WorldWideScience

Sample records for under-utilized energy-efficient industrial

  1. Industrial Energy Efficiency and Climate Change Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Bernstein, Lenny; Roy, Joyashree; Price, Lynn; de la Rue du Can, Stephane; Harnisch, Jochen

    2009-02-02

    Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.

  2. Productivity benefits of industrial energy efficiency measures

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Laitner, John A.; Michael, Ruth; Finman, Hodayah

    2004-08-30

    We review the relationship between energy efficiency improvement measures and productivity in industry. We review over 70 industrial case studies from widely available published databases, followed by an analysis of the representation of productivity benefits in energy modeling. We propose a method to include productivity benefits in the economic assessment of the potential for energy efficiency improvement. The case-study review suggests that energy efficiency investments can provide a significant boost to overall productivity within industry. If this relationship holds, the description of energy-efficient technologies as opportunities for larger productivity improvements has significant implications for conventional economic assessments. The paper explores the implications this change in perspective on the evaluation of energy-efficient technologies for a study of the iron and steel industry in the US. This examination shows that including productivity benefits explicitly in the modeling parameters would double the cost-effective potential for energy efficiency improvement, compared to an analysis excluding those benefits. We provide suggestions for future research in this important area.

  3. Energy efficient industrialized housing research program

    Energy Technology Data Exchange (ETDEWEB)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; Mc Donald, M.; McGinn, B.; Ryan, P.; Sekiguchi, T. (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

    1989-01-01

    This is the second volume of a two volume report on energy efficient industrialized housing. Volume II contains support documentation for Volume I. The following items are included: individual trip reports; software bibliography; industry contacts in the US, Denmark, and Japan; Cost comparison of industrialized housing in the US and Denmark; draft of the final report on the systems analysis for Fleetwood Mobile Home Manufacturers. (SM)

  4. Emerging energy-efficient industrial technologies

    Energy Technology Data Exchange (ETDEWEB)

    Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

    2000-10-01

    U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if

  5. Industrial Compressed Air System Energy Efficiency Guidebook.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1993-12-01

    Energy efficient design, operation and maintenance of compressed air systems in industrial plants can provide substantial reductions in electric power and other operational costs. This guidebook will help identify cost effective, energy efficiency opportunities in compressed air system design, re-design, operation and maintenance. The guidebook provides: (1) a broad overview of industrial compressed air systems, (2) methods for estimating compressed air consumption and projected air savings, (3) a description of applicable, generic energy conservation measures, and, (4) a review of some compressed air system demonstration projects that have taken place over the last two years. The primary audience for this guidebook includes plant maintenance supervisors, plant engineers, plant managers and others interested in energy management of industrial compressed air systems.

  6. Energy efficiency measurement in industrial processes

    International Nuclear Information System (INIS)

    Giacone, E.; Mancò, S.

    2012-01-01

    Although the meaning of energy efficiency is clear, different definitions exist and important issues relating to its implementation still need to be addressed. It is now recognised that complicating factors – such as complex industrial sites and energy flows, multiple products and fuels, and the influence of production rate on energy efficiency – render it necessary to adopt a structured framework to define and measure energy efficiency more precisely. In this paper, a methodology is proposed to build such a framework. The whole energy system of a site is represented using a single matrix equation, which expresses the relationship between imported energies and energy drivers. The elements of the matrix are the specific energy consumptions of each single process. Mathematical process modelling, through statistical analysis of energy consumption data, is used to quantify the specific energy consumption as a function of the output. The results of this structured approach are relevant for energy benchmarking, budgeting and targeting purposes. Furthermore, this approach is suitable for implementation in an energy management system standard (e.g. EN 16001, ISO 50001) or LCA standard (e.g. ISO 14044). Glass and cast iron melting processes are presented in order to illustrate the application of the method. -- Highlights: ► A structured framework for energy efficiency in industrial processes is proposed. ► Two energy efficiency indicators are revised to take into account a variable output. ► The whole energy system of a factory can be represented by a single matrix equation. ► Mathematical modelling is used to characterise the energy consumption of a process. ► The results are relevant for energy benchmarking, budgeting and energy targeting.

  7. Energy efficiency in industry and transportation

    International Nuclear Information System (INIS)

    Ruscoe, J.

    1990-01-01

    The discussion of energy issues has changed since the 1970s as improvements have been made in energy efficiency. The present capacity for surplus energy production in economically advanced countries reflects a decrease in energy requirements as well as new production sources. At the same time, the energy crisis can be seen as having discouraged improvements in energy efficiency because of its negative impact on growth. And the centrally planned economies remain highly inefficient energy users. Economic growth encourages the use of new technologies which are likely to be less energy-intensive than those they replace. Permanent gains in energy efficiency are derived from structural changes in the economy and from the introduction of energy-efficient technologies. This article addresses the prospect of increased energy conservation, particularly in industry (the end-use which consumes the most energy) and transportation. Although investments in projects to promote energy conservation are more cost-effective and environment-friendly than investments in energy supply, there is still widespread support for the latter. Developing countries naturally give preference to quantitative growth, with an increasing consumption of energy, but in these countries, too, more efficient use of energy could greatly reduce demand. The policies of international development agencies which still favour increasing energy supply over conservation need to change. Awareness of the need to reduce energy demand is, however, growing worldwide. (author)

  8. Energy efficient industrialized housing research program

    Energy Technology Data Exchange (ETDEWEB)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

    1990-02-01

    This report summarizes three documents: Multiyear Research Plan, Volume I FY 1989 Task Reports, and Volume II Appendices. These documents describe tasks that were undertaken from November 1988 to December 1989, the first year of the project. Those tasks were: (1) the formation of a steering committee, (2) the development of a multiyear research plan, (3) analysis of the US industrialized housing industry, (4) assessment of foreign technology, (5) assessment of industrial applications, (6) analysis of computerized design and evaluation tools, and (7) assessment of energy performance of baseline and advanced industrialized housing concepts. While this document summarizes information developed in each task area, it doesn't review task by task, as Volume I FY 1989 Task Reports does, but rather treats the subject of energy efficient industrialized housing as a whole to give the reader a more coherent view. 7 figs., 9 refs.

  9. Barriers to Industrial Energy Efficiency - Study (Appendix A), June 2015

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-06-01

    This study examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This study also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  10. Barriers to Industrial Energy Efficiency - Report to Congress, June 2015

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-06-01

    This report examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This report also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  11. Setting the Standard for Industrial Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    McKane, Aimee; Williams, Robert; Perry, Wayne; Li, Tienan

    2007-06-01

    Industrial motor-driven systems use more than 2194 billionkWh annually on a global basis and offer one of the largest opportunitiesfor energy savings.1 The International Energy Agency estimates thatoptimization of motor driven systems could reduce global electricitydemand by 7 percent through the application of commercially availabletechnologies and using well-tested engineering practices. Yet manyindustrial firms remain either unaware of or unable to achieve theseenergy savings. The same factors that make it so challenging to achieveand sustain energy efficiency in motor-driven systems (complexity,frequent changes) apply to the production processes that they support.Yet production processes typically operate within a narrow band ofacceptable performance. These processes are frequently incorporated intoISO 9000/14000 quality and environmental management systems, whichrequire regular, independent audits to maintain ISO certification, anattractive value for international trade. It is our contention that acritical step in achieving and sustaining energy efficiency ofmotor-driven systems specifically, and industrial energy efficiencygenerally, is the adoption of a corporate energy management standard thatis consistent with current industrial quality and environmentalmanagement systems such as ISO. Several energy management standardscurrently exist (US, Denmark, Ireland, Sweden) and specifications(Germany, Netherlands) others are planned (China, Spain, Brazil, Korea).This paper presents the current status of energy management standardsdevelopment internationally, including an analysis of their sharedfeatures and differences, in terms of content, promulgation, andimplementation. The purpose of the analysis is to describe the currentstate of "best practices" for this emerging area of energy efficiencypolicymaking and tosuggest next steps toward the creation of a trulyinternational energy management standard that is consistent with the ISOprinciples of measurement

  12. Energy efficiency policy impact in India: case study of investment in industrial energy efficiency

    International Nuclear Information System (INIS)

    Yang Ming

    2006-01-01

    The objective of this paper is to identify the effectiveness of energy policy and capital investment in energy efficiency technologies in the industrial sector in India. Indian energy policies relating to industrial energy efficiency over the past 25 years are briefly reviewed, and a comparison study of these energy efficiency policies and strategies in India and China has been carried out. Interviews were conducted with a number of government policy-making institutions and a national industrial development bank. The accounts of 26 industrial enterprises which applied and used a loan of the Asian Development Bank were audited for data collection. Field-visits to seven industrial entrepreneurs were undertaken in a case study. Methodologies used in this study include documentation, cross-country reviews on energy policies, questionnaire design and distribution in the industrial sector, and on-site auditing of energy efficiency technologies. This paper concludes that current energy policies and strategies in India need further improvement to promote energy efficiency investment and energy efficiency technology development in the industrial sector. This paper will interest those policy makers and industrial entrepreneurs who are willing to finance energy efficiency projects and improve energy efficiency in the industrial sector

  13. Energy efficient policy impact in India: case study of investment in industrial energy efficiency

    International Nuclear Information System (INIS)

    Yang, M.

    2006-01-01

    The objective of this paper is to identify the effectiveness of energy policy and capital investment in energy efficiency technologies in the industrial sector in India. Indian energy policies relating to industrial energy efficiency over the past 25 years are briefly reviewed, and a comparison study of these energy efficiency policies and strategies in India and China has been carried out. Interviews were conducted with a number of government policy-making institutions and a national industrial development bank. The accounts of 26 industrial enterprises which applied and used a loan of the Asian Development Bank were audited for data collection. Field-visits to seven industrial entrepreneurs were undertaken in a case study. Methodologies used in this study include documentation, cross-country reviews on energy policies, questionnaire design and distribution in the industrial sector, and on-site auditing of energy efficiency technologies. This paper concludes that current energy policies and strategies in India need further improvement to promote energy efficiency investment and energy efficiency technology development in the industrial sector. This paper will interest those policy makers and industrial entrepreneurs who are willing to finance energy efficiency projects and improve energy efficiency in the industrial sector. (author)

  14. Emerging energy-efficient technologies for industry

    International Nuclear Information System (INIS)

    Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorn, Jennifer

    2001-01-01

    For this study, we identified about 175 emerging energy-efficient technologies in industry, of which we characterized 54 in detail. While many profiles of individual emerging technologies are available, few reports have attempted to impose a standardized approach to the evaluation of the technologies. This study provides a way to review technologies in an independent manner, based on information on energy savings, economic, non-energy benefits, major market barriers, likelihood of success, and suggested next steps to accelerate deployment of each of the analyzed technologies. There are many interesting lessons to be learned from further investigation of technologies identified in our preliminary screening analysis. The detailed assessments of the 54 technologies are useful to evaluate claims made by developers, as well as to evaluate market potentials for the United States or specific regions. In this report we show that many new technologies are ready to enter the market place, or are currently under development, demonstrating that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity. Several technologies have reduced capital costs compared to the current technology used by those industries. Non-energy benefits such as these are frequently a motivating factor in bringing technologies such as these to market. Further evaluation of the profiled technologies is still needed. In particular, further quantifying the non-energy benefits based on the experience from technology users in the field is important. Interactive effects and inter-technology competition have not been accounted for and ideally should be included in any type of integrated technology scenario, for it may help to better evaluate market

  15. How energy efficiency fails in the building industry

    International Nuclear Information System (INIS)

    Ryghaug, Marianne; Sorensen, Knut H.

    2009-01-01

    This paper examines how energy efficiency fails in the building industry based on many years of research into the integration of energy efficiency in the construction of buildings and sustainable architecture in Norway. It argues that energy-efficient construction has been seriously restrained by three interrelated problems: (1) deficiencies in public policy to stimulate energy efficiency, (2) limited governmental efforts to regulate the building industry, and (3) a conservative building industry. The paper concludes that innovation and implementation of new, energy-efficient technologies in the building industry requires new policies, better regulations and reformed practices in the industry itself

  16. Industrial energy efficiency: A policy perspective

    International Nuclear Information System (INIS)

    Chandler, W.U.

    1990-01-01

    Policies that promote energy efficiency can work; but potential energy savings are unlikely to be realized without effective policy leadership. This article discusses the opportunities in several countries for increasing energy efficiency. Both ''open'' and centrally planned economies could be much more energy efficient. In the United States, for example, the government needs to stimulate energy efficiency. This could be done by sponsoring research to develop new processes, creating favourable financial conditions for investment in efficiency, and making the advantages of energy efficiency technologies better known. International collaboration in sponsoring research and transfer technologies could be of the greatest importance in improving energy efficiency in countries with centrally planned economies, including the Soviet Union, as well as in developing countries. Favourable conditions for achieving both economic development and environmental protection can be created through cooperation on the international level. (author). 24 refs, 4 tabs

  17. Potential energy efficiency improvements in Swedish energy intensive industries using an Energy Efficiency Obligation Scheme

    OpenAIRE

    Xylia, Maria; Silveira, Semida

    2014-01-01

    Energy Efficiency Obligation Schemes (EEOS) as suggested in the Energy Efficiency Directive (EED) could help remove barriers to energy efficiency. However, despite the fact that such schemes have been successfully implemented and proven cost-effective in several Member States, not all countries are convinced of their potential benefits. In this paper, we investigate the policy instruments that Sweden has introduced or is planning to introduce for achieving increased industrial efficiency unde...

  18. Refractories for Industrial Processing. Opportunities for Improved Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hayden, H. Wayne [Metals Manufacture Process and Controls Technology, Inc., Oak Ridge, TN (United States); Angelini, Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moore, Robert E. [R.E. Moore Associates, Maricopa, AZ (United States); Headrick, William L. [R.E. Moore Associates, Maricopa, AZ (United States)

    2005-01-01

    Refractories are a class of materials of critical importance to manufacturing industries with high-temperature unit processes. This study describes industrial refractory applications and identifies refractory performance barriers to energy efficiency for processing. The report provides recommendations for R&D pathways leading to improved refractories for energy-efficient manufacturing and processing.

  19. Energy efficiency opportunities in the brewery industry

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Galitsky, Christina; Martin, Nathan

    2002-06-28

    Breweries in the United States spend annually over $200 Million on energy. Energy consumption is equal to 3-8% of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findings suggest that there may still be opportunities to reduce energy consumption cost-effectively for breweries. Major brewing companies have and will continue to spend capital on cost effective measures that do not impact the quality of the beer. Further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies at individual breweries.

  20. Design for energy efficiency: Energy efficient industrialized housing research program. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Kellett, R.; Berg, R.; Paz, A.; Brown, G.Z.

    1991-03-01

    Since 1989, the U.S. Department of Energy has sponsored the Energy Efficient Industrialized Housing research program (EEIH) to improve the energy efficiency of industrialized housing. Two research centers share responsibility for this program: The Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. Additional funding is provided through the participation of private industry, state governments and utilities. The program is guided by a steering committee comprised of industry and government representatives. This report summarizes Fiscal Year (FY) 1990 activities and progress, and proposed activities for FY 1991 in Task 2.1 Design for Energy Efficiency. This task establishes a vision of energy conservation opportunities in critical regions, market segments, climate zones and manufacturing strategies significant to industrialized housing in the 21st Century. In early FY 1990, four problem statements were developed to define future housing demand scenarios inclusive of issues of energy efficiency, housing design and manufacturing. Literature surveys were completed to assess seven areas of influence for industrialized housing and energy conservation in the future. Fifty-five future trends were identified in computing and design process; manufacturing process; construction materials, components and systems; energy and environment; demographic context; economic context; and planning policy and regulatory context.

  1. Energy efficient industrialized housing research program

    Energy Technology Data Exchange (ETDEWEB)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Mazwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

    1989-12-01

    This document describes the research work completed in five areas in fiscal year 1989. (1) The analysis of the US industrialized housing industry includes statistics, definitions, a case study, and a code analysis. (2) The assessment of foreign technology reviews the current status of design, manufacturing, marketing, and installation of industrialized housing primarily in Sweden and Japan. (3) Assessment of industrialization applications reviews housing production by climate zone, has a cost and energy comparison of Swedish and US housing, and discusses future manufacturing processes and emerging components. (4) The state of computer use in the industry is described and a prototype design tool is discussed. (5) Side by side testing of industrialized housing systems is discussed.

  2. Energy efficiency opportunity guide in the lime industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The lime industry processes limestone, an abundant inorganic mineral, for metallurgical, industrial and chemical, environmental, and construction applications. The energy the industry uses results in greenhouse gas emissions and the Canadian Lime Institute, in collaboration with Natural Resources Canada, sponsored the development of this guidebook which is intended to provide ideas for saving energy in the lime industry. This document is a practical source of information and can be used to develop self-audit and evaluation techniques to monitor energy usage. The report first provides an overview of the lime industry, then presents its energy costs. General energy efficiency methodologies are highlighted and, in conclusion, advice on improving energy efficiency in general and specifically for lime industry operations is given. This guidebook provides useful information for lime industry operators who are trying to improve the energy efficiency of their operations.

  3. Energy Efficiency Practices: Assessment of Ohrid Hotel Industry

    OpenAIRE

    Petrevska, Biljana; Cingoski, Vlatko

    2016-01-01

    This paper provides information on the extent how the hotel industry in Ohrid meets the energy efficiency practices in terms of the current level of involvement. By undertaking an online survey in three, four and five-star hotels, the study assesses the attitudes and willingness of hotel managers concerning applying energy efficiency and environmental protection concepts and practices. Moreover, it investigates various determinants of energy consumption, like: solid waste management, resource...

  4. New approaches for improving energy efficiency in the Brazilian industry

    Directory of Open Access Journals (Sweden)

    Paulo Henrique de Mello Santana

    2016-11-01

    Full Text Available The Brazilian government has been promoting energy efficiency measures for industry since the eighties but with very limited returns, as shown in this paper. The governments of some other countries dedicated much more effort and funds for this area and reached excellent results. The institutional arrangements and types of programmes adopted in these countries are briefly evaluated in the paper and provide valuable insights for several proposals put forward here to make more effective the Brazilian government actions directed to overcome market barriers and improve energy efficiency in the local industry. The proposed measures include the creation of Industrial Assessment Centres and an executive agency charged with the coordination of all energy efficiency programmes run by the Federal government. A large share of the Brazilian industry energy consumption comes from energy-intensive industrial branches. According to a recent survey, most of them have substantial energy conservation potentials. To materialize a fair amount of them, voluntary targets concerning energy efficiency gains should start to be negotiated between the Government and associations representing these industrial branches. Credit facilities and tax exemptions for energy-efficient equipment’s should be provided to stimulate the interest of the entrepreneurs and the setting-up of bolder targets.

  5. Energy efficiency benchmarking of energy-intensive industries in Taiwan

    International Nuclear Information System (INIS)

    Chan, David Yih-Liang; Huang, Chi-Feng; Lin, Wei-Chun; Hong, Gui-Bing

    2014-01-01

    Highlights: • Analytical tool was applied to estimate the energy efficiency indicator of energy intensive industries in Taiwan. • The carbon dioxide emission intensity in selected energy-intensive industries is also evaluated in this study. • The obtained energy efficiency indicator can serve as a base case for comparison to the other regions in the world. • This analysis results can serve as a benchmark for selected energy-intensive industries. - Abstract: Taiwan imports approximately 97.9% of its primary energy as rapid economic development has significantly increased energy and electricity demands. Increased energy efficiency is necessary for industry to comply with energy-efficiency indicators and benchmarking. Benchmarking is applied in this work as an analytical tool to estimate the energy-efficiency indicators of major energy-intensive industries in Taiwan and then compare them to other regions of the world. In addition, the carbon dioxide emission intensity in the iron and steel, chemical, cement, textile and pulp and paper industries are evaluated in this study. In the iron and steel industry, the energy improvement potential of blast furnace–basic oxygen furnace (BF–BOF) based on BPT (best practice technology) is about 28%. Between 2007 and 2011, the average specific energy consumption (SEC) of styrene monomer (SM), purified terephthalic acid (PTA) and low-density polyethylene (LDPE) was 9.6 GJ/ton, 5.3 GJ/ton and 9.1 GJ/ton, respectively. The energy efficiency of pulping would be improved by 33% if BAT (best available technology) were applied. The analysis results can serve as a benchmark for these industries and as a base case for stimulating changes aimed at more efficient energy utilization

  6. Potential of energy efficiency measures in the world steel industry.

    NARCIS (Netherlands)

    Galama, Tjebbe

    2013-01-01

    SUMMARY The world steel industry plays a major role in energy use and Greenhouse Gas (GHG) emissions now and in the future. Implementing energy efficiency measures is among one of the most cost-effective investments that the industry could make in improv

  7. 77 FR 54777 - Accelerating Investment in Industrial Energy Efficiency

    Science.gov (United States)

    2012-09-05

    .... competitiveness, create jobs, and reduce harmful air pollution. In doing so, they shall engage States, industrial... energy costs, free up future capital for businesses to invest, reduce air pollution, and create jobs... Part IV The President Executive Order 13624--Accelerating Investment in Industrial Energy Efficiency...

  8. Energy efficiency as an opportunity for the natural gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Love, P. [Canadian Energy Efficiency Alliance (Canada)

    2003-07-01

    Energy conservation, energy efficiency and demand side management are defined and the role played in the promotion and advancement of energy efficiency objectives by the Canadian Energy Efficiency Alliance are explained. Direct and indirect economic and environmental benefits and the potential impacts in terms of savings and jobs are discussed, with examples of successful greenhouse gas emission reduction programs by industry. The total potential for energy efficiency in Canada is estimated at 18 per cent lower energy use by 2010, and 33 per cent by 2020, assuming that specific policy recommendations and other cost effective efficiency measures are implemented. Overall conclusions are that there is a large potential for cost-effective energy savings over and above of what has been done already. Furthermore, utilities can play a leading role in realizing these efficiencies, and in the process achieve substantial benefits for themselves.

  9. Energy efficiency as an opportunity for the natural gas industry

    International Nuclear Information System (INIS)

    Love, P.

    2003-01-01

    Energy conservation, energy efficiency and demand side management are defined and the role played in the promotion and advancement of energy efficiency objectives by the Canadian Energy Efficiency Alliance are explained. Direct and indirect economic and environmental benefits and the potential impacts in terms of savings and jobs are discussed, with examples of successful greenhouse gas emission reduction programs by industry. The total potential for energy efficiency in Canada is estimated at 18 per cent lower energy use by 2010, and 33 per cent by 2020, assuming that specific policy recommendations and other cost effective efficiency measures are implemented. Overall conclusions are that there is a large potential for cost-effective energy savings over and above of what has been done already. Furthermore, utilities can play a leading role in realizing these efficiencies, and in the process achieve substantial benefits for themselves

  10. Energy-Efficiency Improvement Opportunities for the Textile Industry

    Energy Technology Data Exchange (ETDEWEB)

    China Energy Group; Hasanbeigi, Ali

    2010-09-29

    The textile industry is one of the most complicated manufacturing industries because it is a fragmented and heterogeneous sector dominated by small and medium enterprises (SMEs). Energy is one of the main cost factors in the textile industry. Especially in times of high energy price volatility, improving energy efficiency should be a primary concern for textile plants. There are various energy-efficiency opportunities that exist in every textile plant, many of which are cost-effective. However, even cost-effective options often are not implemented in textile plants mostly because of limited information on how to implement energy-efficiency measures, especially given the fact that a majority of textile plants are categorized as SMEs and hence they have limited resources to acquire this information. Know-how on energy-efficiency technologies and practices should, therefore, be prepared and disseminated to textile plants. This guidebook provides information on energy-efficiency technologies and measures applicable to the textile industry. The guidebook includes case studies from textile plants around the world and includes energy savings and cost information when available. First, the guidebook gives a brief overview of the textile industry around the world, with an explanation of major textile processes. An analysis of the type and the share of energy used in different textile processes is also included in the guidebook. Subsequently, energy-efficiency improvement opportunities available within some of the major textile sub-sectors are given with a brief explanation of each measure. The conclusion includes a short section dedicated to highlighting a few emerging technologies in the textile industry as well as the potential for the use of renewable energy in the textile industry.

  11. Improving Energy Efficiency in Industrial Solutions – Walk the Talk

    DEFF Research Database (Denmark)

    Wegener, Dieter; Finkbeiner, Matthias; Holst, Jens-Christian

    2011-01-01

    and removing sulfur dioxide and other acidic gas components present in the off-gas stream by using dry absorbents and additional electrical power. Advantage in the impact category of acidification potential (by desulfurization) is a trade-off to disadvantages in global warming and resource depletion potential......This paper describes the outline of the energy efficiency and environmental care policy and management at Siemens Industry Solutions Division. This environmental policy coherently embraces strategic planning, eco-design of energy-efficient industrial processes and solutions, design evaluation...

  12. CREATIV: Research-based innovation for industry energy efficiency

    International Nuclear Information System (INIS)

    Tangen, Grethe; Hemmingsen, Anne Karin T.; Neksa, Petter

    2011-01-01

    Improved energy efficiency is imperative to minimise the greenhouse gas emissions and to ensure future energy security. It is also a key to continued profitability in energy consuming industry. The project CREATIV is a research initiative for industry energy efficiency focusing on utilisation of surplus heat and efficient heating and cooling. In CREATIV, international research groups work together with key vendors of energy efficiency equipment and an industry consortium including the areas metallurgy, pulp and paper, food and fishery, and commercial refrigeration supermarkets. The ambition of CREATIV is to bring forward technology and solutions enabling Norway to reduce both energy consumption and greenhouse gas emissions by 25% within 2020. The main research topics are electricity production from low temperature heat sources in supercritical CO 2 cycles, energy efficient end-user technology for heating and cooling based on natural working fluids and system optimisation, and efficient utilisation of low temperature heat by developing new sorption systems and compact compressor-expander units. A defined innovation strategy in the project will ensure exploitation of research results and promote implementation in industry processes. CREATIV will contribute to the recruitment of competent personnel to industry and academia by educating PhD and post doc candidates and several MSc students. The paper presents the CREATIV project, discusses its scientific achievements so far, and outlines how the project results can contribute to reducing industry energy consumption. - Highlights: → New technology for improved energy efficiency relevant across several industries. → Surplus heat exploitation and efficient heating and cooling are important means. → Focus on power production from low temperature heat and heat pumping technologies. → Education and competence building are given priority. → The project consortium includes 20 international industry companies and

  13. Energy efficiency trends in Canada -- An industrial perspective

    International Nuclear Information System (INIS)

    Metivier, L.; McIntosh, T.; Pearson, M.

    1997-01-01

    The objective of this paper is to explain the contribution of energy efficiency to the evolution of secondary energy use and greenhouse gas emissions in Canada. Promoting greater energy efficiency in all sectors of the economy is an important element of Canada's National Action Program on Climate Change--the federal-provincial strategy to achieve Canada's commitment to work toward stabilizing greenhouse gas emissions at 1990 levels by the year 2000. In this regard, an improved understanding of the relationship between energy efficiency, energy use and greenhouse gas emissions will assist policy makers in assessing the progress being made in addressing the issues of global climate change and sustainable development. Natural Resources Canada has developed indicators of changes in the principal factors which influence secondary energy use and emissions over time. This paper utilizes these indicators to review energy use trends in the four secondary energy use sectors (residential, commercial, industrial and transportation), with particular emphasis on the industrial sector., This review covers the period from 1990 to 1995. The year 1995 was chosen because it is the most recent year for which actual energy use data are available. The year 1990 is the base year of Canada's environmental goal, in accordance with the Framework Convention on Climate Change. A more comprehensive and detailed presentation of these indicators can be found in ''Energy Efficiency Trends in Canada'' 1990 to 1995. This report is an update of ''Energy Efficiency Trends in Canada'' which was published by Natural Resources Canada in April 1996

  14. Energy efficiency opportunities in China. Industrial equipment and small cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    A quick glance at comparative statistics on energy consumption per unit of industrial output reveals that China is one of the least energy efficient countries in the world. Energy waste not only impedes economic growth, but also creates pollution that threatens human health, regional ecosystems, and the global climate. China`s decision to pursue economic reform and encourage technology transfer from developed countries has created a window of opportunity for significant advances in energy efficiency. Policy changes, technical training, public education, and financing can help China realize its energy conservation potential.

  15. Implementation and rejection of industrial steam system energy efficiency measures

    International Nuclear Information System (INIS)

    Therkelsen, Peter; McKane, Aimee

    2013-01-01

    Steam systems consume approximately one third of energy applied at US industrial facilities. To reduce energy consumption, steam system energy assessments have been conducted on a wide range of industry types over the course of 5 years through the Energy Savings Assessment (ESA) program administered by the US Department of Energy (US DOE). ESA energy assessments result in energy efficiency measure recommendations that are given potential energy and energy cost savings and potential implementation cost values. Saving and cost metrics that measure the impact recommended measures will have at facilities, described as percentages of facility baseline energy and energy cost, are developed from ESA data and used in analyses. Developed savings and cost metrics are examined along with implementation and rejection rates of recommended steam system energy efficiency measures. Based on analyses, implementation of steam system energy efficiency measures is driven primarily by cost metrics: payback period and measure implementation cost as a percentage of facility baseline energy cost (implementation cost percentage). Stated reasons for rejecting recommended measures are primarily based upon economic concerns. Additionally, implementation rates of measures are not only functions of savings and cost metrics, but time as well. - Highlights: ► We examine uptake/rejection of industrial steam system energy efficiency measures. ► We examine metrics that correspond to uptake/rejection of recommended measures. ► We examine barriers hindering steam system energy efficiency measure implementation. ► Uptake/rejection of steam measures is linked to potential cost metrics. ► Increased uptake of measures and uptake of more costly measures increases with time

  16. Global warming and the energy efficiency of Spanish industry

    International Nuclear Information System (INIS)

    Feijoo, Maria L.; Hernandez, Jose M.; Franco, Juan F.

    2002-01-01

    This paper uses a stochastic frontier production function model to analyze the energy efficiency of Spanish industry. We used minimum cost input demand equations as the reference in order to calculate the demand for electricity, gas and other fuels. On this basis, we found that there is no inherent conflict between the objectives of achieving productive efficiency and reducing energy consumption. Indeed, it is possible to reduce the industrial emissions of CO 2 by up to 29.4% by means of a bottom-up energy efficiency policy. However, if the government wants firms to reduce their emissions even further, then it would be necessary to implement some form of energy regulatory policy. In this respect, we estimate the cost of reducing CO 2 emissions by 20%

  17. Technologies and Policies to Improve Energy Efficiency in Industry

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; Price, Lynn

    2008-03-01

    The industrial sector consumes nearly 40% of annual global primary energy use and is responsible for a similar share of global energy-related carbon dioxide (CO2) emissions. Many studies and actual experience indicate that there is considerable potential to reduce the amount of energy used to manufacture most commodities, concurrently reducing CO2 emissions. With the support of strong policies and programs, energy-efficient technologies and measures can be implemented that will reduce global CO2 emissions. A number of countries, including the Netherlands, the UK, and China, have experience implementing aggressive programs to improve energy efficiency and reduce related CO2 emissions from industry. Even so, there is no silver bullet and all options must be pursued if greenhouse gas emissions are to be constrained to the level required to avoid significant negative impacts from global climate change.

  18. Evaluating the Management System Approach for Industrial Energy Efficiency Improvements

    Directory of Open Access Journals (Sweden)

    Thomas Zobel

    2016-09-01

    Full Text Available Voluntary environmental management systems (EMS based on the international standard ISO 14001 have become widespread globally in recent years. The purpose of this study is to assess the impact of voluntary management systems on energy efficiency in the Swedish manufacturing industry by means of objective industrial energy data derived from mandatory annual environmental reports. The study focuses on changes in energy efficiency over a period of 12 years and includes both ISO 14001-certified companies and non-certified companies. Consideration is given to energy improvement efforts in the companies before the adoption of ISO 14001. The analysis has been carried out using statistical methods for two different industrial energy parameters: electricity and fossil fuel consumption. The results indicate that ISO 14001 adoption and certification has increased energy efficiency regarding the use of fossil fuel. In contrast, no effect of the management systems has been found concerning the use of electricity. The mixed results of this study are only partly in line with the results of previous studies based on perceptions of company representatives.

  19. Implementation and Rejection of Industrial Steam System Energy Efficiency Measures

    Energy Technology Data Exchange (ETDEWEB)

    Therkelesen, Peter [Environmental Energy Technologies Division Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); McKane, Aimee [Environmental Energy Technologies Division Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)

    2013-05-01

    Steam systems consume approximately one third of energy applied at U.S. industrial facilities. To reduce energy consumption, steam system energy assessments have been conducted on a wide range of industry types over the course of five years through the Energy Savings Assessment (ESA) program administered by the U.S. Department of Energy (U.S. DOE). ESA energy assessments result in energy efficiency measure recommendations that are given potential energy and energy cost savings and potential implementation cost values. Saving and cost metrics that measure the impact recommended measures will have at facilities, described as percentages of facility baseline energy and energy cost, are developed from ESA data and used in analyses. Developed savings and cost metrics are examined along with implementation and rejection rates of recommended steam system energy efficiency measures. Based on analyses, implementation of steam system energy efficiency measures is driven primarily by cost metrics: payback period and measure implementation cost as a percentage of facility baseline energy cost (implementation cost percentage). Stated reasons for rejecting recommended measures are primarily based upon economic concerns. Additionally, implementation rates of measures are not only functions of savings and cost metrics, but time as well.

  20. Energy efficiency and CO2 emissions in Swedish manufacturing industries

    Energy Technology Data Exchange (ETDEWEB)

    Pardo Martinez, C.I. [Faculty of Environmental Engineering, University of La Salle, Bogota (Colombia); Silveira, S [Energy and Climate Studies, Department of Energy Technology, KTH, Stockholm (Sweden)

    2013-02-15

    This paper analyses the trends in energy consumption and CO2 emissions as a result of energy efficiency improvements in Swedish manufacturing industries between 1993 and 2008. Using data at the two-digit level, the performance of this sector is studied in terms of CO2 emissions, energy consumption, energy efficiency measured as energy intensity, value of production, fuel sources, energy prices and energy taxes. It was found that energy consumption, energy intensity and CO2 emission intensity, measured as production values, have decreased significantly in the Swedish manufacturing industries during the period studied. The results of the decomposition analysis show that output growth has not required higher energy consumption, leading to a reduction in both energy and CO2 emission intensities. The role of structural changes has been minor, and the trends of energy efficiency and CO2 emissions have been similar during the sample period. A stochastic frontier model was used to determine possible factors that may have influenced these trends. The results demonstrate that high energy prices, energy taxes, investments and electricity consumption have influenced the reduction of energy and CO2 emission intensities, indicating that Sweden has applied an adequate and effective energy policy. The study confirms that it is possible to achieve economic growth and sustainable development whilst also reducing the pressure on resources and energy consumption and promoting the shift towards a low-carbon economy.

  1. Tracking industrial energy efficiency and CO2 emissions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-25

    Industry accounts for about one-third of global energy demand. Most of that energy is used to produce raw materials: chemicals, iron and steel, non-metallic minerals, pulp and paper and non-ferrous metals. Just how efficiently is this energy put to work? This question was on the minds of the G8 leaders at their summit in Gleneagles in 2005, when they set a 'Plan of Action for Climate Change, Clean Energy and Sustainable Development'. They called upon the International Energy Agency to provide information and advice in a number of areas including special attention to the industrial sector. Tracking Industrial Energy Efficiency and CO2 Emissions responds to the G8 request. This major new analysis shows how industrial energy efficiency has improved dramatically over the last 25 years. Yet important opportunities for additional gains remain, which is evident when the efficiencies of different countries are compared. This analysis identifies the leaders and the laggards. It explains clearly a complex issue for non-experts. With new statistics, groundbreaking methodologies, thorough analysis and advice, and substantial industry consultation, this publication equips decision makers in the public and private sectors with the essential information that is needed to reshape energy use in manufacturing in a more sustainable manner.

  2. Energy efficiency technologies in cement and steel industry

    Science.gov (United States)

    Zanoli, Silvia Maria; Cocchioni, Francesco; Pepe, Crescenzo

    2018-02-01

    In this paper, Advanced Process Control strategies aimed at energy efficiency achievement and improvement in cement and steel industry are proposed. A flexible and smart control structure constituted by several functional modules and blocks has been developed. The designed control strategy is based on Model Predictive Control techniques, formulated on linear models. Two industrial control solutions have been developed, oriented to energy efficiency and process control improvement in cement industry clinker rotary kilns (clinker production phase) and in steel industry billets reheating furnaces. Tailored customization procedures for the design of ad hoc control systems have been executed, based on the specific needs and specifications of the analysed processes. The installation of the developed controllers on cement and steel plants produced significant benefits in terms of process control which resulted in working closer to the imposed operating limits. With respect to the previous control systems, based on local controllers and/or operators manual conduction, more profitable configurations of the crucial process variables have been provided.

  3. Move over! Stock turnover, retrofit and industrial energy efficiency

    International Nuclear Information System (INIS)

    Worrell, Ernst; Biermans, Gijs

    2005-01-01

    We demonstrate the importance of stock turnover on industrial energy efficiency through a literature review and a case study of energy-intensive equipment, i.e. the electric arc furnace in the US steel industry. We describe the common methods for assessing stock turnover. We have found that both stock turnover and retrofit are important elements to explain the energy efficiency improvement rates. We investigated the development of electricity use in electric arc furnaces in the United States by tracking the development of individual furnaces over the period 1990-2002. This provides a detailed picture of changes in the stock or fleet of furnaces through turnover and/or retrofit. Our results confirm the results of other empirical studies that there is no clear lifetime of equipment. However, retired furnaces are distinctly less efficient than furnaces remaining in the stock, while new furnaces are distinctly more efficient than the average stock. We found an annual average improvement in specific electricity consumption of 1.3%/year over the studied period, of which 0.7%/year was due to stock turnover and 0.5%/year due to retrofit of stock in service throughout the period

  4. Developing an energy efficiency service industry in Shanghai

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jiang; Goldman, Charles; Levine, Mark; Hopper, Nicole

    2004-02-10

    industrial space over the last 5 years. It is one reason that China consumed over 60% of the world's cement production in 2003 (NBS 2004). Energy consumption in Shanghai has been growing at 6-8% annually, with the growth of electricity demand at over 10% per year. Shanghai, with very limited local energy resources, relies heavily on imported coal, oil, natural gas, and electricity. While coal still constitutes over half of Shanghai's energy consumption, oil and natural gas use have been growing in importance. Shanghai is the major market for China's West to East (natural gas) Pipeline (WEP). With the input from WEP and off-shore pipelines, it is expected that natural gas consumption will grow from 250 million cubic meters in 2000 to 3000-3500 million cubic meters in 2005. In order to secure energy supply to power Shanghai's fast-growing economy, the Shanghai government has set three priorities in its energy strategy: (1) diversification of its energy structure, (2) improving its energy efficiency, and (3) developing renewable and other cleaner forms of energy. Efficiency improvements are likely to be most critical, particularly in the near future, in addressing Shanghai's energy security, especially the recent electricity shortage in Shanghai. Commercial buildings and industries consume the majority of Shanghai's, as well as China's, commercial energy. In the building sector, Shanghai has been very active implementing energy efficiency codes for commercial and residential buildings. Following a workshop on building codes implementation held at LBNL for senior Shanghai policy makers in 2001, the Shanghai government recently introduced an implementation guideline on residential building energy code compliance for the downtown area of Shanghai to commence in April, 2004, with other areas of the city to follow in 2005. A draft code for commercial buildings has been developed as well. In the industrial sector, the Shanghai government started an

  5. Diffusion of energy-efficient technologies in industry. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, S.Y.

    1979-01-01

    United States energy policies aim at cutting down dependence on foreign oil in two ways: by energy conservation and by finding new domestic supplies. The study investigates how the first goal can be achieved in the industrial sector (manufacturing) of the economy, which accounts for about 40% (about 7.3 million barrels per day) of the total energy consumption in the US. It is noted that industry is able to conserve as much as 25 to 30% of its energy consumption by adopting simple conservation measures and energy-efficient technologies. These technologies can be implemented without major alterations of the original equipment. The schools of thought on innovative processes are discussed; these will serve as the conceptual and methodological base of the project. (MCW)

  6. Improving the energy efficiency of industrial refrigeration systems

    International Nuclear Information System (INIS)

    Oh, Jin-Sik; Binns, Michael; Park, Sangmin; Kim, Jin-Kuk

    2016-01-01

    Various retrofit design options are available for improving the energy efficiency and economics of industrial refrigeration systems. This study considers a novel retrofit option using a mixed refrigerant (MR) in refrigeration cycles designed for use with a pure refrigerant (PR). In this way energy savings can be realized by switching refrigerants without requiring extensive and expensive reconfiguration of equipment. Hence, the aim here is to test the common thinking that equipment should always be extensively reconfigured when switching from pure to mixed refrigerants. To determine the most energy-efficient operating conditions for each refrigeration design an optimization framework is utilized linking a process simulator with an external optimization method. A case study is presented to demonstrate how the proposed process modeling and optimization framework can be applied and to illustrate the economic benefits of using the retrofit design options considered here. For the case considered in this paper, savings of shaft power required for the refrigeration cycle can be achieved from 16.3% to 27.2% when the pure refrigerant is replaced with mixed refrigerants and operating conditions are re-optimized. - Highlights: • Design methods for the design of refrigeration cycles in retrofit cases. • Consideration of mixed refrigerants to the existing multi-level pure-refrigerant cycles. • Optimization of refrigeration cycles with integrated use of a process simulator with an optimizer.

  7. Energy efficiency regulation for industrial products and manufacturing

    Directory of Open Access Journals (Sweden)

    Badea George-Vlad

    2017-01-01

    Full Text Available The paper deals with the energy efficiency of industrial products or manufacturing as compared to the framework legislative measures implemented by EU through the Eco-design and Energy Labeling Directives. The Eco-design implementing measures such as taking into account all phases of the life cycle (manufacturing, transport, use, disposal, as well as the essential environmental aspects (consumption, materials, emissions, waste, etc. for each phase, are considered. The implementing measures should have no significant negative impact on the functionality, health and safety, affordability and industry's competitiveness, as well as they should not impose proprietary technology on manufacturers and not be an excessive administrative burden for them. In this paper a method for implementing Legislative measures concerning the Eco-design and Energy labeling of industrial product is proposed. It grounds on the analysis of particular interest versus general interest relation, for each product case. Method application consists in products classifying relative to the two types of interest, followed by a voluntary agreement between manufacturers operating on market and EU. Finally, the paper presents the limits and possibilities for Eco-design of industrial products and manufacturing industry.

  8. Hybrid Building Performance Simulation Models for Industrial Energy Efficiency Applications

    Directory of Open Access Journals (Sweden)

    Peter Smolek

    2018-06-01

    Full Text Available In the challenge of achieving environmental sustainability, industrial production plants, as large contributors to the overall energy demand of a country, are prime candidates for applying energy efficiency measures. A modelling approach using cubes is used to decompose a production facility into manageable modules. All aspects of the facility are considered, classified into the building, energy system, production and logistics. This approach leads to specific challenges for building performance simulations since all parts of the facility are highly interconnected. To meet this challenge, models for the building, thermal zones, energy converters and energy grids are presented and the interfaces to the production and logistics equipment are illustrated. The advantages and limitations of the chosen approach are discussed. In an example implementation, the feasibility of the approach and models is shown. Different scenarios are simulated to highlight the models and the results are compared.

  9. Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Amelie [Institute for Industrial Productivity (United States); Taylor, Robert P. [Institute for Industrial Productivity (United States); Hedman, Bruce [Institute for Industrial Productivity (United States)

    2014-03-21

    This report provides state regulators, utilities, and other program administrators with an overview of U.S. industrial energy efficiency programs and assesses some of the key features of programs that have generated increased energy savings.

  10. Improving energy efficiency in industrial solutions - Walk the talk

    Energy Technology Data Exchange (ETDEWEB)

    Wegener, D. (Siemens AG. Industry Solutions Div., Erlangen (Germany)); Finkbeiner, M. (Technische Univ. Berlin (TUB). Sustainable Engineering, Berlin (Germany)); Holst, J.-C.; Walachowicz, F. (Siemens AG. Corporate Technology, Berlin (Germany)); Irving Olsen, S. (Technical Univ. of Denmark (DTU). Management Engineering, Kgs. Lyngby (Denmark))

    2011-05-15

    This paper describes the outline of the energy efficiency and environmental care policy and management at Siemens Industry Solutions Division. This environmental policy coherently embraces strategic planning, eco-design of energy-efficient industrial processes and solutions, design evaluation and finally communication of both environmental and economic performance of solutions to customers. One of the main tools supporting eco-design and evaluation and controlling of derived design solutions is the so called 'Eco-Care-Matrix' (ECM). The ECM simply visualizes the eco-efficiency of solutions compared to a given baseline. In order to prevent from 'green washing' criticism and to ensure 'walk the talk' attitude the ECM should be scientifically well-founded using appropriate and consistent methodology. The vertical axis of an ECM illustrates the environmental performance and the horizontal axis describes the economical customer benefit of one or more green solutions compared to a defined reference solution. Different scientific approaches for quantifying the environmental performance based on life cycle assessment methodology are discussed especially considering the ISO standards 14040/14044:2006. Appropriate ECM application is illustrated using the example of the Siemens MEROS technology (Maximized Emission Reduction of Sintering) for the steel industry. MEROS is currently the most modern and powerful system for cleaning off-gas in sinter plants. As an environmental technology MEROS is binding and removing sulfur dioxide and other acidic gas components present in the off-gas stream by using dry absorbents and additional electrical power. Advantage in the impact category of acidification potential (by desulfurization) is a trade-off to disadvantages in global warming and resource depletion potential caused by use of electricity. Representing different impacts, indicator results for impact categories with different tendencies have to be

  11. Industrial energy efficiency with CO2 emissions in China: A nonparametric analysis

    International Nuclear Information System (INIS)

    Wu, F.; Fan, L.W.; Zhou, P.; Zhou, D.Q.

    2012-01-01

    Global awareness on energy security and climate change has created much interest in assessing economy-wide energy efficiency performance. A number of previous studies have contributed to evaluate energy efficiency performance using different analytical techniques among which data envelopment analysis (DEA) has recently received increasing attention. Most of DEA-related energy efficiency studies do not consider undesirable outputs such as CO 2 emissions in their modeling framework, which may lead to biased energy efficiency values. Within a joint production framework of desirable and undesirable outputs, in this paper we construct both static and dynamic energy efficiency performance indexes for measuring industrial energy efficiency performance by using several environmental DEA models with CO 2 emissions. The dynamic energy efficiency performance indexes have further been decomposed into two contributing components. We finally apply the indexes proposed to assess the industrial energy efficiency performance of different provinces in China over time. Our empirical study shows that the energy efficiency improvement in China's industrial sector was mainly driven by technological improvement. - Highlights: ► China's industrial energy efficiency is evaluated by DEA models with CO 2 emissions. ► China's industrial energy efficiency improved by 5.6% annually since 1997. ► Industrial energy efficiency improvement in China was mainly driven by technological improvement.

  12. 78 FR 11996 - Energy Efficiency Program for Commercial and Industrial Equipment: Commercial and Industrial Pumps

    Science.gov (United States)

    2013-02-21

    ...: Commercial and Industrial Pumps AGENCY: Office of Energy Efficiency and Renewable Energy, Department of... standards for commercial and industrial pumps published on February 1, 2013, is extended to May 2, 2013... relating to commercial and industrial pumps is extended to May 2, 2013. ADDRESSES: Any comments submitted...

  13. Energy efficiency in small and medium scale foundry industry

    Directory of Open Access Journals (Sweden)

    G. Patange

    2016-04-01

    Full Text Available In this paper, the research results of surveys which were conducted in an Indian foundry cluster which are potential members of such sectors are presented. These results indicate that there is an enough potential improvement in the energy use. The use of energy efficient practices can result in their energy use effectively as well as cost reduction. The key findings about the energy pattern are a lack of energy efficient practices. The suggested recommendations can contribute to an increase in energy efficiency in such cluster.

  14. Energy Efficiency Improvement Opportunities for the Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; Worrell, Ernst; Galitsky, Christina; Price, Lynn

    2008-01-31

    This report provides information on the energy savings, costs, and carbon dioxide emissions reductions associated with implementation of a number of technologies and measures applicable to the cement industry. The technologies and measures include both state-of-the-art measures that are currently in use in cement enterprises worldwide as well as advanced measures that are either only in limited use or are near commercialization. This report focuses mainly on retrofit measures using commercially available technologies, but many of these technologies are applicable for new plants as well. Where possible, for each technology or measure, costs and energy savings per tonne of cement produced are estimated and then carbon dioxide emissions reductions are calculated based on the fuels used at the process step to which the technology or measure is applied. The analysis of cement kiln energy-efficiency opportunities is divided into technologies and measures that are applicable to the different stages of production and various kiln types used in China: raw materials (and fuel) preparation; clinker making (applicable to all kilns, rotary kilns only, vertical shaft kilns only); and finish grinding; as well as plant wide measures and product and feedstock changes that will reduce energy consumption for clinker making. Table 1 lists all measures in this report by process to which they apply, including plant wide measures and product or feedstock changes. Tables 2 through 8 provide the following information for each technology: fuel and electricity savings per tonne of cement; annual operating and capital costs per tonne of cement or estimated payback period; and, carbon dioxide emissions reductions for each measure applied to the production of cement. This information was originally collected for a report on the U.S. cement industry (Worrell and Galitsky, 2004) and a report on opportunities for China's cement kilns (Price and Galitsky, in press). The information provided in

  15. Energy efficiency programs and policies in the industrial sector in industrialized countries

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Price, Lynn; Worrell, Ernst

    2004-06-01

    About 37% of the primary energy consumed both in the U.S. and globally is used by the industrial sector. A variety of energy efficiency policies and programs have been implemented throughout the world in an effort to improve the energy efficiency of this sector. This report provides an overview of these policies and programs in twelve industrialized nations and the European Union (EU). We focus on energy efficiency products and services that are available to industrial consumers, such as reports, guidebooks, case studies, fact sheets, profiles, tools, demonstrations, roadmaps and benchmarking. We also focus on the mechanisms to communicate the availability and features of these products and services and to disseminate them to the industrial consumers who can use them. Communication channels include customer information centers and websites, conferences and trade shows, workshops and other training mechanisms, financial assistance programs, negotiated agreements, newsletters, publicity, assessments, tax and subsidy schemes and working groups. In total, over 30 types of industrial sector energy efficiency products, services and delivery channels have been identified in the countries studied. Overall, we found that the United States has a large variety of programs and offers industry a number of supporting programs for improving industrial energy efficiency. However, there are some products and services found in other industrialized countries that are not currently used in the U.S., including benchmarking programs, demonstration of commercialized technologies and provision of energy awareness promotion materials to companies. Delivery mechanisms found in other industrialized countries that are not employed in the U.S. include negotiated agreements, public disclosure and national-level tax abatement for energy-efficient technologies.

  16. Improving energy efficiency in industrial energy systems an interdisciplinary perspective on barriers, energy audits, energy management, policies, and programs

    CERN Document Server

    Thollander, Patrik

    2012-01-01

    Industrial energy efficiency is one of the most important means of reducing the threat of increased global warming. Research however states that despite the existence of numerous technical energy efficiency measures, its deployment is hindered by the existence of various barriers to energy efficiency. The complexity of increasing energy efficiency in manufacturing industry calls for an interdisciplinary approach to the issue. Improving energy efficiency in industrial energy systems applies an interdisciplinary perspective in examining energy efficiency in industrial energy systems, and discuss

  17. Energy efficient technologies in the German steel industry - low hanging fruits?

    OpenAIRE

    Arens, Marlene; Worrell, Ernst

    2014-01-01

    Energy efficiency has been recognized as the key short- to medium-run strategy to reduce CO2 emissions and energy use in a cost-efficient way, in particular for energy-intensive industry sectors like steel production. A major option to increase energy efficiency in energy-intensive industries is the implementation of energy efficient technologies. Several studies estimate the potential of these technologies. Still little is known on their diffusion as well as on their impact on the overall en...

  18. Understanding energy efficiency barriers in Ukraine: Insights from a survey of commercial and industrial firms

    International Nuclear Information System (INIS)

    Timilsina, Govinda R.; Hochman, Gal; Fedets, Iryna

    2016-01-01

    Improvement of energy efficiency is an important element of energy policy for a sustainable supply of energy in Ukraine. However, the country is facing several challenges to the large-scale deployment of energy efficient technologies. We conducted a two-stage quota sample survey of 509 commercial and industrial firms of all regions of Ukraine to understand the barriers to energy efficiency improvements. Our study finds that more than two-thirds of the commercial and industrial firms in the country view improvement of energy efficiency very important to their business. However, due to several barriers they are unable to realize the improvements of energy efficiency. Among the 19 potential barriers investigated in the study, the survey results show that high upfront investment requirement, lack of government policies to support energy efficiency improvements, higher cost of capital, and lack of information and awareness are the most critical barriers to the improvement of energy efficiency in the industrial and commercial sectors in Ukraine. - Highlights: • Despite attractiveness, large scale deployment of energy efficiency is lacking. • Several barriers are responsible for slow implementation of energy efficiency. • Understanding the barriers from the field is crucial to design effective policies. • A survey of commercial and industrial firms reveals the key barriers. • Financial barriers are the main hurdles to adopt energy efficient technologies.

  19. Regional total factor energy efficiency: An empirical analysis of industrial sector in China

    International Nuclear Information System (INIS)

    Wang, Zhao-Hua; Zeng, Hua-Lin; Wei, Yi-Ming; Zhang, Yi-Xiang

    2012-01-01

    Highlights: ► We evaluate energy efficiency under framework of total factor energy efficiency. ► We focus on industry sector of China. ► We use statistical data of industrial enterprises above designated size. ► Energy efficiencies among regions in China are obvious because of technological differences. ► Large scale of investment should be stopped especially in central and western regions. -- Abstract: The rapid growth of the Chinese economy has resulted in great pressure on energy consumption, especially the energy intensive sector – the industrial sector. To achieve sustainable development, China has to consider how to promote energy efficiency to meet the demand of Chinese rapid economic growth, as the energy efficiency of China is relatively low. Meanwhile, the appeal of energy saving and emission reduction has been made by the Chinese central government. Therefore, it is important to evaluate the energy efficiency of industrial sector in China and to assess efficiency development probabilities. The framework of total factor energy efficiency index is adopted to determine the discrepancy of energy efficiency in Chinese industrial sector based on the provincial statistical data of industrial enterprises above designated size in 30 provinces from 2005 to 2009, with gross industrial output as the output value and energy consumption, average remaining balance of capital assets and average amount of working force as the input values. Besides, in considerate of the regional divide of China, namely eastern, central, and western, and economic development differences in each region, energy efficiency of each region is also analysed in this paper. The results show that there is room for China to improve its energy efficiency, especially western provinces which have large amount of energy input excess. Generally speaking, insufficient technological investment and fail of reaching best scale of manufacture are two factors preventing China from energy

  20. Policy modeling for energy efficiency improvement in US industry

    International Nuclear Information System (INIS)

    Worrell, Ernst; Price, Lynn; Ruth, Michael

    2001-01-01

    We are at the beginning of a process of evaluating and modeling the contribution of policies to improve energy efficiency. Three recent policy studies trying to assess the impact of energy efficiency policies in the United States are reviewed. The studies represent an important step in the analysis of climate change mitigation strategies. All studies model the estimated policy impact, rather than the policy itself. Often the policy impacts are based on assumptions, as the effects of a policy are not certain. Most models only incorporate economic (or price) tools, which recent studies have proven to be insufficient to estimate the impacts, costs and benefits of mitigation strategies. The reviewed studies are a first effort to capture the effects of non-price policies. The studies contribute to a better understanding of the role of policies in improving energy efficiency and mitigating climate change. All policy scenarios results in substantial energy savings compared to the baseline scenario used, as well as substantial net benefits to the U.S. economy

  1. Diffusion of energy efficient technologies in the German steel industry and their impact on energy consumption

    NARCIS (Netherlands)

    Arens, M.; Worrell, E.

    2014-01-01

    We try to understand the role of technological change and diffusion of energy efficient technologies in order to explain the trend of energy intensity developments in the German steel industry. We selected six key energy efficient technologies and collected data to derive their diffusion since their

  2. Financing of energy-efficient productive industrial projects. Situation and first ideas for the future. Synthesis

    International Nuclear Information System (INIS)

    Billard, Yannael; Julien, Emmanuel; Blaisonneau, Laurent; Streiff, Frederic; Padilla, Sylvie; Benazzi, Eric; Domergue, Bruno; Fraysse, Sebastien; Gaussens, Jean-Pierre; Packeu, Paris; Bodino, Didier; Randimbivololona, Prisca; Verbbrughe, Gregory; Bissonnier, Alain; Dantec, Caroline

    2016-11-01

    Based on in-depth interviews with decision makers and experts belonging to energy consuming industrial groups, or involved in technological offer or in financing, this study addressed the issue of energy efficiency in the industrial sector, and of its financing. Interviewed persons represented 11 large companies, 5 medium-sized companies, and 14 industrial sectors, and 3 main professional profiles (from technical to financial). The authors thus explored current financing models implemented to finance energy efficiency, by analysing existing decision-making processes, brakes on energy efficiency in industry, levers favourable to energy efficiency in industry, operational and functional organisations addressing issues related to energy efficiency, the risk management policy implemented for the assessment and follow-up of investments in energy efficiency, and existing and envisaged financial packages to make these investments possible. As far as financing is concerned, the authors analyse present practices, difficulties faced, good and repeatable practices, and discuss some lines of thought to mobilise actors in order to structure and promote energy efficiency in industrial projects, to reduce the risk for an easier financing of such projects, to structure financing tools, to promote incentive taxes and aids

  3. 1997 ACEEE summer study on energy efficiency in industry: Proceedings, refereed papers, and summary monographs

    International Nuclear Information System (INIS)

    1997-01-01

    The theme of this conference is: How industry will procure energy efficiency services in the 21st century. This theme was chose in response to the changing nature of energy service companies. These changes will bring about enhanced opportunities for alliance and partnerships in the procurement of energy efficiency services as well as energy supply services. This Summer Study provides an opportunity to explore the opportunities provided by these changes in a marketplace and examines ways in which they can be used to enhance, in a cost-effective manner, energy efficiency and productivity in industry. The refereed papers in this conference are divided into the following topics: Food Products; Chemicals and Related Products; Iron and Steel; International Energy Issues; Electric Motor Systems; Small Industries; Energy Efficiency and Pollution Prevention; Utility Industry Changes; Development of Partnerships; Case Studies; Steam Systems; Industrial Decision Making; and Industrial Energy Efficiency. The summary monographs cover: Electric Motor Systems; Energy Trends and Analysis; Small Industries; Energy Efficiency and Pollution Prevention; Utility Industry Changes; Steam Systems; Industrial Decision Making; and Display-Summary Monograph. Separate abstracts were prepared for all 55 papers

  4. Challenges and Strength of Current Industrial Energy Efficiency Management Practices in Steam Industries

    Science.gov (United States)

    Nkosi, S. B.; Pretorius, J. H. C.

