WorldWideScience

Sample records for underground injection sites

  1. Registration of Hanford Site Class V underground injection wells

    International Nuclear Information System (INIS)

    1988-05-01

    This document was requested by the Washington State Department of Ecology. Based on the State Underground Injection Control Program, as described in the Washington Administrative Code, French drains and reverse wells are being registered as Class V wells. Information on out-of-service French drains, out-of-service reverse wells, and out-of-service cribs that are deeper than their largest surface dimension is also provided. The data for this submittal were taken from the Waste Information Database System (WIDS) and the Hanford Environmental Compliance Record (HECR) database. The current definition used in WIDS for an ''inactive facility'' is one that either no longer receives waste or plans to in the future. The facilities listed in WIDS as inactive have all been listed as ''out-of-service.'' Information concerning the deactivation method for a facility is included when such information is available. The French drains registered in this submittal are based on the information available at the present time. Additional French drains may be registered on a periodic basis as the drains are identified

  2. Closure of shallow underground injection wells

    International Nuclear Information System (INIS)

    Veil, J.A.; Grunewald, B.

    1993-01-01

    Shallow injection wells have long been used for disposing liquid wastes. Some of these wells have received hazardous or radioactive wastes. According to US Environmental Protection Agency (EPA) regulations, Class IV wells are those injection wells through which hazardous or radioactive wastes are injected into or above an underground source of drinking water (USDW). These wells must be closed. Generally Class V wells are injection wells through which fluids that do not contain hazardous or radioactive wastes are injected into or above a USDW. Class V wells that are responsible for violations of drinking water regulations or that pose a threat to human health must also be closed. Although EPA regulations require closure of certain types of shallow injection wells, they do not provide specific details on the closure process. This paper describes the regulatory background, DOE requirements, and the steps in a shallow injection well closure process: Identification of wells needing closure; monitoring and disposal of accumulated substances; filling and sealing of wells; and remediation. In addition, the paper describes a major national EPA shallow injection well enforcement initiative, including closure plan guidance for wells used to dispose of wastes from service station operations

  3. Leaking Underground Storage Tank Sites in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Leaking Underground Storage Tank (LUST) sites where petroleum contamination has been found. There may be more than one LUST site per UST site.

  4. Underground siting of nuclear power plants

    International Nuclear Information System (INIS)

    Pinto, S.; Telleschi, P.

    1978-10-01

    Two of the main underground siting alternatives, the rock cavity plant and the pit siting, have been investigated in detail and two layouts, developed for specific sites, have been proposed. The influence of this type of siting on normal operating conditions and during abnormal occurences have been investigated. (Auth.)

  5. 78 FR 23246 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2013-04-18

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9804-8] Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; BASF... exemption to the land disposal Restrictions, under the 1984 Hazardous and Solid Waste [[Page 23247...

  6. Underground siting of nuclear power plants

    International Nuclear Information System (INIS)

    Bender, F.

    1982-01-01

    The symposium gave the opportunity for an international exchange of views on the concepts of underground nuclear power plants, which are presently world wide under consideration. The results of investigations into the advantages and disadvantages with regard to the technical safety aspects of the underground plants in comparison to plants on the surface led to open and sometimes controversal discussions. As a result of the symposium (32 contributions) a general agreement can be stated on the judgement concerning the advantages and the disadvantages of underground nuclear power plants (nnp). The advantages are: increased protection against external events; delayed release of fission products in accident situations, if the closures operate properly. The disadvantages are: increased costs of the construction of underground and restrictions to such sites where either large caverns or deep pits can be constructed, which also requires that certain technical problems must be solved beforehand. Also, additional safety certificates related to the site will be required within the licensing procedures. The importance of these advantages and disadvantages was in some cases assessed very differently. The discussions also showed, that there are a number of topics where some questions have not been finally answered yet. (orig./HP) [de

  7. Underground Nuclear Testing Program, Nevada Test Site

    International Nuclear Information System (INIS)

    1975-09-01

    The Energy Research and Development Administration (ERDA) continues to conduct an underground nuclear testing program which includes tests for nuclear weapons development and other tests for development of nuclear explosives and methods for their application for peaceful uses. ERDA also continues to provide nuclear explosive and test site support for nuclear effects tests sponsored by the Department of Defense. This Supplement extends the Environmental Statement (WASH-1526) to cover all underground nuclear tests and preparations for tests of one megaton (1 MT) or less at the Nevada Test Site (NTS) during Fiscal Year 1976. The test activities covered include numerous continuing programs, both nuclear and non-nuclear, which can best be conducted in a remote area. However, if nuclear excavation tests or tests of yields above 1 MT or tests away from NTS should be planned, these will be covered by separate environmental statements

  8. 77 FR 26755 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2012-05-07

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9669-6] Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; Diamond... reissuance of an exemption to the land disposal Restrictions, under the 1984 Hazardous and Solid Waste...

  9. 76 FR 55908 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2011-09-09

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9461-5] Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; Great Lakes... of an exemption to the land disposal restrictions, under the 1984 Hazardous and Solid Waste...

  10. 76 FR 42125 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2011-07-18

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9440-3] Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; ConocoPhillips... Restrictions, under the 1984 Hazardous and Solid Waste Amendments to the Resource Conservation and Recovery Act...

  11. 76 FR 36129 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2011-06-21

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9321-3] Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; ExxonMobil... disposal Restrictions, under the 1984 Hazardous and Solid Waste Amendments to the Resource Conservation and...

  12. 78 FR 76294 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2013-12-17

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9904-21-OW] Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; Mosaic... Restrictions, under the 1984 Hazardous and Solid Waste Amendments to the Resource Conservation and Recovery Act...

  13. 75 FR 60457 - Underground Injection Control Program Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2010-09-30

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9208-4] Underground Injection Control Program Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection Dow Chemical Company (DOW... 1984 Hazardous and Solid Waste Amendments to the Resource Conservation and Recovery Act have been...

  14. 78 FR 42776 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2013-07-17

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL9834-8] Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; Blanchard Refining... disposal Restrictions, under the 1984 Hazardous and Solid Waste Amendments to the Resource Conservation and...

  15. 77 FR 52717 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2012-08-30

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9724-1] Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; Cornerstone... exemption to the land disposal Restrictions, under the 1984 Hazardous and Solid Waste Amendments to the...

  16. Recovery of oil from underground drill sites

    International Nuclear Information System (INIS)

    Streeter, W.S.; Hutchinson, T.S.; Ameri, S.; Wasson, J.A.; Aminian, K.

    1991-01-01

    This paper reports that a significant quantity of oil is left in reservoirs after conventional oil recovery techniques have been applied. In West Virginia and Pennsylvania alone, this oil has been estimated at over 4.5 billion barrels (0.72 billion m 3 ). Conventional recovery methods are already being used when applicable. But a new recovery method is needed for use in reservoirs that have been abandoned. One alternative method for recovery of the residual oil is known as oil recovery from underground drill sites. This recovery technology is a combination of proven methods and equipment from the petroleum, mining, and civil construction industries. Underground oil recovery can be an economically viable method of producing oil. This has been shown in producing fields, field tests, and feasibility, studies. Faced with decreasing domestic oil production, the petroleum industry should give serious consideration to the use of oil recovery from underground drill sites as a safe, practical, and environmentally sensitive alternative method of producing oil from many reservoirs

  17. Siting technology of underground nuclear power station

    International Nuclear Information System (INIS)

    Motojima, M.; Hibino, S.

    1989-01-01

    For the site of a nuclear power station, it may be possible to select a seaside mountain area, if the condition is suitable to excavate large rock caverns in which a reactor and other equipments are installed. As the case study on the siting technology for an underground nuclear power station, the following example was investigated. The site is a seaside steep mountain area, and almost all the equipments are installed in plural tunnel type caverns. The depth from the ground surface to the top of the reactor cavern is about 150 m, and the thickness of the rock pillar between the reactor cavern of 33 m W x 82 mH x 79 mD and the neighboring turbine cavern is 60 m. In this paper, the stability of rock caverns in this example, evaluated by numerical analysis, is described. The numerical analysis was carried out on the central cross section of the reactor cavern, taking the turbine cavern, geostress, the mechanical properties of rock mass and the process of excavation works in consideration. By the analysis, the underground caverns in this example were evaluated as stable, if the rock quality is equivalent to C H class or better according to the CRIEPI rock classification. (K.I.)

  18. Underground siting of nuclear power plants: potential benefits and penalties

    International Nuclear Information System (INIS)

    Allensworth, J.A.; Finger, J.T.; Milloy, J.A.; Murfin, W.B.; Rodeman, R.; Vandevender, S.G.

    1977-08-01

    The potential for improving nuclear power safety is analyzed by siting plants underground in mined cavities or by covering plants with fill earth after construction in an excavated cut. Potential benefits and penalties of underground plants are referenced to analogous plants located on the surface. Three representative regional sites having requisite underground geology were used to evaluate underground siting. The major factors which were evaluated for all three sites were: (1) containment of radioactive materials, (2) transport of groundwater contamination, and (3) seismic vulnerability. External protection, plant security, feasibility, operational considerations, and cost were evaluated on a generic basis. Additionally, the national availability of sites having the requisite geology for both underground siting concepts was determined

  19. Review of underground siting of nuclear power plants

    International Nuclear Information System (INIS)

    1974-01-01

    A review of the potential for the underground siting of nuclear power generating plants has been undertaken. The review comprised a survey and assessment of relevant published documents currently available, together with discussions with Government sponsored agencies and other bodies, to evaluate the current status of technology related to the design and construction of underground nuclear power plants. It includes a review of previous work related to the underground siting of power plants and other facilities; a preliminary evaluation of the relative merits of the various concepts of undergrounding which have been proposed or constructed; a review of current technology as it relates to the requirements for the design, construction and operation of underground nuclear power plants; an examination of the safety and environmental aspects; and the identification of areas of further study which will be required if the underground is to be established as a fully viable alternative to surface siting. No attempt has been made to draw final conclusions at this stage. Nothing has been found to suggest that the underground siting concept could not provide a viable alternative to the surface concept. It is also apparent that no major technological developments are required. It is not clear, however, whether the improvements in safety and containment postulated for the underground can be realized at an economic cost; or even whether any additional cost is in fact involved. The problem is essentially site dependent and requires further study for which recommendations are made. (auth)

  20. Case study of siting technology for underground nuclear power plant

    International Nuclear Information System (INIS)

    Hibino, Satoshi; Komada, Hiroya; Honsho, Shizumitsu; Fujiwara, Yoshikazu; Motojima, Mutsumi; Nakagawa, Kameichiro; Nosaki, Takashi

    1991-01-01

    Underground siting method is one of new feasible siting methods for nuclear power plants. This report presents the results on case studies on underground siting. Two sites of a steeply inclined and plateau like configurations were selected. 'Tunnel type cavern; all underground siting' method was applied for the steeply inclined configuration, and 'shaft type semi-cavern; partial underground siting' method was applied for the plateau like configuration. The following designs were carried out for these two sites as case studies; (1) conceptual designs, (2) geological surveys and rock mechanics tests, (3) stability analysis during cavern excavations, (4) seismic stability analysis of caverns during earthquake, (5) reinforcement designs for caverns, (6) drainage designs. The case studies showed that these two cases were fully feasible, and comparison between two cases revealed that the 'shaft type semi-cavern; partial underground siting' method was more suitable for Japanese islands. As a first step of underground siting, therefore, the authors recommend to construct a nuclear power plant by this method. (author)

  1. A survey of the underground siting of nuclear power plants

    International Nuclear Information System (INIS)

    Pinto, S.

    1979-12-01

    The idea of locating nuclear power plants underground is not new, since in the period of time between the late fifties and the early sixties, four small nuclear plants have been built in Europe in rock cavities. Safety has been, in general, the main motivation for such a siting solution. In the last years several factors such as increasing power transmission costs, decreasing number of suitable sites above ground, increased difficulties in obtaining site approval by the licensing authorities, increasing opposition to nuclear power, increasing concern for extreme - but highly improbable - accidents, together with the possibility of utilizing the waste heat and the urban siting concept have renewed the interest for the underground siting as an alternative to surface siting. The author presents a survey of the main studies carried out on the subject of underground siting. (Auth.)

  2. War protected underground siting of nuclear power plants -a summary

    International Nuclear Information System (INIS)

    1974-06-01

    In connection with studies concerning the need of war protected nuclear power production the technical and economical conditions with war protection of nuclear power plants have been studied within CDL. Comprehensively one have shown that no technical construction obstacles for siting a nuclear power plant underground exist that the additional costs for underground siting with price level mid 1973 are some 175-250 MSwCr (In today's price level 250 MSwCr will probably correspond to some 300 MSwCr per unit) and that the construction time is some one year longer than for an above ground plant. A study ought to examine more closely the consequences of underground siting from a radiological point of view and what demands on that occasion ought to be put on the technical design. (author)

  3. Underground radionuclide migration at the Nevada Test Site

    International Nuclear Information System (INIS)

    Nimz, G.J.; Thompson, J.L.

    1992-01-01

    This document reviews results from a number of studies concerning underground migration of radionuclides from nuclear test cavities at the Nevada Test Site (NTS). Discussed are all cases known to the Department of Energy's Hydrology and Radionuclide Migration Program where radionuclides have been detected outside of the immediate vicinity of nuclear test cavities that are identifiable as the-source of the nuclides, as well as cases where radionuclides might have been expected and were intentionally sought but not fixed. There are nine locations where source-identifiable radionuclide migration has been detected, one where migration was purposely induced by pumping, and three where migration might be expected but was not found. In five of the nine cases of non-induced migration, the inferred migration mechanism is prompt fracture injection during detonation. In the other four cases, the inferred migration mechanism is water movement. In only a few of the reviewed cases can the actual migration mechanism be stated with confidence, and the attempt has been made to indicate the level of confidence for each case. References are cited where more information may be obtained. As an aid to future study, this document concludes with a brief discussion of the aspects of radionuclide migration that, as the present review indicates, are not yet understood. A course of action is suggested that would produce a better understanding of the phenomenon of radionuclide migration

  4. Radon in an underground excavation site in Helsinki

    International Nuclear Information System (INIS)

    Venelampi, E.

    2004-01-01

    The paper reports on radon measurements and actions taken in a large underground excavation site in Helsinki, where a coal store was excavated underneath an existing power plant. The measurements were carried out by taking grab samples using Lucas type scintillation cells. Large variations in radon concentrations were observed during the three-year study. The reasons for variations are discussed and recommendations are given for radon monitoring procedures in underground excavation sites. The importance of ventilation to reduce the radon level is stressed. (P.A.)

  5. Injection of FGD Grout to Abate Acid Mine Drainage in Underground Coal Mines

    Energy Technology Data Exchange (ETDEWEB)

    Mafi, S.; Damian, M.T.; Senita, R.E.; Jewitt, W.C.; Bair, S.; Chin, Y.C.; Whitlatch, E.; Traina, S.; Wolfe, W.

    1997-07-01

    Acid Mine Drainage (AMD) from abandoned underground coal mines in Ohio is a concern for both residents and regulatory agencies. Effluent from these mines is typically characterized by low pH and high iron and sulfate concentrations and may contaminate local drinking-water supplies and streams. The objective of this project is to demonstrate the technical feasibility of injecting cementitious alkaline materials, such as Flue Gas Desulfurization (FGD) material to mitigate current adverse environmental impacts associated with AMD in a small, abandoned deep mine in Coshocton County Ohio. The Flue Gas Desulfurization material will be provided from American Electric Power`s (AEP) Conesville Plant. It will be injected as a grout mix that will use Fixated Flue Gas Desulfurization material and water. The subject site for this study is located on the border of Coshocton and Muskingum Counties, Ohio, approximately 1.5 miles south-southwest of the town of Wills Creek. The study will be performed at an underground mine designated as Mm-127 in the Ohio Department of Natural Resources register, also known as the Roberts-Dawson Mine. The mine operated in the mid-1950s, during which approximately 2 million cubic feet of coal was removed. Effluent discharging from the abandoned mine entrances has low pH in the range of 2.8-3.0 that drains directly into Wills Creek Lake. The mine covers approximately 14.6 acres. It is estimated that 26,000 tons of FGD material will be provided from AEP`s Conesville Power Plant located approximately 3 miles northwest of the subject site.

  6. Injection of FGD Grout to Abate Acid Mine Drainage in Underground Coal Mines

    International Nuclear Information System (INIS)

    Mafi, S.; Damian, M.T.; Senita, R.E.; Jewitt, W.C.; Bair, S.; Chin, Y.C.; Whitlatch, E.; Traina, S.; Wolfe, W.

    1997-07-01

    Acid Mine Drainage (AMD) from abandoned underground coal mines in Ohio is a concern for both residents and regulatory agencies. Effluent from these mines is typically characterized by low pH and high iron and sulfate concentrations and may contaminate local drinking-water supplies and streams. The objective of this project is to demonstrate the technical feasibility of injecting cementitious alkaline materials, such as Flue Gas Desulfurization (FGD) material to mitigate current adverse environmental impacts associated with AMD in a small, abandoned deep mine in Coshocton County Ohio. The Flue Gas Desulfurization material will be provided from American Electric Power's (AEP) Conesville Plant. It will be injected as a grout mix that will use Fixated Flue Gas Desulfurization material and water. The subject site for this study is located on the border of Coshocton and Muskingum Counties, Ohio, approximately 1.5 miles south-southwest of the town of Wills Creek. The study will be performed at an underground mine designated as Mm-127 in the Ohio Department of Natural Resources register, also known as the Roberts-Dawson Mine. The mine operated in the mid-1950s, during which approximately 2 million cubic feet of coal was removed. Effluent discharging from the abandoned mine entrances has low pH in the range of 2.8-3.0 that drains directly into Wills Creek Lake. The mine covers approximately 14.6 acres. It is estimated that 26,000 tons of FGD material will be provided from AEP's Conesville Power Plant located approximately 3 miles northwest of the subject site

  7. Underground measurements of seismic vibrations at the SSC site

    International Nuclear Information System (INIS)

    Shiltsev, V.D.; Parkhomchuk, V.V.; Weaver, H.J.

    1995-01-01

    The results of underground measurements of seismic vibrations at the tunnel depth of the Superconducting Super Collider (SSC) site are presented. Spectral analysis of the data obtained in the frequency band from 0.05 Hz to 1500 Hz is performed. It is found that amplitudes of ambient ground motion are less than requirements for the Collider, but cultural vibrations are unacceptably large and will cause fast growth of transverse emittance of the SSC beams

  8. Class I Underground Injection Control Program: Study of the Risks Associated with Class I Underground Injection Wells

    Science.gov (United States)

    The document provides describes the current Class I UIC program, the history of Class I injection, and studies of human health risks associated with Class I injection wells, which were conducted for past regulatory efforts and policy documentation.

  9. Injection of alkaline ashes into underground coal mines for acid mine drainage abatement

    International Nuclear Information System (INIS)

    Aljoe, W.W.

    1996-01-01

    The injection of alkaline coal combustion waste products into abandoned underground coal mines for acid mine drainage (AMD) abatement has obvious conceptual appeal. This paper summarizes the findings of the baseline hydrogeologic and water quality evaluations at two sites--one in West Virginia and one in Maryland--where field demonstrations of the technique are being pursued in cooperative efforts among State and Federal agencies and/or private companies. The West Virginia site produces severe AMD from three to seven AMD sources that are spaced over about a 1.2 km stretch of the down-dip side of the mine workings. By completely filling the most problematic portion of the mine workings with coal combustion ashes, the State expects that the costs and problems associated with AMD treatment will be greatly reduced. At the Maryland site, it is expected that the AMD from a relatively small target mine will be eliminated completely by filling the entire mine void with a grout composed of a mixture of fly ash, fluidized-bed combustion ash, and flue gas desulfurization sludge. This project will also demonstrate the potential cost-effectiveness of the technique at other sites, both for the purpose of AMD remediation and control of land subsidence

  10. Regulatory analysis for the use of underground barriers at the Hanford Site tank farms

    International Nuclear Information System (INIS)

    Hampsten, K.L.

    1994-01-01

    Sixty-seven of the single-shell tanks at the Hanford Site, Richland, Washington, are assumed to have leaked in the past. Some of the waste retrieval options being considered, such as past-practice sluicing (a process that uses hot water to dislodge waste for subsequent removal by pumping), have the potential for increasing releases of dangerous waste from these tanks. Underground barrier systems are being evaluated as a method to mitigate releases of tank waste to the soil and groundwater that may occur during retrieval activities. The following underground barrier system options are among those being evaluated to determine whether their construction at the Single-Shell Tank Farms is viable. (1) A desiccant barrier would be created by circulating air through the subsurface soil to lower and then maintain the water saturation below the levels required for liquids to flow. (2) An injected materials barrier would be created by injecting materials such as grout or silica into the subsurface soils to form a barrier around and under a given tank or tank farm. (3) A cryogenic barrier would be created by freezing subsurface soils in the vicinity of a tank or tank farm. An analysis is provided of the major regulatory requirements that may impact full scale construction and operation of an underground barrier system and a discussion of factors that should be considered throughout the barrier selection process, irrespective of the type of underground barrier system being considered. However, specific barrier systems will be identified when a given regulation will have significant impact on a particular type of barrier technology. Appendix A provides a matrix of requirements applicable to construction and operation of an underground barrier system

  11. Siting, design and construction of underground repositories for radioactive wastes

    International Nuclear Information System (INIS)

    1986-01-01

    The objectives of the Symposium were to provide a forum for exchange of information internationally on the various scientific, technological, engineering and safety bases for the siting, design and construction of underground repositories, and to highlight current important issues and identify possible approaches. Forty-nine papers were presented, covering general approaches and regulatory aspects, disposal in shallow ground and rock cavities, disposal in deep geological formations and safety assessments related to the subject of the Symposium. Separate abstracts were prepared for each of these papers

  12. Close out of the Malargue site: Underground draining system

    International Nuclear Information System (INIS)

    Giordano, Nolberto N.; Liseno, Aldo

    2000-01-01

    An industrial uranium production facility stopped working in Malargue city, Mendoza province. Nowadays, in that place there are 700,000 tons of solid tailings piles from the uranium minerals concentration process. They must be treated inside the site through engineering works included in the final closeout project. This paper describes the project technical details of an underground drainage system, designed to depress the groundwater level and to be sure about the isolation of the solids to be treated from the groundwater. The work was done by a private company, after public bidding process. At the moment the drainage system is in operation control stage. (author)

  13. UNDERGROUND

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-11-15

    Full text: Cossetted deep underground, sheltered from cosmic ray noise, has always been a favourite haunt of neutrino physicists. Already in the 1930s, significant limits were obtained by taking a geiger counter down in Holborn 'tube' station, one of the deepest in London's underground system. Since then, neutrino physicists have popped up in many unlikely places - gold mines, salt mines, and road tunnels deep under mountain chains. Two such locations - the 1MB (Irvine/ Michigan/Brookhaven) detector 600 metres below ground in an Ohio salt mine, and the Kamiokande apparatus 1000m underground 300 km west of Tokyo - picked up neutrinos on 23 February 1987 from the famous 1987A supernova. Purpose-built underground laboratories have made life easier, notably the Italian Gran Sasso Laboratory near Rome, 1.4 kilometres below the surface, and the Russian Baksan Neutrino Observatory under Mount Andyrchi in the Caucasus range. Gran Sasso houses ICARUS (April, page 15), Gallex, Borexino, Macro and the LVD Large Volume Detector, while Baksan is the home of the SAGE gallium-based solar neutrino experiment. Elsewhere, important ongoing underground neutrino experiments include Soudan II in the US (April, page 16), the Canadian Sudbury Neutrino Observatory with its heavy water target (January 1990, page 23), and Superkamiokande in Japan (May 1991, page 8)

  14. UNDERGROUND

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: Cossetted deep underground, sheltered from cosmic ray noise, has always been a favourite haunt of neutrino physicists. Already in the 1930s, significant limits were obtained by taking a geiger counter down in Holborn 'tube' station, one of the deepest in London's underground system. Since then, neutrino physicists have popped up in many unlikely places - gold mines, salt mines, and road tunnels deep under mountain chains. Two such locations - the 1MB (Irvine/ Michigan/Brookhaven) detector 600 metres below ground in an Ohio salt mine, and the Kamiokande apparatus 1000m underground 300 km west of Tokyo - picked up neutrinos on 23 February 1987 from the famous 1987A supernova. Purpose-built underground laboratories have made life easier, notably the Italian Gran Sasso Laboratory near Rome, 1.4 kilometres below the surface, and the Russian Baksan Neutrino Observatory under Mount Andyrchi in the Caucasus range. Gran Sasso houses ICARUS (April, page 15), Gallex, Borexino, Macro and the LVD Large Volume Detector, while Baksan is the home of the SAGE gallium-based solar neutrino experiment. Elsewhere, important ongoing underground neutrino experiments include Soudan II in the US (April, page 16), the Canadian Sudbury Neutrino Observatory with its heavy water target (January 1990, page 23), and Superkamiokande in Japan (May 1991, page 8)

  15. Nuclear reactors sited deep underground in steel containment vessels

    Energy Technology Data Exchange (ETDEWEB)

    Bourque, Robert [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)

    2006-07-01

    Although nuclear power plants are certainly very safe, they are not perceived as safe by the general populace. Also, there are concerns about overland transport of spent fuel rods and other irradiated components. It is hereby proposed that the nuclear components of nuclear power plants be placed in deep underground steel vessels with secondary coolant fed from them to turbines at or near the surface. All irradiated components, including spent fuel, would remain in the chamber indefinitely. This general concept was suggested by the late Edward Teller, generated some activity 20-25 years ago and appears to be recently reviving in interest. Previous work dealt with issues of geologic stability of underground, possibly reinforced, caverns. This paper presents another approach that makes siting independent of geology by placing the reactor components in a robust steel vessel capable of resisting full overburden pressure as well as pressures resulting from accident scenarios. Structural analysis of the two vessel concepts and approximate estimated costs are presented. This work clears the way for the extensive discussions required to evaluate the advantages of this concept. (author)

  16. Disposal of liquid wastes by injection underground--Neither myth nor millennium

    Science.gov (United States)

    Piper, Arthur M.

    1969-01-01

    Injecting liquid wastes deep underground is an attractive but not necessarily practical means for disposing of them. For decades, impressive volumes of unwanted oil-field brine have been injected, currently about 10,000 acre-feet yearly. Recently, liquid industrial wastes are being injected in ever-increasing quantity. Dimensions of industrial injection wells range widely but the approximate medians are: depth, 2,660 feet; thickness of injection zone, 185 feet; injection rate, 135 gallons per minute; wellhead injection pressure, 185 pounds per square inch. Effects of deep injection are complex and not all are understood clearly. In a responsible society, injection cannot be allowed to put wastes out of mind. Injection is no more than storage--for all time in the case of the most intractable wastes--in underground space of which little is attainable in some areas and which is exhaustible in most areas. Liquid wastes range widely in character and concentration-some are incompatible one with another or with materials of the prospective injection zone; some which are reactive or chemically unstable would require pretreatment or could not be injected. Standards by which to categorize the wastes are urgently desirable. To the end that injection may be planned effectively and administered in orderly fashion, there is proposed an immediate and comprehensive canvass of all the United States to outline injection provinces and zones according to their capacities to accept waste. Much of the information needed to this end is at hand. Such a canvass would consider (1) natural zone, of groundwater circulation, from rapid to stagnant, (2) regional hydrodynamics, (3) safe injection pressures, and (4) geochemical aspects. In regard to safe pressure, definitive criteria would be sought by which to avoid recurrence of earthquake swarms such as seem to have been triggered by injection at the Rocky Mountain Arsenal well near Denver, Colo. Three of the 50 States--Missouri, .Ohio, and

  17. Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground (LBNL Summer Lecture Series)

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division

    2009-07-21

    Summer Lecture Series 2009: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

  18. Site selection under the underground geologic store plan. Procedures of selecting underground geologic stores as disputed by society, science, and politics. Site selection rules

    International Nuclear Information System (INIS)

    Aebersold, M.

    2008-01-01

    The new Nuclear Power Act and the Nuclear Power Ordinance of 2005 are used in Switzerland to select a site of an underground geologic store for radioactive waste in a substantive planning procedure. The ''Underground Geologic Store Substantive Plan'' is to ensure the possibility to build underground geologic stores in an independent, transparent and fair procedure. The Federal Office for Energy (BFE) is the agency responsible for this procedure. The ''Underground Geologic Store'' Substantive Plan comprises these principles: - The long term protection of people and the environment enjoys priority. Aspects of regional planning, economics and society are of secondary importance. - Site selection is based on the waste volumes arising from the five nuclear power plants currently existing in Switzerland. The Substantive Plan is no precedent for or against future nuclear power plants. - A transparent and fair procedure is an indispensable prerequisite for achieving the objectives of a Substantive Plan, i.e., finding accepted sites for underground geologic stores. The Underground Geologic Stores Substantive Plan is arranged in two parts, a conceptual part defining the rules of the selection process, and an implementation part documenting the selection process step by step and, in the end, naming specific sites of underground geologic stores in Switzerland. The objective is to be able to commission underground geologic stores in 25 or 35 years' time. In principle, 2 sites are envisaged, one for low and intermediate level waste, and one for high level waste. The Swiss Federal Council approved the conceptual part on April 2, 2008. This marks the beginning of the implementation phase and the site selection process proper. (orig.)

  19. Application for Underground Injection Control Permit for the PUNA Geothermal Venture Project

    Energy Technology Data Exchange (ETDEWEB)

    None

    1989-06-01

    Puna Geothermal Venture (PGV) plans to construct and operate the 25 MW Puna Geothermal Venture Project in the Puna District of the Island of Hawaii. The project will drill geothermal wells within a dedicated 500-acre project area, use the produced geothermal fluid to generate electricity for sale to the Hawaii Electric Light Company for use on the Island of Hawaii, and inject all the produced geothermal fluids back into the geothermal reservoir. Since the project will use injection wells, it will require an Underground Injection Control (UIC) permit from the Drinking Water Section of the State of Hawaii Department of Health. The PGV Project is consistent with the State and County of Hawaii's stated objectives of providing energy self-sufficiency and diversifying Hawaii's economic base. The project will develop a new alternate energy source as well as provide additional information about the nature of the geothermal resource.

  20. In situ water and gas injection experiments performed in the Hades Underground Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Volckaert, G.; Ortiz, L.; Put, M. [SCK-CEN, Mol (Belgium). Geological Waste Disposal Unit

    1995-12-31

    The movement of water and gas through plastic clay is an important subject in the research at SCK-CEN on the possible disposal of high level radioactive waste in the Boom clay layer at Mol. Since the construction of the Hades underground research facility in 1983, SCK-CEN has developed and installed numerous piezometers for the geohydrologic characterization and for in situ radionuclide migration experiments. In situ gas and water injection experiments have been performed at two different locations in the underground laboratory. The first location is a multi filter piezometer installed vertically at the bottom of the shaft in 1986. The second location is a three dimensional configuration of four horizontal multi piezometers installed from the gallery. This piezometer configuration was designed for the MEGAS (Modelling and Experiments on GAS migration through argillaceous rocks) project and installed in 1992. It contains 29 filters at distances between 10 m and 15 m from the gallery in the clay. Gas injection experiments show that gas breakthrough occurs at a gas overpressure of about 0.6 MPa. The breakthrough occurs by the creation of gas pathways along the direction of lowest resistance i.e. the zone of low effective stress resulting from the drilling of the borehole. The water injections performed in a filter -- not used for gas injection -- show that the flow of water is also influenced by the mechanical stress conditions. Low effective stress leads to higher hydraulic conductivity. However, water overpressures up to 1.3 MPa did not cause hydrofracturing. Water injections performed in a filter previously used for gas injections, show that the occluded gas hinders the water flow and reduces the hydraulic conductivity by a factor two.

  1. 76 FR 56982 - Announcement of Federal Underground Injection Control (UIC) Class VI Program for Carbon Dioxide (CO2

    Science.gov (United States)

    2011-09-15

    ...-9465-1] Announcement of Federal Underground Injection Control (UIC) Class VI Program for Carbon Dioxide... Injection Control (UIC) Class VI Program for Carbon Dioxide (CO 2 ) Geologic Sequestration (GS) Wells under... highlighted in the ``Report of the Interagency Task Force on Carbon Capture and Storage'' (August 2010), it is...

  2. Using drugs in un/safe spaces: Impact of perceived illegality on an underground supervised injecting facility in the United States.

    Science.gov (United States)

    Davidson, Peter J; Lopez, Andrea M; Kral, Alex H

    2018-03-01

    Supervised injection facilities (SIFs) are spaces where people can consume pre-obtained drugs in hygienic circumstances with trained staff in attendance to provide emergency response in the event of an overdose or other medical emergency, and to provide counselling and referral to other social and health services. Over 100 facilities with formal legal sanction exist in ten countries, and extensive research has shown they reduce overdose deaths, increase drug treatment uptake, and reduce social nuisance. No facility with formal legal sanction currently exists in the United States, however one community-based organization has successfully operated an 'underground' facility since September 2014. Twenty three qualitative interviews were conducted with people who used the underground facility, staff, and volunteers to examine the impact of the facility on peoples' lives, including the impact of lack of formal legal sanction on service provision. Participants reported that having a safe space to inject drugs had led to less injections in public spaces, greater ability to practice hygienic injecting practices, and greater protection from fatal overdose. Constructive aspects of being 'underground' included the ability to shape rules and procedures around user need rather than to meet political concerns, and the rapid deployment of the project, based on immediate need. Limitations associated with being underground included restrictions in the size and diversity of the population served by the site, and reduced ability to closely link the service to drug treatment and other health and social services. Unsanctioned supervised injection facilities can provide a rapid and user-driven response to urgent public health needs. This work draws attention to the need to ensure such services remain focused on user-defined need rather than external political concerns in jurisdictions where supervised injection facilities acquire local legal sanction. Copyright © 2017 Elsevier B.V. All

  3. An injection technique for in-situ remediation of abandoned underground coal mines

    International Nuclear Information System (INIS)

    Canty, G.A.; Everett, J.W.

    1998-01-01

    Remediation of underground mines can prove to be a difficult task, given the physical constraints associated with introducing amendments to a subterranean environment. An acid mine abatement project involving in-situ chemical treatment method was conducted by the University of Oklahoma. The treatment method involved the injection of an alkaline coal combustion by-product (CCB) slurry into a flooded mine void (pH 4.4) to create a buffered zone. Injection of the CCB slurry was possible through the use of equipment developed by the petroleum industry for grouting recovery wells. This technology was selected because the CCB slurry could be injected under significant pressure and at a high rate. With higher pressure and rates of injection, a large quantity of slurry can be introduced into the mine within a limited amount of time. Theoretically, the high pressure and rate would improve dispersal of the slurry within the void. In addition, the high pressure is advantageous in fracturing or breaking-down obstructions to injection. During the injection process, a total of 418 tons of CCB was introduced within 15 hours. The mine did not refuse any of the material, and it is likely that a much larger mass could have been added. One injection well was drilled into a pillar of coal. Normally this would pose a problem when introducing a slurry; however, the coal pillar was easily fractured during the injection process. Currently, the pH of the mine discharge is above 6.5 and the alkalinity is approximately 100 mg/L as CACO 3

  4. Underground facility for geoenvironmental and geotechnical research at the SSC Site in Texas

    International Nuclear Information System (INIS)

    Wang, H.F.; Myer, L.R.

    1994-01-01

    The subsurface environment is an important national resource that is utilized for construction, waste disposal and groundwater supply. Conflicting and unwise use has led to problems of groundwater contamination. Cleanup is often difficult and expensive, and perhaps not even possible in many cases. Construction projects often encounter unanticipated difficulties that increase expenses. Many of the difficulties of predicting mechanical behavior and fluid flow and transport behavior stem from problems in characterizing what cannot be seen. An underground research laboratory, such as can be developed in the nearly 14 miles of tunnel at the Superconducting Super Collider (SSC) site, will provide a unique opportunity to advance scientific investigations of fluid flow, chemical transport, and mechanical behavior in situ in weak and fractured, porous rock on a scale relevant to civil and environmental engineering applications involving the subsurface down to a depth of 100 m. The unique element provided by underground studies at the SSC site is three-dimensional access to a range of fracture conditions in two rock types, chalk and shale. Detailed experimentation can be carried out in small sections of the SSC tunnel where different types of fractures and faults occur and where different rock types or contacts are exposed. The entire length of the tunnel can serve as an observatory for large scale mechanical and fluid flow testing. The most exciting opportunity is to mine back a volume of rock to conduct a post-experiment audit following injection of a number of reactive and conservative tracers. Flow paths and tracer distributions can be examined directly. The scientific goal is to test conceptual models and numerical predictions. In addition, mechanical and hydrological data may be of significant value in developing safe and effective methods for closing the tunnel itself

  5. Assessment of hydrologic transport of radionuclides from the Gnome underground nuclear test site, New Mexico

    International Nuclear Information System (INIS)

    Earman, S.; Chapman, J.; Pohlmann, K.; Andricevic, R.

    1996-09-01

    The U.S. Department of Energy (DOE) is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations that were used for nuclear testing. Evaluation of radionuclide transport by groundwater from these sites is an important part of the preliminary site risk analysis. These evaluations are undertaken to allow prioritization of the test areas in terms of risk, provide a quantitative basis for discussions with regulators and the public about future work at the sites, and provide a framework for assessing data needs to be filled by site characterization. The Gnome site in southeastern New Mexico was the location of an underground detonation of a 3.5-kiloton nuclear device in 1961, and a hydrologic tracer test using radionuclides in 1963. The tracer test involved the injection of tritium, 90 Sr, and 137 Cs directly into the Culebra Dolomite, a nine to ten-meter-thick aquifer located approximately 150 in below land surface. The Gnome nuclear test was carried out in the Salado Formation, a thick salt deposit located 200 in below the Culebra. Because salt behaves plastically, the cavity created by the explosion is expected to close, and although there is no evidence that migration has actually occurred, it is assumed that radionuclides from the cavity are released into the overlying Culebra Dolomite during this closure process. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides may be present in concentrations exceeding drinking water regulations outside the drilling exclusion boundary established by DOE. Calculated mean tritium concentrations peak at values exceeding the U.S. Environmental Protection Agency drinking water standard of 20,000 pCi/L at distances of up to almost eight kilometers west of the nuclear test

  6. Assessment of hydrologic transport of radionuclides from the Gasbuggy underground nuclear test site, New Mexico

    International Nuclear Information System (INIS)

    Earman, S.; Chapman, J.; Andricevic, R.

    1996-09-01

    The U.S. Department of Energy (DOE) is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations that were used for nuclear testing. Evaluation of radionuclide transport by groundwater from these sites is an important part of the preliminary risk analysis. These evaluations are undertaken to allow prioritization of the test areas in terms of risk, provide a quantitative basis for discussions with regulators and the public about future work at the sites, and provide a framework for assessing data needs to be filled by site characterization. The Gasbuggy site in northwestern New Mexico was the location of an underground detonation of a 29-kiloton nuclear device in 1967. The test took place in the Lewis Shale, approximately 182 m below the Ojo Alamo Sandstone, which is the aquifer closest to the detonation horizon. The conservative assumption was made that tritium was injected from the blast-created cavity into the Ojo Alamo Sandstone by the force of the explosion, via fractures created by the shot. Model results suggest that if radionuclides produced by the shot entered the Ojo Alamo, they are most likely contained within the area currently administered by DOE. The transport calculations are most sensitive to changes in the mean groundwater velocity, followed by the variance in hydraulic conductivity, the correlation scale of hydraulic conductivity, the transverse hydrodynamic dispersion coefficient, and uncertainty in the source size. This modeling was performed to investigate how the uncertainty in various physical parameters affects calculations of radionuclide transport at the Gasbuggy site, and to serve as a starting point for discussion regarding further investigation at the site; it was not intended to be a definitive simulation of migration pathways or radionuclide concentration values

  7. Geologic surface effects of underground nuclear testing, Yucca Flat, Nevada Test Site, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    Grasso, D.N.

    2000-01-01

    This report presents a new Geographic Information System composite map of the geologic surface effects caused by underground nuclear testing in the Yucca Flat Physiographic Area of the Nevada Test Site, Nye County, Nevada. The Nevada Test Site (NTS) was established in 1951 as a continental location for testing nuclear devices (Allen and others, 1997, p.3). Originally known as the ''Nevada Proving Ground'', the NTS hosted a total of 928 nuclear detonations, of which 828 were conducted underground (U.S. Department of Energy, 1994). Three principal testing areas of the NTS were used: (1) Yucca Flat, (2) Pahute Mesa, and (3) Rainier Mesa including Aqueduct Mesa. Underground detonations at Yucca Flat and Pahute Mesa were typically emplaced in vertical drill holes, while others were tunnel emplacements. Of the three testing areas, Yucca Flat was the most extensively used, hosting 658 underground tests (747 detonations) located at 719 individual sites (Allen and others, 1997, p.3-4). Figure 1 shows the location of Yucca Flat and other testing areas of the NTS. Figure 2 shows the locations of underground nuclear detonation sites at Yucca Flat. Table 1 lists the number of underground nuclear detonations conducted, the number of borehole sites utilized, and the number of detonations mapped for surface effects at Yucca Flat by NTS Operational Area

  8. Indian primacy procedures handbook for the public water system supervision (PWSS) program and the underground injection control (UIC) program

    International Nuclear Information System (INIS)

    1993-03-01

    The handbook defines primacy, the responsibilities of primacy, primacy's advantages and limitations, and how to seek primacy. Primacy is a provision in the 1986 Amendments to the Safe Drinking Water Act (SDWA). It allows Indian Tribes the opportunity to assume principal responsibility in the enforcement of public drinking water and/or underground injection control (UIC) regulations within the Indian Tribe's jurisdiction. To attain primacy a Tribe must have drinking water and underground injection control regulations which are at least as strict as EPA regulations, and must have an independent agency or organization within the Tribal government that has the power to enforce its regulations

  9. The Cigeo project: an industrial storage site for radioactive wastes in deep underground

    International Nuclear Information System (INIS)

    Krieguer, Jean-Marie

    2017-01-01

    In 2006, France has decided to store its high-level and long-lived radioactive wastes, mostly issued from the nuclear industry, in a deep geological underground disposal site. This document presents the Cigeo project, a deep underground disposal site (located in the East of France) for such radioactive wastes, which construction is to be started in 2021 (subject to authorization in 2018). After a brief historical review of the project, started 20 years ago, the document presents the radioactive waste disposal context, the ethical choice of underground storage (in France and elsewhere) for these types of radioactive wastes, the disposal site safety and financing aspects, the progressive development of the underground facilities and, of most importance, its reversibility. In a second part, the various works around the site are presented (transport, buildings, water and power supply, etc.) together with a description of the various radioactive wastes (high and intermediate level and long-lived wastes and their packaging) that will be disposed in the site. The different steps of the project are then reviewed (the initial design and initial construction phases, the pilot industrial phase (expected in 2030), the operating phase, and the ultimate phases that will consist in the definitive closure of the site and its monitoring), followed by an extensive description of the various installations of surface and underground facilities, their architecture and their equipment

  10. Character and levels of radioactive contamination of underground waters at Semipalatinsk test site

    Energy Technology Data Exchange (ETDEWEB)

    Subbotin, S.; Lukashenko, S.; Turchenko, Y. [Institute of radiation safety and ecology (Kazakhstan)

    2014-07-01

    According to the data of RK government commission, 470 explosions have been set off at the Semipalatinsk Test Site (STS), inclusive of 26 surface, 90 in the air and 354 underground nuclear explosions (UNE), 103 of those have been conducted in tunnels and 251 - in boreholes. Underground nuclear explosions have been conducted at STS in horizontal mines, called - 'tunnels' ('Degelen' test site) and vertical mines called 'boreholes' ('Balapan' and 'Sary-Uzen' test sites). Gopher cavities of boreholes and tunnels are in different geotechnical conditions, that eventually specify migration of radioactive products with underground waters. Central cavities of UNE in holes are located significantly below the level of distribution of underground water. High temperature remains for a long time due to presence of overlying rock mass. High temperatures contribute to formation of thermal convection. When reaching the cavity, the water heat up, dissolve chemical elements and radionuclides and return with them to the water bearing formation. In the major part of 'Balapan' site for underground water of regional basin is characterized by low concentrations of radionuclides. High concentrations of {sup 137}Cs in underground water have been found only in immediate vicinity to 'warfare' boreholes. Formation of radiation situation in the 'Balapan' test site area is also affected by local area of underground water discharge. It is located in the valley of Shagan creek, where the concentration of {sup 3}H reaches 700 kBq/l. Enter of underground water contaminated with tritium into surface water well continue. In this case it is expected that tritium concentration in discharge zone can significantly change, because this migration process depends on hydro geological factors and the amount of atmospheric precipitation. Central cavities of nuclear explosions, made in tunnels, are above the level of underground

  11. A study of feasibility, design and cost of excavations for underground siting of nuclear power plants

    International Nuclear Information System (INIS)

    1976-02-01

    A study conducted for the State Power Board on underground siting of nuclear power plants is presented. The report is divided into two chapters, both concerning the technical aspects of large underground openings. The first chapter gives a brief general survey of the problems involved, and the second outlines the technical aspects of a PWR project at a specific site. Details are given in 8 appendices and arrangement drawings. The project differs from conventional hydroelectric excavation schemes mainly in the fact that the spherical reactor containment requires a vault of 60m free span, and the turbine hall a cylindrical vault of 45m span, both of which exceed any span hitherto built for similar purposes. This requires a comparatively wide extrapolation of tested and available experience in underground excavations for permanent civil use. To what extent and under what circumstances such extrapolation is tenable must be tested in practice, preferably in a specially controlled prototype test. However the study indicates that conventional nuclear power plants can be sited underground when the topography and rock conditions are suitable. A 1000-2000 MW conventional plant adapted for underground siting will require large span caverns, tunnels and shafts, totalling about 1.0 mill. cubic metres of underground excavation. In addition access and cooling water tunnels, depending on the location, will require 0.2-0.5 mill. cubic metres of tunnel excavations. The excavations and support work can be completed within a construction time of about 2 1/2 years at an estimated total cost of 215 mill. Norwegian kroner (1975 value). (JIW)

  12. US Department of Energy DOE Nevada Operations Office, Nevada Test Site: Underground safety and health standards

    International Nuclear Information System (INIS)

    1993-05-01

    The Nevada Test Site Underground Safety and Health Standards Working Group was formed at the direction of John D. Stewart, Director, Nevada Test Site Office in April, 1990. The objective of the Working Group was to compile a safety and health standard from the California Tunnel Safety Orders and OSHA for the underground operations at the NTS, (excluding Yucca Mountain). These standards are called the NTS U/G Safety and Health Standards. The Working Group submits these standards as a RECOMMENDATION to the Director, NTSO. Although the Working Group considers these standards to be the most integrated and comprehensive standards that could be developed for NTS Underground Operations, the intent is not to supersede or replace any relevant DOE orders. Rather the intent is to collate the multiple safety and health references contained in DOE Order 5480.4 that have applicability to NTS Underground Operations into a single safety and heath standard to be used in the underground operations at the NTS. Each portion of the standard was included only after careful consideration by the Working Group and is judged to be both effective and appropriate. The specific methods and rationale used by the Working Group are outlined as follows: The letter from DOE/HQ, dated September 28, 1990 cited OSHA and the CTSO as the safety and health codes applicable to underground operations at the NTS. These mandated codes were each originally developed to be comprehensive, i.e., all underground operations of a particular type (e.g., tunnels in the case of the CTSO) were intended to be adequately regulated by the appropriate code. However, this is not true; the Working Group found extensive and confusing overlap in the codes in numerous areas. Other subjects and activities were addressed by the various codes in cursory fashion or not at all

  13. US Department of Energy DOE Nevada Operations Office, Nevada Test Site: Underground safety and health standards

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    The Nevada Test Site Underground Safety and Health Standards Working Group was formed at the direction of John D. Stewart, Director, Nevada Test Site Office in April, 1990. The objective of the Working Group was to compile a safety and health standard from the California Tunnel Safety Orders and OSHA for the underground operations at the NTS, (excluding Yucca Mountain). These standards are called the NTS U/G Safety and Health Standards. The Working Group submits these standards as a RECOMMENDATION to the Director, NTSO. Although the Working Group considers these standards to be the most integrated and comprehensive standards that could be developed for NTS Underground Operations, the intent is not to supersede or replace any relevant DOE orders. Rather the intent is to collate the multiple safety and health references contained in DOE Order 5480.4 that have applicability to NTS Underground Operations into a single safety and heath standard to be used in the underground operations at the NTS. Each portion of the standard was included only after careful consideration by the Working Group and is judged to be both effective and appropriate. The specific methods and rationale used by the Working Group are outlined as follows: The letter from DOE/HQ, dated September 28, 1990 cited OSHA and the CTSO as the safety and health codes applicable to underground operations at the NTS. These mandated codes were each originally developed to be comprehensive, i.e., all underground operations of a particular type (e.g., tunnels in the case of the CTSO) were intended to be adequately regulated by the appropriate code. However, this is not true; the Working Group found extensive and confusing overlap in the codes in numerous areas. Other subjects and activities were addressed by the various codes in cursory fashion or not at all.

  14. A mobile detector for measurements of the atmospheric muon flux in underground sites

    Energy Technology Data Exchange (ETDEWEB)

    Mitrica, Bogdan, E-mail: mitrica@nipne.ro [Horia Hulubei National Institute for Physics and Nuclear Engineering, P.O.B. MG-6, 077125 Magurele (Romania); Margineanu, Romul; Stoica, Sabin; Petcu, Mirel; Brancus, Iliana [Horia Hulubei National Institute for Physics and Nuclear Engineering, P.O.B. MG-6, 077125 Magurele (Romania); Jipa, Alexandru; Lazanu, Ionel; Sima, Octavian [Department of Physics, University of Bucharest, P.O.B. MG-11 (Romania); Haungs, Andreas; Rebel, Heinigerd [Institut fur Kernphysik, Karlsruhe Institute of Technology - Campus North, 76021 Karlsruhe (Germany); Petre, Marian; Toma, Gabriel; Saftoiu, Alexandra; Stanca, Denis; Apostu, Ana; Gomoiu, Claudia [Horia Hulubei National Institute for Physics and Nuclear Engineering, P.O.B. MG-6, 077125 Magurele (Romania)

    2011-10-21

    Muons comprise an important contribution of the natural radiation dose in air (approx. 30 nSv/h of a total dose rate of 65-130 nSv/h), as well as in underground sites even when the flux and relative contribution are significantly reduced. The flux of muons observed underground can be used as an estimator for the depth in mwe (meter water equivalent) of the underground site. The water equivalent depth is important information to devise physics experiments feasible for a specific site. A mobile detector for performing measurements of the muon flux was developed in IFIN-HH, Bucharest. Consisting of two scintillator plates (approx. 0.9 m{sup 2}) which measure in coincidence, the detector is installed on a van which facilitates measurements at different locations at the surface or underground. The detector was used to determine muon fluxes at different sites in Romania. In particular, data were taken and the values of meter water equivalents were assessed for several locations at the salt mine in Slanic-Prahova, Romania. The measurements have been performed in two different galleries of the Slanic mine at different depths. In order to test the stability of the method, also measurements of the muon flux at the surface at different elevations were performed. The results were compared with predictions of Monte-Carlo simulations using the CORSIKA and MUSIC codes.

  15. A mobile detector for measurements of the atmospheric muon flux in underground sites

    International Nuclear Information System (INIS)

    Mitrica, Bogdan; Margineanu, Romul; Stoica, Sabin; Petcu, Mirel; Brancus, Iliana; Jipa, Alexandru; Lazanu, Ionel; Sima, Octavian; Haungs, Andreas; Rebel, Heinigerd; Petre, Marian; Toma, Gabriel; Saftoiu, Alexandra; Stanca, Denis; Apostu, Ana; Gomoiu, Claudia

    2011-01-01

    Muons comprise an important contribution of the natural radiation dose in air (approx. 30 nSv/h of a total dose rate of 65-130 nSv/h), as well as in underground sites even when the flux and relative contribution are significantly reduced. The flux of muons observed underground can be used as an estimator for the depth in mwe (meter water equivalent) of the underground site. The water equivalent depth is important information to devise physics experiments feasible for a specific site. A mobile detector for performing measurements of the muon flux was developed in IFIN-HH, Bucharest. Consisting of two scintillator plates (approx. 0.9 m 2 ) which measure in coincidence, the detector is installed on a van which facilitates measurements at different locations at the surface or underground. The detector was used to determine muon fluxes at different sites in Romania. In particular, data were taken and the values of meter water equivalents were assessed for several locations at the salt mine in Slanic-Prahova, Romania. The measurements have been performed in two different galleries of the Slanic mine at different depths. In order to test the stability of the method, also measurements of the muon flux at the surface at different elevations were performed. The results were compared with predictions of Monte-Carlo simulations using the CORSIKA and MUSIC codes.

  16. Geotechnical site assessment for underground radioactive waste disposal in rock

    International Nuclear Information System (INIS)

    Hudson, J.A.

    1986-05-01

    This report contains a state-of-the-art review of the geotechnical assessment of Land 3 and Land 4 repository sites (at 100 - 300 m depth in rock) for intermediate level radioactive waste disposal. The principles established are also valid for the disposal of low and high level waste in rock. The text summarizes the results of 21 DoE research contract reports, firstly 'in series' by providing a technical review of each report and then 'in parallel' by considering the current state of knowledge in the context of the subjects in an interaction matrix framework. 1214 references are cited. It is concluded that four further research projects are required for site assessment procedures to be developed or confirmed. These are coupled modelling, mechanical properties, water flow and establishment of 2 phase site assessment procedures. (author)

  17. Borehole induction logging for the Dynamic Underground Stripping Project LLNL gasoline spill site

    International Nuclear Information System (INIS)

    Boyd, S.; Newmark, R.; Wilt, M.

    1994-01-01

    Borehole induction logs were acquired for the purpose of characterizing subsurface physical properties and monitoring steam clean up activities at the Lawrence Livermore National Laboratory. This work was part of the Dynamic Underground Stripping Project's demonstrated clean up of a gasoline spin. The site is composed of unconsolidated days, sands and gravels which contain gasoline both above and below the water table. Induction logs were used to characterize lithology, to provide ''ground truth'' resistivity values for electrical resistance tomography (ERT), and to monitor the movement of an underground steam plume used to heat the soil and drive volatile organic compounds (VOCs) to the extraction wells

  18. Industrial hygiene support of underground operations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Porter, P.F.

    1992-01-01

    The Industrial Hygiene Section of the Health Protection Department provides industrial hygiene support of underground operations at the Nevada Test Site. This report describes support operations and summarizes the industrial hygiene data collected from July 31, 1989 through June 30, 1991. Air quality data were collected by means of personnel sampling by active and passive techniques using various kinds of industrial hygiene instrumentation and through localized and general area monitoring. The data collected were used to evaluate underground air quality and quantity requirements; evaluate worker exposures to a variety of air contaminants; determine the applicability and effectiveness of personal protective equipment

  19. On-site underground background measurements for the KASKA reactor-neutrino experiment

    International Nuclear Information System (INIS)

    Furuta, H.; Sakuma, K.; Aoki, M.; Fukuda, Y.; Funaki, Y.; Hara, T.; Haruna, T.; Ishihara, N.; Katsumata, M.; Kawasaki, T.; Kuze, M.; Maeda, J.; Matsubara, T.; Matsumoto, T.; Miyata, H.; Nagasaka, Y.; Nakagawa, T.; Nakajima, N.; Nitta, K.; Sakai, K.; Sakamoto, Y.; Suekane, F.; Sumiyoshi, T.; Tabata, H.; Tamura, N.; Tsuchiya, Y.

    2006-01-01

    On-site underground background measurements were performed for the planned reactor-neutrino oscillation experiment KASKA at Kashiwazaki-Kariwa nuclear power station in Niigata, Japan. A small-diameter boring hole was excavated down to 70m underground level, and a detector unit for γ-ray and cosmic-muon measurements was placed at various depths to take data. The data were analyzed to obtain abundance of natural radioactive elements in the surrounding soil and rates of cosmic muons that penetrate the overburden. The results will be reflected in the design of the KASKA experiment

  20. Techniques for site investigations for underground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    1985-01-01

    The report provides a more detailed description of the capabilities and applications of the various earth science investigation techniques outlined in the IAEA Technical Reports Series Nos. 177, 215 and 216. These methods are generally appropriate during at least one of the stages of the assessment or selection of a site for any type of waste disposal facility, in shallow ground or in deep geological formations. This report is addressed to technical authorities responsible for or involved in planning, approving, executing and reviewing national waste disposal programmes. It may also help administrative authorities in this field to select appropriate techniques for obtaining the majority of the required information at minimum cost

  1. Intramuscular Injection of “Site Enhancement Oil”

    DEFF Research Database (Denmark)

    Petersen, Maria Louise; Colville-Ebeling, Bonnie; Jensen, Thomas Hartvig Lindkær

    2015-01-01

    The use of intramuscular injection of foreign substances for aesthetic purposes is well known. Complications are usually local to the site of injection but can be potentially lethal. Here, we present a case of "site enhancement oil" use in a 42-year-old man who died from asphyxia due to hanging. ...

  2. Closure Report for Corrective Action Unit 135: Areas 25 Underground Storage Tanks, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. H. Cox

    2001-06-01

    Corrective Action Unit (CAU) 135, Area 25 Underground Storage Tanks, was closed in accordance with the approved Corrective Action Plan (DOE/NV, 2000). CAU 135 consists of three Corrective Action Sites (CAS). Two of these CAS's were identified in the Corrective Action Investigation Data Quality Objective meeting as being improperly identified as underground storage tanks. CAS 25-02-03 identified as the Deluge Valve Pit was actually an underground electrical vault and CAS 25-02-10 identified as an Underground Storage Tank was actually a former above ground storage tank filled with demineralized water. Both of these CAS's are recommended for a no further action closure. CAS 25-02-01 the Underground Storage Tanks commonly referred to as the Engine Maintenance Assembly and Disassembly Waste Holdup Tanks and Vault was closed by decontaminating the vault structure and conducting a radiological verification survey to document compliance with the Nevada Test Site unrestricted use release criteria. The Area 25 Underground Storage Tanks, (CAS 25-02-01), referred to as the Engine Maintenance, Assembly, and Disassembly (E-MAD) Waste Holdup Tanks and Vault, were used to receive liquid waste from all of the radioactive and cell service area drains at the E-MAD Facility. Based on the results of the Corrective Action Investigation conducted in June 1999, discussed in ''The Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada'' (DOE/NV, 199a), one sample from the radiological survey of the concrete vault interior exceeded radionuclide preliminary action levels. The analytes from the sediment samples exceeded the preliminary action levels for polychlorinated biphenyls, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons as diesel-range organics, and radionuclides. The CAU 135 closure activities consisted of scabbling radiological ''hot spots

  3. ISC origin times for announced and presumed underground nuclear explosions at several test sites

    International Nuclear Information System (INIS)

    Rodean, H.C.

    1979-01-01

    Announced data for US and French underground nuclear explosions indicate that nearly all detonations have occurred within one or two tenths of a second after the minute. This report contains ISC origin-time data for announced explosions at two US test sites and one French test site, and includes similar data for presumed underground nuclear explosions at five Soviet sites. Origin-time distributions for these sites are analyzed for those events that appeared to be detonated very close to the minute. Particular attention is given to the origin times for the principal US and Soviet test sites in Nevada and Eastern Kazakhstan. The mean origin times for events at the several test sites range from 0.4 s to 2.8 s before the minute, with the earlier mean times associated with the Soviet sites and the later times with the US and French sites. These times indicate lower seismic velocities beneath the US and French sites, and higher velocities beneath the sites in the USSR 9 figures, 8 tables

  4. Control and monitoring of landfill gas underground migration at the City of Montreal sanitary landfill site

    International Nuclear Information System (INIS)

    Heroux, M.; Turcotte, L.

    1997-01-01

    The proposed paper covers the various aspects of control and monitoring of potential landfill gas (LFG) migration through soil voids or rock fractures at the City of Montreal sanitary landfill site. It depicts the social, geographical and geological context and presents a brief history of the landfill site. It describes the LFG collecting system and LFG migration monitoring equipment and programs. Finally it presents monitoring data taken over last few years. The landfill site is located in a well populated urban area. Since 1968, about 33 million metric tons of domestic and commercial waste have been buried in a former limestone quarry. Because of houses and buildings in the vicinity, 100 m in some locations, LFG underground migration is a major risk. LFG could indeed infiltrate buildings and reach explosive concentrations. So it must be controlled. The City of Montreal acquired the site in 1988 and has progressively built a LFG collecting system, composed of more than 288 vertical wells, to pump out of the landfill 280 million m 3 of gas annually. To verify the efficiency of this system to minimize LFG underground migration, monitoring equipment and programs have also been designed and put into operation. The monitoring network, located all around the landfill area, is composed of 21 well nests automated to monitor presence of gas in the ground in real time. In addition, 55 individual wells, where manual measurements are made, are also available. To complete the monitoring program, some measurements are also taken in buildings, houses and underground utilities in the neighborhood of the site. Monitoring data show that LFG underground migration is well controlled. They also indicate significant decrease of migration over the years corresponding to improvements to the LFG collecting system

  5. Dynamic Underground Stripping Project

    International Nuclear Information System (INIS)

    Aines, R.; Newmark, R.; McConachie, W.; Udell, K.; Rice, D.; Ramirez, A.; Siegel, W.; Buettner, M.; Daily, W.; Krauter, P.; Folsom, E.; Boegel, A.J.; Bishop, D.; Udell, K.

    1992-01-01

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation and underground imaging techniques for use in rapid cleanup of localized underground spills. Called ''Dynamic Stripping'' to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first 8 months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques before moving the contaminated site in FY 92

  6. Underground Test Area Quality Assurance Project Plan Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Irene Farnham

    2011-05-01

    This Quality Assurance Project Plan (QAPP) provides the overall quality assurance (QA) program requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Underground Test Area (UGTA) Sub-Project (hereafter the Sub-Project) activities. The requirements in this QAPP are consistent with DOE Order 414.1C, Quality Assurance (DOE, 2005); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). The QAPP Revision 0 supersedes DOE--341, Underground Test Area Quality Assurance Project Plan, Nevada Test Site, Nevada, Revision 4.

  7. Measurements of Argon-39 at the U20az underground nuclear explosion site.

    Science.gov (United States)

    McIntyre, J I; Aalseth, C E; Alexander, T R; Back, H O; Bellgraph, B J; Bowyer, T W; Chipman, V; Cooper, M W; Day, A R; Drellack, S; Foxe, M P; Fritz, B G; Hayes, J C; Humble, P; Keillor, M E; Kirkham, R R; Krogstad, E J; Lowrey, J D; Mace, E K; Mayer, M F; Milbrath, B D; Misner, A; Morley, S M; Panisko, M E; Olsen, K B; Ripplinger, M D; Seifert, A; Suarez, R

    2017-11-01

    Pacific Northwest National Laboratory reports on the detection of 39 Ar at the location of an underground nuclear explosion on the Nevada Nuclear Security Site. The presence of 39 Ar was not anticipated at the outset of the experimental campaign but results from this work demonstrated that it is present, along with 37 Ar and 85 Kr in the subsurface at the site of an underground nuclear explosion. Our analysis showed that by using state-of-the-art technology optimized for radioargon measurements, it was difficult to distinguish 39 Ar from the fission product 85 Kr. Proportional counters are currently used for high-sensitivity measurement of 37 Ar and 39 Ar. Physical and chemical separation processes are used to separate argon from air or soil gas, yielding pure argon with contaminant gases reduced to the parts-per-million level or below. However, even with purification at these levels, the beta decay signature of 85 Kr can be mistaken for that of 39 Ar, and the presence of either isotope increases the measurement background level for the measurement of 37 Ar. Measured values for the 39 Ar measured at the site ranged from 36,000 milli- Becquerel/standard-cubic-meter-of-air (mBq/SCM) for shallow bore holes to 997,000 mBq/SCM from the rubble chimney from the underground nuclear explosion. Published by Elsevier Ltd.

