation des probabilités de rejet ou d'abandon affectant les différentes structures susceptibles de donner lieu à une exploration. Il faut ensuite constituer le programme d'exploration de chacun des sites retenus après cet examen; ce programme consiste en une liste d'opérations (forage, sismique, essai hydraulique, forage à faible profondeur etc. qui mettront le plus vite possible en évidence : - d'une part les défauts; - d'autre part les principales caractéristiques techniques de la structure étudiée. La règle est d'atteindre la décision sur la faisabilité du site au stockage avec le moindre coût d'exploration. Pour ce faire, une analyse détaillée des causes potentielles d'abandon (recensement des défauts permet de choisir les opérations à effectuer, et d'associer à chacun des défauts recensés, l'opération ou l'ensemble d'opérations permettant de le détecter de façon certaine. Alors les estimateurs économiques tels que l'espérance de dépense, le risque financier, l'espérance de gain, sont calculés pour chacun des programmes, en vue de déterminer l'ordre d'exécution optimal des opérations. L'intérêt d'une telle approche, en ce qui concerne la réduction des dépenses d'exploration, est illustré par un exemple. As part of its work concerning the search for underground gas storage sites, the Underground Storage Department of Gaz de France has established an exploration program for the definitive and lowcost selection of suitable geological structures. This selection involves estimating probabilities of rejecting or abandoning different structures liable to be targets for exploration. The

  6. Sensitivity of storage field performance to geologic and cavern design parameters in salt domes.

    Energy Technology Data Exchange (ETDEWEB)

    Ehgartner, Brian L. (Sandia National Laboratories, Albuquerque, NM); Park, Byoung Yoon

    2009-03-01

    A sensitivity study was performed utilizing a three dimensional finite element model to assess allowable cavern field sizes for strategic petroleum reserve salt domes. A potential exists for tensile fracturing and dilatancy damage to salt that can compromise the integrity of a cavern field in situations where high extraction ratios exist. The effects of salt creep rate, depth of salt dome top, dome size, caprock thickness, elastic moduli of caprock and surrounding rock, lateral stress ratio of surrounding rock, cavern size, depth of cavern, and number of caverns are examined numerically. As a result, a correlation table between the parameters and the impact on the performance of storage field was established. In general, slower salt creep rates, deeper depth of salt dome top, larger elastic moduli of caprock and surrounding rock, and a smaller radius of cavern are better for structural performance of the salt dome.

  7. Underground laboratories in Asia

    Science.gov (United States)

    Lin, Shin Ted; Yue, Qian

    2015-08-01

    Deep underground laboratories in Asia have been making huge progress recently because underground sites provide unique opportunities to explore the rare-event phenomena for the study of dark matter searches, neutrino physics and nuclear astrophysics as well as the multi-disciplinary researches based on the low radioactive environments. The status and perspectives of Kamioda underground observatories in Japan, the existing Y2L and the planned CUP in Korea, India-based Neutrino Observatory (INO) in India and China JinPing Underground Laboratory (CJPL) in China will be surveyed.

  8. Underground laboratories in Asia

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shin Ted, E-mail: linst@mails.phys.sinica.edu.tw [College of Physical Science and Technology, Sichuan University, Chengdu 610064 China (China); Yue, Qian, E-mail: yueq@mail.tsinghua.edu.cn [Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084 China (China)

    2015-08-17

    Deep underground laboratories in Asia have been making huge progress recently because underground sites provide unique opportunities to explore the rare-event phenomena for the study of dark matter searches, neutrino physics and nuclear astrophysics as well as the multi-disciplinary researches based on the low radioactive environments. The status and perspectives of Kamioda underground observatories in Japan, the existing Y2L and the planned CUP in Korea, India-based Neutrino Observatory (INO) in India and China JinPing Underground Laboratory (CJPL) in China will be surveyed.

  9. Underground laboratories in Asia

    International Nuclear Information System (INIS)

    Lin, Shin Ted; Yue, Qian

    2015-01-01

    Deep underground laboratories in Asia have been making huge progress recently because underground sites provide unique opportunities to explore the rare-event phenomena for the study of dark matter searches, neutrino physics and nuclear astrophysics as well as the multi-disciplinary researches based on the low radioactive environments. The status and perspectives of Kamioda underground observatories in Japan, the existing Y2L and the planned CUP in Korea, India-based Neutrino Observatory (INO) in India and China JinPing Underground Laboratory (CJPL) in China will be surveyed

  10. Addendum to the corrective action plan for Underground Storage Tanks 1219-U, 1222-U, 2082-U, 2068-U at the Rust Garage Facility, Buildings 9720-15 and 9754-1: Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Facility ID number-sign 0-010117

    International Nuclear Information System (INIS)

    1994-01-01

    This document represents an addendum to the Corrective Action Plan (CAP) for underground storage tanks 1219-U, 2082-U, and 2068-U located at Buildings 9720-15 and 9754-1, Oak Ridge Y-12 Plant, Oak Ridge, TN. The site of the four underground storage tanks is commonly referred to as the Rust Garage Facility. The original CAP was submitted to the Tennessee Department of Environment and Conservation (TDEC) for review in May 1992. During the time period after submission of the original CAP for the Rust Garage Facility, Y-12 Plant Underground Storage Tank (UST) Program personnel continued to evaluate improvements that would optimize resources and expedite the activities schedule presented in the original CAP. Based on these determinations, several revisions to the original corrective action process options for remediation of contaminated soils are proposed. The revised approach will involve excavation of the soils from the impacted areas, on-site thermal desorption of soil contaminants, and final disposition of the treated soils by backfilling into the subject site excavations. Based on evaluation of the corrective actions with regard to groundwater, remediation of groundwater under the Y-12 Plant CERCLA Program is proposed for the facility

  11. Radioactive wastes: underground laboratories implantation

    International Nuclear Information System (INIS)

    Bataille, Ch.

    1997-01-01

    This article studies the situation of radioactive waste management, more especially the possible storage in deep laboratories. In front of the reaction of public opinion relative to the nuclear waste question, it was essential to begin by a study on the notions of liability, transparence and democracy. At the beginning, it was a matter of underground researches with a view to doing an eventual storage of high level radioactive wastes. The Parliament had to define, through the law, a behaviour able to come to the fore for anybody. A behaviour which won recognition from authorities, from scientists, from industrial people, which guarantees the rights of populations confronted to a problem whom they were not informed, on which they received only few explanations. (N.C.)

  12. An Electric Field Assembler System for Micro-Nanofabrication of Energy Storage Materials.

    Science.gov (United States)

    Song, Youngjun; Heller, Michael J

    2015-11-01

    Traditional methods have limitations for the fabrication of micro-ordered batteries for use in a variety of applications including biomedical and healthcare devices. A new micro-nanofabrication method and system that combines deposition, layering, and patterning processes has now been developed for production of micro-ordered energy storage battery devices and materials. Here, we show an electrical field directed (EFD) deposition array device with a 500 μm active assembly area containing 25 microelectrodes. Using EFD assembly, we demonstrated the patterned deposition of graphite mixtures in water-based and solvent-based solutions. The graphite mixture patterns were confirmed by SEM imaging.

  13. CO2 geological storage into a lateral aquifer of an offshore gas field in the South China Sea: storage safety and project design

    Science.gov (United States)

    Zhang, Liang; Li, Dexiang; Ezekiel, Justin; Zhang, Weidong; Mi, Honggang; Ren, Shaoran

    2015-06-01

    The DF1-1 gas field, located in the western South China Sea, contains a high concentration of CO2, thus there is great concern about the need to reduce the CO2 emissions. Many options have been considered in recent years to dispose of the CO2 separated from the natural gas stream on the Hainan Island. In this study, the feasibility of CO2 storage in the lateral saline aquifer of the DF1-1 gas field is assessed, including aquifer selection and geological assessment, CO2 migration and storage safety, project design, and economic analysis. Six offshore aquifers have been investigated for CO2 geological storage. The lateral aquifer of the DF1-1 gas field has been selected as the best target for CO2 injection and storage because of its proven sealing ability, and the large storage capacity of the combined aquifer and hydrocarbon reservoir geological structure. The separated CO2 will be dehydrated on the Hainan Island and transported by a long-distance subsea pipeline in supercritical or liquid state to the central platform of the DF1-1 gas field for pressure adjustment. The CO2 will then be injected into the lateral aquifer via a subsea well-head through a horizontal well. Reservoir simulations suggest that the injected CO2 will migrate slowly upwards in the aquifer without disturbing the natural gas production. The scoping economic analysis shows that the unit storage cost of the project is approximately US26-31/ton CO2 with the subsea pipeline as the main contributor to capital expenditure (CAPEX), and the dehydration system as the main factor of operating expenditure (OPEX).

  14. Advanced underground Vehicle Power and Control: The locomotive Research Platform

    Energy Technology Data Exchange (ETDEWEB)

    Vehicle Projects LLC

    2003-01-28

    Develop a fuelcell mine locomotive with metal-hydride hydrogen storage. Test the locomotive for fundamental limitations preventing successful commercialization of hydride fuelcells in underground mining. During Phase 1 of the DOE-EERE sponsored project, FPI and its partner SNL, completed work on the development of a 14.4 kW fuelcell power plant and metal-hydride energy storage. An existing battery-electric locomotive with similar power requirements, minus the battery module, was used as the base vehicle. In March 2001, Atlas Copco Wagner of Portland, OR, installed the fuelcell power plant into the base vehicle and initiated integration of the system into the vehicle. The entire vehicle returned to Sandia in May 2001 for further development and integration. Initial system power-up took place in December 2001. A revision to the original contract, Phase 2, at the request of DOE Golden Field Office, established Vehicle Projects LLC as the new prime contractor,. Phase 2 allowed industry partners to conduct surface tests, incorporate enhancements to the original design by SNL, perform an extensive risk and safety analysis, and test the fuelcell locomotive underground under representative production mine conditions. During the surface tests one of the fuelcell stacks exhibited reduced power output resulting in having to replace both fuelcell stacks. The new stacks were manufactured with new and improved technology resulting in an increase of the gross power output from 14.4 kW to 17 kW. Further work by CANMET and Hatch Associates, an engineering consulting firm specializing in safety analysis for the mining industry, both under subcontract to Vehicle Projects LLC, established minimum requirements for underground testing. CANMET upgraded the Programmable Logic Control (PLC) software used to monitor and control the fuelcell power plant, taking into account locomotive operator's needs. Battery Electric, a South Africa manufacturer, designed and manufactured (at no cost

  15. Deformation of slopes as a cause of underground mining activities: three case studies from Ostrava-Karviná coal field (Czech Republic).

    Science.gov (United States)

    Marschalko, Marian; Yilmaz, Işık; Bednárik, Martin; Kubečka, Karel

    2012-11-01

    Underground mining activities may potentially play a role on the initiation and reactivation of the slope movements. However, an adequate attention has not yet been paid to these problems; in this study, the possible influence of present and former mining activities on the selected set of model slope deformations in the Ostrava-Karviná Coalfield (Opliji, Repiste and Orlova Lazy District) was analysed and a methodology for their observation for application to similar conditions and influence was described. Isocatabase maps, terrain deformation parameters calculated for the point lying on the slope deformation surface, length measurement by zone extensometer and dilatometer measurement in cracks was also provided for evaluation of the underground mining impact. It was found that inclinations of both boreholes were evidence of underground mining impact, and localization of inclinometer measurement on boreholes in the active part as well as in the near vicinity was very important as an important result of this study. Analysis of underground mining activity influence on model localities in relation to performed mining operations, subsidence and other influences on the ground surface was also determined. Thus, the study will contribute to a more objective knowledge of these problems of interest for the professional public and also for the state administration to solve problems associated with the utilisation and settlement of such affected areas.

  16. Plasma-electric field controlled growth of oriented graphene for energy storage applications

    Science.gov (United States)

    Ghosh, Subrata; Polaki, S. R.; Kamruddin, M.; Jeong, Sang Mun; (Ken Ostrikov, Kostya

    2018-04-01

    It is well known that graphene grows as flat sheets aligned with the growth substrate. Oriented graphene structures typically normal to the substrate have recently attracted major attention. Most often, the normal orientation is achieved in a plasma-assisted growth and is believed to be due to the plasma-induced in-built electric field, which is usually oriented normal to the substrate. This work focuses on the effect of an in-built electric field on the growth direction, morphology, interconnectedness, structural properties and also the supercapacitor performance of various configurations of graphene structures and reveals the unique dependence of these features on the electric field orientation. It is shown that tilting of growth substrates from parallel to the normal direction with respect to the direction of in-built plasma electric field leads to the morphological transitions from horizontal graphene layers, to oriented individual graphene sheets and then interconnected 3D networks of oriented graphene sheets. The revealed transition of the growth orientation leads to a change in structural properties, wetting nature, types of defect in graphitic structures and also affects their charge storage capacity when used as supercapacitor electrodes. This simple and versatile approach opens new opportunities for the production of potentially large batches of differently oriented and structured graphene sheets in one production run.

  17. Heat transport and storage

    International Nuclear Information System (INIS)

    Despois, J.

    1977-01-01

    Recalling the close connections existing between heat transport and storage, some general considerations on the problem of heat distribution and transport are presented 'in order to set out the problem' of storage in concrete form. This problem is considered in its overall plane, then studied under the angle of the different technical choices it involves. The two alternatives currently in consideration are described i.e.: storage in a mined cavity and underground storage as captive sheet [fr

  18. Research Progress on 3D Printed Graphene Materials Synthesis Technology and Its Application in Energy Storage Field

    Directory of Open Access Journals (Sweden)

    WANG Nan

    2017-12-01

    Full Text Available Graphene is an ideal material for energy storage application as its excellent mechanical and physical properties. 3D printed graphene materials will be widely applied in energy storage field for its precisely controllable structure and it is easy to realize large-scale preparation. In this paper, the progress of 3D printed graphene materials synthesis technology and its application in energy storage field were reviewed. The viscosity and printability of graphene ink are key factors for realizing graphene 3D printing. Scalable preparation of graphene ink with facile process, controllable concentration and additive free will be the research focus of graphene 3D printing technologies in the future. The integrated printing of graphene energy storage devices such as graphene supercapacitor, lithium-sulfur battery and lithium ion battery is the development direction in this area.

  19. Development of Methodology and Field Deployable Sampling Tools for Spent Nuclear Fuel Interrogation in Liquid Storage

    International Nuclear Information System (INIS)

    Berry, T.; Milliken, C.; Martinez-Rodriguez, M.; Hathcock, D.; Heitkamp, M.

    2012-01-01

    This project developed methodology and field deployable tools (test kits) to analyze the chemical and microbiological condition of the fuel storage medium and determine the oxide thickness on the spent fuel basin materials. The overall objective of this project was to determine the amount of time fuel has spent in a storage basin to determine if the operation of the reactor and storage basin is consistent with safeguard declarations or expectations. This project developed and validated forensic tools that can be used to predict the age and condition of spent nuclear fuels stored in liquid basins based on key physical, chemical and microbiological basin characteristics. Key parameters were identified based on a literature review, the parameters were used to design test cells for corrosion analyses, tools were purchased to analyze the key parameters, and these were used to characterize an active spent fuel basin, the Savannah River Site (SRS) L-Area basin. The key parameters identified in the literature review included chloride concentration, conductivity, and total organic carbon level. Focus was also placed on aluminum based cladding because of their application to weapons production. The literature review was helpful in identifying important parameters, but relationships between these parameters and corrosion rates were not available. Bench scale test systems were designed, operated, harvested, and analyzed to determine corrosion relationships between water parameters and water conditions, chemistry and microbiological conditions. The data from the bench scale system indicated that corrosion rates were dependent on total organic carbon levels and chloride concentrations. The highest corrosion rates were observed in test cells amended with sediment, a large microbial inoculum and an organic carbon source. A complete characterization test kit was field tested to characterize the SRS L-Area spent fuel basin. The sampling kit consisted of a TOC analyzer, a YSI

  20. DEVELOPMENT OF METHODOLOGY AND FIELD DEPLOYABLE SAMPLING TOOLS FOR SPENT NUCLEAR FUEL INTERROGATION IN LIQUID STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Berry, T.; Milliken, C.; Martinez-Rodriguez, M.; Hathcock, D.; Heitkamp, M.