    2017-07-01

    The aim of this study is to achieve greater output by examining the existing way of coordinating the determined attempts of Steam Industries in South Africa to successfully reach a sustainable industrial development by using energy source adequately in a more competent way. Furthermore into the study we look at obstacles that prevent and those that leads to maximum utilization of energy management measures and also highlights the effects of implementing cheap available energy source in South Africa. The investigation and analysis have shown that energy is not well managed in Steam Industries and that the use of energy is minimized and not fully utilized due to poor management and lack of knowledge. Another detection was that lack of government structured and strategic measures of implementing and motivating the use of energy effectively. The effective and rational use of available power by Steam Industries in South Africa is a key player in developing a sustainable industrial development. The use of energy efficiency management strategies has contributed an increase in economic and improve environmentally friendly in the industrial sector. The slow pace adoption of energy saving and cost effective management programmes are negatively impacting on the benefits to Steam Industries in South Africa. In conclusion the study finds that the economy can be boosted by implementing energy efficiency management programmes and environmentally friendly. These will also stabilize the negative impact of energy raising prices.

  5. Increased Energy Efficiency in Slovenian Industry - A Contribution to the Kyoto Target

    International Nuclear Information System (INIS)

    Selan, B.; Urbancic, A.

    1998-01-01

    In Slovenia the actual fast growth of greenhouse emissions will require substantial efforts to fulfil the target set in Kyoto. The end-use emissions in the in the industrial sectors represented one third of the total CO 2 emissions in the country in 1996. The cost-effective potential in the sector for CO 2 emission reduction is significant. In the paper, the most important ongoing energy efficiency activities in the industrial sector are presented: information and awareness building, energy advising to larger industrial consumers, energy audition programme, demonstration programme of energy efficiency technologies, financial incentives for energy efficiency investment and the energy efficiency investment fund. A CO 2 tax has been in force since 1997. The results of an evaluation of energy efficiency strategies in industry in the frame of the project 'Integrated resource planning for the energy efficiency in Slovenia' are discussed from the viewpoint of greenhouse gases reduction targets set by Slovenia, and a brief information on the ongoing and expected post Kyoto activities and studies is given. The most important points of the future GHG reduction strategy related to industrial sector in Slovenia will be focused on intensified energy efficiency programme, increased combined heat and power production (CHP), and the effects of incentives through the CO 2 tax. (author)

  6. Policies and Measures to Realise Industrial Energy Efficiency and Mitigate Climate Change

    International Nuclear Information System (INIS)

    Price, L.K.; McKane, A.T.; Ploutakhina, M.; Monga, P.; Gielen, D.; Bazilian, M.; Nussbaumer, P.; Howells, M.; Rogner, H.-H.

    2009-01-01

    The industrial sector is responsible for a significant share of global energy use and carbon dioxide (CO 2 ) emissions. Energy efficiency is commonly seen as the most cost-effective, least-polluting, and most readily-accessible industrial energy saving option available in the industrial sector worldwide. Capturing the full extent of these potential end-use energy efficiency improvements rapidly is essential if the world is to be on a path to stabilise greenhouse gas (GHG) concentrations to a level that would prevent dangerous anthropogenic interference with the climate system. In the International Energy Agency (IEA) 450 parts per million stabilisation scenario, over a quarter of all energy efficiency gains need to come from the industrial sector by 2050, largely by changing the pattern of industrial energy use. The reduction potential estimated by IEA and the Intergovernmental Panel on Climate Change (IPCC) for five energy-intensive industrial sub-sectors ranges from about 10 to 40 per cent, depending upon the sector. There is significant potential to reduce, at low or no cost, the amount of energy used to manufacture most commodities. Many policies and programmes - at a national level - have already demonstrated significant improvements in industrial energy efficiency. The associate reduction in energy needs often also improves economic competitiveness as well as mitigates GHG emissions. However, at an international level, approaches such as the Clean Development Mechanism (CDM) are not yet delivering the expected energy efficiency improvements. Existing and effective industrial energy efficiency policies and measures could be replicated at a global level. Key elements of those policies and measures include increasing facility management attention to the issue of energy efficiency; promoting the dissemination of information, practice, and tools; increasing the auditing and implementation capacity; and developing the market for industrial energy efficiency

  7. Industrial energy efficiency: Achieving success in a difficult environment

    Energy Technology Data Exchange (ETDEWEB)

    Castellow, Carl

    2010-09-15

    Energy use and the resulting environmental impacts are major points of concern for the world in the 21st century. Opinions that define the challenges of sustainable energy options are as diverse as the proposed solutions. The industrial sector is a key area both from the standpoint of the amount of energy consumed and the magnitude of the energy options that exist there. However, history has shown that success in the industrial energy sector requires careful planning and consideration of the unique challenges of the manufacturing environment.

  8. Industrial Sector Energy Efficiency Modeling (ISEEM) Framework Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Karali, Nihan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Xu, Tengfang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sathaye, Jayant [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-12-12

    The goal of this study is to develop a new bottom-up industry sector energy-modeling framework with an agenda of addressing least cost regional and global carbon reduction strategies, improving the capabilities and limitations of the existing models that allows trading across regions and countries as an alternative.

  9. Implementation of energy efficiency projects by Dutch industry

    NARCIS (Netherlands)

    Abeelen, Christiaan; Harmsen, Robert; Worrell, Ernst

    2013-01-01

    As potentials for energy savings are huge, industry can provide a major contribution to energy savings goals. This paper focuses on the energy savings realized under the Dutch voluntary agreements in the period 2001-2011. Participants in these schemes are obliged to plan and implement all measures

  10. Advanced Nanostructured Molecular Sieves for Energy Efficient Industrial Separations

    Energy Technology Data Exchange (ETDEWEB)

    Kunhao Li, Michael Beaver

    2012-01-18

    Due to the very small relative volatility difference between propane and propylene, current propane/propylene separation by distillation requires very tall distillation towers (150-250 theoretical plates) and large reflux ratios (up to 15), which is considered to be the most energy consuming large-scale separation process. Adsorptive separation processes are widely considered to be more energy-efficient alternatives to distillation. However, slow diffusion kinetics/mass transport rate through the adsorbent bed often limits the performance of such processes, so further improvements are possible if intra-particle mass transfer rates can be improved. Rive Technology, Inc. is developing and commercializing its proprietary mesoporous zeolite technology for catalysis and separation. With well-controlled intracrystalline mesoporosity, diffusion kinetics through such mesoporous zeolite based catalysts is much improved relative to conventional zeolites, leading to significantly better product selectivity. This 'proof-of-principle' project (DE-EE0003470) is intended to demonstrate that Rive mesoporous zeolite technology can be extended and applied in adsorptive propane/propylene separation and lead to significant energy saving compared to the current distillation process. In this project, the mesoporous zeolite Y synthesis technology was successfully extended to X and A zeolites that are more relevant to adsorbent applications. Mesoporosity was introduced to zeolite X and A for the first time while maintaining adequate adsorption capacity. Zeolite adsorbents were tested for liquid phase separation performance using a pulse flow test unit and the test results show that the separation selectivity of the mesoporous zeolite adsorbent is much closer to optimal for a Simulated Moving Bed (SMB) separation process and the enhanced mesoporosity lead to >100% increase of overall mass transport rate for propane and propylene. These improvements will significantly improve the

  11. Assisting the Tooling and Machining Industry to Become Energy Efficient

    Energy Technology Data Exchange (ETDEWEB)

    Curry, Bennett [Arizona Commerce Authority, Phoenix, AZ (United States)

    2016-12-30

    The Arizona Commerce Authority (ACA) conducted an Innovation in Advanced Manufacturing Grant Competition to support and grow southern and central Arizona’s Aerospace and Defense (A&D) industry and its supply chain. The problem statement for this grant challenge was that many A&D machining processes utilize older generation CNC machine tool technologies that can result an inefficient use of resources – energy, time and materials – compared to the latest state-of-the-art CNC machines. Competitive awards funded projects to develop innovative new tools and technologies that reduce energy consumption for older generation machine tools and foster working relationships between industry small to medium-sized manufacturing enterprises and third-party solution providers. During the 42-month term of this grant, 12 competitive awards were made. Final reports have been included with this submission.

  12. Energy efficiency barriers in commercial and industrial firms in Ukraine: An empirical analysis

    International Nuclear Information System (INIS)

    Hochman, Gal; Timilsina, Govinda R.

    2017-01-01

    Improvement in energy efficiency is one of the main options to reduce energy demand and greenhouse gas emissions. However, large-scale deployment of energy-efficient technologies is constrained by several factors. Employing a survey of 509 industrial and commercial firms throughout Ukraine and a generalized ordered logit model, we quantified the economic, behavioral, and institutional barriers that may impede the deployment of energy-efficient technologies. Our analysis shows that behavioral barriers resulted from lack of information, knowledge, and awareness are major impediments to the adoption of energy-efficient technologies in Ukraine, and that financial barriers may further impede investments in these technologies especially for small firms. This suggests that carefully targeted information provisions and energy audits will enhance Ukrainian firms' investments in energy-efficient technologies to save energy consumption, improve productivity, and reduce carbon emissions from the productive sectors. - Highlights: • Employing a survey of 509 industrial and commercial firms throughout Ukraine • A generalized ordered logit model is used in the analysis. • The paper quantifies the economic, behavioral, and institutional barriers to energy-efficient technologies. • Behavioral barriers are major impediments to the adoption of energy-efficient technologies. • Financial barriers may further impede investments in these technologies especially for small firms.

  13. Ground Thermal Inertia for Energy Efficient Building Design: A Case Study on Food Industry

    OpenAIRE

    Mazarrón, Fernando R.; Cid-Falceto, Jaime; Cañas, Ignacio

    2012-01-01

    The search for energy efficient construction solutions is still pending in the agro-food industry, in which a large amount of energy is often consumed unnecessarily when storing products. The main objective of this research is to promote high energy efficiency built environments, which aim to reduce energy consumption in this sector. We analyze the suitability of using the thermal inertia of the ground to provide an adequate environment for the storage and conservation of agro-food products. ...

  14. Stimulating R and D of industrial energy-efficient technology. Policy lessons--impulse technology

    International Nuclear Information System (INIS)

    Luiten, Esther; Blok, Kornelis

    2004-01-01

    Stimulating research and development (R and D) of innovative energy-efficient technologies for industry is an attractive option for reducing greenhouse gas emissions. Impulse technology, an innovative papermaking technology, is always included in studies assessing the long-term potential of industrial energy efficiency. Aim of this article is to analyse the R and D trajectory of impulse technology in order to explore how government can stimulate the development of industrial energy-efficient technology. The concept of 'momentum' is used to characterise the network of actors and to understand the effect of government R and D support in this particular case study. The network analysis convincingly shows that although marketed as an energy-efficient technology, other benefits were in fact driving forces. Researchers at various national pulp and paper research institutes were successful in attracting government R and D support by claiming an improved energy efficiency. The momentum of the technology network was modest between 1980 and 1990. Therefore, government R and D support accelerated the development of impulse technology in this period. However, when the perspectives of the technology deteriorated--momentum decreased--researchers at national research institutes continued to attract government R and D support successfully. But 25 years of R and D--and over 15 years government R and D support--have not yet resulted in a proven technology. The case study illustrates the risk of continuing R and D support too long without taking into account actors' drivers to invest in R and D. Once momentum decreased, government should have been more circumspect in evaluating the (energy efficiency) promise of impulse technology. The major policy lesson is that government has to look beyond claimed energy efficiencies; government has to value (qualitative) information on (changing) technology networks in deciding upon starting, continuing or pulling out financial R and D support to

  15. India's Fertilizer Industry: Productivity and Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, K.; Sathaye, J.

    1999-07-01

    Historical estimates of productivity growth in India's fertilizer sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. Our analysis shows that in the twenty year period, 1973 to 1993, productivity in the fertilizer sector increased by 2.3% per annum. An econometric analysis reveals that technical progress in India's fertilizer sector has been biased towards the use of energy, while it has been capital and labor saving. The increase in productivity took place during the era of total control when a retention price system and distribution control was in effect. With liberalization of the fertilizer sector and reduction of subsidies productivity declined substantially since the early 1990s. Industrial policies and fiscal incentives still play a major role in the Indian fertilizer sect or. As substantial energy savings and carbon reduction potential exists, energy policies can help overcome barriers to the adoption of these measures in giving proper incentives and correcting distorted prices.

  16. Implementation of energy efficiency projects by Dutch industry

    International Nuclear Information System (INIS)

    Abeelen, Christiaan; Harmsen, Robert; Worrell, Ernst

    2013-01-01

    As potentials for energy savings are huge, industry can provide a major contribution to energy savings goals. This paper focuses on the energy savings realized under the Dutch voluntary agreements in the period 2001–2011. Participants in these schemes are obliged to plan and implement all measures with a payback period of less than 5 years. This paper shows how many of these projects have been implemented and how much savings they generate. Our findings show that large differences exist in the realized savings between individual companies. There is however no significant difference in savings observed between companies that participate in the Emission Trading System (ETS) and companies that do not. Although it is impossible to disentangle the drivers behind the implementation of these projects, the amount of savings suggest that at least part of them was implemented because of different energy policy instruments. - Highlights: • Dutch voluntary agreements monitor all energy saving project by participants. • More than 20 000 energy saving projects have been implemented. • The reported saving effect seems to be fairly accurate. • Energy price is unlikely to be an important driver for savings. • Participation in ETS does not lead to higher investments in energy saving techniques

  17. The impact of energy prices on industrial energy efficiency and productivity

    International Nuclear Information System (INIS)

    Boyd, G.A.

    1993-01-01

    Energy prices moved into the forefront of concern in the mid and late seventies when two oil price shocks drove up energy prices dramatically. The analysis of the subsequent increase in industrial energy efficiency, i.e., decline in energy use per unit of industrial output, has filled volumes of government and private studies. Despite the volumes of analysis, there remains no consensus on the magnitude of the effect of energy prices on industrial energy efficiency or the effect of the change in energy prices on productivity. This paper examines some sources of the controversy to initiate a dialog between policy makers, analysts, and the energy consumers and producers

  18. Features of energy efficiency benchmarking implementation as tools of DSTU ISO 50001: 2014 for Ukrainian industrial enterprises

    Directory of Open Access Journals (Sweden)

    Анастасія Юріївна Данілкова

    2015-12-01

    Full Text Available Essence, types and stages of energy efficiency benchmarking in the industrial enterprises are considered. Features, advantages, disadvantages and limitations on the use are defined and underlying problems that could affect the successful conduct of energy efficiency benchmarking to Ukrainian industrial enterprises are specified. Energy efficiency benchmarking as tools to the national standard of DSTU ISO 50001: 2014 is proposed

  19. Energy efficiency improvement potentials and a low energy demand scenario for the global industrial sector

    NARCIS (Netherlands)

    Kermeli, Katerina; Graus, Wina H J; Worrell, Ernst

    2014-01-01

    The adoption of energy efficiency measures can significantly reduce industrial energy use. This study estimates the future industrial energy consumption under two energy demand scenarios: (1) a reference scenario that follows business as usual trends and (2) a low energy demand scenario that takes

  20. Status and Analysis on Effects of Energy Efficiency Standards for Industrial Boilers in China

    Science.gov (United States)

    Liu, Ren; Chen, Lili; Liu, Meng; Ding, Qing; Zhao, Yuejin

    2017-11-01

    Energy conservation and environmental protection is the basic policy of China, and is an important part of ecological civilization construction. The industrial boilers in China are featured by large quantity, wide distribution, high energy consumption and heavy environmental pollution, which are key problems faced by energy conservation and environmental protection in China. Meanwhile, industrial boilers are important equipment for national economy and people’s daily life, and energy conservation gets through all segments from type selection, purchase, installation and acceptance to fuel management, operation, maintenance and service. China began to implement such national mandatory standards and regulations for industrial boiler as GB24500-2009 The Minimum Allowable Values of Energy Efficiency and Energy Efficiency Grades of Industrial Boilers and TSG G002-2010 Supervision Regulation on Energy-Saving Technology for Boilers since 2009, which obviously promote the development of energy conservation of industrial boilers, but there are also some problems with the rapid development of technologies for energy conservation of industrial boilers. In this paper, the implementation of energy efficiency standards for industrial boilers in China and the significance are analyzed based on survey data, and some suggestions are proposed for the energy efficiency standards for industrial boilers.

  1. Analysis on effects of energy efficiency regulations & standards for industrial boilers in China

    Science.gov (United States)

    Liu, Ren; Chen, Lili; Zhao, Yuejin; Liu, Meng

    2017-11-01

    The industrial boilers in China are featured by large quantity, wide distribution, high energy consumption and heavy environmental pollution, which are key problems faced by energy conservation and environmental protection in China. Meanwhile, industrial boilers are important equipment for national economy and people’s daily life, and energy conservation gets through all segments from type selection, purchase, installation and acceptance to fuel management, operation, maintenance and service. China began to implement such national mandatory standards and regulations for industrial boiler as GB24500-2009 The Minimum Allowable Values of Energy Efficiency and Energy Efficiency Grades of Industrial Boilers and TSG G002-2010 Supervision Regulation on Energy-Saving Technology for Boilers since 2009, which obviously promote the development of energy conservation of industrial boilers, but there are also some problems with the rapid development of technologies for energy conservation of industrial boilers. In this paper, the implementation of energy efficiency standards for industrial boilers in China and the significance are analyzed based on survey data, and some suggestions are proposed for the energy efficiency standards for industrial boilers. Support by Project 2015424050 of Special Fund for quality control Research in the Public Interest

  2. 75 FR 59657 - Energy Efficiency Program for Certain Commercial and Industrial Equipment: Public Meeting and...

    Science.gov (United States)

    2010-09-28

    .../commercial/electric_motors.html and for purchase from the court reporter. After the public meeting and the.... EERE-2010-BT-STD-0027] RIN 1904-AC28 Energy Efficiency Program for Certain Commercial and Industrial Equipment: Public Meeting and Availability of the Framework Document for Commercial and Industrial Electric...

  3. Energy efficiency in the European water industry. A compendium of best practices and case studies

    Energy Technology Data Exchange (ETDEWEB)

    Frijns, J. [Watercycle Research Institute KWR, Nieuwegein (Netherlands); Uijterlinde, C. [Foundation for Applied Water Research STOWA, Amersfoort (Netherlands)

    2010-02-15

    This European report on best practices of energy efficiency in the water industry showcases 23 energy efficiency initiatives which were collected as case studies from European water utilities. The 25 case studies presented in this report will be submitted to UKWIR and Black and Veatch, for potential inclusion in the Global Water Research Coalition (GWRC) global compendium of best practice case studies. The aim of the GWRC-compendium is to identify the promising developments and future opportunities to help deliver incremental improvements in energy efficiency through optimisation of existing assets and operations. But also more substantial improvements in energy efficiency from the adoption of novel (but proven at full scale) technologies. The European report describes case studies from: Belgium, Denmark, France, Germany, Hungary, Netherlands, Norway, Spain and Switzerland. Black and Veatch has gathered furthermore information on 47 cases from the UK. These are reported separately and are not included in this European overview.

  4. From fluid milk to milk powder: Energy use and energy efficiency in the European dairy industry

    International Nuclear Information System (INIS)

    Ramirez, C.A.; Patel, M.; Blok, K.

    2006-01-01

    In this paper, we conduct a cross-country analysis of energy consumption and energy efficiency for the dairy industry in four European countries. Changes in energy efficiency were monitored in two different ways. One way is to look at the energy use by tonne of milk processed by dairies (EEI p1 ). Another way is by comparing the actual energy use with the energy that would have been used if no changes in energy efficiency would have taken place (EEI p2 ). A characteristic of EEI p2 is that it corrects for differences in product mix among countries and in time. We found that changes in production mix are important in three of the four countries studied and that EEI p2 should be preferred when comparing levels of energy efficiency among countries or when there are significant changes in product mix. Once changes in product mix have been taken into account, our results show that France, Germany, the Netherlands and the United Kingdom have reduced their values in EEI p2 , respectively by -0.4%, -2.1%, -1.2% and -3.8% per annum. The results also show that the British, German and Dutch dairy industries have converged towards similar (lower) values in their energy efficiency indicators and that the French dairy industry would save 30% if were to converge to similar values of EEI p as the ones obtained for Germany or the United Kingdom

  5. ENERGY EFFICIENCY OPPORTUNITIES IN THE U.S. PULP AND PAPER INDUSTRY

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Klaas Jan; Masanet, Eric; Worrell, Ernst

    2009-01-01

    The U.S. pulp and paper industry consumes over $7 billion worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pulp and paper industry to reduce energy consumption in a cost-effective manner. This paper provides a brief overview of the U.S. EPA ENERGY STAR(R) for Industry energy efficiency guidebook (a.k.a. the"Energy Guide") for pulp and paper manufacturers. The Energy Guide discusses a wide range of energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. Also provided is a discussion of the trends, structure, and energy consumption characteristics of the U.S. pulp and paper industry along with a description of the major process technologies used within the industry. Many energy efficiency measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in pulp and paper mills and related industries worldwide. The information in this Energy Guide is intended to help energy and plant managers in the U.S. pulp and paper industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures?as well as on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  6. Adding apples and oranges: The monitoring of energy efficiency in the Dutch food industry

    International Nuclear Information System (INIS)

    Ramirez, C.A.; Blok, K.; Neelis, M.; Patel, M.

    2006-01-01

    This article develops indicators to monitor energy efficiency developments in the food and tobacco industry based on physical production data at the firm level provided by the statistics office of the Netherlands in a confidential basis. We measure energy efficiency by using an energy efficiency indicator which is the aggregate specific energy consumption. Our results show that the food and tobacco industry has improved their energy efficiency indicator in primary terms by about 1% per year (uncertainty range between 0.9 and 1.3). In terms of final energy, there has been a decrease on the indicator for final demand of fuels of about 1.8% p.a. while there has been no improvement in the indicator for final demand of electricity. The development in energy efficiency is coherent with the reported implementation rate of energy conservation projects. We conclude that the type and the quality of the data compiled by Statistics Netherlands for the food sector is sufficient to develop indicators as required by energy and climate policy

  7. Energy efficiency opportunities in the U.S. dairy processing industry

    NARCIS (Netherlands)

    Masanet, Eric; Brush, Adrian; Worrell, Ernst

    2014-01-01

    The U.S. dairy processing industry consumes around 1.5 billion worth of purchased fuels and electricity per year. Energy efficiency improvements are a critical way for plants to reduce these costs, lower emissions of energy-related pollutants, and reduce susceptibility to volatile energy prices.

  8. Tax and Fiscal Policies for Promotion of Industrial EnergyEfficiency: A Survey of International Experience

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; Galitsky, Christina; Sinton, Jonathan; Worrell,Ernst; Graus, Wina

    2005-09-15

    The Energy Foundation's China Sustainable Energy Program (CSEP) has undertaken a major project investigating fiscal and tax policy options for stimulating energy efficiency and renewable energy development in China. This report, which is part of the sectoral sub-project studies on energy efficiency in industry, surveys international experience with tax and fiscal policies directed toward increasing investments in energy efficiency in the industrial sector. The report begins with an overview of tax and fiscal policies, including descriptions and evaluations of programs that use energy or energy-related carbon dioxide (CO2) taxes, pollution levies, public benefit charges, grants or subsidies, subsidized audits, loans, tax relief for specific technologies, and tax relief as part of an energy or greenhouse gas (GHG) emission tax or agreement scheme. Following the discussion of these individual policies, the report reviews experience with integrated programs found in two countries as well as with GHG emissions trading programs. The report concludes with a discussion of the best practices related to international experience with tax and fiscal policies to encourage investment in energy efficiency in industry.

  9. Potentials for energy efficiency improvements and implementation of renewable energy sources in hotel industry in Macedonia

    OpenAIRE

    Cingoski, Vlatko

    2015-01-01

    In this presentation, potentials for energy efficiency improvements and implementation of renewable energy sources in hotel industry in Macedonia are discussed. This presentation was part of the research project entitled "Opportunities and Methods for Energy Substitution, Savings and Efficiency Improvements in the Hotel Industry" funded by the University "Goce Delcev", Stip, Macedonia. It was prsented at the joint workshop between University "Goce Delcev", Stip, Macedonia and the Bashkent Un...

  10. Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California

    Energy Technology Data Exchange (ETDEWEB)

    Lekov, Alex; Thompson, Lisa; McKane, Aimee; Rockoff, Alexandra; Piette, Mary Ann

    2009-05-11

    This report summarizes the Lawrence Berkeley National Laboratory's research to date in characterizing energy efficiency and open automated demand response opportunities for industrial refrigerated warehouses in California. The report describes refrigerated warehouses characteristics, energy use and demand, and control systems. It also discusses energy efficiency and open automated demand response opportunities and provides analysis results from three demand response studies. In addition, several energy efficiency, load management, and demand response case studies are provided for refrigerated warehouses. This study shows that refrigerated warehouses can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for open automated demand response (OpenADR) at little additional cost. These improved controls may prepare facilities to be more receptive to OpenADR due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

  11. Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lingbo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); South China Univ. of Technology (SCUT), Guangzhou (China); Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-11-01

    The pulp and paper industry ranks fourth in terms of energy consumption among industries worldwide. Globally, the pulp and paper industry accounted for approximately 5 percent of total world industrial final energy consumption in 2007, and contributed 2 percent of direct carbon dioxide (CO2) emissions from industry. Worldwide pulp and paper demand and production are projected to increase significantly by 2050, leading to an increase in this industry’s absolute energy use and greenhouse gas (GHG) emissions. Development of new energy-efficiency and GHG mitigation technologies and their deployment in the market will be crucial for the pulp and paper industry’s mid- and long-term climate change mitigation strategies. This report describes the industry’s processes and compiles available information on the energy savings, environmental and other benefits, costs, commercialization status, and references for 36 emerging technologies to reduce the industry’s energy use and GHG emissions. Although studies from around the world identify a variety of sector-specific and cross-cutting energy-efficiency technologies that have already been commercialized for the pulp and paper industry, information is scarce and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. The purpose of this report is to provide engineers, researchers, investors, paper companies, policy makers, and other interested parties with easy access to a well-structured resource of information on these technologies.

  12. Research on energy efficiency evaluation based on indicators for industry sectors in China

    International Nuclear Information System (INIS)

    Song, Chenxi; Li, Mingjia; Wen, Zhexi; He, Ya-Ling; Tao, Wen-Quan; Li, Yangzhe; Wei, Xiangyang; Yin, Xiaolan; Huang, Xing

    2014-01-01

    Highlights: • We try to evaluate energy efficiency of industry at the plant-level. • The Hierarchical–Indicator Comparison (HIC) method is proposed. • The HIC method can be implemented based on indicators at multi-levels. • The purified terephthalic acid (PTA) industry is used to illustrate the HIC method. • The construction procedure of indicators and the way to use them are presented. - Abstract: The so-called Hierarchical–Indicator Comparison (HIC) method is introduced in this paper. It mainly serves for industrial energy conservation programs in China. A chemical industry named purified terephthalic acid (PTA) is used to outline this method. Two key points of the HIC method are the construction of energy efficiency indicators (EEI) system and the way to utilize indicators appropriately. After a brief review of EE evaluation methods in literature, the construction procedure of energy efficiency indicators (EEI) system for PTA industry is presented firstly. How to correct reference values for indicators according to non-comparable factors is discussed. Then, how to implement the HIC method based on EEI system is presented. Every indicator has its own advantages and disadvantages. Disadvantages of an indicator can be conquered by other indicators. With multiple indicators used together, more objective EE evaluation result can be obtained. Finally, some proposals for further work of this method are also presented

  13. Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice

    Energy Technology Data Exchange (ETDEWEB)

    McKane, Aimee; Desai, Deann; Matteini, Marco; Meffert, William; Williams, Robert; Risser, Roland

    2009-08-01

    Industry utilizes very complex systems, consisting of equipment and their human interface, which are organized to meet the production needs of the business. Effective and sustainable energy efficiency programs in an industrial setting require a systems approach to optimize the integrated whole while meeting primary business requirements. Companies that treat energy as a manageable resource and integrate their energy program into their management practices have an organizational context to continually seek opportunities for optimizing their energy use. The purpose of an energy management system standard is to provide guidance for industrial and commercial facilities to integrate energy efficiency into their management practices, including fine-tuning production processes and improving the energy efficiency of industrial systems. The International Organization for Standardization (ISO) has identified energy management as one of its top five priorities for standards development. The new ISO 50001 will establish an international framework for industrial, commercial, or institutional facilities, or entire companies, to manage their energy, including procurement and use. This standard is expected to achieve major, long-term increases in energy efficiency (20percent or more) in industrial, commercial, and institutional facilities and to reduce greenhouse gas (GHG) emissions worldwide.This paper describes the impetus for the international standard, its purpose, scope and significance, and development progress to date. A comparative overview of existing energy management standards is provided, as well as a discussion of capacity-building needs for skilled individuals to assist organizations in adopting the standard. Finally, opportunities and challenges are presented for implementing ISO 50001 in emerging economies and developing countries.

  14. Assessing Energy Efficiency Opportunities in US Industrial and Commercial Building Motor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Prakash; Sheaffer, Paul; McKane, Aimee; Scheihing, Paul

    2015-09-01

    In 2002, the United States Department of Energy (USDOE) published an energy efficiency assessment of U.S. industrial sector motor systems titled United States Industrial Electric Motor Systems Market Opportunities Assessment. The assessment advanced motor system efficiency by providing a greater understanding of the energy consumption, use characteristics, and energy efficiency improvement potential of industrial sector motor systems in the U.S. Since 2002, regulations such as Minimum Energy Performance Standards, cost reductions for motor system components such as variable frequency drives, system-integrated motor-driven equipment, and awareness programs for motor system energy efficiency have changed the landscape of U.S. motor system energy consumption. To capture the new landscape, the USDOE has initiated a three-year Motor System Market Assessment (MSMA), led by Lawrence Berkeley National Laboratory (LBNL). The MSMA will assess the energy consumption, operational and maintenance characteristics, and efficiency improvement opportunity of U.S. industrial sector and commercial building motor systems. As part of the MSMA, a significant effort is currently underway to conduct field assessments of motor systems from a sample of facilities representative of U.S. commercial and industrial motor system energy consumption. The Field Assessment Plan used for these assessments builds on recent LBNL research presented at EEMODS 2011 and EEMODS 2013 using methods for characterizing and determining regional motor system energy efficiency opportunities. This paper provides an update on the development and progress of the MSMA, focusing on the Field Assessment Plan and the framework for assessing the global supply chain for emerging motors and drive technologies.

  15. Assessment of clean development mechanism potential of large-scale energy efficiency measures in heavy industries

    International Nuclear Information System (INIS)

    Hayashi, Daisuke; Krey, Matthias

    2007-01-01

    This paper assesses clean development mechanism (CDM) potential of large-scale energy efficiency measures in selected heavy industries (iron and steel, cement, aluminium, pulp and paper, and ammonia) taking India and Brazil as examples of CDM project host countries. We have chosen two criteria for identification of the CDM potential of each energy efficiency measure: (i) emission reductions volume (in CO 2 e) that can be expected from the measure and (ii) likelihood of the measure passing the additionality test of the CDM Executive Board (EB) when submitted as a proposed CDM project activity. The paper shows that the CDM potential of large-scale energy efficiency measures strongly depends on the project-specific and country-specific context. In particular, technologies for the iron and steel industry (coke dry quenching (CDQ), top pressure recovery turbine (TRT), and basic oxygen furnace (BOF) gas recovery), the aluminium industry (point feeder prebake (PFPB) smelter), and the pulp and paper industry (continuous digester technology) offer promising CDM potential

  16. Assessing measures of energy efficiency performance and their application in industry

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, K.

    2008-02-15

    This paper explores different measures of energy efficiency performance (hereafter referred to as 'MEEP'): absolute energy consumption, energy intensity, diffusion of specific energy-saving technology and thermal efficiency. It discusses their advantages and disadvantages and their roles within policy frameworks. MEEP may be necessary at several stages during policy design: in a developing regulatory framework; during the actual application; and in evaluation after policy implementation. Policy makers should consider the suitability of MEEP at each of these stages, based on criteria such as reliability, feasibility and verifiability. The paper considers the importance of so-called boundary definitions when measuring energy performance, and how these affect the appropriateness of country comparisons to guide policy decisions. The paper also addresses the limitations of both energy intensity and technology diffusion indicators as measures of energy efficiency performance. A case study on Japan's iron and steel industry illustrates the critical role of proper boundary definitions for a meaningful assessment of energy efficiency in industry. Depending on the boundaries set for the analysis, the energy consumption per ton of crude steel ranges from 16 to 21 GJ. Both a proper understanding of various methods to assess energy efficiency and the linkage with policy objectives and frameworks are important. Using the diffusion rates of specific energy-efficient processes is a technology-oriented approach which seeks to encourage the retrofitting or replacement of less efficient equipment. There are fewer boundary problems using diffusion rates than by calculating energy consumption. 42 refs., 15 figs., 4 tabs., 1 app.

  17. Energy efficiency in the industry: obstacles and R and D needs

    International Nuclear Information System (INIS)

    Jacquelin, Louis-Marie

    2012-05-01

    In 2011 ADEME, the French Environment and Energy Management Agency, and TOTAL asked ENEA, a consulting firm specialised in energy and the environment for the industrial sector, to carry out a study. The goal was to update the relevance of their shared program to fund and promote R and D in the Energy Efficiency sector. This survey gathered, in a neutral manner, the opinions of different actors about the need of the industry, the innovation obstacles or the processes of the ADEME TOTAL program. The results of the study have been implemented in the Seventh call for proposal of the program, published at the end of 2011. A report synthesizing the main results of the study has been written to contribute to the promotion of the R and D effort in the Energy Efficiency sector

  18. Energy efficiency of China's industry sector: An adjusted network DEA (data envelopment analysis)-based decomposition analysis

    International Nuclear Information System (INIS)

    Liu, Yingnan; Wang, Ke

    2015-01-01

    The process of energy conservation and emission reduction in China requires the specific and accurate evaluation of the energy efficiency of the industry sector because this sector accounts for 70 percent of China's total energy consumption. Previous studies have used a “black box” DEA (data envelopment analysis) model to obtain the energy efficiency without considering the inner structure of the industry sector. However, differences in the properties of energy utilization (final consumption or intermediate conversion) in different industry departments may lead to bias in energy efficiency measures under such “black box” evaluation structures. Using the network DEA model and efficiency decomposition technique, this study proposes an adjusted energy efficiency evaluation model that can characterize the inner structure and associated energy utilization properties of the industry sector so as to avoid evaluation bias. By separating the energy-producing department and energy-consuming department, this adjusted evaluation model was then applied to evaluate the energy efficiency of China's provincial industry sector. - Highlights: • An adjusted network DEA (data envelopment analysis) model for energy efficiency evaluation is proposed. • The inner structure of industry sector is taken into account for energy efficiency evaluation. • Energy final consumption and energy intermediate conversion processes are separately modeled. • China's provincial industry energy efficiency is measured through the adjusted model.

  19. Ground Thermal Inertia for Energy Efficient Building Design: A Case Study on Food Industry

    Directory of Open Access Journals (Sweden)

    Fernando R. Mazarrón

    2012-02-01

    Full Text Available The search for energy efficient construction solutions is still pending in the agro-food industry, in which a large amount of energy is often consumed unnecessarily when storing products. The main objective of this research is to promote high energy efficiency built environments, which aim to reduce energy consumption in this sector. We analyze the suitability of using the thermal inertia of the ground to provide an adequate environment for the storage and conservation of agro-food products. This research compares different construction solutions based on the use of ground thermal properties, analyzing their effectiveness to decrease annual outdoor variations and provide adequate indoor conditions. The analysis undertaken is based on over five million pieces of data, obtained from an uninterrupted four year monitoring process of various constructions with different levels of thermal mass, ranging from high volume constructions to others lacking this resource. It has been proven that constructive solutions based on the use of ground thermal inertia are more effective than other solutions when reducing the effects of outdoor conditions, even when these have air conditioning systems. It is possible to reach optimal conditions to preserve agro-food products such as wine, with a good design and an adequate amount of terrain, without having to use air conditioning systems. The results of this investigation could be of great use to the agro-food industry, becoming a reference when it comes to the design of energy efficient constructions.

  20. Investigation of Electrical Energy Efficiency Use in an Automobile Assembly Industry

    Directory of Open Access Journals (Sweden)

    Jacob TSADO

    2016-12-01

    Full Text Available This research work investigated the electrical energy efficiency improvement and cost saving potentials for automobile assembly plant; a case of Peugeot Automobile Nigeria Limited. The study identified lighting system as a major source through which energy is being wasted, hence efficient energy saving lighting systems are being proffered; also saving accrued were determined to justify their deployment. In the course of this work, an energy saving calculating tool was developed to calculate energy saving capabilities using energy efficient lamps. With ample devotion to the implementation of the recommendations made, the cost of energy per car will be drastically reduced while profits are also made simultaneously. In all, more cars will be produced thus translating to more employment opportunities in the industry.

  1. Issues of geothermal and biomass energy efficiency in agriculture, industry, transports and domestic consumption

    Directory of Open Access Journals (Sweden)

    Cornelia Nistor

    2014-12-01

    Full Text Available Increasing energy efficiency should be a concern for both the firm managers and any leader at any level, given that energy efficiency significantly reduce production costs. An important aspect of this is the use of renewable energy sources, in different types of activities, depending on the possibilities to produce it on favorable terms, to supply at relatively low costs and to efficiently consume it both in the producing units and the households. A skilful and powerful leader will seek and support, through its influence, all the means that determine the reduction of the production costs and obtain a profit as high as possible. Wider use of renewable energy promotes concern for the environment through clean energy, for reducing pollution and for facilitate, in some cases, even the increase of the production with the same costs or lower costs. In agriculture, industry, transports and household consumption, a high importance presents the geothermal energy and the biomass as source of energy.

  2. Regional total-factor energy efficiency and electricity saving potential of manufacturing industry in Turkey

    International Nuclear Information System (INIS)

    Özkara, Yücel; Atak, Mehmet

    2015-01-01

    Regional energy and environmental efficiency measurement is a noteworthy research topic regarding regional development. Data Envelopment Analysis is a suitable technique in the studies of energy and environmental efficiency. This study investigates the efficiency and total-factor energy efficiency scores of the manufacturing industry in 26 regions of Turkey between the years 2003 and 2012, using four data envelopment analysis models supported by a total-factor framework. The first and the second models are based on absence and presence of undesirable outputs, respectively; the third model and the proposed new model aims to maximize energy saving potential considering undesirable outputs. The empirical results show that TR10-Istanbul region is the best performer and acts as a model for inefficient regions with its production composition. Total electricity saving potential is investigated per each region and for the manufacturing industry per each year between years 2003–2012. It is observed that Turkish manufacturing industry has an average electricity saving potential of 39.7%, which reaches its highest in 2004 and lowest in 2012. Another important finding of this study is the existence of a U-shaped relationship between gross value added per capita as regional development indicator and efficiency as well as total-factor energy efficiency index. - Highlights: • Four DEA models are used to measure efficiency and total factor energy efficiency. • A new non-radial DEA model is proposed to maximize energy saving potential. • Considering undesirable output and fixing non-energy inputs give more realistic results. • Electricity saving potential of Turkish manufacturing industry is estimated as 39.7%. • U-shaped relationship is found between regional development and efficiency.

  3. Energy efficiency developments in the pulp and paper industry: a cross-country comparison using physical production data

    Energy Technology Data Exchange (ETDEWEB)

    Farla, J.; Blok, K. [Utrecht Univ. (Netherlands). Dept. of Science, Technology and Society; Schipper, L. [Lawrence Berkeley Lab., CA (United States)

    1997-06-01

    A method is presented for cross-country, cross-time comparison of energy efficiency developments in the manufacturing industry. The method is based on the use of physical production data as a measure of activity growth for the manufacturing industry. The methodology was applied to the pulp and paper industry of eight countries of the Organization for Economic Cooperation and Development (OECD). With the methodology it is possible to follow energy efficiency developments, separately, for fuel and electricity consumption. (Author)

  4. Potential for energy efficiency in the Norwegian land-based industry; Potensial for energieffektivisering i norsk landbasert industri

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-01

    Process Industry Association (PIL, now the Federation of Norwegian Industries) conducted in collaboration with Enova SF, Kjelforeningen - Norwegian Energy and Institute for Energy Technology, in 2002 a study to determine the potential for more environmentally efficient energy use and production in the Norwegian process industry. It was in 2007 conducted a review of the 2002-study, and this work showed that large parts of the potential identified in 2002 were not realized, and that in addition there was further potential. Enova therefore took the initiative in 2009 to do a new review of the potential for energy efficiency in the Norwegian industry. (AG)

  5. Development of a performance-based industrial energy efficiency indicator for corn refining plants.

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, G. A.; Decision and Information Sciences; USEPA

    2006-07-31

    Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing their plant's performance with that of similar plants in the same industry. Manufacturing facilities can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. This report describes work with the corn refining industry to provide a plant-level indicator of energy efficiency for facilities that produce a variety of products--including corn starch, corn oil, animal feed, corn sweeteners, and ethanol--for the paper, food, beverage, and other industries in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for corn refining plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.

  6. A critical analysis of energy efficiency improvement potentials in Taiwan's cement industry

    International Nuclear Information System (INIS)

    Huang, Yun-Hsun; Chang, Yi-Lin; Fleiter, Tobias

    2016-01-01

    The cement industry is the second most energy-intensive sector in Taiwan, which underlines the need to understand its potential for energy efficiency improvement. A bottom-up model-based assessment is utilized to conduct a scenario analysis of energy saving opportunities up to the year 2035. The analysis is supported by detailed expert interviews in all cement plants of Taiwan. The simulation results reveal that by 2035, eighteen energy efficient technologies could result in 25% savings for electricity and 9% savings for fuels under the technical diffusion scenario. This potential totally amounts to about 5000 TJ/year, of which 91% can be implemented cost-effectively assuming a discount rate of 10%. Policy makers should support a fast diffusion of these technologies. Additionally, policy makers can tap further saving potentials. First, by decreasing the clinker share, which is currently regulated to a minimum of 95%. Second, by extending the prohibition to build new cement plants by allowing for replacement of existing capacity with new innovative plants in the coming years. Third, by supporting the use of alternative fuels, which is currently still a niche in Taiwan. - Highlights: •We analyze energy efficiency improvement potentials in Taiwan's cement industry. •Eighteen process-specific technologies are analyzed using a bottom-up model. •Our model systematically reflects the diffusion of technologies over time. •We find energy-saving potentials of 25% for electricity and 9% for fuels in 2035. •91% of the energy-saving potentials can be realized cost-effectively.

  7. Framework methodology for increased energy efficiency and renewable feedstock integration in industrial clusters

    International Nuclear Information System (INIS)

    Hackl, Roman; Harvey, Simon

    2013-01-01

    Highlights: • Framework methodology for energy efficiency of process plants and total sites. • Identification of suitable biorefinery based on host site future energy systems. • Case study results show large energy savings of site wide heat integration. • Case study on refrigeration systems: 15% shaft work savings potential. • Case study on biorefinery integration: utility savings potential of up to 37%. - Abstract: Energy intensive industries, such as the bulk chemical industry, are facing major challenges and adopting strategies to face these challenges. This paper investigates options for clusters of chemical process plants to decrease their energy and emission footprints. There is a wide range of technologies and process integration opportunities available for achieving these objectives, including (i) decreasing fossil fuel and electricity demand by increasing heat integration within individual processes and across the total cluster site; (ii) replacing fossil feedstocks with renewables and biorefinery integration with the existing cluster; (iii) increasing external utilization of excess process heat wherever possible. This paper presents an overview of the use of process integration methods for development of chemical clusters. Process simulation, pinch analysis, Total Site Analysis (TSA) and exergy concepts are combined in a holistic approach to identify opportunities to improve energy efficiency and integrate renewable feedstocks within such clusters. The methodology is illustrated by application to a chemical cluster in Stenungsund on the West Coast of Sweden consisting of five different companies operating six process plants. The paper emphasizes and quantifies the gains that can be made by adopting a total site approach for targeting energy efficiency measures within the cluster and when investigating integration opportunities for advanced biorefinery concepts compared to restricting the analysis to the individual constituent plants. The

  8. Strategies for reconciling environmental goals, productivity improvement, and increased energy efficiency in the industrial sector: Analytic framework

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, G.A.

    1995-06-01

    The project is motivated by recommendations that were made by industry in a number of different forums: the Industry Workshop of the White House Conference on Climate Change, and more recently, industry consultations for EPAct Section 131(c) and Section 160(b). These recommendations were related to reconciling conflicts in environmental goals, productivity improvements and increased energy efficiency in the industrial sector.

  9. Industry Stakeholder Recommendations for DOE's RD&D for Increasing Energy Efficiency in Existing Homes

    Energy Technology Data Exchange (ETDEWEB)

    Plympton, P.; Dagher, L.; Zwack, B.

    2007-06-01

    This technical report documents feedback for Industry Stakeholders on the direction of future U.S. Department of Energy (DOE) research and development in the area of improving energy efficiency in existing residential buildings.

  10. New approaches to energy efficiency programs in the Brazilian industry; Novas abordagens para programas de eficiencia energetica na industria brasileira

    Energy Technology Data Exchange (ETDEWEB)

    Sant' ana, Paulo Henrique de Mello [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Engenharia e Ciencias Sociais Aplicadas. Nucleo Interdisciplinar de Planejamento Energetico; Bajay, Sergio Valdir [Universidade Estadual de Campinas (NIPE/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Nucleo Interdisciplinar de Planejamento Energetico

    2010-07-01

    A modern approach often used in international literature says that the government has the role to create favorable conditions for improving energy efficiency in industry, either through policies, programs or actions. This article's main objective is to describe the main programs for promoting energy efficiency in industry in Brazil and in other countries, for later to propose a new approach for the management and development of energy efficiency programs for the Brazilian industry. The creation of an executive agency, connected to the MME and with strong ties to ELETROBRAS and PETROBRAS, could manage effectively the enormous resources that are needed to mobilize the energy efficiency programs as real alternatives to programs for additional expansion in energy supply. The creation of energy assessment centers, along with an energy efficiency program for energy-intensive industry, would help in promoting energy efficiency in industry. These actions would likely bounce in other industries, and would assist in achieving optimal management standards in the energy industry, consistent with ISO 9000 and ISO 14000, used in countries like the USA and Sweden. (author)

  11. Energy efficiency improvement and CO2 emission reduction opportunities in the cement industry in China

    International Nuclear Information System (INIS)

    Hasanbeigi, Ali; Morrow, William; Masanet, Eric; Sathaye, Jayant; Xu, Tengfang

    2013-01-01

    China's annual cement production (i.e., 1868 Mt) in 2010 accounted for nearly half of the world's annual cement production in the same year. We identified and analyzed 23 energy efficiency technologies and measures applicable to the processes in China's cement industry. The Conservation Supply Curve (CSC) used in this study is an analytical tool that captures both the engineering and the economic perspectives of energy conservation. Using bottom–up CSC models, the cumulative cost-effective and technical electricity and fuel savings, as well as the CO 2 emission reduction potentials for the Chinese cement industry for 2010–2030 are estimated. By comparison, the total final energy saving achieved by the implementation of these 23 efficiency measures in the Chinese cement industry over 20 years (2010–2030) is equal to 30% of the total primary energy supply of Latin America or Middle East or around 71% of primary energy supply of Brazil in 2007. In addition, a sensitivity analysis with respect to the discount rate is conducted to assess its effect on the results. The result of this study gives a comprehensive and easy to understand perspective to the Chinese cement industry and policy makers about the energy efficiency potential and its associated cost. - Highlights: ► Estimation of energy saving potential in the entire Chinese cement industry. ► Development of the bottom–up technology-rich Conservation Supply Curve models. ► Discussion of different approaches for developing conservation supply curves. ► Primary energy saving over 20 years equal to 33% of primary energy of Latin America

  12. Economic feasibility of an energy efficiency project for a steam distribution system in a chemical industry

    Directory of Open Access Journals (Sweden)

    Flavia Melo Menezes

    2017-12-01

    Full Text Available The burning of fossil fuels majorly contributes to the increase in global warming, and it represents 93% of greenhouse gases emissions in the chemical industry. Most of the energy demand in this sector is associated with steam systems, where 1/3 of the energy efficiency opportunities are located in its distribution system. However, most of the literature focuses on the design of new systems. Those that deal with existing systems, not always use simple and available methods. Furthermore, they address energy losses of steam systems only due to thermal insulation, ignoring those due to leakages of traps. Given this context, the purpose of this paper is to determine the economic feasibility of an energy efficiency project for a steam distribution system in a chemical industry, located in the metropolitan region of Salvador, Brazil. First, the energy lost in the steam distribution system through heat insulation and steam traps was estimated by applying thermodynamic principles, and technic consulting, respectively. Then, investments were estimated using commercial prices for new thermal insulation and steam traps. Finally, an economic evaluation of the improvement project was made, through the construction of a cash flow, and calculation of economic indicators: payback time, net present value (NPV, and internal rate of return (IRR. Economic indicators showed that the project is economically viable. The NPV and IRR reached approximately 5 million reais, and 66% per year, respectively. Additionally, this project also had social and environmental benefits, such as a reduction in greenhouse gases emissions, and increased local water availability.

  13. Evaluating the Economic Performance of High-Technology Industry and Energy Efficiency: A Case Study of Science Parks in Taiwan

    Directory of Open Access Journals (Sweden)

    Min-Ren Yan

    2013-02-01

    Full Text Available High-technology industries provide opportunities for economic growth, but also raise concerns because of their energy-demanding nature. This paper provides an integrated evaluation of both economic benefits and energy efficiency of high-technology industries based on the real data from one of the globally recognized high-technology industrial clusters, the national science parks in Taiwan. A nation-wide industrial Input-Output Analysis is conducted to demonstrate the positive effects of science parks on national economic developments and industrial upgrades. The concept of energy intensity and an energy-efficient economy index are applied to an integrated assessment of the relationship between economic growth and energy consumption. The proposed case study suggests that economic and energy efficiency objectives can be simultaneously achieved by the development of high-technology industries, while three energy policy implications are considered. First, a nation-wide macro viewpoint is needed and high-technology industries should be considered as parts of the national/regional economies by governmental agencies. Second, a proper industrial clustering mechanism and the shared environmental facilities supported by the government, such as planned land and road usage, electricity and water supply, telecommunications system, sewerage system and wastewater treatments, can improve energy efficiency of high-technology industries. Third, the governmental policies on the taxing and management system in science parks would also direct energy-efficient economy of high-technology industries.

  14. The Boardroom Perspective: How Does Energy Efficiency Policy Influence Decision Making in Industry?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This report delves into the major factors or driving forces that decision makers within a large industrial company take into account when deciding to make new investments - the so-called {sup b}oardroom perspective{sup .} The rationale for an individual company making an investment that will reduce energy consumption varies considerably and depends on a range of factors. This report explores those factors that influence companies to invest in energy savings and proposes a methodology to evaluate the effectiveness of a country's energy efficiency and greenhouse gas mitigation policies mix from this boardroom perspective. This paper is the product of collaboration between the IEA and the Institute of Industrial Productivity (IIP).

  15. Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kermeli, Katerina; Worrell, Ernst; Masanet, Eric

    2011-12-01

    The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for more than 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials accounting for more than 50% of total concrete production costs - cement only accounts for nearly 24%. In 2009, energy costs of the U.S. concrete industry were over $610 million. Hence, energy efficiency improvements along with efficient use of materials without negatively affecting product quality and yield, especially in times of increased fuel and material costs, can significantly reduce production costs and increase competitiveness. The Energy Guide starts with an overview of the U.S. concrete industry’s structure and energy use, a description of the various manufacturing processes, and identification of the major energy consuming areas in the different industry segments. This is followed by a description of general and process related energy- and cost-efficiency measures applicable to the concrete industry. Specific energy and cost savings and a typical payback period are included based on literature and case studies, when available. The Energy Guide intends to provide information on cost reduction opportunities to energy and plant managers in the U.S. concrete industry. Every cost saving opportunity should be assessed carefully prior to implementation in individual plants, as the economics and the potential energy and material savings may differ.

  16. Assessment of Energy Efficiency Improvement in the United States Petroleum Refining Industry

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, William R. [Ernest Orlando Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Marano, John [JM Energy Consulting, Inc.; Sathaye, Jayant [Ernest Orlando Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Hasanbeigi, Ali [Ernest Orlando Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Xu, Tengfang [Ernest Orlando Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)

    2013-02-01

    Adoption of efficient process technologies is an important approach to reducing CO2 emissions, in particular those associated with combustion. In many cases, implementing energy efficiency measures is among the most cost-effective approaches that any refiner can take, improving productivity while reducing emissions. Therefore, careful analysis of the options and costs associated with efficiency measures is required to establish sound carbon policies addressing global climate change, and is the primary focus of LBNL’s current petroleum refining sector analysis for the U.S. Environmental Protection Agency. The analysis is aimed at identifying energy efficiency-related measures and developing energy abatement supply curves and CO2 emissions reduction potential for the U.S. refining industry. A refinery model has been developed for this purpose that is a notional aggregation of the U.S. petroleum refining sector. It consists of twelve processing units and account s for the additional energy requirements from steam generation, hydrogen production and water utilities required by each of the twelve processing units. The model is carbon and energy balanced such that crud e oil inputs and major refinery sector outputs (fuels) are benchmarked to 2010 data. Estimates of the current penetration for the identified energy efficiency measures benchmark the energy requirements to those reported in U.S. DOE 2010 data. The remaining energy efficiency potential for each of the measures is estimated and compared to U.S. DOE fuel prices resulting in estimates of cost- effective energy efficiency opportunities for each of the twelve major processes. A combined cost of conserved energy supply curve is also presented along with the CO2 emissions abatement opportunities that exist in the U.S. petroleum refinery sector. Roughly 1,200 PJ per year of primary fuels savings and close to 500 GWh per y ear of electricity savings are potentially cost

  17. Integration of solar thermal for improved energy efficiency in low-temperature-pinch industrial processes

    International Nuclear Information System (INIS)

    Atkins, Martin J.; Walmsley, Michael R.W.; Morrison, Andrew S.

    2010-01-01

    Solar thermal systems have the potential to provide renewable industrial process heat and are especially suited for low pinch temperature processes such as those in the food, beverage, and textile sectors. When correctly integrated within an industrial process, they can provide significant progress towards both increased energy efficiency and reduction in emissions. However, the integration of renewable solar energy into industrial processes presents a challenge for existing process integration techniques due to the non-continuous nature of the supply. A thorough pinch analysis study of the industrial process, taking in to account non-continuous operating rates, should be performed to evaluate the utility demand profile. Solar collector efficiency data under variable climatic conditions should also be collected for the specific site. A systematic method of combining this information leads to improved design and an optimal operating strategy. This approach has been applied to a New Zealand milk powder plant and benefits of several integration strategies, including mass integration, are investigated. The appropriate placement of the solar heat is analogous to the placement of a hot utility source and an energy penalty will be incurred when the solar thermal system provides heat below the pinch temperature.

  18. An Energy Efficiency Evaluation Method Based on Energy Baseline for Chemical Industry

    Directory of Open Access Journals (Sweden)

    Dong-mei Yao

    2016-01-01

    Full Text Available According to the requirements and structure of ISO 50001 energy management system, this study proposes an energy efficiency evaluation method based on energy baseline for chemical industry. Using this method, the energy plan implementation effect in the processes of chemical production can be evaluated quantitatively, and evidences for system fault diagnosis can be provided. This method establishes the energy baseline models which can meet the demand of the different kinds of production processes and gives the general solving method of each kind of model according to the production data. Then the energy plan implementation effect can be evaluated and also whether the system is running normally can be determined through the baseline model. Finally, this method is used on cracked gas compressor unit of ethylene plant in some petrochemical enterprise; it can be proven that this method is correct and practical.

  19. Implications of an energy efficiency obligation scheme for the Swedish energy-intensive industries : an evaluation of costs and benefits

    OpenAIRE

    Xylia, Maria; Silveira, Semida; Morfeldt, Johannes

    2016-01-01

    The EU Energy Efficiency Directive (EED) aims at improving energy efficiency by implementing actions in all sectors of the economy in the EU. Article 7 of the EED sets the target of 1.5 % cumulative annual energy end-use savings. An energy efficiency obligation scheme (EEO) is one of the policy mechanisms proposed to reach this target. This paper assesses the impact of implementing a Swedish EEO and the implications that such a scheme may have for Swedish energy-intensive industries. The asse...