  8. Feasibility studies for pump and treat technology at leaking underground storage tank sites in Michigan

    International Nuclear Information System (INIS)

    O'Brien, J.M.; Pekas, B.S.

    1993-01-01

    Releases from underground storage tanks have resulted in impacts to groundwater at thousands of sites across the US. Investigations of these sites were initiated on a national basis with the implementation of federal laws that became effective December 22, 1989 (40 CFR 280). Completion of these investigations has led to a wave of design and installation of pump and treat aquifer restoration systems where impacts to groundwater have been confirmed. The purpose of this paper is to provide managers with a demonstration of some of the techniques that can be used by the consulting industry in evaluating the feasibility of pump and treat systems. With knowledge of these tools, managers can better evaluate proposals for system design and their cost effectiveness. To evaluate the effectiveness of typical pump and treat systems for leaking underground storage tank (LUST) sites in Michigan, ten sites where remedial design had been completed were randomly chosen for review. From these ten, two sites were selected that represented the greatest contrast in the types of site conditions encountered. A release of gasoline at Site 1 resulted in contamination of groundwater and soil with benzene, toluene, ethylbenzene, and xylenes

  9. Draft Underground Test Plan for site characterization and testing in an exploratory shaft facility in salt

    International Nuclear Information System (INIS)

    1987-05-01

    An exploratory shaft facility (ESF) at the Deaf Smith County, Texas is a potential candidate repository site in salt. This program of underground testing constitutes part of the effort to determine site suitability, provide data for repository design and performance assessment, and prepare licensing documentation. This program was developed by defining the information needs, as derived from the governing regulatory requirements and associated performance issues; evaluating the efficacy of available tests in satisfying the information needs; and selecting the suite of underground tests that are most cost-effective and timely, considering the other surface-based, surface borehole, and laboratory test programs. Tests are described conceptually, categorized in terms of geology, geomechanics, thermomechanics, geohydrology, or geochemistry, and range in scope from site characterization to site/engineered system interactions. The testing involves construction testing, conducted in the shafts during construction, and in situ testing at depth, conducted in the shafts and in the at-depth test facility at the repository horizon after shaft connection. 41 refs., 67 figs., 16 tabs

  10. GIS surface effects archive of underground nuclear detonations conducted at Yucca Flat and Pahute Mesa, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Grasso, D.N.

    2001-01-01

    This report presents a new comprehensive, digital archive of more than 40 years of geologic surface effects maps produced at individual detonation sites throughout the Yucca Flat and Pahute Mesa nuclear testing areas of the Nevada Test Site, Nye County, Nevada. The Geographic Information System (GIS) surface effects map archive on CD-ROM (this report) comprehensively documents the surface effects of underground nuclear detonations conducted at two of the most extensively used testing areas of the Nevada Test Site. Between 1951 and 1992, numerous investigators of the U.S. Geological Survey, the Los Alamos National Laboratory, the Lawrence Livermore National Laboratory, and the Defense Threat Reduction Agency meticulously mapped the surface effects caused by underground nuclear testing. Their work documented the effects of more than seventy percent of the underground nuclear detonations conducted at Yucca Flat and all of the underground nuclear detonations conducted at Pahute Mesa

  11. Gis-Based Site Selection for Underground Natural Resources Using Fuzzy Ahp-Owa

    Science.gov (United States)

    Sabzevari, A. R.; Delavar, M. R.

    2017-09-01

    Fuel consumption has significantly increased due to the growth of the population. A solution to address this problem is the underground storage of natural gas. The first step to reach this goal is to select suitable places for the storage. In this study, site selection for the underground natural gas reservoirs has been performed using a multi-criteria decision-making in a GIS environment. The "Ordered Weighted Average" (OWA) operator is one of the multi-criteria decision-making methods for ranking the criteria and consideration of uncertainty in the interaction among the criteria. In this paper, Fuzzy AHP_OWA (FAHP_OWA) is used to determine optimal sites for the underground natural gas reservoirs. Fuzzy AHP_OWA considers the decision maker's risk taking and risk aversion during the decision-making process. Gas consumption rate, temperature, distance from main transportation network, distance from gas production centers, population density and distance from gas distribution networks are the criteria used in this research. Results show that the northeast and west of Iran and the areas around Tehran (Tehran and Alborz Provinces) have a higher attraction for constructing a natural gas reservoir. The performance of the used method was also evaluated. This evaluation was performed using the location of the existing natural gas reservoirs in the country and the site selection maps for each of the quantifiers. It is verified that the method used in this study is capable of modeling different decision-making strategies used by the decision maker with about 88 percent of agreement between the modeling and test data.

  12. Environmental assessment for the Hoe Creek underground, Coal Gasification Test Site Remediation, Campbell County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The U.S. Department of Energy (DOE) has prepared this EA to assess environmental and human health Issues and to determine potential impacts associated with the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming. The Hoe Creek site is located south-southwest of the town of Gillette, Wyoming, and encompasses 71 acres of public land under the stewardship of the Bureau of Land Management. The proposed action identified in the EA is for the DOE to perform air sparging with bioremediation at the Hoe Creek site to remove contaminants resulting from underground coal gasification (UCG) experiments performed there by the DOE in the late 1970s. The proposed action would involve drilling additional wells at two of the UCG test sites to apply oxygen or hydrogen peroxide to the subsurface to volatilize benzene dissolved in the groundwater and enhance bioremediation of non-aqueous phase liquids present in the subsurface. Other alternatives considered are site excavation to remove contaminants, continuation of the annual pump and treat actions that have been used at the site over the last ten years to limit contaminant migration, and the no action alternative. Issues examined in detail in the EA are air quality, geology, human health and safety, noise, soils, solid and hazardous waste, threatened and endangered species, vegetation, water resources, and wildlife. Details of mitigative measures that could be used to limit any detrimental effects resulting from the proposed action or any of the alternatives are discussed, and information on anticipated effects identified by other government agencies is provided.

  13. Field tracer transport experiments at the site of Canada's underground research laboratory

    International Nuclear Information System (INIS)

    Frost, L.H.; Davison, C.C.; Vandergraaf, T.T.; Scheier, N.W.; Kozak, E.T.

    1997-01-01

    To gain a better understanding of the processes affecting solute transport in fractured crystalline rock, groundwater tracer experiments are being performed within natural fracture domains and excavation damage zones at various scales at the site of AECL's Underground Research Laboratory (URL). The main objective of these experiments is to develop and demonstrate methods for characterizing the solute transport properties within fractured crystalline rock. Estimates of these properties are in turn being used in AECL's conceptual and numerical models of groundwater flow and solute transport through the geosphere surrounding a nuclear fuel waste disposal vault in plutonic rock of the Canadian Shield. (author)

  14. Assessment of hydrologic transport of radionuclides from the Rulison Underground Nuclear Test Site, Colorado

    International Nuclear Information System (INIS)

    Earman, S.; Chapman, J.; Andricevic, R.

    1996-09-01

    The U.S. Department of Energy (DOE) is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations that were used for nuclear testing. Evaluation of radionuclide transport by groundwater from these sites is an important part of the preliminary risk analysis. These evaluations are undertaken to allow prioritization of the test areas in terms of risk, provide a quantitative basis for discussions with regulators and the public about future work at the sites, and provide a framework for assessing data needs to be filled by site characterization. The Rulison site in west-central Colorado was the location of an underground detonation of a 40-kiloton nuclear device in 1969. The test took place 2,568 m below ground surface in the Mesaverde Formation. Though located below the regional water table, none of the bedrock formations at the site yielded water during hydraulic tests, indicating extremely low permeability conditions. The scenario evaluated was the migration of radionuclides from the blast-created cavity through the Mesaverde Formation. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides from the test are contained entirely within the area currently administered by DOE. The transport calculations are most sensitive to changes in the mean groundwater velocity and the correlation scale of hydraulic conductivity, with transport of strontium and cesium also sensitive to the sorption coefficient

  15. Selection of a site adapted to the realization of an underground laboratory in clay formations

    International Nuclear Information System (INIS)

    Benvegnu, F.

    1984-01-01

    Research carried out in Italy by ENEA for site selection of an underground laboratory in a clay formation are presented. Mine roadways, abandoned tunnels, natural or artificial escarpments are prospected. The Pasquasia potash mine in Sicily was selected. The decline reach the lower pliocen starta from -110m to -200m below surface through a clay formation. The site selected for the laboratory is 160 m deep. A 50 meter-long horizontal tunnel will be dug. Experiments planned include thermal, hydrological, mechanical and thermomechanical behavior of clays. Data on temperature variations, interstitial fluid pressure, total pressure, deformations produced by a heater placed in clay will be obtained. Data related to mechanical behavior of formation will be recorded before, during and after the construction of the gallerie. Convergence of borehole will be also studied

  16. Plasmodium sporozoites trickle out of the injection site.

    Science.gov (United States)

    Yamauchi, Lucy Megumi; Coppi, Alida; Snounou, Georges; Sinnis, Photini

    2007-05-01

    Plasmodium sporozoites make a remarkable journey from the skin, where they are deposited by an infected Anopheline mosquito, to the liver, where they invade hepatocytes and develop into exoerythrocytic stages. Although much work has been done to elucidate the molecular mechanisms by which sporozoites invade hepatocytes, little is known about the interactions between host and parasite before the sporozoite enters the blood circulation. It has always been assumed that sporozoites rapidly exit the injection site, making their interactions with the host at this site, brief and difficult to study. Using quantitative PCR, we determined the kinetics with which sporozoites leave the injection site and arrive in the liver and found that the majority of infective sporozoites remain in the skin for hours. We then performed sub-inoculation experiments which confirmed these findings and showed that the pattern of sporozoite exit from the injection site resembles a slow trickle. Last, we found that drainage of approximately 20% of the sporozoite inoculum to the lymphatics is associated with a significant enlargement of the draining lymph node, a response not observed after intravenous inoculation. These findings indicate that there is ample time for host and parasite to interact at the inoculation site and are of relevance to the pre-erythrocytic stage malaria vaccine effort.

  17. Hydrogeological characterization, modelling and monitoring of the site of Canada's Underground Research Laboratory

    International Nuclear Information System (INIS)

    Davison, C.C.; Guvanasen, V.

    1985-01-01

    Atomic Energy of Canada Limited (AECL) is constructing an Underground Research Laboratory (URL) to a depth of 250 m in a previously undisturbed granitic pluton located near Lac du Bonnet, Manitoba, as one of the major research projects within the Canadian Nuclear Fuel Waste Management Program. This paper discusses the hydrogeological characterization of the URL site, the modelling approach used to represent this information, the hydrogeological monitoring system installed to monitor the actual drawdown conditions that develop in response to the excavation, and the procedures employed to calibrate the numerical model. Comparisons between the drawdown predictions made by the model prior to any excavation and the actual drawdowns that have been measured since shaft excavation began in May 1984 are also discussed

  18. On-site inspection for the radionuclide observables of an underground nuclear explosion

    International Nuclear Information System (INIS)

    Burnett, J.L.

    2015-01-01

    Under the Comprehensive Nuclear-Test-Ban Treaty an on-site inspection (OSI) may be undertaken to identify signatures from a potential nuclear explosion. This includes the measurement of 17 particulate radionuclides ( 95 Zr, 95 Nb, 99 Mo, 99m Tc, 103 Ru, 106 Rh, 132 Te, 131 I, 132 I, 134 Cs, 137 Cs, 140 Ba, 140 La, 141 Ce, 144 Ce, 144 Pr, 147 Nd). This research provides an assessment of the potential to detect these radionuclides during an OSI within 1 week to 2 years after a nuclear explosion at two locations. A model has been developed that simulates the underground detonation of a 1 kT 235 U nuclear weapon with 1 % venting. This indicates a requirement to minimise the time since detonation with accurate determination of the test location. (author)

  19. Investigation of surface and underground waters about the Blayais nuclear site - 2010

    International Nuclear Information System (INIS)

    Migeon, A.; Bernollin, A.; Dunand, E.; Barbey, P.; Boilley, D.; Josset, M.

    2011-01-01

    This investigation aims at proposing a first assessment of the impact of releases on surface and underground waters around the Blayais nuclear power station, i.e. the assessment of the (mainly radiological) quality of waters. The report identifies the various pollution sources: old sources (like atmospheric nuclear tests, nuclear accidents), incidents in the Blayais station, and potential sources for the present contamination. Different radionuclides are searched like tritium, carbon 14, gamma radioactivity (from different elements), some beta emitters, radon as well as some chemicals related to the station activity (hydrazine, boric acid, EDTA, lithium, morpholine). Sampling sites are presented (estuary, canals, reservoirs). Radiological and chemical analysis are reported and commented. Significant presence of Tritium and Nickel-63 are noticed

  20. Dynamic Underground Stripping Demonstration Project

    International Nuclear Information System (INIS)

    Aines, R.; Newmark, R.; McConachie, W.; Rice, D.; Ramirez, A.; Siegel, W.; Buettner, M.; Daily, W.; Krauter, P.; Folsom, E.; Boegel, A.J.; Bishop, D.; udel, K.

    1992-03-01

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation and underground imaging techniques for use in rapid cleanup of localized underground spills. Called ''Dynamic Stripping'' to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first 8 months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques before moving to the contaminated site in FY 92

  1. Geomechanical effects on CO2 leakage through fault zones during large-scale underground injection

    Energy Technology Data Exchange (ETDEWEB)

    Rinaldi, Antonio P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rutqvist, Jonny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cappa, Frédéric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of Nice Sophia-Antipolis, Nice (France). Cote d' Azur Observatory. GeoAzur

    2013-12-01

    The importance of geomechanics—including the potential for faults to reactivate during large-scale geologic carbon sequestration operations—has recently become more widely recognized. However, notwithstanding the potential for triggering notable (felt) seismic events, the potential for buoyancy-driven CO2 to reach potable groundwater and the ground surface is actually more important from public safety and storage-efficiency perspectives. In this context, this paper extends the previous studies on the geomechanical modeling of fault responses during underground carbon dioxide injection, focusing on the short-term integrity of the sealing caprock, and hence on the potential for leakage of either brine or CO2 to reach the shallow groundwater aquifers during active injection. We consider stress/strain-dependent permeability and study the leakage through the fault zone as its permeability changes during a reactivation, also causing seismicity. We analyze several scenarios related to the volume of CO2 injected (and hence as a function of the overpressure), involving both minor and major faults, and analyze the profile risks of leakage for different stress/strain-permeability coupling functions. We conclude that whereas it is very difficult to predict how much fault permeability could change upon reactivation, this process can have a significant impact on the leakage rate. Moreover, our analysis shows that induced seismicity associated with fault reactivation may not necessarily open up a new flow path for leakage. Results show a poor correlation between magnitude and amount of fluid leakage, meaning that a single event is generally not enough to substantially change the permeability along the entire fault length. Finally, and consequently, even if some changes in permeability occur, this does not mean that the CO2 will migrate up along the entire fault, breaking through the caprock to enter the overlying aquifer.

  2. Preliminary assessment of potential underground stability (wedge and spalling) at Forsmark, Simpevarp and Laxemar sites

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Derek [Univ. of Alberta, Edmonton (Canada). Geotechnical Engineering

    2005-12-15

    In SKB's Underground Design Premises the objective in the early design phase is to estimate if there is sufficient space for the repository at a site. One of the conditions that could limit the space available is stability of the underground openings, i.e., deposition tunnels and deposition boreholes. The purpose of this report is to provide a preliminary assessment of the potential for wedge instability and spalling that may be encountered at the Forsmark, Simpevarp and Laxemar sites based on information from the site investigations program up to July 30, 2004. The rock mass spalling strength was defined using the in-situ results from SKB's Aespoe Pillar Stability Experiment and AECL's Mine-by Experiment. These experiments suggest that the rock mass spalling strength for crystalline rocks can be estimated as 0.57 of the mean laboratory uniaxial compressive strength. A probability-based methodology utilizing this in-situ rock mass spalling strength has been developed for assessing the risk for spalling in a repository at the Forsmark, Simpevarp and Laxemar sites. The in-situ stresses and the uniaxial compressive strength data from these sites were used as the bases for the analyses. Preliminary findings from all sites suggest that, generally, the risk for spalling increases as the depth of the repository increases, simply because the stress magnitudes increase with depth. The depth at which the risk for spalling is significant, depends on the individual sites which are discussed below. The greatest uncertainty in the spalling analyses for Forsmark is related to the uncertainty in the horizontal stress magnitudes and associated stress gradients with depth. The confidence in these analyses can only be increased by increasing the confidence in the stress and geology model for the site. From the analyses completed it appears that spalling in the deposition tunnels can be controlled by orienting the tunnels approximately parallel to the maximum horizontal

  3. Analysis, comparison, and modeling of radar interferometry, date of surface deformation signals associated with underground explosions, mine collapses and earthquakes. Phase I: underground explosions, Nevada Test Site

    International Nuclear Information System (INIS)

    Foxall, W; Vincent, P; Walter, W

    1999-01-01

    We have previously presented simple elastic deformation modeling results for three classes of seismic events of concern in monitoring the CTBT-underground explosions, mine collapses and earthquakes. Those results explored the theoretical detectability of each event type using synthetic aperture radar interferometry (InSAR) based on commercially available satellite data. In those studies we identified and compared the characteristics of synthetic interferograms that distinguish each event type, as well the ability of the interferograms to constrain source parameters. These idealized modeling results, together with preliminary analysis of InSAR data for the 1995 mb 5.2 Solvay mine collapse in southwestern Wyoming, suggested that InSAR data used in conjunction with regional seismic monitoring holds great potential for CTBT discrimination and seismic source analysis, as well as providing accurate ground truth parameters for regional calibration events. In this paper we further examine the detectability and ''discriminating'' power of InSAR by presenting results from InSAR data processing, analysis and modeling of the surface deformation signals associated with underground explosions. Specifically, we present results of a detailed study of coseismic and postseismic surface deformation signals associated with underground nuclear and chemical explosion tests at the Nevada Test Site (NTS). Several interferograms were formed from raw ERS-1/2 radar data covering different time spans and epochs beginning just prior to the last U.S. nuclear tests in 1992 and ending in 1996. These interferograms have yielded information about the nature and duration of the source processes that produced the surface deformations associated with these events. A critical result of this study is that significant post-event surface deformation associated with underground nuclear explosions detonated at depths in excess of 600 meters can be detected using differential radar interferometry. An

  4. Development of in-structure design spectra for dome mounted equipment on underground waste storage tanks at the Hanford Site

    International Nuclear Information System (INIS)

    Julyk, L.J.

    1995-09-01

    In-structure response spectra for dome mounted equipment on underground waste storage tanks at the Hanford Site are developed on the basis of recent soil-structure-interaction analyses. Recommended design spectra are provided for various locations on the tank dome

  5. Utility of Characterizing and Monitoring Suspected Underground Nuclear Sites with VideoSAR

    Science.gov (United States)

    Dauphin, S. M.; Yocky, D. A.; Riley, R.; Calloway, T. M.; Wahl, D. E.

    2016-12-01

    Sandia National Laboratories proposed using airborne synthetic aperture RADAR (SAR) collected in VideoSAR mode to characterize the Underground Nuclear Explosion Signature Experiment (UNESE) test bed site at the Nevada National Security Site (NNSS). The SNL SAR collected airborne, Ku-band (16.8 GHz center frequency), 0.2032 meter ground resolution over NNSS in August 2014 and X-band (9.6 GHz), 0.1016 meter ground resolution fully-polarimetric SAR in April 2015. This paper reports the findings of processing and exploiting VideoSAR for creating digital elevation maps, detecting cultural artifacts and exploiting full-circle polarimetric signatures. VideoSAR collects a continuous circle of phase history data, therefore, imagery can be formed over the 360-degrees of the site. Since the Ku-band VideoSAR had two antennas suitable for interferometric digital elevation mapping (DEM), DEMs could be generated over numerous aspect angles, filling in holes created by targets with height by imaging from all sides. Also, since the X-band VideoSAR was fully-polarimetric, scattering signatures could be gleaned from all angles also. Both of these collections can be used to find man-made objects and changes in elevation that might indicate testing activities. VideoSAR provides a unique, coherent measure of ground objects allowing one to create accurate DEMS, locate man-made objects, and identify scattering signatures via polarimetric exploitation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors would like to thank the National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development, for sponsoring this work. We would also like to thank the Underground Nuclear Explosion Signatures Experiment team, a multi

  6. Status of the Oak Ridge National Laboratory new hydrofracture facility: Implications for the disposal of liquid low-level radioactive wastes by underground injection

    International Nuclear Information System (INIS)

    Haase, C.S.; Stow, S.H.

    1987-01-01

    From 1982 to 1984, Oak Ridge National Laboratory (ORNL) disposed of approximately 2.8 x 10 16 Bq (7.5 x 10 5 Ci) of liquid low-level radioactive wastes by underground injection at its new hydrofracture facility. This paper summarizes the regulatory and operational status of that ORNL facility and discusses its future outlook. Operational developments and regulatory changes that have raised major questions about the continued operation of the new hydrofracture facility include: (1) significant 90 Sr contamination of some groundwater in the injection formation; (2) questions about the design of the injection well, completed prior to the application of the underground injection control (UIC) regulations to the ORNL facility; (3) questions about the integrity of the reconfigured injection well put into service following the loss of the initial injection well; and (4) implementation of UIC regulations. Ultimately, consideration of the regulatory and operational factors led to the decision in early 1986 not to proceed with a UIC permit application for the ORNL facility. Subsequent to the decision not to proceed with a UIC permit application, closure activities were initiated for the ORNL hydrofracture facility. Closure of the facility will occur under both state of Tennessee and federal UIC regulations. The facility also falls under the provisions of part 3004(u) of the Resource Conservation and Recovery Act pertaining to corrective actions. Nationally, there is an uncertain outlook for the disposal of wastes by underground injection. All wells used for the injection of hazardous wastes (Class I wells) are being reviewed. 8 refs., 4 figs., 2 tabs

  7. Monitoring of surface chemical and underground nuclear explosions with help of ionospheric radio-sounding above test site

    International Nuclear Information System (INIS)

    Krasnov, V.M.; Drobzheva, Ya.V.

    2000-01-01

    We describe the basic principles, advantages and disadvantages of ionospheric method to monitor surface chemical and underground nuclear explosions. The ionosphere is 'an apparatus' for the infra-sound measurements immediately above the test site. Using remote radio sounding of the ionosphere you can obtain that information. So you carry out the inspection at the test site. The main disadvantage of the ionospheric method is the necessity to sound the ionosphere with radio waves. (author)

  8. Ground penetrating radar for fracture mapping in underground hazardous waste disposal sites: A case study from an underground research tunnel, South Korea

    Science.gov (United States)

    Baek, Seung-Ho; Kim, Seung-Sep; Kwon, Jang-Soon; Um, Evan Schankee

    2017-06-01

    Secure disposal or storage of nuclear waste within stable geologic environments hinges on the effectiveness of artificial and natural radiation barriers. Fractures in the bedrock are viewed as the most likely passage for the transport of radioactive waste away from a disposal site. We utilize ground penetrating radar (GPR) to map fractures in the tunnel walls of an underground research tunnel at the Korea Atomic Energy Research Institute (KAERI). GPR experiments within the KAERI Underground Research Tunnel (KURT) were carried out by using 200 MHz, 500 MHz, and 1000 MHz antennas. By using the high-frequency antennas, we were able to identify small-scale fractures, which were previously unidentified during the tunnel excavation process. Then, through 3-D visualization of the grid survey data, we reconstructed the spatial distribution and interconnectivity of the multi-scale fractures within the wall. We found that a multi-frequency GPR approach provided more details of the complex fracture network, including deep structures. Furthermore, temporal changes in reflection polarity between the GPR surveys enabled us to infer the hydraulic characteristics of the discrete fracture network developed behind the surveyed wall. We hypothesized that the fractures exhibiting polarity change may be due to a combination of air-filled and mineralogical boundaries. Simulated GPR scans for the considered case were consistent with the observed GPR data. If our assumption is correct, the groundwater flow into these near-surface fractures may form the water-filled fractures along the existing air-filled ones and hence cause the changes in reflection polarity over the given time interval (i.e., 7 days). Our results show that the GPR survey is an efficient tool to determine fractures at various scales. Time-lapse GPR data may be essential to characterize the hydraulic behavior of discrete fracture networks in underground disposal facilities.

  9. Streamlined approach for environmental restoration closure report for Corrective Action Unit No. 456: Underground storage tank release site 23-111-1, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1998-04-01

    The underground storage tank (UST) release site 23-111-1 is located in Mercury, Nevada. The site is in Area 23 of the Nevada Test Site, (NTS) located on the north side of Building 111. The tank associated with the release was closed in place using cement grout on September 6, 1990. The tank was not closed by removal due to numerous active underground utilities, a high-voltage transformer pad, and overhead power lines. Soil samples collected below the tank bottom at the time of tank closure activities exceeded the Nevada Administrative Code Action Level of 100 milligrams per kilogram (mg/kg) for petroleum hydrocarbons. Maximum concentrations detected were 119 mg/kg. Two passive venting wells were subsequently installed at the tank ends to monitor the progress of biodegradation at the site. Quarterly air sampling from the wells was completed for approximately one year, but was discontinued since data indicated that considerable biodegradation was not occurring at the site

  10. Suggestions on selection of clay site as a key alternative of underground repository for HLW geological disposal in China

    International Nuclear Information System (INIS)

    Zheng Hualing; Fu Bingjun; Fan Xianhua; Chen Shi; Sun Donghui

    2006-01-01

    Site selection for the underground repository is a vital problem with respect to the HLW geological disposal. Over the past decades, we have been focusing our attention on granite as a priority in China. However, there are some problems have to be discussed on this matter. In this paper, both experiences gained and lessons learned in the international community regarding the site selection are described. And then, after analyzing a lot of some key factors affecting the site selection, some comments and suggestions on selection of clay site as a key alternative before final decision making in China are presented. (authors)

  11. The mechanism study between 3D Space-time deformation and injection or extraction of gas pressure change, the Hutubi Underground gas storage

    Science.gov (United States)

    Xiaoqiang, W.; Li, J.; Daiqing, L.; Li, C.

    2017-12-01

    The surface deformation of underground gas reservoir with the change of injection pressure is an excellent opportunity to study the load response under the action of tectonic movement and controlled load. This paper mainly focuses on the elastic deformation of underground structure caused by the change of the pressure state of reservoir rock under the condition of the irregular change of pressure in the underground gas storage of Hutubi, the largest underground gas storage in Xinjiang, at the same time, it makes a fine study on the fault activities of reservoir and induced earthquakes along with the equilibrium instability caused by the reservoir. Based on the 34 deformation integrated observation points and 3 GPS continuous observation stations constructed in the underground gas storage area of Hutubi, using modern measurement techniques such as GPS observation, precise leveling survey, flow gravity observation and so on, combined with remote sensing technology such as InSAR, the 3d space-time sequence images of the surface of reservoir area under pressure change were obtained. Combined with gas well pressure, physical parameters and regional seismic geology and geophysical data, the numerical simulation and analysis of internal changes of reservoir were carried out by using elastic and viscoelastic model, the deformation mechanical relationship of reservoir was determined and the storage layer under controlled load was basically determined. This research is financially supported by National Natural Science Foundation of China (Grant No.41474016, 41474051, 41474097)

  12. Engineering study of 50 miscellaneous inactive underground radioactive waste tanks located at the Hanford Site, Washington

    International Nuclear Information System (INIS)

    Freeman-Pollard, J.R.

    1994-01-01

    This engineering study addresses 50 inactive underground radioactive waste tanks. The tanks were formerly used for the following functions associated with plutonium and uranium separations and waste management activities in the 200 East and 200 West Areas of the Hanford Site: settling solids prior to disposal of supernatant in cribs and a reverse well; neutralizing acidic process wastes prior to crib disposal; receipt and processing of single-shell tank (SST) waste for uranium recovery operations; catch tanks to collect water that intruded into diversion boxes and transfer pipeline encasements and any leakage that occurred during waste transfer operations; and waste handling and process experimentation. Most of these tanks have not been in use for many years. Several projects have, been planned and implemented since the 1970's and through 1985 to remove waste and interim isolate or interim stabilize many of the tanks. Some tanks have been filled with grout within the past several years. Responsibility for final closure and/or remediation of these tanks is currently assigned to several programs including Tank Waste Remediation Systems (TWRS), Environmental Restoration and Remedial Action (ERRA), and Decommissioning and Resource Conservation and Recovery Act (RCRA) Closure (D ampersand RCP). Some are under facility landlord responsibility for maintenance and surveillance (i.e. Plutonium Uranium Extraction [PUREX]). However, most of the tanks are not currently included in any active monitoring or surveillance program

  13. Underground Test Area Activity Quality Assurance Plan Nevada National Security Site, Nevada. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States); Krenzien, Susan [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States)

    2012-10-01

    This Quality Assurance Plan (QAP) provides the overall quality assurance (QA) requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Underground Test Area (UGTA) activities. The requirements in this QAP are consistent with DOE Order 414.1C, Quality Assurance (DOE, 2005); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). NNSA/NSO, or designee, must review this QAP every two years. Changes that do not affect the overall scope or requirements will not require an immediate QAP revision but will be incorporated into the next revision cycle after identification. Section 1.0 describes UGTA objectives, participant responsibilities, and administrative and management quality requirements (i.e., training, records, procurement). Section 1.0 also details data management and computer software requirements. Section 2.0 establishes the requirements to ensure newly collected data are valid, existing data uses are appropriate, and environmental-modeling methods are reliable. Section 3.0 provides feedback loops through assessments and reports to management. Section 4.0 provides the framework for corrective actions. Section 5.0 provides references for this document.

  14. Seismic design of circular-section concrete-lined underground openings: Preclosure performance considerations for the Yucca Mountain Site

    International Nuclear Information System (INIS)

    Richardson, A.M.; Blejwas, T.E.

    1992-01-01

    Yucca Mountain, the potential site of a repository for high-level radioactive waste, is situated in a region of natural and man-made seismicity. Underground openings excavated at this site must be designed for worker safety in the seismic environment anticipated for the preclosure period. This includes accesses developed for site characterization regardless of the ultimate outcome of the repository siting process. Experience with both civil and mining structures has shown that underground openings are much more resistant to seismic effects than surface structures, and that even severe dynamic strains can usually be accommodated with proper design. This paper discusses the design and performance of lined openings in the seismic environment of the potential site. The types and ranges of possible ground motions (seismic loads) are briefly discussed. Relevant historical records of underground opening performance during seismic loading are reviewed. Simple analytical methods of predicting liner performance under combined in situ, thermal, and seismic loading are presented, and results of calculations are discussed in the context of realistic performance requirements for concrete-lined openings for the preclosure period. Design features that will enhance liner stability and mitigate the impact of the potential seismic load are reviewed. The paper is limited to preclosure performance concerns involving worker safety because present decommissioning plans specify maintaining the option for liner removal at seal locations, thus decoupling liner design from repository postclosure performance issues

  15. Status of the Oak Ridge National Laboratory new hydrofracture facility: Implications for the disposal of liquid low-level radioactive wastes by underground injection

    International Nuclear Information System (INIS)

    Haase, C.S.; Stow, S.H.

    1987-01-01

    From 1982 to 1984, Oak Ridge National Laboratory (ORNL) disposed of approximately 2.8 x 10/sup 16/ Bq (7.5 x 10/sup 5/ Ci) of liquid low-level radioactive wastes by underground injection at its new hydrofracture facility. This paper summarizes the regulatory and operational status of that ORNL facility and discusses its future outlook. Operational developments and regulatory changes that have raised major questions about the continued operation and the new hydrofracture facility include: (1) significant /sup 90/Sr contamination of some groundwater in the injection formation; (2) questions about the design of the injection well, completed prior to the application of the underground injection control (UIC) regulations to the ORNL facility; (3) questions about the integrity of the reconfigured injection well put into service following the loss of the initial injection well; and (4) implementation of UIC regulations. Ultimately, consideration of the regulatory and operational factors led to the decision in early 1986 not to proceed with a UIC permit application for the ORNL facility. There are no plans to reactivate the hydrofracture process. Subsequent to the decision not to proceed with a UIC permit application, closure activities were initiated for the ORNL hydrofracture facility. Closure of the facility will occur under both state of Tennessee and federal UIC regulations and under provision 3004(u) of the Resource Conservation and Recovery Act

  16. Report on technical feasibility of underground pumped hydroelectric storage in a marble quarry site in the Northeast United States

    Energy Technology Data Exchange (ETDEWEB)

    Chas. T. Main, Inc.

    1982-03-01

    The technical and economic aspects of constructing a very high head underground hydroelectric pumped storage were examined at a prefeasibility level. Excavation of existing caverns in the West Rutland Vermont marble quarry would be used to construct the underground space. A plant capacity of 1200 MW and 12 h of continuous capacity were chosen as plant operating conditions. The site geology, plant design, and electrical and mechanical equipment required were considered. The study concluded that the cost of the 1200 MW underground pumped storage hydro electric project at this site even with the proposed savings from marketable material amounts to between $581 and $595 per kilowatt of installed capacity on a January 1982 pricing level. System studies performed by the planning group of the New England Power System indicate that the system could economically justify up to about $442 per kilowatt on an energy basis with no credit for capacity. To accommodate the plant with the least expensive pumping energy, a coal and nuclear generation mix of approximately 65% would have to be available before the project becomes feasible. It is not expected that this condition can be met before the year 2000 or beyond. It is therefore concluded that the West Rutland underground pumped storage facility is uneconomic at this time. Several variables however could have marked influence on future planning and should be examined on periodic basis.

  17. Hair loss at injection sites of mesotherapy for alopecia.

    Science.gov (United States)

    El-Komy, Mohamed; Hassan, Akmal; Tawdy, Amira; Solimon, Mohamed; Hady, Mohamed Abdel

    2017-12-01

    The side effects of mesotherapy for treatment of various forms of alopecia are often underreported, while scientific data for its efficacy are severely lacking. To demonstrate the late onset side effects of mesotherapy for alopecia. Three patients with androgenetic alopecia showed hair loss after previously uneventful mesotherapy sessions up to 1 year. Clinical, dermoscopic, and histopathological findings suggested an inflammatory scaring process at sites of mesotherapy injections. Mesotherapy for androgenetic alopecia may paradoxically induce hair loss and scarring. Proper regulation and monitoring of the use of mesotherapy products for treating hair loss in women, needs to be addressed. © 2017 Wiley Periodicals, Inc.

  18. Geological data acquisition for site characterisation at Olkiluoto: a framework for the phase of underground investigations

    International Nuclear Information System (INIS)

    Milnes, A.G.; Aaltonen, I.; Kemppainen, K.; Mattila, J.; Wikstroem, L.; Front, K.; Kaerki, A.; Gehoer, S.; Paulamaeki, S.; Paananen, M.; Ahokas, T.

    2007-05-01

    'Geological data acquisition' is a general term for the collection of observations and measurements by direct observation of exposed bedrock in the field (i.e. in natural outcrops and trenches, in drillholes, and in tunnels and other underground excavations). Only field-based data acquisition is included in this report: laboratory-based investigations will be continued, based on the field data and sampling, and all the data will be subject to discipline-specific processing, as the project proceeds. The ultimate aim of geological data acquisition is to provide the necessary data base for geological models of the bedrock of the Olkiluoto site, in connection with the construction of an underground rock characterisation facility, ONKALO, and a repository for spent nuclear fuel, at about 500m depth. Geological data acquisition plays a central role in site characterisation and modelling, and is intended to provide a solid platform on which the other disciplines (rock mechanics, hydrogeology, seismic risk assessment, etc.) can base their investigations. Based on consideration of a series of guidelines (e.g. modelling scale, source of data, level of investigation, national and international experience, special conditions at Olkiluoto, need for process understanding), a project-oriented 'framework' has been developed as a background to the different projects within the geological data acquisition programme. Each project will require its own system of data acquisition (methodology, spreadsheets, protocols, etc.), as described in the corresponding reports; the present report concentrates on the general principles which lie behind the different methodologies and data sheets. These principles are treated under three main headings: characterization of intact rock, characterization of deformation zone intersections, and characterization of individual fractures. Geological mapping of natural outcrops and trenches at Olkiluoto, and lithological logging of more than 40 rock cores

  19. Site-specific issues related to structural/seismic design of an underground independent spent fuel storage installation (ISFSI)

    International Nuclear Information System (INIS)

    Tripathi, B.P.

    2005-01-01

    Utilities owning and operating commercial nuclear power plants (NPP) in USA may choose to build an underground Independent Spent Fuel Storage Installation (ISFSI) to store the spent nuclear fuels. The regulatory requirements and other guidance are based on 10 CFR Part 72, Regulatory Guide RG 3.73, Standard Review Plans NUREG-1536 and NUREG-1567, and Interim staff Guidance (ISG) documents as applicable. Structures, Systems, and Components (SSCs) classified as important to safety are designed to withstand the effects of site-specific environmental conditions and natural phenomena such as earthquake, tornado, flood, etc. An underground ISFSI for storage of spent nuclear fuel, presents some unique analysis and design challenges. This paper will briefly address some of these challenges and discuss site-specific loads, including seismic for the ISFSI design. (authors)

  20. Analysis of trace neptunium in the vicinity of underground nuclear tests at the Nevada National Security Site.

    Science.gov (United States)

    Zhao, P; Tinnacher, R M; Zavarin, M; Kersting, A B

    2014-11-01

    A high sensitivity analytical method for (237)Np analysis was developed and applied to groundwater samples from the Nevada National Security Site (NNSS) using short-lived (239)Np as a yield tracer and HR magnetic sector ICP-MS. The (237)Np concentrations in the vicinity of the Almendro, Cambric, Dalhart, Cheshire, and Chancellor underground nuclear test locations range from nuclear tests at very low but measureable concentrations. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Geotechnical studies relevant to the containment of underground nuclear explosions at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Heuze, F.E.

    1982-05-01

    The Department of Energy and the Department of Defense are actively pursuing a program of nuclear weapons testing by underground explosions at the Nevada Test Site (NTS). Over the past 11 years, scores of tests have been conducted and the safety record is very good. In the short run, emphasis is put on preventing the release of radioactive materials into the atmosphere. In the long run, the subsidence and collapse of the ground above the nuclear cavities also are matters of interest. Currently, estimation of containment is based mostly on empiricism derived from extensive experience and on a combination of physical/mechanical testing and numerical modeling. When measured directly, the mechanical material properties are obtained from short-term laboratory tests on small, conventional samples. This practice does not determine the large effects of scale and time on measured stiffnesses and strengths of geological materials. Because of the limited data base of properties and in situ conditions, the input to otherwise fairly sophisticated computer programs is subject to several simplifying assumptions; some of them can have a nonconservative impact on the calculated results. As for the long-term, subsidence and collapse phenomena simply have not been studied to any significant degree. This report examines the geomechanical aspects of procedures currently used to estimate containment of undergroung explosions at NTS. Based on this examination, it is concluded that state-of-the-art geological engineering practice in the areas of field testing, large scale laboratory measurements, and numerical modeling can be drawn upon to complement the current approach.

  2. Geotechnical studies relevant to the containment of underground nuclear explosions at the Nevada Test Site

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1982-05-01

    The Department of Energy and the Department of Defense are actively pursuing a program of nuclear weapons testing by underground explosions at the Nevada Test Site (NTS). Over the past 11 years, scores of tests have been conducted and the safety record is very good. In the short run, emphasis is put on preventing the release of radioactive materials into the atmosphere. In the long run, the subsidence and collapse of the ground above the nuclear cavities also are matters of interest. Currently, estimation of containment is based mostly on empiricism derived from extensive experience and on a combination of physical/mechanical testing and numerical modeling. When measured directly, the mechanical material properties are obtained from short-term laboratory tests on small, conventional samples. This practice does not determine the large effects of scale and time on measured stiffnesses and strengths of geological materials. Because of the limited data base of properties and in situ conditions, the input to otherwise fairly sophisticated computer programs is subject to several simplifying assumptions; some of them can have a nonconservative impact on the calculated results. As for the long-term, subsidence and collapse phenomena simply have not been studied to any significant degree. This report examines the geomechanical aspects of procedures currently used to estimate containment of undergroung explosions at NTS. Based on this examination, it is concluded that state-of-the-art geological engineering practice in the areas of field testing, large scale laboratory measurements, and numerical modeling can be drawn upon to complement the current approach

  3. Evaluation of the radionuclide tracer test conducted at the project Gnome Underground Nuclear Test Site, New Mexico

    International Nuclear Information System (INIS)

    Pohll, G.; Pohlmann, K.

    1996-08-01

    A radionuclide tracer test was conducted in 1963 by the U.S. Geological Survey at the Project Gnome underground nuclear test site, approximately 40 km southeast of Carlsbad, New Mexico. The tracer study was carried out under the auspices of the U.S. Atomic Energy Commission (AEC) to study the transport behavior of radionuclides in fractured rock aquifers. The Culebra Dolomite was chosen for the test because it was considered to be a reasonable analogue of the fractured carbonate aquifer at the Nevada Test Site (NTS), the principal location of U.S. underground nuclear tests. Project Gnome was one of a small number of underground nuclear tests conducted by the AEC at sites distant from the NTS. The Gnome device was detonated on December 10, 1961 in an evaporate unit at a depth of 360 m below ground surface. Recently, the U.S. Department of Energy (DOE) implemented an environmental restoration program to characterize, remediate, and close these offsite nuclear test areas. An early step in this process is performance of a preliminary risk analysis of the hazard posed by each site. The Desert Research Institute has performed preliminary hydrologic risk evaluations for the groundwater transport pathway at Gnome. That evaluation included the radioactive tracer test as a possible source because the test introduced radionuclides directly into the Culebra Dolomite, which is the only aquifer at the site. This report presents a preliminary evaluation of the radionuclide tracer test as a source for radionuclide migration in the Culebra Dolomite. The results of this study will assist in planning site characterization activities and refining estimates of the radionuclide source for comprehensive models of groundwater transport st the Gnome site

  4. Geophysical void detection at the site of an abandoned limestone quarry and underground mine in southwestern Pennsylvania

    International Nuclear Information System (INIS)

    Cohen, K.K.; Trevits, M.A.

    1992-01-01

    Locating underground voids, tunnels, and buried collapse structures continues to present a difficult problem for engineering geoscientists charged with this responsibility for a multitude of different studies. Solutions used and tested for void detection have run the gamut of surface geophysical and remote sensing techniques, to invasive trenching and drilling on closely-spaced centers. No where is the problem of locating underground voids more ubiquitous than in abandoned mined lands, and the U.S. Bureau of Mines continues to investigate this problem for areas overlying abandoned coal, metal, and nonmetal mines. Because of the great diversity of resources mined, the problem of void detection is compounded by the myriad of geologic conditions which exist for abandoned mined lands. At a control study site in southwestern Pennsylvania at the Bureau's Lake Lynn Laboratory, surface geophysical techniques, including seismic and other methods, were tested as a means to detect underground mine voids in the rather simple geologic environment of flat-lying sedimentary strata. The study site is underlain by an abandoned underground limestone mine developed in the Wymps Gap Limestone member of the Mississippian Mauch Chunk Formation. Portals or entrances into the mine, lead to drifts or tunnels driven into the limestone; these entries provided access to the limestone where it was extracted by the room-and-pillar method. The workings lie less than 300 ft from the surface, and survey lines or grids were positioned over the tunnels, the room-and-pillar zones, and the areas not mined. Results from these geophysical investigations are compared and contrasted. The application of this control study to abandoned mine void detection is apparent, but due to the carbonate terrain of the study site, the results may also have significance to sinkhole detection in karst topography

  5. Streamlined approach for environmental restoration closure report for Corrective Action Unit 464: Historical underground storage tank release sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1998-04-01

    This report addresses the site characterization of two historical underground storage tank petroleum hydrocarbon release sites identified by Corrective Action Site (CAS) Numbers 02-02-03 and 09-02-01. The sites are located at the Nevada Test Site in Areas 2 and 9 and are concrete bunker complexes (Bunker 2-300, and 9-300). Characterization was completed using drilling equipment to delineate the extent of petroleum hydrocarbons at release site 2-300-1 (CAS 02-02-03). Based on site observations, the low hydrocarbon concentrations detected, and the delineation of the vertical and lateral extent of subsurface hydrocarbons, an ''A through K'' evaluation was completed to support a request for an Administrative Closure of the site

  6. Streamlined approach for environmental restoration closure report for Corrective Action Unit 464: Historical underground storage tank release sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This report addresses the site characterization of two historical underground storage tank petroleum hydrocarbon release sites identified by Corrective Action Site (CAS) Numbers 02-02-03 and 09-02-01. The sites are located at the Nevada Test Site in Areas 2 and 9 and are concrete bunker complexes (Bunker 2-300, and 9-300). Characterization was completed using drilling equipment to delineate the extent of petroleum hydrocarbons at release site 2-300-1 (CAS 02-02-03). Based on site observations, the low hydrocarbon concentrations detected, and the delineation of the vertical and lateral extent of subsurface hydrocarbons, an ``A through K`` evaluation was completed to support a request for an Administrative Closure of the site.

  7. Geomechanical Modeling of Fault Responses and the Potential for Notable Seismic Events during Underground CO2 Injection

    Science.gov (United States)

    Rutqvist, J.; Cappa, F.; Mazzoldi, A.; Rinaldi, A.

    2012-12-01

    will require injection at a much larger scale. The large-scale pressure buildup associated with such an injection operation, associated crustal straining, and potential undetected faults might be of greatest concern. We analyzed cases with undetectable faults and argue that such faults would likely be less than 1 km long and therefore seismic magnitudes could be estimated to be less than about 3.6, even if the entire fault would to be reactivated. However, not withstanding the potential for triggering notable (felt) seismic events, the potential for buoyancy-driven CO2 to reach potable ground water and the ground surface is more important from safety and storage-efficiency perspectives. We also know from natural and industrial analogues that reshear of fractures and faults in the caprock is important in determining the storage potential. Thus, fault reactivation, even associated with relatively small seismic or aseismic events, could potentially increase CO2 seepage out of the intended storage complex and therefore reduce the effectiveness of a CO2 storage operation. Under these circumstances, we recommend a staged, learn-as-you-go approach, involving a gradual increase of injection rates combined with continuous monitoring of geomechanical changes, as well as siting beneath a multiple layered overburden for multiple flow barrier protection, should an unexpected deep fault reactivation occur.

  8. Revised corrective action plan for underground storage tank 2331-U at the Building 9201-1 Site

    International Nuclear Information System (INIS)

    Bohrman, D.E.; Ingram, E.M.

    1993-09-01

    This document represents the Corrective Action Plan for underground storage tank (UST) 2331-U, previously located at Building 9201-1, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Tank 2331-U, a 560-gallon UST, was removed on December 14, 1988. This document presents a comprehensive summary of all environmental assessment investigations conducted at the Building 9201-1 Site and the corrective action measures proposed for remediation of subsurface petroleum product contamination identified at the site. This document is written in accordance with the regulatory requirements of the Tennessee Department of Environment and Conservation (TDEC) Rule 1200-1-15-.06(7)

  9. Atmospheric radiation environment analyses based-on CCD camera at various mountain altitudes and underground sites

    Directory of Open Access Journals (Sweden)

    Li Cavoli Pierre

    2016-01-01

    Full Text Available The purpose of this paper is to discriminate secondary atmospheric particles and identify muons by measuring the natural radiative environment in atmospheric and underground locations. A CCD camera has been used as a cosmic ray sensor. The Low Noise Underground Laboratory of Rustrel (LSBB, France gives the access to a unique low-noise scientific environment deep enough to ensure the screening from the neutron and proton radiative components. Analyses of the charge levels in pixels of the CCD camera induced by radiation events and cartographies of the charge events versus the hit pixel are proposed.

  10. [Assessment of Cyto- and Genotoxicity of Underground Waters from the Far Eastern Center on Radioactive Waste Treatment Site].

    Science.gov (United States)

    Oudalova, A A; Pyatkova, S V; Geras'kin, S A; Kiselev, S M; Akhromeev, S V

    2016-01-01

    This study has been completed in the frames of activities on the environment assessment in the vicinity of the Far Eastern center (FEC) on radioactive waste treatment (a branch of Fokino, Sysoev Bay). Underground waters collected at the FEC technical site were surveyed both with instrumental techniques and bioassays. Concentrations of some chemicals (ranged to the third hazard category) in the samples collected are over the permitted limits. Activities of 137Cs and 90Sr in waters amount up to 3.8 and 16.2 Bq/l, correspondingly. The integral pollution index is over 1 in all the samples and could amount up to 165. The Allium-test application allows the detection of the sample points where underground waters have an enhanced mutagenic potential. Dependencies between biological effects and pollution levels are analyzed. The findings obtained could be used for the monitoring optimized and decision making on rehabilitation measures to decrease negative influence of the enterprise on the environment.

  11. Assessment of injection bolus in first-pass radionuclide angiography. Evaluation of injection site and needle size

    International Nuclear Information System (INIS)

    Tonami, Syuichi; Inagaki, Syoichi; Yasui, Masakazu; Sugishita, Kouki; Yoshita, Hisashi; Nakamura, Mamoru; Kuranishi, Makoto

    1996-01-01

    First-pass radionuclide angiography (FPRNA) using a multi-crystal gamma camera can correctly provide many quantitative and qualitative indices of left ventricular function as well as anatomic information. A compact injection bolus of radiotracer is, however, essential to the first-pass study since the temporal separation of cardiac chambers is required for the first-pass acquisition. To examine which factors affect the quality of an injection bolus, 327 patients who had FPRNA in the anterior projection were randomized for injection site of radiotracer (right or left external jugular veins, and right antecubital vein) and needle size (19- or 21-gauge). The injected bolus was assessed from the full width at half maximum (FWHM) of the bolus time-activity curve in the superior vena cava. As to injection site using a 19-gauge needle, an attemption through right external jugular vein (EJV) revealed the shortest FWHM of an injection bolus, followed by left EJV and right antecubital vein (AV). In right EJV 91% of injected bolus FWHM was less than 1.5 sec, which was significantly higher (p<0.001) than those of the other sites (left EJV: 70%. right AV: 65%). Approximately 7% of injection from left EJV and right AV, showed a split bolus of radiotracer. However, no split bolus was observed from right EJV. There was no significant difference in FWHM of an injection bolus between 19- and 21-gauge needle from EJV. Our present study demonstrated that the quality of an injection bolus from left EJV and AV was affected by RVEF in a case of low right ventricular function. In conclusion, right EJV is the first choice of injection site to obtain a compact bolus of radiotracer for the first-pass cardiac study. A 21-gauge needle can also be inserted from the external jugular vein to perform a good bolus injection. (author)

  12. Assessment of injection bolus in first-pass radionuclide angiography. Evaluation of injection site and needle size

    Energy Technology Data Exchange (ETDEWEB)

    Tonami, Syuichi; Inagaki, Syoichi; Yasui, Masakazu; Sugishita, Kouki; Yoshita, Hisashi; Nakamura, Mamoru; Kuranishi, Makoto [Toyama Medical and Pharmaceutical Univ. (Japan). Hospital

    1996-09-01

    First-pass radionuclide angiography (FPRNA) using a multi-crystal gamma camera can correctly provide many quantitative and qualitative indices of left ventricular function as well as anatomic information. A compact injection bolus of radiotracer is, however, essential to the first-pass study since the temporal separation of cardiac chambers is required for the first-pass acquisition. To examine which factors affect the quality of an injection bolus, 327 patients who had FPRNA in the anterior projection were randomized for injection site of radiotracer (right or left external jugular veins, and right antecubital vein) and needle size (19- or 21-gauge). The injected bolus was assessed from the full width at half maximum (FWHM) of the bolus time-activity curve in the superior vena cava. As to injection site using a 19-gauge needle, an attemption through right external jugular vein (EJV) revealed the shortest FWHM of an injection bolus, followed by left EJV and right antecubital vein (AV). In right EJV 91% of injected bolus FWHM was less than 1.5 sec, which was significantly higher (p<0.001) than those of the other sites (left EJV: 70%. right AV: 65%). Approximately 7% of injection from left EJV and right AV, showed a split bolus of radiotracer. However, no split bolus was observed from right EJV. There was no significant difference in FWHM of an injection bolus between 19- and 21-gauge needle from EJV. Our present study demonstrated that the quality of an injection bolus from left EJV and AV was affected by RVEF in a case of low right ventricular function. In conclusion, right EJV is the first choice of injection site to obtain a compact bolus of radiotracer for the first-pass cardiac study. A 21-gauge needle can also be inserted from the external jugular vein to perform a good bolus injection. (author)

  13. A Global Survey and Interactive Map Suite of Deep Underground Facilities; Examples of Geotechnical and Engineering Capabilities, Achievements, Challenges: (Mines, Shafts, Tunnels, Boreholes, Sites and Underground Facilities for Nuclear Waste and Physics R&D)

    Science.gov (United States)

    Tynan, M. C.; Russell, G. P.; Perry, F.; Kelley, R.; Champenois, S. T.

    2017-12-01

    This global survey presents a synthesis of some notable geotechnical and engineering information reflected in four interactive layer maps for selected: 1) deep mines and shafts; 2) existing, considered or planned radioactive waste management deep underground studies, sites, or disposal facilities; 3) deep large diameter boreholes, and 4) physics underground laboratories and facilities from around the world. These data are intended to facilitate user access to basic information and references regarding deep underground "facilities", history, activities, and plans. In general, the interactive maps and database [http://gis.inl.gov/globalsites/] provide each facility's approximate site location, geology, and engineered features (e.g.: access, geometry, depth, diameter, year of operations, groundwater, lithology, host unit name and age, basin; operator, management organization, geographic data, nearby cultural features, other). Although the survey is not all encompassing, it is a comprehensive review of many of the significant existing and historical underground facilities discussed in the literature addressing radioactive waste management and deep mined geologic disposal safety systems. The global survey is intended to support and to inform: 1) interested parties and decision makers; 2) radioactive waste disposal and siting option evaluations, and 3) safety case development as a communication tool applicable to any mined geologic disposal facility as a demonstration of historical and current engineering and geotechnical capabilities available for use in deep underground facility siting, planning, construction, operations and monitoring.

  14. Corrective Action Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Cox, D. H.

    2000-01-01

    The Area 25 Underground Storage Tanks site Corrective Action Unit (CAU) 135 will be closed by unrestricted release decontamination and verification survey, in accordance with the Federal Facility Agreement and Consert Order (FFACO, 1996). The CAU includes one Corrective Action Site (CAS). The Area 25 Underground Storage Tanks, (CAS 25-02-01), referred to as the Engine-Maintenance Assembly and Disassembly (E-MAD) Waste Holdup Tanks and Vault, were used to receive liquid waste from all of the radioactive drains at the E-MAD Facility. Based on the results of the Corrective Action Investigation conducted in June 1999 discussed in the Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada (DOE/NV,1999a), one sample from the radiological survey of the concrete vault interior exceeded radionuclide preliminary action levels. The analytes from the sediment samples that exceeded the preliminary action levels are polychlorinated biphenyls, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons as diesel-range organics, and radionuclides. Unrestricted release decontamination and verification involves removal of concrete and the cement-lined pump sump from the vault. After verification that the contamination has been removed, the vault will be repaired with concrete, as necessary. The radiological- and chemical-contaminated pump sump and concrete removed from the vault would be disposed of at the Area 5 Radioactive Waste Management Site. The vault interior will be field surveyed following removal of contaminated material to verify that unrestricted release criteria have been achieved

  15. Corrective Action Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. H. Cox

    2000-07-01

    The Area 25 Underground Storage Tanks site Corrective Action Unit (CAU) 135 will be closed by unrestricted release decontamination and verification survey, in accordance with the Federal Facility Agreement and Consert Order (FFACO, 1996). The CAU includes one Corrective Action Site (CAS). The Area 25 Underground Storage Tanks, (CAS 25-02-01), referred to as the Engine-Maintenance Assembly and Disassembly (E-MAD) Waste Holdup Tanks and Vault, were used to receive liquid waste from all of the radioactive drains at the E-MAD Facility. Based on the results of the Corrective Action Investigation conducted in June 1999 discussed in the Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada (DOE/NV,1999a), one sample from the radiological survey of the concrete vault interior exceeded radionuclide preliminary action levels. The analytes from the sediment samples that exceeded the preliminary action levels are polychlorinated biphenyls, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons as diesel-range organics, and radionuclides. Unrestricted release decontamination and verification involves removal of concrete and the cement-lined pump sump from the vault. After verification that the contamination has been removed, the vault will be repaired with concrete, as necessary. The radiological- and chemical-contaminated pump sump and concrete removed from the vault would be disposed of at the Area 5 Radioactive Waste Management Site. The vault interior will be field surveyed following removal of contaminated material to verify that unrestricted release criteria have been achieved.

  16. Nevada National Security Site Underground Radionuclide Inventory, 1951-1992: Accounting for Radionuclide Decay through September 30, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Finnegan, David Lawrence [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bowen, Scott Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Thompson, Joseph L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Miller, Charles M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baca, Phyllis L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Olivas, Loretta F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Geoffrion, Carmen G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Smith, David K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Goishi, Wataru [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Esser, Bradley K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Meadows, Jesse W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Namboodiri, Neil [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wild, John F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-16

    This report is an update of report LA-13859-MS (Bowen et al., 2001). In that original report, the underground radionuclide inventory at the Nevada National Security Site (NNSS) was decay corrected to September 23, 1992, the date of the last underground nuclear test at the NNSS. In this report, the inventory is updated to account for the decay of radionuclides over two additional decades (1992-2012) and revised tritium, fission product and actinide inventory figures and tables are presented. The maximum contaminant levels for radionuclides were also updated to Safe Drinking Water Act Maximum Contaminant Levels (MCLs) (CFR, 2013). Also, a number of minor errata found in the original publication were corrected. An inventory of radionuclides produced by 828 underground nuclear tests conducted at the NNSS by the Lawrence Livermore National Laboratory, the Los Alamos National Laboratory, and the Department of the Defense from 1951 to 1992 includes tritium, fission products, actinides, and activation products. The inventory presented in this report provides an estimate of radioactivity remaining underground at the NNSS after nuclear testing. The original test inventory is decayed to September 30, 2012, and predictions of inventory decay over the subsequent 1000 years are presented. For the purposes of summary and publication, the Los Alamos National Laboratory and Lawrence Livermore National Laboratory authors of this report subdivided the inventory into five areas corresponding to the principal geographic test centers at the NNSS. The five areas roughly correspond to Underground Test Area “Corrective Action Units” (CAUs) for remediation of groundwater. In addition, the inventory is further subdivided for the Yucca Flat region by tests where the working point depth is more than 328 feet (100 meters) above the water table and tests that were detonated below that level. Water levels used were those from the U. S. Department of Energy, Nevada Operations Office (1997

  17. Corrective Action Plan for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    K. B. Campbell email = campbek@nv.doe.gov

    2002-01-01

    This Corrective Action Plan (CAP) provides selected corrective action alternatives and proposes the closure methodology for Corrective Action Unit (CAU) 262, Area 25 Septic Systems and Underground Discharge Point. CAU 262 is identified in the Federal Facility Agreement and Consent Order (FFACO) of 1996. Remediation of CAU 262 is required under the FFACO. CAU 262 is located in Area 25 of the Nevada Test Site (NTS), approximately 100 kilometers (km) (62 miles [mi]) northwest of Las Vegas, Nevada. The nine Corrective Action Sites (CASs) within CAU 262 are located in the Nuclear Rocket Development Station complex. Individual CASs are located in the vicinity of the Reactor Maintenance, Assembly, and Disassembly (R-MAD); Engine Maintenance, Assembly, and Disassembly (E-MAD); and Test Cell C compounds. CAU 262 includes the following CASs as provided in the FFACO (1996); CAS 25-02-06, Underground Storage Tank; CAS 25-04-06, Septic Systems A and B; CAS 25-04-07, Septic System; CAS 25-05-03, Leachfield; CAS 25-05-05, Leachfield; CAS 25-05-06, Leachfield; CAS 25-05-08, Radioactive Leachfield; CAS 25-05-12, Leachfield; and CAS 25-51-01, Dry Well. Figures 2, 3, and 4 show the locations of the R-MAD, the E-MAD, and the Test Cell C CASs, respectively. The facilities within CAU 262 supported nuclear rocket reactor engine testing. Activities associated with the program were performed between 1958 and 1973. However, several other projects used the facilities after 1973. A significant quantity of radioactive and sanitary waste was produced during routine operations. Most of the radioactive waste was managed by disposal in the posted leachfields. Sanitary wastes were disposed in sanitary leachfields. Septic tanks, present at sanitary leachfields (i.e., CAS 25-02-06,2504-06 [Septic Systems A and B], 25-04-07, 25-05-05,25-05-12) allowed solids to settle out of suspension prior to entering the leachfield. Posted leachfields do not contain septic tanks. All CASs located in CAU 262 are

  18. Ground motion effects of underground nuclear testing on perennial vegetation at Nevada Test Site

    International Nuclear Information System (INIS)

    Rhoads, W.A.

    1976-07-01

    In this study to estimate the potential injury to vegetation from earth movement caused by underground nuclear detonations and to estimate the extent to which this may have occurred at NTS, two explosions in the megaton range on Pahute Mesa were studied in some detail: Boxcar, which caused a surface subsidence, and Benham, which did not. Because of the subsidence phenomenology, shock propagation through the earth and along the surface, and the resulting fractures, shrubs were killed at Boxcar around the perimeter of the subsidence crater. Both trees and shrubs were killed along tectonic faults, which became the path for earth fractures, and along fractures and rock falls elsewhere. There was also evidence at Boxcar of tree damage which antedated the nuclear testing program, presumably from natural earthquakes. With the possible exception of damage to aged junipers this investigation did not reveal any good evidence of immediate effects from underground testing on vegetation beyond that recognized earlier as the edge effect

  19. The French experimentation at the underground nuclear testing site in the Sahara desert

    Energy Technology Data Exchange (ETDEWEB)

    Gauvenet, Andre [Commissariat a l' Energie Atomique (France)

    1970-05-01

    The present paper will be essentially an introduction to the technical exposes which will be delivered during the Las Vegas Meeting. The presentation is divided in two parts. The first part summarizes very briefly the experience that has been gained from the underground nuclear shots which took place in the Sahara desert from 1961 to 1966. in the second part, an idea is given of the studies at present carried on in France in the domain of peaceful applications of nuclear explosions.

  20. Underground Test Area Activity Communication/Interface Plan, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene [Navarro, Las Vegas, NV (United States); Rehfeldt, Kenneth [Navarro, Las Vegas, NV (United States)

    2016-10-01

    The purpose of this plan is to provide guidelines for effective communication and interfacing between Underground Test Area (UGTA) Activity participants, including the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) and its contractors. This plan specifically establishes the following: • UGTA mission, vision, and core values • Roles and responsibilities for key personnel • Communication with stakeholders • Guidance in key interface areas • Communication matrix

  1. The French experimentation at the underground nuclear testing site in the Sahara desert

    International Nuclear Information System (INIS)

    Gauvenet, Andre

    1970-01-01

    The present paper will be essentially an introduction to the technical exposes which will be delivered during the Las Vegas Meeting. The presentation is divided in two parts. The first part summarizes very briefly the experience that has been gained from the underground nuclear shots which took place in the Sahara desert from 1961 to 1966. in the second part, an idea is given of the studies at present carried on in France in the domain of peaceful applications of nuclear explosions

  2. Underground Storage Tanks in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Underground storage tank (UST) sites which store petroleum in Iowa. Includes sites which have been reported to DNR, and have active or removed underground storage...