    2012-06-04

    This project developed methodology and field deployable tools (test kits) to analyze the chemical and microbiological condition of the fuel storage medium and determine the oxide thickness on the spent fuel basin materials. The overall objective of this project was to determine the amount of time fuel has spent in a storage basin to determine if the operation of the reactor and storage basin is consistent with safeguard declarations or expectations. This project developed and validated forensic tools that can be used to predict the age and condition of spent nuclear fuels stored in liquid basins based on key physical, chemical and microbiological basin characteristics. Key parameters were identified based on a literature review, the parameters were used to design test cells for corrosion analyses, tools were purchased to analyze the key parameters, and these were used to characterize an active spent fuel basin, the Savannah River Site (SRS) L-Area basin. The key parameters identified in the literature review included chloride concentration, conductivity, and total organic carbon level. Focus was also placed on aluminum based cladding because of their application to weapons production. The literature review was helpful in identifying important parameters, but relationships between these parameters and corrosion rates were not available. Bench scale test systems were designed, operated, harvested, and analyzed to determine corrosion relationships between water parameters and water conditions, chemistry and microbiological conditions. The data from the bench scale system indicated that corrosion rates were dependent on total organic carbon levels and chloride concentrations. The highest corrosion rates were observed in test cells amended with sediment, a large microbial inoculum and an organic carbon source. A complete characterization test kit was field tested to characterize the SRS L-Area spent fuel basin. The sampling kit consisted of a TOC analyzer, a YSI

  1. Seed pretreatment with magnetic field alters the storage proteins and lipid profiles in harvested soybean seeds.

    Science.gov (United States)

    Radhakrishnan, Ramalingam

    2018-03-01

    The increase in crop productivity is an urgent need of the time to reduce scarcity of food in underdeveloped countries. Several biological, chemical and physical methods have been applied to promote crop yield. Application of magnetic field (MF) is an emerging physical method used to increase plant growth and yield. The reports on MF pretreatment-induced nutritional changes in harvested seeds are scarce. We previously identified the optimal frequency of MF to improve plant growth and yield as 1500 nT at 10.0 Hz. This study was aimed to investigate the effect of MF treatment on storage proteins and fatty acids in harvested soybean seeds. The results showed that MF triggered globulin production and suppressed prolamin production. However, lipid content in seeds increased, because MF exposure caused an elevation of several fatty acids including caprylic acid, palmitic acid, heptadecanoic acid, linoleic acid, lignoceric acid and eicosapentaenoic acid. This is the first report to reveal the seed pretreated MF on nutritional values of harvested seeds. This study suggests that MF treatment improves seed quality by regulating the metabolism of storage proteins and fatty acids.

  2. Interactions between fluids and natural clay rich sediments: experimental study in conditions simulating radioactive wastes underground storage; Interactions entre fluides et sediments argileux naturels: etude experimentale dans des conditions simulant un stockage souterrain de dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Roubeuf, V

    2000-10-15

    The behaviour of clay rich sediments, especially an argilite from Oxfordian of Haute-Marne, a siltite from Albian series of Marcoule (Gard) and a bentonite from Wyoming, were experimentally studied under physical-chemical conditions close of those of an underground radioactive waste storage. The several steps of the creation of the storage in deep formation were simulated experimentally, in particular: - the effect due to oxidation at ambient temperature and moisture degree related to the arrival of air in the gallery, was tested, especially the interaction between acid fluids generated at the micron-scale of the altered pyrite micro-site and the surrounding minerals of the sediment, - the alteration due to weathering (damping/drying cycles) to simulate the effect of a surface storage of the sediments, - and finally, water-rock interactions at 80 and 200 deg C, which reproduce the thermic stress induced by the deposit of type C radioactive containers (stage of re-hydration under thermic stress). The various simulations lead to rather similar behaviour of minerals in the sediment and solutions. Mineralogical, geochemical and crystallographic analyses show that most minerals in sediments are preserved with no evidence of mineral neo-formation. Nevertheless, the study by X-ray diffraction shows variations in the interlayer spacing in relation with modifications of the hydration states. Changes in the interlayer occupancy of the clays are due to cationic exchange of the sodium of the interlayer by the calcium issued from the dissolution of carbonate and gypsum dissolution. I/S like minerals crystal-chemistry generally display little changes in the tetrahedral and octahedral occupancy and a rather good stability of crystal structure. The cationic exchange capacity (CEC) of the clay sediment display un-significant variations: after the damping/drying cycles, the argilite of Haute-Marne has lost about 15 % of their bulk CEC and the effect of acid micro-environment at

  3. The underground macroeconomics

    Directory of Open Access Journals (Sweden)

    Marin Dinu

    2013-01-01

    Full Text Available Like Physics, which cannot yet explain 96% of the substance in the Universe, so is Economics, unprepared to understand and to offer a rational explicative model to the underground economy.

  4. Construction of an interim storage field using recovered municipal solid waste incineration bottom ash: Field performance study.

    Science.gov (United States)

    Sormunen, Laura Annika; Kolisoja, Pauli

    2017-06-01

    The leaching of hazardous substances from municipal solid waste incineration (MSWI) bottom ash (BA) has been studied in many different scales for several years. Less attention has been given to the mechanical performance of MSWI BA in actual civil engineering structures. The durability of structures built with this waste derived material can have major influence on the functional properties of such structures and also the potential leaching of hazardous substances in the long term. Hence, it is necessary to properly evaluate in which type of structures MSWI BA can be safely used in a similar way as natural and crushed rock aggregates. In the current study, MSWI BA treated with ADR (Advance Dry Recovery) technology was used in the structural layers of an interim storage field built within a waste treatment centre. During and half a year after the construction, the development of technical and mechanical properties of BA materials and the built structures were investigated. The aim was to compare these results with the findings of laboratory studies in which the same material was previously investigated. The field results showed that the mechanical performance of recovered BA corresponds to the performance of natural aggregates in the lower structural layers of field structures. Conversely, the recovered MSWI BA cannot be recommended to be used in the base layers as such, even though its stiffness properties increased over time due to material aging and changes in moisture content. The main reason for this is that BA particles are prone for crushing and therefore inadequate to resist the higher stresses occurring in the upper parts of road and field structures. These results were in accordance with the previous laboratory findings. It can thus be concluded that the recovered MSWI BA is durable to be used as a replacement of natural aggregates especially in the lower structural layers of road and field structures, whereas if used in the base layers, an additional base

  5. Orpheus in the Underground

    Directory of Open Access Journals (Sweden)

    Puskás Dániel

    2015-12-01

    Full Text Available In my study I deal with descents to the underworld and hell in literature in the 20th century and in contemporary literature. I will focus on modem literary reinterpretations of the myth of Orpheus, starting with Rilke’s Orpheus. Eurydice. Hermes. In Seamus Heaney’s The Underground. in the Hungarian Istvan Baka’s Descending to the Underground of Moscow and in Czesław Miłosz’s Orpheus and Eurydice underworld appears as underground, similarly to the contemporary Hungarian János Térey’s play entitled Jeramiah. where underground will also be a metaphorical underworld which is populated with the ghosts of the famous deceased people of Debrecen, and finally, in Péter Kárpáti’s Everywoman the grave of the final scene of the medieval Everyman will be replaced with a contemporary underground station. I analyse how an underground station could be parallel with the underworld and I deal with the role of musicality and sounds in the literary works based on the myth of Orpheus.

  6. Underground dams for irrigation supplies in coastal limestone aquifer, Okinawa, Japan

    Science.gov (United States)

    Yasumoto, J.; Nakano, T.; Nawa, N.

    2011-12-01

    were a few differences between the calculation and observation. The numerical model introducing non-darcian flow could be carried out to improve the model by inputting various data of geological structure of Ryukyu limestone. It was found that the NO3-N concentrations in springs ranged from 6.2 mg/L to 16.6mg/L during 17 years in this area. The NO3-N concentrations had decreased from the mid-1990s to early 2000s. And The NO3-N concentrations have not decreased or increased since early 2000s. Distribution of NO3-N concentrations shows variations according to location and they are roughly classified into two types (stable type and unstable type). It was considered that NO3-N concentrations were influenced by the rainfall, geological structure and land use of upland fields. The results show that the underground dams are a contribution in sustainable development of irrigation in Okinawa islands. The results also demonstrate that underground dam may be a very useful instrument of sustainable increase in the available storage in the tropical and subtropical coastal aquifers. The future challenge is how to decrease the high NO3-N concentrations in underground dam areas.

  7. Field-based stable isotope analysis of carbon dioxide by mid-infrared laser spectroscopy for carbon capture and storage monitoring.

    Science.gov (United States)

    van Geldern, Robert; Nowak, Martin E; Zimmer, Martin; Szizybalski, Alexandra; Myrttinen, Anssi; Barth, Johannes A C; Jost, Hans-Jürg

    2014-12-16

    A newly developed isotope ratio laser spectrometer for CO2 analyses has been tested during a tracer experiment at the Ketzin pilot site (northern Germany) for CO2 storage. For the experiment, 500 tons of CO2 from a natural CO2 reservoir was injected in supercritical state into the reservoir. The carbon stable isotope value (δ(13)C) of injected CO2 was significantly different from background values. In order to observe the breakthrough of the isotope tracer continuously, the new instruments were connected to a stainless steel riser tube that was installed in an observation well. The laser instrument is based on tunable laser direct absorption in the mid-infrared. The instrument recorded a continuous 10 day carbon stable isotope data set with 30 min resolution directly on-site in a field-based laboratory container during a tracer experiment. To test the instruments performance and accuracy the monitoring campaign was accompanied by daily CO2 sampling for laboratory analyses with isotope ratio mass spectrometry (IRMS). The carbon stable isotope ratios measured by conventional IRMS technique and by the new mid-infrared laser spectrometer agree remarkably well within analytical precision. This proves the capability of the new mid-infrared direct absorption technique to measure high precision and accurate real-time stable isotope data directly in the field. The laser spectroscopy data revealed for the first time a prior to this experiment unknown, intensive dynamic with fast changing δ(13)C values. The arrival pattern of the tracer suggest that the observed fluctuations were probably caused by migration along separate and distinct preferential flow paths between injection well and observation well. The short-term variances as observed in this study might have been missed during previous works that applied laboratory-based IRMS analysis. The new technique could contribute to a better tracing of the migration of the underground CO2 plume and help to ensure the long

  8. METHOD OF CALCULATION OF THE NON-STATIONARY TEMPERATURE FIELD INSIDE OF THERMAL PACKED BED ENERGY STORAGE

    Directory of Open Access Journals (Sweden)

    Ermuratschii V.V.

    2014-04-01

    Full Text Available e paper presents a method of the approximate calculation of the non-stationary temperature field inside of thermal packed bed energy storages with feasible and latent heat. Applying thermoelectric models and computational methods in electrical engineering, the task of computing non-stationary heat transfer is resolved with respect to third type boundary conditions without applying differential equations of the heat transfer. For sub-volumes of the energy storage the method is executed iteratively in spatiotemporal domain. Single-body heating is modeled for each sub-volume, and modeling conditions are assumed to be identical for remained bod-ies, located in the same sub-volume. For each iteration step the boundary conditions will be represented by re-sults at the previous step. The fulfillment of the first law of thermodynamics for system “energy storage - body” is obtained by the iterative search of the mean temperature of the energy storage. Under variable boundary con-ditions the proposed method maybe applied to calculating temperature field inside of energy storages with packed beds consisted of solid material, liquid and phase-change material. The method may also be employed to compute transient, power and performance characteristics of packed bed energy storages.

  9. ORGANIZE AN INTEGRATED DEVELOPMENT OF UNDERGROUND SPACE OF MEGAPOLISES

    Directory of Open Access Journals (Sweden)

    V. P. Pustovoytenko

    2010-03-01

    Full Text Available The problem of forecasting the trends of urbanization, the main factors influencing the modern methods of organization of development of the underground construction of mega-cities, during the substantiation of field of integrated use and composition of organizational-and-technological schemes of development of underground space, is considered.

  10. Analytical solutions for the invariant spin field for model storage rings

    International Nuclear Information System (INIS)

    Mane, S.R.

    2002-01-01

    We present nonperturbative analytical expressions for the invariant spin field for several storage ring models. In particular, we solve the important models of a ring with one Snake and a single resonance driving term, and a ring with two Snakes and a single resonance driving term. We also treat several other models, all of which contain Siberian Snakes. Our solutions contain some novel features, e.g. in some cases the polarization does not point along the direction of the closed-orbit spin quantization axis. We also include vertical resonance driving terms, and consider the contributions of sextupoles and higher order multipoles to the resonance driving terms, and argue that these can play a significant role in some circumstances. We offer some brief remarks on the so-called Snake resonances. We relate our results to observations of higher-order depolarizing spin resonances for polarized proton beams in a real ring, and offer some suggestions as to how our ideas might be verified

  11. Subsidence Induced by Underground Extraction

    Science.gov (United States)

    Galloway, Devin L.

    2016-01-01

    Subsidence induced by underground extraction is a class of human-induced (anthropogenic) land subsidence that principally is caused by the withdrawal of subsurface fluids (groundwater, oil, and gas) or by the underground mining of coal and other minerals.

  12. Underground Coal Mining

    Science.gov (United States)

    Hill, G. M.

    1980-01-01

    Computer program models coal-mining production, equipment failure and equipment repair. Underground mine is represented as collection of work stations requiring service by production and repair crews alternately. Model projects equipment availability and productivity, and indicates proper balance of labor and equipment. Program is in FORTRAN IV for batch execution; it has been implemented on UNIVAC 1108.

  13. Underground mining operation supports

    Energy Technology Data Exchange (ETDEWEB)

    Khusid, M.B.; Kozel, A.M.

    1980-12-10

    Underground mining operation supports include the supporting layer surrounded by a cylindrical jacket of cemented rock. To decrease the loss of support material due to the decreasing rock pressure on the supporting layer, the cylindrical jacket of cemented rock has an uncemented layer inside, dividing it into 2 concentric cylindrical parts.

  14. Transcriptome study of storage protein genes of field-grown barley in response to inorganic nitrogen fertilizers

    DEFF Research Database (Denmark)

    Hansen, Michael; Bowra, Stewe; Lange, Mette

    2010-01-01

    The storage proteins of barley, in terms of both amino acid profile and quantity, are traits strongly influenced by the amount of nitrogen applied. Given this, we performed a developmental expression analysis of the genes from barley grains grown under field conditions to further our understanding...... of the molecular and biochemical mechanisms underpinning nitrogen utilization. A barley grain specific micro-array, where a comprehensive set of genes involved in nitrogen mobilization, storage protein synthesis and amino acid metabolism were assembled, was used to obtain a global but focused gene expression...... profile under different N regimes. Reviewing the expression of the storage protein homologues within the families revealed markedly different temporal profiles; for example, some alleles were expressed very early in development. Furthermore, the differential temporal expression of the homologues suggested...

  15. Effect of storage temperature in a Cambodian field setting on the fatty acid composition in whole blood

    DEFF Research Database (Denmark)

    Nurhasan, Mulia; Roos, Nanna; Aristizabal Henao, J J

    2015-01-01

    Fatty acid analysis requires standardized collection and storage of samples, which can be a challenge under field conditions. This study describes the effect of storage temperature on fatty acid composition in two sets of whole blood samples collected from 66 children in a rural area in Cambodia....... The samples were stored with butylated hydroxytoluene at -20°C and -80°C and the latter required extra transfers due to storage facility limitation. Fatty acid composition was analyzed by high-throughput gas-chromatography and evaluated by paired t-tests and Bland-Altman plots. Total amounts of fat in -20°C...... and -80°C samples did not differ, but there was relatively more highly unsaturated fatty acids (15.8±2.7 vs. 14.4±2.5%, pstorage temperature should be evaluated in the context...

  16. Inferring Shallow Subsurface Density Structure from Surface and Underground Gravity Measurements: Calibrating Models for Relatively Undeformed Volcanic Strata at the Jemez Volcanic Field, New Mexico, USA

    Science.gov (United States)

    Roy, Mousumi; Lewis, Megan; Johnson, Alex; George, Nicolas; Rowe, Charlotte; Guardincerri, Elena

    2018-03-01

    Imaging shallow subsurface density structure is an important goal in a variety of applications, from hydrogeology to seismic and volcanic hazard assessment. We assess the effectiveness of surface and subsurface gravity measurements in estimating the density structure of a well-characterized rock volume: the mesa (a small, flat-topped plateau) upon which the town of Los Alamos, New Mexico, USA is located. Our gravity measurements were made on the mesa surface above a horizontal tunnel and underground, within the tunnel. We demonstrate that, in the absence of other geophysical data such as seismic data or muon attenuation, subsurface (tunnel) gravity measurements are critical to accurately recovering geologic structure. Without the tunnel data, our resolution is limited to roughly the surface gravity station spacing, but by including the tunnel data we can resolve structure to a depth of 10 times the surface gravity station spacing. Densities were obtained using both forward modeling and a Bayesian inverse modeling approach, incorporating relevant constraints from geologic observations. We find that Bayesian inversion, with geologically relevant prior, is a superior approach to the forward models in terms of both robustness and efficiency and correctly predicts the orientation and elevation of important geologic features.

