WorldWideScience

Sample records for underground mining equipment

  1. Underground coal mining - methods, equipment developments and trends

    Energy Technology Data Exchange (ETDEWEB)

    Singhal, R

    1988-12-01

    Underground mines are truly beginning to accept the so-called 'high tech' technology evident in other industries. Automation, remote control and robotics have taken an added significance. Wireless communication, mine-wide equipment health and performance monitoring, and transmission of data from deeper levels to surface is moving towards becoming the norm. There is emphasis on developing and applying continuous mining systems, as well as on modifying cyclical discontinuous methods to continuous systems. Multi-purpose equipment is also being developed. Technology transfer is playing its role - equipment and systems from surface coal mining are being applied to underground mining and vice-versa. At the American Mining Congress Exhibition held in Chicago in April 1988, a variety of equipment for underground mining was displayed including coal face equipment such as shearer loaders, conveyors and powered supports, and equipment for room-and-pillar coal mining. The trend continues to be towards high power machines equipped with a variety of electronics and sensors, safety devices, and alarm systems. Ancillary equipment on display covered a variety of cutting drums, cutting tools, conveying equipment and so on. In room-and-pillar mining, the overall emphasis was on moving away from the cyclical nature of the work. Transportation by shuttle cars must be replaced by continuous transport systems such as conveyors. Experience from Australia has shown that the application of continuous haulage and breaker line supports has permitted a doubling of production from room-and-pillar systems. Production levels of 3,000tpd have already been achieved, and 4,000tpd is considered achievable.

  2. 30 CFR 75.1907 - Diesel-powered equipment intended for use in underground coal mines.

    Science.gov (United States)

    2010-07-01

    ... underground coal mines. 75.1907 Section 75.1907 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1907 Diesel-powered equipment intended for use in underground coal mines. (a) As of...

  3. Research on application of mobile diesel equipment in underground mines 2

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bok Youn; Kang, Chang Hee; Jo, Young Do; Lim, Sang Taek [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    It is 2 nd year of the research project on application of mobile diesel equipment in underground mines for providing appropriate measures to improve underground working environment contaminated by the diesel exhaust pollutants. Studies on Diesel Particulate Matter(DPM), which is regarded as a carcinogenic substances, was carried out intensively to figure out which substance is the most critical one among the diesel exhaust pollutants. The production mechanism and health effects of DPM, and evaluation of hazard level of underground workings was conducted. For development of exhaust treatment devices and recommendation of the best concept suitable for local conditions has been done. And the basic guidelines for good engine maintenance to provide the safe and healthful use of diesel-powered mine equipment were suggested so that field engineers can use it as a reference in daily operations. (author). 19 refs., 31 figs., 41 tabs.

  4. Research in application of mobile diesel equipment in underground mines (III)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    It is third project year on `Application of mobile diesel equipment in underground mines` for providing appropriate measures to improve underground working environment contaminated by the diesel exhaust pollutants. This report consists of 4 articles. 1) The development and site investigation of fume diluter, 2) Development of simulation programs for three dimensional movement of fluid, 3) Study of the local ventilation technology in the working face using diesel equipment, 4) Disaster and hazard prevention research. (author). 22 refs., 19 tabs., 83 figs.

  5. Research on application of mobile diesel equipment in underground mines (IV)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This research commenced in 1994 for the purpose of providing safety and environmental measures of underground mines where the mobile diesel equipment are operating. In this last research year, researches on filtering of diesel particulate matter, design of underground layout and disaster prevention have been carried out. 1) A study to reduce DPM(Diesel Particulate Matter) emission: It was known that water scrubber is only one practical way to reduce DPM emission as of now. There are several kinds of the sophisticated DPM filters, but it is not practical yet to be used in underground equipment due to the many adverse effects of the devices such as tremendous increase of SOx, NOx and back pressure etc. 2) Design of underground layout and their maintenance: Layout of underground structure has to be designed based on rock mechanical analysis and the concept of active support has to be adopted considering the large openings are requested to accommodate heavy duty diesel equipment in underground. Rock bolt and shotcrete will be the most applicable method to support such a large dimensional tunnels. 3) A study for disaster prevention in the case of the underground fire: There are two categories of possible disaster or hazard in workings where diesel equipment are operating. One is the disasters by exhaust pollutants and the other is the underground fire. (author). 35 refs., 27 tabs., 56 figs.

  6. Method of operator safety assessment for underground mobile mining equipment

    Science.gov (United States)

    Działak, Paulina; Karliński, Jacek; Rusiński, Eugeniusz

    2018-01-01

    The paper presents a method of assessing the safety of operators of mobile mining equipment (MME), which is adapted to current and future geological and mining conditions. The authors focused on underground mines, with special consideration of copper mines (KGHM). As extraction reaches into deeper layers of the deposit it can activate natural hazards, which, thus far, have been considered unusual and whose range and intensity are different depending on the field of operation. One of the main hazards that affect work safety and can become the main barrier in the exploitation of deposits at greater depths is climate threat. The authors have analysed the phenomena which may impact the safety of MME operators, with consideration of accidents that have not yet been studied and are not covered by the current safety standards for this group of miners. An attempt was made to develop a method for assessing the safety of MME operators, which takes into account the mentioned natural hazards and which is adapted to current and future environmental conditions in underground mines.

  7. Method of operator safety assessment for underground mobile mining equipment

    Directory of Open Access Journals (Sweden)

    Działak Paulina

    2018-01-01

    Full Text Available The paper presents a method of assessing the safety of operators of mobile mining equipment (MME, which is adapted to current and future geological and mining conditions. The authors focused on underground mines, with special consideration of copper mines (KGHM. As extraction reaches into deeper layers of the deposit it can activate natural hazards, which, thus far, have been considered unusual and whose range and intensity are different depending on the field of operation. One of the main hazards that affect work safety and can become the main barrier in the exploitation of deposits at greater depths is climate threat. The authors have analysed the phenomena which may impact the safety of MME operators, with consideration of accidents that have not yet been studied and are not covered by the current safety standards for this group of miners. An attempt was made to develop a method for assessing the safety of MME operators, which takes into account the mentioned natural hazards and which is adapted to current and future environmental conditions in underground mines.

  8. 30 CFR 75.811 - High-voltage underground equipment; grounding.

    Science.gov (United States)

    2010-07-01

    ...-voltage equipment supplying power to such equipment receiving power from resistance grounded systems shall... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage underground equipment; grounding... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage...

  9. 75 FR 17529 - High-Voltage Continuous Mining Machine Standard for Underground Coal Mines

    Science.gov (United States)

    2010-04-06

    ... High-Voltage Continuous Mining Machine Standard for Underground Coal Mines AGENCY: Mine Safety and... of high-voltage continuous mining machines in underground coal mines. It also revises MSHA's design...-- Underground Coal Mines III. Section-by-Section Analysis A. Part 18--Electric Motor-Driven Mine Equipment and...

  10. Mechanization of operations in underground workings in coal mines and research project trends. [Poland

    Energy Technology Data Exchange (ETDEWEB)

    Reich, K; Skoczynski, W; Sikora, W

    1985-01-01

    Structure of black coal reserves of Poland, imported and Polish made equipment for underground mining, prospects for mechanization of selected operations in underground mines and research programs of the KOMAG Center for Mechanization of Mining are evaluated. Prospects for longwall mining with caving or stowing in thick coal seams (slice mining), thin (0.8 to 1.2 m), level or inclined coal seams and steep seams are analyzed. The following equipment for mechanization of underground mining is evaluated: integrated face systems, shearer loaders, chain conveyors, belt conveyors, coal plows, equipment for mine drivage, hoists, drive systems for mining equipment. The following research programs of the KOMAG Center are reviewed: modernization of face systems for coal seams with uncomplicated mining conditions, development of equipment for thin seam mining, development of types of mining equipment for coal seams from 1.5 to 3.0 m thick with dip angles to 25 degrees, modernization of equipment for thick seam mining, increasing efficiency of mine drivage (new types of heading machines, materials handling equipment for mine drivage), mechanization of auxiliary operations in underground coal mines, improving quality of mining equipment, development of equipment for coal preparation, increasing occupational safety in underground mining.

  11. Third symposium on underground mining

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    The Third Symposium on Underground Mining was held at the Kentucky Fair and Exposition Center, Louisville, KY, October 18--20, 1977. Thirty-one papers have been entered individually into EDB and ERA. The topics covered include mining system (longwall, shortwall, room and pillar, etc.), mining equipment (continuous miners, longwall equipment, supports, roof bolters, shaft excavation equipment, monitoring and control systems. Maintenance and rebuilding facilities, lighting systems, etc.), ventilation, noise abatement, economics, accidents (cost), dust control and on-line computer systems. (LTN)

  12. Logistics background study: underground mining

    Energy Technology Data Exchange (ETDEWEB)

    Hanslovan, J. J.; Visovsky, R. G.

    1982-02-01

    Logistical functions that are normally associated with US underground coal mining are investigated and analyzed. These functions imply all activities and services that support the producing sections of the mine. The report provides a better understanding of how these functions impact coal production in terms of time, cost, and safety. Major underground logistics activities are analyzed and include: transportation and personnel, supplies and equipment; transportation of coal and rock; electrical distribution and communications systems; water handling; hydraulics; and ventilation systems. Recommended areas for future research are identified and prioritized.

  13. 77 FR 17099 - Proposed Extension of Existing Information Collection; Diesel-Powered Equipment for Underground...

    Science.gov (United States)

    2012-03-23

    ... to underground coal miners who work in mines that use diesel-powered equipment. Diesel equipment can... provide important safety protections to underground coal miners who work in mines that use diesel-powered... maintenance of fire suppression systems on the equipment and at fueling stations; exhaust gas sampling...

  14. Construction and maintenance of underground mine roads

    Energy Technology Data Exchange (ETDEWEB)

    Logan, A.S.; Seedsman, R.W. [Coffey Partners International Pty. Ltd. (Australia)

    1995-12-31

    Good roads are essential in moving men and materials to and from the underground workplace. An underground coal industry funded project was recently completed on underground mine road construction and maintenance. This paper discusses practical approaches to construction and maintenance of underground mine roads using transferable civil technologies and innovative techniques. Mine pavements are generally low-cost (relative to civil roads), constructed to varying standards using locally available materials to best meet the mobility needs of the mine. Performance of pavements is thus largely dependent on the environmental conditions, quality of the available road making materials, maintenance policies and available resources. This paper explains the causes of bad roads in various underground environments. It details available management strategies, construction and water control techniques, road maintenance and vehicle considerations. It concludes that the trend to larger rubber tires mining equipment needs to be matched with construction and maintenance of high quality road surfaces. For large operations, the total cost due to poor roads may equate to in excess of $A1 million per annum. The strategies outlined in this paper provide the basis for construction and maintenance of underground mine roads to help achieve desired production targets. (author). 2 tabs., 4 figs., 7 refs.

  15. Environmental and ventilation benefits for underground mining operations using fuel cell powered production equipment

    International Nuclear Information System (INIS)

    Kocsis, C.; Hardcastle, S.

    2007-01-01

    The benefits of replacing diesel engines with fuel cells in mine production equipment were discussed. The paper was part of a multi-year feasibility study conducted to evaluate the use of hydrogen fuel cell-powered equipment to replace diesel engine powered equipment in underground mining operations. The feasibility study demonstrated that fuel cells are capable of eliminating the unwanted by-products of combustion engines. However, the use of fuel cells also reduced the amount of ventilation that mines needed to supply, thereby further reducing energy consumption. This study examined the benefits of replacing diesel engines with fuel cells, and discussed the mitigating qualifiers that may limit ventilation energy savings. Solutions to retaining and maintaining additional ventilation in the event of hydrogen leaks from fuel cell stacks were also investigated. The analyses were conducted on 6 operating mines. Current operating costs were compared with future operating conditions using fuel cell powered production vehicles. Operating costs of the primary ventilation system were established with a mine ventilation simulator. The analysis considered exhaust shaft velocities, heating system air velocities, and levels of silica exposure. Canadian mine design criteria were reviewed. It was concluded that appropriate safeguards are needed along hydrogen distribution lines to lower the impacts of hydrogen leaks. Large financial commitments may also be required to ensure a spark-free environment. 20 refs., 6 tabs., 3 figs

  16. Transitional phase for small steeply dipping ore bodies from open pit to underground mining:a case study from Scandinavian mining industry

    OpenAIRE

    Hassan, Syed Alley; Greberg, Jenny; Schunnesson, Håkan

    2012-01-01

    The transition from open pit to underground mining involves drastically changes in the production system. The equipment for underground mining will change as well as the logistics and the transportation system. Demands of rock stability and control will also change in nature and in equipment needed. At the same time the large investments in underground infrastructure and equipment require short lead times to maintain a high cash flow for the companies. Without proper planning many problems ca...

  17. Virtual Reality in Presentation of the Underground Mine Technological Process

    Directory of Open Access Journals (Sweden)

    Kodym Oldøich

    2003-09-01

    Full Text Available Virtual Reality in Presentation of the Underground Mine Technological Process focuses on methods of presentation of an underground mine technologies in intranet technology. It shows usage of platform independent VRML client for presentation of static and dynamic information about technological process. Bi-directional interactions between client and process information database are solved.Based on analysis of technological process of underground mine a database structure was designed. It is skeleton for storing all information about any underground mine. This skeleton can be modified in any direction. Data in this "static model" of underground mine can be applied for visualization in VRML environment. In this way it is possible to simplify and unify a user's front-end for all kinds of tasks.All designed scenes can be interactively displayed in full view or in any detail view, so that a user is able to recognize every important part of installed equipment, its stage, technical parameters and other information. If manufacturers of mining equipment will supply VRML model of their real products everybody would be able to place it into VRML scene and learn everything about it.This work explores and tries to enlighten some of the areas and available approaches compliant with VRML 97 specification of modifying static scene by its browser. Concepts of animation pipeline, inside and outside scripting in scene displayed and authoring of VRML targeted geometry are discussed including database connectivity.

  18. Using underground mine Karst water to solve water supply problem in underground mine

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W. [Wanbei Mining Administration (China). Liuqiao No. 2 Mine

    1995-05-01

    There is a very rich karst water resource under the Liuqiao No. 2 underground mine. Under normal mining conditions the drainage is 546 m{sup 3}/h while the maximum drainage is up to 819 m{sup 3}/h. If water inrush occurred from a broken zone of a fault or a sinkhole of the karst, the flow could be up to 3269 m{sup 3}/h. The karst water is of good quality and high in pressure. The water head pressure at -400 m level is about 3.5 MPa. To save mine construction cost, it was decided that the water supply for coal production equipment, mining operation and mine fire control was to be changed from the surface to the underground by drilling a water well to tap the karst water resource. A water well with a depth of 63.3 m was drilled in the -400 m transportation roadway. The diameter of the well is 127 mm and it has a casing pipe with a diameter of 108 mm which is connected to the water supply pipeline. The pressure of the water supply is measured at 23.5 MPa and the water flow rate is 252 m{sup 3}/h. The establishment of the water supply system has achieved great cost saving for Liuqiao No. 2 Mine. 2 figs.

  19. Underground coal mining technology - the future

    Energy Technology Data Exchange (ETDEWEB)

    Lama, R P [Kembla Coal and Coke Pty Limited, Wollongong, NSW (Australia)

    1989-01-01

    Discusses development of underground coal mining in Australia in the last four decades. The following aspects are reviewed: technology for underground mining (longwall mining, unidirectional cutting, bidirectional cutting, operation of more than one shearer on a working face, optimum dimensions of longwall blocks), longwall productivity (productivity increase will depend on increasing the availability factor of equipment, reducing failures due to human errors, organizational models, improving on-site decision making, improving monitoring, maintenance, planning and scheduling, concept of 'Transparent Mine'), roadway development systems (types of heading machines, standard systems for mine drivage and roof bolting and their productivity), size of coal mines, man and material transport systems (20,000-30,000 t/d from a single longwall face, mine shafts with a diameter 9-10 m), mine layout design (layout of longwall blocks, main intakes and returns situated in rock layers), mine environmental systems (ventilation systems, gas control), management, training and interpersonal relationships. Future coal mines will be developed with an integral capacity of 8-10 Mt/a from a single longwall operation with main development arteries placed in rocks. Development of gate roadways will require novel solutions with continuous cutting, loading and bolting. Information technology, with the concept of 'transparent mine', will form the backbone of decision making.

  20. Computer-aided system for fire fighting in an underground mine

    Energy Technology Data Exchange (ETDEWEB)

    Rosiek, F; Sikora, M; Urbanski, J [Politechnika Wroclawska (Poland). Instytut Gornictwa

    1989-01-01

    Discusses structure of an algorithm for computer-aided planning of fire fighting and rescue in an underground coal mine. The algorithm developed by the Mining Institute of the Wroclaw Technical University consists of ten options: regulations on fire fighting, fire alarm for miners working underground (rescue ways, fire zones etc.), information system for mine management, movements of fire fighting teams, distribution of fire fighting equipment, assessment of explosion hazards of fire gases, fire gas temperature control of blower operation, detection of endogenous fires, ventilation control. 2 refs.

  1. Development of mechanization of extraction in underground coal mining (part I)

    Energy Technology Data Exchange (ETDEWEB)

    Strzeminski, J

    1984-01-01

    The history of underground coal mining and history of mechanizing underground operations of cutting, strata control, mine haulage, hoisting and ventilation are discussed. The following development periods are characterized: until 1769 (date of steam engine invention by J. Watt), from 1769 to 1945 (period of partial mechanization of operations in underground coal mining), from 1945 (period of comprehensive mechanization and automation). A general description of mining in the first development period is given. Evaluation of the second development period concentrates on mechanization in underground coal mining. The following equipment types are described: cutting (pneumatic picks and pneumatic drills, coal saws developed by Eickhoff, coal cutters developed after 1870, cutter loaders patented in 1925-1927, coal plows and coal cutter loaders), mine haulage (mine cars, conveyors developed in the United Kingdom, Germany and Russia, Poland), strata control at working faces (timber props, steel friction props, roof bars), strata control in the goaf (room and pillar mining, stowing, minestone utilization for stowing in Upper Silesia, hydraulic stowing in Upper Silesia). 5 references.

  2. VRLane: a desktop virtual safety management program for underground coal mine

    Science.gov (United States)

    Li, Mei; Chen, Jingzhu; Xiong, Wei; Zhang, Pengpeng; Wu, Daozheng

    2008-10-01

    VR technologies, which generate immersive, interactive, and three-dimensional (3D) environments, are seldom applied to coal mine safety work management. In this paper, a new method that combined the VR technologies with underground mine safety management system was explored. A desktop virtual safety management program for underground coal mine, called VRLane, was developed. The paper mainly concerned about the current research advance in VR, system design, key techniques and system application. Two important techniques were introduced in the paper. Firstly, an algorithm was designed and implemented, with which the 3D laneway models and equipment models can be built on the basis of the latest mine 2D drawings automatically, whereas common VR programs established 3D environment by using 3DS Max or the other 3D modeling software packages with which laneway models were built manually and laboriously. Secondly, VRLane realized system integration with underground industrial automation. VRLane not only described a realistic 3D laneway environment, but also described the status of the coal mining, with functions of displaying the run states and related parameters of equipment, per-alarming the abnormal mining events, and animating mine cars, mine workers, or long-wall shearers. The system, with advantages of cheap, dynamic, easy to maintenance, provided a useful tool for safety production management in coal mine.

  3. The hazardous nature of small scale underground mining in Ghana

    Directory of Open Access Journals (Sweden)

    K.J. Bansah

    2016-01-01

    Full Text Available Small scale mining continues to contribute significantly to the growth of Ghana's economy. However, the sector poses serious dangers to human health and the environment. Ground failures resulting from poorly supported stopes have led to injuries and fatalities in recent times. Dust and fumes from drilling and blasting of ore present health threats due to poor ventilation. Four prominent small scale underground mines were studied to identify the safety issues associated with small scale underground mining in Ghana. It is recognized that small scale underground mining in Ghana is inundated with unsafe acts and conditions including stope collapse, improper choice of working tools, absence of personal protective equipment and land degradation. Inadequate monitoring of the operations and lack of regulatory enforcement by the Minerals Commission of Ghana are major contributing factors to the environmental, safety and national security issues of the operations.

  4. New version of VDE 0118 Installation of electrical equipment in underground mining

    Energy Technology Data Exchange (ETDEWEB)

    Gebhardt, L

    1981-10-22

    Preparatory work for the new version of VDE 0188 is reviewed. The major modifications in parts 1 and 2 are mentioned in particular the changes in operating conditions which have been considered and the modified definitions of clean rooms, earthing, underground protective wire system, and mobile operating equipment. Part 2 discusses operating equipment such as motors, inductive voltage transformers, transformers, condensers, lines, lighting units and underground short circuit protection. Part 3 - intrinsically safe electrical equipment, auxiliary circuits, telecommunication systems - will be discussed in a sequel article in Glueckauf.

  5. Modeling of Energy-saving System of Conditioning Mine Air for Shallow Underground Mines

    Science.gov (United States)

    Nikolaev, Alexandr; Miftakhov, Timur; Nikolaeva, Evgeniya

    2017-11-01

    Mines of Verkhnekamsk potassium-magnesium salt deposit in Perm Krai can be subsumed under shallow mines (depth less than 500 meters). At the present moment in shallow underground mines the are problem of condensate formation in large quantities, when ventilation warm seasons of the year. This problem is more actual for salt mine, where during contact between water and potassium-magnesium ore produced electrolyte, which give rise wear of equipment. For prevent/quantity reduction condensate formation in mine used system of conditioning (refrigerating and dehumidifying) mine air (ACS). However, application this system is limited by reason of tremendous costs of electric energy for their work.

  6. 30 CFR 819.21 - Auger mining: Protection of underground mining.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Auger mining: Protection of underground mining. 819.21 Section 819.21 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... STANDARDS-AUGER MINING § 819.21 Auger mining: Protection of underground mining. Auger holes shall not extend...

  7. 30 CFR 75.1107-11 - Extinguishing agents; requirements on mining equipment employed in low coal.

    Science.gov (United States)

    2010-07-01

    ... equipment employed in low coal. 75.1107-11 Section 75.1107-11 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES... § 75.1107-11 Extinguishing agents; requirements on mining equipment employed in low coal. On mining...

  8. Prediction accident triangle in maintenance of underground mine facilities using Poisson distribution analysis

    Science.gov (United States)

    Khuluqi, M. H.; Prapdito, R. R.; Sambodo, F. P.

    2018-04-01

    In Indonesia, mining is categorized as a hazardous industry. In recent years, a dramatic increase of mining equipment and technological complexities had resulted in higher maintenance expectations that accompanied by the changes in the working conditions, especially on safety. Ensuring safety during the process of conducting maintenance works in underground mine is important as an integral part of accident prevention programs. Accident triangle has provided a support to safety practitioner to draw a road map in preventing accidents. Poisson distribution is appropriate for the analysis of accidents at a specific site in a given time period. Based on the analysis of accident statistics in the underground mine maintenance of PT. Freeport Indonesia from 2011 through 2016, it is found that 12 minor accidents for 1 major accident and 66 equipment damages for 1 major accident as a new value of accident triangle. The result can be used for the future need for improving the accident prevention programs.

  9. 76 FR 70075 - Proximity Detection Systems for Continuous Mining Machines in Underground Coal Mines

    Science.gov (United States)

    2011-11-10

    ... Detection Systems for Continuous Mining Machines in Underground Coal Mines AGENCY: Mine Safety and Health... proposed rule addressing Proximity Detection Systems for Continuous Mining Machines in Underground Coal... Detection Systems for Continuous Mining Machines in Underground Coal Mines. MSHA conducted hearings on...

  10. International mining forum 2004, new technologies in underground mining, safety in mines proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Jerzy Kicki; Eugeniusz Sobczyk (eds.)

    2004-01-15

    The book comprises technical papers that were presented at the International Mining Forum 2004. This event aims to bring together scientists and engineers in mining, rock mechanics, and computer engineering, with a view to explore and discuss international developments in the field. Topics discussed in this book are: trends in the mining industry; new solutions and tendencies in underground mines; rock engineering problems in underground mines; utilization and exploitation of methane; prevention measures for the control of rock bursts in Polish mines; and current problems in Ukrainian coal mines.

  11. 78 FR 73471 - Refuge Alternatives for Underground Coal Mines

    Science.gov (United States)

    2013-12-06

    ... Refuge Alternatives for Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor... Agency's Request for Information (RFI) on Refuge Alternatives for Underground Coal Mines. This extension...), MSHA published a Request for Information on Refuge Alternatives for Underground Coal Mines. The RFI...

  12. 78 FR 58264 - Refuge Alternatives for Underground Coal Mines

    Science.gov (United States)

    2013-09-23

    ... Refuge Alternatives for Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor... Agency's Request for Information (RFI) on Refuge Alternatives for Underground Coal Mines. This extension... Alternatives for Underground Coal Mines. The RFI comment period had been scheduled to close on October 7, 2013...

  13. Possible strategies in development of highly productive underground coal mining

    Energy Technology Data Exchange (ETDEWEB)

    Djoric, M

    1980-01-01

    This paper explains the basic strategies which may be applied in the exploitation of coal deposits by underground mining. It outlines the importance of combinations of extensive (non-mechanized) and intensive (mechanized) exploitation and their dependence on coal demand, available financial means, requirements concerning the protection of environment, unemployment of the population, availability of mechanical and electrical equipment, technical staff, etc. It is suggested that the applied strategy be revised and adapted to the current situation. Postponement of exploitation until the future when the demand and price of coal may be higher is criticized. The possibility of applying extensive underground mining in areas where unemployment and lack of capital speak against the application of fully mechanized working methods is also dealt with. (In Serbo-Croatian)

  14. 78 FR 48591 - Refuge Alternatives for Underground Coal Mines

    Science.gov (United States)

    2013-08-08

    ... Administration 30 CFR Parts 7 and 75 Refuge Alternatives for Underground Coal Mines; Proposed Rules #0;#0;Federal... Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor. ACTION: Limited reopening of the... for miners to deploy and use refuge alternatives in underground coal mines. The U.S. Court of Appeals...

  15. Management of mining-related damages in abandoned underground coal mine areas using GIS

    International Nuclear Information System (INIS)

    Lee, U.J.; Kim, J.A.; Kim, S.S.; Kim, W.K.; Yoon, S.H.; Choi, J.K.

    2005-01-01

    The mining-related damages such as ground subsidence, acid mine drainage (AMD), and deforestation in the abandoned underground coal mine areas become an object of public concern. Therefore, the system to manage the mining-related damages is needed for the effective drive of rehabilitation activities. The management system for Abandoned Underground Coal Mine using GIS includes the database about mining record and information associated with the mining-related damages and application programs to support mine damage prevention business. Also, this system would support decision-making policy for rehabilitation and provide basic geological data for regional construction works in abandoned underground coal mine areas. (authors)

  16. Electric personnel carrier introduced : RES Equipment Sales spearheads development of electric underground vehicle

    International Nuclear Information System (INIS)

    Tollinsky, N.

    2010-01-01

    RES Equipment Sales of Dryden, Ontario is leading the development of a battery-powered personnel utility vehicle for underground mining applications. Among the advantages of the battery-powered personnel carrier are quietness of the carrier and zero emissions, which eliminates particulates from diesel engines and reduces the need for ventilation. This article discussed the design and building of the vehicle. It was designed to accommodate up to 3 battery packs, depending on the frequency of use. Swapping batteries takes between 2 or 3 minutes. Spent batteries must be plugged in for 6 hours and rest for another 6 to 8 hours before being ready for service. The vehicle accommodates 2 or 3 people and travels at speeds of 6 to 8 miles per hour. This article also provided background information on RES Equipment Sales. The company remanufactures underground mining equipment, including load-haul-dump machines, jumbos, haul trucks and utility vehicles. In addition, the company sells and services new equipment, including Oldenburg Cannon jumbos, scalers and utility vehicles, as well as Canun International pneumatic rock drills and NPK rock breakers. 1 ref., 1 fig.

  17. 76 FR 63238 - Proximity Detection Systems for Continuous Mining Machines in Underground Coal Mines

    Science.gov (United States)

    2011-10-12

    ... Detection Systems for Continuous Mining Machines in Underground Coal Mines AGENCY: Mine Safety and Health... Agency's proposed rule addressing Proximity Detection Systems for Continuous Mining Machines in... proposed rule for Proximity Detection Systems on Continuous Mining Machines in Underground Coal Mines. Due...

  18. 76 FR 54163 - Proximity Detection Systems for Continuous Mining Machines in Underground Coal Mines

    Science.gov (United States)

    2011-08-31

    ... Detection Systems for Continuous Mining Machines in Underground Coal Mines AGENCY: Mine Safety and Health... (except full-face continuous mining machines) with proximity detection systems. Miners working near..., each underground coal mine operator would be required to install proximity detection systems on...

  19. 78 FR 68783 - Refuge Alternatives for Underground Coal Mines

    Science.gov (United States)

    2013-11-15

    ... Alternatives for Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor. ACTION: Reopen... coal mines. The U.S. Court of Appeals for the District of Columbia Circuit remanded a training... for refuge alternatives in underground coal mines. On January 13, 2009, the United Mine Workers of...

  20. Radon Progeny in Egyptian Underground Phosphate Mines

    International Nuclear Information System (INIS)

    El-Hady, M.A.; Mohammed, A.; El-Hussein, A.; Ali, A.E.; Ahmed, A.A.

    2001-01-01

    In addition to the workers in uranium mines, the staff of other underground mines, such as workers in underground phosphate mines, can be exposed to 222 Rn and its progeny. In this study the individual radon progeny concentrations were measured in three Egyptian underground phosphate mines to estimate the occupational exposure of the workers at those sites. A filter method was used to measure individual radon progeny concentrations ( 218 Po, 214 Pb and 214 Po). The reported mean values of radon progeny concentrations exceed the action levels which are recommended by ICRP 65 (1993). Based on the measured individual radon progeny concentrations ( 218 Po, 214 Pb and 214 Po) in these mines, the annual effective dose for the workers has been calculated using the lung dose model of ICRP 66 (1994). According to the obtained results, some countermeasures were recommended in this study to minimise these exposure levels. (author)

  1. Geotechnical design of underground slate mines

    International Nuclear Information System (INIS)

    Iglesias Comesaña, C.; Taboada Castro, J.; Arzúa Touriño, J.; Giráldez Pérez, E.; Martín Suárez, J.M.

    2017-01-01

    Slate is one of the most important natural materials in Spain, with a potent extractive and processing industry concentrated in the autonomous communities of Galicia, Castile and León. Thanks to its resistance to external agents, its impermeability and its excellent cleavability, slate is used as for roofing and tiling. Almost all the active exploitations in our country where this resource is extracted are open pit mines, where the exploitation ratios have nearly reached their economic limit, making it necessary to look for alternatives that will allow the mining works to be continued. Underground mining is a solution that offers low exploitation ratios, with low spoil generation. The room-and-pillar method with barrier pillars is usually applied for the exploitation of slate deposits. There are several factors to be taken into account when designing a mine (economic, logistical, geotechnical, technical, environmental…), especially for an underground mine. This study focuses on the geotechnical design process of a room-and-pillar underground mine, based on the tributary area theory, the analysis of the tensions in the ground with numerical methods and the choice of an appropriate reinforcement in view of the expected instabilities. This explanation is completed with an example of a design that includes the estimate exploitation rates and production. [es

  2. A Fiber Bragg Grating-Based Monitoring System for Roof Safety Control in Underground Coal Mining

    Directory of Open Access Journals (Sweden)

    Yiming Zhao

    2016-10-01

    Full Text Available Monitoring of roof activity is a primary measure adopted in the prevention of roof collapse accidents and functions to optimize and support the design of roadways in underground coalmines. However, traditional monitoring measures, such as using mechanical extensometers or electronic gauges, either require arduous underground labor or cannot function properly in the harsh underground environment. Therefore, in this paper, in order to break through this technological barrier, a novel monitoring system for roof safety control in underground coal mining, using fiber Bragg grating (FBG material as a perceived element and transmission medium, has been developed. Compared with traditional monitoring equipment, the developed, novel monitoring system has the advantages of providing accurate, reliable, and continuous online monitoring of roof activities in underground coal mining. This is expected to further enable the prevention of catastrophic roof collapse accidents. The system has been successfully implemented at a deep hazardous roadway in Zhuji Coal Mine, China. Monitoring results from the study site have demonstrated the advantages of FBG-based sensors over traditional monitoring approaches. The dynamic impacts of progressive face advance on roof displacement and stress have been accurately captured by the novel roadway roof activity and safety monitoring system, which provided essential references for roadway support and design of the mine.

  3. Design Criteria for Wireless Mesh Communications in Underground Coal Mines

    OpenAIRE

    Griffin, Kenneth Reed

    2009-01-01

    The Mine Improvement and New Emergency Response (MINER) Act of 2006 was enacted in response to several coal mining accidents that occurred in the beginning of 2006. The MINER Act does not just require underground mines to integrate wireless communication and tracking systems, but aims to overall enhance health and safety in mining at both surface and underground operations. In 2006, the underground communication technologies available to the mining industry had inherent problems that limited ...

  4. Construction and modernization of underground and surface mines. [USSR

    Energy Technology Data Exchange (ETDEWEB)

    Burshtein, N M

    1983-12-01

    Development of the Sredazugol' association in Soviet Central Asia from 1976 to 1985 is discussed. From 1976 to 1980 investment in the association amounted to 151 million rubles, 87.5 million of which fell on construction. Major development projects of the 1976-1980 period are reviewed: construction of new mining levels in underground coal mines, development of a number of operating surface mines, modernization of earthmoving and mining equipment, development of mine haulage by locomotives and railroad cars, improving occupational safety in coal mining, increasing slope stability in surface mining, especially in the area of the Atchinsk landslide in the Angren mine. From 1981 to 1985 investment in the Sredazugol' association should amount to 202 million rubles, of which 126 million rubles will be spent on construction. Investment will be 35% higher than in the 1976-1980 period and investment in mine construction 43% higher. The largest development project will be modernization of the Angren surface mine and increasing its targeted coal output from 5.2 Mt/y to 10.3 Mt/y by 1990. Modernization and reconstruction of the Angren mine will be carried out in 2 stages. Coal output of the mine will increase by 1.2 Mt/y in the current 5 year plan (by 1985), and by 3.9 Mt/y in the next 5 year period. Reconstruction and development of the Angren mine will cost approximately 254 million rubles. Mining and earthmoving equipment which will be used in the Angren mine is reviewed: EhRGV-630 bucket wheel excavators, EhSh-10/70 and EhSh-13/50 walking draglines, etc.

  5. GPS-deprived localisation for underground mines

    CSIR Research Space (South Africa)

    Hlophe, K

    2010-08-31

    Full Text Available robots. Opencast mines utilise the global positioning system (GPS) to obtain location information. The unavailability of this technology in underground mining has actuated numerous researchers to investigate possible alternatives. These attempts exploit...

  6. 30 CFR 780.27 - Reclamation plan: Surface mining near underground mining.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Reclamation plan: Surface mining near underground mining. 780.27 Section 780.27 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL...

  7. 30 CFR 57.4263 - Underground belt conveyors.

    Science.gov (United States)

    2010-07-01

    ....4263 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Firefighting Equipment § 57.4263 Underground belt conveyors. Fire protection shall be...

  8. Applications of radio frequency identification systems in underground mining

    Energy Technology Data Exchange (ETDEWEB)

    Knights, P F; Kairouz, J; Daneshmend, L K; Pathak, J [McGill University, Montreal, PQ (Canada). Canadian Centre for Automation and Robotics in Mining

    1994-12-31

    The paper describes the application of Radio Frequency Identification (RFID) systems in underground hardrock mines. The operating principles and some of the applications of RDIF systems are described. The system operates by the exchange of information between transponder tags and an antenna and controller device. The suitability of RFID systems for process control, inventory control, materials handling, control of access, security, and transportation in underground coal and hardrock mines is discussed. An ore tonnage tracking system is under development that uses RDIF transponder tags to locate vehicles in an underground mine. 6 refs., 4 figs.

  9. 30 CFR 75.313 - Main mine fan stoppage with persons underground.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Main mine fan stoppage with persons underground... mine fan stoppage with persons underground. (a) If a main mine fan stops while anyone is underground and the ventilating quantity provided by the fan is not maintained by a back-up fan system— (1...

  10. Control of radon daughters in underground mining

    International Nuclear Information System (INIS)

    Swent, L.W.

    1983-01-01

    This paper discusses technical developments that may enable uranium mine operators to improve engineering controls of radon daughter concentrations in mines, and developments in regulatory controls. The origin of radon daughters in underground mines is explained. The procedure for sampling and determining the concentration of alpha radiation in sampled air is reviewed. The principal technical development in the last few years has been the perfection and use of a class of meters which determine radon daughter concentrations in an air sample in a matter of two or three minutes without any aging period. A number of underground uranium mine operators are now using ''instant'' type meters and the Mine Safety and Health Administration (MSHA) has approved their use in a number of mines. The difficulty experienced by uranium mine operators in complying with a MSHA regulation which requires that no person be exposed to radon daughter concentrations exceeding 1 Working Level (WL) in any active working place is discussed

  11. Investigating factors that influence level and dynamics of capital productivity in plants manufacturing equipment for mines

    Energy Technology Data Exchange (ETDEWEB)

    Karenov, R.S. (Karagandinskii Politekhnicheskii Institut (USSR))

    1990-10-01

    Analyzes productivity of capital in plants manufacturing equipment for underground coal mining in the USSR. Effects of the following factors are evaluated: working time, investment, mechanization of manufacturing processes, power of motors used to drive the manufacturing equipment, duration of a manufacturing cycle, cooperation degree, equipment service life. Effects of insufficient specialization of manufacturing plants and the manufacturing of mining equipment by repair shops of individual mines which should rather specialize in equipment repair and maintenance are evaluated. Analysis shows that specialization of the manufacturing plants could increase productivity of capital by 1.5-2.0 times, reduce labor consumption by 3-5 times and consumption of materials by 1.5-1.7 times. 4 refs.

  12. Exposure to dust and particle-associated 1-nitropyrene of drivers of diesel-powered equipment in underground mining.

    Science.gov (United States)

    Scheepers, P T J; Micka, V; Muzyka, V; Anzion, R; Dahmann, D; Poole, J; Bos, R P

    2003-07-01

    A field study was conducted in two mines in order to determine the most suitable strategy for ambient exposure assessment in the framework of a European study aimed at validation of biological monitoring approaches for diesel exhaust (BIOMODEM). Exposure to dust and particle-associated 1-nitropyrene (1-NP) was studied in 20 miners of black coal by the long wall method (Czech Republic) and in 20 workers in oil shale mining by the room and pillar method (Estonia). The study in the oil shale mine was extended to include 100 workers in a second phase (main study). In each mine half of the study population worked underground as drivers of diesel-powered trains (black coal) and excavators (oil shale). The other half consisted of workers occupied in various non-diesel production assignments. Exposure to diesel exhaust was studied by measurement of inhalable and respirable dust at fixed locations and by personal air sampling of respirable dust. The ratio of geometric mean inhalable to respirable dust concentration was approximately two to one. The underground/surface ratio of respirable dust concentrations measured at fixed locations and in the breathing zones of the workers was 2-fold or greater. Respirable dust was 2- to 3-fold higher in the breathing zone than at fixed sampling locations. The 1-NP content in these dust fractions was determined by gas chromatography-mass spectrometry/mass spectrometry and ranged from 0.003 to 42.2 ng/m(3) in the breathing zones of the workers. In mine dust no 1-NP was detected. In both mines 1-NP was observed to be primarily associated with respirable particles. The 1-NP concentrations were also higher underground than on the surface (2- to 3-fold in the coal mine and 10-fold or more in the oil shale mine). Concentrations of 1-NP in the breathing zones were also higher than at fixed sites (2.5-fold in the coal mine and 10-fold in the oil shale mine). For individual exposure assessment personal air sampling is preferred over air sampling

  13. High radon exposure in a Brazilian underground coal mine

    International Nuclear Information System (INIS)

    Veiga, L H S; Melo, V; Koifman, S; Amaral, E C S

    2004-01-01

    The main source of radiation exposure in most underground mining operations is radon and radon decay products. The situation of radon exposure in underground mining in Brazil is still unknown, since there has been no national regulation regarding this exposure. A preliminary radiological survey in non-uranium mines in Brazil indicated that an underground coal mine in the south of Brazil had high radon concentration and needed to be better evaluated. This paper intends to present an assessment of radon and radon decay product exposure in the underground environment of this coal mining industry and to estimate the annual exposure to the workers. As a product of this assessment, it was found that average radon concentrations at all sampling campaign and excavation sites were above the action level range for workplaces of 500-1500 Bq m -3 recommended by the International Commission on Radiological Protection-ICRP 65. The average effective dose estimated for the workers was almost 30 times higher than the world average dose for coal miners

  14. Swedish mines. Underground exploitation methods

    International Nuclear Information System (INIS)

    Paucard, A.

    1960-01-01

    Between 1949 and 1957, 10 engineers of the Mining research and exploitation department of the CEA visited 17 Swedish mines during 5 field trips. This paper presents a compilation of the information gathered during these field trips concerning the different underground mining techniques used in Swedish iron mines: mining with backfilling (Central Sweden and Boliden mines); mining without backfilling (mines of the polar circle area). The following techniques are described successively: pillar drawing and backfilled slices (Ammeberg, Falun, Garpenberg, Boliden group), sub-level pillar drawing (Grangesberg, Bloettberget, Haeksberg), empty room and sub-level pillar drawing (Bodas, Haksberg, Stripa, Bastkarn), storage chamber pillar drawing (Bodas, Haeksberg, Bastkarn), and pillar drawing by block caving (ldkerberget). Reprint of a paper published in Revue de l'Industrie Minerale, vol. 41, no. 12, 1959 [fr

  15. Overhead mining railway, particularly for underground use

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, L

    1976-05-20

    Overhead mining railways are usually equipped with a friction wheel drive in underground use. This drive has the advantage over a gear drive that it is more robust and therefore more economic. However, it produces unsatisfactory running for difficult sections with steep gradients up or down or places where deposits of grease and dirt are inevitable. It is proposed to change over to a gear drive at such sections. The high degree of wear, which is characteristic of this type of drive, can be reduced if the drive is only used in difficult sections. It is proposed that the gear drive should be automatically switched on and off by means of stops or contacts on the rails.

  16. Posture estimation system for underground mine vehicles

    CSIR Research Space (South Africa)

    Hlophe, K

    2010-09-01

    Full Text Available Page 1 of 8 25th International Conference of CAD/CAM, Robotics & Factories of the Future Conference, 13-16 July 2010, Pretoria, South Africa A POSTURE ESTIMATION SYSTEM FOR UNDERGROUND MINE VEHICLES Khonzumusa Hlophe1, Gideon Ferreira2... and the transmitter. The main difference between the three systems is their implementation. This paper describes an implementation of a posture estimation system for underground mine vehicles. The paper is organized as follows. In the next section, a brief...

  17. Radio frequency propagation model and fading of wireless signal at 2.4 GHz in an underground coal mine

    OpenAIRE

    Patri, A.; Nimaje, D. S.

    2015-01-01

    Wireless sensor networks and wireless communication systems have become indispensable in underground mines. Wireless sensor networks are being used for better real-time data acquisition from ground monitoring devices, gas sensors, and mining equipment, whereas wireless communication systems are needed for locating and communicating with workers. Conventional methods like wireline communication have proved to be ineffective in the event of mine hazards such as roof falls, fires etc. Before imp...

  18. Report of investigation on underground limestone mines in the Ohio region

    International Nuclear Information System (INIS)

    Byerly, D.W.

    1976-06-01

    The following is a report of investigation on the geologic setting of several underground limestone mines in Ohio other than the PPG mine at Barberton, Ohio. Due to the element of available time, the writer is only able to deliver a brief synopsis of the geology of three sites visited. These three sites and the Barberton, Ohio site are the only underground limestone mines in Ohio to the best of the writer's knowledge. The sites visited include: (1) the Jonathan Mine located near Zanesville, Ohio, and currently operated by the Columbia Cement Corporation; (2) the abandoned Alpha Portland Cement Mine located near Ironton, Ohio; and (3) the Lewisburg Mine located at Lewisburg, Ohio, and currently being utilized as an underground storage facility. Other remaining possibilities where limestone is being mined underground are located in middle Ordovician strata near Carntown and Maysville, Kentucky. These are drift mines into a thick sequence of carbonates. The writer predicts, however, that these mines would have some problems with water due to the preponderance of carbonate rocks and the proximity of the mines to the Ohio River. None of the sites visited nor the sites in Kentucky have conditions comparable to the deep mine at Barberton, Ohio

  19. 30 CFR 816.79 - Protection of underground mining.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Protection of underground mining. 816.79 Section 816.79 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PERMANENT PROGRAM PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING...

  20. FEATURES OF VENTILATION CONDITIONS BY MUSHROOM CULTIVATION IN MINING UNDERGROUND WORKINGS

    Directory of Open Access Journals (Sweden)

    Vladimir Rendulić

    1991-12-01

    Full Text Available The trial cultivation of mushrooms (Agaricus bisporus in one of the dead faces of the »Krš« pit of the Dalmatian bauxite mines Obrovac proved, that an optimal yield can be attained with the domestic mycelium. The decision has been brought to go on with investments into equipment for new growing-site locations in underground workings of the mine. In order to cultivate high-quality mushrooms, the ventilation of growing sites has been particularly considered. Compressive separate ventilation of growing fields has been applied using the main and the return ventilating pipeline, with the air current regulation according to the growing stage (the paper is published in Croatian.

  1. Waste disposal in underground mines -- A technology partnership to protect the environment

    International Nuclear Information System (INIS)

    1995-01-01

    Environmentally compatible disposal sites must be found despite all efforts to avoid and reduce the generation of dangerous waste. Deep geologic disposal provides the logical solution as ever more categories of waste are barred from long-term disposal in near-surface sites through regulation and litigation. Past mining in the US has left in its wake large volumes of suitable underground space. EPA studies and foreign practice have demonstrated deep geologic disposal in mines to be rational and viable. In the US, where much of the mined underground space is located on public lands, disposal in mines would also serve the goal of multiple use. It is only logical to return the residues of materials mined from the underground to their origin. Therefore, disposal of dangerous wastes in mined underground openings constitutes a perfect match between mining and the protection and enhancement of the environment

  2. Coal mining equipment

    International Nuclear Information System (INIS)

    Stein, R.R.; Martin, T.W.

    1991-01-01

    The word in longwall components is big, and these larger components have price tags to match. The logic behind the greater investment is that it will yield high production rates and good uptime statistics. This is true in most cases. More important than single-shift tonnage records, average shift production continues to climb upwards. This paper reports on the quality, and more significantly, the quantity of service supplied for long-wall equipment, which has reached levels that would have been seen as unachievable when longwall mining was first introduced in the U.S. The school of thought then was that longwall would increase productivity in part by reducing the number of production units and thus reducing the number of personnel employed underground. The expectation of fewer employees turned out to be unrealistic. That was probably one reason that some early attempts to install longwall system looked more like failures than vision of the future

  3. A Review of Mine Rescue Ensembles for Underground Coal Mining in the United States.

    Science.gov (United States)

    Kilinc, F Selcen; Monaghan, William D; Powell, Jeffrey B

    The mining industry is among the top ten industries nationwide with high occupational injury and fatality rates, and mine rescue response may be considered one of the most hazardous activities in mining operations. In the aftermath of an underground mine fire, explosion or water inundation, specially equipped and trained teams have been sent underground to fight fires, rescue entrapped miners, test atmospheric conditions, investigate the causes of the disaster, or recover the dead. Special personal protective ensembles are used by the team members to improve the protection of rescuers against the hazards of mine rescue and recovery. Personal protective ensembles used by mine rescue teams consist of helmet, cap lamp, hood, gloves, protective clothing, boots, kneepads, facemask, breathing apparatus, belt, and suspenders. While improved technology such as wireless warning and communication systems, lifeline pulleys, and lighted vests have been developed for mine rescuers over the last 100 years, recent research in this area of personal protective ensembles has been minimal due to the trending of reduced exposure of rescue workers. In recent years, the exposure of mine rescue teams to hazardous situations has been changing. However, it is vital that members of the teams have the capability and proper protection to immediately respond to a wide range of hazardous situations. Currently, there are no minimum requirements, best practice documents, or nationally recognized consensus standards for protective clothing used by mine rescue teams in the United States (U.S.). The following review provides a summary of potential issues that can be addressed by rescue teams and industry to improve potential exposures to rescue team members should a disaster situation occur. However, the continued trending in the mining industry toward non-exposure to potential hazards for rescue workers should continue to be the primary goal. To assist in continuing this trend, the mining industry

  4. Ground engineering principles and practices for underground coal mining

    CERN Document Server

    Galvin, J M

    2016-01-01

    This book teaches readers ground engineering principles and related mining and risk management practices associated with underground coal mining. It establishes the basic elements of risk management and the fundamental principles of ground behaviour and then applies these to the essential building blocks of any underground coal mining system, comprising excavations, pillars, and interactions between workings. Readers will also learn about types of ground support and reinforcement systems and their operating mechanisms. These elements provide the platform whereby the principles can be applied to mining practice and risk management, directed primarily to bord and pillar mining, pillar extraction, longwall mining, sub-surface and surface subsidence, and operational hazards. The text concludes by presenting the framework of risk-based ground control management systems for achieving safe workplaces and efficient mining operations. In addition, a comprehensive reference list provides additional sources of informati...

  5. Development of science and technology in underground coal mining in Czechoslovakia during the 7th 5 year plan

    Energy Technology Data Exchange (ETDEWEB)

    Klimek, M.

    1982-01-01

    Reviews main tasks of underground coal mining in Czechoslovakia from 1981 to 1985 in the following basins: Ostrava-Karvina, Kladno, Prievidza, Most and Sokolov. The planned increase of brown and black coal output in each of the basins is discussed. Selected problems associated with mining are evaluated: significant increase of mining depth, rock burst hazards, methane hazards and water influx in the Ostrava-Karvina basin. Investment program in the current 5 year plan as well as until the year 2000 is analyzed: sinking of 38.8 km of mine shafts and 4.4 km of blind shafts. Equipment for shaft sinking produced in the USA (by Robins the 241 SB-184) and in the USSR (the Uralmash Sk-1U system) is compared. Design and technical specifications of the two systems are given. Equipment for mine drivage is also reviewed. The following machines are described: the TVM-55H by Demag (FRG), the TBS V-600E/Sch by Wirth (FRG), the TBM ser. 18a781 by Robins (USA) and the MARK-18T by JARVA (USA). Selected types of powered supports which will be widely used in coal mines in the current 5 year plan are evaluated. Research programs in underground coal mining are reviewed (safety, mining thin coal seams, slice mining of thick coal seams in the Namurian B series, mining extremely thick seams with stowing of the top slice and mining with caving the 4.5 m thick bottom slice). (4 refs.) (In Czech)

  6. Occupational exposures to emissions from combustion of diesel and alternative fuels in underground mining--a simulated pilot study.

    Science.gov (United States)

    Lutz, Eric A; Reed, Rustin J; Lee, Vivien S T; Burgess, Jefferey L

    2015-01-01

    Diesel fuel is commonly used for underground mining equipment, yet diesel engine exhaust is a known human carcinogen. Alternative fuels, including biodiesel, and a natural gas/diesel blend, offer the potential to reduce engine emissions and associated health effects. For this pilot study, exposure monitoring was performed in an underground mine during operation of a load-haul-dump vehicle. Use of low-sulfur diesel, 75% biodiesel/25% diesel blend (B75), and natural gas/diesel blend (GD) fuels were compared. Personal samples were collected for total and respirable diesel particulate matter (tDPM and rDPM, respectively) and total and respirable elemental and organic carbon (tEC, rEC, tOC, rOC, respectively), as well as carbon monoxide (CO), formaldehyde, acetaldehyde, naphthalene, nitric oxide (NO), and nitrogen dioxide (NO2). Compared to diesel, B75 use was associated with a 33% reduction in rDPM, reductions in rEC, tEC, and naphthalene, increased tDPM, tOC, and NO, and no change in rOC, CO, and NO2. Compared to diesel, GD was associated with a 66% reduction in rDPM and a reduction in all other exposures except CO. The alternative fuels tested both resulted in reduced rDPM, which is the basis for the current Mine Safety and Health Administration (MSHA) occupational exposure standard. Although additional study is needed with a wider variety of equipment, use of alternative fuels have the promise of reducing exposures from vehicular exhaust in underground mining settings.

  7. An investigation into radiation exposures in underground non-uranium mines in Western Australia

    International Nuclear Information System (INIS)

    Hewson, G.S.; Ralph, M.I.

    1994-01-01

    A preliminary investigation into the radiological conditions in underground non-uranium mines in Western Australia has been undertaken. Measurements of radon concentration by passive track etch monitors and absorbed gamma dose-rate by thermoluminescent dosimetry were undertaken in 27 mines. These mines employed 2173 workers which represented nearly 80% of the underground workforce at the time of the survey. Radon progeny concentration by both grab sampling and automatic devices were undertaken at selected mines. Radiological conditions in all surveyed underground workplaces were such that it was estimated that most underground workers should not exceed an annual effective dose of 5 mSv. The average annual effective dose across all mines was estimated to be 1.4±1.0 mSv, ranging from 0.4 mSv for a nickel mine to 4.2 mSv for a coal mine. Radon progeny exposure contributed approximately 70% of the total effective dose. The estimated average annual effective dose in three coal mines (employing 297 workers) was 2.9±1.5 mSv. On the basis of this preliminary investigation it was concluded that no regulatory controls are specifically required to limit radiation exposures in Western Australian underground mines. (author)

  8. Radio Frequency Propagation Model and Fading of Wireless Signal at 2.4 GHz in Underground Coal Mine

    OpenAIRE

    Patri, Ashutosh; Nimaje, Devidas S.

    2015-01-01

    Deployment of wireless sensor networks and wireless communication systems have become indispensable for better real-time data acquisition from ground monitoring devices, gas sensors, and equipment used in underground mines as well as in locating the miners, since conventional methods like use of wireline communication are rendered ineffective in the event of mine hazards such as roof-falls, fire hazard etc. Before implementation of any wireless system, the variable path loss indices for diffe...

  9. Performance of underground coal mines during the 1976 Tangshan earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.F.

    1987-01-01

    The Tangshan earthquake of 1976 costs 242 000 lives and was responsible for 164 000 serious injuries and structural damage of immense proportion. The area has eight coal mines, which together form the largest underground coal mining operation in China. Approximately 10 000 miners were working underground at the time of the earthquake. With few exceptions they survived and returned safely to the surface, only to find their families and belongings largely destroyed. Based on a comprehensive survey of the miners' observations, subsurface intensity profiles were drawn up. The profiles clearly indicated that seismic damage in the underground mines was far less severe than at the surface. 16 refs., 4 figs., 2 tabs.

  10. Geological Feasibility of Underground Oil Storage in Jintan Salt Mine of China

    Directory of Open Access Journals (Sweden)

    Xilin Shi

    2017-01-01

    Full Text Available A number of large underground oil storage spaces will be constructed in deep salt mines in China in the coming years. According to the general geological survey, the first salt cavern oil storage base of China is planned to be built in Jintan salt mine. In this research, the geological feasibility of the salt mine for oil storage is identified in detail as follows. (1 The characteristics of regional structure, strata sediment, and impermeable layer distribution of Jintan salt mine were evaluated and analyzed. (2 The tightness of cap rock was evaluated in reviews of macroscopic geology and microscopic measuring. (3 According to the geological characteristics of Jintan salt mine, the specific targeted formation for building underground oil storage was chosen, and the sealing of nonsalt interlayers was evaluated. (4 Based on the sonar measuring results of the salt caverns, the characteristics of solution mining salt caverns were analyzed. In addition, the preferred way of underground oil storage construction was determined. (5 Finally, the results of closed well observation in solution mining salt caverns were assessed. The research results indicated that Jintan salt mine has the basic geological conditions for building large-scale underground oil storage.

  11. Proceedings of the 6th underground operators conference

    International Nuclear Information System (INIS)

    Golosinski, T.S.

    1995-01-01

    This conference presents recent development in underground mining operations. A large number of papers reported on underground mining practice in the Eastern Goldfields area of Western Australia and in the traditional mining centres of Mount Isa and Broken Hill. These are supplemented by papers reporting on other underground mining developments all throughout Australia and in several overseas countries known for advanced mining expertise. Apart from papers dealing with metalliferous mining, a number of papers related to coal mining present recent developments related to the topic. The papers are grouped into sessions relating to ground control, rock mechanics, management and human resources, mining methods, mining equipment, control and communications, mine backfill, mining operations, drilling and blasting and coal mining. Relevant papers have been individually indexed/abstracted. Tabs., figs., refs

  12. 75 FR 20918 - High-Voltage Continuous Mining Machine Standard for Underground Coal Mines

    Science.gov (United States)

    2010-04-22

    ... DEPARTMENT OF LABOR Mine Safety and Health Administration 30 CFR Parts 18 and 75 RIN 1219-AB34 High-Voltage Continuous Mining Machine Standard for Underground Coal Mines Correction In rule document 2010-7309 beginning on page 17529 in the issue of Tuesday, April 6, 2010, make the following correction...

  13. How air quality can be monitored in an underground uranium mine

    International Nuclear Information System (INIS)

    Bigu, J.; Gangal, M.; Knight, G.

    1983-01-01

    The mining of uranium ores in underground uranium mines releases and produces a great variety of substances which readily become airborne, posing a potential health hazard to occupational workers. The substances are either released, or their 'normal' rate of release when no mining activity is present is increased as a consequence of certain mining operations, including blasting, drilling, and mucking. They may also be produced as a result of the use of tools, artifacts, and machinery utilized in mining operations. This paper reports on parallel measurements of radiation, dust and meteorological variables during several mining operations in a Canadian underground mine. Measurements were conducted at three uranium mines for a combined period of several weeks

  14. 77 FR 58170 - Proposed Renewal of Existing Information Collection; Fire Protection (Underground Coal Mines)

    Science.gov (United States)

    2012-09-19

    ... Renewal of Existing Information Collection; Fire Protection (Underground Coal Mines) AGENCY: Mine Safety... INFORMATION: I. Background Fire protection standards for underground coal mines are based on section 311(a) of the Federal Mine Safety and Health Act of 1977 (Mine Act). 30 CFR 75.1100 requires that each coal mine...

  15. Alternative utilization of underground spaces with abandoned mine openings

    Energy Technology Data Exchange (ETDEWEB)

    Chung, So Keul; Cho, Won Jai; Han, Kong Chang; Choi, Sung Oong [Korea Institute of Geology Mining and Materials, Taejon (Korea)

    1998-12-01

    Utilization of the openings of the abandoned mines could be planned by the principal parameters such as location and geotechnical impact. The local governments have not only to lead the each stage of the utilization project from the very beginning of conceptual design up to the construction stage, but also to promote the project for the development of public purpose. The possible tentative candidates for the utilization of the abandoned mine openings which are supported by the local governments could be summarized as follows. a. The Gahak mine of Kwangmyung, Kyunggi: The mine caverns which have been served as the storage of the pickled fishes, could be reexcavated by taking into consideration the geotechnical parameters for the public use such as: 1) Training center for the youth, 2) Fermentation and storehouse of marine products, 3) Sightseeing resort, 4) Sports and leisure complex, 5) Underground parking lot, 6) Underground shopping mall and chilled room storage, 7) Library, concert hall and museum. b. Hamtae mine of Taebaek, Kangwon: The Hambaek main haulage way and its shaft should be investigated in detail in order to find out a possible use as the underground challenging park of the coal mining operation. c. Mines of Boryung and Hongsung, Chungnam: Lots of mine caverns have been used as the storehouse for the pickled shrimp. However, they have to be promoted to a large scale industries. d. Imgok mine of Kwangju and Palbong mine of Jeongeup, Chunbuk: Mine caverns which have been used as the storehouse of pickles, need a detailed investigation for alternative promotion. e. Yongho mine of Pusan Dalsung mine of Taegu: Both of the mines are located near metropolitan communities. Reconstruction of the old mine caverns of the Yongho mine is highly recommended for a public use. The caverns of the Dalsung mine could be utilized as the storage facilities. Detailed geotechnical survey and sit investigation could be suggested to design the recommended facilities for both

  16. Unified communication and standardized data exchange for underground mines; Einheitliche, standardisierte Kommunikation zur Effizienzsteigerung von Bergwerken

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, C. [Embigence GmbH, Ladbergen (Germany)

    2006-11-07

    Communication in many forms during the past ten years has changed our daily life: Cellphone technology as well as the Internet are just two examples. In the same way, modern network based communication now starts to change the way how underground mines are run: The lack of proper communication traditionally caused downtime and production loss. In the future, mine communication will be crucial for efficiency and profitability of underground operations. This enables intelligent machines to be used like e.g. a machine server equipped drill rig at LKAB or highly advanced, networked monorail systems at DSK. Standardized communication and information exchange is a basis for using three dimensional visualization tools to support decision finding. The paper explains these visions and goals for the future and explains the feasibility by two running example applications. (orig.)