  3. Summary of ground motion prediction results for Nevada Test Site underground nuclear explosions related to the Yucca Mountain project

    International Nuclear Information System (INIS)

    Walck, M.C.

    1996-10-01

    This report summarizes available data on ground motions from underground nuclear explosions recorded on and near the Nevada Test Site, with emphasis on the ground motions recorded at stations on Yucca Mountain, the site of a potential high-level radioactive waste repository. Sandia National Laboratories, through the Weapons Test Seismic Investigations project, collected and analyzed ground motion data from NTS explosions over a 14-year period, from 1977 through 1990. By combining these data with available data from earlier, larger explosions, prediction equations for several ground motion parameters have been developed for the Test Site area for underground nuclear explosion sources. Also presented are available analyses of the relationship between surface and downhole motions and spectra and relevant crustal velocity structure information for Yucca Mountain derived from the explosion data. The data and associated analyses demonstrate that ground motions at Yucca Mountain from nuclear tests have been at levels lower than would be expected from moderate to large earthquakes in the region; thus nuclear explosions, while located relatively close, would not control seismic design criteria for the potential repository

  4. Closure Report for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Tobiason, D. S.

    2003-01-01

    This Closure Report (CR) documents the activities undertaken to close Corrective Action Unit (CAU) 262: Area 25 Septic Systems and Underground Discharge Point, in accordance with the Federal Facility Agreement and Consent Order (FFACO) of 1996. Site closure was performed in accordance with the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) for CAU 262 (U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office [NNSA/NV, 2002a]). CAU 262 is located at the Nevada Test Site (NTS) approximately 105 kilometers (65 miles) northwest of Las Vegas, Nevada. CAU 262 consists of the following nine Corrective Action Sites (CASs) located in Area 25 of the NTS: CAS 25-02-06, Underground Storage tank CAS 25-04-06, Septic Systems A and B CAS 25-04-07, Septic System CAS 25-05-03, Leachfield CAS 25-05-05, Leachfield CAS 25-05-06, Leachfield CAS 25-05-08, Radioactive Leachfield CAS 25-05-12, Leachfield CAS 25-51-01, Dry Well

  5. Summary of ground motion prediction results for Nevada Test Site underground nuclear explosions related to the Yucca Mountain project

    Energy Technology Data Exchange (ETDEWEB)

    Walck, M.C.

    1996-10-01

    This report summarizes available data on ground motions from underground nuclear explosions recorded on and near the Nevada Test Site, with emphasis on the ground motions recorded at stations on Yucca Mountain, the site of a potential high-level radioactive waste repository. Sandia National Laboratories, through the Weapons Test Seismic Investigations project, collected and analyzed ground motion data from NTS explosions over a 14-year period, from 1977 through 1990. By combining these data with available data from earlier, larger explosions, prediction equations for several ground motion parameters have been developed for the Test Site area for underground nuclear explosion sources. Also presented are available analyses of the relationship between surface and downhole motions and spectra and relevant crustal velocity structure information for Yucca Mountain derived from the explosion data. The data and associated analyses demonstrate that ground motions at Yucca Mountain from nuclear tests have been at levels lower than would be expected from moderate to large earthquakes in the region; thus nuclear explosions, while located relatively close, would not control seismic design criteria for the potential repository.

  6. Underground storage

    Energy Technology Data Exchange (ETDEWEB)

    1965-06-10

    A procedure is described for making an underground storage cavity in a soluble formation. Two holes are drilled, and fluid is pumped into the first hole. This fluid is a non-solute for the formation material. Then pressure is applied to the fluid until the formation is fractured in the direction of the second hole. More non-solute fluid is injected to complete the fracture between the 2 holes. A solute fluid is then circulated between the 2 holes, which results in removal of that part of the formation next to the fracture and the forming of a chamber.

  7. Remaining Sites Verification Package for the 100-B-20, 1716-B Maintenance Garage Underground Tank, Waste Site Reclassification Form 2006-019

    Energy Technology Data Exchange (ETDEWEB)

    L. M. Dittmer

    2006-09-27

    The 100-B-20 waste site, located in the 100-BC-1 Operable Unit of the Hanford Site, consisted of an underground oil tank that once serviced the 1716-B Maintenance Garage. The selected action for the 100-B-20 waste site involved removal of the oil tanks and their contents and demonstrating through confirmatory sampling that all cleanup goals have been met. In accordance with this evaluation, a reclassification status of interim closed out has been determined. The results demonstrate that the site will support future unrestricted land uses that can be represented by a rural-residential scenario. These results also show that residual concentrations support unrestricted future use of shallow zone soil and that contaminant levels remaining in the soil are protective of groundwater and the Columbia River.

  8. Remaining Sites Verification Package for the 100-B-20, 1716-B Maintenance Garage Underground Tank. Attachment to Waste Site Reclassification Form 2006-019

    International Nuclear Information System (INIS)

    Dittmer, L.M.

    2006-01-01

    The 100-B-20 waste site, located in the 100-BC-1 Operable Unit of the Hanford Site, consisted of an underground oil tank that once serviced the 1716-B Maintenance Garage. The selected action for the 100-B-20 waste site involved removal of the oil tanks and their contents and demonstrating through confirmatory sampling that all cleanup goals have been met. In accordance with this evaluation, a reclassification status of interim closed out has been determined. The results demonstrate that the site will support future unrestricted land uses that can be represented by a rural-residential scenario. These results also show that residual concentrations support unrestricted future use of shallow zone soil and that contaminant levels remaining in the soil are protective of groundwater and the Columbia River

  9. Contamination mechanisms of air basin with tritium in venues of underground nuclear explosions at the former Semipalatinsk test site.

    Science.gov (United States)

    Lyakhova, O N; Lukashenko, S N; Larionova, N V; Tur, Y S

    2012-11-01

    During the period of testing from 1945 to 1962 at the territory of Semipalatinsk test site (STS) within the Degelen Mountains in tunnels, 209 underground nuclear explosions were produced. Many of the tunnels have seasonal water seepage in the form of streams, through which tritium migrates from the underground nuclear explosion (UNE) venues towards the surface. The issue of tritium contamination occupies a special place in the radioactive contamination of the environment. In this paper we assess the level and distribution of tritium in the atmospheric air of ecosystems with water seepage at tunnels № 176 and № 177, located on "Degelen" site. There has been presented general nature of tritium distribution in the atmosphere relative to surface of a watercourse which has been contaminated with tritium. The basic mechanisms were studied for tritium distribution in the air of studied ecosystems, namely, the distribution of tritium in the systems: water-atmosphere, tunnel air-atmosphere, soil water-atmosphere, vegetation-atmosphere. An analytical calculation of tritium concentration in the atmosphere by the concentration of tritium in water has been performed. There has experimentally obtained the dependence for predictive assessment of tritium concentrations in air as a function of tritium concentration in one of the inlet sources such as water, tunnel air, soil water, vegetation, etc.. The paper also describes the general nature of tritium distribution in the air in the area "Degelen". Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Streamlined approach for environmental restoration closure report for Corrective Action Unit 452: Historical underground storage tank release sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1998-04-01

    This report addresses the site characterization of three historical underground storage tank (UST) petroleum hydrocarbon release sites identified as 25-3101-1, 25-3102-3, and 25-3152-1. The sites are located within the Nevada Test Site in Area 25 at Buildings 3101, 3102, and 3152. The characterization was completed to support administrative closure of the sites. Characterization was completed using drilling equipment to delineate the extent of hydrocarbon impact. Clean closure had been previously attempted at each of these sites using backhoe equipment without success due to adjacent structures, buried utilities, or depth restrictions associated with each site. Although the depth and extent of hydrocarbon impact was determined to be too extensive for clean closure, it was verified through drilling that the sites should be closed through an administrative closure. The Nevada Administrative Code ''A Through K'' evaluation completed for each site supports that there is no significant risk to human health or the environment from the impacted soils remaining at each site

  11. The Beishan underground research laboratory for geological disposal of high-level radioactive waste in China: Planning, site selection, site characterization and in situ tests

    Directory of Open Access Journals (Sweden)

    Ju Wang

    2018-06-01

    Full Text Available With the rapid development of nuclear power in China, the disposal of high-level radioactive waste (HLW has become an important issue for nuclear safety and environmental protection. Deep geological disposal is internationally accepted as a feasible and safe way to dispose of HLW, and underground research laboratories (URLs play an important and multi-faceted role in the development of HLW repositories. This paper introduces the overall planning and the latest progress for China's URL. On the basis of the proposed strategy to build an area-specific URL in combination with a comprehensive evaluation of the site selection results obtained during the last 33 years, the Xinchang site in the Beishan area, located in Gansu Province of northwestern China, has been selected as the final site for China's first URL built in granite. In the process of characterizing the Xinchang URL site, a series of investigations, including borehole drilling, geological mapping, geophysical surveying, hydraulic testing and in situ stress measurements, has been conducted. The investigation results indicate that the geological, hydrogeological, engineering geological and geochemical conditions of the Xinchang site are very suitable for URL construction. Meanwhile, to validate and develop construction technologies for the Beishan URL, the Beishan exploration tunnel (BET, which is a 50-m-deep facility in the Jiujing sub-area, has been constructed and several in situ tests, such as drill-and-blast tests, characterization of the excavation damaged zone (EDZ, and long-term deformation monitoring of surrounding rocks, have been performed in the BET. The methodologies and technologies established in the BET will serve for URL construction. According to the achievements of the characterization of the URL site, a preliminary design of the URL with a maximum depth of 560 m is proposed and necessary in situ tests in the URL are planned. Keywords: Beishan, Xinchang site, Granite

  12. Development of Phenomenological Models of Underground Nuclear Tests on Pahute Mesa, Nevada Test Site - BENHAM and TYBO

    Energy Technology Data Exchange (ETDEWEB)

    Pawloski, G.A.

    1999-09-21

    Although it is well accepted that underground nuclear explosions modify the in situ geologic media around the explosion point, the details of these changes are neither well understood nor well documented. As part of the engineering and containment process before a nuclear test, the physical environment is characterized to some extent to predict how the explosion will interact with the in situ media. However, a more detailed characterization of the physical environment surrounding an expended site is needed to successfully model radionuclide transport in the groundwater away from the detonation point. It is important to understand how the media have been altered and where the radionuclides are deposited. Once understood, this information on modified geologic media can be incorporated into a phenomenological model that is suitable for input to computer simulations of groundwater flow and radionuclide transport. The primary goals of this study are to (1) identify the modification of the media at a pertinent scale, and (2) provide this information to researchers modeling radionuclide transport in groundwater for the US Department of Energy (DOE) Nevada Operations Office Underground Test Area (UGTA) Project. Results from this study are most applicable at near-field scale (a model domain of about 500 m) and intermediate-field scale (a model domain of about 5 km) for which detailed information can be maximized as it is incorporated in the modeling grids. UGTA collected data on radionuclides in groundwater during recent drilling at the ER-20-5 site, which is near BENHAM and TYBO on Pahute Mesa at the Nevada Test Site (NTS). Computer simulations are being performed to better understand radionuclide transport. The objectives of this modeling effort include: evaluating site-specific information from the BENHAM and TYBO tests on Pahute Mesa; augmenting the above data set with generalized containment data; and developing a phenomenological model suitable for input to

  13. The effect of air-lock technique on pain at the site of intramuscular injection

    Directory of Open Access Journals (Sweden)

    Dilek K. Yilmaz

    2016-03-01

    Full Text Available Objectives: To investigate the effects of air-lock technique (ALT on pain of intramuscular (IM injection delivered to the ventrogluteal and dorsogluteal site (DS. Methods: A randomized controlled trial design was used to assess the pain intensity associated with IM injections administered using 2 different methods and injection sites. Recruitment of patients was carried out between April and August 2013 at the Department of Brain Surgery, Cekirge State Hospital, Bursa, Turkey. The sample comprised 60 patients who developed no complications at the IM site, and had no illness that could affect their perception of pain. The patients were randomly divided into 2 groups of 30 patients. Patients in the first group received injections in the ventrogluteal site (VS, while the DS was used for injections in the second group. Patients in each group received 2 injections, one using ALT and one not using the technique. After each injection, the pain felt by patients during the injection was immediately assessed using a visual analog scale. Results: The mean pain score after injections to the DS by the ALT was 3.30 ± 2.70, while the mean pain score after injections to the VS using the same technique was 2.53 ± 2.52. Conclusion: Although the difference between groups was not significant, the results of the study supported the idea that injections delivered to the VS by ALT are less painful than those delivered to the DS.

  14. Geology in the Vicinity of the TYBO and BENHAM Underground Nuclear Tests, Pahute Mesa, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    L. B. Prothro

    2001-12-01

    Recent radiochemical evidence from groundwater characterization and monitoring wells in the vicinity of the TYBO and BENHAM underground nuclear tests in Area 20 of the Nevada Test Site, suggests that migration of radionuclides within groundwater beneath this portion of Area 20 may be more rapid than previously thought. In order to gain a better understanding of the hydrogeologic conditions in the TYBO-BENHAM area for more accurate flow and transport modeling, a reevaluation of the subsurface geologic environment in the vicinity of the two underground tests was conducted. Eight existing drill holes provided subsurface control for the area. These holes included groundwater characterization and monitoring wells, exploratory holes, and large-diameter emplacement holes used for underground nuclear weapons tests. Detailed and consistent geologic descriptions of these holes were produced by updating existing geologic descriptions with data from petrographic, chemical, and mineralogic analyses, and current stratigraphic concepts of the region. The updated descriptions, along with surface geologic data, were used to develop a detailed geologic model of the TYBO-BENHAM area. This model is represented by diagrams that correlate stratigraphic, lithologic, and alteration intervals between holes, and by isopach and structure maps and geologic cross sections. Regional data outside the TYBO-BENHAM area were included in the isopach and structure maps to better evaluate the geology of the TYBO-BENHAM area in a regional context. The geologic model was then evaluated with regard to groundwater flow and radionuclide migration to assess the model's implications for flow and transport modeling. Implications include: (1) confirmation of the general hydrogeology of the area described in previous studies; (2) the presence of two previously unrecognized buried faults that could act as zones of enhanced permeability within aquifers; and (3) secondary alteration within tuff confining

  15. First observations of tritium in ground water outside chimneys of underground nuclear explosions, Yucca Flat, Nevada Test Site

    International Nuclear Information System (INIS)

    Crow, N.B.

    1976-01-01

    Abnormal levels of radionuclides had not been detected in ground water at the Nevada Test Site beyond the immediate vicinity of underground nuclear explosions until April 1974, when above-background tritium activity levels were detected in ground-water inflow from the tuff beneath Yucca Flat to an emplacement chamber being mined in hole U2aw in the east-central part of Area 2. No other radionuclides were detected in a sample of water from the chamber. In comparison with the amount of tritium estimated to be present in the ground water in nearby nuclear chimneys, the activity level at U2aw is very low. To put the tritium activity levels at U2aw into proper perspective, the maximum tritium activity level observed was significantly less than the maximum permissible concentration (MPC) for a restricted area, though from mid-April 1974 until the emplacement chamber was expended in September 1974, the tritium activity exceeded the MPC for the general public. Above-background tritium activity was also detected in ground water from the adjacent exploratory hole, Ue2aw. The nearest underground nuclear explosion detonated beneath the water table, believed to be the source of the tritium observed, is Commodore (U2am), located 465 m southeast of the emplacement chamber in U2aw. Commodore was detonated in May 1967. In May 1975, tritium activity May significantly higher than regional background. was detected in ground water from hole Ue2ar, 980 m south of the emplacement chamber in U2aw and 361 m from a second underground nuclear explosion, Agile (U2v), also detonated below the water table, in February 1967. This paper describes these occurrences of tritium in the ground water. A mechanism to account for the movement of tritium is postulated

  16. Lower Colorado River GRP Underground Storage Tank Sites (Closed), Nevada, 2012, Nevada Division of Environmental Protection Bureau of Corrective Actions

    Data.gov (United States)

    U.S. Environmental Protection Agency — The BCA layers are derived from a database for Federally Regulated Underground Storage Tanks (UST) and a database for Remediation and Leaking Underground Storage...

  17. Lower Colorado River GRP Underground Storage Tank Sites (Open), Nevada, 2012, Nevada Division of Environmental Protection Bureau of Corrective Actions

    Data.gov (United States)

    U.S. Environmental Protection Agency — The BCA layers are derived from a database for Federally Regulated Underground Storage Tanks (UST) and a database for Remediation and Leaking Underground Storage...

  18. Underground Politics

    DEFF Research Database (Denmark)

    Galis, Vasilis; Summerton, Jane

    Public spaces are often contested sites involving the political use of sociomaterial arrangements to check, control and filter the flow of people (see Virilio 1977, 1996). Such arrangements can include configurations of state-of-the-art policing technologies for delineating and demarcating borders...... status updates on identity checks at the metro stations in Stockholm and reports on locations and time of ticket controls for warning travelers. Thus the attempts by authorities to exert control over the (spatial) arena of the underground is circumvented by the effective developing of an alternative...... infrastructural "underground" consisting of assemblages of technologies, activists, immigrants without papers, texts and emails, homes, smart phones and computers. Investigating the embedded politics of contested spatial arrangements as characteristic of specific societies one can discover not only the uses...

  19. Value of computed tomography for evaluating the injection site in endosonography-guided celiac plexus neurolysis

    International Nuclear Information System (INIS)

    Sakamoto, Hiroki; Kitano, Masayuki; Nishio, Takeshi; Takeyama, Yoshifumi; Yasuda, Chikao; Kudo, Masatoshi

    2006-01-01

    Endosonography-guided celiac plexus neurolysis (EUS-CPN) safely and effectively relieves pain associated with intra-abdominal malignancies when the neurolytic is accurately injected. We applied contrast medium to evaluate the ethanol injection sites in patients who received EUS-CPN due to abdominal pain caused by malignancies. We injected, under the guidance of endoscopic ultrasonography (EUS), ethanol containing 10% contrast medium into the celiac plexus of patients with intra-abdominal pain due to malignancies. Immediately after the endoscopic therapy, patients underwent computed tomography (CT) to confirm the injection site. Images of distribution of injected solutions were classified into three groups. Injected solution dispersed in unilateral and bilateral anterocrural space was defined as ''unilateral injection'' or bilateral injection'', respectively. Injected solution located out of the anterocrural space was defined as ''inappropriate injection''. Pre- and postprocedure pain was assessed using a standard analog scale. Before and 2, 4, 8, 12, and 16 weeks after the procedure, pain scores were evaluated. From April 2003 to May 2005, 13 patients were enrolled in this study. Improvement of pain score in the ''bilateral injection'' and ''unilateral injection'' groups was significantly superior to the change in the ''inappropriate injection'' group. Although EUS-CPN was effective in eight of 13 patients (61.5%), additional EUS-CPN to the ''inappropriate injection group'' increased the response rate to 84.6%. Injection of ethanol to the anterocrural space by EUS-CPN produced adequate pain relief. Immediate examination by CT for confirmation of injection sites after EUS-CPN would increase the likelihood of induction of pain relief. (author)

  20. Detecting and modeling persistent self-potential anomalies from underground nuclear explosions at the Nevada Test Site

    International Nuclear Information System (INIS)

    McKague, H.L.; Kansa, E.; Kasameyer, P.W.

    1992-01-01

    Self-potential anomalies are naturally occurring, nearly stationary electric fields that are detected by measuring the potential difference between two points on (or in) the ground. SP anomalies arise from a number of causes: principally electrochemical reactions, and heat and fluid flows. SP is routinely used to locate mineral deposits, geothermal systems, and zones of seepage. This paper is a progress report on our work toward detecting explosion-related SP signals at the Nevada Test Site (NTS) and in understanding the physics of these anomalies that persist and continue changing over periods of time that range from months to years. As background, we also include a brief description of how SP signals arise, and we mention their use in other areas such as exploring for geothermal resources and locating seepage through dams. Between the years 1988 and 1991, we surveyed the areas around seven underground nuclear tests for persistent SP anomalies. We not only detected anomalies, but we also found that various phenomena could be contributing to them and that we did not know which of these were actually occurring. We analyzed our new data with existing steady state codes and with a newly developed time-dependent thermal modeling code. Our results with the new code showed that the conductive decay of the thermal pulse from an underground nuclear test could produce many of the observed signals, and that others are probably caused by movement of fluid induced by the explosion. 25 refs

  1. Contamination mechanisms of air basin with tritium in venues of underground nuclear explosions at the former Semipalatinsk test site

    International Nuclear Information System (INIS)

    Lyakhova, O.N.; Lukashenko, S.N.; Larionova, N.V.; Tur, Y.S.

    2012-01-01

    During the period of testing from 1945 to 1962 at the territory of Semipalatinsk test site (STS) within the Degelen Mountains in tunnels, 209 underground nuclear explosions were produced. Many of the tunnels have seasonal water seepage in the form of streams, through which tritium migrates from the underground nuclear explosion (UNE) venues towards the surface. The issue of tritium contamination occupies a special place in the radioactive contamination of the environment. In this paper we assess the level and distribution of tritium in the atmospheric air of ecosystems with water seepage at tunnels № 176 and № 177, located on “Degelen” site. There has been presented general nature of tritium distribution in the atmosphere relative to surface of a watercourse which has been contaminated with tritium. The basic mechanisms were studied for tritium distribution in the air of studied ecosystems, namely, the distribution of tritium in the systems: water–atmosphere, tunnel air–atmosphere, soil water–atmosphere, vegetation–atmosphere. An analytical calculation of tritium concentration in the atmosphere by the concentration of tritium in water has been performed. There has experimentally obtained the dependence for predictive assessment of tritium concentrations in air as a function of tritium concentration in one of the inlet sources such as water, tunnel air, soil water, vegetation, etc.. The paper also describes the general nature of tritium distribution in the air in the area “Degelen”. - Highlights: ► The basic mechanisms for tritium distribution in the air of nuclear testing sites were examined. ► We researched the distribution of tritium in the systems such as water–atmosphere, tunnel air–atmosphere, soil water–atmosphere and vegetation–atmosphere. ► An analytical calculation of tritium concentration in the atmosphere was performed. ► We experimentally obtained the dependence for predictive assessment of tritium concentrations in

  2. A review of a field study of radionuclide migration from an underground nuclear explosion at the Nevada Test Site

    International Nuclear Information System (INIS)

    Hoffman, D.C.; Daniels, W.R.; Wolfsberg, K.; Thompson, J.L.; Rundberg, R.S.; Fraser, S.L.; Daniels, K.S.

    1984-01-01

    Results from a long-term (9 year) field study of the distribution of radionuclides around an underground nuclear explosion cavity at the Nevada Test Site are reviewed. The goals of this Radionuclide Migration project are to examine the rates of migration underground in various media and to determine the potential for movement, both on and off the Nevada Test Site, of radioactivity from such explosions, with particular interest in possible contamination of water supplies. Initial studies were undertaken near the site of the low-yield test Cambric, which was detonated 73 m beneath the water table in tuffaceous alluvium. Solid samples were obtained from just below ground surface to 50 m below the detonation point, and water was sampled from five different regions in the vicinity of the explosion. Ten years after the test, most of the radioactivity was found to be retained in the fused debris in the cavity region and no activity above background was found 50 m below. Only tritium and 90 Sr were present in water in the cavity at levels greater than recommended concentration guides for water in uncontrolled areas. A satellite well is being used to remove water 91 m from the detonation point. During seven years (7x10 6 m 3 ) of pumping, tritium, 85 Kr, 36 Cl and 129 I have been detected in the water. Approximately 40% of the total tritium from the cavity region has been removed by pumping at the satellite well, and the maximum in the tritium concentration is clearly defined. Use of sensitive analytical techniques has permitted measurement of the very low concentrations of 36 Cl and 129 I present in the water. The 36 Cl peak precedes the tritiated water, possibly as a result of anion exclusion. Additional analyses are in progress to better define the shape of the 129 I concentration curve. (author)

  3. Review of a field study of radionuclide migration from an underground nuclear explosion at the Nevada Test Site

    International Nuclear Information System (INIS)

    Hoffman, D.C.; Daniels, W.R.; Wolfsberg, K.; Thompson, J.L.; Rundberg, R.S.; Fraser, S.L.; Daniels, K.S.

    1983-01-01

    Results from a long-term (9 year) field study of the distribution of radionuclides around an underground nuclear explosion cavity at the Nevada Test Site are reviewed. The goals of this Radionuclide Migration project are to examine the rates of migration underground in various media and to determine the potential for movement, both on and off the Nevada Test Site, of radioactivity from such explosions, with particular interest in possible contamination of water supplies. Initial studies were undertaken near the site of the low-yield test Cambric, which was detonated 73 m beneath the water table in tuffaceous alluvium. Solid samples were obtained from just below ground surface to 50 m below the detonation point, and water was sampled from five different regions in the vicinity of the explosion. Ten years after the test, most of the radioactivity was found to be retained in the fused debris in the cavity region and no activity above background was found 50 m below. Only tritium and 90 Sr were presented in water in the cavity at levels greater than recommended concentration guides for water in uncontrolled areas. A satellite well is being used to remove water 91 m from the detonation point. During seven years (7 x 10 6 m 3 ) of pumping, tritium, 85 Kr, 36 Cl, and 129 I have been detected in the water. Approximately 40% of the total tritium from the cavity region has been removed by pumping at the satellite well, and the maximum in the tritium concentration is clearly defined. Use of sensitive analytical techniques has permitted measurement of the very low concentrations of 36 Cl and 129 I present in the water. The 36 Cl peak precedes the tritiated water, possibly as a result of anion exclusion. Additional analyses are in progress to better define the shape of the 129 I concentration curve

  4. 76 FR 51970 - Agency Information Collection Activities; Proposed Collection; Comment Request; Underground...

    Science.gov (United States)

    2011-08-19

    ... Underground Injection Control (UIC) Program under the Safe Drinking Water Act established a Federal and State... Activities; Proposed Collection; Comment Request; Underground Injection Control (UIC) Program AGENCY... Water Protection Division/Underground Injection Control Program, Mailcode: 4606M, Environmental...

  5. Streamlined approach for environmental restoration closure report for Corrective Action Unit 454: Historical underground storage tank release sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1998-04-01

    This report addresses the characterization of three historical underground storage tank (UST) petroleum hydrocarbon release sites identified as 12-B-1, 12-B-3, and 12-COMM-1. The sites are located within the Nevada Test Site in Area 12 at B Tunnel and a former Communications/Power Maintenance Shop. Release Site 12-B-1 was not able to be clean-closed as proposed in the SAFER Plan. However, hydrocarbon impacted soils were excavated down to bedrock. Release Site 12-B-3 was evaluated to verify that the identified release was not associated with the UST removed from the site. Analytical results support the assumption that wood or possibly a roof sealant used as part of the bunker construction could have been the source of hydrocarbons detected. Release Site 12-COMM-1 was not clean closed as proposed in the SAFER Plan. The vertical extent of impacted soils was determined not to extend below a depth of 2.7 m (9 ft) below ground surface (bgs). The lateral extent could not be defined due to the presence of a discontinuous lens of hydrocarbon-impacted soil

  6. Streamlined approach for environmental restoration closure report for Corrective Action Unit 454: Historical underground storage tank release sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This report addresses the characterization of three historical underground storage tank (UST) petroleum hydrocarbon release sites identified as 12-B-1, 12-B-3, and 12-COMM-1. The sites are located within the Nevada Test Site in Area 12 at B Tunnel and a former Communications/Power Maintenance Shop. Release Site 12-B-1 was not able to be clean-closed as proposed in the SAFER Plan. However, hydrocarbon impacted soils were excavated down to bedrock. Release Site 12-B-3 was evaluated to verify that the identified release was not associated with the UST removed from the site. Analytical results support the assumption that wood or possibly a roof sealant used as part of the bunker construction could have been the source of hydrocarbons detected. Release Site 12-COMM-1 was not clean closed as proposed in the SAFER Plan. The vertical extent of impacted soils was determined not to extend below a depth of 2.7 m (9 ft) below ground surface (bgs). The lateral extent could not be defined due to the presence of a discontinuous lens of hydrocarbon-impacted soil.

  7. Underground Test Area (UGTA) Closure Report for Corrective Action Unit 98: Frenchman Flat Nevada National Security Site, Nevada, Revision 1 ROTC-1

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States)

    2016-08-01

    This Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 98, Frenchman Flat, Nevada National Security Site (NNSS), Nevada. The Frenchman Flat CAU was the site of 10 underground nuclear tests, some of which have impacted groundwater near the tests. This work was performed as part of the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Underground Test Area (UGTA) Activity in accordance with the Federal Facility Agreement and Consent Order (FFACO). This CR describes the selected corrective action to be implemented during closure to protect human health and the environment from the impacted groundwater

  8. Underground Test Area (UGTA) Closure Report for Corrective Action Unit 98: Frenchman Flat Nevada National Security Site, Nevada, Revision 1 ROTC-1

    International Nuclear Information System (INIS)

    Farnham, Irene

    2016-01-01

    This Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 98, Frenchman Flat, Nevada National Security Site (NNSS), Nevada. The Frenchman Flat CAU was the site of 10 underground nuclear tests, some of which have impacted groundwater near the tests. This work was performed as part of the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Underground Test Area (UGTA) Activity in accordance with the Federal Facility Agreement and Consent Order (FFACO). This CR describes the selected corrective action to be implemented during closure to protect human health and the environment from the impacted groundwater

  9. Opiate Injection Site Infections--19 years in the UK

    Centers for Disease Control (CDC) Podcasts

    2017-09-06

    Dan Lewer, a public health registrar in England, discusses an increase in infections related to opiate injections in the U.K.  Created: 9/6/2017 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 9/6/2017.

  10. Study on the leach mechanism of 90-19/U glass form in underground water of disposal site

    International Nuclear Information System (INIS)

    Sheng Jiawei; Luo Shanggeng; Tang Baolong

    1996-01-01

    The leach behavior of 90-19/U glass form in underground water (UW) of disposal site and in the deionized water (DIW) is studied. The total mass losses of glass form and the normalized element mass losses of B, Li and Si in UW are presented and compared to DIW. It is found that the ions in UW affect the leach behavior of 90-19/U glass. At the beginning of the reaction the reaction rate of the glass is smaller in UW than in DIW due to the low glass dissolution affinity in UW which is defined as (1-c/K). The rate determining step of leach reaction of 90-19/U glass in UW during the entire reaction period is the ion-exchange reaction. The apparent activation energy of glass reaction in UW is 51.6 kJ/mol

  11. Underground Test Area Fiscal Year 2012 Annual Quality Assurance Report Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States); Marutzky, Sam [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States)

    2013-01-01

    This report is mandated by the Underground Test Area (UGTA) Quality Assurance Project Plan (QAPP) and identifies the UGTA quality assurance (QA) activities for fiscal year (FY) 2012. All UGTA organizations—U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO); Desert Research Institute (DRI); Lawrence Livermore National Laboratory (LLNL); Los Alamos National Laboratory (LANL); Navarro-Intera, LLC (N-I); National Security Technologies, LLC (NSTec); and the U.S. Geological Survey (USGS)—conducted QA activities in FY 2012. The activities included conducting assessments, identifying findings and completing corrective actions, evaluating laboratory performance, revising the QAPP, and publishing documents. In addition, processes and procedures were developed to address deficiencies identified in the FY 2011 QAPP gap analysis.

  12. Underground Test Area Activity Quality Assurance Plan Nevada National Security Site, Nevada. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Krenzien, Susan [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States); Farnham, Irene [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States)

    2015-06-01

    This Quality Assurance Plan (QAP) provides the overall quality assurance (QA) requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Underground Test Area (UGTA) activities. The requirements in this QAP are consistent with DOE Order 414.1D, Change 1, Quality Assurance (DOE, 2013a); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). If a participant’s requirement document differs from this QAP, the stricter requirement will take precedence. NNSA/NFO, or designee, must review this QAP every two years. Changes that do not affect the overall scope or requirements will not require an immediate QAP revision but will be incorporated into the next revision cycle after identification. Section 1.0 describes UGTA objectives, participant responsibilities, and administrative and management quality requirements (i.e., training, records, procurement). Section 1.0 also details data management and computer software requirements. Section 2.0 establishes the requirements to ensure newly collected data are valid, existing data uses are appropriate, and environmental-modeling methods are reliable. Section 3.0 provides feedback loops through assessments and reports to management. Section 4.0 provides the framework for corrective actions. Section 5.0 provides references for this document.

  13. Underground Test Area Activity Preemptive Review Guidance Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene [Navarro, Las Vegas, NV (United States); Rehfeldt, Kenneth [Navarro, Las Vegas, NV (United States)

    2016-10-01

    Preemptive reviews (PERs) of Underground Test Area (UGTA) Activity corrective action unit (CAU) studies are an important and long-maintained quality improvement process. The CAU-specific PER committees provide internal technical review of ongoing work throughout the CAU lifecycle. The reviews, identified in the UGTA Quality Assurance Plan (QAP) (Sections 1.3.5.1 and 3.2), assure work is comprehensive, accurate, in keeping with the state of the art, and consistent with CAU goals. PER committees review various products, including data, documents, software/codes, analyses, and models. PER committees may also review technical briefings including Federal Facility Agreement and Consent Order (FFACO)-required presentations to the Nevada Division of Environmental Protection (NDEP) and presentations supporting key technical decisions (e.g., investigation plans and approaches). PER committees provide technical recommendations to support regulatory decisions that are the responsibility of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) and NDEP.

  14. Site selection under the underground geologic store plan. Procedures of selecting underground geologic stores as disputed by society, science, and politics. Site selection rules; Mit dem Sachplan Geologische Tiefenlager auf Standortsuche. Auswahlverfahren fuer geologische Tiefenlager im Spannungsfeld von Gesellschaft, Wissenschaft und Politik, Regeln fuer die Standortsuche

    Energy Technology Data Exchange (ETDEWEB)

    Aebersold, M. [Bundesamt fuer Energie BFE, Sektion Entsorgung Radioaktive Abfaelle, Bern (Switzerland)

    2008-10-15

    The new Nuclear Power Act and the Nuclear Power Ordinance of 2005 are used in Switzerland to select a site of an underground geologic store for radioactive waste in a substantive planning procedure. The ''Underground Geologic Store Substantive Plan'' is to ensure the possibility to build underground geologic stores in an independent, transparent and fair procedure. The Federal Office for Energy (BFE) is the agency responsible for this procedure. The ''Underground Geologic Store'' Substantive Plan comprises these principles: - The long term protection of people and the environment enjoys priority. Aspects of regional planning, economics and society are of secondary importance. - Site selection is based on the waste volumes arising from the five nuclear power plants currently existing in Switzerland. The Substantive Plan is no precedent for or against future nuclear power plants. - A transparent and fair procedure is an indispensable prerequisite for achieving the objectives of a Substantive Plan, i.e., finding accepted sites for underground geologic stores. The Underground Geologic Stores Substantive Plan is arranged in two parts, a conceptual part defining the rules of the selection process, and an implementation part documenting the selection process step by step and, in the end, naming specific sites of underground geologic stores in Switzerland. The objective is to be able to commission underground geologic stores in 25 or 35 years' time. In principle, 2 sites are envisaged, one for low and intermediate level waste, and one for high level waste. The Swiss Federal Council approved the conceptual part on April 2, 2008. This marks the beginning of the implementation phase and the site selection process proper. (orig.)

  15. Energy and exergy analysis of alternating injection of oxygen and steam in the low emission underground gasification of deep thin coal

    DEFF Research Database (Denmark)

    Eftekhari, Ali Akbar; Wolf, Karl Heinz; Rogut, Jan

    2017-01-01

    Recent studies have shown that by coupling the underground coal gasification (UCG) with the carbon capture and storage (CCS), the coal energy can be economically extracted with a low carbon footprint. To investigate the effect of UCG and CCS process parameters on the feasibility of the UCG-CCS pr....... Additionally, we show that the zero-emission conversion of unmineable deep thin coal resources in a coupled UCG-CCS process, that is not practical with the current state of technology, can be realized by increasing the energy efficiency of the carbon dioxide capture process.......-CCS process, we utilize a validated mathematical model, previously published by the same authors, that can predict the composition of the UCG product, temperature profile, and coal conversion rate for alternating injection of air and steam for unmineable deep thin coal layers. We use the results of the model...

  16. Artificial radionuclides in oils from the underground nuclear test site (Perm region, Russia)

    International Nuclear Information System (INIS)

    Kalmykov, S.N.; Sapozhnikov, Yu.A.; Goloubov, B.N.

    1998-01-01

    Underground nuclear tests (UNT) are one of the possible sources of radioactive contamination of environment. About 2500 UNTs were carried out both for military and industrial (peaceful) purposes. In the former Soviet Union most of peaceful UNTs were oriented to the needs of the gas- and oil-extracting industry. Earlier it was considered that the holes of UNT are hermetic and the leakage of radionuclides is negligible. In this work nine oil samples from Gezh oil deposit in Perm region of Russia collected from different holes both where the explosion took part and from distant holes were analyzed for 3 H and 14 C and such fission products as 90 Sr and 134,137 Cs. For the determination of gamma-emitting radionuclides the gamma spectrometry with HPGe detector was used. For 90 Sr determination the measurements of Cherenkov radiation generated by daughter 90 Y were carried out with liquid scintillation equipment. It showed that even in the oil samples from the hole where the explosion took place no measurable 134,137 Cs and 90 Sr activities were detected. For 3 H and 14 C determination the oil samples were fractionated by distillation. For each sample 10-12 fractions were taken. Liquid scintillation spectrometry was used for 3 H and 14 C simultaneous determination. It was shown that in all samples the 3 H and 14 C concentrations are higher than the background level and for the hole where the explosion took place reached the value of about 1.3 x 10 5 Bq/L for low boiling fraction (40-750C). The 3 H and 14 C enrichment of oils from distant holes shows that UNT cavities are not hermetic and the radionuclide migration is not negligible. (author)

  17. Green Remediation Best Management Practices: Sites with Leaking Underground Storage Tank Systems

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) Principles for Greener Cleanups outline the Agency's policy for evaluating and minimizing the environmental 'footprint' of activities undertaken when cleaning up a contaminated site.

  18. Underground laboratories in Asia

    International Nuclear Information System (INIS)

    Lin, Shin Ted; Yue, Qian

    2015-01-01

    Deep underground laboratories in Asia have been making huge progress recently because underground sites provide unique opportunities to explore the rare-event phenomena for the study of dark matter searches, neutrino physics and nuclear astrophysics as well as the multi-disciplinary researches based on the low radioactive environments. The status and perspectives of Kamioda underground observatories in Japan, the existing Y2L and the planned CUP in Korea, India-based Neutrino Observatory (INO) in India and China JinPing Underground Laboratory (CJPL) in China will be surveyed

  19. Underground laboratories in Asia

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shin Ted, E-mail: linst@mails.phys.sinica.edu.tw [College of Physical Science and Technology, Sichuan University, Chengdu 610064 China (China); Yue, Qian, E-mail: yueq@mail.tsinghua.edu.cn [Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084 China (China)

    2015-08-17

    Deep underground laboratories in Asia have been making huge progress recently because underground sites provide unique opportunities to explore the rare-event phenomena for the study of dark matter searches, neutrino physics and nuclear astrophysics as well as the multi-disciplinary researches based on the low radioactive environments. The status and perspectives of Kamioda underground observatories in Japan, the existing Y2L and the planned CUP in Korea, India-based Neutrino Observatory (INO) in India and China JinPing Underground Laboratory (CJPL) in China will be surveyed.

  20. Assessment of hydrologic transport of radionuclides from the Rio Blanco underground nuclear test site, Colorado

    International Nuclear Information System (INIS)

    Chapman, J.; Earman, S.; Andricevic, R.

    1996-10-01

    DOE is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations used for nuclear testing. Evaluation of radionuclide transport by groundwater is part of preliminary risk analysis. These evaluations allow prioritization of test areas in terms of risk, provide a basis for discussions with regulators and the public about future work, and provide a framework for assessing site characterization data needs. The Rio Blanco site in Colorado was the location of the simultaneous detonation of three 30-kiloton nuclear devices. The devices were located 1780, 1899, and 2039 below ground surface in the Fort Union and Mesaverde formations. Although all the bedrock formations at the site are thought to contain water, those below the Green River Formation (below 1000 in depth) are also gas-bearing, and have very low permeabilities. The transport scenario evaluated was the migration of radionuclides from the blast-created cavity through the Fort Union Formation. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides from the test are contained entirely within the area currently administered by DOE. This modeling was performed to investigate how the uncertainty in various physical parameters affect radionuclide transport at the site, and to serve as a starting point for discussion regarding further investigation; it was not intended to be a definitive simulation of migration pathways or radionuclide concentration values. Given the sparse data, the modeling results may differ significantly from reality. Confidence in transport predictions can be increased by obtaining more site data, including the amount of radionuclides which would have been available for transport (i.e., not trapped in melt glass or vented during gas flow testing), and the hydraulic properties of the formation. 38 refs., 6 figs., 1 tab

  1. Gallium-67 detection of intramammary injection sites secondary to intravenous drug abuse

    International Nuclear Information System (INIS)

    Swayne, L.C.

    1989-01-01

    A case of gallium localization within the breast occurred secondary to intravenous drug abuse. In the appropriate clinical setting, prior self-administered injections should be considered as a cause of Ga-67 accumulation at unusual sites

  2. Subsurface Completion Report for Amchitka Underground Nuclear Test Sites: Long Shot, Milrow, and Cannikin, Rev. No.: 1

    Energy Technology Data Exchange (ETDEWEB)

    Echelard, Tim

    2006-09-01

    Three underground nuclear tests were conducted on Amchitka Island, Alaska, in 1965, 1969, and 1971. The effects of the Long Shot, Milrow, and Cannikin tests on the environment were extensively investigated during and following the detonations, and the area continues to be monitored today. This report is intended to document the basis for the Amchitka Underground Nuclear Test Sites: Long Shot, Milrow, and Cannikin (hereafter referred to as ''Amchitka Site'') subsurface completion recommendation of No Further Remedial Action Planned with Long-Term Surveillance and Maintenance, and define the long-term surveillance and maintenance strategy for the subsurface. A number of factors were considered in evaluating and selecting this recommendation for the Amchitka Site. Historical studies and monitoring data, ongoing monitoring data, the results of groundwater modeling, and the results of an independent stakeholder-guided scientific investigation were also considered in deciding the completion action. Water sampling during and following the testing showed no indication that radionuclides were released to the near surface, or marine environment with the exception of tritium, krypton-85, and iodine-131 found in the immediate vicinity of Long Shot surface ground zero. One year after Long Shot, only tritium was detectable (Merritt and Fuller, 1977). These tritium levels, which were routinely monitored and have continued to decline since the test, are above background levels but well below the current safe drinking water standard. There are currently no feasible means to contain or remove radionuclides in or around the test cavities beneath the sites. Surface remediation was conducted in 2001. Eleven drilling mud pits associated with the Long Shot, Milrow and Cannikin sites were remediated. Ten pits were remediated by stabilizing the contaminants and constructing an impermeable cap over each pit. One pit was remediated by removing all of the contaminated mud

  3. Challenges in defining a radiologic and hydrologic source term for underground nuclear test centers, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Smith, D.K.

    1995-06-01

    The compilation of a radionuclide inventory for long-lived radioactive contaminants residual from nuclear testing provides a partial measure of the radiologic source term at the Nevada Test Site. The radiologic source term also includes potentially mobile short-lived radionuclides excluded from the inventory. The radiologic source term for tritium is known with accuracy and is equivalent to the hydrologic source term within the saturated zone. Definition of the total hydrologic source term for fission and activation products that have high activities for decades following underground testing involves knowledge and assumptions which are presently unavailable. Systematic investigation of the behavior of fission products, activation products and actinides under saturated or Partially saturated conditions is imperative to define a representative total hydrologic source term. This is particularly important given the heterogeneous distribution of radionuclides within testing centers. Data quality objectives which emphasize a combination of measurements and credible estimates of the hydrologic source term are a priority for near-field investigations at the Nevada Test Site

  4. Induration at Injection or Infusion Site May Reduce Bioavailability of Parenteral Phenobarbital Administration.

    Science.gov (United States)

    Nakayama, Hirokazu; Echizen, Hirotoshi; Ogawa, Ryuichi; Akabane, Atsuya; Kato, Toshiaki; Orii, Takao

    2017-06-01

    Phenobarbital is well tolerated and effective for controlling agitation or preventing convulsion at the end of life. No information is available concerning parenteral bioavailability of phenobarbital when induration develops at the injection or infusion site. We investigated whether induration at injection or infusion site is related to phenobarbital bioavailability via parenteral routes of continuous subcutaneous infusion and intermittent subcutaneous or intramuscular injection. A retrospective analysis was conducted on the medical data obtained from 18 patients who received chronic subcutaneous or intramuscular injections of phenobarbital for the prevention of convulsions and underwent plasma concentration monitoring of the drug. Patients whose concomitant medications were altered during the observation periods were excluded from the analysis. Comparisons were performed for concentration/dose (C/D) ratios obtained from patients with induration at injection or infusion sites (induration group, n = 6) and those without induration (noninduration group, n = 12). P phenobarbital may be reduced when induration develops at the injection or infusion site in patients treated parenterally by continuous subcutaneous infusion or intramuscular injection.

  5. Modern radionuclide content of the underground water and soils near the epicentral zone of cratering explosion at the Semipalatinsk test site

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, S.K.; Kvasnikova, E.V. [Institute of Global Climate and Ecology, Moscow (Russian Federation)

    2004-07-01

    The investigation wells for a control of the underground water contamination were bored after the cratering explosions at the Semipalatinsk Test Site, now they are restored partially. The analysis of the retrospective information of the Institute of Global Climate and Ecology (Moscow, Russia) give a possibility to choose wells and terrains for the successful study of radionuclide migration with the underground water. The epicentral zone, the crater and the territory with radius 1,5 km around the underground cratering explosion '1003' were investigated under the ISTC project K-810. Underground water and soil samples were taken at the two expeditions of 2003. The chemical extraction methods taking into account the water mineral composition, gamma-spectrum methods, methods of the liquid scintillation spectrometry and methods of alpha-spectrometry were used. The modern radionuclide content ({sup 3}H, {sup 90}Sr, {sup 137}Cs, {sup 239+240}Pu, {sup 241}Am) of the underground water will be presented and compare with a radionuclide content of soils around crater. The retrospective information will be added by these modern data. The vertical radionuclide distribution in soils will be presented. (author)

  6. Modern radionuclide content of the underground water and soils near the epicentral zone of cratering explosion at the Semipalatinsk test site

    International Nuclear Information System (INIS)

    Gordeev, S.K.; Kvasnikova, E.V.

    2004-01-01

    The investigation wells for a control of the underground water contamination were bored after the cratering explosions at the Semipalatinsk Test Site, now they are restored partially. The analysis of the retrospective information of the Institute of Global Climate and Ecology (Moscow, Russia) give a possibility to choose wells and terrains for the successful study of radionuclide migration with the underground water. The epicentral zone, the crater and the territory with radius 1,5 km around the underground cratering explosion '1003' were investigated under the ISTC project K-810. Underground water and soil samples were taken at the two expeditions of 2003. The chemical extraction methods taking into account the water mineral composition, gamma-spectrum methods, methods of the liquid scintillation spectrometry and methods of alpha-spectrometry were used. The modern radionuclide content ( 3 H, 90 Sr, 137 Cs, 239+240 Pu, 241 Am) of the underground water will be presented and compare with a radionuclide content of soils around crater. The retrospective information will be added by these modern data. The vertical radionuclide distribution in soils will be presented. (author)

  7. Bure's underground research laboratory: general framework, objectives, siting process and schedule of the URL project

    International Nuclear Information System (INIS)

    Gaussen, J.L.

    2001-01-01

    Bure URL project is one of the components of the French research program dedicated to the study of HLLLW (High Level Long Lived Radioactive Waste) disposal in geologic repository within the framework of the 1991 Radioactive Waste Act. Pursuant to the said act, the objective of the URL project is to participate in the ''evaluation of options for retrievable or non- retrievable disposal in deep geologic formations''. More precisely, the goal of this URL, which is situated 300 km East of Paris, is to gain a better knowledge of a site capable of hosting a geologic repository. (author)

  8. Work plan for defining a standard inventory estimate for wastes stored in Hanford Site underground tanks

    International Nuclear Information System (INIS)

    Hodgson, K.M.

    1996-01-01

    This work plan addresses the Standard Inventory task scope, deliverables, budget, and schedule for fiscal year 1997. The goal of the Standard Inventory task is to resolve differences among the many reported Hanford Site tank waste inventory values and to provide inventory estimates that will serve as Standard Inventory values for all waste management and disposal activities. These best-basis estimates of chemicals and radionuclides will be reported on both a global and tank-specific basis and will be published in the Tank Characterization Database

  9. Neptunium Transport Behavior in the Vicinity of Underground Nuclear Tests at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, P; Tinnacher, R M; Zavarin, M; Williams, R W; Kersting, A B

    2010-12-03

    We used short lived {sup 239}Np as a yield tracer and state of the art magnetic sector ICP-MS to measure ultra low levels of {sup 237}Np in a number of 'hot wells' at the Nevada National Security Site (NNSS), formerly known as the Nevada Test Site (NTS). The results indicate that {sup 237}Np concentrations at the Almendro, Cambric, Dalhart, Cheshire and Chancellor sites, are in the range of 3 x 10{sup -5} to 7 x 10{sup -2} pCi/L and well below the MCL for alpha emitting radionuclides (15 pCi/L) (EPA, 2009). Thus, while Np transport is believed to occur at the NNSS, activities are expected to be well below the regulatory limits for alpha-emitting radionuclides. We also compared {sup 237}Np concentration data to other radionuclides, including tritium, {sup 14}C, {sup 36}Cl, {sup 99}Tc, {sup 129}I, and plutonium, to evaluate the relative {sup 237}Np transport behavior. Based on isotope ratios relative to published unclassified Radiologic Source Terms (Bowen et al., 1999) and taking into consideration radionuclide distribution between melt glass, rubble and groundwater (IAEA, 1998), {sup 237}Np appears to be substantially less mobile than tritium and other non-sorbing radionuclides, as expected. However, this analysis also suggests that {sup 237}Np mobility is surprisingly similar to that of plutonium. The similar transport behavior of Np and Pu can be explained by one of two possibilities: (1) Np(IV) and Pu(IV) oxidation states dominate under mildly reducing NNSS groundwater conditions resulting in similar transport behavior or (2) apparent Np transport is the result of transport of its parent {sup 241}Pu and {sup 241}Am isotopes and subsequent decay to {sup 237}Np. Finally, measured {sup 237}Np concentrations were compared to recent Hydrologic Source Term (HST) models. The 237Np data collected from three wells in Frenchman Flat (RNM-1, RNM-2S, and UE-5n) are in good agreement with recent HST transport model predictions (Carle et al., 2005). The agreement

  10. Element Content of Surface and Underground Water Sources around a Cement Factory Site in Calabar, Nigeria

    Directory of Open Access Journals (Sweden)

    Edmund Richard Egbe

    2017-01-01

    Full Text Available Background: Cement production is associated with heavy metal emissions and environmental pollution by cement dust. The degree of contamination of drinking water sources by major and trace elements present in cement dust generated by united cement factory (UNICEM is still uncertain. This study estimated the element content of ground and surface water samples (hand-dug wells, boreholes and streams around the factory site to determine the impact of cement dust exposure on the water levels of these elements. Methods: This study was conducted at UNICEM at Mfamosing, Akamkpa local government area, Cross River State, Nigeria. Drinking water samples (5 from each location were collected from the cement factory quarry site camp, 3 surrounding communities and Calabar metropolis (45 km away from factory serving as control. The lead (Pb, copper (Cu, manganes (Mn, iron (Fe, cadmium (Cd, selenium (Se, chromium (Cr, zinc (Zn and arsenic (As levels of samples were determined using Atomic Absorption Spectrometry (AAS. Data were analyzed using ANOVA and LSD post hoc at P = 0.05. Results: As and Pb content of samples from camp were above the WHO recommendations of 0.01mg/l and 0.01mg/l respectively. Chromium and cadmium content of all water samples were above and others below WHO recommendations. Water levels of Mn, Fe, Zn, As, Se, Cd, Ca and Si were significantly elevated (though below WHO recommendations in camp than other locations (P<0.05. Conclusion: Production of cement results in As, Pb, Cr and cd contamination of drinking water sources near the factory. Treatment of all drinking water sources is recommended before public use to avert deleterious health consequences.

  11. Surface motion near underground nuclear explosions in desert alluvium Operation Nougat I, Area 3, Nevada Test Site

    International Nuclear Information System (INIS)

    Perret, W.R.

    1978-05-01

    During Operation Nougat I, which was conducted in late 1961 and the first half of 1962, Sandia Laboratories measured surface motion in the vicinity of all contained underground nuclear explosions conducted by the Los Alamos Scientific Laboratory in Area 3 of the Nevada Test Site. This report presents and analyses most of the data derived from that study. Propagation velocities in the desert alluvium, 4440 ft/sec, and underlying tuff, 6020 ft/sec, are typical of those derived from later measurements. Motion attenuation data exhibit considerable scatter, in part because of early measurement and data reduction techniques but primarily because of differences in the characteristics of the geologic media which had not then been recognized. However, regression fits to the scaled data show attenuation of scaled acceleration at a rate 35% greater than that observed for Merlin event data (Merlin was conducted later in Area 3). The attenuation rate for particle velocity data from Nougat I events was 47% less than that for Merlin data, and the Nougat I scaled displacement data attenuation rate was 87% less than that for Merlin data. Analysis of data from a vertical string of gages extending to the surface above the Mink explosion has established a significant difference between normal spallation above contained explosions in competent rock and the reaction of uncemented alluvium to similar explosive loading

  12. Emissions characterization in the contained underground demilitarization laboratory at Nevada Test Site

    International Nuclear Information System (INIS)

    Velsko, C A; Watkins, B E; Pruneda, C O; Lipkin, J

    1999-01-01

    The US Departments of Defense and Energy (DOD and DOE) have established a Joint Demilitarization Technology (JDT) Program to demonstrate and validate technologies for resource recovery and recycling, as well as alternative destruction or treatment technologies as appropriate to specific conventional stockpile segments. X-Tunnel at the DOE Nevada Test Site is a facility for emissions characterization from detonation of conventional munitions and burning of rocket motors. We conducted seven detonations of M107, high explosive 155-mm projectiles, four from December 1996 through March 1997 and three during July and August 1999. We also completed three burns of rocket motors from May through June 1997.Standard (DOD) procedures for open detonation (DOD) of ordinance and open burn (OB) of rocket motors were followed in order to establish baseline emissions. Measurements inside the chamber included pressures, temperatures, relative humidity and gas concentrations. Grab samples were collected f or gas, organic, metal and particulate analyses. Results and implications for developing alternative destruction techniques will be presented

  13. From Site Characterization through Safe and Successful CO2 Injection Operation to Post-injection Monitoring and Site Closure - Closing the Full Life Cycle Research at the Ketzin Pilot Site, Germany

    Science.gov (United States)

    Liebscher, Axel

    2017-04-01

    Initiated in 2004, the Ketzin pilot site near Berlin, Germany, was the first European onshore storage project for research and development on geological CO2 storage. After comprehensive site characterization the site infrastructure was build comprising three deep wells and the injection facility including pumps and storage tanks. The operational CO2 injection period started in June 2008 and ended in August 2013 when the site entered the post-injection closure period. During these five years, a total amount of 67 kt of CO2 was safely injected into an Upper Triassic saline sandstone aquifer at a depth of 630 m - 650 m. In fall 2013, the first observation well was partially plugged in the reservoir section with CO2 resistant cement; full abandonment of this well finished in 2015 after roughly 2 years of cement plug monitoring. Abandonment of the remaining wells will be finished by summer 2017 and hand-over of liability to the competent authority is scheduled for end of 2017. The CO2 injected was mainly of food grade quality (purity > 99.9%). In addition, 1.5 kt of CO2 from the oxyfuel pilot capture facility "Schwarze Pumpe" (purity > 99.7%) was injected in 2011. The injection period terminated with a CO2-N2 co-injection experiment of 650 t of a 95% CO2/5% N2 mixture in summer 2013 to study the effects of impurities in the CO2 stream on the injection operation. During regular operation, the CO2 was pre-heated on-site to 40°C prior to injection to ensure a single-phase injection process and avoid any phase transition or transient states within the injection facility or the reservoir. Between March and July 2013, just prior to the CO2-N2 co-injection experiment, the injection temperature was stepwise decreased down to 10°C within a "cold-injection" experiment to study the effects of two-phase injection conditions. During injection operation, the combination of different geochemical and geophysical monitoring methods enabled detection and mapping of the spatial and

  14. Regional groundwater flow and tritium transport modeling and risk assessment of the underground test area, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-10-01

    The groundwater flow system of the Nevada Test Site and surrounding region was evaluated to estimate the highest potential current and near-term risk to the public and the environment from groundwater contamination downgradient of the underground nuclear testing areas. The highest, or greatest, potential risk is estimated by assuming that several unusually rapid transport pathways as well as public and environmental exposures all occur simultaneously. These conservative assumptions may cause risks to be significantly overestimated. However, such a deliberate, conservative approach ensures that public health and environmental risks are not underestimated and allows prioritization of future work to minimize potential risks. Historical underground nuclear testing activities, particularly detonations near or below the water table, have contaminated groundwater near testing locations with radioactive and nonradioactive constituents. Tritium was selected as the contaminant of primary concern for this phase of the project because it is abundant, highly mobile, and represents the most significant contributor to the potential radiation dose to humans for the short term. It was also assumed that the predicted risk to human health and the environment from tritium exposure would reasonably represent the risk from other, less mobile radionuclides within the same time frame. Other contaminants will be investigated at a later date. Existing and newly collected hydrogeologic data were compiled for a large area of southern Nevada and California, encompassing the Nevada Test Site regional groundwater flow system. These data were used to develop numerical groundwater flow and tritium transport models for use in the prediction of tritium concentrations at hypothetical human and ecological receptor locations for a 200-year time frame. A numerical, steady-state regional groundwater flow model was developed to serve as the basis for the prediction of the movement of tritium from the

  15. Dynamic underground stripping. Innovative technology summary report

    International Nuclear Information System (INIS)

    1995-04-01

    Dynamic Underground Stripping (DUS) is a combination of technologies targeted to remediate soil and ground water contaminated with organic compounds. DUS is effective both above and below the water table and is especially well suited for sites with interbedded sand and clay layers. The main technologies comprising DUS are steam injection at the periphery of a contaminated area to heat permeable subsurface areas, vaporize volatile compounds bound to the soil, and drive contaminants to centrally located vacuum extraction wells; electrical heating of less permeable sediments to vaporize contaminants and drive them into the steam zone; and underground imaging such as Electrical Resistance Tomography to delineate heated areas to ensure total cleanup and process control. A full-scale demonstration was conducted on a gasoline spill site at Lawrence Livermore National Laboratory in Livermore, California from November 1992 through December 1993

  16. Recent developments in the use of discrete fractures models for investigating the siting of an underground repository of radioactive waste

    International Nuclear Information System (INIS)

    Billaux, D.; Guerin, F.; Riss, J.; Dewiere, L.; Fillion, E.

    2000-01-01

    The sitting of a nuclear waste repository in a geological medium involves, among other aspects, predicting water inflows in the shafts and drifts, and evaluating possible geometries for the waste handling and storage galleries. In sedimentary host rocks, porous medium hydrogeology can be used easily to provide water inflow estimates, while geology will describe the geometry of the various layers, as well as the limited number of faults that may cut them. However, crystalline rocks such as the Vienne site, may be cut by numerous faults and fractures. To deal with such host rocks, we need new concepts - which have been under development during the last 15 years - in order to describe properly the spatial arrangement of discontinuities, its consequences in terms of the site hydrogeology, and in terms of the geometry of volumes available between faults for designing the underground storage cavities. A starting point is building a model of the fractures, using the statistical description of the investigated fracture field, including dips, dip directions, sizes, and intensities noted in boreholes or on outcrops. Such a model can then be used to compute flows. It is based on idealizing fractures as planar objects, often disks, with statistical geometrical properties inferred from available data. The model realism can be improved by conditioning the geometry on data, either directly observed - by fixing in space observed fractures - or indirectly inferred - by integrating the results of hydraulic, or even tracer tests. Discrete fracture models can then be used for many treatments, well beyond simple flow and transport computations. We illustrate this through two studies applied to the crystalline Vienne massif. First, image analysis techniques that were first developed for two dimensions, and have been recently extended to three dimensions, help with describing the space available between discontinuities, in order to define the sound rock blocks available for the waste

  17. Bibliography of reports by US Geological Survey personnel pertaining to underground nuclear testing and radioactive waste disposal at the Nevada Test Site, and radioactive waste disposal at the WIPP Site, New Mexico, January 1, 1979-December 31, 1979

    International Nuclear Information System (INIS)

    Glanzman, V.M.

    1980-01-01

    This bibliography presents reports released to the public between January 1, 1979, and December 31, 1979, by personnel of the US Geological Survey. Reports include information on underground nuclear testing and waste management projects at the NTS (Nevada Test Site) and radioactive waste projects at the WIPP (Waste Isolation Pilot Plant) site, New Mexico. Reports on Project Dribble, Tatum Dome, Mississippi, previously prepared as administrative reports and released to the public as 474-series reports during 1979 are also included in this bibliography

  18. Seismic site survey investigations in urban environments: The case of the underground metro project in Copenhagen, Denmark.

    Science.gov (United States)

    Martínez, K.; Mendoza, J. A.; Colberg-Larsen, J.; Ploug, C.

    2009-05-01

    Near surface geophysics applications are gaining more widespread use in geotechnical and engineering projects. The development of data acquisition, processing tools and interpretation methods have optimized survey time, reduced logistics costs and increase results reliability of seismic surveys during the last decades. However, the use of wide-scale geophysical methods under urban environments continues to face great challenges due to multiple noise sources and obstacles inherent to cities. A seismic pre-investigation was conducted to investigate the feasibility of using seismic methods to obtain information about the subsurface layer locations and media properties in Copenhagen. Such information is needed for hydrological, geotechnical and groundwater modeling related to the Cityringen underground metro project. The pre-investigation objectives were to validate methods in an urban environment and optimize field survey procedures, processing and interpretation methods in urban settings in the event of further seismic investigations. The geological setting at the survey site is characterized by several interlaced layers of clay, till and sand. These layers are found unevenly distributed throughout the city and present varying thickness, overlaying several different unit types of limestone at shallow depths. Specific results objectives were to map the bedrock surface, ascertain a structural geological framework and investigate bedrock media properties relevant to the construction design. The seismic test consisted of a combined seismic reflection and refraction analyses of a profile line conducted along an approximately 1400 m section in the northern part of Copenhagen, along the projected metro city line. The data acquisition was carried out using a 192 channels array, receiver groups with 5 m spacing and a Vibroseis as a source at 10 m spacing. Complementarily, six vertical seismic profiles (VSP) were performed at boreholes located along the line. The reflection

  19. Identification of hormone esters in injection site in muscle tissues by LC/MS/MS.

    Science.gov (United States)

    Costain, R M; Fesser, A C E; McKenzie, D; Mizuno, M; MacNeil, J D

    2008-12-01

    The detection of hormone abuse for growth promotion in food animal production is a global concern. Initial testing for hormones in Canada was directed at the compounds approved for use in beef cattle, melengestrol acetate, trenbolone acetate and zeranol, and the banned compound diethylstilbestrol (DES). No hormonal growth promoters are approved for use in veal production in Canada. However, instances of use of trenbolone and clenbuterol were detected in Canada in the 1990s. During the development of a new analytical method for testosterone and progesterone, there were reports of suspicious injection sites being found in veal calves. Upon implementation of the method, analysis of investigative samples revealed significant residues of testosterone in some injection sites. To prove that the source of these residues was exogenous, a fully validated method for hormone esters was developed to confirm the presence of exogenous hormones in these injection sites. The QUECHERS model was employed in methods development and resulted in a simple, effective extraction technique that consisted of sample pre-homogenization, liquid/liquid partitioning, extract dilution, filtration and use of LC/MS/MS to provide detection selectivity. The result was an adaptable MS/MS confirmation technique that meets the needs of Canadian regulatory authorities to confirm the misuse of injectable testosterone, and potentially other hormones, in food animal production.