  17. Assessing uncertainties of GRACE-derived terrestrial water-storage fields

    Science.gov (United States)

    Fereria, Vagner; Montecino, Henry

    2017-04-01

    Space-borne sensors are producing many remotely sensed data and, consequently, different measurements of the same field are available to end users. Furthermore, different satellite processing centres are producing extensive products based on the data of only one mission. This is exactly the case with the Gravity Recovery and Climate Experiment (GRACE) mission, which has been monitoring terrestrial water storage (TWS) since April 2002, while the Centre for Space Research (CSR), the Jet Propulsion Laboratory (JPL), the GeoForschungsZentrum (GFZ), the Groupe de Recherche de Géodésie Spatiale (GRGS), among others, provide individual monthly solutions in the form of Stokes's coefficients. The inverted TWS maps from Stokes's coefficients are being used in many applications and, therefore, as no ground truth data exist, the uncertainties are unknown. An assessment of the uncertainties associated with these different products is mandatory in order to guide data producers and support the users to choose the best dataset. However, the estimation of uncertainties of space-borne products often relies on ground truth data, and in the absence of such data, an assessment of their qualities is a challenge. A recent study (Ferreira et al. 2016) evaluates the quality of each processing centre (CSR, JPL, GFZ, and GRGS) by estimating their individual uncertainties using a generalised formulation of the three-cornered hat (TCH) method. It was found that the TCH results for the study period of August 2002 to June 2014 indicate that on a global scale, the CSR, GFZ, GRGS, and JPL present uncertainties of 9.4, 13.7, 14.8, and 13.2 mm, respectively. On a basin scale, the overall good performance of the CSR is observed at 91 river basins. The TCH-based results are confirmed by a comparison with an ensemble solution from the four GRACE processing centres. Reference Ferreira VG, Montecino HDC, Yakubu CI and Heck B (2016) Uncertainties of the Gravity Recovery and Climate Experiment time

  18. Experience in ultimate storage of radwaste, illustrated by the information on geomechanics gained in the Asse storage facility

    International Nuclear Information System (INIS)

    Schmidt, M.W.

    1981-01-01

    Among the numerous variants of storing radioactive waste in the deep geological underground the storage in appropriate mineral salt formations has a couple of particular advantages. In order to effect research- and development works with regard to a safe secular storage of radioactive wastes, the former mineral salt deposit ASSE was assigned to the GSF in the year 1965. At this test plant storage technologies are developed, tested and the operational efficiency of according technical facilities is demonstrated. As a part of these duties several technical and natural scientific fields like nuclear engineering, mining, geomechanics, geochemistry or hydrogeology are worked in interdisciplinarily. Departing from the existing mine building of the shaft ASSE storage bunkers for low- and intermediate-level radioactive wastes (LAW/MAW) are presented. Accompanying geotechnical investigations are explained. An outlook alludes to an eventually possible development potential of the storage bunker arrangement from the geomechanic view. (orig./HP) [de

  19. 2010-2012. Research and development at the ANDRA for storage projects

    International Nuclear Information System (INIS)

    2013-10-01

    After a general presentation of research activities within the ANDRA (main steps and highlights between 2010 and 2012, composition of the scientific council, actions of mobilisation of the French and international scientific community), this report proposes a detailed overview of these R and D activities in different specific fields: the determination of the behaviour of the various components of a storage (studies on wastes, on the behaviour of geological layers and of underground works, on the interaction and chemistry of materials in a deep storage), the preparation of the construction of the future deep storage in its geological context, the design of the evolution of a storage within its environment (effect of oxidation, of transfer phenomena within the storage, within the geological environment, and within soils), the assessment of storage performance, the reversibility of the deep geological storage and its implications in time, and the actions information on results and valorisation (congresses, publications, research thesis)

  20. Systems, computer-implemented methods, and tangible computer-readable storage media for wide-field interferometry

    Science.gov (United States)

    Lyon, Richard G. (Inventor); Leisawitz, David T. (Inventor); Rinehart, Stephen A. (Inventor); Memarsadeghi, Nargess (Inventor)

    2012-01-01

    Disclosed herein are systems, computer-implemented methods, and tangible computer-readable storage media for wide field imaging interferometry. The method includes for each point in a two dimensional detector array over a field of view of an image: gathering a first interferogram from a first detector and a second interferogram from a second detector, modulating a path-length for a signal from an image associated with the first interferogram in the first detector, overlaying first data from the modulated first detector and second data from the second detector, and tracking the modulating at every point in a two dimensional detector array comprising the first detector and the second detector over a field of view for the image. The method then generates a wide-field data cube based on the overlaid first data and second data for each point. The method can generate an image from the wide-field data cube.

  1. Construction and evaluation of photovoltaic power generation and power storage system using SiC field-effect transistor inverter

    Science.gov (United States)

    Oku, Takeo; Matsumoto, Taisuke; Hiramatsu, Koichi; Yasuda, Masashi; Ohishi, Yuya; Shimono, Akio; Takeda, Yoshikazu; Murozono, Mikio

    2016-02-01

    A power storage system using spherical silicon (Si) solar cells, maximum power point tracking charge controller, lithium-ion battery and a direct current-alternating current (DC-AC) inverter was constructed. Performance evaluation of the DC-AC inverter was carried out, and the DC-AC conversion efficiencies of the SiC field-effect transistor (FET) inverter was improved compared with those of the ordinary Si-FET based inverter.

  2. Nuclear plant undergrounding

    International Nuclear Information System (INIS)

    Brown, R.C.; Bastidas, C.P.

    1978-01-01

    Under Section 25524.3 of the Public Resources Code, the California Energy Resources Conservation and Development Commission (CERCDC) was directed to study ''the necessity for '' and the effectiveness and economic feasibility of undergrounding and berm containment of nuclear reactors. The author discusses the basis for the study, the Sargent and Lundy (S and L) involvement in the study, and the final conclusions reached by S and L

  3. Monitoring underground movements

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    On 16 September 2015 at 22:54:33 (UTC), an 8.3-magnitude earthquake struck off the coast of Chile. 11,650 km away, at CERN, a new-generation instrument – the Precision Laser Inclinometer (PLI) – recorded the extreme event. The PLI is being tested by a JINR/CERN/ATLAS team to measure the movements of underground structures and detectors.   The Precision Laser Inclinometer during assembly. The instrument has proven very accurate when taking measurements of the movements of underground structures at CERN.    The Precision Laser Inclinometer is an extremely sensitive device capable of monitoring ground angular oscillations in a frequency range of 0.001-1 Hz with a precision of 10-10 rad/Hz1/2. The instrument is currently installed in one of the old ISR transfer tunnels (TT1) built in 1970. However, its final destination could be the ATLAS cavern, where it would measure and monitor the fine movements of the underground structures, which can affect the precise posi...

  4. Aboveground storage tanks

    International Nuclear Information System (INIS)

    Rizzo, J.A.

    1992-01-01

    With the 1988 promulgation of the comprehensive Resource Conservation and Recovery Act (RCRA) regulations for underground storage of petroleum and hazardous substances, many existing underground storage tank (UST) owners have been considering making the move to aboveground storage. While on the surface, this may appear to be the cure-all to avoiding the underground leakage dilemma, there are many other new and different issues to consider with aboveground storage. The greatest misconception is that by storing materials above ground, there is no risk of subsurface environmental problems. it should be noted that with the aboveground storage tank (AGST) systems, there is still considerable risk of environmental contamination, either by the failure of onground tank bottoms or the spillage of product onto the ground surface where it subsequently finds its way to the ground water. In addition, there are added safety concerns that must be addressed. So what are the other specific areas of concern besides environmental to be addressed when making the decision between underground and aboveground tanks? The primary issues that will be addressed in this paper are: Safety, Product Losses, Cost Comparison of USTs vs AGSTs, Space Availability/Accessibility, Precipitation Handling, Aesthetics and Security, Pending and Existing Regulations

  5. Spatial regression between soil surface elevation, water storage in root zone and biomass productivity of alfalfa within an irrigated field

    Science.gov (United States)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2014-05-01

    Efficiency of water use for the irrigation purposes is connected to the variety of circumstances, factors and processes appearing along the transportation path of water from its sources to the root zone of the plant. Water efficiency of agricultural irrigation is connected with variety of circumstances, the impacts and the processes occurring during the transportation of water from water sources to plant root zone. Agrohydrological processes occur directly at the irrigated field, these processes linked to the infiltration of the applied water subsequent redistribution of the infiltrated water within the root zone. One of them are agrohydrological processes occurring directly on an irrigated field, connected with infiltration of water applied for irrigation to the soil, and the subsequent redistribution of infiltrated water in the root zone. These processes have the strongly pronounced spatial character depending on the one hand from a spatial variation of some hydrological characteristics of soils, and from other hand with distribution of volume of irrigation water on a surface of the area of an irrigated field closely linked with irrigation technology used. The combination of water application parameters with agrohydrological characteristics of soils and agricultural vegetation in each point at the surface of an irrigated field leads to formation of a vector field of intensity of irrigation water. In an ideal situation, such velocity field on a soil surface should represent uniform set of vertically directed collinear vectors. Thus values of these vectors should be equal to infiltration intensities of water inflows on a soil surface. In soil profile the field of formed intensities of a water flow should lead to formation in it of a water storage accessible to root system of irrigated crops. In practice this ideal scheme undergoes a lot of changes. These changes have the different nature, the reasons of occurrence and degree of influence on the processes connected

  6. An investigation into underground navigation using electromagnetic waves

    CERN Document Server

    Tillema, N J

    2000-01-01

    findings. The lateral wave starts at the source underground, travels to the boundary, follows the air-ground boundary and then propagates back into the ground to the receiver antenna. As the wave travels a significant part of its path in air, it was less susceptible to irregularities underground. Measurement of the phase has shown it to be sensitive to errors caused by reflections. This was the reason why reliable information of the phase was not always available during the measurements. The field trials have shown the possibility of using electromagnetic waves to track a moving transmitter underground. Any system that estimates the underground displacement of the transmitter should have two or more receiver antennas. The experiments have shown a possible accuracy of such a system of approximately 2 m or less. This thesis explores the possibility of measuring the movement of an underground transmitter using electromagnetic waves. The displacement of the transmitter was estimated based on the magnitude and pha...

  7. The necessity for storage of natural gas in the Netherlands: In particular the natural gas storage near Langelo, Drenthe, Netherlands

    International Nuclear Information System (INIS)

    1994-11-01

    The natural gas supply in the Netherlands will experience a capacity problem once the pressure of the natural gas field Slochteren in the province Groningen will decrease below a certain level. It is expected that this will already happen in the winter of 1996. Underground storage of natural gas reserves is considered to be the only appropriate solution to accommodate this problem. Four environmental organizations in the Netherlands ordered GASTEC, the Dutch research center for natural gas technology, to study the alternatives for natural gas storage in the Netherlands. 7 figs

  8. Underground radioactive waste disposal concept

    International Nuclear Information System (INIS)

    Frgic, L.; Tor, K.; Hudec, M.

    2002-01-01

    The paper presents some solutions for radioactive waste disposal. An underground disposal of radioactive waste is proposed in deep boreholes of greater diameter, fitted with containers. In northern part of Croatia, the geological data are available on numerous boreholes. The boreholes were drilled during investigations and prospecting of petroleum and gas fields. The available data may prove useful in defining safe deep layers suitable for waste repositories. The paper describes a Russian disposal design, execution and verification procedure. The aim of the paper is to discuss some earlier proposed solutions, and present a solution that has not yet been considered - lowering of containers with high level radioactive waste (HLW) to at least 500 m under the ground surface.(author)

  9. Current gas storage R and D programmes at Gas Research Institute

    International Nuclear Information System (INIS)

    Shikari, Y.A.

    1990-01-01

    The Gas Research Institute (GRI) is currently involved in the development of concepts aimed at an enhancement of natural gas service to the consumer. In order to maintain the attractiveness of the gas options to industrial consumers and to reinforce the ''value-in-use'' of natural gas to residential as well as commercial customers, it is essential to develop efficient, economical, and safe means of reducing the ''cost-of-service'', including that of natural gas storage in underground formations. Specifically, research and development (R and D) is needed to explore ways to better utilize existing storage fields and also to develop new storage facilities at minimum cost. GRI is currently sponsoring research projects aimed at controlling gas migration in underground gas storage reservoirs, reducing base (or cushion) gas requirements, understanding the gas-gas phase mixing behaviour via laboratory experiments and reservoir models, developing cost-effective gas separation processes using membranes, and optimizing the operation and maintenance (O and M) costs of underground gas storage operations. This paper provides an overview of the GRI's Gas Storage R and D Programme and highlights key results achieved to date for selected research projects. (author). 16 refs, 6 figs, 3 tabs

  10. Environment Of Underground Water And Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeong Sang

    1998-02-15

    This book deals with environment of underground water and pollution, which introduces the role of underground water in hydrology, definition of related study of under water, the history of hydro-geology, basic conception of underground water such as origin of water, and hydrogeologic characteristic of aquifers, movement of underground water, hydrography of underground water and aquifer test analysis, change of an underground water level, and water balance analysis and development of underground water.

  11. Clean fossil or refuse dump. Results of focus groups with citizens on CO2-storage in depleted natural gas fields

    International Nuclear Information System (INIS)

    Ganzevles, J.H.; Kets, A.; Van Est, Q.C.

    2008-09-01

    This report gives an account of a meeting with four focus groups - 31 citizens in Total - held at the Rathenau Institute on 7 July 2007. Carbon capture and storage (CCS) in depleted natural gas fields was the main topic. The goal of this meeting was to explore the public opinion on CCS, to gauge their attitude towards new technology and to examine the influence of information services on their opinion. The analysis has resulted in a comprehensive overview of arguments in favor of and against the development of CO2 capture and storage in the Netherlands. The study illustrates how all questions and points of interest can be classified based on three different angles, i.e. (1) the promise of CCS as instrument for handling environmental problems, energy problems and offering economic opportunities for the Netherlands; (2) the implementation process of CCS; and (3) possible side effects of CCS. [mk] [nl

  12. Underground water stress release models

    Science.gov (United States)

    Li, Yong; Dang, Shenjun; Lü, Shaochuan

    2011-08-01

    The accumulation of tectonic stress may cause earthquakes at some epochs. However, in most cases, it leads to crustal deformations. Underground water level is a sensitive indication of the crustal deformations. We incorporate the information of the underground water level into the stress release models (SRM), and obtain the underground water stress release model (USRM). We apply USRM to the earthquakes occurred at Tangshan region. The analysis shows that the underground water stress release model outperforms both Poisson model and stress release model. Monte Carlo simulation shows that the simulated seismicity by USRM is very close to the real seismicity.

  13. Neutron albedo effects of underground nuclear explosion

    International Nuclear Information System (INIS)

    Yang Bo; Ying Yangjun; Li Jinhong; Bai Yun

    2013-01-01

    The neutron field distribution is affected by the surrounding medium in the underground nuclear explosion. It will influence the radiation chemical diagnosis. By Monte Carlo simulation, the fuel burnup induced by device and neutron albedo was calculated. The analysis method of albedo effect on radiation chemical diagnosis result under special environment was proposed. Neutron albedo should be considered when capture reaction burnup fraction is used, and then correct analysis can be carried out on the nuclear device.The neutron field distribution is affected by the surrounding medium in the underground nuclear explosion. It will influence the radiation chemical diagnosis. By Monte Carlo simulation, the fuel burnup induced by device and neutron albedo was calculated. The analysis method of albedo effect on radiation chemical diagnosis result under special environment was proposed. Neutron albedo should be considered when capture reaction burnup fraction is used, and then correct analysis can be carried out on the nuclear device. (authors)

  14. Underground Safari” and other outreach tools for dissemination of root and soil science research

    Science.gov (United States)

    Mladenov, N.; Riffel, H.; D'Odorico, P.

    2009-12-01

    The Kalahari Transect encompasses the sandy savanna biome of southern Africa and provides a compelling setting for studying the influence of climate change on soil and plant dynamics in a water stressed environment. NSF funding for the Research Experience for Teachers (RET) Program made it possible for a high school science teacher to visit field sites in Botswana, interact with Botswana high school teachers and students, and collaborate with scientists to develop web-based science teacher education modules on the topic of roots and belowground carbon storage. The “Underground Safari” website for K-12 teachers and students was constructed to infuse middle and high school level standards-based soil science curricula with outdoor activities, international field research videos, lab demos, printable handouts, and stimulating real-world applications. This presentation highlights the “Underground Safari” website design, the wiki page used by the RET teacher to communicate with her students on-line and take them on science adventures during the international field research, and other educational outreach activities resulting from this international research experience. Figure 1. Wiki page used by RET teacher to communicate with her students while in the field in Botswana, Africa.