  17. Influence of surface water accumulations of the Stupnica creek on underground coal mining in the Durdevic coal mine

    Energy Technology Data Exchange (ETDEWEB)

    Valjarevic, R; Urosevic, V

    1986-01-01

    Discusses hydrological, geological and mining conditions at the Durdevic underground coal mine. A landslide at a spoil bank dammed the creek flowing above the mine. Two exploratory boreholes (62 m and 68 m) were drilled for hydrological investigations. Water coloring techniques, chemical water analysis, measurement of underground water level and water flow were used to determine whether a sudden inrush of rainfall and accumulated surface water could endanger the mine. Underground water inflow to mine rooms varies from 110-200 m/sup 3//min, depending on the season. Diversion of the creek bed with the accumulated water and accumulation and subsequent drainage of surface water via large diameter concrete pipes were considered as possible ways of improving safety in the mine. Details of these projects are included. 4 refs.

  18. Productivity Improvement in Underground Coal Mines - A Case Study

    Directory of Open Access Journals (Sweden)

    Devi Prasad Mishra

    2013-01-01

    Full Text Available Improvement of productivity has become an important goal for today's coal industry in the race to increase price competitiveness. The challenge now lying ahead for the coal industry is to identify areas of waste, meet the market price and maintain a healthy profit. The only way to achieve this is to reduce production costs by improving productivity, efficiency and the effectiveness of the equipment. This paper aims to identify the various factors and problems affecting the productivity of underground coal mines adopting the bord and pillar method of mining and to propose suitable measures for improving them. The various key factors affecting productivity, namely the cycle of operations, manpower deployment, machine efficiency, material handling and management of manpower are discussed. In addition, the problem of side discharge loader (SDL cable handling resulting in the wastage of precious manpower resources and SDL breakdown have also been identified and resolved in this paper.

  19. An Optimization Routing Algorithm for Green Communication in Underground Mines

    Directory of Open Access Journals (Sweden)

    Heng Xu

    2018-06-01

    Full Text Available With the long-term dependence of humans on ore-based energy, underground mines are utilized around the world, and underground mining is often dangerous. Therefore, many underground mines have established networks that manage and acquire information from sensor nodes deployed on miners and in other places. Since the power supplies of many mobile sensor nodes are batteries, green communication is an effective approach of reducing the energy consumption of a network and extending its longevity. To reduce the energy consumption of networks, all factors that negatively influence the lifetime should be considered. The degree constraint minimum spanning tree (DCMST is introduced in this study to consider all the heterogeneous factors and assign weights for the next step of the evaluation. Then, a genetic algorithm (GA is introduced to cluster sensor nodes in the network and balance energy consumption according to several heterogeneous factors and routing paths from DCMST. Based on a comparison of the simulation results, the optimization routing algorithm proposed in this study for use in green communication in underground mines can effectively reduce the network energy consumption and extend the lifetimes of networks.

  20. Determination of radon and progeny concentrations in Brazilian underground mines

    International Nuclear Information System (INIS)

    Fraenkel, Mario O.; Gouvea, Vandir de Azevedo; Macacini, Jose F.; Cardozo, Katia; Carvalho Filho, Carlos A. de; Lima, Carlos E.

    2008-01-01

    The aim of this work is to present the activities related to the determination of radon and progeny concentrations in underground mines in Brazil. Radon is originated from decay of radium-226 and radium-228 present in rocks. Radon and its short-lived progeny can be retained in the workers pulmonary alveoli, and this way they bring about cancer risk to these mining professionals. The occurrence of high radon concentrations in underground coal and copper mines and the lack of systematic survey motivated CNEN, the regulatory agency, to develop the Radon Project, aiming to aid the formulation of a specific regulation with occupational dose limits consistent with international standards recommended by the International Atomic Energy Agency (IAEA). Dozens of underground mines are currently in operation in the national. It had to be noted that about 50% of these mines are located in Minas Gerais province, and for this reason it was chosen to start the Project. In each underground mine it is installed in selected points passive nuclear track etch radon detectors, type LEXAN and Cr-39, for periods from three to five months. It was also made local measurements with Dose Man Pro detectors from SARAD. The points are chosen according to geological features, radiometric activity and characteristics of prospect development. The determination of radon present in mines has been made in IEN (Nuclear Engineering Institute)/Rio de Janeiro-RJ, LAPOC (Pocos de Caldas Laboratory)/Pocos de Caldas-MG e ESPOA (Porto Alegre Office)/Porto Alegre-RS. Until now it was visited about 35 mines in a universe of about 50 mines, from which 20% showed concentration values higher than international limits (ICRP 65), between 500 and 1500 Bq.m -3 . (author)

  1. Underground mining robot: a CSIR project

    CSIR Research Space (South Africa)

    Green, JJ

    2012-11-01

    Full Text Available The Council for Scientific and Industrial Research (CSIR) in South Africa is currently developing a robot for the inspection of the ceiling (hanging-wall) in an underground gold mine. The robot autonomously navigates the 30 meter long by 3 meter...

  2. Application of Three Existing Stope Boundary Optimisation Methods in an Operating Underground Mine

    Science.gov (United States)

    Erdogan, Gamze; Yavuz, Mahmut

    2017-12-01

    The underground mine planning and design optimisation process have received little attention because of complexity and variability of problems in underground mines. Although a number of optimisation studies and software tools are available and some of them, in special, have been implemented effectively to determine the ultimate-pit limits in an open pit mine, there is still a lack of studies for optimisation of ultimate stope boundaries in underground mines. The proposed approaches for this purpose aim at maximizing the economic profit by selecting the best possible layout under operational, technical and physical constraints. In this paper, the existing three heuristic techniques including Floating Stope Algorithm, Maximum Value Algorithm and Mineable Shape Optimiser (MSO) are examined for optimisation of stope layout in a case study. Each technique is assessed in terms of applicability, algorithm capabilities and limitations considering the underground mine planning challenges. Finally, the results are evaluated and compared.

  3. Human detection for underground autonomous mine vehicles using thermal imaging

    CSIR Research Space (South Africa)

    Dickens, JS

    2011-07-01

    Full Text Available Underground mine automation has the potential to increase safety, productivity and allow the mining of lower-grade resources. In a mining environment with both autonomous robots and humans, it is essential that the robots are able to detect...

  4. Geo-science aims of underground exploration of the Gorleben salt mine

    International Nuclear Information System (INIS)

    Langer, M.; Venzlaff, H.

    1987-01-01

    The measures taken are explained separately, according to the technical areas geology/petrography - geophysics - engineering geology/geotechnology - geo-chemistry. The results of the underground exploration are used directly to produce documents for the planning process, securing proof and the final storage planning (specific site mine dimensions, analysis of accidents, storage strategies). After completion of underground exploration, geoscience information on the suitability of the salt mine at Gorleben will be available in connection with a storage concept agreed between the geo-technologists and the mining engineers. (orig.) [de

  5. Pedestrian detection for underground mine vehicles using thermal images

    CSIR Research Space (South Africa)

    Dickens, JS

    2011-09-01

    Full Text Available , ?Proximity detection,? August 2010. [On- line]. Available: http://www.cdc.gov/niosh/mining/topics/ topicpage58.htm [4] P. Laliberte?, ?Summary study of underground commu- nications technologies,? CANMET Mining and Mineral Sciences Laboratories, Tech. Rep... Institute of Mining and Metallurgy, vol. 101, no. 3, pp. 127?134, May 2001. [12] W. M. Marx and R. M. Franz, ?Determine appropriate criteria for acceptable environmental conditions,? CSIR: Division of Mining Technology, DeepMine Research Task 6...

  6. The Performance Parameters Of Wireless Sensor Networks In Underground Mines

    Directory of Open Access Journals (Sweden)

    Sinan UGUZ

    2015-08-01

    Full Text Available In recent years underground mines have increasingly remained on the agenda with both difficult working conditions and problems such as collapsed and firedamp explosion in our country and in the world. In terms of life safety of miners and their health mine sites are required to be continuously monitored and controlled. This is difficult to achieve with existing wired systems due to the topography of mine sites. The applications have increased with the development of wireless sensor networks WSN technology in mine sites in recent years. This case has also caused an increase in studies on improving WSN performance. Especially energy efficiency is very important for the WSN hardware with a low energy source. In this study information about things to consider while using WSN technologies in underground mines and studies on their performance has been provided.

  7. Moving up down in the mine: Sex segregation in underground coal mining

    Energy Technology Data Exchange (ETDEWEB)

    Tallichet, S.E.

    1991-01-01

    This study employs both individualist theories of human capital and sex-role spillover and structuralist theories from the socialist feminist perspective, emphasizing the formal and informal organizational factors operating within a patriarchal capitalist society to explain job-level sex segregation among underground coal miners. Both quantitative and qualitative data on women in coal mining are used to evaluate these theories. A logistic regression analysis performed on data obtained in 1986 by the US Bureau of Mines demonstrates that while human capital variables are predictive of a miner's job rank, variation in job rank attributed to gender is even greater. For men, training and experience in mining combine to increase the probability of being in a more skilled job in a coal mine. Age and seniority are curvilinearly related to the variation in men's job rank. For women, only age accounts for their advancement such that younger, not older women who have slightly more mining experience, occupy the more skilled positions in the work place. These findings suggest that, in terms of job advancement, men enjoy a greater return on their human capital investments than women, and that factors other than those representing a miner's human capital are affecting women's positions underground more than men's.

  8. Moving up down in the mine: Sex segregation in underground coal mining

    International Nuclear Information System (INIS)

    Tallichet, S.E.

    1991-01-01

    This study employs both individualist theories of human capital and sex-role spillover and structuralist theories from the socialist feminist perspective, emphasizing the formal and informal organizational factors operating within a patriarchal capitalist society to explain job-level sex segregation among underground coal miners. Both quantitative and qualitative data on women in coal mining are used to evaluate these theories. A logistic regression analysis performed on data obtained in 1986 by the US Bureau of Mines demonstrates that while human capital variables are predictive of a miner's job rank, variation in job rank attributed to gender is even greater. For men, training and experience in mining combine to increase the probability of being in a more skilled job in a coal mine. Age and seniority are curvilinearly related to the variation in men's job rank. For women, only age accounts for their advancement such that younger, not older women who have slightly more mining experience, occupy the more skilled positions in the work place. These findings suggest that, in terms of job advancement, men enjoy a greater return on their human capital investments than women, and that factors other than those representing a miner's human capital are affecting women's positions underground more than men's

  9. Natural radionuclides in Brazilian underground mines

    International Nuclear Information System (INIS)

    Santos, Talita de Oliveira

    2015-01-01

    Rock, soil and water contain "2"3"8U and "2"3"2Th and their decay products. The distribution of these radionuclides differs in terms of activity concentration depending on the mineral type and origin. All ore processing releases long and short half-life radionuclides, mainly radon and its progeny. It is important to monitor this gas and its decay products in underground mines in order to assess the radiological hazards of the exposed workers. On this concern, the present work outlines the characterization of brazilian underground mines with relation to natural radionuclides, specially radon and its progeny. The radon concentration was measured by using E-PERM Electrets Ion Chamber (Radelec), AlphaGUARD (Saphymo GmbH) and CR-39 (Landauer) track etch detectors. The radon progeny was determined by using DOSEman detector. The equilibrium state between radon and its progeny was calculated. Based on these data, the total effective dose for miners was estimated. Moreover, the contribution from the main sources to the radon level inside mines was evaluated. For this, the following detectors were used: measurements of radon concentrations in soil gas were carried out by using AlphaGUARD detector; "2"2"6Ra ("2"1"4Bi), "2"3"2Th e "4"0K specific activity in ore and soil samples were determined by using gamma-ray spectrometry HPGe detector (Canberra); and radon concentration in groundwater samples was performed by using RAD7 (Durridge Inc.). The radon concentration ranged from 113 to 8171 Bq.m"-"3 and the Equilibrium Equivalent Concentration varied from 76 to 1174 Bq.m"-"3. The equilibrium factor mean value was 0.4 (0.2 -0.7). The workers estimated total effective dose ranged from 1 to 22 mSv.a"-"1 (mean 10 mSv.a"-"1). Therefore, results show the importance to assess continually and permanently the radon and its progeny behavior and the need to adopt safety measurements against natural radiation in underground mines environment. (author)

  10. Possibilities of using energy recovery in underground mines

    Directory of Open Access Journals (Sweden)

    Obracaj Dariusz

    2018-01-01

    Full Text Available In underground mines, there are many sources of energy that are often irrecoverably lost and which could be used in the energy structure of a mine. Methane contained in the ventilation air, the water from the dewatering of the mines and the exhaust air from the mine shafts are the most important sources of energy available to a mine. Among other sources of energy available in a mine, you can also distinguish waste energy from the process of the desalination of water or energy from the waste. The report reviewed the sources of energy available in a mine, assessed the amount of recoverable energy and indicated the potential for its use.

  11. Remote control of safety and technological mining processes in underground coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Marjanovic, D. (Elektronska Industrija RO IRI OOUR Razvoj, Nis (Yugoslavia))

    1989-02-01

    Discusses importance of data relevant to remote monitoring of production and safety at work in underground coal mines. The EI PS 2000 multi-purpose system developed by Elektronska Industrija, Nis, for use with AP-X1 and AP-X2 microcomputers in Serbian mines is described. Component parts include the CUM-8 central unit, the CIP-8 communication interface processor, the SNM-64 disjunction unit, the NM-64 energy supply unit and the CRT alarm monitor. This system is designed to warn of mine fires, methane and coal dust explosions, to help in evacuating mine crews, to control production processes and mine management and other functions. 8 refs

  12. Acidity decay of above-drainage underground mines in West Virginia.

    Science.gov (United States)

    Mack, B; McDonald, L M; Skousen, J

    2010-01-01

    Acidity of water from abandoned underground mines decreases over time, and the rate of decrease can help formulate remediation approaches and treatment system designs. The objective of this study was to determine an overall acidity decay rate for above-drainage underground mines in northern West Virginia from a large data set of mines that were closed 50 to 70 yr ago. Water quality data were obtained from 30 Upper Freeport and 7 Pittsburgh coal seam mines in 1968, 1980, 2000, and 2006, and acidity decay curves were calculated. The mean decay constant, k, for Upper Freeport mines was 2.73 x 10(-2) yr(-1), with a 95% confidence interval of +/- 0.0052, whereas the k value for Pittsburgh mines was not significantly different at 4.26 x 10(-2) yr(-1) +/- 0.017. Acidity from the T&T mine, which was closed 12 yr ago, showed a k value of 11.25 x 10(-2) yr(-1). This higher decay rate was likely due to initial flushing of accumulated metal salts on reaction surfaces in the mine, rapid changes in mine hydrology after closure, and treatment. Although each site showed a specific decay rate (varying from 0.04 x 10(-2) yr(-1) to 13.1 x 10(-2) yr(-1)), the decay constants of 2.7 x 10(-2) yr(-1) to 4.3 x 10(-2) yr(-1) are useful for predicting water quality trends and overall improvements across a wide spectrum of abandoned underground mines. We found first-order decay models improve long-term prediction of acidity declines from above-drainage mines compared with linear or percent annual decrease models. These predictions can help to select water treatment plans and evaluate costs for these treatments over time.

  13. Improving underground ventilation conditions in coal mines

    CSIR Research Space (South Africa)

    Meyer, CF

    1993-11-01

    Full Text Available projects could be initiated by miningtek in co-operation with different mines. This report deals with the findings of this project and also deals with the future of research within Miningtek with regard to underground ventilation....

  14. 75 FR 5009 - Proximity Detection Systems for Underground Mines

    Science.gov (United States)

    2010-02-01

    ... Proximity Detection Systems for Underground Mines AGENCY: Mine Safety and Health Administration, Labor... information regarding whether the use of proximity detection systems would reduce the risk of accidents where... . Information on MSHA-approved proximity detection systems is available on the Internet at http://www.msha.gov...

  15. Research on communication system of underground safety management based on leaky feeder cable

    Institute of Scientific and Technical Information of China (English)

    CHEN Jian-hong; ZHANG Tao; CHENG Yun-cai; ZHANG Han

    2007-01-01

    According to the current working status of underground safety management and production scheduling, the importance and existed problem of underground mine radio communication were summarized, and the basic principle and classification of leaky feeder cable were introduced and the characteristics of cable were analyzed specifically in depth, and the application model of radio communication system for underground mine safety management was put forward. Meanwhile, the research explanation of the system component, function and evaluation was provided. The discussion result indicates that communication system of underground mine safety management which is integrated two-way relay amplifier and other equipment has many communication functions, and underground mine mobile communication can be achieved well.

  16. 30 CFR 72.520 - Diesel equipment inventory.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Diesel equipment inventory. 72.520 Section 72... Mines § 72.520 Diesel equipment inventory. (a) The operator of each mine that utilizes diesel equipment underground, shall prepare and submit in writing to the District Manager, an inventory of diesel equipment...

  17. Diesel aftertreatment control technologies in underground mines : the NO{sub 2} issue

    Energy Technology Data Exchange (ETDEWEB)

    Cauda, E.G.; Bugarski, A.D.; Patts, L. [National Inst. for Occupational Safety and Health, Pittsburgh, PA (United States). Office of Mine Safety and Health Research

    2010-07-01

    Diesel engines are the main source of exposure for underground miners to nitric oxide (NO) and nitrogen dioxide (NO{sub 2}). The exposure of underground miners to both these pollutants is regulated by the Mine Safety and Health Administration. Improvements have been made in mine ventilation in an attempt to meet more stringent emission limits. In coal mines in the United States, the exposure limits of underground miners to pollutant concentrations determine the ventilation rate specific for certified diesel engines. The ventilation rates are based on the amount of fresh air needed to dilute CO, CO{sub 2}, NO, NO{sub 2} in the undiluted exhaust gas to the threshold limit values (TLV). This presentation described the other options available to mine operators to reduce diesel particulate matter emissions. More advanced engine technologies, aftertreatment control strategies and the use of biodiesel fuels can reduce the mass concentrations of diesel particulate matter (DPM). However, these strategies can also alter tailpipe emissions of NO{sub 2} and an increase in ventilation rate may be required if the concentration of NO{sub 2} exceeds the regulatory enforced limit. The effects of different exhaust aftertreatment technologies were reviewed in this presentation along with ventilation control strategies for underground mining. 43 refs., 3 figs.

  18. Injection of FGD Grout to Abate Acid Mine Drainage in Underground Coal Mines

    Energy Technology Data Exchange (ETDEWEB)

    Mafi, S.; Damian, M.T.; Senita, R.E.; Jewitt, W.C.; Bair, S.; Chin, Y.C.; Whitlatch, E.; Traina, S.; Wolfe, W.

    1997-07-01

    Acid Mine Drainage (AMD) from abandoned underground coal mines in Ohio is a concern for both residents and regulatory agencies. Effluent from these mines is typically characterized by low pH and high iron and sulfate concentrations and may contaminate local drinking-water supplies and streams. The objective of this project is to demonstrate the technical feasibility of injecting cementitious alkaline materials, such as Flue Gas Desulfurization (FGD) material to mitigate current adverse environmental impacts associated with AMD in a small, abandoned deep mine in Coshocton County Ohio. The Flue Gas Desulfurization material will be provided from American Electric Power`s (AEP) Conesville Plant. It will be injected as a grout mix that will use Fixated Flue Gas Desulfurization material and water. The subject site for this study is located on the border of Coshocton and Muskingum Counties, Ohio, approximately 1.5 miles south-southwest of the town of Wills Creek. The study will be performed at an underground mine designated as Mm-127 in the Ohio Department of Natural Resources register, also known as the Roberts-Dawson Mine. The mine operated in the mid-1950s, during which approximately 2 million cubic feet of coal was removed. Effluent discharging from the abandoned mine entrances has low pH in the range of 2.8-3.0 that drains directly into Wills Creek Lake. The mine covers approximately 14.6 acres. It is estimated that 26,000 tons of FGD material will be provided from AEP`s Conesville Power Plant located approximately 3 miles northwest of the subject site.

  19. Injection of FGD Grout to Abate Acid Mine Drainage in Underground Coal Mines

    International Nuclear Information System (INIS)

    Mafi, S.; Damian, M.T.; Senita, R.E.; Jewitt, W.C.; Bair, S.; Chin, Y.C.; Whitlatch, E.; Traina, S.; Wolfe, W.

    1997-07-01

    Acid Mine Drainage (AMD) from abandoned underground coal mines in Ohio is a concern for both residents and regulatory agencies. Effluent from these mines is typically characterized by low pH and high iron and sulfate concentrations and may contaminate local drinking-water supplies and streams. The objective of this project is to demonstrate the technical feasibility of injecting cementitious alkaline materials, such as Flue Gas Desulfurization (FGD) material to mitigate current adverse environmental impacts associated with AMD in a small, abandoned deep mine in Coshocton County Ohio. The Flue Gas Desulfurization material will be provided from American Electric Power's (AEP) Conesville Plant. It will be injected as a grout mix that will use Fixated Flue Gas Desulfurization material and water. The subject site for this study is located on the border of Coshocton and Muskingum Counties, Ohio, approximately 1.5 miles south-southwest of the town of Wills Creek. The study will be performed at an underground mine designated as Mm-127 in the Ohio Department of Natural Resources register, also known as the Roberts-Dawson Mine. The mine operated in the mid-1950s, during which approximately 2 million cubic feet of coal was removed. Effluent discharging from the abandoned mine entrances has low pH in the range of 2.8-3.0 that drains directly into Wills Creek Lake. The mine covers approximately 14.6 acres. It is estimated that 26,000 tons of FGD material will be provided from AEP's Conesville Power Plant located approximately 3 miles northwest of the subject site

  20. Research on tractive power of KZC-5 rear dump truck in underground mine

    International Nuclear Information System (INIS)

    Lei Zeyong

    2003-01-01

    The tractive power of KZC-5 rear dump truck in underground mine is studied in this paper. The principles and ways of defining the power are discussed. It is proved that the power of KZC-5 rear dump truck in underground mine is reasonable in the industrial scale test

  1. Data Mining Mining Data: MSHA Enforcement Efforts, Underground Coal Mine Safety, and New Health Implications

    OpenAIRE

    Kniesner, Thomas J.; Leeth, John D.

    2003-01-01

    Studies of industrial safety regulations, OSHA in particular, often find little effect on worker safety. Critics of the regulatory approach argue that safety standards have little to do with industrial injuries, and defenders of the regulatory approach cite infrequent inspections and low penalties for violating safety standards. We use recently assembled data from the Mine Safety and Health Administration (MSHA) concerning underground coal mine production, safety regulatory activities, and wo...

  2. Damage to underground coal mines caused by surface blasting

    International Nuclear Information System (INIS)

    Fourie, A.B.; Green, R.W.

    1993-01-01

    An investigation of the potential damage to underground coal workings as a result of surface blasting at an opencast coal mine is described. Seismometers were installed in a worked out area of an underground mine, in the eastern Transvaal region of South Africa, and the vibration caused by nearby surface blasting recorded. These measurements were used to derive peak particle velocities. These velocities were correlated with observed damage underground in order to establish the allowable combination of the two blasting parameters of charge mass per relay, and blast-to-gage point distance. An upper limit of 110mm/sec peak particle velocity was found to be sufficient to ensure that the damage to the particular workings under consideration was minimal. It was further found that a cube-root scaling law provided a better fit to the field data than the common square-root law. 11 refs., 6 figs., 5 tabs

  3. Experience and prospects of using the pneumatic designs in underground mining

    Energy Technology Data Exchange (ETDEWEB)

    Rakhutin, V.S. [National Mining University of Ukraine, Dnipropetrovsk (Ukraine)

    1999-07-01

    The article reviews the experience of application of pneumatic designs ('flexible shells') in coal mines (pneumatic cogs and supports), ore mines (pneumatic cofferdams and partitions in filling), and in the construction of mines and underground constructions (pneumatic casings, temporary (pilot) supports). 2 refs.

  4. A Visualization Tool for Integrating Research Results at an Underground Mine

    Science.gov (United States)

    Boltz, S.; Macdonald, B. D.; Orr, T.; Johnson, W.; Benton, D. J.

    2016-12-01

    Researchers with the National Institute for Occupational Safety and Health are conducting research at a deep, underground metal mine in Idaho to develop improvements in ground control technologies that reduce the effects of dynamic loading on mine workings, thereby decreasing the risk to miners. This research is multifaceted and includes: photogrammetry, microseismic monitoring, geotechnical instrumentation, and numerical modeling. When managing research involving such a wide range of data, understanding how the data relate to each other and to the mining activity quickly becomes a daunting task. In an effort to combine this diverse research data into a single, easy-to-use system, a three-dimensional visualization tool was developed. The tool was created using the Unity3d video gaming engine and includes the mine development entries, production stopes, important geologic structures, and user-input research data. The tool provides the user with a first-person, interactive experience where they are able to walk through the mine as well as navigate the rock mass surrounding the mine to view and interpret the imported data in the context of the mine and as a function of time. The tool was developed using data from a single mine; however, it is intended to be a generic tool that can be easily extended to other mines. For example, a similar visualization tool is being developed for an underground coal mine in Colorado. The ultimate goal is for NIOSH researchers and mine personnel to be able to use the visualization tool to identify trends that may not otherwise be apparent when viewing the data separately. This presentation highlights the features and capabilities of the mine visualization tool and explains how it may be used to more effectively interpret data and reduce the risk of ground fall hazards to underground miners.

  5. Booster fans : some considerations for their usage in underground coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Gillies, S.; Slaughter, C. [Missouri Univ. of Science and Technology, Rolla, MO (United States); Calizaya, F. [Utah Univ., Salt Lake City, UT (United States); Wu, H.W. [Gillies Wu Mining Technology Pty Ltd., Brisbane, QLD (Australia)

    2010-07-01

    This paper reported on a study that investigated the conditions under which booster fans can be used safely and efficiently in underground coal mines. Booster fans are installed in series with a main surface fan and are used to boost the air pressure of the ventilation air passing through it. Several coal mining countries use booster fans, but in the United States, they are only used in metal/non-metal mines due to concerns of uncontrolled recirculation. This study investigated installations of booster fans in non-US underground coal mines where safe and efficient atmospheric conditions are achieved. The purpose was to collect reliable information on airway resistances and flow requirements typical in large US coal mines. The study showed that safe booster fan installations are found in both high and low gas conditions, and sometimes where workings are located at great depths. The interlocking systems within the booster fan can control the underground fans and avoid recirculation when surface fans are unexpectedly turned off. Another purpose of the study was to determine when booster fans become a more viable solution in coal mines due to increases in air requirements at higher production rates. It was concluded that a new fan selection algorithm to produce recirculation-free ventilation designs will be developed to enable US coal mine operators to develop ventilation designs to extract coal seams from depths greater than 1000 m. 17 refs., 1 fig.

  6. Proceedings of the 18. international symposium on mine planning and equipment selection (MPES 2009) and the 11. international symposium on environmental issues and waste management in energy and mineral production (SWEMP 2009) : mine planning and equipment selection and environmental issues and waste management in energy and mineral production

    International Nuclear Information System (INIS)

    Singhal, R.K.; Mehrotra, A.; Fytas, K.; Ge, H.

    2009-01-01

    This conference focused on the application of innovative technologies to the mineral industries and the development of productive methods for the mining and processing industries. It was attended by participants from North and South America, Europe, Australia, Africa and Asia with backgrounds in computer sciences, mining engineering and research in mineral production. The major topics addressed regarding mine planning and equipment selection included economic and technical feasibility studies; reserve estimation; mine development; design and planning of surface and underground mines; drilling, blasting, tunneling and excavation engineering; mining equipment selection; automation and information technology; maintenance and production management for mines and mining systems; mining in terms of health, safety and the environment; and rock mechanics and geotechnical applications. The topics addressed regarding waste management in energy and mineral production included the environmental impacts of coal-fired power projects; mining and reclamation; water management; social aspects of rehabilitation; sustainable development for mineral and energy industries; remediation of contaminated soil and groundwater; health hazard and safety issues in small-scale mining; environmental issues in surface and underground mining of metalliferous, coal, uranium and industrial minerals; occupational health and safety; control of effluents from mineral processing, metallurgy and chemical plants; emerging technologies for environmental protection; reliability of waste containment structures; and tailings treatment, recycling and disposal. The conference featured 162 presentations, of which 30 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  7. In situ monitoring of primary roofbolts at underground coal mines in the USA

    OpenAIRE

    Spearing, A.J.S.; Hyett, A.

    2014-01-01

    Primary roof support represents the first line of defence against rock-related falls of ground in underground mines, and improper utilization or misunderstanding of the applicability and behaviour of primary support can be costly from a safety standpoint. This is a major concern for underground mines, as roof support is the single most costly expense from a mining operational perspective. This is further backed by the evidence that, in the USA, hundreds of injuries and fatalities still occur ...

  8. Natural radionuclides concentration in underground mine materials

    Energy Technology Data Exchange (ETDEWEB)

    Santos, T.O.; Rocha, Z.; Taveira, N.F.; Takahashi, L.C.; Pineiro, M.M., E-mail: talitaolsantos@yahoo.com.br, E-mail: rochaz@cdtn.br, E-mail: mayarapinheiroduarte@gmail.com, E-mail: lauratakahashi@hotmail.com, E-mail: natyfontaveira@hotmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Borges, P.F.; Cruz, P.; Gouvea, V.A.; Siqueira, J.B., E-mail: vgouvea@cnen.gov.br, E-mail: flavia.borges@cnen.gov.br, E-mail: pcruz@cnen.gov.br, E-mail: jbsiquei@cnen.gov.br [Comissão Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Natural Radionuclides are present in earth's environment since its origin. The main radionuclides present are {sup 40}K, as well as, {sup 238}U and {sup 232}Th with their decay products. These radionuclides occur in minerals in different activity concentration associated with geological and geochemical conditions, appearing at different levels from point to point in the world. Underground mines may present a high natural background radiation which is due to the presence of these radiogenic heavy minerals. To address this concern, this work outlines on the characterization of the natural radionuclides presence in underground mines in Brazil which are located in many cases on higher radiation levels bed rocks. The radon concentration was measured by using E-PERM Electrets Ion Chamber, AlphaGUARD and CR-39 track etch detectors. The radon progeny was determined by using DOSEman detector. Radon concentration measurement in groundwater was performed by using RAD7 detector. The {sup 238}U and {sup 232}Th activity concentration in ore and soil samples were determined by using Neutron Activation Analysis using TRIGA MARK I IPR-R1 Reactor. Gamma spectrometry was used to determine {sup 226}Ra, {sup 228}Ra and {sup 40}K activity concentrations. The results show that the natural radioactivity varies considerably from mine to mine and that there are not risks of radiological damage for exposed workers in these cases. Based on these data, recommendations for Brazilian regulatory standards are presented. (author)

  9. Natural radionuclides concentration in underground mine materials

    International Nuclear Information System (INIS)

    Santos, T.O.; Rocha, Z.; Taveira, N.F.; Takahashi, L.C.; Pineiro, M.M.; Borges, P.F.; Cruz, P.; Gouvea, V.A.; Siqueira, J.B.

    2017-01-01

    Natural Radionuclides are present in earth's environment since its origin. The main radionuclides present are 40 K, as well as, 238 U and 232 Th with their decay products. These radionuclides occur in minerals in different activity concentration associated with geological and geochemical conditions, appearing at different levels from point to point in the world. Underground mines may present a high natural background radiation which is due to the presence of these radiogenic heavy minerals. To address this concern, this work outlines on the characterization of the natural radionuclides presence in underground mines in Brazil which are located in many cases on higher radiation levels bed rocks. The radon concentration was measured by using E-PERM Electrets Ion Chamber, AlphaGUARD and CR-39 track etch detectors. The radon progeny was determined by using DOSEman detector. Radon concentration measurement in groundwater was performed by using RAD7 detector. The 238 U and 232 Th activity concentration in ore and soil samples were determined by using Neutron Activation Analysis using TRIGA MARK I IPR-R1 Reactor. Gamma spectrometry was used to determine 226 Ra, 228 Ra and 40 K activity concentrations. The results show that the natural radioactivity varies considerably from mine to mine and that there are not risks of radiological damage for exposed workers in these cases. Based on these data, recommendations for Brazilian regulatory standards are presented. (author)

  10. Modelling of radon control and air cleaning requirements in underground uranium mines

    International Nuclear Information System (INIS)

    El Fawal, M.; Gadalla, A.

    2014-01-01

    As a part of a comprehensive study concerned with control workplace short-lived radon daughter concentration in underground uranium mines to safe levels, a computer program has been developed and verified, to calculate ventilation parameters e.g. local pressures, flow rates and radon daughter concentration levels. The computer program is composed of two parts, one part for mine ventilation and the other part for radon daughter levels calculations. This program has been validated in an actual case study to calculate radon concentration levels, pressure and flow rates required to maintain acceptable levels of radon concentrations in each point of the mine. The required fan static pressure and the approximate energy consumption were also estimated. The results of the calculations have been evaluated and compared with similar investigation. It was found that the calculated values are in good agreement with the corresponding values obtained using ''REDES'' standard ventilation modelling software. The developed computer model can be used as an available tool to help in the evaluation of ventilation systems proposed by mining authority, to assist the uranium mining industry in maintaining the health and safety of the workers underground while efficiently achieving economic production targets. It could be used also for regulatory inspection and radiation protection assessments of workers in the underground mining. Also with using this model, one can effectively design, assess and manage underground mine ventilation systems. Values of radon decay products concentration in units of working level, pressures drop and flow rates required to reach the acceptable radon concentration relative to the recommended levels, at different extraction points in the mine and fan static pressure could be estimated which are not available using other software. (author)

  11. Data Mining Mining Data: MSHA Enforcement Efforts, Underground Coal Mine Safety, and New Health Policy Implications

    OpenAIRE

    Thomas J. Kniesner; John D. Leeth

    2003-01-01

    Studies of industrial safety regulations, Occupational Safety and Health Administration (OSHA) in particular, often find little effect on worker safety. Critics of the regulatory approach argue that safety standards have little to do with industrial injuries and defenders of the regulatory approach cite infrequent inspections and low fines for violating safety standards. We use recently assembled data from the Mine Safety and Health Administration (MSHA) concerning underground coal mine produ...

  12. Some elementary concepts of radiation health and safety in underground uranium mines

    International Nuclear Information System (INIS)

    Bigu, J.

    1980-02-01

    Some elementary concepts of radiation health and safety in underground uranium mines are discussed. This report reviews the main radiation sources which contribute to the contamination of mine atmospheres and hence to the exposure of mine workers. A brief discussion of the biological effects of ionizing radiation, with special reference to radon and its progeny, is followed by the introduction of the presently accepted radiation indexes for radiation hazard (WL) and radiation exposure (WLM). Finally, a succinct review of the available techniques for radiation control and monitoring in underground uranium mines is complemented by a discussion of various methods of personnel radiation protection, including the use of respirators, job rotation, personnel dosimetry and medical surveillance

  13. A Wireless LAN and Voice Information System for Underground Coal Mine

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2014-06-01

    Full Text Available In this paper we constructed a wireless information system, and developed a wireless voice communication subsystem based on Wireless Local Area Networks (WLAN for underground coal mine, which employs Voice over IP (VoIP technology and Session Initiation Protocol (SIP to achieve wireless voice dispatching communications. The master control voice dispatching interface and call terminal software are also developed on the WLAN ground server side to manage and implement the voice dispatching communication. A testing system for voice communication was constructed in tunnels of an underground coal mine, which was used to actually test the wireless voice communication subsystem via a network analysis tool, named Clear Sight Analyzer. In tests, the actual flow charts of registration, call establishment and call removal were analyzed by capturing call signaling of SIP terminals, and the key performance indicators were evaluated in coal mine, including average subjective value of voice quality, packet loss rate, delay jitter, disorder packet transmission and end-to- end delay. Experimental results and analysis demonstrate that the wireless voice communication subsystem developed communicates well in underground coal mine environment, achieving the designed function of voice dispatching communication.

  14. Mining face equipment

    Energy Technology Data Exchange (ETDEWEB)

    G, Litvinskiy G; Babyuk, G V; Yakovenko, V A

    1981-01-07

    Mining face equipment includes drilling advance wells, drilling using explosives on the contour bore holes, loading and transporting the crushed mass, drilling reinforcement shafts, injecting reinforcement compounds and moving the timber. Camouflet explosives are used to form relaxed rock stress beyond the mining area to decrease costs of reinforcing the mining area by using nonstressed rock in the advance well as support. The strengthening solution is injected through advanced cementing wells before drilling the contour bores as well as through radial cementing wells beyond the timbers following loading and transport of the mining debris. The advance well is 50-80 m.

  15. Improvements in electric power supply in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Minovskii, Yu.P.; Nabokov, Eh.P.; Savel' ev, G.P.

    1985-01-01

    Reviews measures taken by major coal producing countries to increase output levels. Discusses research carried out into advance design of equipment in FRG, UK, USA and France and proposes establishment of central automatic control of electric power supply system in Soviet mines, improvement in underground power supply equipment, increase in reliability, stabilization of standby capacity in low voltage circuits, maintenance-free electrical equipment, and efficient spare part storage in underground workings. States that introduction of the proposed system (details are given) will ensure that Soviet mines will eventually reach the development level of foreign mines. 2 refs.

  16. Water quality restoration during and after flooding of the underground Banat mines

    International Nuclear Information System (INIS)

    Iuhas, T.; Bragadireanu, M.; Filip, D.; Dumitrescu, N.

    2001-01-01

    Closing out and flooding of the underground Banat mines are priority concerns of the Uranium National Company S.A during the period 2000-2007, the economical uranium ores being exhausted after some 45 years of underground exploitation. Water quality restoration during the flooding process and after its completion was a part of a pilot project undertaken in the frame of a PHARE programme. The mines have two water treatment plants in operation with four modules with 3 ion exchange columns each, being in exploitation. The long term plans for the remediation of uranium mines will stop the Ciudanovita water treatment facility, all the underground mine waters being further pumped and treated within a single plant located at Lisava. The exploitation of the treatment plant will be ensured as long as needed, with a first foreseen period of ten years after total flooding of the Banat mines, linked with a long term environment monitoring programme. Necessary measures to be taken for ensuring the foreseen both uranium and radium separation are presented within this paper. Proposals for radium removal are present as a decision should be taken in the nearest future. (orig.)

  17. Estimating Limits for the Geothermal Energy Potential of Abandoned Underground Coal Mines: A Simple Methodology

    Directory of Open Access Journals (Sweden)

    Rafael Rodríguez Díez

    2014-07-01

    Full Text Available Flooded mine workings have good potential as low-enthalpy geothermal resources, which could be used for heating and cooling purposes, thus making use of the mines long after mining activity itself ceases. It would be useful to estimate the scale of the geothermal potential represented by abandoned and flooded underground mines in Europe. From a few practical considerations, a procedure has been developed for assessing the geothermal energy potential of abandoned underground coal mines, as well as for quantifying the reduction in CO2 emissions associated with using the mines instead of conventional heating/cooling technologies. On this basis the authors have been able to estimate that the geothermal energy available from underground coal mines in Europe is on the order of several thousand megawatts thermal. Although this is a gross value, it can be considered a minimum, which in itself vindicates all efforts to investigate harnessing it.

  18. An ultrasonic-based localization system for underground mines

    CSIR Research Space (South Africa)

    Jordaan, JP

    2017-07-01

    Full Text Available -based localization system for underground mines 2017 IEEE 15th International Conference on Industrial Informatics (INDIN), 24-26 July 2017, Emden, Germany JP Jordaan, CP Kruger, BJ Silva and GP Hancke Abstract: Localization is important for a wide range...

  19. 30 CFR 70.305 - Respiratory equipment; gas, dusts, fumes, or mists.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Respiratory equipment; gas, dusts, fumes, or... LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-UNDERGROUND COAL MINES Respiratory Equipment § 70.305 Respiratory equipment; gas, dusts, fumes, or mists. Respiratory equipment approved by...

  20. Fuel cell mining vehicles: design, performance and advantages

    International Nuclear Information System (INIS)

    Betournay, M.C.; Miller, A.R.; Barnes, D.L.

    2003-01-01

    The potential for using fuel cell technology in underground mining equipment was discussed with reference to the risks associated with the operation of hydrogen vehicles, hydrogen production and hydrogen delivery systems. This paper presented some of the initiatives for mine locomotives and fuel cell stacks for underground environments. In particular, it presents the test results of the first applied industrial fuel cell vehicle in the world, a mining and tunneling locomotive. This study was part of an international initiative managed by the Fuel Cell Propulsion Institute which consists of several mining companies, mining equipment manufacturers, and fuel cell technology developers. Some of the obvious benefits of fuel cells for underground mining operations include no exhaust gases, lower electrical costs, significantly reduced maintenance, and lower ventilation costs. Another advantage is that the technology can be readily automated and computer-based for tele-remote operations. This study also quantified the cost and operational benefits associated with fuel cell vehicles compared to diesel vehicles. It is expected that higher vehicle productivity could render fuel cell underground vehicles cost-competitive. 6 refs., 1 tab

  1. Estimation of radon daughter levels in the ventilation planning of an underground uranium mine

    International Nuclear Information System (INIS)

    Gan, T.H.; Wise, K.N.; Leach, V.A.

    1981-01-01

    Diffusion parameters determined by laboratory measurements can be utilized for predictions of radon daughter exposures in underground mining environments, as well as providing data for ventilation planning purposes. Wherever possible field measured data for the various diffusion parameters should be used. Underground mining methods, the tunnel model and diffusion theory are considered

  2. Analysis of Occupational Accidents in Underground and Surface Mining in Spain Using Data-Mining Techniques.

    Science.gov (United States)

    Sanmiquel, Lluís; Bascompta, Marc; Rossell, Josep M; Anticoi, Hernán Francisco; Guash, Eduard

    2018-03-07

    An analysis of occupational accidents in the mining sector was conducted using the data from the Spanish Ministry of Employment and Social Safety between 2005 and 2015, and data-mining techniques were applied. Data was processed with the software Weka. Two scenarios were chosen from the accidents database: surface and underground mining. The most important variables involved in occupational accidents and their association rules were determined. These rules are composed of several predictor variables that cause accidents, defining its characteristics and context. This study exposes the 20 most important association rules in the sector-either surface or underground mining-based on the statistical confidence levels of each rule as obtained by Weka. The outcomes display the most typical immediate causes, along with the percentage of accidents with a basis in each association rule. The most important immediate cause is body movement with physical effort or overexertion, and the type of accident is physical effort or overexertion. On the other hand, the second most important immediate cause and type of accident are different between the two scenarios. Data-mining techniques were chosen as a useful tool to find out the root cause of the accidents.

  3. Location of the axis of underground mines by preliminary terrain plotting

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, M

    1979-11-01

    Describes a method for locating underground mines by limited-range surveys. The method can be used if both the entrance and exit of an underground mine can be observed from higher ground, either from one point or from two visually connected points. The method combines open traverse and working on to line procedures; transit and optical range finders are used to establish the direction and length of the mine; these data are then integrated in the official triangulation network by measuring angles and distances to the nearest triangulation points. The method is advantageous in that it eliminates the paraphernalia of the standard triangulation method, reduces time of the survey to 15-20 days, saves labor and supplies and enables a visual control of operations. (In Bulgarian)

  4. Underground Mining Method Selection Using WPM and PROMETHEE

    Science.gov (United States)

    Balusa, Bhanu Chander; Singam, Jayanthu

    2018-04-01

    The aim of this paper is to represent the solution to the problem of selecting suitable underground mining method for the mining industry. It is achieved by using two multi-attribute decision making techniques. These two techniques are weighted product method (WPM) and preference ranking organization method for enrichment evaluation (PROMETHEE). In this paper, analytic hierarchy process is used for weight's calculation of the attributes (i.e. parameters which are used in this paper). Mining method selection depends on physical parameters, mechanical parameters, economical parameters and technical parameters. WPM and PROMETHEE techniques have the ability to consider the relationship between the parameters and mining methods. The proposed techniques give higher accuracy and faster computation capability when compared with other decision making techniques. The proposed techniques are presented to determine the effective mining method for bauxite mine. The results of these techniques are compared with methods used in the earlier research works. The results show, conventional cut and fill method is the most suitable mining method.

  5. Deep underground exploration in the Asse salt mine

    International Nuclear Information System (INIS)

    Steinberg, S.; Schmidt, M.W.

    1992-01-01

    The activities reported here under the project task entitled ''Deep underground exploration up to the 925 m level'' opened up depths and salt formations in the Asse salt mine which are intended sites for R and D work for investigating and determining the conditions of radioactive waste disposal in a repository of the Gorleben type. The newly developed experimental levels will thus allow to directly apply research results obtained in the Asse mine to the Gorleben project. The activities reported included among other tasks work for increasing the depth of exploration in the Asse mine 2 down to 950 m, using a newly developed cutting method. The work was performed in cooperation with a mining corporation specializing in this sort of tasks. (orig.) With 18 maps [de

  6. STORAGE AND RECOVERY OF SECONDARY WASTE COMING FROM MUNICIPAL WASTE INCINERATION PLANTS IN UNDERGROUND MINE

    Directory of Open Access Journals (Sweden)

    Waldemar Korzeniowski

    2016-09-01

    Full Text Available Regarding current and planned development of municipal waste incineration plants in Poland there is an important problem of the generated secondary waste management. The experience of West European countries in mining shows that waste can be stored successfully in the underground mines, but especially in salt mines. In Poland there is a possibility to set up the underground storage facility in the Salt Mine “Kłodawa”. The mine today is capable to locate over 3 million cubic meters and in the future it can increase significantly. Two techniques are proposed: 1 – storage of packaged waste, 2 – waste recovery as selfsolidifying paste with mining technology for rooms backfilling. Assuming the processing capacity of the storage facility as 100 000 Mg of waste per year, “Kłodawa” mine will be able to accept around 25 % of currently generated waste coming from the municipal waste incineration plants and the current volume of the storage space is sufficient for more than 20 years. Underground storage and waste recovery in mining techniques are beneficial for the economy and environment.

  7. Optimal location of emergency stations in underground mine networks using a multiobjective mathematical model.

    Science.gov (United States)

    Lotfian, Reza; Najafi, Mehdi

    2018-02-26

    Background Every year, many mining accidents occur in underground mines all over the world resulting in the death and maiming of many miners and heavy financial losses to mining companies. Underground mining accounts for an increasing share of these events due to their special circumstances and the risks of working therein. Thus, the optimal location of emergency stations within the network of an underground mine in order to provide medical first aid and transport injured people at the right time, plays an essential role in reducing deaths and disabilities caused by accidents Objective The main objective of this study is to determine the location of emergency stations (ES) within the network of an underground coal mine in order to minimize the outreach time for the injured. Methods A three-objective mathematical model is presented for placement of ES facility location selection and allocation of facilities to the injured in various stopes. Results Taking into account the radius of influence for each ES, the proposed model is capable to reduce the maximum time for provision of emergency services in the event of accident for each stope. In addition, the coverage or lack of coverage of each stope by any of the emergency facility is determined by means of Floyd-Warshall algorithm and graph. To solve the problem, a global criterion method using GAMS software is used to evaluate the accuracy and efficiency of the model. Conclusions 7 locations were selected from among 46 candidates for the establishment of emergency facilities in Tabas underground coal mine. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. 30 CFR 77.1707 - First aid equipment; location; minimum requirements.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false First aid equipment; location; minimum... OF UNDERGROUND COAL MINES Miscellaneous § 77.1707 First aid equipment; location; minimum requirements. (a) Each operator of a surface coal mine shall maintain a supply of the first aid equipment set forth...

  9. 30 CFR 75.509 - Electric power circuit and electric equipment; deenergization.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric power circuit and electric equipment... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.509 Electric power circuit and electric equipment; deenergization. [Statutory Provisions] All...

  10. Radon Progeny In Underground Phosphate Mines and Their Activity Distributions In Human Lung

    International Nuclear Information System (INIS)

    Abd El-Hady, M.; Mohammed, A.; El-Hussein, A.; Ali, A.E.; Ahmed, A.A.

    2001-01-01

    In addition to workers in uranium mines, the staff of other underground mines, such as worker in underground phosphate mines, Can be exposed to 222 Rn and its progeny. In this study the individual radon progeny concentrations were measured in three Egyptian underground phosphate mines to estimate the occupational exposure to the workers in those sites. Active techniques are employed to fulfill the objective of measuring individual radon progeny concentrations (C RaA , C RaB and C RaC ). The mean reported values of radon progeny concentrations exceed the action levels recommended by ICRP 65 (1993). Based on the physical properties of attached radon progeny aerosol and physiological parameters for heavy work activity which recommended by ICRP 66 (1994). the deposition fraction for each airway generation was calculated. From the measured individual radon progeny concentrations in these mines and the calculated values of deposition fractions, the surface activity distribution per generation were calculated in human respiratory system (BB and regions). The maximum values of these activities were found in the upper bronchial airway generations. According to the obtained results, some of the corrective actions were recommended in this study

  11. Hydrogeochemistry and Isotopic Study of the Origin of Underground Mine Water at Golden Star Bogoso/Prestea Limited (New Century Mines)

    International Nuclear Information System (INIS)

    Innosah, Gibrilla

    2014-07-01

    Hydrogeochemical study of the origin of underground mine water at Golden Star Bogoso/ Prestea Limited (New Century Mines) was carried out to determine the geochemical processes controlling surface water, groundwater and underground mine water and to identify the source of recharge to the underground water in the mines; investigate the hydrochemical facies of groundwater in the various aquifers (gallaries), and identify the relationship between surface water and groundwater, and underground mine water using hydrogeochemistry and stable isotope technique. Water from seventeen (17) surface water bodies, ten (10) hand-dug wells, eleven (11) boreholes and twenty-one (21) underground mine water samples were collected within Prestea in the Prestea-Huni Valley district of Western Region of Ghana between October 2013 and March 2014.The objectives of the study was achieved through the determination of pH, temperature, TDS, salinity, alkalinity, electrical conductivity, anions (SO_4"2-, HCO_3"-, Cl"-, PO_4"3"-, NO_3"-), major cations (Ca"2"+, Mg"2"+, Na"+, K"+) and trace elements (As, Cd, Cu, Fe, Mn, Pb and Zn). Arsenic,(As), was determined by Hydride Generation Atomic Absorption Spectrometry (HG-AAS). Levels of Cd, Cu, Fe, Mn, Mg, Pb and Zn were determined by Flame Atomic Absorption Spectrometry (FASS). The contents of Na"+ and K"+ were determined by Flame Photometry. Measurement of the levels of SO_4"2"-, PO_4"3"- and NO_3"- were achieved by UV-Visible spectrophotometry. Titrimetry was used for the determination of alkalinity, HCO_3"- and Cl"-. Temperature, pH, Conductivity, Salinity and Total Dissolved Solids (TDS) of the surface water, groundwater and underground mine water were all assessed. The stable isotopes (δ"2H and δ"1"8O) compositions of the waters were determined using the Liquid-Water Isotope Analyzer [based on Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS) via laser absorption]. The determined Levels of major cations (in ranges, meq/L) for the

  12. Underground mining of aggregates. Main report

    OpenAIRE

    Brown, Teresa J.; Coggan, John S.; Evans, David J.; Foster, Patrick J.; Hewitt, Jeremy; Kruyswijk, Jacob B.; Smith, Nigel; Steadman, Ellie J.

    2010-01-01

    This report examines the economic feasibility of underground mining for crushed rock aggregates in the UK, but particularly in the London, South East and East of England regions (the South East area of England). These regions import substantial volumes of crushed rock, primarily from the East Midlands and South West regions, requiring relatively long transport distances to market for this bulk commodity. A key part of the research was to determine whether or not aggregate could be produced an...

  13. Real-time diesel particulate monitor for underground mines.

    Science.gov (United States)

    Noll, James; Janisko, Samuel; Mischler, Steven E

    The standard method for determining diesel particulate matter (DPM) exposures in underground metal/ nonmetal mines provides the average exposure concentration for an entire working shift, and several weeks might pass before results are obtained. The main problem with this approach is that it only indicates that an overexposure has occurred rather than providing the ability to prevent an overexposure or detect its cause. Conversely, real-time measurement would provide miners with timely information to allow engineering controls to be deployed immediately and to identify the major factors contributing to any overexposures. Toward this purpose, the National Institute for Occupational Safety and Health (NIOSH) developed a laser extinction method to measure real-time elemental carbon (EC) concentrations (EC is a DPM surrogate). To employ this method, NIOSH developed a person-wearable instrument that was commercialized in 2011. This paper evaluates this commercial instrument, including the calibration curve, limit of detection, accuracy, and potential interferences. The instrument was found to meet the NIOSH accuracy criteria and to be capable of measuring DPM concentrations at levels observed in underground mines. In addition, it was found that a submicron size selector was necessary to avoid interference from mine dust and that cigarette smoke can be an interference when sampling in enclosed cabs.

  14. Numerical simulation of phenomenon on zonal disintegration in deep underground mining in case of unsupported roadway

    Science.gov (United States)

    Han, Fengshan; Wu, Xinli; Li, Xia; Zhu, Dekang

    2018-02-01

    Zonal disintegration phenomenon was found in deep mining roadway surrounding rock. It seriously affects the safety of mining and underground engineering and it may lead to the occurrence of natural disasters. in deep mining roadway surrounding rock, tectonic stress in deep mining roadway rock mass, horizontal stress is much greater than the vertical stress, When the direction of maximum principal stress is parallel to the axis of the roadway in deep mining, this is the main reasons for Zonal disintegration phenomenon. Using ABAQUS software to numerical simulation of the three-dimensional model of roadway rupture formation process systematically, and the study shows that when The Direction of maximum main stress in deep underground mining is along the roadway axial direction, Zonal disintegration phenomenon in deep underground mining is successfully reproduced by our numerical simulation..numerical simulation shows that using ABAQUA simulation can reproduce Zonal disintegration phenomenon and the formation process of damage of surrounding rock can be reproduced. which have important engineering practical significance.

  15. Analysis of Occupational Accidents in Underground and Surface Mining in Spain Using Data-Mining Techniques

    Science.gov (United States)

    Sanmiquel, Lluís; Bascompta, Marc; Rossell, Josep M.; Anticoi, Hernán Francisco; Guash, Eduard

    2018-01-01

    An analysis of occupational accidents in the mining sector was conducted using the data from the Spanish Ministry of Employment and Social Safety between 2005 and 2015, and data-mining techniques were applied. Data was processed with the software Weka. Two scenarios were chosen from the accidents database: surface and underground mining. The most important variables involved in occupational accidents and their association rules were determined. These rules are composed of several predictor variables that cause accidents, defining its characteristics and context. This study exposes the 20 most important association rules in the sector—either surface or underground mining—based on the statistical confidence levels of each rule as obtained by Weka. The outcomes display the most typical immediate causes, along with the percentage of accidents with a basis in each association rule. The most important immediate cause is body movement with physical effort or overexertion, and the type of accident is physical effort or overexertion. On the other hand, the second most important immediate cause and type of accident are different between the two scenarios. Data-mining techniques were chosen as a useful tool to find out the root cause of the accidents. PMID:29518921

  16. Analysis of Occupational Accidents in Underground and Surface Mining in Spain Using Data-Mining Techniques

    Directory of Open Access Journals (Sweden)

    Lluís Sanmiquel

    2018-03-01

    Full Text Available An analysis of occupational accidents in the mining sector was conducted using the data from the Spanish Ministry of Employment and Social Safety between 2005 and 2015, and data-mining techniques were applied. Data was processed with the software Weka. Two scenarios were chosen from the accidents database: surface and underground mining. The most important variables involved in occupational accidents and their association rules were determined. These rules are composed of several predictor variables that cause accidents, defining its characteristics and context. This study exposes the 20 most important association rules in the sector—either surface or underground mining—based on the statistical confidence levels of each rule as obtained by Weka. The outcomes display the most typical immediate causes, along with the percentage of accidents with a basis in each association rule. The most important immediate cause is body movement with physical effort or overexertion, and the type of accident is physical effort or overexertion. On the other hand, the second most important immediate cause and type of accident are different between the two scenarios. Data-mining techniques were chosen as a useful tool to find out the root cause of the accidents.

  17. Retrofit SCR system for NOx control from heavy-duty mining equipment

    International Nuclear Information System (INIS)

    Mannan, M.A.

    2009-01-01

    Diesel engines are used extensively in the mining industry and offer many advantages. However, particulate matter (PM) emissions and nitrogen oxide emissions (NOx) are among its disadvantages. A significant concern related to PM and NOx in an underground mine involves the use of diesel exhaust after treatment systems such as diesel particulate filters and selective catalytic reduction (SCR). This presentation discussed NOx and PM control and provided a description of an SCR system and examples of SCR retrofits. Options for NOx control were discussed and a case study involving the installation of an SCR retrofit system in an underground mine operated by Sifto Salt was also presented. The purpose of the case study was to identify cost effective retrofit solutions to lower nitrogen dioxide emissions from heavy-duty trucks operating in underground mines. The case study illustrated and presented the candidate vehicle, baseline emissions, a BlueMax SCR retrofit solution, and BlueMax installation. 1 tab., 6 figs.

  18. Conceptual overview and preliminary risk assessment of cryogen use in deep underground mine production

    Science.gov (United States)

    Sivret, J.; Millar, D. L.; Lyle, G.

    2017-12-01

    This research conducts a formal risk assessment for cryogenic fueled equipment in underground environments. These include fans, load haul dump units, and trucks. The motivating advantage is zero-emissions production in the subsurface and simultaneous provision of cooling for ultra deep mine workings. The driving force of the engine is the expansion of the reboiled cryogen following flash evaporation using ambient temperature heat. The cold exhaust mixes with warm mine air and cools the latter further. The use of cryogens as ‘fuel’ leads to much increased fuel transport volumes and motivates special considerations for distribution infrastructure and process including: cryogenic storage, distribution, handling, and transfer systems. Detailed specification of parts and equipment, numerical modelling and preparation of design drawings are used to articulate the concept. The conceptual design process reveals new hazards and risks that the mining industry has not yet encountered, which may yet stymie execution. The major unwanted events include the potential for asphyxiation due to oxygen deficient atmospheres, or physical damage to workers due to exposure to sub-cooled liquids and cryogenic gases. The Global Minerals Industry Risk Management (GMIRM) framework incorporates WRAC and Bow-Tie techniques and is used to identify, assess and mitigate risks. These processes operate upon the competing conceptual designs to identify and eliminate high risk options and improve the safety of the lower risk designs.

  19. Analysis of US underground thin seam mining potential. Volume 1. Text. Final technical report, December 1978. [In thin seams

    Energy Technology Data Exchange (ETDEWEB)

    Pimental, R. A; Barell, D.; Fine, R. J.; Douglas, W. J.

    1979-06-01

    An analysis of the potential for US underground thin seam (< 28'') coal mining is undertaken to provide basic information for use in making a decision on further thin seam mining equipment development. The characteristics of the present low seam mines and their mining methods are determined, in order to establish baseline data against which changes in mine characteristics can be monitored as a function of time. A detailed data base of thin seam coal resources is developed through a quantitative and qualitative analysis at the bed, county and state level. By establishing present and future coal demand and relating demand to production and resources, the market for thin seam coal has been identified. No thin seam coal demand of significance is forecast before the year 2000. Current uncertainty as to coal's future does not permit market forecasts beyond the year 2000 with a sufficient level of reliability.

  20. A Critical Study on the Underground Environment of Coal Mines in India-an Ergonomic Approach

    Science.gov (United States)

    Dey, Netai Chandra; Sharma, Gourab Dhara

    2013-04-01

    Ergonomics application on underground miner's health plays a great role in controlling the efficiency of miners. The job stress in underground mine is still physically demanding and continuous stress due to certain posture or movement of miners during work leads to localized muscle fatigue creating musculo-skeletal disorders. A good working environment can change the degree of job heaviness and thermal stress (WBGT values) can directly have the effect on stretch of work of miners. Out of many unit operations in underground mine, roof bolting keeps an important contribution with regard to safety of the mine and miners. Occupational stress of roof bolters from ergonomic consideration has been discussed in the paper.