  20. Electrical resistance tomography during gas injection at the Savannah River Site

    International Nuclear Information System (INIS)

    Ramirez, A.L.; Daily, W.D.

    1993-05-01

    Electrical resistance tomography (ERT) is used to monitor some of the in situ remediation processes being evaluated for removal of volatile organic compounds from subsurface water and soil at the Integrated Demonstration for VOC's in Soils and Groundwater at Non Arid Sites, the Savannah River Site, near Aiken, South Carolina. Air was injected in the saturated zone and the intrained air was tomographically imaged by its effects on the formation electrical resistivity. The authors found that the flow paths are confined to a complex three dimensional network of channels, some of which extend as far as 30 m from the injection well. They conclude, based on these results, that the shape and extent of the air plume are controlled by spatial variations in the local gas permeability. These channels are somewhat unstable over a period of months and new channels appear to form with time

  1. Medical approach to the treatment of feline injection site sarcoma with masitinib: a case report

    Directory of Open Access Journals (Sweden)

    Ledoux JM

    2014-09-01

    Full Text Available Jean-Marie Ledoux,1 Pascal Brun,2 Tom Chapuis,2 Paul Dumas,3 Jean Guillotin41Veterinary Surgery, Lys-Lez-Lannoy, 2AB Science, Paris, 3Laboratoire de Pathologie Vétérinaire du Nord, Annœullin, 4Laboratoire Départemental Public, Villeneuve d'Ascq, FranceAbstract: Feline injection site sarcoma is a common tumor among cats, for which existing medical treatments do not prove to be entirely satisfactory. In this tumor, the platelet-derived growth factor receptor, a tyrosine kinase receptor, is frequently hyperactivated. In the past, clinical case reports with imatinib, a tyrosine kinase inhibitor (TKI, have demonstrated tumoral stabilization. Here we describe the use of another TKI, masitinib, which specifically inhibits c-Kit, platelet-derived growth factor receptor, and Lyn, and is currently licensed for veterinary use in canine mast cell tumors. The therapeutic results were initially satisfactory, with regression of the tumor followed by tumoral recurrence which was stabilized and moderately reduced. Further studies are suggested, in order to evaluate the relevance of TKIs in the treatment and prevention of recurrences of feline injection site sarcoma. Tumoral stabilization by means of an inexpensive and reasonably well tolerated treatment would prove to be of true therapeutic relevance, in particular for inoperable feline injection site sarcomas. Another indication for such TKIs could be in preoperative treatment as a means of facilitating surgical excision by reduction of adhesions.Keywords: fibrosarcoma, imatinib, platelet-derived growth factor receptor, tyrosine kinase receptor

  2. METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    WEBER RA

    2009-01-16

    The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient potential energy to break up material and release gas and are assigned to waste group B. These tanks are considered to represent a potential induced flammable gas release hazard, but no spontaneous buoyant displacement flammable gas release hazard. Tanks that are not waste group C tanks and have an energy ratio {ge} 3.0, but that pass the third criterion (buoyancy ratio < 1.0, see below) are also assigned to waste group B. Even though the designation as

  3. METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    FOWLER KD

    2007-12-27

    This document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 7 is the annual update of the calculations of the flammable gas Waste Groups for DSTs and SSTs. The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient

  4. Microbiological analyses of samples from the H-Area injection well test site

    International Nuclear Information System (INIS)

    Wilde, E.W.; Franck, M.M.

    1997-01-01

    Microbial populations in well water from monitoring wells at the test site were one to three orders of magnitude higher than well water from the Cretaceous aquifer (used as dilution water for the tests) or from a control well adjacent to the test site facility. Coupons samples placed in monitoring and control wells demonstrated progressive adhesion by microbes to materials used in well construction. Samples of material scraped from test well components during abandonment of the test site project revealed the presence of a variety of attached microbes including iron bacteria. Although the injection wells at the actual remediation facility for the F- and H-Area seepage basins remediation project are expected to be subjected to somewhat different conditions (e.g. considerably lower iron concentrations) than was the case at the test site, the potential for microbiologically mediated clogging and fouling within the process should be considered. A sampling program that includes microbiological testing is highly recommended

  5. The underground research laboratories

    International Nuclear Information System (INIS)

    1997-06-01

    This educational booklet is a general presentation of the selected sites for the installation of underground research laboratories devoted to the feasibility studies of deep repositories for long-life radioactive wastes. It describes the different type of wastes and their management, the management of long life radioactive wastes, the site selection and the 4 sites retained, the preliminary research studies, and the other researches carried out in deep disposal facilities worldwide. (J.S.)

  6. Development and testing of redundant optical fiber sensing systems with self-control, for underground nuclear waste disposal site monitoring. Vol. 1: Summary and evaluation. Final report

    International Nuclear Information System (INIS)

    Jobmann, M.; Fischer, S.; Voet, M.

    2000-01-01

    Fiber optic sensors have been developed or further developed, for specific tasks of the research project reported, as for instance detecting and signalling changes of geophysical or geochemical parameters in underground waste storage sites which are of relevance to operating safety. Such changes include e.g. materials dislocations, extensions, temperatures, humidity, pH value and presence of gaseous carbon dioxide and hydrogen. The measuring principle chosen is the fiber Bragg Grating method, as a particularly versatile method easy to integrate into fiber optic networks. After development and successful lab-scale testing of all sensors, except for the gas sensors, field test systems have been made for underground applications and have been tested in situ in the experimental Konrad mine of DBE. Most of the problems discovered with these tests could be resolved within the given project period, so that finally field-test proven sensing systems are available for further activities. The report explains the system performance with a concrete example which shows inter alia beneficial aspects of the system with respect to on-site operation, and the potentials offered in establishing more direct connections between numerical safety analyses and measured results. (orig./CB) [de

  7. Extracorporeal shock wave therapy for injection site panniculitis in multiple sclerosis patients.

    Science.gov (United States)

    Stieger, Marco; Schmid, Jean-Paul; Yawalkar, Nikhil; Hunziker, Thomas

    2015-01-01

    Painful cutaneous injection site reactions may hamper treatment with interferon β (IFN-β) and glatiramer acetate (GA) in multiple sclerosis (MS) patients. To maintain therapy adherence, efficient therapeutic modalities for these subcutaneous inflammatory lesions are urgently needed. We tested the application of local extracorporeal shock wave therapy (ESWT). We applied 5 sessions of ESWT to 8 patients suffering from MS who had developed painful panniculitis at the injection sites of either IFN-β or GA. Clinical outcomes, i.e. pain reduction and regression of induration, were assessed 3 and 6 months after completion of the ESWT using a visual analogue score. All patients showed both significant pain reduction and reduction of the skin induration in the treated lesions, while in untreated control lesions there was no improvement. ESWT proved to be a non-invasive, safe and efficient physical treatment modality for injection-induced painful cutaneous side effects of disease-modifying drugs in MS. © 2014 S. Karger AG, Basel.

  8. Underground gasification in Britain

    Energy Technology Data Exchange (ETDEWEB)

    1952-08-29

    A report of the discussion held on the paper Underground Gasification in Britain, by C.A. Masterman (Iron and Coal Trades Rev., Vol. 165, Aug. 22, 1952, pp. 413-422). The water question, preheating the air, controlling the gas, using the product, choosing the site, thickness of seam and faulted areas are discussed.

  9. Enoxaparin-induced skin necrosis at injection site after total knee arthroplasty

    Directory of Open Access Journals (Sweden)

    Max Haffner, BS

    2018-03-01

    Full Text Available Enoxaparin is a widely used low-molecular-weight heparin for perioperative thromboembolic prophylaxis. Enoxaparin-induced skin necrosis in the setting of arthroplasty has been rarely reported in the literature with varying outcomes and management decisions. Our patient developed skin necrosis at his injection site and thrombocytopenia 10 days following left total knee arthroplasty surgery and after receiving subcutaneous Lovenox injections postoperatively. The patient was started on an alternative anticoagulation based on a high suspicion for heparin-induced thrombocytopenia and the wound was monitored without surgical debridement. Our case highlights the key clinical management decisions when facing this potentially life-threatening adverse reaction. Keywords: Lovenox, Enoxaparin, Skin necrosis, Adverse reaction, Arthroplasty

  10. An assessment of the reported leakage of anthropogenic radionuclides from the underground nuclear test sites at Amchitka Island, Alaska, USA to the surface environment

    International Nuclear Information System (INIS)

    Dasher, Douglas; Hanson, Wayne; Read, Stan; Faller, Scott; Farmer, Dennis; Efurd, Wes; Kelley, John; Patrick, Robert

    2002-01-01

    Three underground nuclear tests representing approximately 15-16% of the total effective energy released during the United States underground nuclear testing program from 1951 to 1992 were conducted at Amchitka Island, Alaska. In 1996, Greenpeace reported that leakage of radionuclides, 241 Am and 239+240 Pu, from these underground tests to the terrestrial and freshwater environments had been detected. In response to this report, a federal, state, tribal and non-governmental team conducted a terrestrial and freshwater radiological sampling program in 1997. Additional radiological sampling was conducted in 1998. An assessment of the reported leakage to the freshwater environment was evaluated by assessing 3 H values in surface waters and 240 Pu/ 239 Pu ratios in various sample media. Tritium values ranged from 0.41 Bq/l±0.11 two sigma to 0.74 Bq/l±0.126 two sigma at the surface water sites sampled, including the reported leakage sites. Only at the Long Shot test site, where leakage of radioactive gases to the near-surface occurred in 1965, were higher 3 H levels of 5.8 Bq/l±0.19 two sigma still observed in 1997, in mud pit no. 3. The mean 240 Pu/ 239 Pu for all of the Amchitka samples was 0.1991±0.0149 one standard deviation, with values ranging from 0.1824±1.43% one sigma to 0.2431±6.56% one sigma. The measured 3 H levels and 240 Pu/ 239 Pu ratios in freshwater moss and sediments at Amchitka provide no evidence of leakage occurring at the sites reported by Buske and Miller (1998 Nuclear-Weapons-Free America and Alaska Community Action on Toxics, Anchorage, Ak, p. 38) and Miller and Buske (1996 Nuclear Flashback: The Return to Anchitka, p. 35). It was noted that the marine sample; 240 Pu/ 239 Pu ratios are statistically different than the global fallout ratios presented by Krey et al. (1976) and Kelley, Bond, and Beasley (1999). The additional non-fallout component 240 Pu/ 239 Pu ratio, assuming a single unique source, necessary to modify the global fallout 240

  11. An assessment of the reported leakage of anthropogenic radionuclides from the underground nuclear test sites at Amchitka Island, Alaska, USA to the surface environment

    Energy Technology Data Exchange (ETDEWEB)

    Dasher, Douglas E-mail: ddasher@envircon.state.ak.us; Hanson, Wayne; Read, Stan; Faller, Scott; Farmer, Dennis; Efurd, Wes; Kelley, John; Patrick, Robert

    2002-07-01

    Three underground nuclear tests representing approximately 15-16% of the total effective energy released during the United States underground nuclear testing program from 1951 to 1992 were conducted at Amchitka Island, Alaska. In 1996, Greenpeace reported that leakage of radionuclides, {sup 241}Am and {sup 239+240}Pu, from these underground tests to the terrestrial and freshwater environments had been detected. In response to this report, a federal, state, tribal and non-governmental team conducted a terrestrial and freshwater radiological sampling program in 1997. Additional radiological sampling was conducted in 1998. An assessment of the reported leakage to the freshwater environment was evaluated by assessing {sup 3} H values in surface waters and {sup 240}Pu/{sup 239}Pu ratios in various sample media. Tritium values ranged from 0.41 Bq/l{+-}0.11 two sigma to 0.74 Bq/l{+-}0.126 two sigma at the surface water sites sampled, including the reported leakage sites. Only at the Long Shot test site, where leakage of radioactive gases to the near-surface occurred in 1965, were higher {sup 3}H levels of 5.8 Bq/l{+-}0.19 two sigma still observed in 1997, in mud pit no. 3. The mean {sup 240}Pu/{sup 239}Pu for all of the Amchitka samples was 0.1991{+-}0.0149 one standard deviation, with values ranging from 0.1824{+-}1.43% one sigma to 0.2431{+-}6.56% one sigma. The measured {sup 3}H levels and {sup 240}Pu/{sup 239}Pu ratios in freshwater moss and sediments at Amchitka provide no evidence of leakage occurring at the sites reported by Buske and Miller (1998 Nuclear-Weapons-Free America and Alaska Community Action on Toxics, Anchorage, Ak, p. 38) and Miller and Buske (1996 Nuclear Flashback: The Return to Anchitka, p. 35). It was noted that the marine sample; {sup 240}Pu/{sup 239}Pu ratios are statistically different than the global fallout ratios presented by Krey et al. (1976) and Kelley, Bond, and Beasley (1999). The additional non-fallout component {sup 240}Pu/{sup 239}Pu

  12. Dynamic underground stripping demonstration project

    International Nuclear Information System (INIS)

    Newmark, R.L.

    1992-04-01

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation techniques for rapid cleanup of localized underground spills. Called dynamic stripping to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first eight months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques. Tests then began on the contaminated site in FY 1992. This report describes the work at the Clean Site, including design and performance criteria, test results, interpretations, and conclusions. We fielded 'a wide range of new designs and techniques, some successful and some not. In this document, we focus on results and performance, lessons learned, and design and operational changes recommended for work at the contaminated site. Each section focuses on a different aspect of the work and can be considered a self-contained contribution

  13. Preclosure radiological safety analysis for accident conditions of the potential Yucca Mountain Repository: Underground facilities; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Ma, C.W.; Sit, R.C.; Zavoshy, S.J.; Jardine, L.J. [Bechtel National, Inc., San Francisco, CA (United States); Laub, T.W. [Sandia National Labs., Albuquerque, NM (United States)

    1992-06-01

    This preliminary preclosure radiological safety analysis assesses the scenarios, probabilities, and potential radiological consequences associated with postulated accidents in the underground facility of the potential Yucca Mountain repository. The analysis follows a probabilistic-risk-assessment approach. Twenty-one event trees resulting in 129 accident scenarios are developed. Most of the scenarios have estimated annual probabilities ranging from 10{sup {minus}11}/yr to 10{sup {minus}5}/yr. The study identifies 33 scenarios that could result in offsite doses over 50 mrem and that have annual probabilities greater than 10{sup {minus}9}/yr. The largest offsite dose is calculated to be 220 mrem, which is less than the 500 mrem value used to define items important to safety in 10 CFR 60. The study does not address an estimate of uncertainties, therefore conclusions or decisions made as a result of this report should be made with caution.

  14. Underground Test Area Fiscal Year 2013 Annual Quality Assurance Report Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Krenzien, Susan [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States); Marutzky, Sam [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States)

    2014-01-01

    This report is required by the Underground Test Area (UGTA) Quality Assurance Plan (QAP) and identifies the UGTA quality assurance (QA) activities for fiscal year (FY) 2013. All UGTA organizations—U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO); Desert Research Institute (DRI); Lawrence Livermore National Laboratory (LLNL); Los Alamos National Laboratory (LANL); Navarro-Intera, LLC (N-I); National Security Technologies, LLC (NSTec); and the U.S. Geological Survey (USGS)—conducted QA activities in FY 2013. The activities included conducting assessments, identifying findings and completing corrective actions, evaluating laboratory performance, and publishing documents. In addition, integrated UGTA required reading and corrective action tracking was instituted.

  15. Lower Colorado River GRP Leaking Underground Storage Tank Sites (Open), Nevada, 2012, Nevada Division of Environmental Protection Bureau of Corrective Actions

    Data.gov (United States)

    U.S. Environmental Protection Agency — The BCA layers are derived from a database for Federally Regulated Underground Storage Tanks (UST) and a database for Remediation and Leaking Underground Storage...

  16. Lower Colorado River GRP Leaking Underground Storage Tank Sites (Closed), Nevada, 2012, Nevada Division of Environmental Protection Bureau of Corrective Actions

    Data.gov (United States)

    U.S. Environmental Protection Agency — The BCA layers are derived from a database for Federally Regulated Underground Storage Tanks (UST) and a database for Remediation and Leaking Underground Storage...

  17. Injection-Site Reactions in Wild Horses (Equus caballus) Receiving an Immunocontraceptive Vaccine

    Science.gov (United States)

    Roelle, James E.; Ransom, Jason I.

    2009-01-01

    The U.S. Geological Survey and the Bureau of Land Management are conducting research on the efficacy of the immunocontraceptive agent porcine zona pellucida (PZP) in reducing fertility of wild horses (Equus caballus). As an antigen, PZP stimulates antibody production when injected into many mammalian species. These antibodies bind to the external surface of the ovum, preventing fertilization. By itself, PZP is only weakly immunogenic and is therefore delivered with an adjuvant, most commonly one of the Freund adjuvants, designed to further stimulate antibody production. Freund's complete adjuvant (FCA) in particular is known to be very effective, but may also be associated with undesirable side effects such as formation of abscesses at injection sites. Such reactions may be exacerbated when accompanied by the additional trauma of a remotely delivered dart. Because horses in our three study herds were individually identifiable by color markings and harem association, we were able to monitor mares for injection-site reactions (abscesses, nodules, swelling, and stiffness) following inoculation with PZP. In 100 injections delivered by hand we observed a single nodule, two instances of swelling, and no other reactions. In two herds that received remotely delivered (dart) injections, the frequency of reactions was about 1 and 6 percent for abscesses, 25 percent for nodules (both herds), 11 and 33 percent for swelling, and 1 and 12 percent for stiffness. Abscesses were too infrequent to allow meaningful analysis of the relation to covariates, but for the other types of reactions we used logistic regression to examine the relation of occurrence to the delivery method (rifle or CO2-powered blowgun), adjuvant (FCA, Freund's modified adjuvant, and Freund's incomplete adjuvant), dart trauma (normal or abnormal), and age of mare. Abnormal dart trauma included cases where the dart hit bone or the needle broke off. We found strong evidence (odds ratio = 5.023, P = 0.001) for a

  18. Deeper underground

    Energy Technology Data Exchange (ETDEWEB)

    Brearley, D. [Pantek Ltd. (United Kingdom)

    2005-12-01

    The paper describes how efficient data gathering has led to production and uptime improvements in UK Coal's Daw Mill colliery in Warwickshire. Software called FactorySuite A{sup 2} from Wonderware is being used to control and monitor all underground production and conveying. 3 photos.

  19. Evaluation of the Non-Transient Hydrologic Source Term from the CAMBRIC Underground Nuclear Test in Frenchman Flat, Nevada Test Site

    International Nuclear Information System (INIS)

    Tompson, A B; Maxwell, R M; Carle, S F; Zavarin, M; Pawloski, G A.; Shumaker, D E

    2005-01-01

    Hydrologic Source Term (HST) calculations completed in 1998 at the CAMBRIC underground nuclear test site were LLNL's first attempt to simulate a hydrologic source term at the NTS by linking groundwater flow and transport modeling with geochemical modeling (Tompson et al., 1999). Significant effort was applied to develop a framework that modeled in detail the flow regime and captured all appropriate chemical processes that occurred over time. However, portions of the calculations were simplified because of data limitations and a perceived need for generalization of the results. For example: (1) Transient effects arising from a 16 years of pumping at the site for a radionuclide migration study were not incorporated. (2) Radionuclide fluxes across the water table, as derived from infiltration from a ditch to which pumping effluent was discharged, were not addressed. (3) Hydrothermal effects arising from residual heat of the test were not considered. (4) Background data on the ambient groundwater flow direction were uncertain and not represented. (5) Unclassified information on the Radiologic Source Term (RST) inventory, as tabulated recently by Bowen et al. (2001), was unavailable; instead, only a limited set of derived data were available (see Tompson et al., 1999). (6) Only a small number of radionuclides and geochemical reactions were incorporated in the work. (7) Data and interpretation of the RNM-2S multiple well aquifer test (MWAT) were not available. As a result, the current Transient CAMBRIC Hydrologic Source Term project was initiated as part of a broader Phase 2 Frenchman Flat CAU flow and transport modeling effort. The source term will be calculated under two scenarios: (1) A more specific representation of the transient flow and radionuclide release behavior at the site, reflecting the influence of the background hydraulic gradient, residual test heat, pumping experiment, and ditch recharge, and taking into account improved data sources and modeling

  20. Nevada test site underground storage tank number 12-13-1: Nevada division of emergency management case number H931130E corrective action unit 450. Closure report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    The project site was identified as an abandoned Underground Storage Tank (UST) to be closed under the Department of Energy/Nevada Operations Office (DOE/NV) Environmental Restoration Division (ERD) Program during Fiscal Year 1993. The United States Environmental Protection Agency (EPA) requires that before permanent closure is completed an assessment of the site must take place. The Nevada Division of Environmental Protection (NDEP) requires assessment and corrective actions for a petroleum substance in the soil which exceeds 100 milligrams per kilogram (mg/kg). Subsequent to the tank removal, a hydrocarbon release was identified at the site. The release was reported to the NDEP by DOE/NV on November 30, 1993. Nevada Division of Environmental Management (NDEM) Case Number H931130E was assigned. This final closure report documents the assessment and corrective actions taken for the hydrocarbon release identified at the site. The Notification of Closure, EPA Form 7530-1 dated March 22, 1994, is provided in Appendix A. A 45-day report documenting the notification for a hydrocarbon release was submitted to NDEP on April 6, 1994.

  1. Simulation of Local Seismic Ground Motions from the FLASK Underground Nuclear Explosion near the Source Physics Experiment Dry Alluvium Geology Site

    Science.gov (United States)

    Rodgers, A. J.; Pitarka, A.; Wagoner, J. L.; Helmberger, D. V.

    2017-12-01

    The FLASK underground nuclear explosion (UNE) was conducted in Area 2 of Yucca Flat at the Nevada Test Site on May 26, 1970. The yield was 105 kilotons (DOE/NV-209-Rev 16) and the working point was 529 m below the surface. This test was detonated in faulted Tertiary volcanic rocks of Yucca Flat. Coincidently, the FLASK UNE ground zero (GZ) is close (earth structure, including surface topography. SW4 includes vertical mesh refinement which greatly reduces the computational resources needed to run a specific problem. Simulations are performed on high-performance computers with grid spacing as small as 10 meters and resolution to 6 Hz. We are testing various subsurface models to identify the role of 3D structure on path propagation effects from the source. We are also testing 3D models to constrain structure for the upcoming DAG experiments in 2018.

  2. RESULTS OF COMPREHENSIVE STUDIES OF THE UNDERGROUND HYDROSPHERE WITHIN THE WESTERN SHOULDER OF THE BAIKAL RIFT (AS EXEMPLIFIED BY THE BAYANDAI – KRESTOVSKY CAPE SITE

    Directory of Open Access Journals (Sweden)

    Konstantin Zh. Seminsky

    2011-01-01

    Full Text Available The subject of comprehensive studies is the underground hydrosphere of the upper crust of the western shoulder of the Baikal rift, being characterized by high tectonic activity in the recent stage of tectogenesis. The studies were focused on the Bayandai – Krestovsky Cape site, considering it as a benchmark for the territory of the Western Pribiakalie (Fig. 1. The available hydrogeological survey database is used to study underground waters circulating at depth of several kilometers. Analyses of deeper waters are conducted on the basis of geophysical data. According to results of initial geological and geophysical studies [Семинский и др., 2010], the crust at the junction of the Siberian crater and the SayanBaikal folded belt is characterized by a hierarchic zoneblock structure (Fig. 2. Regardless of the scale of studies, the territory under study can be divided into sections of two types, that alternate from NW to SE and represent wide highly destructed zones and relatively monolithic blocks of the crust. The Obruchev fault system is distinguished as the main interblock zone (the 2nd hierarchic level in the study area. It represents the 50 km long NW shoulder of the Baikal rift (the1st hierarchic level and includes the Morskaya, Primorskaya and Prikhrebtovaya interplate zones (the 3rd hierarchic level. These zones are traced from depth of dozens of kilometers; at the surface, they are represented by fault structures of the highest hierarchic levels.Specific features of the current zoneblock divisibility of the crust serve as the structural basis for interpreting the materials obtained by hydrogeological studies conducted on the Bayandai – Krestovsky Cape site to research the distribution, mineralization and macrocomponent compositions of waters which represent the subsurface part of the underground lithosphere in the study area. The research is based on analyses of the underground water samples from 46 observation points

  3. Transferability of Data Related to the Underground Test Area Project, Nevada Test Site, Nye County, Nevada: Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Stoller-Navarro Joint Venture

    2004-06-24

    This document is the collaborative effort of the members of an ad hoc subcommittee of the Underground Test Area (UGTA) Technical Working Group (TWG). The UGTA Project relies on data from a variety of sources; therefore, a process is needed to identify relevant factors for determining whether material-property data collected from other areas can be used to support groundwater flow, radionuclide transport, and other models within a Corrective Action Unit (CAU), and for documenting the data transfer decision and process. This document describes the overall data transfer process. Separate Parameter Descriptions will be prepared that provide information for selected specific parameters as determined by the U.S. Department of Energy (DOE) UGTA Project Manager. This document and its accompanying appendices do not provide the specific criteria to be used for transfer of data for specific uses. Rather, the criteria will be established by separate parameter-specific and model-specific Data Transfer Protocols. The CAU Data Documentation Packages and data analysis reports will apply the protocols and provide or reference a document with the data transfer evaluations and decisions.

  4. Inventory of geochemical sensors available for monitoring an underground site of nuclear waste repository research pathways for new developments

    International Nuclear Information System (INIS)

    Ignatiadis, I.; Gaucher, E.; Buschaert, S.

    2010-01-01

    Document available in extended abstract form only. The principle of the nuclear waste storage is based on the installation of a whole of robust barriers in order to make safe the secular containment of waste. In many industrial countries deep argillaceous formations are considered as potential host media for high level radioactive wastes. This is because clayey geo-materials have the ability to adsorb a large amount of ions and they possess the low permeability required to slow down the percolations of fluids. Containers with radioactive waste will be also protected with barriers made from porous materials such as bentonite. For the safety assessment of long-term radioactive waste disposals, a critical issue is the continuous disposal monitoring of the repository. In this framework, it is desirable to have non-invasive tools in order to determine in situ some geochemical, thermal and mechanical parameters for the suitable detection of changes that can take place during the life of the underground repository. The major objective of this work is to carry out a detailed inventory of robust geochemical sensor concepts being able to be devoted (after adaptation or development and/or implementation) to the observation and monitoring of the underground components of a nuclear waste storage. These sensors must answer precise specifications related to the requirements and constraints of observation and monitoring of the storage components (architecture, geological environment and associated phenomenology). In addition to the technical aspects, the major constraint seems to be the operation life, which will have to be based on the robustness and the perseverance (durability) of the principle of the sensors. Among the geochemical parameters to be followed, the most significant are: temperature, pH, conductivity, redox potential, the speciation of certain elements, and measurement of H 2 , O 2 , CO 2 and H 2 S. The inventory and the assessment of the currently available

  5. Rokibaar Underground = Rock bar Underground

    Index Scriptorium Estoniae

    2008-01-01

    Rokibaari Underground (Küütri 7, Tartu) sisekujundus, mis pälvis Eesti Sisearhitektide Liidu 2007. a. eripreemia. Sisearhitekt: Margus Mänd (Tammat OÜ). Margus Männist, tema tähtsamad tööd. Plaan, 5 värv. vaadet, foto M. Männist

  6. Underground laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Bettini, A., E-mail: Bettini@pd.infn.i [Padua University and INFN Section, Dipartimento di Fisca G. Galilei, Via Marzolo 8, 35131 Padova (Italy); Laboratorio Subterraneo de Canfranc, Plaza Ayuntamiento n1 2piso, Canfranc (Huesca) (Spain)

    2011-01-21

    Underground laboratories provide the low radioactive background environment necessary to frontier experiments in particle and nuclear astrophysics and other disciplines, geology and biology, that can profit of their unique characteristics. The cosmic silence allows to explore the highest energy scales that cannot be reached with accelerators by searching for extremely rare phenomena. I will briefly review the facilities that are operational or in an advanced status of approval around the world.

  7. Bioremediation of diesel contamination at an underground storage tank site: a spatial analysis of the microbial community.

    Science.gov (United States)

    Andreolli, Marco; Albertarelli, Nicola; Lampis, Silvia; Brignoli, Pierlorenzo; Khoei, Nazaninalsadat Seyed; Vallini, Giovanni

    2016-01-01

    The present study reports on a real case of contamination due to the chronic leakage of diesel fuel from an underground tank at a dismissed service station. Speciation of the microbial community according to both lateral and vertical gradients from the origin of the contaminant release was analyzed by means of the PCR-DGGE technique. Moreover, the effects of a landfarming treatment on both the microbial community structure and the abatement of contamination were analyzed. The concentration of total petrol hydrocarbons (TPHs) decreased along the horizontal gradient (from 7042.2 ± 521.9 to 112.2 ± 24.3 mg kg(-1)), while increased downwards from the position of the tank (from 502.6 ± 43.7 to 4972.5 ± 275.3 mg kg(-1)). PCR-DGGE analyses and further statistical treatment of the data indicated a correlation between structure of the bacterial communities and amount of diesel fuel contamination. On the other hand, level of contamination, soil texture and depth were shown to affect the fungal community. Chloroflexi and Ascomycota were the most abundant microbes ascertained through culture-independent procedures. Landfarming promoted 91.6 % reduction of TPHs in 75 days. Furthermore, PCR-DGGE analyses evidenced that both bacterial and fungal communities of the treated soil were restored to the pristine conditions of uncontaminated topsoil. The present study demonstrated that bacterial and fungal communities were affected differently by soil factors such as level of hydrocarbon contamination as well as soil depth and texture. This report shows that a well-planned landfarming treatment can drive the restoration of the soil in terms of both abatement of the contaminants and resilience of the microbial community structure.

  8. Underground Test Area Fiscal Year 2014 Annual Quality Assurance Report Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Krenzien, Susan

    2015-01-01

    This report is required by the Underground Test Area (UGTA) Quality Assurance Plan (QAP) and identifies the UGTA quality assurance (QA) activities from October 1, 2013, through September 30, 2014 (fiscal year [FY] 2014). All UGTA organizations—U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO); Desert Research Institute (DRI); Lawrence Livermore National Laboratory (LLNL); Los Alamos National Laboratory (LANL); National Security Technologies, LLC (NSTec); Navarro-Intera, LLC (N-I); and the U.S. Geological Survey (USGS)—conducted QA activities in FY 2014. The activities included conducting oversight assessments for QAP compliance, identifying findings and completing corrective actions, evaluating laboratory performance, and publishing documents. UGTA Activity participants conducted 25 assessments on topics including safe operations, QAP compliance, activity planning, and sampling. These assessments are summarized in Section 2.0. Corrective actions tracked in FY 2014 are presented in Appendix A. Laboratory performance was evaluated based on three approaches: (1) established performance evaluation programs (PEPs), (2) interlaboratory comparisons, or (3) data review. The results of the laboratory performance evaluations, and interlaboratory comparison results are summarized in Section 4.0. The UGTA Activity published three public documents and a variety of other publications in FY 2014. The titles, dates, and main authors are identified in Section 5.0. The Contract Managers, Corrective Action Unit (CAU) Leads, Preemptive Review (PER) Committee members, and Topical Committee members are listed by name and organization in Section 6.0. Other activities that affected UGTA quality are discussed in Section 7.0. Section 8.0 provides the FY 2014 UGTA QA program conclusions, and Section 9.0 lists the references not identified in Section 5.0.

  9. Prediction of Pseudo relative velocity response spectra at Yucca Mountain for underground nuclear explosions conducted in the Pahute Mesa testing area at the Nevada testing site

    International Nuclear Information System (INIS)

    Phillips, J.S.

    1991-12-01

    The Yucca Mountain Site Characterization Project (YMP), managed by the Office of Geologic Disposal of the Office of Civilian Radioactive Waste Management of the US Department of Energy, is examining the feasibility of siting a repository for commercial, high-level nuclear wastes at Yucca Mountain on and adjacent to the Nevada Test Site (NTS). This work, intended to extend our understanding of the ground motion at Yucca Mountain resulting from testing of nuclear weapons on the NTS, was funded by the Yucca Mountain project and the Military Applications Weapons Test Program. This report summarizes one aspect of the weapons test seismic investigations conducted in FY88. Pseudo relative velocity response spectra (PSRV) have been calculated for a large body of surface ground motions generated by underground nuclear explosions. These spectra have been analyzed and fit using multiple linear regression techniques to develop a credible prediction technique for surface PSRVs. In addition, a technique for estimating downhole PSRVs at specific stations is included. A data summary, data analysis, prediction development, prediction evaluation, software summary and FORTRAN listing of the prediction technique are included in this report

  10. A Global Survey of Deep Underground Facilities; Examples of Geotechnical and Engineering Capabilities, Achievements, Challenges (Mines, Shafts, Tunnels, Boreholes, Sites and Underground Facilities for Nuclear Waste and Physics R&D): A Guide to Interactive Global Map Layers, Table Database, References and Notes

    International Nuclear Information System (INIS)

    Tynan, Mark C.; Russell, Glenn P.; Perry, Frank V.; Kelley, Richard E.; Champenois, Sean T.

    2017-01-01

    These associated tables, references, notes, and report present a synthesis of some notable geotechnical and engineering information used to create four interactive layer maps for selected: 1) deep mines and shafts; 2) existing, considered or planned radioactive waste management deep underground studies or disposal facilities 3) deep large diameter boreholes, and 4) physics underground laboratories and facilities from around the world. These data are intended to facilitate user access to basic information and references regarding “deep underground” facilities, history, activities, and plans. In general, the interactive maps and database provide each facility’s approximate site location, geology, and engineered features (e.g.: access, geometry, depth, diameter, year of operations, groundwater, lithology, host unit name and age, basin; operator, management organization, geographic data, nearby cultural features, other). Although the survey is not comprehensive, it is representative of many of the significant existing and historical underground facilities discussed in the literature addressing radioactive waste management and deep mined geologic disposal safety systems. The global survey is intended to support and to inform: 1) interested parties and decision makers; 2) radioactive waste disposal and siting option evaluations, and 3) safety case development applicable to any mined geologic disposal facility as a demonstration of historical and current engineering and geotechnical capabilities available for use in deep underground facility siting, planning, construction, operations and monitoring.

  11. A Global Survey of Deep Underground Facilities; Examples of Geotechnical and Engineering Capabilities, Achievements, Challenges (Mines, Shafts, Tunnels, Boreholes, Sites and Underground Facilities for Nuclear Waste and Physics R&D): A Guide to Interactive Global Map Layers, Table Database, References and Notes

    Energy Technology Data Exchange (ETDEWEB)

    Tynan, Mark C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Russell, Glenn P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Perry, Frank V. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kelley, Richard E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Champenois, Sean T. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-13

    These associated tables, references, notes, and report present a synthesis of some notable geotechnical and engineering information used to create four interactive layer maps for selected: 1) deep mines and shafts; 2) existing, considered or planned radioactive waste management deep underground studies or disposal facilities 3) deep large diameter boreholes, and 4) physics underground laboratories and facilities from around the world. These data are intended to facilitate user access to basic information and references regarding “deep underground” facilities, history, activities, and plans. In general, the interactive maps and database provide each facility’s approximate site location, geology, and engineered features (e.g.: access, geometry, depth, diameter, year of operations, groundwater, lithology, host unit name and age, basin; operator, management organization, geographic data, nearby cultural features, other). Although the survey is not comprehensive, it is representative of many of the significant existing and historical underground facilities discussed in the literature addressing radioactive waste management and deep mined geologic disposal safety systems. The global survey is intended to support and to inform: 1) interested parties and decision makers; 2) radioactive waste disposal and siting option evaluations, and 3) safety case development applicable to any mined geologic disposal facility as a demonstration of historical and current engineering and geotechnical capabilities available for use in deep underground facility siting, planning, construction, operations and monitoring.

  12. Anaesthetic induction with alfaxalone in the ball python (Python regius): dose response and effect of injection site.

    Science.gov (United States)

    James, Lauren E; Williams, Catherine Ja; Bertelsen, Mads F; Wang, Tobias

    2018-05-01

    To characterise the minimum dose of intramuscular alfaxalone required to facilitate intubation for mechanical ventilation, and to investigate the impact of cranial versus caudal injection on anaesthetic depth. Randomised crossover study. Six healthy juvenile ball pythons (Python regius). Three dosages (10, 20 and 30 mg kg -1 ) of alfaxalone were administered to each python in a caudal location with a minimum 2 weeks washout. Induction and recovery were monitored by assessing muscle tone, righting reflex, response to a noxious stimulus and the ability to intubate. A subsequent experiment assessed the influence of injection site by comparing administration of 20 mg kg -1 alfaxalone in a cranial location (1 cm cranial to the heart) with the caudal site. Respiration rate was monitored throughout, and when intubation was possible, snakes were mechanically ventilated. Regardless of dose and injection site, maximum effect was reached within 10.0 ± 2.7 minutes. When administered at the caudal injection site, intubation was only successful after a dosage of 30 mg kg- 1 , which is higher than in previous reports for other reptiles. However, intubation was possible in all cases after 7.2 ± 1.6 minutes upon cranial administration of 20 mg kg -1 , and anaesthetic duration was significantly lengthened (p pythons, and may serve as a useful induction agent prior to provision of volatile anaesthetics. The same dosage injected in the cranial site led to deeper anaesthesia than when injected caudally, suggesting that shunting to the liver and first-pass metabolism of alfaxalone occur when injected caudally, via the renal portal system. Copyright © 2018 Association of Veterinary Anaesthetists and American College of Veterinary Anesthesia and Analgesia. Published by Elsevier Ltd. All rights reserved.

  13. Analysis of dissolved benzene plumes and methyl tertiary butyl ether (MTBE) plumes in ground water at leaking underground fuel tank (LUFT) sites

    International Nuclear Information System (INIS)

    Happel, A.M.; Rice, D.; Beckenbach, E.; Savalin, L.; Temko, H.; Rempel, R.; Dooher, B.

    1996-11-01

    The 1990 Clean Air Act Amendments mandate the addition of oxygenates to gasoline products to abate air pollution. Currently, many areas of the country utilize oxygenated or reformulated fuel containing 15- percent and I I-percent MTBE by volume, respectively. This increased use of MTBE in gasoline products has resulted in accidental point source releases of MTBE containing gasoline products to ground water. Recent studies have shown MTBE to be frequently detected in samples of shallow ground water from urban areas throughout the United States (Squillace et al., 1995). Knowledge of the subsurface fate and transport of MTBE in ground water at leaking underground fuel tank (LUFT) sites and the spatial extent of MTBE plumes is needed to address these releases. The goal of this research is to utilize data from a large number of LUFT sites to gain insights into the fate, transport, and spatial extent of MTBE plumes. Specific goals include defining the spatial configuration of dissolved MTBE plumes, evaluating plume stability or degradation over time, evaluating the impact of point source releases of MTBE to ground water, and attempting to identify the controlling factors influencing the magnitude and extent of the MTBE plumes. We are examining the relationships between dissolved TPH, BTEX, and MTBE plumes at LUFT sites using parallel approaches of best professional judgment and a computer-aided plume model fitting procedure to determine plume parameters. Here we present our initial results comparing dissolved benzene and MTBE plumes lengths, the statistical significance of these results, and configuration of benzene and MTBE plumes at individual LUFT sites

  14. Development of a methodology for post closure radiological risk analysis of underground waste repositories. Illustrative assessment of the Harwell site

    International Nuclear Information System (INIS)

    Gralewski, Z.A.; Kane, P.; Nicholls, D.B.

    1987-06-01

    A probabilistic risk analysis (pra) is demonstrated for a number of ground water mediated release scenarios at the Harwell Site for a hypothetical repository at a depth of about 150 metres. This is the second stage of development of an overall risk assessment methodology. A procedure for carrying out multi-scenario assessment using available probabilistic risk assessment (pra) models is presented and a general methodology for combining risk contributions is outlined. Appropriate levels of model complexity in pra are discussed. Modelling requirements for the treatment of multiple simultaneous pathways and of site evolution are outlined. Further developments of pra systems are required to increase the realism of both the models and their mode of application, and hence to improve estimates of risk. (author)

  15. Layout of the objects of underground nuclear tests at the Balapan test field of the former Semipalatinsk test site

    International Nuclear Information System (INIS)

    Konovalov, V.E.; Gryaznov, O.V.

    2000-01-01

    Integrated research of practical and scientific interest is conducted at the Balapan test field of the Semipalatinsk test site. The lack of the reliable locations for features associated with nuclear testing causes considerable difficulties while carrying out the research. To fill this gap the authors present data available at the Institute of Geophysical Research of the National Nuclear Center of the Republic of Kazakhstan. (author)

  16. Phrenic nerve block caused by interscalene brachial plexus block: breathing effects of different sites of injection.

    Science.gov (United States)

    Bergmann, Lars; Martini, Stefan; Kesselmeier, Miriam; Armbruster, Wolf; Notheisen, Thomas; Adamzik, Michael; Eichholz, Rϋdiger

    2016-07-29

    Interscalene brachial plexus (ISB) block is often associated with phrenic nerve block and diaphragmatic paresis. The goal of our study was to test if the anterior or the posterior ultrasound guided approach of the ISB is associated with a lower incidence of phrenic nerve blocks and impaired lung function. This was a prospective, randomized and single-blinded study of 84 patients scheduled for elective shoulder surgery who fullfilled the inclusion and exclusion critereria. Patients were randomized in two groups to receive either the anterior (n = 42) or the posterior (n = 42) approach for ISB. Clinical data were recorded. In both groups patients received ISB with a total injection volume of 15 ml of ropivacaine 1 %. Spirometry was conducted at baseline (T0) and 30 min (T30) after accomplishing the block. Changes in spirometrical variables between T0 and T30 were investigated by Wilcoxon signed-rank test for each puncture approach. The temporal difference between the posterior and the anterior puncture approach groups were again analyzed by the Wilcoxon-Mann-Whitney test. The spirometric results showed a significant decrease in vital capacity, forced expiratory volume per second, and maximum nasal inspiratory breathing after the Interscalene brachial plexus block; indicating a phrenic nerve block (p Wilcoxon signed-rank). A significant difference in the development of the spirometric parameters between the anterior and the posterior group could not be identified (Wilcoxon-Mann-Whitney test). Despite the changes in spirometry, no cases of dyspnea were reported. A different site of injection (anterior or posterior) did not show an effect in reducing the cervical block spread of the local anesthetic and the incidence of phrenic nerve blocks during during ultrasound guided Interscalene brachial plexus block. Clinical breathing effects of phrenic nerve blocks are, however, usually well compensated, and subjective dyspnea did not occur in our patients. German

  17. Controlled CO2 injection into a shallow aquifer and leakage detection monitoring practices at the K-COSEM site, Korea

    Science.gov (United States)

    Lee, S. S.; Joun, W.; Ju, Y. J.; Ha, S. W.; Jun, S. C.; Lee, K. K.

    2017-12-01

    Artificial carbon dioxide injection into a shallow aquifer system was performed with two injection types imitating short- and long-term CO2 leakage events into a shallow aquifer. One is pulse type leakage of CO2 (6 hours) under a natural hydraulic gradient (0.02) and the other is long-term continuous injection (30 days) under a forced hydraulic gradient (0.2). Injection and monitoring tests were performed at the K-COSEM site in Eumseong, Korea where a specially designed well field had been installed for artificial CO2 release tests. CO2-infused and tracer gases dissolved groundwater was injected through a well below groundwater table and monitoring were conducted in both saturated and unsaturated zones. Real-time monitoring data on CO2 concentration and hydrochemical parameters, and periodical measurements of several gas tracers (He, Ar, Kr, SF6) were obtained. The pulse type short-term injection test was carried out prior to the long-term injection test. Results of the short-term injection test, under natural hydraulic gradient, showed that CO2 plume migrated along the preferential pathway identified through hydraulic interference tests. On the other hand, results of the long-term injection test indicated the CO2 plume migration path was aligned to the forced hydraulic gradient. Compared to the short-term test, the long-term injection formed detectable CO2 concentration change in unsaturated wellbores. Recovery data of tracer gases made breakthrough curves compatible to numerical simulation results. The monitoring results indicated that detection of CO2 leakage into groundwater was more effectively performed by using a pumping and monitoring method in order to capture by-passing plume. With this concept, an effective real-time monitoring method was proposed. Acknowledgement: Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2storage" from the KEITI (Project number : 2014001810003)

  18. The intimate relationship as a site of social protection: Partnerships between people who inject drugs.

    Science.gov (United States)

    Rhodes, Tim; Rance, Jake; Fraser, Suzanne; Treloar, Carla

    2017-05-01

    Public health research treats intimate partnerships as sites of risk management, including in the management of HIV and hepatitis C transmission. This risk-infused biomedical approach tends to undermine appreciation of the emotional and socially situated meanings of care in intimate partnerships. In this article we explore qualitative interview accounts of the care enacted in partnerships between people who inject drugs, drawing on a 2014 study of 34 couples and 12 individuals living in two locations of Australia. A thematic analysis highlights 'best friend relationships', 'doing everything together', 'co-dependency', and 'doing normalcy' as core to narratives of care. As we will argue, the accounts position the care undertaken by couples as at once shaped by day-to-day practices of drug use and by social situation, with the partnership enacting care as a form of social protection, including protection from stigma and other environmental hostilities. The intimacy of doing everything together offers insulation against stigma, yet also reproduces its isolating effects. While the care produced in drug-using partnerships is presented as double-edged, we note how interview accounts are used to deflect the charge that these relationships represent harmful co-dependency. Taken together, the interview accounts negotiate a 'counter-care' in relation to normalcy, presenting the intimate partnership between people who use drugs as a legitimate embodiment of care. Copyright © 2017. Published by Elsevier Ltd.

  19. Gas injection test in a borehole of the Meuse/Haute Marne underground research laboratory: experimental overview and basic data analysis

    International Nuclear Information System (INIS)

    La Vaissiere, Remi de; Talandier, Jean; Piedevache, Mederic; Helmlinger, Benjamin; Lavanchy, Jean-Marc; Croise, Jean; Senger, Rainer

    2012-01-01

    Document available in extended abstract form only. Understanding of the fate and of the impact of gas produced by corrosion of metals, microbial degradation and the radiolysis of water within a deep geological disposal repository for radioactive waste, is of major relevance in the performance assessment including the long-term evolution of the repository. To address these issues, the French national Agency for the management of radioactive waste (Andra) has directed a field scale experiment examining the mechanisms controlling gas entry and gas migration in the Callovo-Oxfordian (COX) clay, the proposed host rock of the French deep geological repository project. This experiment, called PGZ1, studies the migration of nitrogen in the COX based on gas injection tests performed in a borehole of the Meuse/Haute Marne URL. This experiment is currently being performed under the auspices of the Euratom 7. Framework FORGE project. In this poster, we provide an overview on the field data and a basic analysis of the data. The advanced interpretation of the data was based on numerical modeling of the two-phase flow with 3 different approaches and numerical codes. The experimental layout consists of three boreholes. Two parallel boreholes (PGZ1201 and PGZ1202) were drilled from the GED drift and are equipped with a triple interval system to monitor the pressure evolutions in 3 intervals, associated with the hydraulic and gas injection tests in the selected test interval (PGZ1201, middle interval). The third borehole (PGZ1031) was drilled from the GEX drift and is equipped with an extensometer probe, to monitor potential deformation associated with the resulting stress changes. An initial hydraulic test (HYDRO1) was performed in the test interval to estimate the hydraulic conductivity of the COX prior to gas testing. The hydraulic test consisted in a sequence of injections of synthetic formation water (pressure pulse followed by a constant pressure and a final shut-in phase

  20. Detection of Noble Gas Radionuclides from an Underground Nuclear Explosion During a CTBT On-Site Inspection

    Science.gov (United States)

    Carrigan, Charles R.; Sun, Yunwei

    2014-03-01

    The development of a technically sound approach to detecting the subsurface release of noble gas radionuclides is a critical component of the on-site inspection (OSI) protocol under the Comprehensive Nuclear Test Ban Treaty. In this context, we are investigating a variety of technical challenges that have a significant bearing on policy development and technical guidance regarding the detection of noble gases and the creation of a technically justifiable OSI concept of operation. The work focuses on optimizing the ability to capture radioactive noble gases subject to the constraints of possible OSI scenarios. This focus results from recognizing the difficulty of detecting gas releases in geologic environments—a lesson we learned previously from the non-proliferation experiment (NPE). Most of our evaluations of a sampling or transport issue necessarily involve computer simulations. This is partly due to the lack of OSI-relevant field data, such as that provided by the NPE, and partly a result of the ability of computer-based models to test a range of geologic and atmospheric scenarios far beyond what could ever be studied by field experiments, making this approach very highly cost effective. We review some highlights of the transport and sampling issues we have investigated and complete the discussion of these issues with a description of a preliminary design for subsurface sampling that addresses some of the sampling challenges discussed here.

  1. Corrective Action Investigation Plan for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada, Revision No. 1 (9/2001)

    International Nuclear Information System (INIS)

    2000-01-01

    This corrective action investigation plan contains the U.S. Department of Energy, Nevada Operations Office's approach to collect data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 262 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 262 consists of nine Corrective Action Sites (CASs): Underground Storage Tank (25-02-06), Septic Systems A and B (25-04-06), Septic System (25-04-07), Leachfield (25-05-03), Leachfield (25-05-05), Leachfield (25-05-06), Radioactive Leachfield (25-05-08), Leachfield (25-05-12), and Dry Well (25-51-01). Situated in Area 25 at the Nevada Test Site (NTS), sites addressed by CAU 262 are located at the Reactor-Maintenance, Assembly, and Disassembly (R-MAD); Test Cell C; and Engine-Maintenance, Assembly, and Disassembly (E-MAD) facilities. The R-MAD, Test Cell C, and E-MAD facilities supported nuclear rocket reactor and engine testing as part of the Nuclear Rocket Development Station. The activities associated with the testing program were conducted between 1958 and 1973. Based on site history collected to support the Data Quality Objectives process, contaminants of potential concern (COPCs) for the site include oil/diesel-range total petroleum hydrocarbons, volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls, Resource Conservation and Recovery Act metals, and gamma-emitting radionuclides, isotopic uranium, isotopic plutonium, strontium-90, and tritium. The scope of the corrective action field investigation at the CAU will include the inspection of portions of the collection systems, sampling the contents of collection system features in situ of leachfield logging materials, surface soil sampling, collection of samples of soil underlying the base of inlet and outfall ends of septic tanks and outfall ends of diversion structures and distribution boxes, collection of soil samples from biased or a combination of

  2. 18F-FDG PET/CT Findings Following Repeated Intramuscular Injections of "Site Enhancement Oil" in the Upper Extremities

    DEFF Research Database (Denmark)

    Dejanović, Danijela; Loft, Annika

    2017-01-01

    We present the findings on F-FDG PET/CT in a 50-year-old man known to self-administer intramuscular injections with site enhancement oil in the upper extremities. PET images show diffuse pathological high FDG uptake in soft tissue of the upper arms and in scanned portions of the forearms. On the CT...

  3. Physics at the proposed National Underground Science Facility

    International Nuclear Information System (INIS)

    Nieto, M.M.

    1983-01-01

    The scientific, technical, and financial reasons for building a National Underground Science Facility are discussed. After reviewing examples of other underground facilities, we focus on the Los Alamos proposal and the national for its choice of site

  4. Feline injection-site sarcoma / Sarcoma de aplicação felino

    Directory of Open Access Journals (Sweden)

    Julia Maria Matera

    2008-08-01

    Full Text Available The feline injection-site sarcoma (FIS is a challenge for the veterinarian and the affected cat’s owner. The injectable applications (vaccines, medications seems to be the reason for that neoplasia, more specifically, the inflammation caused by injury of given drugs or antigens to the health tissue. Generally the FIS presents a more aggressive behavior when compared to sarcoma not associated to application. The most effective treatment has not been established yet, but it is believed that a multimodality of therapies, surgery, radiotherapy, and chemotherapy would be the most indicated option. The knowledge of the illness in all of its aspects will supply to professionals colleges subsidies in relation to the best way to approach its diagnosis and treatment.O sarcoma de aplicação felino (SAF é atualmente um grande desafio para o médico veterinário e também para o proprietário do felino acometido. Aplicações injetáveis por via subcutânea ou intramuscular, como vacinas e medicações, aparecem como iniciadoras do processo de neogênese dessa neoplasia, mais precisamente a inflamação persistente, causada pela lesão ao tecido sadio decorrente do fármaco ou antígeno administrado. Geralmente o SAF apresenta comportamento mais agressivo quando comparado ao sarcoma não associado à aplicação. O tratamento mais eficaz ainda não está estabelecido, mas acredita-se que a multimodalidade de terapias, cirurgia, radioterapia e quimioterapia seja a opção mais indicada. O conhecimento da afecção em todos os seus aspectos irá fornecer aos colegas profissionais subsídios em relação a melhor maneira de abordá-la em termos de diagnóstico, tratamento e prevenção.

  5. Prediction of Pseudo relative velocity response spectra at Yucca Mountain for underground nuclear explosions conducted in the Pahute Mesa testing area at the Nevada testing site; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J.S.

    1991-12-01

    The Yucca Mountain Site Characterization Project (YMP), managed by the Office of Geologic Disposal of the Office of Civilian Radioactive Waste Management of the US Department of Energy, is examining the feasibility of siting a repository for commercial, high-level nuclear wastes at Yucca Mountain on and adjacent to the Nevada Test Site (NTS). This work, intended to extend our understanding of the ground motion at Yucca Mountain resulting from testing of nuclear weapons on the NTS, was funded by the Yucca Mountain project and the Military Applications Weapons Test Program. This report summarizes one aspect of the weapons test seismic investigations conducted in FY88. Pseudo relative velocity response spectra (PSRV) have been calculated for a large body of surface ground motions generated by underground nuclear explosions. These spectra have been analyzed and fit using multiple linear regression techniques to develop a credible prediction technique for surface PSRVs. In addition, a technique for estimating downhole PSRVs at specific stations is included. A data summary, data analysis, prediction development, prediction evaluation, software summary and FORTRAN listing of the prediction technique are included in this report.

  6. Site-specific standard request for Underground Storage Tanks 1219-U, 1222-U, 2082-U, and 2068-U at the Rust Garage Facility Buildings 9754-1 and 9720-15

    International Nuclear Information System (INIS)

    1994-08-01

    This document is a site-specific standard request for underground storage tanks located at the Rust Garage Facility. These standards are justified based on conclusion derived from the exposure assessment that indicates there is no current or forseeable future human health risk associated with petroleum contaminants on the site, that current and future ecological risks would be generally limited to subsurface species and plant life with roots extending into the area, and that most of the impacted area at the site is covered by asphalt or concrete. The vertical and horizontal extent of soil and ground water contamination are limited to immediate area of the Rust Garage Facility

  7. Overburden characterization and post-burn study of the Hanna IV, underground coal gasification site, Wyoming, and comparison to other Wyoming UCG sites

    Energy Technology Data Exchange (ETDEWEB)

    Marcouiller, B.A.; Burns, L.K.; Ethridge, F.G.

    1984-11-01

    Analysis of 21 post-burn cores taken from the Hanna IV UCG site allows 96 m (315 ft) of overburden to be subdivided into four local stratigraphic units. The 7.6 m (25 ft) thick Hanna No. 1 coal seam is overlain by a laterally discontinuous, 3.3 m (11 ft) thick shaley mudstone (Unit A') in part of the Hanna IV site. A more widespread, 30 m (90 ft) thick well-indurated sandstone (Unit A) overlies the A' unit. Unit A is the roof rock for both of the Hanna IV cavities. Overlying Unit A is a 33 m (108 ft) thick sequence of mudstone and claystone (Unit B), and the uppermost unit at the Hanna IV site (Unit C) is a coarse-grained sandstone that ranges in thickness from 40 to 67 m (131 to 220 ft). Two elliptical cavities were formed during the two phases of the Hanna IV experiment. The larger cavity, Hanna IVa, is 45 x 15 m in plan and has a maximum height of 18 m (59 ft) from the base of the coal seam to the top of the cavity; the Hanna IVb cavity is 40 x 15 m in plan and has a maximum height of 11 m (36 ft) from the base of the coal seam to the top of the cavity. Geotechnical tests indicated that the Hanna IV overburden rocks were moderately strong to strong, based on the empirical classification of Broch and Franklin (1972), and a positive, linear correlation exists between rock strength and volume percent calcite cement. There is an inverse linear correlation between rock strength and porosity for the Hanna IV overburden rocks. 28 refs., 34 figs., 13 tabs..

  8. Water underground

    Science.gov (United States)

    de Graaf, Inge

    2015-04-01

    The world's largest assessable source of freshwater is hidden underground, but we do not know what is happening to it yet. In many places of the world groundwater is abstracted at unsustainable rates: more water is used than being recharged, leading to decreasing river discharges and declining groundwater levels. It is predicted that for many regions of the world unsustainable water use will increase, due to increasing human water use under changing climate. It would not be long before shortage causes widespread droughts and the first water war begins. Improving our knowledge about our hidden water is the first step to stop this. The world largest aquifers are mapped, but these maps do not mention how much water they contain or how fast water levels decline. If we can add a third dimension to the aquifer maps, so a thickness, and add geohydrological information we can estimate how much water is stored. Also data on groundwater age and how fast it is refilled is needed to predict the impact of human water use and climate change on the groundwater resource.

  9. The Canfranc Underground Laboratory

    International Nuclear Information System (INIS)

    Amare, J.; Beltran, B.; Carmona, J.M.; Cebrian, S.; Garcia, E.; Irastorza, I.G.; Gomez, H.; Luzon, G.; Martinez, M.; Morales, J.; Ortiz de Solorzano, A.; Pobes, C.; Puimedon, J.; Rodriguez, A.; Ruz, J.; Sarsa, M.L.; Torres, L.; Villar, J.A.

    2005-01-01

    This paper describes the forthcoming enlargement of the Canfranc Underground Laboratory (LSC) which will allow to host new international Astroparticle Physics experiments and therefore to broaden the European underground research area. The new Canfranc Underground Laboratory will operate in coordination (through the ILIAS Project) with the Gran Sasso (Italy), Modane (France) and Boulby (UK) underground laboratories

  10. Clinical and radiological evidence of the recurrence of reversible pegvisomant-related lipohypertrophy at the new site of injection in two women with acromegaly: a case series

    Directory of Open Access Journals (Sweden)

    Rochira Vincenzo

    2012-01-01

    Full Text Available Abstract Introduction Pegvisomant-related lipohypertrophy may revert when changing the site of injection, but the lipohypertrophy may recur at the new site of injection. The strength of evidence, however, is weak and comes from information obtained from physical examination only. Case presentation We studied two Caucasian women with acromegaly, aged 51 and 71 years, with pegvisomant-related lipohypertrophy. Our two patients were evaluated at baseline, when the site of pegvisomant injection was the periumbilical abdominal region, and then four months after switching the injection site from the abdomen to both thighs. Both physical examination and radiological studies (magnetic resonance imaging and dual energy X-ray absorptiometry demonstrated that the abdominal lipohypertrophy progressively reverted in both patients after switching the site of injection to the thighs. However, lipohypertrophy reappeared at the new site of injection. The radiological outcome confirmed the reversibility of pegvisomant-related lipohypertrophy and strengthened the body of evidence on this issue. Conclusion In clinical practice, physical examination of the injection site or sites leads to an early detection of lipohypertrophy during pegvisomant treatment. Radiological procedures may be of help to confirm subcutaneous fat changes and for a precise monitoring of fat redistribution. Patients should get appropriate information about lipohypertrophy before starting pegvisomant treatment since the rotation of the site of injection may prevent lipohypertrophy.

  11. Hydraulic effects of a CO2 injection into an underground reservoir. Contribution to the development of methods allowing to monitor these effects

    International Nuclear Information System (INIS)

    Contraires, Simon

    2008-01-01

    This research thesis addresses the issue of geological storage of CO 2 . It aims at experimentally determining the effects of dissolution/precipitation reactions of calcite (CaCO 3 ) in porous media on observable geophysics, at different scales. After a presentation of the general context (issue of CO 2 geological storage, fundamental research on this topic), the first part reports the design and performance of experiments of reactive percolation of fluid with a high content of CO 2 on carbonate deci-metric samples with a real time monitoring of rock and fluid electric conductivity, of fluid pH, of rock permeability. Some one-off measurements of alkalinity and fluid composition are also performed, as well as acquisitions of speed and attenuation profiles of seismic waves along the sample. Experiments are performed in a granular medium (geo-electric monitoring of injections of reactive fluids) as well as field measurements in the case of a tectonic fumarole in Nepal (CO 2 flow measurements, comparison with other data and interpretation) [fr

  12. Insite or Outside the Law: Examining the Place of Safe Injection Sites within the Canadian Legal System

    Directory of Open Access Journals (Sweden)

    Aidan Macdonald

    2011-01-01

    Full Text Available In response to the mounting number of HIV/AIDS and overdose deaths directly attributable to intravenous drug use during the 1980 and 1990’s, governments across the world began considering alternatives to traditional prohibitionist drug policies. These alternatives, generally described as harm reduction strategies involving needle exchange programs and safe injection sites, rapidly gained acceptance across Europe. By contrast, they encountered significant opposition in North America. This thesis summarily traces the history of Canadian drug law, describing the development and impact of the harm reduction movement in Canada and the establishment of the first and only safe injection site (SIS in North America (Insite. Employing a repressive formalist analysis of the application of federal drug laws, I then examine the role of the current Conservative government in contesting harm reduction strategies and refusing full legalization of Insite. I illustrate that through the strategic manipulation and discriminatory enforcement of drug laws and political gamesmanship relating to the criteria grounding Insite’s exemption from current drug laws, the government has failed to fulfill a set of fundamental social values with respect to Insite’s users and members of the downtown eastside of Vancouver. Interviews with injection drug users, workers at Insite and residents of the local community provide empirical support for the beneficial effects of safe injection sites, and expose the politics of the struggle for Insite’s continued existence. I also show how the Conservative anti-drug ideologues have led a resistance against classifying drug addiction as a health-related rather than criminal problem, despite significant scientific evidence to the contrary, and how this resistance has resulted in the further marginalization of injection drug users.