  20. Comparison of the energy efficiency to produce agroethanol between various industries and processes: Synthesis

    International Nuclear Information System (INIS)

    Chavanne, Xavier; Frangi, Jean-Pierre

    2011-01-01

    The article assesses the energy R required by a system to transform a cereal or sugar plant into ethanol. From the specific consumption r j of each process j and its weight w j in the system, process consumption share R j is deduced and hence R, sum of R j . Depending on w j definition, R j and R are relative to either 100 J of ethanol produced or 100 J of plant harvested. Depending on the nature of r j , R j and R represent either only primary external energies, or all fuel and electricity consumed directly, or external and internal energies. From one definition to another R for average sugar cane based industries is the best or the worst relative to other plants. This results also from the use of cane residues as fuels while operating outdated processes. Through r j the process based analysis allows to examine for each system the impact of modern processes or different use of residues. All systems benefit except sugar beet based industry close to its best efficiency. This flexibility permits even to build a self-sufficient system where existing processes produce from system resources substitutes to external energies. R becomes an unambiguous definition of a system efficiency. It shows that all agroethanol systems are more consuming than petroleum industry. The system can be expanded to the vehicle stage to compare with alternatives to ethanol such as electricity and biogas. Wheat straw burnt to produce electricity used in an electrical vehicle will present R close to that of petroleum industry. -- Highlights: → Study of the energy consumptions of agroethanol industries with a process based analysis. → Different definitions of energy efficiency with potential opposite conclusions. → Previous highlight is overcome using self sufficient systems with existing processes. → Consumptions of average and improved agroethanol industries larger than for petroleum industries. → Electricity from wheat straw combustion can compete with gasoline from crude oil.

  1. Industrial energy efficiency in light of climate change negotiations: Comparing major developing countries and the U.S

    International Nuclear Information System (INIS)

    Phylipsen, D.; Price, L.; Worrell, E.; Blok, K.

    1999-01-01

    In light of the commitments accepted within the Framework Convention on Climate Change there is an increasing need for useful information on energy consumption and energy efficiency. Governments can use this information in designing policies to reduce greenhouse gas emissions and prioritizing energy savings options. International comparison of energy efficiency can provide a benchmark against which a country's performance can be measured and policies can be evaluated. A methodology for international comparisons of industrial energy efficiency was developed by the International Network on Energy Demand analysis in the Industrial Sector. In this paper this methodology is used to analyze the energy efficiency of two energy-intensive industries in major developing countries. Energy consumption trends are shown for the steel and cement industry and an analysis is made of technologies used. In light of the Byrd-Hagel resolution, which states that the US will not ratify any climate treaty unless it also mandates commitments to limit greenhouse gas emissions for developing countries, the energy efficiency in the two sectors is compared to that of the US. The analysis shows that in the iron and steel sector South Korea and Brazil are more energy-efficient than the US, while Mexico has achieved a comparable energy efficiency level in recent years. For cement, South Korea, Brazil and Mexico are the most efficient countries analyzed. In recent years, China, and especially, India appear to have achieved energy efficiency levels, more or less comparable to that of the US. In light of data constraints, however, further analysis is required

  2. Risk management of energy efficiency projects in the industry - sample plant for injecting pulverized coal into the blast furnaces

    OpenAIRE

    Jovanović Filip P.; Berić Ivana M.; Jovanović Petar M.; Jovanović Aca D.

    2016-01-01

    This paper analyses the applicability of well-known risk management methodologies in energy efficiency projects in the industry. The possibilities of application of the selected risk management methodology are demonstrated within the project of the plants for injecting pulverized coal into blast furnaces nos. 1 and 2, implemented by the company US STEEL SERBIA d.o.o. in Smederevo. The aim of the project was to increase energy efficiency through the reductio...

  3. Setting SMART targets for industrial energy use and industrial energy efficiency

    NARCIS (Netherlands)

    Rietbergen, M.G.|info:eu-repo/dai/nl/14111634X; Blok, K.|info:eu-repo/dai/nl/07170275X

    2010-01-01

    Industrial energy policies often require the setting of quantitative targets to reduce energy use and/or greenhouse gas emissions. In this paper a taxonomy has been developed for categorizing SMART industrial energy use or greenhouse gas emission reduction targets. The taxonomy includes volume

  4. Enhancing shareholder value: Making a more compelling energy efficiency case to industry by quantifying non-energy benefits

    International Nuclear Information System (INIS)

    Pye, M.; McKane, A.

    1999-01-01

    This paper describes a more compelling case for industry to promote the non-energy benefits of energy efficiency investments. They do this in two ways to actively appeal to chief executive officers' (CEOs') and chief financial officers' (CFOs') primary responsibility: to enhance shareholder value. First, they describe the use of a project-by-project corporate financial analysis approach to quantify a broader range of productivity benefits that stem from investments in energy-efficient technologies, including waste reduction and pollution prevention. Second, and perhaps just as important, they present such information in corporate financial terms. These standard, widely accepted analysis procedures are more credible to industry than the economic modeling done in the past because they are structured in the same way corporate financial analysts perform discounted cashflow investment analyses on individual projects. Case studies including such financial analyses, which quantify both energy and non-energy benefits from investments in energy-efficient technologies, are presented. Experience shows that energy efficiency projects' non-energy benefits often exceed the value of energy savings, so energy savings should be viewed more correctly as part of the total benefits, rather than the focus of the results. Quantifying the total benefits of energy efficiency projects helps companies understand the financial opportunities of investments in energy-efficient technologies. Making a case for investing in energy-efficient technologies based on energy savings alone has not always proven successful. Evidence suggests, however, that industrial decision makers will understand energy efficiency investments as part of a broader set of parameters that affect company productivity and profitability

  5. Evaluating co-benefits of energy efficiency and air pollution abatement in China’s cement industry

    NARCIS (Netherlands)

    Zhang, Shaohui; Worrell, Ernst|info:eu-repo/dai/nl/106856715; Crijns - Graus, Wina|info:eu-repo/dai/nl/308005015

    2015-01-01

    China’s cement industry is the world’s largest and is one of the largest energy consuming, and GHG and air pollutant emitting industries. Actions to improve energy efficiency by best available technology can often bring co-benefits for climate change and air quality through reducing emissions of

  6. India's pulp and paper industry: Productivity and energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Katja

    1999-07-01

    Historical estimates of productivity growth in India's pulp and paper sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. The authors derive both statistical and econometric estimates of productivity growth for this sector. Their results show that productivity declined over the observed period from 1973-74 to 1993-94 by 1.1% p.a. Using a translog specification the econometric analysis reveals that technical progress in India's pulp and paper sector has been biased towards the use of energy and material, while it has been capital and labor saving. The decline in productivity was caused largely by the protection afforded by high tariffs on imported paper products and other policies, which allowed inefficient, small plants to enter the market and flourish. Will these trends continue into the future, particularly where energy use is concerned? The authors examine the current changes in structure and energy efficiency undergoing in the sector. Their analysis shows that with liberalization of the sector, and tighter environmental controls, the industry is moving towards higher efficiency and productivity. However, the analysis also shows that because these improvements are being hampered by significant financial and other barriers the industry might have a long way to go.

  7. Energy efficiency and pollution control for thermal units in the Egyptian industry

    International Nuclear Information System (INIS)

    Said Abdel-wahab; Ismail, W.M.

    1999-01-01

    Energy conservation and environmental protection project (ECEP) is a Usaid sponsored project. Its main objective is to promote energy conservation and pollution protection in the egyptian industry through a group of demonstrated projects. One of the implemented activities is the boilers and furnaces tune-up program, which aims to increase energy efficiency and reduce pollution. To achieve this objective. (ECEP) distributed 100 electronic portable exhaust gas analyzers to cover eight industrial sectors at six different geographical locations in egypt. These analyzers were used to measure the contents of exhaust gases to help operators tune up their equipment on regular basis. The result is that the firing thermal units operate at the highest possible combustion efficiency to reduce the amount of fuel consumption as well as pollution emissions. The analyzer used measures two types of temperature, five different stack gases, draft and smoke density. moreover it computes the efficiency of combustion as well as Co2 and excess air percentage. Thermal units that rested by these analyzers were consuming a huge amount of fossil fuel from different types. The average combustion efficiency for thermal units tested was improved by 14%, 15% and 28% for boilers, furnaces and diesel respectively

  8. Energy efficiency; Efficacite energetique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    This road-map proposes by the Group Total aims to inform the public on the energy efficiency. It presents the energy efficiency and intensity around the world with a particular focus on Europe, the energy efficiency in industry and Total commitment. (A.L.B.)

  9. Analysis of Energy-Efficiency Opportunities for the Pulp and Paper Industry in China

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lingbo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept.. China Energy Group; Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept.. China Energy Group; Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept.. China Energy Group; Liu, Huanbin [South China Univ. of Technology, Guangzhou (China). State Key Lab. of Pulp and Paper Engineering

    2013-01-31

    This study assesses the impact of 23 energy-efficiency measures that could be applied in China's pulp and paper industry. We analyze the fuel- and electricity-efficiency improvement potential of these technologies for the year 2010 using a bottom-up conservation supply curve (CSC) model. The fuel CSC model shows that the cost-effective fuel efficiency improvement potential for China's pulp and paper industry is 179.6 PJ, and the total technical fuel-savings potential is 254.3 PJ. These figures represent 26.8 percent and 38.0 percent, respectively, of total fuel used in China’s pulp and paper industry in 2010. The CO2 emissions reduction potential associated with ii the cost-effective fuel savings is 16.9 Mt CO2, and the total technical potential for CO2 emissions reduction is 24.2 Mt CO2. The electricity CSC model shows that the total technical electricity-efficiency potential to 2,316 gigawatt-hours (GWh) or 4.3 percent of total electricity use in the pulp and paper industry in 2010. All of the electricity-efficiency potential is cost effective. The CO2 emissions reduction potential associated with the total electricity savings is 1.8 Mt CO2. Sensitivity analyses for adoption rate, discount rate, electricity and fuel prices, investment costs, and the energy savings from each measure show that these parameters have significant influence on the results. Therefore, the results presented in this report should be interpreted with caution.

  10. Co-benefits of energy efficiency improvement and air pollution abatement in the Chinese iron and steel industry

    International Nuclear Information System (INIS)

    Zhang, Shaohui; Worrell, Ernst; Crijns-Graus, Wina; Wagner, Fabian; Cofala, Janusz

    2014-01-01

    In 2010, China was responsible for 45% of global steel production, while consuming 15.8 EJ of final energy and emitting 1344 Mt CO 2eq , 8.4 Mt of PM (particulate matter) emissions, and 5.3 Mt of SO 2 emissions. In this paper we analyse the co-benefits of implementing energy efficiency measures that jointly reduce greenhouse gas emissions and air pollutants, in comparison to applying only air pollution control (end-of-pipe technology). For this purpose we construct ECSC (energy conservation supply curves) that contain potentials and costs of energy efficiency measures and implement these in the GAINS (greenhouse gas and air pollution interactions and synergies) model. Findings show that the technical energy saving potential for the Chinese iron and steel industry for 2030 is around 5.7 EJ. This is equivalent to 28% of reference energy use in 2030. The emissions mitigation of GHGs (greenhouse gases) and air pollutants in BAEEM S 3 scenario would be reduce 27% CO 2 eq, 3% of PM, and 22% of SO 2 , compared to the BL scenario in 2030. Investments and cost savings were calculated for different scenarios, showing that energy efficiency investments will result in significant reductions in air pollution control costs. Hence, Energy efficiency measures should be integrated in air quality policy in China. - Highlights: • Implementation rates of 56 EEMs (energy efficiency measures) are quantified in China's Iron and steel industry. • Energy Supply Cost Curve was implemented in the GAINS (greenhouse gas and air pollution interactions and synergies) model. • The contribution of energy efficiency measure on the process level was estimated. • There are large co-benefits of improving energy efficiency and reducing emissions. • EEMs (energy efficiency measures) would lead to huge reductions in air pollution

  11. Sustainable Industrialization in the Building Industry: On the Road to Energy Efficient Construction Management

    DEFF Research Database (Denmark)

    Wandahl, Søren; Ussing, Lene Faber

    2013-01-01

    Since the Brundtland report in 1987, sustainability has been an issue in all parts of the world, and the focus is increasing in these years. In the same period, the building industry has in the same period also been under heavy pressure to increase productivity in the same pace as other manufactu...

  12. Evaluating co-benefits of energy efficiency and air pollution abatement in China’s cement industry

    International Nuclear Information System (INIS)

    Zhang, Shaohui; Worrell, Ernst; Crijns-Graus, Wina

    2015-01-01

    Highlights: • Implementation rates of 37 EEMs are quantified for China’s cement industry. • Energy Supply Cost Curves were implemented in the GAINS model. • The economic energy saving potential is 3.0 EJ and costs is $4.1 billion in 2030. • Energy efficiency would lead to large reductions in air pollution. • The co-benefits decrease average marginal costs of EEMs by 20%. - Abstract: China’s cement industry is the world’s largest and is one of the largest energy consuming, and GHG and air pollutant emitting industries. Actions to improve energy efficiency by best available technology can often bring co-benefits for climate change and air quality through reducing emissions of GHGs and air pollutants emission. In this study, the energy conservation supply curves (ECSC) combined with the GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies) was used to estimate the co-benefits of energy savings on CO 2 and air pollutants emission for implementing co-control options of energy efficiency measures and end-of-pipe options in the China’s cement industry for the period 2011–2030. Results show that there are large co-benefits of improving energy efficiency and reducing emissions of CO 2 and air pollutants for the China’s cement industry during the study period. The cost-effective energy saving potential (EEP1 scenario) and its costs is estimated to be 3.0 EJ and 4.1 billion $ in 2030. The technical energy savings potential (EEP2 scenario) and its costs amount to 4.2 EJ and 8.4 billion $ at the same time. Compared to the baseline scenario, energy efficiency measures can help decrease 5% of CO 2 , 3% of PM, 15% of SO 2 , and 12% of NOx emissions by 2030 in EEP1 scenario. If we do not consider costs (EEP2 scenario), energy efficiency measures can further reduce 3% of CO 2 , 2% of PM, 10% of SO 2 , and 8% of NOx by 2030. Overall, the average marginal costs of energy efficiency measures will decrease by 20%, from 1.48 $/GJ to 1.19 $/GJ, when

  13. International Experience with Key Program Elements of IndustrialEnergy Efficiency or Greenhouse Gas Emissions Reduction Target-SettingPrograms

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

    2008-02-02

    Target-setting agreements, also known as voluntary ornegotiated agreements, have been used by a number of governments as amechanism for promoting energy efficiency within the industrial sector. Arecent survey of such target-setting agreement programs identified 23energy efficiency or GHG emissions reduction voluntary agreement programsin 18 countries. International best practice related to target-settingagreement programs calls for establishment of a coordinated set ofpolicies that provide strong economic incentives as well as technical andfinancial support to participating industries. The key program elementsof a target-setting program are the target-setting process,identification of energy-saving technologies and measures usingenergy-energy efficiency guidebooks and benchmarking as well as byconducting energy-efficiency audits, development of an energy-savingsaction plan, development and implementation of energy managementprotocols, development of incentives and supporting policies, monitoringprogress toward targets, and program evaluation. This report firstprovides a description of three key target-setting agreement programs andthen describes international experience with the key program elementsthat comprise such programs using information from the three keytarget-setting programs as well as from other international programsrelated to industrial energy efficiency or GHG emissionsreductions.

  14. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

    2010-12-22

    This study examines the characteristics of cement plants and their ability to shed or shift load to participate in demand response (DR). Relevant factors investigated include the various equipment and processes used to make cement, the operational limitations cement plants are subject to, and the quantities and sources of energy used in the cement-making process. Opportunities for energy efficiency improvements are also reviewed. The results suggest that cement plants are good candidates for DR participation. The cement industry consumes over 400 trillion Btu of energy annually in the United States, and consumes over 150 MW of electricity in California alone. The chemical reactions required to make cement occur only in the cement kiln, and intermediate products are routinely stored between processing stages without negative effects. Cement plants also operate continuously for months at a time between shutdowns, allowing flexibility in operational scheduling. In addition, several examples of cement plants altering their electricity consumption based on utility incentives are discussed. Further study is needed to determine the practical potential for automated demand response (Auto-DR) and to investigate the magnitude and shape of achievable sheds and shifts.

  15. Guide to energy efficiency opportunities in the Canadian plastics processing industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Energy efficiency is a key issue for the plastics processing sector. This document presented an updated guide for greenhouse gas emissions reduction. The purpose of the document was to assist plastics manufacturers in identifying equipment, auxiliary systems and process improvements that will reduce production costs, improve their competitive position, reduce pollution, and conserve energy, water and other resources. The guide described how to reduce greenhouse gases and how it related to the plastics processing industry. The guide also offered simplified process descriptions and generic process diagrams of plastics processing. Key thermoplastic processes were discussed, notably profile extrusion; thermoplastic-injection moulding; flat film or sheet extrusion; blown-film extrusion; and blow moulding. Two thermoset processes were also discussed, notably compression moulding of thermoset plastics and foam moulding. Auxiliary equipment and general plant systems common to most plastics operations were also discussed. A complete listing of processes which outlined the scope of generic plastic manufacturing processes currently used in Canada were presented in appendix format. New and emerging technologies that were described included raw material developments; robotics; all-electric injection-moulding machine; microwave drying; granulators; gas-assisted injection moulding; tool making technology; volatile organic compound control technologies; synchronous torque motors; and rapid prototyping. tabs., figs., appendices.

  16. Energy-Efficient Broadcasting Scheme for Smart Industrial Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zhuangbin Chen

    2017-01-01

    Full Text Available In smart Industrial Wireless Sensor Networks (IWSNs, sensor nodes usually adopt a programmable technology. These smart devices can obtain new or special functions by reprogramming: they upgrade their soft systems through receiving new version of program codes. If sensor nodes need to be upgraded, the sink node will propagate program code packets to them through “one-to-many” broadcasting, and therefore new capabilities can be obtained, forming the so-called Software Defined Network (SDN. However, due to the high volume of code packet, the constraint energy of sensor node, and the unreliable link quality of wireless network, rapidly broadcasting the code packets to all nodes in network can be a challenge issue. In this paper, a novel Energy-efficient Broadcast scheme with adjustable broadcasting radius is proposed aiming to improve the performance of network upgrade. In our scheme, the nonhotspots sensor nodes take full advantage of their residual energy caused in data collection period to improve the packet reception probability and reduce the broadcasting delay of code packet transmission by enlarging the broadcasting radius, that is, the transmitting power. The theoretical analyses and experimental results show that, compared with previous work, our approach can averagely reduce the Network Upgrade Delay (NUD by 14.8%–45.2% and simultaneously increase the reliability without harming the lifetime of network.

  17. Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; Hasanbeigi, Ali; Lu, Hongyou; Wang, Lan

    2009-10-01

    China's cement industry, which produced 1,388 million metric tons (Mt) of cement in 2008, accounts for almost half of the world's total cement production. Nearly 40% of China's cement production is from relatively obsolete vertical shaft kiln (VSK) cement plants, with the remainder from more modern rotary kiln cement plants, including plants equipped with new suspension pre-heater and pre-calciner (NSP) kilns. Shandong Province is the largest cement-producing Province in China, producing 10% of China's total cement output in 2008. This report documents an analysis of the potential to improve the energy efficiency of NSP kiln cement plants in Shandong Province. Sixteen NSP kiln cement plants were surveyed regarding their cement production, energy consumption, and current adoption of 34 energy-efficient technologies and measures. Plant energy use was compared to both domestic (Chinese) and international best practice using the Benchmarking and Energy Saving Tool for Cement (BEST-Cement). This benchmarking exercise indicated an average technical potential primary energy savings of 12% would be possible if the surveyed plants operated at domestic best practice levels in terms of energy use per ton of cement produced. Average technical potential primary energy savings of 23% would be realized if the plants operated at international best practice levels. Energy conservation supply curves for both fuel and electricity savings were then constructed for the 16 surveyed plants. Using the bottom-up electricity conservation supply curve model, the cost-effective electricity efficiency potential for the studied cement plants in 2008 is estimated to be 373 gigawatt hours (GWh), which accounts for 16% of total electricity use in the 16 surveyed cement plants in 2008. Total technical electricity-saving potential is 915 GWh, which accounts for 40% of total electricity use in the studied plants in 2008. The fuel conservation supply curve model shows the total

  18. Saving Energy in Industrial Companies: Case Studies of Energy Efficiency Programs in Large U.S. Industrial Corporations and the Role of Ratepayer-Funded Support

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-03-08

    This paper is designed for companies looking to cut costs through energy savings, ratepayer-funded program administrators interested in increasing large industrial company participation in energy efficiency program offerings, and state utility commissions.

  19. Energy efficiency and barriers towards meeting energy demand in industries in Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Unachukwu, Godwin O.; Zarma, I.H.; Sambo, A.S.

    2010-09-15

    Energy is an important production factor and therefore should be managed in parallel with land, labor and capital. Energy efficient production should be seen as a quick and cheaper source of new energy supply as the cost of providing energy can be several times the cost of saving it. Increasingly energy efficiency is deemed to include not only the physical efficiency of the technical equipment and facilities but also the overall economic efficiency of the energy system.

  20. Total-Factor Energy Efficiency (TFEE Evaluation on Thermal Power Industry with DEA, Malmquist and Multiple Regression Techniques

    Directory of Open Access Journals (Sweden)

    Jin-Peng Liu

    2017-07-01

    Full Text Available Under the background of a new round of power market reform, realizing the goals of energy saving and emission reduction, reducing the coal consumption and ensuring the sustainable development are the key issues for thermal power industry. With the biggest economy and energy consumption scales in the world, China should promote the energy efficiency of thermal power industry to solve these problems. Therefore, from multiple perspectives, the factors influential to the energy efficiency of thermal power industry were identified. Based on the economic, social and environmental factors, a combination model with Data Envelopment Analysis (DEA and Malmquist index was constructed to evaluate the total-factor energy efficiency (TFEE in thermal power industry. With the empirical studies from national and provincial levels, the TFEE index can be factorized into the technical efficiency index (TECH, the technical progress index (TPCH, the pure efficiency index (PECH and the scale efficiency index (SECH. The analysis showed that the TFEE was mainly determined by TECH and PECH. Meanwhile, by panel data regression model, unit coal consumption, talents and government supervision were selected as important indexes to have positive effects on TFEE in thermal power industry. In addition, the negative indexes, such as energy price and installed capacity, were also analyzed to control their undesired effects. Finally, considering the analysis results, measures for improving energy efficiency of thermal power industry were discussed widely, such as strengthening technology research and design (R&D, enforcing pollutant and emission reduction, distributing capital and labor rationally and improving the government supervision. Relative study results and suggestions can provide references for Chinese government and enterprises to enhance the energy efficiency level.

  1. Energy-Efficiency and Air-Pollutant Emissions-Reduction Opportunities for the Ammonia Industry in China

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ding [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chen, Wenying [Tsinghua Univ., Beijing (China)

    2015-06-01

    As one of the most energy-intensive and polluting industries, ammonia production is responsible for significant carbon dioxide (CO2) and air-pollutant emissions. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate greenhouse gas emissions and improve air quality, lack of understanding of the cost-effectiveness of such improvements has been a barrier to implementing these measures. Assessing the costs, benefits, and cost-effectiveness of different energy-efficiency measures is essential to advancing this understanding. In this study, a bottom-up energy conservation supply curve model is developed to estimate the potential for energy savings and emissions reductions from 26 energy-efficiency measures that could be applied in China’s ammonia industry. Cost-effective implementation of these measures saves a potential 271.5 petajoules/year for fuel and 5,443 gigawatt-hours/year for electricity, equal to 14% of fuel and 14% of electricity consumed in China’s ammonia industry in 2012. These reductions could mitigate 26.7 million tonnes of CO2 emissions. This study also quantifies the co-benefits of reducing air-pollutant emissions and water use that would result from saving energy in China’s ammonia industry. This quantitative analysis advances our understanding of the cost-effectiveness of energy-efficiency measures and can be used to augment efforts to reduce energy use and environmental impacts.

  2. Study on Laws, Regulations and Standards on Energy Efficiency, Energy Conserving and Emission Reduction of Industrial Boilers in EU

    Science.gov (United States)

    Liu, Ren; Zhao, Yuejin; Chen, Haihong; Liang, Xiuying; Yang, Ming

    2017-12-01

    Industrial boilers are widely applied in such fields as factory power, building heating, and people’s lives; China is the world’s largest producer and user of industrial boilers, with very high annual energy consumption; clear requirements have been put forward by China on the energy efficiency since the “11th Five-year Plan” with the hope to save energy and reduce emission by means of energy efficiency standards and regulations on the supervision and control of various special equipment. So far, the energy efficiency of industrial boilers in China has been improved significantly but there is still a gap with the EU states. This paper analyzes the policies of energy efficiency, implementation models and methods of supervision and implementation at the EU level from laws, regulations, directives as well as standards; the paper also puts forward suggestions of energy conserving and emission reduction on the improvement of energy conserving capacity of industrial boilers in China through studying the legislations and measures of the developed countries in energy conserving of boilers.

  3. A Bottom-up Energy Efficiency Improvement Roadmap for China’s Iron and Steel Industry up to 2050

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qi [Northeastern Univ., Shenyang (China); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Arens, Marlene [Fraunhofer Inst. for Systems and Innovation Research (ISI), Karlsruhe (Germany)

    2016-09-01

    Iron and steel manufacturing is energy intensive in China and in the world. China is the world largest steel producer accounting for around half of the world steel production. In this study, we use a bottom-up energy consumption model to analyze four steel-production and energy-efficiency scenarios and evaluate the potential for energy savings from energy-efficient technologies in China’s iron and steel industry between 2010 and 2050. The results show that China’s steel production will rise and peak in the year 2020 at 860 million tons (Mt) per year for the base-case scenario and 680 Mt for the advanced energy-efficiency scenario. From 2020 on, production will gradually decrease to about 510 Mt and 400 Mt in 2050, for the base-case and advanced scenarios, respectively. Energy intensity will decrease from 21.2 gigajoules per ton (G/t) in 2010 to 12.2 GJ/t and 9.9 GJ/t in 2050 for the base-case and advanced scenarios, respectively. In the near term, decreases in iron and steel industry energy intensity will come from adoption of energy-efficient technologies. In the long term, a shift in the production structure of China’s iron and steel industry, reducing the share of blast furnace/basic oxygen furnace production and increasing the share of electric-arc furnace production while reducing the use of pig iron as a feedstock to electric-arc furnaces will continue to reduce the sector’s energy consumption. We discuss barriers to achieving these energy-efficiency gains and make policy recommendations to support improved energy efficiency and a shift in the nature of iron and steel production in China.

  4. Energy efficiency solutions for driers used in the glass manufacturing and processing industry

    Directory of Open Access Journals (Sweden)

    Pătrașcu Roxana

    2017-07-01

    Full Text Available Energy conservation is relevant to increasing efficiency in energy projects, by saving energy, by its’ rational use or by switching to other forms of energy. The goal is to secure energy supply on short and long term, while increasing efficiency. These are enforced by evaluating the companies’ energy status, by monitoring and adjusting energy consumption and organising a coherent energy management. The manufacturing process is described, starting from the state and properties of the raw material and ending with the glass drying technological processes involved. Raw materials are selected considering technological and economic criteria. Manufacturing is treated as a two-stage process, consisting of the logistic, preparation aspect of unloading, transporting, storing materials and the manufacturing process itself, by which the glass is sifted, shredded, deferrized and dried. The interest of analyzing the latter is justified by the fact that it has a big impact on the final energy consumption values, hence, in order to improve the general performance, the driers’ energy losses are to be reduced. Technological, energy and management solutions are stated to meet this problem. In the present paper, the emphasis is on the energy perspective of enhancing the overall efficiency. The case study stresses the effects of heat recovery over the efficiency of a glass drier. Audits are conducted, both before and after its’ implementation, to punctually observe the balance between the entering and exiting heat in the drying process. The reduction in fuel consumption and the increase in thermal performance and fuel usage performances reveal the importance of using all available exiting heat from processes. Technical faults, either in exploitation or in management, lead to additional expenses. Improving them is in congruence with the energy conservation concept and is in accordance with the Energy Efficiency Improvement Program for industrial facilities.

  5. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Galitsky, Christina; Chang, Sheng-chieh; Worrell, Ernst; Masanet, Eric

    2008-03-01

    The U.S. pharmaceutical industry consumes almost $1 billion in energy annually. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pharmaceutical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. pharmaceutical industry is provided along with a description of the major process steps in the pharmaceutical manufacturing process. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in pharmaceutical and related facilities worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers reduce energy consumption in a cost-effective manner while meeting regulatory requirements and maintaining the quality of products manufactured. At individual plants, further research on the economics of the measures?as well as their applicability to different production practices?is needed to assess potential implementation of selected technologies.

  6. Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse

    Energy Technology Data Exchange (ETDEWEB)

    Toy, Lora [RTI International, Research Triangle Park, NC (United States); Choi, Young Chul [RTI International, Research Triangle Park, NC (United States); Hendren, Zachary [RTI International, Research Triangle Park, NC (United States); Kim, Gyu Dong [RTI International, Research Triangle Park, NC (United States)

    2017-03-31

    In the U.S. manufacturing sector, current industrial water use practices are energy-intensive and utilize and discharge high volumes of waters, rendering them not sustainable especially in light of the growing scarcity of suitable water supplies. To help address this problem, the goal of this project was to develop an advanced, cost-effective, hybrid membrane-based water treatment system that can improve the energy efficiency of industrial wastewater treatment while allowing at least 50% water reuse efficiency. This hybrid process would combine emerging Forward Osmosis (FO) and Membrane Distillation (MD) technology components into an integrated FO-MD system that can beneficially utilize low-grade waste heat (i.e., T < 450 °F) in industrial facilities to produce distilled-quality product water for reuse. In this project, laboratory-, bench-, and pilot-scale experiments on the hybrid FO-MD system were conducted for industrial wastewater treatment. It was demonstrated at laboratory, bench, and pilot scales that FO-MD membrane technology can concentrate brine to very high total dissolved solids (TDS) levels (>200,000 ppm) that are at least 2.5 times higher than the TDS level to which RO can achieve. In laboratory testing, currently available FO and MD membranes were tested to select for high-performing membranes with high salt rejection and high water flux. Multiple FO membrane/draw-salt solution combinations that gave high water flux with higher than 98% salt rejection were also identified. Reverse draw-salt fluxes were observed to be much lower for divalent salts than for monovalent salts. MD membranes were identified that had 99.9+% salt rejection and water flux as high as 50-90 L/(m2·h) for flat-sheet membranes and >20 L/(m2·h) for hollow fibers. In bench-scale testing, a single unit of commercially available FO and MD membrane modules were evaluated for continuous, integrated operation. Using the laboratory- and bench-scale test data

  7. Comparison of the energy efficiency to produce agroethanol between various industries and processes: The transport stage

    International Nuclear Information System (INIS)

    Chavanne, Xavier; Frangi, Jean-Pierre

    2011-01-01

    The different modes of transport used in the agroethanol industry and their energy efficiencies have been studied. Their specific consumption of fuels t trans in MJ (t load km) -1 is assessed from raw data and from friction force laws. t trans depends on the mode characteristics, fuel/engine performance, velocity, geometry, total mass, actual load... Lack of precision on them increases the uncertainty on t trans (variation by a factor up to 8 for pipeline depending on the flow velocity). From t trans is deduced the consumption of the mode in the industry R trans in J for 100 J of the energy content of ethanol E etoh produced from the load. R trans takes also into account the distance of shipment d and the weight of the load in E etoh , w load . Trucks, t trans from 7 to 1.4 MJ(t load .km) -1 , can present the best R trans, lower than 0.5 J for 100 J of ethanol, because of trips over small d (less than 100 km) and of low w load (less than 0.04 t load .GJ etoh -1 for farm inputs and ethanol). R trans of the plant transport to the factory by trucks ranges to 3 J due to larger w load (up to 0.56 t load .GJ etoh -1 for sugar cane). Large part of the ethanol is moved from the factory to the local storages over 1000 km more or less depending on the proximity of consumption centers. Efficient modes such as pipeline and sea ships, t trans as low as 0.05 MJ (t load .km) -1 when optimized, can compensate for these distances with R trans around 1 J. R trans to export ethanol from Brazil to France would represent less than 5 J, much lower than the difference of consumptions R between sugar cane and sugar beet based ethanol productions. -- Highlights: → Local and global consumption rates (t and R) to carry inputs, plants or agroethanol. → t in J per km and ton of shipment, and its dependences from data and friction laws. → t from 7 for light trucks to 0.05 MJ (t load .km) -1 for optimized pipe or ship. → R in J for 100 J ethanol from t, distance and mass of load for 100

  8. Air purification in industrial plants producing automotive rubber components in terms of energy efficiency

    Science.gov (United States)

    Grzebielec, Andrzej; Rusowicz, Artur; Szelągowski, Adam

    2017-04-01

    In automotive industry plants, which use injection molding machines for rubber processing, tar contaminates air to such an extent that air fails to enter standard heat recovery systems. Accumulated tar clogs ventilation heat recovery exchangers in just a few days. In the plant in which the research was conducted, tar contamination causes blockage of ventilation ducts. The effect of this phenomenon was that every half year channels had to be replaced with new ones, since the economic analysis has shown that cleaning them is not cost-efficient. Air temperature inside such plants is often, even in winter, higher than 30°C. The air, without any means of heat recovery, is discharged outside the buildings. The analyzed plant uses three types of media for production: hot water, cold water at 14°C (produced in a water chiller), and compressed air, generated in a unit with a rated power consumption of 180 kW. The aim of the study is to determine the energy efficiency improvement of this type of manufacturing plant. The main problem to solve is to provide an air purification process so that air can be used in heat recovery devices. The next problem to solve is to recover heat at such a temperature level that it would be possible to produce cold for technological purposes without air purification. Experimental studies have shown that air purification is feasible. By using one microjet head, a total of 75% of tar particles was removed from the air; by using 4 heads, a purification efficiency of 93% was obtained. This method of air purification causes air temperature to decrease from 35°C to 20°C, which significantly reduces the potential for heat recovery. The next step of the research was designing a cassette-plate heat exchanger to exchange heat without air purification. The economic analysis of such a solution revealed that replacing the heat exchanger with a new one even once a year was not cost-efficient. Another issue examined in the context of energy efficiency was

  9. Air purification in industrial plants producing automotive rubber components in terms of energy efficiency

    Directory of Open Access Journals (Sweden)

    Grzebielec Andrzej

    2017-04-01

    Full Text Available In automotive industry plants, which use injection molding machines for rubber processing, tar contaminates air to such an extent that air fails to enter standard heat recovery systems. Accumulated tar clogs ventilation heat recovery exchangers in just a few days. In the plant in which the research was conducted, tar contamination causes blockage of ventilation ducts. The effect of this phenomenon was that every half year channels had to be replaced with new ones, since the economic analysis has shown that cleaning them is not cost-efficient. Air temperature inside such plants is often, even in winter, higher than 30°C. The air, without any means of heat recovery, is discharged outside the buildings. The analyzed plant uses three types of media for production: hot water, cold water at 14°C (produced in a water chiller, and compressed air, generated in a unit with a rated power consumption of 180 kW. The aim of the study is to determine the energy efficiency improvement of this type of manufacturing plant. The main problem to solve is to provide an air purification process so that air can be used in heat recovery devices. The next problem to solve is to recover heat at such a temperature level that it would be possible to produce cold for technological purposes without air purification. Experimental studies have shown that air purification is feasible. By using one microjet head, a total of 75% of tar particles was removed from the air; by using 4 heads, a purification efficiency of 93% was obtained. This method of air purification causes air temperature to decrease from 35°C to 20°C, which significantly reduces the potential for heat recovery. The next step of the research was designing a cassette-plate heat exchanger to exchange heat without air purification. The economic analysis of such a solution revealed that replacing the heat exchanger with a new one even once a year was not cost-efficient. Another issue examined in the context of

  10. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina; Masanet, Eric; Graus, Wina

    2008-03-01

    The U.S. glass industry is comprised of four primary industry segments--flat glass, container glass, specialty glass, and fiberglass--which together consume $1.6 billion in energy annually. On average, energy costs in the U.S. glass industry account for around 14 percent of total glass production costs. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There is a variety of opportunities available at individual plants in the U.S. glass industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. glass industry is provided along with a description of the major process steps in glass manufacturing. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in glass production facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. glass industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of the measures--as well on as their applicability to different production practices--is needed to assess potential implementation of selected technologies at individual plants.

  11. Energy efficiency opportunities in the U.S. commercial baking industry

    NARCIS (Netherlands)

    Therkelsen, Peter; Masanet, Eric; Worrell, Ernst|info:eu-repo/dai/nl/106856715

    2014-01-01

    Commercial bakery products in the United States such as breads, rolls, frozen cakes, pies, pastries, cookies, and crackers consume over $870 million of energy annually. Energy efficiency measures can reduce the energy costs of significant energy processes and increase earnings predictability. This

  12. Cutting air Pollution by Improving Energy Efficiency of China's Cement Industry

    NARCIS (Netherlands)

    Zhang, Shaohui; Worrell, Ernst; Crijns-graus, Wina

    2015-01-01

    In this study, the energy conservation supply curves (ECSC) combined with the GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies) was used to estimate the co-benefits of energy savings on CO2 and air pollutants emission for implementation co-control options of energy efficiency

  13. Energy-Efficient Through-Life Smart Design, Manufacturing and Operation of Ships in an Industry 4.0 Environment

    Directory of Open Access Journals (Sweden)

    Joo Hock Ang

    2017-04-01

    Full Text Available Energy efficiency is an important factor in the marine industry to help reduce manufacturing and operational costs as well as the impact on the environment. In the face of global competition and cost-effectiveness, ship builders and operators today require a major overhaul in the entire ship design, manufacturing and operation process to achieve these goals. This paper highlights smart design, manufacturing and operation as the way forward in an industry 4.0 (i4 era from designing for better energy efficiency to more intelligent ships and smart operation through-life. The paper (i draws parallels between ship design, manufacturing and operation processes, (ii identifies key challenges facing such a temporal (lifecycle as opposed to spatial (mass products, (iii proposes a closed-loop ship lifecycle framework and (iv outlines potential future directions in smart design, manufacturing and operation of ships in an industry 4.0 value chain so as to achieve more energy-efficient vessels. Through computational intelligence and cyber-physical integration, we envision that industry 4.0 can revolutionise ship design, manufacturing and operations in a smart product through-life process in the near future.

  14. Energy Efficient Industrialized Housing Research Program, Center for Housing Innovation, University of Oregon and the Florida Solar Energy Center

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.Z.

    1990-01-01

    This research program addresses the need to increase the energy efficiency of industrialized housing. Two research centers have responsibility for the program: the Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. The two organizations provide complementary architectural, systems engineering, and industrial engineering capabilities. In 1989 we worked on these tasks: (1) the formation of a steering committee, (2) the development of a multiyear research plan, (3) analysis of the US industrialized housing industry, (4) assessment of foreign technology, (5) assessment of industrial applications, (6) analysis of computerized design and evaluation tools, and (7) assessment of energy performance of baseline and advanced industrialized housing concepts. The current research program, under the guidance of a steering committee composed of industry and government representatives, focuses on three interdependent concerns -- (1) energy, (2) industrial process, and (3) housing design. Building homes in a factory offers the opportunity to increase energy efficiency through the use of new materials and processes, and to increase the value of these homes by improving the quality of their construction. Housing design strives to ensure that these technically advanced homes are marketable and will meet the needs of the people who will live in them.

  15. Ratepayer-funded energy-efficiency programs in a restructuredelectri city industry: Issues and options for regulators andlegislators

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joseph; Goldman, Charles; Nadel, Stephen

    1998-05-01

    Electric industry restructuring requires state regulators and legislators to re-examine the purposes served by and the continuing need for ratepayer-funded energy-efficiency programs, as well as the mechanisms to collect funds for these programs and the institutions appropriate to administer them. This paper offers background to these issues and a series of recommendations based on analysis of recent state experiences. Our recommendations are summarized.

  16. Combining IPPC and emission trading: An assessment of energy efficiency and CO2 reduction potentials in the Austrian paper industry

    International Nuclear Information System (INIS)

    Starzer, Otto; Dworak, Oliver

    2005-01-01

    In the frame of an innovative project partnership E.V.A. - the Austrian Energy Agency accompanied the Austrian paper industry for the last 2.5 years in developing a branch specific climate change strategy. Within the scope of this project an assessment of the energy efficiency status of the branch was carried out as well as an evaluation of still realisable energy savings and CO 2 reduction potentials. The paper presents the methodology applied, which combines a top down approach (benchmarking and best practice) with a bottom up approach (on-site interviews and energy audits), supported by a huge data collection process. Within the benchmarking process all Austrian paper industry installations affected by the EU emission trading directive were benchmarked against their respective IPPC/BAT values. Furthermore an extensive list of best practice examples derived from existing or ongoing studies was compared with the energy efficiency measures already carried out by the companies ('early actions'). These theory-oriented findings were complemented by several on-site interviews with the respective energy managers as well as by detailed energy audits carried out by a consulting company, covering in total more than 80% of the Austrian paper industry's CO 2 emissions. The paper concludes with the main results of the project, presenting the pros and cons of working with IPPC documents and BAT values in terms of energy efficiency assessments. Recommendations are presented on how to improve the allocation exercise for the next emission trading period from 2008 to 2012

  17. Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry

    Energy Technology Data Exchange (ETDEWEB)

    Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept.. China Energy Group; Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept.. China Energy Group; Arens, Marlene [Fraunhofer Inst. for Systems and Innovation Research (ISI), Karlsruhe (Germany)

    2013-01-31

    Iron and steel manufacturing is among the most energy-intensive industries and accounts for the largest share, approximately 27 percent, of global carbon dioxide (CO2) emissions from the manufacturing sector. The ongoing increase in world steel demand means that this industry’s energy use and CO2 emissions continue to grow, so there is significant incentive to develop, commercialize and adopt emerging energy-efficiency and CO2 emissions-reduction technologies for steel production. Although studies from around the world have identified a wide range of energy-efficiency technologies applicable to the steel industry that have already been commercialized, information is limited and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. This report consolidates available information on 56 emerging iron and steel industry technologies, with the intent of providing a well-structured database of information on these technologies for engineers, researchers, investors, steel companies, policy makers, and other interested parties. For each technology included, we provide information on energy savings and environmental and other benefits, costs, and commercialization status; we also identify references for more information.

  18. Energy efficiency

    International Nuclear Information System (INIS)

    2010-01-01

    After a speech of the CEA's (Commissariat a l'Energie Atomique) general administrator about energy efficiency as a first rank challenge for the planet and for France, this publications proposes several contributions: a discussion of the efficiency of nuclear energy, an economic analysis of R and D's value in the field of fourth generation fast reactors, discussions about biofuels and the relationship between energy efficiency and economic competitiveness, and a discussion about solar photovoltaic efficiency

  19. What China can learn from international policy experiences to improve industrial energy efficiency and reduce CO2 emissions?

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xu [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shen, Bo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-11-01

    China’s industrial sector dominates the country’s total energy consumption and energy efficiency in the industry sector is crucial to help China reach its energy and CO2 emissions reduction goals. There are many energy efficiency policies in China, but the motivation and willingness of enterprises to improve energy efficiency has weakened. This report first identifies barriers that enterprises face to be self-motivated to implement energy efficiency measures. Then, this report reviews international policies and programs to improve energy efficiency and evaluates how these policies helped to address the identified barriers. Lastly, this report draws conclusions and provides recommendations to China in developing policies and programs to motivate enterprises to improve energy efficiency.

  20. Comparison the programs of energy efficiency for industrial electric motors; Comparacao de programas de eficiencia energetica para motores eletricos industriais

    Energy Technology Data Exchange (ETDEWEB)

    Mariotoni, Carlos Alberto; Naturesa, Jim Silva; Santos Junior, Joubert Rodrigues dos; Demanboro, Antonio Carlos [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo. Nucleo Interdisciplinar de Planejamento Energetico (NIPE)]. E-mail: cam@fec.unicamp.br; jimnaturesa@yahoo.com; joubert@fec.unicamp.br; anto1810@fec.unicamp.br

    2006-07-01

    This paper aims to present a comparison among the existing programs of energy efficiency for industrial electric motors in Brazil, in the United States of America and in the European Community. The analysis is restricted to the action of each program, considering that the mentioned countries present distinct economical, political and social characteristics. Therefore, it is intended to discuss the main barriers existing in the Brazilian industrial context which cause difficulties to develop a program of electric motors efficiency and to indicate some ways to overcome those barriers. (author)

  1. Asian success stories in promoting energy efficiency in industry and building

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ming [International Inst. for Energy Conservation (IIEC), Bangkok (Thailand)

    1996-12-31

    This article describes the program of the International Institute for Energy Conservation (IIEC), which has offices in Washington, Bangkok, Santiago, and London, in addition to staff in a number of other countries. The mission of this private organization is to promote the efficient use of energy as a tool for sustainable development by supporting the development of policies, technologies, and practices. Its focus is on energy efficiency, transportation systems, and renewable energy sources. Examples of specific program activities in Thailand, China, Philippines, Malaysia, Indonesia and Singapore are discussed.

  2. Design and Implementation of Energy Efficiency in HVAC Systems Based on Robust PID Control for Industrial Applications

    Directory of Open Access Journals (Sweden)

    Muharrem Imal

    2015-01-01

    Full Text Available Energy efficiency in heating, ventilating, and air-conditioning (HVAC systems is a primary concern in process projects, since the energy consumption has the highest percentage in HVAC for all processes. Without sacrifice of thermal comfort, to reset the suitable operating parameters, such as the humidity and air temperature, would have energy saving with immediate effect. In this paper, the simulation-optimization approach described the effective energy efficiency for HVAC systems which are used in industrial process. Due to the complex relationship of the HVAC system parameters, it is necessary to suggest optimum settings for different operations in response to the dynamic cooling loads and changing weather conditions during a year. Proportional-integral-derivative (PID programming was developed which can effectively handle the discrete, nonlinear and highly constrained optimization problems. Energy efficiency process has been made by controlling of alternative current (AC drivers for ventilation and exhaust fans, according to supplied air flow capacity and differential air pressure between supplied and exhaust air. Supervisory controller software was developed by using programmable controllers and human machine interface (HMI units. The new designed HVAC control system would have a saving potential of about 40% as compared to the existing operational settings, without any extra cost.

  3. Barriers to energy efficiency in small industry clusters: Multi-criteria-based prioritization using the analytic hierarchy process

    International Nuclear Information System (INIS)

    Nagesha, N.; Balachandra, P.

    2006-01-01

    The small scale industry (SSI) is an important component of Indian economy and a majority of SSI units tend to exist in geographical clusters. Energy efficiency is crucial for the survival and growth of energy intensive SSI clusters, not only to improve their competitiveness through cost reduction but also to minimize adverse environmental impacts. However, this is easier said than done due to the presence of a variety of barriers. The identification of relevant barriers and their appropriate prioritization in such clusters is a prerequisite to effectively tackle them. This paper identifies relevant barriers to energy efficiency and their dimensions in SSI clusters. Further, the barriers are prioritized based on the perceptions and experiences of entrepreneurs, the main stakeholders of SSIs, using the analytic hierarchy process (AHP). The field data from two energy intensive clusters of foundry and brick and tile in Karnataka (a state in India) reveal that the prioritization remained the same despite differences in the relative weights of barrier groups. The financial and economic barrier (FEB) and behavioural and personal barrier (BPB) have emerged as the top two impediments to energy efficiency improvements

  4. Long-term energy efficiency analysis requires solid energy statistics: The case of the German basic chemical industry

    International Nuclear Information System (INIS)

    Saygin, D.; Worrell, E.; Tam, C.; Trudeau, N.; Gielen, D.J.; Weiss, M.; Patel, M.K.

    2012-01-01

    Analyzing the chemical industry’s energy use is challenging because of the sector’s complexity and the prevailing uncertainty in energy use and production data. We develop an advanced bottom-up model (PIE-Plus) which encompasses the energy use of the 139 most important chemical processes. We apply this model in a case study to analyze the German basic chemical industry’s energy use and energy efficiency improvements in the period between 1995 and 2008. We compare our results with data from the German Energy Balances and with data published by the International Energy Agency (IEA). We find that our model covers 88% of the basic chemical industry’s total final energy use (including non-energy use) as reported in the German Energy Balances. The observed energy efficiency improvements range between 2.2 and 3.5% per year, i.e., they are on the higher side of the values typically reported in literature. Our results point to uncertainties in the basic chemical industry’s final energy use as reported in the energy statistics and the specific energy consumption values. More efforts are required to improve the quality of the national and international energy statistics to make them useable for reliable monitoring of energy efficiency improvements of the chemical industry. -- Highlights: ► An advanced model was developed to estimate German chemical industry’s energy use. ► For the base year (2000), model covers 88% of the sector’s total final energy use. ► Sector’s energy efficiency improved between 2.2 and 3.5%/yr between 1995 and 2008. ► Improved energy statistics are required for accurate monitoring of improvements.

  5. Optimizing the energy efficiency of conventional multi-cylinder dryers in the paper industry

    NARCIS (Netherlands)

    Laurijssen, J.; Gram, F.J. de; Worrell, E.; Faaij, A.P.C.

    2010-01-01

    The paper industry is, with about 6% of the total worldwide industrial energy use, an energy-intensive industry. The drying section is with approximately 50% the largest energy consumer in a paper mill, energy use in this section is mainly heat use. Several options to decrease heat use in

  6. The quid-pro-quo of environmental agreements: Reflections on industrial energy efficiency agreements from five countries

    Energy Technology Data Exchange (ETDEWEB)

    Helby, Peter

    2001-10-01

    This workshop paper reflects on the exchange of values between the government side and the business side, which is a core logic of environmental agreements. The reflections refer to case studies of industrial energy efficiency agreements from Denmark, France, Germany, Netherlands and Sweden, originating from the VAIE project (Voluntary Agreements, Implementation and Efficiency). The government bargaining chips discussed are monetary rewards, help to gain competitive advantage, regulatory flexibility and political protection. The business side bargaining chips are emission limits, organisational change, investments, information, submission to control and political pain reduction. The discussion underlines the need for substantial commitments by the government side, as a precondition for achieving effective agreements.

  7. Energy efficiency in the German pulp and paper industry. A model-based assessment of saving potentials

    Energy Technology Data Exchange (ETDEWEB)

    Fleiter, T.; Eichhammer, W. [Fraunhofer Institute for Systems and Innovation Research, Breslauer Strasse 48, 76139 Karlsruhe (Germany); Fehrenbach, D. [European Institute for Energy Research, Emmy-Noether-Str. 11, 76131 Karlsruhe (Germany); Worrell, E. [Copernicus Institute of Sustainable Development, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht (Netherlands)

    2012-04-15

    Paper production is an energy-intensive process and accounted for about 9% of industrial energy demand in Germany in 2008. There have only been slow improvements in energy efficiency in the paper industry over the past twenty years. Policies can accelerate the progress made, but knowledge about the remaining efficiency potentials and their costs is a prerequisite for their success. We assess 17 process technologies to improve energy efficiency in the German pulp and paper industry up to 2035 using a techno-economic approach. These result in a saving potential of 34 TJ/a for fuels and 12 TJ/a for electricity, which equal 21% and 16% of fuel and electricity demand, respectively. The energy savings can be translated into mitigated CO2 emissions of 3 Mt. The larger part of this potential is found to be cost-effective from a firm's perspective. The most influential technologies are heat recovery in paper mills and the use of innovative paper drying technologies. In conclusion, significant saving potentials are still available, but are limited if we assume that current paper production processes will not change radically. Further savings would be available if the system boundaries of this study were extended to e.g. include cross-cutting technologies.

  8. Voluntary agreements for increasing energy-efficiency in industry: Case study of a pilot project with the steel industry in Shandong Province, China

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

    2003-03-01

    China faces a significant challenge in the years ahead to continue to provide essential materials and products for a rapidly-growing economy while addressing pressing environmental concerns. China's industrial sector is heavily dependent on the country's abundant, yet polluting, coal resources. While tremendous energy conservation and environmental protection achievements were realized in the industrial sector in the past, there remains a great gulf between the China's level of energy efficiency and that of the advanced countries of the world. Internationally, significant energy efficiency improvement in the industrial sector has been realized in a number of countries using an innovative policy mechanism called Voluntary Agreements. This paper describes international experience with Voluntary Agreements in the industrial sector as well as the development of a pilot program to test the use of such agreements with two steel mills in Shandong Province, China.

  9. Policy options to promote energy efficient and environmentally sound technologies in small- and medium-scale industries

    International Nuclear Information System (INIS)

    Thiruchelvam, M.; Kumar, S.; Visvanathan, C.

    2003-01-01

    The rapid industrialization of Asian developing countries has pushed the need for more energy at the cost of environmental degradation. Though large industries are targeted for energy conservation and pollution prevention, small and medium scale industries (SMI) also contribute to significant pollution. This paper discusses the role of SMI in the economy, its energy consumption and impact on the environment. An overview of the energy and environment policies of China, India, Sri Lanka, the Philippines and Vietnam, and the role of energy efficient and environmentally sound technologies (E 3 ST) as a viable means to meet these modern challenges in SMI is discussed. The barriers faced in adopting these technologies have been identified and an analysis has been done of the various strategies and policy options available to governments to promote E 3 ST in SMI. Examples and illustrations of such successful efforts have also been highlighted

  10. India's cement industry: Productivity, energy efficiency and carbon emissions

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Katja; Sathaye, Jayant

    1999-07-01

    Historical estimates of productivity growth in India's cement sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. Analysis shows that in the twenty year period, 1973 to 1993, productivity in the aluminum sector increased by 0.8% per annum. An econometric analysis reveals that technical progress in India's cement sector has been biased towards the use of energy and capital, while it has been material and labor saving. The increase in productivity was mainly driven by a period of progress between 1983 and 1991 following partial decontrol of the cement sector in 1982. The authors examine the current changes in structure and energy efficiency in the sector. Their analysis shows that the Indian cement sector is moving towards world-best technology, which will result in fewer carbon emissions and more efficient energy use. However, substantial further energy savings and carbon reduction potentials still exist.

  11. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, III, William R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Xu, Tengfang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-12-03

    India’s cement industry is the second largest in the world behind China with annual cement production of 168 Mt in 2010 which accounted for slightly greater than six percent of the world’s annual cement production in the same year. To produce that amount of cement, the industry consumed roughly 700 PJ of fuel and 14.7 TWh of electricity. We identified and analyzed 22 energy efficiency technologies and measures applicable to the processes in the Indian cement industry. The Conservation Supply Curve (CSC) used in this study is an analytical tool that captures both the engineering and the economic perspectives of energy conservation. Using a bottom-up electricity CSC model and compared to an electricity price forecast the cumulative cost-effective plant-level electricity savings potential for the Indian cement industry for 2010- 2030 is estimated to be 83 TWh, and the cumulative plant-level technical electricity saving potential is 89 TWh during the same period. The grid-level CO2 emissions reduction associated with cost-effective electricity savings is 82 Mt CO2 and the electric grid-level CO2 emission reduction associated with technical electricity saving potential is 88 Mt CO2. Compared to a fuel price forecast, an estimated cumulative cost-effective fuel savings potential of 1,029 PJ with associated CO2 emission reduction of 97 Mt CO2 during 2010-2030 is possible. In addition, a sensitivity analysis with respect to the discount rate used is conducted to assess the effect of changes in this parameter on the results. The result of this study gives a comprehensive and easy to understand perspective to the Indian cement industry and policy makers about the energy efficiency potential and its associated cost over the next twenty years.

  12. Energy efficiency analysis method based on fuzzy DEA cross-model for ethylene production systems in chemical industry

    International Nuclear Information System (INIS)

    Han, Yongming; Geng, Zhiqiang; Zhu, Qunxiong; Qu, Yixin

    2015-01-01

    DEA (data envelopment analysis) has been widely used for the efficiency analysis of industrial production process. However, the conventional DEA model is difficult to analyze the pros and cons of the multi DMUs (decision-making units). The DEACM (DEA cross-model) can distinguish the pros and cons of the effective DMUs, but it is unable to take the effect of the uncertainty data into account. This paper proposes an efficiency analysis method based on FDEACM (fuzzy DEA cross-model) with Fuzzy Data. The proposed method has better objectivity and resolving power for the decision-making. First we obtain the minimum, the median and the maximum values of the multi-criteria ethylene energy consumption data by the data fuzzification. On the basis of the multi-criteria fuzzy data, the benchmark of the effective production situations and the improvement directions of the ineffective of the ethylene plants under different production data configurations are obtained by the FDEACM. The experimental result shows that the proposed method can improve the ethylene production conditions and guide the efficiency of energy utilization during ethylene production process. - Highlights: • This paper proposes an efficiency analysis method based on FDEACM (fuzzy DEA cross-model) with data fuzzification. • The proposed method is more efficient and accurate than other methods. • We obtain an energy efficiency analysis framework and process based on FDEACM in ethylene production industry. • The proposed method is valid and efficient in improvement of energy efficiency in the ethylene plants

  13. The Role of Emerging Technologies in Improving Energy Efficiency:Examples from the Food Processing Industry

    Energy Technology Data Exchange (ETDEWEB)

    Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

    2006-05-01

    For over 25 years, the U.S. DOE's Industrial Technologies Program (ITP) has championed the application of emerging technologies in industrial plants and monitored these technologies impacts on industrial energy consumption. The cumulative energy savings of more than 160 completed and tracked projects is estimated at approximately 3.99 quadrillion Btu (quad), representing a production cost savings of $20.4 billion. Properly documenting the impacts of such technologies is essential for assessing their effectiveness and for delivering insights about the optimal direction of future technology research. This paper analyzes the impacts that several emerging technologies have had in the food processing industry. The analysis documents energy savings, carbon emissions reductions and production improvements and assesses the market penetration and sector-wide savings potential. Case study data is presented demonstrating the successful implementation of these technologies. The paper's conclusion discusses the effects of these technologies and offers some projections of sector-wide impacts.

  14. A policy analysis of voluntary agreements for energy efficiency in industry

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Anders; Krarup, Signe; Kraemer, Trine Pipi [AKF, Inst. of Local Government Studies, Copenhagen (Denmark)

    1998-12-31

    To a growing degree voluntary agreements are used as an energy policy instrument in industrial energy policy in Europe. This paper investigates voluntary agreements of Great Britain, Denmark, Finland, the Netherlands and Sweden. The paper analyses the design and effects of these agreements and on this background discusses general implications of using voluntary agreements as a policy instrument in industrial energy policy. (au) EFP-95. 23 refs.