  1. 30 CFR 57.12027 - Grounding mobile equipment.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding mobile equipment. 57.12027 Section 57.12027 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Electricity...

  2. Principles of integrated modeling of coal seam mining

    Energy Technology Data Exchange (ETDEWEB)

    Magda, R

    1983-01-01

    Mathematical modeling of underground coal mining is discussed. Construction of a mathematical model of an underground mine is analyzed. The model is based on integrating the elementary units (modules). A so-called elementary mining field is defined with the example of a longwall face. A model of an elementary coal seam zone is constructed by integrating the elementary mining fields (in time and space) and supplementing them with a suitable model of mine roadway structure. By integrating the elementary coal seam zones a model of mining level is constructed. Such a mathematical model is used for optimizing the selected mining parameters e.g. structure of mine roadways, size of a coal mine, and organizational scheme of underground mining in a mine or in a mine section using the standardized optimization criterion e.g. investment. Use of the integration model of underground mining for optimizing coal mine construction is evaluated. The following elements of investment and operating cost are considered: shaft excavation, shaft equipment, investment in mining sections, ventilation, mine draining etc. 1 reference.

  3. An injection technique for in-situ remediation of abandoned underground coal mines

    International Nuclear Information System (INIS)

    Canty, G.A.; Everett, J.W.

    1998-01-01

    Remediation of underground mines can prove to be a difficult task, given the physical constraints associated with introducing amendments to a subterranean environment. An acid mine abatement project involving in-situ chemical treatment method was conducted by the University of Oklahoma. The treatment method involved the injection of an alkaline coal combustion by-product (CCB) slurry into a flooded mine void (pH 4.4) to create a buffered zone. Injection of the CCB slurry was possible through the use of equipment developed by the petroleum industry for grouting recovery wells. This technology was selected because the CCB slurry could be injected under significant pressure and at a high rate. With higher pressure and rates of injection, a large quantity of slurry can be introduced into the mine within a limited amount of time. Theoretically, the high pressure and rate would improve dispersal of the slurry within the void. In addition, the high pressure is advantageous in fracturing or breaking-down obstructions to injection. During the injection process, a total of 418 tons of CCB was introduced within 15 hours. The mine did not refuse any of the material, and it is likely that a much larger mass could have been added. One injection well was drilled into a pillar of coal. Normally this would pose a problem when introducing a slurry; however, the coal pillar was easily fractured during the injection process. Currently, the pH of the mine discharge is above 6.5 and the alkalinity is approximately 100 mg/L as CACO 3

  4. Aerosols emitted in underground mine air by diesel engine fueled with biodiesel.

    Science.gov (United States)

    Bugarski, Aleksandar D; Cauda, Emanuele G; Janisko, Samuel J; Hummer, Jon A; Patts, Larry D

    2010-02-01

    Using biodiesel in place of petroleum diesel is considered by several underground metal and nonmetal mine operators to be a viable strategy for reducing the exposure of miners to diesel particulate matter. This study was conducted in an underground experimental mine to evaluate the effects of soy methyl ester biodiesel on the concentrations and size distributions of diesel aerosols and nitric oxides in mine air. The objective was to compare the effects of neat and blended biodiesel fuels with those of ultralow sulfur petroleum diesel. The evaluation was performed using a mechanically controlled, naturally aspirated diesel engine equipped with a muffler and a diesel oxidation catalyst. The effects of biodiesel fuels on size distributions and number and total aerosol mass concentrations were found to be strongly dependent on engine operating conditions. When fueled with biodiesel fuels, the engine contributed less to elemental carbon concentrations for all engine operating modes and exhaust configurations. The substantial increases in number concentrations and fraction of organic carbon (OC) in total carbon over the baseline were observed when the engine was fueled with biodiesel fuels and operated at light-load operating conditions. Size distributions for all test conditions were found to be single modal and strongly affected by engine operating conditions, fuel type, and exhaust configuration. The peak and total number concentrations as well as median diameter decreased with an increase in the fraction of biodiesel in the fuels, particularly for high-load operating conditions. The effects of the diesel oxidation catalyst, commonly deployed to counteract the potential increase in OC emissions due to use of biodiesel, were found to vary depending upon fuel formulation and engine operating conditions. The catalyst was relatively effective in reducing aerosol number and mass concentrations, particularly at light-load conditions, but also showed the potential for an

  5. 76 FR 11187 - Examinations of Work Areas in Underground Coal Mines for Violations of Mandatory Health or Safety...

    Science.gov (United States)

    2011-03-01

    ... DEPARTMENT OF LABOR Mine Safety and Health Administration 30 CFR Part 75 RIN 1219-AB75 Examinations of Work Areas in Underground Coal Mines for Violations of Mandatory Health or Safety Standards... rule addressing Examinations of Work Areas in Underground Coal Mines for Violations of Mandatory Health...

  6. An integrated environment monitoring system for underground coal mines--Wireless Sensor Network subsystem with multi-parameter monitoring.

    Science.gov (United States)

    Zhang, Yu; Yang, Wei; Han, Dongsheng; Kim, Young-Il

    2014-07-21

    Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs). We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS) as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between the WSN and the CMS. In order to implement the WSN for underground coal mines, two work modes are designed: periodic inspection and interrupt service; the relevant supporting technologies, such as routing mechanism, collision avoidance, data aggregation, interconnection with the CMS, etc., are proposed and analyzed. As WSN nodes are limited in energy supply, calculation and processing power, an integrated network management scheme is designed in four aspects, i.e., topology management, location management, energy management and fault management. Experiments were carried out both in a laboratory and in a real underground coal mine. The test results indicate that the proposed integrated environment monitoring system for underground coal mines is feasible and all designs performed well as expected.

  7. Parameters of Solidifying Mixtures Transporting at Underground Ore Mining

    Directory of Open Access Journals (Sweden)

    Golik Vladimir

    2017-01-01

    Full Text Available The article is devoted to the problem of providing mining enterprises with solidifying filling mixtures at underground mining. The results of analytical studies using the data of foreign and domestic practice of solidifying mixtures delivery to stopes are given. On the basis of experimental practice the parameters of transportation of solidifying filling mixtures are given with an increase in their quality due to the effect of vibration in the pipeline. The mechanism of the delivery process and the procedure for determining the parameters of the forced oscillations of the pipeline, the characteristics of the transporting processes, the rigidity of the elastic elements of pipeline section supports and the magnitude of vibrator’ driving force are detailed. It is determined that the quality of solidifying filling mixtures can be increased due to the rational use of technical resources during the transportation of mixtures, and as a result the mixtures are characterized by a more even distribution of the aggregate. The algorithm for calculating the parameters of the pipe vibro-transport of solidifying filling mixtures can be in demand in the design of mineral deposits underground mining technology.

  8. Parameters of Solidifying Mixtures Transporting at Underground Ore Mining

    Science.gov (United States)

    Golik, Vladimir; Dmitrak, Yury

    2017-11-01

    The article is devoted to the problem of providing mining enterprises with solidifying filling mixtures at underground mining. The results of analytical studies using the data of foreign and domestic practice of solidifying mixtures delivery to stopes are given. On the basis of experimental practice the parameters of transportation of solidifying filling mixtures are given with an increase in their quality due to the effect of vibration in the pipeline. The mechanism of the delivery process and the procedure for determining the parameters of the forced oscillations of the pipeline, the characteristics of the transporting processes, the rigidity of the elastic elements of pipeline section supports and the magnitude of vibrator' driving force are detailed. It is determined that the quality of solidifying filling mixtures can be increased due to the rational use of technical resources during the transportation of mixtures, and as a result the mixtures are characterized by a more even distribution of the aggregate. The algorithm for calculating the parameters of the pipe vibro-transport of solidifying filling mixtures can be in demand in the design of mineral deposits underground mining technology.

  9. Model for the prediction of subsurface strata movement due to underground mining

    Science.gov (United States)

    Cheng, Jianwei; Liu, Fangyuan; Li, Siyuan

    2017-12-01

    The problem of ground control stability due to large underground mining operations is often associated with large movements and deformations of strata. It is a complicated problem, and can induce severe safety or environmental hazards either at the surface or in strata. Hence, knowing the subsurface strata movement characteristics, and making any subsidence predictions in advance, are desirable for mining engineers to estimate any damage likely to affect the ground surface or subsurface strata. Based on previous research findings, this paper broadly applies a surface subsidence prediction model based on the influence function method to subsurface strata, in order to predict subsurface stratum movement. A step-wise prediction model is proposed, to investigate the movement of underground strata. The model involves a dynamic iteration calculation process to derive the movements and deformations for each stratum layer; modifications to the influence method function are also made for more precise calculations. The critical subsidence parameters, incorporating stratum mechanical properties and the spatial relationship of interest at the mining level, are thoroughly considered, with the purpose of improving the reliability of input parameters. Such research efforts can be very helpful to mining engineers’ understanding of the moving behavior of all strata over underground excavations, and assist in making any damage mitigation plan. In order to check the reliability of the model, two methods are carried out and cross-validation applied. One is to use a borehole TV monitor recording to identify the progress of subsurface stratum bedding and caving in a coal mine, the other is to conduct physical modelling of the subsidence in underground strata. The results of these two methods are used to compare with theoretical results calculated by the proposed mathematical model. The testing results agree well with each other, and the acceptable accuracy and reliability of the

  10. Radon dose assessment in underground mines in Brazil

    International Nuclear Information System (INIS)

    Santos, T.O.; Rocha, Z.; Cruz, P.; Gouvea, V.A.; Siqueira, J.B.; Oliveira, A.H.

    2014-01-01

    Underground miners are internally exposed to radon, thoron and their short-lived decay products during the mineral processing. There is also an external exposure due to the gamma emitters present in the rock and dust of the mine. However, the short-lived radon decay products are recognised as the main radiation health risk. When inhaled, they are deposited in the respiratory system and may cause lung cancer. To address this concern, concentration measurements of radon and its progeny were performed, the equilibrium factor was determined and the effective dose received was estimated in six Brazilian underground mines. The radon concentration was measured by using E-PERM, AlphaGUARD and CR-39 detectors. The radon progeny was determined by using DOSEman. The annual effective dose for the miners was estimated according to United Nations Scientific Committee on the Effects of Atomic Radiation methodologies. The mean value of the equilibrium factor was 0.4. The workers' estimated effective dose ranged from 1 to 21 mSv a -1 (mean 9 mSv a -1 ). (authors)

  11. Large-Scale Fading and Time Dispersion Parameters of UWB Channel in Underground Mines

    Directory of Open Access Journals (Sweden)

    Abdellah Chehri

    2008-01-01

    Full Text Available RF channel measurements in underground mines have important applications in the field of mobile communications for improving operational efficiency and worker safety. This paper presents an experimental study of the ultra wideband (UWB radio channel, based on extensive sounding campaigns covering the underground mine environment. Measurements were carried out in the frequency band of 2–5 GHz. Various communication links were considered including both line-of-sight (LOS and non-LOS (NLOS scenarios. In this paper, we are interested in more details of the variations of the RMS delay spread and mean excess delay with Tx/Rx separation, and the variation of RMS with mean excess. The distance dependency of path loss and shadowing fading statistics is also investigated. To give an idea about the behaviour of UWB channel in underground mines, a comparison of our approach with other published works is given including path loss exponent, shadow fading variance, mean excess delay, and RMS delay spread.

  12. Locating and defining underground goaf caused by coal mining from space-borne SAR interferometry

    Science.gov (United States)

    Yang, Zefa; Li, Zhiwei; Zhu, Jianjun; Yi, Huiwei; Feng, Guangcai; Hu, Jun; Wu, Lixin; Preusse, Alex; Wang, Yunjia; Papst, Markus

    2018-01-01

    It is crucial to locate underground goafs (i.e., mined-out areas) resulting from coal mining and define their spatial dimensions for effectively controlling the induced damages and geohazards. Traditional geophysical techniques for locating and defining underground goafs, however, are ground-based, labour-consuming and costly. This paper presents a novel space-based method for locating and defining the underground goaf caused by coal extraction using Interferometric Synthetic Aperture Radar (InSAR) techniques. As the coal mining-induced goaf is often a cuboid-shaped void and eight critical geometric parameters (i.e., length, width, height, inclined angle, azimuth angle, mining depth, and two central geodetic coordinates) are capable of locating and defining this underground space, the proposed method reduces to determine the eight geometric parameters from InSAR observations. Therefore, it first applies the Probability Integral Method (PIM), a widely used model for mining-induced deformation prediction, to construct a functional relationship between the eight geometric parameters and the InSAR-derived surface deformation. Next, the method estimates these geometric parameters from the InSAR-derived deformation observations using a hybrid simulated annealing and genetic algorithm. Finally, the proposed method was tested with both simulated and two real data sets. The results demonstrate that the estimated geometric parameters of the goafs are accurate and compatible overall, with averaged relative errors of approximately 2.1% and 8.1% being observed for the simulated and the real data experiments, respectively. Owing to the advantages of the InSAR observations, the proposed method provides a non-contact, convenient and practical method for economically locating and defining underground goafs in a large spatial area from space.

  13. Economic aspects of comprehensive mechanization of mining operations. [Poland

    Energy Technology Data Exchange (ETDEWEB)

    Zemla, F

    1978-02-01

    The development of mining equipment for longwall mining and effects of mechanization of mining operations on labor productivity and output of underground coal mines in Poland from 1950 to 1976 are discussed. Mining equipment used from 1950 to 1960 (cutters, steel or timber supports, chain conveyors, drilling and blasting), from 1960 to 1970 (cutter loaders, chain conveyors and steel supports), from 1970 to 1976 (shearer loaders, chain conveyors and powered or shield supports) is analyzed. Coal output of faces mined by mechanized equipment increased from 9.7% in 1950 to 63.1% in 1969 and to 87.6% of total coal output in 1976. The total coal output of underground coal mines increased from 99.1 Mt in 1959 to 125.0 Mt in 1969 and 179.3 Mt in 1976. Labor productivity per miner increased from 1.561 t/d in 1959 to 2.529 t/d in 1969 and to 3.433 t/d in 1976.

  14. Analysis and Optimization of Entry Stability in Underground Longwall Mining

    Directory of Open Access Journals (Sweden)

    Yubing Gao

    2017-11-01

    Full Text Available For sustainable utilization of limited coal resources, it is important to increase the coal recovery rate and reduce mine accidents, especially those occurring in the entry (gateroad. Entry stabilities are vital for ventilation, transportation and other essential services in underground coal mining. In the present study, a finite difference model was built to investigate stress evolutions around the entry, and true triaxial tests were carried out at the laboratory to explore entry wall stabilities under different mining conditions. The modeling and experimental results indicated that a wide coal pillar was favorable for entry stabilities, but oversize pillars caused a serious waste of coal resources. As the width of the entry wall decreased, the integrated vertical stress, induced by two adjacent mining panels, coupled with each other and experienced an increase on the entry wall, which inevitably weakened the stability of the entry. Therefore, mining with coal pillars always involves a tradeoff between economy and safety. To address this problem, an innovative non-pillar mining technique by optimizing the entry surrounding structures was proposed. Numerical simulation showed that the deformation of the entry roof decreased by approximately 66% after adopting the new approach, compared with that using the conventional mining method. Field monitoring indicated that the stress condition of the entry was significantly improved and the average roof pressure decreased by appropriately 60.33% after adopting the new technique. This work provides an economical and effective approach to achieve sustainable exploitation of underground coal resources.

  15. Systems approach to design of power supply to mines

    Energy Technology Data Exchange (ETDEWEB)

    Shul' ga, Yu I; Voloshko, A V

    1986-09-01

    Optimization of power supplies to underground coal mines in the USSR is evaluated. Systems analysis of power systems is discussed. Power system of a coal mine is treated as an element of the branch power system which forms a subsystem of the local and national power system. Design of a system for computerized control of power supplies to underground coal mines is evaluated. Elements of the system, control equipment, types of information stored and processed by the system as well as economic efficiency of using computerized control for power supply in underground mining are discussed. Recommendations for computer-aided design of power systems and use of computerized control systems for power supply in underground coal mining in the USSR are made.

  16. Computer modelling of an underground mine ventilation system

    International Nuclear Information System (INIS)

    1984-12-01

    The ability to control workplace short-lived radon daughter concentrations to appropriate levels is crucial to the underground mining of uranium ores. Recognizing that mine ventilation models can be used to design ventilation facilities in new mines and to evaluate proposed ventilation changes in existing mines the Atomic Energy Control Board (AECB) initiated this study to first investigate existing mine ventilation models and then develop a suitable model for use by AECB staff. At the start of the study, available literature on mine ventilation models, in partiuclar models suitable for the unique task of predicting radon daughter levels, were reviewed. While the details of the models varied, it was found that the basic calculation procedures used by the various models were similar. Consequently, a model developed at Queen's University that not only already incorporated most of the desired features but was also readily available, was selected for implementation. Subsequently, the Queen's computer program (actually two programs, one for mine ventilation and one to calculate radon daughter levels) was extended and tested. The following report provides the relevant documentation for setting up and running the models. The mathematical basis of the calculational procedures used in the models are also described

  17. Challenges in Selecting an Appropriate Heat Stress Index to Protect Workers in Hot and Humid Underground Mines

    Directory of Open Access Journals (Sweden)

    Pedram Roghanchi

    2018-03-01

    Full Text Available Background: A detailed evaluation of the underground mine climate requires extensive measurements to be performed coupled to climatic modeling work. This can be labor-intensive and time-consuming, and consequently impractical for daily work comfort assessments. Therefore, a simple indicator like a heat stress index is needed to enable a quick, valid, and acceptable evaluation of underground climatic conditions on a regular basis. This can be explained by the unending quest to develop a “universal index,” which has led to the proliferation of many proposed heat stress indices. Methods: The aim of this research study is to discuss the challenges in identifying and selecting an appropriate heat stress index for thermal planning and management purposes in underground mines. A method is proposed coupled to a defined strategy for selecting and recommending heat stress indices to be used in underground metal mines in the United States and worldwide based on a thermal comfort model. Results: The performance of current heat stress indices used in underground mines varies based on the climatic conditions and the level of activities. Therefore, carefully selecting or establishing an appropriate heat stress index is of paramount importance to ensure the safety, health, and increasing productivity of the underground workers. Conclusion: This method presents an important tool to assess and select the most appropriate index for certain climatic conditions to protect the underground workers from heat-related illnesses. Although complex, the method presents results that are easy to interpret and understand than any of the currently available evaluation methods. Keywords: climatic conditions, heat stress index, thermal comfort, underground mining

  18. 30 CFR 57.4230 - Surface self-propelled equipment.

    Science.gov (United States)

    2010-07-01

    ... Section 57.4230 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire... fire or its effects could impede escape from self-propelled equipment, a fire extinguisher shall be on...

  19. Heat exhaustion in a deep underground metalliferous mine.

    Science.gov (United States)

    Donoghue, A M; Sinclair, M J; Bates, G P

    2000-03-01

    To examine the incidence, clinical state, personal risk factors, haematology, and biochemistry of heat exhaustion occurring at a deep underground metalliferous mine. To describe the underground thermal conditions associated with the occurrence of heat exhaustion. A 1 year prospective case series of acute heat exhaustion was undertaken. A history was obtained with a structured questionnaire. Pulse rate, blood pressure, tympanic temperature, and specific gravity of urine were measured before treatment. Venous blood was analysed for haematological and biochemical variables, during the acute presentation and after recovery. Body mass index (BMI) and maximum O2 consumption (VO2 max) were measured after recovery. Psychrometric wet bulb temperature, dry bulb temperature, and air velocity were measured at the underground sites where heat exhaustion had occurred. Air cooling power and psychrometric wet bulb globe temperature were derived from these data. 106 Cases were studied. The incidence of heat exhaustion during the year was 43.0 cases/million man-hours. In February it was 147 cases/million man-hours. The incidence rate ratio for mines operating below 1200 m compared with those operating above 1200 m was 3.17. Mean estimated fluid intake was 0.64 l/h (SD 0.29, range 0.08-1.50). The following data were increased in acute presentation compared with recovery (p value, % of acute cases above the normal clinical range): neutrophils (p air velocity was 0.54 m/s (SD 0.57, range 0.00-4.00). Mean air cooling power was 148 W/m2 (SD 49, range 33-290) Mean psychrometric wet bulb globe temperature was 31.5 degrees C (SD 2.0, range 25.2-35.3). Few cases (air velocity > 1.56 m/s, air cooling power > 248 W/m2, or psychrometric wet bulb globe temperature air cooling power > 250 W/m2 at all underground work sites.

  20. 3D representation of geological observations in underground mine workings of the Upper Silesian Coal Basin

    Directory of Open Access Journals (Sweden)

    Marek Marcisz

    Full Text Available The purpose of the paper is to present the possibilities of the three-dimensional representation of geological strata in underground (access workings in a hard coal deposit in the SW part of the Upper Silesian Coal Basin, using CAD software and its flagship program AutoCAD. The 3D visualization of the results of underground workings’ mapping is presented and illustrated on two opening out workings (descending galleries. The criteria for choosing these workings were based on their length and the complexity of geological settings observed while they were driven. The described method may be applied in spatial visualization of geological structures observed in other deposits, mines and existing workings (it is not applicable for designing mine workings, also beyond the area of the Upper Silesian Coal Basin (USCB. The method presented describes the problem of the visualization of underground mine workings in a typical geological aspect, considering (aimed at detailed visualization of geological settings revealed on the side walls of workings cutting the deposit. Keywords: Upper silesian coal basin, Hard coal, Underground mine workings, 3D visualization, CAD

  1. Application of ergonomics principles in underground mines through the Occupational Safety and Health Management System--OSHMS OHSAS 18.001:2007.

    Science.gov (United States)

    de Arruda, Agnaldo Fernando Vieira; Gontijo, Leila Maral

    2012-01-01

    The underground mining activity is regarded as one of the activities that cause most accidents, deaths and illnesses in the world, highlighting the coal mines. This study examined how ergonomics principles can help improve this environment, reduce the number of accidents and occupational diseases, train and empower workers and leaders and humanize the activities of the duty cycle of an underground mine. For this, it was developed a conceptual model of safety managing and health at work for the underground mining through the incorporation of ergonomics principles in the Occupational Safety and Health Management System and OHSAS 18001 (2007). The elaboration of the model was based on analysis of the environments and stages of work in underground mines and the PDCA cycle to ensure continuous improvement.

  2. Background intercomparison with escape-suppressed germanium detectors in underground mines

    Energy Technology Data Exchange (ETDEWEB)

    Szuecs, Tamas; Bemmerer, Daniel [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany)

    2014-07-01

    A key requirement for underground nuclear astrophysics experiments is the very low background level in germanium detectors underground. The reference for these purposes is the world's so far only underground accelerator laboratory for nuclear astrophysics, LUNA. LUNA is located deep underground in the Gran Sasso laboratory in Italy, shielded from cosmic rays by 1400 m of rock. The background at LUNA was studied in detail using an escape-suppressed Clover-type HPGe detector. Exactly the same detector was subsequently transported to the Felsenkeller underground laboratory in Dresden, shielded by 45 m of rock, and the background was shown to be only a factor of three higher than at LUNA when comparing the escape-suppressed spectra, with interesting consequences for underground nuclear astrophysics. As the next step of a systematic study of the effects of a combination of active and passive shielding on the cosmic ray induced background, this detector is now being brought to the ''Reiche Zeche'' mine in Freiberg/Sachsen, shielded by 150 m of rock. The data from the Freiberg measurement are shown and discussed.

  3. Citation-related reliability analysis for a pilot sample of underground coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Kinilakodi, H.; Grayson, R.L. [Penn State University, University Park, PA (United States)

    2011-05-15

    The scrutiny of underground coal mine safety was heightened because of the disasters that occurred in 2006-2007, and more recently in 2010. In the aftermath of the 2006 incidents, the U.S. Congress passed the Mine Improvement and New Emergency Response Act of 2006 (MINER Act), which strengthened the existing regulations and mandated new laws to address various issues related to emergency preparedness and response, escape from an emergency situation, and protection of miners. The National Mining Association-sponsored Mine Safety Technology and Training Commission study highlighted the role of risk management in identifying and controlling major hazards, which are elements that could come together and cause a mine disaster. In 2007 MSHA revised its approach to the 'Pattern of Violations' (POV) process in order to target unsafe mines and then force them to remediate conditions in their mines. The POV approach has certain limitations that make it difficult for it to be enforced. One very understandable way to focus on removing threats from major-hazard conditions is to use citation-related reliability analysis. The citation reliability approach, which focuses on the probability of not getting a citation on a given inspector day, is considered an analogue to the maintenance reliability approach, which many mine operators understand and use. In this study, the citation reliability approach was applied to a stratified random sample of 31 underground coal mines to examine its potential for broader application. The results clearly show the best-performing and worst-performing mines for compliance with mine safety standards, and they highlight differences among different mine sizes.

  4. Highly-productive mechanization systems for coal mining in the Polish coal industry

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W

    1985-01-01

    Effects of mechanization on underground coal mining in Poland from 1960 to 1980 and mining equipment used in Poland is reviewed. In 1983 black coal output increased to 191.1 Mt. There were 765 working faces, 442 of which with powered supports. Six hundred thirty-four shearer loaders were in use. About 82.7% of coal output fell on faces mined by sets of mining equipment (shearer loaders, powered supports and chain conveyors). The average coal output per working face amounted to 889 t/d. About 50% of mine roadways was driven by heading machines (346 heading machines were in use). The average coal output per face mined by a set of mining equipment amounted to 1248 t/d. About 86% of shearer loaders fell on double drum shearer loaders. Types of mining equipment used in underground mining are reviewed: powered supports (Pioma, Fazos, Glinik and the SOW), shearer loaders (drum shearer loaders and double-drum shearer loaders with chain haulage and chainless haulage systems for unidirectional and bi-directional mining), chain conveyors (Samson, Rybnik). Statistical data on working faces with various sets of equipment are given. 3 references.

  5. Radon as a tracer of daily, seasonal and spatial air movements in the Underground Tourist Route "Coal Mine" (SW Poland).

    Science.gov (United States)

    Tchorz-Trzeciakiewicz, Dagmara Eulalia; Parkitny, Tomasz

    2015-11-01

    concentrations was noticed. As human factor, we consider open entrance door during restorations works carried out inside the underground facility. Comprehensive surveys of radon concentrations in the Underground Tourist Route "Coal Mine", which included hourly, seasonal and spatial measurements, have revealed that radon can be the excellent tracer of air movements inside the underground facilities that are not equipped with mechanical ventilation system. The main external factor that affects hourly, seasonal and even spatial changes of radon concentrations inside Underground Tourist Route "Coal Mine" is the variation of outside temperature. The maximum effective dose received by employees during 2000 working hours in a year was 5.8 mSv y(-1) and the minimum was 3.5 mSv y(-1). Tourist guides, who usually spend underground about 1000 h y(-1), received effective dose from 1.7 mSv y(-1) to 2.3 mSv y(-1). According to Polish Law, employees, receiving effective dose for occupational exposure higher than 1 mSv y(-1) but below 6 mSv y(-1), are allocated to category B of workers and the level of radiation in their place of work should be controlled and continuously monitored. The radiation monitoring system in the Underground Tourist Route "Coal Mine" does not exist. None of Polish tourist routes or caves has installed radiation monitoring system although effective doses received by employees, in some of them, exceed values defined by law. Effective dose received by tourist during one trip was lower than 0.001 mSv y(-1) and risk of cancer induction was lower than 0.00001%. The probability, that tourists inside the Underground Tourist Route "Coal Mine" receive effective dose exceeding allowable annual limit for members of the public of 1 mSv y(-1) does not exist. The Underground Tourist Route Coal Mine is a safe place for tourists from radiological point of view. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. 75 FR 57849 - Maintenance of Incombustible Content of Rock Dust in Underground Coal Mines

    Science.gov (United States)

    2010-09-23

    ... correlation between higher job risk and higher wages, suggesting that employees demand monetary compensation... DEPARTMENT OF LABOR Mine Safety and Health Administration 30 CFR Part 75 RIN 1219-AB76 Maintenance of Incombustible Content of Rock Dust in Underground Coal Mines AGENCY: Mine Safety and Health...

  7. The use of alkali-activated fly ash grouts for the remediation of AMD from underground mines

    International Nuclear Information System (INIS)

    Eaker, C.A.; Longley, R.D.; Michaud, L.H.; Silsbee, M.R.

    1996-01-01

    In preparation for a field demonstration, laboratory studies were conducted using several fly ash grout formulations to determine the optimum grout for an underground mine environment. This paper discusses the portion of the overall project designed to examine grout-acid mine drainage (AMD) interactions including neutralization, leaching and armoring of the grouts. Leaching tests were performed to study the effects of fly ash grout on AMD, including the effects of armoring. The goal of this project is to study the feasibility of in-situ acid mine drainage treatment by injecting alkali-activated fly ash grout into an underground mine

  8. Industrial Internet of Things: (IIoT) applications in underground coal mines.

    Science.gov (United States)

    Zhou, C; Damiano, N; Whisner, B; Reyes, M

    2017-12-01

    The Industrial Internet of Things (IIoT), a concept that combines sensor networks and control systems, has been employed in several industries to improve productivity and safety. U.S. National Institute for Occupational Safety and Health (NIOSH) researchers are investigating IIoT applications to identify the challenges of and potential solutions for transferring IIoT from other industries to the mining industry. Specifically, NIOSH has reviewed existing sensors and communications network systems used in U.S. underground coal mines to determine whether they are capable of supporting IIoT systems. The results show that about 40 percent of the installed post-accident communication systems as of 2014 require minimal or no modification to support IIoT applications. NIOSH researchers also developed an IIoT monitoring and control prototype system using low-cost microcontroller Wi-Fi boards to detect a door opening on a refuge alternative, activate fans located inside the Pittsburgh Experimental Mine and actuate an alarm beacon on the surface. The results of this feasibility study can be used to explore IIoT applications in underground coal mines based on existing communication and tracking infrastructure.

  9. Intensive use of diesels underground

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, R W

    1980-07-01

    At a US mine, coal is extracted by room and pillar mining. Tyred diesel vehicles are used to transport men and materials, to spread gravel on the roadway, and to tow and provide hydraulic power to rock dusting machines. Hydraulic power take-offs from the vehicles are used to operate equipment such as drills and chain saws. A deisel ambulance is kept underground, and diesel lubrication units and maintenance tracks are used. A diesel generator provides electrical power when or where no permanent electricity supply is available e.g. for tramming continuous miners in to or out of the mine.

  10. Equipment size effects on open pit mining performance

    Energy Technology Data Exchange (ETDEWEB)

    A. Bozorgebrahimi; R.A. Hall; M.A. Morin [University of British Columbia, Vancouver, BC (Canada). Mining Engineering Department

    2005-03-01

    This paper discusses the exploitation of economies of scale in open pit mining through the use of increasingly larger equipment. It presents a method adopted to evaluate the impact of increased scale on operational performance factors. The work identifies equipment size sensitive variables (ESSVs) in the mine design process that affect the performance of the production process. Data from a set of case studies show that the ESSV influence extends beyond mine production to encompass milling performance, environmental footprint and community impacts. Some ESSVs (such as reliability, tyre costs and productivity) are shown to be related to the current state of equipment technology and their effects are therefore comparable for different mines. Other ESSVs relate to the mine and deposit characteristics; their effects therefore vary from mine to mine. A detailed analytical approach, developed to model the impact of ESSVs, suggests that for truck/shovel operations, the industry may be approaching a situation of diseconomies of scale.

  11. Application of the small trackless equipments in Benxi uranium mine

    International Nuclear Information System (INIS)

    Lei Zeyong; Liu Shengzheng

    2004-01-01

    The application of the small trackless equipments in Benxi uranium mine is introduced in this paper. The running data of these equipments are tested and discussed. It is proved that these equipments can run normally and meet the needs of uranium mining. Some experimental data will be very useful for building small mines and rebuilding small mines in China

  12. 30 CFR 77.410 - Mobile equipment; automatic warning devices.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Mobile equipment; automatic warning devices. 77... UNDERGROUND COAL MINES Safeguards for Mechanical Equipment § 77.410 Mobile equipment; automatic warning devices. (a) Mobile equipment such as front-end loaders, forklifts, tractors, graders, and trucks, except...

  13. MINING SECURITY PIPE© (TSM© WITH UNDERGROUND GPS GLOBAL© (RSPG© ESCAPE SECURITY DEVICE IN UNDERGROUND MINING

    Directory of Open Access Journals (Sweden)

    Rafael Barrionuevo GIMÉNEZ

    2016-04-01

    Full Text Available TSM is escape pipe in case of collapse of terrain. The TSM is a passive security tool placed underground to connect the work area with secure area (mining gallery mainly. TSM is light and hand able pipe made with aramid (Kevlar, carbon fibre, or other kind of new material. The TSM will be placed as a pipe line network with many in/out entrances/exits to rich and connect problem work areas with another parts in a safe mode. Different levels of instrumentation could be added inside such as micro-led escape way suggested, temperature, humidity, level of oxygen, etc.. The open hardware and software like Arduino will be the heart of control and automation system.

  14. Mining: The beginning and the end of the nuclear cycle

    International Nuclear Information System (INIS)

    Walls, J.

    1991-01-01

    Mining is one of the world's oldest industries, with a rich history that has evolved into modern times. A new chapter in that history is currently being written in southeastern New Mexico at the Waste Isolation Pilot Plant (WIPP). The beginning phase of the nuclear industry occurred when uranium was mined from the underground and processed to develop the first fuel source for the nuclear history. The WIPP may well be the final chapter in closing out the nuclear cycle, by the disposal of nuclear waste 2150 feet in the underground repository. At the WIPP, traditional procedures for underground mining activities have been significantly altered in order to ensure underground safety and project adherence to numerous regulatory requirements. Innovative techniques have been developed for the WIPP underground procedures, mining equipment, and operating environments. The mining emphasis is upon quality of the excavation, not, as in conventional mines, in the production of ore

  15. Application of underground microseismic monitoring for ground failure and secure longwall coal mining operation: A case study in an Indian mine

    Science.gov (United States)

    Ghosh, G. K.; Sivakumar, C.

    2018-03-01

    Longwall mining technique has been widely used around the globe due to its safe mining process. However, mining operations are suspended when various problems arise like collapse of roof falls, cracks and fractures propagation in the roof and complexity in roof strata behaviors. To overcome these colossal problems, an underground real time microseismic monitoring technique has been implemented in the working panel-P2 in the Rajendra longwall underground coal mine at South Eastern Coalfields Limited (SECL), India. The target coal seams appears at the panel P-2 within a depth of 70 m to 76 m. In this process, 10 to 15 uniaxial geophones were placed inside a borehole at depth range of 40 m to 60 m located over the working panel-P2 with high rock quality designation value for better seismic signal. Various microseismic events were recorded with magnitude ranging from -5 to 2 in the Richter scale. The time-series processing was carried out to get various seismic parameters like activity rate, potential energy, viscosity rate, seismic moment, energy index, apparent volume and potential energy with respect to time. The used of these parameters helped tracing the events, understanding crack and fractures propagation and locating both high and low stress distribution zones prior to roof fall occurrence. In most of the cases, the events were divided into three stage processes: initial or preliminary, middle or building, and final or falling. The results of this study reveal that underground microseismic monitoring provides sufficient prior information of underground weighting events. The information gathered during the study was conveyed to the mining personnel in advance prior to roof fall event. This permits to take appropriate action for safer mining operations and risk reduction during longwall operation.

  16. Reinforcement of Underground Excavation with Expansion Shell Rock Bolt Equipped with Deformable Component

    Directory of Open Access Journals (Sweden)

    Korzeniowski Waldemar

    2017-03-01

    Full Text Available The basic type of rock mass reinforcement method for both preparatory and operational workings in underground metal ore mines, both in Poland and in different countries across the world, is the expansion shell or adhesive-bonded rock bolt. The article discusses results of static loading test of the expansion shell rock bolts equipped with originally developed deformable component. This component consists of two profiled rock bolt washers, two disk springs, and three guide bars. The disk spring and disk washer material differs in stiffness. The construction materials ensure that at first the springs under loading are partially compressed, and then the rock bolt washer is plastically deformed. The rock bolts tested were installed in blocks simulating a rock mass with rock compressive strength of 80 MPa. The rock bolt was loaded statically until its ultimate loading capacity was exceeded. The study presents the results obtained under laboratory conditions in the test rig allowing testing of the rock bolts at their natural size, as used in underground metal ore mines. The stress-strain/displacement characteristics of the expansion shell rock bolt with the deformable component were determined experimentally. The relationships between the geometric parameters and specific strains or displacements of the bolt rod were described, and the percentage contribution of those values in total displacements, resulting from the deformation of rock bolt support components (washer, thread and the expansion shell head displacements, were estimated. The stiffness of the yielded and stiff bolts was empirically determined, including stiffness parameters of every individual part (deformable component, steel rod. There were two phases of displacement observed during the static tension of the rock bolt which differed in their intensity.

  17. Profitability and occupational injuries in U.S. underground coal mines.

    Science.gov (United States)

    Asfaw, Abay; Mark, Christopher; Pana-Cryan, Regina

    2013-01-01

    Coal plays a crucial role in the U.S. economy yet underground coal mining continues to be one of the most dangerous occupations in the country. In addition, there are large variations in both profitability and the incidence of occupational injuries across mines. The objective of this study was to examine the association between profitability and the incidence rate of occupational injuries in U.S. underground coal mines between 1992 and 2008. We used mine-specific data on annual hours worked, geographic location, and the number of occupational injuries suffered annually from the employment and accident/injury databases of the Mine Safety and Health Administration, and mine-specific data on annual revenue from coal sales, mine age, workforce union status, and mining method from the U.S. Energy Information Administration. A total of 5669 mine-year observations (number of mines×number of years) were included in our analysis. We used a negative binomial random effects model that was appropriate for analyzing panel (combined time-series and cross-sectional) injury data that were non-negative and discrete. The dependent variable, occupational injury, was measured in three different and non-mutually exclusive ways: all reported fatal and nonfatal injuries, reported nonfatal injuries with lost workdays, and the 'most serious' (i.e. sum of fatal and serious nonfatal) injuries reported. The total number of hours worked in each mine and year examined was used as an exposure variable. Profitability, the main explanatory variable, was approximated by revenue per hour worked. Our model included mine age, workforce union status, mining method, and geographic location as additional control variables. After controlling for other variables, a 10% increase in real total revenue per hour worked was associated with 0.9%, 1.1%, and 1.6% decrease, respectively, in the incidence rates of all reported injuries, reported injuries with lost workdays, and the most serious injuries reported

  18. Finite element modeling of surface subsidence induced by underground coal mining

    International Nuclear Information System (INIS)

    Su, D.W.H.

    1992-01-01

    The ability to predict the effects of longwall mining on topography and surface structures is important for any coal company in making permit applications and anticipating potential mining problems. The sophisticated finite element model described and evaluated in this paper is based upon five years of underground and surface observations and evolutionary development of modeling techniques and attributes. The model provides a very powerful tool to address subsidence and other ground control questions. The model can be used to calculate postmining stress and strain conditions at any horizon between the mine and the ground surface. This holds the promise of assisting in the prediction of mining-related hydrological effects

  19. 30 CFR 77.501 - Electric distribution circuits and equipment; repair.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric distribution circuits and equipment... OF UNDERGROUND COAL MINES Electrical Equipment-General § 77.501 Electric distribution circuits and equipment; repair. No electrical work shall be performed on electric distribution circuits or equipment...

  20. Design study of the underground facilities, the Mizunami Underground Research Laboratory

    International Nuclear Information System (INIS)

    Ishizuka, Mineo; Noda, Masaru; Shiogama, Yukihiro; Adachi, Tetsuya

    1999-02-01

    Geoscientific research on the deep geological environment has been performed by Japan Nuclear Cycle Development Institute (JNC). This research is supported by the 'Long-Term Program for Research, Development and Utilization of Nuclear Energy'. The Mizunami Underground Research Laboratory (MIU) is planned to be constructed at the Shobasama-bora site belonging to JNC. A wide range of geoscientific research and development activities which have been previously performed in and around the Tono mine is planned to be expanded in the laboratory. The MIU consisted of surface and underground facilities excavated to a depth of about 1,000 meters. In this design study, the overall layout and basic design of the underground facility and the composition of the overall research program, includes the construction of the underground facility are studied. Based on the concept of the underground facility which have been developed in 1998, the research activities which will be performed in the MIU are selected and the overall research program is revised in this year. The basic construction method and the construction equipment are also estimated. (author)

  1. Design study of underground facility of the Mizunami Underground Research Laboratory

    International Nuclear Information System (INIS)

    Ishizuka, Mineo; Noda, Masaru; Shiogama, Yukihiro; Adachi, Tetsuya

    1999-02-01

    Geoscientific research on deep geological environment has been performed by Japan Nuclear Cycle Development Institute (JNC). This research is supported by the 'Long-Term Program for Research, Development and Utilization of Nuclear Energy'. The Mizunami Underground Research Laboratory (MIU) is planned to be constructed at Shobasama-bora site belonging to JNC. A wide range of geoscientific research and development activities which have been previously performed in and around the Tono mine is planned to be expanded in the laboratory. The MIU is consisted of surface and underground facilities down to the depth of about 1,000 meters. In this design study, the overall layout and basic design of the underground facility and the composition of the overall research program which includes the construction of the underground facility are studied. Based on the concept of the underground facility which have been developed last year, the research activities which will be performed in the MIU are selected and the overall research program is revised in this year. The basic construction method and the construction equipment are also estimated. (author)

  2. Management of dry flue gas desulfurization by-products in underground mines

    Energy Technology Data Exchange (ETDEWEB)

    Sevim, H.

    1997-06-01

    Disposal of coal combustion by-products (CCBs) in an environmentally sound manner is a major issue facing the coal and utility industries in the US today. Disposal into abandoned sections of underground coal mines may overcome many of the surface disposal problems along with added benefits such as mitigation of subsidence and acid mine drainage. However, many of the abandoned underground coal mines are located far from power plants, requiring long distance hauling of by-products which will significantly contribute to the cost of disposal. For underground disposal to be economically competitive, the transportation and handling cost must be minimized. This requires careful selection of the system and optimal design for efficient operation. The materials handling and system economics research addresses these issues. Transportation and handling technologies for CCBs were investigated from technical, environmental and economic points of view. Five technologies were found promising: (1) Pneumatic Trucks, (2) Pressure Differential Rail Cars, (3) Collapsible Intermodal Containers, (4) Cylindrical Intermodal Tanks, and (5) Coal Hopper Cars with Automatic Retractable Tarping. The first two technologies are currently being utilized in transporting by-products from power plants to disposal sites, whereas the next three are either in development or in conceptualization phases. In this research project, engineering design and cost models were developed for the first four technologies. The engineering design models are in the form of spreadsheets and serve the purpose of determining efficient operating schedules and sizing of system components.

  3. Geophysical void detection at the site of an abandoned limestone quarry and underground mine in southwestern Pennsylvania

    International Nuclear Information System (INIS)

    Cohen, K.K.; Trevits, M.A.

    1992-01-01

    Locating underground voids, tunnels, and buried collapse structures continues to present a difficult problem for engineering geoscientists charged with this responsibility for a multitude of different studies. Solutions used and tested for void detection have run the gamut of surface geophysical and remote sensing techniques, to invasive trenching and drilling on closely-spaced centers. No where is the problem of locating underground voids more ubiquitous than in abandoned mined lands, and the U.S. Bureau of Mines continues to investigate this problem for areas overlying abandoned coal, metal, and nonmetal mines. Because of the great diversity of resources mined, the problem of void detection is compounded by the myriad of geologic conditions which exist for abandoned mined lands. At a control study site in southwestern Pennsylvania at the Bureau's Lake Lynn Laboratory, surface geophysical techniques, including seismic and other methods, were tested as a means to detect underground mine voids in the rather simple geologic environment of flat-lying sedimentary strata. The study site is underlain by an abandoned underground limestone mine developed in the Wymps Gap Limestone member of the Mississippian Mauch Chunk Formation. Portals or entrances into the mine, lead to drifts or tunnels driven into the limestone; these entries provided access to the limestone where it was extracted by the room-and-pillar method. The workings lie less than 300 ft from the surface, and survey lines or grids were positioned over the tunnels, the room-and-pillar zones, and the areas not mined. Results from these geophysical investigations are compared and contrasted. The application of this control study to abandoned mine void detection is apparent, but due to the carbonate terrain of the study site, the results may also have significance to sinkhole detection in karst topography

  4. Classification Identification of Acoustic Emission Signals from Underground Metal Mine Rock by ICIMF Classifier

    Directory of Open Access Journals (Sweden)

    Hongyan Zuo

    2014-01-01

    Full Text Available To overcome the drawback that fuzzy classifier was sensitive to noises and outliers, Mamdani fuzzy classifier based on improved chaos immune algorithm was developed, in which bilateral Gaussian membership function parameters were set as constraint conditions and the indexes of fuzzy classification effectiveness and number of correct samples of fuzzy classification as the subgoal of fitness function. Moreover, Iris database was used for simulation experiment, classification, and recognition of acoustic emission signals and interference signals from stope wall rock of underground metal mines. The results showed that Mamdani fuzzy classifier based on improved chaos immune algorithm could effectively improve the prediction accuracy of classification of data sets with noises and outliers and the classification accuracy of acoustic emission signal and interference signal from stope wall rock of underground metal mines was 90.00%. It was obvious that the improved chaos immune Mamdani fuzzy (ICIMF classifier was useful for accurate diagnosis of acoustic emission signal and interference signal from stope wall rock of underground metal mines.

  5. Auxiliary mine ventilation manual

    International Nuclear Information System (INIS)

    Workplace Safety North

    2010-01-01

    An adequate ventilation system is needed for air quality and handling in a mine and is comprised of many different pieces of equipment for removing contaminated air and supplying fresh air and thereby provide a satisfactory working environment. This manual highlights auxiliary ventilation systems made up of small fans, ducts, tubes, air movers, deflectors and additional air flow controls which distribute fresh air delivered by the primary system to all areas. A review of auxiliary ventilation is provided. Design, operation and management issues are discussed and guidelines are furnished. This manual is limited to underground hard rock operations and does not address directly other, specific auxiliary systems, either in underground coal mines or uranium mines.

  6. Auxiliary mine ventilation manual

    Energy Technology Data Exchange (ETDEWEB)

    Workplace Safety North

    2010-07-01

    An adequate ventilation system is needed for air quality and handling in a mine and is comprised of many different pieces of equipment for removing contaminated air and supplying fresh air and thereby provide a satisfactory working environment. This manual highlights auxiliary ventilation systems made up of small fans, ducts, tubes, air movers, deflectors and additional air flow controls which distribute fresh air delivered by the primary system to all areas. A review of auxiliary ventilation is provided. Design, operation and management issues are discussed and guidelines are furnished. This manual is limited to underground hard rock operations and does not address directly other, specific auxiliary systems, either in underground coal mines or uranium mines.

  7. 30 CFR 57.9330 - Clearance for surface equipment.

    Science.gov (United States)

    2010-07-01

    ... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Loading, Hauling, and Dumping Safety Devices, Provisions, and Procedures for Roadways, Railroads, and Loading and... the farthest projection of moving railroad equipment shall be provided on at least one side of the...

  8. Low-Power and Reliable Communications for UWB-Based Wireless Monitoring Sensor Networks in Underground Mine Tunnels

    OpenAIRE

    Abou El-Nasr, Mohamad; Shaban, Heba

    2015-01-01

    This paper investigates the bit-error-rate (BER) and maximum allowable data throughput (MADTh) performance of a novel low-power mismatched Rake receiver structure for ultra wideband (UWB) wireless monitoring sensor networks in underground mine tunnels. This receive node structure provides a promising solution for low-power and reliable communications in underground mine tunnels with more than 90% reduction in power consumption. The BER and MADTh of the proposed receive nodes are investigated ...

  9. Toward a unified and digital communication system for underground mines

    Energy Technology Data Exchange (ETDEWEB)

    Outalha, S.; Le, R.; Tardif, P-M. [Quebec Univ., Abitibi-Temiscamingue, PQ (Canada)

    2000-10-01

    Communications systems currently in use in underground mines are reviewed to demonstrate their limitations, especially in terms of their diversity and incompatibility. A new system concept, based on the existing IEEE 802.11 standard is presented as an alternative. This standard has shown its versatility by solving major wireless communication issues in various in-building wireless local area networks such as the Aironet 4800 series, Lucent WaveLan, OTC Telecom Air EZY2400-SWG, and BayStack 600 Series WLAN. Adaptation and implementation of a wireless local area network (SIAMnet, for System for the Integrated Automation of Mines Network) in the Val d'Or Mine Laboratory of CANMET is discussed. 11 refs., 5 figs.

  10. Performance Measurement of Mining Equipments by Utilizing OEE

    Directory of Open Access Journals (Sweden)

    Sermin Elevli

    2010-10-01

    Full Text Available Over the past century, open pit mines have steadily increased their production rate by using larger equipments which requireintensive capital investment. Low commodity prices have forced companies to decrease their unit cost by improving productivity. Oneway to improve productivity is to utilize equipment as effectively as possible. Therefore, the accurate estimation of equipmenteffectiveness is very important so that it can be increased. Overall Equipment Effectiveness (OEE is a well-known measurementmethod, which combines availability, performance and quality, for the evaluation of equipment effectiveness in manufacturing industry.However, there isn’t any study in literature about how to use this metric for mining equipments such as shovel, truck, drilling machineetc. This paper will discuss the application of OEE to measure effectiveness of mining equipment. It identifies causes of time losses forshovel and truck operations and introduces procedure to record time losses. The procedure to estimate OEE of shovels and trucks hasalso been presented via numerical example.

  11. Utility equipment systems: promising more for less

    Energy Technology Data Exchange (ETDEWEB)

    1987-10-01

    This paper discusses current developments in utility equipment systems, a term applied to carrier vehicles, mostly evolved from well-known forms of construction or mining equipment modified to work with a variety of different front or back end attachments. One of the equipment ranges discussed is the Normet cassette system produced by the Orion corporation of Finland, which allows a basic chassis to be converted from a personnel carrier to an ANFO carrier within minutes. LHD vehicles which are being adapted to fulfil multipurpose roles, such as carrying roof supports, chocks and other heavy mining equipment underground are also discussed. 5 figs.

  12. Injection of alkaline ashes into underground coal mines for acid mine drainage abatement

    International Nuclear Information System (INIS)

    Aljoe, W.W.

    1996-01-01

    The injection of alkaline coal combustion waste products into abandoned underground coal mines for acid mine drainage (AMD) abatement has obvious conceptual appeal. This paper summarizes the findings of the baseline hydrogeologic and water quality evaluations at two sites--one in West Virginia and one in Maryland--where field demonstrations of the technique are being pursued in cooperative efforts among State and Federal agencies and/or private companies. The West Virginia site produces severe AMD from three to seven AMD sources that are spaced over about a 1.2 km stretch of the down-dip side of the mine workings. By completely filling the most problematic portion of the mine workings with coal combustion ashes, the State expects that the costs and problems associated with AMD treatment will be greatly reduced. At the Maryland site, it is expected that the AMD from a relatively small target mine will be eliminated completely by filling the entire mine void with a grout composed of a mixture of fly ash, fluidized-bed combustion ash, and flue gas desulfurization sludge. This project will also demonstrate the potential cost-effectiveness of the technique at other sites, both for the purpose of AMD remediation and control of land subsidence

  13. Underground mining long-term impacts on forest lands

    International Nuclear Information System (INIS)

    Liblik, V.; Toomik, A.; Rull, E.; Pensa, M.

    2000-01-01

    Underground mining of oil shale in northeastern Estonia causes changes in the exterior of the local landscape in the form of depression with a depth up to 1.7 metres. As a result of the changing water regime (formation of small water-bodies and marshy areas) the environmental conditions in subsided areas will be affected as well, influencing the development and alternation of local plant communities. Researches and surveys in the subsided area, which was formed 20 years ago in the area of room-and-pillar mining, prove that the former forest has become a poor fen that may further develop to a swamp forest or a transitional bog forest. The affected areas are of great interest from the viewpoint of landscape diversity. (author)

  14. Preliminary state-of-the-art survey: mining techniques for salt and other rock types

    Energy Technology Data Exchange (ETDEWEB)

    1976-12-01

    This is a systematic review of the state-of-the-art of underground mining and excavation technology in the U.S. as applied to salt, limestone, shale, and granite. Chapter 2 covers the basic characteristics of these rock types, the most frequently used underground mining methods, shaft and slope entry construction, equipment, and safety and productivity data. Chapters 3 and 4 summarize underground salt and limestone mining in the U.S. Chapter 5 shows that large amounts of thick shale exist in the U.S., but little is mined. Chapter 6 discusses underground excavations into granite-type rocks. Suggestions are given in the last chapter for further study. (DLC)

  15. Issues of Exploitation of Induction Motors in the Course of Underground Mining Operations

    Science.gov (United States)

    Gumula, Stanisław; Hudy, Wiktor; Piaskowska-Silarska, Malgorzata; Pytel, Krzysztof

    2017-09-01

    Mining industry is one of the most important customers of electric motors. The most commonly used in the contemporary mining industry is alternating current machines used for processing electrical energy into mechanical energy. The operating problems and the influence of qualitative interference acting on the inputs of individual regulators to field-oriented system in the course of underground mining operations has been presented in the publication. The object of controlling the speed is a slip-ring induction motor. Settings of regulators were calculated using an evolutionary algorithm. Examination of system dynamics was performed by a computer with the use of the MATLAB / Simulink software. According to analyzes, large distortion of input signals of regulators adversely affects the rotational speed that pursued by the control system, which may cause a large vibration of the whole system and, consequently, its much faster destruction. Designed system is characterized by a significantly better resistance to interference. The system is stable with the properly selected settings of regulators, which is particularly important during the operation of machinery used in underground mining.

  16. CO{sub 2} in underground openings and mine rescue training

    Energy Technology Data Exchange (ETDEWEB)

    Weyer, J. [Freiburg Univ. of Mining and Technology (Germany). Inst. of Mining Engineering and Special Civil Engineering

    2010-07-01

    Mine rescue training procedures related to dangerous gases in mines were discussed. Methods of detecting carbon dioxide (CO{sub 2}) in abandoned opening and old adits were presented. High concentrations of CO{sub 2} combine with hemoglobin and lead to a lack of oxygen supply to the inner organs. Nitric acid forms in the alveoli and can lead to injuries or death after a period of 4 to 12 hours. Exposure to very high concentrations of CO{sub 2} can cause people to immediately lose consciousness. CO{sub 2} concentrations in the blood can change pH blood values. Members of mine rescue teams should be equipped with breathing equipment and be between 18 and 40 years old. Training rescue operations should be conducted 4 times per year. While larger mines have their own rescue teams, smaller mines must ensure that guest rescue teams are familiar with their mines. Various mine training activities were reviewed. 5 refs.

  17. Damage caused to houses and equipment by underground nuclear explosions

    International Nuclear Information System (INIS)

    Delort, F.; Guerrini, C.

    1969-01-01

    A description is given of the damaged caused to various structures, buildings, houses, mechanical equipment and electrical equipment by underground nuclear explosions in granite. For each type of equipment or building are given the limiting distances for a given degree of damage. These distances have been related to a parameter characterizing the movement of the medium; it is thus possible to generalize the results obtained in granite, for different media. The problem of estimating the damage caused at a greater distance from the explosion is considered. (authors) [fr

  18. An Event Reporting and Early-Warning Safety System Based on the Internet of Things for Underground Coal Mines: A Case Study

    Directory of Open Access Journals (Sweden)

    Byung Wan Jo

    2017-09-01

    Full Text Available Fatal accidents associated with underground coal mines require the implementation of high-level gas monitoring and miner’s localization approaches to promote underground safety and health. This study introduces a real-time monitoring, event-reporting and early-warning platform, based on cluster analysis for outlier detection, spatiotemporal statistical analysis, and an RSS range-based weighted centroid localization algorithm for improving safety management and preventing accidents in underground coal mines. The proposed platform seamlessly integrates monitoring, analyzing, and localization approaches using the Internet of Things (IoT, cloud computing, a real-time operational database, application gateways, and application program interfaces. The prototype has been validated and verified at the operating underground Hassan Kishore coal mine. Sensors for air quality parameters including temperature, humidity, CH4, CO2, and CO demonstrated an excellent performance, with regression constants always greater than 0.97 for each parameter when compared to their commercial equivalent. This framework enables real-time monitoring, identification of abnormal events (>90%, and verification of a miner’s localization (with <1.8 m of error in the harsh environment of underground mines. The main contribution of this study is the development of an open source, customizable, and cost-effective platform for effectively promoting underground coal mine safety. This system is helpful for solving the problems of accessibility, serviceability, interoperability, and flexibility associated with safety in coal mines.

  19. Neutralising acid mine waters underground

    Energy Technology Data Exchange (ETDEWEB)

    Aminov, A S

    1978-09-01

    It is essential to treat acid mine drainage in order to avoid its corrosive effects on plant and equipment. Neutralisation aims at increasing the pH to 7 and is carried out using lime, limestone or dolomite, in conjunction with aeration. Use of residues from settling ponds to slake the lime increases economy in water and lime, improves sedimentation and provides a better and more even sediment.

  20. 30 CFR 77.500 - Electric power circuits and electric equipment; deenergization.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric power circuits and electric equipment... OF UNDERGROUND COAL MINES Electrical Equipment-General § 77.500 Electric power circuits and electric equipment; deenergization. Power circuits and electric equipment shall be deenergized before work is done on...

  1. Design of a mobile mechanism for missing miner search robots in underground mines

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T.; Sun, J.; Chen, Y.; Jia, R. [China University of Mining and Technology, Beijing (China). School of Mechanical, Electronic and Information Engineering

    2006-06-15

    A mobile mechanism with four tracked-units for a missing miner search robot (MMSR) is presented, with a design based on the terrain features and atrocious environment of an underground mine. Its structure and working principle is discussed. The four tracked-units are controlled independently and driven cooperatively. By means of two DC motors being controlled respectively, one tracked-unit can accomplish two types of driving mode: tracked travel and integral unit legged rotation (IULR), forming a track-legged compound function mechanisms. Its capabilities of surmounting obstacles and its toppling stability in underground mines have also been analyzed. The results show that the mobile mechanism can directly surmount an obstacle of the height less than the length of one tracked-unit and get across a raceway with a span less than the length of one tracked-unit by using tracked travel and IULR. Its unstable slope angle is 51.3{sup o}. Toppling stability is determined by its structural size, moving direction and slope angle. IULR of four tracked-units can adjust the robot's posture and then enhance toppling stability or assist in surmounting obstacles. Its track-legged compound function mechanism makes it suitable for working in underground mines. 15 refs., 5 figs.

  2. Investigation of radon-222 emissions from underground uranium mines. Progress report No. 2

    International Nuclear Information System (INIS)

    Jackson, P.O.; Glissmeyer, J.A.; Enderlin, W.I.; Schwendiman, L.C.; Wogman, N.A.; Perkins, R.W.

    1980-02-01

    A reliable estimate of radon emissions to the environment from underground uranium mines was obtained through measurements of radon in ventilation exhaust air at 24 uranium mines and estimates of radon release from ore piles and waste piles at mines and in water pumped from mines. Three additional mines sampled in 1978 but not in 1979 were included in the overall results. Total production of U 3 O 8 from the mines thus far sampled represent about 63% of total 1978 US production from underground mines. Wide variation in radon emission per unit of production was shown from mine to mine; hence, it became necessary to sum all radon from all mines measured and divide by the sum of all U 3 O 8 production in 1978 from these mines to arrive at a valid estimate of Ci per ton of U 3 O 8 . This value was found to be 26.7 per ton or 5400 Ci/RRY (182 metric tons). The radon emitted in mine ventilation air was by far the dominant source, with other than ventilation exhaust sources accounting for less than three percent of radon in ventilation exhaust. Other observations of interest in this study were the diurnal fluctuations of radon with barometric pressure and the statistically significant relationship between radon released per year from a mine and the cumulative ore production at the time of radon measurement. The linear relationship between Ci/yr of radon and cumulative ore accounted for about half the variability.Several sources of random errors and possible biases were evaluated using some simple descriptive statistics insofar as the current data permitted. Errors in air flow rate in the vents sampled, fluctuations in radon emission with time of day, counting instrument calibration and production rate were estimated and combined to give an uncertainty of about +- 24 percent at the 95 percent confidence level

  3. Optimized mine ventilation on demand (OMVOD)

    International Nuclear Information System (INIS)

    Anderson, M.