  13. Insite or Outside the Law: Examining the Place of Safe Injection Sites within the Canadian Legal System

    OpenAIRE

    Aidan Macdonald

    2011-01-01

    In response to the mounting number of HIV/AIDS and overdose deaths directly attributable to intravenous drug use during the 1980 and 1990’s, governments across the world began considering alternatives to traditional prohibitionist drug policies. These alternatives, generally described as harm reduction strategies involving needle exchange programs and safe injection sites, rapidly gained acceptance across Europe. By contrast, they encountered significant opposition in North America. This thes...

  14. Anti-proliferative effect of metformin on a feline injection site sarcoma cell line independent of Mtor inhibition.

    Science.gov (United States)

    Pierro, J; Saba, C; McLean, K; Williams, R; Karpuzoglu, E; Prater, R; Hoover, K; Gogal, R

    2017-10-01

    Metformin is an oral hypoglycemic drug that has been shown to inhibit cancer cell proliferation via up-regulation of AMPK (AMP-activated protein kinase), and possibly inhibition of mTOR (mammalian target of rapamycin). The purpose of this study was to evaluate the effects of metformin on a feline injection site sarcoma cell line. Cells from a feline injection site sarcoma cell line were treated with metformin at varied concentrations. A dose-dependent decrease in cell viability following metformin treatment was observed, with an IC50 of 8.0mM. Using flow cytometry, the mechanism of cell death was determined to be apoptosis or necrosis. To evaluate the role of mTOR inhibition in metformin-induced cell death, Western blot was performed. No inhibition of mTOR or phosphorylated mTOR was found. Although metformin treatment leads to apoptotic or necrotic cell death in feline injection site sarcoma cells, the mechanism does not appear to be mediated by mTOR inhibition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Corrective Action Decision Document for Corrective Action Unit 322: Areas 1 and 3 Release Sites and Injection Wells Nevada Test Site, Nevada, Rev. No. 0

    Energy Technology Data Exchange (ETDEWEB)

    Robert Boehlecke

    2004-12-01

    This Corrective Action Decision Document has been prepared for Corrective Action Unit (CAU) 322, Areas 1 and 3 Release Sites and Injection Wells, Nevada Test Site, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (1996). Corrective Action Unit 322 is comprised of the following corrective action sites (CASs): (1) 01-25-01 - AST Release Site; (2) 03-25-03 - Mud Plant and AST Diesel Release; and (3) 03-20-05 - Injection Wells and BOP Shop. The purpose of this Corrective Action Decision Document is to identify and provide the rationale for the recommendation of a corrective action alternative for each CAS within CAU 322. Corrective action investigation activities were performed from April 2004 through September 2004, as set forth in the Corrective Action Investigation Plan. The purposes of the activities as defined during the data quality objectives process were: (1) Determine if contaminants of concern (COCs) are present; (2) If COCs are present, determine their nature and extent; and (3) Provide sufficient information and data to recommend appropriate corrective actions for the CASs. Analytes detected during the corrective action investigation were evaluated against appropriate preliminary action levels to identify contaminants of concern for each corrective action site. Radiological field measurements were compared to unrestricted release criteria. Assessment of the data generated from investigation activities revealed the following: (1) CAS 01-25-01 contains an AST berm contaminated with total petroleum hydrocarbons (TPH) diesel-range organics (DRO). (2) CAS 03-25-03 includes two distinct areas: Area A where no contamination remains from a potential spill associated with an AST, and Area B where TPH-DRO contamination associated with various activities at the mud plant was identified. The Area B contamination was found at various locations and depths. (3) CAS 03-25-03 Area B contains TPH-DRO contamination at various

  16. Surface-downhole and crosshole geoelectrics for monitoring of brine injection at the Ketzin CO2 storage site

    Science.gov (United States)

    Rippe, Dennis; Bergmann, Peter; Labitzke, Tim; Wagner, Florian; Schmidt-Hattenberger, Cornelia

    2016-04-01

    The Ketzin pilot site in Germany is the longest operating on-shore CO2 storage site in Europe. From June 2008 till August 2013, a total of ˜67,000 tonnes of CO2 were safely stored in a saline aquifer at depths of 630 m to 650 m. The storage site has now entered the abandonment phase, and continuation of the multi-disciplinary monitoring as part of the national project "CO2 post-injection monitoring and post-closure phase at the Ketzin pilot site" (COMPLETE) provides the unique chance to participate in the conclusion of the complete life cycle of a CO2 storage site. As part of the continuous evaluation of the functionality and integrity of the CO2 storage in Ketzin, from October 12, 2015 till January 6, 2015 a total of ˜2,900 tonnes of brine were successfully injected into the CO2 reservoir, hereby simulating in time-lapse the natural backflow of brine and the associated displacement of CO2. The main objectives of this brine injection experiment include investigation of how much of the CO2 in the pore space can be displaced by brine and if this displacement of CO2 during the brine injection differs from the displacement of formation fluid during the initial CO2 injection. Geophysical monitoring of the brine injection included continuous geoelectric measurements accompanied by monitoring of pressure and temperature conditions in the injection well and two adjacent observation wells. During the previous CO2 injection, the geoelectrical monitoring concept at the Ketzin pilot site consisted of permanent crosshole measurements and non-permanent large-scale surveys (Kiessling et al., 2010). Time-lapse geoelectrical tomographies derived from the weekly crosshole data at near-wellbore scale complemented by six surface-downhole surveys at a scale of 1.5 km showed a noticeable resistivity signature within the target storage zone, which was attributed to the CO2 plume (Schmidt-Hattenberger et al., 2011) and interpreted in terms of relative CO2 and brine saturations (Bergmann

  17. Approximating dose and risk for contaminants in groundwater from the underground nuclear test areas of the Nevada National Security Site (NNSS)

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, Jeffrey I. [Desert Research Inst. (DRI), Las Vegas, NV (United States); Chapman, Jenny [Desert Research Inst. (DRI), Las Vegas, NV (United States); Pohlmann, Karl F. [Desert Research Inst. (DRI), Las Vegas, NV (United States)

    2015-03-01

    As part of the Environmental Management Program at the Nevada National Security Site (NNSS), the Underground Test Area (UGTA) Activity investigates the potential impacts of radionuclides that were introduced into groundwater from the underground nuclear tests conducted near or below the NNSS water table between 1951 and 1992. Groundwater models are being used to simulate contaminant transport and forecast contaminant boundaries that encompass areas where the groundwater has a five percent or greater probability of containing contaminants above the Safe Drinking Water Act Maximum Contaminant Levels (SDWA MCLs) at any time during the next 1,000 years. Transport modeling conducted for the Frenchman Flat Corrective Action Unit (CAU) at the NNSS identified the beta/photon-emitting radionuclides tritium (3H), carbon-14 (14C), chlorine-36 (36Cl), technetium-99 (99Tc), and iodine-129 (129I) as having the greatest influence in defining the farthest extent of the modeled CAU contaminant boundary. These same radionuclides are assumed here as the contaminants of concern (COCs) for all underground nuclear tests at the NNSS because models are not yet complete for the other CAUs.Potential public exposure to the COCs will only occur and be of concern if the COCs migrate into the groundwater beneath public or private lands at levels that exceed either individual SDWA MCLs or dose and risk limits. Groundwater flow directions strongly suggest that any contaminant boundary predicted by contaminant fate and transport modeling to overlap public or private lands is more likely to occur to the west and/or southwest of the NNSS and the adjacent Nevada Test and Training Range (NTTR). Well-established, rural communities exist in these directions. Estimates of representative activity concentrations at the applicable SDWA MCL were developed for the five COCs. It is assumed that these COC concentrations may collectively occur at some public or private location in the future, but that situation

  18. Pharmacokinetics, pharmacodynamics and local tolerance at injection site of marbofloxacin administered by regional intravenous limb perfusion in standing horses.

    Science.gov (United States)

    Lallemand, Elodie; Trencart, Pierre; Tahier, Carine; Dron, Frederic; Paulin, Angelique; Tessier, Caroline

    2013-08-01

    To evaluate pharmacokinetic-pharmacodynamic variables and local tolerance at injection-site of marbofloxacin administered via regional intravenous limb perfusion (RIVLP) in standing horses. Adult horses (n = 6). RIVLP were performed with rubber tourniquets applied to the forelimbs of standing sedated horses. Marbofloxacin (0.67 mg/kg) was randomly injected in 1 forelimb, with the contralateral limb serving as a control (0.9% NaCl solution). Samples of jugular blood and synovial fluid from the radiocarpal joint of the marbofloxacin-perfused limb were collected before and at intervals after RIVLP for determination of drug concentrations. All injection sites were evaluated before, 24 and 48 hours after RIVLP by means of ultrasonographic examination, circumferential measurements and subjective visible inflammation scores by veterinarians unaware of treatment received. No adverse effects associated with the technique or antibiotic were observed. High marbofloxacin concentrations were obtained in the synovial fluid, AUCINF was significantly higher in synovial fluid than in plasma (78.64 ± 49.41 and 2.85 ± 0.60 µg h/mL respectively, P = .028). The efficacy indices, AUC0-24 /MIC90 and Cmaxobs/MIC90 , predicted a favorable outcome in the treatment of synovial fluid infections caused by enterobacteriaceae and Staphylococcus aureus. After RIVLP, there was no statistically significant difference between marbofloxacin-injected and control limbs for lameness, visual inflammation score, limb circumference, and ultrasonographic appearance of the veins. Marbofloxacin injected limbs had a significantly greater subcutaneous thickness, compared with control limbs. These data suggest that RIVLP of marbofloxacin (0.67 mg/kg) could be a safe and effective method for treatment of infections of the distal portion of the limb for susceptible organisms. © Copyright 2013 by The American College of Veterinary Surgeons.

  19. An Initial Evaluation Of Characterization And Closure Options For Underground Pipelines Within A Hanford Site Single-Shell Tank Farm-13210

    International Nuclear Information System (INIS)

    Badden, Janet W.; Connelly, Michael P.; Seeley, Paul N.; Hendrickson, Michelle L.

    2013-01-01

    The Hanford Site includes 149 single-shell tanks, organized in 12 'tank farms,' with contents managed as high-level mixed waste. The Hanford Federal Facility Agreement and Consent Order requires that one tank farm, the Waste Management Area C, be closed by June 30, 2019. A challenge to this project is the disposition and closure of Waste Management Area C underground pipelines. Waste Management Area C contains nearly seven miles of pipelines and 200 separate pipe segments. The pipelines were taken out of service decades ago and contain unknown volumes and concentrations of tank waste residuals from past operations. To understand the scope of activities that may be required for these pipelines, an evaluation was performed. The purpose of the evaluation was to identify what, if any, characterization methods and/or closure actions may be implemented at Waste Management Area C for closure of Waste Management Area C by 2019. Physical and analytical data do not exist for Waste Management Area C pipeline waste residuals. To develop estimates of residual volumes and inventories of contamination, an extensive search of available information on pipelines was conducted. The search included evaluating historical operation and occurrence records, physical attributes, schematics and drawings, and contaminant inventories associated with the process history of plutonium separations facilities and waste separations and stabilization operations. Scoping analyses of impacts to human health and the environment using three separate methodologies were then developed based on the waste residual estimates. All analyses resulted in preliminary assessments, indicating that pipeline waste residuals presented a comparably low long-term impact to groundwater with respect to soil, tank and other ancillary equipment residuals, but exceeded Washington State cleanup requirement values. In addition to performing the impact analyses, the assessment evaluated available sampling technologies and

  20. An Initial Evaluation of Characterization and Closure Options for Underground Pipelines within a Hanford Site Single-Shell Tank Farm - 13210

    Energy Technology Data Exchange (ETDEWEB)

    Badden, Janet W.; Connelly, Michael P. [Washington River Protection Services, P.O. Box 850, Richland, Washington, 99352 (United States); Seeley, Paul N. [Cenibark International, Inc., 104318 Nicole Drive, Kennewick, Washington, 99338-7596 (United States); Hendrickson, Michelle L. [Washington State Department of Ecology, 3100 Port of Benton Blvd, Richland, Washington, 99354 (United States)

    2013-07-01

    The Hanford Site includes 149 single-shell tanks, organized in 12 'tank farms,' with contents managed as high-level mixed waste. The Hanford Federal Facility Agreement and Consent Order requires that one tank farm, the Waste Management Area C, be closed by June 30, 2019. A challenge to this project is the disposition and closure of Waste Management Area C underground pipelines. Waste Management Area C contains nearly seven miles of pipelines and 200 separate pipe segments. The pipelines were taken out of service decades ago and contain unknown volumes and concentrations of tank waste residuals from past operations. To understand the scope of activities that may be required for these pipelines, an evaluation was performed. The purpose of the evaluation was to identify what, if any, characterization methods and/or closure actions may be implemented at Waste Management Area C for closure of Waste Management Area C by 2019. Physical and analytical data do not exist for Waste Management Area C pipeline waste residuals. To develop estimates of residual volumes and inventories of contamination, an extensive search of available information on pipelines was conducted. The search included evaluating historical operation and occurrence records, physical attributes, schematics and drawings, and contaminant inventories associated with the process history of plutonium separations facilities and waste separations and stabilization operations. Scoping analyses of impacts to human health and the environment using three separate methodologies were then developed based on the waste residual estimates. All analyses resulted in preliminary assessments, indicating that pipeline waste residuals presented a comparably low long-term impact to groundwater with respect to soil, tank and other ancillary equipment residuals, but exceeded Washington State cleanup requirement values. In addition to performing the impact analyses, the assessment evaluated available sampling technologies

  1. [Local reactions after diphtheria-tetanus-acellular pertussis vaccines in mice; changes in histopathology at the injection site].

    Science.gov (United States)

    Nagaoka, Chiharu; Katsuta, Tomohiro; Honjo, Ayako; Tateyama, Satoshi; Tokutake, Tadaomi; Arimoto, Yutaka; Nakajima, Natsuki; Goshima, Toshiro; Kato, Tatsuo

    2006-03-01

    Diphtheria-tetanus-acellular pertussis vaccine (DTaP) developed in Japan is now widely used worldwide. DTaP is safer than the diphtheria-tetanus-whole-cell pertussis vaccine (DTwP) and has fewer severe side effects, but local reactions such as redness, swelling, and induration are still reported. The pathophysiological mechanism of these reactions is controversial. To clarify the cause of local reactions, we conducted studies using the mouse model. After administering either one or two abdominal subcutaneous DTaP inoculations, we observed changes in histopathology at the injection site at 24h, 48h, and 7 days. The control group, inoculated with physiologic saline, showed no significant changes either pathologically or with the naked eye. All mice after DTaP vaccination showed indurations at the injection site. Pathologically, we watched leukocyte invasion into or around the site, especially neutrophils and eosinophils. After the first vaccination, the extent of the invasion was strong 24h and 7 days later. At 24h following the second vaccination, a dramatic leukocyte invasion seen persisted at 7days. At 7 days after the first vaccination, peripheral fibrosis had begun, and when a second vaccination was administered, it began even earlier at the second site. These histopathological changes show that local reactions are caused by both inflammatory and allergic responses. Because this mouse study resulted in the same pattern of reactions observed in humans, this method will be useful for studies focusing on local reactions.

  2. Comparative cyto-histological study of needle tip aspirates and entry sites after intravitreal injection using different needle types.

    Directory of Open Access Journals (Sweden)

    Lyubomyr Lytvynchuk

    Full Text Available A comparison of the cellular content of needle tip aspirates and entry sites after transconjunctival intravitreal injection (IVI using different needle types was performed. White outbred rats and human cadaver eyes were used for IVI by hypodermic 27 gauge (G and 30G needles, and spinal anesthesia Pencan 27G needles. Aspiration of vitreous for quantitative morphological and cell cultivation analysis, as well as cyto-histological analysis of aspirates and entry sites were carried out. The most common cells in the aspirates from all needle types were conjunctival epithelial-, ciliary body non-pigmented epithelial- and sclerocyte-like cells and granular proteins. Crystallized vitreous specimens were present in each aspirate. The entry sites of hypodermic needles showed marked trauma in all wall layers of rat and human eyes accompanied by cellular destruction and hemorrhages. Pencan 27G needle caused less tissue trauma with partial reposition of sclerocytes. Transconjunctival IVIs with hypodermic 27G and 30G, and Pencan 27G needles result in trauma of all layers of the eyeball. The possible consequences of cellular content being cut and injected into the eye, as well as the entry site wound shape deserve future consideration and improvements.

  3. Underground science initiatives at Los Alamos

    International Nuclear Information System (INIS)

    Simmons, L.M. Jr.

    1985-01-01

    Recently, the Los Alamos National Laboratory has proposed two major new initiatives in underground science. Following the dissolution of the original gallium solar neutrino collaboration, Los Alamos has formed a new North American collaboration. We briefly review the rationale for solar neutrino research, outline the proposal and new Monte Carlo simulations, and describe the candidate locations for the experiment. Because there is no dedicated deep underground site in North America suitable for a wide range of experiments, Los Alamos has conducted a survey of possible sites and developed a proposal to create a new National Underground Science Facility. This paper also reviews that proposal

  4. A Site Characterization Protocol for Evaluating the Potential for Triggered or Induced Seismicity Resulting from Wastewater Injection and Hydraulic Fracturing

    Science.gov (United States)

    Walters, R. J.; Zoback, M. D.; Gupta, A.; Baker, J.; Beroza, G. C.

    2014-12-01

    Regulatory and governmental agencies, individual companies and industry groups and others have recently proposed, or are developing, guidelines aimed at reducing the risk associated with earthquakes triggered by waste water injection or hydraulic fracturing. While there are a number of elements common to the guidelines proposed, not surprisingly, there are also some significant differences among them and, in a number of cases, important considerations that are not addressed. The goal of this work is to develop a comprehensive protocol for site characterization based on a rigorous scientific understanding of the responsible processes. Topics addressed will include the geologic setting (emphasizing faults that might be affected), historical seismicity, hydraulic characterization of injection and adjacent intervals, geomechanical characterization to identify potentially active faults, plans for seismic monitoring and reporting, plans for monitoring and reporting injection (pressure, volumes, and rates), other factors contributing to risk (potentially affected population centers, structures, and facilities), and implementing a modified Probabilistic Seismic Hazard Analysis (PSHA). The guidelines will be risk based and adaptable, rather than prescriptive, for a proposed activity and region of interest. They will be goal oriented and will rely, to the degree possible, on established best practice procedures, referring to existing procedures and recommendations. By developing a risk-based site characterization protocol, we hope to contribute to the development of rational and effective measures for reducing the risk posed by activities that potentially trigger earthquakes.

  5. Underground Layout Configuration

    International Nuclear Information System (INIS)

    A. Linden

    2003-01-01

    The purpose of this analysis was to develop an underground layout to support the license application (LA) design effort. In addition, the analysis will be used as the technical basis for the underground layout general arrangement drawings

  6. Underground disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-08-15

    Disposal of low- and intermediate-level radioactive wastes by shallow land burial, emplacement in suitable abandoned mines, or by deep well injection and hydraulic fracturing has been practised in various countries for many years. In recent years considerable efforts have been devoted in most countries that have nuclear power programmes to developing and evaluating appropriate disposal systems for high-level and transuranium-bearing waste, and to studying the potential for establishing repositories in geological formations underlaying their territories. The symposium, organized jointly by the IAEA and OECD's Nuclear Energy Agency in cooperation with the Geological Survey of Finland, provided an authoritative account of the status of underground disposal programmes throughout the world in 1979. It was evidence of the experience that has been gained and the comprehensive investigations that have been performed to study various options for the underground disposal of radioactive waste since the last IAEA/NEA symposium on this topic (Disposal of Radioactive Waste into the Ground) was held in 1967 in Vienna. The 10 sessions covered the following topics: National programme and general studies, Disposal of solid waste at shallow depth and in rock caverns, underground disposal of liquid waste by deep well injection and hydraulic fracturing, Disposal in salt formations, Disposal in crystalline rocks and argillaceous sediments, Thermal aspects of disposal in deep geological formations, Radionuclide migration studies, Safety assessment and regulatory aspects.

  7. Autoradiographic localization of glucocorticosteriod binding sites in rat brain after in vivo injection of [3H]RU 28362

    International Nuclear Information System (INIS)

    Sarrieau, Alain; Dussaillant, Monique; Rostene, William

    1988-01-01

    The autoradiographic distribution of glucocorticosteriod binding sites in the brain of adrenalectomized rats was studied following in vivo injection of a potent synthetic glucocorticosteriod agonist [ 3 H]RU 28362. Analysis of the autoradiograms revealed a specific and dense labelling in the pyramidal cell layer of the Ammon's horn and in the granular cell layer of the dentate gyrus of the hippocampus. In the hypothalmus, the labelling was particularly high in the paraventricular nucleus (site of CRF synthesis), the arcuate, periventricular and the supraoptic nuclei as well as in the median eminence. Autoradiograms also revealed the presence of[ 3 H]RU 28362 binding sites in several brain regions including the amygdala, the pineal gland, the entorhinal cortex, the interpeduncular, interfascicular and dorsal raphe nuclei, the central grey and the substantia nigra suggesting possible effects of glucocorticosteriods in these structures (author)

  8. Multinational underground nuclear parks

    Energy Technology Data Exchange (ETDEWEB)

    Myers, C.W. [Nuclear Engineering and Nonproliferation Division, Los Alamos National Laboratory, MS F650, Los Alamos, NM 87544 (United States); Giraud, K.M. [Wolf Creek Nuclear Operating Corporation, 1550 Oxen Lane NE, P.O. Box 411, Burlington, KS 66839-0411 (United States)

    2013-07-01

    Newcomer countries expected to develop new nuclear power programs by 2030 are being encouraged by the International Atomic Energy Agency to explore the use of shared facilities for spent fuel storage and geologic disposal. Multinational underground nuclear parks (M-UNPs) are an option for sharing such facilities. Newcomer countries with suitable bedrock conditions could volunteer to host M-UNPs. M-UNPs would include back-end fuel cycle facilities, in open or closed fuel cycle configurations, with sufficient capacity to enable M-UNP host countries to provide for-fee waste management services to partner countries, and to manage waste from the M-UNP power reactors. M-UNP potential advantages include: the option for decades of spent fuel storage; fuel-cycle policy flexibility; increased proliferation resistance; high margin of physical security against attack; and high margin of containment capability in the event of beyond-design-basis accidents, thereby reducing the risk of Fukushima-like radiological contamination of surface lands. A hypothetical M-UNP in crystalline rock with facilities for small modular reactors, spent fuel storage, reprocessing, and geologic disposal is described using a room-and-pillar reference-design cavern. Underground construction cost is judged tractable through use of modern excavation technology and careful site selection. (authors)

  9. Underground pipeline corrosion

    CERN Document Server

    Orazem, Mark

    2014-01-01

    Underground pipelines transporting liquid petroleum products and natural gas are critical components of civil infrastructure, making corrosion prevention an essential part of asset-protection strategy. Underground Pipeline Corrosion provides a basic understanding of the problems associated with corrosion detection and mitigation, and of the state of the art in corrosion prevention. The topics covered in part one include: basic principles for corrosion in underground pipelines, AC-induced corrosion of underground pipelines, significance of corrosion in onshore oil and gas pipelines, n

  10. Underground laboratories in Europe

    International Nuclear Information System (INIS)

    Coccia, E

    2006-01-01

    The only clear evidence today for physics beyond the standard model comes from underground experiments and the future activity of underground laboratories appears challenging and rich. I review here the existing underground research facilities in Europe. I present briefly the main characteristics, scientific activity and perspectives of these Laboratories and discuss the present coordination actions in the framework of the European Union

  11. Underground layout tradeoff study

    International Nuclear Information System (INIS)

    1988-01-01

    This report presents the results of a technical and economic comparative study of four alternative underground layouts for a nuclear waste geologic repository in salt. The four alternatives considered in this study are (1) separate areas for spent fuel (SF) and commercial high-level waste (CHLW); (2) panel alternation, in which SF and CHLW are emplaced in adjacent panels of rooms; (3) room alternation, in which SF and CHLW are emplaced in adjacent rooms within each panel; and (4) intimate mixture, in which SF and CHLW are emplaced in random order within each storage room. The study concludes that (1) cost is not an important factor; (2) the separate-areas and intimate-mixture alternatives appear, technically, to be more desirable than the other alternatives; and (3) the selection between the separate-areas and intimate mixture alternatives depends upon future resolution of site-specific and reprocessing questions. 5 refs., 6 figs., 12 tabs

  12. An outline of 1994-1996 geological studies for underground laboratory siting in the Charroux-Civray sediment-capped granitic massif-(southern Vienne-Poitou-France)

    Energy Technology Data Exchange (ETDEWEB)

    Virlogeux, D. [ANDRA, Chatenay-Malabry (France)

    1998-09-01

    Following the selection of four potentially favourable districts, ANDRA carried out a comprehensive geological investigation in the cantons of Charroux and Civray in order to assess the suitability of a large volume of granitic rocks to host an underground laboratory according to safety regulations. Surface mapping, regional aeromagnetic and gravimetric surveys, seismic reflection lines and 16 cored boreholes led to the selection of a tonalitic unit near La Chapelle-Baton as the target formation to be proposed for detailed study. This volume extends over an area of more than 3x4 km at the surface and at least 800m vertically. There appears to be no prohibitive factors to installation of an underground laboratory for further exploration, particularly from the hydrogeological standpoint. Magmatic joint-type small fracturing shows no variation with depth and polyphasic hydrothermal history has led to plugging the fractures with clays and carbonates. Alkaline fluids crystallising Adular (-126 My) has led to a strong reduction in the initial permeability of basement paleo-weathering zone. The horizontal and relatively fault-free sedimentary cover reveals a simple tectonic history during the last 200 My. One of the objectives of the laboratory study program will be to confirm the conceptual model of slow, shallow circulation in depth, based on the following data: Low frequency water inflows, obtained in the boreholes by pumping and testing, show the very low permeability of (pluri)hectometric blocks delineated by conducting faults. Low hydraulic gradients recorded in the boreholes are consistent with regional topography, and hydraulic heads in the granite similar or lower than those recorded in the overlying sedimentary aquifers. The chemical composition of granitic waters exhibits significant salinity at depth, and is different from the Lias and Dogger aquifer waters, indicating limited hydraulic relationships. The origin and age of the salinity is still under debate

  13. Corrective Action Investigation plan for Corrective Action Unit 546: Injection Well and Surface Releases, Nevada Test Site, Nevada, Revision 0

    International Nuclear Information System (INIS)

    Alfred Wickline

    2008-01-01

    Corrective Action Unit (CAU) 546 is located in Areas 6 and 9 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 546 is comprised of two Corrective Action Sites (CASs) listed below: 06-23-02, U-6a/Russet Testing Area 09-20-01, Injection Well These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on November 8, 2007, by representatives of the Nevada Division of Environmental Protection and U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process has been used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 546

  14. Dispersal of estradiol-17 beta from the site of injection in the pectoral muscles of Japanese quail

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, G.A.

    1985-09-01

    Exogenous estrogens, if given in sufficient quantity, stimulate vitellogenesis in the males of vitellogenic species. In the present study, ethanolic solutions of estradiol-17 beta (E2), labeled with 16-alpha-( SVI)iodoestradiol (( SVI)E2) or sodium iodide (Na SVI), were injected into the pectoral muscles of male Japanese quail. The rate of dispersal of the estradiol from the site of injection was measured in vivo during 4 days. The curves of radioactivity appeared to be diphasic. The dose percentages forming the second phase of these curves and the half-time for the second phase were: for 16 mumol E2 (( SVI)E2 label)/100 g body weight, 84.6% and 27.6 hr; for 6 pmol ( SVI)E2/100 g, 20.0% and 17.2 hr; for 16 mumol E2 (Na SVI label)/100 g, 6.7% and 99.0 hr, and for Na SVI, 6.1% and 83.1 hr. Thus, in male quail the estradiol-induced stimulation of vitellogenesis apparently resulted from a continuing hormonal pressure on the liver during the period of study and not from a rapid flow of E2 to the liver shortly after injection.

  15. Corrective Action Decision Document for Corrective Action Unit 322: Areas 1 and 3 Release Sites and Injection Wells Nevada Test Site, Nevada, Revision 0 with ROTC 1

    International Nuclear Information System (INIS)

    Boehlecke, Robert

    2004-01-01

    This Corrective Action Decision Document has been prepared for Corrective Action Unit (CAU) 322, Areas 1 and 3 Release Sites and Injection Wells, Nevada Test Site, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (1996). Corrective Action Unit 322 is comprised of the following corrective action sites (CASs): (1) 01-25-01 - AST Release Site; (2) 03-25-03 - Mud Plant and AST Diesel Release; and (3) 03-20-05 - Injection Wells and BOP Shop. The purpose of this Corrective Action Decision Document is to identify and provide the rationale for the recommendation of a corrective action alternative for each CAS within CAU 322. Corrective action investigation activities were performed from April 2004 through September 2004, as set forth in the Corrective Action Investigation Plan. The purposes of the activities as defined during the data quality objectives process were: (1) Determine if contaminants of concern (COCs) are present; (2) If COCs are present, determine their nature and extent; and (3) Provide sufficient information and data to recommend appropriate corrective actions for the CASs. Analytes detected during the corrective action investigation were evaluated against appropriate preliminary action levels to identify contaminants of concern for each corrective action site. Radiological field measurements were compared to unrestricted release criteria. Assessment of the data generated from investigation activities revealed the following: (1) CAS 01-25-01 contains an AST berm contaminated with total petroleum hydrocarbons (TPH) diesel-range organics (DRO). (2) CAS 03-25-03 includes two distinct areas: Area A where no contamination remains from a potential spill associated with an AST, and Area B where TPH-DRO contamination associated with various activities at the mud plant was identified. The Area B contamination was found at various locations and depths. (3) CAS 03-25-03 Area B contains TPH-DRO contamination at various locations and

  16. Corrective Action Decision Document for Corrective Action Unit 322: Areas 1 and 3 Release Sites and Injection Wells Nevada Test Site, Nevada, Revision 0 with ROTC 1

    Energy Technology Data Exchange (ETDEWEB)

    Boehlecke, Robert

    2004-12-01

    This Corrective Action Decision Document has been prepared for Corrective Action Unit (CAU) 322, Areas 1 and 3 Release Sites and Injection Wells, Nevada Test Site, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (1996). Corrective Action Unit 322 is comprised of the following corrective action sites (CASs): (1) 01-25-01 - AST Release Site; (2) 03-25-03 - Mud Plant and AST Diesel Release; and (3) 03-20-05 - Injection Wells and BOP Shop. The purpose of this Corrective Action Decision Document is to identify and provide the rationale for the recommendation of a corrective action alternative for each CAS within CAU 322. Corrective action investigation activities were performed from April 2004 through September 2004, as set forth in the Corrective Action Investigation Plan. The purposes of the activities as defined during the data quality objectives process were: (1) Determine if contaminants of concern (COCs) are present; (2) If COCs are present, determine their nature and extent; and (3) Provide sufficient information and data to recommend appropriate corrective actions for the CASs. Analytes detected during the corrective action investigation were evaluated against appropriate preliminary action levels to identify contaminants of concern for each corrective action site. Radiological field measurements were compared to unrestricted release criteria. Assessment of the data generated from investigation activities revealed the following: (1) CAS 01-25-01 contains an AST berm contaminated with total petroleum hydrocarbons (TPH) diesel-range organics (DRO). (2) CAS 03-25-03 includes two distinct areas: Area A where no contamination remains from a potential spill associated with an AST, and Area B where TPH-DRO contamination associated with various activities at the mud plant was identified. The Area B contamination was found at various locations and depths. (3) CAS 03-25-03 Area B contains TPH-DRO contamination at various

  17. Process for fracturing underground formations

    Energy Technology Data Exchange (ETDEWEB)

    Kiel, O M

    1974-01-25

    This invention concerns a process for fracturing underground formations and has as one object the mixing of viscous compositions. Through a borehole, a fluid is injected into the formation. This fluid contains a complex prepared by the reaction of an aliphatic quaternary ammonium compound with a water-soluble compound chosen from monosaccharides, disaccharides, trisaccharides, polysaccharides, and synthetic hydroxylated polymers with long chains. These complexes are formed at temperatures between 20/sup 0/ and 205/sup 0/C. The process also includes production of formation fluid into the borehole.

  18. Earthquake damage to underground facilities

    International Nuclear Information System (INIS)

    Pratt, H.R.; Stephenson, D.E.; Zandt, G.; Bouchon, M.; Hustrulid, W.A.

    1980-01-01

    In order to assess the seismic risk for an underground facility, a data base was established and analyzed to evaluate the potential for seismic disturbance. Substantial damage to underground facilities is usually the result of displacements primarily along pre-existing faults and fractures, or at the surface entrance to these facilities. Evidence of this comes from both earthquakes and large explosions. Therefore, the displacement due to earthquakes as a function of depth is important in the evaluation of the hazard to underground facilities. To evaluate potential displacements due to seismic effects of block motions along pre-existing or induced fractures, the displacement fields surrounding two types of faults were investigated. Analytical models were used to determine relative displacements of shafts and near-surface displacement of large rock masses. Numerical methods were used to determine the displacement fields associated with pure strike-slip and vertical normal faults. Results are presented as displacements for various fault lengths as a function of depth and distance. This provides input to determine potential displacements in terms of depth and distance for underground facilities, important for assessing potential sites and design parameters

  19. Radionuclides in an underground environment

    International Nuclear Information System (INIS)

    Thompson, J.L.

    1996-01-01

    In the 100 years since Becquerel recognized radioactivity, mankind has been very successful in producing large amounts of radioactive materials. We have been less successful in reaching a consensus on how to dispose of the billions of curies of fission products and transuranics resulting from nuclear weapons testing, electrical power generation, medical research, and a variety of other human endeavors. Many countries, including the United States, favor underground burial as a means of disposing of radioactive wastes. There are, however, serious questions about how such buried wastes may behave in the underground environment and particularly how they might eventually contaminate water, air and soil resources on which we are dependent. This paper describes research done in the United States in the state of Nevada on the behavior of radioactive materials placed underground. During the last thirty years, a series of ''experiments'' conducted for other purposes (testing of nuclear weapons) have resulted in a wide variety of fission products and actinides being injected in rock strata both above and below the water table. Variables which seem to control the movement of these radionuclides include the physical form (occlusion versus surface deposition), the chemical oxidation state, sorption by mineral phases of the host rock, and the hydrologic properties of the medium. The information gained from these studies should be relevant to planning for remediation of nuclear facilities elsewhere in the world and for long-term storage of nuclear wastes

  20. Application of a topical vapocoolant spray decreases pain at the site of initial intradermal anaesthetic injection during ultrasound-guided breast needle biopsy

    International Nuclear Information System (INIS)

    Collado-Mesa, F.; Net, J.M.; Arheart, K.; Klevos, G.A.; Yepes, M.M.

    2015-01-01

    Aim: To assess whether the application of a topical vapocoolant spray immediately prior to initial intradermal anaesthetic injection during ultrasound-guided breast biopsy decreases pain at the site of the initial injection. Materials and methods: In this institutional review board-approved, Health Insurance Portability and Accountability Act (HIPAA)-compliant study, 50 women aged 49.1 ± 1.6 years (mean ± standard error) were recruited and provided written informed consent. Participants served as their own controls and were blinded as to whether a topical vapocoolant spray or a placebo was used immediately prior to the initial local anaesthetic injection at two separate biopsy sites. With the exception of the application of vapocoolant or placebo, the entire ultrasound-guided procedure was performed according to a routine protocol. Participants recorded pain at initial injection site on a visual analogue scale. General linear mixed models for repeated measures analysis of variance and a 0.05 significance level were used. Results: Application of topical vapocoolant spray was shown to significantly decrease pain at the site of initial intradermal anaesthetic injection as compared to placebo (p<0.001). Treatment effect was independent of age of the subject, race/ethnicity, operator, type of biopsy device, and histopathology result. No complications from vapocoolant spray use were reported. Conclusion: Application of a topical vapocoolant spray immediately prior to initial intradermal anaesthetic injection during ultrasound-guided breast biopsy significantly decreases pain at the site of the initial injection and could contribute to improve the patient's overall procedural experience. -- Highlights: •Topical vapocoolant spray decreased pain at site of initial anesthetic injection (

  1. Groundwater and underground coal gasification in Alberta

    International Nuclear Information System (INIS)

    Haluszka, A.; MacMillan, G.; Maev, S.

    2010-01-01

    Underground coal gasification has potential in Alberta. This presentation provided background information on underground coal gasification and discussed groundwater and the Laurus Energy demonstration project. A multi-disciplined approach to project assessment was described with particular reference to geologic and hydrogeologic setting; geologic mapping; and a hydrogeologic numerical model. Underground coal gasification involves the conversion of coal into synthesis gas or syngas. It can be applied to mined coal at the surface or applied to non-mined coal seams using injection and production wells. Underground coal gasification can effect groundwater as the rate of water influx into the coal seams influences the quality and composition of the syngas. Byproducts created include heat as well as water with dissolved concentrations of ammonia, phenols, salts, polyaromatic hydrocarbons, and liquid organic products from the pyrolysis of coal. A process overview of underground coal gasification was also illustrated. It was concluded that underground coal gasification has the potential in Alberta and risks to groundwater could be minimized by a properly designed project. refs., figs.

  2. Mines as lower reservoir of an UPSH (Underground Pumping Storage Hydroelectricity): groundwater impacts and feasibility

    Science.gov (United States)

    Bodeux, Sarah; Pujades, Estanislao; Orban, Philippe; Dassargues, Alain

    2016-04-01

    The energy framework is currently characterized by an expanding use of renewable sources. However, their intermittence could not afford a stable production according to the energy demand. Pumped Storage Hydroelectricity (PSH) is an efficient possibility to store and release electricity according to the demand needs. Because of the topographic and environmental constraints of classical PSH, new potential suitable sites are rare in countries whose topography is weak or with a high population density. Nevertheless, an innovative alternative is to construct Underground Pumped Storage Hydroelectricity (UPSH) plants by using old underground mine works as lower reservoir. In that configuration, large amount of pumped or injected water in the underground cavities would impact the groundwater system. A representative UPSH facility is used to numerically determine the interactions with surrounding aquifers Different scenarios with varying parameters (hydrogeological and lower reservoir characteristics, boundaries conditions and pumping/injection time-sequence) are computed. Analysis of the computed piezometric heads around the reservoir allows assessing the magnitude of aquifer response and the required time to achieve a mean pseudo-steady state under cyclic solicitations. The efficiency of the plant is also evaluated taking the leakage into the cavity into account. Combining these two outcomes, some criterions are identified to assess the feasibility of this type of projects within potential old mine sites from a hydrogeological point of view.

  3. About working of the research program on development of underground space of Russia

    International Nuclear Information System (INIS)

    Kartoziya, B.A.

    1995-01-01

    Basic proposition relative to the developed federal program on scientific research in the area of assimilating underground space in Russia are presented. The underground objects are divided by their purpose into four groups: 1) underground objects of house-hold purpose (energy and mining complex, industrial enterprises, storages, garages, etc); 2) underground objects of social purpose (libraries, shops, restaurants, etc); 3) underground objects of ecological purpose (storages, disposal sites for radioactive wastes and hazardous substances, dangerous productions, etc); 4) underground objects of defense purpose. Trends in the scientific-research program formation, relative to underground space assimilation are enumerated. 7 refs

  4. Horizontal dimensions of ionosphere agitation provoked by underground nuclear explosions

    International Nuclear Information System (INIS)

    Drobzheva, Ya.V.; Krasnov, V.M.; Sokolova, O.I.

    2001-01-01

    The horizontal dimensions of ionosphere agitation provoked by underground nuclear explosions have been experimentally determined for 13 explosions conducted at the Balapan test site of the Semipalatinsk test site. (author)

  5. Investigation of confined placental mosaicism (CPM) at multiple sites in post-delivery placentas derived through intracytoplasmic sperm injection (ICSI).

    Science.gov (United States)

    Minor, Agata; Harmer, Karynn; Peters, Nicole; Yuen, Basil Ho; Ma, Sai

    2006-01-01

    Although earlier studies on pregnancies derived through intracytoplasmic sperm injection (ICSI) reported increased non-mosaic aneuploidy among ICSI children, undetected mosaicism, such as confined placental mosaicism (CPM) has not been evaluated. We investigated the incidence of CPM in post-delivery placentas derived from ICSI, evaluated whether CPM was increased and whether it was a contributing factor to negative pregnancy outcome. [Fifty-one post-delivery placentas were collected from patients who underwent ICSI with a normal or negative pregnancy outcome]. Trophoblast and chorionic stroma from three sites were analyzed by comparative genomic hybridization (CGH) and flow cytometry. Detected abnormalities were confirmed by fluorescence in situ hybridization (FISH). The incidence of CPM in the ICSI population was compared to the general population from published data. We detected three cases of CPM in our study. One abnormality was found by CGH analysis; partial trisomy 7q and a partial monosomy Xp limited to the trophoblast at two sites. The abnormality was associated with a child affected by spina bifida. Two cases of mosaic tetraploidy were observed by flow cytometry in pregnancies with a normal outcome. All three abnormalities were confirmed by FISH analysis. The incidence of CPM in the ICSI study population was 5.88% (3/51), which was not statistically different from published reports in the general population (5.88% (42/714), Chi square, P > 0.05). The post-ICSI population was not at risk for CPM in this study. (c) 2005 Wiley-Liss, Inc.

  6. PRELIMINARY DATA REPORT: HUMATE INJECTION AS AN ENHANCED ATTENUATION METHOD AT THE F-AREA SEEPAGE BASINS, SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Millings, M.

    2013-09-16

    A field test of a humate technology for uranium and I-129 remediation was conducted at the F-Area Field Research Site as part of the Attenuation-Based Remedies for the Subsurface Applied Field Research Initiative (ABRS AFRI) funded by the DOE Office of Soil and Groundwater Remediation. Previous studies have shown that humic acid sorbed to sediments strongly binds uranium at mildly acidic pH and potentially binds iodine-129 (I-129). Use of humate could be applicable for contaminant stabilization at a wide variety of DOE sites however pilot field-scale tests and optimization of this technology are required to move this technical approach from basic science to actual field deployment and regulatory acceptance. The groundwater plume at the F-Area Field Research Site contains a large number of contaminants, the most important from a risk perspective being strontium-90 (Sr-90), uranium isotopes, I-129, tritium, and nitrate. Groundwater remains acidic, with pH as low as 3.2 near the basins and increasing to the background pH of approximately 5at the plume fringes. The field test was conducted in monitoring well FOB 16D, which historically has shown low pH and elevated concentrations of Sr-90, uranium, I-129 and tritium. The field test included three months of baseline monitoring followed by injection of a potassium humate solution and approximately four and half months of post monitoring. Samples were collected and analyzed for numerous constituents but the focus was on attenuation of uranium, Sr-90, and I-129. This report provides background information, methodology, and preliminary field results for a humate field test. Results from the field monitoring show that most of the excess humate (i.e., humate that did not sorb to the sediments) has flushed through the surrounding formation. Furthermore, the data indicate that the test was successful in loading a band of sediment surrounding the injection point to a point where pH could return to near normal during the study

  7. Underground Facilities, Technological Challenges

    CERN Document Server

    Spooner, N

    2010-01-01

    This report gives a summary overview of the status of international under- ground facilities, in particular as relevant to long-baseline neutrino physics and neutrino astrophysics. The emphasis is on the technical feasibility aspects of creating the large underground infrastructures that will be needed in the fu- ture to house the necessary detectors of 100 kton to 1000 kton scale. There is great potential in Europe to build such a facility, both from the technical point of view and because Europe has a large concentration of the necessary engi- neering and geophysics expertise. The new LAGUNA collaboration has made rapid progress in determining the feasibility for a European site for such a large detector. It is becoming clear in fact that several locations are technically fea- sible in Europe. Combining this with the possibility of a new neutrino beam from CERN suggests a great opportunity for Europe to become the leading centre of neutrino studies, combining both neutrino astrophysics and neutrino beam stu...

  8. Time series geophysical monitoring of permanganate injections and in situ chemical oxidation of PCE, OU1 area, Savage Superfund Site, Milford, NH, USA

    Science.gov (United States)

    Harte, Philip T.; Smith, Thor E.; Williams, John H.; Degnan, James R.

    2012-01-01

    In situ chemical oxidation (ISCO) treatment with sodium permanganate, an electrically conductive oxidant, provides a strong electrical signal for tracking of injectate transport using time series geophysical surveys including direct current (DC) resistivity and electromagnetic (EM) methods. Effective remediation is dependent upon placing the oxidant in close contact with the contaminated aquifer. Therefore, monitoring tools that provide enhanced tracking capability of the injectate offer considerable benefit to guide subsequent ISCO injections. Time-series geophysical surveys were performed at a superfund site in New Hampshire, USA over a one-year period to identify temporal changes in the bulk electrical conductivity of a tetrachloroethylene (PCE; also called tetrachloroethene) contaminated, glacially deposited aquifer due to the injection of sodium permanganate. The ISCO treatment involved a series of pulse injections of sodium permanganate from multiple injection wells within a contained area of the aquifer. After the initial injection, the permanganate was allowed to disperse under ambient groundwater velocities. Time series geophysical surveys identified the downward sinking and pooling of the sodium permanganate atop of the underlying till or bedrock surface caused by density-driven flow, and the limited horizontal spread of the sodium permanganate in the shallow parts of the aquifer during this injection period. When coupled with conventional monitoring, the surveys allowed for an assessment of ISCO treatment effectiveness in targeting the PCE plume and helped target areas for subsequent treatment.

  9. Time series geophysical monitoring of permanganate injections and in situ chemical oxidation of PCE, OU1 area, Savage Superfund Site, Milford, NH, USA.

    Science.gov (United States)

    Harte, Philip T; Smith, Thor E; Williams, John H; Degnan, James R

    2012-05-01

    In situ chemical oxidation (ISCO) treatment with sodium permanganate, an electrically conductive oxidant, provides a strong electrical signal for tracking of injectate transport using time series geophysical surveys including direct current (DC) resistivity and electromagnetic (EM) methods. Effective remediation is dependent upon placing the oxidant in close contact with the contaminated aquifer. Therefore, monitoring tools that provide enhanced tracking capability of the injectate offer considerable benefit to guide subsequent ISCO injections. Time-series geophysical surveys were performed at a superfund site in New Hampshire, USA over a one-year period to identify temporal changes in the bulk electrical conductivity of a tetrachloroethylene (PCE; also called tetrachloroethene) contaminated, glacially deposited aquifer due to the injection of sodium permanganate. The ISCO treatment involved a series of pulse injections of sodium permanganate from multiple injection wells within a contained area of the aquifer. After the initial injection, the permanganate was allowed to disperse under ambient groundwater velocities. Time series geophysical surveys identified the downward sinking and pooling of the sodium permanganate atop of the underlying till or bedrock surface caused by density-driven flow, and the limited horizontal spread of the sodium permanganate in the shallow parts of the aquifer during this injection period. When coupled with conventional monitoring, the surveys allowed for an assessment of ISCO treatment effectiveness in targeting the PCE plume and helped target areas for subsequent treatment. Published by Elsevier B.V.

  10. Underground storage tanks

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Environmental contamination from leaking underground storage tanks poses a significant threat to human health and the environment. An estimated five to six million underground storage tanks containing hazardous substances or petroleum products are in use in the US. Originally placed underground as a fire prevention measure, these tanks have substantially reduced the damages from stored flammable liquids. However, an estimated 400,000 underground tanks are thought to be leaking now, and many more will begin to leak in the near future. Products released from these leaking tanks can threaten groundwater supplies, damage sewer lines and buried cables, poison crops, and lead to fires and explosions. As required by the Hazardous and Solid Waste Amendments (HSWA), the EPA has been developing a comprehensive regulatory program for underground storage tanks. The EPA proposed three sets of regulations pertaining to underground tanks. The first addressed technical requirements for petroleum and hazardous substance tanks, including new tank performance standards, release detection, release reporting and investigation, corrective action, and tank closure. The second proposed regulation addresses financial responsibility requirements for underground petroleum tanks. The third addressed standards for approval of state tank programs

  11. From two reports; authorization of 17 nuclear power plants in '81 and '82: by the year 2000, underground and offshore siting should be possible

    International Nuclear Information System (INIS)

    1981-01-01

    The Ministry of International Trade and Industry has published ''Electric power facility plan, 1981'', and set the target of the installed capacity of nuclear power in 1990 at 51,000 MW. In order to reach this target, the Ministry must submit the electrical power facility plan involving 20,000 MW to the Electric Power Resource Development Coordination Council for the required authorization. Meanwhile, the Central Research Institute for Electric Power Industry has engaged in the assessment of long term electric power needs for three years, and completed the report ''Prospects of electric power supply and demand until the year 2000, long term energy strategy''. The conclusions are that nuclear energy must be actively promoted, and that the limitation of land space and the geological conditions in Japan must be overcome, and for the purpose, the technologies of locating nuclear power stations underground and offshore should be developed. The summaries of these two reports are given. 17 units are planned to be submitted to the ERDCC for the approval in the years 1981 and 1982. But the actual situation is severe because it takes long years from the application for construction to the start of operation of nuclear power plants. (Kako, I.)

  12. Genotoxicity and cytotoxicity assay of water sampled from the underground nuclear explosion site in the north of the Perm region (Russia)

    Energy Technology Data Exchange (ETDEWEB)

    Evseeva, Tatiana I. [Institute of Biology, Komi Scientific Center, Ural Division RAS, 167982, Syktyvkar, Kommunisticheskaya 28 (Russian Federation); Geras' kin, Stanislav A. [Russian Institute of Agricultural Radiology and Agroecology RAAS, 249020 Obninsk, Kaluga region (Russian Federation)]. E-mail: stgeraskin@list.ru; Shuktomova, Ida I. [Institute of Biology, Komi Scientific Center, Ural Division RAS, 167982, Syktyvkar, Kommunisticheskaya 28 (Russian Federation); Taskaev, Anatoliy I. [Institute of Biology, Komi Scientific Center, Ural Division RAS, 167982, Syktyvkar, Kommunisticheskaya 28 (Russian Federation)

    2005-07-01

    The results of our study revealed a local biologically relevant surface water contamination in the radionuclide anomaly in the north of Russia (Perm region) by means of Allium schoenoprasum L. anaphase-telophase chromosome aberration assay. This radionuclide anomaly was formed in 1971 as a result of an underground nuclear explosion with soil excavation. Specific activities of main dose-forming radionuclides in all examined reservoirs are below intervention levels officially adopted in Russia for drinking water. We found that {sup 90}Sr significantly contributes to induction of cytogenetic disturbances. Our previous data and the data described here suggest that metal and radionuclide combined exposure (with the dose below permissible exposure limits for human) may cause substantial biological effects. These effects are in part due to synergic response. The findings described here indicated that development of a new concept of radiation protection for humans and biota should be based on the clear understanding of biological effects of low doses of radiation in chronic exposure to multi-pollutant mixtures.

  13. Proximity detection system underground

    Energy Technology Data Exchange (ETDEWEB)

    Denis Kent [Mine Site Technologies (Australia)

    2008-04-15

    Mine Site Technologies (MST) with the support ACARP and Xstrata Coal NSW, as well as assistance from Centennial Coal, has developed a Proximity Detection System to proof of concept stage as per plan. The basic aim of the project was to develop a system to reduce the risk of the people coming into contact with vehicles in an uncontrolled manner (i.e. being 'run over'). The potential to extend the developed technology into other areas, such as controls for vehicle-vehicle collisions and restricting access of vehicle or people into certain zones (e.g. non FLP vehicles into Hazardous Zones/ERZ) was also assessed. The project leveraged off MST's existing Intellectual Property and experience gained with our ImPact TRACKER tagging technology, allowing the development to be fast tracked. The basic concept developed uses active RFID Tags worn by miners underground to be detected by vehicle mounted Readers. These Readers in turn provide outputs that can be used to alert a driver (e.g. by light and/or audible alarm) that a person (Tag) approaching within their vicinity. The prototype/test kit developed proved the concept and technology, the four main components being: Active RFID Tags to send out signals for detection by vehicle mounted receivers; Receiver electronics to detect RFID Tags approaching within the vicinity of the unit to create a long range detection system (60 m to 120 m); A transmitting/exciter device to enable inner detection zone (within 5 m to 20 m); and A software/hardware device to process & log incoming Tags reads and create certain outputs. Tests undertaken in the laboratory and at a number of mine sites, confirmed the technology path taken could form the basis of a reliable Proximity Detection/Alert System.

  14. Underground ventilation remote monitoring and control system

    International Nuclear Information System (INIS)

    Strever, M.T.; Wallace, K.G. Jr.; McDaniel, K.H.

    1995-01-01

    This paper presents the design and installation of an underground ventilation remote monitoring and control system at the Waste Isolation Pilot Plant. This facility is designed to demonstrate safe underground disposal of U.S. defense generated transuranic nuclear waste. To improve the operability of the ventilation system, an underground remote monitoring and control system was designed and installed. The system consists of 15 air velocity sensors and 8 differential pressure sensors strategically located throughout the underground facility providing real-time data regarding the status of the ventilation system. In addition, a control system was installed on the main underground air regulators. The regulator control system gives indication of the regulator position and can be controlled either locally or remotely. The sensor output is displayed locally and at a central surface location through the site-wide Central Monitoring System (CMS). The CMS operator can review all sensor data and can remotely operate the main underground regulators. Furthermore, the Virtual Address Extension (VAX) network allows the ventilation engineer to retrieve real-time ventilation data on his personal computer located in his workstation. This paper describes the types of sensors selected, the installation of the instrumentation, and the initial operation of the remote monitoring system

  15. The underground macroeconomics

    Directory of Open Access Journals (Sweden)

    Marin Dinu

    2013-01-01

    Full Text Available Like Physics, which cannot yet explain 96% of the substance in the Universe, so is Economics, unprepared to understand and to offer a rational explicative model to the underground economy.

  16. Locating underground uranium deposits

    International Nuclear Information System (INIS)

    Felice, P.E.

    1979-01-01

    Underground uranium deposits are located by placing wires of dosimeters each about 5 to 18 mg/cm 2 thick underground in a grid pattern. Each dosimeter contains a phosphor which is capable of storing the energy of alpha particles. In each pair one dosimeter is shielded from alpha particles with more than 18 mg/cm 2 thick opaque material but not gamma and beta rays and the other dosimeter is shielded with less than 1 mg/cm 2 thick opaque material to exclude dust. After a period underground the dosimeters are heated which releases the stored energy as light. The amount of light produced from the heavily shielded dosimeter is subtracted from the amount of light produced from the thinly shielded dosimeter to give an indication of the location and quantity of uranium underground

  17. Underground infrastructure damage for a Chicago scenario

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Thomas N [Los Alamos National Laboratory; Bos, Rabdall J [Los Alamos National Laboratory

    2011-01-25

    Estimating effects due to an urban IND (improvised nuclear device) on underground structures and underground utilities is a challenging task. Nuclear effects tests performed at the Nevada Test Site (NTS) during the era of nuclear weapons testing provides much information on how underground military structures respond. Transferring this knowledge to answer questions about the urban civilian environment is needed to help plan responses to IND scenarios. Explosions just above the ground surface can only couple a small fraction of the blast energy into an underground shock. The various forms of nuclear radiation have limited penetration into the ground. While the shock transmitted into the ground carries only a small fraction of the blast energy, peak stresses are generally higher and peak ground displacement is lower than in the air blast. While underground military structures are often designed to resist stresses substantially higher than due to the overlying rocks and soils (overburden), civilian structures such as subways and tunnels would generally only need to resist overburden conditions with a suitable safety factor. Just as we expect the buildings themselves to channel and shield air blast above ground, basements and other underground openings as well as changes of geology will channel and shield the underground shock wave. While a weaker shock is expected in an urban environment, small displacements on very close-by faults, and more likely, soils being displaced past building foundations where utility lines enter could readily damaged or disable these services. Immediately near an explosion, the blast can 'liquefy' a saturated soil creating a quicksand-like condition for a period of time. We extrapolate the nuclear effects experience to a Chicago-based scenario. We consider the TARP (Tunnel and Reservoir Project) and subway system and the underground lifeline (electric, gas, water, etc) system and provide guidance for planning this scenario.

  18. Effects of injection-site splinting on the incidence of phlebitis in patients taking peripherally infused amiodarone: A randomized clinical trial.

    Science.gov (United States)

    Ayat-Isfahani, Farah; Pashang, Mina; Davoudi, Bita; Sadeghian, Saeed; Jalali, Arash

    2017-03-01

    Intravenous amiodarone is considered an effective treatment option for cardiac ventricular and atrial arrhythmias. Peripheral infusion of amiodarone may cause blood vessels irritation and phlebitis that is the most common complication of this drug by this route even when it is administered within recommended dosing limits. The effect of injection-site splinting on the occurrence of phlebitis among a group of cardiac arrhythmia patients receiving peripherally infused amiodarone. This research is a clinical trial on patients of Tehran Heart Center who were hospitalized due to cardiac arrhythmias. A sample of 60 patients with mean age 65 ± 14 years were randomly divided into control and test groups. In the experimental group with close splint and restrict the movement of the injection site until the end of the infusion and control groups without closing brace, at the same time received amiodarone. Injection protocol was similar for both groups. The results were analyzed with Spss18. The results of this research still significantly reduced the incidence of amiodarone injection-site phlebitis in the injection time (P = .005). Copyright © 2016 Society for Vascular Nursing, Inc. Published by Elsevier Inc. All rights reserved.

  19. Orpheus in the Underground

    Directory of Open Access Journals (Sweden)

    Puskás Dániel

    2015-12-01

    Full Text Available In my study I deal with descents to the underworld and hell in literature in the 20th century and in contemporary literature. I will focus on modem literary reinterpretations of the myth of Orpheus, starting with Rilke’s Orpheus. Eurydice. Hermes. In Seamus Heaney’s The Underground. in the Hungarian Istvan Baka’s Descending to the Underground of Moscow and in Czesław Miłosz’s Orpheus and Eurydice underworld appears as underground, similarly to the contemporary Hungarian János Térey’s play entitled Jeramiah. where underground will also be a metaphorical underworld which is populated with the ghosts of the famous deceased people of Debrecen, and finally, in Péter Kárpáti’s Everywoman the grave of the final scene of the medieval Everyman will be replaced with a contemporary underground station. I analyse how an underground station could be parallel with the underworld and I deal with the role of musicality and sounds in the literary works based on the myth of Orpheus.

  20. Permanent Closure of the TAN-664 Underground Storage Tank

    Energy Technology Data Exchange (ETDEWEB)

    Bradley K. Griffith

    2011-12-01

    This closure package documents the site assessment and permanent closure of the TAN-664 gasoline underground storage tank in accordance with the regulatory requirements established in 40 CFR 280.71, 'Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.'

  1. Risk of Injection-Site Abscess among Infants Receiving a Preservative-Free, Two-Dose Vial Formulation of Pneumococcal Conjugate Vaccine in Kenya

    Science.gov (United States)

    Burton, Deron C.; Bigogo, Godfrey M.; Audi, Allan O.; Williamson, John; Munge, Kenneth; Wafula, Jackline; Ouma, Dominic; Khagayi, Sammy; Mugoya, Isaac; Mburu, James; Muema, Shadrack; Bauni, Evasius; Bwanaali, Tahreni; Feikin, Daniel R.; Ochieng, Peter M.; Mogeni, Ondari D.; Otieno, George A.; Olack, Beatrice; Kamau, Tatu; Van Dyke, Melissa K.; Chen, Robert; Farrington, Paddy; Montgomery, Joel M.; Breiman, Robert F.; Scott, J. Anthony G.; Laserson, Kayla F.

    2015-01-01

    There is a theoretical risk of adverse events following immunization with a preservative-free, 2-dose vial formulation of 10-valent-pneumococcal conjugate vaccine (PCV10). We set out to measure this risk. Four population-based surveillance sites in Kenya (total annual birth cohort of 11,500 infants) were used to conduct a 2-year post-introduction vaccine safety study of PCV10. Injection-site abscesses occurring within 7 days following vaccine administration were clinically diagnosed in all study sites (passive facility-based surveillance) and, also, detected by caregiver-reported symptoms of swelling plus discharge in two sites (active household-based surveillance). Abscess risk was expressed as the number of abscesses per 100,000 injections and was compared for the second vs first vial dose of PCV10 and for PCV10 vs pentavalent vaccine (comparator). A total of 58,288 PCV10 injections were recorded, including 24,054 and 19,702 identified as first and second vial doses, respectively (14,532 unknown vial dose). The risk ratio for abscess following injection with the second (41 per 100,000) vs first (33 per 100,000) vial dose of PCV10 was 1.22 (95% confidence interval [CI] 0.37–4.06). The comparator vaccine was changed from a 2-dose to 10-dose presentation midway through the study. The matched odds ratios for abscess following PCV10 were 1.00 (95% CI 0.12–8.56) and 0.27 (95% CI 0.14–0.54) when compared to the 2-dose and 10-dose pentavalent vaccine presentations, respectively. In Kenya immunization with PCV10 was not associated with an increased risk of injection site abscess, providing confidence that the vaccine may be safely used in Africa. The relatively higher risk of abscess following the 10-dose presentation of pentavalent vaccine merits further study. PMID:26509274

  2. Underground storage tank management plan

    International Nuclear Information System (INIS)

    1994-09-01

    The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations

  3. Underground storage tank management plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations.

  4. Geotechnical site assessment methodologies relevant to potential deep underground disposal facilities: with particular reference to the determination of in situ rock stress by the hydraulic fracturing method

    International Nuclear Information System (INIS)

    Monaghan, B.G.; Richards, L.R.

    1986-10-01

    A final report summarizing the research conducted on geotechnical site assessment methodologies relevant to Land 3/4 sites. Two areas of research have been investigated; in situ stress determination by the hydraulic fracturing method in basic volcanics and sediments and the laboratory determination of hydraulic fracture tensile strength. The analysis and interpretation of the hydraulic fracturing test data from a programme of testing in the Vale of Belvoir is discussed in detail particularly in respect of the effects of pore water pressure and fluid diffusion in the rocks being tested. The regional stress regime of the Vale of Belvoir is discussed with respect to the results of the in situ stress determination. A method for determining the hydraulic fracture tensile strength in the laboratory is described. The results of a series of laboratory tests on rock core are reported. (author)

  5. Sampling method of water sources at study site Taiping, Perak and Pulau Burung, Penang for research on pollutant movement in underground water

    International Nuclear Information System (INIS)

    Mohd Rifaie Mohd Murtadza; Mohd Tadza Abdul Rahman; Kamarudin Samuding; Roslanzairi Mostapa

    2005-01-01

    This paperwork explain the method of water sampling being used to take the water samples from the study sites in Taiping, Perak and Pulau Burung, Pulau Pinang. The sampling involve collecting of water samples for groundwater from boreholes and surface water from canal, river, pond, and ex-mining pond from several locations at the study sites. This study also elaborates the instruments and chemical used. The main purpose of this sampling are to obtain the important water quality parameters such as pH, conductivity, Total Dissolved Solid (TDS), heavy metals, anions, cations, and environmental isotopes delta values (d) for 18O, Deuterium dan Tritium. A correct sampling method according to standard is very important to ensure an accurate and precise results. With this, the data from the laboratory tests result can be fully utilized to make the interpretation of the pollutants movement. (Author)

  6. Development of a methodology for post closure radiological risk analysis of underground waste repositories. Illustrative assessment of the Harwell site. V.1

    International Nuclear Information System (INIS)

    Gralewski, Z.A.; Kane, P.; Nicholls, D.B.