  15. Analysis of Relationships among Organizational Barriers to Energy Efficiency Improvement: A Case Study in Indonesia’s Steel Industry

    Directory of Open Access Journals (Sweden)

    Apriani Soepardi

    2018-01-01

    Full Text Available The aim of this paper is to analyze and rank the managerial-organizational barriers to energy efficiency improvement from an industry perspective. To that end, this study utilizes the Interpretive Structural Modeling (ISM methodology to identify the contextual relationships among the barriers. In a focus group discussion forum, five practitioners from the steel industry were consulted to identify these mutual linkages. The results indicated that five of the eight barriers proposed are in the linkage category. These barriers include that the energy manager or people in charge of energy management lack influence, there are higher priorities to production activity, there is management resistance to change, there is inadequate management capacity, and there are conflicts of interest within the organization. The management should focus more attention on these barriers, because they have both high driving power and dependency. The findings are intended to help managers from manufacturing sectors identify key barriers and thus develop strategic plans to address these issues.

  16. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Cement Industry in China

    Energy Technology Data Exchange (ETDEWEB)

    Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Morrow, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Masanet, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sathaye, Jayant [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Xu, Tengfang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-06-15

    China’s annual cement production (i.e., 1,868 Mt) in 2010 accounted for nearly half of the world’s annual cement production in the same year. We identified and analyzed 23 energy efficiency technologies and measures applicable to the processes in the cement industry. The Conservation Supply Curve (CSC) used in this study is an analytical tool that captures both the engineering and the economic perspectives of energy conservation. Using a bottom-up electricity CSC model, the cumulative cost-effective electricity savings potential for the Chinese cement industry for 2010-2030 is estimated to be 251 TWh, and the total technical electricity saving potential is 279 TWh. The CO2 emissions reduction associated with cost-effective electricity savings is 144 Mt CO2 and the CO2 emission reduction associated with technical electricity saving potential is 161 Mt CO2. The fuel CSC model for the cement industry suggests cumulative cost-effective fuel savings potential of 4,326 PJ which is equivalent to the total technical potential with associated CO2 emission reductions of 406 Mt CO2. In addition, a sensitivity analysis with respect to the discount rate used is conducted to assess the effect of changes in this parameter on the results. We also developed a scenario in which instead of only implementing the international technologies in 2010-2030, we implement both international and Chinese domestic technologies during the analysis period and calculate the saving and cost of conserved energy accordingly. The result of this study gives a comprehensive and easy to understand perspective to the Chinese cement industry and policy makers about the energy efficiency potential and its associated cost.

  17. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Iron and Steel Industry

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, III, William R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sathaye, Jayant [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Xu, Tengfang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-12-03

    India’s 2010 annual crude steel production was 68 Mt which accounted for nearly five percent of the world’s annual steel production in the same year. In 2007, roughly 1600 PJ were consumed by India’s iron and steel industry to produce 53 Mt of steel. We identified and analyzed 25 energy efficiency technologies and measures applicable to the processes in the Indian iron and steel industry. The Conservation Supply Curve (CSC) used in this study is an analytical tool that captures both the engineering and the economic perspectives of energy conservation. Using a bottom-up electricity CSC model and compared to an electricity price forecast the cumulative plant-level cost-effective electricity savings potential for the Indian iron and steel industry for 2010-2030 is estimated to be 66 TWh, and the cumulative plant-level technical electricity saving potential is only slightly greater than 66 TWh for the same period. The primary energy related CO2 emissions reduction associated with cost-effective electricity savings is 65 Mt CO2. Compared to a fuel price forecast, an estimated cumulative cost-effective fuel savings potential of 768 PJ with associated CO2 emission reduction of 67 Mt CO2 during 2010-2030 is possible. In addition, a sensitivity analysis with respect to the discount rate used is conducted to assess the effect of changes in this parameter on the results. The result of this study gives a comprehensive and easy to understand perspective to the Indian iron and steel industry and policy makers about the energy efficiency potential and its associated cost.

  18. Desiccated coconut industry of Sri Lanka: opportunities for energy efficiency and environmental protection

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S. E-mail: kumar@ait.ac.th; Senanayake, G.; Visvanathan, C.; Basu, B

    2003-08-01

    The desiccated coconut (DC) industry is one of the major export oriented food processing industries in Sri Lanka. This paper discusses the production processes, types of fuel used, energy use pattern and the overall specific thermal and electrical energy consumption in the DC sector. An analysis of the energy use highlights the inefficient processes and the key energy loss areas. Options for energy conservation in the DC mills have been discussed, and carbon dioxide emissions from this sector and its mitigation potential are estimated. Other options to improve efficiency and reduce other pollution and policy aspects have been presented.

  19. Industrial electricity demand and energy efficiency policy: The role of price changes and private R and D in the Swedish pulp and paper industry

    International Nuclear Information System (INIS)

    Henriksson, Eva; Söderholm, Patrik; Wårell, Linda

    2012-01-01

    The objective of this paper is to analyze electricity demand behaviour in the Swedish pulp and paper industry in the context of the increased interest in so-called voluntary energy efficiency programs. In these programs tax exemptions are granted if the participating firms carry out energy efficiency measures following an energy audit. We employ a panel data set of 19 pulp and paper firms, and estimate both the own- and cross-price elasticities of electricity demand as well as the impact of knowledge accumulation following private R and D on electricity use. The empirical results show that electricity use in the Swedish pulp and paper industry is relatively own-price insensitive, and the self-reported electricity savings following the voluntary so-called PFE program support the notion of important information asymmetries at the company level. However, the results display that already in a baseline setting pulp and paper firms tend to invest in private R and D that have electricity saving impacts, and our model simulations suggest that up to about one-third of the industry sector's self-reported electricity savings in PFE could be attributable to pure baseline effects. Future evaluations of voluntary energy efficiency programs must increasingly recognize the already existing incentives to reduce energy use in energy-intensive industries. - Highlights: ► We analyze electricity demand behaviour in the Swedish pulp and paper industry. ► An important context is the voluntary energy efficiency programs PFE. ► The electricity savings following PFE are significant, but price responses are low. ► Still, already in a baseline setting firms tend to invest in electricity-saving R and D. ► These baseline issues are not adequately addressed in PFE.

  20. A Joint Workshop on Energy Efficiency in Hotel Industry: Renewable Energy

    OpenAIRE

    Cingoski, Vlatko; Petrevska, Biljana; Golubovski, Roman; Gelev, Saso; Trajkov, Nikola; Citkuseva Dimitrovska, Biljana; Velkov, Tomce

    2015-01-01

    As a pert of the research project entitled "Opportunities and Methods for Energy Substitution, Savings and Efficiency Improvements in the Hotel Industry" funded by the University "Goce Delcev", Stip, Macedonia, a joint workshop was held in Ankara, Turkey. The Workshop was held at the Bashkent University in Ankara, Turkey between 10 and 13 of December 2015.

  1. Beyond energy efficiency : actors, networks and government intervention in the development of industrial process technologies

    NARCIS (Netherlands)

    Luiten, Esther Elisabeth Maria

    2001-01-01

    Het proefschrift geeft vier gedetailleerde verhalen over de ontwikkelingsgeschiedenis van industriële procestechnologieën voor de papierindustrie en de staalindustrie: de schoenpers, impulstechnologie, strip-casting technologie en smeltreductie technologie. Deze 4 technologieën staan bekend als

  2. Energy Efficiency Improvement and Cost Saving Opportunities for the Concrete Industry

    NARCIS (Netherlands)

    Kermeli, Katerina; Worrell, E.; Masanet, Eric

    2011-01-01

    The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for about 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials

  3. Steam systems in industry: Energy use and energy efficiency improvement potentials

    International Nuclear Information System (INIS)

    Einstein, Dan; Worrell, Ernst; Khrushch, Marta

    2001-01-01

    Steam systems are a part of almost every major industrial process today. Thirty-seven percent of the fossil fuel burned in US industry is burned to produce steam. In this paper we will establish baseline energy consumption for steam systems. Based on a detailed analysis of boiler energy use we estimate current energy use in boilers in U.S. industry at 6.1 Quads (6.4 EJ), emitting almost 66 MtC in CO(sub 2) emissions. We will discuss fuels used and boiler size distribution. We also describe potential savings measures, and estimate the economic energy savings potential in U.S. industry (i.e. having payback period of 3 years or less). We estimate the nationwide economic potential, based on the evaluation of 16 individual measures in steam generation and distribution. The analysis excludes the efficient use of steam and increased heat recovery. Based on the analysis we estimate the economic potential at 18-20% of total boiler energy use, resulting in energy savings approximately 1120-1190 TBtu ( 1180-1260 PJ). This results in a reduction of CO(sub 2) emissions equivalent to 12-13 MtC

  4. Deregulation strategies for local governments and the role/opportunities for energy efficiency services in the utility industry deregulation

    International Nuclear Information System (INIS)

    Tseng, P.C.

    1998-01-01

    As the future shape of the electric utility industry continues to unfold and as retail competition becomes a reality, local governments are faced with balancing the need for: (1) economic development; (2) and to avoid the potential impact of cost-shifting among residents and businesses, while ensuring reliable and universal energy services. Furthermore, local governments need to find ways to recoup potential loss of franchise and tax revenues, to ensure fair and adequate energy-efficiency programs, and to continue other social programs for low income families. This paper will address two important issues every local government in the US are facing: (1) the development of viable deregulation strategies before, during and after the promulgation of utility deregulation; (2) opportunities for energy efficiency services in the competitive markets to serve local governments, which typically constitutes the largest market segment in utility's service territory. This paper presents issues and challenges common to all local governments. It documents strategies that several local governments are utilizing to embrace the coming electric utility restructuring and competition challenge to the benefits of their respective communities. This paper presents the results on deregulation work by the City of Portland, Oregon, Barnstable County, Massachusetts, and Montgomery County, Maryland. The research by these local governments was sponsored by the Urban Consortium Energy Task Force and Public Technology, Inc

  5. Delay-Aware Energy-Efficient Routing towards a Path-Fixed Mobile Sink in Industrial Wireless Sensor Networks

    Science.gov (United States)

    Wu, Shaobo; Chou, Wusheng; Niu, Jianwei; Guizani, Mohsen

    2018-01-01

    Wireless sensor networks (WSNs) involve more mobile elements with their widespread development in industries. Exploiting mobility present in WSNs for data collection can effectively improve the network performance. However, when the sink (i.e., data collector) path is fixed and the movement is uncontrollable, existing schemes fail to guarantee delay requirements while achieving high energy efficiency. This paper proposes a delay-aware energy-efficient routing algorithm for WSNs with a path-fixed mobile sink, named DERM, which can strike a desirable balance between the delivery latency and energy conservation. We characterize the object of DERM as realizing the energy-optimal anycast to time-varying destination regions, and introduce a location-based forwarding technique tailored for this problem. To reduce the control overhead, a lightweight sink location calibration method is devised, which cooperates with the rough estimation based on the mobility pattern to determine the sink location. We also design a fault-tolerant mechanism called track routing to tackle location errors for ensuring reliable and on-time data delivery. We comprehensively evaluate DERM by comparing it with two canonical routing schemes and a baseline solution presented in this work. Extensive evaluation results demonstrate that DERM can provide considerable energy savings while meeting the delay constraint and maintaining a high delivery ratio. PMID:29562628

  6. Risk management of energy efficiency projects in the industry - sample plant for injecting pulverized coal into the blast furnaces

    Directory of Open Access Journals (Sweden)

    Jovanović Filip P.

    2016-01-01

    Full Text Available This paper analyses the applicability of well-known risk management methodologies in energy efficiency projects in the industry. The possibilities of application of the selected risk management methodology are demonstrated within the project of the plants for injecting pulverized coal into blast furnaces nos. 1 and 2, implemented by the company US STEEL SERBIA d.o.o. in Smederevo. The aim of the project was to increase energy efficiency through the reduction of the quantity of coke, whose production requires large amounts of energy, reduction of harmful exhaust emission and increase productivity of blast furnaces through the reduction of production costs. The project was complex and had high costs, so that it was necessary to predict risk events and plan responses to identified risks at an early stage of implementation, in the course of the project design, in order to minimise losses and implement the project in accordance with the defined time and cost limitations. [Projekat Ministarstva nauke Republike Srbije, br. 179081: Researching contemporary tendencies of strategic management using specialized management disciplines in function of competitiveness of Serbian economy

  7. Delay-Aware Energy-Efficient Routing towards a Path-Fixed Mobile Sink in Industrial Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Shaobo Wu

    2018-03-01

    Full Text Available Wireless sensor networks (WSNs involve more mobile elements with their widespread development in industries. Exploiting mobility present in WSNs for data collection can effectively improve the network performance. However, when the sink (i.e., data collector path is fixed and the movement is uncontrollable, existing schemes fail to guarantee delay requirements while achieving high energy efficiency. This paper proposes a delay-aware energy-efficient routing algorithm for WSNs with a path-fixed mobile sink, named DERM, which can strike a desirable balance between the delivery latency and energy conservation. We characterize the object of DERM as realizing the energy-optimal anycast to time-varying destination regions, and introduce a location-based forwarding technique tailored for this problem. To reduce the control overhead, a lightweight sink location calibration method is devised, which cooperates with the rough estimation based on the mobility pattern to determine the sink location. We also design a fault-tolerant mechanism called track routing to tackle location errors for ensuring reliable and on-time data delivery. We comprehensively evaluate DERM by comparing it with two canonical routing schemes and a baseline solution presented in this work. Extensive evaluation results demonstrate that DERM can provide considerable energy savings while meeting the delay constraint and maintaining a high delivery ratio.

  8. Optimal design of advanced distillation configuration for enhanced energy efficiency of waste solvent recovery process in semiconductor industry

    International Nuclear Information System (INIS)

    Chaniago, Yus Donald; Minh, Le Quang; Khan, Mohd Shariq; Koo, Kee-Kahb; Bahadori, Alireza; Lee, Moonyong

    2015-01-01

    Highlights: • Thermally coupled distillation process is proposed for waste solvent recovery. • A systematic optimization procedure is used to optimize distillation columns. • Response surface methodology is applied to optimal design of distillation column. • Proposed advanced distillation allows energy efficient waste solvent recovery. - Abstract: The semiconductor industry is one of the largest industries in the world. On the other hand, the huge amount of solvent used in the industry results in high production cost and potential environmental damage because most of the valuable chemicals discharged from the process are incinerated at high temperatures. A distillation process is used to recover waste solvent, reduce the production-related costs and protect the environment from the semiconductor industrial waste. Therefore, in this study, a distillation process was used to recover the valuable chemicals from semiconductor industry discharge, which otherwise would have been lost to the environment. The conventional sequence of distillation columns, which was optimized using the Box and sequential quadratic programming method for minimum energy objectives, was used. The energy demands of a distillation problem may have a substantial influence on the profitability of a process. A thermally coupled distillation and heat pump-assisted distillation sequence was implemented to further improve the distillation performance. Finally, a comparison was made between the conventional and advanced distillation sequences, and the optimal conditions for enhancing recovery were determined. The proposed advanced distillation configuration achieved a significant energy saving of 40.5% compared to the conventional column sequence

  9. Making industrial energy efficiency mainstream and profitable: Where public benefit and private interests intersect

    Energy Technology Data Exchange (ETDEWEB)

    McKane, Aimee T.; Tutterow, Vestal; Cockrill, Chris

    2001-05-31

    In 1996, the US Department of Energy s Office of Industrial Technologies (OIT) Motor Challenge program began a unique collaboration with industry called the Allied Partner program. Partnerships were sought with equipment suppliers and manufacturers, utilities, consultants, and state agencies that had extensive existing relationships with industrial customers. Partners were neither paid nor charged a fee for participation. The assumption was that these relationships could serve as the foundation for conveying a motor system efficiency message to many more industrial facilities than could be reached through a typical government-to-end-user program model. A substantial effort was made to engage industrial suppliers in delivering program information as part of their customer interactions. A recent independent evaluation of the Motor Challenge program attributes $16.9 million or nearly 67 percent of the total annual program energy savings to the efforts of Allied Partners in the first three years of operation.In 1997, the Compressed Air Challenge(R) (CAC) was developed as an outgrowth of the partnership concept. In this model, OIT is one of 15 sponsors who collaborated to create a national program of compressed air system training. The CAC has gone a step further by setting up a development and deployment model based on shared interests and shared costs among public, private, and not-for-profit organizations that serve industrial customers. Since the first CAC training session in 1999, approximately 3800 people have been trained by CAC qualified instructors--both end users and suppliers. More impressively, the entire compressed air market has begun to shift from a component-based to a system-based approach, largely as the result of collaboration. The typical leverage for OIT participation in a CAC training session is 10:1. During the past year, OIT has reorganized to integrate all of its near-term industrial offerings such as the Motor, Compressed Air, and Steam

  10. Energy Efficient Microwave Hybrid Processing of Lime for Cement, Steel, and Glass Industries

    Energy Technology Data Exchange (ETDEWEB)

    Fall, Morgana L; Yakovlev, Vadim; Sahi, Catherine; Baranova, Inessa; Bowers, Johnney G; Esquenazi\t, Gibran L

    2012-02-10

    In this study, the microwave materials interactions were studied through dielectric property measurements, process modeling, and lab scale microwave hybrid calcination tests. Characterization and analysis were performed to evaluate material reactions and energy usage. Processing parameters for laboratory scale and larger scale calcining experiments were developed for MAT limestone calcination. Early stage equipment design concepts were developed, with a focus on microwave post heating treatment. The retrofitting of existing rotary calcine equipment in the lime industry was assessed and found to be feasible. Ceralink sought to address some of the major barriers to the uptake of MAT identified as the need for (1) team approach with end users, technology partners, and equipment manufacturers, (2) modeling that incorporates kiln materials and variations to the design of industrial microwave equipment. This project has furthered the commercialization effort of MAT by working closely with an industrial lime manufacturer to educate them regarding MAT, identifying equipment manufacturer to supply microwave equipment, and developing a sophisticated MAT modeling with WPI, the university partner. MAT was shown to enhance calcining through lower energy consumption and faster reaction rates compared to conventional processing. Laboratory testing concluded that a 23% reduction in energy was possible for calcining small batches (5kg). Scale-up testing indicated that the energy savings increased as a function of load size and 36% energy savings was demonstrated (22 kg). A sophisticated model was developed which combines simultaneous microwave and conventional heating. Continued development of this modeling software could be used for larger scale calcining simulations, which would be a beneficial low-cost tool for exploring equipment design prior to actual building. Based on these findings, estimates for production scale MAT calcining benefits were calculated, assuming uptake of

  11. Policy Options for Encouraging Energy Efficiency Best Practices in Shandong Province's Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhou, Nan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sambeek, Emiel van [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yowargana, Ping [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shuang, Liu [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kejun, Jiang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-07-12

    This research intends to explore possible design options for a sectoral approach in the cement sector in Shandong Province and to consider its respective advantages and disadvantages for future application. An effort has been made in this research to gather and analyze data that will provide a transparent and robust basis for development of a Business-As-Usual (BAU) scenario, maximum technology potential scenario, and ultimately a sector crediting baseline. Surveys among cement companies and discussions with stakeholders were also conducted in order to better understand the industry and local needs related to the sectoral approach.

  12. Advanced techniques for energy-efficient industrial-scale continuous chromatography

    Energy Technology Data Exchange (ETDEWEB)

    DeCarli, J.P. II (Dow Chemical Co., Midland, MI (USA)); Carta, G. (Virginia Univ., Charlottesville, VA (USA). Dept. of Chemical Engineering); Byers, C.H. (Oak Ridge National Lab., TN (USA))

    1989-11-01

    Continuous annular chromatography (CAC) is a developing technology that allows truly continuous chromatographic separations. Previous work has demonstrated the utility of this technology for the separation of various materials by isocratic elution on a bench scale. Novel applications and improved operation of the process were studied in this work, demonstrating that CAC is a versatile apparatus which is capable of separations at high throughput. Three specific separation systems were investigated. Pilot-scale separations at high loadings were performed using an industrial sugar mixture as an example of scale-up for isocratic separations. Bench-scale experiments of a low concentration metal ion mixture were performed to demonstrate stepwise elution, a chromatographic technique which decreases dilution and increases sorbent capacity. Finally, the separation of mixtures of amino acids by ion exchange was investigated to demonstrate the use of displacement development on the CAC. This technique, which perhaps has the most potential, when applied to the CAC allowed simultaneous separation and concentration of multicomponent mixtures on a continuous basis. Mathematical models were developed to describe the CAC performance and optimize the operating conditions. For all the systems investigated, the continuous separation performance of the CAC was found to be very nearly the same as the batchwise performance of conventional chromatography. the technology appears, thus, to be very promising for industrial applications. 43 figs., 9 tabs.

  13. Potential impacts of energy efficiency policies in the U.S. industry: Results from the clean energy futures study

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Price, Lynn

    2001-07-24

    Scenarios for a Clean Energy Future (CEF) studied the role that efficient clean energy technologies can play in meeting the economic and environmental challenges for our future energy supply. The study describes a portfolio of policies that would motivate energy users and businesses to invest in innovative energy efficient technologies. On the basis of the portfolios, two policy scenarios have been developed, i.e. a moderate scenario and an advanced scenario. We focus on the industrial part of the CEF-study. The studied policies include a wide scope of activities, which are organized under the umbrella of voluntary industrial sector agreements. The policies for the policy scenarios have been modeled using the National Energy Modeling System (CEF-NEMS). Under the reference scenario industrial energy use would grow to 41 Quads in 2020, compared to 34.8 Quads in 1997, with an average improvement of the energy intensity by 1.1% per year. In the Moderate scenario the annual improvement is a bout 1.5%/year, leading to primary energy use of 37.8 Quads in 2020, resulting in 10% lower CO2 emissions by 2020 compared to the reference scenario. In the Advanced scenario the annual improvement increases to 1.8% per year, leading to primary energy use of 34.3 Quads in 2020, and 29% lower CO2 emissions. We report on the policies, assumptions and results for industry.

  14. Potential impacts of energy efficiency policies in the U.S. industry: Results from the clean energy futures study

    International Nuclear Information System (INIS)

    Worrell, Ernst; Price, Lynn

    2001-01-01

    Scenarios for a Clean Energy Future (CEF) studied the role that efficient clean energy technologies can play in meeting the economic and environmental challenges for our future energy supply. The study describes a portfolio of policies that would motivate energy users and businesses to invest in innovative energy efficient technologies. On the basis of the portfolios, two policy scenarios have been developed, i.e. a moderate scenario and an advanced scenario. We focus on the industrial part of the CEF-study. The studied policies include a wide scope of activities, which are organized under the umbrella of voluntary industrial sector agreements. The policies for the policy scenarios have been modeled using the National Energy Modeling System (CEF-NEMS). Under the reference scenario industrial energy use would grow to 41 Quads in 2020, compared to 34.8 Quads in 1997, with an average improvement of the energy intensity by 1.1% per year. In the Moderate scenario the annual improvement is a bout 1.5%/year, leading to primary energy use of 37.8 Quads in 2020, resulting in 10% lower CO2 emissions by 2020 compared to the reference scenario. In the Advanced scenario the annual improvement increases to 1.8% per year, leading to primary energy use of 34.3 Quads in 2020, and 29% lower CO2 emissions. We report on the policies, assumptions and results for industry

  15. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, J.; Xu, T.; Galitsky, C.

    2010-08-15

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models.

  16. Energy efficient aeration of wastewaters from the pulp and paper industry.

    Science.gov (United States)

    Sandberg, M

    2010-01-01

    More than 50% of the electrical power needed to treat pulp and paper industry effluents is used for aeration in biological treatment stages. A large share of the oxygen that passes through the wastewater is not consumed and will be found in the off-gas. Energy can be saved by aerating under conditions where the oxygen transfer is most efficient, for example at low concentrations of dissolved oxygen Consider the sludge as an energy source; electricity can be saved by avoiding sludge reduction through prolonged aeration. High oxygen transfer efficiency can be retained by using the oxygen consumption of biosolids. Quantified savings in the form of needed volumes of air while still achieving sufficient COD reduction are presented. The tests have been made in a bubble column with pulp mill process water and sludge from a biological treatment plant. These were supplemented with case studies at three pulp and paper mills.

  17. Energy efficiency potentials: Contrasting thermodynamic, technical and economic limits for organic Rankine cycles within UK industry

    International Nuclear Information System (INIS)

    Chen, Q.; Hammond, G.P.; Norman, J.B.

    2016-01-01

    Highlights: • Energy savings have a thermodynamic, technical and economic limit. • The potential for organic Rankine cycles in UK industry was assessed. • 3.5 PJ/yr of electricity was generated by economically attractive opportunities. • The steel, chemical and cement subsectors comprised the majority of potential. • Drivers and barriers to realising the potentials were discussed. - Abstract: The laws of thermodynamics set a theoretical limit on the energy savings that can be realised in a given application. This thermodynamic potential cannot be reached in practice, and a technical potential for energy savings is defined by the performance of available technology. Only applications of the technology that are considered economic will usually be considered for installation. This economic potential will itself not be fully realised, with the actual savings that are achieved limited by further barriers. A database on surplus heat availability within UK industry was used to estimate the thermodynamic, technical, and economic potentials when converting this surplus heat to electricity using organic Rankine cycles (ORCs). Technical and economic information was based on that reported from existing installations and manufacturers. Installations economic over the target payback period totalled approximately 3.5 PJ/yr of electricity generation, primarily in the steel, chemicals and cement subsectors. However, this result is sensitive to the input parameters, particularly the future price of electricity and required payback period, which are uncertain. Therefore a range of possible scenarios were investigated. The results form a basis for discussion on how to close this “gap” between the identified potentials and the savings realised in practice.

  18. Public/private sector cooperation to promote industrial energy efficiency: Allied partners and the US Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    McKane, Aimee; Cockrill, Chris; Tutterow, Vestal; Radspieler, Anthony

    2003-05-18

    Since 1996, the US Department of Energy's Office of Industrial Technologies (USDOE) has been involved in a unique voluntary collaboration with industry called the Allied Partner program. Initially developed under the Motor Challenge program, the partnership concept continues as a central element of USDOE's BestPractices, which in 2001 integrated all of USDOE's near-term industrial program offerings including those in motors, compressed air, pump, fan, process heating and steam systems. Partnerships are sought with end use industrial companies as well as equipment suppliers and manufacturers, utilities, consultants, and state agencies that have extensive existing relationships with industrial customers. Partners are neither paid nor charged a fee for participation. Since the inception of Allied Partners, the assumption has been that these relationships could serve as the foundation for conveying a system energy-efficiency message to many more industrial facilities than could be reached through a typical government-to-end-user program model. An independent evaluation of the Motor Challenge program, reported at the last EEMODS conference, attributed US $16.9 million or nearly 67 percent of the total annual program energy savings to the efforts of Allied Partners in the first three years of operation. A recent evaluation of the Compressed Air Challenger, which grew out of the former Motor Challenger program, attribute additional energy savings from compressed air training alone at US $12.1 million per year. Since the reorganization under BestPractices, the Allied Partner program has been reshaped to extend the impact of all BestPractices program activities. This new model is more ambitious than the former Motor Challenge program concerning the level of collaborative activities negotiated with Allied Partners. This paper describes in detail two new types of program initiatives involving Allied Partners: Qualified Specialist Training and Energy Events. The

  19. EEWES: an energy-efficient wireless sensor network embed-ded system to be applied on industrial environments

    Directory of Open Access Journals (Sweden)

    Felipe Denis Mendonça de Oliveira

    2015-05-01

    Full Text Available Nowadays, the vast majority of information monitoring in industrial plants is still carried out by wired technologies, in which the installation and maintenance cost is high. However, in outdoor applications, such as those used in the oil and gas industry, the use of Wireless Sensor Networks (WSN is increasing due to mobility, reliability, and low cost of the sensor nodes that make up the network. Moreover, this solution reduces the risks of workers in classified areas (regions with high probability of accidents occurrence to the extent that the equipment maintenance is optimized.  This paper proposes the development of the EEWES, an energy efficient wireless sensor network embedded system, which can be applied on industrial environments. This development approach significantly reduces the energy consumption of the sensor nodes by using a method that alternates sleep periods of the transceiver/sensor set with data transmission/reception periods, which reduces the duty cycle while keeping the desirable parameters of the service quality (QoS. The results presented in this paper will be confirmed by field tests.

  20. Energy efficiency; Energieffektivisering

    Energy Technology Data Exchange (ETDEWEB)

    2009-06-15

    The Low Energy Panel will halve the consumption in buildings. The Panel has proposed a halving of consumption in the construction within 2040 and 20 percent reduction in the consumption in the industry within 2020. The Panel consider it as possible to gradually reduce consumption in buildings from the current level of 80 TWh with 10 TWh in 2020, 25 TWh in 2030 and 40 TWh in 2040. According the committee one such halving can be reached by significant efforts relating to energy efficiency, by greater rehabilitations, energy efficiency in consisting building stock and stricter requirements for new construction. For the industry field the Panel recommend a political goal to be set at least 20 percent reduction in specific energy consumption in the industry and primary industry beyond general technological development by the end of 2020. This is equivalent to approximately 17 TWh based on current level of activity. The Panel believes that a 5 percent reduction should be achieved by the end of 2012 by carrying out simple measures. The Low Energy Panel has since March 2009 considered possibilities to strengthen the authorities' work with energy efficiency in Norway. The wide complex panel adds up proposals for a comprehensive approach for increased energy efficiency in particular in the building- and industry field. The Panel has looked into the potential for energy efficiency, barriers for energy efficiency, assessment of strengths and weaknesses in the existing policy instruments and members of the Panel's recommendations. In addition the report contains a review of theoretical principles for effects of instruments together with an extensive background. One of the committee members have chosen to take special notes on the main recommendations in the report. (AG)

  1. Role of Appraisals in Energy Efficiency Financing

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, V.; Bhargava, A.

    2012-05-01

    This research identifies barriers and challenges and current industry status including several key appraisal industry developments for identifying and valuing energy efficiency, critical obstacles to documenting and assessing the potential added value from energy efficiency improvements, current opportunities to support and standardize reporting on energy efficiency and to ensure proper valuation, and next steps towards enabling energy efficiency financing market transformation.

  2. The DOE s In-Plant Training (INPLT) Model to Promote Energy Efficiency in the Industrial Sector

    Energy Technology Data Exchange (ETDEWEB)

    Alkadi, Nasr E [ORNL; Nimbalkar, Sachin U [ORNL; De Fontaine, Mr. Andre [United States Department of Energy (DOE), Industrial Technology Program; Schoeneborn, Fred C [ORNL

    2013-01-01

    In-Plant Training (INPLT) is a new model for developing energy efficiency expertise within the US manufacturing companies participating in the U.S. Department of Energy s (DOE s) Better Buildings, Better Plants Program-a nationwide initiative to drive a 25% reduction in industrial energy intensity in 10 years. INPLTs are designed to fill a market niche by providing hands on training in a real world manufacturing plant environment. Through INPLTs, participants from multiple manufacturing plants, supply chains, utilities, and other external stakeholders learn how to conduct energy assessments, use energy analysis tools to analyze energy saving opportunities, develop energy management systems, and implement energy savings projects. Typical INPLT events are led by DOE-certified Energy Experts and range from 2-4 days. Topics discussed include: identification of cross-cutting or system specific opportunities; introduction to ISO 50001 Energy Management Systems; and energy project implementation and replication. This model is flexible, and can be tailored to suit the needs of specific industries. The INPLTs are a significant departure from the traditional single plant energy assessment model previously employed by DOE. INPLTs shift the focus from the concept of a single-plant s energy profile to a broader focus on training and capacity building among multiple industrial participants. The objective is to enable trainees to identify, quantify, implement and replicate future energy saving projects without continued external assistance. This paper discusses the INPLT model and highlights some of the initial outcomes from the successfully delivered INPLTs and the overall impact in terms of numbers of plants/participants trained, impacted energy footprints, and potential replication of identified opportunities.

  3. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Blinde, Paul; Neelis, Maarten; Blomen, Eliane; Masanet, Eric

    2010-10-21

    Energy is an important cost factor in the U.S iron and steel industry. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. iron and steel industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the structure, production trends, energy consumption, and greenhouse gas emissions of the iron and steel industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the steel and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. iron and steel industry reduce energy consumption and greenhouse gas emissions in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures?and on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  4. Energy efficiency in the agricultural and food industry illustrated with the example of the feed production plant

    Directory of Open Access Journals (Sweden)

    Gembicki Jacek

    2016-01-01

    Full Text Available Energy efficiency is an indicator specifying the amount of saved electric energy thanks to implementation of suitable systems and solutions aimed at reducing the energy consumption in a production plant. Effective use of electric energy or heat energy is intended to reduce the amount of energy required to manufacture products and provide services. Decreased demand for electric energy in the production plant by only a few percent’s may result in considerable savings which in turn assure increased production profitability. If we reduce the energy consumption, it will translate into reduced pollution generated and emitted to the environment. Thanks to this, the plant may limit its negative impact on the surrounding. The feed industry is known to consume much amount of energy for the purposes of production. This energy is intended for pre-processing of substrates, actual production and preparation of ready product to be taken over by the customer. Farmers use fodders to feed their animals. Quality of fodders (feeds and their ingredients determine health of farm animals, which has a direct impact on the quality of products we consume, and consequently on our health. An thorough analysis of feed production plants and reduction of their energy consumption should translate into improved effectiveness. Saved energy allows producing high-quality products and using ingredients of higher quality, which in turn may influence competitiveness of prices of ready products.

  5. Technological change and industrial energy efficiency : Exploring the low-carbon transformation of the German iron and steel industry

    NARCIS (Netherlands)

    Arens, M.

    2017-01-01

    Climate change is a key challenge of our time. The iron and steel industry emits 6.5 % of global anthropogenic CO2 that is likely to drive global warming. Greenhouse gases, among these CO2, are to be reduced to 5-20% of today’s level in industrialised countries. Thus, the steel sector must make

  6. Patterns of energy use in the Brazilian economy: Can the profile of Brazilian exports determine the future energy efficiency of its industry?

    International Nuclear Information System (INIS)

    Machado, G.V.; Schaeffer, R.

    1997-01-01

    This study examines the integration of the Brazilian economy in the global economy as a determining factor for the energy efficiency of its industry. Depending upon the profile of a country's exports (i.e., depending upon the share of energy-intensive exports out of total exports), different quantities of energy are required to produce the country's exported goods, which may counterbalance efforts made elsewhere to improve the overall energy efficiency of the country's industry. Different scenarios for the energy embodied in the industrial exports of Brazil are considered for the period 1995--2015. These scenarios are a combination of different shares of energy-intensive goods in the total exports of the country with different assumptions for gains obtained in industrial energy efficiency over time. For all scenarios the same fundamental hypothesis of liberalization of commerce and economic growth are assumed. Results for the year 2015 show that the total energy embodied in industrial exports varies from 1,413 PJ to 2,491 PJ, and the total industrial use of energy varies from 3,858 PJ to 6,153 PJ, depending upon the assumptions made. This is equivalent to an average industrial energy intensity variation ranging from 13.8 MJ to 22.0 MJ per US$-1985. The authors conclude that any policy aimed at improving Brazil's overall industrial energy efficiency should concentrate not only on the reduction of the energy intensity of particular industrial sectors, but also (and, perhaps, more importantly) on rethinking the very strategy for the integration of the country's economy in the global market in the future, with respect to the share of energy-intensive goods out of total exports. The focus is not incidental, for the ongoing structural changes in Brazilian exports alone may come to offset any efficiency improvements achieved by the national industry as a whole

  7. Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Worrell, Ernst; Ruth, Michael

    2003-07-01

    Corn wet milling is the most energy intensive industry within the food and kindred products group (SIC 20), using 15 percent of the energy in the entire food industry. After corn, energy is the second largest operating cost for corn wet millers in the United States. A typical corn wet milling plant in the United States spends approximately $20 to $30 million per year on energy, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. This report shows energy efficiency opportunities available for wet corn millers. It begins with descriptions of the trends, structure and production of the corn wet milling industry and the energy used in the milling and refining process. Specific primary energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The report draws upon the experiences of corn, wheat and other starch processing plants worldwide for energy efficiency measures. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the corn wet milling industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to different wet milling practices, is needed to assess the feasibility of implementation of selected technologies at individual plants.

  8. Energy efficiency in the industrial sector. Model based analysis of the efficient use of energy in the EU-27 with focus on the industrial sector

    International Nuclear Information System (INIS)

    Kuder, Ralf

    2014-01-01

    Energy efficiency is a highly important topic and currently omnipresent in the energy political discussion. Despite this high importance there's no common understanding even concerning the definition of the term energy efficiency. In addition, there are plenty so called energy efficiency targets and several indicators. Therefore this study should provide a deepened understanding of the efficient use of energy. The inconsistent definition of energy efficiency is related to the use of this term for a specific as well as an absolute reduction of energy consumption. Furthermore both static views on efficiency as a status and also dynamic views on efficiency as an improvement of a value compared to a reference number are used. Additional differences occur in the evaluation of the energy use and in the selection of a reference value in a key figure to assess energy efficiency. Moreover the focus of the current general understanding is mainly only on the consumption of energy. All other resources next to the energy input which are needed to provide energy services are not considered even though there are strong interactions and substitution possibilities among these resources. Hence the understanding of energy efficiency is extended in this study by these additional resources which were not considered yet. Based on this extension the efficient use of the resource energy is a result of an optimisation of the relation of these total costs of all resources to the related benefit. To determine the efficient use of energy in the industrial sector, a deeper understanding of the sector and its characteristics is necessary. The industrial sector is the largest consumer of electricity within the EU. Also a quarter of the final energy consumption and about 20 % of the CO 2 emissions are related to this sector. Typical for this sector are the heterogeneous and high temperature level of the heat demand and the process emissions which accrue in transformation processes. The subsectors

  9. National energy efficiency programme

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper focusses on energy conservation and specifically on energy efficiency which includes efficiency in the production, delivery and utilisation of energy as part of the total energy system of the economy. A National Energy Efficiency Programme is being launched in the Eighth Plan that will take into account both macro level and policy and planning considerations as well as micro level responses for different category of users in the industry, agriculture, transport and domestic sectors. The need for such a National Energy Efficiency Programme after making an assessment of existing energy conservation activities in the country is discussed. The broad framework and contents of the National Energy Efficiency Programme have been outlined and the Eighth Plan targets for energy conservation and their break-up have been given. These targets, as per the Eighth Plan document are 5000 MW in electricity installed capacity and 6 million tonnes of petroleum products by the terminal year of the Eighth Plan. The issues that need to be examined for each sector for achieving the above targets for energy conservation in the Eighth Plan are discussed briefly. They are: (a) policy and planning, (b) implementation arrangements which include the institutional setup and selective legislation, (c) technological requirements, and (d) resource requirements which include human resources and financial resources. (author)

  10. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Neelis, Maarten; Worrell, Ernst; Masanet, Eric

    2008-09-01

    Energy is the most important cost factor in the U.S petrochemical industry, defined in this guide as the chemical industry sectors producing large volume basic and intermediate organic chemicals as well as large volume plastics. The sector spent about $10 billion on fuels and electricity in 2004. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. petrochemical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the petrochemical industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the petrochemical and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. petrochemical industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--and on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

  11. How to make France enter the third industrial revolution: the bet on innovation. Thematic note Nr 2: Energy efficiency

    International Nuclear Information System (INIS)

    Maistre, Christophe de; Manceau, Delphine; Fabbri, Julie

    2014-05-01

    This report first discusses what is energy efficiency by defining and distinguishing passive, active and interactive energy efficiency, by discussing which energies we are presently using (fossil energies, nuclear energy, renewable energies), and by outlining the interest in energy efficiency. In a second part, it presents energy efficiency as a key factor for innovation in electricity management. It notably discusses the challenge of matching electricity production and consumption, and what happens when one is greater than the other (some examples are briefly commented: California and Belgium). It addresses the development of smart grids for a rational management of energy, with the implementation of cut-off strategies (examples are given: Linky, the smart EDF counter, Actility, a start-up company specialised in smart grids), in order to avoid black-outs. The main asset of smart grids is to de-synchronise energy production and consumption. Associated risks are evoked (mainly hacking). Examples are presented. The transition from smart grids to smart cities is then discussed (examples of smart phone services, an experiment in Issy les Moulineaux). The next part of the report presents energy efficiency as a multi-sector innovation lever, and presents various approaches and fields of application: the Cleantech approach (development of clean technologies and new usages with a more intelligent consumption of resources; example of the RATP), the sustainable building (low consumption building, passive buildings), the development of new usages (new mobility services), organisational innovations (car pooling, tele-working), energy efficiency as a performance factor, and emergence of new business models. Some guidelines are finally identified and proposed under two main themes: to improve regulation, to favour better consumer behaviours

  12. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Masanet, Eric; Masanet, Eric; Worrell, Ernst; Graus, Wina; Galitsky, Christina

    2008-01-01

    The U.S. fruit and vegetable processing industry--defined in this Energy Guide as facilities engaged in the canning, freezing, and drying or dehydrating of fruits and vegetables--consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement isan important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. fruit and vegetable processing industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. fruit and vegetable processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to fruit and vegetable processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in fruit and vegetable processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in fruit and vegetable processing, a summary of basic, proven measures for improving plant-level water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. fruit and vegetable processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--as well as on their applicability to different production

  13. An integrated multi attribute decision model for energy efficiency processes in petrochemical industry applying fuzzy set theory

    International Nuclear Information System (INIS)

    Taylan, Osman; Kaya, Durmus; Demirbas, Ayhan

    2016-01-01

    Graphical abstract: Evaluation of compressors by comparing the different cost parameters. - Highlights: • Fuzzy sets and systems are used for decision making in MCDM problems. • An integrated Fuzzy AHP and fuzzy TOPSIS approaches are employed for compressor selection. • Compressor selection is a highly complex and non-linear process. • This approach increases the efficiency, reliability of alternative scenarios, and reduces the pay-back period. - Abstract: Energy efficient technologies offered by the market increases productivity. However, decision making for these technologies is usually obstructed in the firms and comes up with organizational barriers. Compressor selection in petrochemical industry requires assessment of several criteria such as ‘reliability, energy consumption, initial investment, capacity, pressure, and maintenance cost.’ Therefore, air compressor selection is a multi-attribute decision making (MADM) problem. The aim of this study is to select the most eligible compressor(s) so as to avoid the high energy consumption due to the capacity and maintenance costs. It is also aimed to avoid failures due to the reliability problems and high pressure. MADM usually takes place in a vague and imprecise environment. Soft computing techniques such as fuzzy sets and system can be used for decision making where vague and imprecise knowledge is available. In this study, an integrated fuzzy analytical hierarchy process (FAHP) and fuzzy technique for order performance by similarity to ideal solution (TOPSIS) methodologies are employed for the compressor selection. Fuzzy AHP was used to determine the weights of criteria and fuzzy TOPSIS was employed to order the scenarios according to their superiority. The total effect of all criteria was determined for all alternative scenarios to make an optimal decision. Moreover, the types of compressor, carbon emission, waste heat recovery and their capacities were analyzed and compared by statistical

  14. Co-benefits of energy efficiency improvement and air pollution abatement in the Chinese iron and steel industry

    NARCIS (Netherlands)

    Zhang, Shaohui; Worrell, Ernst; Crijns-Graus, Wina; Wagner, Fabian; Cofala, Janusz

    2014-01-01

    In 2010, China was responsible for 45% of global steel production, while consuming 15.8EJ of final energy and emitting 1344Mt CO2eq, 8.4Mt of PM (particulate matter) emissions, and 5.3Mt of SO2 emissions. In this paper we analyse the co-benefits of implementing energy efficiency measures that

  15. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry: An ENERGY STAR? Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Brush, Adrian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Masanet, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Worrell, Ernst [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2011-10-01

    The U.S. dairy processing industry—defined in this Energy Guide as facilities engaged in the conversion of raw milk to consumable dairy products—consumes around $1.5 billion worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. dairy processing industry to reduce energy consumption and greenhouse gas emissions in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. dairy processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to dairy processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in dairy processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in dairy processing, a summary of basic, proven measures for improving water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. dairy processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures—as well as on their applicability to different production practices—is needed to assess their cost effectiveness at individual plants.

  16. Stimulating R and D of industrial energy-efficient technology; the effect of government intervention on the development of strip casting technology

    International Nuclear Information System (INIS)

    Luiten, E.E.M.; Blok, Kornelis

    2003-01-01

    Strip casting technology in steel-making is known as an innovative energy-efficient technology. Stimulating the development (R and D) of such industrial process technologies is an appealing government intervention strategy for reducing greenhouse gas emissions. In this article, we analyse (a) the R and D trajectory of strip casting technology and (b) the effect of government intervention on the development of this particular energy-efficient technology. For this purpose we made a detailed investigation of the networks within which the technology was developed. The huge capital cost advantages of strip casting technology were already notified back in the 19th century. However, only after 1975 a robust technology network emerged. There is no single, simple determinant explaining the slow emergence of the technology network: the innovative technology had to become a more incremental improvement to the conventional production facilities before R and D was seriously pursued. Once the technology network emerged, it proved to have a strong momentum of itself. Steel firms maintained their confidence in the strategic cost advantages of the technology and persistently invested in up-scaling the technology. The effect of government intervention was minimal, because the technology network had its own strong momentum. All in all, R and D was only loosely influenced by energy-efficiency considerations or by government intervention. The major policy lesson is that information on technology networks and its momentum--in addition to classic information on energy-efficiency improvements and investments costs--is required to improve the effect of government intervention in the field of industrial energy-efficiency R and D and innovation

  17. Costs and benefits of industrial reporting and voluntary targets for energy efficiency. A report to the Congress of the United States. Volume II: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This part sets forth the regulations for the Industrial Energy conservation Program established under Part E of Title III of the Act. It includes criteria and procedures for the identification of reporting corporations, reporting requirements, criteria and procedures for exemption from filing reports directly with DOE, voluntary industrial energy efficiency improvement targets and voluntary recovered materials utilization targets. The purpose of the program is to promote increased energy conservation by American industry and, as it relates to the use of recovered materials, to conserve valuable energy and scarce natural resources.

  18. Ex-post assessment of China's industrial energy efficiency policies during the 11th Five-Year Plan

    International Nuclear Information System (INIS)

    Yu, Yuqing; Wang, Xiao; Li, Huimin; Qi, Ye; Tamura, Kentaro

    2015-01-01

    China implemented a package of policies during the 11th Five-Year Plan (2006–2010) to improve industrial energy efficiency. This assessment provides a methodology that establishes a causal relationship between policy implementation and energy conservation effects. To enhance the confidence in the research findings, this assessment applies two distinctive and independent approaches: one top-down and the other bottom-up. This assessment finds that industrial energy efficiency policies collectively achieved energy savings of 322 Mtce (9.4 EJ) against the baseline scenario. This accounted for 59% of the sector's total energy savings from 2006 to 2010. The remaining energy savings were realised through autonomous technology improvement (33%) and sector-level structural shift (8%). Correspondingly, cumulative avoided CO 2 emissions realised through energy efficiency policies amounted to 760 million tons. This assessment concludes that industrial energy efficiency policies were effective in realising energy conservation targets, but energy conservation effects were not achieved in a cost-effective way. Command and control measures were dominantly implemented, with economic incentives and informational measures taking a complementary role; while market based instruments did not play an important role. As China is planning on implementing a nationwide emissions trading scheme, special attention needs to be paid to policy interaction and coordination. - Highlights: • EE policies applied in the industry sector achieved energy savings of 322 Mtce. • Energy saving realized through EE policies accounted for 59% of the sector's total. • Avoided CO 2 emissions realized by EE policies amounted to 760 million tons. • Autonomous technology improvement accounted for 33% of the sector's total energy savings. • Sector-level structural shift accounted for the remaining 8% energy savings

  19. Quantifying the Co-benefits of Energy-Efficiency Programs: A Case Study of the Cement Industry in Shandong Province, China

    Energy Technology Data Exchange (ETDEWEB)

    Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lobscheid, Agnes [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dai, Yue [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-11-01

    China’s cement industry accounted for more than half of the world’s total cement production in 2010. The cement industry is one of the most energy-intensive and highest carbon dioxide (CO2)-emitting industries and one of the key industrial contributors to air pollution in China. For example, it is the largest source of particulate matter (PM) emissions in China, accounting for 40 percent of industrial PM emissions and 27 percent of total national PM emissions. Although specific regulations and policies are needed to reduce the pollutant emissions from the cement industry, air pollution can also be reduced as a co-benefit of energy efficiency and climate-change mitigation policies and programs. Quantifying and accounting for these co-benefits when evaluating energy efficiency and climate-change mitigation programs reveals benefits beyond the programs’ energy and global warming impacts and adds to their cost effectiveness. In this study, we quantify the co-benefits of PM10 and sulfur dioxide (SO2) emissions reductions that result from energy-saving measures in China’s cement industry.

  20. Energy efficient data centers

    Energy Technology Data Exchange (ETDEWEB)

    Tschudi, William; Xu, Tengfang; Sartor, Dale; Koomey, Jon; Nordman, Bruce; Sezgen, Osman

    2004-03-30

    Data Center facilities, prevalent in many industries and institutions are essential to California's economy. Energy intensive data centers are crucial to California's industries, and many other institutions (such as universities) in the state, and they play an important role in the constantly evolving communications industry. To better understand the impact of the energy requirements and energy efficiency improvement potential in these facilities, the California Energy Commission's PIER Industrial Program initiated this project with two primary focus areas: First, to characterize current data center electricity use; and secondly, to develop a research ''roadmap'' defining and prioritizing possible future public interest research and deployment efforts that would improve energy efficiency. Although there are many opinions concerning the energy intensity of data centers and the aggregate effect on California's electrical power systems, there is very little publicly available information. Through this project, actual energy consumption at its end use was measured in a number of data centers. This benchmark data was documented in case study reports, along with site-specific energy efficiency recommendations. Additionally, other data center energy benchmarks were obtained through synergistic projects, prior PG&E studies, and industry contacts. In total, energy benchmarks for sixteen data centers were obtained. For this project, a broad definition of ''data center'' was adopted which included internet hosting, corporate, institutional, governmental, educational and other miscellaneous data centers. Typically these facilities require specialized infrastructure to provide high quality power and cooling for IT equipment. All of these data center types were considered in the development of an estimate of the total power consumption in California. Finally, a research ''roadmap'' was developed

  1. Using learning curves on energy-efficient technologies to estimate future energy savings and emission reduction potentials in the U.S. iron and steel industry

    Energy Technology Data Exchange (ETDEWEB)

    Karali, Nihan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Park, Won Young [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McNeil, Michael A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-06-18

    Increasing concerns on non-sustainable energy use and climate change spur a growing research interest in energy efficiency potentials in various critical areas such as industrial production. This paper focuses on learning curve aspects of energy efficiency measures in the U.S iron and steel sector. A number of early-stage efficient technologies (i.e., emerging or demonstration technologies) are technically feasible and have the potential to make a significant contribution to energy saving and CO2 emissions reduction, but fall short economically to be included. However, they may also have the cost effective potential for significant cost reduction and/or performance improvement in the future under learning effects such as ‘learning-by-doing’. The investigation is carried out using ISEEM, a technology oriented, linear optimization model. We investigated how steel demand is balanced with/without the availability learning curve, compared to a Reference scenario. The retrofit (or investment in some cases) costs of energy efficient technologies decline in the scenario where learning curve is applied. The analysis also addresses market penetration of energy efficient technologies, energy saving, and CO2 emissions in the U.S. iron and steel sector with/without learning impact. Accordingly, the study helps those who use energy models better manage the price barriers preventing unrealistic diffusion of energy-efficiency technologies, better understand the market and learning system involved, predict future achievable learning rates more accurately, and project future savings via energy-efficiency technologies with presence of learning. We conclude from our analysis that, most of the existing energy efficiency technologies that are currently used in the U.S. iron and steel sector are cost effective. Penetration levels increases through the years, even though there is no price reduction. However, demonstration technologies are not economically

  2. Energy Efficiency Improvement and Cost Saving Opportunities for the Baking Industry: An ENERGY STAR® Guide for Plant and Energy Managers

    Energy Technology Data Exchange (ETDEWEB)

    Masanet, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Therkelsen, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Worrell, Ernst [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2012-12-28

    The U.S. baking industry—defined in this Energy Guide as facilities engaged in the manufacture of commercial bakery products such as breads, rolls, frozen cakes, pies, pastries, and cookies and crackers—consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in food processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. A summary of basic, proven measures for improving plant-level water efficiency is also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. baking industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures—as well as on their applicability to different production practices—is needed to assess their cost effectiveness at individual plants.

  3. Energy-efficient projecting and purchasing and means of promoting the use of energy efficient equipment within industry; Energieffektiv projektering og indkoeb samt vaerktoejer til fremme af energieffektivt udstyr til erhvervsvirksomheder

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The first aim was to identify the barriers to energy efficient projecting and related purchasing in businesses and to suggest means to remove these barriers. It is stated that if energy consumption is taken into consideration in the first planning phase and before making purchases, energy-saving can be achieved at a reasonable investment. Examples are given to illustrate this point. As a result of interviews and discussions with involved persons, it was found that constraints are not only economical but also take the form of lack of sufficient time, procrastination on the part of decision-makers, lack of relevant information and a certain reluctance to experiment with new ideas. A three-phased decision process is suggested. It was found that energy-saving was not always given very high priority. Consultants should point out the relation between energy saving and environmental protection. Training and campaigning activities are essential. Consultants should be able to produce documentation to prove their theories on energy saving within industry. An effective organisation of consultancy services is essential. Clients` attitudes to energy savings must be influenced. A sequence of practical goals should be set up during the planning process. Cost-benefit analyses were carried out in relation to seven of the suggested plans for breaking down the barriers to energy-effective projecting. (AB) (16 refs.)

  4. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Galitsky, Christina; Worrell, Ernst

    2008-01-01

    The motor vehicle industry in the U.S. spends about $3.6 billion on energy annually. In this report, we focus on auto assembly plants. In the U.S., over 70 assembly plants currently produce 13 million cars and trucks each year. In assembly plants, energy expenditures is a relatively small cost factor in the total production process. Still, as manufacturers face an increasingly competitive environment, energy efficiency improvements can provide a means to reduce costs without negatively affecting the yield or the quality of the product. In addition, reducing energy costs reduces the unpredictability associated with variable energy prices in today?s marketplace, which could negatively affect predictable earnings, an important element for publicly-traded companies such as those in the motor vehicle industry. In this report, we first present a summary of the motor vehicle assembly process and energy use. This is followed by a discussion of energy efficiency opportunities available for assembly plants. Where available, we provide specific primary energy savings for each energy efficiency measure based on case studies, as well as references to technical literature. If available, we have listed costs and typical payback periods. We include experiences of assembly plants worldwide with energy efficiency measures reviewed in the report. Our findings suggest that although most motor vehicle companies in the U.S. have energy management teams or programs, there are still opportunities available at individual plants to reduce energy consumption cost effectively. Further research on the economics of the measures for individual assembly plants, as part of an energy management program, is needed to assess the potential impact of selected technologies at these plants.

  5. Energy Efficiency Project Development

    Energy Technology Data Exchange (ETDEWEB)

    IUEP

    2004-03-01

    The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1

  6. Energy efficiency through industrial automation. IEC Technical Report 62837: Presentation held at International Symposium on Industrial Energy Saving Technologies, July 11, 2014, Shenyang, China

    OpenAIRE

    Hörcher, Günter

    2014-01-01

    The first edition of the IEC Technical Report 62837 "Energy Efficiency Through Automation Systems" was published in September 2013. The IEC TR 62837 is not a standard itself but gives guidelines to Technical Committees how to implement energy efficiency aspects into their standardisation work in a standardised way. Based on the structural concepts of manufacturing systems described in IEC 62264 it defines generic models, tools, and methods to be applied for the improvement of energy efficienc...

  7. 'klima:aktiv energieeffiziente betriebe' (climate:active energy efficient companies) - the Austrian climate change program for industry. Volume 1

    International Nuclear Information System (INIS)

    Sattler, Peter; Sampl, Martin; Fuchsberger, Karin

    2007-01-01

    'klima:aktiv' is the climate change program of the Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management. The aim of 'klima:aktiv' is to reduce CO 2 emissions as well as reinforce renewable energy in Austria. To achieve these goals more than 20 programs for renewable energies and energy efficiency were created - 'energy efficient companies' being one of them. 'klima:aktiv' was created in order to identify and furthermore realise energy saving and CO 2 reducing measures. To build an active and effective network, regional programs, local consultants and companies on the energy-market are encouraged to become partners of the program to be multipliers.One focus of the program is the support of consultants which are acting as mediators to the companies. A step by step model was developed for companies to help them realise the goals of the program. To ensure the highest service efficiency from the first contact with companies, consultants were furthermore provided with special 'k:a eeb Pro-Tools', which include a wide variety of tools from analysis and development to financing advise.The program started in October 2005. Its mission statement for the first year was to reduce CO 2 emission at 45.000 t or 60 GWh of primarily electrical energy. To reach this goal, single regional agencies were committed to individual objectives. After one year, a detailed evaluation of the program was carried out with the aim to show the areas of success but also to highlight areas that will need adjustments for optimal results

  8. The Energy-Efficient Quarry: Towards improved understanding and optimisation of energy use and minimisation of CO2 generation in the aggregates industry.