    2009-01-01

    This paper provided an overview of the Optimized Mine Ventilation on Demand (OMVOD) system that is being installed at Xstrata Nickel Rim South Project and at Vale Inco's Totten Mine in Sudbury. The OMVOD system is designed to dynamically monitor and control air quality and quantity in real time and dilute and remove hazardous substances including diesel particulate matter (DPM), carbon monoxide (CO) and nitrous oxide (NO 2 ). It is also designed to control the thermal environment and provide ventilation for humans as well as mobile equipment engine combustion according to regulatory standards. The paper highlighted the OMVOD system optimization of energy, air quality measurement and control and production management of the mines through real time dynamic automation. Topics of discussion included real-time tracking and monitoring of diesel equipment; real-time tracking of underground miners; real-time evaluation of mine ventilation networks; and real-time control and optimization of ventilation equipment. ABB and Simsmart Technologies have joined forces to provide underground mining customers with a ventilation optimization solution. Simsmart's OMVOD provides proven real time/dynamic automation technology to significantly reduce energy costs, provide health and safety benefits as well as major capital cost savings while realizing an increase in production.

  4. Fire prevention and protection for trackless equipment

    Energy Technology Data Exchange (ETDEWEB)

    Burger, A.J.

    1988-10-01

    With the increased use of trackless diesel and electrical equipment underground, the fire danger associated with this equipment has increased. The need for adequate fire prevention and protection on all aspects of trackless mechanised mining must be taken into consideration. This paper describes briefly the causes of fires on trackless equipment and the precautions taken to reduce the risk of ignition. 1 tab.

  5. Shale Failure Mechanics and Intervention Measures in Underground Coal Mines: Results From 50 Years of Ground Control Safety Research

    Science.gov (United States)

    2015-01-01

    Ground control research in underground coal mines has been ongoing for over 50 years. One of the most problematic issues in underground coal mines is roof failures associated with weak shale. This paper will present a historical narrative on the research the National Institute for Occupational Safety and Health has conducted in relation to rock mechanics and shale. This paper begins by first discussing how shale is classified in relation to coal mining. Characterizing and planning for weak roof sequences is an important step in developing an engineering solution to prevent roof failures. Next, the failure mechanics associated with the weak characteristics of shale will be discussed. Understanding these failure mechanics also aids in applying the correct engineering solutions. The various solutions that have been implemented in the underground coal mining industry to control the different modes of failure will be summarized. Finally, a discussion on current and future research relating to rock mechanics and shale is presented. The overall goal of the paper is to share the collective ground control experience of controlling roof structures dominated by shale rock in underground coal mining. PMID:26549926

  6. Technical evaluation of a radon daughter continuous monitor in an underground uranium mine

    International Nuclear Information System (INIS)

    Bigu, J.; Grenier, M.

    1982-07-01

    An evaluation of a radon daughter monitor was carried out in an underground uranium mine. The monitor operates on continuous sampling and time integrating principles. Experimental and theoretical data were compared. Experimental results show that the monitor underestimates the Working Level, a fact which is partly attributed to plate-out of decay products in the monitor sampling head. However, a correction factor experimentally determined by standard calibration procedures can be programmed into the monitor to take into account losses by plate-out and other losses. Although the monitor was originally designed for radon daughters, it can equally be used in thoron daughter atmospheres and radon daughter/thoron daughter mixtures such as those encountered in some Canadian uranium mines. An analytical procedure is outlined to allow the calculation of Working Levels in radon daughter/thoron daughter atmospheres from the monitor α-count rate. The memory capability of the monitor should make it quite useful and flexible in underground and surface environments in the uranium mining industry

  7. Underground fires in oil shale mines: special traits of their spreading, extinguishing and liquidating of consequences

    International Nuclear Information System (INIS)

    Parakhonsky, E.

    1995-01-01

    Danger of catching fire in oil shale underground mines has considerably increased lately because of essential increase in mechanization level and frequent violation of fire-safety regulations. The largest underground fire in Estonia took place in the most mechanized mine 'Estonia' in the end of 1988 and lasted 81 days. The fire started in one of the conveyor drifts where two belt-conveyors with rubber-rope belts and a fire pipeline were installed. At the start of the fire and beginning of extinguishing work this pipeline contained no water. Driving heads of these conveyors were installed with automatic extinguishing equipment and with different primary means against fire. When the first group of the Johvi military mine-rescue squad reached the mine they established that the conveyor drift, pillars and a part of rail drift between them were caught by fire. The conveyor belt, oil shale and feeds of conveyor drives were burning. The flame had propagated about 350 metres along the rail and conveyor drifts but the smoke had spread 4 kilometres already. Air temperature near the burning area was about 40-60 deg C, rocks from the roof supported by pillars had crashed down. The mine air was polluted by combustion products. The fire caused a noticeable pollution of mine and surface waters with phenols formed at oil shale combustion. Their limit concentration was exceeded for more than 400 times. To decrease this number, an intensive saturation of waters with atmosphere air was started. For this purpose special dams were constructed on water-diversion ditches ensuring a 0.5-0.7 m difference in water levels. Nevertheless, the phenol concentration in Rannapungerya River and Lake Peipsi still exceeded the normal level 5-6 times. However, the actual maximum concentration of phenols was considerably lower than the lethal doses for fish and other water organisms. Their mass extinction in the river or in the lake was observed neither during nor after the fire. One may conclude the

  8. “Smart Service” as an innovative system of service for mining companies in Kuzbass

    OpenAIRE

    Samorodova Lyudmila; Shut’ko Larisa; Yakunina Yulia; Lyubimov Oleg

    2017-01-01

    The article deals with the issues related to the introduction of “smart service” as an innovative system of equipment service in the business system and “Life-Cycle Management” (LCM) by mining equipment manufacturers. Based on the analysis of the competitive environment an overview description of the competitive environment in the field of equipment sales for surface and underground mining as well as for maintenance and repair of mining machinery for surface mining is presented. The article d...

  9. Indigenous development and networking of online radon monitors in the underground uranium mine

    International Nuclear Information System (INIS)

    Gaware, J.J.; Sahoo, B.K.; Sapra, B.K.; Mayya, Y.S.

    2011-01-01

    There has been a long standing demand for online monitoring of radon level in various locations of underground Uranium mine for taking care of radiological protection to workers. Nowadays, radon ( 222 Rn) monitors, based on electrostatic collection of charged progeny and subsequent detection by semiconductor detector are increasingly employed for radon monitoring in environment. However, such instruments have some limitations such as (i) requirement of additional dryer since sensitivity is dependent on the humidity (ii) cannot be connected to a network and (iii) not cost effective etc. Hence use of such instruments in underground uranium mine (humidity level >90), may not be reliable. Towards this end, we have indigenously developed radon monitor based on electrostatic collection and scintillation technology for the online monitoring in uranium mine. This instrument overcomes the above mentioned limitation of commercial radon monitors and based on custom made features. Different tests and measurements were carried out and compared with commercial instruments. It was found to be in an excellent agreement with the commercial instruments. A few such instruments have been installed in different locations of uranium mine at Turamdih and connected to a network system for online monitoring and display. (author)

  10. Underground coal mine subsidence impacts on surface water

    International Nuclear Information System (INIS)

    Stump, D.E. Jr.

    1992-01-01

    This paper reports that subsidence from underground coal mining alters surface water discharge and availability. The magnitude and areal extent of these impacts are dependent on many factors, including the amount of subsidence, topography, geology, climate, surface water - ground water interactions, and fractures in the overburden. There alterations may have positive and/or negative impacts. One of the most significant surface water impacts occurred in July 1957 near West Pittston, Pennsylvania. Subsidence in the Knox Mine under the Coxton Yards of the Lehigh Valley Railroad allowed part of the discharge in the Susquehanna River to flow into the mine and create a crater 200 feet in diameter and 300 feet deep. Fourteen railroad gondola cars fell into the hole which was eventually filled with rock, sand, and gravel. Other surface water impacts from subsidence may include the loss of water to the ground water system, the gaining of water from the ground water system, the creation of flooded subsidence troughs, the increasing of impoundment storage capacity, the relocation of water sources (springs), and the alteration of surface drainage patterns

  11. An Effective Belt Conveyor for Underground Ore Transportation Systems

    Science.gov (United States)

    Krol, Robert; Kawalec, Witold; Gladysiewicz, Lech

    2017-12-01

    Raw material transportation generates a substantial share of costs in the mining industry. Mining companies are therefore determined to improve the effectiveness of their transportation system, focusing on solutions that increase both its energy efficiency and reliability while keeping maintenance costs low. In the underground copper ore operations in Poland’s KGHM mines vast and complex belt conveyor systems have been used for horizontal haulage of the run-of-mine ore from mining departments to shafts. Basing upon a long-time experience in the field of analysing, testing, designing and computing of belt conveyor equipment with regard to specific operational conditions, the improvements to the standard design of an underground belt conveyor for ore transportation have been proposed. As the key elements of a belt conveyor, the energy-efficient conveyor belt and optimised carrying idlers have been developed for the new generation of underground conveyors. The proposed solutions were tested individually on the specially constructed test stands in the laboratory and in the experimental belt conveyor that was built up with the use of prototype parts and commissioned for the regular ore haulage in a mining department in the KGHM underground mine “Lubin”. Its work was monitored and the recorded operational parameters (loadings, stresses and strains, energy dissipation, belt tracking) were compared with those previously collected on a reference (standard) conveyor. These in-situ measurements have proved that the proposed solutions will return with significant energy savings and lower maintenance costs. Calculations made on the basis of measurement results in the specialized belt conveyor designing software allow to estimate the possible savings if the modernized conveyors supersede the standard ones in a large belt conveying system.

  12. Automatic identification in mining

    Energy Technology Data Exchange (ETDEWEB)

    Puckett, D; Patrick, C [Mine Computers and Electronics Inc., Morehead, KY (United States)

    1998-06-01

    The feasibility of monitoring the locations and vital statistics of equipment and personnel in surface and underground mining operations has increased with advancements in radio frequency identification (RFID) technology. This paper addresses the use of RFID technology, which is relatively new to the mining industry, to track surface equipment in mine pits, loading points and processing facilities. Specific applications are discussed, including both simplified and complex truck tracking systems and an automatic pit ticket system. This paper concludes with a discussion of the future possibilities of using RFID technology in mining including monitoring heart and respiration rates, body temperatures and exertion levels; monitoring repetitious movements for the study of work habits; and logging air quality via personnel sensors. 10 refs., 5 figs.

  13. Innovation application to underground mining; Innovacion aplicada a la explotacion de canteras

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    In this article is presented the pilot test initiated in the quarry of limestone aggregated located in Apario (Bilbao, Spain), in order to prolong its operating life by means of the application of the methods of the underground mining. (Author)

  14. Reducing rock fall injuries in underground US coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, S.B.; Molinda, G.M.; Pappas, D.M. [Pittsburgh Research Laboratory, Pittsburgh, PA (United States)

    2005-07-01

    A continuing risk to underground US coal miners is rock falling from the mine roof. Almost 99% of injuries caused by rock falls are not from a major roof collapse, but from smaller rock that fall from between roof bolts. Installing roof screen provides excellent overhead roof coverage and dramatically reduces the potential for rock fall injuries, especially to roof bolted operators. The National Institute for Occupational Safety and Health (NIOSH) has explored different installation techniques and roof screening options along with machine design innovations that make roof screening easier and safer. Applying ergonomic principles to roof screening will offer insight and direction for better material handling. Other techniques for controlling rock falls and roof falls for long-term stability include the application of surface support liners and polyurethane (PUR) injection. An ongoing study at the NIOSH Lake Lynn Laboratory of various types of spray-on liner and shotcrete materials is providing a unique opportunity to evaluate the long-term behaviour of liners in an underground environment. In-mine studies of PUR have involved pre- and post-injection core drilling and video borecole logging. The results have provided insights into how PUR penetrates and reinforces weak and highly fractured rock. 11 refs., 8 figs., 1 tab.

  15. 30 CFR 77.807-3 - Movement of equipment; minimum distance from high-voltage lines.

    Science.gov (United States)

    2010-07-01

    ... high-voltage lines. 77.807-3 Section 77.807-3 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-3 Movement of equipment; minimum distance from high-voltage lines. When any part of any equipment operated on the surface of any...

  16. Evaluation of the mortality standard of a miners cohort exposed to radon in an underground coal mining, Parana, Brazil

    International Nuclear Information System (INIS)

    Veiga, Lene H.S.; Amaral, Eliana C.S.; Koifman, Sergio

    2005-01-01

    This study aims to to evaluate the possible health effects on workers in a underground coal mining that were exposed to radon and its decay products without the knowledge of the exposure risk. We established a historical cohort of workers in this mining which included 2856 workers, 1946 underground workers and 910 surface workers, and was carried out a retrospective tracking of mortality in this cohort between 1979 and 2002. Through multiple strategies for monitoring, involving several national institutions, was possible to trace the vital status of 92% of the cohort and 100% of the causes of deaths. The results showed that employees of underground coal mining in Parana had a risk of mortality from lung cancer higher than might be expected to the male population of the state of Parana, observing an increase in risk with the time of underground service. However, this increase in mortality from lung cancer was not observed for surface workers. Among several carcinogenic agents present in the mine environment, radon gas and its decay products can be identified as the major cause for this increase in risk of lung cancer for these workers, once other epidemiological studies in coal mining, which have no risk of exposure to radon, do not present an increased of mortality risk from lung cancer

  17. Design of Meter-Scale Antenna and Signal Detection System for Underground Magnetic Resonance Sounding in Mines.

    Science.gov (United States)

    Yi, Xiaofeng; Zhang, Jian; Fan, Tiehu; Tian, Baofeng; Jiang, Chuandong

    2018-03-13

    Magnetic resonance sounding (MRS) is a novel geophysical method to detect groundwater directly. By applying this method to underground projects in mines and tunnels, warning information can be provided on water bodies that are hidden in front prior to excavation and thus reduce the risk of casualties and accidents. However, unlike its application to ground surfaces, the application of MRS to underground environments is constrained by the narrow space, quite weak MRS signal, and complex electromagnetic interferences with high intensities in mines. Focusing on the special requirements of underground MRS (UMRS) detection, this study proposes the use of an antenna with different turn numbers, which employs a separated transmitter and receiver. We designed a stationary coil with stable performance parameters and with a side length of 2 m, a matching circuit based on a Q-switch and a multi-stage broad/narrowband mixed filter that can cancel out most electromagnetic noise. In addition, noises in the pass-band are further eliminated by adopting statistical criteria and harmonic modeling and stacking, all of which together allow weak UMRS signals to be reliably detected. Finally, we conducted a field case study of the UMRS measurement in the Wujiagou Mine in Shanxi Province, China, with known water bodies. Our results show that the method proposed in this study can be used to obtain UMRS signals in narrow mine environments, and the inverted hydrological information generally agrees with the actual situation. Thus, we conclude that the UMRS method proposed in this study can be used for predicting hazardous water bodies at a distance of 7-9 m in front of the wall for underground mining projects.

  18. Design of Meter-Scale Antenna and Signal Detection System for Underground Magnetic Resonance Sounding in Mines

    Directory of Open Access Journals (Sweden)

    Xiaofeng Yi

    2018-03-01

    Full Text Available Magnetic resonance sounding (MRS is a novel geophysical method to detect groundwater directly. By applying this method to underground projects in mines and tunnels, warning information can be provided on water bodies that are hidden in front prior to excavation and thus reduce the risk of casualties and accidents. However, unlike its application to ground surfaces, the application of MRS to underground environments is constrained by the narrow space, quite weak MRS signal, and complex electromagnetic interferences with high intensities in mines. Focusing on the special requirements of underground MRS (UMRS detection, this study proposes the use of an antenna with different turn numbers, which employs a separated transmitter and receiver. We designed a stationary coil with stable performance parameters and with a side length of 2 m, a matching circuit based on a Q-switch and a multi-stage broad/narrowband mixed filter that can cancel out most electromagnetic noise. In addition, noises in the pass-band are further eliminated by adopting statistical criteria and harmonic modeling and stacking, all of which together allow weak UMRS signals to be reliably detected. Finally, we conducted a field case study of the UMRS measurement in the Wujiagou Mine in Shanxi Province, China, with known water bodies. Our results show that the method proposed in this study can be used to obtain UMRS signals in narrow mine environments, and the inverted hydrological information generally agrees with the actual situation. Thus, we conclude that the UMRS method proposed in this study can be used for predicting hazardous water bodies at a distance of 7–9 m in front of the wall for underground mining projects.

  19. Distribution of radium-226 body burden among workers in an underground uranium mine in India

    International Nuclear Information System (INIS)

    Patnaik, R.L.; Srivastava, V.S.; Kumar, Rajesh; Shukla, A.K.; Tripathi, R.M.; Puranik, V.D.

    2007-01-01

    Workers are exposed to ore dust containing uranium and its daughter products during mining and processing of uranium ore. These radio nuclides may be an inhalation hazard to the workers during the course of their occupation. The most significant among these radio nuclides is 226 Ra. Measurement of radium body burden of uranium mine and mill workers are important to control the exposure of workers within the prescribed limit. Radon-in-breath measurement technique is used for measurement of radium body burden. Workers associated with different category of underground mining operations were monitored. The measurement results indicate that workers associated with different category of underground mining operations are having 226 Ra body burden ranging from 0.15 - 2.85 kBq. It was also observed that workers involved in timbering operation are having maximum average 226 Ra body burden of 0.97 ± 0.54 kBq. Overall average radium body burden observed for 683 workers is 0.80 kBq. (author)

  20. 77 FR 20700 - Examinations of Work Areas in Underground Coal Mines for Violations of Mandatory Health or Safety...

    Science.gov (United States)

    2012-04-06

    ... DEPARTMENT OF LABOR Mine Safety and Health Administration 30 CFR Part 75 RIN 1219-AB75 Examinations of Work Areas in Underground Coal Mines for Violations of Mandatory Health or Safety Standards AGENCY: Mine Safety and Health Administration, Labor. ACTION: Final rule. SUMMARY: The Mine Safety and...

  1. Radiological modeling software for underground uranium mines

    International Nuclear Information System (INIS)

    Bjorndal, B.; Moridi, R.

    1999-01-01

    The Canadian Institute for Radiation Safety (CAIRS) has developed computer simulation software for modeling radiological parameters in underground uranium mines. The computer program, called 3d RAD, allows radiation protection professionals and mine ventilation engineers to quickly simulate radon and radon progeny activity concentrations and potential alpha energy concentrations in complex mine networks. The simulation component of 3d RAD, called RSOLVER, is an adaptation of an existing modeling program called VENTRAD, originally developed at Queen's University, Ontario. Based on user defined radiation source terms and network physical properties, radiological parameters in the network are calculated iteratively by solving Bateman's Equations in differential form. The 3d RAD user interface was designed in cooperation with the Canada Centre for Mineral and Energy Technology (CANMET) to improve program functionality and to make 3d RAD compatible with the CANMET ventilation simulation program, 3d CANVENT. The 3d RAD program was tested using physical data collected in Canadian uranium mines. 3d RAD predictions were found to agree well with theoretical calculations and simulation results obtained from other modeling programs such as VENTRAD. Agreement with measured radon and radon progeny levels was also observed. However, the level of agreement was found to depend heavily on the precision of source term data, and on the measurement protocol used to collect radon and radon progeny levels for comparison with the simulation results. The design and development of 3d RAD was carried out under contract with the Saskatchewan government

  2. Hydrogeology, water chemistry, and subsidence of underground coal mines at Huntsville, Missouri, July 1987 to December 1988. Water Resources Investigation

    International Nuclear Information System (INIS)

    Blevins, D.W.; Ziegler, A.C.

    1992-01-01

    Underground coal mining in and near Huntsville, in Randolph County in north-central Missouri, began soon after 1831. Mining in the Huntsville area was at its peak during 1903 and continued until 1966 when the last underground mine was closed and the economically recoverable coals under Huntsville had been mostly, if not completely, removed. The now abandoned mines are of concern to the public and to various State and Federal agencies for two reasons: (1) mine drainage acidifies streams and leaves large, soft, dangerous deposits of iron oxyhydroxides at mine springs and on streambeds (data on file at the Missouri Department of Natural Resources, Land Reclamation Commission), and (2) collapse of mine cavities sometimes causes surface subsidence resulting in property damage or personal injury. To address these concerns, the U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, in 1987 initiated a study to: determine the location of mine springs, the seasonal variation of stream-water chemistry, and the effects of underground-mine water on flow and water quality of nearby ground water and receiving streams; and identify areas susceptible to surface subsidence because of mine collapse. The purpose of the report is to present the findings and data collected for the study

  3. Discussion of Minos Mine operating system

    Energy Technology Data Exchange (ETDEWEB)

    Pan, B.

    1991-10-01

    The MINOS (mine operating system), which is used in the majority of British collieries, provides central control at the surface for the machinery and environmental equipment distributed throughout the mine. Installed equipment, including face machinery, conveyors, pumps, fans and sensors are connected to local outstations which all communicate with the control system via a single run of signal cable. The article discusses the system particularly its use in the Automated Control System of Underground Mining Locomotives (ACSUML). The discussion includes the use of MINOS to improve wagon identification, the operating principle of ACSUML and the possibilities of a driverless locomotive. 2 figs.

  4. Management of dry flue gas desulfurization by-products in underground mines. Annual report, October 1994--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Chugh, Y.P.; Dutta, D.; Esling, S. [and others

    1995-10-01

    On September 30, 1993, the U.S. Department of Energy-Morgantown Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues (CCBs) in abandoned coal mines, and will assess the environmental impact of such underground CCB placement. This report describes progress in the following areas: environmental characterization, mix development and geotechnical characterization, material handling and system economics, underground placement, and field demonstration.

  5. A real-time, wearable elemental carbon monitor for use in underground mines

    International Nuclear Information System (INIS)

    Takiff, L.; Aiken, G.

    2010-01-01

    A real-time, wearable elemental carbon monitor has been developed to determines the exposure of workers in underground mines to diesel particulate material (DPM). ICx Technologies designed the device in an effort to address the health hazards associated with DPM exposure. Occupational exposure to DPM in underground metal and nonmetal mines is regulated by the Mine Safety and Health Administration. The most common method of measuring exposure to elemental or total carbon nanoparticles involves capturing the particles on a filter followed by a thermo-optical laboratory analysis, which integrates the exposure spatially and in time. The ICx monitor is based on a design developed and tested by the National Institute of Occupational Safety and Health (NIOSH). The ICx monitor uses a real-time particle capture and light transmission method to yield elemental carbon values that are displayed for the wearer and are stored internally in a compact device. The ICx monitoring results were found to be in good agreement with the established laboratory method (NIOSH Method 5040) for elemental carbon emissions from a diesel engine. The monitors are compact and powered by a rechargeable lithium-ion battery. Examples of DPM monitoring in mines demonstrated how the real-time data can be more useful that time-averaged results. The information can be used to determine ventilation rates needed at any given location to lower the DPM concentrations.15 refs., 6 figs.

  6. A real-time, wearable elemental carbon monitor for use in underground mines

    Energy Technology Data Exchange (ETDEWEB)

    Takiff, L. [ICx Technologies, Cambridge, MA (United States); Aiken, G. [ICx Technologies, Albuquerque, NM (United States)

    2010-07-01

    A real-time, wearable elemental carbon monitor has been developed to determines the exposure of workers in underground mines to diesel particulate material (DPM). ICx Technologies designed the device in an effort to address the health hazards associated with DPM exposure. Occupational exposure to DPM in underground metal and nonmetal mines is regulated by the Mine Safety and Health Administration. The most common method of measuring exposure to elemental or total carbon nanoparticles involves capturing the particles on a filter followed by a thermo-optical laboratory analysis, which integrates the exposure spatially and in time. The ICx monitor is based on a design developed and tested by the National Institute of Occupational Safety and Health (NIOSH). The ICx monitor uses a real-time particle capture and light transmission method to yield elemental carbon values that are displayed for the wearer and are stored internally in a compact device. The ICx monitoring results were found to be in good agreement with the established laboratory method (NIOSH Method 5040) for elemental carbon emissions from a diesel engine. The monitors are compact and powered by a rechargeable lithium-ion battery. Examples of DPM monitoring in mines demonstrated how the real-time data can be more useful that time-averaged results. The information can be used to determine ventilation rates needed at any given location to lower the DPM concentrations.15 refs., 6 figs.

  7. Assessment of professional risk caused by heating microclimate in the process of un-derground mining

    Directory of Open Access Journals (Sweden)

    М. Л. Рудаков

    2017-06-01

    Full Text Available The paper reviews the possibility to apply probit-function to assess professional risks of underground mining under conditions of heating microclimate. Operations under conditions of heating microclimate, whose parameters exceed threshold criteria, can lead to dehydration, fainting and heat stroke for mine workers. Basing on the results of medico-biological research on the effects of microclimate on human body, the authors have assessed probabilistic nature of excessive heat accumulation depending on heat stress index.Using Shapiro-Wilk statistics, an assessment has been carried out in order to test correspondence of experimental data on heat accumulation in the human body to the normal law of distribution for different values of heat stress index, measured in the process of underground mining operations under conditions of heating microclimate.The paper justifies construction of a probit-model to assess professional risks caused by overheating for various types of underground mining operations, depending on their intensity.Modeling results have been verified by way of comparison with a currently used deterministic model of body overheating. Taking into account satisfactory convergence of results, the authors suggest using probit-model to assess professional risks of overheating, as this model allows to obtain a continuous dependency between professional risk and heat stress index, which in its own turn facilitates a more justified approach to the selection of measures to upgrade working conditions of personnel.

  8. The effect of time-dependent ventilation and radon (thoron) gas emanation rates in underground uranium mines

    International Nuclear Information System (INIS)

    Bigu, J.

    1987-01-01

    A theoretical radiation mine model, suitable for underground uranium mines, has been investigated. In this model, the rate of ventilation and/or the radon (thoron) gas emanation from mine walls are time-dependent. Several cases of practical interest have been investigated including sinusoidal, linear, exponential, stepwise, or a combination of two or more of the above. Analytical solutions were obtained for the time-dependent radon (thoron) gas emanation rate. However, because of the extreme analytical complexity of the solutions corresponding to the time-dependent ventilation rate case, numerical solutions were found using a special Runge-Kutta procedure and the Hamming's modified predictor-corrector method for the solution of linear initial-value problems. The mine model makes provisions for losses of radioactivity, other than by ventilation and radioactive decay, by, say, plate-out on mine walls, and by other mechanisms. Radioactivity data, i.e., radon, thoron, and their progeny, obtained with the above mine model for a number of ventilation and emanation conditions, are presented. Experimental data obtained in an inactive stope of an underground uranium mine for a time-dependent air flow case are shown. Air flow conditions (ventilation rate) were determined by tracer gas techniques using SF 6

  9. 30 CFR 77.516 - Electric wiring and equipment; installation and maintenance.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric wiring and equipment; installation and... OF UNDERGROUND COAL MINES Electrical Equipment-General § 77.516 Electric wiring and equipment; installation and maintenance. In addition to the requirements of §§ 77.503 and 77.506, all wiring and...

  10. Technical description of the mug experiment on cosmic-ray muons in the Pyhaesalmi mine

    International Nuclear Information System (INIS)

    Jaemsen, T.; Elo, A.-M.; Mursula, K.; Kangas, J.; Peltoniemi, J.; Vallinkoski, M.; Usoskin, I.G.

    2001-01-01

    The Centre for Underground Physics in Pyhaesalmi (CUPP) project is aiming to establish an underground laboratory in the Pyhaesalmi zinc mine, offering a potential location for small-to-medium-scale scientific experiments, which require, e.g., a low level of background radiation. The pilot experiment of CUPP is Muons UnderGround (MUG), consisting of muon detectors placed at different depths. The MUG experiment extends the field of cosmic-ray and heliospheric research of the University of Oulu to underground studies in addition to the long-term neutron monitor observations of cosmic rays on ground level in Oulu. As the first active experiment of the CUPP project, the MUG experiment is also used to evaluate and prove the suitability of the facilities of the Pyhaesalmi mine for underground scientific work. The Pyhaesalmi mine is located 156 m above the sea level, and its geographical coordinates are 63 deg C 39.6' N. 26 deg C 2.5' E. The mine is dry, the surrounding bedrock is stable, and the background radiation level is low. There are several possible experimental sites at different depths down to 1050 m, accessible with small trucks. The locations are, or can easily be equipped with electricity as well as with telephone and data lines. The mining activity is going on below the 1050-m level down to 1400 m, ensuring the maintenance of the mine until at least 2010. The MUG experiment includes five detector units consisting of three pairs of vertically overlapping plastic scintillators, each equipped with standard NIM electronics and a personal computer for data storage. A data acquisition unit designed and manufactured by Detection Technology Inc is used for data recording and pulse height AD- conversion. A substantial part of the equipment is borrowed from the Space Research Laboratory of the University of Turku. One of the MUG units is on the ground level, two units have already been installed in a cavern 210 m underground, and two units will be installed in a

  11. Selected problems of coal mining mechanization in the coal industry of Poland

    Energy Technology Data Exchange (ETDEWEB)

    Antoniak, J; Sikora, W [Politechnika Slaska, Gliwice (Poland)

    1987-01-01

    Discusses conditions for underground coal mining in Poland, types of equipment for coal cutting, mine haulage and strata control and development trends of mining technologies. In 1985, black coal output was 191.6 Mt; 85.3% came from longwall faces mined by sets of mining equipment (coal cutters, chain conveyors and powered supports). The average coal output per longwall face was 881 t/d, output per face mined by sets for mining equipment was 1,134 t/d. In 1985, 653 shearer loaders and 77 coal plows were used in Polish coal mines. Number of shearer loaders is increasing. Shearer loaders with chainless haulage system were safest and most economic. The shearer loaders were equipped with the POLTRAK chainless haulage system developed in Poland. Research programs concentrate on development of new mining equipment for thin seam mining, steep seam mining, longwall mining with hydraulic stowing, efficient strata control by powered or shield supports under conditions of increased stresses or rock burst hazards. 4 refs.

  12. Catastrophic failure of a raise boring machine during underground reaming operations

    CSIR Research Space (South Africa)

    James, A

    1997-03-01

    Full Text Available rights reserved. 1. INTRODUCTION The process of raise boring (or back reaming) has been in use for over 30 years, and has proved to be a very successful technique in underground mining operations. Its primary use... the overhaul, the equipment was moved from its underground location to the surface. All the drive head bolts were replaced. A cutaway diagram of the drive head installation, showing the relative positions of the cover, drive...

  13. Measurement of RF propagation around corners in underground mines and tunnels.

    Science.gov (United States)

    Jacksha, R; Zhou, C

    2016-01-01

    This paper reports measurement results for radio frequency (RF) propagation around 90° corners in tunnels and underground mines, for vertically, horizontally and longitudinally polarized signals. Measurements of signal power attenuation from a main entry into a crosscut were performed at four frequencies - 455, 915, 2450 and 5800 MHz - that are common to underground radio communication systems. From the measurement data, signal power loss was determined as a function of signal coupling from the main entry into the crosscut. The resultant power loss data show there are many factors that contribute to power attenuation from a main entry into a crosscut, including frequency, antenna polarization and cross-sectional entry dimensions.

  14. Radium balance in discharge waters from coal mines in Poland the ecological impact of underground water treatment

    International Nuclear Information System (INIS)

    Chalupnik, S.; Wysocka, M.

    2008-01-01

    Saline waters from underground coal mines in Poland often contain natural radioactive isotopes, mainly 226 Ra from the uranium decay series and 228 Ra from the thorium series. More than 70% of the total amount of radium remains underground as radioactive deposits due to spontaneous co-precipitation or water treatment technologies, but several tens of MBq of 226 Ra and even higher activity of 228 Ra are released daily into the rivers along with the other mine effluents from all Polish coal mines. Mine waters can have a severe impact on the natural environment, mainly due to its salinity. Additionally high levels of radium concentration in river waters, bottom sediments and vegetation were also observed. Sometimes radium concentrations in rivers exceeded 0.7 kBq/m 3 , which was the permitted level for wastewaters under Polish law. The investigations described here were carried out for all coal mines and on this basis the total radium balance in effluents has been calculated. Measurements in the vicinity of mine settling ponds and in rivers have given an opportunity to study radium behaviour in river waters and to assess the degree of contamination. For removal of radium from saline waters a method of purification has been developed and implemented in full technical scale in two of Polish coal mines. The purification station in Piast Colliery was unique, the first underground installation for the removal of radium isotopes from saline waters. Very good results have been achieved - approximately 6 m 3 /min of radium-bearing waters were treated there, more than 100 MBq of 226 Ra and 228 Ra remained underground each day. Purification has been started in 1999, therefore a lot of experiences have been gathered during this period. Since year 2006, a new purification station is working in another colliery, Ziemowit, at the level -650 meters. Barium chloride is used as a cleaning , agent, and amount of water to be purified is reaching 9 m 3 /min. Technical measures such as

  15. UNDERGROUND

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-11-15

    Full text: Cossetted deep underground, sheltered from cosmic ray noise, has always been a favourite haunt of neutrino physicists. Already in the 1930s, significant limits were obtained by taking a geiger counter down in Holborn 'tube' station, one of the deepest in London's underground system. Since then, neutrino physicists have popped up in many unlikely places - gold mines, salt mines, and road tunnels deep under mountain chains. Two such locations - the 1MB (Irvine/ Michigan/Brookhaven) detector 600 metres below ground in an Ohio salt mine, and the Kamiokande apparatus 1000m underground 300 km west of Tokyo - picked up neutrinos on 23 February 1987 from the famous 1987A supernova. Purpose-built underground laboratories have made life easier, notably the Italian Gran Sasso Laboratory near Rome, 1.4 kilometres below the surface, and the Russian Baksan Neutrino Observatory under Mount Andyrchi in the Caucasus range. Gran Sasso houses ICARUS (April, page 15), Gallex, Borexino, Macro and the LVD Large Volume Detector, while Baksan is the home of the SAGE gallium-based solar neutrino experiment. Elsewhere, important ongoing underground neutrino experiments include Soudan II in the US (April, page 16), the Canadian Sudbury Neutrino Observatory with its heavy water target (January 1990, page 23), and Superkamiokande in Japan (May 1991, page 8)

  16. Mine railway equipments management information system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.; Han, K.; Duan, T.; Liu, Z.; Lu, H. [China University of Mining and Technology, Xuzhou (China)

    2007-06-15

    Based on client/server and browser/server models, the management information system described realized the entire life-cycle management of mine railway equipment which included universal equipment and special equipment in the locomotive depot, track maintenance division, electrical depot and car depot. The system has other online functions such as transmitting reports, graphics management, statistics, searches, graphics wizard and web propaganda. It was applied in Pingdingshan Coal Co. Ltd.'s Railway Transport Department. 5 refs., 4 figs.

  17. 30 CFR 57.12005 - Protection of power conductors from mobile equipment.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection of power conductors from mobile equipment. 57.12005 Section 57.12005 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND...

  18. 30 CFR 77.1605 - Loading and haulage equipment; installations.

    Science.gov (United States)

    2010-07-01

    ... UNDERGROUND COAL MINES Loading and Haulage § 77.1605 Loading and haulage equipment; installations. (a) Cab... railroads shall be designed, installed, and maintained in a safe manner consistent with the speed and type... projection of moving railroad equipment shall be provided on at least one side of the tracks; all places...

  19. 30 CFR 75.1713-7 - First-aid equipment; location; minimum requirements.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false First-aid equipment; location; minimum... § 75.1713-7 First-aid equipment; location; minimum requirements. (a) Each operator of an underground coal mine shall maintain a supply of the first-aid equipment set forth in paragraph (b) of this § 75...

  20. Dismantling and ploughing under of the Union 103 underground mine in the Hambach opencast mine; Rueckbau und Ueberbaggerung der Tiefbaugrube Union 103 im Tagebau Hambach

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Ralf [RWE Power AG, Sparte Tagebau Bergheim (DE). Abt. Bergtechnik (PCS-B); Houben, Bernd [RWE Power AG, Tagebau Hambach, Niederzier (DE). Abt. Bergbau (BCH-BT)

    2012-01-15

    As early as the first decades of the past century, Germany as an industrial location strove to achieve a largely independent raw material supply. In this context, a project on underground mining of lignite in the Rhenish lignite mining area - in the region of today's Hambach opencast mine - was launched. The 'Union 103' lignite underground mine near the township of Morschenich was established. Mining work at the Union 103 colliery was confined to the sinking of two shafts down to a depth of 330 m and the construction of roadways with a length of some 11 km. Repeated inflow of water and insufficient profitability led to the closure of the colliery only a few years later in 1955 before the start of regular mining activities. The advancing Hambach opencast mine reached the Union 103 colliery in March 2011. Basic studies were performed to develop a concept for cutting free and dismantling the roadways and shafts. Accompanying exploratory measures to determine the support condition of the mine workings were carried out as well. A report on the current status of the dismantling work and preparatory execution engineering has been provided. (orig.)

  1. Practical difficulties in determining 222Rn flux density in underground uranium mines

    International Nuclear Information System (INIS)

    Bigu, J.

    1991-01-01

    Radon-222 flux density, J, has been determined in a number of locations in an underground U mine. Measurements were conducted using the Two-Point Measurement (2PM) method, consisting of measuring the 222Rn concentration at two different points a distance apart within a given section of the mine. Several mine models were used for determining J by the above method. The 2PM method is sensitive to sources and sinks of 222Rn other than mine walls, as well as mining operations and mining activities of a diverse nature, and to local variations in airflow conditions. Because of this, J obtained by the 2PM method represents an 'apparent' flux density. Significant differences were found in the flux density calculated according to different mine models. In addition, J measurements using the flux 'can' method were also carried out in mine walls and compared with the values obtained by the 2PM method. Wide discrepancies between the two methods were found. The practical and theoretical difficulties in determining J are discussed

  2. Stability analysis of rockmass using a hydrogeologic model of groundwater flow at an underground limestone mine in Korea

    Science.gov (United States)

    Baek, H.; Kim, D.; Kim, G.; Kim, D.; Cheong, S.

    2017-12-01

    The safety and environmental issues should be addressed for sustainable mining operations. One of the key factors is the groundwater flow into underground mine workings, which will affect the overall workability and efficiency of the mining operation. Prediction of the groundwater inflow requires a detailed knowledge of the geologic conditions, including the presence of major faults and other geologic structures at the mine site. The hydrologic boundaries and depth of the phreatic surface of the mine area, as well as other relevant properties of the rockmass, are also provided. The stability of underground structures, in terms of the maximum stresses and deformations within the rockmass, can be analyzed using either the total stress or the effective stress approaches. Both the dried and saturated conditions should be considered with appropriate safety factors, as the distribution of the water pressure within the rockmass resulted from the groundwater flow directly affects the stability. In some cases, the rockmass rating systems such as the RMR and Q-systems are also applied. Various numerical codes have been used to construct the hydrogeologic models of mine sites, and the MINEDW by Itasca is one of those groundwater flow model codes developed to simulate groundwater flow related to mining. In this study, with a 3D hydrogeologic model constructed using the MINEDW for an underground limestone mine, the rate of mine water inflow and the porewater pressure were estimated. The stability of mine pillars and adits was analyzed adopting the porewater pressure and effective stress developed in the rockmass. The results were also compared with those from other 2D stability analysis procedures.

  3. 77 FR 25205 - Proposed Extension of Existing Information Collection; Roof Control Plans for Underground Coal Mines

    Science.gov (United States)

    2012-04-27

    ... collections of information in accordance with the Paperwork Reduction Act of 1995. This program helps to assure that requested data can be provided in the desired format, reporting burden (time and financial... Information Collection; Roof Control Plans for Underground Coal Mines AGENCY: Mine Safety and Health...

  4. 77 FR 43721 - Examinations of Work Areas in Underground Coal Mines for Violations of Mandatory Health or Safety...

    Science.gov (United States)

    2012-07-26

    ... DEPARTMENT OF LABOR Mine Safety and Health Administration 30 CFR Part 75 RIN 1219-AB75 Examinations of Work Areas in Underground Coal Mines for Violations of Mandatory Health or Safety Standards AGENCY: Mine Safety and Health Administration, Labor. ACTION: Notice of OMB approval of information...

  5. Integrating the Theory of Sampling into Underground Mine Grade Control Strategies

    Directory of Open Access Journals (Sweden)

    Simon C. Dominy

    2018-05-01

    Full Text Available Grade control in underground mines aims to deliver quality tonnes to the process plant via the accurate definition of ore and waste. It comprises a decision-making process including data collection and interpretation; local estimation; development and mining supervision; ore and waste destination tracking; and stockpile management. The foundation of any grade control programme is that of high-quality samples collected in a geological context. The requirement for quality samples has long been recognised, where they should be representative and fit-for-purpose. Once a sampling error is introduced, it propagates through all subsequent processes contributing to data uncertainty, which leads to poor decisions and financial loss. Proper application of the Theory of Sampling reduces errors during sample collection, preparation, and assaying. To achieve quality, sampling techniques must minimise delimitation, extraction, and preparation errors. Underground sampling methods include linear (chip and channel, grab (broken rock, and drill-based samples. Grade control staff should be well-trained and motivated, and operating staff should understand the critical need for grade control. Sampling must always be undertaken with a strong focus on safety and alternatives sought if the risk to humans is high. A quality control/quality assurance programme must be implemented, particularly when samples contribute to a reserve estimate. This paper assesses grade control sampling with emphasis on underground gold operations and presents recommendations for optimal practice through the application of the Theory of Sampling.

  6. Prevention and protection against propagation of explosionsin underground coal mines

    Directory of Open Access Journals (Sweden)

    Л. М. Пейч

    2017-06-01

    Full Text Available Over the past century, the coal mining industry experienced a large number of explosions leading to a considerable loss of life. The objective of this study is preventing the propagation of methane and/or coal dust explosions through the use of passive water barriers and its implementation to the Spanish coal mining industry. Physical and chemical properties, flammability and explosibility parameters of typical Spanish coals are presented. In this paper,   a flexible approach to meet the requirements of the EN-14591-2:2007 standard is presented for the very specific local conditions, characterized by small cross-sections galleries, vertical seem, use of explosives, etc. Authors have proven the viability of standard requirements to the typical roadway from Spanish underground mines, considering realistic roadway lengths as well as available cross-sections taking into account ubiquitous obstacles such as: locomotives, conveyor belt, ventilation ducts, etc.

  7. Can radiation protection be further improved in underground mines

    International Nuclear Information System (INIS)

    Bernhard, S.

    1992-01-01

    The efforts of optimization made by mine operators to improve radiation protection are illustrated by results and comments. Routinely, uranium miners are the most exposed workers in the fuel cycle (average: 20-30 mSv.y -1 for underground mines). In uranium mines, especially for ten years, operators have been striving to lower collective doses and comply with the regulation in force based on ICRP recommendations. Since 1988, french uranium miners have registered no effective cumulated doses exceeding the basic limit of 50 mSv.y -1 , which does not occur in every country. In 1990, ICRP issued new recommendations lowering the basic limit so that the average should not exceed 20 mSv.y -1 . To comply with the limit, the operators should make a number of more or less restricting arrangements. Additional financial means would become important in present mines. New operating concepts should be sought for new mines. Independently of the financial aspects, should not the expenses made towards lowering a risk already very low (hypothetic and long-term risk) be better used to improve conventional safety. Furthermore, there appears a number of noxious effects running against the aim pursued. As a conclusion, more efficient radiation protection could be achieved by implementation of the principle of optimization of the collective dose instead of more severe limits of individual doses

  8. Equipment repair in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S

    1982-01-01

    Most equipment in Chinese coal mines consists of machinery and equipment produced in the 1950s; the efficiency of 4-62, CTD-57 and 70B/sub 2/ ventilators is 15% lower than that of new ones; that of SSM and AYaP pumps, 10% lower than of modern ones. Equipment renovation is done in three ways: replacing obsolete equipment with new equipment of the same type; improving the performance of existing equipment by introducing efficiency and reconstruction; and replacing obsolete equipment with advanced equipment. It is indicated that the second way, for example, replacement of 4-62 ventilator blades with a maximum efficiency of 73% by 4-72 ventilator blades raises its efficiency to 90%. Replacing the 8DA-8x3 water pump, having a maximum efficiency of 63%, with the 200D 43x3 pump with a maximum efficiency of 78%, enables an electricity savings of 7000 yuan per year, which exceeds all replacement costs (600 yuan). The need to improve equipment maintenance and preventive work to increase equipment service life and to introduce new techniques and efficiency is noted.

  9. Studies and researches in the underground laboratory at Pasquasia mine

    International Nuclear Information System (INIS)

    Tassoni, E.; Cautilli, F.; Polizzano, C.; Zarlenga, F.

    1989-01-01

    The reliability of the geological disposal of radioactive wastes has to be verified both by laboratory and on site researches, under both surface and underground conditions. The tests carried out under high lithostatic stress can allow extrapolations to be made having absolute value at the depths planned for the construction of the repository. An underground laboratory was excavated at the Pasquasia mine (Enna-Sicilia). On the selected area a detailed geological survey (1:5000 scale) was carried out; for the purpose of studying the effects induced by the advancement of the excavation's face into the clayey mass and over the cross section of the transversal tunnel, several geotechnical measurement stations were installed. Structural observations were made on both the fronts and the walls of the tunnel for the purpose of characterizing the mechanical behaviour of the clayey mass. The 37 cubic blocks and the 72 samples collected during the excavation were analyzed from different point of view (sedimentological, mineralogical, geotechnical, etc.). After the excavation of the tunnel and the installation of the geotechnical stations, the measurements were carried out up to March 1987. At this date the work programme was unfortunately stopped by local authorities, unfoundly suspecting Pasquasia mine would be used as waste repository

  10. UNDERGROUND

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: Cossetted deep underground, sheltered from cosmic ray noise, has always been a favourite haunt of neutrino physicists. Already in the 1930s, significant limits were obtained by taking a geiger counter down in Holborn 'tube' station, one of the deepest in London's underground system. Since then, neutrino physicists have popped up in many unlikely places - gold mines, salt mines, and road tunnels deep under mountain chains. Two such locations - the 1MB (Irvine/ Michigan/Brookhaven) detector 600 metres below ground in an Ohio salt mine, and the Kamiokande apparatus 1000m underground 300 km west of Tokyo - picked up neutrinos on 23 February 1987 from the famous 1987A supernova. Purpose-built underground laboratories have made life easier, notably the Italian Gran Sasso Laboratory near Rome, 1.4 kilometres below the surface, and the Russian Baksan Neutrino Observatory under Mount Andyrchi in the Caucasus range. Gran Sasso houses ICARUS (April, page 15), Gallex, Borexino, Macro and the LVD Large Volume Detector, while Baksan is the home of the SAGE gallium-based solar neutrino experiment. Elsewhere, important ongoing underground neutrino experiments include Soudan II in the US (April, page 16), the Canadian Sudbury Neutrino Observatory with its heavy water target (January 1990, page 23), and Superkamiokande in Japan (May 1991, page 8)

  11. Recent advances in remote coal mining machine sensing, guidance, and teleoperation

    Energy Technology Data Exchange (ETDEWEB)

    Ralston, J C; Hainsworth, D W; Reid, D C; Anderson, D L; McPhee, R J [CSIRO Exploration & Minerals, Kenmore, Qld. (Australia)

    2001-10-01

    Some recent applications of sensing, guidance and telerobotic technology in the coal mining industry are presented. Of special interest is the development of semi or fully autonomous systems to provide remote guidance and communications for coal mining equipment. The use of radar and inertial based sensors are considered in an attempt to solve the horizontal and lateral guidance problems associated with mining equipment automation. Also described is a novel teleoperated robot vehicle with unique communications capabilities, called the Numbat, which is used in underground mine safety and reconnaissance missions.

  12. Blending mining and nuclear industries at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Walls, J.R.

    1990-01-01

    At the Waste Isolation Pilot Plant (WIPP) traditional procedures for underground mining activities have been significantly altered in order to assure underground safety and project adherence to numerous regulatory requirements. Innovative techniques have been developed for WIPP underground procedures, mining equipment, and operating environments. The mining emphasis at WIPP is upon the quality of the excavation, not (as in conventional mines) on the production of ore. The WIPP is a United States Department of Energy (DOE) project that is located 30 miles southeast of Carlsbad, New Mexico, where the nation's first underground engineered nuclear repository is being constructed. The WIPP site was selected because of its location amidst a 607 meter thick salt bed, which provides a remarkably stable rock formation for the permanent storage of nuclear waste. The underground facility is located 655 meters below the earth's surface, in the Salado formation, which comprises two-hundred million year old halites with minor amounts of clay and anhydrites. When completed, the WIPP underground facility will consist of two components: approximately 81 square kilometers of experimental areas, and approximately 405 square kilometers of repository. 3 figs

  13. Physical Experiments on the Deformation of Strata with Different Properties Induced by Underground Mining

    Directory of Open Access Journals (Sweden)

    Haifeng Hu

    2016-03-01

    Full Text Available Underground mining can cause ground and strata movements, which in turn cause damage to houses and the landscape. The different characteristics and properties of the strata encountered during mining can also result in corresponding deformation. In order to study the deformation and damage rules of strata which are composed of unconsolidated soil and bedrock induced by underground coal mining, a physical model that employs material sand, lime, and gypsum with water was utilized firstly to simulate strata and ground movements. Then overlying strata with different properties were created according to the corresponding ratio of the mixed material, physical models under two conditions (i.e., thick soil layer and thin bedrock, and thin soil layer and thick bedrock were set up. Lastly underground coal extraction was conducted using the proposed models. Results show that the proportion of unconsolidated soil layer in the overlying strata is the key factor that determines the significant differences in the movement of strata under the two special conditions. When the ratio of the soil layer is large, the unconsolidated soil layer is loaded on the bedrock; the bedrock is thus forced to move down, and the compression rate of the broken strata is increased. The soil layer follows the bedrock as an integral movement to subsidence. When the ratio of the soil layer is small, the load on the strata is small, but the structural function of the strata is obvious and the fraction degree in the strata is developed. The obtained results in this study can be applied to support mine planning in the aspect of ground damage evaluation.

  14. Radon as a radiation problem in underground mines and in houses - historical aspects

    International Nuclear Information System (INIS)

    Schuettmann, W.

    1992-01-01

    The paper briefly recalls the discovery of the radioisotope radon and the research into its properties and effects, referring among other things to the underground mining sites in the Erzgebirge and the Schneeberg lung disease. Today, the radiation exposure of underground miners in a radioactive environment is regarded to be a well-known risk manageable by today's state of the art in radiological protection. Radon as a radiation source in houses, however, remains the problem of great significance today. The paper reviews the current knowledge and approaches for solving this problem. (DG) [de

  15. Underground measurements of aerosol in radon and thoron progeny activity distributions

    International Nuclear Information System (INIS)

    Khan, A.; Bandi, F.; Phillips, C.R.; Duport, P.

    1990-01-01

    Aerosol and activity distributions of 218 Polonium, 214 Lead, 214 Bismuth, and 212 Lead were determined in two different underground mining environments by means of an optimized time-delay counting scheme and diffusion batteries. In one environment, diesel equipment was operating; and in the other, electrically powered equipment. The two environments differed significantly in total aerosol concentration. In the diesel environment, in particular, aerosol concentrations were unsteady, and fluctuated with vehicular traffic and mining activities. As measured by radon progeny disequilibrium, the age of the air ranged from about 25 to 60 minutes. Thoron working levels were of the same order as radon working levels. In this paper, comparisons are made between the aerosol and activity size distributions in both the diesel and electric mine

  16. Introduction of an automated mine surveying system - a method for effective control of mining operations

    Energy Technology Data Exchange (ETDEWEB)

    Mazhdrakov, M.

    1987-04-01

    Reviews developments in automated processing of mine survey data in Bulgaria for 1965-1970. This development has occurred in three phases. In the first phase, computers calculated coordinates of mine survey points; in the second phase, these data were electronically processed; in the third phase, surface and underground mine development is controlled by electronic data processing equipment. Centralized and decentralized electronic processing of data has been introduced at major coal mines. The Bulgarian Pravets 82 microcomputer and the ASMO-MINI program package are in current use at major coal mines. A lack of plotters, due to financial limitations, handicaps large-scale application of automated mine surveying in Bulgaria.

  17. Underground mine navigation using an integrated IMU/TOF system with unscented Kalman filter

    CSIR Research Space (South Africa)

    Hlophe, K

    2011-07-01

    Full Text Available & Factories of the Future Conference, 26-28 July 2011, Kuala Lumpur, Malaysia improve mine safety?, in 25th International Conference of CAD/CAM, Robotics & Factories of the Future, Pretoria, 2010. [2] J. J. Green and D. Vogt, Robot miner for low... Page 1 of 11 26th International Conference of CAD/CAM, Robotics & Factories of the Future Conference, 26-28 July 2011, Kuala Lumpur, Malaysia UNDERGROUND MINE NAVIGATION USING AN INTERGRATED IMU/TOF SYSTEM WITH UNSCENTED KALMAN FILTER...

  18. Water quality changes of a closed underground coal mine in Korea.

    Science.gov (United States)

    Cheong, Young Wook; Yim, Gil-Jae; Ji, Sang Woo; Kang, Sang Soo; Skousen, Jeffery

    2012-01-01

    The objective of this study was to assess the changes in mine water quality as an underground mine flooded from July 2005 to October 2008. The effect of air injection with a blower into the water was used to evaluate the potential to convert ferrous to ferric iron and to provide in situ treatment and precipitation. Mine flooding averaged 31 cm/day with a linear shape until November 2007, when it flattened out due to outflow. During flooding, mine water pH remained around 6, but Eh shifted from 200 to -150 mV. After the mine water level stabilized, contents of elements such as Fe and SO(4) tended to decrease as time passed. Air was injected by diffusers (150 L/min/each) at three different depths of 2, 3, and 5 m below the water level in the shaft. Dissolved oxygen eventually increased to 4 or 5 mg/L depending on the depth of the diffusers. Aeration caused conversion of ferrous iron to ferric iron and about 30 mg/l of iron was removed from the mine water. Therefore, air injection shows potential as a semi-active treatment or part of conventional treatment to precipitate iron in the mine pool.

  19. Early detection of spontaneous combustion of coal in underground coal mines with development of an ethylene enriching system

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Jun; Xue, Sheng [CSIRO Earth Science and Resource Engineering, Kenmore (Australia); Cheng, Weimin; Wang, Gang [Shandong University of Science and Technology, Qingdao (China)

    2011-01-01

    Spontaneous combustion of coal (sponcom) is a major hazard in underground coal mining operations. If not detected early and managed properly, it can seriously affect mine safety and productivity. Gaseous products of sponcom, such as carbon monoxide, ethylene and hydrogen, are commonly used in coal mines as indicators to reflect the state of the sponcom. Studies have shown that ethylene starts to occur when sponcom reaches a characteristic temperature. However, due to dilution of ventilation air and detection limits of the instruments used for gas analysis at coal mines, ethylene cannot be detected until the sponcom has developed past its early stage, missing an optimum opportunity for mine operators to control the hazard. To address the issue, an ethylene-enriching system, based on its physical adsorption and desorption properties, has been developed to increase detection sensitivity of the ethylene concentration in mine air by about 10 times. This system has successfully been applied in a number of underground coal mines in China to detect sponcom at its early stage and enable mine operators to take effective control measures. This paper describes the ethylene enriching system and its application. (author)

  20. Mine for sale

    International Nuclear Information System (INIS)

    Beer, G.

    2006-01-01

    The newest Slovak brown coal mine - Bana Zahorie is in crisis. Despite the fact that experts believe that along with Bana Novaky, it has the most potential. The owners have started its liquidation. One of the walls has collapsed and another part flooded. Nobody was hurt, but some equipment is still underground. The mine had already lost equipment in the past. During an accident in 2000, equipment worth several tens of millions was destroyed. 'After the accident, mining had to be stopped and from a technical point of view that was the end of the joint stock company, Bana Zahorie Cary. The company could not raise the funds necessary to recover from the accident,' stated the Director of the mine, Jan Palkovic. But he stressed that only the joint stock company is in liquidation, the mine is still being ventilated and the water is being pumped out. But the company management still does not want to specify who will become the new owner of the lignite deposits in Zahorie. The Director promised to publish more details within several weeks. All competencies and mining rights of the former Bana Zahorie are being transferred to a new company - joint stock company Bana Cary. (author)

  1. Proceedings of the 11. annual mining industry learning seminar : 2006 equipment evolutions

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, T. [Alberta Univ., Edmonton, AB (Canada). School of Mining and Petroleum Engineering] (comp.)

    2006-07-01

    This seminar provided a forum for mine engineers, geologists, operators, vendors and academics to discuss various topics on equipment evolution that address mining industry concerns. Participants included those who are involved in mine planning, equipment selection, operations and maintenance. The presentations identified possible solutions to ongoing issues and alternative technologies emerging in the mining industry. Operators and original equipment manufacturers shared their innovations in novel developments and presented solutions to issues relevant to mining processes including truck and shovel technology issues such as tires, lube and fuel emissions. The seminar featured 17 presentations, of which 5 have been catalogued separately for inclusion in this database. tabs., figs.

  2. The Increase of Power Efficiency of Underground Coal Mining by the Forecasting of Electric Power Consumption

    Science.gov (United States)

    Efremenko, Vladimir; Belyaevsky, Roman; Skrebneva, Evgeniya

    2017-11-01

    In article the analysis of electric power consumption and problems of power saving on coal mines are considered. Nowadays the share of conditionally constant costs of electric power for providing safe working conditions underground on coal mines is big. Therefore, the power efficiency of underground coal mining depends on electric power expense of the main technological processes and size of conditionally constant costs. The important direction of increase of power efficiency of coal mining is forecasting of a power consumption and monitoring of electric power expense. One of the main approaches to reducing of electric power costs is increase in accuracy of the enterprise demand in the wholesale electric power market. It is offered to use artificial neural networks to forecasting of day-ahead power consumption with hourly breakdown. At the same time use of neural and indistinct (hybrid) systems on the principles of fuzzy logic, neural networks and genetic algorithms is more preferable. This model allows to do exact short-term forecasts at a small array of input data. A set of the input parameters characterizing mining-and-geological and technological features of the enterprise is offered.

  3. Structural characterization of the rock mass of the underground mine Oro Descanso

    Directory of Open Access Journals (Sweden)

    Adeoluwa Olajesu Oluwaseyi

    2017-10-01

    Full Text Available In the rocky massif where the Oro Descanso underground mine is located, an assessment was made of the physical-mechanical properties of rocks, cracking and blocking, in order to propose safe tillage measures for underground mining excavations using appropriate empirical methods. From the evaluation made it was concluded that the massif is composed of areas of rocks of different quality: good, fair and poor. It is proposed for the area of good quality to work excavations with complete advance, of free length 1.0-1.5 m, using in the crown the support of cemented anchors of diameter 20 mm, length 3 m and spaced 2.5 m and apply concrete released 50 mm thick. For the zone of bad and regular quality, it is suggested to work in stepwise progression, of free length of 1-3 m and after each blasting, to install in the crown, cemented anchors of diameter 20 mm, length 4-5 m and spacing 1-2 m, placing on the sides metallic mesh, with concrete cast 50-150 mm thick.

  4. The 3rd annual Australian contract mining conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Papers discussed: the termination of contract debate - implications for the industry; contract industry`s outlook; viability of contract mining at ERA`s Ranger mine in the Northern Territory; obtaining superior operational performance, and reducing risk, using mining contractors; industry consolidation, contracts and market trends; mining equipment financing - the operating lease alternative; Portman Mining Ltd.; development of contract mining within the coal operations of Eastern Australia; case study - Thiess. contractors` experience in operating the Collinsville coal mine for the MIM/Itochu joint venture; integrating contractor management on mines with duty of care; the risk variables; and conflicting objectives - mine optimisation and the underground contract.

  5. Experimental Characterization of Ultra-Wideband Channel Parameter Measurements in an Underground Mine

    Directory of Open Access Journals (Sweden)

    B. Nkakanou

    2011-01-01

    Full Text Available Experimental results for an ultra-wideband (UWB channel parameters in an underground mining environment over a frequency range of 3 GHz to 10 GHz are reported. The measurements were taken both in LOS and NLOS cases in two different size mine galleries. In the NLOS case, results were acquired for different corridor obstruction angles. The results were obtained during an extensive measurement campaign in the UWB frequency, and the measurement procedure allows both the large- and small-scale parameters such as the path loss exponent, coherence bandwidth, and so forth, to be quantified. The capacity of the UWB channel as a function of the physical depth of the mine gallery has also been recorded for comparison purposes.

  6. Groundwater-quality data associated with abandoned underground coal mine aquifers in West Virginia, 1973-2016: Compilation of existing data from multiple sources

    Science.gov (United States)

    McAdoo, Mitchell A.; Kozar, Mark D.