    1987-06-01

    A probabilistic risk analysis (pra) is demonstrated for a number of ground water mediated release scenarios at the Harwell Site for a hypothetical repository at a depth of about 150 metres. This is the second stage of development of an overall risk assessment methodology. A procedure for carrying out multi-scenario assessment using available probabilistic risk assessment (pra) models is presented and a general methodology for combining risk contributions is outlined. Appropriate levels of model complexity in pra are discussed. Modelling requirements for the treatment of multiple simultaneous pathways and of site evolution are outlined. Further developments of pra systems are required to increase the realism of both the models and their mode of application, and hence to improve estimates of risk. (author)

  7. Underground gasification of coal. [Newman Spinney

    Energy Technology Data Exchange (ETDEWEB)

    1950-06-16

    This article gives an account of the experimental work on underground gasification at Newman Spinney near Sheffield, England. An attempt was made to develop the percolation technique in flat coal seams but to demonstrate first that gas can be made underground. A borehole system was created on an opencast site where an exposed seam face would allow horizontal drilling to be carried out. Details of trails are given, and drilling techniques, electromagnetic device developed by the Great Britain Post Office Research Branch and radioactive location developed by the Anglo-Iranian Oil Company. An account is given of the inauguration of a series of experiments on May 22, 1950.

  8. Background Models for Muons and Neutrons Underground

    International Nuclear Information System (INIS)

    Formaggio, Joseph A.

    2005-01-01

    Cosmogenic-induced activity is an issue of great concern for many sensitive experiments sited underground. A variety of different arch-type experiments - such as those geared toward the detection of dark matter, neutrinoless double beta decay and solar neutrinos - have reached levels of cleanliness and sensitivity that warrant careful consideration of secondary activity induced by cosmic rays. This paper reviews some of the main issues associated with the modeling of cosmogenic activity underground. Comparison with data, when such data is available, is also presented

  9. Radon Progeny in Egyptian Underground Phosphate Mines

    International Nuclear Information System (INIS)

    El-Hady, M.A.; Mohammed, A.; El-Hussein, A.; Ali, A.E.; Ahmed, A.A.

    2001-01-01

    In addition to the workers in uranium mines, the staff of other underground mines, such as workers in underground phosphate mines, can be exposed to 222 Rn and its progeny. In this study the individual radon progeny concentrations were measured in three Egyptian underground phosphate mines to estimate the occupational exposure of the workers at those sites. A filter method was used to measure individual radon progeny concentrations ( 218 Po, 214 Pb and 214 Po). The reported mean values of radon progeny concentrations exceed the action levels which are recommended by ICRP 65 (1993). Based on the measured individual radon progeny concentrations ( 218 Po, 214 Pb and 214 Po) in these mines, the annual effective dose for the workers has been calculated using the lung dose model of ICRP 66 (1994). According to the obtained results, some countermeasures were recommended in this study to minimise these exposure levels. (author)

  10. Underground nuclear astrophysics at the Dresden Felsenkeller

    Energy Technology Data Exchange (ETDEWEB)

    Bemmerer, Daniel; Ilgner, Christoph; Junghans, Arnd R.; Mueller, Stefan; Rimarzig, Bernd; Schwengner, Ronald; Szuecs, Tamas; Wagner, Andreas [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Cowan, Thomas E.; Gohl, Stefan; Grieger, Marcel; Reinicke, Stefan; Roeder, Marko; Schmidt, Konrad; Stoeckel, Klaus; Takacs, Marcell P.; Wagner, Louis [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Technische Universitaet Dresden (Germany); Reinhardt, Tobias P.; Zuber, Kai [Technische Universitaet Dresden (Germany)

    2015-07-01

    Favored by the low background underground, accelerator-based experiments are an important tool to study nuclear astrophysics reactions involving stable charged particles. This technique has been used with great success at the 0.4 MV LUNA accelerator in the Gran Sasso laboratory in Italy. However, the nuclear reactions of helium and carbon burning and the neutron source reactions for the astrophysical s-process require higher beam energies, as well as the continuation of solar fusion studies. As a result, NuPECC strongly recommended the installation of one or more higher-energy underground accelerators. Such a project is underway in Dresden. A 5 MV Pelletron accelerator is currently being refurbished by installing an ion source on the high voltage terminal, enabling intensive helium beams. The preparation of the underground site is funded, and the civil engineering project is being updated. The science case, operational strategy and project status are reported.

  11. Effect of solid waste landfill on underground and surface water ...

    African Journals Online (AJOL)

    Effect of solid waste landfill on underground and surface water quality at ring road, Ibadan, Nigeria. ... parameters showed increased concentrations over those from control sites. ... Keywords: Landfill, groundwater, surface-water, pollution.

  12. Continuous atmospheric monitoring of the injected CO2 behavior over geological storage sites using flux stations: latest technologies and resources

    Science.gov (United States)

    Burba, George; Madsen, Rodney; Feese, Kristin

    2014-05-01

    Flux stations have been widely used to monitor emission rates of CO2 from various ecosystems for climate research for over 30 years [1]. The stations provide accurate and continuous measurements of CO2 emissions with high temporal resolution. Time scales range from 20 times per second for gas concentrations, to 15-minute, hourly, daily, and multi-year periods. The emissions are measured from the upwind area ranging from thousands of square meters to multiple square kilometers, depending on the measurement height. The stations can nearly instantaneously detect rapid changes in emissions due to weather events, as well as changes caused by variations in human-triggered events (pressure leaks, control releases, etc.). Stations can also detect any slow changes related to seasonal dynamics and human-triggered low-frequency processes (leakage diffusion, etc.). In the past, station configuration, data collection and processing were highly-customized, site-specific and greatly dependent on "school-of-thought" practiced by a particular research group. In the last 3-5 years, due to significant efforts of global and regional CO2 monitoring networks (e.g., FluxNet, Ameriflux, Carbo-Europe, ICOS, etc.) and technological developments, the flux station methodology became fairly standardized and processing protocols became quite uniform [1]. A majority of current stations compute CO2 emission rates using the eddy covariance method, one of the most direct and defensible micrometeorological techniques [1]. Presently, over 600 such flux stations are in operation in over 120 countries, using permanent and mobile towers or moving platforms (e.g., automobiles, helicopters, and airplanes). Atmospheric monitoring of emission rates using such stations is now recognized as an effective method in regulatory and industrial applications, including carbon storage [2-8]. Emerging projects utilize flux stations to continuously monitor large areas before and after the injections, to locate and

  13. Summary of air permeability data from single-hole injection tests in unsaturated fractured tuffs at the Apache Leap Research Site: Results of steady-state test interpretation

    International Nuclear Information System (INIS)

    Guzman, A.G.; Geddis, A.M.; Henrich, M.J.; Lohrstorfer, C.F.; Neuman, S.P.

    1996-03-01

    This document summarizes air permeability estimates obtained from single hole pneumatic injection tests in unsaturated fractured tuffs at the Covered Borehole Site (CBS) within the larger apache Leap Research Site (ALRS). Only permeability estimates obtained from a steady state interpretation of relatively stable pressure and flow rate data are included. Tests were conducted in five boreholes inclined at 45 degree to the horizontal, and one vertical borehole. Over 180 borehole segments were tested by setting the packers 1 m apart. Additional tests were conducted in segments of lengths 0.5, 2.0, and 3.0 m in one borehole, and 2.0 m in another borehole, bringing the total number of tests to over 270. Tests were conducted by maintaining a constant injection rate until air pressure became relatively stable and remained so for some time. The injection rate was then incremented by a constant value and the procedure repeated. The air injection rate, pressure, temperature, and relative humidity were recorded. For each relatively stable period of injection rate and pressure, air permeability was estimated by treating the rock around each test interval as a uniform, isotropic porous medium within which air flows as a single phase under steady state, in a pressure field exhibiting prolate spheroidal symmetry. For each permeability estimate the authors list the corresponding injection rate, pressure, temperature and relative humidity. They also present selected graphs which show how the latter quantities vary with time; logarithmic plots of pressure versus time which demonstrate the importance of borehole storage effects during the early transient portion of each incremental test period; and semilogarithmic plots of pressure versus recovery time at the end of each test sequence

  14. Influence of the extreme millennial values of the physical data of the natural environment on the ground and near underground. Application to waste disposal sites

    International Nuclear Information System (INIS)

    Guinle-Thenevin, I.

    1998-01-01

    This study deals with effects of extreme climatic events in France on perenniality of radioactive or toxic waste disposal coverings or of tailing storage barriers. Three phenomena are quantified: erosion or scraping produced by storm showers, ground freezing depth caused by harsh winters and ground drying resulted from arid summers. To quantify this phenomena, we need statistical evaluation of the climatic events (erosivity of rain showers, frost severity index, drought severity indices), a study of the soil characteristics (petrography, thermal and hydraulic properties) and numeric models of soils (finite elements or finite differences methods). Last but not least, each method is applied to French sites chosen for their climate and their proximity to real or possible storage. Therefore, we show critical parameters for the design of waste disposal covering which takes into account extreme climatic events. (author)

  15. Lance water injection tests adjacent to the 281-3H retention basin at the Savannah River Site, Aiken, South Carolina

    International Nuclear Information System (INIS)

    Freifeld, B.; Myer, L.; Moridis, G.; Cook, P.; James, A.; Pellerin, L.; Pruess, K.

    1996-09-01

    A pilot-scale field demonstration of waste isolation using viscous- liquid containment barriers has been planned for the 281-3H retention basin at the Savannah River Site, Aiken, SC. The 281-3H basin is a shallow retention/seepage basin contaminated mainly by radionuclides. The viscous-liquid containment barrier utilizes the permeation of liquid grout to either entomb the contaminants within a monolithic grout structure or to isolate the waste by drastically reducing the permeability, of the soils around the plume. A clear understanding of the hydrogeologic setting of the retention basin is necessary for proper design of the viscous liquid barrier. To aid in the understanding of the hydrogeology of the 281-3H retention basin, and to obtain critical parameters necessary for grout injection design, a series of tests were undertaken in a region immediately adjacent to the basin. The objectives of the LWIT were: 1. To evaluate the general performance of the Lance Injection Technique for grout emplacement at the site, including the range and upper limits of injection pressures, the flow rates applicable for site conditions, as well as the mechanical forces needed for lance penetration. 2. To obtain detailed information on the injectability of the soils immediately adjacent to the H-area retention basin. 3. To identify any high permeability zones suitable for injection and evaluate their spatial distribution. 4. To perform ground penetrating radar (GPR) to gain information on the structure of the soil column and to compare the results with LWIT data. This report will focus on results pertinent to these objectives

  16. Underground nuclear power plant

    International Nuclear Information System (INIS)

    Takahashi, Hideo.

    1997-01-01

    In an underground-type nuclear power plant, groups of containing cavities comprising a plurality of containing cavities connected in series laterally by way of partition walls are disposed in parallel underground. Controlled communication tunnels for communicating the containing cavities belonging to a control region to each other, and non-controlled communication tunnels for communicating containing cavities belonging to a non-controlled area to each other are disposed underground. A controlled corridor tunnel and a non-controlled corridor tunnel extended so as to surround the containing cavity groups are disposed underground, and the containing cavities belonging to the controlled area are connected to the controlled corridor tunnel respectively, and the containing cavities belonging to the non-controlled area are connected to the non-controlled corridor tunnel respectively. The excavating amount of earth and sand upon construction can be reduced by disposing the containing cavity groups comprising a plurality of containing cavities connected in series laterally. The time and the cost for the construction can be reduced, and various excellent effects can be provided. (N.H.)

  17. Underground neutrino astronomy

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1983-02-01

    A review is made of possible astronomical neutrino sources detectable with underground facilities. Comments are made about solar neutrinos and gravitational-collapse neutrinos, and particular emphasis is placed on ultra-high-energy astronomical neutrino sources. An appendix mentions the exotic possibility of monopolonium

  18. Steam and hot air injection for thermal rehabilitation of contaminated sites; Wasserdampf- und Heissluftinjektion zur thermischen Sanierung kontaminierter Standorte

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R

    2001-07-01

    Thermal in situ rehabilitation technologies are a promising alternative to conventional methods of cleaning up contaminated sites. The fact that an increase in temperature changes the physical properties of materials makes it possible, in principle, to release large quantities of pollutants within short time periods. The use of pure steam or steam/air mixtures as fluid thermal carriers permits converting subterranean non-aqueous-phase pollutants into the gas phase through increased vapour pressure and transporting them to the surface by means of soil air aspiration for further treatment. The purpose of the present two-stage research project was to systematically develop a thermal in situ rehabilitation technology using steam as fluid heat carrier and use it for land rehabilitation operations on a pilot basis. In the first, fundamental project phase aspects of heat transport (Faerber, 1997) and pollutant behaviour (Betz, 1998)in homogenous porous media upon pure steam injection were explored at a laboratory and technical scale using containers of different sizes (1D, 2D, 3D). The results were used to derive application criteria for this technology. [German] Thermische In-situ-Sanierungstechnologien stellen bei der Reinigung kontaminierter Standorte eine vielversprechende Alternative zu konventionellen Verfahren dar. Die Veraenderung physikalischer Stoffeigenschaften mit steigender Temperatur ermoeglicht grundsaetzlich hohe Schadstoffaustraege innerhalb kurzer Zeitraeume. Beim Einsatz von reinem Wasserdampf oder Wasserdampf-Luft-Gemischen als Waermetraegerfluid koennen im Untergrund in nicht waessriger Phase vorliegende Schadstoffe hauptsaechlich wegen der erhoehten Dampfdruecke in die Gasphase ueberfuehrt, ueber eine Bodenluftabsaugung an die Oberflaeche transportiert und dann einer weiteren Behandlung zugefuehrt werden. Zielsetzung eines zweistufigen Forschungsvorhabens war die systematische Entwicklung einer thermischen In-situ-Sanierungstechnologie unter

  19. Prediction of ground motion from underground nuclear weapons tests as it relates to siting of a nuclear waste storage facility at NTS and compatibility with the weapons test program

    International Nuclear Information System (INIS)

    Vortman, L.J. IV.

    1980-04-01

    This report assumes reasonable criteria for NRC licensing of a nuclear waste storage facility at the Nevada Test Site where it would be exposed to ground motion from underground nuclear weapons tests. Prediction equations and their standard deviations have been determined from measurements on a number of nuclear weapons tests. The effect of various independent parameters on standard deviation is discussed. That the data sample is sufficiently large is shown by the fact that additional data have little effect on the standard deviation. It is also shown that coupling effects can be separated out of the other contributions to the standard deviation. An example, based on certain licensing assumptions, shows that it should be possible to have a nuclear waste storage facility in the vicinity of Timber Mountain which would be compatible with a 700 kt weapons test in the Buckboard Area if the facility were designed to withstand a peak vector acceleration of 0.75 g. The prediction equation is a log-log linear equation which predicts acceleration as a function of yield of an explosion and the distance from it

  20. Estimation of groundwater flow at the site of Mizunami Underground Research Laboratory by the inversion of surface tilt during drainage, submergence and re-drainage in excavation of shafts

    International Nuclear Information System (INIS)

    Narikawa, Tatsuya; Matsuki, Koji; Arai, Takashi; Ohyama, Takuya; Takeuchi, Ryuji; Takeuchi, Shinji

    2009-01-01

    The distribution of the change in groundwater volume at the site of Mizunami Underground Research Laboratory in the Tono area, Japan, was estimated by the inverse method proposed by the authors, using tilt data measured with four tiltmeters at the surface during drainage, submergence and re-drainage in excavation of shafts. Furthermore, the reliability of the results was evaluated by a model analysis for groundwater flow in a single ellipsoidal field. The results showed that the hydrogeological structure for the region of 1000 m x 1000 m in area and 100 m to 180 m in depth is such that groundwater flow occurs mainly in a region between two impermeable faults with the center at 100 m to 150 m south of the Main shaft and this region tends to shrink toward north-west and be widened toward south to south-east. However, at the same time, the model analysis showed that areas north-west and south-east of the Main shaft in the corners of the region are vacua for estimation due to the aligned layout of the tiltmeters. (author)

  1. Earthquake damage to underground facilities

    International Nuclear Information System (INIS)

    Pratt, H.R.; Hustrulid, W.A.; Stephenson, D.E.

    1978-11-01

    The potential seismic risk for an underground nuclear waste repository will be one of the considerations in evaluating its ultimate location. However, the risk to subsurface facilities cannot be judged by applying intensity ratings derived from the surface effects of an earthquake. A literature review and analysis were performed to document the damage and non-damage due to earthquakes to underground facilities. Damage from earthquakes to tunnels, s, and wells and damage (rock bursts) from mining operations were investigated. Damage from documented nuclear events was also included in the study where applicable. There are very few data on damage in the subsurface due to earthquakes. This fact itself attests to the lessened effect of earthquakes in the subsurface because mines exist in areas where strong earthquakes have done extensive surface damage. More damage is reported in shallow tunnels near the surface than in deep mines. In mines and tunnels, large displacements occur primarily along pre-existing faults and fractures or at the surface entrance to these facilities.Data indicate vertical structures such as wells and shafts are less susceptible to damage than surface facilities. More analysis is required before seismic criteria can be formulated for the siting of a nuclear waste repository

  2. Long-term behaviour of waste-forms in the near-field environment of a deep underground storage site, overview

    International Nuclear Information System (INIS)

    Toulhoat, P.; Lassabatere, Th.; Galle, Ch.; Cranga, M.; Trotignon, L.; Maillard, S.; Iracane, D.

    1997-01-01

    CEA (French Atomic Energy Commission) is responsible for the achievement of high activity and/or long life waste conditioning processes. Various waste-forms are used (glass, bitumen, etc...). ANDRA (French National Agency for Nuclear Waste Management) has to integrate the long-term durability of such waste-forms in the conception of a deep disposal and the assessment of its long-term confinement performances. The influence of near-field and of the boundary conditions imposed by the far-field on the long-term evolution is being more and more documented. Transport properties and reactivity of silica in the near field is one of the best examples of such effects. A coherent framework with relevant successive events (site re-saturation, chemical evolution of the engineered barrier, overpack corrosion) and a thorough analysis of hierarchized couplings are necessary to evaluate the long term durability of waste-form, and finally, to deliver a near-field-integrated source-term of radionuclides versus lime. We present hereafter some preliminary results obtained in the framework of the CEA 'C3P' project - long-term behaviour of waste-forms in their near-field environment. (authors)

  3. Global Pursuits: The Underground Railroad

    Science.gov (United States)

    School Arts: The Art Education Magazine for Teachers, 2004

    2004-01-01

    This brief article describes Charles T. Webber's oil on canvas painting, "The Underground Railroad, 1893." The subject of this painting is the Underground Railroad, which today has become an American legend. The Underground Railroad was not a systematic means of transportation, but rather a secretive process that allowed fugitive slaves…

  4. Laboratory and Field Studies Related to Radionuclide Migration at the Nevada Test Site in Support of the Underground Test Area Project and the Hydrologic Resources Management Program, October 1, 2002 - September 30, 2003

    International Nuclear Information System (INIS)

    D.L.Finnegan; J.L. Thompson; B.A. Martinez

    2004-01-01

    This report details the work of Chemistry Division personnel from Los Alamos National Laboratory in FY 2003 for the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) under its Defense Programs and Environmental Restoration divisions. Los Alamos is one of a number of agencies collaborating in an effort to describe the present and future movement of radionuclides in the underground environment of the Nevada Test Site. This fiscal year we collected and analyzed water samples from a number of expended test locations at the Nevada Test Site. We give the results of these analyses and summarize the information gained over the quarter century that we have been studying several of these sites. We find that by far most of the radioactive residues from a nuclear test are contained in the melt glass in the cavity. Those radionuclides that are mobile in water can be transported if the groundwater is moving due to hydraulic or thermal gradients. The extent to which they move is a function of their chemical speciation, with neutral or anionic materials traveling freely relative to cationic materials that tend to sorb on rock surfaces. However, radionuclides sorbed on colloids may be transported if the colloids are moving. Local conditions strongly influence the distribution and movement of radionuclides, and we continue to study sites such as Cheshire, RNM-2s, Camembert and Almendro where radionuclides have been measured in the past. We collected samples from monitoring wells in Yucca Flat (ER-12-2, ER-6-1 No.2 and ER-7-1) and Frenchman Flat (ER-5-4 No.2) to obtain baseline radiochemistry data in those areas. We, in collaboration with LLNL, assembled all of the hot well data that have been collected over the past 30 years and submitted the data to Shaw for future inclusion in the geochemistry database. We have again used a field probe that allows us to measure important groundwater properties in situ. We begin the report with a

  5. Antigen injection (image)

    Science.gov (United States)

    Leprosy is caused by the organism Mycobacterium leprae . The leprosy test involves injection of an antigen just under ... if your body has a current or recent leprosy infection. The injection site is labeled and examined ...

  6. Monitoring of injected CO2 at two commercial geologic storage sites with significant pressure depletion and/or re-pressurization histories: A case study

    Directory of Open Access Journals (Sweden)

    Dayanand Saini

    2017-03-01

    The monitoring technologies that have been used/deployed/tested at both the normally pressured West Hastings and the subnormally pressured Bell Creek storage sites appear to adequately address any of the potential “out of zone migration” of injected CO2 at these sites. It would be interesting to see if any of the collected monitoring data at the West Hastings and the Bell Creek storage sites could also be used in future to better understand the viability of initially subnormally pressured and subsequently depleted and re-pressurized oil fields as secure geologic CO2 storage sites with relatively large storage CO2 capacities compared to the depleted and re-pressurized oil fields that were initially discovered as normally pressured.

  7. Underground reactor containments: An option for the future?

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Kress, T.

    1997-01-01

    Changing world conditions and changing technologies suggest that serious consideration should be given to siting of nuclear power plants underground. Underground siting is not a new concept. Multiple research reactors, several weapons production reactors, and one power reactor have been built underground. What is new are the technologies and incentives that may now make underground siting a preferred option. The conditions and technologies, along with their implications, are discussed herein. Underground containments can be constructed in mined cavities or pits that are then backfilled with thick layers of rock and soil. Conventional above-ground containments resist assaults and accidents because of the strength of their construction materials and the effectiveness of their safety features that are engineered to reduce loads. However, underground containments can provide even more resistance to assaults and accidents because of the inertia of the mass of materials over the reactor. High-technology weapons or some internal accidents can cause existing strong-material containments to fail, but only very-high energy releases can move large inertial masses associated with underground containments. New methods of isolation may provide a higher confidence in isolation that is independent of operator action

  8. Structural design and dynamic analysis of underground nuclear reactor containments

    International Nuclear Information System (INIS)

    Kierans, T.W.; Reddy, D.V.; Heale, D.G.

    1975-01-01

    Present actual experience in the structural design of undeground containments is limited to only four rather small reactors all located in Europe. Thus proposals for future underground reactors depend on the transposition of applicable design specifications, constraints and criteria from existing surface nuclear power plants to underground, and the use of many years of experience in the structural design of large underground cavities and cavity complexes for other purposes such as mining, hydropower stations etc. An application of such considerations in a recent input for the Underground Containment sub-section of the Seismic Task Group Report to the ASCE Committee for Nuclear Structures and Materials is presented as follows: underground concept considerations, siting criteria and structural selection, structural types, analytical and semi-analytical approaches, design and other miscellaneous considerations

  9. Organ nic pollutants in underground water

    International Nuclear Information System (INIS)

    Hussein, H. H.

    1998-01-01

    Many organic compounds have been diagnosed in underground and surface waters, and there are many theories that explain the source of the dangerous materials on Punic health. The source of pollution could be the underground stored fuel or the polluted water in farms saturated with agricultural insecticides and chemical fertilizers, or there could be leaks in sewage water wastes. The source of pollution could also be the water surfaces in the areas of garbage disposal or industrial and home waste discharge. Due to the fact that the underground water is separated from oxygen in the air, its ability on self-purification is very low, in that the micro-organism that will do the dismantling and decomposition of the organic materials that pollute the water are in need for oxygen. In the event that underground water is subject to pollution m there are many methods for t resting the polluted water including the chemical decomposition method by injecting the polluted areas with neutralizing or oxidizing chemicals, such as Ozone, Chlorine or Hydrogen Peroxide. The mechanical methods could be used for getting rid of the volatile organic materials. As to biological decomposition, it is done with the use of bacteria in dismantling the poisonous materials into un poisonous materials. The preliminary analysis of water samples in one of the water wells in Sar ir and Tazarbo in Great Jamahirieh indicated that the concentration of total organic compounds (TOC) exceeded the internationally allowed limits. This indicates a deterioration of quality of some of underground water resources. It is well known that some of the organic pollutants have a great role in causing dangerous diseases, such as the polynuclear aromatic hydrocarbons and some halogenated compounds that cause cancer. Therefore, much research is required in this field for diagnosing the polluting organic compounds and determining the suitability of this water for drinking or for human consumption. (author). 21 refs., 6 figs

  10. An Integrated Experimental-Modelling Procedure Applied to the Design of a Field Scale Goethite Nanoparticle Injection for the Remediation of Contaminated Sites

    Science.gov (United States)

    Bianco, C.; Tosco, T.; Sethi, R.

    2017-12-01

    Nanoremediation is a promising in-situ technology for the reclamation of contaminated aquifers. It consists in the subsurface injection of a reactive colloidal suspension for the in-situ treatment of pollutants. The overall success of this technology at the field scale is strictly related to the achievement of an effective and efficient emplacement of the nanoparticles (NP) inside the contaminated area. Mathematical models can be used to support the design of nanotechnology-based remediation by effectively assessing the expected NP mobility at the field scale. Several analytical and numerical tools have been developed in recent years to model the transport of NPs in simplified geometry and boundary conditions. The numerical tool MNMs was developed by the authors of this work to simulate colloidal transport in 1D Cartesian and radial coordinates. A new modelling tool, MNM3D (Micro and Nanoparticle transport Model in 3D geometries), was also proposed for the simulation of injection and transport of NP suspensions in generic complex scenarios. MNM3D accounts for the simultaneous dependency of NP transport on water ionic strength and velocity. The software was developed to predict the NP mobility at different stages of a nanoremediation application, from the design stage to the prediction of the long-term fate after injection. In this work an integrated experimental-modelling procedure is applied to support the design of a field scale injection of goethite NPs carried out in the framework of the H2020 European project Reground. Column tests are performed at different injection flowrates using natural sand collected at the contaminated site as porous medium. The tests are interpreted using MNMs to characterize the NP mobility and derive the constitutive equations describing the suspension behavior in the natural porous medium. MNM3D is then used to predict NP behavior during the field scale injection and to assess the long-term mobility of the injected slurry. Finally

  11. Impact of hydrogeological and geomechanical properties on surface uplift at a CO2 injection site: Parameter estimation and uncertainty quantification

    Science.gov (United States)

    Newell, P.; Yoon, H.; Martinez, M. J.; Bishop, J. E.; Arnold, B. W.; Bryant, S.

    2013-12-01

    It is essential to couple multiphase flow and geomechanical response in order to predict a consequence of geological storage of CO2. In this study, we estimate key hydrogeologic features to govern the geomechanical response (i.e., surface uplift) at a large-scale CO2 injection project at In Salah, Algeria using the Sierra Toolkit - a multi-physics simulation code developed at Sandia National Laboratories. Importantly, a jointed rock model is used to study the effect of postulated fractures in the injection zone on the surface uplift. The In Salah Gas Project includes an industrial-scale demonstration of CO2 storage in an active gas field where CO2 from natural gas production is being re-injected into a brine-filled portion of the structure downdip of the gas accumulation. The observed data include millimeter scale surface deformations (e.g., uplift) reported in the literature and injection well locations and rate histories provided by the operators. Our preliminary results show that the intrinsic permeability and Biot coefficient of the injection zone are important. Moreover pre-existing fractures within the injection zone affect the uplift significantly. Estimation of additional (i.e., anisotropy ratio) and coupled parameters will help us to develop models, which account for the complex relationship between mechanical integrity and CO2 injection-induced pressure changes. Uncertainty quantification of model predictions will be also performed using various algorithms including null-space Monte Carlo and polynomial-chaos expansion methods. This work will highlight that our coupled reservoir and geomechanical simulations associated with parameter estimation can provide a practical solution for designing operating conditions and understanding subsurface processes associated with the CO2 injection. This work is supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office

  12. Underground Pumped Storage Hydropower using abandoned open pit mines: influence of groundwater seepage on the system efficiency

    Science.gov (United States)

    Pujades, Estanislao; Bodeux, Sarah; Orban, Philippe; Dassargues, Alain

    2016-04-01

    Pumped Storage Hydropower (PSH) plants can be used to manage the production of electrical energy according to the demand. These plants allow storing and generating electricity during low and high demand energy periods, respectively. Nevertheless, PSH plants require a determined topography because two reservoirs located at different heights are needed. At sites where PSH plants cannot be constructed due to topography requirements (flat regions), Underground Pumped Storage Hydropower (UPSH) plants can be used to adjust the electricity production. These plants consist in two reservoirs, the upper one is located at the surface (or at shallow depth) while the lower one is underground (or deeper). Abandoned open pit mines can be used as lower reservoirs but these are rarely isolated. As a consequence, UPSH plants will interact with surrounding aquifers exchanging groundwater. Groundwater seepage will modify hydraulic head inside the underground reservoir affecting global efficiency of the UPSH plant. The influence on the plant efficiency caused by the interaction between UPSH plants and aquifers will depend on the aquifer parameters, underground reservoir properties and pumping and injection characteristics. The alteration of the efficiency produced by the groundwater exchanges, which has not been previously considered, is now studied numerically. A set of numerical simulations are performed to establish in terms of efficiency the effects of groundwater exchanges and the optimum conditions to locate an UPSH plant.

  13. Nuclear plant undergrounding

    International Nuclear Information System (INIS)

    Brown, R.C.; Bastidas, C.P.

    1978-01-01

    Under Section 25524.3 of the Public Resources Code, the California Energy Resources Conservation and Development Commission (CERCDC) was directed to study ''the necessity for '' and the effectiveness and economic feasibility of undergrounding and berm containment of nuclear reactors. The author discusses the basis for the study, the Sargent and Lundy (S and L) involvement in the study, and the final conclusions reached by S and L

  14. Monitoring underground movements

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    On 16 September 2015 at 22:54:33 (UTC), an 8.3-magnitude earthquake struck off the coast of Chile. 11,650 km away, at CERN, a new-generation instrument – the Precision Laser Inclinometer (PLI) – recorded the extreme event. The PLI is being tested by a JINR/CERN/ATLAS team to measure the movements of underground structures and detectors.   The Precision Laser Inclinometer during assembly. The instrument has proven very accurate when taking measurements of the movements of underground structures at CERN.    The Precision Laser Inclinometer is an extremely sensitive device capable of monitoring ground angular oscillations in a frequency range of 0.001-1 Hz with a precision of 10-10 rad/Hz1/2. The instrument is currently installed in one of the old ISR transfer tunnels (TT1) built in 1970. However, its final destination could be the ATLAS cavern, where it would measure and monitor the fine movements of the underground structures, which can affect the precise posi...

  15. Site-targeted non-viral gene delivery by direct DNA injection into the pancreatic parenchyma and subsequent in vivo electroporation in mice.

    Science.gov (United States)

    Sato, Masahiro; Inada, Emi; Saitoh, Issei; Ohtsuka, Masato; Nakamura, Shingo; Sakurai, Takayuki; Watanabe, Satoshi

    2013-11-01

    The pancreas is considered an important gene therapy target because the organ is the site of several high burden diseases, including diabetes mellitus, cystic fibrosis, and pancreatic cancer. We aimed to develop an efficient in vivo gene delivery system using non-viral DNA. Direct intra-parenchymal injection of a solution containing circular plasmid pmaxGFP DNA was performed on adult anesthetized ICR female mice. The injection site was sandwiched with a pair of tweezer-type electrode disks, and electroporated using a square-pulse generator. Green fluorescent protein (GFP) expression within the injected pancreatic portion was observed one day after gene delivery. GFP expression reduced to baseline within a week of transfection. Application of voltages over 40 V resulted in tissue damage during electroporation. We demonstrate that electroporation is effective for safe and efficient transfection of pancreatic cells. This novel gene delivery method to the pancreatic parenchyma may find application in gene therapy strategies for pancreatic diseases and in investigation of specific gene function in situ. © 2013 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptions are made.

  16. Post-Closure Monitoring Report for Corrective Action Unit 98, Frenchman Flat, Underground Test Area, Nevada National Security Site, Nevada for Calendar Year 2016 (January 2016–December 2016), Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene [Navarro, Las Vegas, NV (United States)

    2017-06-01

    Corrective Action Unit (CAU) 98: Frenchman Flat on the Nevada National Security Site was the location of 10 underground nuclear tests. CAU 98 underwent a series of investigations and actions in accordance with the Federal Facility Agreement and Consent Order to assess contamination of groundwater by radionuclides from the tests. A Closure Report completed that process in 2016 and called for long-term monitoring, use restrictions (URs), and institutional controls to protect the public and environment from potential exposure to contaminated groundwater. Three types of monitoring are performed for CAU 98: water quality, water level, and institutional control. These are evaluated to determine whether the UR boundaries remain protective of human health and the environment, and to ensure that the regulatory boundary objectives are being met. Additionally, monitoring data are used to evaluate consistency with the groundwater flow and contaminant transport models because the contaminant boundaries (CBs) calculated with the models are the primary basis of the UR boundaries. In summary, the monitoring results from 2016 indicate the regulatory controls on the closure of CAU 98 remain effective in protection of human health and the environment. Recommendations resulting from this first year of monitoring activities include formally incorporating wells UE-5 PW-1, UE-5 PW-2, and UE-5 PW-3 into the groundwater-level monitoring network given their strategic location in the basin; and early development of a basis for trigger levels for the groundwater-level monitoring given the observed trends. Additionally, it is recommended to improve the Real Estate/Operations Permit process for capturing information important for evaluating the impact of activities on groundwater resources, and to shift the reporting requirement for this annual report from the second quarter of the federal fiscal year (end of March) to the second quarter of the calendar year (end of June).

  17. Optimizing CT angiography in patients with Fontan physiology: single-center experience of dual-site power injection

    International Nuclear Information System (INIS)

    Sandler, K.L.; Markham, L.W.; Mah, M.L.; Byrum, E.P.; Williams, J.R.

    2014-01-01

    Aim: To identify adult patients with single-ventricle congenital heart disease and Fontan procedure palliation who have been misdiagnosed with or incompletely evaluated for pulmonary embolism. Additionally, this study was designed to demonstrate that simultaneous, dual-injection of contrast medium into an upper and lower extremity vein is superior to single-injection protocols for CT angiography (CTA) of the chest in this population. Materials and methods: Patients included in the study were retrospectively selected from the Adult Congenital Heart Disease (ACHD) database. Search criteria included history of Fontan palliation and available chest CT examination. Patients were evaluated for (1) type of congenital heart disease and prior operations;(2) indication for initial CT evaluation;(3) route of contrast medium administration for the initial CT examination and resulting diagnosis;(4) whether or not anticoagulation therapy was initiated; and (5) final diagnosis and treatment plan. Results: The query of the ACHD database resulted in 28 individuals or patients with Fontan palliation (superior and inferior venae cavae anastomosed to the pulmonary arteries). Of these, 19 patients with Fontan physiology underwent CTA of the pulmonary circulation, and 17 had suboptimal imaging studies. Unfortunately, seven of these 17 patients (41%) were started on anticoagulation therapy due to a diagnosis of pulmonary embolism that was later excluded. Conclusion: Patients with single-ventricle/Fontan physiology are at risk of thromboembolic disease. Therefore, studies evaluating their complex anatomy must be performed with the optimal imaging protocol to ensure diagnostic accuracy, which is best achieved with dual-injection of an upper and lower extremity central vein. - Highlights: • The adult congenital heart disease population is growing. • Many of these patients have single ventricle/Fontan physiology. • Patients with Fontan physiology are at increased risk for

  18. Integral Safety Assessment of Underground Storage of CO2 in Barendrecht, the Netherlands

    International Nuclear Information System (INIS)

    Vijgen, L.; Nitert, M.; Buijtendijk, B.; Van Dalen, A.

    2009-10-01

    The DCMR Environmental Protection Agency Rijnmond in the Netherlands conducted an Integral Safety Assessment of Underground Storage of CO2 in Barendrecht, the Netherlands, in cooperation with the involved safety and supervision authorities. The following aspects of the entire storage project and its safety issues have been examined: the compressor station in Pernis; the underground pipes between the compressor station and the injection locations; and the injection locations Barendrecht-Ziedewij and Barendrecht. [nl

  19. Environment Of Underground Water And Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeong Sang

    1998-02-15

    This book deals with environment of underground water and pollution, which introduces the role of underground water in hydrology, definition of related study of under water, the history of hydro-geology, basic conception of underground water such as origin of water, and hydrogeologic characteristic of aquifers, movement of underground water, hydrography of underground water and aquifer test analysis, change of an underground water level, and water balance analysis and development of underground water.

  20. Design study of the underground facilities, the Mizunami Underground Research Laboratory

    International Nuclear Information System (INIS)

    Ishizuka, Mineo; Noda, Masaru; Shiogama, Yukihiro; Adachi, Tetsuya

    1999-02-01

    Geoscientific research on the deep geological environment has been performed by Japan Nuclear Cycle Development Institute (JNC). This research is supported by the 'Long-Term Program for Research, Development and Utilization of Nuclear Energy'. The Mizunami Underground Research Laboratory (MIU) is planned to be constructed at the Shobasama-bora site belonging to JNC. A wide range of geoscientific research and development activities which have been previously performed in and around the Tono mine is planned to be expanded in the laboratory. The MIU consisted of surface and underground facilities excavated to a depth of about 1,000 meters. In this design study, the overall layout and basic design of the underground facility and the composition of the overall research program, includes the construction of the underground facility are studied. Based on the concept of the underground facility which have been developed in 1998, the research activities which will be performed in the MIU are selected and the overall research program is revised in this year. The basic construction method and the construction equipment are also estimated. (author)

  1. Design study of underground facility of the Mizunami Underground Research Laboratory

    International Nuclear Information System (INIS)

    Ishizuka, Mineo; Noda, Masaru; Shiogama, Yukihiro; Adachi, Tetsuya

    1999-02-01

    Geoscientific research on deep geological environment has been performed by Japan Nuclear Cycle Development Institute (JNC). This research is supported by the 'Long-Term Program for Research, Development and Utilization of Nuclear Energy'. The Mizunami Underground Research Laboratory (MIU) is planned to be constructed at Shobasama-bora site belonging to JNC. A wide range of geoscientific research and development activities which have been previously performed in and around the Tono mine is planned to be expanded in the laboratory. The MIU is consisted of surface and underground facilities down to the depth of about 1,000 meters. In this design study, the overall layout and basic design of the underground facility and the composition of the overall research program which includes the construction of the underground facility are studied. Based on the concept of the underground facility which have been developed last year, the research activities which will be performed in the MIU are selected and the overall research program is revised in this year. The basic construction method and the construction equipment are also estimated. (author)

  2. Seismic effects on underground openings

    International Nuclear Information System (INIS)

    Marine, I.W.; Pratt, H.R.; Wahi, K.K.; Science Applications, Inc., La Jolla, CA; Science Applications, Inc., Albuquerque, NM)

    1982-01-01

    Numerical modeling techniques were used to determine the conditions required for seismic waves generated by an earthquake to cause instability to an underground opening or create fracturing and joint movement that would lead to an increase in the permeability of the rock mass. Three different rock types (salt, granite, and shale) were considered as host media for the repository located at a depth of 600 m. Special material models were developed to account for the nonlinear material behavior of each rock type. The sensitivity analysis included variations in the in situ stress ratio, joint geometry, and pore pressures, and the presence or absence of large fractures. Three different sets of earthquake motions were used to excite the rock mass. The methodology applied was found to be suitable for studying the effects of earthquakes on underground openings. In general, the study showed that moderate earthquakes (up to 0.41 g) did not cause instability of the tunnel or major fracturing of the rock mass; however, a tremor with accelerations up to 0.95 g was amplified around the tunnel, and fracturing occurred as a result of the seismic loading in salt and granite. In situ stress is a critical parameter in determining the subsurface effects of earthquakes but is nonexistent in evaluating the cause for surface damage. In shale with the properties assumed, even the moderate seismic load resulted in tunnel instability. These studies are all generic in nature and do not abrogate the need for site and design studies for specific facilities. 30 references, 14 figures, 8 tables

  3. Corrective Action Investigation Plan for Corrective Action Unit 322: Areas 1 and 3 Release Sites and Injection Wells, Nevada Test Site, Nevada: Revision 0, Including Record of Technical Change No. 1

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2003-07-16

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach to collect the data necessary to evaluate corrective action alternatives (CAAs) appropriate for the closure of Corrective Action Unit (CAU) 322, Areas 1 and 3 Release Sites and Injection Wells, Nevada Test Site, Nevada, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 322 consists of three Corrective Action Sites (CASs): 01-25-01, AST Release (Area 1); 03-25-03, Mud Plant AST Diesel Release (Area 3); 03-20-05, Injection Wells (Area 3). Corrective Action Unit 322 is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. The investigation of three CASs in CAU 322 will determine if hazardous and/or radioactive constituents are present at concentrations and locations that could potentially pose a threat to human health and the environment. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  4. Characterization of subsurface sediments at a site of gasoline contamination

    International Nuclear Information System (INIS)

    Bishop, D.J.; Krauter, P.W.; Jovanovich, M.C.; Lee, K.; Nelson, S.C.; Noyes, C.

    1992-02-01

    The Dynamic Underground Stripping Project combines monitored steam injection and electrical heating to treat in situ a gasoline plume resulting from leakage of an underground storage tank. A preliminary field demonstration of this system was performed at an uncontaminated site (Clean Site) a few hundred feet away with similar geology to that at the Gasoline Spill (GS) area. This paper describes characterization efforts at both sites and highlights what we rearmed at the Clean Site that helped us plan our operations more effectively at the GS. To validate the success of the Dynamic Underground Stripping Project, we require a detailed understanding of the physical, geological, hydrological, chemical, and biological nature of the demonstration sites and how these parameters change as a result of the Dynamic Stripping processes. The characterization process should also provide data to estimate the masses of contaminants present and their spatial distribution before and after the remedial process to (1) aid in the planning for placement of injection and extraction wells, (2) provide physical data to develop conceptual models, (3) validate subsurface imaging techniques, and (4) confirm regulatory compliance

  5. Underground engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Nordyke, M D [Lawrence Radiation Laboratory, Livermore, CA (United States)

    1969-07-01

    Developments of any underground engineering application utilizing nuclear explosives involve answering the same questions one encounters in any new area of technology: What are the characteristics of the new tool? How is it applicable to the job to be done? Is it safe to use? and, most importantly, is its use economically acceptable? The many facets of the answers to these questions will be explored. The general types of application presently under consideration will also be reviewed, with particular emphasis on those specific projects actively being worked on by commercial interests and by the U.S. Atomic Energy Commission. (author)

  6. Underground engineering applications

    International Nuclear Information System (INIS)

    Nordyke, M.D.

    1969-01-01

    Developments of any underground engineering application utilizing nuclear explosives involve answering the same questions one encounters in any new area of technology: What are the characteristics of the new tool? How is it applicable to the job to be done? Is it safe to use? and, most importantly, is its use economically acceptable? The many facets of the answers to these questions will be explored. The general types of application presently under consideration will also be reviewed, with particular emphasis on those specific projects actively being worked on by commercial interests and by the U.S. Atomic Energy Commission. (author)

  7. Regulated underground storage tanks

    International Nuclear Information System (INIS)

    1992-06-01

    This guidance package is designed to assist DOE Field operations by providing thorough guidance on the underground storage tank (UST) regulations. [40 CFR 280]. The guidance uses tables, flowcharts, and checklists to provide a ''roadmap'' for DOE staff who are responsible for supervising UST operations. This package is tailored to address the issues facing DOE facilities. DOE staff should use this guidance as: An overview of the regulations for UST installation and operation; a comprehensive step-by-step guidance for the process of owning and operating an UST, from installation to closure; and a quick, ready-reference guide for any specific topic concerning UST ownership or operation

  8. A quantitative evaluation of the masking effect arising from proximity of injection site to the adjacent lymph nodes in lymphoscintigraphy: A phantom study

    International Nuclear Information System (INIS)

    Sabbir Ahmed, A.S.M.; Demir, M.; Sayman, H.B.; Uslu, I.; Demir, B.; Tugrul, A.B.; Dirlik, E.

    2006-01-01

    Lymphoscintigraphy essentially requires appropriate choice of collimators for resolving relatively small amounts of radio tracer in the sentinel nodes against injection-site. A novel flat phantom made of Plexiglass with multiple holes (simulating lymph nodes) has been designed to determine the range and intensity of masking effect of the injection site (IS) on surrounding pixels for in-plane and gradually deeper placed hotspots. The newly developed phantom has 18 holes, one central hole with 3700 KBq Tc-99m pertechnetate and 17 other holes, each with 37 KBq of Tc- 99m pertechnetate. The in-plane hotspots (number 10, hotspots with equal depth) are arranged in a helical fashion at distances of 5, 10, 15... 50 mm from the centre. The gradually deeper placed hotspots (number 7) are arranged in a linear array with equal linear distances from each other. The study was conducted by placing the phantom at different depths (1, 3, 5, and 7 cm) in a container filled with water without/with background activity (to simulate 1-day and 2-day protocols) of 370 KBq of Tc-99m pertechnetate/5 Litres of water. The study was performed with Siemens Orbiter 7500 Digitrac gamma camera using 3 separate collimators consecutively: low energy all purpose (LEAP), low energy high resolution (LEHR) and medium energy all purpose (MEAP). The static images of 1M counts were acquired in 256x256 matrix, word mode on to an ADAC Pegasys (II) computer system for processing. Relative intensity per pixel for each hotspot (both for in-plane and gradually deeper hotspots) and the count/pixel values for doughnut shaped circular ROIs were calculated. The image-profiles for the linear hotspots were generated to calculate full widths at half maximum (FWHM) using ADAC Pegasys software program, and the visualizing status of the gradually deeper placed hotspots was studied at different color-contrast windows. No significant difference was observed between 1-day and 2-day protocol. The cutoff distance for blurring

  9. Evaluation of a subsurface oxygenation technique using colloidal gas aphron injections into packed column reactors

    International Nuclear Information System (INIS)

    Wills, R.A.; Coles, P.

    1991-11-01

    Bioremediation may be a remedial technology capable of decontaminating subsurface environments. The objective of this research was to evaluate the use of colloidal gas aphron (CGA) injection, which is the injection of micrometer-size air bubbles in an aqueous surfactant solution, as a subsurface oxygenation technique to create optimal growth conditions for aerobic bacteria. Along with this, the capability of CGAs to act as a soil-washing agent and free organic components from a coal tar-contaminated matrix was examined. Injection of CGAs may be useful for remediation of underground coal gasification (UCG) sites. Because of this, bacteria and solid material from a UCG site located in northeastern Wyoming were used in this research. Colloidal gas aphrons were generated and pumped through packed column reactors (PCRS) containing post-burn core materials. For comparison, PCRs containing sand were also studied. Bacteria from this site were tested for their capability to degrade phenol, a major contaminant at the UCG site, and were also used to bioaugment the PCR systems. In this study we examined: (1) the effect of CGA injection on dissolved oxygen concentrations in the PCR effluents, (2) the effect of CGA, H 2 O 2 , and phenol injections on bacterial populations, (3) the stability and transport of CGAs over distance, and (4) CGA injection versus H 2 O 2 injection as an oxygenation technique

  10. Groundwater Chemistry Changes as a Result of CO2 Injection at the ZERT Field Site in Bozeman, Montana

    Energy Technology Data Exchange (ETDEWEB)

    Apps, J.A.; Birkholzer, J.T.; Spycher, N.; Zheng, L.; Herkelrath, W.N.; Kharaka, Y.K.; Thordsen, J.J.; Kakouros, E.; Beers, S; Gullickson, K.S.; Spangler, L.H.; Ambats, G.

    2009-11-01

    Combustion of fossil fuels produces CO{sub 2}, a common greenhouse gas linked to global climate change. Separation of CO{sub 2}from emissions produced by large industrial point sources like power plants, cement kilns and refineries, and injection deep nderground into geologic formations is one method of preventing CO{sub 2} releases into the atmosphere. This process is referred to as Carbon Capture and Storage (CCS). CCS is one of several solutions being considered to mitigate global climate change. Other solutions nclude increased energy efficiency, renewables, nuclear power, advanced coal, and plug-in hybrid electric vehicles.

  11. Underground water stress release models

    Science.gov (United States)

    Li, Yong; Dang, Shenjun; Lü, Shaochuan

    2011-08-01

    The accumulation of tectonic stress may cause earthquakes at some epochs. However, in most cases, it leads to crustal deformations. Underground water level is a sensitive indication of the crustal deformations. We incorporate the information of the underground water level into the stress release models (SRM), and obtain the underground water stress release model (USRM). We apply USRM to the earthquakes occurred at Tangshan region. The analysis shows that the underground water stress release model outperforms both Poisson model and stress release model. Monte Carlo simulation shows that the simulated seismicity by USRM is very close to the real seismicity.

  12. Local injection of Lenti-Olig2 at lesion site promotes functional recovery of spinal cord injury in rats.

    Science.gov (United States)

    Tan, Bo-Tao; Jiang, Long; Liu, Li; Yin, Ying; Luo, Ze-Ru-Xin; Long, Zai-Yun; Li, Sen; Yu, Le-Hua; Wu, Ya-Min; Liu, Yuan

    2017-06-01

    Olig2 is one of the most critical factors during CNS development, which belongs to b-HLH transcription factor family. Previous reports have shown that Olig2 regulates the remyelination processes in CNS demyelination diseases models. However, the role of Olig2 in contusion spinal cord injury (SCI) and the possible therapeutic effects remain obscure. This study aims to investigate the effects of overexpression Olig2 by lentivirus on adult spinal cord injury rats. Lenti-Olig2 expression and control Lenti-eGFP vectors were prepared, and virus in a total of 5 μL (10 8 TU/mL) was locally injected into the injured spinal cord 1.5 mm rostral and caudal near the epicenter. Immunostaining, Western blot, electron microscopy, and CatWalk analyzes were employed to investigate the effects of Olig2 on spinal cord tissue repair and functional recovery. Injection of Lenti-Olig2 significantly increased the number of oligodendrocytes lineage cells and enhanced myelination after SCI. More importantly, the introduction of Olig2 greatly improved hindlimb locomotor performances. Other oligodendrocyte-related transcription factors, which were downregulated or upregulated after injury, were reversed by Olig2 induction. Our findings provided the evidence that overexpression Olig2 promotes myelination and locomotor recovery of contusion SCI, which gives us more understanding of Olig2 on spinal cord injury treatment. © 2017 John Wiley & Sons Ltd.

  13. RP delves underground

    CERN Document Server

    Anaïs Schaeffer

    2011-01-01

    The LHC’s winter technical stop is rapidly approaching. As in past years, technical staff in their thousands will be flocking to the underground areas of the LHC and the Linac2, Booster, PS and SPS injectors. To make sure they are protected from ionising radiation, members of the Radiation Protection Group will perform an assessment of the levels of radioactivity in the tunnels as soon as the beams have stopped.   Members of the Radiation Protection Group with their precision instruments that measure radioactivity. At 7-00 a.m. on 8 December the LHC and all of the upstream accelerators will begin their technical stop. At 7-30 a.m., members of the Radiation Protection Group will enter the tunnel to perform a radiation mapping, necessary so that the numerous teams can do their work in complete safety. “Before we proceed underground, we always check first to make sure that the readings from the induced radioactivity monitors installed in the tunnels are all normal,&rdqu...

  14. Going Underground in Singapore

    CERN Multimedia

    John Osborne (GS/SEM)

    2010-01-01

    Singapore has plans to build a massive Underground Science City (USC) housing R&D laboratories and IT data centres. A delegation involved in the planning to build the subterranean complex visited CERN on 18 October 2010 to learn from civil engineers and safety experts about how CERN plans and constructs its underground facilities.   The delegation from Singapore. The various bodies and corporations working on the USC project are currently studying the feasibility of constructing up to 40 caverns (60 m below ground) similar in size to an LHC experiment hall, in a similar type of rock. Civil engineering and geotechnical experts are calculating the maximum size of the cavern complex that can be safely built. The complex could one day accommodate between 3000 and 5000 workers on a daily basis, so typical issues of size and number of access shafts need to be carefully studied. At first glance, you might not think the LHC has much in common with the USC project; as Rolf Heuer pointed out: &ldq...

  15. CASPAR - Nuclear Astrophysics Underground

    Science.gov (United States)

    Senarath, Chamaka; Caspar Collaboration

    2017-09-01

    The CASPAR mainly focuses on Stellar Nucleosynthesis, its impact on the production of heavy elements and study the strength of stellar neutron sources that propels the s-process, 13C(α,n)16O and 22Ne(α,n)25Mg. Currently, implementation of a 1MV fully refurbished Van de Graaff accelerator that can provide a high intensity Î+/- beam, is being done at the Sanford Underground Research Facility (SURF). The accelerator is built among a collaboration of South Dakota School of Mines and Technology, University of Notre Dame and Colorado School of Mines. It is understood that cosmic ray neutron background radiation hampers experimental Nucleosynthesis studies, hence the need to go underground in search for a neutron free environment, to study these reactions at low energies is evident. The first beam was produced in the middle of summer 2017. The entire accelerator will be run before the end of this year. A detailed overview of goals of CASPAR will be presented. NFS Grant-1615197.

  16. Underground storage tank program

    International Nuclear Information System (INIS)

    Lewis, M.W.

    1994-01-01

    Underground storage tanks, UST'S, have become a major component of the Louisville District's Environmental Support Program. The District's Geotechnical and Environmental Engineering Branch has spear-headed an innovative effort to streamline the time, effort and expense for removal, replacement, upgrade and associated cleanup of USTs at military and civil work installations. This program, called Yank-A-Tank, creates generic state-wide contracts for removal, remediation, installation and upgrade of storage tanks for which individual delivery orders are written under the basic contract. The idea is to create a ''JOC type'' contract containing all the components of work necessary to remove, reinstall or upgrade an underground or above ground tank. The contract documents contain a set of generic specifications and unit price books in addition to the standard ''boiler plate'' information. Each contract requires conformance to the specific regulations for the state in which it is issued. The contractor's bid consists of a bid factor which in the multiplier used with the prices in the unit price book. The solicitation is issued as a Request for Proposal (RPP) which allows the government to select a contractor based on technical qualification an well as bid factor. Once the basic contract is awarded individual delivery orders addressing specific areas of work are scoped, negotiated and awarded an modifications to the original contract. The delivery orders utilize the prepriced components and the contractor's factor to determine the value of the work

  17. Context of surveillance of underground and surface waters

    International Nuclear Information System (INIS)

    2010-01-01

    This document briefly describes the evolutions of regulations on site liquid effluents and of guideline values concerning radioactive wastes, briefly presents the surveillance of underground and surface waters of CEA sites, comments the guideline values of the radiological quality of waters aimed at human consumption, and gives an overview of information which are brought to public's attention. Then, for different CEA sites (Cadarache, Marcoule, Saclay, Grenoble, Fontenay-aux-Roses, Valduc, DIF), this document proposes a presentation of the hydrological context, regulatory context, the surface and underground water surveillance process and values, the storing zones of old wastes

  18. Does underground storage still require sophisticated studies?

    International Nuclear Information System (INIS)

    Marsily, G. de

    1997-01-01

    Most countries agree to the necessity of burying high or medium-level wastes in geological layers situated at a few hundred meters below the ground level. The advantages and disadvantages of different types of rock such as salt, clay, granite and volcanic material are examined. Sophisticated studies are lead to determine the best geological confinement but questions arise about the time for which safety must be ensured. France has chosen 3 possible sites. These sites are geologically described in the article. The final place will be proposed after a testing phase of about 5 years in an underground facility. (A.C.)

  19. Subcutaneously administered Menopur(R, a new highly purified human menopausal gonadotropin, causes significantly fewer injection site reactions than Repronex(R in subjects undergoing in vitro fertilization

    Directory of Open Access Journals (Sweden)

    Somkuti Stephen

    2005-11-01

    Full Text Available Abstract Background The safety and tolerability of a new highly purified, urine-derived human menopausal gonadotropin (hMG preparation [Menopur(R] was compared with a currently available hMG [Repronex (R] in women undergoing in vitro fertilization (IVF. Methods This was a randomized, open-label, parallel-group, multicenter study conducted in subjects undergoing IVF. Women (N = 125, 18–39 years of age, underwent pituitary down-regulation with leuprolide acetate beginning 7 days prior to onset of menses and continuing up to the day before hCG administration. Subjects were randomized to receive subcutaneous (SC Menopur (R (n = 61 or Repronex (R SC (n = 64 for a maximum of 12 days. All adverse events (AEs were recorded and subject self-assessments of injection site reactions were recorded in a daily diary. Results Significantly fewer subjects in the Menopur (R group reported injection site reactions (P Conclusion Menopur (R SC offers a greater safety and tolerability profile compared to Repronex (R SC.

  20. Assessment of CO2 Mineralization and Dynamic Rock Properties at the Kemper Pilot CO2 Injection Site

    Science.gov (United States)

    Qin, F.; Kirkland, B. L.; Beckingham, L. E.

    2017-12-01

    CO2-brine-mineral reactions following CO2 injection may impact rock properties including porosity, permeability, and pore connectivity. The rate and extent of alteration largely depends on the nature and evolution of reactive mineral interfaces. In this work, the potential for geochemical reactions and the nature of the reactive mineral interface and corresponding hydrologic properties are evaluated for samples from the Lower Tuscaloosa, Washita-Fredericksburg, and Paluxy formations. These formations have been identified as future regionally extensive and attractive CO2 storage reservoirs at the CO2 Storage Complex in Kemper County, Mississippi, USA (Project ECO2S). Samples from these formations were obtained from the Geological Survey of Alabama and evaluated using a suite of complementary analyses. The mineral composition of these samples will be determined using petrography and powder X-ray Diffraction (XRD). Using these compositions, continuum-scale reactive transport simulations will be developed and the potential CO2-brine-mineral interactions will be examined. Simulations will focus on identifying potential reactive minerals as well as the corresponding rate and extent of reactions. The spatial distribution and accessibility of minerals to reactive fluids is critical to understanding mineral reaction rates and corresponding changes in the pore structure, including pore connectivity, porosity and permeability. The nature of the pore-mineral interface, and distribution of reactive minerals, will be determined through imaging analysis. Multiple 2D scanning electron microscopy (SEM) backscattered electron (BSE) images and energy dispersive x-ray spectroscopy (EDS) images will be used to create spatial maps of mineral distributions. These maps will be processed to evaluate the accessibility of reactive minerals and the potential for flow-path modifications following CO2 injection. The "Establishing an Early CO2 Storage Complex in Kemper, MS" project is funded by

  1. Leak detection for underground storage tanks

    International Nuclear Information System (INIS)

    Durgin, P.B.; Young, T.M.

    1993-01-01

    This symposium was held in New Orleans, Louisiana on January 29, 1992. The purpose of this conference was to provide a forum for exchange of state-of-the-art information on leak detection for underground storage tanks that leaked fuel. A widespread concern was protection of groundwater supplies from these leaking tanks. In some cases, the papers report on research that was conducted two or three years ago but has never been adequately directed to the underground storage tank leak-detection audience. In other cases, the papers report on the latest leak-detection research. The symposium was divided into four sessions that were entitled: Internal Monitoring; External Monitoring; Regulations and Standards; and Site and Risk Evaluation. Individual papers have been cataloged separately for inclusion in the appropriate data bases

  2. ANDES: An Underground Laboratory in South America

    Science.gov (United States)

    Dib, Claudio O.

    ANDES (Agua Negra Deep Experiment Site) is an underground laboratory, proposed to be built inside the Agua Negra road tunnel that will connect Chile (IV Region) with Argentina (San Juan Province) under the Andes Mountains. The Laboratory will be 1750 meters under the rock, becoming the 3rd deepest underground laboratory of this kind in the world, and the first in the Southern Hemisphere. ANDES will be an international Laboratory, managed by a Latin American consortium. The laboratory will host experiments in Particle and Astroparticle Physics, such as Neutrino and Dark Matter searches, Seismology, Geology, Geophysics and Biology. It will also be used for the development of low background instrumentation and related services. Here we present the general features of the proposed laboratory, the current status of the proposal and some of its opportunities for science.

  3. Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater

    Science.gov (United States)

    Daily, William D.; Ramirez, Abelardo L.; Newmark, Robin L.; Udell, Kent; Buetnner, Harley M.; Aines, Roger D.

    1995-01-01

    A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process.

  4. Potential Advantages of Underground Nuclear Parks

    International Nuclear Information System (INIS)

    Myers, Carl W.; Elkins, Ned Z.; Kunze, Jay F.; Mahar, James M.

    2006-01-01

    In this paper we argue that an underground nuclear park (UNP) could potentially lead to lower capital and operating cost for the reactors installed in the UNP compared to the traditional approach, which would be to site the reactors at the earth's surface at distributed locations. The UNP approach could also lead to lower waste management cost. A secondary benefit would be the increased margins of safety and security that would be realized simply as a consequence of siting the reactors underground. Lowered capital and operating cost for a UNP relative to traditional reactor siting is possible through the aggregate effect of the elimination of containment structures, in-place decommissioning, reduced physical security costs, reduced weather-related costs, reduced cost of liability insurance and reduced unit-cost for the nth reactor made possible through the continuous construction of multiple reactors at the same underground location. Other cost reductions might be possible through the transfer of the capital cost for part of the underground construction from the reactor owners to the owners of the UNP. Lower waste management cost is possible by siting the UNP at a location where there are geological and hydrological conditions suitable for hosting both the reactors and the repository for the waste from those reactors. After adequate storage and cooling, and assuming direct disposal, this would enable the spent fuel from the reactors to be transported directly to the repository and remain entirely underground during the transport process. Community concerns and transportation costs would be significantly reduced relative to current situations where the reactors are separated from the repository by long distances and populated areas. The concept for a UNP in bedded salt is used to develop a rough order of magnitude cost estimate for excavation of the reactor array portion of a UNP. Excavation costs appear to be only a small fraction of the overall power plant costs

  5. An Approach for Developing Site-Specific Lateral and Vertical Inclusion Zones within which Structures Should be Evaluated for Petroleum Vapor Intrusion due to Releases of Motor Fuel from Underground Storage Tanks

    Science.gov (United States)

    Buildings may be at risk from Petroleum Vapor Intrusion (PVI) when they overlie petroleum hydrocarbon contamination in the unsaturated zone or dissolved in groundwater. The U.S. EPA Office of Underground Storage Tanks (OUST) is preparing Guidance for Addressing Petroleum Vapor I...

  6. Regulating and Combating Underground Banking

    NARCIS (Netherlands)

    Borgers, M.J.

    2009-01-01

    In combating and regulating underground banking, a choice can be made of roughly two models, the risk model and the assimilation model. The risk model comes down to a complete prohibition of underground banking combined with an active investigation and prosecution policy. In the assimilation model,

  7. Lymphatic transport and lymph node targeting of methotrexate-conjugated PEGylated dendrimers are enhanced by reducing the length of the drug linker or masking interactions with the injection site.