    Science.gov (United States)

    Hill, Ian; White, Toby; Owen, Sarah

    2014-05-01

    Extraction and processing of rock materials to produce aggregates is carried out at some 20,000 quarries across the EU. All stages of the processing and transport of hard and dense materials inevitably consume high levels of energy and have consequent significant carbon footprints. The FP7 project "the Energy Efficient Quarry" (EE-Quarry) has been addressing this problem and has devised strategies, supported by modelling software, to assist the quarrying industry to assess and optimise its energy use, and to minimise its carbon footprint. Aggregate quarries across Europe vary enormously in the scale of the quarrying operations, the nature of the worked mineral, and the processing to produce a final market product. Nevertheless most quarries involve most or all of a series of essential stages; deposit assessment, drilling and blasting, loading and hauling, and crushing and screening. The process of determining the energy-efficiency of each stage is complex, but is broadly understood in principle and there are numerous sources of information and guidance available in the literature and on-line. More complex still is the interaction between each of these stages. For example, using a little more energy in blasting to increase fragmentation may save much greater energy in later crushing and screening, but also generate more fines material which is discarded as waste and the embedded energy in this material is lost. Thus the calculation of the embedded energy in the waste material becomes an input to the determination of the blasting strategy. Such feedback loops abound in the overall quarry optimisation. The project has involved research and demonstration operations at a number of quarries distributed across Europe carried out by all partners in the EE-Quarry project, working in collaboration with many of the major quarrying companies operating in the EU. The EE-Quarry project is developing a sophisticated modelling tool, the "EE-Quarry Model" available to the quarrying

  9. The insurance and risk management industries: new players in the delivery of energy-efficient and renewable energy products and services

    International Nuclear Information System (INIS)

    Mills, Evan

    2003-01-01

    The insurance and risk management industries are typically considered to have little interest in energy issues, other than those associated with large energy supply systems. The historical involvement of these industries in the development and deployment of familiar loss-prevention technologies such as automobile air bags, fire prevention/suppression systems, and anti-theft devices, evidences a tradition of mediating and facilitating the use of technology to improve safety and otherwise reduce the likelihood of losses. Through an examination of the connection between risk management and energy technology, we have identified nearly 80 examples of energy-efficient and renewable energy technologies that offer loss-prevention benefits (such as improved fire safety). This article presents the business case for insurer involvement in the sustainable energy sector and documents early case studies of insurer efforts along these lines. We have mapped these opportunities onto the appropriate market segments (life, health, property, liability, business interruption, etc.). We review steps taken by 53 forward-looking insurers and reinsurers, 5 brokers, 7 insurance organizations, and 13 non-insurance organizations. We group the approaches into the categories of: information, education, and demonstration; financial incentives; specialized policies and insurance products; direct investment; customer services and inspections; codes, standards, and policies; research and development; in-house energy management; and an emerging concept informally known as 'carbon insurance'. While most companies have made only a modest effort to position themselves in the 'green' marketplace, a few have comprehensive environmental programs that include energy efficiency and renewable energy activities

  10. Cleanroom Energy Efficiency Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Tschudi, Bill

    1999-03-15

    On March 15, 1999, Lawrence Berkeley National Laboratory hosted a workshop focused on energy efficiency in Cleanroom facilities. The workshop was held as part of a multiyear effort sponsored by the California Institute for Energy Efficiency, and the California Energy Commission. It is part of a project that concentrates on improving energy efficiency in Laboratory type facilities including cleanrooms. The project targets the broad market of laboratory and cleanroom facilities, and thus cross-cuts many different industries and institutions. This workshop was intended to raise awareness by sharing case study success stories, providing a forum for industry networking on energy issues, contributing LBNL expertise in research to date, determining barriers to implementation and possible solutions, and soliciting input for further research.

  11. Study of energy efficiency measures in cement industry; Estudo de medidas de eficiencia energetica na industria de cimento

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Roberta Ferreira Carrijo; Gorla, Filipe Debonzi [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2008-07-01

    Methods of energy conservation play an important role in the future energetic supply. The cement industry, being energetic intensive, is an important niche of performance of such methods. It is intended, in the present work, to estimate the impact of energy conservation through different scenarios. The projections have been realized considering both the technical (equipment efficiency) and economical (Industrial Transformation Worth - ITW) aspects of the cement sector. (author)

  12. The Role of Appraisals in Energy Efficiency Financing

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Victoria [Building Industry Research Alliance, Stockton, CA (United States)

    2012-05-01

    This research identifies barriers and challenges and current industry status including several key appraisal industry developments for identifying and valuing energy efficiency. The report covers critical obstacles to documenting and assessing the potential added value from energy efficiency improvements, current opportunities to support and standardize reporting on energy efficiency and to ensure proper valuation, and next steps towards enabling energy efficiency financing market transformation.

  13. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China

    Energy Technology Data Exchange (ETDEWEB)

    Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Morrow, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sathaye, Jayant [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Masanet, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Xu, Tengfang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-05-15

    China’s annual crude steel production in 2010 was 638.7 Mt accounting for nearly half of the world’s annual crude steel production in the same year. Around 461 TWh of electricity and 14,872 PJ of fuel were consumed to produce this quantity of steel in 2010. We identified and analyzed 23 energy efficiency technologies and measures applicable to the processes in the iron and steel industry. The Conservation Supply Curve (CSC) used in this study is an analytical tool that captures both the engineering and the economic perspectives of energy conservation. Using a bottom-up electricity CSC model, the cumulative cost-effective electricity savings potential for the Chinese iron and steel industry for 2010-2030 is estimated to be 251 TWh, and the total technical electricity saving potential is 416 TWh. The CO2 emissions reduction associated with cost-effective electricity savings is 139 Mt CO2 and the CO2 emission reduction associated with technical electricity saving potential is 237 Mt CO2. The FCSC model for the iron and steel industry shows cumulative cost-effective fuel savings potential of 11,999 PJ, and the total technical fuel saving potential is 12,139. The CO2 emissions reduction associated with cost-effective and technical fuel savings is 1,191 Mt CO2 and 1,205 Mt CO2, respectively. In addition, a sensitivity analysis with respect to the discount rate used is conducted to assess the effect of changes in this parameter on the results. The result of this study gives a comprehensive and easy to understand perspective to the Chinese iron and steel industry and policy makers about the energy efficiency potential and its associated cost.

  14. DOE/Industrial Technologies Program DOE Award Number DE-FG36-05GO15099 Plant Wide Energy Efficiency Assessment Pilgrims Pride Corporation – Mt Pleasant Facility

    Energy Technology Data Exchange (ETDEWEB)

    Paper, Riyaz; Dooley, Bill; Turpish, William J; Symonds, Mark; Carswell, Needham

    2007-04-13

    The U. S. Department of Energy’s (DOE) Industrial Technologies Program (ITP), through Oak Ridge National Laboratory, is supporting plant wide energy efficiency assessments that will lead to substantial improvements in industrial efficiency, waste reduction, productivity, and global competitiveness in industries identified in ITP’s Industries of the Future. The stated goal of the assessments is to develop a comprehensive strategy at manufacturing locations that will significantly increase plant productivity, profitability, and energy efficiency, and reduce environmental emissions. ITP awarded a contract to Pilgrim’s Pride Corporation to conduct a plant wide energy efficiency assessment for their Mt Pleasant Facility in Mt Pleasant, Texas. Pilgrim’s Pride Corporation is the largest poultry company in the U.S. and Mexico producing nearly 9 billion pounds of poultry per year. Pilgrim's Pride products are sold to foodservice, retail and frozen entrée customers. Pilgrim's Pride owns and operates 37 chicken processing plants (34 in the U.S. and three in Mexico), 12 prepared foods plants and one turkey processing plant. Thirty-five feed mills and 49 hatcheries support these plants. Pilgrim's Pride is ranked number 382 on 2006's FORTUNE 500 list and net sales were $7.4 billion. In Mt. Pleasant, Texas, Pilgrim's Pride operates one of the largest prepared foods plants in the United States, with the capability of producing 2,000 different products and the capacity to turn out more than 7 million pounds of finished goods per week. The facility is divided into distinct departments: East Kill, West Kill, Prepared Foods, Protein Conversion, Wastewater Treatment, and Truck Shop. Facility processes include killing, eviscerating, refrigeration, baking, frying, and protein conversion. Pilgrim’s Pride formed a team to complete the plant wide energy efficiency assessment. The scope of work for this project was to: provide the analysis of departmental

  15. Energy efficiency in the German pulp and paper industry - A model-based assessment of saving potentials

    NARCIS (Netherlands)

    Fleiter, T.; Fehrenbach, D.; Worrell, E.|info:eu-repo/dai/nl/106856715; Eichhammer, W.

    2012-01-01

    Paper production is an energy-intensive process and accounted for about 9% of industrial energy demand in Germany in 2008. There have only been slow improvements in energyefficiency in the paperindustry over the past twenty years. Policies can accelerate the progress made, but knowledge about the

  16. The use of long term agreements to improve energy efficiency in the industrial sector: Overview of the European experiences and proposal for a common framework

    International Nuclear Information System (INIS)

    Bertoldi, P.

    1999-01-01

    In the European Union efficiency improvements in the industrial sector are regarded as a key element of Member States' strategies to meet their Kyoto target. Besides the traditional policy instruments, such as fiscal and financial aids, minimum efficiency standards, R and D and technology programs, there is an increasing interest by both public authorities and industry for voluntary approaches to improve industrial energy efficiency. In the European context the term voluntary approach is often used to describe a wide range of industry actions including, inter alia: industry covenants, negotiated agreements, long term agreements, self regulations, codes of conduct, benchmarking and monitoring schemes. These voluntary approaches differ in relation to their form, legal status, provisions and enforceability. The paper provides an up-to-date overview of the present status of the different voluntary approaches for the industrial sector in several Member States (the Netherlands, Sweden, Germany, Denmark, Finland, Ireland, and the United Kingdom). The paper will focus on the particular type of voluntary approach implemented in the Netherlands and commonly called Long Term Agreements (LTA). The paper analyses the opportunities and advantages for creating a common EU framework for the conclusion and implementation of LTAs, based on the successful Dutch model. In doing so, the paper intends also to contribute to the approximation of the LTA's essential elements throughout the Community in order to reduce possible distortions of the internal market and of the competitive position of national industries, thus enlarging the acceptability of this instrument by public authorities and industry. For some industrial sectors, which are quite homogeneous throughout the Community and represent a limited number of companies, the paper analyses the advantages of having European LTAs and recommends their implementation. The paper presents the achievable results at EU level in terms of

  17. Revisiting energy efficiency fundamentals

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Lombard, L.; Velazquez, D. [Grupo de Termotecnia, Escuela Superior de Ingenieros, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092 Seville (Spain); Ortiz, J. [Building Research Establishment (BRE), Garston, Watford, WD25 9XX (United Kingdom)

    2013-05-15

    Energy efficiency is a central target for energy policy and a keystone to mitigate climate change and to achieve a sustainable development. Although great efforts have been carried out during the last four decades to investigate the issue, focusing into measuring energy efficiency, understanding its trends and impacts on energy consumption and to design effective energy efficiency policies, many energy efficiency-related concepts, some methodological problems for the construction of energy efficiency indicators (EEI) and even some of the energy efficiency potential gains are often ignored or misunderstood, causing no little confusion and controversy not only for laymen but even for specialists. This paper aims to revisit, analyse and discuss some efficiency fundamental topics that could improve understanding and critical judgement of efficiency stakeholders and that could help in avoiding unfounded judgements and misleading statements. Firstly, we address the problem of measuring energy efficiency both in qualitative and quantitative terms. Secondly, main methodological problems standing in the way of the construction of EEI are discussed, and a sequence of actions is proposed to tackle them in an ordered fashion. Finally, two key topics are discussed in detail: the links between energy efficiency and energy savings, and the border between energy efficiency improvement and renewable sources promotion.

  18. Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the U.S. pulp and paper industry

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

    2000-07-01

    The pulp and paper industry accounts for over 12% of total manufacturing energy use in the U.S. (U.S. EIA 1997a), contributing 9% to total manufacturing carbon dioxide emissions. In the last twenty-five years primary energy intensity in the pulp and paper industry has declined by an average of 1% per year. However, opportunities still exist to reduce energy use and greenhouse gas emissions in the manufacture of paper in the U.S. This report analyzes the pulp and paper industry (Standard Industrial Code (SIC) 26) and includes a detailed description of the processes involved in the production of paper, providing typical energy use in each process step. We identify over 45 commercially available state-of-the-art technologies and measures to reduce energy use and calculate potential energy savings and carbon dioxide emissions reductions. Given the importance of paper recycling, our analysis examines two cases. Case A identifies potential primary energy savings without accounting for an increase in recycling, while Case B includes increasing paper recycling. In Case B the production volume of pulp is reduced to account for additional pulp recovered from recycling. We use a discount rate of 30% throughout our analysis to reflect the investment decisions taken in a business context. Our Case A results indicate that a total technical potential primary energy savings of 31% (1013 PJ) exists. For case A we identified a cost-effective savings potential of 16% (533 PJ). Carbon dioxide emission reductions from the energy savings in Case A are 25% (7.6 MtC) and 14% (4.4 MtC) for technical and cost-effective potential, respectively. When recycling is included in Case B, overall technical potential energy savings increase to 37% (1215 PJ) while cost-effective energy savings potential is 16%. Increasing paper recycling to high levels (Case B) is nearly cost-effective assuming a cut-off for cost-effectiveness of a simple payback period of 3 years. If this measure is included, then

  19. Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the US pulp and paper industry

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

    2000-07-01

    The pulp and paper industry accounts for over 12% of total manufacturing energy use in the US (US EIA 1997a), contributing 9% to total manufacturing carbon dioxide emissions. In the last twenty-five years primary energy intensity in the pulp and paper industry has declined by an average of 1% per year. However, opportunities still exist to reduce energy use and greenhouse gas emissions in the manufacture of paper in the US This report analyzes the pulp and paper industry (Standard Industrial Code (SIC) 26) and includes a detailed description of the processes involved in the production of paper, providing typical energy use in each process step. We identify over 45 commercially available state-of-the-art technologies and measures to reduce energy use and calculate potential energy savings and carbon dioxide emissions reductions. Given the importance of paper recycling, our analysis examines two cases. Case A identifies potential primary energy savings without accounting for an increase in recycling, while Case B includes increasing paper recycling. In Case B the production volume of pulp is reduced to account for additional pulp recovered from recycling. We use a discount rate of 30% throughout our analysis to reflect the investment decisions taken in a business context. Our Case A results indicate that a total technical potential primary energy savings of 31% (1013 PJ) exists. For case A we identified a cost-effective savings potential of 16% (533 PJ). Carbon dioxide emission reductions from the energy savings in Case A are 25% (7.6 MtC) and 14% (4.4 MtC) for technical and cost-effective potential, respectively. When recycling is included in Case B, overall technical potential energy savings increase to 37% (1215 PJ) while cost-effective energy savings potential is 16%. Increasing paper recycling to high levels (Case B) is nearly cost-effective assuming a cut-off for cost-effectiveness of a simple payback period of 3 years. If this measure is included, then the

  20. China's energy efficiency target 2010

    International Nuclear Information System (INIS)

    Yang Ming

    2008-01-01

    The Chinese government has set an ambitious target: reducing China's energy intensity by 20%, or 4.36% each year between 2006 and 2010 on the 2005 level. Real data showed that China missed its target in 2006, having reduced its energy intensity only by 1.3%. The objective of this study is to evaluate the feasibility and potential of the Chinese to achieve the target. This paper presents issues of macro-economy, population migration, energy savings, and energy efficiency policy measures to achieve the target. A top-down approach was used to analyse the relationship between the Chinese economic development and energy demand cycles and to identify the potentials of energy savings in sub-sectors of the Chinese economy. A number of factors that contribute to China's energy intensity are identified in a number of energy-intensive sectors. This paper concludes that China needs to develop its economy at its potential GDP growth rate; strengthen energy efficiency auditing, monitoring and verification; change its national economy from a heavy-industry-dominated mode to a light industry or a commerce-dominated mode; phase out inefficient equipment in industrial sectors; develop mass and fast railway transportation; and promote energy-efficient technologies at the end use. This paper transfers key messages to policy makers for designing their policy to achieve China's energy efficiency target

  1. Final Assessment: U.S. Virgin Islands Industrial Development Park and Adjacent Facilities Energy-Efficiency and Micro-Grid Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Joseph M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Boyd, Paul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dahowski, Robert T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Parker, Graham B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-31

    The purpose of this assessment was to undertake an assessment and analysis of cost-effective options for energy-efficiency improvements and the deployment of a micro-grid to increase the energy resilience at the U.S. Virgin Islands Industrial Development Park (IDP) and adjacent facilities in St. Croix, Virgin Islands. The Economic Development Authority sought assistance from the U.S. Department of Energy to undertake this assessment undertaken by Pacific Northwest National Laboratory. The assessment included 18 buildings plus the perimeter security lighting at the Virgin Islands Bureau of Correctional Facility, four buildings plus exterior lighting at the IDP, and five buildings (one of which is to be constructed) at the Virgin Islands Police Department for a total of 27 buildings with a total of nearly 323,000 square feet.

  2. Energy Efficient TCP

    NARCIS (Netherlands)

    Donckers, L.; Smit, Gerardus Johannes Maria; Havinga, Paul J.M.; Smit, L.T.

    This paper describes the design of an energy-efficient transport protocol for mobile wireless communication. First we describe the metrics used to measure the energy efficiency of transport protocols. We identify several problem areas that prevent TCP/IP from reaching high levels of energy

  3. Energy Efficiency Collaboratives

    Energy Technology Data Exchange (ETDEWEB)

    Li, Michael [US Department of Energy, Washington, DC (United States); Bryson, Joe [US Environmental Protection Agency, Washington, DC (United States)

    2015-09-01

    Collaboratives for energy efficiency have a long and successful history and are currently used, in some form, in more than half of the states. Historically, many state utility commissions have used some form of collaborative group process to resolve complex issues that emerge during a rate proceeding. Rather than debate the issues through the formality of a commission proceeding, disagreeing parties are sent to discuss issues in a less-formal setting and bring back resolutions to the commission. Energy efficiency collaboratives take this concept and apply it specifically to energy efficiency programs—often in anticipation of future issues as opposed to reacting to a present disagreement. Energy efficiency collaboratives can operate long term and can address the full suite of issues associated with designing, implementing, and improving energy efficiency programs. Collaboratives can be useful to gather stakeholder input on changing program budgets and program changes in response to performance or market shifts, as well as to provide continuity while regulators come and go, identify additional energy efficiency opportunities and innovations, assess the role of energy efficiency in new regulatory contexts, and draw on lessons learned and best practices from a diverse group. Details about specific collaboratives in the United States are in the appendix to this guide. Collectively, they demonstrate the value of collaborative stakeholder processes in producing successful energy efficiency programs.

  4. Barriers, drivers and decision-making process for industrial energy efficiency: A broad study among manufacturing small and medium-sized enterprises

    International Nuclear Information System (INIS)

    Trianni, Andrea; Cagno, Enrico; Farné, Stefano

    2016-01-01

    Highlights: • Barriers and drivers vary along the decision-making process of EEM adoption. • Economic barriers, awareness and behavioural are most critical. • Beside economic drivers, major relevance of regulatory and vocational training. • Importance of stakeholders providing technical support. • Barriers and drivers are different according to several firm characteristics. - Abstract: Energy efficiency has been recognized as a primary means to increase the competitiveness of the industrial sector, and in particular for small and medium-sized enterprises (SMEs), in which energy efficiency measures (EEMs) are scarcely implemented. For this reason, future policies should carefully address such issue. Hence, it is really crucial to have a precise and punctual knowledge of the barriers to be tackled in the decision-making process of adopting an EEM and the drivers to be promoted. This study discussed the findings from a broad investigation within 222 manufacturing SMEs located in a Northern Italy region. Beside economic issues particularly affecting SMEs, awareness and behavioural issues emerge as critical, affecting the very first steps of the decision-making process, related to the punctual identification and evaluation of plausible EEMs. The support from manufacturers, technology suppliers, installers and ESCOs supporting SMEs through vocational training drivers (e.g. technical support) is really important to tackle such issues. More generally, beside financial institutions, the supply chain of technologies is recognized as particularly useful for supporting enterprises in the adoption of EEMs. Additionally, having previously conducted energy audit and implemented EEMs are critical factors able to highlight non-economic barriers and drivers. Therefore, the promotion of EEMs will necessarily imply a further effort in pointing out the so-called non-energy benefits (NEBs) from the implementation of EEMs. Finally, our study reveals that smaller and non

  5. Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector

    Energy Technology Data Exchange (ETDEWEB)

    Xu, T.T.; Sathaye, J.; Galitsky, C.

    2010-09-30

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. With the working of energy programs and policies on carbon regulation, how to effectively analyze and manage the costs associated with GHG reductions become extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions (e.g., carbon emission) for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models. In this report, we first conduct brief overview on different representations of end-use technologies (mitigation measures) in various energy-climate models, followed by problem statements, and a description of the basic concepts of quantifying the cost of conserved energy including integrating non-regrets options. A non-regrets option is defined as a GHG reduction option that is cost effective, without considering their additional benefits related to reducing GHG emissions. Based upon these, we develop information on costs of mitigation measures and technological change. These serve as the basis for collating the data on energy savings and costs for their future use in integrated assessment models. In addition to descriptions of the iron and steel making processes, and the mitigation measures identified in this study, the report includes tabulated databases on costs of measure implementation, energy savings, carbon-emission reduction, and lifetimes. The cost curve data on mitigation

  6. The benefits of energy efficiency - why wait?

    NARCIS (Netherlands)

    Blok, K.; Breevoort, P. van

    2012-01-01

    Improving energy efficiency globally leads to many benefits. First and foremost, improved energy efficiency of equipment, buildings, vehicles and industrial processes will lead to a reduction of the use of electricity, heat and fuels. This will save large amounts of money. Moreover,

  7. Risk Assessment of Energy-Efficient Walls

    Energy Technology Data Exchange (ETDEWEB)

    Pallin, Simon B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hun, Diana E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jackson, Roderick K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kehrer, Manfred [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-12-01

    This multi-year project aims to provide the residential construction industry with energy-efficient wall designs that are moisture durable. The present work focused on the initial step of this project, which is to develop a moisture durability protocol that identifies energy efficient wall designs that have a low probability of experiencing moisture problems.

  8. Transport Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Transport is the sector with the highest final energy consumption and, without any significant policy changes, is forecast to remain so. In 2008, the IEA published 25 energy efficiency recommendations, among which four are for the transport sector. The recommendations focus on road transport and include policies on improving tyre energy efficiency, fuel economy standards for both light-duty vehicles and heavy-duty vehicles, and eco-driving. Implementation of the recommendations has been weaker in the transport sector than others. This paper updates the progress that has been made in implementing the transport energy efficiency recommendations in IEA countries since March 2009. Many countries have in the last year moved from 'planning to implement' to 'implementation underway', but none have fully implemented all transport energy efficiency recommendations. The IEA calls therefore for full and immediate implementation of the recommendations.

  9. Energy Efficient Cryogenics

    Science.gov (United States)

    Meneghelli, Barry J.; Notardonato, William; Fesmire, James E.

    2016-01-01

    The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for the energy-efficient use of cryogenics on Earth and in space.

  10. Energy efficiency and behaviour

    DEFF Research Database (Denmark)

    Carstensen, Trine Agervig; Kunnasvirta, Annika; Kiviluoto, Katariina

    The purpose of Work Package 5 Deliverable 5.1., “Case study reports on energy efficiency and behaviour” is to present examples of behavioral interventions to promote energy efficiency in cities. The case studies were collected in January – June 2014, and they represent behavioural interventions...... from different sectors of energy efficiency from the following PLEEC partner countries: Denmark, Sweden, Finland, the UK, the Netherlands, Estonia, Bulgaria and Spain. Each case is presented shortly with key details of budget, target group, and methods as well as a short assessment of main success...... factors. The main addressees of D5.1. are city officials, NGO representatives, private sector actors and any other relevant actors who plan and realize behavioural energy efficiency interventions in European cities. The WP5 team will also further apply results from D5.1. with a more general model on how...

  11. Southern Energy Efficiency Center (SEEC)

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Robin; Sonne, Jeffrey; Withers, Charles; Cummings, James; Verdict, Malcolm; Roberts, Sydney

    2009-09-30

    The Southern Energy Efficiency Center (SEEC) builds collaborative partnerships with: state and local governments and their program support offices, the building delivery industry (designers, contractors, realtors and commissioning agents), product manufacturers and their supply chains, utilities and their program implementers, consumers and other stakeholders in order to forge a strong regional network of building energy efficiency allies. Through a project Steering Committee composed of the state energy offices and building industry stakeholders, the SEEC works to establish consensus-based goals, priorities and strategies at the regional, state and local levels that will materially advance the deployment of high-performance “beyond code” buildings. In its first Phase, SEEC will provide limited technical and policy support assistance, training, certification and education to a wide spectrum of the building construction, codes and standards, and the consumer marketplace.

  12. Energy Efficiency Indicators Methodology Booklet

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, Jayant; Price, Lynn; McNeil, Michael; de la rue du Can, Stephane

    2010-05-01

    This Methodology Booklet provides a comprehensive review and methodology guiding principles for constructing energy efficiency indicators, with illustrative examples of application to individual countries. It reviews work done by international agencies and national government in constructing meaningful energy efficiency indicators that help policy makers to assess changes in energy efficiency over time. Building on past OECD experience and best practices, and the knowledge of these countries' institutions, relevant sources of information to construct an energy indicator database are identified. A framework based on levels of hierarchy of indicators -- spanning from aggregate, macro level to disaggregated end-use level metrics -- is presented to help shape the understanding of assessing energy efficiency. In each sector of activity: industry, commercial, residential, agriculture and transport, indicators are presented and recommendations to distinguish the different factors affecting energy use are highlighted. The methodology booklet addresses specifically issues that are relevant to developing indicators where activity is a major factor driving energy demand. A companion spreadsheet tool is available upon request.

  13. Energy Efficiency Center - Overview

    International Nuclear Information System (INIS)

    Obryk, E.

    2000-01-01

    Full text: The Energy Efficiency Center (EEC) activities have been concentrated on Energy Efficiency Network (SEGE), education and training of energy auditors. EEC has started studies related to renewable fuels (bio fuel, wastes) and other topics related to environment protection. EEC has continued close collaboration with Institute for Energy Technology, Kjeller, Norway. It has been organized and conducted Seminar and Workshop on ''How to Reduce Energy and Water Cost in Higher Education Buildings'' for general and technical managers of the higher education institutions. This Seminar was proceeded by the working meeting on energy efficiency strategy in higher education at the Ministry of National Education. EEC has worked out proposal for activities of Cracow Regional Agency for Energy Efficiency and Environment and has made offer to provide services for this Agency in the field of training, education and consulting. The vast knowledge and experiences in the field of energy audits have been used by the members of EEC in lecturing at energy auditors courses authorized by the National Energy Efficiency Agency (KAPE). Altogether 20 lectures have been delivered. (author)

  14. State-Level Benefits of Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, Bruce Edward [ORNL

    2007-02-01

    This report describes benefits attributable to state-level energy efficiency programs. Nationwide, state-level energy efficiency programs have targeted all sectors of the economy and have employed a wide range of methods to promote energy efficiency. Standard residential and industrial programs typically identify between 20 to 30% energy savings in homes and plants, respectively. Over a 20 year period of time, an average state that aggressively pursues even a limited array of energy efficiency programs can potentially reduce total state energy use by as much as 20%. Benefit-cost ratios of effective energy efficiency programs typically exceed 3 to 1 and are much higher when non-energy and macroeconomic benefits are included. Indeed, energy efficiency and associated programs and investments can create significant numbers of new jobs and enhance state tax revenues. Several states have incorporated energy efficiency into their economic development programs. It should also be noted that increasing amounts of venture capital are being invested in the energy sector in general and in specific technologies like solar power in particular. Well-designed energy efficiency programs can be expected to help overcome numerous barriers to the market penetration of energy efficient technologies and accelerate the market penetration of the technologies.

  15. Market conditions affecting energy efficiency investments

    International Nuclear Information System (INIS)

    Seabright, J.

    1996-01-01

    The global energy efficiency market is growing, due in part to energy sector and macroeconomic reforms and increased awareness of the environmental benefits of energy efficiency. Many countries have promoted open, competitive markets, thereby stimulating economic growth. They have reduced or removed subsidies on energy prices, and governments have initiated energy conservation programs that have spurred the wider adoption of energy efficiency technologies. The market outlook for energy efficiency is quite positive. The global market for end-use energy efficiency in the industrial, residential and commercial sectors is now estimated to total more than $34 billion per year. There is still enormous technical potential to implement energy conservation measures and to upgrade to the best available technologies for new investments. For many technologies, energy-efficient designs now represent less than 10--20% of new product sales. Thus, creating favorable market conditions should be a priority. There are a number of actions that can be taken to create favorable market conditions for investing in energy efficiency. Fostering a market-oriented energy sector will lead to energy prices that reflect the true cost of supply. Policy initiatives should address known market failures and should support energy efficiency initiatives. And market transformation for energy efficiency products and services can be facilitated by creating an institutional and legal structure that favors commercially-oriented entities

  16. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the U.S. Pulp and Paper Sector

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tengfang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sathaye, Jayant [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kramer, Klaas Jan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-07-01

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models. In this report, we first conduct a brief review of different representations of end-use technologies (mitigation measures) in various energy-climate models, followed by the problem statement, and a description of the basic concepts of quantifying the cost of conserved energy including integrating no-regrets options.

  17. Energy efficiency: from principles to reality

    International Nuclear Information System (INIS)

    Baudry, Paul; Ballot-Miguel, Benedicte; Binet, Guillaume; Bordigoni, Mathieu; Decellas, Fabrice; Hauser, Chantal; Hita, Laurent; Laurent, Marie-Helene; Osso, Dominique; Peureux, Jean-Louis; Pham Van Cang, Christian

    2015-01-01

    This collective publication proposes a comprehensive overview of issues related to energy efficiency: associated stakes, methods of assessment of energy savings and of their costs, methods of action for energy efficiency policies, application in the housing, office building and industry sectors based on energy consumption modes in these different sectors, and main technologies aimed at improving energy efficiency. The first chapter proposes an historical perspective on energy, outlines the crucial role of energy efficiency in today's and tomorrow's contexts, and discusses which are the different levers of action to increase this efficiency. The next chapters address methods of assessment of energy efficiency, identify and discuss the use of different potential sources of energy saving, propose an overview of the various objectives and instruments of policies for energy efficiency, and address the issue of energy efficiency in the housing sector, in the office building sector, and in the industry sector by indicating the current levels of energy consumption, by identifying the various potential sources of energy saving, and by indicating available technologies aimed at improving energy efficiency

  18. Energy efficiency through energy audit

    International Nuclear Information System (INIS)

    Esan, A. A.

    2000-08-01

    Energy is an essential factor to economic and social development and improved standards of living in developing countries. Nigeria in particular. There is a strong need for greater energy efficiency in every sector of economy in order to reduce costs. enhance competitiveness, conserve energy resources and reduce environmental impacts associated with production, distribution and use of energy. Energy auditing and monitoring has a significant role in any energy management and conservation project. Energy auditing as an important part of industrial energy management on plant level, represents a complex of activities aiming at the efficient use of energy. The activities are undertaken by a team of experts who use a set of measuring instruments to monitor and evaluate all the necessary data to elaborate a package of recommendations on improvements in the field of energy efficiency and possible product quality. The inefficient conversion and use of energy have been identified as a central problem for all developing countries, Nigeria inclusive, since they all consume significantly higher amounts of energy per unit of GDP than OECD countries. This aggravates energy-related environmental problems and is also a burden on domestic resources and foreign exchange. Energy prices have risen drastically in many developing countries, while energy intensities remain high. Price changes alone are not rapidly translating energy efficiency improvements. Identifying and removing the obstacles to greater energy efficiency should be priority for government in developing countries. This is why the Energy Commission, an apex organ of government on Energy matters in all its ramifications is out to encourage relatively low-cost energy audits for the Textile industries - such audits can identify ''good house-keeping's' measures, such as simply process improvements, that reduce energy consumption and operating costs. This will be followed by the training of plant workers/energy managers

  19. Dimensions of energy efficiency

    International Nuclear Information System (INIS)

    Ramani, K.V.

    1992-01-01

    In this address the author describes three dimensions of energy efficiency in order of increasing costs: conservation, resource and technology substitution, and changes in economic structure. He emphasizes the importance of economic rather than environmental rationales for energy efficiency improvements in developing countries. These countries do not place high priority on the problems of global climate change. Opportunities for new technologies may exist in resource transfer, new fuels and, possibly, small reactors. More research on economic and social impacts of technologies with greater sensitivity to user preferences is needed

  20. ENERGY EFFICIENT LAUNDRY PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Tim Richter

    2005-04-01

    With the rising cost of energy and increased concerns for pollution and greenhouse gas emissions from power generation, increased focus is being put on energy efficiency. This study looks at several approaches to reducing energy consumption in clothes care appliances by considering the appliances and laundry chemistry as a system, rather than individually.

  1. Energy efficiency system development

    Science.gov (United States)

    Leman, A. M.; Rahman, K. A.; Chong, Haw Jie; Salleh, Mohd Najib Mohd; Yusof, M. Z. M.

    2017-09-01

    By subjecting to the massive usage of electrical energy in Malaysia, energy efficiency is now one of the key areas of focus in climate change mitigation. This paper focuses on the development of an energy efficiency system of household electrical appliances for residential areas. Distribution of Questionnaires and pay a visit to few selected residential areas are conducted during the fulfilment of the project as well as some advice on how to save energy are shared with the participants. Based on the collected data, the system developed by the UTHM Energy Team is then evaluated from the aspect of the consumers' behaviour in using electrical appliances and the potential reduction targeted by the team. By the end of the project, 60% of the participants had successfully reduced the electrical power consumption set by the UTHM Energy Team. The reasons for whether the success and the failure is further analysed in this project.

  2. Danish Energy Efficiency Policy

    DEFF Research Database (Denmark)

    Togeby, Mikael; Larsen, Anders; Dyhr-Mikkelsen, Kirsten

    2009-01-01

    Ten groups of policy instruments for promoting energy efficiency are actively used in Denmark. Among these are the EU instruments such as the CO2 emissions trading scheme and labelling of appliances, labelling of all buildings, combined with national instruments such as high taxes especially...... of the entire Danish energy efficiency policy portfolio must be carried out before end 2008 and put forward for discussion among governing parties no later than February 2009. A consortium comprising Ea Energy Analyses, Niras, the Department of Society and Globalisation (Roskilde University) and 4-Fact...... was assigned with this task. The evaluation aimed to answer the crucial questions: Is the overall design of the portfolio of instruments appropriate? Does the impact of the instruments justify the costs, so that we reach the national goals in a cost efficient way? Will the current instrument portfolio be able...

  3. Energy efficiency: A proposal

    Directory of Open Access Journals (Sweden)

    Pendić Zoran R.

    2015-01-01

    Full Text Available Increase of energy efficiency in Serbia is one of the priority tasks. Sector of electric lighting offers great opportunities for increasing energy efficiency due to the rapid development of LED technology. Nowadays LED lighting is still expensive and have relatively little application in the domain of electric lighting. However, it is anticipated that LED products would soon greatly transform the electric lighting market. In recent years, LED technology has significantly improved, and constantly evolving. It is expected that advanced and future LED bulbs / lamps to be getting cheaper and with a better technical characteristics and that they will soon be dominant on the lighting market. Serbia must prepare for the LED future, creating appropriate legislation and promotion of appropriate incentive measures.

  4. Energy efficiency: Lever for the Energy Transition

    International Nuclear Information System (INIS)

    2012-12-01

    The Eco-electric industry group (FFIE, FGME, Gimelec, IGNES, SERCE) has conducted a study to evaluate the energy saving potential of active energy efficiency solutions in the residential and commercial building sectors. Based on field implementations and demonstrators, it has been demonstrated that active energy efficiency can sustainably achieve substantial savings for households, companies and public authorities. Energy Efficiency - Lever for the energy transition presents the results and conclusions of that study, alongside with recommendations for public authority in terms of building retrofit policy for putting France on the best possible 'trajectory' from a budgetary and environmental point of view. (author)

  5. Reconsidering energy efficiency

    International Nuclear Information System (INIS)

    Goldoni, Giovanni

    2007-01-01

    Energy and environmental policies are reconsidering energy efficiency. In a perfect market, rational and well informed consumers reach economic efficiency which, at the given prices of energy and capital, corresponds to physical efficiency. In the real world, market failures and cognitive frictions distort the consumers from perfectly rational and informed choices. Green incentive schemes aim at balancing market failures and directing consumers toward more efficient goods and services. The problem is to fine tune the incentive schemes [it

  6. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Melody, Moya; Dunham Whitehead, Camilla; Brown, Richard

    2010-09-30

    As American drinking water agencies face higher production costs, demand, and energy prices, they seek opportunities to reduce costs without negatively affecting the quality of the water they deliver. This guide describes resources for cost-effectively improving the energy efficiency of U.S. public drinking water facilities. The guide (1) describes areas of opportunity for improving energy efficiency in drinking water facilities; (2) provides detailed descriptions of resources to consult for each area of opportunity; (3) offers supplementary suggestions and information for the area; and (4) presents illustrative case studies, including analysis of cost-effectiveness.

  7. 76 FR 54431 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2011-09-01

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... competitiveness of the U.S. renewable energy and energy efficiency industries, including specific challenges...

  8. 78 FR 69370 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2013-11-19

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC....S. renewable energy and energy efficiency industries. The December 3, 2013 meeting of the RE&EEAC...

  9. Drivers and barriers to the diffusion of energy-efficient technologies—a plant-level analysis of the German steel industry

    NARCIS (Netherlands)

    Arens, Marlene; Worrell, Ernst; Eichhammer, Wolfgang

    The paper aims at explaining why large-scale energy-intensive industries—here the German iron and steel industry—had a period of slow uptake of major energy-efficient technologies from the mid 1990s to mid 2000s (Arens and Worrell, 2014) and why from the mid 2000s onwards these technologies are

  10. Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tengfang; Slaa, Jan Willem; Sathaye, Jayant

    2010-12-15

    Implementation and adoption of efficient end-use technologies have proven to be one of the key measures for reducing greenhouse gas (GHG) emissions throughout the industries. In many cases, implementing energy efficiency measures is among one of the most cost effective investments that the industry could make in improving efficiency and productivity while reducing carbon dioxide (CO2) emissions. Over the years, there have been incentives to use resources and energy in a cleaner and more efficient way to create industries that are sustainable and more productive. With the working of energy programs and policies on GHG inventory and regulation, understanding and managing the costs associated with mitigation measures for GHG reductions is very important for the industry and policy makers around the world and in California. Successful implementation of applicable emerging technologies not only may help advance productivities, improve environmental impacts, or enhance industrial competitiveness, but also can play a significant role in climate-mitigation efforts by saving energy and reducing the associated GHG emissions. Developing new information on costs and savings benefits of energy efficient emerging technologies applicable in California market is important for policy makers as well as the industries. Therefore, provision of timely evaluation and estimation of the costs and energy savings potential of emerging technologies applicable to California is the focus of this report. The overall goal of the project is to identify and select a set of emerging and under-utilized energy-efficient technologies and practices as they are important to reduce energy consumption in industry while maintaining economic growth. Specifically, this report contains the results from performing Task 3 Technology Characterization for California Industries for the project titled Research Opportunities in Emerging and Under-Utilized Energy-Efficient Industrial Technologies, sponsored by

  11. Energy Efficient Digital Networks

    Energy Technology Data Exchange (ETDEWEB)

    Lanzisera, Steven [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Brown, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-01-01

    Digital networks are the foundation of the information services, and play an expanding and indispensable role in our lives, via the Internet, email, mobile phones, etc. However, these networks consume energy, both through the direct energy use of the network interfaces and equipment that comprise the network, and in the effect they have on the operating patterns of devices connected to the network. The purpose of this research was to investigate a variety of technology and policy issues related to the energy use caused by digital networks, and to further develop several energy-efficiency technologies targeted at networks.

  12. Financing Energy Efficient Homes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Existing buildings require over 40% of the world's total final energy consumption, and account for 24% of world CO2 emissions (IEA, 2006). Much of this consumption could be avoided through improved efficiency of building energy systems (IEA, 2006) using current, commercially-viable technology. In most cases, these technologies make economic sense on a life-cycle cost analysis (IEA, 2006b). Moreover, to the extent that they reduce dependence on risk-prone fossil energy sources, energy efficient technologies also address concerns of energy security.

  13. Coordination of Energy Efficiency and Demand Response

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

    2010-01-29

    This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

  14. Energy efficiency and the influence of gas burners to the energy related carbon dioxide emissions of electric arc furnaces in steel industry

    International Nuclear Information System (INIS)

    Kirschen, Marcus; Risonarta, Victor; Pfeifer, Herbert

    2009-01-01

    Determining the complete energy balance of an electric arc furnace (EAF) provides an appropriate method to examine energy efficiency and identify energy saving potentials. However, the EAF energy balance is complex due to the combined input of electrical energy and chemical energy resulting from natural gas (NG) combustion and oxidation reactions in the steel melt. In addition, furnace off-gas measurements and slag analysis are necessary to reliably determine energy sinks. In this paper 70 energy balances and energy efficiencies from multiple EAFs are presented, including data calculated from plant measurements and compiled from the literature. Potential errors that can be incorporated in these calculations are also highlighted. The total energy requirement of these modern EAFs analysed ranged from 510 to 880 kWh/t, with energy efficiency values (η = ΔH Steel /E Total ) of between 40% and 75%. Furthermore, the focus was placed on the total energy related CO 2 emissions of EAF processes comprising NG combustion and electrical energy input. By assessing multiple EAF energy balances, a significant correlation between the total energy requirement and energy related specific CO 2 emissions was not evident. Whilst the specific consumption of NG in the EAF only had a minor impact on the EAF energy efficiency, it decreased the specific electrical energy requirement and increased EAF productivity where transformer power was restricted. The analysis also demonstrated that complementing and substituting electrical energy with NG was beneficial in reducing the total energy related CO 2 emissions when a certain level of substitution efficiency was achieved. Therefore, the appropriate use of NG burners in modern EAFs can result in an increased EAF energy intensity, whilst the total energy related CO 2 emissions remain constant or are even decreased.

  15. CEE Energy Efficiency Report - Slovakia

    International Nuclear Information System (INIS)

    Hecl, V.

    2005-01-01

    A review of future trends of energy consumption shows that, in the absence of an active energy policy which promotes energy efficiency, energy consumption will increase as a whole by approximately 6.8% by 2012 continuing to raise after this period.. This result hides large differences between the different sources of energy (mainly heat, fuels and electricity) and between the different sectors - transport, industry, buildings etc. It is therefore clear that a strong energy policy is needed to counterbalance the expected increase in energy consumption in all sectors, with emphasis on measures in the building sector (both residential and tertiary) and in the transport sector. Furthermore improvements in the district heating sector are also essential to prevent further disconnection from district heating and a shift to other means of heating. A review of the main barriers to energy efficiency leads to the conclusion that while significant changes are needed in the regulatory framework, the lack of access to finance and the general lack of awareness about existing technologies and best practice represent the greatest barriers. In order to evaluate the success of energy. In a few studies available from past 2-3 years the calculation of low and high targets for energy policy was elaborated. The low targets would represent about 11% - 12% reduction in overall energy consumption. The high targets would represent a 13% - 15% reduction in overall energy consumption. Policy instruments have been identified which can turn energy efficiency into one of the driving forces of the overall economic and development strategy of the country. Some of these instruments deal with general issues such as general policy issues, regulatory and legal aspects, the institutional framework and fiscal, taxation and pricing policy. They are designed to improve the present conditions and would use only a limited part of the available public budget. The state budget dedicated to energy issues will

  16. USSR energy efficiency and prospects

    International Nuclear Information System (INIS)

    Sinyak, Y.

    1991-06-01

    The U.S.S.R. is the largest energy producer and the second largest energy consumer in the world. Its share of global energy use reached above 17% in 1988. The soviet energy system is characterized by low efficiency and high per capita energy consumption, although there are some reasons justifying the greater U.S.S.R. energy use per unit of product output than in other industrialized countries. The present energy-savings potential is approximately equal to one-half of the domestic energy consumption. Improvements in energy efficiency at all levels of the national economy are now considered to be the primary goal of national energy policy for the next couple of decades. Being endowed with abundant natural gas resources, the U.S.S.R. will count on this energy source in the future to improve its energy efficiency, reduce expenses and cope with air pollution. After 2005-2010, stabilized primary energy consumption may be reached or there may even be a decline of total energy use. The U.S.S.R. could reduce CO 2 emissions by 20% by 2030 but with substantial negative impacts on GNP growth. Required improvements in the Soviet energy system depend on changes in energy management, including reduction of the role of centralized planning, decentralization and privatization of energy-producing facilities, energy-price reforms, reshaping of investment patterns, reduction in military expenditures, etc. (author)

  17. Energy efficiency fallacies revisited

    International Nuclear Information System (INIS)

    Brookes, Leonard

    2000-01-01

    A number of governments including that of the UK subscribe to the belief that a national program devoted to raising energy efficiency throughout the economy provides a costless - indeed profitable - route to meeting international environmental obligations. This is a seductive policy. It constitutes the proverbial free lunch - not only avoiding politically unpopular measures like outlawing, taxing or rationing offending fuels or expanding non-carboniferous sources of energy like nuclear power but doing so with economic benefit. The author of this contribution came to doubt the validity of this solution when it was offered as a way of mitigating the effect of the OPEC price hikes of the 1970s, maintaining that economically justified improvement in energy efficiency led to higher levels of energy consumption at the economy-wide level than in the absence of any efficiency response. More fundamentally, he argues that there is no case for preferentially singling out energy, from among all the resources available to us, for efficiency maximisation. The least damaging policy is to determine targets, enact the restrictive measures needed to curb consumption, and then leave it to consumers - intermediate and final - to reallocate all the resources available to them to best effect subject to the new enacted constraints and any others they might be experiencing. There is no reason to suppose that it is right for all the economic adjustment following a new resource constraint to take the form of improvements in the productivity of that resource alone. As many others have argued, any action to impose resource constraint entails an inevitable economic cost in the shape of a reduction in production and consumption possibilities: there would be no free lunch. In the last few years debate about the validity of these contentions has blossomed, especially under the influence of writers on the western side of the Atlantic. In this contribution the author outlines the original arguments

  18. Monitoring tools for energy efficiency in Europe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document brings together the different definitions of the indicators used in the European Odyssee project on energy efficiency indicators. This project was initiated in 1990. It benefits from the combined support of the SAVE programme of the European Commission, of Ademe and of 15 national Efficiency Agencies within the European network of energy efficiency agencies. The objective of the project is to develop and maintain indicators that enable to review progress in energy efficiency and CO{sub 2} emissions abatement, by sector, end-use, etc.. for each country and the EU as a whole. To reach this objective, all data and indicators are stored in a common database called ODYSSEE that is regularly updated. A common methodology is used to produce comparative energy efficiency indicators from the database. The definitions presented in this document concern: 1) the general points (energy intensity, consumption, savings, efficiency, the unit consumption effect and index, the technological effect or savings, the substitution effect and the behavioural/management effect); 2) the macro-indicators (primary and final energy intensities at constant structure, at purchasing power parities, at reference economic structure); 3) industry (energy intensity of industry/manufacturing, of industry at constant structure and at reference structure, unit consumption of steel, cement etc.., process effect); 4) transports (energy intensity, unit consumption of vehicles, average specific consumption, test specific consumption, unit consumption, specific consumption, behavioural energy savings; 5) households and services (unit consumption, specific consumption, energy intensity of households, appliances); 6) transformations (apparent efficiency of energy sector or transformations, efficiency at constant fuel mix, efficiency of electricity sector). The same work is made for the 'key energy efficiency indicators', for the 'aggregate energy efficiency indicators' for

  19. Energy Efficiency Plan 2009-2012; Energie Efficiency Plan 2009-2012

    Energy Technology Data Exchange (ETDEWEB)

    Meulen, M.M.W. (ed.)

    2009-02-15

    The aim of the Energy Efficiency Plan is to give an overview of the energy conservation plans of the Eindhoven University of Technology in Eindhoven, Netherlands, which must result in efficient use of energy conform the long-range agreements between businesses, industry and organizations and the Dutch government to improve energy efficiency (MJA3) [Dutch] Het doel van het EEP (Energie Efficiency Plan) is het in beeld brengen van de energiebesparingsplannen die leiden tot een efficienter gebruik van energie conform de MJA-3 afspraak (de derde Meerjaren Afspraak)

  20. Economical and Energy Efficiency of Iron and Steel Industry Reindustrialisation in Russia Based on Implementation of Breakthrough Energy-Saving Technologies

    Science.gov (United States)

    Shevelev, L. N.

    2017-12-01

    Estimates were given of economical and energy efficiency of breakthrough energy-saving technologies, which increase competitive advantages and provide energy efficiency of production while reducing negative impact on the environment through reduction of emissions of harmful substances and greenhouse gases in the atmosphere. Among these technologies, preference is given to the following: pulverized coal fuel, blast-furnace gas recycling, gasification of non-coking coal in bubble-type gas-generators, iron-ore concentrate briquetting with steam coal with further use of ore-coal briquettes in electric furnace steel making. Implementation of these technologies at iron and steel works will significantly reduce the energy intensity of production through reduction of expensive coking coal consumption by means of their substitution by less expensive non-coking (steam) coal, and natural gas substitution by own secondary energy resource, which is the reducing gas. As the result, plants will get an opportunity to become self-sufficient in energy-resources and free themselves entirely from expensive purchased energy resources (natural gas, electric power, and partially coking coals), and cross over to low-carbon development.

  1. The Next Frontier in Industiral Energy Efficiency

    NARCIS (Netherlands)

    Worrell, E.

    2010-01-01

    Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. In the near future, energy efficiency is

  2. Tools for Energy Efficiency in Buildings

    DEFF Research Database (Denmark)

    Petrichenko, Ksenia; Aden, Nate; Tsakiris, Aristeidis

    With growing urbanization, our cities are playing an increasingly important role in accelerating energy efficiency improvements and mitigating climate change (REN21 2016). Cities are one of the biggest consumers of energy in the world, representing almost two-thirds of global primary energy demand...... Celsius above pre-industrial levels (IEA 2016)....

  3. Effects of steam pretreatment and co-production with ethanol on the energy efficiency and process economics of combined biogas, heat and electricity production from industrial hemp

    Science.gov (United States)

    2013-01-01

    Background The study presented here has used the commercial flow sheeting program Aspen Plus™ to evaluate techno-economic aspects of large-scale hemp-based processes for producing transportation fuels. The co-production of biogas, district heat and power from chopped and steam-pretreated hemp, and the co-production of ethanol, biogas, heat and power from steam-pretreated hemp were analysed. The analyses include assessments of heat demand, energy efficiency and process economics in terms of annual cash flows and minimum biogas and ethanol selling prices (MBSP and MESP). Results Producing biogas, heat and power from chopped hemp has the highest overall energy efficiency, 84% of the theoretical maximum (based on lower heating values), providing that the maximum capacity of district heat is delivered. The combined production of ethanol, biogas, heat and power has the highest energy efficiency (49%) if district heat is not produced. Neither the inclusion of steam pretreatment nor co-production with ethanol has a large impact on the MBSP. Ethanol is more expensive to produce than biogas is, but this is compensated for by its higher market price. None of the scenarios examined are economically viable, since the MBSP (EUR 103–128 per MWh) is higher than the market price of biogas (EUR 67 per MWh). The largest contribution to the cost is the cost of feedstock. Decreasing the retention time in the biogas process for low solids streams by partly replacing continuous stirred tank reactors by high-rate bioreactors decreases the MBSP. Also, recycling part of the liquid from the effluent from anaerobic digestion decreases the MBSP. The production and prices of methane and ethanol influence the process economics more than the production and prices of electricity and district heat. Conclusions To reduce the production cost of ethanol and biogas from biomass, the use of feedstocks that are cheaper than hemp, give higher output of ethanol and biogas, or combined production with

  4. Electrical energy efficiency technologies and applications

    CERN Document Server

    Sumper, Andreas

    2012-01-01

    The improvement of electrical energy efficiency is fast becoming one of the most essential areas of sustainability development, backed by political initiatives to control and reduce energy demand. Now a major topic in industry and the electrical engineering research community, engineers have started to focus on analysis, diagnosis and possible solutions. Owing to the complexity and cross-disciplinary nature of electrical energy efficiency issues, the optimal solution is often multi-faceted with a critical solutions evaluation component to ensure cost effectiveness. This single-source refer

  5. Fourth Annual Report on Energy Efficiency

    International Nuclear Information System (INIS)

    Di Franco, Nino; Bertini, Ilaria; Federici, Alessandro; Moneta Roberto

    2015-01-01

    Here we present the main elements of the annual report on energy efficiency 2015. The results indicate that, thanks to national policies for energy efficiency, Italy saved over 7.5 million tons of oil equivalent per year in the period 2005-2013. Compared to the National Plan for Energy Efficiency 2014, the report shows that the 2020 objectives have already been achieved for more than 20%, with residential (35.7% of the target) and industry (26.6%) among the sectors that contributed most to this result. Substantial savings could result from the agribusiness sector through the dissemination of efficient technologies in the logistics and large retail chains. A key role lies with the banks: 86% of banks has developed products dedicated to efficiency, necessitating guidelines for replicability of projects, and audit and rating to assess their quality [it

  6. Information technology applications in improving energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Lehtonen, M.; Heine, P. (Helsinki Univ. of Technology, Power systems, Espoo (Finland)); Koski, P. (Motiva, Helsinki (Finland)), email: pertti.koski@motiva.fi

    2009-07-01

    The goal of the project was to study how the different statistical analysis and optimization methods can be applied in the data obtained from data systems and energy measurement databases, in order to increase the energy efficiency in small and medium size industry, in commercial and public sector and in households. The project had two subtasks: (1) Development of analysis techniques and their applications in kWh-metering databases, combined with data from various other databases, like customer data bases, data bases of building authorities etc. The aim is to identify the key technologies of energy efficiency, and their potential. (2) Development of business models for energy saving activities: How to find motivation for increasing energy efficiency, howto divide benefits, how to divide activities between different parties. (orig.)

  7. Energy Efficiency Policy Developments: September 2011-September 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The purpose of this report is to highlight energy efficiency policy action and planning in IEA member and key non-member countries over the period from September 2011 to September 2012. The report provides an overview of energy efficiency policy developments across the seven sectors covered by the IEA 25 Energy Efficiency Policy Recommendations (25 EEPR) – Cross-sectoral activities, Buildings, Appliances and Equipment, Lighting, Transport, Industry and Energy Providers.

  8. Energy efficient home in Lebanon

    International Nuclear Information System (INIS)

    1997-01-01

    The purpose of the study is to present new methods or new products that could save money while improving the environment in Lebanon. Cost of energy is on the increase and is predicted to increase even more in the future. Environmental issues and awareness are gaining momentum in Lebanon. With electricity production directly linked to power plants that represent about 30% of the air pollution which is also linked to health related issues. There is an intermediate need to introduce more energy efficient products in the construction industry which require less energy to operate or could be linked indirectly to energy. In this context, cost-benefit analysis of heating, light, painting, energy consumption and energy lamp burning hours in addition to fuel burner, gas and electric heater in buildings are presented in tables. Finally, there is a lack of awareness on the positive impact on the environment reflected in the saving of natural resources, reducing pollution and creation of a better living environment

  9. Energy efficiency trends and policy in Slovenia

    International Nuclear Information System (INIS)

    Al-Mansour, Fouad

    2011-01-01

    The energy dependency of Slovenia is high (52.1%), but it is a little lower than the average energy dependency in the EU 27 (53.8%). Slovenia imports all its petroleum products and natural gas and partly coal and electricity. The energy intensity of Slovenia is higher by about 50% than the average in the EU 27. The target of the EU Directive on energy end-use efficiency and energy services adopted in 2006 is to achieve a 9% improvement of EE (energy efficiency) within the period 2008-2016. The new target of the EU climate and energy package '20-20-20 plan' is a 20% increase in EE by 2020. Since 1991 the Slovenian government has been supporting energy efficiency activities. The improvement of EE was one of the targets of strategic energy documents ReSROE (Resolution on the Strategy of Use and Supply of Energy in Slovenia from 1996 and ReNEP (Resolution on the National Energy Programme) from 2004 adopted by the Slovenian National Assembly (Parliament) in previous years. The Energy Act adopted in 1999 defines the objective of energy policy as giving priority to EE and utilization of renewable energy sources. The goals of the 'National Energy Action Plan 2008-2016 (NEEAP)' adopted by the Slovenian government in 2008 include a set of energy efficiency improvement instruments in the residential, industrial, transport and tertiary sectors. The target of the NEEAP is to save final energy in the 2008-2016 period, amounting to at least 4261 GWh or 9% of baseline consumption. The indicators of energy efficiency trends show considerable improvement in the period from 1998 to 2007. The improvement of EE was reached in all sectors: manufacturing, transport and households. The paper analyses the structure, trends of energy consumption and energy efficiency indicators by sectors of economic activity. A review of energy efficiency policy and measures is described in the paper.

  10. Regional level approach for increasing energy efficiency

    International Nuclear Information System (INIS)

    Viholainen, Juha; Luoranen, Mika; Väisänen, Sanni; Niskanen, Antti; Horttanainen, Mika; Soukka, Risto

    2016-01-01

    Highlights: • Comprehensive snapshot of regional energy system for decision makers. • Connecting regional sustainability targets and energy planning. • Involving local players in energy planning. - Abstract: Actions for increasing the renewable share in the energy supply and improving both production and end-use energy efficiency are often built into the regional level sustainability targets. Because of this, many local stakeholders such as local governments, energy producers and distributors, industry, and public and private sector operators require information on the current state and development aspects of the regional energy efficiency. The drawback is that an overall view on the focal energy system operators, their energy interests, and future energy service needs in the region is often not available for the stakeholders. To support the local energy planning and management of the regional energy services, an approach for increasing the regional energy efficiency is being introduced. The presented approach can be seen as a solid framework for gathering the required data for energy efficiency analysis and also evaluating the energy system development, planned improvement actions, and the required energy services at the region. This study defines the theoretical structure of the energy efficiency approach and the required steps for revealing such energy system improvement actions that support the regional energy plan. To demonstrate the use of the approach, a case study of a Finnish small-town of Lohja is presented. In the case example, possible actions linked to the regional energy targets were evaluated with energy efficiency analysis. The results of the case example are system specific, but the conducted study can be seen as a justified example of generating easily attainable and transparent information on the impacts of different improvement actions on the regional energy system.