  15. The importance of mines for ultimate storage at Deilmann-Haniel Shaft Sinking

    International Nuclear Information System (INIS)

    Greinacher, Jochen; Oellers, Thomas; Ahlbrecht, Thomas

    2011-01-01

    Deilmann-Haniel Shaft Sinking GmbH and its predecessor and associate companies have been involved in projects for underground ultimate storage in Germany, Europe and America for over 45 years. The field of activities previously comprised surveying, planning and sinking of shafts, repair and conversion work, design of underground sealing structures, planning of conveyors and support of the BfS in planning approval procedures. Following discontinuation of activities in the German coal mining industry the use of mines for ultimate storage is an important support for German specialist mining companies. The use of mines for ultimate storage ensures that the existing mining know how in Germany is maintained, because training of the younger generation on the commercial and engineering side of the companies is made possible by the imminent major projects.

  16. Superconducting snake with the field of 75 kGs for the VEPP-2M electron-positron storage ring

    International Nuclear Information System (INIS)

    Anashin, V.V.; Vasserman, I.B.; Vlasov, A.M.

    1985-01-01

    Superconducting ''snake'' with the field of 75 kG is established in the VEPP-2M electron-positron storage ring for increase of colliding beam luminosity up to 2x10 31 cmsup(-2)sdup(-1) in the energy range from 2x200 to 2x700 MeV. The ''snake'' comprises three central magnets with the field of 75 kG and two side ones with the field of 45 kG and it is placed in one of rectilinear experimental gaps. Description of design peculiarities of the ''snake'' and its parameters are given. Parameters of beams with switched on and switched off ''snake'' as well as parameters of coils and superconducting wire are presented

  17. Sixth underground coal-conversion symposium

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The sixth annual underground coal conversion symposium was held at Shangri-la near Afton, Oklahoma, July 13 to 17, 1980. Sessions were developed to: Doe Field Programs, Major Industry Activity, Mathematical Modeling, Laboratory Studies, Environmental Studies, Economics, Instruments and Controls, and General Topics. Fifty-two papers from the proceedings have been entered individually into EDB and ERA. Thirteen papers had been entered previously from other sources. (LTN)

  18. Going Underground in Singapore

    CERN Multimedia

    John Osborne (GS/SEM)

    2010-01-01

    Singapore has plans to build a massive Underground Science City (USC) housing R&D laboratories and IT data centres. A delegation involved in the planning to build the subterranean complex visited CERN on 18 October 2010 to learn from civil engineers and safety experts about how CERN plans and constructs its underground facilities.   The delegation from Singapore. The various bodies and corporations working on the USC project are currently studying the feasibility of constructing up to 40 caverns (60 m below ground) similar in size to an LHC experiment hall, in a similar type of rock. Civil engineering and geotechnical experts are calculating the maximum size of the cavern complex that can be safely built. The complex could one day accommodate between 3000 and 5000 workers on a daily basis, so typical issues of size and number of access shafts need to be carefully studied. At first glance, you might not think the LHC has much in common with the USC project; as Rolf Heuer pointed out: &ldq...

  19. RP delves underground

    CERN Document Server

    Anaïs Schaeffer

    2011-01-01

    The LHC’s winter technical stop is rapidly approaching. As in past years, technical staff in their thousands will be flocking to the underground areas of the LHC and the Linac2, Booster, PS and SPS injectors. To make sure they are protected from ionising radiation, members of the Radiation Protection Group will perform an assessment of the levels of radioactivity in the tunnels as soon as the beams have stopped.   Members of the Radiation Protection Group with their precision instruments that measure radioactivity. At 7-00 a.m. on 8 December the LHC and all of the upstream accelerators will begin their technical stop. At 7-30 a.m., members of the Radiation Protection Group will enter the tunnel to perform a radiation mapping, necessary so that the numerous teams can do their work in complete safety. “Before we proceed underground, we always check first to make sure that the readings from the induced radioactivity monitors installed in the tunnels are all normal,&rdqu...

  20. Underground super highway

    International Nuclear Information System (INIS)

    Latimer, Cole

    2010-01-01

    Clear communication is key. And quality communications and information equipment is now, more than ever before, integral in mine development as the industry moves towards greater remote control and automation of machinery and mining processes. In an underground mine, access to communications and information equipment has often been limited due to thermal extremes, physical hazards and dangerous chemicals. On top of this, copper conductors that are often used for communication equipment do not operate as efficiently because of the excessive noise generated by mining equipment, and may also puse a safety hazard. However, the design of extremely rugged fibre optic cables is now enabling ten gigabit transmission links in places that were never before thought possible in mining. One place though, has still proved a challenge for the expansion of fibre optic net-works, and that is in an underground coal mine. Until now. Optical Cable Corporation (OCC) has developed the rugged tight buffered breakout fibre optic cables for transmission links in harsh mining environments. Working at depths of over 300 metres below ground, and having seen roof falls actually bury the cable between rocks and still, the cables are able to operate in a myriad of conditions

  1. Controllability and observability of 2D thermal flow in bulk storage facilities using sensitivity fields

    NARCIS (Netherlands)

    Grubben, Nik L.M.; Keesman, Karel J.

    2017-01-01

    To control and observe spatially distributed thermal flow systems, the controllable field and observable field around the actuator and sensor are of interest, respectively. For spatially distributed systems, the classical systems theoretical concepts of controllability and observability are, in

  2. Precise measurements of magnetic field parameters of the multipoles for the SLS storage ring

    CERN Document Server

    Antohin, E I; Demenev, V V; Golubenko, O B; Korchuganov, V N; Mikhailov, S F; Ogurtsov, A B; Rivkin, L; Semenov, E P; Steshov, A G; Vollenweider, C; Zichy, J A

    2001-01-01

    The quadrupoles and sextupoles for the Swiss Light Source, a 2.4 GeV electron storage ring, had severe requirements on the manufacturing tolerances and the alignment of their magnetic axis. The 306 multipoles were manufactured, and magnetically measured at BINP and after delivery also at Paul Scherrer Institute. In this paper, the Rotating Coil Systems for precise magnetic measurements is described, and for the series magnets the main results of the magnetic measurements are also presented.

  3. Compressed air energy storage technology program. Annual report for 1979

    Energy Technology Data Exchange (ETDEWEB)

    Loscutoff, W.V.

    1980-06-01

    The objectives of the Compressed Air Energy Storage (CAES) program are to establish stability criteria for large underground reservoirs in salt domes, hard rock, and porous rock used for air storage in utility applications, and to develop second-generation CAES technologies that have minimal or no dependence on petroleum fuels. During the year reported reports have been issued on field studies on CAES on aquifers and in salt, stability, and design criteria for CAES and for pumped hydro-storage caverns, laboratory studies of CAES in porous rock reservoris have continued. Research has continued on combined CAES/Thermal Energy Storage, CAES/Solar systems, coal-fired fluidized bed combustors for CAES, and two-reservoir advanced CAES concepts. (LCL)

  4. Well selection in depleted oil and gas fields for a safe CO2 storage practice: A case study from Malaysia

    Directory of Open Access Journals (Sweden)

    Arshad Raza

    2017-03-01

    Full Text Available Carbon capture and sequestration technology is recognized as a successful approach taken to mitigate the amount of greenhouse gases released into the atmosphere. However, having a successful storage practice requires wise selection of suitable wells in depleted oil or gas fields to reduce the risk of leakage and contamination of subsurface resources. The aim of this paper is to present a guideline which can be followed to provide a better understanding of sophisticated wells chosen for injection and storage practices. Reviewing recent studies carried out on different aspects of geosequestration indicated that the fracture pressure of seals and borehole conditions such as cement-sheath integrity, distance from faults and fractures together with the depth of wells are important parameters, which should be part of the analysis for well selection in depleted reservoirs. A workflow was then designed covering these aspects and it was applied to a depleted gas field in Malaysia. The results obtained indicated that Well B in the field may have the potential of being a suitable conduit for injection. Although more studies are required to consider other aspects of well selections, it is recommended to employ the formation integrity analysis as part of the caprock assessment before making any decisions.

  5. Digital Underground (Shh. It's really Applied Geophysics!)

    Science.gov (United States)

    McAdoo, B. G.

    2003-12-01

    Digital Underground (Geology/Physics 241) at Vassar College is an applied geophysics course designed for a liberal arts curriculum, and has nothing to do with Shock G and Tupac Shakur. Applied geophysics courses have a history of using geophysical methods on environmental contamination-type applications (underground storage tanks, leach fields, etc.). Inspired in large part by the Keck Geology Consortium project run by Franklin and Marshall College geophysicist (Robert Sternberg) and archaeologist (James Delle) in an old slave village in Jamaica in 1999, this class examines the history of slavery in New York's Hudson Valley region by way of its forgotten African-American graveyards. This multidisciplinary approach to an issue draws students from across the curriculum- we have had our compliments of geologists and physicists, along with students from sociology, environmental studies, history, and Africana studies. The name of the class and content are designed to attract a non-traditional student of geophysics.- The project-based nature of the class appeals to student yearning for an out-of-classroom experience. The uncontrolled nature of the class demonstrates the complications that occur in real-word situations. The class has in the past broken itself into two teams- a surveying team and an archival research team. Archival research is done (usually by the social scientists in the class) to add a human dimension to the geophysical. The surveying equipment used in delineating these forgotten graveyards includes a Total Station surveyor, an electrical resistivity meter, a magnetometer, and a ground penetrating radar. All students must have a rudimentary understanding of the physics behind the equipment (to the level of where they can explain it to the general public), and the methods used by those studying the archives. This is a project-based class, where the instructor acts as a project manager, and the students make the decisions regarding the survey itself. Every

  6. Organ nic pollutants in underground water

    International Nuclear Information System (INIS)

    Hussein, H. H.

    1998-01-01

    Many organic compounds have been diagnosed in underground and surface waters, and there are many theories that explain the source of the dangerous materials on Punic health. The source of pollution could be the underground stored fuel or the polluted water in farms saturated with agricultural insecticides and chemical fertilizers, or there could be leaks in sewage water wastes. The source of pollution could also be the water surfaces in the areas of garbage disposal or industrial and home waste discharge. Due to the fact that the underground water is separated from oxygen in the air, its ability on self-purification is very low, in that the micro-organism that will do the dismantling and decomposition of the organic materials that pollute the water are in need for oxygen. In the event that underground water is subject to pollution m there are many methods for t resting the polluted water including the chemical decomposition method by injecting the polluted areas with neutralizing or oxidizing chemicals, such as Ozone, Chlorine or Hydrogen Peroxide. The mechanical methods could be used for getting rid of the volatile organic materials. As to biological decomposition, it is done with the use of bacteria in dismantling the poisonous materials into un poisonous materials. The preliminary analysis of water samples in one of the water wells in Sar ir and Tazarbo in Great Jamahirieh indicated that the concentration of total organic compounds (TOC) exceeded the internationally allowed limits. This indicates a deterioration of quality of some of underground water resources. It is well known that some of the organic pollutants have a great role in causing dangerous diseases, such as the polynuclear aromatic hydrocarbons and some halogenated compounds that cause cancer. Therefore, much research is required in this field for diagnosing the polluting organic compounds and determining the suitability of this water for drinking or for human consumption. (author). 21 refs., 6 figs

  7. Technological innovations on underground coal gasification and CO2 sequestration

    International Nuclear Information System (INIS)

    Da Gama, Carlos D; Navarro T, Vidal; Falcao N, Ana P

    2010-01-01

    A brief description of the underground coal gasification (UCG) process, combined with the possibility of CO 2 sequestration, is presented. Although nowadays there are very few active industrial UCG plants, a number of new projects are under way in different parts of the world aimed to produce regular gas fuel derived from in situ coal combustion, despite the environmental advantages resulting from this process. A brief review of those projects is included. The possibility of underground CO 2 storage, either with or without simultaneous UCG, is analyzed by taking into consideration the main challenges of its application and the risks associated with integrated solutions, thus requiring innovative solutions.

  8. Assessment of underground water potential zones using modern geomatics technologies in Jhansi district, Uttar Pradesh, India.

    Science.gov (United States)

    Pandey, N. K.; Shukla, A. K.; Shukla, S.; Pandey, M.

    2014-11-01

    Ground water is a distinguished component of the hydrologic cycle. Surface water storage and ground water withdrawal are traditional engineering approaches which will continue to be followed in the future. The uncertainty about the occurrence, distribution and quality aspect of the ground water and the energy requirement for its withdrawal impose restriction on exploitation of ground water. The main objective of the study is assessment of underground water potential zones of Jhansi city and surrounding area, by preparing underground water potential zone map using Geographical Information System (GIS), remote sensing, and validation by underground water inventory mapping using GPS field survey done along the parts of National Highway 25 and 26 and some state highway passing through the study area. Study area covers an area of 1401 km2 and its perimeter is approximate 425 km. For this study Landsat TM (0.76-0.90 um) band data were acquired from GLCF website. Sensor spatial resolution is 30 m. Satellite image has become a standard tool aiding in the study of underground water. Extraction of different thematic layers like Land Use Land Cover (LULC), settlement, etc. can be done through unsupervised classification. The modern geometics technologies viz. remote sensing and GIS are used to produce the map that classifies the groundwater potential zone to a number of qualitative zone such as very high, high, moderate, low or very low. Thematic maps are prepared by visual interpretation of Survey of India topo-sheets and linearly enhanced Landsat TM satellite image on 1 : 50,000 scale using AutoCAD, ArcGIS 10.1 and ERDAS 11 software packages.

  9. External electric field: An effective way to prevent aggregation of Mg atoms on γ-graphyne for high hydrogen storage capacity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ping-Ping [College of Physical Science and Technology, Sichuan University, Chengdu 610065 (China); Zhang, Hong, E-mail: hongzhang@scu.edu.cn [College of Physical Science and Technology, Sichuan University, Chengdu 610065 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Cheng, Xin-Lu, E-mail: chengxl@scu.edu.cn [Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Tang, Yong-Jian, E-mail: tangyongjian2000@sina.com [Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China)

    2016-05-15

    Highlights: • Due to large pores in the sheet of γ-graphyne, it should be a potential materials for energy storage applications. Our calculations might motivate active experimental efforts in designing high-efficiency hydrogen storage media. • For the first time, we use an applied external electric field to prevent Mg atoms from clustering using density functional theory (DFT) calculations. • The results demonstrate that, for Mg-G after electric field (F = 0.05 V/nm) treatment, ten H{sub 2} molecules per Mg atom can be adsorbed and the hydrogen storage capacities reach to 10.64 wt%, with the average binding energies of 0.28 eV/H{sub 2}. - Abstract: In this article, we investigate the hydrogen storage capacity of Mg-decorated γ-graphyne (Mg-G) based on DFT calculations. Our results indicate that an external electric field can effectively prevent Mg atoms aggregating on γ-graphyne sheet. The Mg-G, after electric field (F = 0.05 V/nm) treatment, can store up to ten H{sub 2} molecules and the hydrogen storage capacity is 10.64 wt%, with the average adsorption energy of 0.28 eV/H{sub 2}. Our calculations demonstrate that Mg-G is a potential material for hydrogen storage with high capacity and might motivate active experimental efforts in designing hydrogen storage media.

  10. Depression storage and infiltration effects on overland flow depth-velocity-friction at desert conditions: field plot results and model

    Directory of Open Access Journals (Sweden)

    M. J. Rossi

    2012-09-01

    Full Text Available Water infiltration and overland flow are relevant in considering water partition among plant life forms, the sustainability of vegetation and the design of sustainable hydrological models and management. In arid and semi-arid regions, these processes present characteristic trends imposed by the prevailing physical conditions of the upper soil as evolved under water-limited climate. A set of plot-scale field experiments at the semi-arid Patagonian Monte (Argentina were performed in order to estimate the effect of depression storage areas and infiltration rates on depths, velocities and friction of overland flows. The micro-relief of undisturbed field plots was characterized at z-scale 1 mm through close-range stereo-photogrammetry and geo-statistical tools. The overland flow areas produced by controlled water inflows were video-recorded and the flow velocities were measured with image processing software. Antecedent and post-inflow moisture were measured, and texture, bulk density and physical properties of the upper soil were estimated based on soil core analyses. Field data were used to calibrate a physically-based, mass balanced, time explicit model of infiltration and overland flows. Modelling results reproduced the time series of observed flow areas, velocities and infiltration depths. Estimates of hydrodynamic parameters of overland flow (Reynolds-Froude numbers are informed. To our knowledge, the study here presented is novel in combining several aspects that previous studies do not address simultaneously: (1 overland flow and infiltration parameters were obtained in undisturbed field conditions; (2 field measurements of overland flow movement were coupled to a detailed analysis of soil microtopography at 1 mm depth scale; (3 the effect of depression storage areas in infiltration rates and depth-velocity friction of overland flows is addressed. Relevance of the results to other similar desert areas is justified by the accompanying

  11. A review of sorption of radionuclides under the near- and far-field conditions of an underground radioactive waste repository. Pt. 2

    International Nuclear Information System (INIS)

    Berry, J.A.