    Science.gov (United States)

    Ryan, Gemma M; McLeod, Victoria M; Mehta, Dharmini; Kelly, Brian D; Stanislawski, Pauline C; Owen, David J; Kaminskas, Lisa M; Porter, Christopher J H

    2017-11-01

    Drug conjugation to dendrimer-based delivery systems has been shown to enhance delivery to the lymphatic system after subcutaneous administration. Dendrimer interaction with components of the interstitium at the injection site, however, may prevent drainage from the injection site. The current study sought to vary the length of a linker employed to conjugate methotrexate (MTX) to a PEGylated dendrimer, in an attempt to reduce MTX interaction with interstitial binding sites and enhance lymphatic drainage. Dendrimers with shorter linkers resulted in higher lymphatic drainage, presumably via shielding of interaction sites by the PEG mantle, but were not retained in lymph nodes. Improved drainage of dendrimers with longer linkers was achieved through coadministration with dextran to mask interactions at the injection site while maintaining retention within the node. Enhanced drug exposure to the lymph node has the potential to enhance the treatment of lymph-node resident cancer metastases. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Design, construction and initial state of the underground openings

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-15

    The report is included in a set of Production reports, presenting how the KBS-3 repository is designed, produced and inspected. The set of reports is included in the safety report for the KBS-3 repository and repository facility. The report provides input on the initial state of the underground openings for the assessment of the long-term safety, SR-Site. The initial state refers to the properties of the underground openings at final disposal, backfilling or closure. In addition, the report provides input to the operational safety report, SR-Operation, on how the underground openings shall be constructed and inspected. The report presents the design premises and the methodology applied to design the underground openings and adapt them the to the site conditions so that they conform to the design premises. It presents the reference design at Forsmark and its conformity to the design premises. It also describes the reference methods to be applied to construct and inspect the different kinds of underground openings. Finally, the initial state of the underground openings and its conformity to the design premises is presented

  9. Design, construction and initial state of the underground openings

    International Nuclear Information System (INIS)

    2010-12-01

    The report is included in a set of Production reports, presenting how the KBS-3 repository is designed, produced and inspected. The set of reports is included in the safety report for the KBS-3 repository and repository facility. The report provides input on the initial state of the underground openings for the assessment of the long-term safety, SR-Site. The initial state refers to the properties of the underground openings at final disposal, backfilling or closure. In addition, the report provides input to the operational safety report, SR-Operation, on how the underground openings shall be constructed and inspected. The report presents the design premises and the methodology applied to design the underground openings and adapt them the to the site conditions so that they conform to the design premises. It presents the reference design at Forsmark and its conformity to the design premises. It also describes the reference methods to be applied to construct and inspect the different kinds of underground openings. Finally, the initial state of the underground openings and its conformity to the design premises is presented

  10. The underground economy in Romania

    Directory of Open Access Journals (Sweden)

    Adriana Veronica LITRA

    2016-07-01

    Full Text Available The paper aims at covering issues related to the underground economy, activities that compound this phenomenon, its magnitude in Romania and reported to the European average. Underground economy in Romania consists of undeclared work (2/3 from the total and unreported income; it decreased from 33.6% of GDP in 2003 to 28% in 2014, but remained over EU-28 average with about 10 p.p. Among EU-28 countries, only Bulgaria exceeds the size of the underground economy of Romania. The underground economy is a challenge for the leadership of the state which must act simultaneously to stop illegal activities, and to discourage non-declaration of the legal activities. Corruption favours maintaining the underground economy, delays economic development, obstructs democratic processes and affects justice and the law state.

  11. Underground risk management information systems

    Energy Technology Data Exchange (ETDEWEB)

    Matsuyama, S.; Inoue, M.; Sakai, T.

    2006-03-15

    JCOAL has conducted Joint Research on an Underground Communication and Risk Management Information System with CSIRO of Australia under a commissioned study project for the promotion of coal use starting in fiscal 2002. The goal of this research project is the establishment of a new Safety System focusing on the comprehensive risk management information system by the name of Nexsys. The main components of the system are the Ethernet type underground communication system that represents the data communication base, and the risk management information system that permits risk analysis in real-time and provides decision support based on the collected data. The Nexsys is an open system and is a core element of the underground monitoring system. Using a vast amount of underground data, it is capable of accommodating a wide range of functions that were not available in the past. Because of it, it is possible to construct an advanced underground safety system. 14 figs., 4 tabs.

  12. Groundwater monitoring for deep-well injection

    International Nuclear Information System (INIS)

    Chia, Y.; Chiu, J.

    1994-01-01

    A groundwater monitoring system for detecting waste migration would not only enhance confidence in the long-term containment of injected waste, but would also provide early warnings of contamination for prompt responses to protect underground sources of drinking water (USDWs). Field experiences in Florida have demonstrated monitoring water quality and fluid pressure changes in overlying formations is useful in detecting the upward migration of injected waste. Analytical and numerical solutions indicate changes in these two monitoring parameters can vary on the basis of hydrogeologic characteristics, operation conditions, and the distances from the injection well to the monitoring wells and to the preferential hydrologic conduits. To detect waste migration through defects around the wellbore or the leaky containment interval, groundwater monitoring wells should be placed as close as possible to an injection well. In the vertical direction, a monitoring well completed in a permeable interbed within the containment interval is expected to have the highest potential for detecting upward migration. Another acceptable horizon for groundwater monitoring is the lower portion of the buffer brine aquifer immediately above the containment interval. Monitoring wells in USDWs may be needed when waste has been detected in deeper formations or when leakage out of well casings poses a concern. A monitoring well open to the injection interval is of little value in alleviating the concerns of long-term upward migration. Moreover, the installation of the well could create additional preferential pathways. Complications in groundwater monitoring may arise at existing injection sites, especially with prior releases. It is also important to recognize that monitoring in the vicinity of the wellbore may not be effective for detecting waste migration through unidentified unplugged wells or undetected transmissive fractures

  13. UST/LUST Site Information

    Data.gov (United States)

    U.S. Environmental Protection Agency — This asset contains all Underground Storage Tank (UST) site information. It includes details such as property location, acreage, identification and characterization,...

  14. Underground gasification in Russia

    Energy Technology Data Exchange (ETDEWEB)

    1956-11-21

    A paper in Pravda by the Deputy Chief Engineer of the Underground Gasification Department indicates that there are at least three or four pilot plants in operation; one plant near Moscow has operated for 14 years and one in the Donbas for 8 years. The first plant has a daily output of gas corresponding to 400 tons of coal a day and produces a gas of low calorific value. A plant opened in 1956 in the Kuzbas to produce gas of a higher quality. A plant, being built near Moscow in conjunction with a gas turbine electrical power station, will produce gas equivalent in heating value to 220,000 tons of coal a year. A larger plant, being built at Angren in central Asia, will produce gas equivalent in heating value to 700,000 tons of coal a year.

  15. Underground transmission tomography

    International Nuclear Information System (INIS)

    Geibka, C.

    1990-01-01

    Several underground tomographic transmission surveys have been carried out. Targets were cavities, ore veins and fault zones. Examples from measurements in a german heavy/fluor spar mine a lead/zinc mine and a rock laboratory of the Swiss National Cooperative for the Storage of Radioactive waste are presented. Measurements were carried out between boreholes and road ways. The recording equipment was the intrinsically safe SEAMEX85 system built and sold by WBK. Receivers were mounted in a chain of 6 two-component probes. Sources were an inhole hammer a sledge hammer a sparker and explosives from a single detonator to 180 g depending on the distance and absorption of the rock material. Cavities showed very distinct velocity reductions between 30 and 50%. Different vein material showed velocity reduction as well as velocity increase relative to the surrounding rock

  16. Underground space planning in Helsinki

    Directory of Open Access Journals (Sweden)

    Ilkka Vähäaho

    2014-10-01

    Full Text Available This paper gives insight into the use of underground space in Helsinki, Finland. The city has an underground master plan (UMP for its whole municipal area, not only for certain parts of the city. Further, the decision-making history of the UMP is described step-by-step. Some examples of underground space use in other cities are also given. The focus of this paper is on the sustainability issues related to urban underground space use, including its contribution to an environmentally sustainable and aesthetically acceptable landscape, anticipated structural longevity and maintaining the opportunity for urban development by future generations. Underground planning enhances overall safety and economy efficiency. The need for underground space use in city areas has grown rapidly since the 21st century; at the same time, the necessity to control construction work has also increased. The UMP of Helsinki reserves designated space for public and private utilities in various underground areas of bedrock over the long term. The plan also provides the framework for managing and controlling the city's underground construction work and allows suitable locations to be allocated for underground facilities. Tampere, the third most populated city in Finland and the biggest inland city in the Nordic countries, is also a good example of a city that is taking steps to utilise underground resources. Oulu, the capital city of northern Finland, has also started to ‘go underground’. An example of the possibility to combine two cities by an 80-km subsea tunnel is also discussed. A new fixed link would generate huge potential for the capital areas of Finland and Estonia to become a real Helsinki-Tallinn twin city.

  17. Radiological criteria for underground nuclear tests

    International Nuclear Information System (INIS)

    Malik, J.S.; Brownlee, R.R.; Costa, C.F.; Mueller, H.F.; Newman, R.W.

    1981-04-01

    The radiological criteria for the conduct of nuclear tests have undergone many revisions with the current criteria being 0.17 rad for uncontrolled populations and 0.5 rad for controllable populations. Their effect upon operations at the Nevada Test Site and the current off-site protective plans are reviewed for areas surrounding the Site. The few accidental releases that have occurred are used to establish estimates of probability of release and of hazard to the population. These are then put into context by comparing statistical data on other accidents and cataclysms. The guidelines established by DOE Manual Chapter MC-0524 have never been exceeded during the entire underground nuclear test program. The probability of real hazard to off-site populations appears to be sufficiently low as not to cause undue concern to the citizenry

  18. Radiological criteria for underground nuclear tests

    Energy Technology Data Exchange (ETDEWEB)

    Malik, J.S.; Brownlee, R.R.; Costa, C.F.; Mueller, H.F.; Newman, R.W.

    1981-04-01

    The radiological criteria for the conduct of nuclear tests have undergone many revisions with the current criteria being 0.17 rad for uncontrolled populations and 0.5 rad for controllable populations. Their effect upon operations at the Nevada Test Site and the current off-site protective plans are reviewed for areas surrounding the Site. The few accidental releases that have occurred are used to establish estimates of probability of release and of hazard to the population. These are then put into context by comparing statistical data on other accidents and cataclysms. The guidelines established by DOE Manual Chapter MC-0524 have never been exceeded during the entire underground nuclear test program. The probability of real hazard to off-site populations appears to be sufficiently low as not to cause undue concern to the citizenry.

  19. Urban underground infrastructure mapping and assessment

    Science.gov (United States)

    Huston, Dryver; Xia, Tian; Zhang, Yu; Fan, Taian; Orfeo, Dan; Razinger, Jonathan

    2017-04-01

    This paper outlines and discusses a few associated details of a smart cities approach to the mapping and condition assessment of urban underground infrastructure. Underground utilities are critical infrastructure for all modern cities. They carry drinking water, storm water, sewage, natural gas, electric power, telecommunications, steam, etc. In most cities, the underground infrastructure reflects the growth and history of the city. Many components are aging, in unknown locations with congested configurations, and in unknown condition. The technique uses sensing and information technology to determine the state of infrastructure and provide it in an appropriate, timely and secure format for managers, planners and users. The sensors include ground penetrating radar and buried sensors for persistent sensing of localized conditions. Signal processing and pattern recognition techniques convert the data in information-laden databases for use in analytics, graphical presentations, metering and planning. The presented data are from construction of the St. Paul St. CCTA Bus Station Project in Burlington, VT; utility replacement sites in Winooski, VT; and laboratory tests of smart phone position registration and magnetic signaling. The soil conditions encountered are favorable for GPR sensing and make it possible to locate buried pipes and soil layers. The present state of the art is that the data collection and processing procedures are manual and somewhat tedious, but that solutions for automating these procedures appear to be viable. Magnetic signaling with moving permanent magnets has the potential for sending lowfrequency telemetry signals through soils that are largely impenetrable by other electromagnetic waves.

  20. Étude des équilibres thermodynamiques des réactions de gazéification en vue de l'optimisation du rapport vapeur/comburant injecté dans un gazogène souterrain Study of Thermodynamic Equilibria in Gasification Reactions So As to Optimise the Steam/Oxidizer Ratio Injected Into an Underground Gas Generator

    OpenAIRE

    Pirard J. P.

    2006-01-01

    Le but de cette étude est de déterminer sur la base des équilibres thermodynamiques des réactions de gazéification le rapport vapeur/comburant à injecter dans un gazogène fonctionnant sous pression pour optimaliser les compositions, les pouvoirs calorifiques, les rendements de gazéification et la consommation d'agent gazéifiant. The aim of this study is to determine, on the basis of the thermodynamic equilibria of gazification reactions, the steam/oxidizer ratio to be injected into a gas g...

  1. Fiscal 2000 report on result of R and D of underground storage technology for carbon dioxide; 2000 nendo nisanka tanso chichu choryu gijutsu kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-01

    This paper presents the fiscal 2000 results of R and D of underground storage technology for carbon dioxide. As basic experiments, a measurement apparatus was manufactured for simulating the pressure and temperature conditions in aquifers to measure the rate at which CO{sub 2} is dissolved in water and the reactivity between CO{sub 2} and rocks, with the basic performance verified. Methods were investigated and classified that monitor environmental impact and safety. For the purpose of anticipating the long-term behaviors of CO{sub 2} sequestered underground, a simulator was developed, extracting, from investigation of the literature, natural phenomena required for the anticipation. As the system studies, examination was conducted for analysis of the energy balance of the underground storage technology, rational design (safety and economy) of an entire system ranging from source to storage point, investigation from social and economic perspectives, and estimation of the effect of suppressing global warming. In the injection experiment, Minami-Nagaoka natural gas field was selected as a prospective experiment site from the characteristics of the cap rock and aquifer. One injection well was drilled to a depth of 1,230 m, with investigations performed such as physical well-logging and core sampling. Existing data were utilized in the simulation study of CO{sub 2} behavior underground during the injection period. The information of the basic geophysical survey/exploratory well by the Japan National Oil Corporation was collected and compiled, with the preliminary geological study undertaken in the areas described. (NEDO)

  2. Design study of underground facility of the Underground Research Laboratory

    International Nuclear Information System (INIS)

    Hibiya, Keisuke; Akiyoshi, Kenji; Ishizuka, Mineo; Anezaki, Susumu

    1998-03-01

    Geoscientific research program to study deep geological environment has been performed by Power Reactor and Nuclear Fuel Development Corporation (PNC). This research is supported by 'Long-Term Program for Research, Development and Utilization of Nuclear Energy'. An Underground Research Laboratory is planned to be constructed at Shoma-sama Hora in the research area belonging to PNC. A wide range of geoscientific research and development activities which have been previously studied at the Tono Area is planned in the laboratory. The Underground Research Laboratory is consisted of Surface Laboratory and Underground Research Facility located from the surface down to depth between several hundreds and 1,000 meters. Based on the results of design study in last year, the design study performed in this year is to investigate the followings in advance of studies for basic design and practical design: concept, design procedure, design flow and total layout. As a study for the concept of the underground facility, items required for the facility are investigated and factors to design the primary form of the underground facility are extracted. Continuously, design methods for the vault and the underground facility are summarized. Furthermore, design procedures of the extracted factors are summarized and total layout is studied considering the results to be obtained from the laboratory. (author)

  3. ATLAS solenoid operates underground

    CERN Multimedia

    2006-01-01

    A new phase for the ATLAS collaboration started with the first operation of a completed sub-system: the Central Solenoid. Teams monitoring the cooling and powering of the ATLAS solenoid in the control room. The solenoid was cooled down to 4.5 K from 17 to 23 May. The first current was established the same evening that the solenoid became cold and superconductive. 'This makes the ATLAS Central Solenoid the very first cold and superconducting magnet to be operated in the LHC underground areas!', said Takahiko Kondo, professor at KEK. Though the current was limited to 1 kA, the cool-down and powering of the solenoid was a major milestone for all of the control, cryogenic, power and vacuum systems-a milestone reached by the hard work and many long evenings invested by various teams from ATLAS, all of CERN's departments and several large and small companies. Since the Central Solenoid and the barrel liquid argon (LAr) calorimeter share the same cryostat vacuum vessel, this achievement was only possible in perfe...

  4. FAST goes underground

    International Nuclear Information System (INIS)

    Fridlund, P.S.

    1985-01-01

    The FAST-M Cost Estimating Model is a parametric model designed to determine the costs associated with mining and subterranean operations. It is part of the FAST (Freiman Analysis of Systems Techniques) series of parametric models developed by Freiman Parametric Systems, Inc. The rising cost of fossil fuels has created a need for a method which could be used to determine and control costs in mining and subterranean operations. FAST-M fills this need and also provides scheduling information. The model works equally well for a variety of situations including underground vaults for hazardous waste storage, highway tunnels, and mass transit tunnels. In addition, costs for above ground structures and equipment can be calculated. The input for the model may be on a macro or a micro level. This allows the model to be used at various stages in a project. On the macro level, only general conditions and specifications need to be known. On the micro level, the smallest details may be included. As with other FAST models, reference cases are used to more accurately predict costs and scheduling. This paper will address how the model can be used for a variety of subterranean purposes

  5. Geological and Geotechnical Site Investigation for the Design of a CO2 Rich Flue Gas Direct Injection and Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    Metz, Paul; Bolz, Patricia

    2013-03-25

    With international efforts to limit anthropogenic carbon in the atmosphere, various CO{sub 2} sequestration methods have been studied by various facilities worldwide. Basalt rock in general has been referred to as potential host material for mineral carbonation by various authors, without much regard for compositional variations due to depositional environment, subsequent metamorphism, or hydrothermal alteration. Since mineral carbonation relies on the presence of certain magnesium, calcium, or iron silicates, it is necessary to study the texture, mineralogy, petrology, and geochemistry of specific basalts before implying potential for mineral carbonation. The development of a methodology for the characterization of basalts with respect to their susceptibility for mineral carbonation is proposed to be developed as part of this research. The methodology will be developed based on whole rock data, petrography and microprobe analyses for samples from the Caledonia Mine in Michigan, which is the site for a proposed small-scale demonstration project on mineral carbonation in basalt. Samples from the Keweenaw Peninsula will be used to determine general compositional trends using whole rock data and petrography. Basalts in the Keweenaw Peninsula have been subjected to zeolite and prehnite-pumpellyite facies metamorphism with concurrent native copper deposition. Alteration was likely due to the circulation of CO{sub 2}-rich fluids at slightly elevated temperatures and pressures, which is the process that is attempted to be duplicated by mineral carbonation.

  6. CY2017 Annual Closure Monitoring Report for Corrective Action Unit 98, Frenchman Flat, Underground Test Area, Nevada National Security Site, Nevada: (January 2017–December 2017), Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Rehfeldt, Ken; Haight, Brian

    2018-05-01

    Corrective Action Unit (CAU) 98: Frenchman Flat on the Nevada National Security Site was the location of 10 underground nuclear tests. CAU 98 underwent a series of investigations and actions in accordance with the Federal Facility Agreement and Consent Order to assess contamination of groundwater by radionuclides from the tests. A Closure Report completed that process in 2016 and called for long-term monitoring, use restrictions (URs), and institutional controls to protect the public and environment from potential exposure to contaminated groundwater. Three types of monitoring are performed for CAU 98: water quality, water level, and institutional control. These are monitored to determine whether the URs remain protective of human health and the environment, and to ensure that the regulatory boundary objectives are being met. Monitoring data will be used in the future, once multiple years of data are available, to evaluate consistency with the groundwater flow and contaminant transport models because the contaminant boundaries calculated with the models are the primary basis of the UR boundaries.

    Six wells were sampled for water-quality monitoring in 2017. Contaminants of concern were detected only in the two source/plume wells already known to contain contamination as a result of a radionuclide migration experiment. The 86,000-picocuries-per-liter (pCi/L) tritium concentration in one of the wells is about 12 percent higher than measured in 2016 but is over an order of magnitude less than the peak value measured in the well in 1980. The concentration in the other source/plume well is lower than measured in 2016.

    The water-level monitoring network includes 16 wells. Depth to water measured in 2017 is generally consistent with recent measurements for most wells. Water-level declines differing from long-term trends were observed in four wells. Three of these (WW-4, WW-4A, and WW-5B) are water-supply wells that experienced increases in pumping during

  7. Underground storage of radioactive wastes

    International Nuclear Information System (INIS)

    Dietz, D.N.

    1977-01-01

    An introductory survey of the underground disposal of radioactive wastes is given. Attention is paid to various types of radioactive wastes varying from low to highly active materials, as well as mining techniques and salt deposits

  8. Dynamic analysis and structural design of underground nuclear reactor containments

    International Nuclear Information System (INIS)

    Kierans, T.W.; Reddy, D.V.

    1975-01-01

    All concept options are assumed to be similar in design criteria for structural competence to contain radioactivity and fuel heat and meet the functional, servicing, protective and aesthetic requirements. The choice of underground siting should be based on criteria developed from the sequential consideration of load-causing phenomena, concept and site characteristics. From the criteria, loads for a particular concept and site are calculated and the design formulated. (orig./ORU) [de

  9. Underground treatment of combustible minerals

    Energy Technology Data Exchange (ETDEWEB)

    Sarapuu, E

    1954-10-14

    A process is described for treating oil underground, consisting in introducing several electrodes spaced one from the other in a bed of combustibles underground so that they come in electric contact with this bed of combustibles remaining insulated from the ground, and applying to the electrodes a voltage sufficient to produce an electric current across the bed of combustibles, so as to heat it and create an electric connection between the electrodes on traversing the bed of combustibles.

  10. Site status monitoring report for underground storage tanks 1219-U, 1222-U, 2082-U, and 2068-U at the Rust Garage Facility, Buildings 9720-15 and 9754-1, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Facility ID No. 0-010117

    International Nuclear Information System (INIS)

    1994-10-01

    The purpose of this document is to provide hydrogeologic, geochemical, and vapor monitoring data required for site status monitoring of underground storage tanks (UST) 1219-U, 1222-U, 2082-U, and 2068-U at the Rust Garage Facility. Comprehensive monitoring was conducted at the site in May 1994 as part of a Monitoring Only program approved by Tennessee Department of Environment and Conservation (TDEC) based on review and approval of Site Ranking. This document presents the results of the first semiannual site status monitoring, which was conducted in September 1994. Site status monitoring and preparation of this report have been conducted in accordance with the requirements of the TDEC Rule 1200-1-15, the TDEC UST Reference Handbook, Second Edition, and direction from TDEC. This document is organized into three sections. Section 1 presents introductory information relative to the site including regulatory initiative and a site description. Section 2 includes the results of sampling of monitoring wells GW-508, GW-631, GW-632, and GW-634. Section 3 presents data from vapor monitoring conducted in subsurface utilities present at the site

  11. Sanford Underground Research Facility - The United State's Deep Underground Research Facility

    Science.gov (United States)

    Vardiman, D.

    2012-12-01

    The 2.5 km deep Sanford Underground Research Facility (SURF) is managed by the South Dakota Science and Technology Authority (SDSTA) at the former Homestake Mine site in Lead, South Dakota. The US Department of Energy currently supports the development of the facility using a phased approach for underground deployment of experiments as they obtain an advanced design stage. The geology of the Sanford Laboratory site has been studied during the 125 years of operations at the Homestake Mine and more recently as part of the preliminary geotechnical site investigations for the NSF's Deep Underground Science and Engineering Laboratory project. The overall geology at DUSEL is a well-defined stratigraphic sequence of schist and phyllites. The three major Proterozoic units encountered in the underground consist of interbedded schist, metasediments, and amphibolite schist which are crosscut by Tertiary rhyolite dikes. Preliminary geotechnical site investigations included drift mapping, borehole drilling, borehole televiewing, in-situ stress analysis, laboratory analysis of core, mapping and laser scanning of new excavations, modeling and analysis of all geotechnical information. The investigation was focused upon the determination if the proposed site rock mass could support the world's largest (66 meter diameter) deep underground excavation. While the DUSEL project has subsequently been significantly modified, these data are still available to provide a baseline of the ground conditions which may be judiciously extrapolated throughout the entire Proterozoic rock assemblage for future excavations. Recommendations for facility instrumentation and monitoring were included in the preliminary design of the DUSEL project design and include; single and multiple point extensometers, tape extensometers and convergence measurements (pins), load cells and pressure cells, smart cables, inclinometers/Tiltmeters, Piezometers, thermistors, seismographs and accelerometers, scanners (laser

  12. Permeability of fissured rock - an experimental study with special regard to the water injection test

    International Nuclear Information System (INIS)

    Schneider, H.J.

    1987-01-01

    The permeability to water of fissured rock is one of the most important design parameters for many underground projects, such as, e.g. the final deposition of radioactive waste. Because the conventional water injection test according to LUGEON for the calculation of permeability to water is associated with a high degree of uncertainty, new test equipment was developed. This equipment works on the principle of the water injection tracer test and multi-level measurements, enabling detailed measurement of the flow process at injection site and in the rock. The tests were carried out in Bunter sandstone and granite. The LUGEON test concept was varied in short-term and long-term tests at identical geological boundary conditions, and with test control at constant pressure on the one hand and at constant injection volume on the other. The test results show that non-steady-state flow occurs with short injection times, whereby the range is limited to the local rock at injection site. An increasing in injection time can lead to an increase in range by a number of factors as well as to steady-state flow conditions. The permeability of the rock types investigated is inhomgeneous and anistropic as a result of the fissured structure. (orig./HP) With 114 figs., 4 tabs [de

  13. Hydrologic resources management program and underground test area operable unit fy 1997

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D. F., LLNL

    1998-05-01

    This report present the results of FY 1997 technical studies conducted by the Lawrence Livermore National Laboratory (LLNL) as part of the Hydrology and Radionuclide Migration Program (HRMP) and Underground Test Area Operable Unit (UGTA). The HRMP is sponsored by the US Department of Energy to assess the environmental (radiochemical and hydrologic) consequences of underground nuclear weapons testing at the Nevada Test Site.

  14. Permanent Closure of MFC Biodiesel Underground Storage Tank 99ANL00013

    Energy Technology Data Exchange (ETDEWEB)

    Kerry L. Nisson

    2012-10-01

    This closure package documents the site assessment and permanent closure of the Materials and Fuels Complex biodiesel underground storage tank 99ANL00013 in accordance with the regulatory requirements established in 40 CFR 280.71, “Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.”

  15. Prediction of underground argon content for dark matter experiments

    International Nuclear Information System (INIS)

    Mei, D.-M.; Spaans, J.; Keller, C.; Yin, Z.-B.; Koppang, M.; Hime, A.; Gehman, V. M.

    2010-01-01

    In this paper, we demonstrate the use of physical models to evaluate the production of 39 Ar and 40 Ar underground. Considering both cosmogenic 39 Ar production and radiogenic 40 Ar production in situ and from external sources, we can derive the ratio of 39 Ar to 40 Ar in underground sources. We show for the first time that the 39 Ar production underground is dominated by stopping negative muon capture on 39 K and (α,n) induced subsequent 39 K(n,p) 39 Ar reactions. The production of 39 Ar is shown as a function of depth. We demonstrate that argon depleted in 39 Ar can be obtained only if the depth of the underground resources is greater than 500 m.w.e. below the surface. Stopping negative muon capture on 39 K dominates over radiogenic production at depths of less than 2000 m.w.e., and that production by muon-induced neutrons is subdominant at any depth. The depletion factor depends strongly on both radioactivity level and potassium content in the rock. We measure the radioactivity concentration and potassium concentration in the rock for a potential site of an underground argon source in South Dakota. Depending on the probability of 39 Ar and 40 Ar produced underground being dissolved in the water, the upper limit of the concentration of 39 Ar in the underground water at this site is estimated to be in a range of a factor of 1.6 to 155 less than the 39 Ar concentration in the atmosphere. The calculation tools presented in this paper are also critical to the dating method with 39 Ar.

  16. Earthquake damage to underground facilities and earthquake related displacement fields

    International Nuclear Information System (INIS)

    Pratt, H.R.; Stephenson, D.E.; Zandt, G.; Bouchon, M.; Hustrulid, W.A.

    1982-01-01

    The potential seismic risk for an underground facility is considered in the evaluation of its location and design. The possible damage resulting from either large-scale displacements or high accelerations should be considered in evaluating potential sites of underground facilities. Scattered through the available literature are statements to the effect that below a few hundred meters shaking and damage in mines is less than at the surface; however, data for decreased damage underground have not been completely reported or explained. In order to assess the seismic risk for an underground facility, a data base was established and analyzed to evaluate the potential for seismic disturbance. Substantial damage to underground facilities is usually the result of displacements primarily along pre-existing faults and fractures, or at the surface entrance to these facilities. Evidence of this comes from both earthquakes as a function of depth is important in the evaluation of the hazard to underground facilities. To evaluate potential displacements due to seismic effects of block motions along pre-existing or induced fractures, the displacement fields surrounding two types of faults were investigated. Analytical models were used to determine relative displacements of shafts and near-surface displacement of large rock masses. Numerical methods were used to determine the displacement fields associated with pure strike-slip and vertical normal faults. Results are presented as displacements for various fault lengths as a function of depth and distance. This provides input to determine potential displacements in terms of depth and distance for underground facilities, important for assessing potential sites and design parameters

  17. Ground-water quality at the site of a proposed deep-well injection system for treated wastewater, West Palm Beach, Florida

    Science.gov (United States)

    Pitt, William A.; Meyer, Frederick W.

    1976-01-01

    The U.S. Geological Survey collected scientific and technical information before, during, and after construction of a deep test well at the location of a future regional waste-water treatment plant to be built for the city of West Palm Beach, Florida. Data from the test well will be used by the city in the design of a proposed deep-well injection system for disposal of effluent from the treatment plant. Shallow wells in the vicinity of the drilling site were inventoried and sampled to provide a data base for detecting changes in ground water quality during construction and later operation of the deep wells. In addition, 16 small-diameter monitor wells, ranging in depth from 10 to 162 feet, were drilled at the test site. During the drilling of the deep test well, water samples were collected weekly from the 16 monitor wells for determination of chloride content and specific conductance. Evidence of small spills of salt water were found in monitor wells ranging in depth from 10 to 40 feet. Efforts to remove the salt water from the shallow unconfined aquifer by pumping were undertaken by the drilling contractor at the request of the city of West Palm Beach. The affected area is small and there has been a reduction of chloride concentration.

  18. Étude des équilibres thermodynamiques des réactions de gazéification en vue de l'optimisation du rapport vapeur/comburant injecté dans un gazogène souterrain Study of Thermodynamic Equilibria in Gasification Reactions So As to Optimise the Steam/Oxidizer Ratio Injected Into an Underground Gas Generator

    Directory of Open Access Journals (Sweden)

    Pirard J. P.

    2006-11-01

    Full Text Available Le but de cette étude est de déterminer sur la base des équilibres thermodynamiques des réactions de gazéification le rapport vapeur/comburant à injecter dans un gazogène fonctionnant sous pression pour optimaliser les compositions, les pouvoirs calorifiques, les rendements de gazéification et la consommation d'agent gazéifiant. The aim of this study is to determine, on the basis of the thermodynamic equilibria of gazification reactions, the steam/oxidizer ratio to be injected into a gas generator operating under pressure so as to optimize the compositions, the heating values, the gasification efficiencies and the consumption of gasifying agent.

  19. Pro and con decision criteria to underground nuclear power plants

    International Nuclear Information System (INIS)

    Buchhardt, F.

    1981-01-01

    In general, basic design criteria for underground siting define increased safety margins which are mostly step-wise augmentated. The larger those postulated additional impacts become, the more the general concept might already be previously determined. Depending on site availability in general two ways may be practised - the berm-contained concept as well as mined rock caverns. According to the present technical feasibility the cut-and-cover burial seems to be favoured more. If increased external (artificial) impacts are postulated underground facilities have considerable advantages since the earth coverage provides an excellent stopping medium. In case of internal influences the features suggested mostly are additional pressure relief systems which cannot be considered typical for undergrounding. The problem of the access-way sealing is a key-point of a 'real' supplemental underground containment. With a very high safety degree a reliable closure of the penetrations must be guaranteed in case extreme external as well as internal events occur. To come to a final conclusion wheter the benefits or penalties predominate, valuation criteria and matrices are elaborated from the view of different initial points. At this time period it still seems too early to give a definite judgement of pro or con for the underground concept. (orig./HP)

  20. Alternative methods of salt disposal at the seven salt sites for a nuclear waste repository

    International Nuclear Information System (INIS)

    1987-02-01

    This study discusses the various alternative salt management techniques for the disposal of excess mined salt at seven potentially acceptable nuclear waste repository sites: Deaf Smith and Swisher Counties, Texas; Richton and Cypress Creek Domes, Mississippi; Vacherie Dome, Louisiana; and Davis and Lavender Canyons, Utah. Because the repository development involves the underground excavation of corridors and waste emplacement rooms, in either bedded or domed salt formations, excess salt will be mined and must be disposed of offsite. The salt disposal alternatives examined for all the sites include commercial use, ocean disposal, deep well injection, landfill disposal, and underground mine disposal. These alternatives (and other site-specific disposal methods) are reviewed, using estimated amounts of excavated, backfilled, and excess salt. Methods of transporting the excess salt are discussed, along with possible impacts of each disposal method and potential regulatory requirements. A preferred method of disposal is recommended for each potentially acceptable repository site. 14 refs., 5 tabs

  1. The strengthening and repair of underground structures: A new approach to the management of nuclear waste

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1991-01-01

    This paper presents three closely related ideas and technologies: (1) The secure, repairable, long time confinement of nuclear radioactive waste underground by a large surrounding region of compressive overstress; (2) The inherent tectonic weakness and vulnerability of the normal underground environment and its modification by overstress; (3) The process of creating overstress by the sequential periodic high pressure injection of a finite gel strength rapid setting grout. 12 refs., 6 figs

  2. Testosterone Injection

    Science.gov (United States)

    ... typical male characteristics. Testosterone injection works by supplying synthetic testosterone to replace the testosterone that is normally ... as a pellet to be injected under the skin.Testosterone injection may control your symptoms but will ...

  3. Method for thermal recovery of hydrocarbons from an underground formation

    Energy Technology Data Exchange (ETDEWEB)

    1962-11-13

    In a thermal recovery procedure for hydrocarbons from an underground formation, an oxygen-containing gas is injected through at least one input well into the formation. A part of the hydrocarbons in the formation is then ignited and an oxidation front is created. This front moves under the influence of the injected gas to at least one production well in the formation. The temperature in the burning front is higher than approximately 200/sup 0/C but lower than approximately 350/sup 0/C. (4 claims)

  4. Dental Students’ Preference with regard to Tactile or Visual Determination of Injection Site for an Inferior Alveolar Nerve Block in Children: A Crossover Randomized Clinical Trial

    Directory of Open Access Journals (Sweden)

    Nahid Ramazani

    2016-08-01

    Full Text Available Objectives: Instruction of local anesthesia injection in an important part of dental education curricula. This study was performed to compare dental students’ preference with regard to tactile or visual determination of injection site for an inferior alveolar nerve block (IANB in children.Materials and Methods: This crossover randomized clinical trial was conducted on dental students of Zahedan Dental School who took the first practical course of pediatric dentistry in the first academic semester of 2013-14 (n=42. They were randomly divided into two groups. During the first phase, group I was instructed to find the needle insertion point for an IANB via tactile method and group II was instructed to do it visually. In the second phase, the groups received instructions for the alternate technique. Both instructions were done using live demonstrations by the same instructor and immediately after instruction the learners practiced an IANB using the taught method. A five-point Likert scale questionnaire was then filled out by the students. The preference score was determined by calculating the mean of item scores. Data were analyzed using Mann-Whitney U and Wilcoxon Singed Rank tests in SPSS 19 at P=0.05 level of significance.Results: Thirty-eight students completed the study. By using the visual method to perform an IANB, students gained a significantly higher mean preference score (P=0.020. There was a significant difference in the preference of male students (P=0.008.Conclusions: Instruction of IANB by visual identification of needle insertion point is more desirable by students. 

  5. The prevalence of injection-site reactions with disease-modifying therapies and their effect on adherence in patients with multiple sclerosis: an observational study

    Directory of Open Access Journals (Sweden)

    Beer Karsten

    2011-11-01

    Full Text Available Abstract Background Interferon beta (IFNβ and glatiramer acetate (GA are administered by subcutaneous (SC or intramuscular (IM injection. Patients with multiple sclerosis (MS often report injection-site reactions (ISRs as a reason for noncompliance or switching therapies. The aim of this study was to compare the proportion of patients on different formulations of IFNβ or GA who experienced ISRs and who switched or discontinued therapy because of ISRs. Methods The Swiss MS Skin Project was an observational multicenter study. Patients with MS or clinically isolated syndrome who were on the same therapy for at least 2 years were enrolled. A skin examination was conducted at the first study visit and 1 year later. Results The 412 patients enrolled were on 1 of 4 disease-modifying therapies for at least 2 years: IM IFNβ-1a (n = 82, SC IFNβ-1b (n = 123, SC IFNβ-1a (n = 184, or SC GA (n = 23. At first evaluation, ISRs were reported by fewer patients on IM IFNβ-1a (13.4% than on SC IFNβ-1b (57.7%; P P P = not significant [NS]. No patient on IM IFNβ-1a missed a dose in the previous 4 weeks because of ISRs, compared with 5.7% of patients on SC IFNβ-1b (P = 0.044, 7.1% of patients on SC IFNβ-1a (P = 0.011, and 4.3% of patients on SC GA (P = NS. Primary reasons for discontinuing or switching therapy were ISRs or lack of efficacy. Similar patterns were observed at 1 year. Conclusions Patients on IM IFNβ-1a had fewer ISRs and were less likely to switch therapies than patients on other therapies. This study may have implications in selecting initial therapy or, for patients considering switching or discontinuing therapy because of ISRs, selecting an alternative option.

  6. Development of the program for underground disposal of radioactive wastes in Slovenia

    International Nuclear Information System (INIS)

    Marc, D.; Loose, A.; Mele, I.

    1995-01-01

    In Slovenia, three of four steps of surface low and intermediate level radioactive wastes (LILW) repository site selection have already been completed . Since the fourth step is stopped due to the strong public opposition, an option of underground disposal is now being considered. In 1994, Agency for Rad waste Management started with preparation of basic guidelines for site selection of an underground LILW repository in Slovenia. The guidelines consist of general and geological criteria. General criteria are similar to those used for surface repository site selection, while geological criteria, based strongly on International Atomic Energy Agency (IAEA) recommendations, include some changes. Mainly they are less rigorous and more qualitative. A set of basic geological recommendations and guidelines for an underground disposal of radioactive wastes is presented in this paper. A comparison between proposed geological criteria for underground repository site selection and geological criteria used for surface repository site selection is given as well. (author)

  7. Exploring a Common Past: Researching and Interpreting the Underground Railroad.

    Science.gov (United States)

    National Park Service (Dept. of Interior), Washington, DC.

    Although the Underground Railroad has been an integral part of U.S. history and folklore for well over 150 years, the recent past has seen an increased public interest in the identification of historic sites associated with the experiences of fugitive slaves. This booklet is part of a National Park Service initiative to design research methods…

  8. Chemical tailoring of steam to remediate underground mixed waste contaminents

    Science.gov (United States)

    Aines, Roger D.; Udell, Kent S.; Bruton, Carol J.; Carrigan, Charles R.

    1999-01-01

    A method to simultaneously remediate mixed-waste underground contamination, such as organic liquids, metals, and radionuclides involves chemical tailoring of steam for underground injection. Gases or chemicals are injected into a high pressure steam flow being injected via one or more injection wells to contaminated soil located beyond a depth where excavation is possible. The injection of the steam with gases or chemicals mobilizes contaminants, such as metals and organics, as the steam pushes the waste through the ground toward an extraction well having subatmospheric pressure (vacuum). The steam and mobilized contaminants are drawn in a substantially horizontal direction to the extraction well and withdrawn to a treatment point above ground. The heat and boiling action of the front of the steam flow enhance the mobilizing effects of the chemical or gas additives. The method may also be utilized for immobilization of metals by using an additive in the steam which causes precipitation of the metals into clusters large enough to limit their future migration, while removing any organic contaminants.

  9. Underground storage touted as CO2 solution

    International Nuclear Information System (INIS)

    Kishewitsch, S.

    2000-01-01

    As power generating companies weigh the merits of switching from coal to natural gas in order to reduce carbon dioxide emissions into the atmosphere, energy analysts predict that coal will remain a major contributor to world energy supplies well into the 21st century. For example, the Electric Power Institute estimates that a new 1,000 MW power plant need to be built somewhere in the world every two days for the next fifty years to meet the global demand for energy, and that in major emerging economies such as India and China, many of those plants will be fueled by coal. Various methods already are being tried to safely contain the carbon dioxide resulting from this vastly carbon-intensive economy. One of the more promising approaches involves burying the gas deep in the ground where it will stay safely for hundreds, if not thousands of years. Burial underground may take the form of burial in deep exhausted oil or gas formations, or burial in the deep ocean. Injection into exhausted oil and gas formations is favoured because of the ready availability of thousands of gigatonnes of underground formations and because of the extensive knowledge base already in existence regarding the size and geological properties of oil and gas reservoirs and the behaviour of carbon dioxide under these conditions. Injecting carbon dioxide into unmineable coal seams could replace methane bound to the coal; it is already being done in Alberta as one of the two pilot projects in North America, the other being in Mexico. Carbon dioxide injection to stimulate enhanced oil recovery is also being experimented with, among others by PanCanadian Resources Ltd at its Weyburn reservoir in Saskatchewan. Injection into salt domes and deep saline aquifers is another alternative. Sequestration in the ocean in a variety of forms is also the subject of several experiments. To illustrate the attractiveness of deep ocean storage, it is stated that the ocean contains at least 50 times more carbon than the

  10. Underground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    1981-01-01

    This report is an overview document for the series of IAEA reports dealing with underground waste disposal to be prepared in the next few years. It provides an introduction to the general considerations involved in implementing underground disposal of radioactive wastes. It suggests factors to be taken into account for developing and assessing waste disposal concepts, including the conditioned waste form, the geological containment and possible additional engineered barriers. These guidelines are general so as to cover a broad range of conditions. They are generally applicable to all types of underground disposal, but the emphasis is on disposal in deep geological formations. Some information presented here may require slight modifications when applied to shallow ground disposal or other types of underground disposal. Modifications may also be needed to reflect local conditions. In some specific cases it may be that not all the considerations dealt with in this book are necessary; on the other hand, while most major considerations are believed to be included, they are not meant to be all-inclusive. The book primarily concerns only underground disposal of the wastes from nuclear fuel cycle operations and those which arise from the use of isotopes for medical and research activities

  11. Regulatory approaches to hydrocarbon contamination from underground storage tanks

    International Nuclear Information System (INIS)

    Daugherty, S.J.

    1991-01-01

    Action or lack of action by the appropriate regulatory agency is often the most important factor in determining remedial action or closure requirements for hydrocarbon contaminated sites. This paper reports that the diversity of regulatory criteria is well known statewide and well documented nationally. In California, the diversity of approaches is due to: that very lack of a clear understanding of the true impact of hydrocarbon contamination: lack of state or federal standards for soil cleanup, and state water quality objectives that are not always achievable; vagueness in the underground storage tank law; and the number and diversity of agencies enforcing the underground storage tank regulations

  12. HCV treatment rates and sustained viral response among people who inject drugs in seven UK sites: real world results and modelling of treatment impact.

    Science.gov (United States)

    Martin, N K; Foster, G R; Vilar, J; Ryder, S; Cramp, M E; Gordon, F; Dillon, J F; Craine, N; Busse, H; Clements, A; Hutchinson, S J; Ustianowski, A; Ramsay, M; Goldberg, D J; Irving, W; Hope, V; De Angelis, D; Lyons, M; Vickerman, P; Hickman, M

    2015-04-01

    Hepatitis C virus (HCV) antiviral treatment for people who inject drugs (PWID) could prevent onwards transmission and reduce chronic prevalence. We assessed current PWID treatment rates in seven UK settings and projected the potential impact of current and scaled-up treatment on HCV chronic prevalence. Data on number of PWID treated and sustained viral response rates (SVR) were collected from seven UK settings: Bristol (37-48% HCV chronic prevalence among PWID), East London (37-48%), Manchester (48-56%), Nottingham (37-44%), Plymouth (30-37%), Dundee (20-27%) and North Wales (27-33%). A model of HCV transmission among PWID projected the 10-year impact of (i) current treatment rates and SVR (ii) scale-up with interferon-free direct acting antivirals (IFN-free DAAs) with 90% SVR. Treatment rates varied from <5 to over 25 per 1000 PWID. Pooled intention-to-treat SVR for PWID were 45% genotypes 1/4 [95%CI 33-57%] and 61% genotypes 2/3 [95%CI 47-76%]. Projections of chronic HCV prevalence among PWID after 10 years of current levels of treatment overlapped substantially with current HCV prevalence estimates. Scaling-up treatment to 26/1000 PWID annually (achieved already in two sites) with IFN-free DAAs could achieve an observable absolute reduction in HCV chronic prevalence of at least 15% among PWID in all sites and greater than a halving in chronic HCV in Plymouth, Dundee and North Wales within a decade. Current treatment rates among PWID are unlikely to achieve observable reductions in HCV chronic prevalence over the next 10 years. Achievable scale-up, however, could lead to substantial reductions in HCV chronic prevalence. © 2014 The Authors Journal of Viral Hepatitis Published by John Wiley & Sons Ltd.

  13. Logistics background study: underground mining

    Energy Technology Data Exchange (ETDEWEB)

    Hanslovan, J. J.; Visovsky, R. G.

    1982-02-01

    Logistical functions that are normally associated with US underground coal mining are investigated and analyzed. These functions imply all activities and services that support the producing sections of the mine. The report provides a better understanding of how these functions impact coal production in terms of time, cost, and safety. Major underground logistics activities are analyzed and include: transportation and personnel, supplies and equipment; transportation of coal and rock; electrical distribution and communications systems; water handling; hydraulics; and ventilation systems. Recommended areas for future research are identified and prioritized.

  14. Underground test area subproject waste management plan. Revision No. 1

    International Nuclear Information System (INIS)

    1996-08-01

    The Nevada Test Site (NTS), located in southern Nevada, was the site of 928 underground nuclear tests conducted between 1951 and 1992. The tests were performed as part of the Atomic Energy Commission and U.S. Department of Energy (DOE) nuclear weapons testing program. The NTS is managed by the DOE Nevada Operations Office (DOE/NV). Of the 928 tests conducted below ground surface at the NTS, approximately 200 were detonated below the water table. As an unavoidable consequence of these testing activities, radionuclides have been introduced into the subsurface environment, impacting groundwater. In the few instances of groundwater sampling, radionuclides have been detected in the groundwater; however, only a very limited investigation of the underground test sites and associated shot cavities has been conducted to date. The Underground Test Area (UGTA) Subproject was established to fill this void and to characterize the risk posed to human health and the environment as a result of underground nuclear testing activities at the NTS. One of its primary objectives is to gather data to characterize the deep aquifer underlying the NTS

  15. Annual Report RCRA Post-Closure Monitoring and Inspections for Corrective Action Unit 91: Area 3 U-3fi Injection Well, Nevada Test Site, Nevada, for the Period October 2001 - October 2002

    International Nuclear Information System (INIS)

    Richardson, G.

    2003-01-01

    This annual monitoring and inspection report provides an analysis and summary for site inspections, meteorological information, and neutron soil moisture monitoring data obtained at the U-3fi Injection Well during the October 2001 to October 2002 period. The U-3fi Injection Well is located in Area 3 of the Nevada Test Site (NTS), Nye County, Nevada. Inspections of the Area 3 U-3fi Injection Well are conducted to determine and document the physical condition of the concrete pad, facilities, and any unusual conditions that could impact the proper operation of the waste disposal unit closure. The objective of the neutron logging is to monitor the soil moisture conditions along the 128-meter (m) (420-feet [ft]) ER3-3 monitoring well and detect changes that may be indicative of moisture movement in the regulated interval extending between 73 to 82 m (240 to 270 ft)

  16. Letter Report: Contaminant Boundary at the Shoal Underground Nuclear Test

    International Nuclear Information System (INIS)

    Greg Pohll; Karl Pohlmann

    2004-01-01

    As part of the corrective action strategy reached between the U.S. Department of Energy and the State of Nevada, the extent and potential impact of radionuclide contamination of groundwater at underground nuclear test locations must be addressed. This report provides the contaminant boundary for the Project Shoal Site, based on the groundwater flow and transport model for the site, by Pohlmann (and others)

  17. Status and prospects of a deep underground laboratory in China

    International Nuclear Information System (INIS)

    Kang, K J; Cheng, J P; Li, Y J; Yue, Q; Chen, Y H; Shen, M B; Wu, S Y

    2010-01-01

    An excellent candidate location for a deep underground laboratory with more than 2500 m of rock overburden has been identified at Sichuan Province in China. It can be accessed through a road tunnel of length 17.5 km, and is supported by services and amenities near the entrance provided by the local Ertan Hydropower Plant. The particle physics community in China is actively pursuing the construction of an underground laboratory at this location, under the leadership of Tsinghua University. Memorandum has been signed with Ertan Hydropower Plant which permits access to and construction of the underground laboratory - China JinPing Deep Underground Laboratory (CJPL). The basic features of this underground site, as well as the status and schedules of the construction of the first laboratory cavern are presented. The immediate goal is to have the first experiment operational in 2010, deploying an Ultra-Low-Energy Germanium detector for WIMP dark matter searches, with emphasis on the mass range of 1-10 GeV. The conceptual design of the experiment, as well as the future plans and prospects of the laboratory, will be surveyed.

  18. Field demonstration of an active reservoir pressure management through fluid injection and displaced fluid extractions at the Rock Springs Uplift, a priority geologic CO2 storage site for Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Zunsheng [Univ. of Wyoming, Laramie, WY (United States)

    2017-04-05

    This report provides the results from the project entitled Field Demonstration of Reservoir Pressure Management through Fluid Injection and Displaced Fluid Extraction at the Rock Springs Uplift, a Priority Geologic CO2 Storage Site for Wyoming (DE-FE0026159 for both original performance period (September 1, 2015 to August 31, 2016) and no-cost extension (September 1, 2016 to January 6, 2017)).

  19. Planning geological underground repositories - Communicating with society

    International Nuclear Information System (INIS)

    Schenkel, W.; Gallego Carrera, D.; Renn, O.; Dreyer, M.

    2009-06-01

    The project 'Planning geological underground repositories: Communicating with society', financed by the Swiss Federal Office for Energy, aimed at identifying basic principles for an appropriate information and communication strategy in the process of finding an underground site to store radioactive wastes. The topic concerns an issue increasingly discussed in modern societies: How to improve the dialogue between science, infrastructure operators, public authorities, groups in civil society and the population to answer complex problems? Against this background, in the project the following questions were taken into account: (i) How can the dialogue between science, politics, economy, and the (non-)organised public be arranged appropriately? Which principles are to be considered in organising this process? How can distrust within the population be reduced and confidence in authorities and scientific expertise be increased? (ii) How can society be integrated in the process of decision-making so that this process is perceived as comprehensible, acceptable and legitimate? To answer these questions, an analysis method based on scientific theory and methodology was developed, which compares national participation and communication processes in finding underground storage sites in selected countries. Case studies have been carried out in Germany, Sweden, Belgium, and Switzerland. By using specific criteria to evaluate communication processes, the strong points as well as the drawbacks of the country-specific concepts of information, communication and participation have been analysed in a comparing dimension. By taking into account the outcomes, prototypical scenarios have been deduced that can serve as a basis for compiling a reference catalogue of measures, which is meant to support the Swiss communication strategy in the finding of an appropriate site for a nuclear waste repository. Following conclusions can be drawn from the international comparison: (i) Open and

  20. Site-specific standard request for underground storage tanks 1219-U, 1222-U, 2082-U, and 2068-U at the rust garage facility buildings 9754-1 and 9720-15: Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Facility ID No. 0-010117

    International Nuclear Information System (INIS)

    1994-12-01

    This document represents a Site-specific Standard Request for underground storage tanks (USTs) 1219-U,1222-U and 2082-U previously located at former Building 9754-1, and tank 2086-U previously located at Building 9720-15, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. The tanks previously contained petroleum products. For the purposes of this report, the two building sites will be regarded as a single UST site and will be referred to as the Rust Garage Facility. The current land use associated with the Y-12 Plant is light industrial and the operational period of the plant is projected to be at least 30 years. Thus, potential future residential exposures are not expected to occur for at least 30 years. Based on the degradation coefficient for benzene (the only carcinogenic petroleum constituent detected in soils or groundwater at the Rust Garage Facility), it is expected that the benzene and other contaminants at the site will likely be reduced prior to expiration of the 30-year plant operational period. As the original sources of petroleum contamination have been removed, and the area of petroleum contamination is limited, a site-specific standard is therefore being requested for the Rust Garage Facility

  1. Application of a Novel Liquid Nitrogen Control Technique for Heat Stress and Fire Prevention in Underground Mines.

    Science.gov (United States)

    Shi, Bobo; Ma, Lingjun; Dong, Wei; Zhou, Fubao

    2015-01-01

    With the continually increasing mining depths, heat stress and spontaneous combustion hazards in high-temperature mines are becoming increasingly severe. Mining production risks from natural hazards and exposures to hot and humid environments can cause occupational diseases and other work-related injuries. Liquid nitrogen injection, an engineering control developed to reduce heat stress and spontaneous combustion hazards in mines, was successfully utilized for environmental cooling and combustion prevention in an underground mining site named "Y120205 Working Face" (Y120205 mine) of Yangchangwan colliery. Both localized humidities and temperatures within the Y120205 mine decreased significantly with liquid nitrogen injection. The maximum percentage drop in temperature and humidity of the Y120205 mine were 21.9% and 10.8%, respectively. The liquid nitrogen injection system has the advantages of economical price, process simplicity, energy savings and emission reduction. The optimized heat exchanger used in the liquid nitrogen injection process achieved superior air-cooling results, resulting in considerable economic benefits.

  2. Slavery and the Underground Railroad.

    Science.gov (United States)

    Anderson, Nancy Comfort

    2000-01-01

    Presents a bibliography of sources to help children understand slavery and the Underground Railroad and recommends a combination of fiction and nonfiction for a better understanding. Includes picture books, biographies of people who played prominent roles during the time of slavery, nonfiction books for older readers, and videotape. (LRW)

  3. Uranium extraction from underground deposits

    International Nuclear Information System (INIS)

    Wolfe, C.R.

    1982-01-01

    Uranium is extracted from underground deposits by passing an aqueous oxidizing solution of carbon dioxide over the ore in the presence of calcium ions. Complex uranium carbonate or bicarbonate ions are formed which enter the solution. The solution is forced to the surface and the uranium removed from it

  4. High Temperature Superconducting Underground Cable

    International Nuclear Information System (INIS)

    Farrell, Roger A.

    2010-01-01

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the worlds first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  5. Inter-disciplinary Interactions in Underground Laboratories

    Science.gov (United States)

    Wang, J. S.; Bettini, A.

    2010-12-01

    Many of underground facilities, ranging from simple cavities to fully equipped laboratories, have been established worldwide (1) to evaluate the impacts of emplacing nuclear wastes in underground research laboratories (URLs) and (2) to measure rare physics events in deep underground laboratories (DULs). In this presentation, we compare similarities and differences between URLs and DULs in focus of site characterization, in quantification of quietness, and in improvement of signal to noise ratios. The nuclear waste URLs are located primarily in geological medium with potentials for slow flow/transport and long isolation. The URL medium include plastic salt, hard rock, soft clay, volcanic tuff, basalt and shale, at over ~500 m where waste repositories are envisioned to be excavated. The majority of URLs are dedicated facilities excavated after extensive site characterization. The focuses are on fracture distributions, heterogeneity, scaling, coupled processes, and other fundamental issues of earth sciences. For the physics DULs, the depth/overburden thickness is the main parameter that determines the damping of cosmic rays, and that, consequently, should be larger than, typically, 800m. Radioactivity from rocks, neutron flux, and radon gas, depending on local rock and ventilation conditions (largely independent of depth), are also characterized at different sites to quantify the background level for physics experiments. DULs have been constructed by excavating dedicated experimental halls and service cavities near to a road tunnel (horizontal access) or in a mine (vertical access). Cavities at shallower depths are suitable for experiments on neutrinos from artificial source, power reactors or accelerators. Rocks stability (depth dependent), safe access, and utility supply are among factors of main concerns for DULs. While the focuses and missions of URLs and DULs are very different, common experience and lessons learned may be useful for ongoing development of new

  6. Underground characterisation and research facility ONKALO

    International Nuclear Information System (INIS)

    Ikonen, Antti; Ylae-Mella, Mia; Aeikaes, Timo

    2006-01-01

    Posiva's repository for geological disposal of the spent fuel from Finnish nuclear reactors will be constructed at Olkiluoto. The selection of Olkiluoto was made based on site selection research programme conducted between 1987-2001. The next step is to carry out complementary investigations of the site and apply for the construction license for the disposal facility. The license application will be submitted in 2012. To collect detailed information of the geological environment at planned disposal depth an underground characterisation and research facility will be built at the site. This facility, named as ONKALO, will comprise a spiral access tunnel and two vertical shafts. The excavation of ONKALO is in progress and planned depth (400 m) will be reached in 2009. During the course of the excavation Posiva will conduct site characterisation activities to assess the structure and other properties of the site geology. The aim is that construction will not compromise the favourable conditions of the planned disposal depth or introduce harmful effects in the surrounding bedrock which could jeopardize the long-term safety of the geological disposal. (author)

  7. Underground coal mining technology - the future

    Energy Technology Data Exchange (ETDEWEB)

    Lama, R P [Kembla Coal and Coke Pty Limited, Wollongong, NSW (Australia)

    1989-01-01

    Discusses development of underground coal mining in Australia in the last four decades. The following aspects are reviewed: technology for underground mining (longwall mining, unidirectional cutting, bidirectional cutting, operation of more than one shearer on a working face, optimum dimensions of longwall blocks), longwall productivity (productivity increase will depend on increasing the availability factor of equipment, reducing failures due to human errors, organizational models, improving on-site decision making, improving monitoring, maintenance, planning and scheduling, concept of 'Transparent Mine'), roadway development systems (types of heading machines, standard systems for mine drivage and roof bolting and their productivity), size of coal mines, man and material transport systems (20,000-30,000 t/d from a single longwall face, mine shafts with a diameter 9-10 m), mine layout design (layout of longwall blocks, main intakes and returns situated in rock layers), mine environmental systems (ventilation systems, gas control), management, training and interpersonal relationships. Future coal mines will be developed with an integral capacity of 8-10 Mt/a from a single longwall operation with main development arteries placed in rocks. Development of gate roadways will require novel solutions with continuous cutting, loading and bolting. Information technology, with the concept of 'transparent mine', will form the backbone of decision making.

  8. The Performance Parameters Of Wireless Sensor Networks In Underground Mines

    Directory of Open Access Journals (Sweden)

    Sinan UGUZ

    2015-08-01

    Full Text Available In recent years underground mines have increasingly remained on the agenda with both difficult working conditions and problems such as collapsed and firedamp explosion in our country and in the world. In terms of life safety of miners and their health mine sites are required to be continuously monitored and controlled. This is difficult to achieve with existing wired systems due to the topography of mine sites. The applications have increased with the development of wireless sensor networks WSN technology in mine sites in recent years. This case has also caused an increase in studies on improving WSN performance. Especially energy efficiency is very important for the WSN hardware with a low energy source. In this study information about things to consider while using WSN technologies in underground mines and studies on their performance has been provided.

  9. Geotechnical investigations of the PEP site

    International Nuclear Information System (INIS)

    Gould, R.S.

    1976-02-01

    The purpose of this paper is to summarize the general nature of the geology and rock and soil formations of the PEP site as they relate to the design and construction of the project; to describe site investigation programs and to catalog the geotechnical information presently available about the site. The recently-completed investigation of subterranean conditions around the PEP ring when coupled with previous surveys gives us a good understanding of what to expect with regard to tunneling, undertaking larger underground excavations and constructing research halls are the interaction areas. It bears out the predictions made in Jacobs and Associates' report of 1973; i.e., that the ring housing construction is classified as soft-ground tunneling and that large underground openings, such as region 10 and the injection junction structures, will require great attention to support. A shield or shields will probably be required. On the positive side, the site affords very good conditions for soft-ground tunneling. Water will be a problem in some areas, but not an unsolvable one. The possibility of encountering lethal or explosive gases, almost always the case in tunneling in California's coastal formations, exists but has not been ascertained. Finally, no reasons to change current cost estimates or schedules have merged from the investigation. 13 refs., 1 fig

  10. Effects of earthquakes on underground facilities. Literature review and discussion

    International Nuclear Information System (INIS)

    Carpenter, D.W.; Chung, D.H.

    1986-06-01

    A review of literature concerning effects of ground motion on underground facilities has been completed, and an annotated bibliography has been prepared. This information provides useful background for the science and engineering of underground nuclear waste management facility development. While some conflicts are evident in the literature reviewed, the following tentative conclusions may be drawn from the available information: (1) damage is expectable if fault displacement occurs through a site, but damage from shaking alone is generally confined to facilities located within the epicentral region and may be less than to surface facilities at the same site. (2) Seismic data are mixed, but favors reduction of amplitude with depth; observations appear quite dependent upon station characteristics. (3) The frequency content of earthquake mitions is important to the stability of underground openings and the applicability of attenuation relationships developed in areas where geologic and tectonic characteristics favor high attenuation rates to mid-continental sites is questionable. (4) Model studies indicate problems for shafts and the potential for problems with waste-handling equipment in shafts. The results of the review indicate the need to assure that site-specific response spectra and attenuation relationships are developed for proposed sites, and that detailed assessments of seismic aspects of shaft designs, hoists and in-shaft waste-handling equipment are required

  11. The Deep Underground Science and Engineering Laboratory at Homestake

    Energy Technology Data Exchange (ETDEWEB)

    Lesko, Kevin T [Department of Physics, University of California Berkeley and the Institute for Nuclear and Particle Astrophysics, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS50R5239, Berkeley, CA 94720-8146 (United States)], E-mail: KTLesko@lbl.gov

    2008-11-01

    The National Science Foundation and the international underground science community are well into establishing a world-class, multidisciplinary Deep Underground Science and Engineering Laboratory (DUSEL) at the former Homestake mine in Lead South Dakota. The NSF's review committee, following the first two NSF solicitations, selected the Homestake Proposal and site as the prime location to be developed into an international research facility. Homestake DUSEL will provide much needed underground research space to help relieve the worldwide shortage, particularly at great depth, and will develop research campuses at several different depths to satisfy the research requirements for the coming decades. The State of South Dakota has demonstrated remarkable support for the project and has secured the site with the transfer from the Homestake Mining Corp. The State, through its Science and Technology Authority with state funds and those of a philanthropic donor has initiated rehabilitation of the surface and underground infrastructure including the Ross and Yates hoists accessing the 4850 Level (feet below ground, 4100 to 4200 mwe). The scientific case for DUSEL and the progress in establishing the preliminary design of the facility and the associated suite of experiments to be funded along with the facility by the NSF are presented.

  12. Site selection for nuclear power plants

    International Nuclear Information System (INIS)

    Ehjchkholz, D.

    1980-01-01

    Problem of NPP site selection in the USA including engineering factors, radiation and environmental protection factors is stated in detail. Floating and underground sites are considered especially. The attention in paid to waste storage and risk criterium in siting [ru

  13. Granisetron Injection

    Science.gov (United States)

    Granisetron immediate-release injection is used to prevent nausea and vomiting caused by cancer chemotherapy and to ... nausea and vomiting that may occur after surgery. Granisetron extended-release (long-acting) injection is used with ...

  14. Edaravone Injection

    Science.gov (United States)

    Edaravone injection is used to treat amyotrophic lateral sclerosis (ALS, Lou Gehrig's disease; a condition in which ... die, causing the muscles to shrink and weaken). Edaravone injection is in a class of medications called ...