  11. Chapter 2: Commercial and Industrial Lighting Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Energy Technology Data Exchange (ETDEWEB)

    Kurnik, Charles W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gowans, Dakers [Left Fork Energy, Harrison, NY (United States); Telarico, Chad [DNV GL, Mahwah, NJ (United States)

    2017-11-02

    The Commercial and Industrial Lighting Evaluation Protocol (the protocol) describes methods to account for gross energy savings resulting from the programmatic installation of efficient lighting equipment in large populations of commercial, industrial, and other nonresidential facilities. This protocol does not address savings resulting from changes in codes and standards, or from education and training activities. A separate Uniform Methods Project (UMP) protocol, Chapter 3: Commercial and Industrial Lighting Controls Evaluation Protocol, addresses methods for evaluating savings resulting from lighting control measures such as adding time clocks, tuning energy management system commands, and adding occupancy sensors.

  12. Polish Foundation for Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The Polish Foundation for Energy Efficiency (FEWE) was established in Poland at the end of 1990. FEWE, as an independent and non-profit organization, has the following objectives: to strive towards an energy efficient national economy, and to show the way and methods by use of which energy efficiency can be increased. The activity of the Foundation covers the entire territory of Poland through three regional centers: in Warsaw, Katowice and Cracow. FEWE employs well-known and experienced specialists within thermal and power engineering, civil engineering, economy and applied sciences. The organizer of the Foundation has been Battelle Memorial Institute - Pacific Northwest Laboratories from the USA.

  13. Quantifying the co-benefits of energy-efficiency policies: a case study of the cement industry in Shandong Province, China.

    Science.gov (United States)

    Hasanbeigi, Ali; Lobscheid, Agnes; Lu, Hongyou; Price, Lynn; Dai, Yue

    2013-08-01

    In 2010, China's cement industry accounted for more than half of the world's total cement production. The cement industry is one of the most energy-intensive and highest carbon dioxide (CO2)-emitting industries, and thus a key industrial contributor to air pollution in China. For example, it is the largest source of particulate matter (PM) emissions in China, accounting for 40% of industrial PM emissions and 27% of total national PM emissions. In this study, we quantify the co-benefits of PM10 and sulfur dioxide (SO2) emission reductions that result from energy-saving measures in the cement industry in Shandong Province, China. We use a modified form of the cost of conserved energy (CCE) equation to incorporate the value of these co-benefits. The results show that more than 40% of the PM and SO2 emission reduction potential of the electricity-saving measures is cost effective even without taking into account the co-benefits for the electricity-saving measures. The results also show that including health benefits from PM10 and/or SO2 emission reductions reduces the CCE of the fuel-saving measures. Two measures that entail changing products (production of blended cement and limestone Portland cement) result in the largest reduction in CCE when co-benefits were included, since these measures can reduce both PM10 and SO2 emissions, whereas the other fuel-saving measures do not reduce PM10. Published by Elsevier B.V.

  14. Energy efficiency determinants: An empirical analysis of Spanish innovative firms

    International Nuclear Information System (INIS)

    Costa-Campi, María Teresa; García-Quevedo, José; Segarra, Agustí

    2015-01-01

    This paper examines the extent to which innovative Spanish firms pursue improvements in energy efficiency (EE) as an objective of innovation. The increase in energy consumption and its impact on greenhouse gas emissions justifies the greater attention being paid to energy efficiency and especially to industrial EE. The ability of manufacturing companies to innovate and improve their EE has a substantial influence on attaining objectives regarding climate change mitigation. Despite the effort to design more efficient energy policies, the EE determinants in manufacturing firms have been little studied in the empirical literature. From an exhaustive sample of Spanish manufacturing firms and using a logit model, we examine the energy efficiency determinants for those firms that have innovated. To carry out the econometric analysis, we use panel data from the Community Innovation Survey for the period 2008–2011. Our empirical results underline the role of size among the characteristics of firms that facilitate energy efficiency innovation. Regarding company behaviour, firms that consider the reduction of environmental impacts to be an important objective of innovation and that have introduced organisational innovations are more likely to innovate with the objective of increasing energy efficiency. -- Highlights: •Drivers of innovation in energy efficiency at firm-level are examined. •Tangible investments have a greater influence on energy efficiency than R&D. •Environmental and energy efficiency innovation objectives are complementary. •Organisational innovation favors energy efficiency innovation. •Public policies should be implemented to improve firms’ energy efficiency

  15. Promoting energy efficiency in developing countries: The role of NGOs

    International Nuclear Information System (INIS)

    Wojtaszek, E.I.

    1993-06-01

    Developing countries need energy growth to spur economic growth. Yet energy activities contribute significantly to local water pollution and global greenhouse gas emissions. Energy efficiency offers the means to achieve the twin goals of sustainable economic/social development and environmental protection. Energy efficiency increases industrial competitiveness and frees up capital so it can be applied to other uses, such as health and education. The key to improving energy efficiency in developing countries will be acquiring and applying Western technologies, practices, and policies and building national institutions for promoting energy efficiency. Relevant energy-efficient technologies include the use of better electric motors, adjustable speed controls, combined cycle power cogeneration, improved lighting, better refrigeration technologies, and improved electric power transmission and distribution systems. Western countries can best help developing countries by providing guidance and resources to support nongovernmental organizations (NGOS) staffed by local experts; these institutions can capture the energy efficiency potential and ensure environmental protection in developing countries

  16. Benchmarking urban energy efficiency in the UK

    International Nuclear Information System (INIS)

    Keirstead, James

    2013-01-01

    This study asks what is the ‘best’ way to measure urban energy efficiency. There has been recent interest in identifying efficient cities so that best practices can be shared, a process known as benchmarking. Previous studies have used relatively simple metrics that provide limited insight on the complexity of urban energy efficiency and arguably fail to provide a ‘fair’ measure of urban performance. Using a data set of 198 urban UK local administrative units, three methods are compared: ratio measures, regression residuals, and data envelopment analysis. The results show that each method has its own strengths and weaknesses regarding the ease of interpretation, ability to identify outliers and provide consistent rankings. Efficient areas are diverse but are notably found in low income areas of large conurbations such as London, whereas industrial areas are consistently ranked as inefficient. The results highlight the shortcomings of the underlying production-based energy accounts. Ideally urban energy efficiency benchmarks would be built on consumption-based accounts, but interim recommendations are made regarding the use of efficiency measures that improve upon current practice and facilitate wider conversations about what it means for a specific city to be energy-efficient within an interconnected economy. - Highlights: • Benchmarking is a potentially valuable method for improving urban energy performance. • Three different measures of urban energy efficiency are presented for UK cities. • Most efficient areas are diverse but include low-income areas of large conurbations. • Least efficient areas perform industrial activities of national importance. • Improve current practice with grouped per capita metrics or regression residuals

  17. The performance of ELETROBRAS, through PROCEL, in the energy efficiency of Brazilian industries; Atuacao da ELETROBRAS, atraves do PROCEL, na eficiencia energetica de industrias brasileiras

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, C.A.; Perrone, F.P.D.; Moreira, M.A.R.G.; Oliveira, H.L.; Pinto, A.B.A.; Sobral, A.S.; Motta, B.R.; Moya, C.H.; Spera, M.R.; Vilela, L.C.T.; Goes, R.R. de A.; Teixeira, M.V.P.; Sobral, R.L. [Centrais Eletricas Brasileiras S.A. (ELETROBRAS), Rio de Janeiro, RJ (Brazil)], E-mail: carlosaparecido@eletrobras.com

    2009-07-01

    The technical part of this paper defends the idea of accomplishing systemic instead of punctual analysis in motor driven systems at industries, since the energetic efficiency potentials increase when all elements of the motor driven system is analyzed and not only the electrical motor. The institutional part of this paper presents the strategies of PROCEL Industria, executed by ELETROBRAS/PROCEL. The actions of this PROCEL sub program consist, basically, on activities with industrial state federations and universities so as to reduce the electrical energy consumption of motor driven systems in industries, which consumes almost 30% of the total Brazilian electricity consumption. This paper also presents results, experiences and future actions of PROCEL Industria. (author)

  18. Chapter 3: Commercial and Industrial Lighting Controls Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Energy Technology Data Exchange (ETDEWEB)

    Kurnik, Charles W. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Carlson, Stephen [DNV GL, Madison, WI (United States)

    2017-10-04

    This Commercial and Industrial Lighting Controls Evaluation Protocol (the protocol) describes methods to account for energy savings resulting from programmatic installation of lighting control equipment in large populations of commercial, industrial, government, institutional, and other nonresidential facilities. This protocol does not address savings resulting from changes in codes and standards, or from education and training activities. When lighting controls are installed in conjunction with a lighting retrofit project, the lighting control savings must be calculated parametrically with the lighting retrofit project so savings are not double counted.

  19. Energy efficiency: utopia or reality?

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    In its 2006 allocution the world council on the energy WEC, analyzes the role of the energy efficiency in the energy life cycle. In spite of different objectives followed by the developing and developed countries, implement a world energy efficiency economy is a challenge possible by the cooperation.The WEC is an ideal forum for the information and experience exchange. (A.L.B.)

  20. Energy management and energy efficiency

    International Nuclear Information System (INIS)

    Anon.

    2013-01-01

    This bibliographical note presents an official publication which contains the latest standards and standard projects dealing with energy audits (general requirements, buildings, process, transport) as well as energy efficiency (definitions and requirements, benchmarking methodology) and energy management and its terminology in relationship with the new European directive 2012/27/UE on energy efficiency. Regulatory texts associated with the national and European energy policies are also proposed

  1. ENERGY EFFICIENT DESALINATOR

    Directory of Open Access Journals (Sweden)

    T. A. Ismailov

    2017-01-01

    Full Text Available Objectives. The aim of the research is to develop a thin-film semiconductor thermoelectric heat pump of cylindrical shape for the desalination of sea water.Methods. To improve the efficiency of the desalination device, a  special thin-film semiconductor thermoelectric heat pump of  cylindrical shape is developed. The construction of the thin-film  semiconductor thermoelectric heat pump allows the flow rates of  incoming sea water and outflowing fresh water and brine to be  equalised by changing the geometric dimensions of the desalinator.  The cross-sectional area of the pipeline for incoming sea water is equal to the total area of outflowing fresh water and brine.Results. The use of thin-film semiconductor p- and n-type branches  in a thermo-module reduces their electrical resistance virtually to  zero and completely eliminates Joule's parasitic heat release. The  Peltier thermoelectric effect on heating and cooling is completely  preserved, bringing the efficiency of the heat pump to almost 100%, improving the energy-saving characteristics of the  desalinator as a whole. To further increase the efficiency of the  proposed desalinator, thermoelectric modules with radiation can be  used as thermoelectric devices.Conclusion. As a consequence of the creation of conditions of high rarefaction under which water will be converted to steam, which, at  20° C, is cold (as is the condensed distilled water, energy costs can  be reduced. In this case, the energy for heating and cooling is not  wasted; moreover, sterilisation is also achieved using the ultraviolet  radiation used in the thermoelectric devices, which, on the one hand, generate electromagnetic ultraviolet radiation, and, on the other, cooling. Such devices operate in optimal mode without heat  release. The desalination device can be used to produce fresh water and concentrated solutions from any aqueous solutions, including wastewater from industrial

  2. Grant credit lines for energy efficiency

    International Nuclear Information System (INIS)

    Gramatikov, P.; Iliev, I.

    2010-01-01

    The European Commission established a mechanism of credit lines to integrate more quickly the Bulgarian economy to the open international markets. Thereby it was enabled certain Bulgarian banks to provide grant loans to private companies in the industrial sector for projects of improvement of the energy efficiency of their production. The Bulgarian experience in using of two European credit lines and their role in the current economic crisis is presented in this paper. (authors)

  3. France's action plan for energy efficiency

    International Nuclear Information System (INIS)

    2011-01-01

    This report first presents the French strategy for energy efficiency which is notably based on several commitments and an energy conservation policy. The second part describes the various policies and measures which have been implemented in France for different sectors: energy demand, housing and office building, transports, industry, exemplary State and local communities, agriculture, wastes, public information and sensitization. Several large appendices complete this report. They address assessment methods, policies and measures, and a European directive

  4. The economic impacts of energy efficiency

    International Nuclear Information System (INIS)

    Jean, R.

    1990-01-01

    Energy efficiency programs add to the costs incurred by electricity users in the short term and generate significant economic benefits in the medium and long term. Using the example of programs in development at Hydro-Quebec, it is shown that the net economic benefits surpass, in present value terms, the sums invested by the electric utility and the customer, corresponding to yields of over 100%. This benefit is the principal impact of energy conservation programs which also provide employment, for every dollar invested, of the same order as that provided by hydroelectric production (i.e. costs associated with construction of generating plants, transmission lines, and distribution facilities). This evaluation takes account of the structure of purchases of goods and services brought about by energy efficiency programs and their large import component. This result may be surprising since the hydroelectric industry is strongly integrated into the Quebec economy, but it is understandable when one takes into account the importance of distribution costs to small-scale users, which causes significant local activity even when imported products are involved, and the very intensive labor requirement for certain energy efficiency measures. In addition, the employment generated by energy efficiency investments is very diversified in terms of the range of skills used and its geographic dispersion. 2 figs., 4 tabs

  5. Long term agreements energy efficiency. Progress 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-11-01

    Long Term Agreements (LTAs) on energy efficiency have been contracted with various business sectors since 1992, as part of energy conservation policy: industrial sectors, commercial services, agrarian sectors and non-profit services. LTAs are voluntary agreements between a specific sector and the Minister of Economic Affairs. In some cases, the Minister of Agriculture, Nature Management and Fisheries is also involved. The sector commits to an effort to improve energy efficiency by a particular percentage within an agreed period. As at 31 December 1999, a total of 29 LTAs had been contracted with industrial sectors and 14 with non-industrial ones. This report describes the progress of the LTAs in 1999. It reviews the energy efficiency improvements realised through the LTAs, both overall and in each individual sector. The aim is to make the efforts and results in the various sectors accessible to the general public. Appendix 1 describes the positioning of the LTA instrument. This Appendix provides and insight into the position of the LTAs within the overall set of policy instruments. It also covers the subsidy schemes and fiscal instruments that support the LTAs, the relationships between LTAs and environmental policy and new developments relating to the LTAs in the years ahead. Appendices 2 to 6 contain the reports on the LTAs and a list of abbreviations (Appendix 7)

  6. Energy Efficient Removal of Volatile Organic Compounds (VOCs) and Organic Hazardous Air Pollutants (o-HAPs) from Industrial Waste Streams by Direct Electron Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Testoni, A. L.

    2011-10-19

    This research program investigated and quantified the capability of direct electron beam destruction of volatile organic compounds and organic hazardous air pollutants in model industrial waste streams and calculated the energy savings that would be realized by the widespread adoption of the technology over traditional pollution control methods. Specifically, this research determined the quantity of electron beam dose required to remove 19 of the most important non-halogenated air pollutants from waste streams and constructed a technical and economic model for the implementation of the technology in key industries including petroleum refining, organic & solvent chemical production, food & beverage production, and forest & paper products manufacturing. Energy savings of 75 - 90% and green house gas reductions of 66 - 95% were calculated for the target market segments.

  7. Evaluation of energy efficient techniques in the wood working and wood processing industry. Final report THERMIE - Action no. DIS-0059-95-DE

    Energy Technology Data Exchange (ETDEWEB)

    Eichhammer, W.; Digutsch, O.; Frey, G. v. [and others

    1997-05-01

    With the entrance of Austria, Finland and Sweden in the European Union beginning of 1995 the pattern of industrial energy consumption has changed considerably in some branches which are large energy consumers in the Northern countries. The wood working and wood processing industry is one of those branches. It comprises the preparation of wood from primary processing in sawmills up to the production of finished products, and is highly energy-intensive although to a somewhat smaller extent than the large energy consumers such as the iron and steel production or glass manufacturing. It can further be assumed that official statistics underestimate the real importance of the energy consumption in the wood sector because most official statistics do not indicate waste wood as a fuel. Waste wood is a renewable fuel and has as such not the same impact in terms of CO{sub 2}-emissions as fossil fuels. Nevertheless, renewable energy sources should be also used efficiently because they can replace fossil fuels for other purposes. The objective of this study on the wood sector were to analyse and summarise the present status of energy consumption in the fifteen countries of the EU and the two EFTA countries Norway and Switzerland, to evaluate present day energy technology in the wood industry, and to investigate existing application barriers to these techniques in order to inform, support and to motivate small and medium-sized companies in particular, thus simulating the wide spread use of such techniques. (orig./SR)

  8. ENERGY EFFICIENCY – COMPONENT OF THE SUSTAINABLE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Roxana PĂTRAŞCU

    2011-11-01

    Full Text Available Energy efficiency has become an economic necessity, expressed by the condition of focused energy cost reduction in the share of total production costs. Estimated potential energy savings for various industrial sectors is in the range of 1050%. In this paper has explained the meaning and importance of energy efficiency and has reviewed its growth potential in various industrial sectors and the main directions of increasing energy efficiency. Most packages of measures to increase energy efficiency have the immediate result and reduce environmental impact. The essence of the right energy policy is to achieve a balance between energy supply and demand conditions of the economically affordable, socially and environmentally. It was also presented the legal framework to support actions to promote energy efficiency

  9. Advanced Energy Efficient Roof System

    Energy Technology Data Exchange (ETDEWEB)

    Jane Davidson

    2008-09-30

    Energy consumption in buildings represents 40 percent of primary U.S. energy consumption, split almost equally between residential (22%) and commercial (18%) buildings.1 Space heating (31%) and cooling (12%) account for approximately 9 quadrillion Btu. Improvements in the building envelope can have a significant impact on reducing energy consumption. Thermal losses (or gains) from the roof make up 14 percent of the building component energy load. Infiltration through the building envelope, including the roof, accounts for an additional 28 percent of the heating loads and 16 percent of the cooling loads. These figures provide a strong incentive to develop and implement more energy efficient roof systems. The roof is perhaps the most challenging component of the building envelope to change for many reasons. The engineered roof truss, which has been around since 1956, is relatively low cost and is the industry standard. The roof has multiple functions. A typical wood frame home lasts a long time. Building codes vary across the country. Customer and trade acceptance of new building products and materials may impede market penetration. The energy savings of a new roof system must be balanced with other requirements such as first and life-cycle costs, durability, appearance, and ease of construction. Conventional residential roof construction utilizes closely spaced roof trusses supporting a layer of sheathing and roofing materials. Gypsum board is typically attached to the lower chord of the trusses forming the finished ceiling for the occupied space. Often in warmer climates, the HVAC system and ducts are placed in the unconditioned and otherwise unusable attic. High temperature differentials and leaky ducts result in thermal losses. Penetrations through the ceilings are notoriously difficult to seal and lead to moisture and air infiltration. These issues all contribute to greater energy use and have led builders to consider construction of a conditioned attic. The

  10. Progress Implementing the IEA 25 Energy Efficiency Policy Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Significantly improving energy efficiency remains a priority for all countries. Meetings of G8 leaders and IEA ministers reaffirmed the critical role that improved energy efficiency can play in addressing energy security, environmental and economic challenges. Many IEA publications have also documented the essential role of energy efficiency. For example, the World Energy Outlook and the Energy Technology Perspectives reports identify energy efficiency as the most significant contributor to achieving energy security, economic and environmental goals. Energy efficiency is clearly the “first fuel” in the delivery of energy services in the coming low-carbon energy future. To support governments in their implementation of energy efficiency, the IEA recommended the adoption of specific energy efficiency policy measures to the G8 summits in 2006, 2007 and 2008. The consolidated set of recommendations to these summits is known as the ‘IEA 25 energy efficiency policy recommendations’ because it covers 25 fields of action across seven priority areas: cross-sectoral activity, buildings, appliances, lighting, transport, industry and energy utilities. The IEA estimates that if implemented globally without delay, the proposed actions could save as much as 7.6 giga tonnes (Gt) CO2/year by 2030 – almost 1.5 times the current annual carbon dioxide (CO2) emissions of the United States. The IEA 25 energy efficiency policy recommendations were developed to address policy gaps and priorities. This has two implications. First, the recommendations do not cover the full range of energy efficiency policy activity possible. Rather, they focus on priority energy efficiency policies identified by IEA analysis. Second, while IEA analysis, the energy efficiency professional literature and engagement with experts clearly demonstrate the broad benefits of these IEA priority measures, the recommendations are not weighted to reflect the different energy end-use make up of different

  11. Energy efficiency: The Italian situation and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Clerici, Alessandro; Beccarello, Massimo; Gallanti, Massimo

    2010-09-15

    The paper reports the results of a study led by Confindustria (Italian Federation of Industrial Associations) on the Italian situation with respect to energy efficiency policies and their effective implementations. The study is being continuously updated with the contributions of ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development) and ERSE (previously CESI Ricerca) and highlights the obtainable savings through efficient technologies now already available for applications in the final uses of energy for both the industrial, commercial and domestic sectors.

  12. Availability-based payback method for energy efficiency measures

    OpenAIRE

    Kasprowicz, Robert; Schulz, Carolin

    2015-01-01

    Energy-efficient technologies can lead to high energy and monetary savings in numerous industries. However, a lot of potential identified in industries remains untapped due to comparatively short requested payback periods. Usually, companies base the calculation of their payback period on initial investment costs in conjunction with annual monetary energy savings. Energy efficiency measures, however, often lead to synergy effects which are not taken into account. Against this background, we i...

  13. Energy planning and energy efficiency assistance

    Energy Technology Data Exchange (ETDEWEB)

    Markel, L. [Electrotek Concepts, Inc., Knoxville, TN (United States)

    1995-12-31

    Electrotek is an engineering services company specializing in energy-related programs. Clients are most utilities, large energy users, and the U.S. Electric Power Research Institute. Electrotek has directed energy projects for the U.S. Agency for International Development and the U.S. Department of Energy in Poland and other countries of Central Europe. The objective is to assist the host country organizations to identify and implement appropriate energy efficiency and pollution reduction technologies, to transfer technical and organizational knowledge, so that further implementations are market-driven, without needed continuing foreign investment. Electrotek has worked with the Silesian Power Distribution Company to design an energy efficiency program for industrial customers that has proven to be profitable for the company and for its customers. The program has both saved energy and costs, and reduced pollution. The program is expanding to include additional customers, without needing more funding from the U.S. government.

  14. Energy-efficient electric motors study

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-23

    The study identifies the industrial decision makers, investigated the information they needed to know, how they can best be reached, and the motivating factors for purchasing energy-efficient electric motors. A survey was conducted of purchasers of integral horsepower polyphase motors. The survey measured current knowledge of and awareness of energy-efficient motors, decision-making criteria, information sources, purchase and usage patterns, and related factors. The survey data were used for the electric motor market penetration analysis. Additionally, a telephone survey was made. The study also provides analyses of distribution channels, commercialization constraints, and the impacts of government programs and rising energy prices. A description of study findings, conclusions, and recommendations is presented. Sample questionnaires and copies of letters to respondents are presented in 3 appendices. Appendices D and E contain descriptions of the methods used. (MCW)

  15. Energy Efficiency in Future PONs

    DEFF Research Database (Denmark)

    Reschat, Halfdan; Laustsen, Johannes Russell; Wessing, Henrik

    2012-01-01

    There is a still increasing tendency to give energy efficiency a high priority, even in already low energy demanding systems. This is also the case for Passive Optical Networks (PONs) for which many different methods for saving energy are proposed. This paper uses simulations to evaluate three...... proposed power saving solutions for PONs which use sleep mechanisms for saving power. The discovered advantages and disadvantages of these methods are then used as a basis for proposing a new solution combining different techniques in order to increase the energy efficiency further. This novel solution...

  16. Energy efficiency: a source of savings; a priority objective

    International Nuclear Information System (INIS)

    Bethencourt, Anne de; Chorin, Jacky

    2013-01-01

    Energy efficiency is defined as consumption of less energy whilst delivering the same service. Significant progress has been made through the impact of technology, price increases and awareness of waste. Too often viewed as a constraint, energy efficiency nonetheless constitutes the leading potential source of domestic energy for the 2020 goal. Energy efficiency is or will be (depending on the will of the stakeholders, public authorities and society as a whole) a key market for the future and a pathway to creative innovation. Everything is pointing in that direction: the obligation to reduce greenhouse gas emissions fourfold, the new European Directive on Energy Efficiency to be incorporated, the expected increase in energy prices, the presence in France of industry leaders and of a small-scale but important industry in this sector. The goals in energy efficiency entail: - at Community level, that the objective of 20% energy savings for the 2020 goal becomes binding; - at national level, that public policies for energy efficiency are part of a long-term vision, based on the achievements of the Grenelle Environment Forum and avoid sending out any wrong signals which might adversely affect progress. The ESEC proposals are built around the following four themes: - (residential and service sector) buildings: Make energy efficiency into a real sector and a new opportunity 'work together', Optimise tools and regulations, Be innovative in terms of financial support; - fuel poverty; - industry and agriculture; - the particular situation of the overseas departments

  17. Overall energy efficiency trends in the European Union

    Energy Technology Data Exchange (ETDEWEB)

    Chateau, B.

    2000-07-01

    This study presents some statistical data about the energy efficiency trends in the European countries: 1) - energy consumption and CO{sub 2} emission trends (need for climate corrections, economic growth and the related energy growth); 2) - trends in primary and final energy intensities (energy consumption and economic activity, relative evolution rate of primary and final energy intensities); 3) - final energy intensity, climate variations and economic growth (energy intensity and GDP growth, energy prices and energy efficiency); 4) - economic structures and final energy intensity (changes in economic structures and in GDP structure, technical and behavioural factors); 5) - energy efficiency in the EU from an energy policy viewpoint (different contribution of the EU countries in the energy intensity change of the GDP, improvement of energy efficiency since 1993); 6) - industry (overall industrial energy consumption and intensity trends; energy intensities, efficiency and structural changes in the industry). (J.S.)

  18. CHARACTERIZING COSTS, SAVINGS AND BENEFITS OF A SELECTION OF ENERGY EFFICIENT EMERGING TECHNOLOGIES IN THE UNITED STATES

    Energy Technology Data Exchange (ETDEWEB)

    Xu, T.; Slaa, J.W.; Sathaye, J.

    2010-12-15

    Implementation and adoption of efficient end-use technologies have proven to be one of the key measures for reducing greenhouse gas (GHG) emissions throughout the industries. In many cases, implementing energy efficiency measures is among one of the most cost effective investments that the industry could make in improving efficiency and productivity while reducing CO2 emissions. Over the years, there have been incentives to use resources and energy in a cleaner and more efficient way to create industries that are sustainable and more productive. With the working of energy programs and policies on GHG inventory and regulation, understanding and managing the costs associated with mitigation measures for GHG reductions is very important for the industry and policy makers around the world. Successful implementation of emerging technologies not only can help advance productivities and competitiveness but also can play a significant role in mitigation efforts by saving energy. Providing evaluation and estimation of the costs and energy savings potential of emerging technologies is the focus of our work in this project. The overall goal of the project is to identify and select emerging and under-utilized energy-efficient technologies and practices as they are important to reduce energy consumption in industry while maintaining economic growth. This report contains the results from performing Task 2"Technology evaluation" for the project titled"Research Opportunities in Emerging and Under-Utilized Energy-Efficient Industrial Technologies," which was sponsored by California Energy Commission and managed by CIEE. The project purpose is to analyze market status, market potential, and economic viability of selected technologies applicable to the U.S. In this report, LBNL first performed re-assessments of all of the 33 emerging energy-efficient industrial technologies, including re-evaluation of the 26 technologies that were previously identified by Martin et al. (2000) and

  19. EYES -- Energy Efficient Sensor Networks

    NARCIS (Netherlands)

    Havinga, Paul J.M.; Etalle, Sandro; Karl, Holger; Petrioli, Chiara; Zorzi, Michele; Kip, Harry; Lentsch, Thomas; Conti, M.; Giordano, S.; Gregori, E.; Olariu, S.

    The EYES project (IST-2001-34734) is a three years European research project on self-organizing and collaborative energy-efficient sensor networks. It will address the convergence of distributed information processing, wireless communications, and mobile computing. The goal of the project is to

  20. Producing energy efficiently; Energieeffizient produzieren

    Energy Technology Data Exchange (ETDEWEB)

    Blass, H.W.; Schumacher, M.; Coy, C; Pfister, J.; Finkbeiner, M.; Kuehnle, J.; Kiel, E.; Duerrschmidt, R.; Diede, J.; Scheffels, G.; Kranz, H.; Simon, J.; Diebold, K.; Koch, H.R.; Lehnhardt, M.

    2008-04-07

    Producing energy efficiently means saving much energy and money. Drives are responsible for the accounting of power for companies. The fair shows examples on the complete field of producing sector, hits the advantages of heat recovery and an efficient cooling. (GL)

  1. Mobilising Investment in Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Taxes, loans and grants, trading schemes and white certificates, public procurement and investment in R&D or infrastructure: known collectively as 'economic instruments', these tools can be powerful means of mobilising the finances needed to achieve policy goals by implementing energy efficiency measures. The role of economic instruments is to kick-start the private financial markets and to motivate private investors to fund EE measures. They should reinforce and promote energy performance regulations. This IEA analysis addresses the fact that, to date, relatively little effort has been directed toward evaluating how well economic instruments work. Using the buildings sector to illustrate how such measures can support energy efficiency, this paper can help policy makers better select and design economic instruments appropriate to their policy objectives and national contexts. This report’s three main aims are to: 1) Examine how economic instruments are currently used in energy efficiency policy; 2) Consider how economic instruments can be more effective and efficient in supporting low-energy buildings; and 3) Assess how economic instruments should be funded, where public outlay is needed. Detailed case studies in this report assess examples of economic instruments for energy efficiency in the buildings sector in Canada (grants), France (tax relief and loans), Germany (loans and grants), Ireland (grants) and Italy (white certificates and tax relief).

  2. Barriers to electric energy efficiency in Ghana

    Science.gov (United States)

    Berko, Joseph Kofi, Jr.

    Development advocates argue that sustainable development strategies are the best means to permanently improve living standards in developing countries. Advocates' arguments are based on the technical, financial, and environmental advantages of sustainable development. However, they have not addressed the organizational and administrative decision-making issues which are key to successful implementation of sustainable development in developing countries. Using the Ghanaian electricity industry as a case study, this dissertation identifies and analyzes organizational structures, administrative mechanisms, and decision-maker viewpoints that critically affect the success of adoption and implementation of energy efficiency within a sustainable development framework. Utilizing semi-structured interviews in field research, decision-makers' perceptions of the pattern of the industry's development, causes of the electricity supply shortfall, and barriers to electricity-use efficiency were identified. Based on the initial findings, the study formulated a set of policy initiatives to establish support for energy use efficiency. In a second set of interviews, these policy suggestions were presented to some of the top decision-makers to elicit their reactions. According to the decision-makers, the electricity supply shortfall is due to rapid urbanization and increased industrial consumption as a result of the structural adjustment program, rural electrification, and the sudden release of suppressed loads. The study found a lack of initiative and collaboration among industry decision-makers, and a related divergence in decision-makers' concerns and viewpoints. Also, lacking are institutional support systems and knowledge of proven energy efficiency strategies and technologies. As a result, planning, and even the range of perceived solutions to choose from are supply-side oriented. The final chapter of the study presents implications of its findings and proposes that any

  3. Evaluation of energy efficiency policy instruments effectiveness : case study Croatia

    International Nuclear Information System (INIS)

    Bukarica, V.

    2007-01-01

    This paper proposed a theoretical basis for evaluating energy efficiency policy in the Republic of Croatia and corroborated it with the analysis of energy efficiency market development and transformation. The current status of the market was evaluated and policy instruments were adapted to achieve optimal results. In particular, the energy efficiency market in Croatia was discussed in terms of micro and macro environment factors that influence policy making processes and the choice of policy instruments. The macro environment for energy efficiency market in Croatia is the process of European Union pre-integration with all related national and international legislation, political and economical factors and potential to use financial funds. The micro environment consists of government institutions, local financing institutions and a range of market players on the supply and demand side. Energy efficiency is the most powerful and cost-effective way for achieving goals of sustainable development. Policy instruments developed to improve energy efficiency are oriented towards a cleaner environment, better standard of living, more competitive industry and improved security of energy supply. Energy efficiency is much harder to implement and requires policy interventions. In response to recent trends in the energy sector, such as deregulation and open competition, policy measures aimed at improving energy efficiency should shift from an end-users oriented approach towards a whole market approach. The optimal policy instruments mix should be designed to meet defined targets. However, market dynamics must be taken into consideration. 9 refs., 4 figs

  4. EU - India Sustainable Energy Efficiency Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Agster, Rainer; Henzler, Mikael P. (Adelphi Research GmbH, Berlin (Germany)); Asthana, Arvind (Bureau of Energy, Efficiency/GTZ-Indo-German Energy Programme (India))

    2009-07-01

    Between 2006-2008 the EU India Sustainable Energy Initiative (EISEEI) has supported marketing, implementation and enforcement of the Indian Energy Conservation Act, which came into force in 2002 - on state and local level. Market oriented five-year action plans were prepared, which are implemented by State Designated Agencies (SDA) in charge of energy efficiency measures in their respective states. Each Energy Conservation (EC) action plan states the foreseen activities for the next five years as well as general policies, a mission, and a vision relating to energy efficiency. The EISEEI project activities focused on facilitating a moderated dialogue between India and Europe as well as among the SDAs in order to support the preparation of action plans and operational plans. Furthermore, domestic and overseas trainings for SDA staff and the know-how exchange between policy makers, opinion leaders and professionals in these areas were facilitated. During the duration of the project the Indian Ministry of Power decided to apply the same methodology for 24 more SDAs to cover all Indian states. While the initial 6 pilot states were supported with EU and German development aid funds, the enlargement was 100% financed by the Indian government. The paper will highlight the efforts and results of mainstreaming energy efficiency at various consumer levels (from industry to households) in India. The paper will encompass also the involvement of various agencies and institutional structures as well as the operational experiences with the implementation of the action plan on energy efficiency in one of the fastest growing economies in the world.

  5. Energy efficiency policies and measures in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva

    2012-07-01

    This report represents the national case study of Norway for the IEE-project {sup M}onitoring of EU and national energy efficiency targets (ODYSSEE-MURE 2010)'. The Norwegian part of the project is co-funded by Enova. The report presents the recent energy efficiency trends in Norway on the basis of indicators extracted from the ODYSSEE database. The database contains information on energy use in a detailed level of the industry, transport, household and service sectors and other energy use. lt also contains information on energy drivers like heated square meters in the households and services sectors, transported passenger-km and ton-km of gods, value added, production index, production volumes etc. Final energy consumption has increased from 195 TWh in 1990 lo 229 TWh in 2010 The last ten years the energy consumption has varied between 212I Wh (2009) and 229 TWh (2010) with an annual average of 221TfUh. The sector using most energy is the industry, but the share has decreased from 40 % in 1990 to 31 % in 2010. From 1990 to 2010 the growth rate has been highest in the transport sector. Half of the energy end-use was electricity in 20,10, 42 % was fossil fuels and 6 % was biomass. The electricity use has an annual increase of 0.8 % since 1990, but the last decade the annual increase is reduced to 0.14 %. The consumption of oil products has decreased in stationary end-use (heating) and increased in the transport sector. In ODYSSEE, an aggregate bottom-up energy efficiency index, ODEX, is calculated. This energy efficiency index aggregates the trends in the detailed bottom-up indicators in one single indicator. This ODEX has improved by 26 o/o from 1990 to 2010 or by 1.3 o/o per year. This means that energy efficiency policies and measures implemented since 1990 have contributed to a decrease in the energy use of 2010 of approximately 59 TWh. (Author)

  6. Energy efficiency potential study for New Brunswick

    International Nuclear Information System (INIS)

    1992-05-01

    The economic and environmental impacts associated with economically attractive energy savings identified in each of four sectors in New Brunswick are analyzed. The results are derived through a comparison of two potential future scenarios. The frozen efficiency scenario projects what future energy expenditures would be if no new energy efficiency initiatives are introduced. The economic potential scenario projects what those expenditures would be if all economically attractive energy efficiency improvements were gradually implemented over the next 20 years. Energy related emissions are estimated under scenarios with and without fuel switching. The results show, for example, that New Brunswick's energy related CO 2 emissions would be reduced by ca 5 million tonnes in the year 2000 under the economic potential scenario. If fuel switching is adopted, an additional 1 million tonnes of CO 2 emissions could be saved in the year 2000 and 1.6 million tonnes in 2010. The economic impact analysis is restricted to efficiency options only and does not consider fuel switching. Results show the effect of the economic potential scenario on employment, government revenues, and intra-industry distribution of employment gains and losses. The employment impact is estimated as the equivalent of the creation of 2,424 jobs annually over 1991-2010. Government revenues would increase by ca $24 million annually. The industries benefitting most from energy efficiency improvements would be those related to construction, retail trade, finance, real estate, and food/beverages. Industries adversely affected would be the electric power, oil, and coal sectors. 2 figs., 37 tabs

  7. Linking quality improvement and energy efficiency/waste reduction

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, R.E.; Moore, N.L.

    1995-04-01

    For some time industry has recognized the importance of both energy efficiency/waste reduction (ee/wr) and quality/manufacturing improvement. However, industry has not particularly recognized that manufacturing efficiency is, in part, the result of a more efficient use of energy. For that reason, the energy efficiency efforts of most companies have involved admonishing employees to save energy. Few organizations have invested resources in training programs aimed at increasing energy efficiency and reducing waste. This describes a program to demonstrate how existing utility and government training and incentive programs can be leveraged to increase ee/wr and benefit both industry and consumers. Fortunately, there are a variety of training tools and resources that can be applied to educating workers on the benefits of energy efficiency and waste reduction. What is lacking is a method of integrating ee/wr training with other important organizational needs. The key, therefore, is to leverage ee/wr investments with other organizational improvement programs. There are significant strides to be made by training industry to recognize fully the contribution that energy efficiency gains make to the bottom line. The federal government stands in the unique position of being able to leverage the investments already made by states, utilities, and manufacturing associations by coordinating training programs and defining the contribution of energy-efficiency practices. These aims can be accomplished by: developing better measures of energy efficiency and waste reduction; promoting methods of leveraging manufacturing efficiency programs with energy efficiency concepts; helping industry understand how ee/wr investments can increase profits; promoting research on the needs of, and most effective ways to, reach the small and medium-sized businesses that so often lack the time, information, and finances to effectively use the hardware and training technologies available.

  8. Contribution to the strategy of energy efficiency

    International Nuclear Information System (INIS)

    Ciconkov, Risto

    2003-01-01

    An explanation for the greenhouse effect, i.e.global warming and reasons which contribute to this effect. Greenhouse gasses (GHG) and GWP (Global Warming Potential) as a factor for estimating their contributing on the greenhouse effect. Indicators of the climate change in the previous period and projecting of likely scenarios for the future. Consequences on the environment and human activities: industry, energy, agriculture, water resource. The main lines of the Kyoto Protocol and problems in its realization. Suggestions to the country strategy concerning to the acts of the Kyoto Protocol. A special attention is pointed out on the energy, its resource, the structure of energy consumption and energy efficiency. Main sectors of the energy efficiency: buildings, industry and transport. Buildings: importance of heat insulation. District heating, suggestions for space heating. Heat pumps and CHP. Air conditioning and refrigeration. Industry: process heating, and integrated energy system heat recovery, refrigeration, compressed air. Need of quality maintenance and servicing. Monitoring and automatic control. Education for energy and its saving. (Original)

  9. Is energy efficiency environmentally friendly?

    Energy Technology Data Exchange (ETDEWEB)

    Herring, H. [Open University, Milton Keynes (United Kingdom). Energy and Environment Research Unit

    2000-07-01

    The paper challenges the view that improving the efficiency of energy use will lead to a reduction in national energy consumption, and hence is an effective policy for reducing CO{sub 2} emissions. It argues that improving energy efficiency lowers the implicit price of energy and hence makes its use more affordable, thus leading to greater use. The paper presents the views of economists, as well as green critics of 'efficiency' and the 'dematerialization' thesis. It argues that a more effective CO{sub 2} policy is to concentrate on shifting to non-fossil fuel, like renewables, subsidized through a carbon tax. Ultimately what is needed, to limit energy consumption is energy conservation not energy efficiency. 44 refs.

  10. Effective education for energy efficiency

    International Nuclear Information System (INIS)

    Zografakis, Nikolaos; Menegaki, Angeliki N.; Tsagarakis, Konstantinos P.

    2008-01-01

    A lot of today's world vices can be eliminated if certain targeted modules and adapted curricula are introduced in the schooling system. One of these vices is energy squandering with all its negative consequences for the planet (e.g. depletion of finite energy sources and the subsequent climate change). This paper describes the results of an energy-thrift information and education project taking place in different levels of education in Crete-Greece, which records 321 students' and their parents' routine energy-related behavior and proves that this behavior changes to a more energy efficient one, after the dissemination of relevant information and the participation into the energy education projects. Namely, response percentages indicating the energy-efficient behavior increased after project participation while the ones indicating an energy-squandering behavior decreased. The Wilcoxon signed rank test was statistically significant in all energy behavior questions related to students and to most questions related to parents

  11. Energy efficiency policies and measures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document makes a review of the energy efficiency and demand side management (DSM) policies and measures in European Union countries and Norway in 1999: institutional changes, measures and programmes, budget, taxation, existence of a national DSM programme, national budgets for DSM programmes, electricity pricing: energy/environment tax, national efficiency standards and regulation for new electrical appliances, implementation of Commission directives, efficiency requirements, labelling, fiscal and economic incentives. (J.S.)

  12. Energy Efficient Hydraulic Hybrid Drives

    OpenAIRE

    Rydberg, Karl-Erik

    2009-01-01

    Energy efficiency of propulsion systems for cars, trucks and construction machineries has become one of the most important topics in today’s mobile system design, mainly because of increased fuel costs and new regulations about engine emissions, which is needed to save the environment. To meet the increased requirements on higher efficiency and better functionality, components and systems have been developed over the years. For the last ten years the development of hybrid systems can be divid...

  13. Energy Efficient Drivepower: An Overview.

    Energy Technology Data Exchange (ETDEWEB)

    Ula, Sadrul; Birnbaum, Larry E.; Jordan, Don

    1993-05-01

    This report examines energy efficiency in drivepower systems. Only systems where the prime movers are electrical motors are discussed. A systems approach is used to examine all major aspects of drivepower, including motors, controls, electrical tune-ups, mechanical efficiency, maintenance, and management. Potential annual savings to the US society of $25 to $50 billion are indicated. The report was written for readers with a semi-technical background.

  14. Energy efficiency opportunities in Hotels

    Directory of Open Access Journals (Sweden)

    Dina Said

    2017-03-01

    Full Text Available According to the statistics in Egypt (2013, the number of hotels is 1193, about 407 of them have contracted power greater than 500 kW.Air conditioning, lighting, water heating and refrigeration represent the main activities demanding electrical energy in hotel business.The energy consumption per night spend changes a lot, depending on various factors; facilities provided, category of hotel, occupancy , geographical situation, weather conditions, nationality of clients, design and control of the installations.Energy benchmarking is an internal management tool designed to provide ongoing, reliable and verifiable tracking on the hotels performance. The most useful performance indicator (or Energy Efficiency Benchmarking of hotels are: Lighting Power Density (LPD in W (for lighting/m2, and energy intensity (kWh/m2/ y.There are multiple benefits for improving energy in hotel business; reduces the hotel's operating cost, reduces climate change risks and promotes green tourism.Energy efficiency opportunities are low-cost measures and cost- effective investments.   There are many energy saving opportunities for lighting in hotel's guest rooms as well as the more obvious savings in lobbies and exterior lighting areas. Behavior campaigns can yield substantial energy savings, both through the guests and housekeeper behavior. Encouraging housekeepers to use natural light during room cleaning is a simple first step to implement energy saving program.This paper presents the energy efficiency guidelines and energy benchmarking for hotels. Also a case study showing how the energy efficiency program implemented is presented. 

  15. Empirical investigation of energy efficiency barriers in Italian manufacturing SMEs

    International Nuclear Information System (INIS)

    Trianni, Andrea; Cagno, Enrico; Worrell, Ernst; Pugliese, Giacomo

    2013-01-01

    The paper identifies and evaluates barriers to industrial energy efficiency through the investigation of 48 manufacturing Small and Medium-sized Enterprises (SMEs) in Northern Italy. The research provides interesting suggestions both for enterprises and energy policy-makers. Firstly, economic and information barriers are perceived as the major obstacles to the adoption of energy-efficient technologies, whilst behavioural barriers do not seem to affect enterprises very much. Nonetheless, despite what declared, the most relevant barriers are the lack of interest in energy efficiency and the existence of other priorities, thus showing that decision-makers tend to downgrade energy efficiency to a marginal issue. Furthermore, perceived barriers do not take place exclusively in implementing energy-efficient technologies, but, with comparable importance, also in generating the interest and knowledge of the opportunities. Moreover, the study highlights that relevant differences can be appreciated for both perceived and real barriers even among SMEs, that thus should not be bundled together. In addition to that, other factors affect barriers, stimulating future research: indeed, lower real barriers can be observed with higher complexity of the production, high variability of the demand and strong competitors. -- Highlights: ► Evidence of existing misalignments between perceived and real barriers to the adoption of energy-efficient technologies. ► Relevance of barriers to the generation of interest towards energy efficiency. ► Evidence of firm's size (within SMEs) and energy expenditures on barriers to energy efficiency. ► Importance, for energy efficiency barriers, of avoid bundling SMEs as a whole. ► Preliminary evidence of factors related to supply chain complexity affecting barriers to energy efficiency.

  16. 76 FR 71312 - Renewable Energy and Energy Efficiency Advisory Committee Meeting

    Science.gov (United States)

    2011-11-17

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency...: Notice of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE... competitiveness of the U.S. renewable energy and energy efficiency industries, including specific challenges...

  17. 10 CFR 431.97 - Energy efficiency standards and their effective dates.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Energy efficiency standards and their effective dates. 431.97 Section 431.97 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Air Conditioners and Heat Pumps Energy Efficiency...

  18. Energy Efficiency and Its Driving Factors in China’s Three Economic Regions

    Directory of Open Access Journals (Sweden)

    Sheng-An Shi

    2017-11-01

    Full Text Available Energy efficiency improvement is essential for China’s sustainable development of its social economy. Based on the provincial panel data of China’s three economic regions from 1990 to 2013, this research uses the data envelopment analysis (DEA model to measure the total-factor energy efficiency, and the Tobit regression model to explore the driving factors of efficiency changes. Empirical results show: (1 Energy efficiency, energy consumption structure, and government fiscal scale are significantly positively correlated. (2 Industrial structure and per capita income level have negative correlation to energy efficiency; the impact of industrial structure on energy efficiency is relatively small. (3 The increase of carbon dioxide emissions will decrease the energy efficiency. Furthermore, with people becoming less conscious of energy conservation and emission reduction, energy efficiency will also decrease. (4 Specific energy policies will improve energy efficiency, and greater openness in coastal areas will also have the similar effect.

  19. Progress with Implementing Energy Efficiency Policies in the G8

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    At the 2008 G8 Summit in Hokkaido, leaders reaffirmed the critical role improved energy efficiency can play in addressing energy security, environmental and economic objectives. They went even farther than in previous Summits and committed to maximising implementation of the 25 IEA energy efficiency recommendations prepared for the G8. The imperative to enhance energy efficiency remains a priority for all countries. To support governments with their implementation of energy efficiency, the IEA recommended the adoption of a broad range of specific energy efficiency policy measures to the G8 Summits in 2006, 2007 and 2008. The consolidated set of recommendations from these Summits covers 25 fields of action across seven priority areas: cross-sectoral activity, buildings, appliances, lighting, transport, industry and power utilities. If governments want to significantly improve energy efficiency, the IEA considers that no single policy implemented in isolation will be effective at achieving this aim. The IEA Secretariat recommends that governments implement a full set of appropriate measures. The IEA estimates that if implemented globally without delay, the proposed actions could save around 8.2 GtCO2/yr by 2030 -- equivalent to twice the EU's yearly emissions. This report evaluates the progress of the G8 countries in implementing energy efficiency policy, including the 25 G8/IEA recommendations. Information in this report is current up to 31 March 2009.

  20. Energy Efficiency Policy in Slovenia

    International Nuclear Information System (INIS)

    Beravs, F.

    1998-01-01

    When Slovenia gained its independence in 1991, its energy sector was characterised by largely centralised state planning and artificially low prices maintained by widespread subsidies. Supply side considerations tended to dominate the energy policy and sectoral planning. As a result the final energy intensity in Slovenia was (still albeit declining) considerably higher than the EU average. In order to support economic growth and transition to a modern market economy, integrated and competitive in the European and world market structures, the National Assembly of the Republic of Slovenia adopted a resolution on the Strategy of Energy Use and Supply of Slovenia in early 1996. In the field of energy use, the long-term strategic orientation is to increase energy efficiency in all sectors of energy consumption. The main objective can be summarised as to secure the provision of reliable and environmentally friendly energy services at least costs. In quantitative terms the Strategy attaches a high priority to energy efficiency and environmental protection and sets the target of improving the overall energy efficiency by 2% p.a. over the next 10 to 15 years. To achieve the target mentioned above the sectoral approach and a number of policy instruments have been foreseen. Besides market based energy prices which will, according to the European Energy Charter, gradually incorporate the cost of environment and social impacts, the following policy instruments will be intensified and budget-supported: education and awareness building, energy consultation, regulations and agreements, financial incentives, innovation and technology development. The ambitious energy conservation objectives represent a great challenge to the whole society. (author)

  1. ICT applications enhancing energy efficiency

    Directory of Open Access Journals (Sweden)

    A. G. Matani

    2016-06-01

    Full Text Available Computers, laptops and mobile devices – information technology (IT accounts for 2% of human greenhouse gas emissions worldwide, as evidenced in a study by Global Action Plan, a UK based environmental organization. This figure can be reduced if the green segment, or Green IT, continues to grow. Energy can also be saved through cloud computing, namely the principle of outsourcing the programs and functions of one’s own computer to service providers over the internet. This also means sharing storage capacity with others. This paper highlights the impact of information technology applications towards enhancing energy efficiency of the systems.

  2. The Challenge of Energy Efficiency

    International Nuclear Information System (INIS)

    Alonso Gonzalez, J. A.

    2009-01-01

    Recent Directive 2009/28/EC on the promotion of the use of renewable energies sets some binding targets for the contribution of renewable energies in 2020 to total consumption, setting the share at 20% of final energy demand, with a particularisation of 10% for the transport sector, and also a 20% reduction of greenhouse gases Together with these targets, it also sets another target relative to energy efficiency, aiming for a 20% improvement, under the terms set down by the Commission in its announcement dated 19 October 2006. This energy saving target is going to have a decisive influence on the achievement of the other two. In order to quantify the degree of difficulty of achieving the saving target and determine the policies and measures to be taken, we are going to analyze the evolution of energy efficiency (energy consumption energy units per unit of GDP - economic unit) in Spain from 1980 to date and the value of energy intensity that we should have in 2020 to achieve the targets. This will give us an idea of the magnitude of the challenge and, therefore, of the efforts we will have to make to achieve the target. (Author)

  3. ENERGY EFFICIENCY IN THE SHIPPING SECTOR – A CASE STUDY

    Directory of Open Access Journals (Sweden)

    BRANISLAV DRAGOVIŠ

    2017-12-01

    Full Text Available The improvement of Ship Energy Efficiency has been a major issue for the Shipping industry, primarily for three reasons; Firstly because fuel expenses of merchant ships contribute substantially to the overall expenses, secondarily, as conventional diesel engines and gas turbines emit large amounts of Greenhouse Gases (GHGs, contributing to the Climate Change and thirdly due to recent legislation including IMO Resolutions and EU Directives. The above in addition to the recent economic recession, have made it imperative for the industry to lower costs and introduce novel technologies and technical innovations, through the application of the Energy Efficiency Design Index (EEDI and Energy Efficiency Operation Index (EEOI.This paper aims to contribute to the identification of methods and management tools in order to improve energy efficiency, by developing Ship Energy Efficiency Management Plans (SEEMPs. The paper focuses especially on investments, modifications, management and operational changes that can be deployed, in order to improve energy efficiency of existing ships. Finally, the economic result of modifications made on an existing vessel is presented, using data from a study performed by the authors in collaboration with several shipping companies.

  4. Energy efficiency in California laboratory-type facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mills, E.; Bell, G.; Sartor, D. [and others

    1996-07-31

    The central aim of this project is to provide knowledge and tools for increasing the energy efficiency and performance of new and existing laboratory-type facilities in California. We approach the task along three avenues: (1) identification of current energy use and savings potential, (2) development of a {ital Design guide for energy- Efficient Research Laboratories}, and (3) development of a research agenda for focused technology development and improving out understanding of the market. Laboratory-type facilities use a considerable amount of energy resources. They are also important to the local and state economy, and energy costs are a factor in the overall competitiveness of industries utilizing laboratory-type facilities. Although the potential for energy savings is considerable, improving energy efficiency in laboratory-type facilities is no easy task, and there are many formidable barriers to improving energy efficiency in these specialized facilities. Insufficient motivation for individual stake holders to invest in improving energy efficiency using existing technologies as well as conducting related R&D is indicative of the ``public goods`` nature of the opportunity to achieve energy savings in this sector. Due to demanding environmental control requirements and specialized processes, laboratory-type facilities epitomize the important intersection between energy demands in the buildings sector and the industrial sector. Moreover, given the high importance and value of the activities conducted in laboratory-type facilities, they represent one of the most powerful contexts in which energy efficiency improvements stand to yield abundant non-energy benefits if properly applied.

  5. Trends in energy efficiency in countries of the Mediterranean Rim

    International Nuclear Information System (INIS)

    2014-04-01

    This report describes trends in energy efficiency in four countries of the southern side of the Mediterranean Sea (Algeria, Lebanon, Morocco and Tunisia) and five Mediterranean European countries (France, Spain, Italy, Greece and Portugal). This study is based on energy efficiency indicators per sector of energy consumption as they are developed within the frame of the MEDENER project for the four southern countries and of the ODYSSEE-MURE project for the European countries. The report presents the context of energy efficiency (challenges and objectives, trends in energy consumption, primary and final intensities), discusses trends of energy efficiency in the transformation sector, in the housing sector, in the transport sector (trends in consumption, road and air transport), in the industry (sector intensities), in the tertiary sector (global trends, sector indicators), and in agriculture and fishing (global trends and sector indicators)

  6. Energy efficiency indicators of Italy (1970-1992)

    Energy Technology Data Exchange (ETDEWEB)

    D`Angelo, E.; Perrella, G. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Energia; Bianco, R.

    1996-02-01

    This report is aimed at presenting the results of the energy efficiency evolution in Italy for the 1970-1992 period Results come from the data-base developed under the SAVE/EnR project on `Cross countries comparison on energy efficiency indicators`. In order to be comparable among countries, efforts have been made to harmonize the data collection as well as the definition and the calculation of energy efficiency indicators. Selected indicators are considered in order to illustrate the potentiality of the project (around 200 different energy efficiency indicators can be calculated and presented). Emphasis is put on the interpretation of the so-called `techno-economic indicators` as well as explanatory indicators both for the economic and techno-economic approaches. Industry, transport, tertiary, residential and transformation sectors have been analyzed.

  7. BC Hydro best practices : energy efficiency and integrated planning

    International Nuclear Information System (INIS)

    Henriques, D.

    2004-01-01

    The key elements to success in energy efficiency include integrated energy planning, a review of conservation potential, pursuing a target, risk sharing between all parties, and long term planning when making investments in demand side management (DSM). The barriers to cost effective energy efficiency investment were also outlined along with the scope of the conservation potential review which included 95 per cent of electricity end use applications in all market sectors including residential, commercial, institutional and industrial. BC Hydro's Power Smart program focuses on energy efficiency and load displacement to meet 35 per cent of the utility's forecasted growth by 2012. The sources of savings within each of the market sectors were identified. Key recommendations regarding energy efficiency and conservation were also presented with reference to financial incentives offered by BC Hydro to consumers to encourage a switch to more efficient lighting systems. 10 figs

  8. Proceedings of the 30. Seminar of global energy balances and utilities; 24. Meeting of the producers and consumers of industrial gases. Energy efficiency for the future; Anais do 30. Seminario de balancos energeticos globais e utilidades; 24. Encontro de produtores e consumidores de gases industriais

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-12-11

    Papers on energy balance are presented in these proceedings covering the industrial gases consumption, production, technology utilization and energy efficiency. Also presented the graphical and diagrams of the annual energetic balance of the ArcelorMittal Inox Brasil, ArcelorMittal Monlevade, ArcelorMittal Tubarao, CSN, Usiminas, Usiminas Cubatao and V and M do Brasil.

  9. Implementation of voluntary agreements for energy efficiency in China

    International Nuclear Information System (INIS)

    Hu Yuan

    2007-01-01

    Low-energy efficiency and environmental pollution have long been taken as key problems of Chinese industry, although a number of command-and-control and economic instruments have been adopted in the last few decades. In this paper, policy and legislation development for voluntary agreements were summarized. The voluntary agreements pilot project in two iron and steel companies in Shandong Province as well as other cases were analyzed. In order to identify the existing problems in Chinese cases, comparison was made between China and industrialized countries in the practices of energy efficiency voluntary agreements. Based on the analysis, detained recommendations, including the use of supporting policies for voluntary agreements, were raised. It is expected that voluntary agreements could play a more important role in energy efficiency improvement of Chinese industry

  10. Frontiers in the economics of energy efficiency

    International Nuclear Information System (INIS)

    Miguel, Carlos de; Labandeira, Xavier; Löschel, Andreas

    2015-01-01

    Energy efficiency has become an essential instrument to obtain effective greenhouse gas mitigation and reduced energy dependence. This introductory article contextualizes the contributions of the supplemental issue by showing the new setting for energy efficiency economics and policy; discussing the role of price instruments to promote energy savings; presenting new approaches for energy efficiency policies; and placing energy efficiency within a wider energy and environmental framework.

  11. Global status report on energy efficiency 2008

    OpenAIRE

    Blok, K.; van Breevoort, P.; Roes, A.L.; Coenraads, R.; Müller, N.