    1992-01-01

    This report, a bibliography, has been prepared, presenting work carried out world-wide since 1970 on the sorption of radionuclides under near- and far-field conditions. Work has been included where the results are relevant to the disposal of low- and intermediate-level radioactive waste in a cementitious repository in the UK. The bibliography has been prepared using the INIS database and includes eight hundred references, listed both by subject and by country. In addition to these indexes, full abstracts are presented in reverse chronological order. A brief description of the relevance and measurement of sorption parameters is included. (author)

  12. Numerical modeling of the thermomechanical behavior of networks of underground galleries for the storage of the radioactive waste: approach by homogenization; Modelisation numerique du comportement thermomecanique de reseaux de galeries souterraines pour le stockage des dechets radioactifs: Approche par homogeneisation

    Energy Technology Data Exchange (ETDEWEB)

    Zokimila, P

    2005-10-15

    Deep geological disposal is one of the privileged options for the storage of High Level radioactive waste. A good knowledge of the behavior and properties of the potential geological formations as well as theirs evolution in time under the effect of the stress change induced by a possible installation of storage is required. The geological formation host will be subjected to mechanical and thermal solicitations due respectively to the excavation of the disposal tunnels and the release of heat of the canisters of radioactive waste. These thermomechanical solicitations will generate a stress relief in the host layer and disposal tunnels deformations as well as the extension of the damaged zones (EDZ) could cause local and global instabilities. This work aims to develop calculation methods to optimize numerical modeling of the thermoelastic behavior of the disposal at a large scale and to evaluate thermomechanical disturbance induced by storage on the geological formation host. Accordingly, after a presentation of the state of knowledge on the thermomechanical aspects of the rocks related to deep storage, of numerical modeling 2D and 3D of the thermoelastic behavior of individual disposal tunnel and a network of tunnels were carried out by a discrete approach. However, this classical approach is penalizing to study the global behavior of disposal storage. To mitigate that, an approach of numerical modeling, based on homogenization of periodic structures, was proposed. Formulations as numerical procedures were worked out to calculate the effective thermoelastic behavior of an equivalent heterogeneous structure. The model, obtained by this method, was validated with existing methods of homogenization such as the self-consistent model, as well as the Hashin-Shtrikman bounds. The comparison between the effective thermoelastic behavior and current thermoelastic behavior of reference showed a good coherence of the results. For an application to deep geological storage, the

  13. Dynamic underground stripping demonstration project

    International Nuclear Information System (INIS)

    Newmark, R.L.

    1992-04-01

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation techniques for rapid cleanup of localized underground spills. Called dynamic stripping to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first eight months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques. Tests then began on the contaminated site in FY 1992. This report describes the work at the Clean Site, including design and performance criteria, test results, interpretations, and conclusions. We fielded 'a wide range of new designs and techniques, some successful and some not. In this document, we focus on results and performance, lessons learned, and design and operational changes recommended for work at the contaminated site. Each section focuses on a different aspect of the work and can be considered a self-contained contribution

  14. Underground space planning in Helsinki

    Directory of Open Access Journals (Sweden)

    Ilkka Vähäaho

    2014-10-01

    Full Text Available This paper gives insight into the use of underground space in Helsinki, Finland. The city has an underground master plan (UMP for its whole municipal area, not only for certain parts of the city. Further, the decision-making history of the UMP is described step-by-step. Some examples of underground space use in other cities are also given. The focus of this paper is on the sustainability issues related to urban underground space use, including its contribution to an environmentally sustainable and aesthetically acceptable landscape, anticipated structural longevity and maintaining the opportunity for urban development by future generations. Underground planning enhances overall safety and economy efficiency. The need for underground space use in city areas has grown rapidly since the 21st century; at the same time, the necessity to control construction work has also increased. The UMP of Helsinki reserves designated space for public and private utilities in various underground areas of bedrock over the long term. The plan also provides the framework for managing and controlling the city's underground construction work and allows suitable locations to be allocated for underground facilities. Tampere, the third most populated city in Finland and the biggest inland city in the Nordic countries, is also a good example of a city that is taking steps to utilise underground resources. Oulu, the capital city of northern Finland, has also started to ‘go underground’. An example of the possibility to combine two cities by an 80-km subsea tunnel is also discussed. A new fixed link would generate huge potential for the capital areas of Finland and Estonia to become a real Helsinki-Tallinn twin city.

  15. Efficiency evaluation of agricultural underground dam in South Korea

    Science.gov (United States)

    Myoung, W.; Song, S. H.; Yong, H. H.

    2017-12-01

    Climate change has resulted in severe droughts in a rice-planting season (i.e., April to June) in South Korea since 2012. Therefore, all time high-amount water resources in rice-farming seasons (i.e., April to October) were required against natural crises like droughts. The underground dam, which is able to increase groundwater amounts in the alluvium aquifer, has been considered to be an alternative for securing more groundwater resources. In this study, irrigation efficiencies of five pre-existing agricultural underground dams in South Korea were evaluated during the drought periods. A total amount of groundwater storage capacities in alluvial aquifers of these five ones were estimated approximate 15 × 107 m3: above 4 × 106 m3 for two underground dams (Ian, Namsong), 2 3 × 106 m3, for 2 dams (Oksung, Wooil), below 2 × 106 m3 for 1 dam (Gocheon), respectively. Irrigating amounts of groundwater accounted for three underground dams (Ian, Namsong, Gocheon), supplied in rice-farming season are 8.5 × 105 m3/year, 8.3 × 105 m3/year, 6.3 × 105 m3/year, respectively. The total demand of agricultural water in these underground dams is 2.0 × 106 m3/year, 1.9 × 106 m3/year, 2.2 × 106 m3/year, respectively. Irrigating amounts of groundwater accounted for whole of rice-farming area in South Korea is 4.3 × 108 m3/year whereas total demand of agricultural water is 9.4 × 109 m3/year. Groundwater were pumped from the radial collector wells located in the upstream from the underground dams. Oksung underground dam, one representative underground dam located in Chungnam province in South Korea, irrigated approximate 3 × 105 m3 during a dried rice-planting season (between April to June) in 2017. It was three times more than usual (9 × 104 m3). Groundwater levels during the same period maintained above 5.55 m, which was slightly lower than usual (6.00 m). Results of Oksung underground dam demonstrated that underground dams in South Korea were effectively operated against

  16. Multimode Storage and Retrieval of Microwave Fields in a Spin Ensemble

    Directory of Open Access Journals (Sweden)

    C. Grezes

    2014-06-01

    Full Text Available A quantum memory at microwave frequencies, able to store the state of multiple superconducting qubits for long times, is a key element for quantum information processing. Electronic and nuclear spins are natural candidates for the storage medium as their coherence time can be well above 1 s. Benefiting from these long coherence times requires one to apply the refocusing techniques used in magnetic resonance, a major challenge in the context of hybrid quantum circuits. Here, we report the first implementation of such a scheme, using ensembles of nitrogen-vacancy centers in diamond coupled to a superconducting resonator, in a setup compatible with superconducting qubit technology. We implement the active reset of the nitrogen-vacancy spins into their ground state by optical pumping and their refocusing by Hahn-echo sequences. This enables the storage of multiple microwave pulses at the picowatt level and their retrieval after up to 35  μs, a 3 orders of magnitude improvement compared to previous experiments.

  17. Compilation and summary of technical and economic assessments in the field of energy storage

    Energy Technology Data Exchange (ETDEWEB)

    DeVries, J.

    1981-10-01

    Information is presented which was extracted from various assessments of energy storage technologies conducted during the past four years, primarily under the auspices of the Office of Energy Systems Research and Development (formerly the Division of Energy Storage Systems). A thorough search of the relevant literature was conducted using the DOE/RECON computerized data base and other sources. Only tabular or graphic material was abstracted from the documents. The material has been organized in two ways: by the intended end use, i.e., vehicles, utility load leveling, residential load leveling, industrial, and solar, and within each end use, by technology. The summary tables attempt to compare the results of different studies of the same technology or end use. No attempt is made to summarize the conclusions of each individual study, but rather to point out areas of agreement or disagreement between them. The reader should be aware of the risks in making comparisons between studies conducted by researchers with possibly differing purposes and assumptions. Any conclusions based on the summary sections are more indicative than definitive.

  18. Techno-Economic Assessment of Heat Transfer Fluid Buffering for Thermal Energy Storage in the Solar Field of Parabolic Trough Solar Thermal Power Plants

    Directory of Open Access Journals (Sweden)

    Jorge M. Llamas

    2017-08-01

    Full Text Available Currently, operating parabolic trough (PT solar thermal power plants, either solar-only or with thermal storage block, use the solar field as a heat transfer fluid (HTF thermal storage system to provide extra thermal capacity when it is needed. This is done by circulating heat transfer fluid into the solar field piping in order to create a heat fluid buffer. In the same way, by oversizing the solar field, it can work as an alternative thermal energy storage (TES system to the traditionally applied methods. This paper presents a solar field TES model for a standard solar field from a 50-MWe solar power plant. An oversized solar model is analyzed to increase the capacity storage system (HTF buffering. A mathematical model has been developed and different simulations have been carried out over a cycle of one year with six different solar multiples considered to represent the different oversized solar field configurations. Annual electricity generation and levelized cost of energy (LCOE are calculated to find the solar multiple (SM which makes the highest solar field thermal storage capacity possible within the minimum LCOE.

  19. Enhanced density of optical data storage using near-field concept: fabrication and test of nanometric aperture array

    International Nuclear Information System (INIS)

    Cha, J.; Park, J. H.; Kim, Myong R.; Jhe, W.

    1999-01-01

    We have tried to enhance the density of the near-field optical memory and to improve the recording/readout speed. The current optical memory has the limitation in both density and speed. This barrier due to the far-field nature can be overcome by the use of near-field. The optical data storage density can be increased by reducing the size of the nanometric aperture where the near-field is obtained. To fabricate the aperture in precise dimension, we applied the orientation-dependent / anisotropic etching property of crystal Si often employed in the field of MEMS. And so we fabricated the 10 x 10 aperture array. This array will be also the indispensable part for speeding up. One will see the possibility of the multi-tracking pickup in the phase changing type memory through this array. This aperture array will be expected to write the bit-mark whose size is about 100 nm. We will show the recent result obtained. (author)

  20. Solubility studies of Np(V) in simulated underground water

    International Nuclear Information System (INIS)

    Zhang Yingjie; Ren Lihong; Jiao Haiyang; Yao Jun; Su Xiguang; Fan Xianhua

    2000-01-01

    The solubility of Np(V) in simulated underground water has been measured with the variation of pH, storage time (0-100 days). All experiments were performed in an Ar glove box which contained high purity Ar, with an oxygen content of less than 5 ppm. Experimental results show that the solubility of Np(V) in simulated underground water decreased with increasing pH value of solution; the solubility of Np(V) in simulated underground water determined at different pH are: pH=6.96, [Np(V)]=(3.52±0.37) x 10 -4 mol/l; pH=8.04, [Np(V)]=(8.24±0.32) x 10 -5 mol/l; pH=9.01, [Np(V)]=(3.04±0.48) x 10 -5 mol/l, respectively

  1. Underground openings in clay formations - Technical requirements on drifting technology and support systems for underground openings and their impact on retreat systems for the installation of engineered barriers

    International Nuclear Information System (INIS)

    Mischo, Helmut

    2012-01-01

    Document available in extended abstract form only. Several countries are currently investigating the possibility of long-term storage of nuclear waste in clay formations, with a special focus on mud-stone formations. During the last decades extensive research has been conducted on the suitability of mud-stone as repository and the related special requirements of the clay matrix - with significant success. The knowledge base on the behaviour of the host formations during the mining phase of the excavations on the other hand is relatively limited compared to that of other investigated host rock formations, e.g. salt. With the low value of mud-stone and its relatively limited industrial application range, there have not been any large scale commercial underground mining activities in recent years to provide a significant and independent database on the behaviour of the selected mud-stone formations or their geological analogue during mining activities. Most information currently used for the assessment of this type of sediment and the planning of the mining activities has been gathered either during the execution of logistics and tunneling projects or during the excavation of today's underground laboratories. There is, however, a database on a vast variety of clay deposit types and morphologies available from commercial underground clay mining activities worldwide. The data available on commercial clay mining shows significant differences for each and every technological stage of clay mining as compared to the stages of any other mining operation. This is, amongst other things, due to the high and partly extreme ductility and creeping properties of typical clay formations, especially when considering their sensitiveness to a changing water content. In general the technical and technological differences include the applicable mining technology for the excavation of underground openings, the need for an advancement of any available technology to waterless variants as

  2. Field efficacy evaluation and post-treatment contamination risk assessment of an ultraviolet disinfection and safe storage system.

    Science.gov (United States)

    Reygadas, Fermin; Gruber, Joshua S; Ray, Isha; Nelson, Kara L

    2015-11-15

    Inconsistent use of household water treatment and safe storage (HWTS) systems reduces their potential health benefits. Ultraviolet (UV) disinfection is more convenient than some existing HWTS systems, but it does not provide post-treatment residual disinfectant, which could leave drinking water vulnerable to recontamination. In this paper, using as-treated analyses, we report on the field efficacy of a UV disinfection system at improving household drinking water quality in rural Mexico. We further assess the risk of post-treatment contamination from the UV system, and develop a process-based model to better understand household risk factors for recontamination. This study was part of a larger cluster-randomized stepped wedge trial, and the results complement previously published population-level results of the intervention on diarrheal prevalence and water quality. Based on the presence of Escherichia coli (proportion of households with ≥ 1 E. coli/100 mL), we estimated a risk difference of -28.0% (95% confidence interval (CI): -33.9%, -22.1%) when comparing intervention to control households; -38.6% (CI: -48.9%, -28.2%) when comparing post- and pre-intervention results; and -37.1% (CI: -45.2%, -28.9%) when comparing UV disinfected water to alternatives within the household. We found substantial increases in post-treatment E. coli contamination when comparing samples from the UV system effluent (5.0%) to samples taken from the storage container (21.1%) and drinking glasses (26.0%). We found that improved household infrastructure, additional extractions from the storage container, additional time from when the storage container was filled, and increased experience of the UV system operator were associated with reductions in post-treatment contamination. Our results suggest that the UV system is efficacious at improving household water quality when used as intended. Promoting safe storage habits is essential for an effective UV system dissemination. The drinking

  3. The Underground "Fortress" of Bang Tsho Ruler

    OpenAIRE

    Pelgen, Ugyen; Gyeltshen, Tshering

    2004-01-01

    The Bang Tsho village was part of the Kurtoed Province in North Eastern Bhutan. The authors deals with the underground architecture of this village. The article is based on a field visit carried out in November 2002. While the main focus of field work was on discerning the migration routes of the sKur smad speaking population of Lhun rtse rDzong khag to other rDzong khags in particular bKra shsi gang and bKra shis yang rtse the authors visited also the Bang tsho village and examined the ruins...

  4. Impact of caprock permeability on vertical ground surface displacements in geological underground utilisation

    Science.gov (United States)

    Kempka, Thomas; Tillner, Elena

    2015-04-01

    are decreased by almost 10 %. Furthermore, if the vertical location of the open well section is directly located below the caprock, vertical displacements at the ground surface are significantly higher compared to a lower open hole position. Consequently, a focus in site characterisation in the scope of geological underground utilisation should be on detailed assessment of caprock permeability. These data may be derived by well logs and hydraulic tests as well as laboratory tests on core samples. Kempka, T., Nielsen, C.M., Frykman, P., Shi, J.-Q., Bacci, G., Dalhoff, F. Coupled Hydro-Mechanical Simulations of CO2 Storage Supported by Pressure Management Demonstrate Synergy Benefits from Simultaneous Formation Fluid Extraction (2014) Oil Gas Sci Technol, doi:10.2516/ogst/2014029. Klimkowski, Ł., Nagy, S., Papiernik, B., Orlic, B., Kempka, T. Numerical simulations of enhanced gas recovery at the Załęcze gas field in Poland confirm high storage capacities and mechanical integrity (2015) Oil Gas Sci Technol (accepted). Tillner, E., Shi, J-.Q., Bacci, G., Nielsen, C.M., Frykman, P., Dalhoff, F., Kempka, T. Coupled Dynamic Flow and Geomechanical Simulations for an Integrated Assessment of CO2 Storage Impacts in a Saline Aquifer (2014) Energy Procedia, 63:2879-2893, doi:10.1016/j.egypro.2014.11.311.