    2017-11-14

    This report describes a compilation of existing water-quality data associated with groundwater resources originating from abandoned underground coal mines in West Virginia. Data were compiled from multiple sources for the purpose of understanding the suitability of groundwater from abandoned underground coal mines for public supply, industrial, agricultural, and other uses. This compilation includes data collected for multiple individual studies conducted from July 13, 1973 through September 7, 2016. Analytical methods varied by the time period of data collection and requirements of the independent studies.This project identified 770 water-quality samples from 294 sites that could be attributed to abandoned underground coal mine aquifers originating from multiple coal seams in West Virginia.

  7. Internet technologies in the mining industry. Towards unattended mining systems

    Energy Technology Data Exchange (ETDEWEB)

    Krzykawski, Michal [FAMUR Group, Katowice (Poland)

    2009-08-27

    Global suppliers of longwall systems focus mainly on maximising the efficiency of the equipment they manufacture. Given the fact that, since 2004, coal demand on world markets has been constantly on the increase, even during an economic downturn, this endeavour seems fully justified. However, it should be remembered that maximum efficiency must be accompanied by maximum safety of all underground operations. This statement is based on the belief that the mining industry, which exploits increasingly deep and dangerous coal beds, faces the necessity to implement comprehensive IT systems for managing all mining processes and, in the near future, to use unmanned mining systems, fully controllable from the mine surface. The computerisation of mines is an indispensable element of the development of the world mining industry, a belief which has been put into practice with e-mine, developed by the FAMUR Group. (orig.)

  8. Underground transmission tomography

    International Nuclear Information System (INIS)

    Geibka, C.

    1990-01-01

    Several underground tomographic transmission surveys have been carried out. Targets were cavities, ore veins and fault zones. Examples from measurements in a german heavy/fluor spar mine a lead/zinc mine and a rock laboratory of the Swiss National Cooperative for the Storage of Radioactive waste are presented. Measurements were carried out between boreholes and road ways. The recording equipment was the intrinsically safe SEAMEX85 system built and sold by WBK. Receivers were mounted in a chain of 6 two-component probes. Sources were an inhole hammer a sledge hammer a sparker and explosives from a single detonator to 180 g depending on the distance and absorption of the rock material. Cavities showed very distinct velocity reductions between 30 and 50%. Different vein material showed velocity reduction as well as velocity increase relative to the surrounding rock

  9. 75 FR 39735 - Mandatory Reporting of Greenhouse Gases From Magnesium Production, Underground Coal Mines...

    Science.gov (United States)

    2010-07-12

    ... sectors of the economy, including fossil fuel suppliers, industrial gas suppliers, and direct emitters of... Part II Environmental Protection Agency 40 CFR Part 98 Mandatory Reporting of Greenhouse Gases From Magnesium Production, Underground Coal Mines, Industrial Wastewater Treatment, and Industrial...

  10. Structural implications of underground coal mining in the Mesaverde Group in the Somerset Coal Field, Delta and Gunnison Counties, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Christopher J. Carroll; Eric Robeck; Greg Hunt; Wendell Koontz [Colorado Geological Survey, Denver, CO (United States)

    2004-07-01

    Paleogene and Neogene faults and fractures on the eastern edge of the Colorado Plateau are present in Mesaverde Group coal and sandstone beds. Recent observations of coal cleat orientation in relation to faults in coal mines have significant impacts for mine planning in the area. Faults, coal cleats, and natural fractures are interpreted to show a structural evolution of the Mesaverde Group through time. This field trip included a visit to two active underground coal mines, the Bowie Resources' Bowie No. 2 Mine, and Mountain Coal's West Elk Mine. Mine geologists discussed structural styles including fault orientations and timing, cleat development, and rotation. Geologic encounters ranging from fault flooding, subsidence, mine fires, methane gas problems, and land use restrictions were also discussed. Coal cleat development and open-mode fractures in adjacent sandstones were observed on outcrops and compared to underground measurements in coal mines in the Somerset Coal Field, Colorado's most productive. Coal cleat orientations along a reverse fault in one mine showed rotation in relation to possible Neogene age displacement.

  11. Comparison of Distributed Acoustic Sensing (DAS) from Fiber-Optic Cable to Three Component Geophones in an Underground Mine

    Science.gov (United States)

    Speece, M. A.; Nesladek, N. J.; Kammerer, C.; Maclaughlin, M.; Wang, H. F.; Lord, N. E.

    2017-12-01

    We conducted experiments in the Underground Education Mining Center on the Montana Tech campus, Butte, Montana, to make a direct comparison between Digital Acoustic Sensing (DAS) and three-component geophones in a mining setting. The sources used for this project where a vertical sledgehammer, oriented shear sledgehammer, and blasting caps set off in both unstemmed and stemmed drillholes. Three-component Geospace 20DM geophones were compared with three different types of fiber-optic cable: (1) Brugg strain, (2) Brugg temperature, and (3) Optical Cable Corporation strain. We attached geophones to the underground mine walls and on the ground surface above the mine. We attached fiber-optic cables to the mine walls and placed fiber-optic cable in boreholes drilled through an underground pillar. In addition, we placed fiber-optic cables in a shallow trench at the surface of the mine. We converted the DAS recordings from strain rate to strain prior to comparison with the geophone data. The setup of the DAS system for this project led to a previously unknown triggering problem that compromised the early samples of the DAS traces often including the first-break times on the DAS records. Geophones clearly recorded the explosives; however, the large amount of energy and its close distance from the fiber-optic cables seemed to compromise the entire fiber loop. The underground hammer sources produced a rough match between the DAS records and the geophone records. However, the sources on the surface of the mine, specifically the sources oriented inline with the fiber-optic cables, produced a close match between the fiber-optic traces and the geophone traces. All three types of fiber-optic cable that were in the mine produced similar results, and one type did not clearly outperform the others. Instead, the coupling of the cable to rock appears to be the most important factor determining DAS data quality. Moreover, we observed the importance of coupling in the boreholes, where

  12. A Look into Miners' Health in Prevailing Ambience of Underground Coal Mine Environment

    Science.gov (United States)

    Dey, N. C.; Pal, S.

    2012-04-01

    Environmental factors such as noise, vibration, illumination, humidity, temperature and air velocity, etc. do play a major role on the health, comfort and efficient performance of underground coal miners at work. Ergonomics can help to promote health, efficiency and well being of miners and to make best use of their capabilities within the ambit of underground coal mine environment. Adequate work stretch and work-rest scheduling have to be determined for every category of miners from work physiology point of view so as to keep better health of the miners in general and to have their maximum efficiency at work in particular.

  13. A jewel in the desert: BHP Billiton's San Juan underground mine

    Energy Technology Data Exchange (ETDEWEB)

    Buchsbaum, L.

    2007-12-15

    The Navajo Nation is America's largest native American tribe by population and acreage, and is blessed with large tracks of good coal deposits. BHP Billiton's New Mexico Coal Co. is the largest in the Navajo regeneration area. The holdings comprise the San Juan underground mine, the La Plata surface mine, now in reclamation, and the expanding Navajo surface mine. The article recounts the recent history of the mines. It stresses the emphasis on sensitivity to and helping to sustain tribal culture, and also on safety. San Juan's longwall system is unique to the nation. It started up as an automated system from the outset. Problems caused by hydrogen sulfide are being tackled. San Juan has a bleederless ventilation system to minimise the risk of spontaneous combustion of methane and the atmospheric conditions in the mine are heavily monitored, especially within the gob areas. 3 photos.

  14. Potential and challenges of VLC based IPS in underground mines

    OpenAIRE

    Seguel, Fabián; Soto, Ismael; ADASME, Pablo; Krommenacker, Nicolas; Charpentier, Patrick

    2017-01-01

    International audience; Chile is the largest copper producer in the world. In the world, almost 40% of copper is produced underground and it is expected that the activity will reach the 60% of the total mining activity. Because of this, there will be new challenges in terms of safety and productivity. Visible Light Communications (VLC) is a new technology capable to provide illumination and communication at the same time. This technology has shown high accuracy in localization and tacking for...

  15. Research on hydraulic system of KZC-5 type rear dump truck in underground mine

    International Nuclear Information System (INIS)

    Lei Zeyong

    2005-01-01

    KZC-5 type rear dump truck in underground mine is introduced in this paper. The determining principles and ways of two main hydraulic systems are discussed. It has been proved that the hydraulic systems are reasonable in the industrial scale test. (author)

  16. 30 CFR 57.4761 - Underground shops.

    Science.gov (United States)

    2010-07-01

    ... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and... toxic gases from a fire originating in an underground shop where maintenance work is routinely done on...

  17. A novel method for estimating methane emissions from underground coal mines: The Yanma coal mine, China

    Science.gov (United States)

    Ji, Zhong-Min; Chen, Zhi-Jian; Pan, Jie-Nan; Niu, Qing-He

    2017-12-01

    As the world's largest coal producer and consumer, China accounts for a relatively high proportion of methane emissions from coal mines. Several estimation methods had been established for the coal mine methane (CMM) emission. However, with large regional differences, various reservoir formation types of coalbed methane (CBM) and due to the complicated geological conditions in China, these methods may be deficient or unsuitable for all the mining areas (e.g. Jiaozuo mining area). By combing the CMM emission characteristics and considering the actual situation of methane emissions from underground coal mine, we found that the methane pre-drainage is a crucial reason creating inaccurate evaluating results for most estimation methods. What makes it so essential is the extensive pre-drainage quantity and its irrelevance with annual coal production. Accordingly, the methane releases were divided into two categories: methane pre-drainage and methane release during mining. On this basis, a pioneering method for estimating CMM emissions was proposed. Taking the Yanma coal mine in the Jiaozuo mining area as a study case, the evaluation method of the pre-drainage methane quantity was established after the correlation analysis between the pre-drainage rate and time. Thereafter, the mining activity influence factor (MAIF) was first introduced to reflect the methane release from the coal and rock seams around where affected by mining activity, and the buried depth was adopted as the predictor of the estimation for future methane emissions. It was verified in the six coal mines of Jiaozuo coalfield (2011) that the new estimation method has the minimum errors of 12.11%, 9.23%, 5.77%, -5.20%, -8.75% and 4.92% respectively comparing with other methods. This paper gives a further insight and proposes a more accurate evaluation method for the CMM emissions, especially for the coal seams with low permeability and strong tectonic deformation in methane outburst coal mines.

  18. FLEXOWELL vertical lift systems in underground mining and construction industries

    Energy Technology Data Exchange (ETDEWEB)

    Paelke, J.W.

    1988-06-01

    Mining and quarrying companies are seeking improved and more continuous transport methods to reduce their costs. Frequently in the past the use of conveyors has been ruled out in steep mining applications but now the Scholtz FLEXOWELL belting which can be used at angles up to the vertical will enable many mines to consider complete belt conveyor systems for the first time. Applications will include steep conveyors for surface mines and quarries in order to eliminate the need for expensive and noisy fleets of trucks and the associated requirements to maintain haul roads. A further field is in the use of steep or vertical conveyors in underground mines to ensure improved continuity of output in existing shaft systems or reduced development costs in new mines. The Scholtz company, a member of the Nokia Group which had sales of about 3.5 billion U.S. Dollars in 1987, has more than 20 years experience with their FLEXOWELL belts. Over 40,000 units are operating around the world. These are already fully proven for vertical lifts of over 100 m (328ft) and up to 500 m (1,640 ft) is possible. Tonnage ratings of up to 4,000 t/h are achievable. Widespread acceptance of this technology has resulted in unique and major installations over the past few years. This paper reviews various applications - from the viewpoint of successfully proven vertical lift systems as well as the maintenance and downtime aspects. 3 refs., 9 figs.

  19. Assessment of professional risk caused by heating microclimate in the process of un-derground mining

    OpenAIRE

    М. Л. Рудаков; И. С. Степанов

    2017-01-01

    The paper reviews the possibility to apply probit-function to assess professional risks of underground mining under conditions of heating microclimate. Operations under conditions of heating microclimate, whose parameters exceed threshold criteria, can lead to dehydration, fainting and heat stroke for mine workers. Basing on the results of medico-biological research on the effects of microclimate on human body, the authors have assessed probabilistic nature of excessive heat accumulation depe...

  20. Real time gamma monitoring for employees working in an operational underground copper / uranium mine

    International Nuclear Information System (INIS)

    Lawrence, Cameron E.

    2010-01-01

    For many years electronic devices have been available that are compact enough to utilise for personal gamma radiation monitoring. At BHP Billiton's Olympic Dam underground copper / uranium mine two different types of electronic gamma dosimeters are being used to assess and control exposure to gamma rays present in the underground operations. Canberra Dosicards are being used as part of a program that replaced the use of monthly issued Thermoluminescent Dosimeter (TLD) badges with quarterly issue for some work groups. Two types of Polimaster gamma watches have also been introduced to specific work groups to assist with the determination of sites that may require remedial controls for their level of gamma radiation. To date, both programs have been successfully implemented into the radiation monitoring program for the underground operation and have provided dramatic improvements for the control and determination of sources of gamma radiation in the underground environment.

  1. State-of-the-art study of resource characterization and planning for underground coal mining. Final technical report as of June 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Walton, D.; Ingham, W.; Kauffman, P.

    1980-06-01

    With the rapid developments taking place in coal mining technology and due to high investment costs, optimization of the structure of underground coal mines is crucial to the success of the mining project. The structure of a mine, once it is developed, cannot be readily changed and has a decisive influence on the productivity, safety, economics, and production capacity of the mine. The Department of Energy desires to ensure that the resource characterization and planning activity for underground coal mining will focus on those areas that offer the most promise of being advanced. Thus, this project was undertaken by Management Engineers Incorporated to determine the status in all aspects of the resource characterization and planning activities for underground coal mining as presently performed in the industry. The study team conducted a comprehensive computerized literature search and reviewed the results. From this a selection of the particularly relevant sources were annotated and a reference list was prepared, catalogued by resource characterization and mine planning activity. From this data, and discussions with industry representatives, academia, and research groups, private and federal, an assessment and evaluation was made of the state-of-the-art of each element in the resource characterization and mine planning process. The results of this analysis lead to the identifcation of areas requiring research and, specifically, those areas where DOE research efforts may be focused.

  2. Occupational exposures in underground gold mines in South Africa. An overview

    International Nuclear Information System (INIS)

    Khoathane, M.

    2002-01-01

    South Africa has a very large mining and minerals processing industry exploiting a variety of ores and minerals containing elevated levels of NORM. The industry employs more than 300,000 persons. Doses have been assessed to workers in the mining industry in South Africa. In the gold mining industry radon measurements have been performed since the early 1970s. Regulations have been in force since 1990. The mean annual dose to underground gold mine workers, mostly from radon progeny, is about 5 mSv with maximum doses exceeding 20 mSv. The maximum annual dose to surface workers in gold mines is 5 mSv. In South African coal mines the mean annual dose from inhalation of radon decay products has been estimated from limited radon concentration measurements to be about 0.6 mSv. In the phosphoric acid and fertilizer production industry the doses to the workers do not exceed 6 mSv/y. There are 3 mineral sands operations in South Africa, for which the maximum annual dose to workers is 3 mSv. One open pit copper mine contains elevated levels of U, which is extracted as a by-product. The maximum annual doses to workers are 5 mSv for workers in the mine and 20 mSv for workers in the metallurgical plant. Worker doses in the metallurgical plant have since been reduced with the introduction of radiation protection measures

  3. Challenges associated with the design of underground grinding plant at McArthur River project

    International Nuclear Information System (INIS)

    Jamrozek, J.S.

    2000-01-01

    McArthur River is an unique high grade uranium underground mine. Ore grinding and thickening are part of the underground operation. The grinding circuit is designed to operate in conditions different from conventional plant environments. Design of the grinding plant was a collective effort of a multi-disciplinary engineering team closely cooperating with project operating personnel. The equipment had to be selected to reflect widely varying ore properties. A user-friendly plant layout provides access to equipment inspections, services, and the delivery of necessary components. The size of the grinding chamber was limited in order to keep the rock stress levels within allowable values. All underground equipment brought to the construction site was restricted in size and weight. Plant construction faced limited storage space underground, tight erection sequencing, and schedule. Plant ventilation is a critical design feature. It efficiently removes radioactive dust from work areas, eliminates stagnant air pockets, and separates clean air from contaminated air areas. Radiation shielding on the equipment is designed to correspond with operational and maintenance functions. Plant operation is remotely controlled and requires little attendance. Video cameras are used on critical equipment and in controlled access areas. An extensive program of preventive and predictive maintenance allows highly reliable plant operation. (author)

  4. An evaluation of fuels and retrofit diesel particulate filters to reduce diesel particulate matter emissions in an underground mine

    CSIR Research Space (South Africa)

    Wattrus, MC

    2016-09-01

    Full Text Available Through an industry wide collaborative project, this paper explores what potential exists for South African underground mines to reduce diesel particulate emissions, where the starting point is a mine using older engine technology (Tier 1 emission...

  5. A Wireless LAN and Voice Information System for Underground Coal Mine

    OpenAIRE

    Yu Zhang; Wei Yang; Dongsheng Han; Young-Il Kim

    2014-01-01

    In this paper we constructed a wireless information system, and developed a wireless voice communication subsystem based on Wireless Local Area Networks (WLAN) for underground coal mine, which employs Voice over IP (VoIP) technology and Session Initiation Protocol (SIP) to achieve wireless voice dispatching communications. The master control voice dispatching interface and call terminal software are also developed on the WLAN ground server side to manage and implement the voice dispatching co...

  6. Exploitation study of the ore-body ''Tigre III''. Open-cut design and study of high-recovery underground mining method for the Tigre III ore-body

    International Nuclear Information System (INIS)

    Baluszka, J.C.

    1980-01-01

    The paper first carries out an analysis for the purpose of determining the limiting sterile/ore ratio for open-cut and underground mining in the specific filling case of Tigre III. In this connection it considers a high-recovery method of underground mining (involving the use of cemented hydropneumatic chambers), a general mine plan covering access, transport, ventilation and removal of ore as well as auxiliary services relating to the Tigre III ore body as a whole. The costs of this method of mining are determined for purposes of comparison with the open-cut method. Similarly, the limiting sterile/ore ratio is taken as the basis for an analysis of different types of pit and a design suited to the limiting ratio is adopted. As a final solution the paper favours a method which combines open-cut and underground mining. It proposes the use of the open-cut method up to the limiting ratio (in accordance with the pit design chosen) and of underground method (by the filling chamber method) for the rest of the area. (author)

  7. Monitoring of the stability of underground workings in Polish copper mines conditions

    Science.gov (United States)

    Fuławka, Krzysztof; Mertuszka, Piotr; Pytel, Witold

    2018-01-01

    One of the problems associated with the excavation of deposit in underground mines is the local disturbance in a state of unstable equilibrium results in the sudden release of energy, mainly in the form of roof falls. The scale and intensity of this type of events depends on a number of factors. To minimize the risk of instability occurrence, continuous observations of the roof strata condition are recommended. Different roof strata observation methods used in the Polish copper mines have been analysed within the framework of presented paper. In addition, selected prospective methods, which could significantly increase efficiency of rock fall prevention are presented.

  8. Optimizing wireless LAN for longwall coal mine automation

    Energy Technology Data Exchange (ETDEWEB)

    Hargrave, C.O.; Ralston, J.C.; Hainsworth, D.W. [Exploration & Mining Commonwealth Science & Industrial Research Organisation, Pullenvale, Qld. (Australia)

    2007-01-15

    A significant development in underground longwall coal mining automation has been achieved with the successful implementation of wireless LAN (WLAN) technology for communication on a longwall shearer. WIreless-FIdelity (Wi-Fi) was selected to meet the bandwidth requirements of the underground data network, and several configurations were installed on operating longwalls to evaluate their performance. Although these efforts demonstrated the feasibility of using WLAN technology in longwall operation, it was clear that new research and development was required in order to establish optimal full-face coverage. By undertaking an accurate characterization of the target environment, it has been possible to achieve great improvements in WLAN performance over a nominal Wi-Fi installation. This paper discusses the impact of Fresnel zone obstructions and multipath effects on radio frequency propagation and reports an optimal antenna and system configuration. Many of the lessons learned in the longwall case are immediately applicable to other underground mining operations, particularly wherever there is a high degree of obstruction from mining equipment.

  9. Computational fluid dynamics (CFD) investigation of impacts of an obstruction on airflow in underground mines.

    Science.gov (United States)

    Zhou, L; Goodman, G; Martikainen, A

    2013-01-01

    Continuous airflow monitoring can improve the safety of the underground work force by ensuring the uninterrupted and controlled distribution of mine ventilation to all working areas. Air velocity measurements vary significantly and can change rapidly depending on the exact measurement location and, in particular, due to the presence of obstructions in the air stream. Air velocity must be measured at locations away from obstructions to avoid the vortices and eddies that can produce inaccurate readings. Further, an uninterrupted measurement path cannot always be guaranteed when using continuous airflow monitors due to the presence of nearby equipment, personnel, roof falls and rib rolls. Effective use of these devices requires selection of a minimum distance from an obstacle, such that an air velocity measurement can be made but not affected by the presence of that obstacle. This paper investigates the impacts of an obstruction on the behavior of downstream airflow using a numerical CFD model calibrated with experimental test results from underground testing. Factors including entry size, obstruction size and the inlet or incident velocity are examined for their effects on the distributions of airflow around an obstruction. A relationship is developed between the minimum measurement distance and the hydraulic diameters of the entry and the obstruction. A final analysis considers the impacts of continuous monitor location on the accuracy of velocity measurements and on the application of minimum measurement distance guidelines.

  10. Feasibility of CO2 Sequestration as a Closure Option for Underground Coal Mine

    Science.gov (United States)

    Ray, Sutapa; Dey, Kaushik

    2018-01-01

    The Kyoto Protocol, 1998, was signed by member countries to reduce greenhouse gas (GHG) emissions to a minimum acceptable level. India agreed to Kyoto Protocol since 2002 and started its research on GHG mitigation. Few researchers have carried out research work on CO2 sequestration in different rock formations. However, CO2 sequestration in abandoned mines has yet not drawn its attention largely. In the past few years or decades, a significant amount of research and development has been done on Carbon Capture and Storage (CCS) technologies, since it is a possible solution for assuring less emission of CO2 to the atmosphere from power plants and some other major industrial plants. CCS mainly involves three steps: (a) capture and compression of CO2 from source (power plants and industrial areas), (b) transportation of captured CO2 to the storage mine and (c) injecting CO2 into underground mine. CO2 is stored at an underground mine mainly in three forms: (1) adsorbed in the coals left as pillars of the mine, (2) absorbed in water through a chemical process and (3) filled in void with compressed CO2. Adsorption isotherm is a graph developed between the amounts of adsorbate adsorbed on the surface of adsorbent and the pressure at constant temperature. Various types of adsorption isotherms are available, namely, Freundlich, Langmuir and BET theory. Indian coal is different in origin from most of the international coal deposits and thus demands isotherm experiments of the same to arrive at the right adsorption isotherm. To carry out these experiments, adsorption isotherm set up is fabricated in the laboratory with a capacity to measure the adsorbed volume up to a pressure level of 100 bar. The coal samples are collected from the pillars and walls of the underground coal seam using a portable drill machine. The adsorption isotherm experiments have been carried out for the samples taken from a mine. From the adsorption isotherm experiments, Langmuir Equation is found to be

  11. Feasibility of CO2 Sequestration as a Closure Option for Underground Coal Mine

    Science.gov (United States)

    Ray, Sutapa; Dey, Kaushik

    2018-04-01

    The Kyoto Protocol, 1998, was signed by member countries to reduce greenhouse gas (GHG) emissions to a minimum acceptable level. India agreed to Kyoto Protocol since 2002 and started its research on GHG mitigation. Few researchers have carried out research work on CO2 sequestration in different rock formations. However, CO2 sequestration in abandoned mines has yet not drawn its attention largely. In the past few years or decades, a significant amount of research and development has been done on Carbon Capture and Storage (CCS) technologies, since it is a possible solution for assuring less emission of CO2 to the atmosphere from power plants and some other major industrial plants. CCS mainly involves three steps: (a) capture and compression of CO2 from source (power plants and industrial areas), (b) transportation of captured CO2 to the storage mine and (c) injecting CO2 into underground mine. CO2 is stored at an underground mine mainly in three forms: (1) adsorbed in the coals left as pillars of the mine, (2) absorbed in water through a chemical process and (3) filled in void with compressed CO2. Adsorption isotherm is a graph developed between the amounts of adsorbate adsorbed on the surface of adsorbent and the pressure at constant temperature. Various types of adsorption isotherms are available, namely, Freundlich, Langmuir and BET theory. Indian coal is different in origin from most of the international coal deposits and thus demands isotherm experiments of the same to arrive at the right adsorption isotherm. To carry out these experiments, adsorption isotherm set up is fabricated in the laboratory with a capacity to measure the adsorbed volume up to a pressure level of 100 bar. The coal samples are collected from the pillars and walls of the underground coal seam using a portable drill machine. The adsorption isotherm experiments have been carried out for the samples taken from a mine. From the adsorption isotherm experiments, Langmuir Equation is found to be

  12. 30 CFR 75.1310 - Explosives and blasting equipment.

    Science.gov (United States)

    2010-07-01

    ... for use so long as the present approval is maintained. (e) Electric detonators shall be compatible... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosives and blasting equipment. 75.1310... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1310...

  13. 30 CFR 57.22304 - Approved equipment (II-A mines).

    Science.gov (United States)

    2010-07-01

    ...) Cutting and drilling equipment used at a face or bench shall be approved by MSHA under the applicable requirements of 30 CFR parts 18 through 36. (b) While cutting or drilling is in progress, equipment not... nonapproved equipment is taken to a face or bench after blasting. (d) Mine power transformers and stationary...

  14. Selection and use of fire-resistant hydraulic fluids for underground mining equipment. [Oil-in-water emulsions; water-in-oil emulsions; phosphate esters; chlorinated hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, A J

    1981-02-01

    During the initial introduction of fire-resistant fluids to the Canadian underground mining industry, all hydraulic systems for which they were being considered were originally designed for operation with mineral oil. This meant that each system had to be individually examined and assessed with regard to its suitability in terms of acceptable component life and operation, at the same time as the selection of a fluid was being undertaken. Fluid selection by cost differential, toxicity content and fire resistancy was narrowed to types HFB and HFC, with HFB water-in-oil emulsion being the preferred fluid based on performance characteristics. By incorporating British mining industry experience and superior fluid types with practical trials, it was found that by modifing the design of some systems and slightly derating the operational parameters of individual components, it was possible to obtain a system performance comparable to that obtained when mineral oil was being used.

  15. Possible alternatives for diesel powered mobile equipment for the conditions of deep mines

    Energy Technology Data Exchange (ETDEWEB)

    Paraszczak, J.; Kotersi, O [Laval Univ., Quebec City, PQ (Canada). Dept. of Mining, Metallurgical and Materials Engineering

    2008-07-01

    The challenges associated with mining at considerable depths were discussed. Mines such as Kidd Creek, LaRonde and Creighton are deeper than 2500 m. High rock temperature is among the challenges that operators face in such conditions. Conventional diesel powered load-hauling equipment constitute an additional source of heat and noxious gases. As such, more intense ventilation is needed in order to keep ambient temperature and air quality at a level that is acceptable for human workers. This paper examined possible alternatives for diesel powered equipment, including those that are commercially available as well as those that are underdevelopment or in the prototype stage. The equipment was reviewed with reference to the required infrastructure, stage of technology development and progress. The flexibility, practicality and economic viability of the equipment was also investigated. The potential for its use in deep Canadian mines was discussed along with the most promising drive alternatives for vehicles designed for deep mine operations. Electric drives have proven to be effective in many mining applications since they have significant advantages over diesel drives. The characteristics of cable powered equipment, trolley-wire powered equipment, and battery powered equipment were described. The key advantages and disadvantages of hybrid diesel electric equipment were also reviewed along with the viability of power plants based on the use of hydrogen. The principle types of hydrogen power plants include hydrogen combustion engines; HY-Drive systems and fuel cells. It was concluded that although there is no viable alternative for diesel engines at present, Canadian mining companies operating at great depths have made significant progress in these fields and remain among the leaders in mining innovation. 17 refs.

  16. Protective and control relays as coal-mine power-supply ACS subsystem

    Science.gov (United States)

    Kostin, V. N.; Minakova, T. E.

    2017-10-01

    The paper presents instantaneous selective short-circuit protection for the cabling of the underground part of a coal mine and central control algorithms as a Coal-Mine Power-Supply ACS Subsystem. In order to improve the reliability of electricity supply and reduce the mining equipment down-time, a dual channel relay protection and central control system is proposed as a subsystem of the coal-mine power-supply automated control system (PS ACS).

  17. Use of electrical resistivity to detect underground mine voids in Ohio

    Science.gov (United States)

    Sheets, Rodney A.

    2002-01-01

    Electrical resistivity surveys were completed at two sites along State Route 32 in Jackson and Vinton Counties, Ohio. The surveys were done to determine whether the electrical resistivity method could identify areas where coal was mined, leaving air- or water-filled voids. These voids can be local sources of potable water or acid mine drainage. They could also result in potentially dangerous collapse of roads or buildings that overlie the voids. The resistivity response of air- or water-filled voids compared to the surrounding bedrock may allow electrical resistivity surveys to delineate areas underlain by such voids. Surface deformation along State Route 32 in Jackson County led to a site investigation, which included electrical resistivity surveys. Several highly resistive areas were identified using axial dipole-dipole and Wenner resistivity surveys. Subsequent drilling and excavation led to the discovery of several air-filled abandoned underground mine tunnels. A site along State Route 32 in Vinton County, Ohio, was drilled as part of a mining permit application process. A mine void under the highway was instrumented with a pressure transducer to monitor water levels. During a period of high water level, electrical resistivity surveys were completed. The electrical response was dominated by a thin, low-resistivity layer of iron ore above where the coal was mined out. Nearby overhead powerlines also affected the results.

  18. The Spatial Assessment of the Current Seismic Hazard State for Hard Rock Underground Mines

    Science.gov (United States)

    Wesseloo, Johan

    2018-06-01

    Mining-induced seismic hazard assessment is an important component in the management of safety and financial risk in mines. As the seismic hazard is a response to the mining activity, it is non-stationary and variable both in space and time. This paper presents an approach for implementing a probabilistic seismic hazard assessment to assess the current hazard state of a mine. Each of the components of the probabilistic seismic hazard assessment is considered within the context of hard rock underground mines. The focus of this paper is the assessment of the in-mine hazard distribution and does not consider the hazard to nearby public or structures. A rating system and methodologies to present hazard maps, for the purpose of communicating to different stakeholders in the mine, i.e. mine managers, technical personnel and the work force, are developed. The approach allows one to update the assessment with relative ease and within short time periods as new data become available, enabling the monitoring of the spatial and temporal change in the seismic hazard.

  19. Development of the testing procedure for units and elements of mining equipment

    Directory of Open Access Journals (Sweden)

    P. B. Gerike

    2017-09-01

    Full Text Available The author considers in detail the stages of creating a testing procedure for mining equipment based on the complex implementation of principles of nondestructive testing and technical diagnostics. The author substantiates effectiveness of application of a complex diagnostic approach for assessing the state of metal structures and energy-mechanical equipment of mining machines. The opportunity for timely detection of defects, regardless of their type and degree of danger, presents itself only with a wide application of the modern methods of vibration diagnostics and nondestructive testing. The author substantiates the effectiveness of specific combination of methods of nondestructive testing, most optimally suited for solving given tasks. The article contains the developed complex of more than 120 diagnostic rules, suitable for performing automated analysis of vibroacoustic signal and revealing the main damages of energy-mechanical equipment based on selective groups of informative frequencies. The author formulates the main criteria that one can use as a basic platform for improving the methodology for normalizing the parameters of mechanical oscillations. The developed diagnostic criteria became a basis for the development of individual spectral masks suitable for performing the analysis of parameters of vibroacoustic waves generated during operation of mining equipment. The author proves necessity of transition of repair and maintenance divisions of industrial enterprises to the system of maintenance of machinery according to its actual technical state, and the developed complex of diagnostic rules for detecting defects can serve as a platform for the implementation of basic elements of this system. The author substantiates the principal validity of the developed methodology for testing mining machines equipment and its individual elements, such as the predictive modeling of degradation of technical state of mining equipment and the

  20. Determining origin of underground water in coal mines by means of natural isotopes and other geochemical parameters

    Energy Technology Data Exchange (ETDEWEB)

    Dolenec, T; Pezdic, J; Herlec, U; Kuscer, D; Mitrevski, G [Institut Josef Stefan, Ljubljana (Yugoslavia)

    1989-07-01

    Presents a preliminary report on origin of water in Slovenian brown coal mines. Water, coal and strata samples from the Hrastnik and Ojstro mines were analyzed for changes in chemical composition. Water samples were also analyzed for changes in isotopic composition and inorganic carbon and sulfur contents. Chemical, isotopic and geochemical techniques are described and results are presented with 21 diagrams. An attempt is made to explain the origin and age of water flowing from mine aquifers into mine rooms, and to explain the interdependence of surface and underground water flow. 10 refs.

  1. Using tracers to understand the hydrology of an abandoned underground coal mine

    International Nuclear Information System (INIS)

    Canty, G.A.; Everett, J.W.

    1998-01-01

    Flooded underground mines pose a difficult problem for remediation efforts requiring hydrologic information. Mine environments are hydraulically complicated due to sinuous travel paths and variable hydraulic gradients. For an acidic mine remediation project, conducted by the University of Oklahoma in conjunction with the Oklahoma Conservation Commission, a tracer study was undertaken to identify basic hydrologic properties of a flooded coal mine. The study was conducted to investigate the possibility of in-situ remediation of acidic mine water with the use of alkaline coal combustion by-products. Information on the rate of flow and ''connectiveness'' of injection wells with the discharge point was needed to develop a treatment strategy. Fluorescent dyes are not typically used in mine tracer studies because of the low pH values associated with certain mines and a tendency to adsorb ferric iron precipitates. However, Rhodamine WT was used in one tracer test because it can be detected at low concentrations. Due to poor recovery, a second tracer test was undertaken using a more conservative tracer-chloride. Each tracer produced similar travel time results. Findings from this study suggest that Rhodamine WT can be used under slightly acidic conditions, with mixed results. The more conservative tracer provided somewhat better results, but recovery was still poor. Use of these tracers has provided some valuable information with regard to mine hydrology, but additional questions have been raised

  2. Research on Health State Perception Algorithm of Mining Equipment Based on Frequency Closeness

    Directory of Open Access Journals (Sweden)

    Gang Wang

    2014-06-01

    Full Text Available The health state perception of mining equipment is intended to have an online real- time knowledge and analysis of the running conditions of large mining equipments. Due to its unknown failure mode, a challenge was raised to the traditional fault diagnosis of mining equipments. A health state perception algorithm of mining equipment was introduced in this paper, and through continuous sampling of the machine vibration data, the time-series data set was set up; subsequently, the mode set based on the frequency closeness was constructed by the d neighborhood method combined with the TSDM algorithm, thus the forecast method on the basis of the dual mode set was eventually formed. In the calculation of the frequency closeness, the Goertzel algorithm was introduced to effectively decrease the computation amount. It was indicated through the simulation test on the vibration data of the drum shaft base that the health state of the device could be effectively distinguished. The algorithm has been successfully applied to equipment monitoring in the Huoer Xinhe Coal Mine of Shanxi Coal Imp&Exp. Group Co., Ltd.

  3. Photogrammetry in mining - possibilities, state of art, perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Sitek, Z.; Mierzwa, W.

    1987-01-01

    Presents a systematic review of the application of aerial and terrestrial photogrammetry in mining. Photogrammetry permits ground subsidence and excavation volume to be determined, maps and cross-sections of surface mines to be plotted and cleavage directions to be found. A method of measuring displacements by so-called time paralaxes is described that allows slope instability and dam and tunnel deformations to be detected. Application of stereophotogrammety for mapping underground headings and chamber workings, for recording and documenting mining accidents is discussed as well as application of photogrammetric probes for surveying postexploitation caverns. Other applications considered are: geologic cartography of underground workings, measuring fissures in shaft lining, investigating ventilation air flow, recording conditions at working faces before and after blasting and examining deformations caused in surface structures by mining. Recent research work conducted in Poland on possibilities offered by combining photogrammetric equipment with computers is outlined. 28 refs., 1 tab

  4. Diseases of uranium miners and other underground miners exposed to radon

    International Nuclear Information System (INIS)

    Samet, J.M.

    1991-01-01

    Excess lung cancer has been demonstrated in many groups of underground miners exposed to radon, including uranium miners and those mining other substances in radon-contaminated mines. In the United States, most underground uranium mines had shut down by the late 1980s, but occupational exposure to radon progeny remains a concern for many other types of underground miners and other underground workers. Worldwide, uranium mining continues, with documented production in Canada, South Africa and other African countries, and Australia. Thus, radon in underground mines remains a significant occupational hazard as the end of the twentieth century approaches.39 references

  5. 30 CFR 903.784 - Underground mining permit applications-Minimum requirements for reclamation and operation plan.

    Science.gov (United States)

    2010-07-01

    ... requirements for reclamation and operation plan. 903.784 Section 903.784 Mineral Resources OFFICE OF SURFACE... for reclamation and operation plan. Part 784 of this chapter, Underground Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, applies to any person who submits an application...

  6. 30 CFR 910.784 - Underground mining permit applications-minimum requirements for reclamation and operation plan.

    Science.gov (United States)

    2010-07-01

    ... requirements for reclamation and operation plan. 910.784 Section 910.784 Mineral Resources OFFICE OF SURFACE... for reclamation and operation plan. (a) Part 784 of this chapter, Underground Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes...

  7. 30 CFR 947.784 - Underground mining permit applications-minimum requirements for reclamation and operation plan.

    Science.gov (United States)

    2010-07-01

    ... requirements for reclamation and operation plan. 947.784 Section 947.784 Mineral Resources OFFICE OF SURFACE... for reclamation and operation plan. (a) Part 784 of this chapter, Underground Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes...

  8. 30 CFR 942.784 - Underground mining permit applications-Minimum requirements for reclamation and operation plan.

    Science.gov (United States)

    2010-07-01

    ... requirements for reclamation and operation plan. 942.784 Section 942.784 Mineral Resources OFFICE OF SURFACE... for reclamation and operation plan. Part 784 of this chapter, Underground Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes application...

  9. 30 CFR 939.784 - Underground mining permit applications-minimum requirements for reclamation and operation plan.

    Science.gov (United States)

    2010-07-01

    ... requirements for reclamation and operation plan. 939.784 Section 939.784 Mineral Resources OFFICE OF SURFACE... requirements for reclamation and operation plan. Part 784 of this chapter, Underground Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes...

  10. 30 CFR 941.784 - Underground mining permit applications-minimum requirements for reclamation and operation plan.

    Science.gov (United States)

    2010-07-01

    ... requirements for reclamation and operation plan. 941.784 Section 941.784 Mineral Resources OFFICE OF SURFACE... requirements for reclamation and operation plan. Part 784 of this chapter, Underground Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes...

  11. 30 CFR 922.784 - Underground mining permit applications-minimum requirements for reclamation and operation plan.

    Science.gov (United States)

    2010-07-01

    ... requirements for reclamation and operation plan. 922.784 Section 922.784 Mineral Resources OFFICE OF SURFACE... for reclamation and operation plan. Part 784 of this chapter, Underground Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes application...

  12. 30 CFR 905.784 - Underground mining permit applications-Minimum requirements for reclamation and operation plan.

    Science.gov (United States)

    2010-07-01

    ... requirements for reclamation and operation plan. 905.784 Section 905.784 Mineral Resources OFFICE OF SURFACE... for reclamation and operation plan. Part 784 of this chapter, Underground Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes application...

  13. 30 CFR 933.784 - Underground mining permit applications-minimum requirements for reclamation and operation plan.

    Science.gov (United States)

    2010-07-01

    ... requirements for reclamation and operation plan. 933.784 Section 933.784 Mineral Resources OFFICE OF SURFACE... requirements for reclamation and operation plan. Part 784 of this chapter, Underground Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes...

  14. 30 CFR 921.784 - Underground mining permit applications-minimum requirements for reclamation and operation plan.

    Science.gov (United States)

    2010-07-01

    ... requirements for reclamation and operation plan. 921.784 Section 921.784 Mineral Resources OFFICE OF SURFACE... requirements for reclamation and operation plan. Part 784 of this chapter, Underground Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes...

  15. Potential dust exposures in underground mines of the former Wismut Ltd. during the early phase of uranium mining after the second world war

    International Nuclear Information System (INIS)

    Bauer, H.D.

    1997-01-01

    We performed dust measurements in several underground mines of Wismut Ltd. during dry drilling and ore mining with pneumatic hammers. The purpose was to reproduce operational conditions typical of the early phase of uranium mining after the second world war. Since do dust measurements were performed, data or information on exposures in that period of time are not available. Our investigations were intended to fill this gap. The decisive step to reduce exposures in mining areas and in regions to be opened up and prepared was the conversion from dry drilling with air flushing to wet drilling with water flushing resulting in a decrease of fine dust concentrations by more than 97%. (orig./SR) [de

  16. A Global Survey and Interactive Map Suite of Deep Underground Facilities; Examples of Geotechnical and Engineering Capabilities, Achievements, Challenges: (Mines, Shafts, Tunnels, Boreholes, Sites and Underground Facilities for Nuclear Waste and Physics R&D)

    Science.gov (United States)

    Tynan, M. C.; Russell, G. P.; Perry, F.; Kelley, R.; Champenois, S. T.

    2017-12-01

    This global survey presents a synthesis of some notable geotechnical and engineering information reflected in four interactive layer maps for selected: 1) deep mines and shafts; 2) existing, considered or planned radioactive waste management deep underground studies, sites, or disposal facilities; 3) deep large diameter boreholes, and 4) physics underground laboratories and facilities from around the world. These data are intended to facilitate user access to basic information and references regarding deep underground "facilities", history, activities, and plans. In general, the interactive maps and database [http://gis.inl.gov/globalsites/] provide each facility's approximate site location, geology, and engineered features (e.g.: access, geometry, depth, diameter, year of operations, groundwater, lithology, host unit name and age, basin; operator, management organization, geographic data, nearby cultural features, other). Although the survey is not all encompassing, it is a comprehensive review of many of the significant existing and historical underground facilities discussed in the literature addressing radioactive waste management and deep mined geologic disposal safety systems. The global survey is intended to support and to inform: 1) interested parties and decision makers; 2) radioactive waste disposal and siting option evaluations, and 3) safety case development as a communication tool applicable to any mined geologic disposal facility as a demonstration of historical and current engineering and geotechnical capabilities available for use in deep underground facility siting, planning, construction, operations and monitoring.

  17. Analysis of water control in an underground mine under strong karst media influence (Vazante mine, Brazil)

    Science.gov (United States)

    Ninanya, Hugo; Guiguer, Nilson; Vargas, Eurípedes A.; Nascimento, Gustavo; Araujo, Edmar; Cazarin, Caroline L.

    2018-05-01

    This work presents analysis of groundwater flow conditions and groundwater control measures for Vazante underground mine located in the state of Minas Gerais, Brazil. According to field observations, groundwater flow processes in this mine are highly influenced by the presence of karst features located in the near-surface terrain next to Santa Catarina River. The karstic features, such as caves, sinkholes, dolines and conduits, have direct contact with the aquifer and tend to increase water flow into the mine. These effects are more acute in areas under the influence of groundwater-level drawdown by pumping. Numerical analyses of this condition were carried out using the computer program FEFLOW. This program represents karstic features as one-dimensional discrete flow conduits inside a three-dimensional finite element structure representing the geologic medium following a combined discrete-continuum approach for representing the karst system. These features create preferential flow paths between the river and mine; their incorporation into the model is able to more realistically represent the hydrogeological environment of the mine surroundings. In order to mitigate the water-inflow problems, impermeabilization of the river through construction of a reinforced concrete channel was incorporated in the developed hydrogeological model. Different scenarios for channelization lengths for the most critical zones along the river were studied. Obtained results were able to compare effectiveness of different river channelization scenarios. It was also possible to determine whether the use of these impermeabilization measures would be able to reduce, in large part, the elevated costs of pumping inside the mine.

  18. 30 CFR 937.784 - Underground mining permit applications-minimum requirements for reclamation and operation plan.

    Science.gov (United States)

    2010-07-01

    ... requirements for reclamation and operation plan. 937.784 Section 937.784 Mineral Resources OFFICE OF SURFACE... reclamation and operation plan. Part 784 of this chapter, Underground Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes application to conduct...

  19. 30 CFR 912.784 - Underground mining permit applications-minimum requirements for reclamation and operation plan.

    Science.gov (United States)

    2010-07-01

    ... requirements for reclamation and operation plan. 912.784 Section 912.784 Mineral Resources OFFICE OF SURFACE... reclamation and operation plan. Part 784 of this chapter, Underground Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes application to conduct...

  20. Mine robotics for the extraction of minerals at great depths

    Energy Technology Data Exchange (ETDEWEB)

    Chaikovskii, Eh G; Poller, B V; Konyukh, V L

    1983-09-01

    An article is discussed which was written by A.A. Bovin, N.V. Kurleni and E.I. Shemyakin on Problems in mining mineral deposits at great depth, printed in issue No. 2 of this journal in 1983. First the authors define the problems, then discuss the construction of automatic systems for the control of underground extraction and haulage and end with the basic problems and organizational measures connected with the development and construction of mining robots. They also deal with systems of control and radio communications for underground winning and hauling operations. The article represents a complex study of the need for full automation of mining and the gradual introduction of robots to replace men in hazardous work places. The authors suggest equipment for the automatic extraction and hauling of minerals based on the use of microcomputers underground and computers located on the surface, videosensors and pressure transducers. The authors state that in order to solve the problems of automation and remote control of mining operations it is necessary to involve more specialists in robotics and remote control at the mining scientific research institutes and to increase the number of graduates in this field. 28 references.

  1. Excavating and loading equipment for peat mining

    Science.gov (United States)

    Mikhailov, A. V.; Zhigulskaya, A. I.; Yakonovskaya, T. B.

    2017-10-01

    Recently, the issues of sustainable development of Russian regions, related to ensuring energy security, are more urgent than ever. To achieve sustainable development, an integrated approach to the use of local natural resources is needed. Practically in all north regions of the Russian Federation, peat as a local natural resource is widespread, which has a practical application in the area of housing services. The paper presents the evaluation of technologies for open-pit peat mining, as well as analysis of technological equipment for peat production. Special attention is paid to a question of peat materials excavating and loading. The problem of equipment selection in a peat surface mine is complex. Many features, restrictions and criteria need to be considered. Use of low and ultra-low ground pressure excavators and low ground pressure front-end loaders with full-range tires to provide the necessary floatation in the peat bog environment is offered.

  2. Recovery of oil from underground drill sites

    International Nuclear Information System (INIS)

    Streeter, W.S.; Hutchinson, T.S.; Ameri, S.; Wasson, J.A.; Aminian, K.

    1991-01-01

    This paper reports that a significant quantity of oil is left in reservoirs after conventional oil recovery techniques have been applied. In West Virginia and Pennsylvania alone, this oil has been estimated at over 4.5 billion barrels (0.72 billion m 3 ). Conventional recovery methods are already being used when applicable. But a new recovery method is needed for use in reservoirs that have been abandoned. One alternative method for recovery of the residual oil is known as oil recovery from underground drill sites. This recovery technology is a combination of proven methods and equipment from the petroleum, mining, and civil construction industries. Underground oil recovery can be an economically viable method of producing oil. This has been shown in producing fields, field tests, and feasibility, studies. Faced with decreasing domestic oil production, the petroleum industry should give serious consideration to the use of oil recovery from underground drill sites as a safe, practical, and environmentally sensitive alternative method of producing oil from many reservoirs

  3. Radon and radon daughters in South African underground mines

    International Nuclear Information System (INIS)

    Rolle, R.

    1980-01-01

    Radon and the radon daughters are the radionuclides which primarily determine the level of the radiation hazard in underground uranium mines and to a smaller extent in non-uranium mines. Radon is a gas, and its daughters adsorb on aerosol particles which are of respirable size. The hazard thus arises from the alpha decay of radon and its daughters in contact with lung tissue. Radon is itself part of the uranium decay chain. The major radionuclide, 238 U, decays successively through thirteen shorter-lived radionuclides to 206 Pb. Radon is the only gaseous decay product at room temperature; the other twelve are solids. The main hazard presented by the uranium decay chain is normally determined by the radon concentration because gaseous transport can bring alpha emitters close to sensitive tissue. There is no such transport route for the other alpha emitters, and the level of beta and gamma radiation caused by the uranium decay chain generally presents a far lower external radiation hazard. Radon itself is the heaviest of the noble gases, which are He, Ne, Ar, Kr, Xe and Rn. Its chemical reactions are of no concern in regard to its potential hazard in mines as it may be considered inert. It does, however, have a solubility ten times higher than oxygen in water, and this can play a significant part in assisting the movement of the gas from the rock into airways. Radon continuously emanates into mine workings from uranium ores and from the uranium present at low concentrations in practically any rock. It has been found that the control of the exposure level is most effectively achieved by sound ventilation practices. In South African mines the standard of ventilation is generally high and exposure to radon and radon daughters is at acceptably low levels

  4. Underground coal mine air quality in mines using disposable diesel exhaust filter control devices

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, D.H.; Johnson, J.H.; Bagley, S.T.; Gratz, L.D. [Michigan Technological University, Houghton, MI (United States). Dept. of Mining Engineering

    1996-07-01

    As part of a collaborative study with the US Bureau of Mines, in-mine studies have been conducted to assess the effects of a low temperature disposable diesel exhaust filter. The mines have been designed as mines R and S in US Bureau of Mines publications. Each mine operated three to four Jeffrey 4110 ramcar haulage vehicles in the test section. The ramcars were equipped with MWM D916-6 diesel engines, rated at 74.6 kW (100 hp), and were operated for 3 days with the disposal diesel exhaust filter and 2 days without in both mines. Average diesel particulate matter control efficiencies, as measured by samplers located on the coal haulage vehicle, were 80% in mine R and 76% in mine S. Diesel particulate matter average control efficiencies, as measured in the diesel engine tailpipe, were 52% for mine R (for two ramcar vehicles) and 86% for mine S (for four ramcar vehicles). The air quality index control efficiencies, as measured by samplers located on the coal haulage vehicle were 48% in mine R and 51% in mine S. The exhaust quality index control efficiencies from tailpipe measurements were 45% for mine R and 63% for mine S. As measured by a high volume sampler in mine S, diesel particulate matter and associated organics and mutagenic activity were reduced approximately 50% with the use of the disposal diesel exhaust filter. Similar results were found with modified personal samplers in mine R. Little effect was found on relative removal of semivolatile organics. The disposal diesel exhaust filter resulted in about a 50% reduction in the most volatile polynuclear hydrocarbons; however, there appeared to be little effect on the less volatile polynuclear hydrocarbons. The disposable diesel exhaust filter appears to be very effective in reducing the levels of all the diesel exhaust particulate components, while having minor effects on the relative breakdown of the individual components of the particulate. 30 refs., 13 figs., 4 tabs.

  5. [Analysis on occupational noise-induced hearing loss of different type workers in underground mining].

    Science.gov (United States)

    Liu, Q C; Duo, C H; Wang, Z; Yan, K; Zhang, J; Xiong, W; Zhu, M

    2017-11-20

    Objective: To investigate hearing loss status of blasters, drillers mechanics and so on in underground mining, and put forward suggestion diagnosis of occupational explosive deafness and occupational deafness. Methods: Underground excavation workers in a metal mine were recruited in this study, those with a history of ear disease and non-occupational deafness were all excluded. Finally, the features of pure tone audiometry of 459 noise-exposed workers were analyzed. Results: High-frequency hearing loss occurred on 351workers and the positive detection rate was 74.29%, workers who had both high-frequency and linguistic frequency hearing loss were 51 and the positive detection rate was 11.11%. The positive detection of high-frequency hearing loss in right ear (χ(2)=9.427 and P = 0.024) and in left ear (χ(2)=14.375, P =0.002) was significantly different between different exposure age groups. The positive detection of high-frequency hearing loss of driving group was the highest, followed by blasting group, mining group and machine repair group. The characteristics of the hearing loss caused by drilling noise of the blasting workers with no accident occurred were in line with that of noise-induced hearing loss. Conclusion: The diagnosis grading should be carried out according to the diagnostic criteria of occupational noise-induced deafness for the employees who engaged in the blasting operation with no record of blast accident.

  6. Studies of significant properties of filter-type self rescuer for its use in underground coal mine in carbon monoxide exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A.; Mondal, P.C. [Central Institute of Mining and Fuel Research, Dhanbad (India)

    2007-07-01

    CO is a highly toxic gas; it is the outcome of fire or explosion in underground coal mines. It combines with hemoglobin of coal mine workers and carboxyhemoglobin forms, which reduces the oxygen carrying capacity of blood. A little intake of CO gas, even 0.1% in atmosphere, causes respiratory failure. Filter-type self rescuers (FSR) are a life-saving gas mask breathing apparatus against CO exposure in underground coal mine. The quality of FSR was evaluated in respect of its duration for use, CO conversion by hopcalite, breathing resistance, leak tightness properties, and so on. A scope of improvement is observed in cartridge of self rescuer as well as in the clauses of BIS 9563-1980 in order to increase the duration and improvement in the quality of self rescuers. 12 refs., 2 tabs.

  7. Development of thermodynamically-based models for simulation of hydrogeochemical processes coupled to channel flow processes in abandoned underground mines

    Energy Technology Data Exchange (ETDEWEB)

    Kruse, N.A., E-mail: natalie.kruse@ncl.ac.uk [Sir Joseph Swan Institute for Energy Research, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Younger, P.L. [Sir Joseph Swan Institute for Energy Research, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2009-07-15

    Accurate modeling of changing geochemistry in mine water can be an important tool in post-mining site management. The Pollutant Sources and Sinks in Underground Mines (POSSUM) model and Pollutant Loadings Above Average Pyrite Influenced Geochemistry POSSUM (PLAYING POSSUM) model were developed using object-oriented programming techniques to simulate changing geochemistry in abandoned underground mines over time. The conceptual model was created to avoid significant simplifying assumptions that decrease the accuracy and defensibility of model solutions. POSSUM and PLAYING POSSUM solve for changes in flow rate and depth of flow using a finite difference hydrodynamics model then, subsequently, solve for geochemical changes at distinct points along the flow path. Geochemical changes are modeled based on a suite of 28 kinetically controlled mineral weathering reactions. Additional geochemical transformations due to reversible sorption, dissolution and precipitation of acid generating salts and mineral precipitation are also simulated using simplified expressions. Contaminant transport is simulated using a novel application of the Random-Walk method. By simulating hydrogeochemical changes with a physically and thermodynamically controlled model, the 'state of the art' in post-mining management can be advanced.

  8. 30 CFR 77.906 - Trailing cables supplying power to low-voltage mobile equipment; ground wires and ground check...

    Science.gov (United States)

    2010-07-01

    ... portable or mobile equipment from low-voltage three-phase resistance grounded power systems shall contain... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Trailing cables supplying power to low-voltage... STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Low- and Medium-Voltage...

  9. Underground mine risk assessment by using FMEA in the presence of uncertainty

    OpenAIRE

    Shahram Shariati

    2014-01-01

    Managers always look for systems with minimum hazards, which cause problems for performance of projects. The largest and the most important hazards of working underground mines can be associated with health, safety and environmental Failure mode and effects analysis (FMEA) is a widely used technique to identify the potential failure modes for measuring reliability of a product or a process. FMEA is performed by developing a risk priority number (RPN), which is the product of severity, occurre...

  10. 30 CFR 57.4161 - Use of fire underground.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Use of fire underground. 57.4161 Section 57.4161 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention...

  11. Investigation of the role of personal factors on work injury in underground mines using structural equation modeling

    Institute of Scientific and Technical Information of China (English)

    P.S. Paul

    2013-01-01

    Work injuries in mines are complex and generally characterized by several factors starting from personal to technical and technical to social characteristics. In this paper, investigation was made through the application of structural equation modeling to study the nature of relationships between the influencing/associating personal factors and work injury and their sequential relationships leading towards work injury occurrences in underground coal mines. Six variables namely, rebelliousness, negative affectivity, job boredom, job dissatisfaction and work injury were considered in this study. Instruments were developed to quantify them through a questionnaire survey. Underground mine work-ers were randomly selected for the survey. Responses from 300 participants were used for the analysis. The structural model of LISREL was used to estimate the interrelationships amongst the variables. The case study results show that negative affectivity and job boredom induce more job dissatisfaction to the workers whereas risk taking attitude of the individual is positively influenced by job dissatisfaction as well as by rebelliousness characteristics of the individual. Finally, risk taking and job dissatisfaction are having positive significant direct relationship with work injury. The findings of this study clearly reveal that rebelliousness, negative affectivity and job boredom are the three key personal factors influencing work related injuries in mines that need to be addressed properly through effective safety programs.

  12. Determination of radon-222 emissions to the environment from gold underground mines of Nova Lima region - MG, Brazil

    International Nuclear Information System (INIS)

    Binns, D.A.C.; Gouvea, V.A.; Melo, V.P.; Tolentino, J.

    1996-01-01

    Measurements of Rd-222 concentrations were performed at some points into drift of three gold underground mining companies of Nova Lima region - MG/Br. In the two oldest mines, Mina Grande and Mina Cuiaba, were found the highest concentrations, with a mean of 1911 Bq.m -3 , while a mean of concentration into the other mine, Mina Raposo, was 108 Bq.m -3 . The Mina Raposo correspond to a modern facility with efficient exhaust and ventilation system. The results of this study have demonstrated that ventilation is the most important factor to reduce the occupational radiation exposure of workers in mining operations

  13. Relationship of 220Rn and 222Rn progeny levels in Canadian underground U mines

    International Nuclear Information System (INIS)

    Bigu, J.

    1988-01-01

    Radon-222 and 220 Rn progeny are found in some Canadian underground U mines. Because both can contribute to lung dose, their experimental determinations are important. The relationship between 222 Rn progeny Working Level [WL(Rn)] and 220 Rn progeny Working Level [WL(Tn)] has been investigated in U mines. Experimental measurements extended from 1981 to 1986 and consisted of about 700 measurements of each WL(Rn) and WL(Tn). The data were analyzed by standard linear and power-function regression analysis. A power-function relationship between WL(Rn) and WL(Tn) seemed to fit the experimental data best. The relationship obtained permits the calculation of WL(Tn) from experimental values of WL(Rn). The relationship is useful for lung-dose-calculation purposes and in mine-ventilation-engineering calculations

  14. Mines as lower reservoir of an UPSH (Underground Pumping Storage Hydroelectricity): groundwater impacts and feasibility

    Science.gov (United States)

    Bodeux, Sarah; Pujades, Estanislao; Orban, Philippe; Dassargues, Alain

    2016-04-01

    The energy framework is currently characterized by an expanding use of renewable sources. However, their intermittence could not afford a stable production according to the energy demand. Pumped Storage Hydroelectricity (PSH) is an efficient possibility to store and release electricity according to the demand needs. Because of the topographic and environmental constraints of classical PSH, new potential suitable sites are rare in countries whose topography is weak or with a high population density. Nevertheless, an innovative alternative is to construct Underground Pumped Storage Hydroelectricity (UPSH) plants by using old underground mine works as lower reservoir. In that configuration, large amount of pumped or injected water in the underground cavities would impact the groundwater system. A representative UPSH facility is used to numerically determine the interactions with surrounding aquifers Different scenarios with varying parameters (hydrogeological and lower reservoir characteristics, boundaries conditions and pumping/injection time-sequence) are computed. Analysis of the computed piezometric heads around the reservoir allows assessing the magnitude of aquifer response and the required time to achieve a mean pseudo-steady state under cyclic solicitations. The efficiency of the plant is also evaluated taking the leakage into the cavity into account. Combining these two outcomes, some criterions are identified to assess the feasibility of this type of projects within potential old mine sites from a hydrogeological point of view.

  15. Internal exposure to 222Rn progeny of the underground workers in Bulgarian uranian mines in 1958-1989

    International Nuclear Information System (INIS)

    Dimitrov, M.; Presiyanov, D.

