WorldWideScience

Sample records for under-represented synonymous codons

  1. Switches in Genomic GC Content Drive Shifts of Optimal Codons under Sustained Selection on Synonymous Sites

    Science.gov (United States)

    Sun, Yu; Tamarit, Daniel

    2017-01-01

    Abstract The major codon preference model suggests that codons read by tRNAs in high concentrations are preferentially utilized in highly expressed genes. However, the identity of the optimal codons differs between species although the forces driving such changes are poorly understood. We suggest that these questions can be tackled by placing codon usage studies in a phylogenetic framework and that bacterial genomes with extreme nucleotide composition biases provide informative model systems. Switches in the background substitution biases from GC to AT have occurred in Gardnerella vaginalis (GC = 32%), and from AT to GC in Lactobacillus delbrueckii (GC = 62%) and Lactobacillus fermentum (GC = 63%). We show that despite the large effects on codon usage patterns by these switches, all three species evolve under selection on synonymous sites. In G. vaginalis, the dramatic codon frequency changes coincide with shifts of optimal codons. In contrast, the optimal codons have not shifted in the two Lactobacillus genomes despite an increased fraction of GC-ending codons. We suggest that all three species are in different phases of an on-going shift of optimal codons, and attribute the difference to a stronger background substitution bias and/or longer time since the switch in G. vaginalis. We show that comparative and correlative methods for optimal codon identification yield conflicting results for genomes in flux and discuss possible reasons for the mispredictions. We conclude that switches in the direction of the background substitution biases can drive major shifts in codon preference patterns even under sustained selection on synonymous codon sites. PMID:27540085

  2. Multiple Evolutionary Selections Involved in Synonymous Codon Usages in the Streptococcus agalactiae Genome.

    Science.gov (United States)

    Ma, Yan-Ping; Ke, Hao; Liang, Zhi-Ling; Liu, Zhen-Xing; Hao, Le; Ma, Jiang-Yao; Li, Yu-Gu

    2016-02-24

    Streptococcus agalactiae is an important human and animal pathogen. To better understand the genetic features and evolution of S. agalactiae, multiple factors influencing synonymous codon usage patterns in S. agalactiae were analyzed in this study. A- and U-ending rich codons were used in S. agalactiae function genes through the overall codon usage analysis, indicating that Adenine (A)/Thymine (T) compositional constraints might contribute an important role to the synonymous codon usage pattern. The GC3% against the effective number of codon (ENC) value suggested that translational selection was the important factor for codon bias in the microorganism. Principal component analysis (PCA) showed that (i) mutational pressure was the most important factor in shaping codon usage of all open reading frames (ORFs) in the S. agalactiae genome; (ii) strand specific mutational bias was not capable of influencing the codon usage bias in the leading and lagging strands; and (iii) gene length was not the important factor in synonymous codon usage pattern in this organism. Additionally, the high correlation between tRNA adaptation index (tAI) value and codon adaptation index (CAI), frequency of optimal codons (Fop) value, reinforced the role of natural selection for efficient translation in S. agalactiae. Comparison of synonymous codon usage pattern between S. agalactiae and susceptible hosts (human and tilapia) showed that synonymous codon usage of S. agalactiae was independent of the synonymous codon usage of susceptible hosts. The study of codon usage in S. agalactiae may provide evidence about the molecular evolution of the bacterium and a greater understanding of evolutionary relationships between S. agalactiae and its hosts.

  3. The Selective Advantage of Synonymous Codon Usage Bias in Salmonella.

    Directory of Open Access Journals (Sweden)

    Gerrit Brandis

    2016-03-01

    Full Text Available The genetic code in mRNA is redundant, with 61 sense codons translated into 20 different amino acids. Individual amino acids are encoded by up to six different codons but within codon families some are used more frequently than others. This phenomenon is referred to as synonymous codon usage bias. The genomes of free-living unicellular organisms such as bacteria have an extreme codon usage bias and the degree of bias differs between genes within the same genome. The strong positive correlation between codon usage bias and gene expression levels in many microorganisms is attributed to selection for translational efficiency. However, this putative selective advantage has never been measured in bacteria and theoretical estimates vary widely. By systematically exchanging optimal codons for synonymous codons in the tuf genes we quantified the selective advantage of biased codon usage in highly expressed genes to be in the range 0.2-4.2 x 10-4 per codon per generation. These data quantify for the first time the potential for selection on synonymous codon choice to drive genome-wide sequence evolution in bacteria, and in particular to optimize the sequences of highly expressed genes. This quantification may have predictive applications in the design of synthetic genes and for heterologous gene expression in biotechnology.