  5. KAERI underground research tunnel (KURT)

    International Nuclear Information System (INIS)

    Cho, Won Jin; Kwon, Sang Ki; Park, Jeong Hwa; Choi, Jong Won

    2007-01-01

    An underground research tunnel is essential to validate the integrity of a high-level waste disposal system, and the safety of geological disposal. In this study, KAERI underground research tunnel (KURT) was constructed in the site of Korea Atomic Energy Research Institute(KAERI). The results of the site investigation and the design of underground tunnel were presented. The procedure for the construction permits and the construction of KURT were described briefly. The in-situ experiments being carried out at KURT were also introduced

  6. The invariant polarisation-tensor field for deuterons in storage rings and the Bloch equation for the polarisation-tensor density

    International Nuclear Information System (INIS)

    Barber, D.P.

    2015-10-01

    I extend and update earlier work, summarised in an earlier paper (D.P. Barber, M. Voigt, AIP Conference Proceedings 1149 (28)), whereby the invariant polarisation-tensor field (ITF) for deuterons in storage rings was introduced to complement the invariant spin field (ISF). Taken together, the ITF and the ISF provide a definition of the equilibrium spin density-matrix field which, in turn, offers a clean framework for describing equilibrium spin-1 ensembles in storage rings. I show how to construct the ITF by stroboscopic averaging, I give examples, I discuss adiabatic invariance and I introduce a formalism for describing the effect of noise and damping.

  7. Dynamic response of underground openings in discontinuous rock

    International Nuclear Information System (INIS)

    Asmis, H.W.

    1984-02-01

    This report examines the behaviour of underground openings in discontinuous rock in response to seismic waves associated with either earthquakes or rock bursts. A literature search revealed that well-constructed underground structures, such as would be expected for nuclear fuel waste disposal vaults, underground pumped-storage or nuclear plants, have an extremely high resistance to damage from seismic motion. To complement these qualitative results, it was necessary to examine the basic mechanisms of the entire progression of seismic motion, from wave generation and propagation, to wave interaction with the underground opening. From these investigations, it was found that unless a seismic event occurs very close to the installation, the stresses generated will be low with respect to the excavation stresses, because high stress waves are rapidly attenuated in travelling through rock. As well, an earthquake may generate extremely high accelerations, but is limited in the maximum amount of stress that it can create. The question, however, of the actual specific nature of underground seismic motions still remains essentially unanswered, although it is expected that there is a reduction in peak motions with depth due to the effect of the free surface of the earth

  8. Underground Facilities, Technological Challenges

    CERN Document Server

    Spooner, N

    2010-01-01

    This report gives a summary overview of the status of international under- ground facilities, in particular as relevant to long-baseline neutrino physics and neutrino astrophysics. The emphasis is on the technical feasibility aspects of creating the large underground infrastructures that will be needed in the fu- ture to house the necessary detectors of 100 kton to 1000 kton scale. There is great potential in Europe to build such a facility, both from the technical point of view and because Europe has a large concentration of the necessary engi- neering and geophysics expertise. The new LAGUNA collaboration has made rapid progress in determining the feasibility for a European site for such a large detector. It is becoming clear in fact that several locations are technically fea- sible in Europe. Combining this with the possibility of a new neutrino beam from CERN suggests a great opportunity for Europe to become the leading centre of neutrino studies, combining both neutrino astrophysics and neutrino beam stu...

  9. ATLAS solenoid operates underground

    CERN Multimedia

    2006-01-01

    A new phase for the ATLAS collaboration started with the first operation of a completed sub-system: the Central Solenoid. Teams monitoring the cooling and powering of the ATLAS solenoid in the control room. The solenoid was cooled down to 4.5 K from 17 to 23 May. The first current was established the same evening that the solenoid became cold and superconductive. 'This makes the ATLAS Central Solenoid the very first cold and superconducting magnet to be operated in the LHC underground areas!', said Takahiko Kondo, professor at KEK. Though the current was limited to 1 kA, the cool-down and powering of the solenoid was a major milestone for all of the control, cryogenic, power and vacuum systems-a milestone reached by the hard work and many long evenings invested by various teams from ATLAS, all of CERN's departments and several large and small companies. Since the Central Solenoid and the barrel liquid argon (LAr) calorimeter share the same cryostat vacuum vessel, this achievement was only possible in perfe...

  10. Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    International Nuclear Information System (INIS)

    Evans, S.K.

    2002-01-01

    This Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about sampling design, required analyses, and sample collection and handling procedures, is to be used in conjunction with the Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System

  11. An embedded underground navigation system

    CSIR Research Space (South Africa)

    Hlophe, K

    2011-11-01

    Full Text Available Platform pose (localization and orientation) information is a key requirement for autonomous mobile systems. The severe natural conditions and complex terrain of underground mines diminish the capability of most pose estimation systems, especially...

  12. An overview of world history of underground coal gasification

    Science.gov (United States)

    Konovšek, Damjan; Nadvežnik, Jakob; Medved, Milan

    2017-07-01

    We will give an overview of the activities in the field of underground coal gasification in the world through history. Also we will have a detailed presentation of the most successful and the most recent research and development projects. The currency and scope of the study of coal gasification processes are linked through recent history to the price of crude oil. We will show how by changing oil prices always changes the interest for investment in research in the field of coal gasification. Most coal-producing countries have developed comprehensive programs that include a variety of studies of suitable coal fields, to assess the feasibility and design pilot and commercial projects of underground coal gasification. The latest technologies of drilling in oil and gas industry now enable easier, simpler and more economically viable process underground coal gasification. The trend of increasing research in this area will continue forward until the implementation of commercial projects.

  13. Decommissioning of underground structures, systems and components

    International Nuclear Information System (INIS)

    2006-01-01

    A large number of operational and shut down nuclear installations have underground systems, structures and components such as pipes, tanks or vaults. This practice of incorporating such features into the design of nuclear facilities has been in use for an extended period of time during which decommissioning was not perceived as a serious issue and was rarely considered in plant design and construction. Underground features can present formidable decontamination and/or dismantling issues, and these are addressed in this report. Decommissioning issues include, among others, difficulty of access, the possible need for remotely operated technologies, leakage of the contents and the resulting contamination of foundations and soil, as well as issues such as problematic radiological characterization. Although to date there have been more than 40 IAEA publications on decommissioning, none of them has ever addressed this subject. Although cases of decommissioning of such facilities have been described in the technical literature, no systematic treatment of relevant decommissioning strategies and technologies is currently available. It was perhaps assumed that generic decontamination and dismantling approaches would also be adequate for these 'difficult' facilities. This may be only partly true due to a number of unique physical, layout and radiological characteristics. With growing experience in the decommissioning field, it is timely to address this subject in a systematic and comprehensive fashion. Practical guidance is given in this report on relevant decommissioning strategies and technologies for underground features of facilities. Also described are alternative design and construction approaches that could facilitate a smoother path forward through the decommissioning process. The objective of this report is to highlight important points in the decommissioning of underground systems, structures or components for policy makers, operators, waste managers and other

  14. Acoustic Impedance Measurement for Underground Surfaces.

    Science.gov (United States)

    Cockcroft, Paul William

    Available from UMI in association with The British Library. Requires signed TDF. This thesis investigates the measurement of acoustic impedance for surfaces likely to be found in underground coal mines. By introducing the concepts of industrial noise, the effects of noise on the ear and relevant legislation the need for the protection of workers can be appreciated. Representative acoustic impedance values are vital as input for existing computer models that predict sound levels in various underground environments. These enable the mining engineer to predict the noise level at any point within a mine in the vicinity of noisy machinery. The concepts of acoustic intensity and acoustic impedance are investigated and different acoustic impedance measurement techniques are detailed. The possible use of either an impedance tube or an intensity meter for these kinds of measurements are suggested. The problems with acoustic intensity and acoustic impedance measurements are discussed with reference to the restraints that an underground environment imposes on any measurement technique. The impedance tube method for work in an acoustics laboratory is shown and the theory explained, accompanied by a few representative results. The use of a Metravib intensity meter in a soundproof chamber to gain impedance values is explained in detail. The accompanying software for the analysis of the two measured pressure signals is shown as well as the actual results for a variety of test surfaces. The use of a Nagra IV-SJ tape recorder is investigated to determine the effect of recording on the measurement and subsequent analysis of the input signals, particularly with reference to the phase difference introduced between the two simultaneous pressure signals. The subsequent use of a Norwegian Electronic intensity meter, including a proposal for underground work, is shown along with results for tests completed with this piece of equipment. Finally, recommendations are made on how to link up

  15. Pipe locator for imaging underground pipelines (abstract)

    Science.gov (United States)

    Miyamoto, Y.; Wasa, Y.; Mori, K.; Kondo, Y.

    1988-11-01

    Recently, it becomes more important to locate the complex piping patterns such as tee, bend, riser, and the others with high accuracy for maintenance and protection of city gas pipelines. Hence, we have developed a new pipe locator system for imaging the complex underground pipelines using magnetic remote sensing techniques. The main framework of this development is the application of the pattern recognition of the magnetic field distribution to the location of buried pipelines in urban areas. The first step for imaging the complex pipelines is to measure the three-dimensional magnetic field distribution with high accuracy which is generated by the passage of the alternating signal current through buried pipeline. For this purpose a portable trolley unit which is capable of scanning the ground to collect data, the 10 three-axes coil sensors with a sensitivity of 1 μG which are aligned in the unit, and a filter system using a FFT signal processor which eliminates urban magnetic noise as high as 10 mG in some cases, were developed. The second step is to process the magnetic field distribution data, to extract the feature of the underground pipeline using the contour diagram and the three-dimensional drawing of the magnetic field, and to identify the complex piping patterns. Further, we recognized that a nonlinear least-square method algorithm for calculation of the pipeline's position was useful to improve the location accuracy.

  16. Comments on the final report of the critical analysis of the Andra's program on researches performed in the Bure underground laboratory and the transposition zone to define a ZIRA, prepared by the IEER for the CLIS (March-April 2011)

    International Nuclear Information System (INIS)

    2011-07-01

    This report is an answer to the conclusions and recommendations of a report made by the IEER about researches performed in the field of deep geological storage of nuclear wastes. It also proposes an analysis of the whole content of this report. The IEER report addressed seismic data and seismic characterization of the transposition area, the characteristics and properties of host geological formations, rock mechanics, thermal aspects, and the comparison with other underground research programs aimed at the selection of a ZIRA (area of interest for deeper research for a future storage)

  17. Proximity detection system underground

    Energy Technology Data Exchange (ETDEWEB)

    Denis Kent [Mine Site Technologies (Australia)

    2008-04-15

    Mine Site Technologies (MST) with the support ACARP and Xstrata Coal NSW, as well as assistance from Centennial Coal, has developed a Proximity Detection System to proof of concept stage as per plan. The basic aim of the project was to develop a system to reduce the risk of the people coming into contact with vehicles in an uncontrolled manner (i.e. being 'run over'). The potential to extend the developed technology into other areas, such as controls for vehicle-vehicle collisions and restricting access of vehicle or people into certain zones (e.g. non FLP vehicles into Hazardous Zones/ERZ) was also assessed. The project leveraged off MST's existing Intellectual Property and experience gained with our ImPact TRACKER tagging technology, allowing the development to be fast tracked. The basic concept developed uses active RFID Tags worn by miners underground to be detected by vehicle mounted Readers. These Readers in turn provide outputs that can be used to alert a driver (e.g. by light and/or audible alarm) that a person (Tag) approaching within their vicinity. The prototype/test kit developed proved the concept and technology, the four main components being: Active RFID Tags to send out signals for detection by vehicle mounted receivers; Receiver electronics to detect RFID Tags approaching within the vicinity of the unit to create a long range detection system (60 m to 120 m); A transmitting/exciter device to enable inner detection zone (within 5 m to 20 m); and A software/hardware device to process & log incoming Tags reads and create certain outputs. Tests undertaken in the laboratory and at a number of mine sites, confirmed the technology path taken could form the basis of a reliable Proximity Detection/Alert System.

  18. The economics of aquifer storage recovery technology

    Energy Technology Data Exchange (ETDEWEB)

    David, R.; Pyne, G.

    2014-10-01

    Aquifer storage recovery (ASR) technology is increasingly being utilized around the world for storing water underground through one or more wells during wet months and other times when water is available for storage. The water is then recovered from the same wells when needed to meet a growing variety of water supply objectives. The economics of ASR constitute the principal reason for its increasing utilization. ASR unit capital costs are typically less than half those of other water supply and water storage alternatives. Unit operating costs are usually only slightly greater than for conventional production well-fields. Marginal costs for ASR storage and recovery provide a powerful tool for making more efficient use of existing infrastructure, providing water supply sustainability and reliability at relatively low cost. The opportunity exists for a careful analysis of the net present value of ASR well-fields, addressing not only the associated capital and operating costs but also the value of the benefits achieved for each of the water supply objectives at each site. (Author)

  19. Equilibrium geochemical modeling of a seasonal thermal energy storage aquifer field test

    Science.gov (United States)

    Stottlemyre, J. S.

    1980-01-01

    A geochemical mathematical modeling study designed to investigate the well plugging problems encountered at the Auburn University experimental field tests is summarized. The results, primarily of qualitative interest, include: (1) loss of injectivity was probably due to a combination of native particulate plugging and clay swelling and dispersion; (2) fluid-fluid incompatibilities, hydrothermal reactions, and oxidation reactions were of insignificant magnitude or too slow to have contributed markedly to the plugging; and (3) the potential for and contributions from temperature-induced dissolved gas solubility reductions, capillary boundary layer viscosity increases, and microstructural deformation cannot be deconvolved from the available data.

  20. Field Dissipation and Storage Stability of Glufosinate Ammonium and Its Metabolites in Soil

    OpenAIRE

    Zhang, Yun; Wang, Kai; Wu, Junxue; Zhang, Hongyan

    2014-01-01

    A simple analytical method was developed to measure concentrations of glufosinate ammonium and its metabolites, 3-methylphosphinico-propionic acid (MPP) and 2-methylphosphinico-acetic acid (MPA), in field soil samples. To determine the minimum quantification limit, samples were spiked at different levels (0.1, 0.5, and 1.0 mg/kg). Soil samples were extracted with ammonium hydroxide solution 5% (v/v), concentrated, and reacted with trimethyl orthoacetate (TMOA) in the presence of acetic acid f...

  1. Field dissipation and storage stability of glufosinate ammonium and its metabolites in soil.

    Science.gov (United States)

    Zhang, Yun; Wang, Kai; Wu, Junxue; Zhang, Hongyan

    2014-01-01

    A simple analytical method was developed to measure concentrations of glufosinate ammonium and its metabolites, 3-methylphosphinico-propionic acid (MPP) and 2-methylphosphinico-acetic acid (MPA), in field soil samples. To determine the minimum quantification limit, samples were spiked at different levels (0.1, 0.5, and 1.0 mg/kg). Soil samples were extracted with ammonium hydroxide solution 5% (v/v), concentrated, and reacted with trimethyl orthoacetate (TMOA) in the presence of acetic acid for derivatization. The derivatives were quantified by gas chromatography (GC) using a flame photometric detector (FPD). The linear correlation coefficients of glufosinate ammonium, MPP, and MPA in soil were 0.991, 0.999, and 0.999, respectively. The recoveries of this method for glufosinate ammonium, MPP, and MPA in soil were 77.2-95.5%, 98.3-100.3%, and 99.3-99.6% with relative standard deviations (RSD) of 1.8-4.1%, 0.4-1.4%, and 1.3-2.0%, respectively. Glufosinate ammonium dissipated rapidly in soil to MPA in hours and gradually degraded to MPP. The half-life of glufosinate ammonium degradation in soil was 2.30-2.93 days in an open field. In soil samples stored at -20°C glufosinate ammonium was stable for two months. The results of this study should provide guidance for the safe application of the herbicide glufosinate ammonium to agricultural products and the environment.

  2. A numerical study on the structural behavior of underground rock caverns for radioactive waste disposal

    International Nuclear Information System (INIS)

    Kim, Sun Hoon; Choi, Kyu Sup; Lee, Kyung Jin; Kim, Dae Hong

    1991-01-01

    In order to design safe and economical underground disposal structures for radioactive wastes, understanding the behavior of discontinuous rock masses is essential. This study includes discussions about the computational model for discontinuous rock masses and the structural analysis method for underground storage structures. Then, based on an engineering judgement a suitable selection and slight modifications on computational models and analysis methods have been made in order to analyze and understand the structural behavior of the rock cavern with discontinuities

  3. Field Dissipation and Storage Stability of Glufosinate Ammonium and Its Metabolites in Soil

    Directory of Open Access Journals (Sweden)

    Yun Zhang

    2014-01-01

    Full Text Available A simple analytical method was developed to measure concentrations of glufosinate ammonium and its metabolites, 3-methylphosphinico-propionic acid (MPP and 2-methylphosphinico-acetic acid (MPA, in field soil samples. To determine the minimum quantification limit, samples were spiked at different levels (0.1, 0.5, and 1.0 mg/kg. Soil samples were extracted with ammonium hydroxide solution 5% (v/v, concentrated, and reacted with trimethyl orthoacetate (TMOA in the presence of acetic acid for derivatization. The derivatives were quantified by gas chromatography (GC using a flame photometric detector (FPD. The linear correlation coefficients of glufosinate ammonium, MPP, and MPA in soil were 0.991, 0.999, and 0.999, respectively. The recoveries of this method for glufosinate ammonium, MPP, and MPA in soil were 77.2–95.5%, 98.3–100.3%, and 99.3–99.6% with relative standard deviations (RSD of 1.8–4.1%, 0.4–1.4%, and 1.3–2.0%, respectively. Glufosinate ammonium dissipated rapidly in soil to MPA in hours and gradually degraded to MPP. The half-life of glufosinate ammonium degradation in soil was 2.30–2.93 days in an open field. In soil samples stored at −20°C glufosinate ammonium was stable for two months. The results of this study should provide guidance for the safe application of the herbicide glufosinate ammonium to agricultural products and the environment.