    2008-01-01

    There is wide agreement that energy efficiency improvement is one of the key strategies to achieve greater sustainability of the energy system. In the past, the contribution of energy efficiency has already been considerable.Without the energy efficiency improvements achieved since the 1970s, current energy use would have been much higher. However, the potential for energy efficiency improvement is much larger than has already been implemented. In the period leading to 2050, it is possible to...

  12. Research and Energy Efficiency: Selected Success Stories

    Science.gov (United States)

    Garland, P. W.; Garland, R. W.

    1997-06-26

    Energy use and energy technology play critical roles in the U.S. economy and modern society. The Department of Energy (DOE) conducts civilian energy research and development (R&D) programs for the purpose of identifying promising technologies that promote energy security, energy efficiency, and renewable energy use. DOE-sponsored research ranges from basic investigation of phenomena all the way through development of applied technology in partnership with industry. DOE`s research programs are conducted in support of national strategic energy objectives, however austere financial times have dictated that R&D programs be measured in terms of cost vs. benefit. In some cases it is difficult to measure the return on investment for the basic "curiosity-driven" research, however many applied technology development programs have resulted in measurable commercial successes. The DOE has published summaries of their most successful applied technology energy R&D programs. In this paper, we will discuss five examples from the Building Technologies area of the DOE Energy Efficiency program. Each story will describe the technology, discuss the level of federal funding, and discuss the returns in terms of energy savings, cost savings, or national economic impacts.

  13. Green corridor : energy efficiency initiatives

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, M.; Strickland, R.; Harding, N. [Windsor Univ., ON (Canada)

    2005-07-01

    This presentation discussed environmental sustainability using alternative energy technologies. It discussed Ecohouse, which is a house designed using conventional and inventive products and techniques to represent an eco-efficient model for living, a more sustainable house, demonstrating sustainable technologies in action and setting a new standard for resource efficiency in Windsor. The presentation provided a building analysis and discussed the following: geothermal heating; distributive power; green roof; net metering; grey water plumbing; solar water heating; passive lighting; energy efficient lighting and geothermal heating and cooling. It also discussed opportunities for innovation, namely: greenhouse; composting toilets; alternative insulation; net metering; solar arrays; hydroponics; and expansion of the house. Also discussed were a nature bridge, an underwater electric kite, and a vertically aerodynamic turbine. The benefits of renewable energy, small hydro power potential, and instream energy generation technology were presented. 9 refs., figs.

  14. Energy efficient sensor network implementations

    Energy Technology Data Exchange (ETDEWEB)

    Frigo, Janette R [Los Alamos National Laboratory; Raby, Eric Y [Los Alamos National Laboratory; Brennan, Sean M [Los Alamos National Laboratory; Kulathumani, Vinod [WEST VIRGINIA UNIV.; Rosten, Ed [CAMBRIDGE UNIV.; Wolinski, Christophe [IRISA; Wagner, Charles [IRISA; Charot, Francois [IRISA

    2009-01-01

    In this paper, we discuss a low power embedded sensor node architecture we are developing for distributed sensor network systems deployed in a natural environment. In particular, we examine the sensor node for energy efficient processing-at-the-sensor. We analyze the following modes of operation; event detection, sleep(wake-up), data acquisition, data processing modes using low power, high performance embedded technology such as specialized embedded DSP processors and a low power FPGAs at the sensing node. We use compute intensive sensor node applications: an acoustic vehicle classifier (frequency domain analysis) and a video license plate identification application (learning algorithm) as a case study. We report performance and total energy usage for our system implementations and discuss the system architecture design trade offs.

  15. Increased energy efficiency of hobs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The objective of the project is to save energy when cooking food on hobs. A great part of the total energy consumption used for cooking is consumed by hobs. The amount of energy depends on the temperature used for cooking and energy used for evaporation of liquid, focussing especially on the latter in this project. CHEC B is a method for controlling the supply of energy to the zone, so that a minimum of energy is used for reaching a set temperature of the food/liquid in the pot and maintaining this temperature. Today the efficiency of hobs is between 50 - 75%. Using CHEC B the energy efficiency is expected to be higher. (au)

  16. Energy Efficiency in Manufacturing Systems

    CERN Document Server

    Thiede, Sebastian

    2012-01-01

    Energy consumption is of great interest to manufacturing companies. Beyond considering individual processes and machines, the perspective on process chains and factories as a whole holds major potentials for energy efficiency improvements. To exploit these potentials, dynamic interactions of different processes as well as auxiliary equipment (e.g. compressed air generation) need to be taken into account. In addition, planning and controlling manufacturing systems require  balancing technical, economic and environmental objectives. Therefore, an innovative and comprehensive methodology – with a generic energy flow-oriented manufacturing simulation environment as a core element – is developed and embedded into a step-by-step application cycle. The concept is applied in its entirety to a wide range of case studies such as aluminium die casting, weaving mills, and printed circuit board assembly in order to demonstrate the broad applicability and the benefits that can be achieved.

  17. Global status report on energy efficiency 2008

    NARCIS (Netherlands)

    Blok, K.; van Breevoort, P.; Roes, A.L.; Coenraads, R.; Müller, N.

    2008-01-01

    There is wide agreement that energy efficiency improvement is one of the key strategies to achieve greater sustainability of the energy system. In the past, the contribution of energy efficiency has already been considerable.Without the energy efficiency improvements achieved since the 1970s,

  18. Energy efficiency public service advertising campaign

    Energy Technology Data Exchange (ETDEWEB)

    Gibson-Grant, Amanda [Advertising Council, New York, NY (United States)

    2015-06-12

    The Advertising Council (“the Ad Council”) and The United States Department of Energy (DOE) created and launched a national public service advertising campaign designed to promote energy efficiency. The objective of the Energy Efficiency campaign was to redefine how consumers approach energy efficiency by showing that saving energy can save homeowners money.

  19. China Energy Group - Sustainable Growth Through EnergyEfficiency

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Mark; Fridley, David; Lin, Jiang; Sinton, Jonathan; Zhou,Nan; Aden, Nathaniel; Huang, Joe; Price, Lynn; McKane, Aimee T.

    2006-03-20

    China is fueling its phenomenal economic growth with huge quantities of coal. The environmental consequences reach far beyond its borders--China is second only to the United States in greenhouse gas emissions. Expanding its supply of other energy sources, like nuclear power and imported oil, raises trade and security issues. Soaring electricity demand necessitates the construction of 40-70 GW of new capacity per year, creating sustained financing challenges. While daunting, the challenge of meeting China's energy needs presents a wealth of opportunities, particularly in meeting demand through improved energy efficiency and other clean energy technologies. The China Energy Group at the Lawrence Berkeley National Laboratory (LBNL) is committed to understanding these opportunities, and to exploring their implications for policy and business. We work collaboratively with energy researchers, suppliers, regulators, and consumers in China and elsewhere to: better understand the dynamics of energy use in China. Our Research Focus Encompasses Three Major Areas: Buildings, Industry, and Cross-Cutting Activities. Buildings--working to promote energy-efficient buildings and energy-efficient equipment used in buildings. Current work includes promoting the design and use of minimum energy efficiency standards and energy labeling for appliances, and assisting in the development and implementation of building codes for energy-efficient residential and commercial/public buildings. Past work has included a China Residential Energy Consumption Survey and a study of the health impacts of rural household energy use. Industry--understanding China's industrial sector, responsible for the majority of energy consumption in China. Current work includes benchmarking China's major energy-consuming industries to world best practice, examining energy efficiency trends in China's steel and cement industries, implementing voluntary energy efficiency agreements in various

  20. The Total Energy Efficiency Index for machine tools

    International Nuclear Information System (INIS)

    Schudeleit, Timo; Züst, Simon; Weiss, Lukas; Wegener, Konrad

    2016-01-01

    Energy efficiency in industries is one of the dominating challenges of the 21st century. Since the release of the eco-design directive 2005/32/EC in 2005, great research effort has been spent on the energy efficiency assessment for energy using products. The ISO (International Organization for Standardization) standardization body (ISO/TC 39 WG 12) currently works on the ISO 14955 series in order to enable the assessment of energy efficient design of machine tools. A missing piece for completion of the ISO 14955 series is a metric to quantify the design of machine tools regarding energy efficiency based on the respective assembly of components. The metric needs to take into account each machine tool components' efficiency and the need-oriented utilization in combination with the other components while referring to efficiency limits. However, a state of the art review reveals that none of the existing metrics is feasible to adequately match this goal. This paper presents a metric that matches all these criteria to promote the development of the ISO 14955 series. The applicability of the metric is proven in a practical case study on a turning machine. - Highlights: • Study for pushing forward the standardization work on the ISO 14955 series. • Review of existing energy efficiency indicators regarding three basic strategies to foster sustainability. • Development of a metric comprising the three basic strategies to foster sustainability. • Metric application for quantifying the energy efficiency of a turning machine.

  1. Improving energy efficiency for local energy systems

    International Nuclear Information System (INIS)

    Oh, Se-Young; Binns, Michael; Yeo, Yeong-Koo; Kim, Jin-Kuk

    2014-01-01

    Highlights: • Multi-period design methodology for heat recovery in local energy systems. • A systematic targeting for minimum utility requirements for urban utility systems. • Integration of industrial waste heat with local energy systems. • A case study providing insights for the heat recovery of discontinuous systems. - Abstract: This study aims to develop a novel design method for reducing the energy consumption and CO 2 emissions of local energy systems, simultaneously considering the recovery of industrial waste heat, and effectively dealing with the non-continuous nature of energy usage and heat recovery. A multi-period concept has been adopted for characterizing the change of heat demand and associated heat recovery in local energy systems which is used for targeting of the minimum energy consumption. In addition, techno-economic analysis is used to provide design guidelines for better heat integration. This design methodology also incorporates the impacts of heat storage and part-load performance of energy production equipment. Opportunities for utilization of low grade heat in process industries have been systematically considered for the minimization of energy generation in local energy systems together with the evaluation of the economic feasibility of such systems for integration of industrial low grade heat with local energy systems. Case studies are used to demonstrate the applicability and practicality of the heat integration methodology developed in this work, and to illustrate how a holistic approach can improve the overall energy efficiency of local energy systems

  2. ENERGY EFFICIENT RENOVATION OF SOCIAL HOUSING

    DEFF Research Database (Denmark)

    Blyt, Henrik; Christiansen, Michael; Bech-Nielsen, Grith

    This paper presents a case study which investigates a strategic and methodological approach to future proofed renovations of social housing in an environmental, economically and socially sustainable way. In years to come the social housing sector must undergo major renovation. The housing sector...... is out of step with modern requirements when it comes to plan arrangements, energy frame calculation, flexible building services and social challenges. It is no longer enough to focus on developing efficient products concerning energy renovation. To be able to achieve an environmental, economically...... and socially sustainable objective, which seeks towards energy efficient renovation as an overall, systemic and interdisciplinary collaboration, the construction industry needs to focus on developing, testing, evaluating and implementing tools and methods to optimize and improve processes in a value...

  3. Gas and energy efficiency. The ''E'' factor

    International Nuclear Information System (INIS)

    McGregor, G.

    1992-06-01

    On 1 April 1992 a new gas tariff formula came into effect limiting the prices British Gas can charge to its 18 million -primarily domestic - tariff customers. A feature of the new formula is the ''E'' factor, designed to stimulate investment by British Gas in energy efficiency. This paper is intended to explain the thinking which lay behind the introduction of the ''E''factor, what statutory and other considerations need to be taken into account in considering ''E'' factor proposals and how the arrangements for the gas industry are likely to fit in with the creation of an Energy Savings Trust recently announced by the Government. In doing so, it is intended to give guidance to those who may have proposals for the more efficient use of energy and gas and wish to understand whether these could be eligible to be considered as ''E'' factor projects. (Author)

  4. Energy Efficient Resource Management in Mobile Grid

    Directory of Open Access Journals (Sweden)

    Chunlin Li

    2010-01-01

    Full Text Available Energy efficient computing has recently become hot research area. Many works have been carried out on conserving energy, but considering energy efficiency in grid computing is few. This paper proposes energy efficient resource management in mobile grid. The objective of energy efficient resource management in mobile grid is to maximize the utility of the mobile grid which is denoted as the sum of grid application utility. The utility function models benefits of application and system. By using nonlinear optimization theory, energy efficient resource management in mobile grid can be formulated as multi objective optimization problem. In order to derive a distributed algorithm to solve global optimization problem in mobile grid, we decompose the problem into the sub problems. The proposed energy efficient resource management algorithm decomposes the optimization problem via iterative method. To test the performance of the proposed algorithm, the simulations are conducted to compare proposed energy efficient resource management algorithm with other energy aware scheduling algorithm.

  5. Radon and energy efficient homes

    International Nuclear Information System (INIS)

    Burkart, W.

    1981-09-01

    Radon and its daughters in indoor air are presently responsible for dose equivalents of about 31 mSv/year (3 rem/year) to parts of the respiratory tract. Linear extrapolation from the dose response values of uranium miners heavily exposed to radon and its decay products would suggest that almost all lung cancers in the non-smoking population are caused by environmental 222 Rn. Using epidemiological data on the types of lung cancer found in non-smokers of the general public as compared to the miners, a smaller effect of low level radon exposure is assumed, which would result in a lung cancer mortality rate due to radon of about 10 deaths per year and million or 25% of the non-smoker rate. Higher indoor radon concentrations in energy efficient homes mostly caused by reduced air exchange rates will lead to a several fold increase of the lung cancer incidence from radon. Based on the above assumption, about 100 additional lung cancer deaths/year-million will result both from an increase in radionuclide concentrations in indoor air and a concomitant rise in effectiveness of radiation to cause cancer with higher exposure levels. Possibilities to reduce indoor radon levels in existing buildings and costs involved are discussed. (Auth.)

  6. Actuarial pricing of energy efficiency projects: lessons foul and fair

    International Nuclear Information System (INIS)

    Mathew, Paul; Kromer, J. Stephen; Sezgen, Osman; Meyers, Steven

    2005-01-01

    Recent market convulsions in the energy industry have generated a plethora of post-mortem analyses on a wide range of issues, including accounting rules, corporate governance, commodity markets, and energy policy. While most of these analyses have focused on business practices related to wholesale energy trading, there has been limited analysis of retail energy services, particularly energy efficiency projects. We suggest that there were several business concepts and strategies in the energy efficiency arena whose inherent value may have been masked by the larger failure of companies such as Enron. In this paper, we describe one such concept, namely, actuarial pricing of energy efficiency projects, which leverages a portfolio-based approach to risk management. First, we discuss the business drivers, contrasting this approach with conventional industry practice. We then describe the implementation of this approach, including an actuarial database, pricing curves, and a pricing process compatible with commodity pricing. We conclude with a discussion of the prospects and barriers for the further development of transparent and quantifiable risk management products for energy efficiency, a prerequisite for developing energy efficiency as a tradeable commodity. We address these issues from an experiential standpoint, drawing mostly on our experience in developing and implementing such strategies at Enron

  7. Innovative financing for energy-efficiency improvements. Phase I report

    Energy Technology Data Exchange (ETDEWEB)

    Klepper, M.; Schwartz, H.K.; Feder, J.M.; Smith, D.C.; Green, R.H.; Williams, J.; Sherman, J.L.; Carroll, M.

    1982-01-01

    The use of utility-assisted financing, tax-exempt financing, bank financing, leasing, and joint venture financing to promote energy efficiency investments for each of three different categories of buildings (multifamily, commercial, and industrial) is discussed in separate chapters. (MCW)

  8. Survey of energy efficiency programs for motor systems in the industry and the main results of PROCEL Info; Levantamento dos programas de eficiencia energetica para sistemas motrizes na industria e os principais resultados do PROCEL Info

    Energy Technology Data Exchange (ETDEWEB)

    Naturesa, Jim Silva; Mariotoni, Carlos Alberto [Universidade Estadual de Campinas (GPESE/UNICAMP), SP (Brazil). Dept. de Recursos Hidricos, Energeticos e Ambientais. Grupo de Planejamento Energetico e Sistemas Eletricos; Menezes, Taciana de V.; Perrone, Fernando Pinto Dias; Lepetitgaland, Karla Kwiatkowski [Centrais Eletricas Brasileiras S.A. (ELETROBRAS), Brasilia, DF (Brazil)

    2008-07-01

    This article has as objective to compare the actual energy efficiency programs for the motor driven systems of Brazil, United States and European Community. This comparison will be restricted to the action of each program, considering that the countries present distinct economical, political and social aspects. The main results of PROCEL Info will be presented. (author)

  9. Energy Efficiency Through Lighting Upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Berst, Kara [Chickasaw Nation, Ada, OK (United States); Howeth, Maria [Chickasaw Nation, Ada, OK (United States)

    2013-02-26

    Lighting upgrades including neon to LED, incandescent to CFL's and T-12 to T-8 and T-5's were completed through this grant. A total of 16 Chickasaw nation facilities decreased their carbon footprint because of these grant funds. Calculations used were based on comparing the energy usage from the previous year's average and the current energy usage. For facilities without a full year's set of energy bills, the month after installation was compared to the same month from the previous year. Overall, the effect the lighting change-outs had for the gaming centers and casinos far exceeded expectations. For the Madill Gaming Center; both an interior and exterior upgrade was performed which resulted in a 31% decrease in energy consumption. This same reduction was seen in every facility that participated in the grant. Just by simply changing out light bulbs to newer energy efficient equivalents, a decrease in energy usage can be achieved and this was validated by the return on investment seen at Chickasaw Nation facilities. Along with the technical project tasks were awareness sessions presented at Chickasaw Head Starts. The positive message of environmental stewardship was passed down to head start students and passed along to Chickasaw employees. Excitement was created in those that learned what they could do to help reduce their energy bills and many followed through and took the idea home. For a fairy low cost, the general public can also use this technique to lower their energy consumption both at home and at work. Although the idea behind the project was somewhat simple, true benefits have been gained through environmental awareness and reductions of energy costs.

  10. Conservation and energy efficiency plan 2006

    International Nuclear Information System (INIS)

    2005-11-01

    This plan outlined details of Nova Scotia's proposed $5 million incremental investment in energy efficiency and conservation measures in 2006. The plan was developed through consultation with various Canadian utilities, customers and external stakeholders. A team of stakeholders identified lighting, pricing, partnerships and education as opportunities offering the greatest potential for results. Market research was conducted to identify market potential and the identification of barriers to customer adoption of programs as well as customer expectations regarding program implementation. It was anticipated that the plan will reduce electricity usage and result in significant savings for customers, as well as reducing greenhouse gas (GHG) emissions. The aim of the plan is to help build a conservation and energy efficiency culture in Nova Scotia and to bring Nova Scotia Power together with community-based partners. Specific plans for 2007 included: a 72 GWh reduction in annual electricity usage; approximately $7.7 million in annual savings to customers; a 16 MW reduction in peak electricity demand; and a 50 thousand tonne reduction of GHGs. A business case was presented along with details of proposed residential, commercial and industrial programs. A cost benefit analysis was provided, as well as an outline of the plan's budget and organizational structure. It was concluded that the success of the various program elements will be based on quantitative and qualitative data on the actual effect on energy use of each customer sector, as well as its effect on system demand profiles. Data will be collected through the use of customer surveys, questionnaires, and direct feedback from partners, educators and manufactures and suppliers. 11 tabs., 16 figs

  11. Energy efficiency in future wireless broadband networks

    CSIR Research Space (South Africa)

    Masonta, MT

    2012-10-01

    Full Text Available , and will require unique energy efficient solutions. For instance, an MS may be battery-powered, and the relevant energy efficient solution would include switching-off the display and minimizing signalling overhead (e.g. sleep mode). Meanwhile energy efficient... solution for the BS may include the intelligent sleep mode policies when the number of users and the traffic load decreases [3]. Due to the growing demand for advanced broadband wireless technologies and services, research in green radio solutions...

  12. Energy efficiency, market failures, and government policy

    International Nuclear Information System (INIS)

    Levine, M.D.; Koomey, J.G.; McMahon, J.E.; Sanstad, A.H.; Hirst, E.

    1994-03-01

    This paper presents a framework for evaluating engineering-economic evidence on the diffusion of energy efficiency improvements. Four examples are evaluated within this framework. The analysis provides evidence of market failures related to energy efficiency. Specific market failures that may impede the adoption of cost-effective energy efficiency are discussed. Two programs that have had a major impact in overcoming these market failures, utility DSM programs and appliance standards, are described

  13. Energy Efficient Power Allocation for Cognitive MIMO Channels

    KAUST Repository

    Sboui, Lokman

    2016-01-06

    Two major issues are facing today s wireless communications evolution: -Spectrum scarcity: Need for more bandwidth. As a solution, the Cognitive Radio (CR) paradigm, where secondary users (unlicensed) share the spectrum with licensed users, was introduced. -Energy consumption and CO2 emission: The ICT produces 2% of global CO2 emission (equivalent to the aviation industry emission). The cellular networks produces 0.2%. As solution energy efficient systems should be designed rather than traditional spectral efficient systems. In this work, an energy efficient power allocation framework based on maximizing the average EE per parallel channel is presented.

  14. Data Center Energy Efficiency Standards in India: Preliminary Findings from Global Practices

    Energy Technology Data Exchange (ETDEWEB)

    Raje, Sanyukta; Maan, Hermant; Ganguly, Suprotim; Singh, Tanvin; Jayaram, Nisha; Ghatikar, Girish; Greenberg, Steve; Kumar, Satish; Sartor, Dale

    2015-06-01

    Global data center energy consumption is growing rapidly. In India, information technology industry growth, fossil-fuel generation, and rising energy prices add significant operational costs and carbon emissions from energy-intensive data centers. Adoption of energy-efficient practices can improve the global competitiveness and sustainability of data centers in India. Previous studies have concluded that advancement of energy efficiency standards through policy and regulatory mechanisms is the fastest path to accelerate the adoption of energy-efficient practices in the Indian data centers. In this study, we reviewed data center energy efficiency practices in the United States, Europe, and Asia. Using evaluation metrics, we identified an initial set of energy efficiency standards applicable to the Indian context using the existing policy mechanisms. These preliminary findings support next steps to recommend energy efficiency standards and inform policy makers on strategies to adopt energy-efficient technologies and practices in Indian data centers.

  15. National Action Plan for Energy Efficiency Report

    Energy Technology Data Exchange (ETDEWEB)

    National Action Plan for Energy Efficiency

    2006-07-01

    Summarizes recommendations, key barriers, and methods for energy efficiency in utility ratemaking as well as revenue requirements, resource planning processes, rate design, and program best practices.

  16. Integration of energy efficient technologies in UK supermarkets

    International Nuclear Information System (INIS)

    Ochieng, E.G.; Jones, N.; Price, A.D.F.; Ruan, X.; Egbu, C.O; Zuofa, T.

    2014-01-01

    The purpose of this paper is twofold: to determine if the integration of energy efficient technologies in UK supermarkets can determine consumer behaviour, and to establish if such activities can help satisfying the environmental elements of the clients corporate social responsibilities (CSR) in an attempt to create a competitive advantage. A literature review of existing material considered the history and drivers of sustainability, the types of energy efficient technologies and factors concerning CSR and consumer behaviour in relation to the supermarket industry. Interviews with 15 senior store managers were recorded and transcribed. The opinions of the senior store managers were then sought and analysed using qualitative research software NVivo software. Validity of the data was achieved at a later stage through workshops. The results of this paper suggested that there is a definite lack of awareness and knowledge amongst customers regarding energy efficient technologies. From the findings, it was further established that the key driver for retailers who integrate energy efficient technologies is fiscal incentives, although it was suggested some retailers use CSR strategies to report there are environmental achievements it was ultimately found that cost savings were the primary driver. - Highlights: • The effect of sustainability towards consumer behaviour was explored. • Majority of consumers are unaware of energy efficient technologies. • Energy efficient technologies do not determine or create shifts in paradigm in consumer actions. • Stores are driven to integrate energy efficient technologies more by government legislation. • Participants were clear in making the point that their image and reputation was based on trust

  17. Energy efficiency improvement and cost saving opportunities forpetroleum refineries

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Galitsky, Christina

    2005-02-15

    The petroleum refining industry in the United States is the largest in the world, providing inputs to virtually any economic sector,including the transport sector and the chemical industry. The industry operates 146 refineries (as of January 2004) around the country,employing over 65,000 employees. The refining industry produces a mix of products with a total value exceeding $151 billion. Refineries spend typically 50 percent of cash operating costs (i.e., excluding capital costs and depreciation) on energy, making energy a major cost factor and also an important opportunity for cost reduction. Energy use is also a major source of emissions in the refinery industry making energy efficiency improvement an attractive opportunity to reduce emissions and operating costs. Voluntary government programs aim to assist industry to improve competitiveness through increased energy efficiency and reduced environmental impact. ENERGY STAR (R), a voluntary program managed by the U.S. Environmental Protection Agency, stresses the need for strong and strategic corporate energy management programs. ENERGY STAR provides energy management tools and strategies for successful corporate energy management programs. This Energy Guide describes research conducted to support ENERGY STAR and its work with the petroleum refining industry.This research provides information on potential energy efficiency opportunities for petroleum refineries. This Energy Guide introduces energy efficiency opportunities available for petroleum refineries. It begins with descriptions of the trends, structure, and production of the refining industry and the energy used in the refining and conversion processes. Specific energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The Energy Guide draws upon the experiences with energy efficiency measures of petroleum refineries worldwide

  18. Energy efficiency policy in a non-cooperative world

    International Nuclear Information System (INIS)

    Barla, Philippe; Proost, Stef

    2012-01-01

    In this paper, we explore energy efficiency policies in the presence of a global environmental problem and international cost interdependency associated with R and D activities. We develop a simple model with two regions where the cost of an appliance in one region depends upon the level of energy efficiency in that region and the level of R and D activities by the appliance industry. In our model, the cooperative outcome can be decentralized by imposing a tax on energy. However, we show that when regions do not cooperate, they have an incentive to adopt additional instruments to increase energy efficiency. The reason is that the lack of cooperation leads to under-taxation of the environmental externality which in turn creates an incentive to try to reduce emissions produced abroad. We illustrate this phenomenon with the Californian vehicle greenhouse gas standards.

  19. Guide to energy efficiency opportunities in Canadian foundries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    In Canada, the foundry sector employs about 15000 people and most of the companies are members of the Canadian Foundry Association (CFA). The CFA is committed to reducing its greenhouse gas emissions and is therefore looking for energy savings which, in addition to reducing emissions, would help the industry save costs and improve its competitiveness. The aim of this document is to provide operators with a guide to improving energy efficiency in their foundries. The report provides guidance on carrying out energy audits, gathering energy saving ideas, prioritizing projects, and charting the course of improved energy performance. Many different energy saving ideas for many kinds of operation are presented in this guidebook as a help to operators in finding where they could improve their energy efficiency; references to energy saving methods from all over the world are provided. This guidebook is a useful tool for helping foundry operators improve energy efficiency in their operations.

  20. Prerequisites to promote energy efficiency investments in Bulgaria

    International Nuclear Information System (INIS)

    Boernsen, O.

    1994-01-01

    The PHARE Energy Programme's team observation and advice to the Committee of Energy in Bulgaria are outlined. In comparison to the Western European countries energy intensity in Bulgaria is 2-3 times higher. It is explained by the energy intensive industrial structure and the old and depreciated capital equipment. Cost-covering energy prices would make energy efficiency investment financially feasible and would attract financiers. But the lesson from Western European experience is that availability of finance capital and cost reflecting energy prices is not at all a necessary prerequisite for energy efficiency improvement. This improvement can be achieved with no cost or low cost measures. The potential for energy efficiency in industry (consuming more than 50% of the energy) is 11%-20%; in buildings - 6%; in transport - 4%. There are other obstacles, as lack of information, other business interests and no internal expertise, especially for small and medium size industries. The basic prerequisite to improve energy efficiency is raising of awareness and change of management culture, as well as radical change in organisational and management structures. (orig.)

  1. Environment-adjusted regional energy efficiency in Taiwan

    International Nuclear Information System (INIS)

    Hu, Jin-Li; Lio, Mon-Chi; Yeh, Fang-Yu; Lin, Cheng-Hsun

    2011-01-01

    This study applies the four-stage DEA procedure to calculate the energy efficiency of 23 regions in Taiwan from 1998 to 2007. After controlling for the effects of external environments, only Taipei City, Chiayi City, and Kaohsiung City are energy efficient. Note that Kaohsiung City reaches the efficiency frontier due to the adjustment via partial environmental factors such as higher education attainment and transport vehicles. We also find a worsening trend for Taiwan's energy efficiency. Not only is there a gap of energy efficiency between Taiwan's metropolitan areas and the other regions, but the gap has also widened in recent years. Those inefficient counties should be given priority and the savings potential. Except for road density, the evidence indicates that each environmental factor has partial incremental effects on input slacks. As more cars and motorcycles are unfavorable externalities affecting partial energy efficiency, the central government should help local governments retire inefficient old motor vehicles, encourage energy-saving vehicle models, and provide convenient mass transportation systems. Besides, people with higher education cause industrial energy inefficient in Taiwan. The conscious of effective energy saving is necessary to schools, communities, and employee accordingly.

  2. ECOWAS renewable energy and energy efficiency status report - 2014

    International Nuclear Information System (INIS)

    Auth, Katie; Musolino, Evan; Thomas, Tristram; Adebiyi, Adeola; Reiss, Karin; Semedo, Eder; Williamson, Laura E.; Chawla, Kanika; Diarra, Charles

    2014-01-01

    In recent years, the Economic Community of West African States (ECOWAS), comprising 15 Member States, it has emerged as one of the most active and dynamic regional economic communities on the African continent. Expanding access to modern, reliable, and affordable energy services is a key priority, prompting inter-state cooperation in crucial areas including capacity building, policy development and implementation, and investment. Recognising the critical role that sustainable energy plays in catalysing social, economic, and industrial development across the region, ECOWAS Member States formally inaugurated the ECOWAS Centre for Renewable Energy and Energy Efficiency (ECREEE) in 2010 to 'contribute to the sustainable economic, social and environmental development of West Africa by improving access to modern, reliable and affordable energy services, energy security and reduction of energy related externalities'. Drawing on data from the ECOWAS Observatory for Renewable Energy and Energy Efficiency (ECOWREX) and a network of contributors and researchers across the region, the ECOWAS Renewable Energy and Energy Efficiency Status Report supports ECREEE's efforts to increase the deployment of renewable energy and energy efficiency in West Africa by providing a comprehensive regional review of renewable energy and energy efficiency developments, evolving policy landscapes, market trends and related activities, investments in renewable energy and off-grid energy solutions, and the crucial nexus between energy access and gender

  3. Incentives for energy efficiency in the EU emission trading scheme

    Energy Technology Data Exchange (ETDEWEB)

    Schleich, Joachim [Fraunhofer-Institut fuer Systemtechnik und Innovationsforschung (ISI), Karlsruhe (Germany); Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States); Rogge, Karoline [Fraunhofer-Institut fuer Systemtechnik und Innovationsforschung (ISI), Karlsruhe (Germany); ETH Zurich (Switzerland). Group for Sustainability and Technology; Betz, Regina [New South Wales Univ. (Australia). Centre for Energy and Environmental Markets

    2008-07-01

    This paper explores the incentives for energy efficiency induced by the European Union Emissions Trading Scheme (EU ETS) for installations in the energy and industry sectors. Our analysis of the National Allocation Plans for 27 EU Member States for phase 2 of the EU ETS (2008-2012) suggests that the price and cost effects for improvements in carbon and energy efficiency in the energy and industry sectors will be stronger than in phase 1 (2005-2007), but only because the European Commission has substantially reduced the number of allowances to be allocated by the Member States. To the extent that companies from these sectors (notably power producers) pass through the extra costs for carbon, higher prices for allowances translate into stronger incentives for demand- side energy efficiency. With the cuts in allocation to energy and industry sectors these will be forced to greater reductions, thus the non-ET sectors like household, tertiary and transport will have to reduce less, which is more in line with the cost-efficient share of emission reductions. The findings also imply that domestic efficiency improvements in the energy and industry sectors may remain limited since companies can make substantial use of credits from the Kyoto mechanisms. The analysis of the rules for existing installations, new projects and closures suggests that incentives for energy efficiency are higher in phase 2 than in phase 1 because of the increased application of benchmarking to new and existing installations and because a lower share of allowances will be allocated for free. Nevertheless, there is still ample scope to further improve the EU ETS so that the full potential for energy efficiency can be realized. (orig.)

  4. Enhancing Energy Efficient TCP by Partial Reliability

    NARCIS (Netherlands)

    Donckers, L.; Smit, Gerardus Johannes Maria; Havinga, Paul J.M.; Smit, L.T.

    We present a study on the effects on a mobile system's energy efficiency of enhancing, with partial reliability, our energy efficient TCP variant (E/sup 2/TCP) (see Donckers, L. et al., Proc. 2nd Asian Int. Mobile Computing Conf. - AMOC2002, p.18-28, 2002). Partial reliability is beneficial for

  5. Promotion of energy efficiency in enterprises

    International Nuclear Information System (INIS)

    Beltrani, G.; Schelske, O.; Peter, D.; Oettli, B.

    2003-01-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) presents the results of a study made within the framework of the research programme on energy-economics fundamentals on how the energy efficiency of enterprises can be improved. The report first examines the present state of affairs in Swiss enterprises and looks into the interaction of energy efficiency and environmental management systems. ISO 14001 certification is discussed and examples are given of the responses of various enterprises to a survey concerning the role of energy efficiency in environmental management. Both hindrances and success factors for the embedding of energy-efficiency measures in environmental management activities are discussed and examples are given. Instruments available in Switzerland and from abroad that can be used to promote energy efficiency in enterprises are discussed. Four particular instruments are presented; guidelines and computer-based tools that help in the making of energy-relevant investment decisions, incentives to take part in an energy-benchmark system for small and medium-sized enterprises (SME), low-interest loans for investments in energy-efficiency for SMEs and the closer definition of 'continuous improvement' of energy efficiency within the framework of ISO 14001. The results of a survey amongst those involved are discussed. The report is concluded with recommendations for the implementation of the guidelines and for improvements in the integration of energy efficiency in environmental management systems

  6. USSR Energy Efficiency and Prospects

    OpenAIRE

    Sinyak, Y.

    1991-01-01

    The USSR is the largest energy producer and the second largest energy consumer in the world. Its share of global energy reached above 17% in 1988. The Soviet energy system is characterized by low efficiency and high "per capita" energy consumption, although there are some reasons justifying the greater USSR energy use per unit of product output than in other industrialized countries. The present energy savings potential is approximately equal to one-half of the domestic energy consumption. Im...

  7. Impact of Energy Market Liberalisation of Energy Efficiency Policies and Measures

    International Nuclear Information System (INIS)

    Cerovac, K.

    2001-01-01

    Evolving liberalisation and market forces transform the mindset of energy industry as well as energy consumers. Within the new environment, energy will be generated, traded and consumed like other commodities. Competition and new incentives have a profound influence on energy efficiency incentives and policies. This report aims at identifying the effects of liberalisation on energy efficiency and potential energy policy implications. The report addresses energy efficiency issues throughout the energy cycle from generation, transmission to consumption.(author)

  8. Energy efficiency of mobile soft robots.

    Science.gov (United States)

    Shui, Langquan; Zhu, Liangliang; Yang, Zhe; Liu, Yilun; Chen, Xi

    2017-11-15

    The performance of mobile soft robots is usually characterized by their locomotion/velocity efficiency, whereas the energy efficiency is a more intrinsic and fundamental criterion for the performance evaluation of independent or integrated soft robots. In this work, a general framework is established to evaluate the energy efficiency of mobile soft robots by considering the efficiency of the energy source, actuator and locomotion, and some insights for improving the efficiency of soft robotic systems are presented. Proposed as the ratio of the desired locomotion kinetic energy to the input mechanical energy, the energy efficiency of locomotion is found to play a critical role in determining the overall energy efficiency of soft robots. Four key factors related to the locomotion energy efficiency are identified, that is, the locomotion modes, material properties, geometric sizes, and actuation states. It is found that the energy efficiency of most mobile soft robots reported in the literature is surprisingly low (mostly below 0.1%), due to the inefficient mechanical energy that essentially does not contribute to the desired locomotion. A comparison of the locomotion energy efficiency for several representative locomotion modes in the literature is presented, showing a descending ranking as: jumping ≫ fish-like swimming > snake-like slithering > rolling > rising/turning over > inchworm-like inching > quadruped gait > earthworm-like squirming. Besides, considering the same locomotion mode, soft robots with lower stiffness, higher density and larger size tend to have higher locomotion energy efficiency. Moreover, a periodic pulse actuation instead of a continuous actuation mode may significantly reduce the input mechanical energy, thus improving the locomotion energy efficiency, especially when the pulse actuation matches the resonant states of the soft robots. The results presented herein indicate a large and necessary space for improving the locomotion energy

  9. Energy efficiency and cleaner production

    International Nuclear Information System (INIS)

    Konstantinoff, M.; Grozeva, Iv.

    1999-01-01

    Energy is the fundamental driver of the economic growth in the todays society. It is an absolute prerequisite for the industrial development in the developed countries as well as for improving the quality of life and reducing the poverty in the developing world. It is expected that the energy demand in the developing countries will increase rapidly in the next decades, and will even exceed the level of consumption in the rich countries due to rising population and incomes. The burning of fossil fuel, however, inevitably leads to negative environmental impact, which no longer can be neglected

  10. Energy efficiency through integrated environmental management.

    Science.gov (United States)

    Benromdhane, Souad Ahmed

    2015-05-01

    Integrated environmental management became an economic necessity after industrial development proved to be unsustainable without consideration of environmental direct and indirect impacts. Energy dependency and air pollution along with climate change grew into major challenges facing developed and developing countries alike. Thus, a new global market structure emerged and changed the way we do trade. The search intensified for alternatives to petroleum. However, scientists, policy makers, and environmental activists agreed to focus on strategic conservation and optimization of energy use. Environmental concerns will remain partially unaddressed with the current pace of consumption because greenhouse gas emissions will continue to rise with economic growth. This paper discusses energy efficiency, steady integration of alternative sources, and increased use of best available technologies. Energy criteria developed for environmental labeling certification are presented. Our intention is to encourage manufacturers and service providers to supply consumers with less polluting and energy-consuming goods and services, inform consumers of the environmental and energy impacts, and thereby instill sustainable and responsible consumption. As several programs were initiated in developed countries, environmental labeling requirements created barriers to many exports manufactured in developing countries, affecting current world trade and putting more pressure on countries to meet those requirements. Defining an institutional and legal framework of environmental labeling is a key challenge in implementing such programs for critical economic sectors like tourism, textiles, and food production where energy needs are the most important aspect to control. A case study of Tunisia and its experience with eco-labeling is presented.

  11. Energy Efficiency Services Sector: Workforce Size and Expectations for Growth

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Charles; Fuller, Merrian C.; Stuart, Elizabeth; Peters, Jane S.; McRae, Marjorie; Albers, Nathaniel; Lutzenhiser, Susan; Spahic, Mersiha

    2010-03-22

    The energy efficiency services sector (EESS) is poised to become an increasingly important part of the U.S. economy. Climate change and energy supply concerns, volatile and increasing energy prices, and a desire for greater energy independence have led many state and national leaders to support an increasingly prominent role for energy efficiency in U.S. energy policy. The national economic recession has also helped to boost the visibility of energy efficiency, as part of a strategy to support economic recovery. We expect investment in energy efficiency to increase dramatically both in the near-term and through 2020 and beyond. This increase will come both from public support, such as the American Recovery and Reinvestment Act (ARRA) and significant increases in utility ratepayer funds directed toward efficiency, and also from increased private spending due to codes and standards, increasing energy prices, and voluntary standards for industry. Given the growing attention on energy efficiency, there is a concern among policy makers, program administrators, and others that there is an insufficiently trained workforce in place to meet the energy efficiency goals being put in place by local, state, and federal policy. To understand the likelihood of a potential workforce gap and appropriate response strategies, one needs to understand the size, composition, and potential for growth of the EESS. We use a bottom-up approach based upon almost 300 interviews with program administrators, education and training providers, and a variety of EESS employers and trade associations; communications with over 50 sector experts; as well as an extensive literature review. We attempt to provide insight into key aspects of the EESS by describing the current job composition, the current workforce size, our projections for sector growth through 2020, and key issues that may limit this growth.

  12. Energy efficient lighting in the retail sector

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This Good Practice Guide gives details on how energy efficient lighting can be incorporated in the brief for a lighting consultant or contractor. The advantages of energy efficiency are highlighted, and the lighting of retail stores, the introduction of energy efficiency measures, and the application of good practice are discussed. Case studies of W H Smith, Cambridge, Tesco Stores, Boots plc, the Harvey Centre, Harlow, and the National Westminster Bank plc are presented. A guide for senior executives and specialists in lighting design is also included. (UK)

  13. Renewable energy sources: Energy Efficiency Agency

    International Nuclear Information System (INIS)

    Bulgarensky, Mihael

    2004-01-01

    The paper presents the activities of the Energy Efficiency Agency, its main functions, as well as the new legislation stimulating the use of RES, stipulated in the new Energy Law of Bulgaria. The second part of the paper describes the potential of renewable energy in i.e. wind energy; solar energy; biomass energy; hydro energy; geothermal energy; draft of a National Program on RES 2005-2015. The third part describes the main issues of the new ENERGY EFFICIENCY LAW and the established Energy efficiency fund. (Author)

  14. Financial Crisis and Energy Efficiency. Information paper

    Energy Technology Data Exchange (ETDEWEB)

    de T' Serclaes, Philippine; Gasc, Emilien; Saussay, Aurelien

    2009-10-15

    Governments have understood the importance of financing energy efficiency now. This realisation is exemplified through the central role occupied by energy efficiency in most stimulus packages. The purpose of this memo is to identify the impact of the financial and economic crisis on the evolution of public sector investments, energy efficiency policy development, and private sector investments. The paper will first identify trends which have emerged from the implementation of IEA government stimulus packages. Most relevant case studies are then provided along with lessons and challenges.

  15. Improving energy efficiency in Nigeria

    International Nuclear Information System (INIS)

    Adegbulugbe, A.O.

    1991-01-01

    Despite its huge population of about 100 million people, Nigeria consumes a relatively small share of the world's energy. GDP per capita equaled about US$ 800 in 1985. Agriculture accounts for the largest portion of GDP, at around 40%, followed by services with 31%, industry with 25% and transport with 4$. Unlike most other African nations, Nigeria has abundant energy sources. Recent estimates assumed that Nigeria has about 16 billion barrels of oil, 30 billion barrels of oil equivalent (boe) of gas and 3 billion boe of coal. The results of two long-term energy use and carbon emissions scenarios for Nigeria indicate that between 1985 and 2025, Nigeria's energy consumption will rise substantially as both population and economic growth rates soar. While biomass consumption drops markedly over the observed time period, gas and oil consumption witness significant increases. Coal and solar power also account for increasing shares of Nigeria's energy supply in the coming four decades. Hydro's share in energy use remains stable

  16. A method to identify energy efficiency measures for factory systems based on qualitative modeling

    CERN Document Server

    Krones, Manuela

    2017-01-01

    Manuela Krones develops a method that supports factory planners in generating energy-efficient planning solutions. The method provides qualitative description concepts for factory planning tasks and energy efficiency knowledge as well as an algorithm-based linkage between these measures and the respective planning tasks. Its application is guided by a procedure model which allows a general applicability in the manufacturing sector. The results contain energy efficiency measures that are suitable for a specific planning task and reveal the roles of various actors for the measures’ implementation. Contents Driving Concerns for and Barriers against Energy Efficiency Approaches to Increase Energy Efficiency in Factories Socio-Technical Description of Factory Planning Tasks Description of Energy Efficiency Measures Case Studies on Welding Processes and Logistics Systems Target Groups Lecturers and Students of Industrial Engineering, Production Engineering, Environmental Engineering, Mechanical Engineering Practi...

  17. Performance Contracting and Energy Efficiency in the State Government Market

    Energy Technology Data Exchange (ETDEWEB)

    Bharvirkar, Ranjit; Goldman, Charles; Gilligan, Donald; Singer, Terry E.; Birr, David; Donahue, Patricia; Serota, Scott

    2008-11-14

    state government market is defined to include state offices, state universities, correctional facilities, and other state facilities. This study is part of a series of reports prepared by Lawrence Berkeley National Laboratory (LBNL) and the National Association of Energy Services Companies (NAESCO) on the ESCO market and industry trends. The scope of previous reports was much broader: Goldman et al. (2002) analyzed ESCO project costs and savings in public and private sector facilities, Hopper et al. (2005) focused on ESCO project activity in all public and institutional sectors, while Hopper et al (2007) provided aggregate results of a comprehensive survey of ESCOs on current industry activity and future prospects. We decided to focus the current study on ESCO and energy efficiency activity and potential market barriers in the state government market because previous studies suggested that this institutional sector has significant remaining energy efficiency opportunities. Moreover, ESCO activity in the state government market has lagged behind other institutional markets (e.g., K-12 schools, local governments, and the federal market). Our primary objectives were as follows: (1) Assess existing state agency energy information and data sources that could be utilized to develop performance metrics to assess progress among ESPC programs in states; (2) Conduct a comparative review of the performance of selected state ESPC programs in reducing energy usage and costs in state government buildings; and (3) Delineate the extent to which state government sector facilities are implementing energy efficiency projects apart from ESPC programs using other strategies (e.g. utility ratepayer-funded energy efficiency programs, loan funds).

  18. Building Energy Efficiency through Innovative Thermodevices (BEEIT)

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Y. Sungtaek [Univ. of California, Los Angeles, CA (United States); Dunn, Bruce [Univ. of California, Los Angeles, CA (United States); Pei, Qibing [Univ. of California, Los Angeles, CA (United States); Kim, C. -J. [Univ. of California, Los Angeles, CA (United States)

    2012-12-14

    This is the final scientific/technical report for the project "Compact MEMS Electrocaloric Cooling Module" sponsored by ARAPA-E as part of its Building Energy Efficiency through Innovative Thermodevices (BEEIT) program.

  19. Energy Efficiency in Water and Wastewater Facilities

    Science.gov (United States)

    Learn how water and wastewater facilities can lead by example and achieve multiple benefits by improving energy efficiency of their new, existing, and renovated buildings and their day-to-day operations.

  20. Health, Energy Efficiency and Climate Change

    Science.gov (United States)

    Climate change is becoming a driving force for improving energy efficiency because saving energy can help reduce the greenhouse gas emissions that contribute to climate change. However, it is important to balance energy saving measures with ventilation...

  1. Energy efficiency: a recipe for success

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    Produced in cooperation with ADEME and Enerdata, this report presents and evaluates energy efficiency policies and trends in about 90 countries around the world. It reviews the impact of energy efficiency measures and highlights the trends and results of their implementation. Energy efficiency is ''a low hanging fruit'' on the ''energy tree'' which can help address a number of objectives at the same time and at a low or negative cost: security of supply, environmental impacts, competitiveness, balance of trade, investment requirements, social aspects and others. Despite its significant potential for energy savings, energy efficiency is still far from realising this potential. Why? There is no single answer to this question. A meaningful response requires major research and an analytical effort.

  2. National Action Plan for Energy Efficiency

    Science.gov (United States)

    Provides resources for policy-makers, consumers, utilities, and others produced through NAPEE - a private-public initiative to create a sustainable, aggressive national commitment to energy efficiency through a collaborative effort of stakeholders.

  3. Investing in Energy Efficiency. Removing the Barriers

    International Nuclear Information System (INIS)

    2004-01-01

    Investing in improving energy efficiency has the clear advantages of reducing energy costs, improving security of supply and mitigating the environmental impacts of energy use. And still, many viable opportunities for higher energy efficiency are not tapped because of the existence of numerous barriers to such investments. These lost opportunities imply costs to the individual energy consumers and to the society as a whole and they are particularly important in economies in transition. This report identifies various types of barriers for making energy efficiency investments (be they of legal, administrative, institutional or financial nature), mainly in buildings, district heating and efficient lighting. The role of various bodies and organisations for the facilitation of energy efficiency investments is analysed, from public authorities and regulators to banks and international financing institutions

  4. Energy-efficient fault-tolerant systems

    CERN Document Server

    Mathew, Jimson; Pradhan, Dhiraj K

    2013-01-01

    This book describes the state-of-the-art in energy efficient, fault-tolerant embedded systems. It covers the entire product lifecycle of electronic systems design, analysis and testing and includes discussion of both circuit and system-level approaches. Readers will be enabled to meet the conflicting design objectives of energy efficiency and fault-tolerance for reliability, given the up-to-date techniques presented.

  5. Energy Efficiency in Grocery Distribution in Denmark

    DEFF Research Database (Denmark)

    Jørgensen, Kaj

    1997-01-01

    Evaluation of the development of the energy efficiency of grocery distribution from 1960 to the present in Denmark, covering both the distribution to the shops and the shopping transport (distribution from shops to individual homes)......Evaluation of the development of the energy efficiency of grocery distribution from 1960 to the present in Denmark, covering both the distribution to the shops and the shopping transport (distribution from shops to individual homes)...

  6. Governance and communication for energy efficiency

    International Nuclear Information System (INIS)

    Thomas, Stefan

    2015-01-01

    Energy efficiency has multiple benefits. It usually is a win-win option for all aspects of sustainability – environment, social objectives, and economy. We need to evaluate and communicate these multiple benefits – to citizens, companies, and policy-makers. Due to strong market barriers, effective governance and policy packages for energy efficiency are needed. Evaluation shows effective policy can achieve around 2% per year of additional energy savings.

  7. The changing trend and influencing factors of energy efficiency: The case of nine countries

    International Nuclear Information System (INIS)

    Cui, Qiang; Kuang, Hai-bo; Wu, Chun-you; Li, Ye

    2014-01-01

    Energy shortage is exacerbated by energy wastage and low efficiency, so energy efficiency has become a popular research topic. However, in most studies, the inputs and outputs of energy efficiency are selected through qualitative analysis and literature review, the rationality is not convincing. In this paper, the inputs and outputs of energy efficiency are calculated by EVA (Economic Value Added method). Number of employees in energy industry, energy consumption amount and energy services amount are chosen as the inputs while CO 2 emissions per capita and industrial profit amount are chosen as the outputs. DEA (Data Envelopment Analysis) and Malmquist index are applied to calculate the energy efficiencies of nine countries during 2008–2012. Each country has different reasons to explain the change of energy efficiency index and more flexible energy development plans should be implemented according to the changing reasons. Then the important influencing factors of energy efficiency are analyzed by Panel Regression Model. The results indicate that technology indices and management indices are the main factors of energy efficiency. Management indices' effect on energy efficiency index is occurred mainly through pure technical efficiency change index. Technology indices' effect on energy efficiency index is occurred mainly through technical progress change index. - Highlights: • The inputs and outputs of energy efficiency are calculated by Economic Value Added method. • Data Envelopment Analysis (DEA) and Malmquist index are used to calculate energy efficiency. • Panel Regression Model is used to identify the important influencing factors of energy efficiency. • Most important task is to upgrade energy technology and enhance management

  8. Energy-Efficiency Options for Insurance Loss Prevention

    Energy Technology Data Exchange (ETDEWEB)

    Mills, E. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technologies Div.; Knoepfel, I. [Swiss Reinsurance Co., Zurich (Switzerland)

    1997-06-09

    Energy-efficiency improvements offer the insurance industry two areas of opportunity: reducing ordinary claims and avoiding greenhouse gas emissions that could precipitate natural disaster losses resulting from global climate change. We present three vehicles for taking advantage of this opportunity, including research and development, in- house energy management, and provision of key information to insurance customers and risk managers. The complementary role for renewable energy systems is also introduced.

  9. Daylight performance assessment of an innovative energy efficient building envelope

    OpenAIRE

    Casquero Modrego, Núria

    2016-01-01

    Buildings are considered to be one of the primary contributors to the socioeconomic development of a country. However, they use a large portion of energy and available natural resources. With the industrialization leading to an increase in urban population, the number of urban buildings which has major effects on energy consumption, has significantly increased. Even with the implementation of energy efficient policies, energy consumption in buildings has regularly grown over the last decad...

  10. Energy efficiency throughout the world. On the way to transition

    International Nuclear Information System (INIS)

    Dessus, Benjamin; Laponche, Bernard; Blaustein, Edgar; Chappoz, Loic; Labrousse, Michel; Humberset, Suzanne; Peullemeulle, Justine; Magnin, Gerard; Lacassagne, Sylvie; Bertinat, Pablo; Soumaila, Ibrahim; Rialhe, Anne; Clain, Cristina; Poveda, Mentor; Scalambrini Coasta, Heitor; Diniz, Silvio; Osman, Nejib; Singh, Daljit; Sant, Girish; Kokino, Issairo; Methe Myrand, Lea; Raoust, Michel; Novel, Aymeric; Narain, Sunita; D'Monte, Darryl; Lopez, Jose; Mohanty, Brahmanand; Mezghani, Mohamed; Chamonin, Denis

    2012-10-01

    This document gathers several articles from different countries on different topics related to energy transition. The first part deals with the challenge of energy efficiency as a mean on the way to energy transition (in France, in Europe, in Latin America, in Asian developing countries). The second part illustrates through examples the importance of governance issues and political will (access to energy in West Africa, a network in Latin America and the Caribbean, use of LEDs for public lighting in Brazil, Tunisian policy, role of regulation authorities, situation in India). The third part proposes examples illustrating the importance of the local dimension in any policy aimed at energy efficiency (a project in Africa, public support in housing construction in Austin, the Swedish city of Vaxjo, the French city of Montdidier, the example of two quarters of Geneva using the lake water as cooling or heating source, the refrigerator fleet in a Palestinian village). The last part reports several experiments made in different sectors (building thermal rehabilitation in China, green buildings in India, the building sector in India, a new strategy in India for domestic and commercial electric equipment, stimulation of energy efficiency in the Japanese industry, public transport in sub-Saharan cities, energy efficiency in Indian agriculture)

  11. Energy Efficiency Policy and Carbon Pricing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The main message of this paper is that while carbon pricing is a prerequisite for least-cost carbon mitigation strategies, carbon pricing is not enough to overcome all the barriers to cost-effective energy efficiency actions. Energy efficiency policy should be designed carefully for each sector to ensure optimal outcomes for a combination of economic, social and climate change goals. This paper aims to examine the justification for specific energy efficiency policies in economies with carbon pricing in place. The paper begins with an inventory of existing market failures that attempt to explain the limited uptake of energy efficiency. These market failures are investigated to see which can be overcome by carbon pricing in two subsectors -- electricity use in residential appliances and heating energy use in buildings. This analysis finds that carbon pricing addresses energy efficiency market failures such as externalities and imperfect energy markets. However, several market and behavioural failures in the two subsectors are identified that appear not to be addressed by carbon pricing. These include: imperfect information; principal-agent problems; and behavioural failures. In this analysis, the policies that address these market failures are identified as complementary to carbon pricing and their level of interaction with carbon pricing policies is relatively positive. These policies should be implemented when they can improve energy efficiency effectively and efficiently (and achieve other national goals such as improving socio-economic efficiency).

  12. The energy efficiency and demand side management programs as implemented by the energy efficiency division of the department of energy

    International Nuclear Information System (INIS)

    Anunciacion, Jesus C.

    1997-01-01

    The thrust of the Philippine energy sector. specifically the government side, is to involve the active participation of not only all the government agencies involved in energy activities but the private sector as well. This participation shall mean technical and financial participation, directly and indirectly. The Department of Energy is on the process involving the continuing update and development of a Philippine Energy Plan (PEP) which has a 30-year time scope, which will help the country monitor and determine energy supply and demand vis-a-vis the growing demands of an industrializing country like the Philippines. Among the most vital component of the PEP is the thrust to pursue national programs for energy efficiency and demand-side management. Seven energy efficiency sub-programs have been identified for implementation, with a target savings of 623 million barrels of fuel oil equivalent (MMBFOE). A cumulative net savings of 237 billion pesos shall be generated against a total investment cost of 54.5 billion pesos. The Philippine energy sector will continue to develop and implement strategies to promote the efficient utilization of energy which will cover all aspects of the energy industry. The plan is focussed on the training and education of the various sectors on the aspects involved in the implementation of energy efficiency and demand-side management elements on a more aggressive note. The implementation of technical strategies by the department will continue on a higher and more extensive level, these are: energy utilization monitoring, consultancy and engineering services, energy efficiency testing and labelling program, and demand-side management programs for each sector. In summary, the PEP, as anchored in energy efficiency and demand-side management tools, among others, will ensure a continuous energy supply at affordable prices while incorporating environmental and social considerations. (author)

  13. Closing the Energy Efficiency Gap: A study linking demographics with barriers to adopting energy efficiency measures in the home

    International Nuclear Information System (INIS)

    Pelenur, Marcos J.; Cruickshank, Heather J.

    2012-01-01

    This paper presents a study which linked demographic variables with barriers affecting the adoption of domestic energy efficiency measures in large UK cities. The aim was to better understand the ‘Energy Efficiency Gap’ and improve the effectiveness of future energy efficiency initiatives. The data for this study was collected from 198 general population interviews (1.5–10 min) carried out across multiple locations in Manchester and Cardiff. The demographic variables were statistically linked to the identified barriers using a modified chi-square test of association (first order Rao–Scott corrected to compensate for multiple response data), and the effect size was estimated with an odds-ratio test. The results revealed that strong associations exist between demographics and barriers, specifically for the following variables: sex; marital status; education level; type of dwelling; number of occupants in household; residence (rent/own); and location (Manchester/Cardiff). The results and recommendations were aimed at city policy makers, local councils, and members of the construction/retrofit industry who are all working to improve the energy efficiency of the domestic built environment. -- Highlights: ► 7 demographic variables linked to 8 barriers to adopting energy efficiency measures. ► A modified chi-square test for association was used (first order Rao–Scott corrected). ► Results revealed strong associations between most of the demographics and barriers. ► Data was collected from 198 interviews in the UK cities of Manchester and Cardiff. ► Specific recommendations are presented for regional policy makers and industry.