  15. Meropenem Injection

    Science.gov (United States)

    ... injection is in a class of medications called antibiotics. It works by killing bacteria that cause infection.Antibiotics such as meropenem injection will not work for colds, flu, or other viral infections. Taking ...

  16. Chloramphenicol Injection

    Science.gov (United States)

    ... injection is in a class of medications called antibiotics. It works by stopping the growth of bacteria..Antibiotics such as chloramphenicol injection will not work for colds, flu, or other viral infections. Taking ...

  17. Colistimethate Injection

    Science.gov (United States)

    ... injection is in a class of medications called antibiotics. It works by killing bacteria.Antibiotics such as colistimethate injection will not work for colds, flu, or other viral infections. Using ...

  18. Defibrotide Injection

    Science.gov (United States)

    Defibrotide injection is used to treat adults and children with hepatic veno-occlusive disease (VOD; blocked blood ... the body and then returned to the body). Defibrotide injection is in a class of medications called ...

  19. Nalbuphine Injection

    Science.gov (United States)

    ... injection is in a class of medications called opioid agonist-antagonists. It works by changing the way ... suddenly stop using nalbuphine injection, you may experience withdrawal symptoms including restlessness; teary eyes; runny nose; yawning; ...

  20. A delegation from Singapore came to CERN on 18 October. The visitors are involved in planning a vast Underground Science City housing R&D laboratories and IT data centres.

    CERN Multimedia

    Hoch, Michael

    2010-01-01

    They came to learn from civil engineers and safety experts about how CERN plans and constructs its underground facilities. They visited the CMS site at Cessy, including the above-ground control room and the Underground Service Cavern.

  1. Immunogenicity and safety of concomitant administration of a measles, mumps and rubella vaccine (M-M-RvaxPro) and a varicella vaccine (VARIVAX) by intramuscular or subcutaneous routes at separate injection sites: a randomised clinical trial.

    Science.gov (United States)

    Gillet, Yves; Habermehl, Pirmin; Thomas, Stéphane; Eymin, Cécile; Fiquet, Anne

    2009-04-14

    When this trial was initiated, the combined measles, mumps and rubella (MMR) vaccine was licensed for subcutaneous administration in all European countries and for intramuscular administration in some countries, whereas varicella vaccine was licensed only for subcutaneous administration. This study evaluated the intramuscular administration of an MMR vaccine (M-M-RvaxPro) and a varicella vaccine (VARIVAX) compared with the subcutaneous route. An open-label randomised trial was performed in France and Germany. Healthy children, aged 12 to 18 months, received single injections of M-M-RvaxPro and VARIVAX concomitantly at separate injection sites. Both vaccines were administered either intramuscularly (IM group, n = 374) or subcutaneously (SC group, n = 378). Immunogenicity was assessed before vaccination and 42 days after vaccination. Injection-site erythema, swelling and pain were recorded from days 0 to 4 after vaccination. Body temperature was monitored daily between 0 and 42 days after vaccination. Other adverse events were recorded up to 42 days after vaccination and serious adverse events until the second study visit. Antibody response rates at day 42 in the per-protocol set of children initially seronegative to measles, mumps, rubella or varicella were similar between the IM and SC groups for all four antigens. Response rates were 94 to 96% for measles, 98% for both mumps and rubella and 86 to 88% for varicella. For children initially seronegative to varicella, 99% achieved the seroconversion threshold (antibody concentrations of >or= 1.25 gpELISA units/ml). Erythema and swelling were the most frequently reported injection-site reactions for both vaccines. Most injection-site reactions were of mild intensity or small size (vaccines was comparable regardless of administration route. Integration of both administration routes in the current European indications for the two vaccines will now allow physicians in Europe to choose their preferred administration route

  2. Numerical modeling of underground storage system for natural gas

    Science.gov (United States)

    Ding, J.; Wang, S.

    2017-12-01

    Natural gas is an important type of base-load energy, and its supply needs to be adjusted according to different demands in different seasons. For example, since natural gas is increasingly used to replace coal for winter heating, the demand for natural gas in winter is much higher than that in other seasons. As storage systems are the essential tools for balancing seasonal supply and demand, the design and simulation of natural gas storage systems form an important research direction. In this study, a large-scale underground storage system for natural gas is simulated based on theoretical analysis and finite element modeling.It is proven that the problem of axi-symmetric Darcy porous flow of ideal gas is governed by the Boussinesq equation. In terms of the exact solution to the Boussinesq equation, the basic operating characteristics of the underground storage system is analyzed, and it is demonstrated that the propagation distance of the pore pressure is proportional to the 1/4 power of the mass flow rate and to the 1/2 power of the propagation time. This quantitative relationship can be used to guide the overall design of natural gas underground storage systems.In order to fully capture the two-way coupling between pore pressure and elastic matrix deformation, a poro-elastic finite element model for natural gas storage is developed. Based on the numerical model, the dynamic processes of gas injection, storage and extraction are simulated, and the corresponding time-dependent surface deformations are obtained. The modeling results not only provide a theoretical basis for real-time monitoring for the operating status of the underground storage system through surface deformation measurements, but also demonstrate that a year-round balance can be achieved through periodic gas injection and extraction.This work is supported by the CAS "100 talents" Program and the National Natural Science Foundation of China (41371090).

  3. Civil Engineering Construction of Underground Works

    CERN Document Server

    Rammer, H

    1999-01-01

    For the first time at CERN, new shafts and caverns will be excavated inside a surface building. The LHC civil engineering construction for the ATLAS experiment has been designed such that the experimental hall will be completed to the extent that it can provide a secure, weatherproof and sound insulated covering to the shaft excavation area. The construction of the two access shafts and the experimental cavern will follow and will be carried out inside the building. This unconventional method of working allows the excavation of the Molasse rock in the dry, which is essential for this type of rock, and ensures reduced environmental pollution by noise and dust. The paper will present the technical infrastructure required for this particular construction method, explain its advantages and disadvantages, and compare it with a conventional method of underground excavations to be used on the same work site for the construction of the service cavern.

  4. Technical problems and future underground engineering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, G H [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1969-07-01

    The technical problems to be solved in future underground engineering experiments are of two kinds. One concerns adequate description of the variation of nuclear explosion effects with physical nd chemical properties of the explosion site. The other concerns engineering of the explosive detonation system to provide adequate safety and security, concurrently with minimum total costs per explosion. The semiempirical equations for explosion effects can be trusted only in the range of explosive energy, depth of burst, and rock type for which there is prior experience. Effects calculations based on the principles of continuum mechanics and measurable geophysical properties appear to work in the few test cases, such as Gasbuggy, to which they have been applied. These calculational methods must be tested in a variety of situations. The relevance of dynamic and static measurements on Dragon Trail, Bronco, Rulison, Stoop, Ketch, and Pinedale to proving the methods are discussed in this paper. The traditional methods of assembling and fielding nuclear explosives have evolved from practice at the Nevada Test Site. These provide great flexibility and assure maximum recovery of all data from each test, thus minimizing the time required to achieve desired results. Timing and firing, radiation monitoring, explosives assembly and emplacement, explosive performance, weather monitoring, and dynamic measurements of earth and building motion have all been handled traditionally as independent functions. To achieve lower costs in underground engineering experiments and projects, one prototype system combining all electronic, measurement, and communication functions is being built. Much further work will be required to complete this effort, including, especially, an examination of safety criteria and means for assuring operational and public safety at reduced costs. (author)

  5. Technical problems and future underground engineering experiments

    International Nuclear Information System (INIS)

    Higgins, G.H.

    1969-01-01

    The technical problems to be solved in future underground engineering experiments are of two kinds. One concerns adequate description of the variation of nuclear explosion effects with physical nd chemical properties of the explosion site. The other concerns engineering of the explosive detonation system to provide adequate safety and security, concurrently with minimum total costs per explosion. The semiempirical equations for explosion effects can be trusted only in the range of explosive energy, depth of burst, and rock type for which there is prior experience. Effects calculations based on the principles of continuum mechanics and measurable geophysical properties appear to work in the few test cases, such as Gasbuggy, to which they have been applied. These calculational methods must be tested in a variety of situations. The relevance of dynamic and static measurements on Dragon Trail, Bronco, Rulison, Stoop, Ketch, and Pinedale to proving the methods are discussed in this paper. The traditional methods of assembling and fielding nuclear explosives have evolved from practice at the Nevada Test Site. These provide great flexibility and assure maximum recovery of all data from each test, thus minimizing the time required to achieve desired results. Timing and firing, radiation monitoring, explosives assembly and emplacement, explosive performance, weather monitoring, and dynamic measurements of earth and building motion have all been handled traditionally as independent functions. To achieve lower costs in underground engineering experiments and projects, one prototype system combining all electronic, measurement, and communication functions is being built. Much further work will be required to complete this effort, including, especially, an examination of safety criteria and means for assuring operational and public safety at reduced costs. (author)

  6. Surface effects of underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Allen, B.M.; Drellack, S.L. Jr.; Townsend, M.J.

    1997-06-01

    The effects of nuclear explosions have been observed and studied since the first nuclear test (code named Trinity) on July 16, 1945. Since that first detonation, 1,053 nuclear tests have been conducted by the US, most of which were sited underground at the Nevada Test Site (NTS). The effects of underground nuclear explosions (UNEs) on their surroundings have long been the object of much interest and study, especially for containment, engineering, and treaty verification purposes. One aspect of these explosion-induced phenomena is the disruption or alteration of the near-surface environment, also known as surface effects. This report was prepared at the request of the Los Alamos National Laboratory (LANL), to bring together, correlate, and preserve information and techniques used in the recognition and documentation of surface effects of UNEs. This report has several main sections, including pertinent background information (Section 2.0), descriptions of the different types of surface effects (Section 3.0), discussion of their application and limitations (Section 4.0), an extensive bibliography and glossary (Section 6.0 and Appendix A), and procedures used to document geologic surface effects at the NTS (Appendix C). Because a majority of US surface-effects experience is from the NTS, an overview of pertinent NTS-specific information also is provided in Appendix B. It is not within the scope of this report to explore new relationships among test parameters, physiographic setting, and the types or degree of manifestation of surface effects, but rather to compile, summarize, and capture surface-effects observations and interpretations, as well as documentation procedures and the rationale behind them.

  7. 40 CFR 280.220 - Ownership of an underground storage tank or underground storage tank system or facility or...

    Science.gov (United States)

    2010-07-01

    ... tank or underground storage tank system or facility or property on which an underground storage tank or underground storage tank system is located. 280.220 Section 280.220 Protection of Environment ENVIRONMENTAL... underground storage tank or underground storage tank system or facility or property on which an underground...

  8. Underground spaces/cybernetic spaces

    Directory of Open Access Journals (Sweden)

    Tomaž Novljan

    2000-01-01

    Full Text Available A modern city space is a space where in the vertical and horizontal direction dynamic, non-linear processes exist, similar as in nature. Alongside the “common” city surface, cities have underground spaces as well that are increasingly affecting the functioning of the former. It is the space of material and cybernetic communication/transport. The psychophysical specifics of using underground places have an important role in their conceptualisation. The most evident facts being their limited volume and often limited connections to the surface and increased level of potential dangers of all kinds. An efficient mode for alleviating the effects of these specific features are artistic interventions, such as: shape, colour, lighting, all applications of the basic principles of fractal theory.

  9. Study of underground radon transport

    International Nuclear Information System (INIS)

    Csige, I.; Hakl, J.; Lenart, L.

    1990-01-01

    The soil gas radon content measurements with solid state nuclear track detectors (SSNTDs) are widely used in geoscience, for instance in uranium exploration and earthquake prediction. In these applications the radon frequently is used as a natural tracer of underground fluid transport processes. Obviously, to get the soil radon measuring method more and more effective the study of these transport processes in deeper part of the Earth is fundamental. The Track Detector Group in the Institute of Nuclear Research of the Hungarian Academy of Sciences in Debrecen has been performing environmental radon activity concentration measurements since 1977 with alpha sensitive SSNTDs. These types of measurements were initiated and widely used by the late head of the group Dr. G. Somogyi, who devoted his life to better understanding of the nature. The measurements in caves, springs and drilled wells proved to be effective to study these underground radon transport processes. We are glad to present some results of our investigations. 7 refs, 7 figs

  10. Sensitivity analysis of the impacts of operational and geologic conditions on Area of Review (AOR, Post Injection Site Care (PISC and Risk associated with CO2 Sequestration in South-region of United States

    Directory of Open Access Journals (Sweden)

    Danilo Andrés Arcentales Bastidas

    2017-12-01

    Full Text Available For anthropogenic carbon dioxide (CO2 capture is important to consider: gas storage’s formation capacity, saturation and pressure plume size after injection; including the risks associated with CO2 leakage and faults reactivation. A formation with a reasonable pore volume would be a good candidate for CO2 storage, however, not all high porosity formations have the ability to store large amounts of gas over a long period of time. That's the biggest concern when it refers to CO2 capture. Saturation and pressure plume size during CO2 injection as well as site monitoring after injection were simulated in this research, using CRD field reservoir models. The application of Pareto diagrams and surface responses allowed us to determine the most important parameters that affected the saturation and pressure plume, quantifying the correlation between different parameters of adjusted and dimensioned historical models.

  11. The Underground Economy in Romania

    Directory of Open Access Journals (Sweden)

    Cleopatra Sendroiu

    2006-07-01

    Full Text Available Underground economic activities exist in most countries around the world, and they usually have the same causes: inadequate tax systems, excessive state interference in the economy and the lack of coordination in establishing economic policies. Through this paper, we aim to offer certain recommendations, which, in our opinion, would lead to solving the issue of inadequate allocation of resources and would also contribute to restoration of the worldwide economy.

  12. Underground design Laxemar, Layout D2

    Energy Technology Data Exchange (ETDEWEB)

    2009-11-15

    Laxemar candidate area is located in the province of Smaaland, some 320 km south of Stockholm. The area is located close to the shoreline of the Baltic Sea and is within the municipality of Oskarshamn, and immediately west of the Oskarshamn nuclear power plant and the Central interim storage facility for spent fuel (Clab). The easternmost part (Simpevarp subarea) includes the Simpevarp peninsula, which hosts the power plants and the Clab facility. The island of Aespoe, containing the Aespoe Hard Rock Laboratory is located some three kilometres northeast of the central parts of Laxemar. The Laxemar subarea covers some 12.5 km2, compared with the Simepvarp subarea, which is approximately 6.6 km2. The Laxemar candidate area has been investigated in stages, referred to as the initial site investigations (ISI) and the complete site investigations (CSI). These investigations commenced in 2002 and were completed in 2008. During the site investigations, several studies and design steps (D0, D1 and D2) were carried out to ensure that sufficient space was available for the 6,000-canister layout within the target volume at a depth of approximately 500 m. The findings from design Step D2 for the underground facilities including the access ramp, shafts, rock caverns in a Central Area, transport tunnels, and deposition tunnels and deposition holes are contained in this report. The layout for these underground excavations at the deposition horizon requires an area of 5.7 km2, and the total rock volume to be excavated is 3,008 x 103 m3 using a total tunnel length of approximately 115 km. The behaviour of the underground openings associated with this layout is expected to be similar to the behaviour of other underground openings in the Scandinavian shield at similar depths. The dominant mode of instability is expected to be structurally controlled wedge failure. Stability of the openings will be achieved with traditional underground rock support and by orienting the openings

  13. The stress and underground environment

    Science.gov (United States)

    Chama, A.

    2009-04-01

    Currently,the program of prevention in occupational health needs mainly to identify occupational hazards and strategy of their prevention.Among these risks,the stress represents an important psycho-social hazard in mental health,which unfortunately does not spare no occupation.My Paper attempts to highlight and to develop this hazard in its different aspects even its regulatory side in underground environment as occupational environment.In the interest of better prevention ,we consider "the information" about the impact of stress as the second prevention efficient and no expensive to speleologists,hygienists and workers in the underground areas. In this occasion of this event in Vienna,we also highlight the scientific works on the stress of the famous viennese physician and endocrinologist Doctor Hans Selye (1907-1982),nicknamed "the father of stress" and note on relation between biological rhythms in this underground area and psychological troubles (temporal isolation) (Jurgen Aschoff’s works and experiences out-of time).

  14. First ATLAS Events Recorded Underground

    CERN Multimedia

    Teuscher, R

    As reported in the CERN Bulletin, Issue No.30-31, 25 July 2005 The ATLAS barrel Tile calorimeter has recorded its first events underground using a cosmic ray trigger, as part of the detector commissioning programme. This is not a simulation! A cosmic ray muon recorded by the barrel Tile calorimeter of ATLAS on 21 June 2005 at 18:30. The calorimeter has three layers and a pointing geometry. The light trapezoids represent the energy deposited in the tiles of the calorimeter depicted as a thick disk. On the evening of June 21, the ATLAS detector, now being installed in the underground experimental hall UX15, reached an important psychological milestone: the barrel Tile calorimeter recorded the first cosmic ray events in the underground cavern. An estimated million cosmic muons enter the ATLAS cavern every 3 minutes, and the ATLAS team decided to make good use of some of them for the commissioning of the detector. Although only 8 of the 128 calorimeter slices ('superdrawers') were included in the trigg...

  15. Underground storage of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Shoichi [Univ. of Tokyo, Hongo, Bunkyo-ku (Japan)

    1993-12-31

    Desk studies on underground storage of CO{sub 2} were carried out from 1990 to 1991 fiscal years by two organizations under contract with New Energy and Indestrial Technology Development Organization (NEDO). One group put emphasis on application of CO{sub 2} EOR (enhanced oil recovery), and the other covered various aspects of underground storage system. CO{sub 2} EOR is a popular EOR method in U.S. and some oil countries. At present, CO{sub 2} is supplied from natural CO{sub 2} reservoirs. Possible use of CO{sub 2} derived from fixed sources of industries is a main target of the study in order to increase oil recovery and storage CO{sub 2} under ground. The feasibility study of the total system estimates capacity of storage of CO{sub 2} as around 60 Gton CO{sub 2}, if worldwide application are realized. There exist huge volumes of underground aquifers which are not utilized usually because of high salinity. The deep aquifers can contain large amount of CO{sub 2} in form of compressed state, liquefied state or solution to aquifer. A preliminary technical and economical survey on the system suggests favorable results of 320 Gton CO{sub 2} potential. Technical problems are discussed through these studies, and economical aspects are also evaluated.

  16. Sinkhole development induced by underground quarrying, and the related hazard

    Science.gov (United States)

    Parise, M.; Delle Rose, M.

    2009-04-01

    Sinkholes are extremely widespread in Apulia, a very flat and carbonate region, that acted as the foreland during the phases of building up of the Southern Apenninic Chain in Miocene time. This is due to the presence of soluble rocks throughout the region, that highly predispose the area to this very subtle natural hazard. In addition to the natural setting, which favours their development, sinkholes may also be induced by anthropogenic activities. In the latter sense, underground quarrying represents one of the most dangerous activities in karst areas. Apulia has a long history of quarrying. Since the roman time, the local rocks, from the Cretaceous micritic limestones to the Quaternary calcarenites, have been intensely quarried and used as building and ornamental materials. In several settings of the region, the rocks with the best petrographic characteristics are located at depths ranging from a few to some tens of meters. This caused the opening of many underground quarries, and the development of a complex network of subterranean galleries. Underground quarrying had a great impulse at the turn between the XIX and the XX century, when a large number of quarries was opened. Later on, after the Second World War, most of the quarries were progressively abandoned, even because of the first signs of instability, both underground and at the ground surface. With time, the memory of the presence and development of the underground quarries was progressively lost, with severe repercussions on the safety of the land above the excavated areas. Lack of knowledge of the subterranean pattern of galleries, combined with the expansion of the built-up areas at the surface, resulted in increasing significantly the vulnerability of exposed elements at risk. Events such as the 29 March, 2007, at Gallipoli only by chance did not result in any casualties, when a 15-mt wide and 5-mt deep sinkhole opened in a few hours at a road crossing, above the site of an old underground quarry

  17. Enlarging the underground hydroelectric plant at Villarino, Spain

    Energy Technology Data Exchange (ETDEWEB)

    Oriard, L.L.

    1997-05-01

    Near the village of Villarino de los Aires, in the province of Salamanca, Spain, was an existing underground hydroelectric power plant. A major enlargement was undertaken to increase the electrical generating capacity, under a contract awarded to a joint venture of Dragados y Construcciones, S. A. (Spain), Entrecanales y Tavora, S. A. (Spain), and S.A. Conrad Zschokke (Switzerland). The enlargement required the excavation of a large and complex underground system of tunnels, shafts and chambers adjacent to existing facilities and interconnected with these facilities. The existing machine hall and transformer chamber were both extended, requiring the blasting of the existing end walls. The drilling, blasting and excavating of the underground system had to be done without damage to existing underground chambers and tunnels, or any of the existing structures, equipment or instrumentation facilities, often within just a few feet of the blasting. This required careful control of vibrations, airblast overpressures and dust. Because the only available non-electric detonating systems were found to be unreliable and unsafe, electric systems would be preferred if they could be used in a safe manner at this site. High electrical potentials existed at the site, and the facilities could not be shut down. Electrical fields were studied carefully, both in the underground environment and above the ground surface. Based on these results, it was concluded that electric detonators could be used if special blasting procedures were developed and followed. In accord with contracting practices of this Spanish agency, the contract was not awarded to the lowest bidder, but to the bidder who demonstrated the best understanding of the project and who presented the best technical proposal for conducting the work to a conclusion that would be satisfactory to the owner. The development of the technical proposal was a two-month effort for a technical group and support staff, prepared in Madrid.

  18. Immunogenicity and safety of concomitant administration of a measles, mumps and rubella vaccine (M-M-RvaxPro® and a varicella vaccine (VARIVAX® by intramuscular or subcutaneous routes at separate injection sites: a randomised clinical trial

    Directory of Open Access Journals (Sweden)

    Thomas Stéphane

    2009-04-01

    Full Text Available Abstract Background When this trial was initiated, the combined measles, mumps and rubella (MMR vaccine was licensed for subcutaneous administration in all European countries and for intramuscular administration in some countries, whereas varicella vaccine was licensed only for subcutaneous administration. This study evaluated the intramuscular administration of an MMR vaccine (M-M-RvaxPro® and a varicella vaccine (VARIVAX® compared with the subcutaneous route. Methods An open-label randomised trial was performed in France and Germany. Healthy children, aged 12 to18 months, received single injections of M-M-RvaxPro and VARIVAX concomitantly at separate injection sites. Both vaccines were administered either intramuscularly (IM group, n = 374 or subcutaneously (SC group, n = 378. Immunogenicity was assessed before vaccination and 42 days after vaccination. Injection-site erythema, swelling and pain were recorded from days 0 to 4 after vaccination. Body temperature was monitored daily between 0 and 42 days after vaccination. Other adverse events were recorded up to 42 days after vaccination and serious adverse events until the second study visit. Results Antibody response rates at day 42 in the per-protocol set of children initially seronegative to measles, mumps, rubella or varicella were similar between the IM and SC groups for all four antigens. Response rates were 94 to 96% for measles, 98% for both mumps and rubella and 86 to 88% for varicella. For children initially seronegative to varicella, 99% achieved the seroconversion threshold (antibody concentrations of ≥ 1.25 gpELISA units/ml. Erythema and swelling were the most frequently reported injection-site reactions for both vaccines. Most injection-site reactions were of mild intensity or small size (≤ 2.5 cm. There was a trend for lower rates of injection-site erythema and swelling in the IM group. The incidence and nature of systemic adverse events were comparable for the two routes

  19. The principle of measuring unusual change of underground mass by optical astrometric instrument

    Directory of Open Access Journals (Sweden)

    Wang Jiancheng

    2012-11-01

    In this study, we estimate the deflection angle of the plumb line on a ground site, and give a relation between the angle, abnormal mass and site distance (depth and horizontal distance. Then we derive the abnormality of underground material density using the plumb lines measured at different sites, and study the earthquake gestation, development and occurrence. Using the deflection angles of plumb lines observed at two sites, we give a method to calculate the mass and the center of gravity of underground materials. We also estimate the abnormal masses of latent seismic zones with different energy, using thermodynamic relations, and introduce a new optical astrometric instrument we had developed.

  20. 200 Area plateau inactive miscellaneous underground storage tanks locations

    International Nuclear Information System (INIS)

    Brevick, C.H.

    1997-01-01

    Fluor Daniel Northwest (FDNW) has been tasked by Lockheed Martin Hanford Corporation (LMHC) to incorporate current location data for 64 of the 200-Area plateau inactive miscellaneous underground storage tanks (IMUST) into the centralized mapping computer database for the Hanford facilities. The IMUST coordinate locations and tank names for the tanks currently assigned to the Hanford Site contractors are listed in Appendix A. The IMUST are inactive tanks installed in underground vaults or buried directly in the ground within the 200-East and 200-West Areas of the Hanford Site. The tanks are categorized as tanks with a capacity of less than 190,000 liters (50,000 gal). Some of the IMUST have been stabilized, pumped dry, filled with grout, or may contain an inventory or radioactive and/or hazardous materials. The IMUST have been out of service for at least 12 years

  1. Stability of underground excavations in a repository system

    International Nuclear Information System (INIS)

    Calash, A.Y.; Greer, J.C.; Andrea, S.J.; Chowdhury, A.H.; Nguyen, V.V.

    1988-01-01

    The DOE is investigating the feasibility of constructing a deep geologic repository at the Hanford Site, Washington, for the permanent disposal of nuclear waste. The underground openings associated with the repository design include shafts, tunnels, emplacement rooms and boreholes. The stability of these underground openings, the extent and characteristics of the disturbed zones due to excavation, and their effects on groundwater flow path and travel time have a primary influence on the performance assessment of the Hanford Site as a nuclear waste repository. This study is being done in accordance with the requirements of the NRC. Results of structural analyses of shafts and tunnels under in situ stresses and/or medium weight are presented in this paper. Four different analyses were carried out to analyze the shaft: a plane strain model, axisymmetric model, 3-D model of a single material medium, and 3-D model of a three material medium

  2. PEP cooling water systems and underground piped utilities design criteria report

    International Nuclear Information System (INIS)

    Hall, F.; Robbins, D.

    1975-10-01

    This paper discusses the cooling systems required by the PEP Storage Ring. Particular topics discussed are: Cooling tower systems, RF cavity and vacuum chamber LCW cooling systems, klystron and ring magnet LLW cooling systems, Injection magnet LCW Cooling Systems; PEP interaction area detector LCW Cooling Systems; and underground piped utilities. 1 ref., 20 figs

  3. Henderson Deep Underground Science and Engineering Lab: Unearthing the secrets of the Universe, underground

    International Nuclear Information System (INIS)

    Jung, C.K.

    2011-01-01

    The Henderson Mine near Empire, Colorado is proposed to be the site to host a Deep Underground Science and Engineering Laboratory (DUSEL), which will have a rich program for forefront research in physics, biology, geosciences, and mining engineering. The mine is owned by the Climax Molybdenum Company (CMC). It is located about 50 miles west of Denver and is easily accessible via major highways. The mine is modern and has extensive infrastructure with reserve capacity well-suited to the demands of DUSEL. CMC owns all land required for DUSEL, including the tailings site. It also has all environmental and mining permits required for DUSEL excavation, core drilling, and rock disposal. The mine owners are enthusiastic supporters of this initiative. In support of the Henderson DUSEL project, the State of Colorado has pledged substantial funding for surface construction.

  4. Surface Deformation Observed by InSAR due to Fluid Injection: a Test Study in the Central U.S.

    Science.gov (United States)

    Deng, F.; Dixon, T. H.

    2017-12-01

    The central and eastern U.S. has undergone a dramatic increase in seismicity over the past few years. Many of these recent earthquakes were likely induced by human activities, with underground fluid injection for oil and gas extraction being one of the main contributors. Surface deformation caused by fluid injection has been captured by GPS and InSAR observations in several areas. For example, surface uplift of up to 10 cm due to CO2 injection between 2007 and 2011 was measured by InSAR at an enhanced oil recovery site in west Texas. We are using Texas and Oklahoma as test areas to analyze the potential relationship between surface deformation, underground fluid injection and induced earthquakes. C-band SAR data from ENVISAT and Sentinel-1, and L-band SAR data from ALOS and ALOS-2 are used to form decade-long time series. Based on the surface deformation derived from the time series InSAR data, subsurface volume change and volumetric strain in an elastic half space are estimated. Seismic data provided by the USGS are used to analyze the spatial and temporal distribution pattern of earthquakes, and the potential link between surface deformation and induced earthquakes. The trigger mechanism will be combined with forward modeling to predict seismicity and assess related hazard for future study.

  5. Consideration of impact of atmospheric intrusion in subsurface sampling for investigation of suspected underground nuclear explosions

    International Nuclear Information System (INIS)

    Lowrey, J.D.; Bowyer, T.W.; Haas, D.A.; Hayes, J.C.; Biegalski, S.R.

    2016-01-01

    Radioactive noble gases radioxenon and radioargon constitute the primary smoking gun of an underground nuclear explosion. The aim of subsurface sampling of soil gas as part of an on-site inspection (OSI) is to search for evidence of a suspected underground nuclear event. It has been hypothesized that atmospheric gas can disturb soil gas concentrations and therefore potentially add to problems in civilian source discrimination verifying treaty compliance under the comprehensive nuclear-test ban treaty. This work describes a study of intrusion of atmospheric air into the subsurface and its potential impact on an OSI using results of simulations from the underground transport of environmental xenon (UTEX) model. (author)

  6. High radon exposure in a Brazilian underground coal mine

    International Nuclear Information System (INIS)

    Veiga, L H S; Melo, V; Koifman, S; Amaral, E C S

    2004-01-01

    The main source of radiation exposure in most underground mining operations is radon and radon decay products. The situation of radon exposure in underground mining in Brazil is still unknown, since there has been no national regulation regarding this exposure. A preliminary radiological survey in non-uranium mines in Brazil indicated that an underground coal mine in the south of Brazil had high radon concentration and needed to be better evaluated. This paper intends to present an assessment of radon and radon decay product exposure in the underground environment of this coal mining industry and to estimate the annual exposure to the workers. As a product of this assessment, it was found that average radon concentrations at all sampling campaign and excavation sites were above the action level range for workplaces of 500-1500 Bq m -3 recommended by the International Commission on Radiological Protection-ICRP 65. The average effective dose estimated for the workers was almost 30 times higher than the world average dose for coal miners

  7. Waste disposal in underground mines -- A technology partnership to protect the environment

    International Nuclear Information System (INIS)

    1995-01-01

    Environmentally compatible disposal sites must be found despite all efforts to avoid and reduce the generation of dangerous waste. Deep geologic disposal provides the logical solution as ever more categories of waste are barred from long-term disposal in near-surface sites through regulation and litigation. Past mining in the US has left in its wake large volumes of suitable underground space. EPA studies and foreign practice have demonstrated deep geologic disposal in mines to be rational and viable. In the US, where much of the mined underground space is located on public lands, disposal in mines would also serve the goal of multiple use. It is only logical to return the residues of materials mined from the underground to their origin. Therefore, disposal of dangerous wastes in mined underground openings constitutes a perfect match between mining and the protection and enhancement of the environment

  8. POST-CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 91: AREA 3 U3 fi INJECTION WELL, NEVADA TEST SITE, NEVADA FOR THE PERIOD NOVEMBER 2003 - OCTOBER 2004

    International Nuclear Information System (INIS)

    2005-01-01

    This Post-Closure Inspection and Monitoring report provides an analysis and summary of inspections, meteorological information, and neutron soil moisture monitoring for Corrective Action Unit (CAU) 91: Area 3 U-3fi Injection Well, Nevada Test Site (NTS), Nevada. This report covers the annual period November 2003 through October 2004. Site inspections of CAU 91 are performed every six months to identify any significant changes that could impact the proper operation of the waste disposal unit. Inspection results for the current period indicate that the overall condition of the concrete pad, perimeter fence, and warning signs is good

  9. Research in application of mobile diesel equipment in underground mines (III)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    It is third project year on `Application of mobile diesel equipment in underground mines` for providing appropriate measures to improve underground working environment contaminated by the diesel exhaust pollutants. This report consists of 4 articles. 1) The development and site investigation of fume diluter, 2) Development of simulation programs for three dimensional movement of fluid, 3) Study of the local ventilation technology in the working face using diesel equipment, 4) Disaster and hazard prevention research. (author). 22 refs., 19 tabs., 83 figs.

  10. A Psychosocial Approach to Understanding Underground Spaces

    Directory of Open Access Journals (Sweden)

    Eun H. Lee

    2017-03-01

    Full Text Available With a growing need for usable land in urban areas, subterranean development has been gaining attention. While construction of large underground complexes is not a new concept, our understanding of various socio-cultural aspects of staying underground is still at a premature stage. With projected emergence of underground built environments, future populations may spend much more of their working, transit, and recreational time in underground spaces. Therefore, it is essential to understand the challenges and advantages that such environments have to improve the future welfare of users of underground spaces. The current paper discusses various psycho-social aspects of underground spaces, the impact they can have on the culture shared among the occupants, and possible solutions to overcome some of these challenges.

  11. Geophysical monitoring of active hydrologic processes as part of the Dynamic Underground Stripping Project

    International Nuclear Information System (INIS)

    Newmark, R.L.

    1992-05-01

    Lawrence Livermore National Laboratory, in collaboration with University of California at Berkeley and Lawrence Berkeley Laboratory, is conducting the Dynamic Underground Stripping Project (DUSP), an integrated project demonstrating the use of active thermal techniques to remove subsurface organic contamination. Complementary techniques address a number of environmental restoration problems: (1) steam flood strips organic contaminants from permeable zones, (2) electrical heating drives contaminants from less permeable zones into the more permeable zones from which they can be extracted, and (3) geophysical monitoring tracks and images the progress of the thermal fronts, providing feedback and control of the active processes. The first DUSP phase involved combined steam injection and vapor extraction in a ''clean'' site in the Livermore Valley consisting of unconsolidated alluvial interbeds of clays, sands and gravels. Steam passed rapidly through a high-permeability gravel unit, where in situ temperatures reached 117 degree C. An integrated program of geophysical monitoring was carried out at the Clean Site. We performed electrical resistance tomography (ERT), seismic tomography (crossborehole), induction tomography, passive seismic monitoring, a variety of different temperature measurement techniques and conventional geophysical well logging

  12. Express-Air Screen-System to protect miners against radon exposures at small underground construction sites in old mining; Express-Wetterblenden-System zum Sofort-Schutz von Bergleuten vor Radonexpositionen bei untertaegigen Bergsicherungsarbeiten im Altbergbau

    Energy Technology Data Exchange (ETDEWEB)

    Dehnert, J. [Saechsisches Landesamt fuer Umwelt, Landwirtschaft und Geologie (Germany). Referat Strahlenschutz; Stopp, J. [Aluminiumbau und Verwaltungs GmbH Stopp, Schneeberg (Germany); Schoenherr, B. [Bergsicherung Schneeberg GmbH (Germany)

    2016-07-01

    A new Express-Air Screen-System (EAS) for miners was developed to reduce the radon exposures of miners at small construction sites of old mining. The EAS is a lightweight, modular and reusable construction kit of interlocking telescopic aluminum tubes, plastic foils and glue foam to shut off radon rich parts of galleries in some minutes only.

  13. Underground storage of nuclear waste

    International Nuclear Information System (INIS)

    Russell, J.E.

    1977-06-01

    The objective of the National Waste Terminal Storage (NWTS) Program is to provide facilities in various deep geologic formations at multiple locations in the United States which will safely dispose of commerical radioactive waste. The NWTS Program is being administered for the Energy Research and Development Administration (ERDA) by the Office of Waste Isolation (OWI), Union Carbide Corporation, Nuclear Division. OWI manages projects that will lead to the location, construction, and operation of repositories, including all surface and underground engineering and facility design projects and technical support projects. 7 refs., 5 figs

  14. Third symposium on underground mining

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    The Third Symposium on Underground Mining was held at the Kentucky Fair and Exposition Center, Louisville, KY, October 18--20, 1977. Thirty-one papers have been entered individually into EDB and ERA. The topics covered include mining system (longwall, shortwall, room and pillar, etc.), mining equipment (continuous miners, longwall equipment, supports, roof bolters, shaft excavation equipment, monitoring and control systems. Maintenance and rebuilding facilities, lighting systems, etc.), ventilation, noise abatement, economics, accidents (cost), dust control and on-line computer systems. (LTN)

  15. Proposed underground gasification. [United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    1986-05-01

    An underground coal gasification experiment which could provide the key to recovering the energy in millions of tonnes of otherwise inaccessible undersea coal reserves is proposed by the NCB. The Board's Headquarters Technical Department hope to carry out a field trial in a six foot thick coal seam about 2000 feet beneath a former wartime airfield near the hamlet of Ossington near Newark, Notts, UK. This paper describes briefly the proposed project, which could cost up to 15 million pounds over five years. It has the backing and financial support of the European Economic Community.

  16. Intensive use of diesels underground

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, R W

    1980-07-01

    At a US mine, coal is extracted by room and pillar mining. Tyred diesel vehicles are used to transport men and materials, to spread gravel on the roadway, and to tow and provide hydraulic power to rock dusting machines. Hydraulic power take-offs from the vehicles are used to operate equipment such as drills and chain saws. A deisel ambulance is kept underground, and diesel lubrication units and maintenance tracks are used. A diesel generator provides electrical power when or where no permanent electricity supply is available e.g. for tramming continuous miners in to or out of the mine.

  17. Underground storage of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Russell, J E

    1977-12-01

    The objective of the National Waste Terminal Storage (NWTS) Program is to provide facilities in various deep geologic formations at multiple locations in the United States which will safely dispose of commercial radioactive waste. The NWTS Program is being administered for the Energy Research and Development Administration (ERDA) by the Office of Waste Isolation (OWI), Union Carbide Corporation, Nuclear Division. OWI manages projects that will lead to the location, construction, and operation of repositories, including all surface and underground engineering and facility design projects and technical support projects.

  18. Subcutaneous Injections

    DEFF Research Database (Denmark)

    Thomsen, Maria

    This thesis is about visualization and characterization of the tissue-device interaction during subcutaneous injection. The tissue pressure build-up during subcutaneous injections was measured in humans. The insulin pen FlexTouchr (Novo Nordisk A/S) was used for the measurements and the pressure ...

  19. Hydromorphone Injection

    Science.gov (United States)

    ... anyone else to use your medication. Store hydromorphone injection in a safe place so that no one else can use it accidentally or on purpose. Keep track of how much medication is left so ... with hydromorphone injection may increase the risk that you will develop ...

  20. Ketorolac Injection

    Science.gov (United States)

    ... an older adult, you should know that ketorolac injection is not as safe as other medications that can be used to treat your condition. Your doctor may choose to prescribe a different medication ... to ketorolac injection.Your doctor or pharmacist will give you the ...

  1. Paclitaxel Injection

    Science.gov (United States)

    (pak'' li tax' el)Paclitaxel injection must be given in a hospital or medical facility under the supervision of a doctor who is experienced in giving chemotherapy medications for cancer.Paclitaxel injection may cause a large decrease in the number of white blood cells (a type of blood cell ...

  2. UNDERGROUND ECONOMY, GDP AND STOCK MARKET

    Directory of Open Access Journals (Sweden)

    Caus Vasile Aurel

    2012-07-01

    Full Text Available Economic growth is affected by the size and dynamics of underground economy. Determining this size is a subject of research for many authors. In this paper we present the relationship between underground economy dynamics and the dynamics of stock markets. The observations are based on regression used by Tanzi (1983 and the relationship between GDP and stock market presented in Tudor (2008. The conclusion of this paper is that the dynamics of underground economy is influenced by dynamic of financial markets. Thus, using specific stock market mathematical tools analysis, one can analyze the dynamic of underground economy

  3. Capital Subsidies and the Underground Economy

    DEFF Research Database (Denmark)

    Busato, Francesco; Chiarini, Bruno; Angelis, Pasquale de

    In this paper we investigate the effects of different fiscal policies on the firm choice to produce underground. We consider a tax evading firm operating simultaneously both in the regular and in the underground economy. We suggest that such a kind of firm, referred to as moonlighting firm, is able...... allocation in the underground production. In fact, a strong and inverse relationship is found, and tax reduction is the best policy to reduce the convenience to produce underground. Wealso confirm the depressing effect on investment of taxation (see, for instance, Summers,1981), so that tax reduction has...

  4. Cathode protection for underground steel tanks

    International Nuclear Information System (INIS)

    Angelovski, Zoran

    1998-01-01

    Cathodic protection of underground petroleum storage tanks and piping systems is acceptable for both economic and ecological reasons. With out the cathodic protection of underground steel reservoirs, short time after the exploitation, there was a bore as a result of underground corrosion. The bore causes ecological consequences and at the same time its repair needs big investments. Furthermore, there are great number of tanks placed near cities, so in the future this problem needs a special attention in order to preserve ecological surrounding. The topic of this paper is underground corrosion as well as cathodic protection of steel tanks for oil derivatives storage. (author)

  5. ONKALO. Underground characterisation and research programme (UCRP)

    International Nuclear Information System (INIS)

    2003-09-01

    The purpose of the ONKALO Underground Characterisation and Research Programme (UCRP) is to explore Olkiluoto rock conditions and thereby enhance the current geoscientific understanding of the site, to allow the submission of an application for a construction licence for the deep repository. The characterisation programme has the following geoscientific goals: to develop and demonstrate techniques for detailed characterising volumes of rock from the underground, to update the current descriptive model of Olkiluoto bedrock and to increase confidence in this model such that it will serve the needs of construction and the Preliminary Safety Assessment Report (PSAR) in the construction licence application, and to identify volumes of rock that could be suitable for housing parts of the repository. The development of ONKALO will be based on coordinated investigation, design and construction activities. Mapping data from the tunnel front and data obtained from short probe holes will constitute most of the data needed to control the construction of ONKALO. Pilot holes will be drilled along the tunnel profile as the excavation proceeds and investigations will be carried out for geological, rock mechanics, hydrogeological and hydrogeochemical characterisation. Investigations cover more detailed mapping and sampling in parts of the tunnel, mapping and sampling of potential groundwater inflows to the tunnel and investigations from characterisation bore holes drilled from ONKALO. In addition, monitoring is planned in surface-drilled boreholes, in boreholes drilled from ONKALO, and in ONKALO itself. Monitoring will reveal changes in bedrock conditions and thus provide important information for site characterisation. The information collected by characterisation and monitoring will all be assessed in an integrated modelling effort. The aim of this modelling is both to successively enhance the description and understanding of the rock volume around ONKALO and to assess potential

  6. Monitoring underground migration of sequestered CO2 using self-potential methods

    Science.gov (United States)

    Ishido, T.; Pritchett, J.; Tosha, T.; Nishi, Y.; Nakanishi, S.

    2013-12-01

    An appropriate monitoring program is indispensable for an individual geologic storage project to aid in answering various operational questions by detecting changes within the reservoir and to provide early warning of potential CO2 leakage through the caprock. Such a program is also essential to reduce uncertainties associated with reservoir parameters and to improve the predictive capability of reservoir models. Repeat geophysical measurements performed at the earth surface show particular promise for monitoring large subsurface volumes. To appraise the utility of geophysical techniques, Ishido et al. carried out numerical simulations of an aquifer system underlying a portion of Tokyo Bay and calculated the temporal changes in geophysical observables caused by changing underground conditions as computed by reservoir simulation (Energy Procedia, 2011). They used 'geophysical postprocessors' to calculate the resulting temporal changes in the earth-surface distributions of microgravity, self-potential (SP), apparent resistivity (from MT surveys) and seismic observables. The applicability of any particular method is likely to be highly site-specific, but these calculations indicate that none of these techniques should be ruled out altogether. Some survey techniques (gravity, MT resistivity) appear to be suitable for characterizing long-term changes, whereas others (seismic reflection, SP) are quite responsive to short term disturbances. The self-potential postprocessor calculates changes in subsurface electrical potential induced by pressure disturbances through electrokinetic coupling (Ishido & Pritchett, JGR 1999). In addition to electrokinetic coupling, SP anomalies may be generated by various other mechanisms such as thermoelectric coupling, electrochemical diffusion potential, etc. In particular, SP anomalies of negative polarity, which are frequently observed near wells, appear to be caused by an underground electrochemical mechanism similar to a galvanic cell

  7. Retrospective application of the "guidelines for monitoring mining subsurface activities for hydrocarbons exploitation, re-injection and storage activities (ILG)": insights from the analysis of 2012-2013 Emilia seismic sequence at the Cavone oilfield pilot site (Italy)

    Science.gov (United States)

    Buttinelli, M.; Chiarabba, C.; Anselmi, M.; Pezzo, G.; Improta, L.; Antoncecchi, I.

    2017-12-01

    In recent years, the debate on the interactions between wastewater disposal and induced seismicity is increasingly drawing the attention of the scientific community, since injections by high-rate wells have been directly associated to occurrence of even large seismic events. In February 2014, the Italian Ministry of Economic Development (MiSE), within the Commission on Hydrocarbon and Mining Resources (CIRM), issued the "guidelines for monitoring mining subsurface activities for hydrocarbons exploitation, re-injection and storage activities (ILG)". The ILG represent the first action in italy aimed at keeping the safety standards mostly in areas where the underground resources exploitation can induce seismicity, ground deformations and pore pressure changes of the reservoirs. Such guidelines also launched a "traffic light" operating system, for the first time defining threshold values and activation levels for such monitored parameters. To test the ILG implications (in particular of the traffic light system) we select the Cavone oilfield (Northern Italy) as test case, since this area was interested during the 2012-2013 by the Emilia Seismic sequence. Moreover, the potential influence of the Cavone oilfield activities in the 2012 earthquake trigger was debated for a long time within the scientific and not contexts, highlighting the importance of seismic monitoring in hydrocarbons exploitation, re-injection and storage areas. In this work we apply the ILG retrospectively to the Cavone oilfield and surrounding areas, just for the seismicity parameter (pore pressure and ground deformation were not taken into account because out of the traffic light system). Since each seismicity catalogue available for the 2012 sequence represents a different setting of monitoring system, we carefully analyzed how the use of such catalogues impact on the overcoming of the threshold imposed by the ILG. In particular, we focus on the use of 1D and 3D velocity models developed ad hoc or

  8. Runway Arrested Landing Site (RALS)

    Data.gov (United States)

    Federal Laboratory Consortium — The Runway Arrested Landing Site includes an underground complex located on a Mod 2, Mod 3, and Mod 3+ arresting gear and are located under the runway and accurately...

  9. Modelling Underground Coal Gasification—A Review

    Directory of Open Access Journals (Sweden)

    Md M. Khan

    2015-11-01

    Full Text Available The technical feasibility of underground coal gasification (UCG has been established through many field trials and laboratory-scale experiments over the past decades. However, the UCG is site specific and the commercialization of UCG is being hindered due to the lack of complete information for a specific site of operation. Since conducting UCG trials and data extraction are costly and difficult, modeling has been an important part of UCG study to predict the effect of various physical and operating parameters on the performance of the process. Over the years, various models have been developed in order to improve the understanding of the UCG process. This article reviews the approaches, key concepts, assumptions, and limitations of various forward gasification UCG models for cavity growth and product gas recovery. However, emphasis is given to the most important models, such as packed bed models, the channel model, and the coal slab model. In addition, because of the integral part of the main models, various sub-models such as drying and pyrolysis are also included in this review. The aim of this study is to provide an overview of the various simulation methodologies and sub-models in order to enhance the understanding of the critical aspects of the UCG process.

  10. Researching radioactive waste disposal. [Underground repository

    Energy Technology Data Exchange (ETDEWEB)

    Feates, F; Keen, N [UKAEA Research Group, Harwell. Atomic Energy Research Establishment

    1976-02-16

    At present it is planned to use the vitrification process to convert highly radioactive liquid wastes, arising from nuclear power programme, into glass which will be contained in steel cylinders for storage. The UKAEA in collaboration with other European countries is currently assessing the relative suitability of various natural geological structures as final repositories for the vitrified material. The Institute of Geological Sciences has been commissioned to specify the geological criteria that should be met by a rock structure if it is to be used for the construction of a repository though at this stage disposal sites are not being sought. The current research programme aims to obtain basic geological data about the structure of the rocks well below the surface and is expected to continue for at least three years. The results in all the European countries will then be considered so that the United Kingdom can choose a preferred method for isolating their wastes. It is only at that stage that a firm commitment may be made to select a site for a potential repository, when a far more detailed scientific research study will be instituted. Heat transfer problems and chemical effects which may occur within and around repositories are being investigated and a conceptual design study for an underground repository is being prepared.

  11. 30 CFR 75.804 - Underground high-voltage cables.

    Science.gov (United States)

    2010-07-01

    ... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.804 Underground high-voltage cables. (a) Underground high-voltage cables used in resistance... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground high-voltage cables. 75.804 Section...

  12. Annual Report RCRA Post-Closure Monitoring and Inspections for CAU 91: Area 3 U-3fi Injection Well, Nevada Test Site, Nevada, for the period October 2000-October 2001

    International Nuclear Information System (INIS)

    Tobiason, D. S.

    2002-01-01

    This annual Neutron Soil Moisture Monitoring report provides an analysis and summary for site inspections, meteorological information, and neutron soil moisture monitoring data obtained at the U-3fi Injection Well during the October 2000 to October 2001 period. The U-3fi Injection Well is located in Area 3 of the Nevada Test Site (NTS), Nye County, Nevada. Inspections of the Area 3 U-3fi Injection Well are conducted to determine and document the physical condition of the concrete pad, facilities, and any unusual conditions that could impact the proper operation of the waste disposal unit closure. The objective of the neutron-logging program is to monitor the soil moisture conditions along the 128-meter (m) (420-ft) ER3-3 monitoring well and detect changes that may be indicative of moisture movement in the regulated interval extending between 73 to 82 m (240 to 270 ft) or to detect changes that may be indicative of subsidence within the disposal unit itself

  13. Development and testing of redundant optical fiber sensing systems with self-control, for underground nuclear waste disposal site monitoring. Vol. 1: Summary and evaluation. Final report; Entwicklung und Erprobung redundanter faseroptischer Messsysteme mit Selbstkontrolle zur Endlagerueberwachung. Bd. 1: Zusammenfassung und Auswertung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Jobmann, M.; Fischer, S.; Voet, M.

    2000-01-01

    Fiber optic sensors have been developed or further developed, for specific tasks of the research project reported, as for instance detecting and signalling changes of geophysical or geochemical parameters in underground waste storage sites which are of relevance to operating safety. Such changes include e.g. materials dislocations, extensions, temperatures, humidity, pH value and presence of gaseous carbon dioxide and hydrogen. The measuring principle chosen is the fiber Bragg Grating method, as a particularly versatile method easy to integrate into fiber optic networks. After development and successful lab-scale testing of all sensors, except for the gas sensors, field test systems have been made for underground applications and have been tested in situ in the experimental Konrad mine of DBE. Most of the problems discovered with these tests could be resolved wihtin the given project period, so that finally field-test proven sensing systems are available for further activities. The report explains the system performance with a concrete example which shows inter alia beneficial aspects of the system with respect to on-site operation, and the potentials offered in establishing more direct connections between numerical safety analyses and measured results. (orig./CB) [German] Im Rahmen dieses Forschungsprojektes wurden faseroptische Sensoren entwickelt bzw. weiterentwickelt, die in der Lage sind, Veraenderungen relevanter geophysikalischer und geochemischer Groessen im Bereich der Grubenraeume zu signalisieren, die zu einer Gefaehrdung der Betriebssicherheit fuehren koennten. Im einzelnen sind dies Verschiebungen, Dehnungen, Temperatur, Feuchtigkeit, pH-Werte und Gasgehalte an Kohlendioxid und Wasserstoff. Als Messprinzip wurde aus den moeglichen optischen Verfahren das 'Bragg-Gitter' Prinzip zur Entwicklung gewaehlt, da es besonders vielseitig ist und sich gut in groessere optische Netzwerke integrieren laesst. Nach Entwicklung und erfolgreichem Test der

  14. Polymers for subterranean containment barriers for underground storage tanks (USTs)

    International Nuclear Information System (INIS)

    Heiser, J.H.; Colombo, P.; Clinton, J.

    1992-12-01

    The US Department of Energy (DOE) set up the Underground Storage Tank Integrated Demonstration Program (USTID) to demonstrate technologies for the retrieval and treatment of tank waste, and closure of underground storage tanks (USTs). There are more than 250 underground storage tanks throughout the DOE complex. These tanks contain a wide variety of wastes including high level, low level, transuranic, mixed and hazardous wastes. Many of the tanks have performed beyond the designed lifetime resulting in leakage and contamination of the local geologic media and groundwater. To mitigate this problem it has been proposed that an interim subterranean containment barrier be placed around the tanks. This would minimize or prevent future contamination of soil and groundwater in the event that further tank leakages occur before or during remediation. Use of interim subterranean barriers can also provide sufficient time to evaluate and select appropriate remediation alternatives. The DOE Hanford site was chosen as the demonstration site for containment barrier technologies. A panel of experts for the USTID was convened in February, 1992, to identify technologies for placement of subterranean barriers. The selection was based on the ability of candidate grouts to withstand high radiation doses, high temperatures and aggressive tank waste leachates. The group identified and ranked nine grouting technologies that have potential to place vertical barriers and five for horizontal barriers around the tank. The panel also endorsed placement technologies that require minimal excavation of soil surrounding the tanks

  15. The deep underground science and engineering laboratory at Homestake

    Energy Technology Data Exchange (ETDEWEB)

    Lesko, Kevin T, E-mail: ktlesko@lbl.go [Department of Physics, University of California Berkeley and Institute for Nuclear and Particle Astrophysics, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50R5239, Berkeley, CA 94720-8156 (United States)

    2009-06-01

    The US National Science Foundation and the US underground science community are well into the campaign to establish a world-class, multi-disciplinary deep underground science and engineering laboratory - DUSEL. The NSF's review committee, following the first two NSF solicitations, selected Homestake as the prime site to be developed into an international, multidisciplinary, world-class research facility. Homestake DUSEL will provide much needed underground research space to help relieve the worldwide shortage, particularly at great depth, and will develop research campuses at different depths to satisfy the research requirements for the coming decades. The State of South Dakota has demonstrated remarkable support for the project and has secured the site with the transfer of the former Homestake Gold Mine and has initiated re-entry and rehabilitation of the facility to host a modest interim science program with state funds and those from a substantial philanthropic donor. I review the scientific case for DUSEL and the progress in developing the preliminary design of DUSEL in Homestake and the initial suite of experiments to be funded along with the facility.

  16. Reducing rock fall injuries in underground US coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, S.B.; Molinda, G.M.; Pappas, D.M. [Pittsburgh Research Laboratory, Pittsburgh, PA (United States)

    2005-07-01

    A continuing risk to underground US coal miners is rock falling from the mine roof. Almost 99% of injuries caused by rock falls are not from a major roof collapse, but from smaller rock that fall from between roof bolts. Installing roof screen provides excellent overhead roof coverage and dramatically reduces the potential for rock fall injuries, especially to roof bolted operators. The National Institute for Occupational Safety and Health (NIOSH) has explored different installation techniques and roof screening options along with machine design innovations that make roof screening easier and safer. Applying ergonomic principles to roof screening will offer insight and direction for better material handling. Other techniques for controlling rock falls and roof falls for long-term stability include the application of surface support liners and polyurethane (PUR) injection. An ongoing study at the NIOSH Lake Lynn Laboratory of various types of spray-on liner and shotcrete materials is providing a unique opportunity to evaluate the long-term behaviour of liners in an underground environment. In-mine studies of PUR have involved pre- and post-injection core drilling and video borecole logging. The results have provided insights into how PUR penetrates and reinforces weak and highly fractured rock. 11 refs., 8 figs., 1 tab.

  17. Underground coal gasification: An overview of groundwater contamination hazards and mitigation strategies

    Energy Technology Data Exchange (ETDEWEB)

    Camp, David W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); White, Joshua A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-03-13

    Underground coal gasification is the in situ conversion of coal into an energy-rich product gas. It takes place deep underground, using chemical reactions to consume the coal and grow a cavity. Gas wells, drilled into the coal seam, inject reactant air, oxygen, and/or steam to sustain the reactions. Production wells then extract the product gas. Careful analysis and understanding of likely failure modes will help prevent and minimize impacts. This document provides a general description of the relevant processes, potential failure modes, and practical mitigation strategies. It can guide critical review of project design and operations.

  18. Evaluation of Three Dimensional Underground Structure at SAFOD Project

    International Nuclear Information System (INIS)

    Malin, Peter

    2014-01-01

    In the SAFOD project, the imaging of the fault zone was implemented using data acquired by a pilot hole array of a vertical depth of 2 km and then a main hole was drilled using these data. The trajectory of the main hole below vertical depth of 1.5 km was angled toward/through the fault zone up to a vertical depth of 3 km. An sensor array was located in the hole. As a result, the hypocenter locations of small earthquakes within the fault zone were determined with high accuracy (location error within 10 meters) and the location of the fault zone was able to be identified with high accuracy. Using this data, high resolution underground structure around the San Andreas fault zone was obtained. It was reported that this underground structure revealed the deep structure of the San Andreas Fault at the Parkfield site as well as the branch fault. (author)

  19. Seismic wave interaction with underground cavities

    Science.gov (United States)

    Schneider, Felix M.; Esterhazy, Sofi; Perugia, Ilaria; Bokelmann, Götz

    2016-04-01

    Realization of the future Comprehensive Nuclear Test Ban Treaty (CTBT) will require ensuring its compliance, making the CTBT a prime example of forensic seismology. Following indications of a nuclear explosion obtained on the basis of the (IMS) monitoring network further evidence needs to be sought at the location of the suspicious event. For such an On-Site Inspection (OSI) at a possible nuclear test site the treaty lists several techniques that can be carried out by the inspection team, including aftershock monitoring and the conduction of active seismic surveys. While those techniques are already well established, a third group of methods labeled as "resonance seismometry" is less well defined and needs further elaboration. A prime structural target that is expected to be present as a remnant of an underground nuclear explosion is a cavity at the location and depth the bomb was fired. Originally "resonance seismometry" referred to resonant seismic emission of the cavity within the medium that could be stimulated by an incident seismic wave of the right frequency and observed as peaks in the spectrum of seismic stations in the vicinity of the cavity. However, it is not yet clear which are the conditions for which resonant emissions of the cavity could be observed. In order to define distance-, frequency- and amplitude ranges at which resonant emissions could be observed we study the interaction of seismic waves with underground cavities. As a generic model for possible resonances we use a spherical acoustic cavity in an elastic full-space. To solve the forward problem for the full elastic wave field around acoustic spherical inclusions, we implemented an analytical solution (Korneev, 1993). This yields the possibility of generating scattering cross-sections, amplitude spectrums and synthetic seismograms for plane incident waves. Here, we focus on the questions whether or not we can expect resonant responses in the wave field scattered from the cavity. We show

  20. Temozolomide Injection

    Science.gov (United States)

    ... balance or coordination fainting dizziness hair loss insomnia memory problems pain, itching, swelling, or redness in the place where the medication was injected changes in vision Some side effects can be serious. If you ...

  1. Buprenorphine Injection

    Science.gov (United States)

    ... injection is in a class of medications called opiate partial agonists. It works to prevent withdrawal symptoms ... help. If the victim has collapsed, had a seizure, has trouble breathing, or can't be awakened, ...

  2. Risperidone Injection

    Science.gov (United States)

    ... release (long-acting) injection is used to treat schizophrenia (a mental illness that causes disturbed or unusual ... may help control your symptoms but will not cure your condition. Continue to keep appointments to receive ...

  3. Haloperidol Injection

    Science.gov (United States)

    ... haloperidol extended-release injection are used to treat schizophrenia (a mental illness that causes disturbed or unusual ... may help control your symptoms but will not cure your condition. Continue to keep appointments to receive ...

  4. Omalizumab Injection

    Science.gov (United States)

    ... injection is used to decrease the number of asthma attacks (sudden episodes of wheezing, shortness of breath, and ... about how to treat symptoms of a sudden asthma attack. If your asthma symptoms get worse or if ...

  5. Injection Tests

    CERN Document Server

    Kain, V

    2009-01-01

    The success of the start-up of the LHC on 10th of September was in part due to the preparation without beam and injection tests in 2008. The injection tests allowed debugging and improvement in appropriate portions to allow safe, efficient and state-of-the-art commissioning later on. The usefulness of such an approach for a successful start-up becomes obvious when looking at the problems we encountered before and during the injection tests and could solve during this period. The outline of the preparation and highlights of the different injection tests will be presented and the excellent performance of many tools discussed. A list of shortcomings will follow, leading to some planning for the preparation of the run in 2009.

  6. Cefotaxime Injection

    Science.gov (United States)

    ... is in a class of medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as cefotaxime injection will not work for colds, flu, or other viral infections. Using ...

  7. Cefuroxime Injection

    Science.gov (United States)

    ... is in a class of medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as cefuroxime injection will not work for colds, flu, or other viral infections. Using ...

  8. Doripenem Injection

    Science.gov (United States)

    ... is in a class of medications called carbapenem antibiotics. It works by killing bacteria.Antibiotics such as doripenem injection will not work for colds, flu, or other viral infections. Taking ...

  9. Daptomycin Injection

    Science.gov (United States)

    ... in a class of medications called cyclic lipopeptide antibiotics. It works by killing bacteria.Antibiotics such as daptomycin injection will not work for treating colds, flu, or other viral infections. ...

  10. Ceftaroline Injection

    Science.gov (United States)

    ... is in a class of medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as ceftaroline injection will not work for colds, flu, or other viral infections. Using ...

  11. Aztreonam Injection

    Science.gov (United States)

    ... is in a class of medications called carbapenem antibiotics. It works by killing bacteria.Antibiotics such as aztreonam injection will not work for colds, flu, or other viral infections. Taking ...

  12. Cefazolin Injection

    Science.gov (United States)

    ... is in a class of medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as cefazolin injection will not work for colds, flu, or other viral infections. Taking ...

  13. Ceftazidime Injection

    Science.gov (United States)

    ... is in a class of medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as ceftazidime injection will not work for colds, flu, or other viral infections. Using ...

  14. Cefotetan Injection

    Science.gov (United States)

    ... is in a class of medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as cefotetan injection will not work for colds, flu, or other viral infections. Using ...

  15. Cefoxitin Injection

    Science.gov (United States)

    ... is in a class of medications called cephamycin antibiotics. It works by killing bacteria.Antibiotics such as cefoxitin injection will not work for colds, flu, or other viral infections. Taking ...

  16. Tigecycline Injection

    Science.gov (United States)

    ... is in a class of medications called tetracycline antibiotics. It works by killing bacteria that cause infection.Antibiotics such as tigecycline injection will not work for colds, flu, or other viral infections. Using ...

  17. Ertapenem Injection

    Science.gov (United States)

    ... is in a class of medications called carbapenem antibiotics. It works by killing bacteria.Antibiotics such as ertapenem injection will not work for colds, flu, or other viral infections. Taking ...

  18. Ceftriaxone Injection

    Science.gov (United States)

    ... is in a class of medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as ceftriaxone injection will not work for colds, flu, or other viral infections.Using ...

  19. Cefepime Injection

    Science.gov (United States)

    ... is in a class of medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as cefepime injection will not work for colds, flu, or other viral infections. Using ...

  20. Telavancin Injection

    Science.gov (United States)

    ... is in a class of medications called lipoglycopeptide antibiotics. It works by killing bacteria that cause infection.Antibiotics such as telavancin injection will not work for colds, flu, or other viral infections. Using ...