  4. Field Dissipation and Storage Stability of Glufosinate Ammonium and Its Metabolites in Soil

    Science.gov (United States)

    Zhang, Yun; Wang, Kai; Wu, Junxue; Zhang, Hongyan

    2014-01-01

    A simple analytical method was developed to measure concentrations of glufosinate ammonium and its metabolites, 3-methylphosphinico-propionic acid (MPP) and 2-methylphosphinico-acetic acid (MPA), in field soil samples. To determine the minimum quantification limit, samples were spiked at different levels (0.1, 0.5, and 1.0 mg/kg). Soil samples were extracted with ammonium hydroxide solution 5% (v/v), concentrated, and reacted with trimethyl orthoacetate (TMOA) in the presence of acetic acid for derivatization. The derivatives were quantified by gas chromatography (GC) using a flame photometric detector (FPD). The linear correlation coefficients of glufosinate ammonium, MPP, and MPA in soil were 0.991, 0.999, and 0.999, respectively. The recoveries of this method for glufosinate ammonium, MPP, and MPA in soil were 77.2–95.5%, 98.3–100.3%, and 99.3–99.6% with relative standard deviations (RSD) of 1.8–4.1%, 0.4–1.4%, and 1.3–2.0%, respectively. Glufosinate ammonium dissipated rapidly in soil to MPA in hours and gradually degraded to MPP. The half-life of glufosinate ammonium degradation in soil was 2.30–2.93 days in an open field. In soil samples stored at −20°C glufosinate ammonium was stable for two months. The results of this study should provide guidance for the safe application of the herbicide glufosinate ammonium to agricultural products and the environment. PMID:25374604

  5. Milk processed by pulsed electric fields: evaluation of microbial quality, physicochemical characteristics, and selected nutrients at different storage conditions.

    Science.gov (United States)

    Bermúdez-Aguirre, Daniela; Fernández, Sulmer; Esquivel, Heracleo; Dunne, Patrick C; Barbosa-Cánovas, Gustavo V

    2011-01-01

    Pulsed electric fields (PEF) technology was used to pasteurize raw milk under selected treatments. Processing conditions were: temperature 20, 30, and 40 °C, electric field 30.76 to 53.84 kV/cm, and pulse numbers 12, 24, and 30 for skim milk (SM), and 12, 21, and 30 for whole milk (WM) (2 μs pulse width, monopolar). Physicochemical parameters (pH, electrical conductivity, density, color, solids nonfat [SNF]) and composition (protein and fat content) were measured after processing. Shelf life of SM and WM was assessed after processing at 46.15 kV/cm, combined with temperature (20 to 60 °C) and 30 pulses. Mesophilic and psychrophilic loads and pH were evaluated during storage at 4 and 21 °C. Results showed minor variations in physicochemical properties after processing. There was an interesting trend in SM in SNF, which decreased as treatment became stronger; similar behavior was observed for fat and protein, showing a 0.18% and 0.17% decrease, respectively, under the strongest conditions. Protein and fat content decreased in WM samples treated at 40 °C, showing a decrease in protein (0.11%), and an even higher decrease in fat content. During storage, PEF-treated milk samples showed higher stability at 4 °C with minor variations in pH; after 33 d, pH was higher than 6. However samples at 21 °C showed faster spoilage and pH dropped to 4 after 5 d. Growth of mesophilic bacteria was delayed in both milks after PEF processing, showing a 6- and 7-log cycles for SM and WM, respectively, after day 25 (4 °C); however, psychrophilic bacteria grew faster in both cases. Pulsed electric fields (PEF) technology in the pasteurization of liquid food products has shown positive results. Processing times can be reduced considerably, which in turn reduces the loss of nutrients and offers important savings in energy. PEF has been used successfully to pasteurize some liquid foods, but it is still not used commercially in milk pasteurization, although several trials have shown

  6. Site status monitoring report for underground storage tanks 1219-U, 1222-U, 2082-U, and 2068-U at the Rust Garage Facility, Buildings 9720-15 and 9754-1, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Facility ID No. 0-010117

    International Nuclear Information System (INIS)

    1994-10-01

    The purpose of this document is to provide hydrogeologic, geochemical, and vapor monitoring data required for site status monitoring of underground storage tanks (UST) 1219-U, 1222-U, 2082-U, and 2068-U at the Rust Garage Facility. Comprehensive monitoring was conducted at the site in May 1994 as part of a Monitoring Only program approved by Tennessee Department of Environment and Conservation (TDEC) based on review and approval of Site Ranking. This document presents the results of the first semiannual site status monitoring, which was conducted in September 1994. Site status monitoring and preparation of this report have been conducted in accordance with the requirements of the TDEC Rule 1200-1-15, the TDEC UST Reference Handbook, Second Edition, and direction from TDEC. This document is organized into three sections. Section 1 presents introductory information relative to the site including regulatory initiative and a site description. Section 2 includes the results of sampling of monitoring wells GW-508, GW-631, GW-632, and GW-634. Section 3 presents data from vapor monitoring conducted in subsurface utilities present at the site

  7. Site-specific standard request for underground storage tanks 1219-U, 1222-U, 2082-U, and 2068-U at the rust garage facility buildings 9754-1 and 9720-15: Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Facility ID No. 0-010117

    International Nuclear Information System (INIS)

    1994-12-01

    This document represents a Site-specific Standard Request for underground storage tanks (USTs) 1219-U,1222-U and 2082-U previously located at former Building 9754-1, and tank 2086-U previously located at Building 9720-15, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. The tanks previously contained petroleum products. For the purposes of this report, the two building sites will be regarded as a single UST site and will be referred to as the Rust Garage Facility. The current land use associated with the Y-12 Plant is light industrial and the operational period of the plant is projected to be at least 30 years. Thus, potential future residential exposures are not expected to occur for at least 30 years. Based on the degradation coefficient for benzene (the only carcinogenic petroleum constituent detected in soils or groundwater at the Rust Garage Facility), it is expected that the benzene and other contaminants at the site will likely be reduced prior to expiration of the 30-year plant operational period. As the original sources of petroleum contamination have been removed, and the area of petroleum contamination is limited, a site-specific standard is therefore being requested for the Rust Garage Facility

  8. Corrective action baseline report for underground storage tanks 0439-U, 0440-U, 2073-U, 2074-U, and 2075-U at the East End Fuel Station, Buildings 9754 and 9754-2, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Facility ID No. 0-010117

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of this report is to provide baseline geochemical and hydrogeologic data relative to corrective action for underground storage tanks (USTs) 0439-U, 0440-U, 2073-U, 2074-U, and 2075-U at the East End Fuel Station, Buildings 9754 and 9754-2 at the Oak Ridge Y-12 Plant. Progress in support of corrective action at the East End Fuel Station has included monitoring well installation, tank removal, and baseline groundwater sampling and analysis. This document represents the baseline report for corrective action at the East End Fuel Station and is organized into three sections. Section 1 presents introductory information relative to the site, including the regulatory initiative, site description, and progress to date. Section 2 includes a summary of additional monitoring well installation activities, the results of baseline groundwater sampling, a summary of tank removal activities, and the results of confirmatory soil sampling performed during tank removal. Section 3 presents the baseline hydrogeology and planned zone of influence for groundwater remediation

  9. Underground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    1981-01-01

    This report is an overview document for the series of IAEA reports dealing with underground waste disposal to be prepared in the next few years. It provides an introduction to the general considerations involved in implementing underground disposal of radioactive wastes. It suggests factors to be taken into account for developing and assessing waste disposal concepts, including the conditioned waste form, the geological containment and possible additional engineered barriers. These guidelines are general so as to cover a broad range of conditions. They are generally applicable to all types of underground disposal, but the emphasis is on disposal in deep geological formations. Some information presented here may require slight modifications when applied to shallow ground disposal or other types of underground disposal. Modifications may also be needed to reflect local conditions. In some specific cases it may be that not all the considerations dealt with in this book are necessary; on the other hand, while most major considerations are believed to be included, they are not meant to be all-inclusive. The book primarily concerns only underground disposal of the wastes from nuclear fuel cycle operations and those which arise from the use of isotopes for medical and research activities

  10. Field evaluation of the long-lasting treated storage bag, deltamethrin-incorporated (ZeroFly® Storage Bag) as a barrier to insect pest infestation

    Science.gov (United States)

    The deltamethrin-incorporated polypropylene (PP) bag, ZeroFly® Storage Bag, is a new technology to reduce postharvest losses caused by stored-product insect pests. ZeroFly bags filled with untreated maize were compared to PP bags filled with maize treated with Betallic Super (80 g pirimiphos-methyl ...

  11. Nondestructive examination technologies for inspection of radioactive waste storage tanks

    International Nuclear Information System (INIS)

    Anderson, M.T.; Kunerth, D.C.; Davidson, J.R.

    1995-08-01

    The evaluation of underground radioactive waste storage tank structural integrity poses a unique set of challenges. Radiation fields, limited access, personnel safety and internal structures are just some of the problems faced. To examine the internal surfaces a sensor suite must be deployed as an end effector on a robotic arm. The purpose of this report is to examine the potential failure modes of the tanks, rank the viability of various NDE technologies for internal surface evaluation, select a technology for initial EE implementation, and project future needs for NDE EE sensor suites

  12. A Natural Analogue Approach for Discriminating Leaks of CO2 Stored Underground Using Groundwater Geochemistry Statistical Methods, South Korea

    Directory of Open Access Journals (Sweden)

    Kwang-Koo Kim

    2017-12-01

    Full Text Available Carbon capture and storage (CCS is one of several useful strategies for capturing greenhouse gases to counter global climate change. In CCS, greenhouse gases such as CO2 that are emitted from stacks are isolated in underground geological storage. Natural analogue studies that can provide insights into possible geological CO2 storage sites, can deliver crucial information about the safety and security of geological sequestration, the long-term impact of CO2 storage on the environment, and the field operation and monitoring requirements for geological sequestration. This study adopted a probability density function (PDF approach for CO2 leakage monitoring by characterizing naturally occurring CO2-rich groundwater as an analogue that can occur around a CO2 storage site due to CO2 dissolving into fresh groundwater. Two quantitative indices, (QItail and QIshift, were estimated from the PDF test and were used to compare CO2-rich and ordinary groundwaters. Key geochemical parameters (pH, electrical conductance, total dissolved solids, HCO3−, Ca2+, Mg2+, and SiO2 in different geological regions of South Korea were determined through a comparison of quantitative indices and the respective distribution patterns of the CO2-rich and ordinary groundwaters.

  13. Estimation of radon daughter levels in the ventilation planning of an underground uranium mine

    International Nuclear Information System (INIS)

    Gan, T.H.; Wise, K.N.; Leach, V.A.

    1981-01-01

    Diffusion parameters determined by laboratory measurements can be utilized for predictions of radon daughter exposures in underground mining environments, as well as providing data for ventilation planning purposes. Wherever possible field measured data for the various diffusion parameters should be used. Underground mining methods, the tunnel model and diffusion theory are considered

  14. Storage facility for radioactive wastes

    International Nuclear Information System (INIS)

    Okada, Kyo

    1998-01-01

    Canisters containing high level radioactive wastes are sealed in overpacks in a receiving building constructed on the ground. A plurality of storage pits are formed in a layered manner vertically in multi-stages in deep underground just beneath the receiving building, for example underground of about 1000m from the ground surface. Each of the storage pits is in communication with a shaft which vertically communicates the receiving building and the storage pits, and is extended plainly in a horizontal direction from the shaft. The storage pit comprises an overpack receiving chamber, a main gallery and a plurality of galleries. A plurality of holes for burying the overpacks are formed on the bottom of the galleries in the longitudinal direction of the galleries. A plurality of overpack-positioning devices which run in the main gallery and the galleries by remote operation are disposed in the main gallery and the galleries. (I.N.)

  15. Underground Nuclear Astrophysics in China

    Science.gov (United States)

    Liu, Weiping

    2016-10-01

    Underground Nuclear Astrophysics in China (JUNA) will take the advantage of the ultra-low background in Jinping underground lab. High current accelerator with an ECR source and detectors will be set up. We plan to study directly a number of nuclear reactions important to hydrostatic stellar evolution at their relevant stellar energies, such as 25Mg(p,γ)26Al, 19F(p,α)16O, 13C(α,n)16O and 12C(α,γ)16O.

  16. Logistics background study: underground mining

    Energy Technology Data Exchange (ETDEWEB)

    Hanslovan, J. J.; Visovsky, R. G.

    1982-02-01

    Logistical functions that are normally associated with US underground coal mining are investigated and analyzed. These functions imply all activities and services that support the producing sections of the mine. The report provides a better understanding of how these functions impact coal production in terms of time, cost, and safety. Major underground logistics activities are analyzed and include: transportation and personnel, supplies and equipment; transportation of coal and rock; electrical distribution and communications systems; water handling; hydraulics; and ventilation systems. Recommended areas for future research are identified and prioritized.

  17. Laboratory and Field Studies Related to Radionuclide Migration at the Nevada Test Site in Support of the Underground Test Area Project and the Hydrologic Resources Management Program, October 1, 2002 - September 30, 2003

    International Nuclear Information System (INIS)

    D.L.Finnegan; J.L. Thompson; B.A. Martinez

    2004-01-01

    This report details the work of Chemistry Division personnel from Los Alamos National Laboratory in FY 2003 for the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) under its Defense Programs and Environmental Restoration divisions. Los Alamos is one of a number of agencies collaborating in an effort to describe the present and future movement of radionuclides in the underground environment of the Nevada Test Site. This fiscal year we collected and analyzed water samples from a number of expended test locations at the Nevada Test Site. We give the results of these analyses and summarize the information gained over the quarter century that we have been studying several of these sites. We find that by far most of the radioactive residues from a nuclear test are contained in the melt glass in the cavity. Those radionuclides that are mobile in water can be transported if the groundwater is moving due to hydraulic or thermal gradients. The extent to which they move is a function of their chemical speciation, with neutral or anionic materials traveling freely relative to cationic materials that tend to sorb on rock surfaces. However, radionuclides sorbed on colloids may be transported if the colloids are moving. Local conditions strongly influence the distribution and movement of radionuclides, and we continue to study sites such as Cheshire, RNM-2s, Camembert and Almendro where radionuclides have been measured in the past. We collected samples from monitoring wells in Yucca Flat (ER-12-2, ER-6-1 No.2 and ER-7-1) and Frenchman Flat (ER-5-4 No.2) to obtain baseline radiochemistry data in those areas. We, in collaboration with LLNL, assembled all of the hot well data that have been collected over the past 30 years and submitted the data to Shaw for future inclusion in the geochemistry database. We have again used a field probe that allows us to measure important groundwater properties in situ. We begin the report with a

  18. Corrections for a constant radial magnetic field in the muon g - 2 and electric-dipole-moment experiments in storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Silenko, Alexander J. [Belarusian State University, Research Institute for Nuclear Problems, Minsk (Belarus); Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation)

    2017-10-15

    We calculate the corrections for constant radial magnetic field in muon g - 2 and electric-dipole-moment experiments in storage rings. While the correction is negligible for the current generation of g - 2 experiments, it affects the upcoming muon electric-dipole-moment experiment at Fermilab. (orig.)