  14. Household transitions to energy efficient lighting

    International Nuclear Information System (INIS)

    Mills, Bradford; Schleich, Joachim

    2014-01-01

    New energy efficient lighting technologies can significantly reduce household electricity consumption, but adoption has been slow. A unique dataset of German households is used in this paper to examine the factors associated with the replacement of old incandescent lamps (ILs) with new energy efficient compact fluorescent lamps (CFLs) and light emitting diodes (LEDs). The ‘rebound’ effect of increased lamp luminosity in the transition to energy efficient bulbs is analyzed jointly with the replacement decision to account for household self-selection in bulb-type choice. Results indicate that the EU ban on ILs accelerated the pace of transition to CFLs and LEDs, while storage of bulbs significantly dampened the speed of the transition. Higher lighting needs and bulb attributes like energy efficiency, environmental friendliness, and durability spur IL replacement with CFLs or LEDs. Electricity gains from new energy efficient lighting are mitigated by 23% and 47% increases in luminosity for CFL and LED replacements, respectively. Model results suggest that taking the replacement bulb from storage and higher levels of education dampen the magnitude of these luminosity rebounds in IL to CFL transitions. - Highlights: • EU ban on ILs has fostered transitions to energy efficient lighting • Energy efficient, environmentally friendly, and durable lighting preferences make CFL and LED transitions more likely • Indicators of greater lighting needs are associated with higher propensities to replace ILs with CFLs and LEDs • For residential lighting, the rebound effect manifests itself through increases in luminosity • In IL to CLF transitions luminosity increases are lower with higher levels of education

  15. Methods for evaluation of energy efficiency of machine tools

    International Nuclear Information System (INIS)

    Schudeleit, Timo; Züst, Simon; Wegener, Konrad

    2015-01-01

    Energy efficiency of machine tools proves to be an ongoing challenge to manufacturing industries as a number of international initiatives shows. The first part of the ISO 14955 series focusses on the basic understanding, power metering and energy efficient design of machine tool. The ISO standardization body (ISO/TC 39 WG 12) is currently working on the second part of the ISO 14955 series, which aims at defining of a standardized test method. However, a method meant for standardization could not been identified yet, due to the versatile advantages and disadvantages of the different test methods. In order to find the most feasible test method for standardization, four general energy efficiency test methods are described and compared in a state-of-the-art review. The test methods are then evaluated against seven key characteristic criteria using the Analytic Hierarchy Process (AHP), a structured multiple criteria decision-making technique. The criteria selection and judgement of their relative importance has been carried out in collaboration with experts from the machine tool industry and research institutes. Hence, weight factors are derived and the best suited test method for both industrial application and standardization is identified. The validity of the evaluation results is proven using the geometric consistency method. - Highlights: • Study for pushing forward the standardization work on the ISO 14955 series. • Comparison of methods for testing the energy efficiency of machine tools. • Evaluation of test methods using a multiple criteria decision-making technique. • Reference process is the recommended test method for the ISO 14955 series.

  16. 13 CFR 101.500 - Small Business Energy Efficiency Program.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Small Business Energy Efficiency... ADMINISTRATION Small Business Energy Efficiency § 101.500 Small Business Energy Efficiency Program. (a) The... becoming more energy efficient, understanding the cost savings from improved energy efficiency, and...

  17. Energy efficiency of milkmaid systems in Uruguay

    International Nuclear Information System (INIS)

    LLanos, E.; Astigarraga, L.; Jacques, R.; Picasso, V.

    2013-01-01

    Reducing fossil fuel consumption and increasing energy efficiency of agricultural systems may result in environmental and economic benefits. The aim of this study was to analyze dairy production systems from an energy perspective, to identify the main variables affecting energy efficiency and fossil energy consumption, through a model of inputs and outputs. The model included as inputs energy costs of food, labor, electricity, agrochemicals, fuels and machinery, and as outputs dairy and meat production. We analyzed a database of 30 dairy farms from southern Uruguay, from the Cooperative Nacional de Product ores de Leche (Conaprole), organized in three strata based on their dairy productivity per hectare. The fossil energy use was 2.40, 3.63 y 3.80 MJ.l-1 for productivity strata low, medium and high respectively (P<0.01). Energy efficiency averages were 1.40, 0.90 y 0.86 for the same strata (P<0.01). Fossil energy of agrochemicals and fuel accounted for more than 80% of the energy consumed in the three strata. The greater the percentage of concentrate in the diet, the lower energy efficiency (P<0.01). These results suggest the existence of a negative relationship between the intensification of dairy production and energy efficiency

  18. Encouraging energy efficiency: Policies and programs

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Successfully overcoming the barriers to higher energy efficiency requires development of policies designed for specific users and locations. Reform of energy pricing, which entails removing subsidies and beginning internalization of externalities, is critical to give technology producers and users proper signals for investment and management decisions. But while a rise in energy prices increases the amount of energy-efficiency improvement that is cost-effective, it does not remove other barriers that deter investment. Minimum efficiency standards or agreements can raise the market floor, and are important because they affect the entire market in the near-term. But they may not raise the celining very much, and do little to push the efficiency frontier. To accomplish these goals, incentives and other market-development strategies are needed. Utility programs in particular can play a key role in pushing energy efficiency beyond the level where users are likely to invest on their own. Policies, programs, and pricing should complement one another. Pricing reform alone will not overcome the many entrenched barriers to higher energy efficiency, but trying to accelerate energy efficiency improvement without addressing energy pricing problems will lead to limited success. Whether tagerting new equipment or management of existing systems, policies must reflect a thorough understanding of the particular system and an awareness of the motivations of the actors. 25 refs

  19. Linking Transformational Materials and Processing for an Energy-Efficient and Low-Carbon Economy, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, Warren H. [Minerals, Metals, and Materials Society (TMS), Warrendale, PA (United States); Brindle, Ross [Nexight Group, LLC, Silver Spring, MD (United States); James, Mallory [Energetics Inc., Columbia, MD (United States); Justiniano, Mauricio [Energetics Inc., Columbia, MD (United States); Sabouni, Ridah [Energetics Inc., Columbia, MD (United States); Seader, Melanie [Energetics Inc., Columbia, MD (United States); Ruch, Jennifer [Energetics Inc., Columbia, MD (United States); Andres, Howard [Energetics Inc., Columbia, MD (United States); Zafar, Muhammad [Energetics Inc., Columbia, MD (United States)

    2010-06-01

    The Energy Materials Blue Ribbon Panel, representing experts from industry, academia, and government, identifies new materials and processing breakthroughs that could lead to transformational advances in energy efficiency, energy security, and carbon reduction.

  20. Energy Efficiency Tracking in Thai Manufacturing Sector by Decomposition Technique

    Directory of Open Access Journals (Sweden)

    Wongsapai Wongkot

    2016-01-01

    Full Text Available This paper presents an analysis of energy saving and changes in energy intensities in Thai manufacturing sector by Logarithmic Mean Divisia Index decomposition technique. This method includes three effects consists of the energy intensity effect, the structural effect and the effect of the economic growth on the energy consumption in Thailand by using the 25-year annual data from 1990 to 2014, carried out in four phases; (i before National Energy Conservation law, (ii during the effect of the law, (iii Transition period of the law from first to second version, and (iv during the effect of the law (No.2. We found that the most effective intensity effect is in the third phase due to the effect of the implementation of new energy efficient equipment from the second phase by enforcement of the law, especially in non-metallic sector, while the first phase illustrates the lowest intensity effect due to the energy conservation law had not been occurred. However, due to the highest economic growth of the country and change from agricultural to industrial development direction, the first phase presents the most effective structural effect, then this effect continuously decreased by time. We also conclude that the energy conservation law have direct effect to energy efficiency of the country however, strictly individual regulation which have target to enforce to energy intensive industries is still required for sustainable energy efficiency improvement.

  1. Development of Energy Efficiency Indicators in Russia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Russia is sometimes referred to as 'the Saudi Arabia of energy efficiency'; its vast potential to reduce energy consumption can be considered a significant 'energy reserve'. Russia, recognising the benefits of more efficient use of energy, is taking measures to exploit this potential. The president has set the goal to reduce energy intensity by 40% between 2007 and 2020. In the past few years, the IEA has worked closely with Russian authorities to support the development of energy efficiency indicators in Russia, critical to an effective implementation and monitoring of Russia's ambitious energy intensity and efficiency goals. The key findings of the IEA work with Russia on developing energy efficiency indicators form the core of this report.

  2. Energy Efficiency in Norway 1990-2000

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva

    2003-06-01

    This is the national report for Norway in the EU/SAVE project ''Indicators for Energy Efficiency Monitoring and Target setting (ODYSSEE)''. The report deals with energy use and energy efficiency in Norway 1990-2000 (2001 for overall energy use). Final energy use per Gross Domestic Product (GDP) was reduced by approximately 1.9% pr year in the period 1990 to 2001. The energy efficiency improvement has been calculated to 0.6% pr year, while the role of structural changes has been 1.3% pr year. A detailed sector analysis has been done, applying Laspeyres indices to attribute changes in energy use to activity, structure or intensity (efficiency). Aggregating sectors, we have found a total efficiency improvement of approximately 11 TWh from 1990 to 2000. (author)

  3. Energy efficiency of high-rise buildings

    Science.gov (United States)

    Zhigulina, Anna Yu.; Ponomarenko, Alla M.

    2018-03-01

    The article is devoted to analysis of tendencies and advanced technologies in the field of energy supply and energy efficiency of tall buildings, to the history of the emergence of the concept of "efficiency" and its current interpretation. Also the article show the difference of evaluation criteria of the leading rating systems LEED and BREEAM. Authors reviewed the latest technologies applied in the construction of energy efficient buildings. Methodological approach to the design of tall buildings taking into account energy efficiency needs to include the primary energy saving; to seek the possibility of production and accumulation of alternative electric energy by converting energy from the sun and wind with the help of special technical devices; the application of regenerative technologies.

  4. Energy Efficiency and Emissions Intensity Standards

    Energy Technology Data Exchange (ETDEWEB)

    Fell, Harrison; Kaffine, Daniel; Steinberg, Daniel

    2017-09-01

    We investigate the role of energy efficiency in rate-based emissions intensity standards, a particularly policy-relevant consideration given that the Environmental Protection Agency's Clean Power Plan allows crediting of electricity savings as a means of complying with state-specific emissions standards. We show that with perfectly inelastic energy services demand, crediting efficiency measures can recover the first-best allocation. However, when demand for energy services exhibits some elasticity, crediting energy efficiency can no longer recover first-best. While crediting removes the relative distortion between energy generation and energy efficiency, it distorts the absolute level of energy services. Building on these results, we derive the conditions determining the second-best intensity standard and crediting rule. Simulations calibrated to the electricity sector in Texas find that while some form of crediting is generally welfare-improving, the proposed one-for-one crediting of energy savings is unlikely to achieve efficient outcomes.

  5. Energy efficient thermal management of data centers

    CERN Document Server

    Kumar, Pramod

    2012-01-01

    Energy Efficient Thermal Management of Data Centers examines energy flow in today's data centers. Particular focus is given to the state-of-the-art thermal management and thermal design approaches now being implemented across the multiple length scales involved. The impact of future trends in information technology hardware, and emerging software paradigms such as cloud computing and virtualization, on thermal management are also addressed. The book explores computational and experimental characterization approaches for determining temperature and air flow patterns within data centers. Thermodynamic analyses using the second law to improve energy efficiency are introduced and used in proposing improvements in cooling methodologies. Reduced-order modeling and robust multi-objective design of next generation data centers are discussed. This book also: Provides in-depth treatment of energy efficiency ideas based on  fundamental heat transfer, fluid mechanics, thermodynamics, controls, and computer science Focus...

  6. Energy-Efficiency & Water Institute Research Facility, Purdue University, (IN)

    Energy Technology Data Exchange (ETDEWEB)

    Nnanna, Agbai [Purdue Univ., West Lafayette, IN (United States)

    2015-01-30

    The renovation of the Schneider Avenue Building to construct two research laboratories within the building is complete. The research laboratories are for the Purdue Calumet Water Institute and the Energy Efficiency and Reliability Center. The Water Institute occupies approximately 1000+ SF of research space plus supporting offices. The Energy-Efficiency Center occupies approximately 1000+ SF that houses the research space. The labs will enhance the Water & Energy Institute’s research capabilities necessary to tackle these issues through the development of practical approaches critical to local government and industry. The addition of these research laboratories to the Purdue University Calumet campus is in both direct support of the University’s Strategic Plan as well as the 2008 Campus Master Plan that identifies a 20% shortage of research space.

  7. Energy efficiency as a greenhouse gas mitigation strategy

    International Nuclear Information System (INIS)

    Salmon, G.

    1995-01-01

    This paper focuses on the best strategy for New Zealand to follow in order to meet obligations under the Framework Convention on Climate Change (FCCC). The New Zealand government's current policy is to rely on the increased carbon storage in commercial tree plantings to meet 80% of FCCC obligations with the balance being met by policy measures including voluntary energy efficiency agreements with industry and enhanced state support for energy efficiency activities. If targets are not on track for achievement by 2000, the government will introduce a carbon charge in 1997. An alternative strategy involving microeconomic reforms in the electricity and transport sectors and tradable abatement obligations including credits for emission reductions and carbon storage is proposed. 1 fig., 11 refs

  8. The Multiple Benefits of Measures to Improve Energy Efficiency

    DEFF Research Database (Denmark)

    Puig, Daniel; Farrell, Timothy Clifford

    Understanding the barriers to, and enablers for, energy efficiency requires targeted information and analysis. This report is a summary of four detailed studies providing new insights on how to promote efficiency in selected priority areas. It complements initiatives such as the so-called energy...... in a scenario where the price of carbon dioxide equivalents was USD 70 per tonne. • In absolute terms, the energy supply and industry sectors show the highest reductions in greenhouse gas emissions attributable to energy efficiency. In relative terms, it is the transport sector that shows the highest levels...... of emission reductions. • The three mitigation scenarios considered suggest that the higher the carbon price, the greater the energy savings, and the larger the economic growth and employment benefits. • While G20 countries account for about 90 percent of total emission reductions in the three mitigation...

  9. Energy efficiency in existing detached housing

    DEFF Research Database (Denmark)

    Gram-Hanssen, Kirsten; Christensen, Toke Haunstrup

    This memo is written as an input to the German project Enef-haus on energy- efficient restoration of single-family houses in Germany. The memo contains a summary of the Danish experiences divided into three main sections: first is a short historic overview of the Danish energy policy indicating...... when different relevant instruments have been introduced to increase the energy efficiency of privately owned single-family houses. Second is a short introduction to the Danish housing sector and its energy supplies. The third and main part of the report is an examination of the most recent...

  10. Greenhouse, energy efficiency and cost effectiveness

    International Nuclear Information System (INIS)

    Naughten, B.; Dickson, A.

    1995-01-01

    MENSA, a detailed model of Australia's energy system suggests that policies for overcoming information barriers to energy efficient investment may contribute to cost effectively reducing greenhouse gases by as much as 6 million tonnes in residential and transport sectors by 2000. The model also indicates that energy efficiency policies in these and other parts of the energy system would be insufficient to achieve a pro-rata of greenhouse gas reductions required to stabilize year 2000 emissions at 1990 levels. One cost effective policy involving the early scrapping of existing less fuel efficient motors is reviewed. 2 tabs., 1 fig., refs

  11. Measures for energy efficiency improvement of buildings

    Directory of Open Access Journals (Sweden)

    Vukadinović Ana V.

    2015-01-01

    Full Text Available The increase in energy consumption in buildings causes the need to propose energy efficiency improvement measures. Urban planning in accordance with micro location conditions can lead to energy consumption reduction in buildings through the passive solar design. While satisfying the thermal comfort to the user space purpose, energy efficiency can be achieved by optimizing the architectural and construction parameters such as shape of the building, envelope structure and the percentage of glazing. The improvement of the proposed measures, including the use of renewable energy sources, can meet requirements of Directive 2010/31 / EU of 'nearly zero energy buildings'.

  12. Energy Efficiency and Cost Saving Opportunities for Ammonia and Nitrogenous Fertilizer Production : An ENERGY STAR® Guide for Energy and Plant Managers

    NARCIS (Netherlands)

    Kermeli, A.|info:eu-repo/dai/nl/411260553; Worrell, E.|info:eu-repo/dai/nl/106856715; Graus, W.H.J.|info:eu-repo/dai/nl/308005015; Corsten, M.A.M.|info:eu-repo/dai/nl/326090908

    is Guide provides information to identify cost-effective practices and technologies to increase energy efficiency in the nitrogenous fertilizer industry. This research provides information on potential energy efficiency opportunities for ammonia, urea and ammonium nitrate plants and on potential

  13. Achieving Energy Efficient Ship Operations Under Third Party Management

    DEFF Research Database (Denmark)

    Taudal Poulsen, René; Sornn-Friese, Henrik

    2015-01-01

    of time to produce and provide reliable energy efficiency information cause energy efficiency gaps. The paper brings together the energy efficiency and ship management literatures, demonstrating how ship management models influence energy efficiency in ship operations. Achieving energy efficiency in ship...... operations is particularly challenging under third party ship management. Finally, the paper discusses management implications for shipping companies, which outsource ship management to third parties.......Profitable energy saving measures are often not fully implemented in shipping, causing energy efficiency gaps. The paper identifies energy efficiency gaps in ship operations, and explores their causes. Lack of information on energy efficiency, lack of energy training at sea and onshore and lack...

  14. 77 FR 54839 - Energy Efficiency and Conservation Loan Program

    Science.gov (United States)

    2012-09-06

    ... Energy Efficiency and Conservation Loan Program AGENCY: Rural Utilities Service, USDA. ACTION: Notice of... assistance in support of energy efficiency programs (EE Programs) sponsored and implemented by electric...

  15. Curriculum for Commissioning Energy Efficient Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Webster, Lia [Portland Energy Conservation, Inc., OR (United States)

    2012-12-27

    In July 2010, the U.S. Department of Energy (DOE) awarded funding to PECI to develop training curriculum in commercial energy auditing and building commissioning. This program was created in response to the high demand for auditing and commissioning services in the U.S. commercial buildings market and to bridge gaps and barriers in existing training programs. Obstacles addressed included: lack of focus on entry level candidates; prohibitive cost and time required for training; lack of hands-on training; trainings that focus on certifications & process overviews; and lack of comprehensive training. PECI organized several other industry players to create a co-funded project sponsored by DOE, PECI, New York State Energy and Research Development Authority (NYSERDA), California Energy Commission (CEC), Northwest Energy Efficiency Alliance (NEEA) and California Commissioning Collaborative (CCC). After awarded, PECI teamed with another DOE awardee, New Jersey Institute of Technology (NJIT), to work collaboratively to create one comprehensive program featuring two training tracks. NJIT’s Center for Building Knowledge is a research and training institute affiliated with the College of Architecture and Design, and provided e-learning and video enhancements. This project designed and developed two training programs with a comprehensive, energy-focused curriculum to prepare new entrants to become energy auditors or commissioning authorities (CxAs). The following are the key elements of the developed trainings, which is depicted graphically in Figure 1: • Online classes are self-paced, and can be completed anywhere, any time • Commissioning Authority track includes 3 online modules made up of 24 courses delivered in 104 individual lessons, followed by a 40 hour hands-on lab. Total time required is between 75 and 100 hours, depending on the pace of the independent learner. • Energy Auditor track includes 3 online modules made up of 18 courses delivered in 72 individual

  16. Promoting Energy Efficiency Best Practices in Cities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This pilot project is the first attempt to address the lack of rigorous and transparent approach to defining best practice in city energy efficiency programmes. The project has provided interesting insights into a range of exciting projects being implemented in cities around the world. However, the potential exists for far greater benefit. The study has found that it is possible to collate the detailed information needed to identify best practice energy efficiency projects in cities. However, gathering the data is not easy. The data is often not recorded in an easily accessible format. Nor is it easy to get city officials to allocate time to the necessary data collation given the many other competing demands on their time. A key area that this project identifies as requiring urgent attention is the development of a common data management format for energy efficiency projects by Cas. Further work could also focus on refining the criteria used to define best practice, and broadening the scope of projects beyond energy efficiency.

  17. 25 energy efficiency policy recommendations. 2011 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The IEA recommends that G8 leaders adopt and urgently implement this package of measures to significantly enhance energy efficiency. This package was developed under the Gleneagles G8 Plan of Action, which mandates the pursuit of a clean, clever and competitive energy future.

  18. Energy efficient idler for belt conveyor systems

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, A.K.; Chattopadhyay, A. [Indian School of Mines Univ., Dhanbad (India). Dept. of Mechanical Engineering and Mining; Soni, R.; Bhattnagar, M.

    2009-07-01

    In today's economic and legal environment, energy efficiency has become more important than ever. This paper proposes a new design of idler rollers for belt conveyors that could help to them even more efficient by reducing their energy consumption and also their CO{sub 2} footprint. (orig.)

  19. Energy Efficiency for the Nunamiut People

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, Dan

    2014-04-09

    The goal of this project is to upgrade existing building facilities owned by Nunamiut Corporation in Anaktuvuk Pass, AK. The upgrades mentioned will include lighting, heating system, insulation and smart control units designed to increase the energy efficiency of Village Corporation owned buildings.

  20. Energy Efficiency in Cloud Software Architectures

    NARCIS (Netherlands)

    Procaccianti, G.; Bevini, S.; Lago, P.; Bernd Page, B. P.; Andreas G. Fleischer, A. G. F.; Johannes Gobel, J. G.; Volker Wohlgemuth, V. W.

    2013-01-01

    Cloud-based software is often considered as providing a greener, more energy-efficient solution. At the same time, it introduces more complexity and demands for new investments in cloud services, technologies, and competencies for migration, maintenance, and evolution of the underlying software

  1. The energy efficiency of onboard hydrogen storage

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Li, Qingfeng; Bjerrum, Niels

    2010-01-01

    perspectives energy use is projected to increase in the next 50 years. How and when energy is used determines society's ability to create long-term sustainable energy systems. This is why this book, focusing on energy efficiency in these sectors and from different perspectives, is sharp and also important...

  2. Complex photonic structures for energy efficiency

    Directory of Open Access Journals (Sweden)

    Wiersma D. S.

    2013-06-01

    Full Text Available Photonic structures are playing an increasingly important role in energy efficiency. In particular, they can help to control the flow of light and improve the optical properties of photovoltaic solar cells. We will explain the physics of light transport in such structures with a special focus on disordered materials.

  3. The Energy Efficiency of Onboard Hydrogen Storage

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Vestbø, Andreas Peter; Li, Qingfeng

    2007-01-01

    A number of the most common ways of storing hydrogen are reviewed in terms of energy efficiency. Distinction is made between energy losses during regeneration and during hydrogen liberation. In the latter case, the energy might have to be provided by part of the released hydrogen, and the true...

  4. Energy Efficiency in Self Organising Networks

    DEFF Research Database (Denmark)

    Kisielius, Edvinas; Popovska Avramova, Andrijana; Zakrzewska, Anna

    2013-01-01

    We evaluate the performance of an energy efficient algorithm that controls power emissions and the number of powered cell sites (eNBs) in overlaid Long Term Evolution (LTE) networks. Simulations are carried out in OPNET Modeler and we investigate cells cites designed to meet peak hours trac demand...

  5. Energy Efficiency Perspectives of PMR Networks

    Directory of Open Access Journals (Sweden)

    Marco Dolfi

    2016-12-01

    Full Text Available Recently, the concern about energy efficiency in wireless communications has been growing rapidly. Manufacturers and researchers have developed innovative solutions, highlighting the benefits in reducing operational expenditures (OPEX and carbon footprint. Professional Mobile Radio (PMR systems, like Terrestrial Trunked Radio (TETRA, have been designed to provide voice and data services to professional users. The energy consumption is one of the critical aspects of PMR broadband solutions and a major constraint for PMR services. The future convergence of PMR to the LTE system introduces a new topic in the research discussion about the energy efficiency of wireless systems. This paper focuses on the feasibility of energy efficient solutions for current and potentially future PMR networks, by providing a mathematical formulation of power consumption in TETRA base stations and assessing possible business models and energy saving solutions for enhanced mission-critical operations. The energy efficiency evaluation has been performed by taking into account the traffic load of a deployed TETRA regional network: in the considered network scenario with 150 base stations, significant OPEX savings up to 70 thousand Euros per year of operation are achieved. Moreover, the proposed solutions allow for saving more than 1 ton of CO 2 per year.

  6. Power shifts: the dynamics of energy efficiency

    International Nuclear Information System (INIS)

    Edenhofer, O.; Jaeger, C.C.

    1998-01-01

    Induced technical change is crucial for tackling the problem of timing in environmental policy. However, it is by no means obvious that the state has the ability to impose its will concerning technical change on the other relevant actors. Therefore, we conceptualize power in a non-linear model with social conflict and induced technical change. The model shows how economic growth, business cycles and innovation waves interact in the dynamics of energy efficiency. We assess three different ways of government control: energy taxes, energy and labor subsidies, and energy caps. Energy taxes help to select more energy efficient technologies. However, a successful selection of such technologies presupposes that they are available in the pool of technologies. As for energy subsidies, their existence helps to explain why in contemporary economies labor productivity grows faster than energy efficiency. With an energy cap, the social network of the relevant agents may be stabilized via social norms. It seems plausible that innovation waves comprise several business cycles and that such a wave is currently in the making. Proposals to postpone policies for improving energy efficiency increase the risk of energy inefficient lock-in effects. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  7. Energy efficiency buildings program, FY 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    A separate abstract was prepared on research progress in each group at LBL in the energy efficient buildings program. Two separate abstracts were prepared for the Windows and Lighting Program. Abstracts prepared on other programs are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality Program; DOE-21 Building Energy Analysis; and Building Energy Data Compilation, Analysis, and Demonstration. (MCW)

  8. Hydro-Quebec and energy efficiency

    International Nuclear Information System (INIS)

    1990-01-01

    There is growing awareness that energy efficiency is both profitable and environmentally beneficial. In this year's Development Plan, Hydro-Quebec is proposing an Energy Efficiency Project made up of marketing programs designed for all markets throughout the final decade of the 20th century. This Project will have two aspects: energy efficiency and consumption management. Hydro-Quebec aims to reach an energy-efficiency level of 12.9 terawatt hours per year by 1999, fully 55% of its 23-terawatt hour potential. Over the next 10 years the utility intends to spend $1.8 billion for this purpose. Cumulative anticipated energy savings should be in the vicinity of 70 terawatt hours for the coming decade, and more than 130 terawatt hours for the first decade of the next century. Of the overall goal of 12.9 terawatt hours for Horizon 1999, energy savings of 9.0 terawatt hours should be the direct result of this year's proposed marketing programs, and will account for the bulk of anticipated investments. The remaining 3.9 terawatt hours will be gained as customers acquire better electrical appliance and accessory (household appliances, home insulation) buying habits

  9. Factors affecting commuter rail energy efficiency.

    Science.gov (United States)

    2016-02-17

    The objective of this study is to develop a planninglevel model of commuter rail energy efficiency. The : environmental benefits of commuter rail are often cited as one of the key benefits and motivators for its rapid development as a public trans...

  10. Energy efficiency indicators. Case study, Liguria

    International Nuclear Information System (INIS)

    Ciarallo, M. A.

    2001-01-01

    The report examines the trend in the Liguria Region's energy requirements over the period 1988-1996. The trend was analysed using the regional energy balances and energy efficiency indicators, both in aggregate form and on a single sector basis. The residential sector, in particular, was singled out for an in-depth analysis using publishing and processed data [it

  11. Energy efficient control of a refrigeration plant

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Larsen, Lars F. S.

    2009-01-01

    This paper proposes a novel method for superheat and capacity control of refrigeration systems. The new idea is to control the superheat by the compressor speed and capacity by the refrigerant flow. A new low order nonlinear model of the evaporator is developed and used in a backstepping design...... and the methods are evaluated with respect to energy efficiency....

  12. Financial Planning for Energy Efficiency Investments.

    Science.gov (United States)

    Business Officer, 1984

    1984-01-01

    Financing options for energy efficiency investments by colleges are outlined by the Energy Task Force of three higher education associations. It is suggested that alternative financing techniques generate a positive cash flow and allow campuses to implement conservation despite fiscal constraints. Since energy conservation saves money, the savings…

  13. Accelerating Energy Efficiency in Indian Data Centers. Final Report for Phase I Activities

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, Suprotim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Raje, Sanyukta [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kumar, Satish [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sartor, Dale [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Greenberg, Steve [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-01-01

    This report documents Phase 1 of the “Accelerating Energy Efficiency in Indian Data Centers” initiative to support the development of an energy efficiency policy framework for Indian data centers. The initiative is being led by the Confederation of Indian Industry (CII), in collaboration with Lawrence Berkeley National Laboratory (LBNL)-U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy, and under the guidance of Bureau of Energy Efficiency (BEE). It is also part of the larger Power and Energy Efficiency Working Group of the US-India Bilateral Energy Dialogue. The initiative consists of two phases: Phase 1 (November 2014 – September 2015) and Phase 2 (October 2015 – September 2016).

  14. Evaluating architecture impact on system energy efficiency.

    Science.gov (United States)

    Yu, Shijie; Yang, Hailong; Wang, Rui; Luan, Zhongzhi; Qian, Depei

    2017-01-01

    As the energy consumption has been surging in an unsustainable way, it is important to understand the impact of existing architecture designs from energy efficiency perspective, which is especially valuable for High Performance Computing (HPC) and datacenter environment hosting tens of thousands of servers. One obstacle hindering the advance of comprehensive evaluation on energy efficiency is the deficient power measuring approach. Most of the energy study relies on either external power meters or power models, both of these two methods contain intrinsic drawbacks in their practical adoption and measuring accuracy. Fortunately, the advent of Intel Running Average Power Limit (RAPL) interfaces has promoted the power measurement ability into next level, with higher accuracy and finer time resolution. Therefore, we argue it is the exact time to conduct an in-depth evaluation of the existing architecture designs to understand their impact on system energy efficiency. In this paper, we leverage representative benchmark suites including serial and parallel workloads from diverse domains to evaluate the architecture features such as Non Uniform Memory Access (NUMA), Simultaneous Multithreading (SMT) and Turbo Boost. The energy is tracked at subcomponent level such as Central Processing Unit (CPU) cores, uncore components and Dynamic Random-Access Memory (DRAM) through exploiting the power measurement ability exposed by RAPL. The experiments reveal non-intuitive results: 1) the mismatch between local compute and remote memory node caused by NUMA effect not only generates dramatic power and energy surge but also deteriorates the energy efficiency significantly; 2) for multithreaded application such as the Princeton Application Repository for Shared-Memory Computers (PARSEC), most of the workloads benefit a notable increase of energy efficiency using SMT, with more than 40% decline in average power consumption; 3) Turbo Boost is effective to accelerate the workload execution

  15. Evaluating architecture impact on system energy efficiency

    Science.gov (United States)

    Yu, Shijie; Wang, Rui; Luan, Zhongzhi; Qian, Depei

    2017-01-01

    As the energy consumption has been surging in an unsustainable way, it is important to understand the impact of existing architecture designs from energy efficiency perspective, which is especially valuable for High Performance Computing (HPC) and datacenter environment hosting tens of thousands of servers. One obstacle hindering the advance of comprehensive evaluation on energy efficiency is the deficient power measuring approach. Most of the energy study relies on either external power meters or power models, both of these two methods contain intrinsic drawbacks in their practical adoption and measuring accuracy. Fortunately, the advent of Intel Running Average Power Limit (RAPL) interfaces has promoted the power measurement ability into next level, with higher accuracy and finer time resolution. Therefore, we argue it is the exact time to conduct an in-depth evaluation of the existing architecture designs to understand their impact on system energy efficiency. In this paper, we leverage representative benchmark suites including serial and parallel workloads from diverse domains to evaluate the architecture features such as Non Uniform Memory Access (NUMA), Simultaneous Multithreading (SMT) and Turbo Boost. The energy is tracked at subcomponent level such as Central Processing Unit (CPU) cores, uncore components and Dynamic Random-Access Memory (DRAM) through exploiting the power measurement ability exposed by RAPL. The experiments reveal non-intuitive results: 1) the mismatch between local compute and remote memory node caused by NUMA effect not only generates dramatic power and energy surge but also deteriorates the energy efficiency significantly; 2) for multithreaded application such as the Princeton Application Repository for Shared-Memory Computers (PARSEC), most of the workloads benefit a notable increase of energy efficiency using SMT, with more than 40% decline in average power consumption; 3) Turbo Boost is effective to accelerate the workload execution

  16. The promotion of energy efficiency in Italy

    International Nuclear Information System (INIS)

    De Paoli, L.; Bongiolatti, L.

    2006-01-01

    In 2004 Italy introduced an obligation for electricity and gas distribution companies to reach specific objectives regarding the improvement of energy efficiency in final energy consumption. The scope of the provision is to promote investments in energy efficiency in order to meet the greenhouse gases reduction target set by the Kyoto protocol. The adoption of binding targets of energy efficiency will also lead to the development of an energy services market, modifying the traditional relation between energy dealers and final consumers, thus leading to a more efficient use of the available resources. Similar mechanisms have already been applied in other European countries (as France and United Kingdom) and will be likely introduced in other countries with the implementation of European Directive on energy end-use efficiency and energy services. This paper describes and analyzes both the measures adopted in Italy and the results obtained after the first year of operation of the mechanism. The paper is divided in six different sections. In the first part we highlight the main problems related to the development of system based on tradable white certificates. In the second part we provide a brief description of the Italian regulatory context. In the third part there is an economic analysis of investments in energy efficiency. The fourth part considers the different options that distribution companies face in order to reach the energy efficiency targets. The fifth part shows the results obtained after the first year of operation of the mechanism. Finally, we propose some possible modifications to the scheme adopted in Italy considering the results obtained and the alternative solutions already applied in France and United Kingdom [it

  17. Role of local governments in promoting energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.

    1980-11-01

    An examination is made of the incentives which influence the decisions by local governments to adopt energy-efficiency programs, either unilaterally or in partnership with the Federal government. It is found that there is significant potential for improved energy efficiency in urban residential, commercial, and industrial buildings and that exploiting these opportunities is in the interest of both Federal and local governments. Unless there is a unique combination of strong local leadership, a tradition of resource management, and external energy shocks, communities are unlikely to realize this potential. Conflicting demands, traditional perceptions, and lack of funding pose a major barrier to a strong unilateral commitment by local governments. A Federal-local partnership built upon and complementary to existing efforts in areas such as housing, social welfare, and economic development offers an excellent opportunity to realize the inherent potential of local energy-efficiency programs. At the local level, energy is not perceived as an isolated issue, but one which is part of a number of problems arising from the continuing increase in energy prices.

  18. Energy efficiency improvements in ammonia production--perspectives and uncertainties

    International Nuclear Information System (INIS)

    Rafiqul, Islam; Weber, Christoph; Lehmann, Bianca; Voss, Alfred

    2005-01-01

    The paper discusses the energy consumption and energy saving potential for a major energy-intensive product in the chemical industry-ammonia, based on technologies currently in use and possible process improvements. The paper consists of four parts. In the first part, mainly references to various ammonia production technologies are given. Energy consumption, emissions and saving potentials are discussed in the second part. Thereby, the situation in Europe, the US and India is highlighted and various data sources are compared. In the third part of the paper, a novel approach for modeling energy efficiency improvements is described that accounts for uncertainties and unobserved heterogeneity in the production processes. Besides new investments, revamping investments are also included in the modeling and the development of the production stock is accounted for. Finally, in the fourth part, this approach is applied to the modeling of energy efficiency improvements and CO 2 emission reductions in ammonia production. Thereby, considerable improvements in specific energy use and CO 2 emissions are found in the reference scenario, yet under the assumption of high oil and gas prices, a partial switch to coal based technologies is expected which lowers notably the CO 2 efficiency. Introduction of a CO 2 penalty under a certificate trading or other regime is on contrary found to foster energy efficiency and the use of low carbon technologies

  19. Energy-Efficient Power Allocation for Cognitive MIMO Channels

    KAUST Repository

    Sboui, Lokman

    2017-03-20

    Due to the massive data traffic in wireless networks, energy consumption has become a crucial concern, especially with the limited power supply of the mobile terminals and the increasing CO2 emission of the cellular industry. In this context, we study the energy efficiency (EE) of MIMO spectrum sharing cognitive radio (CR) systems under power and interference constraints. We present an energy-efficient power allocation framework based on maximizing the average EE per parallel channel resulting from the singular value decomposition (SVD) eigenmode transmission. We also present a sub-optimal low-complexity power allocation scheme based on the water-filling power allocation. In the numerical results, we show that the sub-optimal power allocation achieves at least 95% of the optimal performance. In addition, we show that adopting more antennas is more energy efficient for a given power budget. Finally, we show that the interference threshold has a significant effect on both the EE and the spectral efficiency at high-power regime.

  20. SAGD CO2 mitigation through energy efficiency improvements

    International Nuclear Information System (INIS)

    Plessis du, D.

    2010-01-01

    An evaluation of the carbon dioxide (CO 2 ) emissions reductions achieved using energy efficiency measures in steam assisted gravity drainage (SAGD) operations was presented. The efficiency of a typical SAGD operation was analyzed using an indexing tool based on the Carnot cycle efficiency to develop an ideal SAGD heat cycle. The benefits of using an organic Rankine cycle (ORC) technology to convert waste heat to electrical power were also investigated. A CO 2 abatement curve was used to identify the economic benefits and costs of various greenhouse gas (GHG) reductions. The level of recovered energy was determined in relation to energy prices, capital costs, and carbon penalties in order to determine the most efficient means of decreasing energy usage. The study demonstrated that energy efficiency can be improved by up to 20 percent, and water loss reductions of up to 50 percent can be achieved using cost-effective energy efficiency measures. Results of the study can be used to guide government policy and provide industry with practical tools to benchmark performance and improve efficiencies. 4 refs., 1 tab., 10 figs.

  1. Integrated Framework for Patient Safety and Energy Efficiency in Healthcare Facilities Retrofit Projects.

    Science.gov (United States)

    Mohammadpour, Atefeh; Anumba, Chimay J; Messner, John I

    2016-07-01

    There is a growing focus on enhancing energy efficiency in healthcare facilities, many of which are decades old. Since replacement of all aging healthcare facilities is not economically feasible, the retrofitting of these facilities is an appropriate path, which also provides an opportunity to incorporate energy efficiency measures. In undertaking energy efficiency retrofits, it is vital that the safety of the patients in these facilities is maintained or enhanced. However, the interactions between patient safety and energy efficiency have not been adequately addressed to realize the full benefits of retrofitting healthcare facilities. To address this, an innovative integrated framework, the Patient Safety and Energy Efficiency (PATSiE) framework, was developed to simultaneously enhance patient safety and energy efficiency. The framework includes a step -: by -: step procedure for enhancing both patient safety and energy efficiency. It provides a structured overview of the different stages involved in retrofitting healthcare facilities and improves understanding of the intricacies associated with integrating patient safety improvements with energy efficiency enhancements. Evaluation of the PATSiE framework was conducted through focus groups with the key stakeholders in two case study healthcare facilities. The feedback from these stakeholders was generally positive, as they considered the framework useful and applicable to retrofit projects in the healthcare industry. © The Author(s) 2016.

  2. Export orientation and domestic electricity generation: Effects on energy efficiency innovation in select sectors

    International Nuclear Information System (INIS)

    Urpelainen, Johannes

    2011-01-01

    Why are some countries developing many energy efficiency innovations, while others are lagging behind? I argue that export orientation and electricity at low variable cost from nuclear and hydropower plants have an interactive effect on energy efficiency innovation. Export-oriented countries have strong incentives to invest in energy efficiency innovation, as they are in a position to export these technology innovations for global markets. But if inexpensive electricity is supplied in a country, the domestic demand for energy efficiency innovation is missing, and so the home market cannot serve as a springboard for international commercialization. I test this theory against international patent data on energy efficiency innovation in insulation, heating, and lighting for 22 OECD countries, 1991-2007. The statistical analysis indicates that export orientation has large positive effects on energy efficiency innovation in countries that do not rely on nuclear and hydroelectricity. - Highlights: → Export-oriented countries produce energy efficiency innovations. → Nuclear and hydropower reduce energy efficiency innovation. → Data on international patents from industrialized countries support the argument.

  3. Evaluating energy efficiency for airlines: An application of Virtual Frontier Dynamic Slacks Based Measure

    International Nuclear Information System (INIS)

    Cui, Qiang; Li, Ye; Yu, Chen-lu; Wei, Yi-Ming

    2016-01-01

    The fast growing Revenue Passenger Kilometers and the relatively lagged energy supply of aviation industry impels the airlines to improve energy efficiency. In this paper, we focus on evaluating and analyzing influencing factors for airline energy efficiency. Number of employees and aviation kerosene are chosen as the inputs. Revenue Ton Kilometers, Revenue Passenger Kilometers and total business income are the outputs. Capital stock is selected as the dynamic factor. A new model, Virtual Frontier Dynamic Slacks Based Measure, is proposed to calculate the energy efficiencies of 21 airlines from 2008 to 2012. We verify two important properties to manifest the advantages of the new model. Then a regression is run to analyze the influencing factors of airline energy efficiency. The main findings are: 1. The overall energy efficiency of Malaysia Airlines is the highest during 2008–2012.2. Per capita Gross Domestic Product, the average service age of fleet size and average haul distance have significant impacts on the efficiency score. 3. The difference between full-service carriers and low-cost carriers has no significant effects on airline energy efficiency. - Highlights: • A Virtual Frontier Dynamic Slacks Based Measure is developed. • 21 airlines' energy efficiencies are evaluated. • Malaysia Airlines has the highest overall energy efficiency. • Three explanatory variables have significant impacts.

  4. An economic comparison of battery energy storage to conventional energy efficiency technologies in Colorado manufacturing facilities

    International Nuclear Information System (INIS)

    Nataf, Kalen; Bradley, Thomas H.

    2016-01-01

    Highlights: • Energy storage’s and efficiency technologies’ economic payback is compared. • Conventional efficiency technologies have shorter payback for the customers studied. • Hypothetical incentives can lower the payback periods of battery energy storage. - Abstract: Battery energy storage (BES) is one of a set of technologies that can be considered to reduce electrical loads, and to realize economic value for industrial customers. To directly compare the energy savings and economic effectiveness of BES to more conventional energy efficiency technologies, this study collected detailed information regarding the electrical loads associated with four Colorado manufacturing facilities. These datasets were used to generate a set of three scenarios for each manufacturer: implementation of a BES system, implementation of a set of conventional energy efficiency recommendations, and the implementation of both BES and conventional energy efficiency technologies. Evaluating these scenarios’ economic payback period allows for a direct comparison between the cost-effectiveness of energy efficiency technologies and that of BES, demonstrates the costs and benefits of implementing both BES and energy efficiency technologies, and characterizes the effectiveness of potential incentives in improving economic payback. For all of the manufacturing facilities modeled, results demonstrate that BES is the least cost-effective among the energy efficiency technologies considered, but that simultaneous implementation of both BES and energy efficiency technologies has a negligible effect on the BES payback period. Incentives are demonstrated to be required for BES to achieve near-term payback period parity with more conventional energy efficiency technologies.

  5. Energy efficiency: Separate report to December 31, 1993

    International Nuclear Information System (INIS)

    1994-01-01

    Hydro-Quebec's energy efficiency project puts a priority on energy conservation and improvement of the existing network to satisfy long-term electricity demand. The objective of the project's energy savings program is to save 9.3 TWh by the year 2000, allocated among three sectors. The program is to be carried out in three phases. The first, 1990-1992, corresponds to a sensitization phase, and has had success in terms of commercial impact. The second phase, 1993-1995, is in progress; a third phase to end at the year 2000 will bring adjustments and refinements needed to attain the stated objective. The success of the first two years of the program has contributed to maintaining two performance indicators relating to residential customer satisfaction with regard to energy efficiency activities and the levels of energy savings generated. The project's load management program provides for interventions that will lead to a reduction in peak demand of 3,320 MW by 2000. In the second phase of the program, three programs were launched in 1993 with the objective of saving 3.7 TWh, or 2 TWh in the residential sector, 1.2 TWh in commercial and institutional lighting, and 0.5 TWh in industrial systems. Other programs will be tested in pilot projects in 1994. Programs in the areas of electrotechnologies and residential dual-energy started in 1993 but results are not yet available. To carry out its energy efficiency programs, Hydro-Quebec has entered cooperative agreements with manufacturers, distributors, and vendors, and has developed different forms of collaboration with government agencies and institutions. The proposed energy efficiency programs will sustain nearly 38,000 person-years of employment in Quebec from now to 2000. 10 tabs

  6. SAVE - energy efficiency in Germany 1990-2000. Report based on the ODYSSEE data base on energy efficiency indicators and the MURE data base on energy efficiency policy measures with the support from SAVE. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Eichhammer, W.; Schlomann, B.

    2002-03-01

    This reports presents an analysis of energy efficiency trends in Germany on the basis of energy efficiency indicators extracted from the ODYSSEE data base, maintained and updated in the framework of the SAVE programme. This analysis focuses on the period 1990-2000. The year 1990 could however not be considered for all indicators, because most of the economic and some energy consumption data for Germany are only available since 1991. The analysis also examines the policies and measures implemented in the field of energy efficiency, with a focus on the latest years until February 2002. All these measures are extracted from the MURE data base also updated within the SAVE programme. The report starts with a review on data collection and the recent trends in the general context of energy efficiency, i. e. economic and energy consumption development, energy and environmental policy and energy price trends (Chapter 2). Afterwards, the energy efficiency trends are described both at the level of the whole economy and at sectoral level (Chapter 3). In Chapter 4 the development in one sector - transport - is described more detailed. For the other sectors (industry, residential, tertiary) Annex 2 presents a selection of commented graphs that show the trends for the main indicators. An overview of the most important measures in the field of energy efficiency policy in the end-use sectors in Germany is given in Annex 1. A more detailed description of the most recent measures is presented in Annex 3. (orig.)

  7. Policy of productive development and energy efficiency; Politica de desenvolvimento produtivo e eficiencia energetica

    Energy Technology Data Exchange (ETDEWEB)

    Naturesa, Jim Silva [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Civil Arquitetura e Urbanismo. Nucleo Interdisciplinar de Planejamento Energetico], e-mail: cam@fec.unicamp.br; Mariotoni, Carlos Alberto [Faculdade Politecnica de Jundiai (FPJ), SP (Brazil). Anhanguera Educacional

    2008-07-01

    The new industry policy in Brazil called PDP (Politica de Desenvolvimento Produtivo) and implications on Brazilian energy efficiency program are discussed. The PINTEC - Industrial Research for Technology Innovation (2003/05) indicates a low R and D and I investment of the Brazilian industries. It is expected that and energy efficiency project can be seen as an innovation project because this brings new equipment and a more advanced knowledge to industry, which helps to reduce electrical energy consumption, consumer' bills and production costs. (author)

  8. Approaches to Electric Utility Energy Efficiency for Low Income Customers in a Changing Regulatory Environment

    Energy Technology Data Exchange (ETDEWEB)

    Brockway, N.

    2001-05-21

    As the electric industry goes through a transformation to a more market-driven model, traditional grounds for utility energy efficiency have come under fire, undermining the existing mechanisms to fund and deliver such services. The challenge, then, is to understand why the electric industry should sustain investments in helping low-income Americans use electricity efficiently, how such investments should be made, and how these policies can become part of the new electric industry structure. This report analyzes the opportunities and barriers to leveraging electric utility energy efficiency assistance to low-income customers during the transition of the electric industry to greater competition.

  9. Energy efficiency policies and measures in Norway: monitoring of energy efficiency in EU27, Norway and Croatia (ODYSSEE-MURE)

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva

    2009-09-15

    This report represents the national case study of Norway for the EIE-project 'Monitoring of Energy Demand Trends and Energy Efficiency in the EU - ODYSSEE-MURE'. It presents the recent energy efficiency trends in Norway on the basis of indicators extracted from the ODYSSEE database. Total energy consumption (not including energy as feedstock) has increased from 16.6 M toe (195 TWh) in 1990 to 19.2 M toe (226 TWh) in 2007 and has been relatively constant the last ten years. Energy consumption in manufacturing industry has increased by 10 % from 1990 to 2007, but is lower in 2007 than in 1998. Final energy use in households has increased from 3515 k toe (41 TWh) in 1990 to 3826 (45 TWh) in 2007. The climate corrected energy use has been at approximately 4000 k toe since the mid 1990s. It seems to be an interrupt in the increase of energy use in households, despite the growth of all common used drivers in this sector. Energy efficiency policies and measures implemented since 1990 have contributed to improve the efficiency by 13 %, or 0.7 % per year; this means that if these policies and measures would not have been implemented, the final energy consumption would have been 13 % higher in 2007 (or approximately 1.9 M toe or 22 TWh). (Author)

  10. Energy efficiency policies and measures in Norway 2006. Monitoring of energy efficiency in EU15 and Norway (Odyssee-Mure)

    International Nuclear Information System (INIS)

    Rosenberg, Eva; Espegren, Kari Aamodt

    2006-12-01

    This report represents the national case study of Norway for the EIE-project 'Monitoring of energy efficiency in EU-15 and Norway - ODYSSEE-MURE'. It presents the recent energy efficiency trends in Norway on the basis of indicators extracted from the ODYSSEE database. Total energy consumption (not including energy as feedstock) has increased from 192 TWh in 1990 to a present maximum of 219 TWh in 1999. From then it has been a slight decrease and in 2005 the final energy consumption was 215 TWh. Energy consumption in manufacturing industry has increased by 11 percent from 1990 to 2004, and in the period 1998-2004 it seems to be steadying at approximately 78 TWh. Final energy use in households has increased from 41 TWh in 1990 to a maximum of 46.6 TWh in 1996 and 2002. In 2005 44.1 TWh was used, which is almost the same as the consumption in 1994. It seems to be an interrupt in the increase of energy use in households, despite the growth of all common used drivers in this sector. Energy efficiency policies and measures implemented since 1990 have contributed to improve the efficiency by 10 percent, or 0.7 percent per year; this means that if these policies and measures would not have been implemented, the final energy consumption would have been 10 percent higher in 2004 (or approximately 19 TWh) (author) (ml)

  11. Catalogue of Energy Efficiency Measures for France: descriptive fact sheets

    International Nuclear Information System (INIS)

    2012-06-01

    ADEME wished to learn about existing effective energy efficiency measures implemented outside of France, whether cross-sectoral or targeted at a specific sector (industry, transport, buildings or agriculture). The objective of this survey was to determine whether any of these measures could be applied in France, with the goal of holding down the growth of energy consumption. This survey has led to the writing of a catalog of 53 two-page fact sheets describing the measures identified as interesting for France. These measures were analysed via classic criteria of evaluation such as cost-efficiency or impact, allowing to highlight the most successful measures for the French territory

  12. Energy efficiency in elastic-bandwidth optical networks

    DEFF Research Database (Denmark)

    Vizcaino, Jorge Lopez; Ye, Yabin; Tafur Monroy, Idelfonso

    2011-01-01

    The forecasted growth in the Internet traffic has made the operators and industry to be concerned about the power consumption of the networks, and to become interested in alternatives to plan and operate the networks in a more energy efficient manner. The introduction of OFDM, and its property...... of elastic bandwidth allocation, opens new horizons in the operation of optical networks. In this paper, we compare the network planning problem in an elastic bandwidth CO-OFDM-based network and a fixed-grid WDM network. We highlight the benefits that bandwidth elasticity and the selection of different...

  13. The greenhouse effect and energy efficiency: some facts and figures

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Human activities are changing the composition of the atmosphere. In particular the burning of fossil fuels emits carbon dioxide, one of the so-called ''greenhouse gases'' that help maintain the Earth's surface at a temperature suitable for life. They transmit incoming sunlight but trap outgoing radiated heat. Levels of greenhouse gases are increasing, giving rise to concern that the world may warm further, leading to climate change. Energy efficiency can make an important contribution to controlling the greenhouse effect, and brings further benefits for industry and commerce through cost savings. 17 figs

  14. Affordable Energy-Efficient New Housing Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Subrato; Widder, Sarah H.; Bartlett, Rosemarie; McIlvaine, Janet; Chasar, David; Beal, David; Sutherland, Karen; Abbott, , K.; Fonorow, Ken; Eklund, Ken; Lubliner, Michael; Salzberg, Emily; Peeks, B.; Hewes, T.; Kosar, D.

    2012-05-31

    Since 2010, the U.S. Department of Energy’s Building America has sponsored research at PNNL to investigate cost-effective, energy-saving home-building technologies and to demonstrate how high-performance homes can deliver lower utility bills, increased comfort, and improved indoor air quality, while maintaining accessibility for low-income homeowners. PNNL and its contractors have been investigating 1) cost-effective whole-house solutions for Habitat for Humanity International (HFHI) and specific HFH affiliates in hot-humid and marine climates; 2) cost-effective energy-efficiency improvements for heating, ventilation, and air-conditioning (HVAC) systems in new, stick-built and manufactured homes; and 3) energy-efficient domestic hot-water systems.

  15. 'Normal' markets, market imperfections and energy efficiency

    International Nuclear Information System (INIS)

    Sanstad, A.H.; Howarth, R.B.

    1994-01-01

    The conventional distinction between 'economic' and 'engineering' approaches to energy analysis obscures key methodological issues concerning the measurement of the costs and benefits of policies to promote the adoption of energy-efficient technologies. The engineering approach is in fact based upon firm economic foundations: the principle of lifecycle cost minimization that arises directly from the theory of rational investment. Thus, evidence that so-called 'market barriers' impede the adoption of cost-effective energy-efficient technologies implies the existence of market failures as defined in the context of microeconomic theory. A widely held view that the engineering view lacks economic justification, is based on the fallacy that markets are 'normally' efficient. (author)

  16. Deployment of commercial energy efficiency cooking

    International Nuclear Information System (INIS)

    1999-04-01

    This research concerned the promotion of energy-efficient wood stoves in commercial and institutional kitchens in Ethiopia, Kenya, Tanzania and Uganda through technology transfer and training of local commercial stove producers. The key objective of the project was to introduce proven designs of energy-efficient wood stoves to producers in the target countries and train them in the manufacture and marketing of these stoves. The improved designs save 50% of the fuel used by the traditional stoves - a major saving where 10-15% of the kitchen budget is spent on fuel. They also remove smoke more effectively, protect cooks from heat and burns, and are easier to keep clean. The project went well although results have varied from one country to the other. In conclusion, the technology transfer of commercial stove designs can take place between neighbouring countries by a process of training, study visits, prototype development, market surveys and producer support.(author)

  17. Barriers and opportunities: A review of selected successful energy-efficiency programs

    International Nuclear Information System (INIS)

    Worrell, Ernst; Price, Lynn

    2001-01-01

    In industry, barriers may exist at various points in the decision making process, and in the implementation and management of measures to improve energy efficiency. Barriers may take many forms, and are determined by the business environment and include decision-making processes, energy prices, lack of information, a lack of confidence in the information, or high transaction costs for obtaining reliable information, as well as limited capital availability. Other barriers are the ''invisibility'' of energy efficiency measures and the difficulty of quantifying the impacts, and slow diffusion of innovative technology into markets while firms typically under-invest in R and D, despite the high pay-backs. Various programs try to reduce the barriers to improve the uptake of innovative technologies. A wide array of policies has been used and tested in the industrial sector in industrialized countries, with varying success rates. We review some new approaches to industrial energy efficiency improvement in industrialized countries, focusing on voluntary agreements

  18. Energy Efficiency Policy in the United States: Overview of Trends at Different Levels of Government

    Energy Technology Data Exchange (ETDEWEB)

    Doris, E.; Cochran, J.; Vorum, M.

    2009-12-01

    This report catalogs by sector--buildings, transportation, industrial, and power--energy efficiency policies at the federal, state, and local levels, and identifies some prominent policy trends. Four key findings emerged from this report: 1) leadership on energy efficiency is necessary--and is found--at each level of government; 2) there is no widely accepted methodology for evaluating energy efficiency policies; 3) coordination among the three levels of government--and across sectors--is increasingly important, and there are opportunities to significantly improve policy performance through a unified strategy; and 4) there are efficiencies to be gained by informing policies in one sector with experience from others.

  19. Energy Efficiency Policy in the United States. Overview of Trends at Different Levels of Government

    Energy Technology Data Exchange (ETDEWEB)

    Doris, Elizabeth [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cochran, Jaquelin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Vorum, Martin [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2009-12-01

    This report catalogs by sector--buildings, transportation, industrial, and power--energy efficiency policies at the federal, state, and local levels, and identifies some prominent policy trends. Four key findings emerged from this report: 1) leadership on energy efficiency is necessary--and is found--at each level of government; 2) there is no widely accepted methodology for evaluating energy efficiency policies; 3) coordination among the three levels of government--and across sectors--is increasingly important, and there are opportunities to significantly improve policy performance through a unified strategy; and 4) there are efficiencies to be gained by informing policies in one sector with experience from others.

  20. INTELLIGENT LIGHTING SYSTEM WITH ENERGY EFFICIENCY

    OpenAIRE

    Neha Patil*, Prof .A .C .Wani

    2016-01-01

    This paper describes Intelligent Lighting System to reduce energy consumption in lighting system. Now days’ saving energy is the most important issue, so many light control systems have been initiated in current market. But due to some designing limitations and energy inefficiency, the existing light control systems cannot be successfully installed in home and office buildings with energy efficiency and user satisfaction. This system uses motion, light sensors and wireless communication techn...

  1. Achieving affordable housing through energy efficiency strategy

    International Nuclear Information System (INIS)

    Copiello, Sergio

    2015-01-01

    Cooperation between public and private sector has achieved a remarkable widespread, in the Italian context, over the last two decades. Nevertheless, the increasing difficulty in accessing the capital market and the rising cost of funding sources, both noticeable over the past few years, led to a slowdown of Public–Private Partnership (PPP) initiatives. Meanwhile, the community is expressing new needs to be satisfied, such as the conversion of brownfields, the recovery of housing stock dating back to former times, as well as the refurbishment of public offices or schools. Emerging priorities include the supply of affordable dwellings for low to medium income households. This essay aims to examine a case study in which PPP and buildings energy efficiency have been successfully combined, in order to jointly contribute to the achievement of a social housing settlement. Thanks to energy efficiency measures—concerning building envelope insulation, heating system and other installations—the agreed rent results far higher than soci