  4. Control of ribosome traffic by position-dependent choice of synonymous codons

    DEFF Research Database (Denmark)

    Mitarai, Namiko; Pedersen, Steen

    2013-01-01

    Messenger RNA (mRNA) encodes a sequence of amino acids by using codons. For most amino acids, there are multiple synonymous codons that can encode the amino acid. The translation speed can vary from one codon to another, thus there is room for changing the ribosome speed while keeping the amino...... acid sequence and hence the resulting protein. Recently, it has been noticed that the choice of the synonymous codon, via the resulting distribution of slow- and fast-translated codons, affects not only on the average speed of one ribosome translating the mRNA but also might have an effect on nearby...... ribosomes by affecting the appearance of 'traffic jams' where multiple ribosomes collide and form queues. To test this 'context effect' further, we here investigate the effect of the sequence of synonymous codons on the ribosome traffic by using a ribosome traffic model with codon-dependent rates, estimated...

  5. Codon adaptation and synonymous substitution rate in diatom plastid genes.

    Science.gov (United States)

    Morton, Brian R; Sorhannus, Ulf; Fox, Martin

    2002-07-01

    Diatom plastid genes are examined with respect to codon adaptation and rates of silent substitution (Ks). It is shown that diatom genes follow the same pattern of codon usage as other plastid genes studied previously. Highly expressed diatom genes display codon adaptation, or a bias toward specific major codons, and these major codons are the same as those in red algae, green algae, and land plants. It is also found that there is a strong correlation between Ks and variation in codon adaptation across diatom genes, providing the first evidence for such a relationship in the algae. It is argued that this finding supports the notion that the correlation arises from selective constraints, not from variation in mutation rate among genes. Finally, the diatom genes are examined with respect to variation in Ks among different synonymous groups. Diatom genes with strong codon adaptation do not show the same variation in synonymous substitution rate among codon groups as the flowering plant psbA gene which, previous studies have shown, has strong codon adaptation but unusually high rates of silent change in certain synonymous groups. The lack of a similar finding in diatoms supports the suggestion that the feature is unique to the flowering plant psbA due to recent relaxations in selective pressure in that lineage.

  6. Control of ribosome traffic by position-dependent choice of synonymous codons

    International Nuclear Information System (INIS)

    Mitarai, Namiko; Pedersen, Steen

    2013-01-01

    Messenger RNA (mRNA) encodes a sequence of amino acids by using codons. For most amino acids, there are multiple synonymous codons that can encode the amino acid. The translation speed can vary from one codon to another, thus there is room for changing the ribosome speed while keeping the amino acid sequence and hence the resulting protein. Recently, it has been noticed that the choice of the synonymous codon, via the resulting distribution of slow- and fast-translated codons, affects not only on the average speed of one ribosome translating the mRNA but also might have an effect on nearby ribosomes by affecting the appearance of ‘traffic jams’ where multiple ribosomes collide and form queues. To test this ‘context effect’ further, we here investigate the effect of the sequence of synonymous codons on the ribosome traffic by using a ribosome traffic model with codon-dependent rates, estimated from experiments. We compare the ribosome traffic on wild-type (WT) sequences and sequences where the synonymous codons were swapped randomly. By simulating translation of 87 genes, we demonstrate that the WT sequences, especially those with a high bias in codon usage, tend to have the ability to reduce ribosome collisions, hence optimizing the cellular investment in the translation apparatus. The magnitude of such reduction of the translation time might have a significant impact on the cellular growth rate and thereby have importance for the survival of the species. (paper)

  7. Synonymous codon ordering: a subtle but prevalent strategy of bacteria to improve translational efficiency.

    Directory of Open Access Journals (Sweden)