    1998-01-01

    The results of more than 50000 measurements of 222 Rn and 22R n progeny measurements made in 1958-1989 in 9 large Bulgarian uranium mines (namely: '9 septemvri', 'Seslavci', 'Eleshnitsa 1, 2, 3', 'Smolyan', 'Byalata voda', 'Balkan' and 'Smolyanovtsi') have been summarized. The average WLM-exposures have been determined for each of the mines. The results make possible to estimate internal WLM exposure of any miner, provided that his underground working experience is known

  16. Development of sustainable performance indicators to assess the benefits of real-time monitoring in mechanised underground mining

    OpenAIRE

    Govindan, Rajesh; Cao, Wenzhuo; Korre, Anna; Durucan, Sevket; Graham, Peter; Simon, Clara; Barlow, Glenn; Pemberton, Ross

    2018-01-01

    This paper presents the development and quantification of a catalogue of Sustainable Performance Indicators (SPIs) for the assessment of the benefits real-time mining can offer in small and complex mechanised underground mining operations. The SPIs investigated in detail include: ‒ grade accuracy and error of the resource model, ‒ high/low grade ore classification accuracy and error, ‒ additional high grade ore identified per unit volume, ‒ profit expected per unit volume, ‒ or...

  17. Occupational heat strain in a hot underground metal mine.

    Science.gov (United States)

    Lutz, Eric A; Reed, Rustin J; Turner, Dylan; Littau, Sally R

    2014-04-01

    In a hot underground metal mine, this study evaluated the relationship between job task, physical body type, work shift, and heat strain. Thirty-one miners were evaluated during 98 shifts while performing deep shaft-sinking tasks. Continuous core body temperature, heart rate, pre- and postshift urine specific gravity (USG), and body mass index were measured. Cutting and welding tasks were associated with significantly (P < 0.05) increased core body temperature, maximum heart rate, and increased postshift urine specific gravity. Miners in the obese level II and III body mass index categories, as well as those working night shift, had lower core body temperatures (P < 0.05). This study confirms that job task, body type, and shift are risk factors for heat strain.

  18. Are underground coal miners satisfied with their work boots?

    Science.gov (United States)

    Dobson, Jessica A; Riddiford-Harland, Diane L; Bell, Alison F; Steele, Julie R

    2018-01-01

    Dissatisfaction with work boot design is common in the mining industry. Many underground coal miners believe their work boots contribute to the high incidence of lower limb injuries they experience. Despite this, the most recent research to examine underground coal mining work boot satisfaction was conducted over a decade ago. This present study aimed to address this gap in the literature by assessing current mining work boot satisfaction in relation to the work-related requirements for underground coal mining. 358 underground coal miners (355 men; mean age = 39.1 ± 10.7 years) completed a 54-question survey regarding their job details, work footwear habits, foot problems, lower limb and lower back pain history, and work footwear fit and comfort. Results revealed that underground coal miners were not satisfied with their current mining work boots. This was evident in the high incidence of reported foot problems (55.3%), lower back pain (44.5%), knee pain (21.5%), ankle pain (24.9%) and foot pain (42.3%). Over half of the underground coal miners surveyed believed their work boots contributed to their lower limb pain and reported their work boots were uncomfortable. Different working roles and environments resulted in differences in the incidence of foot problems, lower limb pain and comfort scores, confirming that one boot design cannot meet all the work-related requirements of underground coal mining. Further research examining the interaction of a variety of boot designs across the different underground surfaces and the different tasks miners perform is paramount to identify key boot design features that affect the way underground coal miners perform. Enhanced work boot design could improve worker comfort and productivity by reducing the high rates of reported foot problems and pain amongst underground coal miners. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effects on Buildings of Surface Curvature Caused by Underground Coal Mining

    Directory of Open Access Journals (Sweden)

    Haifeng Hu

    2016-08-01

    Full Text Available Ground curvature caused by underground mining is one of the most obvious deformation quantities in buildings. To study the influence of surface curvature on buildings and predict the movement and deformation of buildings caused by ground curvature, a prediction model of the influence function on mining subsidence was used to establish the relationship between surface curvature and wall deformation. The prediction model of wall deformation was then established and the surface curvature was obtained from mining subsidence prediction software. Five prediction lines were set up in the wall from bottom to top and the predicted deformation of each line was used to calculate the crack positions in the wall. Thus, the crack prediction model was obtained. The model was verified by a case study from a coalmine in Shanxi, China. The results show that when the ground curvature is positive, the crack in the wall is shaped like a “V”; when the ground curvature is negative, the crack is shaped like a “∧”. The conclusion provides the basis for a damage evaluation method for buildings in coalmine areas.

  20. Impact of ICRP-60 on the operation of underground mines

    International Nuclear Information System (INIS)

    Hussein, A.Z.; Hussein, M.I.

    2001-01-01

    Reduction of occupational exposure from: 50 mSv to 20 mSv per annum for uranium miners faces difficulties. For miners this affects the gamma radiation dose and ALI's except radon gas and its short lived daughters of Uranium and Thorium whereas the ICRP planned to review radon daughters exposure limits. New dose limits introduce other mines, e.g. phosphate mines, to be considered as occupational areas. Reclassification of radiation workers has to be done; control, licensing, cost, Gamma dose rate is influenced by the grade and type of ore body and the mining method. The primary mode of radionuclide intake in the mine environment is inhalation, however, ventilation is the principal control of airborne dust. The current average radon daughters dose rate in several underground mines among those are phosphate mines in Egypt is well above 20 mSv/a. Recorded values of Egyptian phosphate mines are more than 1 WL of radon daughters (1WL = 62 uSv/h) considering 2000 h/y, therefore, the annual dose = 124 mSv/a. Mining method dictated by location, size and shape of ore body, hydrology. Priority is given for conventional safety of work place, e.g. rock collapse as well as care of economics of the process and mine development. It is well defined that the control of gamma radiation dose is very much dependent upon the geometry of ore body. Shielding of ore trucks could not be justified (fuel consumption and its pollution). Bulk ore handling method may reduce gamma doses but it generates dust which may increase inhalation doses of long lived alpha emitters. Ventilation is the principal method to control inhalation hazards of dust and radon daughters, but high rates of ventilation has reverse effects of generating more dust and drying wet surfaces of ores. Accordingly, reduction in radon daughters exposure will result in high cost of production. In Egypt radon and thoron (risk/problems) are previously monitored in phosphate mines (upper Egypt). Values greater than 1 WL were

  1. Human action quality evaluation based on fuzzy logic with application in underground coal mining.

    Science.gov (United States)

    Ionica, Andreea; Leba, Monica

    2015-01-01

    The work system is defined by its components, their roles and the relationships between them. Any work system gravitates around the human resource and the interdependencies between human factor and the other components of it. Researches in this field agreed that the human factor and its actions are difficult to quantify and predict. The objective of this paper is to apply a method of human actions evaluation in order to estimate possible risks and prevent possible system faults, both at human factor level and at equipment level. In order to point out the importance of the human factor influence on all the elements of the working systems we propose a fuzzy logic based methodology for quality evaluation of human actions. This methodology has a multidisciplinary character, as it gathers ideas and methods from: quality management, ergonomics, work safety and artificial intelligence. The results presented refer to a work system with a high degree of specificity, namely, underground coal mining and are valuable for human resources risk evaluation pattern. The fuzzy logic evaluation of the human actions leads to early detection of possible dangerous evolutions of the work system and alarm the persons in charge.

  2. Design of underground layout and their maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bok Youn; Kang, Chang Hee; Jo, Young Do; Lim, Sang Taek [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    Layout of underground structure has to be designed based on rock mechanical analysis and the concept of active support has to be adopted considering the large openings are requested to accommodate heavy duty diesel equipment in underground. Rock bolt and shotcrete will be the most applicable method to support such a large dimensional tunnels. 1) Direction: The main haulage way of the mines where diesel equipment are operating is ramp way system. For optimizing safety measures, and minimizing maintenance cost of the tunnels, it is strongly recommended that all the tunnels including ramp way, rooms and sublevels should be designed in parallel to the direction of principal stress and perpendicular to the direction of major discontinuity. 2) Inclination: Basically, the inclination of the ramp way depends on the specification of the equipment, but 10-15% is usual. The steep inclination needs less initial investment but there will be an adverse effects such as higher operating and maintenance costs. 3) Profile (Cross section): The maximum dimension of the equipment operating in local mines appeared 12.8m long, 3.705m wide and 3.68m high. Considering the dimension, the requested profile simply can be calculated to 4m x 4m, but it should be decided according to the regulated minimum clearances from the walls and roof. The minimum inner curvature radius of the tunnels should be more than 5.2m, and in this case, the tunnel width of the curved zone should be more than 5.5m. 4) Sight distance and braking distance: For the safe operation of the equipment, the sight distance must be longer than braking distance, so that the driver can hold up the equipment safely after finding the obstacles in front of him. The maximum braking distance without heating of brake shoe is 60m. 5) Support and maintenance: Due to the large dimensional tunnels where diesel equipment are operating, the conventional supporting system is not applicable. Therefore, the active support concept should be

  3. Coal mine safety achievements in the USA and the contribution of NIOSH research

    Energy Technology Data Exchange (ETDEWEB)

    Esterhuizen, G.S.; Gurtunca, R.G. [NIOSH, Washington, DC (United States)

    2006-12-15

    Over the past century coal miner safety and health have seen tremendous improvements: the fatality and injury rates continue to decrease while productivity continues to increase. Many of the hazards that plagued miners in the past, such as coal bumps, methane and coal dust explosions, ground fall accidents and health issues have been significantly reduced. The contribution of NIOSH research includes products for prevention and survival of mine fires, methane control measures, design procedure for underground coal mines, methods for excavation surface controls, methods and procedures for blasting, laser usage in underground mines and prevention of electrocution from overhead power lines that have reduced accidents and injuries in underground coal mines. Health research has produced products such as the personal dust monitor, noise abating technologies and ergonomic solutions for equipment operators. Research priorities at NIOSH are set by considering surveillance statistics, stakeholder inputs and loss control principles. Future research in coal mining is directed towards respiratory diseases, noise-induced hearing loss, repetitive musculoskeletal injuries, traumatic injuries, falls of ground and mine disasters. The recent spate of accidents in coal mines resulted in the Miner Act of 2006, which includes a specific role for NIOSH in future mine safety research and development. The mine safety achievements in the USA reflect the commitment of industry, labour, government and research organizations to improving the safety of the mine worker.

  4. Application of a Novel Liquid Nitrogen Control Technique for Heat Stress and Fire Prevention in Underground Mines.

    Science.gov (United States)

    Shi, Bobo; Ma, Lingjun; Dong, Wei; Zhou, Fubao

    2015-01-01

    With the continually increasing mining depths, heat stress and spontaneous combustion hazards in high-temperature mines are becoming increasingly severe. Mining production risks from natural hazards and exposures to hot and humid environments can cause occupational diseases and other work-related injuries. Liquid nitrogen injection, an engineering control developed to reduce heat stress and spontaneous combustion hazards in mines, was successfully utilized for environmental cooling and combustion prevention in an underground mining site named "Y120205 Working Face" (Y120205 mine) of Yangchangwan colliery. Both localized humidities and temperatures within the Y120205 mine decreased significantly with liquid nitrogen injection. The maximum percentage drop in temperature and humidity of the Y120205 mine were 21.9% and 10.8%, respectively. The liquid nitrogen injection system has the advantages of economical price, process simplicity, energy savings and emission reduction. The optimized heat exchanger used in the liquid nitrogen injection process achieved superior air-cooling results, resulting in considerable economic benefits.

  5. 77 FR 4834 - Proposed Extension of Existing Information Collection; Refuge Alternatives for Underground Coal...

    Science.gov (United States)

    2012-01-31

    ... Extension of Existing Information Collection; Refuge Alternatives for Underground Coal Mines AGENCY: Mine... Underground Coal Mines DATES: Submit comments on or before April 2, 2012. ADDRESSES: Comments must be.... Title: Refuge Alternatives for Underground Coal Mines. OMB Number: 1219-0146. Affected Public: Business...

  6. Comparison of safety equipment between London underground and Beijing subway

    Science.gov (United States)

    Chen, T.; Zhang, S. Y.; Zhao, L. Z.; Xia, J. J.; Fu, X. C.; Bao, Z. M.; Chen, Y.; Zhang, X. Z.; Wang, R. J.; Hu, C.; Jing, L. S.; Wang, Y.

    2017-06-01

    The purpose of this paper was to improve the safety equipment’s effectiveness through the comparison. Firstly, the history and safety accident of London Underground and Beijing Subway were shown. Secondly, fire equipment between these two cities was compared including station’s hardware installations and carriage’s hardware installations. Thirdly, the relative software installations were also compared such as emergency drills. The results showed that Beijing Subway’s hardware installations were better than London. However, London Underground’s some installations were more effective than Beijing. Both cities would pay more attention on anti-terrorist in tunnel.

  7. Improving electrical equipment and control systems for shield integrated mining systems

    Energy Technology Data Exchange (ETDEWEB)

    Rabinovich, Z.M.; Starikov, B.Ya.; Kibrik, I.S.

    1984-06-01

    The design and operation are discussed for electrical equipment and control systems for the 1AShchM, the ANShch and the 2ANShch shield integrated face systems consisting of shield supports, coal plow and chain conveyor. The shield system is used for mining inclined and steep coal seams endangered by coal dust explosions, methane or rock bursts. Control and electrical system for 3 types of shield face mining systems is similar. It cuts energy supply when methane content at working faces exceeds the maximum permissible level, controls haulage rate and cutting rate of a coal plow, controls operation of shield supports (using the Sirena system), controls dust suppression system and its water consumption. The system is also equipped with communications equipment. Tests of the control and electrical system for the integrated shield system carried out in the im. Gagarin mine in the Ukraine are described. The VAUS III control system developed by Dongiprouglemash was tested.

  8. The application and implementation of optimized mine ventilation on demand (OMVOD) at the Xstrata Nickel Rim South Mine, Sudbury, Ontario

    International Nuclear Information System (INIS)

    Bartsch, E.; Laine, M.; Andersen, M.

    2010-01-01

    An Optimized Mine Ventilation on Demand (OMVOD) system has been installed at the Xstrata Nickel Rim South Mine in Sudbury. Developed by Simsmart Technologies, the OMVOD system monitors and controls air quality and quantity through real time dynamic automation. A ventilation on demand (VOD) system was needed to remove diesel particulate matter (DPM), carbon monoxide (CO) and nitrogen dioxide (NO 2 ). This paper described the real-time tracking and monitoring of the OMVOD system and optimization of ventilation equipment. Simsmart's OMVOD system was shown to reduce energy costs while improve air quality in the underground mine. 7 refs., 3 tabs., 8 figs.

  9. WIRELESS MINE-WIDE TELECOMMUNICATIONS TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Zvi H. Meiksin

    2004-03-01

    A comprehensive mine-wide, two-way wireless voice and data communication system for the underground mining industry was developed. The system achieves energy savings through increased productivity and greater energy efficiency in meeting safety requirements within mines. The mine-wide system is comprised of two interfaced subsystems: a through-the-earth communications system and an in-mine communications system. The mine-wide system permits two-way communication among underground personnel and between underground and surface personnel. The system was designed, built, and commercialized. Several systems are in operation in underground mines in the United States. The use of these systems has proven they result in considerable energy savings. A system for tracking the location of vehicles and people within the mine was also developed, built and tested successfully. Transtek's systems are being used by the National Institute of Occupational Safety and Health (NIOSH) in their underground mine rescue team training program. This project also resulted in a spin-off rescue team lifeline and communications system. Furthermore, the project points the way to further developments that can lead to a GPS-like system for underground mines allowing the use of autonomous machines in underground mining operations, greatly reducing the amount of energy used in these operations. Some products developed under this program are transferable to applications in fields other than mining. The rescue team system is applicable to use by first responders to natural, accidental, or terrorist-caused building collapses. The in-mine communications system can be installed in high-rise buildings providing in-building communications to security and maintenance personnel as well as to first responders.

  10. Treating mine water

    Energy Technology Data Exchange (ETDEWEB)

    Matlak, E S; Kochegarova, L V; Zaslavskaya, I Yu

    1980-10-01

    Taking into account the negative influence of mine waters with suspended matter on the natural environment on the surface, the maximum treatment of mine water underground, is proposed. It is noted that full treatment of mine water, using conventional filtration methods, would be rather expensive, but a limited treatment of mine water is possible. Such treated mine water can be used in dust suppression and fire fighting systems. Mine water treated underground should be free of any odor, with pH level ranging from 6 to 9.5, with suspended matter content not exceeding 50 mg/l and coli-titre not less than 300 cm$SUP$3. It is suggested that water treatment to produce water characterized by these parameters is possible and economical. Recommendations on construction of underground sedimentation tanks and channels, and a hydraulic system of cleaning sedimentation tanks are proposed. The settling would be stored underground in abandoned workings. (2 refs.) (In Russian)

  11. Evaluation of Underground Zinc Mine Investment Based on Fuzzy-Interval Grey System Theory and Geometric Brownian Motion

    Directory of Open Access Journals (Sweden)

    Zoran Gligoric

    2014-01-01

    Full Text Available Underground mine projects are often associated with diverse sources of uncertainties. Having the ability to plan for these uncertainties plays a key role in the process of project evaluation and is increasingly recognized as critical to mining project success. To make the best decision, based on the information available, it is necessary to develop an adequate model incorporating the uncertainty of the input parameters. The model is developed on the basis of full discounted cash flow analysis of an underground zinc mine project. The relationships between input variables and economic outcomes are complex and often nonlinear. Fuzzy-interval grey system theory is used to forecast zinc metal prices while geometric Brownian motion is used to forecast operating costs over the time frame of the project. To quantify the uncertainty in the parameters within a project, such as capital investment, ore grade, mill recovery, metal content of concentrate, and discount rate, we have applied the concept of interval numbers. The final decision related to project acceptance is based on the net present value of the cash flows generated by the simulation over the time project horizon.

  12. Determination of enrichment processes and radon concentration in underground mines of fluorite and coal in Santa Catarina state: criteria for radiation risk assessment

    International Nuclear Information System (INIS)

    Santos, Carlos Eduardo Lima dos

    2008-01-01

    The inhalation of radon present in underground mines can imply in the deposition of its descendants in the lungs, which may cause harm to the lungs tissues and induce cancer. Concentration of radon not greater than 500 Bq/m 3 in the environment of underground mines is considered to be acceptable internationally and concentrations above 1500 Bq/m 3 require protective measures for the miners. The objectives of this research work are to determine the enrichment processes and the concentrations of radon in air, as well as the resulting doses due to the presence of this radionuclide in three underground mines of fluorite and three underground mines of coal in the State of Santa Catarina. The concentration of radon was measured employing two types of detectors of nuclear tracks (SSNTD), the LEXAN and the CR-39. This detection method consists in counting, with the help of a microscope, tracks resulting from the interaction of alpha particles with the film, due to the penetration of Rn-222 in the interior of the detector chamber and its decaying process. Contents of radium in collected samples of rocks, minerals and underground water were determined and compared with the corresponding radon concentration found in the underground air. It was observed that the coal mines showed low concentrations of radon, which can be explained by the low concentration of radium in rocks (sandstones and siltites in the foot wall and hang wall) and in the coal that composes the mining environment or, yet still, due to the good ventilation system. The average dose to the workers of the coal mines was estimated as 0.7 mSv/a, value inferior to the limit of 1 mSv/a established by the Brazilian Nuclear Energy Commission (CNEN) for members of the public, and corresponding to a risk of fatal cancer after 50 years of work under this condition of 0.2%. On the other hand, the fluorite mines showed much higher concentrations of radon and superior to 1000 Bq/m 3 . The inefficiency of the ventilation

  13. Mining aspects of hard to access oil sands deposits

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, G.; Wright, D.; Lukacs, Z. [Norwest Corp., Calgary, AB (Canada)

    2006-07-01

    While a variety of oil sands mining technologies have been explored since the 1960s, the oil sands industry has generally favoured truck and shovel mining as a proven, low-cost mining solution. However, surface mining economics are affected by the price of bitumen, haul distances, tailings storage and geotechnical constraints. Maintenance, labour and the cost of replacing tires and ground engaging tools also have a significant impact on the economics of surface mining. Large volumes of water are used in surface mining, and remediation of surface mined areas can take hundreds of years. Damage to machinery is common as oil sands are abrasive and adhere to equipment. This presentation examined recent technologies developed to improve the economics of surface mining. Various extraction and tailings technologies were reviewed. Issues concerning the integration of mining and extraction processes were discussed. Various monitoring tools were evaluated. A review of new underground mining options included outlines of: longwall mining; sub-level caving; tunnel boring; and room and pillar extraction techniques. A generalized regional geology was presented. It was concluded that the oil sands surfacing mining industry should concentrate on near-term research needs to improve the performance and economics of proven technologies. Screening studies should also be conducted to determine the focus for the development of underground technologies. refs., tabs., figs.

  14. Underground Cemented Backfill, a Design Procedure for an Integrated Mining Waste Management.

    Directory of Open Access Journals (Sweden)

    Abdelhadi KHALDOUN

    2018-01-01

    Full Text Available From several case studies around the world, it is well known that the binder represents the major part of backfilling operation cost. Therefore, in the case of Imiter operation, research were mainly focused on the optimization of binder content. To this end, the definition of the physical and chemical properties of the future formula ingredients, specifically: tailings, waste material and hydraulic binder, was necessary. Analytical verifications were conducted to predict the UCB mechanical strength according to the defined underground functions and delivery network. Experimental testing, including: uniaxial compression, Immediate Bearing Index (IBI and slump test, were then conducted to evaluate the possibility of reaching the required strength with the selected materials. The obtained results show that the tailings and mining wastes can be used as backfilling material with a specific binder content depending on each underground application. The followed approach can be applied for a prefeasibility evaluation for a backfilling facility.

  15. Control of Rock Mechanics in Underground Ore Mining

    Science.gov (United States)

    Golik, V. I.; Efremenkov, A. B.

    2017-07-01

    Performance indicators in underground mining of thick iron fields can be insufficient since geo-mechanic specifics of ore-hosting fields might be considered inadequately, as a consequence, critical deformations and even earth’s surface destruction are possible, lowering the indicators of full subsurface use, this way. The reason for it is the available approach to estimating the performance of mining according to ore excavation costs, without assessing losses of valuable components and damage to the environment. The experimental approach to the problem is based on a combination of methods to justify technical capability and performance of mining technology improvement with regard to geomechanical factors. The main idea of decisions to be taken is turning geo-materials into the condition of triaxial compression via developing the support constructions of blocked up structural rock block. The study was carried out according to an integrated approach based on the analysis of concepts, field observations, and simulation with the photo-elastic materials in conditions of North Caucasus deposits. A database containing information on the deposit can be developed with the help of industrial experiments and performance indicators of the field can be also improved using the ability of ore-hosting fields to develop support constructions, keeping the geo-mechanical stability of the system at lower cost, avoiding ore contamination at the processing stage. The proposed model is a specific one because an adjustment coefficient of natural and anthropogenic stresses is used and can be adopted for local conditions. The relation of natural to anthropogenic factors can make more precise the standards of developed, prepared and ready to excavation ore reserves relying on computational methods. It is possible to minimize critical stresses and corresponding deformations due to dividing the ore field into sectors safe from the standpoint of geo-mechanics, and using less cost

  16. The influence of the mining activity in the Oltenia region on the underground water resources and their quality

    International Nuclear Information System (INIS)

    Baican, G.; Fodor, D.; Rotunjanu, I.

    1998-01-01

    The mining activity in Oltenia's area has affected both the hydro-geographical network and underground water resources, the regime and their quality. Due to mining and dewatering works resulted depression areas with negative effects on environment and water feeding for localities as well as for economic-social objectives in area. The measures that have been taken in order to decrease negative effects as well as results obtained, can be found in the paper

  17. A study for disaster prevention in the case of the underground fire

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bok Youn; Kang, Chang Hee; Jo, Young Do; Lim, Sang Taek [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    There are three categories of possible disaster or hazard in workings where diesel equipment are operating. 1) Disasters by exhaust pollutants: The equipment specially designed for underground use are strongly recommended. Workings using diesel equipment should be properly ventilated all the time to maintain the gas concentration bellow the permissible level. The fume diluter is recommended as the most practical after treatment device in Korean mines. 2) Underground fire: The main cause of diesel fire is over heated engine and spillage of hydraulic liquid. Therefore, protecting the over heat of engine, using fire resistive hydraulic liquid and high flash point fuel is requested. Fuel and the other oils are recommended to be stored at surface. To protect the smoke return in case of underground fire, the ventilation velocity must be kept more than 1.5m/sec. The fire smoke starts to return on 1.5m/sec and stops to return on 2.0m/sec. The fire smoke flows through upper half of the tunnel and it`s temperature is 10 degrees higher than ventilation air flow. For taking an immediate measure on fire, keeping the updated simulation is essential matter. 3) Other disasters. (author). 9 tabs., 15 figs.

  18. Advisibility of excavating an additional central shaft to reduce duration of mine construction. [USSR

    Energy Technology Data Exchange (ETDEWEB)

    Durov, E.M.

    1981-09-01

    This paper evaluates methods of reducing duration and cost of underground black coal mine construction. A proposed scheme of coal deposit opening by a system of three mine shafts is critically analyzed. In comparison to the conventional scheme, the proposed one has one additional mine shaft in the central mine zone. The shaft, equipped with a cage hoisting system, permits the rate of mine drivage in the center of the mine to be increased. The cage hoisting system in the additional shaft is activated before the main skip shaft has been equipped and is in operation. Duration of mine construction is reduced by 6 to 10 months. Exacavation of the additional shaft costs from 2.5 to 3.5 million rubles. A further system of mine construction is also analyzed. The main shaft in the mine center is temporarily equipped with a cage hoisting system. The cage system is used for hoisting rocks removed from mine headings and main workings constructed at the bottom of the main shaft. The main shaft is equipped with skips and hoisting tower at a later stage when construction of main roadways and structures at its bottom has been completed. The proposed system permits mine construction to be reduced by 4 to 5 months without a major increase in investment.

  19. 30 CFR 75.804 - Underground high-voltage cables.

    Science.gov (United States)

    2010-07-01

    ... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.804 Underground high-voltage cables. (a) Underground high-voltage cables used in resistance... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground high-voltage cables. 75.804 Section...

  20. Current Performance of an Aerobic Passive Wetlands Treating Acid Mine Drainage Flow From Underground Mine Seals at Moraine State Park, Butler County, Pennsylvania

    Science.gov (United States)

    Winter, J. A.; Fredrick, K.

    2008-12-01

    Coal mining was conducted in the area of Moraine State Park prior to the establishing the park and associated Lake Arthur. A total of 69 underground mine entries were sealed during the 1960's to the early 1970's along the proposed northern shore of Lake Arthur. Seals were constructed using a flyash/cement mixture that was pumped into boreholes to place bulkheads in the mine entries, then filling between the bulkheads, and injecting grout into the adjacent strata to form a grout curtain. During 1979 and 1980, a study was performed by the United States Department of the Interior, Bureau of Mines, to determine the long term effectiveness of the underground mine sealing and reclamation work. Not all seals were successful. One of these mine entry seals was leaking and depositing iron hydroxides on the shoreline. During 1995-96, a passive wetlands treatment system was designed and constructed to treat an acid mine drainage (amd) discharge emanating from one of these sealed mines. The system consists of a primary settling pond, a cattail vegetated pond, and a final polishing pond prior to discharge to Lake Arthur. The design life of the system was estimated at twelve years. After twelve years it was believed the precipitate in the ponds would need to be removed and the system rehabilitated to continue treating the amd discharge. A maintenance plan was considered, however only minimal maintaining of the area was implemented. Six sets of water quality samples were collected and analyzed for standard amd parameters of alkalinity, acidity, pH, iron, manganese, aluminum, sulfate, and total suspended solids. Precipitation data and flow rates were collected and an analysis was done to determine if flow varied seasonally. The water quality data was compared to flow and precipitation amounts. Sludge precipitate samples were collected from the first settling pond to estimate the deposition rate and to determine how long the ponds can continue to function before they would require

  1. Interference immunity of blasting circuits in underground coal mining; Zur Stoerfestigkeit von Sprengzuendsystemen im untertaegigen Steinkohlenbergbau

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiler, C.

    1995-02-14

    Blasting technique with electric detonators is a standard instrument e.g. for drift heading in underground coal mining. The simultaneous increase of compactness and efficiency of electrical devices especially in underground mining calls for a careful consideration of susceptibility problems. As an interference of an inadmissible high level might cause a hazardous ignition limiting values and technical parameters of interference to electrical blasting circuits are evaluated. The sources of interference are classified into communication and power technique devices. Typical interference field strengths are determined by exemplary measurements and a model of wave propagation in underground galleries. An equivalent circuit of the impedance of typical electro-explosive devices used in German coal mining is evaluated and extended by an electro-thermal part based on the `Rosenthal equation`. By this means it is possible to determine a feasible ignition during a simulation using the calculated bridge wire temperature. (orig.) [Deutsch] Fuer den untertaegigen Steinkohlenbergbau ist die Sprengtechnik sowohl im Bereich der Streckenauffahrung als auch beim Schachtabteufen heute noch ein wichtiges Arbeitsinstrument. Dabei wird ausschliesslich die elektrische Zuendung eingesetzt. Durch den Trend zu kompakteren elektrischen Systemen bei gleichzeitiger Leistungssteigerung in Verbindung mit den geringen raeumlichen Abstaenden unter Tage gewinnen Phaenomene der elektromagnetischen Beeinflussung auch im Steinkohlenbergbau an Bedeutung. Eine unzulaessig hohe Beeinflussung des elektrischen Zuendsystems kann eine unerwuenschte Fruehzuendung verursachen. Dieses Gefahrenpotential erfordert eine gesonderte Untersuchung der Stoerfestigkeit elektrischer Zuendsysteme, zumal die Normen fuer den uebertaegigen Sprengbetrieb unter Tage aufgrund der unterschiedlichen Randbedingungen der Ausbreitung elektromagnetischer Wellen nicht uneingeschraenkt angewendet werden koennen. Die Stoerquellen der

  2. A stochastic mathematical model for determination of transition time in the non-simultaneous case of surface and underground mining

    OpenAIRE

    Bakhtavar, E.; Abdollahisharif, J.; Aminzadeh, A.

    2017-01-01

    This research introduces a stochastic mathematical model that uses open pit long-term production planning on an integrated open pit and underground block model to determine the optimal time for transition from open pit to underground mining. In the model, ore grade is considered a random parameter in objective function and ore grade blending constraints. The objective function is modelled as the maximization of net present value in the mode of non-simultaneous combined open pit and undergroun...

  3. Hydrogeology, groundwater flow, and groundwater quality of an abandoned underground coal-mine aquifer, Elkhorn Area, West Virginia

    Science.gov (United States)

    Kozar, Mark D.; McCoy, Kurt J.; Britton, James Q.; Blake, B.M.

    2017-01-01

    The Pocahontas No. 3 coal seam in southern West Virginia has been extensively mined by underground methods since the 1880’s. An extensive network of abandoned mine entries in the Pocahontas No. 3 has since filled with good-quality water, which is pumped from wells or springs discharging from mine portals (adits), and used as a source of water for public supplies. This report presents results of a three-year investigation of the geology, hydrology, geochemistry, and groundwater flow processes within abandoned underground coal mines used as a source of water for public supply in the Elkhorn area, McDowell County, West Virginia. This study focused on large (> 500 gallon per minute) discharges from the abandoned mines used as public supplies near Elkhorn, West Virginia. Median recharge calculated from base-flow recession of streamflow at Johns Knob Branch and 12 other streamflow gaging stations in McDowell County was 9.1 inches per year. Using drainage area versus mean streamflow relationships from mined and unmined watersheds in McDowell County, the subsurface area along dip of the Pocahontas No. 3 coal-mine aquifer contributing flow to the Turkey Gap mine discharge was determined to be 7.62 square miles (mi2), almost 10 times larger than the 0.81 mi2 surface watershed. Results of this investigation indicate that groundwater flows down dip beneath surface drainage divides from areas up to six miles east in the adjacent Bluestone River watershed. A conceptual model was developed that consisted of a stacked sequence of perched aquifers, controlled by stress-relief and subsidence fractures, overlying a highly permeable abandoned underground coal-mine aquifer, capable of substantial interbasin transfer of water. Groundwater-flow directions are controlled by the dip of the Pocahontas No. 3 coal seam, the geometry of abandoned mine workings, and location of unmined barriers within that seam, rather than surface topography. Seven boreholes were drilled to intersect

  4. McArthur River underground exploration program: report of the joint Federal-Provincial panel on uranium mining developments in Northern Saskatchewan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-01-15

    A report of the joint federal-provincial panel on uranium mining developments in northern Saskatchewan, on the McArthur River underground exploration program. The proposal to construct the surface and underground facilities required for the exploration and delineation of the McArthur River ore body, and any necessary additional infrastructure has been examined and public hearings have been held. The panel recommends that the underground exploration program as described by Cameco in its Environmental Impact Statement, and as clarified in its written and oral responses to the panel, be allowed to proceed under the conditions described within the report.

  5. McArthur River underground exploration program: report of the joint Federal-Provincial panel on uranium mining developments in Northern Saskatchewan

    International Nuclear Information System (INIS)

    1993-01-01

    A report of the joint federal-provincial panel on uranium mining developments in northern Saskatchewan, on the McArthur River underground exploration program. The proposal to construct the surface and underground facilities required for the exploration and delineation of the McArthur River ore body, and any necessary additional infrastructure has been examined and public hearings have been held. The panel recommends that the underground exploration program as described by Cameco in its Environmental Impact Statement, and as clarified in its written and oral responses to the panel, be allowed to proceed under the conditions described within the report

  6. Technical and economical assesment of uranium mine closing down in Romania

    International Nuclear Information System (INIS)

    Cotrau, M.; Georgescu, P. D.

    2000-01-01

    The work presents the technical and economical aspects of two uranium mine closing down after 40 years of operation. Remedial actions, underground water decontamination, ecological programs and environmental effect monitoring are discussed. The technical and economical aspects related to the mine closing down are the following: recovering of recyclable equipment and materials; measures of controlling the mine void flooding; measures of controlling, directing and treatment of contaminated mine waters; site rehabilitation and land reclamation; treatment of surface waters; environment monitoring for as long as ten years. The funds for these projects are provided by government and a PHARE program. (authors)

  7. Grinding efficiency improvement of hydraulic cylinders parts for mining equipment

    Directory of Open Access Journals (Sweden)

    Korotkov Aleksandr

    2017-01-01

    Full Text Available The aim of the article is to find out ways to improve parts treatment and components of mining equipment on the example of hydraulic cylinders parts, used as pillars for mine roof supports, and other actuator mechanisms. In the course of the research work methods of machine retaining devices design were used, the scientific approaches for the selection of progressive grinding schemes were applied; theoretical and practical experience in the design and production of new constructions of grinding tools was used. As a result of this work it became possible to create a progressive construction of a machine retaining device for grinding of large parts of hydraulic cylinders, to apply an effective scheme of rotary abrasive treatment, to create and implement new design of grinding tools by means of grains with controllable shape and orientation. Implementation of the results obtained in practice will improve the quality and performance of repairing and manufacturing of mining equipment.

  8. 3D RECONSTRUCTION AND MODELING OF SUBTERRANEAN LANDSCAPES IN COLLABORATIVE MINING ARCHEOLOGY PROJECTS: TECHNIQUES, APPLICATIONS AND EXPERIENCES

    Directory of Open Access Journals (Sweden)

    A. Arles

    2013-07-01

    Full Text Available Mining and underground archaeology are two domains of expertise where three-dimensional data take an important part in the associated researches. Up to now, archaeologists study mines and underground networks from line-plot surveys, cross-section of galleries, and from tool marks surveys. All this kind of information can be clearly recorded back from the field from threedimensional models with a more cautious and extensive approach. Besides, the volumes of the underground structures that are very important data to explain the mining activities are difficult to evaluate from "traditional" hand-made recordings. They can now be calculated more accurately from a 3D model. Finally, reconstructed scenes are a powerful tool as thinking aid to look back again to a structure in the office or in future times. And the recorded models, rendered photo-realistically, can also be used for cultural heritage documentation presenting inaccessible and sometimes dangerous places to the public. Nowadays, thanks to modern computer technologies and highly developed software tools paired with sophisticated digital camera equipment, complex photogrammetric processes are available for moderate costs for research teams. Recognizing these advantages the authors develop and utilize image-based workflows in order to document ancient mining monuments and underground sites as a basis for further historical and archaeological researches, performed in collaborative partnership during recent projects on medieval silver mines and preventive excavations of undergrounds in France.

  9. Hydrologic and water quality characteristics of a partially-flooded, abandoned underground coal mine

    International Nuclear Information System (INIS)

    Aljoe, W.W.

    1994-01-01

    The hydrologic and water quality characteristics of a partially flooded, abandoned underground coal mine near Latrobe, PA, were studied to support the development of techniques for in situ abatement of its acidic discharge. A quantitative understanding of the conditions affecting discharge flow was considered to be very important in this regard. Statistical analysis of hydrologic data collected at the site shows that the flow rate of the main discharge (a borehole that penetrates the mine workings just behind a set of portal seals) is a linear function of the height of the mine pool above the borehole outlet. Seepage through or around the portal seals is collected by a set of french drains whose discharge rate is largely independent of the mine pool elevation. This seepage was enhanced after a breakthrough that occurred during a period of unusually high pool levels. The mine pool recharge rate during winter is about 2.5 times greater than that of any other season; recharge rates during spring, summer, and fall are approximately equal. Mine pool and discharge water quality information, along with bromide tracer tests, suggest that the original main entries discharge primarily to the french drains, while the borehole carries the discharge from an unmonitored set of entries northwest of the mains. The water quality of the east french drain discharge may have been improved substantially after seepage through the alkaline materials used to construct the portal seals

  10. Role of support services in Jaduguda mine

    International Nuclear Information System (INIS)

    Roy, Pinaki; Bannerjee, S.N.; Srinivasan, M.N.; Radhakrishnan, V.N.; Khanwalkar, S.D.

    1991-01-01

    This paper highlights the role of the supporting services which are divided into two main groups. Group A consists of services rendered by survey, planning, geology and physics sub-groups. The survey sub-group enforces the directional controls of the various lay-outs, the underground geology sub-group establishes the parameters for the development of drives and stop blocks while the physics section supplies the data regarding grade and thickness and exercises the ore quality control. The techniques evolved in giving these supports to the production system is described. Diamond drilling of holes through rock formation have been successfully used for transporting stowing sand and for draining accumulated water in the levels to respective sumps besides its normal use for underground exploration. Group B consists of engineering services. With limited mining machinery in the early sixties, the mechanical engineering services have taken significant strides for servicing today's equipments consisting of drill jumbos, hydro-pneumatic trackless loaders. Alimak raises climbers, diesel locomotives and mechanised ore transfer systems besides servicing the vital area of modern koepe system of friction winding where Jaduguda has already been a fore-runner in the country. Electrical engineering services basically maintain the electrical systems and equipments both permanent and extensions as mining areas progress in depth. Indigenisation of imported equipments and spares for them and modernisation in certain key areas has been attempted successfully over the years. Civil engineering services are mostly confined to strengthening support system for mine tunnels and construction of ore transfer passes for stopping. (author). 3 figs

  11. Identification of underground mine workings with the use of global positioning system technology

    International Nuclear Information System (INIS)

    Canty, G.A.; Everett, J.W.; Sharp, M.

    1998-01-01

    Identification of underground mine workings for well drilling is a difficult task given the limited resources available and lack of reliable information. Relic mine maps of questionable accuracy and difficulty in correlating the subsurface to the surface, make the process of locating wells arduous. With the development of global positioning system (GPS), specific locations on the earth can be identified with the aid of satellites. This technology can be applied to mine workings identification given a few necessary, precursory details. For an abandoned mine treatment project conducted by the University of Oklahoma, in conjunction with the Oklahoma Conservation Commission, a Trimble ProXL 8 channel GPS receiver was employed to locate specific points on the surface with respect to a mine map. A 1925 mine map was digitized into AutoCAD version 13 software. Surface features identified on the map, such as mine adits, were located and marked in the field using the GPS receiver. These features were than imported into AutoCAD and referenced with the same points drawn on the map. A rubber sheeting program, Multric, was used to tweak the points so the map features correlated with the surface points. The correlation of these features allowed the map to be geo-referenced with the surface. Specific drilling points were located on the digitized map and assigned a latitude and longitude. The GPS receiver, using real time differential correction, was used to locate these points in the field. This method was assumed to be relatively accurate, to within 5 to 15 feet

  12. Identification of underground mine workings with the use of global positioning system technology

    Energy Technology Data Exchange (ETDEWEB)

    Canty, G.A.; Everett, J.W. [Univ. of Oklahoma, Norman, OK (United States). Dept. of Civil Engineering and Environmental Science; Sharp, M. [Oklahoma Conservation Commission, Oklahoma City, OK (United States). Abandoned Mine Land Reclamation Program

    1998-12-31

    Identification of underground mine workings for well drilling is a difficult task given the limited resources available and lack of reliable information. Relic mine maps of questionable accuracy and difficulty in correlating the subsurface to the surface, make the process of locating wells arduous. With the development of global positioning system (GPS), specific locations on the earth can be identified with the aid of satellites. This technology can be applied to mine workings identification given a few necessary, precursory details. For an abandoned mine treatment project conducted by the University of Oklahoma, in conjunction with the Oklahoma Conservation Commission, a Trimble ProXL 8 channel GPS receiver was employed to locate specific points on the surface with respect to a mine map. A 1925 mine map was digitized into AutoCAD version 13 software. Surface features identified on the map, such as mine adits, were located and marked in the field using the GPS receiver. These features were than imported into AutoCAD and referenced with the same points drawn on the map. A rubber sheeting program, Multric, was used to tweak the points so the map features correlated with the surface points. The correlation of these features allowed the map to be geo-referenced with the surface. Specific drilling points were located on the digitized map and assigned a latitude and longitude. The GPS receiver, using real time differential correction, was used to locate these points in the field. This method was assumed to be relatively accurate, to within 5 to 15 feet.

  13. Monitoring diesel particulate matter and calculating diesel particulate densities using Grimm model 1.109 real-time aerosol monitors in underground mines.

    Science.gov (United States)

    Kimbal, Kyle C; Pahler, Leon; Larson, Rodney; VanDerslice, Jim

    2012-01-01

    Currently, there is no Mine Safety and Health Administration (MSHA)-approved sampling method that provides real-time results for ambient concentrations of diesel particulates. This study investigated whether a commercially available aerosol spectrometer, the Grimm Portable Aerosol Spectrometer Model 1.109, could be used during underground mine operations to provide accurate real-time diesel particulate data relative to MSHA-approved cassette-based sampling methods. A subset was to estimate size-specific diesel particle densities to potentially improve the diesel particulate concentration estimates using the aerosol monitor. Concurrent sampling was conducted during underground metal mine operations using six duplicate diesel particulate cassettes, according to the MSHA-approved method, and two identical Grimm Model 1.109 instruments. Linear regression was used to develop adjustment factors relating the Grimm results to the average of the cassette results. Statistical models using the Grimm data produced predicted diesel particulate concentrations that highly correlated with the time-weighted average cassette results (R(2) = 0.86, 0.88). Size-specific diesel particulate densities were not constant over the range of particle diameters observed. The variance of the calculated diesel particulate densities by particle diameter size supports the current understanding that diesel emissions are a mixture of particulate aerosols and a complex host of gases and vapors not limited to elemental and organic carbon. Finally, diesel particulate concentrations measured by the Grimm Model 1.109 can be adjusted to provide sufficiently accurate real-time air monitoring data for an underground mining environment.

  14. Extended investigation into continuous laser scanning of underground mine workings by means of Landis inertial navigation system

    Science.gov (United States)

    Belyaev, E. N.

    2017-10-01

    The paper investigates the method of applying mobile scanning systems (MSSs) with inertial navigators in the underground conditions for carrying out the surveying tasks. The available mobile laser scanning systems cannot be used in the underground environment since Global Positioning System (GPS) signals cannot be received in mines. This signal not only is necessary for space positioning, but also operates as the main corrective signal for the primary navigation system - the inertial navigation system. The idea of the method described in this paper consists in using MSSs with a different correction of the inertial system than GPS is.

  15. Application of schlieren techniques for improved understanding of underground mine ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Jong, E.C.; Luxbacher, K.D. [Virginia Tech, Blacksburg, VA (United States)

    2010-07-01

    Mine ventilation systems must be maintained in optimal running order in order to suppress dusts and provide fresh air to mine workers. However, it is difficult to gather representative ventilation data because of the dynamic nature of mines, including geologic conditions, equipment operations, personnel movements, advance of mine openings and atmospheric changes. Errors and imprecision in computer codes can be detrimental to mine forecasting. The best way to improve the validity of ventilation models is to increase the quality of survey data. This study examined the feasibility of using the background-oriented schlieren (BOS) flow visualization method to reach this objective. Schlieren techniques involve the use of refractive properties of different air densities to enhance the distortions of light, thereby allowing airflow to be visualized. In this study, the BOS technique was used to image flow with 2 fans, an axivane fan and a custom built axial flow fan. The results showed that the BOS technique can clearly display air flow under the correct conditions. Producing an accurate picture of air flow can improve the industry's overall understanding of air flow and resistance, thus improving mine safety and productivity. 8 refs., 7 figs.

  16. Application of schlieren techniques for improved understanding of underground mine ventilation

    International Nuclear Information System (INIS)

    Jong, E.C.; Luxbacher, K.D.

    2010-01-01

    Mine ventilation systems must be maintained in optimal running order in order to suppress dusts and provide fresh air to mine workers. However, it is difficult to gather representative ventilation data because of the dynamic nature of mines, including geologic conditions, equipment operations, personnel movements, advance of mine openings and atmospheric changes. Errors and imprecision in computer codes can be detrimental to mine forecasting. The best way to improve the validity of ventilation models is to increase the quality of survey data. This study examined the feasibility of using the background-oriented schlieren (BOS) flow visualization method to reach this objective. Schlieren techniques involve the use of refractive properties of different air densities to enhance the distortions of light, thereby allowing airflow to be visualized. In this study, the BOS technique was used to image flow with 2 fans, an axivane fan and a custom built axial flow fan. The results showed that the BOS technique can clearly display air flow under the correct conditions. Producing an accurate picture of air flow can improve the industry's overall understanding of air flow and resistance, thus improving mine safety and productivity. 8 refs., 7 figs.

  17. 30 CFR 77.1200 - Mine map.

    Science.gov (United States)

    2010-07-01

    ... SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Maps § 77.1200 Mine...) The location of railroad tracks and public highways leading to the mine, and mine buildings of a permanent nature with identifying names shown; (k) Underground mine workings underlying and within 1,000...

  18. Indigenous development and networking of online radon monitors in the underground uranium mine

    International Nuclear Information System (INIS)

    Gaware, J.J.; Sahoo, B.K.; Sapra, B.K.; Mayya, Y.S.

    2010-01-01

    Full text: There has been a long standing demand for online monitoring of radon level in various locations of underground uranium mine for taking care of radiological protection to workers. Nowadays, radon ( 222 Rn) monitors, based on semiconductor detector are increasingly employed for radon monitoring in environment. However, such instruments have some limitations such as (i) requirement of additional dryer in the sampling path, (ii) cannot be connected to a online data logging and monitoring network, (iii) not cost effective for large number of installations. Due to need for dryer, unattended continuous operation of such instruments is not possible particularly in underground uranium mine with humidity in the range of 80 to 98 %. So it is required to develop radon monitors which overcome the above limitations so that large number of monitors can be deployed in the uranium mine. Often radon progeny is electrostatically collected on the detector surface to increase the sensitivity. However, the collection efficiency is highly dependent upon the humidity and trace gas concentration in the sample gas due to charge neutralization effect. This effect can be minimized by applying a high electric field throughout the detector's chamber volume. This cannot be achieved using planner silicon PIN diode (area ∼ 4 cm 2 ) due to its inherent size limitations. This is because the electric field, in case of small inner electrode, falls off rapidly towards the outer electrode. Hence, an instrument has been indigenously developed by designing an annular cylindrical chamber with larger inner cathode (area = 140 cm 2 ) by employing flexible ZnS:Ag sheet (scintillation detector). With this design, the high sensitivity of 2.8 cph/Bqm -3 has been accomplished with the nominal deviation within 15% for vast change in humidity of 5% to 95%. In this instrument, although the alpha spectroscopy is not possible, the high sensitivity of the instruments makes it possible to achieve the MDL as

  19. Human health and safety risks management in underground coal mines using fuzzy TOPSIS

    Energy Technology Data Exchange (ETDEWEB)

    Mahdevari, Satar, E-mail: satar.mahdevari@aut.ac.ir [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Shahriar, Kourosh [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Esfahanipour, Akbar [Industrial Engineering Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2014-08-01

    The scrutiny of health and safety of personnel working in underground coal mines is heightened because of fatalities and disasters that occur every year worldwide. A methodology based on fuzzy TOPSIS was proposed to assess the risks associated with human health in order to manage control measures and support decision-making, which could provide the right balance between different concerns, such as safety and costs. For this purpose, information collected from three hazardous coal mines namely Hashouni, Hojedk and Babnizu located at the Kerman coal deposit, Iran, were used to manage the risks affecting the health and safety of their miners. Altogether 86 hazards were identified and classified under eight categories: geomechanical, geochemical, electrical, mechanical, chemical, environmental, personal, and social, cultural and managerial risks. Overcoming the uncertainty of qualitative data, the ranking process is accomplished by fuzzy TOPSIS. After running the model, twelve groups with different risks were obtained. Located in the first group, the most important risks with the highest negative effects are: materials falling, catastrophic failure, instability of coalface and immediate roof, firedamp explosion, gas emission, misfire, stopping of ventilation system, wagon separation at inclines, asphyxiation, inadequate training and poor site management system. According to the results, the proposed methodology can be a reliable technique for management of the minatory hazards and coping with uncertainties affecting the health and safety of miners when performance ratings are imprecise. The proposed model can be primarily designed to identify potential hazards and help in taking appropriate measures to minimize or remove the risks before accidents can occur. - Highlights: • Risks associated with health and safety of coal miners were investigated. • A reliable methodology based on Fuzzy TOPSIS was developed to manage the risks. • Three underground mines in Kerman

  20. Human health and safety risks management in underground coal mines using fuzzy TOPSIS

    International Nuclear Information System (INIS)

    Mahdevari, Satar; Shahriar, Kourosh; Esfahanipour, Akbar

    2014-01-01

    The scrutiny of health and safety of personnel working in underground coal mines is heightened because of fatalities and disasters that occur every year worldwide. A methodology based on fuzzy TOPSIS was proposed to assess the risks associated with human health in order to manage control measures and support decision-making, which could provide the right balance between different concerns, such as safety and costs. For this purpose, information collected from three hazardous coal mines namely Hashouni, Hojedk and Babnizu located at the Kerman coal deposit, Iran, were used to manage the risks affecting the health and safety of their miners. Altogether 86 hazards were identified and classified under eight categories: geomechanical, geochemical, electrical, mechanical, chemical, environmental, personal, and social, cultural and managerial risks. Overcoming the uncertainty of qualitative data, the ranking process is accomplished by fuzzy TOPSIS. After running the model, twelve groups with different risks were obtained. Located in the first group, the most important risks with the highest negative effects are: materials falling, catastrophic failure, instability of coalface and immediate roof, firedamp explosion, gas emission, misfire, stopping of ventilation system, wagon separation at inclines, asphyxiation, inadequate training and poor site management system. According to the results, the proposed methodology can be a reliable technique for management of the minatory hazards and coping with uncertainties affecting the health and safety of miners when performance ratings are imprecise. The proposed model can be primarily designed to identify potential hazards and help in taking appropriate measures to minimize or remove the risks before accidents can occur. - Highlights: • Risks associated with health and safety of coal miners were investigated. • A reliable methodology based on Fuzzy TOPSIS was developed to manage the risks. • Three underground mines in Kerman

  1. Application of Modern Tools and Techniques for Mine Safety & Disaster Management

    Science.gov (United States)

    Kumar, Dheeraj

    2016-04-01

    The implementation of novel systems and adoption of improvised equipment in mines help mining companies in two important ways: enhanced mine productivity and improved worker safety. There is a substantial need for adoption of state-of-the-art automation technologies in the mines to ensure the safety and to protect health of mine workers. With the advent of new autonomous equipment used in the mine, the inefficiencies are reduced by limiting human inconsistencies and error. The desired increase in productivity at a mine can sometimes be achieved by changing only a few simple variables. Significant developments have been made in the areas of surface and underground communication, robotics, smart sensors, tracking systems, mine gas monitoring systems and ground movements etc. Advancement in information technology in the form of internet, GIS, remote sensing, satellite communication, etc. have proved to be important tools for hazard reduction and disaster management. This paper is mainly focused on issues pertaining to mine safety and disaster management and some of the recent innovations in the mine automations that could be deployed in mines for safe mining operations and for avoiding any unforeseen mine disaster.

  2. Radon exposure in selected underground touring routes in Poland

    International Nuclear Information System (INIS)

    Olszewski, J.; Chruscielewski, W.; Jankowski, J.

    2006-01-01

    The radioactive elements abounding in the natural environment cause that the whole human population is exposed to radiation. In Poland, mean gamma radiation dose power is 45.4 n Gy h -1 , while atmospheric radon concentration is 4.4 Bq m -3 [1]. In closed rooms, where radon tends to accumulate, the concentrations may be many times higher.Underground touring routes located in caves, mines, ancient cellars, vaults may accumulate radon at concentrations several thousand times exceeding its atmospheric levels. Studies on natural radioactivity in underground touring routes, with particular reference to caves, have continued worldwide since the 80's. Current register of underground touring routes in Poland comprises over 30 items, which include caves (e.g. Niedzwiedzia), mines (Wieliczka), cellars and underground stores (Opatow City vaults) and military objects (underground factories of Walim). The Nofer Institute of Occupational Medicine has for several years already continued determinations of periodical mean radon concentrations in four underground touring routes (starting date in parentheses): Niedzwiedzia Cave (1995); Kowary Drifts closed uranium mine (2001); closed uranium mine in Kletno (2004); Zloty Stok closed gold mine (2004); Osowka underground city in Gluszyca (2004).The results of our determinations of radon concentrations at five selected touring routes lead to the following conclusions. 1. The exposure in the Kowary Drifts touring route is at the level of 5% of the recommended maximum annual admissible limit of 20 mSv. 2. It is assessed that workers of the touring routes where exposures are estimated from the measured concentrations and the time spent underground may receive doses ranging from 0.01 to 5 mSv. (N.C.)

  3. Radon exposure in selected underground touring routes in Poland

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, J.; Chruscielewski, W.; Jankowski, J. [Nofer Institute of Occupational Medicine, Dept. of Radiation Protection, Lodz (Poland)

    2006-07-01

    The radioactive elements abounding in the natural environment cause that the whole human population is exposed to radiation. In Poland, mean gamma radiation dose power is 45.4 n Gy h{sup -1}, while atmospheric radon concentration is 4.4 Bq m{sup -3} [1]. In closed rooms, where radon tends to accumulate, the concentrations may be many times higher.Underground touring routes located in caves, mines, ancient cellars, vaults may accumulate radon at concentrations several thousand times exceeding its atmospheric levels. Studies on natural radioactivity in underground touring routes, with particular reference to caves, have continued worldwide since the 80's. Current register of underground touring routes in Poland comprises over 30 items, which include caves (e.g. Niedzwiedzia), mines (Wieliczka), cellars and underground stores (Opatow City vaults) and military objects (underground factories of Walim). The Nofer Institute of Occupational Medicine has for several years already continued determinations of periodical mean radon concentrations in four underground touring routes (starting date in parentheses): Niedzwiedzia Cave (1995); Kowary Drifts closed uranium mine (2001); closed uranium mine in Kletno (2004); Zloty Stok closed gold mine (2004); Osowka underground city in Gluszyca (2004).The results of our determinations of radon concentrations at five selected touring routes lead to the following conclusions. 1. The exposure in the Kowary Drifts touring route is at the level of 5% of the recommended maximum annual admissible limit of 20 mSv. 2. It is assessed that workers of the touring routes where exposures are estimated from the measured concentrations and the time spent underground may receive doses ranging from 0.01 to 5 mSv. (N.C.)

  4. Uran production at the Drosen mine

    International Nuclear Information System (INIS)

    Sittner, Helmar; Duschek, Bernd

    2009-01-01

    In September 1950, SAG Wismuth started the geological and mining work at the area Ronneburg. In the year 1982, the last mine at Drosen took up the underground mining. Still no empirical values were present for the controlling of the underground production. The contribution under consideration reports on first efforts to the determination of geological-qualitative indices of uranium exploitation. At 1st September, 1982, the pits 403 and 415 of the mine Drosen took up the underground mining of uranium

  5. Zoning method for environmental engineering geological patterns in underground coal mining areas.

    Science.gov (United States)

    Liu, Shiliang; Li, Wenping; Wang, Qiqing

    2018-09-01

    Environmental engineering geological patterns (EEGPs) are used to express the trend and intensity of eco-geological environment caused by mining in underground coal mining areas, a complex process controlled by multiple factors. A new zoning method for EEGPs was developed based on the variable-weight theory (VWT), where the weights of factors vary with their value. The method was applied to the Yushenfu mining area, Shaanxi, China. First, the mechanism of the EEGPs caused by mining was elucidated, and four types of EEGPs were proposed. Subsequently, 13 key control factors were selected from mining conditions, lithosphere, hydrosphere, ecosphere, and climatic conditions; their thematic maps were constructed using ArcGIS software and remote-sensing technologies. Then, a stimulation-punishment variable-weight model derived from the partition of basic evaluation unit of study area, construction of partition state-variable-weight vector, and determination of variable-weight interval was built to calculate the variable weights of each factor. On this basis, a zoning mathematical model of EEGPs was established, and the zoning results were analyzed. For comparison, the traditional constant-weight theory (CWT) was also applied to divide the EEGPs. Finally, the zoning results obtained using VWT and CWT were compared. The verification of field investigation indicates that VWT is more accurate and reliable than CWT. The zoning results are consistent with the actual situations and the key of planning design for the rational development of coal resources and protection of eco-geological environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Energy conservation opportunities: audit vis-a-vis mine productivity

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, G.H.

    2009-07-01

    Mining operation, whether opencast or underground, with modern equipment is highly energy intensive, needing energy conservation and management to ensure efficiency, cost effectiveness, and overall productivity. Exhaustible primary energy resources such as coal, lignite, oil, and nuclear fuels are being mined out to meet our energy needs. An attempt has been made in this paper to highlight the energy conservation opportunities, energy audit, the relevant Energy Conservation Act 2001 and certain energy saving measures leading to higher productivity followed by a few case study examples. 3 refs.

  7. Mine shaft fire and smoke protection systems - an update on hardware development and in-mine testing

    International Nuclear Information System (INIS)

    Johnson, G.A.

    1982-01-01

    In 1976, The Bureau of Mines developed a prototype system to sense and extinguish fires in shafts and shaft stations in underground metal and nonmetal mines. Subsequent work modified this technology to include fueling areas, spontaneous combustion zones and coal mines. This paper updates IC-8783 ''In-mine Fire Tests of Mine Shaft Fire and Smoke Protection Systems'', which was published in 1978 and summarized the design and in-mine, actual fire testing of the first prototype mine shaft fire and smoke protection system. This paper also updates related work from IC-8775 ''Spontaneous Oxidation and Combustion of Sulfide Ores in Underground Mines, (also published in 1978) and IC-8808 ''In-mine Evaluation of Underground Fire and Smoke Detectors'', (published in early 1979)

  8. FAST goes underground

    International Nuclear Information System (INIS)

    Fridlund, P.S.