  19. Cigeomag December 2012 - A better understanding of the project of industrial centre of geological storage: Science and knowledge, where are we? The geological medium is a guarantee of the storage safety; numerical simulation, essential support to experimentations; an international research field

    International Nuclear Information System (INIS)

    Dupuis, Marie-Claude; Farin, Sebastien; Comte, Annabelle; Armand, Gilles; Crusset, Didier; Landais, Patrick; Lebon, Patrick; Plas, Frederic; Schumacher, Stephan; Bertrand, Domitille; Seghers, Elodie; Muzerelle, Sophie

    2012-12-01

    Within the frame of the public debate organized about the project of creation of a deep reversible disposal for radioactive wastes in Meuse/Haute-Marne, this publication proposes an overview of researches performed since 1991 when the ANDRA was commissioned to study the feasibility of such a disposal for the most radioactive French wastes. This publication deals with the different themes studied by the ANDRA and how, with which means and tools they have been and are addressed. More precisely, it also describes and comments how the geological medium is a guarantee for the storage safety, how waste behaviour is studied in detail, how the storage behaviour must be considered as a whole, how numerical simulation is an essential tool for experimentations, how an underground laboratory allows an as real as possible experimentation of deep storage, how the environment about Cigeo will be controlled and surveyed during at least 100 years, and how researches are performed through numerous international collaborations

  20. Simulation of groundwater flow, effects of artificial recharge, and storage volume changes in the Equus Beds aquifer near the city of Wichita, Kansas well field, 1935–2008

    Science.gov (United States)

    Kelly, Brian P.; Pickett, Linda L.; Hansen, Cristi V.; Ziegler, Andrew C.

    2013-01-01

    The Equus Beds aquifer is a primary water-supply source for Wichita, Kansas and the surrounding area because of shallow depth to water, large saturated thickness, and generally good water quality. Substantial water-level declines in the Equus Beds aquifer have resulted from pumping groundwater for agricultural and municipal needs, as well as periodic drought conditions. In March 2006, the city of Wichita began construction of the Equus Beds Aquifer Storage and Recovery project to store and later recover groundwater, and to form a hydraulic barrier to the known chloride-brine plume near Burrton, Kansas. In October 2009, the U.S. Geological Survey, in cooperation with the city of Wichita, began a study to determine groundwater flow in the area of the Wichita well field, and chloride transport from the Arkansas River and Burrton oilfield to the Wichita well field. Groundwater flow was simulated for the Equus Beds aquifer using the three-dimensional finite-difference groundwater-flow model MODFLOW-2000. The model simulates steady-state and transient conditions. The groundwater-flow model was calibrated by adjusting model input data and model geometry until model results matched field observations within an acceptable level of accuracy. The root mean square (RMS) error for water-level observations for the steady-state calibration simulation is 9.82 feet. The ratio of the RMS error to the total head loss in the model area is 0.049 and the mean error for water-level observations is 3.86 feet. The difference between flow into the model and flow out of the model across all model boundaries is -0.08 percent of total flow for the steady-state calibration. The RMS error for water-level observations for the transient calibration simulation is 2.48 feet, the ratio of the RMS error to the total head loss in the model area is 0.0124, and the mean error for water-level observations is 0.03 feet. The RMS error calculated for observed and simulated base flow gains or losses for the

  1. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 124: Storage Tanks, Nevada Test Site, Nevada (Draft), Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Alfred Wickline

    2007-04-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses closure for Corrective Action Unit (CAU) 124, Areas 8, 15, and 16 Storage Tanks, identified in the Federal Facility Agreement and Consent Order. Corrective Action Unit 124 consists of five Corrective Action Sites (CASs) located in Areas 8, 15, and 16 of the Nevada Test Site as follows: • 08-02-01, Underground Storage Tank • 15-02-01, Irrigation Piping • 16-02-03, Underground Storage Tank • 16-02-04, Fuel Oil Piping • 16-99-04, Fuel Line (Buried) and UST This plan provides the methodology of field activities necessary to gather information to close each CAS. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 124 using the SAFER process.

  2. An experiment in big data: storage, querying and visualisation of data taken from the Liverpool Telescope's wide field cameras

    Science.gov (United States)

    Barnsley, R. M.; Steele, Iain A.; Smith, R. J.; Mawson, Neil R.

    2014-07-01

    The Small Telescopes Installed at the Liverpool Telescope (STILT) project has been in operation since March 2009, collecting data with three wide field unfiltered cameras: SkycamA, SkycamT and SkycamZ. To process the data, a pipeline was developed to automate source extraction, catalogue cross-matching, photometric calibration and database storage. In this paper, modifications and further developments to this pipeline will be discussed, including a complete refactor of the pipeline's codebase into Python, migration of the back-end database technology from MySQL to PostgreSQL, and changing the catalogue used for source cross-matching from USNO-B1 to APASS. In addition to this, details will be given relating to the development of a preliminary front-end to the source extracted database which will allow a user to perform common queries such as cone searches and light curve comparisons of catalogue and non-catalogue matched objects. Some next steps and future ideas for the project will also be presented.

  3. Underground waters and soil contamination studies

    International Nuclear Information System (INIS)

    Ferreira, Vinicius V.M.; Camargos, Claudio C.; Santos, Rosana A.M.

    2009-01-01

    Maybe the greatest problem associated to the nuclear energy is what to do with the waste generated. As example, in Portugal, two of the most important of uranium mines produced a significant amount of waste, now deposited in several storage facilities. To evaluate the impacts generated, samples of water, sediments and soils were analyzed. The space distribution of these samples revealed that the contamination is restricted in the vicinity of the mining areas, and the biggest problem happened due to the illegal use of waters for irrigation, originated from the mine effluents treatment stations. In Brazil, the radioactive waste remains a problem for the authorities and population, since there is not until now a final repository to storage them. The objective of this work is to do studies with the software FRAC3DVS, which simulates the contamination of soils and underground waters due to radioactive and no radioactive sources of pollution. The obtained results show that this tool can help in environmental evaluations and decision making processes in the site selection of a radioactive waste repository. (author)

  4. High Temperature Superconducting Underground Cable

    International Nuclear Information System (INIS)

    Farrell, Roger A.

    2010-01-01

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the worlds first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  5. High Temperature Superconducting Underground Cable

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, Roger, A.

    2010-02-28

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  6. Uranium extraction from underground deposits

    International Nuclear Information System (INIS)

    Wolfe, C.R.

    1982-01-01

    Uranium is extracted from underground deposits by passing an aqueous oxidizing solution of carbon dioxide over the ore in the presence of calcium ions. Complex uranium carbonate or bicarbonate ions are formed which enter the solution. The solution is forced to the surface and the uranium removed from it

  7. THE JOSEF REGIONAL UNDERGROUND RESEARCH CENTRE (JOSEF URC

    Directory of Open Access Journals (Sweden)

    Dana Pacovská

    2012-07-01

    Full Text Available The Josef Gallery, located in the central Bohemia region of the Czech Republic was first excavated in 1981 as an exploration complex for the potential mining of gold. In 2007, the gallery was substantially reconstructed to house the Josef Underground Educational Facility (Josef UEF, which subsequently became an autonomous workplace under the direction of the Czech Technical University in Prague. At the beginning of 2010, the UEF was renamed the Josef Regional Underground Research Centre (Josef URC which, along with the extensive underground complex, features modern above-ground facilities. One of the most important roles of this research center is to provide practical in-situ instruction in the fields of geotechnical engineering, geology, geochemistry, radiochemistry and radioecology. The training of future experts in this authentic underground setting involves the participation of several other Czech universities and numerous experienced specialists from outside the academic sphere. The IAEA (International Atomic Energy Agency has added the Josef URC to its prestigious list of international training canters involved in the “Training in and Demonstration of Waste Disposal Technologies in Underground Research Facilities – A Network of Centers of Excellence” project.

  8. Damage to underground coal mines caused by surface blasting

    International Nuclear Information System (INIS)

    Fourie, A.B.; Green, R.W.

    1993-01-01

    An investigation of the potential damage to underground coal workings as a result of surface blasting at an opencast coal mine is described. Seismometers were installed in a worked out area of an underground mine, in the eastern Transvaal region of South Africa, and the vibration caused by nearby surface blasting recorded. These measurements were used to derive peak particle velocities. These velocities were correlated with observed damage underground in order to establish the allowable combination of the two blasting parameters of charge mass per relay, and blast-to-gage point distance. An upper limit of 110mm/sec peak particle velocity was found to be sufficient to ensure that the damage to the particular workings under consideration was minimal. It was further found that a cube-root scaling law provided a better fit to the field data than the common square-root law. 11 refs., 6 figs., 5 tabs

  9. Energy storage

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role that energy storage may have on the energy future of the US. The topics discussed in the chapter include historical aspects of energy storage, thermal energy storage including sensible heat storage, latent heat storage, thermochemical heat storage, and seasonal heat storage, electricity storage including batteries, pumped hydroelectric storage, compressed air energy storage, and superconducting magnetic energy storage, and production and combustion of hydrogen as an energy storage option

  10. The Gothic shale of the Pennsylvanian Paradox Formation Greater Aneth Field (Aneth Unit) Southeastern Utah U.S.A.: Seal for Hydrocarbons and Carbon Dioxide Storage.

    Energy Technology Data Exchange (ETDEWEB)

    Heath, Jason E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dewers, Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chidsey, Thomas C. [Utah Geoglogical Survey, Salt Lake City, UT (United States); Carney, Stephanie M. [Utah Geoglogical Survey, Salt Lake City, UT (United States); Bereskin, S. R. [Bereskin and Associates, Salt Lake City (United States)

    2017-05-01

    Greater Aneth oil field, Utah’s largest oil producer, was discovered in 1956 and has produced over 483 million barrels of oil. Located in the Paradox Basin of southeastern Utah, Greater Aneth is a stratigraphic trap producing from the Pennsylvanian (Desmoinesian) Paradox Formation. Because Greater Aneth is a mature, major oil field in the western U.S., and has a large carbonate reservoir, it was selected to demonstrate combined enhanced oil recovery and carbon dioxide storage. The Aneth Unit in the northwestern part of the field has produced over 160 million barrels of the estimated 386 million barrels of original oil in place—a 42% recovery rate. The large amount of remaining oil made the Aneth Unit ideal to enhance oil recovery by carbon dioxide flooding and demonstrate carbon dioxide storage capacity.

  11. 29 CFR 1926.800 - Underground construction.

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Underground Construction, Caissons, Cofferdams and..., floor or walls in any underground work area for more than a 24-hour period; or (ii) The history of the... inches (304.8 mm) ±0.25 inch (6.35 mm) from the roof, face, floor or walls in any underground work area...

  12. Energy storage

    International Nuclear Information System (INIS)

    Hermans, J.H.W.E.

    1998-01-01

    A brief overview is given of the research activities of the Dutch association for energy distribution companies EnergieNed in the field of energy storage techniques, carried out within the framework of the long-range programme Study and Research (MSO, abbreviated in Dutch)

  13. Planning geological underground repositories - Communicating with society

    International Nuclear Information System (INIS)

    Schenkel, W.; Gallego Carrera, D.; Renn, O.; Dreyer, M.

    2009-06-01

    The project 'Planning geological underground repositories: Communicating with society', financed by the Swiss Federal Office for Energy, aimed at identifying basic principles for an appropriate information and communication strategy in the process of finding an underground site to store radioactive wastes. The topic concerns an issue increasingly discussed in modern societies: How to improve the dialogue between science, infrastructure operators, public authorities, groups in civil society and the population to answer complex problems? Against this background, in the project the following questions were taken into account: (i) How can the dialogue between science, politics, economy, and the (non-)organised public be arranged appropriately? Which principles are to be considered in organising this process? How can distrust within the population be reduced and confidence in authorities and scientific expertise be increased? (ii) How can society be integrated in the process of decision-making so that this process is perceived as comprehensible, acceptable and legitimate? To answer these questions, an analysis method based on scientific theory and methodology was developed, which compares national participation and communication processes in finding underground storage sites in selected countries. Case studies have been carried out in Germany, Sweden, Belgium, and Switzerland. By using specific criteria to evaluate communication processes, the strong points as well as the drawbacks of the country-specific concepts of information, communication and participation have been analysed in a comparing dimension. By taking into account the outcomes, prototypical scenarios have been deduced that can serve as a basis for compiling a reference catalogue of measures, which is meant to support the Swiss communication strategy in the finding of an appropriate site for a nuclear waste repository. Following conclusions can be drawn from the international comparison: (i) Open and

  14. Geotechnical field data and analysis report, July 1991--June 1992

    International Nuclear Information System (INIS)

    1992-01-01

    The Geotechnical Field Data and Analysis Report presents the data for the assessments of the geotechnical status of the Waste Isolation Pilot Plant (WIPP). During the period of shaft sinking and construction of the principal underground access and experimental areas, reporting was on a quarterly basis. Since 1987, reporting has been carried out annually because excavation of the waste storage panels will take place more slowly and over an extended period. This report presents the data collected up to June 30, 1992. This report focuses on the presentation of geotechnical data from the various underground facilities including the shafts, shaft stations, access drifts, test rooms, and waste storage areas. It also describes the techniques used to acquire the data and the performance history of the instruments

  15. Geotechnical Field Data and Analysis Report, July 1989--June 1990

    International Nuclear Information System (INIS)

    1991-03-01

    The Geotechnical Field Data and Analysis Report presents the data for the assessment of the geotechnical status of the Waste Isolation Pilot Plant (WIPP). During the period of shaft sinking and construction of the principal underground access and experimental areas, reporting was on a quarterly basis. Since 1987, reporting has been carried out annually because excavation of the waste storage panels will take place more slowly and over an extended period. This report presents the data collected up to June 30, 1990. The report focuses on the presentation of geotechnical data from the various underground facilities including the shafts, shaft stations, access drifts, test rooms, and waste storage areas. It also describes the techniques used to acquire the data and the performance history of the instruments. 371 figs., 9 tabs

  16. Tenth annual underground coal gasification symposium: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Burwell, E.; Docktor, L.; Martin, J.W. (eds.)

    1984-12-01

    The Tenth Annual Underground Coal Gasification Symposium was cosponsored by the Fossil Energy Division of the US Department of Energy and the Morgantown Energy Technology Center's Laramie Projects Office. The purpose of the symposium was to provide a forum for presenting research results and for determining additional research needs in underground coal gasification. This years' meeting was held in Williamsburg, Virginia, during the week of August 12 through 15, 1984. Approximately 120 attendees representing industry, academia, national laboratories, Government, and eight foreign countries participated in the exchange of ideas, results, and future research plans. International representatives included participants from Belgium, Brazil, France, the Netherlands, New Zealand, Spain, West Germany, and Yugoslavia. During the three-day symposium, sixty papers were presented and discussed in four formal presentation sessions and two informal poster sessions. The papers describe interpretation of field test data, results of environmental research, and evaluations of laboratory, modeling, and economic studies. All papers in this Proceedings have been processed for inclusion in the Energy Data Base.

  17. Borehole heater test at KAERI Underground Research Tunnel

    International Nuclear Information System (INIS)

    Kwon, S. K.; Cho, W. J.; Jeon, S. W.

    2009-09-01

    thermo-mechanical test in Korea. In the future, the results from the test will be utilized for different projects such as spent fuel storage, geothermal energy, sequestration of carbon-dioxide, and underground petroleum storage, which require the clear understanding on the thermo-mechanical behavior of rock mass

  18. Sanford Underground Research Facility - The United State's Deep Underground Research Facility

    Science.gov (United States)

    Vardiman, D.

    2012-12-01

    /LIDAR), surveying instruments, and surveying benchmarks and optical survey points. Currently an array of single and multipoint extensometers monitors the Davis Campus. A facility-wide micro seismic monitoring system is anticipated to be deployed during the latter half of 2012. This system is designed to monitor minor events initiated within the historical mined out portions of the facility. The major science programs for the coming five years consist of the MAJORANA DEMONSTRATOR (MJD) neutrinoless double beta decay experiment; the Large Underground Xenon (LUX) dark matter search, the Center for Ultralow Background Experiments at DUSEL (CUBED), numerous geoscience installations, Long-Baseline Neutrino Experiment (LBNE), a nuclear astrophysics program involving a low energy underground particle accelerator, second and third generation dark matter experiments, and additional low background counting facilities. The Sanford Lab facility is an active, U.S. based, deep underground research facility dedicated to science, affording the science community the opportunity to conduct unprecedented scientific research in a broad range of physics, biology and geoscience fields at depth. SURF is actively interested in hosting additional research collaborations and provides resources for full facility design, cost estimation, excavation, construction and support management services.

  19. Underground Coal Preparation System and Applications

    Science.gov (United States)

    Wei, Cao; DeYong, Shang; BaoNing, Zhang

    2018-03-01

    The underground coal preparation is a cutting-edge technology of the coal industry worldwide. This paper introduced the meaning of implementing the underground coal preparation, and the practical applications of underground mechanical moving screen jig, underground heavy medium shallow slot and underground air jigger. Through analyzing the main separation equipment and the advantages and disadvantages of three primary processes from aspects of process complexity, slime water treatment, raw coal preparation, etc., the difference among technology investment, construction scale, production cost and economic benefit is concluded.

  20. Yam Storability and Economic Benefits of Storage Under the Modern ...

    African Journals Online (AJOL)

    This paper examines yam storability and the economic benefits of storage under the modern (underground) and the traditional (yam barn) storage technologies in Southeastern Nigeria. Data were collected mainly from 55 respondents who were interviewed, as well as from measurement of storage parameters on yam ...