    1985-01-01

    The FAST-M Cost Estimating Model is a parametric model designed to determine the costs associated with mining and subterranean operations. It is part of the FAST (Freiman Analysis of Systems Techniques) series of parametric models developed by Freiman Parametric Systems, Inc. The rising cost of fossil fuels has created a need for a method which could be used to determine and control costs in mining and subterranean operations. FAST-M fills this need and also provides scheduling information. The model works equally well for a variety of situations including underground vaults for hazardous waste storage, highway tunnels, and mass transit tunnels. In addition, costs for above ground structures and equipment can be calculated. The input for the model may be on a macro or a micro level. This allows the model to be used at various stages in a project. On the macro level, only general conditions and specifications need to be known. On the micro level, the smallest details may be included. As with other FAST models, reference cases are used to more accurately predict costs and scheduling. This paper will address how the model can be used for a variety of subterranean purposes

  9. Exposure of miners to diesel exhaust particulates in underground nonmetal mines.

    Science.gov (United States)

    Cohen, H J; Borak, J; Hall, T; Sirianni, G; Chemerynski, S

    2002-01-01

    A study was initiated to examine worker exposures in seven underground nonmetal mines and to examine the precision of the National Institute for Occupational Safety and Health (NIOSH) 5040 sampling and analytical method for diesel exhaust that has recently been adopted for compliance monitoring by the Mine Safety and Health Administration (MSHA). Approximately 1000 air samples using cyclones were taken on workers and in areas throughout the mines. Results indicated that worker exposures were consistently above the MSHA final limit of 160 micrograms/m3 (time-weighted average; TWA) for total carbon as determined by the NIOSH 5040 method and greater than the proposed American Conference of Governmental Industrial Hygienists TLV limit of 20 micrograms/m3 (TWA) for elemental carbon. A number of difficulties were documented when sampling for diesel exhaust using organic carbon: high and variable blank values from filters, a high variability (+/- 20%) from duplicate punches from the same sampling filter, a consistent positive interference (+26%) when open-faced monitors were sampled side-by-side with cyclones, poor correlation (r 2 = 0.38) to elemental carbon levels, and an interference from limestone that could not be adequately corrected by acid-washing of filters. The sampling and analytical precision (relative standard deviation) was approximately 11% for elemental carbon, 17% for organic carbon, and 11% for total carbon. An hypothesis is presented and supported with data that gaseous organic carbon constituents of diesel exhaust adsorb onto not only the submicron elemental carbon particles found in diesel exhaust, but also mining ore dusts. Such mining dusts are mostly nonrespirable and should not be considered equivalent to submicron diesel particulates in their potential for adverse pulmonary effects. It is recommended that size-selective sampling be employed, rather than open-faced monitoring, when using the NIOSH 5040 method.

  10. Underground aboveground. Technology and market of coal mining in Dutch Limburg during the eighteenth and nineteenth centuries

    International Nuclear Information System (INIS)

    Gales, B.P.A.

    2002-01-01

    This book considers the development of coal mining in the Dutch province of Limburg during the eighteenth and nineteenth centuries. It is focused on the technical development and its economic background. Within the Dutch borders, as defined at the Congress of Vienna and the Dutch-Prussian negotiations of 1815 and 1816, the mining industry was small. In fact, it only consisted of two mines. (Earlier, more companies of miners had been working in the area since the Middle Ages). The two mines, however, had a certain symbolic importance for contemporaries. Most telling was the stubborn refusal to cede coal-ground to Prussia, ending in a remarkable compromise. The new national frontier was different above and underground. Underground the old borders were maintained. Thus it came about that in matters of mining, the Dutch were locally sovereign under a foreign surface. This fact itself shows that the political divisions of the nineteenth and twentieth centuries were rather artificial constructions. Dutch coal-strata were a continuation of the seams of the Worm-basin or the Aachen coal field. The Dutch collieries were just the most north-western ones of a whole series, the Worm-mines, until new pits were constructed around the turn of the nineteenth and into the twentieth centuries and modem mining in the Dutch-Limburg field took off. This is also the more general perspective taken in this book. Developments on the Dutch side of the border are contrasted with those on the German side. Furthermore, the evolution of the mines between Aachen in Germany and the Dutch town Kerkrade are considered in the light of what happened in the neighbourhood of Liege (Belgium) and the mining districts further south in Belgium, the north of France and both the Ruhr and Saar districts in Germany. In short, the Austrasian field, the concept framed by Wrigley in 1962, is the locus of reference. The symbolic importance of Dutch coal mining stimulated a series of experiments in bringing the

  11. Mine design for producing 100,000 tons per day of uranium-bearing Chattanooga Shale

    International Nuclear Information System (INIS)

    Hoe, H.L.

    1979-01-01

    Chattanooga Shale, underlying some 40,000 square miles in the southeastern United States, is considered to be a potentially large, low-grade source of uranium. The area in and near Dekalb County, Tennessee, appears to be the most likely site for commercial development. This paper deals with the mine design, mining procedures, equipment requirements, and operating maintenance costs for an underground mining complex capable of producing 100,000 tons of Chattanooga Shale per day for delivery to a beneficiation process

  12. Methodology of simulation of underground working in metal mines. Application to a uranium deposit in Australia

    International Nuclear Information System (INIS)

    Deraisme, J.; de Fouquet, C.; Fraisse, H.

    1983-01-01

    For the Ben Lomond (Northern Queensland Australia) underground uranium mining project, studies were carried out to compare the feasibility of different mining methods according to their cost per ton and selectivity, i.e. cut and fill, sublevel stopping and both mixed. First, a geostatistical orebody model was built. The ore grade variability of this model results from the drillhole structural analysis. Working on two dimensional vertical cross sections, the usual hand drawing stope reserve estimate obtained with computer assisted design for each of the three different mining methods is compared with the results obtained with automatic algorithms allocated to the characteristics of each mining method. These algorithms use mathematical morphology to reproduce the geometrical constraints connected with each mining method and/or dynamic programmation. These techniques lead to fully automatic of optimal economical stope design. Comparison is positive: automatic stopes designs are in agreement with hand made drawings, but they can be defined faster through interactive questionning of the computer, and the total maximum profit obtained is a least as high as the best profit found through hand designed projects [fr

  13. 26 CFR 1.187-1 - Amortization of certain coal mine safety equipment.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 3 2010-04-01 2010-04-01 false Amortization of certain coal mine safety... (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Itemized Deductions for Individuals and Corporations (continued) § 1.187-1 Amortization of certain coal mine safety equipment. (a) Allowance of deduction—(1) In...

  14. Absenteeism and accidents in a dangerous environment: empirical analysis of underground coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, P.S.; Garber, S.

    1988-02-01

    The study examined the effects or consequences of absenteeism on accidents. Data were gathered from production crews in five underground coal mines. A unique data set was created that traced on a daily basis the absence event, the company's policy on replacement, and the occurrence of an accident. The concept of familiarity was introduced to explain the impact of absenteeism on accidents. The basic data showed that absenteeism increased the chances for accidents in certain categories of unfamiliarity. Implications for manpower policy and absentee research are discussed. 4 tabs., 6 refs.

  15. Diagnostics of heavy mining equipment during the scheduled preventive maintenance

    Science.gov (United States)

    Drygin, M. Yu; Kuryshkin, N. P.

    2018-01-01

    Intensification of production, economic globalization and dramatic downgrade of the workers’ professional skills lead to unacceptable technical state of heavy mining equipment. Equipment maintenance outage reaches 84 % of the total downtime, of which emergency maintenance takes up to 36 % of time, that excesses 429 hours per year fr one excavator. It is shown that yearly diagnostics using methods of non-destructive check allows to reduce emergency downtime by 47 %, and 55 % of revealed defects can be eliminated without breaking the technological cycle of the equipment.

  16. South African mine valuation

    Energy Technology Data Exchange (ETDEWEB)

    Storrar, C D

    1977-01-01

    This article sets out the basic concepts of mine valuation, with gold mining receiving more space than base minerals and coal. Sampling practice is given special attention. Chapter headings are methods of investigation, sampling, underground sampling, averaging of underground sampling, diamond-drill sampling, mass and mineral content of ore, organization of a sample office, working costs, mining pay limits, ore reserves, ore accounting, maintenance of grade, forecasting operations and life of mine, statistical mine valuation, state's share of profits and taxation, and financial valuation of mining ventures.

  17. Application of decision tree model for the ground subsidence hazard mapping near abandoned underground coal mines.

    Science.gov (United States)

    Lee, Saro; Park, Inhye

    2013-09-30

    Subsidence of ground caused by underground mines poses hazards to human life and property. This study analyzed the hazard to ground subsidence using factors that can affect ground subsidence and a decision tree approach in a geographic information system (GIS). The study area was Taebaek, Gangwon-do, Korea, where many abandoned underground coal mines exist. Spatial data, topography, geology, and various ground-engineering data for the subsidence area were collected and compiled in a database for mapping ground-subsidence hazard (GSH). The subsidence area was randomly split 50/50 for training and validation of the models. A data-mining classification technique was applied to the GSH mapping, and decision trees were constructed using the chi-squared automatic interaction detector (CHAID) and the quick, unbiased, and efficient statistical tree (QUEST) algorithms. The frequency ratio model was also applied to the GSH mapping for comparing with probabilistic model. The resulting GSH maps were validated using area-under-the-curve (AUC) analysis with the subsidence area data that had not been used for training the model. The highest accuracy was achieved by the decision tree model using CHAID algorithm (94.01%) comparing with QUEST algorithms (90.37%) and frequency ratio model (86.70%). These accuracies are higher than previously reported results for decision tree. Decision tree methods can therefore be used efficiently for GSH analysis and might be widely used for prediction of various spatial events. Copyright © 2013. Published by Elsevier Ltd.

  18. Application of Long Expansion Rock Bolt Support in the Underground Mines of Legnica–Głogów Copper District

    Directory of Open Access Journals (Sweden)

    Skrzypkowski Krzysztof

    2017-09-01

    Full Text Available In the underground mines of the Legnica–Głogów Copper District (LGOM the main way to protect the room excavation is the use of a rock bolt support. For many years, it has proven to be an efficient security measure in excavations which met all safety standards and requirements. The article presents the consumption of the rock bolt support in the Mining Department “Polkowice–Sieroszowice” in the years 2010–2015 as well as the number of bolt supports that were used to secure the excavations. In addition, it shows the percentage of bolt supports that were used to conduct rebuilding work and cover the surface of exposed roofs. One of the factors contributing to the loss of the functionality of bolt supports is corrosion whose occurrence may lead directly to a reduction in the diameter of rock bolt support parts, in particular rods, bearing plates and nuts. The phenomenon of the corrosion of the bolt support and its elements in underground mining is an extremely common phenomenon due to the favorable conditions for its development in mines, namely high temperature and humidity, as well as the presence of highly aggressive water. This involves primarily a decrease in the capacity of bolt support construction, which entails the need for its strengthening, and often the need to perform the reconstruction of the excavation.

  19. The Video Collaborative Localization of a Miner's Lamp Based on Wireless Multimedia Sensor Networks for Underground Coal Mines.

    Science.gov (United States)

    You, Kaiming; Yang, Wei; Han, Ruisong

    2015-09-29

    Based on wireless multimedia sensor networks (WMSNs) deployed in an underground coal mine, a miner's lamp video collaborative localization algorithm was proposed to locate miners in the scene of insufficient illumination and bifurcated structures of underground tunnels. In bifurcation area, several camera nodes are deployed along the longitudinal direction of tunnels, forming a collaborative cluster in wireless way to monitor and locate miners in underground tunnels. Cap-lamps are regarded as the feature of miners in the scene of insufficient illumination of underground tunnels, which means that miners can be identified by detecting their cap-lamps. A miner's lamp will project mapping points on the imaging plane of collaborative cameras and the coordinates of mapping points are calculated by collaborative cameras. Then, multiple straight lines between the positions of collaborative cameras and their corresponding mapping points are established. To find the three-dimension (3D) coordinate location of the miner's lamp a least square method is proposed to get the optimal intersection of the multiple straight lines. Tests were carried out both in a corridor and a realistic scenario of underground tunnel, which show that the proposed miner's lamp video collaborative localization algorithm has good effectiveness, robustness and localization accuracy in real world conditions of underground tunnels.

  20. Determination of enrichment processes and the concentrations of radon in underground mines of fluorite and coal in Santa Catarina state: criteria for evaluation of radiological risks

    International Nuclear Information System (INIS)

    Santos, Carlos Eduardo Lima dos

    2008-01-01

    The inhalation of radon present in underground mines can imply in the deposition of its descendent in the lungs, which may cause harm to the lungs tissues and induce cancer. Concentration of radon not greater than 500 Bq/m3 in the environment of underground mines is considered to be acceptable internationally and concentrations above 1500 Bq/m3 require protective measures for the miners. The objectives of this research work are to determine the enrichment processes and the concentrations of radon in air, as well as the resulting doses due to the presence of this radionuclide in three underground mines of fluorite and three underground mines of coal in the State of Santa Catarina. The concentration of radon was measured employing two types of detectors of nuclear tracks (SSNTD), the LEXAN and the CR-39. This detection method consists in counting, with the help of a microscope, tracks resulting from the interaction of alpha particles with the film, due to the penetration of Rn-222 in the interior of the detector chamber and its decaying process. Contents of radium in collected samples of rocks, minerals and underground water were determined and compared with the corresponding radon concentration found in the underground air. It was observed that the coal mines showed low concentrations of radon, which can be explained by the low concentration of radium in rocks (sandstones and siltites in the footwall and hang wall) and in the coal that composes the mining environment or, yet still, due to the good ventilation system. The average dose to the workers of the coal mines was estimated as 0.7 mSv/a, value inferior to the limit of 1 mSv/a established by the Brazilian Nuclear Energy Commission (CNEN) for members of the public, and corresponding to a risk of fatal cancer after 50 years of work under this condition of 0.2%. On the other hand, the fluorite mines showed much higher concentrations of radon and superior to 1000 Bq/m3. The inefficiency of the ventilation system

  1. Properties of the fly ash from the Power Plant Dětmarovice from the point of view of their deposition in underground mines

    Directory of Open Access Journals (Sweden)

    Dirner Vojtech

    2001-06-01

    Full Text Available Mining for the Purposes of Disposal – Facilities, Requirements and Conceptions. Mining for the purposes of disposal can be instrumental in environmental protection in the future. Therefore the utilization of residues in the mining process has to be put into the foreground, whether they are a product of the mining activity itself or coming from other sources. It is possible to use the residual products as filling or building materials. Within the constantly increasing demand for building materials in the mines it is possible to combine the advantages that improve mine safety, rock mechanics and support with the secure long-term sealing of mineralized industrial residues in the lithosphere. Also the disposal of polluted, water-soluble and toxic or radioactive waste in a suitable geological formation underground can be realized ensuring long-term safety. This long-term safety is guaranteed by a multiple system of geological and technical barriers. The storage can b conducted in appropriate void space like chambers, caverns, drifts or boreholes with or without the opinion of retarding the material.Contribution is discussing the possibility of the deposition on fly ash produced by thermal power plants which are using low-grade brown coal as a fuel. Properties of fly ash were studied id detail on samples from Power Plant Dìtmarovice, northern Moravia.Results proved that fly ash can be deposited safely in underground.

  2. Communications construction on mining grounds influenced by mining damage. Budownictwo komunikacyjne na terenach objetych szkodami gorniczymi

    Energy Technology Data Exchange (ETDEWEB)

    Rosikon, A

    1979-01-01

    This book considers problems associated with construction of communication lines on grounds influenced by underground coal mining. It is stated that about 50% of coal mined in Poland comes from protective coal pillars. Improving methods of strata control and ground control after underground mining will influence perspectives of mining in protective pillars. The following problems associated with minimizing mining damage are analyzed: types of ground deformation caused by underground mining, continuous and discontinuous deformation, factors which influence formation of subsidence troughs, forecasting ground subsidence according to the Knothe and Budryk theory, horizontal and vertical ground dislocation, coefficients used for description of ground deformation, Kochmanski's theory of continuous deformation, effects of ground subsidence of foundations of buildings and industrial structures, construction of roads, railway tracks and other communication lines on ground influenced by discontinuous deformations caused by coal mining, problems associated with construction of bridges and tunnels, construction of sewage systems, effects of underground mining on maintenance and repair of communication lines and sewage systems. Ways of minimizing discontinuous ground deformation are analyzed.

  3. 30 CFR 75.302 - Main mine fans.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Main mine fans. 75.302 Section 75.302 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.302 Main mine fans. Each coal mine shall be ventilated by one or more main mine fans. Booster fans shall not be installed underground to assist main mine...

  4. Application of Long Expansion Rock Bolt Support in the Underground Mines of Legnica-Głogów Copper District

    Science.gov (United States)

    Skrzypkowski, Krzysztof; Korzeniowski, Waldemar; Zagórski, Krzysztof; Dudek, Piotr

    2017-09-01

    In the underground mines of the Legnica-Głogów Copper District (LGOM) the main way to protect the room excavation is the use of a rock bolt support. For many years, it has proven to be an efficient security measure in excavations which met all safety standards and requirements. The article presents the consumption of the rock bolt support in the Mining Department "Polkowice-Sieroszowice" in the years 2010-2015 as well as the number of bolt supports that were used to secure the excavations. In addition, it shows the percentage of bolt supports that were used to conduct rebuilding work and cover the surface of exposed roofs. One of the factors contributing to the loss of the functionality of bolt supports is corrosion whose occurrence may lead directly to a reduction in the diameter of rock bolt support parts, in particular rods, bearing plates and nuts. The phenomenon of the corrosion of the bolt support and its elements in underground mining is an extremely common phenomenon due to the favorable conditions for its development in mines, namely high temperature and humidity, as well as the presence of highly aggressive water. This involves primarily a decrease in the capacity of bolt support construction, which entails the need for its strengthening, and often the need to perform the reconstruction of the excavation. The article presents an alternative for steel bearing plates, namely plates made using the spatial 3D printing technology. Prototype bearing plates were printed on a 3D printer Formiga P100 using the "Precymit" material. The used printing technology was SLS (Selective Laser Sintering), which is one of the most widely used technologies among all the methods of 3D printing for the short series production of the technical parts of the final product. The article presents the stress-strain characteristic of the long expansion connected rock bolt support OB25 with a length of 3.65 m. A rock bolt support longer than 2.6 m is an additional bolt support in

  5. Short-term radon activity concentration changes along the Underground Educational Tourist Route in the Old Uranium Mine in Kletno (Sudety Mts., SW Poland)

    International Nuclear Information System (INIS)

    Fijałkowska-Lichwa, Lidia

    2014-01-01

    Short-term 222 Rn activity concentration changes along the Underground Educational Tourist Route in the Old Uranium Mine in Kletno were studied, based on continuous measurements conducted between 16 May 2008 and 15 May 2010. The results were analysed in the context of numbers of visitors arriving at the facility in particular seasons and the time per day spent inside by staff and visitors. This choice was based on partially published earlier findings (Fijałkowska-Lichwa and Przylibski, 2011). Results for the year 2009 were analysed in depth, because it is the only period of observation covering a full calendar year. The year 2009 was also chosen for detailed analysis of short-term radon concentration changes, because in each period of this year (hour, month, season) fluctuations of noted values were the most visible. Attention has been paid to three crucial issues linked to the occurrence and behaviour of radon and to the radiological protection of workers and visitors at the tourist route in Kletno. The object of study is a complex of workings in a former uranium mine situated within a metamorphic rock complex in the most radon-prone area in Poland. The facility has been equipped with a mechanical ventilation system, which is turned on after the closing time and at the end of the working day for the visitor service staff, i.e. after 6 p.m. Short-term radon activity concentration changes along the Underground Educational Tourist Route in the Old Uranium Mine in Kletno are related to the activity of the facility's mechanical ventilation. Its inactivity in the daytime results in the fact that the highest values of 222 Rn activity concentration are observed at the time when the facility is open to visitors, i.e. between 10 a.m. and 6 p.m. The improper usage of the mechanical ventilation system is responsible for the extremely unfavourable working conditions, which persist in the facility for practically all year. The absence of appropriate radiological

  6. Multi-Sensor Detection with Particle Swarm Optimization for Time-Frequency Coded Cooperative WSNs Based on MC-CDMA for Underground Coal Mines

    Directory of Open Access Journals (Sweden)

    Jingjing Xu

    2015-08-01

    Full Text Available In this paper, a wireless sensor network (WSN technology adapted to underground channel conditions is developed, which has important theoretical and practical value for safety monitoring in underground coal mines. According to the characteristics that the space, time and frequency resources of underground tunnel are open, it is proposed to constitute wireless sensor nodes based on multicarrier code division multiple access (MC-CDMA to make full use of these resources. To improve the wireless transmission performance of source sensor nodes, it is also proposed to utilize cooperative sensors with good channel conditions from the sink node to assist source sensors with poor channel conditions. Moreover, the total power of the source sensor and its cooperative sensors is allocated on the basis of their channel conditions to increase the energy efficiency of the WSN. To solve the problem that multiple access interference (MAI arises when multiple source sensors transmit monitoring information simultaneously, a kind of multi-sensor detection (MSD algorithm with particle swarm optimization (PSO, namely D-PSO, is proposed for the time-frequency coded cooperative MC-CDMA WSN. Simulation results show that the average bit error rate (BER performance of the proposed WSN in an underground coal mine is improved significantly by using wireless sensor nodes based on MC-CDMA, adopting time-frequency coded cooperative transmission and D-PSO algorithm with particle swarm optimization.

  7. Multi-Sensor Detection with Particle Swarm Optimization for Time-Frequency Coded Cooperative WSNs Based on MC-CDMA for Underground Coal Mines.

    Science.gov (United States)

    Xu, Jingjing; Yang, Wei; Zhang, Linyuan; Han, Ruisong; Shao, Xiaotao

    2015-08-27

    In this paper, a wireless sensor network (WSN) technology adapted to underground channel conditions is developed, which has important theoretical and practical value for safety monitoring in underground coal mines. According to the characteristics that the space, time and frequency resources of underground tunnel are open, it is proposed to constitute wireless sensor nodes based on multicarrier code division multiple access (MC-CDMA) to make full use of these resources. To improve the wireless transmission performance of source sensor nodes, it is also proposed to utilize cooperative sensors with good channel conditions from the sink node to assist source sensors with poor channel conditions. Moreover, the total power of the source sensor and its cooperative sensors is allocated on the basis of their channel conditions to increase the energy efficiency of the WSN. To solve the problem that multiple access interference (MAI) arises when multiple source sensors transmit monitoring information simultaneously, a kind of multi-sensor detection (MSD) algorithm with particle swarm optimization (PSO), namely D-PSO, is proposed for the time-frequency coded cooperative MC-CDMA WSN. Simulation results show that the average bit error rate (BER) performance of the proposed WSN in an underground coal mine is improved significantly by using wireless sensor nodes based on MC-CDMA, adopting time-frequency coded cooperative transmission and D-PSO algorithm with particle swarm optimization.

  8. Hybrid electrical generation system utilizing wind, diesel and hydropower for operation of an underground zinc mine in southern Chile

    Energy Technology Data Exchange (ETDEWEB)

    Gridley, Norman [Minera El Toqui (Chile); Banto, Marcelo [Seawind Chile (Chile)

    2010-07-01

    This paper presents a hybrid electrical generation system used for underground zinc mine operations that utilizes wind, diesel and hydropower. This mine is located in Coyhaique and had a total energy consumption of 32,567 MWh in 2010 which is anticipated to increase by 25% in 2011. Power generation in this mine is independent of the power grid. It consists of four main portals: ventilation, electrical and drainage systems and ramp access to all mining zones. The technical details for all the parts of the mine and the hybrid generation system are given. A tabular form shows the energy consumed every month from 2005-2010 for all three systems involved, namely wind power generation, diesel generation and the hydro generation system. Benefits of this hybrid system include stability and constant power generation under variable loads. This system can also be applied to other mines using a grid. From the study it can be concluded that the hybrid system is environmentally friendly, economical and sustainable.

  9. Groundwater and underground coal gasification in Alberta

    International Nuclear Information System (INIS)

    Haluszka, A.; MacMillan, G.; Maev, S.

    2010-01-01

    Underground coal gasification has potential in Alberta. This presentation provided background information on underground coal gasification and discussed groundwater and the Laurus Energy demonstration project. A multi-disciplined approach to project assessment was described with particular reference to geologic and hydrogeologic setting; geologic mapping; and a hydrogeologic numerical model. Underground coal gasification involves the conversion of coal into synthesis gas or syngas. It can be applied to mined coal at the surface or applied to non-mined coal seams using injection and production wells. Underground coal gasification can effect groundwater as the rate of water influx into the coal seams influences the quality and composition of the syngas. Byproducts created include heat as well as water with dissolved concentrations of ammonia, phenols, salts, polyaromatic hydrocarbons, and liquid organic products from the pyrolysis of coal. A process overview of underground coal gasification was also illustrated. It was concluded that underground coal gasification has the potential in Alberta and risks to groundwater could be minimized by a properly designed project. refs., figs.

  10. Development stage of computerization and automation of machines and equipment used at longwall faces in Polish mines. Sostoyanie rabot po ehlektronizatsii i avtomatizatsii mashin i oborudovaniya, ustanavlivaemogo v lave i primenyaemogo v Pol'skikh shakhtakh

    Energy Technology Data Exchange (ETDEWEB)

    Sobchik, Yu; Pan' kuv, A; Sikora, W [Gornopromyshlennoe Obedinenie po Avtomatizatsii EMAG, Katowice (Poland)

    1988-01-01

    Discusses development of control equipment and control systems for machines and equipment used in underground black coal mining in Poland. The following types of control systems are comparatively evaluated: control systems for powered supports used at longwall faces (remote control, control of groups of powered support units, control of individual support units), control systems for shearer loaders (control of shearer loader position at a working face, control of motor loading, motor heating, pressure in hydraulic systems, control of roller bearings etc.), control systems for coal plows (remote start-up of a coal plow and auxiliary equipment, communications between coal miners at a working face, control of motor loading, control of cutting head position, water spraying, etc.), sensors used in control systems and control equipment. Development trends of control systems for equipment used at longwall faces are discussed.

  11. Predictors of work injury in underground mines - an application of a logistic regression model

    Energy Technology Data Exchange (ETDEWEB)

    P.S. Paul [Indian School of Mines University, Dhanbad (India). Department of Mining Engineering

    2009-05-15

    Mine accidents and injuries are complex and generally characterized by several factors starting from personal to technical, and technical to social characteristics. In this study, an attempt has been made to identify the various factors responsible for work related injuries in mines and to estimate the risk of work injury to mine workers. The prediction of work injury in mines was done by a step-by-step multivariate logistic regression modeling with an application to case study mines in India. In total, 18 variables were considered in this study. Most of the variables are not directly quantifiable. Instruments were developed to quantify them through a questionnaire type survey. Underground mine workers were randomly selected for the survey. Responses from 300 participants were used for the analysis. Four variables, age, negative affectivity, job dissatisfaction, and physical hazards bear significant discriminating power for risk of injury to the workers, comparing between cases and controls in a multivariate situation while controlling all the personal and socio-technical variables. The analysis reveals that negatively affected workers are 2.54 times more prone to injuries than the less negatively affected workers and this factor is a more important risk factor for the case-study mines. Long term planning through identification of the negative individuals, proper counseling regarding the adverse effects of negative behaviors and special training is urgently required. Care should be taken for the aged and experienced workers in terms of their job responsibility and training requirements. Management should provide a friendly atmosphere during work to increase the confidence of the injury prone miners. 44 refs., 4 tabs.

  12. Comparison of radon and thoron daughter behaviour in two underground uranium mine environments

    International Nuclear Information System (INIS)

    1985-09-01

    Measurements were made of aerosol concentration and size distribution in 5 locations downstream of working areas in two Canadian uranium mines which use track and trackless mining methods. In the track mining area the aerosol concentration ranged from 3x10 4 to 7x10 4 /cm 3 , averaging 5x10 4 /cm 3 . The highest values were associated with the passage of diesel equipment. The count median diameter of the aerosol varied from 32 to 94 nm, with the smaller sizes associated with the presence of diesel exhaust. The activity median diameter was measured for radon and thoron daughters in each environment. In the track mine the diameter of 218 Po, 214 Pb, 214 Bi averaged 54, 50, 54 nm respectively, and of 212 Pb averaged 70 nm. In the trackless mine, these diameters were 73, 70, 85 and 100 nm, respectively. The activity median diameter in terms of radon Total Potential Alpha Energy was found to be 89 nm

  13. Study on the Effect of Frequency on Conductivity of Underground Strata in Coal Mine Through-the-earth Wireless Communication

    Directory of Open Access Journals (Sweden)

    Jinyi TAO

    2014-09-01

    Full Text Available The relationship of conductivity and the frequency, which is of decisive significance in through-the-earth wireless communication in coal mine, is closely related to the options of frequency range in coal mine wireless communication. When through-the-earth wireless communication is applied, the electromagnetic waves need to spread in the semi-conductive medium rocks. The main factors affecting the electromagnetic wave propagation in rocks is the rock strata electromagnetic parameters. These parameters are magnetic permeability m (H/m, dielectric constant e (F/m and electrical conductivity s (S/m. In these parameters, electrical conductivity is not constant. Under the influence of various factors, it will be great changes. This paper, for the specific circumstances of coal mine rock, discuses and conduct dada mining the effect frequency on the electrical conductivity of underground rock in coal mine with through-the-earth wireless communication.

  14. The Video Collaborative Localization of a Miner’s Lamp Based on Wireless Multimedia Sensor Networks for Underground Coal Mines

    Directory of Open Access Journals (Sweden)

    Kaiming You

    2015-09-01

    Full Text Available Based on wireless multimedia sensor networks (WMSNs deployed in an underground coal mine, a miner’s lamp video collaborative localization algorithm was proposed to locate miners in the scene of insufficient illumination and bifurcated structures of underground tunnels. In bifurcation area, several camera nodes are deployed along the longitudinal direction of tunnels, forming a collaborative cluster in wireless way to monitor and locate miners in underground tunnels. Cap-lamps are regarded as the feature of miners in the scene of insufficient illumination of underground tunnels, which means that miners can be identified by detecting their cap-lamps. A miner’s lamp will project mapping points on the imaging plane of collaborative cameras and the coordinates of mapping points are calculated by collaborative cameras. Then, multiple straight lines between the positions of collaborative cameras and their corresponding mapping points are established. To find the three-dimension (3D coordinate location of the miner’s lamp a least square method is proposed to get the optimal intersection of the multiple straight lines. Tests were carried out both in a corridor and a realistic scenario of underground tunnel, which show that the proposed miner’s lamp video collaborative localization algorithm has good effectiveness, robustness and localization accuracy in real world conditions of underground tunnels.

  15. The Video Collaborative Localization of a Miner’s Lamp Based on Wireless Multimedia Sensor Networks for Underground Coal Mines

    Science.gov (United States)

    You, Kaiming; Yang, Wei; Han, Ruisong

    2015-01-01

    Based on wireless multimedia sensor networks (WMSNs) deployed in an underground coal mine, a miner’s lamp video collaborative localization algorithm was proposed to locate miners in the scene of insufficient illumination and bifurcated structures of underground tunnels. In bifurcation area, several camera nodes are deployed along the longitudinal direction of tunnels, forming a collaborative cluster in wireless way to monitor and locate miners in underground tunnels. Cap-lamps are regarded as the feature of miners in the scene of insufficient illumination of underground tunnels, which means that miners can be identified by detecting their cap-lamps. A miner’s lamp will project mapping points on the imaging plane of collaborative cameras and the coordinates of mapping points are calculated by collaborative cameras. Then, multiple straight lines between the positions of collaborative cameras and their corresponding mapping points are established. To find the three-dimension (3D) coordinate location of the miner’s lamp a least square method is proposed to get the optimal intersection of the multiple straight lines. Tests were carried out both in a corridor and a realistic scenario of underground tunnel, which show that the proposed miner’s lamp video collaborative localization algorithm has good effectiveness, robustness and localization accuracy in real world conditions of underground tunnels. PMID:26426023

  16. Reliability analysis of mining equipment: A case study of a crushing plant at Jajarm Bauxite Mine in Iran

    International Nuclear Information System (INIS)

    Barabady, Javad; Kumar, Uday

    2008-01-01

    The performance of mining machines depends on the reliability of the equipment used, the operating environment, the maintenance efficiency, the operation process, the technical expertise of the miners, etc. As the size and complexity of mining equipments continue to increase, the implications of equipment failure become ever more critical. Therefore, reliability analysis is required to identify the bottlenecks in the system and to find the components or subsystems with low reliability for a given designed performance. It is important to select a suitable method for data collection as well as for reliability analysis. This paper presents a case study describing reliability and availability analysis of the crushing plant number 3 at Jajarm Bauxite Mine in Iran. In this study, the crushing plant number 3 is divided into six subsystems. The parameters of some probability distributions, such as Weibull, Exponential, and Lognormal distributions have been estimated by using ReliaSoft's Weibull++6 software. The results of the analysis show that the conveyer subsystem and secondary screen subsystem are critical from a reliability point of view, and the secondary crusher subsystem and conveyer subsystem are critical from an availability point of view. The study also shows that the reliability analysis is very useful for deciding maintenance intervals

  17. 30 CFR 57.4461 - Gasoline use restrictions underground.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Gasoline use restrictions underground. 57.4461... Prevention and Control Flammable and Combustible Liquids and Gases § 57.4461 Gasoline use restrictions underground. If gasoline is used underground to power internal combustion engines— (a) The mine shall be...

  18. Mining in 2015

    Energy Technology Data Exchange (ETDEWEB)

    Hood, M.; Hatherly, P.; Gurgenci, H. [Centre for Mining Technology and Equipment (Australia)

    1999-10-01

    New technology in open-pit and underground hard rock mining in 2015 is anticipated in this article, based on a paper presented to the 1998 invitation symposium - 'Technology - Australia's future: new technology for traditional industry', held in Freemantle, WA, 24-25 November 1998. It is expected that essential mining operations of rock breakage and transport and ore processing will still exist but the use of drills, shovels/LHDs and trucks is likely to be replaced by continuous, intelligent, automated mining systems. Rock blasting models need to be fed data on rock properties at each blasthole for high accuracy. The authors believe that in 2015 measurements of rock properties will be a routine part of the drilling process. Blasthole drills will be fitted with a range of mechanical and geophysical sensors. New, non-explosive methods of rock breaking such as oscillating disc cutting, may be available. Mining automation will improve safety and productivity, perhaps with the automation of dragline swing LHDs and trucks may be able to drive themselves, with operators monitoring and intervening when necessary. Performance and machine condition data may be applied to improve equipment design. Australian mining stands to gain by these advances in mining technology. 1 fig., 3 photos.

  19. Uranium mills and mines environmental restoration in Spain

    International Nuclear Information System (INIS)

    Perez Estevez, C.; Lozano Martinez, F.

    2000-01-01

    ENRESA and ENUSA have dismantled and restored a uranium mill in Andujar (Andalucia), a uranium facility based on open pit mining and plant in La Haba (Extremadura) and 19 old uranium mines in Andalucia and Extremadura. The Andujar Uranium Mill was operated from 1959 to 1981 and has been restorated between 1991 and 1994. The site included the tailings pile and the processing plant. The Haba Uranium Site included the Plant (operating from 1976 to 1999), four open-pit mines (operating from 1966 to 1990), the heaps leaching and the tailings dam and has been restorated between 1992 and 1997. The 19 abandoned uranium mines were developed by underground mining with the exception of two sites, which were operated by open pit mining. Mining operations started around 1959 and were shutdown in 1981. There was a great diversity among the mines, in terms of site conditions. Whereas in some sites there was little trace of the mining works, in other sites large excavations, mining debris piles, abandoned shafs and galeries and remaining surface structures and equipment were encountered. (author)

  20. 30 CFR 57.4760 - Shaft mines.

    Science.gov (United States)

    2010-07-01

    ... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control... following means to control the spread of fire, smoke, and toxic gases underground in the event of a fire...

  1. Standard on fire protection for self-propelled and mobile surface mining equipment. 2001 ed.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Safeguard life and property against fire and related hazards in mines with the latest requirements in NFPA 121. This 2001 edition covers fire detection, suppression, ignition sources, fire risk assessment and maintenance of mining equipment systems. 4 apps.

  2. 30 CFR 49.20 - Requirements for all coal mines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Requirements for all coal mines. 49.20 Section... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.20 Requirements for all coal mines. (a) The operator of each underground coal mine shall make available two certified mine rescue...

  3. Assessment of radiological status of Bagjata underground uranium mine operating in the east Singhbhum District of Jharkhand

    International Nuclear Information System (INIS)

    Rana, B.K.; Meena, J.S.; Thakur, V.K.; Sahoo, S.K.; Tripathi, R.M.; Puranik, V.D.

    2012-01-01

    Bagjata uranium mine deposits (22 °28’ 07”N and 86°29’ 36” E) is located in Dhalmugarh subdivision of East Singhbhum district of Jharkhand. This mine was commissioned in 2008 and presently it is operating with a production capacity of 500 tonne/day. The mining of uranium ores can lead to both internal and external exposures of workers. Internal exposure arises from the inhalation of radon gas and its decay products and radionuclides in ore dust. The contribution of respirable ore dust toward internal exposure has been reported to be insignificant in a low ore grade uranium mines by several authors. Radon gas is produced by the alpha decay of 226 Ra, which is a product of the long lived antecedent uranium ( 238 U), is present in the rocks, decays to a number of short-lived decay products that are themselves radioactive. Radon gas diffuses into the mine air through cracks and fissures present in the ore body, during blasting, mucking and fragmentation of ore body in mine. The short-lived daughters, 218 Po, 214 Pb, 214 Bi and 214 Po, are the principal contributor to internal exposure to mine workers. Radon has been recognized as a radiation hazard causing excess lung cancer among underground miners (NAS, 1988; ATSDR, 1990). 222 Rn concentration in the mine air was estimated by using a scintillation cell technique

  4. Spanish mining industry. Working mines. Research. Equipment. La mineria espanola. Explotaciones. Investigacion. Equipos

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    The Spanish mining industry and the work of the organizations AITEMIN (Asociacion de Investigacion Tecnologica de Equipos Mineros), Laboratorio Oficial J.M. Madariaga, Instituto Geologico y Minero de Espana and Empresa Nacional Adaro de Investigaciones Mineras S.A. are described. A list of firms which are members of AITEMIN or SERCOBE (Asociacion Nacional de Fabricantes de Bienes de Equipo) is given. For each firm, the address and equipment manufactured is included.

  5. A retrospective mortality study of workers exposed to radon in a Brazilian coal mine

    International Nuclear Information System (INIS)

    Veiga, Lene Holanda Sadler

    2004-08-01

    High levels of radon concentration were found in the underground workplace of an underground coal mine in Parana state, which has been in activity since 1942. Many of these workers were exposed for a long period of time to a work atmosphere with high radon, and radon decay products concentration. Taking this into account, it was decided to carry on a historical cohort, study with the workers' of this mining universe (underground and surface) in. order to evaluate the possible health effects related to this exposure, by means of a retrospective study of mortality. Through multiple strategies, it was possible to trace the vital status of 90% of the cohort. The causes of the deaths were identified by active search, of Death Declarations in the Health Office of Parana state and also in and other states. The success rate of cause of death identification was 100%. The final, cohort included 1946 underground workers and 910 surface workers. Standard mortality ratio (SMR) analysis showed lower mortality from all causes for both underground (SMR-88, 95%CI=78-98) and surface workers (SMR=96, 95%CI=81- 113). A highly significant SMR was observed for pneumonia cause of death among surface ((SMR=284, 95%CI=118-684) and underground miners (SMR-254, 95%CI=140-459), while a highly significant lung cancer mortality risk was observed only for underground miners (SMR=177, 95%CI=105-299) with a significant trend in relation to years of underground work (duration of exposure). Taking into account that mortality from smoking-related cancers other than lung cancer is not elevated in underground workers and diesel equipment were not used at this mine, the results suggest that the exposure to radon daughters may have been responsible for the lung cancer excess among underground workers. This work consists of the first historical Brazilian cohort involving miners exposed to radon and one of the few historical cohorts built in Brazil. It should be considered the fact that many workers of

  6. Midwest Joint Venture high-grade uranium mining

    International Nuclear Information System (INIS)

    Fredrickson, H.K.

    1992-01-01

    Midwest Joint Venture (MJV) owns a high-grade uranium deposit in northern Saskatchewan. The deposit is located too deep below surface to be mined economically by open pit methods, and as a consequence, present plans are that it will be mined by underground methods. High-grade uranium ore of the type at MJV, encased in weak, highly altered ground and with radon-rich water inflows, has not before been mined by underground methods. The test mining phase of the project, completed in 1989, had three objectives: To evaluate radiation protection requirements associated with the handling of large quantities of radon-rich water and mining high-grade uranium ore in an underground environment; to investigate the quantity and quality of water inflows into the mine; and, to investigate ground conditions in and around the ore zone as an aid in determining the production mining method to be used. With information gained from the test mining project, a mining method for the production mine has been devised. Level plans have been drawn up, ventilation system designed, pumping arrangements made and methods of ore handling considered. All this is to be done in a manner that will be safe for those doing the work underground. Some of the mining methods planned are felt to be unique in that they are designed to cope with mining problems not known to have been encountered before. New problems underground have required new methods to handle them. Remote drilling, blasting, mucking and backfilling form the basis of the planned mining method

  7. Mining technology and policy issues 1983

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    This book presents conference papers on advances in mineral processing, coal mining, communications for mining executives, environmental laws and regulations, exploration philosophy, exploration technology, government controls and the environment, management, mine finance, minerals availability, mine safety, occupational health, open pit mining, the precious metals outlook, public lands, system improvements in processing ores, and underground mining. Topics considered include coal pipelines and saline water, an incentive program for coal mines, sandwich belt high-angle conveyors, the development of a mining company, regulations for radionuclides, contracts for western coal production for Pacific Rim exports, and the control of radon daughters in underground mines

  8. Stratified random sampling plans designed to assist in the determination of radon and radon daughter concentrations in underground uranium mine atmosphere

    International Nuclear Information System (INIS)

    Makepeace, C.E.

    1981-01-01

    Sampling strategies for the monitoring of deleterious agents present in uranium mine air in underground and surface mining areas are described. These methods are designed to prevent overexposure of the lining of the respiratory system of uranium miners to ionizing radiation from radon and radon daughters, and whole body overexposure to external gamma radiation. A detailed description is provided of stratified random sampling monitoring methodology for obtaining baseline data to be used as a reference for subsequent compliance assessment

  9. A large area cosmic muon detector located at Ohya stone mine

    Science.gov (United States)

    Nii, N.; Mizutani, K.; Aoki, T.; Kitamura, T.; Mitsui, K.; Matsuno, S.; Muraki, Y.; Ohashi, Y.; Okada, A.; Kamiya, Y.

    1985-01-01

    The chemical composition of the primary cosmic rays between 10 to the 15th power eV and 10 to the 18th power eV were determined by a Large Area Cosmic Muon Detector located at Ohya stone mine. The experimental aims of Ohya project are; (1) search for the ultra high-energy gamma-rays; (2) search for the GUT monopole created by Big Bang; and (3) search for the muon bundle. A large number of muon chambers were installed at the shallow underground near Nikko (approx. 100 Km north of Tokyo, situated at Ohya-town, Utsunomiya-city). At the surface of the mine, very fast 100 channel scintillation counters were equipped in order to measure the direction of air showers. These air shower arrays were operated at the same time, together with the underground muon chamber.

  10. New developments in uranium mining in India

    International Nuclear Information System (INIS)

    Puri, R.C.

    1993-01-01

    Uranium mining is so far restricted to underground mines only. Uranium mining is similar to other non-coal (metalliferous) mining. Mode of entries has been adits, inclines and vertical shafts. Decline have been constructed at Narwapahar and Turamdih. Access decline (7 deg) at Narwapahar has been driven to about 900 m length and reached depth of about 100 m. Stoping methods are mainly with filling, open stopes supported with adequate pillars with or without post filling to prevent surface subsidence are also being adopted. Appreciable degree of mechanization has been adopted in Jaduguda mines however, Narwapahar mine has been made highly mechanized. Face mechanization in the present operations is by way of air leg mounted jack hammers and stope wagons for drilling and small capacity (upto 1 cu. yd) rail mounted/trackless loaders for loading. Alimak raise climber has been used for raising work. For horizontal transport in mines, Hunselet diesel locomotives (4 tonne size) with Granby car, 3.5 tonne capacity, are being used, vertical transport is by means of drum winders and tower mounted friction winders. At Narwapahar mine twin boom drill jumobs, LHDs-1.78 m 3 and 2.8 m 3 capacity, PLDTs-15 tonner and 23 tonner capacity and relevant service equipment like passenger carriers, supply trucks, service cum lube truck, motor grader, etc. are being used. These rubber tyrred trackless equipment enter the mine directly from the surface through the service/access decline entry. These new developments in mining are detailed hereinafter. (author). 11 figs., 4 photos

  11. Risk analysis of the LHC underground area fire risk due to faulty electrical equipment

    CERN Document Server

    Harrison, A

    2007-01-01

    The European Organisation for Nuclear Research (CERN) in Geneva, Switzerland, is currently building the latest generation of particle accelerators, the LHC (Large Hadron Collider). The machine is housed in a circular tunnel of 27 km of circumference and is situated approximately 100 metres beneath the surface astride the Franco-Swiss border. Electrically induced fires in the LHC are a major concern, since an incident could present a threat to CERN personnel as well as the public. Moreover, the loss of equipment would result in significant costs and downtime. However, the amount of electrical equipment in the underground area required for operation, supervision and control of the machine is essential. Thus the present thesis is assessing the risk of fire due to faulty electrical equipment in both a qualitative as well as quantitative way. The recommendations following the qualitative analysis suggest the introduction of fire protection zones for the areas with the highest risk of fire due to a combination of p...

  12. 30 CFR 75.1003-2 - Requirements for movement of off-track mining equipment in areas of active workings where...

    Science.gov (United States)

    2010-07-01

    ... moving or transporting operations. (d) The frames of off-track mining equipment being moved or... and the frames of off-track mining equipment being moved in-track and trolley entries, except that... the trolley wires or trolley feeder wires only from outby the unit of equipment being moved or...

  13. A Global Survey of Deep Underground Facilities; Examples of Geotechnical and Engineering Capabilities, Achievements, Challenges (Mines, Shafts, Tunnels, Boreholes, Sites and Underground Facilities for Nuclear Waste and Physics R&D): A Guide to Interactive Global Map Layers, Table Database, References and Notes

    International Nuclear Information System (INIS)

    Tynan, Mark C.; Russell, Glenn P.; Perry, Frank V.; Kelley, Richard E.; Champenois, Sean T.

    2017-01-01

    These associated tables, references, notes, and report present a synthesis of some notable geotechnical and engineering information used to create four interactive layer maps for selected: 1) deep mines and shafts; 2) existing, considered or planned radioactive waste management deep underground studies or disposal facilities 3) deep large diameter boreholes, and 4) physics underground laboratories and facilities from around the world. These data are intended to facilitate user access to basic information and references regarding “deep underground” facilities, history, activities, and plans. In general, the interactive maps and database provide each facility’s approximate site location, geology, and engineered features (e.g.: access, geometry, depth, diameter, year of operations, groundwater, lithology, host unit name and age, basin; operator, management organization, geographic data, nearby cultural features, other). Although the survey is not comprehensive, it is representative of many of the significant existing and historical underground facilities discussed in the literature addressing radioactive waste management and deep mined geologic disposal safety systems. The global survey is intended to support and to inform: 1) interested parties and decision makers; 2) radioactive waste disposal and siting option evaluations, and 3) safety case development applicable to any mined geologic disposal facility as a demonstration of historical and current engineering and geotechnical capabilities available for use in deep underground facility siting, planning, construction, operations and monitoring.

  14. A Global Survey of Deep Underground Facilities; Examples of Geotechnical and Engineering Capabilities, Achievements, Challenges (Mines, Shafts, Tunnels, Boreholes, Sites and Underground Facilities for Nuclear Waste and Physics R&D): A Guide to Interactive Global Map Layers, Table Database, References and Notes

    Energy Technology Data Exchange (ETDEWEB)

    Tynan, Mark C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Russell, Glenn P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Perry, Frank V. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kelley, Richard E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Champenois, Sean T. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-13

    These associated tables, references, notes, and report present a synthesis of some notable geotechnical and engineering information used to create four interactive layer maps for selected: 1) deep mines and shafts; 2) existing, considered or planned radioactive waste management deep underground studies or disposal facilities 3) deep large diameter boreholes, and 4) physics underground laboratories and facilities from around the world. These data are intended to facilitate user access to basic information and references regarding “deep underground” facilities, history, activities, and plans. In general, the interactive maps and database provide each facility’s approximate site location, geology, and engineered features (e.g.: access, geometry, depth, diameter, year of operations, groundwater, lithology, host unit name and age, basin; operator, management organization, geographic data, nearby cultural features, other). Although the survey is not comprehensive, it is representative of many of the significant existing and historical underground facilities discussed in the literature addressing radioactive waste management and deep mined geologic disposal safety systems. The global survey is intended to support and to inform: 1) interested parties and decision makers; 2) radioactive waste disposal and siting option evaluations, and 3) safety case development applicable to any mined geologic disposal facility as a demonstration of historical and current engineering and geotechnical capabilities available for use in deep underground facility siting, planning, construction, operations and monitoring.

  15. Thermal load at workstations in the underground coal mining: Results of research carried out in 6 coal mines

    Directory of Open Access Journals (Sweden)

    Krzysztof Słota

    2016-08-01

    Full Text Available Background: Statistics shows that almost half of Polish extraction in underground mines takes place at workstations where temperature exceeds 28°C. The number of employees working in such conditions is gradually increasing, therefore, the problem of safety and health protection is still growing. Material and Methods: In the present study we assessed the heat load of employees at different workstations in the mining industry, taking into account current thermal conditions and work costs. The evaluation of energy cost of work was carried out in 6 coal mines. A total of 221 miners employed at different workstations were assessed. Individual groups of miners were characterized and thermal safety of the miners was assessed relying on thermal discomfort index. Results: The results of this study indicate considerable differences in the durations of analyzed work processes at individual workstations. The highest average energy cost was noted during the work performed in the forehead. The lowest value was found in the auxiliary staff. The calculated index of discomfort clearly indicated numerous situations in which the admissible range of thermal load exceeded the parameters of thermal load safe for human health. It should be noted that the values of average labor cost fall within the upper, albeit admissible, limits of thermal load. Conclusions: The results of the study indicate that in some cases work in mining is performed in conditions of thermal discomfort. Due to high variability and complexity of work conditions it becomes necessary to verify the workers’ load at different workstations, which largely depends on the environmental conditions and work organization, as well as on the performance of workers themselves. Med Pr 2016;67(4:477–498

  16. A practical application of photogrammetry to performing rib characterization measurements in an underground coal mine using a DSLR camera.

    Science.gov (United States)

    Slaker, Brent A; Mohamed, Khaled M

    2017-01-01

    Understanding coal mine rib behavior is important for inferring pillar loading conditions as well as ensuring the safety of miners who are regularly exposed to ribs. Due to the variability in the geometry of underground openings and ground behavior, point measurements often fail to capture the true movement of mine workings. Photogrammetry is a potentially fast, cheap, and precise supplemental measurement tool in comparison to extensometers, tape measures, or laser range meters, but its application in underground coal has been limited. The practical use of photogrammetry was tested at the Safety Research Coal Mine, National Institute for Occupational Safety and Health (NIOSH). A commercially available, digital single-lens reflex (DSLR) camera was used to perform the photogrammetric surveys for the experiment. Several experiments were performed using different lighting conditions, distances to subject, camera settings, and photograph overlaps, with results summarized as follows: the lighting method was found to be insignificant if the scene was appropriately illuminated. It was found that the distance to the subject has a minimal impact on result accuracy, and that camera settings have a significant impact on the photogrammetric quality of images. An increasing photograph resolution was preferable when measuring plane orientations; otherwise a high point cloud density would likely be excessive. Focal ratio (F-stop) changes affect the depth of field and image quality in situations where multiple angles are necessary to survey cleat orientations. Photograph overlap is very important to proper three-dimensional reconstruction, and at least 60% overlap between photograph pairs is ideal to avoid unnecessary post-processing. The suggestions and guidelines proposed are designed to increase the quality of photogrammetry inputs and outputs as well as minimize processing time, and serve as a starting point for an underground coal photogrammetry study.

  17. In the Scientific and Technological Council of National Mining Technological Supervision of the USSR

    Energy Technology Data Exchange (ETDEWEB)

    Manevich, V G

    1981-04-01

    A report is presented from the conference of the Scientific Council on preventing and fighting underground fires in coal mines and other mines, improving rescue equipment, and production of rescue equipment. Papers on activities of the major scientific institutes of the country investigating problems associated with fire prevention and fire fighting as well as design of life support systems, rescue equipment and safety engineering are discussed. Several rescue systems and life support systems are reviewed: Poiski-1 analyzer, Iskra oxygen analyzer; ShS-7m, ShSM-1 and ShRC-2 respirators; PSP, PSPM, PSA, and Vozduch emergency air supply systems. Recommendations on research activities and production of rescue equipment in the coal mining industry are formulated: production of a complex system of fire fighting mine cars moving on tracks (using foam and fire extinguishing powder); installation of the Vikhr-1 fire extinguishing system on existing fire fighting cars (P-2AP powder); starting industrial production of RKGD valves useful in rock burst prevention and in preventing dust hazard; improving methods of extinguishing endogenous fires, starting production of Gorizont-M fire detecting system, designing efficient systems detecting miners lost during mine accidents (sudden roof falls, rock bursts, etc.). (In Russian)

  18. Development of in-structure design spectra for dome mounted equipment on underground waste storage tanks at the Hanford Site

    International Nuclear Information System (INIS)

    Julyk, L.J.

    1995-09-01

    In-structure response spectra for dome mounted equipment on underground waste storage tanks at the Hanford Site are developed on the basis of recent soil-structure-interaction analyses. Recommended design spectra are provided for various locations on the tank dome

  19. Contamination of surface and underground waters owing to the disaster of the Sasa mine tailing pond

    OpenAIRE

    Mircovski, Vojo; Spasovski, Orce

    2003-01-01

    The uncontrolled run off of flotation waste from the Sasa Mine causes contamination of the flows of the Rivers Kamenicka and Bregalnica as well as the water of Kalimanci Lake and further afield. Boundary, fracture and karst type of aquifers formed depending on the structural type of porosity along the marginal parts of the terrain. The aquifers are recharged mostly by the above mentioned rivers that results in contamination of their waters. Contamination of underground waters is particularly ...

  20. Predicting rock bursts in mines

    Science.gov (United States)

    Spall, H.

    1979-01-01

    In terms of lives lost, rock bursts in underground mines can be as hazardous as earthquakes on the surface. So it is not surprising that fo the last 40 years the U.S Bureau of Mines has been using seismic methods for detecting areas in underground mines where there is a high differential stress which could lead to structural instability of the rock mass being excavated.

  1. Underground communications and tracking technology advances

    Energy Technology Data Exchange (ETDEWEB)

    Fiscor, S

    2007-03-15

    As the June 2009 deadline set by the MINER Act grows near, several technologies have emerged as possible options for communicating and tracking underground coal miners in the event of an emergency or disaster. NIOSH is currently deciding how best to invest $10 million assigned by Congress under an Emergency Supplementary Appropriations Act (ESA) to research and develop mine safety technology. Medium and ultra high frequency (UHF) systems seem to be leading the pack with radio frequency identification (RFID) tags serving as the tracking system. Wireless mesh systems can serve as a communications infrastructure and they can do much more. Even more technologies continue to emerge, such as inertial navigation tracking systems. Mines are discovering the wonders of modern voice and data communications underground. Still no one know if it is economically practical to design a system that will function after a coal mine explosion. From the nineteen systems submitted to MSHA's request for information (RFI), six systems were selected that represented most of the technologies that had been proposed: the Rajant Breadcrumb, Innovative Wireless, Concurrent Technologies/Time Domain, Transtek, Gamma Services, and the Kutta Consulting systems. They were tested at CONSOL Energy's McElroy mine in April 2006. MSHA felt that all of those systems needed a significant amount of work before they were ready for use in a underground coal mining environment. The agency continues to work with these, and other manufacturers, to assist in arranging for field demonstration and then to gain MSHA approval.

  2. Innovations of Engineering Company and Competitiveness in the Mining Equipment Market

    Science.gov (United States)

    Pogrebnoi, Vladislav; Samorodova, Lyudmila; Shut'ko, Larisa; Yakunina, Yulia; Lyubimov, Oleg

    2017-11-01

    The article deals with issues related to the development of innovative projects by engineering companies and effective marketing policy as a factor of increasing their competitiveness in the mining equipment market. The paper presents the results of the development of innovative technology in the segment of extensible belt conveyors. The necessity of marketing the innovative project is proved by the example of the development of technology for the production of the motor-drum of a belt conveyor with an adjustable drive on continuous current magnets by the engineering company "Transport-Electroprivod" (LLC). The authors consider the effective marketing strategy of an engineering company as an attractor of increasing demand for innovation and competitiveness in the mining equipment market. The methods of marketing promotion and promotion of innovations are considered within the framework of the ecosystem concept of J. Moore.

  3. Innovations of Engineering Company and Competitiveness in the Mining Equipment Market

    Directory of Open Access Journals (Sweden)

    Pogrebnoi Vladislav

    2017-01-01

    Full Text Available The article deals with issues related to the development of innovative projects by engineering companies and effective marketing policy as a factor of increasing their competitiveness in the mining equipment market. The paper presents the results of the development of innovative technology in the segment of extensible belt conveyors. The necessity of marketing the innovative project is proved by the example of the development of technology for the production of the motor-drum of a belt conveyor with an adjustable drive on continuous current magnets by the engineering company “Transport-Electroprivod” (LLC. The authors consider the effective marketing strategy of an engineering company as an attractor of increasing demand for innovation and competitiveness in the mining equipment market. The methods of marketing promotion and promotion of innovations are considered within the framework of the ecosystem concept of J. Moore.

  4. Damage caused to houses and equipment by underground nuclear explosions; Degats dus aux explosions nucleaires souterraines sur les habitations et les equipements

    Energy Technology Data Exchange (ETDEWEB)

    Delort, F; Guerrini, C [Commissariat a l' Energie Atomique, Bruyeres-le-Chatel (France). Centre d' Etudes

    1969-07-01

    A description is given of the damaged caused to various structures, buildings, houses, mechanical equipment and electrical equipment by underground nuclear explosions in granite. For each type of equipment or building are given the limiting distances for a given degree of damage. These distances have been related to a parameter characterizing the movement of the medium; it is thus possible to generalize the results obtained in granite, for different media. The problem of estimating the damage caused at a greater distance from the explosion is considered. (authors) [French] Les degats sur diverses structures, constructions, habitations, equipements mecaniques et materiels electriques provoques par des explosions nucleaires souterraines dans le granite sont decrits. On a indique pour chaque type de materiel ou de construction, les distances limites correspondant a un degre de gravite de dommage observe. Ces distances ont ete reliees a un parametre caracterisant le mouvement du milieu, permettant ainsi de generaliser les resultats obtenus dans le granite, a differents milieux. Le probleme de la prevision des degats en zone lointaine a ete aborde. (auteurs)

  5. Application and Development of an Environmentally Friendly Blast Hole Plug for Underground Coal Mines

    Directory of Open Access Journals (Sweden)

    Donghui Yang

    2018-01-01

    Full Text Available Drilling and blasting technology is one of the main methods for pressure relief in deep mining. The traditional method for blasting hole blockage with clay stemming has many problems, which include a large volume of transportation, excess loading time, and high labor intensity. An environmentally friendly blast hole plug was designed and developed. This method is cheap, closely blocks the hole, is quickly loaded, and is convenient for transportation. The impact test on the plug was carried out using an improved split Hopkinson pressure bar test system, and the industrial test was carried out in underground tunnel of coal mine. The tests results showed that, compared with clay stemming, the new method proposed in this paper could prolong the action time of the detonation gas, prevent premature detonation gas emissions, reduce the unit consumption of explosives, improve the utilization ratio, reduce the labor intensity of workers, and improve the effect of rock blasting with low cost of rock breaking.

  6. The hydrogen mine introduction initiative

    Energy Technology Data Exchange (ETDEWEB)

    Betournay, M.C.; Howell, B. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Mining and Mineral Sciences Laboratories

    2009-07-01

    In an effort to address air quality concerns in underground mines, the mining industry is considering the use fuel cells instead of diesel to power mine production vehicles. The immediate issues and opportunities associated with fuel cells use include a reduction in harmful greenhouse gas emissions; reduction in ventilation operating costs; reduction in energy consumption; improved health benefits; automation; and high productivity. The objective of the hydrogen mine introduction initiative (HMII) is to develop and test the range of fundamental and needed operational technology, specifications and best practices for underground hydrogen power applications. Although proof of concept studies have shown high potential for fuel cell use, safety considerations must be addressed, including hydrogen behaviour in confined conditions. This presentation highlighted the issues to meet operational requirements, notably hydrogen production; delivery and storage; mine regulations; and hydrogen behaviour underground. tabs., figs.

  7. Lunar construction/mining equipment

    Science.gov (United States)

    Ozdemir, Levent

    1990-01-01

    For centuries, mining has utilized drill and blast as the primary method of rock excavation. Although this technique has undergone significant improvements, it still remains a cyclic, labor intensive operation with inherent safety hazards. Other drawbacks include damage to the surrounding ground, creation of blast vibrations, rough excavation walls resulting in increased ventilation requirements, and the lack of selective mining ability. Perhaps the most important shortcoming of drill and blast is that it is not conducive to full implementation of automation or robotics technologies. Numerous attempts have been made in the past to automate drill and blast operations to remove personnel from the hazardous work environment. Although most of the concepts devised look promising on paper, none of them was found workable on a sustained production basis. In particular, the problem of serious damage to equipment during the blasting cycle could not be resolved regardless of the amount of charge used in excavation. Since drill and blast is not capable of meeting the requirements of a fully automated rock fragmentation method, its role is bound to gradually decrease. Mechanical excavation, in contrast, is highly suitable to automation because it is a continuous process and does not involve any explosives. Many of the basic principles and trends controlling the design of an earth-based mechanical excavator will hold in an extraterrestrial environment such as on the lunar surface. However, the economic and physical limitations for transporting materials to space will require major rethinking of these machines. In concept, then, a lunar mechanical excavator will look and perform significantly different from one designed for use here on earth. This viewgraph presentation gives an overview of such mechanical excavator systems.

  8. A detailed justification for the selection of a novel mine tracer gas and development of protocols for GC-ECD analysis of SPME sampling in static and turbulent conditions for assessment of underground mine ventilation systems

    OpenAIRE

    Underwood, Susanne Whitney

    2013-01-01

    Tracer gas surveys are a powerful means of assessing air quantity in underground mine ventilation circuits.  The execution of a tracer gas style ventilation survey allows for the direct measurement of air quantity in locations where this information is otherwise unattainable.  Such instances include inaccessible regions of the mine or locations of irregular flow.  However, this method of completing a mine ventilation survey is an underused tool in the industry.  This is largely due to the amo...

  9. Study on the reliability of the underground conveyor belt system installed at Vulcan Mine, the Jiu Valley Basin in Romania

    Directory of Open Access Journals (Sweden)

    Tomuș Ovidiu-Bogdan

    2017-01-01

    Full Text Available The paper deals with a comprehensive reliability analysis of the conveyor belts belonging to an underground coal mine in the Jiu Valley, Romania. As resulted from the mine management reports, the transportation system is responsible for many downtimes and is a real bottleneck in the constant and adequate production, and the suspicion is the weak state of belt conveyers, which are the spinal column of the extraction process. For this reason, a comprehensive reliability analysis has been decided, in order to deliver a maintenance-upgrading plan.

  10. The Diesel Exhaust in Miners Study: IV. Estimating historical exposures to diesel exhaust in underground non-metal mining facilities.

    Science.gov (United States)

    Vermeulen, Roel; Coble, Joseph B; Lubin, Jay H; Portengen, Lützen; Blair, Aaron; Attfield, Michael D; Silverman, Debra T; Stewart, Patricia A

    2010-10-01

    We developed quantitative estimates of historical exposures to respirable elemental carbon (REC) for an epidemiologic study of mortality, including lung cancer, among diesel-exposed miners at eight non-metal mining facilities [the Diesel Exhaust in Miners Study (DEMS)]. Because there were no historical measurements of diesel exhaust (DE), historical REC (a component of DE) levels were estimated based on REC data from monitoring surveys conducted in 1998-2001 as part of the DEMS investigation. These values were adjusted for underground workers by carbon monoxide (CO) concentration trends in the mines derived from models of historical CO (another DE component) measurements and DE determinants such as engine horsepower (HP; 1 HP = 0.746 kW) and mine ventilation. CO was chosen to estimate historical changes because it was the most frequently measured DE component in our study facilities and it was found to correlate with REC exposure. Databases were constructed by facility and year with air sampling data and with information on the total rate of airflow exhausted from the underground operations in cubic feet per minute (CFM) (1 CFM = 0.0283 m³ min⁻¹), HP of the diesel equipment in use (ADJ HP), and other possible determinants. The ADJ HP purchased after 1990 (ADJ HP₁₉₉₀(+)) was also included to account for lower emissions from newer, cleaner engines. Facility-specific CO levels, relative to those in the DEMS survey year for each year back to the start of dieselization (1947-1967 depending on facility), were predicted based on models of observed CO concentrations and log-transformed (Ln) ADJ HP/CFM and Ln(ADJ HP₁₉₉₀(+)). The resulting temporal trends in relative CO levels were then multiplied by facility/department/job-specific REC estimates derived from the DEMS surveys personal measurements to obtain historical facility/department/job/year-specific REC exposure estimates. The facility-specific temporal trends of CO levels (and thus the REC

  11. UMineAR: Mobile-Tablet-Based Abandoned Mine Hazard Site Investigation Support System Using Augmented Reality

    Directory of Open Access Journals (Sweden)

    Jangwon Suh

    2017-10-01

    Full Text Available Conventional mine site investigation has difficulties in fostering location awareness and understanding the subsurface environment; moreover, it produces a large amount of hardcopy data. To overcome these limitations, the UMineAR mobile tablet application was developed. It enables users to rapidly identify underground mine objects (drifts, entrances, boreholes, hazards and intuitively visualize them in 3D using a mobile augmented reality (AR technique. To design UMineAR, South Korean georeferenced standard-mine geographic information system (GIS databases were employed. A web database system was designed to access via a tablet groundwater-level data measured every hour by sensors installed in boreholes. UMineAR consists of search, AR, map, and database modules. The search module provides data retrieval and visualization options/functions. The AR module provides 3D interactive visualization of mine GIS data and camera imagery on the tablet screen. The map module shows the locations of corresponding borehole data on a 2D map. The database module provides mine GIS database management functions. A case study showed that the proposed application is suitable for onsite visualization of high-volume mine GIS data based on geolocations; no specialized equipment or skills are required to understand the underground mine environment. UMineAR can be used to support abandoned-mine hazard site investigations.

  12. Sanford Underground Research Facility - The United State's Deep Underground Research Facility

    Science.gov (United States)

    Vardiman, D.

    2012-12-01

    The 2.5 km deep Sanford Underground Research Facility (SURF) is managed by the South Dakota Science and Technology Authority (SDSTA) at the former Homestake Mine site in Lead, South Dakota. The US Department of Energy currently supports the development of the facility using a phased approach for underground deployment of experiments as they obtain an advanced design stage. The geology of the Sanford Laboratory site has been studied during the 125 years of operations at the Homestake Mine and more recently as part of the preliminary geotechnical site investigations for the NSF's Deep Underground Science and Engineering Laboratory project. The overall geology at DUSEL is a well-defined stratigraphic sequence of schist and phyllites. The three major Proterozoic units encountered in the underground consist of interbedded schist, metasediments, and amphibolite schist which are crosscut by Tertiary rhyolite dikes. Preliminary geotechnical site investigations included drift mapping, borehole drilling, borehole televiewing, in-situ stress analysis, laboratory analysis of core, mapping and laser scanning of new excavations, modeling and analysis of all geotechnical information. The investigation was focused upon the determination if the proposed site rock mass could support the world's largest (66 meter diameter) deep underground excavation. While the DUSEL project has subsequently been significantly modified, these data are still available to provide a baseline of the ground conditions which may be judiciously extrapolated throughout the entire Proterozoic rock assemblage for future excavations. Recommendations for facility instrumentation and monitoring were included in the preliminary design of the DUSEL project design and include; single and multiple point extensometers, tape extensometers and convergence measurements (pins), load cells and pressure cells, smart cables, inclinometers/Tiltmeters, Piezometers, thermistors, seismographs and accelerometers, scanners (laser

  13. Analysis, comparison, and modeling of radar interferometry, date of surface deformation signals associated with underground explosions, mine collapses and earthquakes. Phase I: underground explosions, Nevada Test Site

    International Nuclear Information System (INIS)

    Foxall, W; Vincent, P; Walter, W

    1999-01-01

    We have previously presented simple elastic deformation modeling results for three classes of seismic events of concern in monitoring the CTBT-underground explosions, mine collapses and earthquakes. Those results explored the theoretical detectability of each event type using synthetic aperture radar interferometry (InSAR) based on commercially available satellite data. In those studies we identified and compared the characteristics of synthetic interferograms that distinguish each event type, as well the ability of the interferograms to constrain source parameters. These idealized modeling results, together with preliminary analysis of InSAR data for the 1995 mb 5.2 Solvay mine collapse in southwestern Wyoming, suggested that InSAR data used in conjunction with regional seismic monitoring holds great potential for CTBT discrimination and seismic source analysis, as well as providing accurate ground truth parameters for regional calibration events. In this paper we further examine the detectability and ''discriminating'' power of InSAR by presenting results from InSAR data processing, analysis and modeling of the surface deformation signals associated with underground explosions. Specifically, we present results of a detailed study of coseismic and postseismic surface deformation signals associated with underground nuclear and chemical explosion tests at the Nevada Test Site (NTS). Several interferograms were formed from raw ERS-1/2 radar data covering different time spans and epochs beginning just prior to the last U.S. nuclear tests in 1992 and ending in 1996. These interferograms have yielded information about the nature and duration of the source processes that produced the surface deformations associated with these events. A critical result of this study is that significant post-event surface deformation associated with underground nuclear explosions detonated at depths in excess of 600 meters can be detected using differential radar interferometry. An

  14. Methane emissions from coal mining

    International Nuclear Information System (INIS)

    Boyer, C.M.; Kelafant, J.R.; Kuuskraa, V.A.; Manger, K.C.; Kruger, D.

    1990-09-01

    The report estimates global methane emissions from coal mining on a country specific basis, evaluates the technologies available to degasify coal seams and assesses the economics of recovering methane liberated during mining. 33 to 64 million tonnes were liberated in 1987 from coal mining, 75 per cent of which came from China, the USSR, Poland and the USA. Methane emissions from coal mining are likely to increase. Emission levels vary between surface and underground mines. The methane currently removed from underground mines for safety reasons could be used in a number of ways, which may be economically attractive. 55 refs., 19 figs., 24 tabs

  15. Development and application of the Safe Performance Index as a risk-based methodology for identifying major hazard-related safety issues in underground coal mines

    Science.gov (United States)

    Kinilakodi, Harisha

    The underground coal mining industry has been under constant watch due to the high risk involved in its activities, and scrutiny increased because of the disasters that occurred in 2006-07. In the aftermath of the incidents, the U.S. Congress passed the Mine Improvement and New Emergency Response Act of 2006 (MINER Act), which strengthened the existing regulations and mandated new laws to address the various issues related to a safe working environment in the mines. Risk analysis in any form should be done on a regular basis to tackle the possibility of unwanted major hazard-related events such as explosions, outbursts, airbursts, inundations, spontaneous combustion, and roof fall instabilities. One of the responses by the Mine Safety and Health Administration (MSHA) in 2007 involved a new pattern of violations (POV) process to target mines with a poor safety performance, specifically to improve their safety. However, the 2010 disaster (worst in 40 years) gave an impression that the collective effort of the industry, federal/state agencies, and researchers to achieve the goal of zero fatalities and serious injuries has gone awry. The Safe Performance Index (SPI) methodology developed in this research is a straight-forward, effective, transparent, and reproducible approach that can help in identifying and addressing some of the existing issues while targeting (poor safety performance) mines which need help. It combines three injury and three citation measures that are scaled to have an equal mean (5.0) in a balanced way with proportionate weighting factors (0.05, 0.15, 0.30) and overall normalizing factor (15) into a mine safety performance evaluation tool. It can be used to assess the relative safety-related risk of mines, including by mine-size category. Using 2008 and 2009 data, comparisons were made of SPI-associated, normalized safety performance measures across mine-size categories, with emphasis on small-mine safety performance as compared to large- and

  16. Effectiveness evaluation of existing noise controls in a deep shaft underground mine.

    Science.gov (United States)

    Lutz, Eric A; Reed, Rustin J; Turner, Dylan; Littau, Sally R; Lee, Vivien; Hu, Chengcheng

    2015-01-01

    Noise exposures and hearing loss in the mining industry continue to be a major problem, despite advances in noise control technologies. This study evaluated the effectiveness of engineering, administrative, and personal noise controls using both traditional and in-ear dosimetry by job task, work shift, and five types of earplug. The noise exposures of 22 miners performing deep shaft-sinking tasks were evaluated during 56 rotating shifts in an underground mine. Miners were earplug-insertion trained, earplug fit-tested, and monitored utilizing traditional and in-ear dosimetry. The mean TWA8 noise exposure via traditional dosimetry was 90.1 ± 8.2 dBA, while the mean in-ear TWA8 was 79.6 ± 13.8 dBA. The latter was significantly lower (p < 0.05) than the Mine Safety and Health Administration (MSHA) personal exposure limit (PEL) of 90 dBA. Dosimetry mean TWA8 noise exposures for bench blowing (103.5 ± 0.9 dBA), jumbo drill operation (103.0 ± 0.8 dBA), and mucking tasks (99.6 ± 4.7 dBA) were significantly higher (p < 0.05) than other tasks. For bench blowing, cable pulling, grinding, and jumbo drill operation tasks, the mean in-ear TWA8 was greater than 85 dBA. Those working swing shift had a significantly higher (p < 0.001) mean TWA8 noise exposure (95.4 ± 7.3 dBA) than those working day shift. For percent difference between traditional vs. in-ear dosimetry, there was no significant difference among types of earplug used. Reflective of occupational hearing loss rate trends across the mining industry, this study found that, despite existing engineering and administrative controls, noise exposure levels exceeded regulatory limits, while the addition of personal hearing protection limited excessive exposures.

  17. Automatic drawing of the geologic profile of an underground mine based on COMGIS

    Institute of Scientific and Technical Information of China (English)

    Yin Jingqiu; Qiu Xinfa; Li Anbo; Lu Mingyue

    2011-01-01

    This paper introduces a method of building a prototype system of geologic profile auto-drawing. A .NET development platform and integrated environment was used along with a component based design, a B/S system model, and XML techniques. Knowledge rules for creating geologic profiles and generating virtual drilling data from existing bore data and expert, hand-drawn geologic profiles were acquired.Then a prototype system was established by utilizing the known knowledge rules, topological relationships, and semantic relationships among strata. This system has a friendly human-computer interface and can meet requirements of mutual queries between attribute and spatial data. The generated profile map is editable. This study provides a new powerful tool for underground mine work.

  18. Pilot research projects for underground disposal of radioactive wastes in the United States of America

    International Nuclear Information System (INIS)

    Stein, R.; Collyer, P.L.

    1984-01-01

    Disposal of commercial radioactive waste in the United States of America in a deep underground formation will ensure permanent isolation from the biosphere with minimal post-closure surveillance and maintenance. The siting, design and development, performance assessment, operation, licensing, certification and decommissioning of an underground repository have stimulated the development of several pilot research projects throughout the country. These pilot tests and projects, along with their resulting data base, are viewed as important steps in the overall location and construction of a repository. Beginning in the 1960s, research at pilot facilities has progressed from underground spent fuel tests in an abandoned salt mine to the production of vitrified nuclear waste in complex borosilicate glass logs. Simulated underground repository experiments have been performed in the dense basalts of Washington State, the volcanic tuffaceous rock of Nevada and both domal and bedded salts of Louisiana and Kansas. In addition to underground pilot in situ tests, other facilities have been constructed or modified to monitor the performance of spent fuel in dry storage wells and self-shielded concrete casks. As the National Waste Terminal Storage (NWTS) programme advances to the next stage of underground site characterization for each of three different geological sites, additional pilot facilities are under consideration. These include a Test and Evaluation Facility (TEF) for site verification and equipment performance and testing, as well as a salt testing facility for verification of in situ simulation equipment. Although not associated with the NWTS programme, the construction of the Waste Isolation Pilot Plant (WIPP) in the bedded salts of New Mexico is well under way for deep testing and experimentation with the defence programme's transuranic nuclear waste. (author)

  19. Underground Pumped Storage Hydropower using abandoned open pit mines: influence of groundwater seepage on the system efficiency

    Science.gov (United States)

    Pujades, Estanislao; Bodeux, Sarah; Orban, Philippe; Dassargues, Alain

    2016-04-01

    Pumped Storage Hydropower (PSH) plants can be used to manage the production of electrical energy according to the demand. These plants allow storing and generating electricity during low and high demand energy periods, respectively. Nevertheless, PSH plants require a determined topography because two reservoirs located at different heights are needed. At sites where PSH plants cannot be constructed due to topography requirements (flat regions), Underground Pumped Storage Hydropower (UPSH) plants can be used to adjust the electricity production. These plants consist in two reservoirs, the upper one is located at the surface (or at shallow depth) while the lower one is underground (or deeper). Abandoned open pit mines can be used as lower reservoirs but these are rarely isolated. As a consequence, UPSH plants will interact with surrounding aquifers exchanging groundwater. Groundwater seepage will modify hydraulic head inside the underground reservoir affecting global efficiency of the UPSH plant. The influence on the plant efficiency caused by the interaction between UPSH plants and aquifers will depend on the aquifer parameters, underground reservoir properties and pumping and injection characteristics. The alteration of the efficiency produced by the groundwater exchanges, which has not been previously considered, is now studied numerically. A set of numerical simulations are performed to establish in terms of efficiency the effects of groundwater exchanges and the optimum conditions to locate an UPSH plant.

  20. Factors influencing the reliability of non-electric detonating circuit in underground uranium mines and preventive measures of misfiring

    International Nuclear Information System (INIS)

    Li Qin

    2010-01-01

    Characteristics of non-electric detonating circuit are introduced. The main factors influencing the reliability of non-electric detonating circuit are described. Taking an underground blasting of a uranium mine for example, the reliability of various kinds of detonating network system is calculated using the reliability theory and numerical analysis method. The reasons that cause the misfiring in non-electric detonating circuit system are analyzed, and preventive measures are put forward.(authors)

  1. Optimization of the productivity in the mine; Optimizacion de la Productividad en Mina

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The project consisted of putting in place a performance system which helps to optimise or maintain in a consistent manner the productivity of the mine, from storage onwards. The system also enables the analysis of the most significant information arising from the mining operations and other departments involved in the production process. In parallel to this, the project aimed to improve safety in the mine, and lead to an improvement in the working conditions of men and equipment. In order to achieve this, the project centred on: - Developing a relational database that collects discretely, and when operational, automatically, the principal and most significant parameters in the production process. - Monitoring and controlling the various operations in which equipment is involved. - A detailed analysis of the organisation and work methods, utilising continuous improvement techniques, which initially was aimed at the improve of safety, and equipment maintenance. Having completed the project, it can be confirmed that improvements were obtained in all performance areas. In addition, the database and control system controlling the most representative technical, physical and economics barriers of the production system continue to operate, and constitute a very efficient and modern tool in the management of the mining process, which is one of the most competitive within the underground coal mining industry in Spain. (Author)

  2. Wireless communication, tracking in mines topic of symposium

    OpenAIRE

    Trulove, Susan

    2006-01-01

    In response to the call for increased mine safety and improved underground communications in the wake of recent mining fatalities, the Virginia Center for Coal and Energy Research at Virginia Tech is cooperating with the Virginia Department of Mines Minerals and Energy to offer a Symposium on the Capabilities and Availability of Wireless Communication and Tracking Systems for Underground Coal Mines.

  3. Short-term radon activity concentration changes along the Underground Educational Tourist Route in the Old Uranium Mine in Kletno (Sudety Mts., SW Poland).

    Science.gov (United States)

    Fijałkowska-Lichwa, Lidia

    2014-09-01

    Short-term (222)Rn activity concentration changes along the Underground Educational Tourist Route in the Old Uranium Mine in Kletno were studied, based on continuous measurements conducted between 16 May 2008 and 15 May 2010. The results were analysed in the context of numbers of visitors arriving at the facility in particular seasons and the time per day spent inside by staff and visitors. This choice was based on partially published earlier findings (Fijałkowska-Lichwa and Przylibski, 2011). Results for the year 2009 were analysed in depth, because it is the only period of observation covering a full calendar year. The year 2009 was also chosen for detailed analysis of short-term radon concentration changes, because in each period of this year (hour, month, season) fluctuations of noted values were the most visible. Attention has been paid to three crucial issues linked to the occurrence and behaviour of radon and to the radiological protection of workers and visitors at the tourist route in Kletno. The object of study is a complex of workings in a former uranium mine situated within a metamorphic rock complex in the most radon-prone area in Poland. The facility has been equipped with a mechanical ventilation system, which is turned on after the closing time and at the end of the working day for the visitor service staff, i.e. after 6 p.m. Short-term radon activity concentration changes along the Underground Educational Tourist Route in the Old Uranium Mine in Kletno are related to the activity of the facility's mechanical ventilation. Its inactivity in the daytime results in the fact that the highest values of (222)Rn activity concentration are observed at the time when the facility is open to visitors, i.e. between 10 a.m. and 6 p.m. The improper usage of the mechanical ventilation system is responsible for the extremely unfavourable working conditions, which persist in the facility for practically all year. The absence of appropriate radiological protection

  4. Occupational Malfunctioning and Fatigue Related Work Stress Disorders (FRWSDs): An Emerging Issue in Indian Underground Mine (UGM) Operations

    Science.gov (United States)

    Dey, Shibaji Ch.; Dey, Netai Chandra; Sharma, Gourab Dhara

    2018-04-01

    Indian underground mining (UGM) transport system largely deals with different fore and back bearing work processes associated with different occupational disorders and fatigue related work stress disorders (FRWSDs). Therefore, this research study is specifically aimed to determine the fatigue related problems in general and determination of Recovery Heart Rate (Rec HR) pattern and exact cause of FRWSDs in particular. A group of twenty (N = 20) UGM operators are selected for the study. Heart rate profiles and work intensities of selected workforces have been recorded continuously during their regular mine operation and the same workforces are tested on a treadmill on surface with almost same work intensity (%Maximal Heart Rate) which was earlier observed in the mine. Recovery Heart Rate (Rec HR) in both the experiment zones is recorded. It is observed that with almost same work intensity, the recovery patterns of submaximal prolonged work in mine are different as compared to treadmill. This research study indicates that non-biomechanical muscle activity along with environmental stressors may have an influence on recovery pattern and FRWSDs.

  5. Drainage at the Auguste Victoria mine. Motor management system for safe operation; Wasserhaltung auf dem Bergwerk Auguste Victoria. Motormanagementsystem fuer den sicheren Betrieb

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, E. [Siemens AG, Nuernberg (Germany). Bereich Automation and Drives

    2008-05-13

    Application of the new motor management system 'Simocode pro' of Siemens, which is used for control, monitoring and protection of the water valves, in order to pump the mine water to the surface from a depth of 1,000 m. The equipment is connected underground via the bus system 'Profibus DP' in order to permit communication from the mine control room. (orig.)

  6. Safety Research and Experimental Coal Mines

    Data.gov (United States)

    Federal Laboratory Consortium — Safety Research and Experimental Coal MinesLocation: Pittsburgh SiteThe Safety Research Coal Mine and Experimental Mine complex is a multi-purpose underground mine...

  7. 30 CFR 784.25 - Return of coal processing waste to abandoned underground workings.

    Science.gov (United States)

    2010-07-01

    ... water underground, treatment of water if released to surface streams, and the effect on the hydrologic... the regulatory authority and the Mine Safety and Health Administration under 30 CFR 817.81(f). (b... of the mine void to be filled, method of constructing underground retaining walls, influence of the...

  8. Mining-induced surface damage and the study of countermeasures

    International Nuclear Information System (INIS)

    Cui Jixian

    1994-01-01

    Coal constitutes China's major energy resource. The majority of the coal is produced from underground mining operations. Surface subsidence may amount to 80% of the thickness of the seam mined, while the subsided volume is around 60% of the mined volume underground. An area of 20 hectares of land will be affected with each 1 million tons of coal mined, thereby causing severe surface damage. Following a description of the characteristics of surface damages due to underground mining disturbance, this paper elaborates on the damage prediction method, standards applied for evaluating the damages experienced by surface buildings, land reclamation methods in subsided area, measures for reinforcing and protecting buildings in mining-affected areas, and performance of antideformation buildings

  9. 30 CFR 75.1200-1 - Additional information on mine map.

    Science.gov (United States)

    2010-07-01

    ... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Maps § 75.1200-1 Additional... symbols; (g) The location of railroad tracks and public highways leading to the mine, and mine buildings... permanent base line points coordinated with the underground and surface mine traverses, and the location and...

  10. Underground coal equipment

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, J.

    2002-12-01

    This paper reports on increasing automation and enhanced productivity on longwalls, new development cutting and bolting technologies and haulage systems. Amongst equipment discussed is DBT's Electra series EL3000 shearer, the Dosco LH1400 roadheader with onboard bolters, and Joy 12 CM30 continuous miners. 4 photos.

  11. Post-mining in France

    International Nuclear Information System (INIS)

    2007-01-01

    This plentifully illustrated book aims at showing how new equilibria are building up during the transition between mining activity and post-mining, and at stressing on the necessity to keep up the cultural elements, the competencies and knowledge of mining works. The first chapter - mine and men - shows the importance of mineral substances in the objects of the everyday life, illustrates the importance of the mining tradition in France and describes the technical and administrative organisation of the end of the mining activity (works, rehabilitation, regulation, monitoring..). Chapter two - exploitation methods - presents the surface and underground facilities and their impact on the environment (extraction machines, workshops, ore processing plants, decantation ponds..). The third chapter deals with the rehabilitation and monitoring aspects: impact of mining activity stoppage on underground and surface waters, land stability, soils cleansing.. The last chapter summarizes the history of French mining region by region: Nord-Pas-de-Calais, Lorraine-Alsace, Massif central, Bretagne-Normandie, Provence-Alpes-Cote d'Azur and Pyrenees

  12. Evaluation of biodiesel fuel and oxidation catalyst in an underground metal mine : revised final report

    Energy Technology Data Exchange (ETDEWEB)

    Watts, W.F. Jr.; Spears, M.; Johnson, J. [Minnesota Univ., St. Paul, MN (United States); Birch, E.; Cantrell, B.K. [National Inst, for Occupational Safety and Health, Morgantown, VW (United States); Grenier, M. [Canada Centre for Mineral and Energy Technology, Ottawa, ON (Canada); Walker, J. [Ortech International, Mississauga, ON (Canada); Bagley, S. [Michigan Technological Univ., Houghton, MI (United States); Maskery, D.; Stachulak, J.S.; Conard, B.R. [Inco Ltd., Toronto, ON (Canada)

    1998-09-24

    The impact of blended biodiesel fuel and modern diesel oxidation catalyst (DOC) on air quality and diesel emissions were evaluated. The study was conducted in October 1997 at Inco's Creighton Mine in Sudbury, Ontario. The concentration of diesel particulate matter (DPM) and exhaust gas emissions in a non-producing test section were characterized. A diesel-powered scoop was operated on low sulfur, number 2 diesel fuel (D2) during the first week of the evaluation. The scoop was operated on 58 per cent (by mass) blend of soy methyl ester (SME) biodiesel fuel and a low sulfur D2 during the second week. A pair of identical, advanced design DOC equipped the scoop. The changes in exhaust emissions and an estimation of the operating costs of a test vehicle fueled with blended biodiesel were determined and represented the objectives of the study. A summary of the data collected for the determination in the difference in gaseous and particulate matter concentrations attributable to the use of a blended biodiesel fuel and catalyst was presented. The Emissions Assisted Maintenance Procedure (EAMP) was used to determine the day-to-day variation in emissions. The DOCs performed as expected and there were no major changes in engine emissions. An increase in nitrogen dioxide concentrations was noted, and carbon monoxide was effectively removed. The combination of the blended biodiesel fuel and DOCs used in this study decreased total carbon emissions by approximately 21 per cent, as indicated by air samples collected in the test section. During both weeks, sulphur dioxide levels were low. In an underground mine, the use of biodiesel fuel un combination with DOCs represents a passive control option. Cost is an obstacle, biodiesel selling for 3.00 to 3.50 American dollars per gallon. It is estimated that using a 50 per cent blended biodiesel fuel would cost between 2.00 and 2.25 American dollars per gallon. 35 refs., 18 tabs., 10 figs.

  13. Legal considerations for urban underground space development in Malaysia

    Directory of Open Access Journals (Sweden)

    F. Zaini

    2017-12-01

    Full Text Available In 2008, the Malaysia land code, named the National Land Code 1965 (NLC 1965, was amended to add Part Five (A to deal with the disposal of underground space. In addition, the Circular of the Director General of Lands and Mines No. 1/2008 was issued to assist the application of Part Five (A of the NLC 1965. However, the legislation is still questionable and has instigated many arguments among numerous actors. Therefore, this research was undertaken to examine legal considerations for the development of underground space. The focus is on four legal considerations, namely underground space ownership, the bundle of rights, depth, and underground space utilization. Rooted in qualitative methods, interviews were conducted with respondents involved in the development of underground space in Malaysia. The obtained data were then analyzed descriptively. The findings differentiated the rights of landowners for surface land and underground space, and their liability for damages and the depth. It was indicated that the current legislation in Malaysia, namely Part Five (A of the NLC 1965 and the Circular of the Director General of Lands and Mines No. 1/2008, is adequate to facilitate the development of underground space in terms of legal considerations. However, to further facilitate the development of underground land in the future, based on the research, four enhancements are recommended for legal considerations pertaining to the development of underground space in Malaysia. Keywords: Underground space, Legal consideration, Land right, Urban development

  14. Electrostatic purification of uranium mine stope atmospheres

    International Nuclear Information System (INIS)

    Case, G.; Phyper, J.D.; Lowe, L.M.; Chambers, D.B.

    1986-01-01

    Electrostatic precipitators have been and are currently being used to reduce levels of radioactive aerosols in uranium mine stope atmospheres. Historically, while the electrostatic precipitators have been reported to be successful in reducing levels of radioactive aerosols many practical problems have been encountered with their use in the underground mine environment. Electrical short circuiting appears to have been the major problem with the use of precipitators in humid underground environments. On the basis of literature reviewed for this study it seems that the problems encountered in the past can be overcome. The most likely use of a precipitator in an underground uranium mine is to treat some or all of the air immediately upstream of a work station. The possible locations and uses of a precipitator would vary from work station to work station and from mine to mine. The desirability and cost of using elctrostatic precipitators to purify the air entering a work station are application specific. SENES Consultants therefore is not recommending for or against the use of electrostatic precipitators in underground uranium mines. The information provided in this report can be used however to assist in such determinations. 72 refs

  15. An Internet of Things System for Underground Mine Air Quality Pollutant Prediction Based on Azure Machine Learning.

    Science.gov (United States)

    Jo, ByungWan; Khan, Rana Muhammad Asad

    2018-03-21

    The implementation of wireless sensor networks (WSNs) for monitoring the complex, dynamic, and harsh environment of underground coal mines (UCMs) is sought around the world to enhance safety. However, previously developed smart systems are limited to monitoring or, in a few cases, can report events. Therefore, this study introduces a reliable, efficient, and cost-effective internet of things (IoT) system for air quality monitoring with newly added features of assessment and pollutant prediction. This system is comprised of sensor modules, communication protocols, and a base station, running Azure Machine Learning (AML) Studio over it. Arduino-based sensor modules with eight different parameters were installed at separate locations of an operational UCM. Based on the sensed data, the proposed system assesses mine air quality in terms of the mine environment index (MEI). Principal component analysis (PCA) identified CH₄, CO, SO₂, and H₂S as the most influencing gases significantly affecting mine air quality. The results of PCA were fed into the ANN model in AML studio, which enabled the prediction of MEI. An optimum number of neurons were determined for both actual input and PCA-based input parameters. The results showed a better performance of the PCA-based ANN for MEI prediction, with R ² and RMSE values of 0.6654 and 0.2104, respectively. Therefore, the proposed Arduino and AML-based system enhances mine environmental safety by quickly assessing and predicting mine air quality.

  16. An Internet of Things System for Underground Mine Air Quality Pollutant Prediction Based on Azure Machine Learning

    Directory of Open Access Journals (Sweden)

    ByungWan Jo

    2018-03-01

    Full Text Available The implementation of wireless sensor networks (WSNs for monitoring the complex, dynamic, and harsh environment of underground coal mines (UCMs is sought around the world to enhance safety. However, previously developed smart systems are limited to monitoring or, in a few cases, can report events. Therefore, this study introduces a reliable, efficient, and cost-effective internet of things (IoT system for air quality monitoring with newly added features of assessment and pollutant prediction. This system is comprised of sensor modules, communication protocols, and a base station, running Azure Machine Learning (AML Studio over it. Arduino-based sensor modules with eight different parameters were installed at separate locations of an operational UCM. Based on the sensed data, the proposed system assesses mine air quality in terms of the mine environment index (MEI. Principal component analysis (PCA identified CH4, CO, SO2, and H2S as the most influencing gases significantly affecting mine air quality. The results of PCA were fed into the ANN model in AML studio, which enabled the prediction of MEI. An optimum number of neurons were determined for both actual input and PCA-based input parameters. The results showed a better performance of the PCA-based ANN for MEI prediction, with R2 and RMSE values of 0.6654 and 0.2104, respectively. Therefore, the proposed Arduino and AML-based system enhances mine environmental safety by quickly assessing and predicting mine air quality.

  17. Proceedings of the CIM maintenance engineering/mine operators' conference; Comptes rendus du colloque de ICM sur l'ingenierie de maintenance et l'exploitation miniere

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This conference provided a forum to exchange knowledge and best practices that apply to to modern underground mining. It highlighted the synergy and co-operation that is essential for successful operations and maintenance practices. Solutions to mitigate increasing ventilation costs were presented along with possible alternatives to diesel powered equipment in order to maintain air quality at a level that is acceptable for human workers. The themes for the technical program were innovation and performance improvement; maintenance, and mining. The sessions were entitled: deep mining; environment; mining best practices; ground control; energy efficiency; research and development in mining; mining methods; narrow-vein mining; innovative equipment; predictive maintenance; research and development in maintenance; and, planning and scheduling. The conference featured 24 presentations, of which 5 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  18. Ecology and economic estimate of using of the underground excavation space

    International Nuclear Information System (INIS)

    Umnov, V.A.; Tarasov, V.F.; Tret'yakov, I.O.; Sheloumov, A.A.

    1995-01-01

    Stages of ecological and economic estimates of utilizing underground space, including evaluation of underground space resources, selection of its utilization trends and substantiation of optimal parameters for selected trends, are considered. Certain directions of possible repeated utilization of mining excavations are shown, including underground hydropower stations, underground energy storages, underground nuclear stations. Underground waste disposal is one of the most available directions in utilization of the underground space presently. Evaluation of the underground space utilization at all stages envisages complete account of all economical, social and ecological results

  19. Occurrence of radon in the Polish underground tourist routes

    Directory of Open Access Journals (Sweden)

    Jerzy Olszewski

    2015-08-01

    Full Text Available Background: There are about 200 underground tourist routes in Poland. There are caves, mines or underground structures. This paper presents the results of the research intended to identify the extent of the occurrence of radon concentrations in underground areas of tourist routes. Material and Methods: We conducted the measurement of periodic concentrations of radon (1–2 months in the summer using type Tastrak trace detectors. We determined the average concentrations of radon in air in 66 underground tourist routes in Poland. Results: The research results comprise 259 determinations of average radon concentrations in 66 routes. The arithmetic average of the results was 1610 Bqm–3, and the maximum measured concentration was over 20 000 Bqm–3. The minimum concentration was 100 Bqm–3 (threshold method considering the arithmetic average of the measurements. It was found that in 67% of the routes, the average concentration of radon has exceeded 300 Bqm–3 and in 22 underground routes it exceeded 1000 Bqm–3. Conclusions: Radon which occurs in many Polish underground tourist routes may be an organizational, legal and health problem. It is necessary to develop a program of measures to reduce radon concentrations in underground routes, especially routes located in the former mines. Med Pr 2015;66(4:557–563

  20. Bigger hybrid loader on the drawing board : Mining Technologies International hybrid gets rave reviews for power and comfort

    Energy Technology Data Exchange (ETDEWEB)

    Tollinsky, N.

    2010-12-01

    This article presented a hybrid loader that reduces diesel emissions in underground mining. Sudbury-based Mining Technologies International (MTI) plans to build a 4 cubic yard loader in 2011, following the successful trial of a smaller 1.5 cubic yard machine at the CANMET experimental mine in Val d'Or, Quebec. The prototype hybrid loader was equipped with a metal hydride battery pack and a 2-cylinder, 35 hp Deutz engine. Performance testing revealed that the machine is capable of providing much more torque than originally expected and that it has more power compared to a mechanical drive machine. Operators at the CANMET mine also gave the hybrid loader high marks for comfort. The MTI loaders are equipped with a load sensing hydraulics system to eliminate jarring movement. The prototype experienced some premature failures in the flex coupling, which was subsequently replaced at the MTI shop in Sudbury. The primary reason for building the hybrid loader was to reduce diesel emissions underground in anticipation of stricter emission standards planned by the Mine Safety and Health Administration, the United States Environmental Protection Agency and CANMET for 2014. Compared to a conventional machine, there is virtually no exhaust from the hybrid loader. It is an ideal machine for a mine with very limited ventilation. Since the loader runs off the battery, MTI is currently looking at battery technologies other than metal hydrides to obtain a much higher energy density. Diesel is used to recharge the loader, and eliminates the need to plug in the unit between shifts. 1 ref., 2 figs.

  1. Geomechanical Assessments of Simultaneous Operation in the Case of Transition from Open Pit to Underground Mine in Vietnam

    Science.gov (United States)

    Niedbalski, Zbigniew; Nguyen, Phu Minh Vuong; Widzyk-Capehart, Eleonora

    2018-03-01

    Nowadays, for a number of reasons, many open pit mines are considering a transition from Open Pit (OP) to Underground (UG) to remain competitive. In OP-UG transition, UG operation is operated simultaneously with the OP operation for a certain period of time. Guidelines for the simultaneous operation of OP and UG are very difficult to establish, as there are very few case studies available. Yet, because of the OP-UG interactions; the operation has a higher safety, technical and management requirements than the OP or UG methods when considered separately. In Vietnam, Cao Son is one of many OP mines, which decided to change the operational system from OP to UG. Simultaneous operation started in 2015 and will be conducted until 2030 when the OP mine Cao Son ends its mining activities. In this paper, selected geomechanical considerations of the simultaneous operation are presented. A number of numerical modelling calculations using finitedifference software with code FLAC were carried out for calibration process, slope stability analysis and the OP-UG interaction analysis for the Cao Son - Khe Cham II-IV mine. Based on the results obtained from numerical modelling, the geomechanical assessments of simultaneous operation Cao Son - Khe Cham II-IV are discussed in this paper.

  2. Underground storage of radioactive wastes

    International Nuclear Information System (INIS)

    Dietz, D.N.

    1977-01-01

    An introductory survey of the underground disposal of radioactive wastes is given. Attention is paid to various types of radioactive wastes varying from low to highly active materials, as well as mining techniques and salt deposits

  3. Evaluation of biodiesel fuel and a diesel oxidation catalyst in an underground metal mine : Part 3 : Biological and chemical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Bagley, S.T. [Michigan Technological Univ., Houghton, MI (United States). Dept. of Biological Sciences; Gratz, L.D. [Michigan Technological Univ., Houghton, MI (United States). Dept. of Mechanical Engineering-Engineering Mechanics

    1998-07-24

    A collaborative, international, multidisciplinary effort led to the evaluation of the effects of using a 50 per cent biodiesel fuel blend and an advanced-type diesel oxidation catalyst (DOC) on underground metal mine air quality. The location selected for the field trials was the Creighton Mine 3 in Sudbury, Ontario, operated by Inco. Specifically, part 3 of the study evaluated the effects of using a biodiesel blend fuel on potentially health-related diesel particulate matter (DPM) components, with a special emphasis on polynuclear aromatic hydrocarbons (PAH), nitro-PAH, and mutagenic activity. High volume sampler filters containing submicrometer particles were examined, and comparisons made for DPM and DPM component concentrations. The downwind concentrations of DPM were reduced by 20 per cent with the use of the blend biodiesel fuel as compared with the number 2 diesel fuel with an advanced-type DOC. Significant reductions in solids (up to 30 per cent) and up to 75 per cent in the case of mutagenic activity were noted. Significant reductions in the DPM components potentially harmful to human health should result from the use of this blended fuel combined with an advanced-type DOC in an underground environment. 23 refs., 19 tabs.

  4. Research on and Design of a Self-Propelled Nozzle for the Tree-Type Drilling Technique in Underground Coal Mines

    Directory of Open Access Journals (Sweden)

    Yiyu Lu

    2015-12-01

    Full Text Available Due to the increasing depths of coal mines and the low permeability of some coal seams, conventional methods of gas drainage in underground mines are facing many problems. To improve gas extraction, a new technique using water jets to drill tree-type boreholes in coal seams is proposed. A self-propelled water-jet drilling nozzle was designed to drill these boreholes. The configuration of the self-propelled nozzle was optimized by conducting drilling experiments and self-propelling force measurements. Experimental results show that the optimal self-propelled nozzle has a forward orifice axial angle at 25°, a radial angle at 90°, a center distance of 1.5 mm, and backward pointing orifices with an axial angle of 25°. The self-propelling force generated by the jets of the nozzle with 30 MPa pump pressure can reach 29.8 N, enough to pull the hose and the nozzle forward without any external forces. The nozzle can drill at speeds up to 41.5 m/h with pump pressures at 30 MPa. The radial angles of the forward orifices improve the rock breaking performance of the nozzle and, with the correct angle, the rock breaking area of the orifices overlap to produce a connecting hole. The diameter of boreholes drilled by this nozzle can reach 35.2 mm. The nozzle design can be used as the basis for designing other self-propelled nozzles. The drilling experiments demonstrate the feasibility of using the tree-type drilling technique in underground mines.

  5. A concept for the modernization of underground mining master maps based on the enrichment of data definitions and spatial database technology

    Science.gov (United States)

    Krawczyk, Artur

    2018-01-01

    In this article, topics regarding the technical and legal aspects of creating digital underground mining maps are described. Currently used technologies and solutions for creating, storing and making digital maps accessible are described in the context of the Polish mining industry. Also, some problems with the use of these technologies are identified and described. One of the identified problems is the need to expand the range of mining map data provided by survey departments to other mining departments, such as ventilation maintenance or geological maintenance. Three solutions are proposed and analyzed, and one is chosen for further analysis. The analysis concerns data storage and making survey data accessible not only from paper documentation, but also directly from computer systems. Based on enrichment data, new processing procedures are proposed for a new way of presenting information that allows the preparation of new cartographic representations (symbols) of data with regard to users' needs.

  6. Aerosols and criteria gases in an underground mine that uses FAME biodiesel blends.

    Science.gov (United States)

    Bugarski, Aleksandar D; Janisko, Samuel J; Cauda, Emanuele G; Patts, Larry D; Hummer, Jon A; Westover, Charles; Terrillion, Troy

    2014-10-01

    The contribution of heavy-duty haulage trucks to the concentrations of aerosols and criteria gases in underground mine air and the physical properties of those aerosols were assessed for three fuel blends made with fatty acid methyl esters biodiesel and petroleum-based ultra-low-sulfur diesel (ULSD). The contributions of blends with 20, 50, and 57% of biodiesel as well as neat ULSD were assessed using a 30-ton truck operated over a simulated production cycle in an isolated zone of an operating underground metal mine. When fueled with the B20 (blend of biodiesel with ULSD with 20% of biodiesel content), B50 (blend of biodiesel with ULSD with 50% of biodiesel content), and B57 (blend of biodiesel with ULSD with 57% of biodiesel content) blends in place of ULSD, the truck's contribution to mass concentrations of elemental and total carbon was reduced by 20, 50, and 61%, respectively. Size distribution measurements showed that the aerosols produced by the engine fueled with these blends were characterized by smaller median electrical mobility diameter and lower peak concentrations than the aerosols produced by the same engine fueled with ULSD. The use of the blends resulted in number concentrations of aerosols that were 13-29% lower than those when ULSD was used. Depending on the content of biodiesel in the blends, the average reductions in the surface area concentrations of aerosol which could be deposited in the alveolar region of the lung (as measured by a nanoparticle surface area monitor) ranged between 6 and 37%. The use of blends also resulted in slight but measurable reductions in CO emissions, as well as an increase in NOX emissions. All of the above changes in concentrations and physical properties were found to be correlated with the proportion of biodiesel in the blends. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2014.

  7. Earthquake damage to underground facilities

    International Nuclear Information System (INIS)

    Pratt, H.R.; Hustrulid, W.A.; Stephenson, D.E.

    1978-11-01

    The potential seismic risk for an underground nuclear waste repository will be one of the considerations in evaluating its ultimate location. However, the risk to subsurface facilities cannot be judged by applying intensity ratings derived from the surface effects of an earthquake. A literature review and analysis were performed to document the damage and non-damage due to earthquakes to underground facilities. Damage from earthquakes to tunnels, s, and wells and damage (rock bursts) from mining operations were investigated. Damage from documented nuclear events was also included in the study where applicable. There are very few data on damage in the subsurface due to earthquakes. This fact itself attests to the lessened effect of earthquakes in the subsurface because mines exist in areas where strong earthquakes have done extensive surface damage. More damage is reported in shallow tunnels near the surface than in deep mines. In mines and tunnels, large displacements occur primarily along pre-existing faults and fractures or at the surface entrance to these facilities.Data indicate vertical structures such as wells and shafts are less susceptible to damage than surface facilities. More analysis is required before seismic criteria can be formulated for the siting of a nuclear waste repository

  8. Radon emanation from backfilled mill tailings in underground uranium mine.

    Science.gov (United States)

    Sahu, Patitapaban; Mishra, Devi Prasad; Panigrahi, Durga Charan; Jha, Vivekananda; Patnaik, R Lokeswara; Sethy, Narendra Kumar

    2014-04-01

    Coarser mill tailings used as backfill to stabilize the stoped out areas in underground uranium mines is a potential source of radon contamination. This paper presents the quantitative assessment of radon emanation from the backfilled tailings in Jaduguda mine, India using a cylindrical accumulator. Some of the important parameters such as (226)Ra activity concentration, bulk density, bulk porosity, moisture content and radon emanation factor of the tailings affecting radon emanation were determined in the laboratory. The study revealed that the radon emanation rate of the tailings varied in the range of 0.12-7.03 Bq m(-2) s(-1) with geometric mean of 1.01 Bq m(-2) s(-1) and geometric standard deviation of 3.39. An increase in radon emanation rate was noticed up to a moisture saturation of 0.09 in the tailings, after which the emanation rate gradually started declining with saturation due to low diffusion coefficient of radon in the saturated tailings. Radon emanation factor of the tailings varied in the range of 0.08-0.23 with the mean value of 0.21. The emanation factor of the tailings with moisture saturation level over 0.09 was found to be about three times higher than that of the absolutely dry tailings. The empirical relationship obtained between (222)Rn emanation rate and (226)Ra activity concentration of the tailings indicated a significant positive linear correlation (r = 0.95, p < 0.001). This relationship may be useful for quick prediction of radon emanation rate from the backfill material of similar nature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Respirable quartz hazard associated with coal mine roof bolter dust

    International Nuclear Information System (INIS)

    Joy, G.J.; Beck, T.W.; Listak, J.M.

    2010-01-01

    Pneumoconiosis has been reported to be increasing among underground coal miners in the Southern Appalachian Region. The National Institute for Occupational Safety and Health conducted a study to examine the particle size distribution and quartz content of dust generated by the installation of roof bolts in mines. Forty-six bulk samples of roof bolting machine pre-cleaner cyclone dump dust and collector box dust were collected from 26 underground coal mines. Real-time and integrated airborne respirable dust concentrations were measured on 3 mining sections in 2 mines. The real-time airborne dust concentrations profiles were examined to identify any concentration changes that might be associated with pre-cleaner cyclone dust discharge events. The study showed that bolter dust is a potential inhalation hazard due to the fraction of dust less than 10 μm in size, and the quartz content of the dust. The pre-cleaner cyclone dust was significantly larger than the collector box dust, indicating that the pre-cleaner functioned properly in removing the larger dust size fraction from the airstream. However, the pre-cleaner dust still contained a substantial amount of respirable dust. It was concluded that in order to maintain the effectiveness of a roof bolter dust collector, periodic removal of dust is required. Appropriate work procedures and equipment are necessary to minimize exposure during this cleaning task. 13 refs., 3 tabs., 2 figs.

  10. Production Potential Of Nchanga Underground Mines Collapsed Blocks

    Directory of Open Access Journals (Sweden)

    Eugie Kabwe

    2015-08-01

    Full Text Available Abstract the main purpose of this study is to recommend modification to block caving at Nchanga ensure that it meets anticipated production levels and address the adverse ground conditions of the intensely fractured orebody. Excavations of current methods are driven close to the incompetent orebody. Determination of the appropriate method based on criteria of selection techniques together with the analysis of operating costs and safety. Reclamation of ore in the collapsed blocks entirely depended on maximizing revenue recovery of the mineral and safe working environment for equipment and personnel. On recommendation of a suitable method extent of the collapsed blocks was another aspect considered. The proposed methods of extraction were variants of block caving further shortlisted based on the extent of collapse. Economic appraisal of both the recommended and current mining methods employed included extraction recovery development reclamation costs revenue estimation and revenue raised from finished copper.

  11. Optimization long hole blast fragmentation techniques and detonating circuit underground uranium mine stope

    International Nuclear Information System (INIS)

    Li Qin; Yang Lizhi; Song Lixia; Qin De'en; Xue Yongshe; Wang Zhipeng

    2012-01-01

    Aim at high rate of large blast fragmentation, a big difficulty in long hole drilling and blasting underground uranium mine stope, it is pointed out at the same time of taking integrated technical management measures, the key is to optimize the drilling and blasting parameters and insure safety the act of one that primes, adopt 'minimum burden' blasting technique, renew the stope fragmentation process, and use new process of hole bottom indirect initiation fragmentation; optimize the detonating circuit and use safe, reliable and economically rational duplex non-electric detonating circuit. The production practice shows that under the guarantee of strictly controlled construction quality, the application of optimized blast fragmentation technique has enhanced the reliability of safety detonation and preferably solved the problem of high rate of large blast fragments. (authors)

  12. Henderson Deep Underground Science and Engineering Lab: Unearthing the secrets of the Universe, underground

    International Nuclear Information System (INIS)

    Jung, C.K.

    2011-01-01

    The Henderson Mine near Empire, Colorado is proposed to be the site to host a Deep Underground Science and Engineering Laboratory (DUSEL), which will have a rich program for forefront research in physics, biology, geosciences, and mining engineering. The mine is owned by the Climax Molybdenum Company (CMC). It is located about 50 miles west of Denver and is easily accessible via major highways. The mine is modern and has extensive infrastructure with reserve capacity well-suited to the demands of DUSEL. CMC owns all land required for DUSEL, including the tailings site. It also has all environmental and mining permits required for DUSEL excavation, core drilling, and rock disposal. The mine owners are enthusiastic supporters of this initiative. In support of the Henderson DUSEL project, the State of Colorado has pledged substantial funding for surface construction.

  13. Research on the prevention of mine accident (III)

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Won Jai; Kang, Chang Hee; Lee, Sang Kwon; Lee, Jong Lim; Kang, Sang Soo [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    This research project is for providing foundation of safety in coal mines. Third year`s research has been carried out on Sabuk and Tongbo coal mine. Sabuk coal mine is a comparatively fair status in view of safety, but it has following difficulties due to it`s wide developing area. - Because the most of the mining methods is the slanted chute caving method, it is difficult to maintain long coal raises and dangers of disaster by collapse is exists all the time. - Due to the operation of many contractors, it is difficult to manage safety matters. - Because many equipment are distributed widely in underground, there are dangers of catastrophic disaster whenever fire is outbreak. The mines are doing their best to prevent mine disasters, but the government`s support for steel support and fire resistive structures are strongly recommended. Tongbo mine is one of the mid-scaled mine and their working environment is fairly good as of now due to their shallow developing depth. However, their is a dangers for water inrush at workings in pocket type coal seams. Accordingly, careful analysis of mined out area and special measures for possible water aquifer has to be pursued. (author). 11 refs., 63 tabs., 22 figs.

  14. Development of ZL400 Mine Cooling Unit Using Semi-Hermetic Screw Compressor and Its Application on Local Air Conditioning in Underground Long-Wall Face

    Science.gov (United States)

    Chu, Zhaoxiang; Ji, Jianhu; Zhang, Xijun; Yan, Hongyuan; Dong, Haomin; Liu, Junjie

    2016-12-01

    Aiming at heat injuries occurring in the process of deep coal mining in China, a ZL400 mine-cooling unit employing semi-hermetic screw compressor with a cooling capacity of 400 kW is developed. This paper introduced its operating principle, structural characteristics and technical indexes. By using the self-built testing platform, some parameters for indication of its operation conditions were tested on the ground. The results show that the aforementioned cooling unit is stable in operation: cooling capacity of the unit was 420 kW underground-test conditions, while its COP (coefficient of performance) reached 3.4. To address the issue of heat injuries existing in No. 16305 U-shaped long-wall ventilation face of Jining No. 3 coal mine, a local air conditioning system was developed with ZL400 cooling unit as the system's core. The paper presented an analysis of characteristics of the air current flowing in the air-mixing and cooling mode of ZL400 cooling unit used in air intake way. Through i-d patterns we described the process of the airflow treatment, such as cooling, mixing and heating, etc. The cooling system decreased dry bulb temperature on working face by 3°C on average and 3.8°C at most, while lowered the web bulb temperature by 3.6°C on average and 4.8°C at most. At the same time, it reduced relative humidity by 5% on average and 8.6% at most. The field application of the ZL400 cooling unit had gain certain effects in air conditioning and provided support for the solution of mine heat injuries in China in terms of technology and equipment.

  15. CASPAR - Nuclear Astrophysics Underground

    Science.gov (United States)

    Senarath, Chamaka; Caspar Collaboration

    2017-09-01

    The CASPAR mainly focuses on Stellar Nucleosynthesis, its impact on the production of heavy elements and study the strength of stellar neutron sources that propels the s-process, 13C(α,n)16O and 22Ne(α,n)25Mg. Currently, implementation of a 1MV fully refurbished Van de Graaff accelerator that can provide a high intensity Î+/- beam, is being done at the Sanford Underground Research Facility (SURF). The accelerator is built among a collaboration of South Dakota School of Mines and Technology, University of Notre Dame and Colorado School of Mines. It is understood that cosmic ray neutron background radiation hampers experimental Nucleosynthesis studies, hence the need to go underground in search for a neutron free environment, to study these reactions at low energies is evident. The first beam was produced in the middle of summer 2017. The entire accelerator will be run before the end of this year. A detailed overview of goals of CASPAR will be presented. NFS Grant-1615197.

  16. Instrumentation for mine safety: fire and smoke problems and solutions

    International Nuclear Information System (INIS)

    Stevens, R.B.

    1982-01-01

    Underground fires continue to be one of the most serious hazards to life and property in the mining industry. Although underground mines are analogous to high-rise buildings where persons are isolated from immediate escape or rescue, application of technology to locate and control fire hazards while still in their controllable state is slow to be implemented in underground mines. This paper describes several USBM (Bureau of Mines) safety programs which included in-mine testing with mine fire and smoke sensors, telemetry and instrumentation to develop recommendations for improving mine fire safety. It is hoped that the technology developed during these programs can be added to other programs to provide the mining industry with the necessary fire safety facts. By recognizing fire potentials and being provided with cost-effective, proven components that will perform reliably under the poor environmental conditions of mining, mine operators can provide protection for their working life and property equal to that which they provide for themselves and their families at home. The basis of this report is two USBM programs for fire protection in metal and nonmetal mines and one coal program. The data was collected beginning in May 1974 and continuing through the present with underground tests of a South African fire system installed at Magma Mine in Superior, Arizona, and a computer-assisted, experimental system at Peabody Coal Mine in Pawnee, Illinois

  17. Geotechnical Risk Classification for Underground Mines / Klasyfikacja Poziomu Zagrożenia Geotechnicznego W Kopalniach Podziemnych

    Science.gov (United States)

    Mishra, Ritesh Kumar; Rinne, Mikael

    2015-03-01

    Underground mining activities are prone to major hazards largely owing to geotechnical reasons. Mining combined with the confined working space and uncertain geotechnical data leads to hazards having the potential of catastrophic consequences. These incidents have the potential of causing multiple fatalities and large financial damages. Use of formal risk assessment in the past has demonstrated an important role in the prediction and prevention of accidents in risk prone industries such as petroleum, nuclear and aviation. This paper proposes a classification system for underground mining operations based on their geotechnical risk levels. The classification is done based on the type of mining method employed and the rock mass in which it is carried out. Mining methods have been classified in groups which offer similar geotechnical risk. The rock mass classification has been proposed based on bulk rock mass properties which are collected as part of the routine mine planning. This classification has been subdivided for various stages of mine planning to suit the extent of available data. Alpha-numeric coding has been proposed to identify a mining operation based on the competency of rock and risk of geotechnical failures. This alpha numeric coding has been further extended to identify mining activity under `Geotechnical Hazard Potential (GHP)'. GHP has been proposed to be used as a preliminary tool of risk assessment and risk ranking for a mining activity. The aim of such classification is to be used as a guideline for the justification of a formal geotechnical risk assessment. Górnictwo podziemne pociąga za sobą różnorakie zagrożenia spowodowane przez uwarunkowania geotechniczne. Urabianie złoża w połączeniu z pracą w zamkniętej przestrzeni oraz z niepewnymi danymi geotechnicznymi powodować może zagrożenia, które w konsekwencji prowadzić mogą do wypadków, a te potencjalnie powodować mogą skutki śmiertelne dla osób oraz poważne straty

  18. Debilitating lung disease among surface coal miners with no underground mining tenure.

    Science.gov (United States)

    Halldin, Cara N; Reed, William R; Joy, Gerald J; Colinet, Jay F; Rider, James P; Petsonk, Edward L; Abraham, Jerrold L; Wolfe, Anita L; Storey, Eileen; Laney, A Scott

    2015-01-01

    To characterize exposure histories and respiratory disease among surface coal miners identified with progressive massive fibrosis from a 2010 to 2011 pneumoconiosis survey. Job history, tenure, and radiograph interpretations were verified. Previous radiographs were reviewed when available. Telephone follow-up sought additional work and medical history information. Among eight miners who worked as drill operators or blasters for most of their tenure (median, 35.5 years), two reported poor dust control practices, working in visible dust clouds as recently as 2012. Chest radiographs progressed to progressive massive fibrosis in as few as 11 years. One miner's lung biopsy demonstrated fibrosis and interstitial accumulation of macrophages containing abundant silica, aluminum silicate, and titanium dust particles. Overexposure to respirable silica resulted in progressive massive fibrosis among current surface coal miners with no underground mining tenure. Inadequate dust control during drilling/blasting is likely an important etiologic factor.

  19. Analysis on present radon ventilation situation of Chinese uranium mines

    International Nuclear Information System (INIS)

    Li Xianjie; Hu Penghua

    2010-01-01

    Mine Ventilation is the most important way in lowering radon of uranium mines. At present, radon and radon daughter concentration of underground air is 3∼5 times higher than any other air concentration of foreign uranium mines, as the same input for Protective Ventilation between Chinese uranium mines with compaction methodology and international advanced uranium mines. In this passage, through the analysis of Ventilation Radon Reduction status in Chinese uranium mines and the comparison of advantages and shortcomings between variety of ventilation and radon reduction, it illuminated the reasons of higher radon and radon daughter concentration in Chinese uranium mines and put forward some problems in three aspects, which are Ventilation Radon Reduction Theory, Ventilation Radon Reduction Measures and Ventilation Management. And to above problems, this passage put forward some proposals and measures about some aspects, such as strengthen examination and verification and monitoring practical situation, making clear ventilation plan, in according to mining sequence strictly, training Ventilation technician forcefully, enhance Ventilation System management, development of Ventilation Radon Reduction technology research in uranium mines and carrying out ventilation equipments as soon as possible in further and so on. (authors)

  20. Choice of drilling equipment for surface mines of the Banovici and Djurdjevik coal basins

    Energy Technology Data Exchange (ETDEWEB)

    Kljucanin, T.; Cilovic, I.; Novak, I.; Tomic, R.

    1988-07-01

    Discusses factors influencing drilling equipment productivity at the Turija, Grivice and Potocari mines. When no reliable correlations were found in geomechanical analyses of overburden from different rigs, large-scale in field observations were made of overburden drilling. Four types of drilling equipment were in use in combination with 8 different shovel excavators (bucket capacity 5-20 m{sup 3}). Gives full details of the equipment considered and concludes by recommending the use of 110-115 mm diameter drilling equipment in combination with 8-9 m{sup 3} shovel excavators and also 150 mm diameter drilling equipment with larger capacity (18-20 m{sup 3}) excavators. 4 refs.