    Zhu-Qing Shao

    Full Text Available BACKGROUND: In yeast coding sequences, once a particular codon has been used, subsequent occurrence of the same amino acid tends to use codons sharing the same tRNA. Such a phenomenon of co-tRNA codons pairing bias (CTCPB is also found in some other eukaryotes but it is not known whether it occurs in prokaryotes. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we focused on a total of 773 bacterial genomes to investigate their synonymous codon pairing preferences. After calculating the actual frequencies of synonymous codon pairs and comparing them with their expected values, we detected an obvious pairing bias towards identical codon pairs. This seems consistent with the previously reported CTCPB phenomenon, since identical codons are certainly read by the same tRNA. However, among co-tRNA but non-identical codon pairs, only 22 were often found overrepresented, suggesting that many co-tRNA codons actually do not preferentially pair together in prokaryotes. Therefore, the previously reported co-tRNA codons pairing rule needs to be more rigorously defined. The affinity differences between a tRNA anticodon and its readable codons should be taken into account. Moreover, both within-gene-shuffling tests and phylogenetic analyses support the idea that translational selection played an important role in shaping the observed synonymous codon pairing pattern in prokaryotes. CONCLUSIONS: Overall, a high level of synonymous codon pairing bias was detected in 73% investigated bacterial species, suggesting the synonymous codon ordering strategy has been prevalently adopted by prokaryotes to improve their translational efficiencies. The findings in this study also provide important clues to better understand the complex dynamics of translational process.

  8. The distribution of synonymous codon choice in the translation initiation region of dengue virus.

    Directory of Open Access Journals (Sweden)

    Jian-hua Zhou

    Full Text Available Dengue is the most common arthropod-borne viral (Arboviral illness in humans. The genetic features concerning the codon usage of dengue virus (DENV were analyzed by the relative synonymous codon usage, the effective number of codons and the codon adaptation index. The evolutionary distance between DENV and the natural hosts (Homo sapiens, Pan troglodytes, Aedes albopictus and Aedes aegypti was estimated by a novel formula. Finally, the synonymous codon usage preference for the translation initiation region of this virus was also analyzed. The result indicates that the general trend of the 59 synonymous codon usage of the four genotypes of DENV are similar to each other, and this pattern has no link with the geographic distribution of the virus. The effect of codon usage pattern of Aedes albopictus and Aedes aegypti on the formation of codon usage of DENV is stronger than that of the two primates. Turning to the codon usage preference of the translation initiation region of this virus, some codons pairing to low tRNA copy numbers in the two primates have a stronger tendency to exist in the translation initiation region than those in the open reading frame of DENV. Although DENV, like other RNA viruses, has a high mutation to adapt its hosts, the regulatory features about the synonymous codon usage have been 'branded' on the translation initiation region of this virus in order to hijack the translational mechanisms of the hosts.

  9. Analysis of the synonymous codon usage bias in recently emerged enterovirus D68 strains.

    Science.gov (United States)

    Karniychuk, Uladzimir U

    2016-09-02

    Understanding the codon usage pattern of a pathogen and relationship between pathogen and host's codon usage patterns has fundamental and applied interests. Enterovirus D68 (EV-D68) is an emerging pathogen with a potentially high public health significance. In the present study, the synonymous codon usage bias of 27 recently emerged, and historical EV-D68 strains was analyzed. In contrast to previously studied enteroviruses (enterovirus 71 and poliovirus), EV-D68 and human host have a high discrepancy between favored codons. Analysis of viral synonymous codon usage bias metrics, viral nucleotide/dinucleotide compositional parameters, and viral protein properties showed that mutational pressure is more involved in shaping the synonymous codon usage bias of EV-D68 than translation selection. Computation of codon adaptation indices allowed to estimate expression potential of the EV-D68 genome in several commonly used laboratory animals. This approach requires experimental validation and may provide an auxiliary tool for the rational selection of laboratory animals to model emerging viral diseases. Enterovirus D68 genome compositional and codon usage data can be useful for further pathogenesis, animal model, and vaccine design studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Synonymous Codon Usage Analysis of Thirty Two Mycobacteriophage Genomes

    Directory of Open Access Journals (Sweden)

    Sameer Hassan

    2009-01-01

    Full Text Available Synonymous codon usage of protein coding genes of thirty two completely sequenced mycobacteriophage genomes was studied using multivariate statistical analysis. One of the major factors influencing codon usage is identified to be compositional bias. Codons ending with either C or G are preferred in highly expressed genes among which C ending codons are highly preferred over G ending codons. A strong negative correlation between effective number of codons (Nc and GC3s content was also observed, showing that the codon usage was effected by gene nucleotide composition. Translational selection is also identified to play a role in shaping the codon usage operative at the level of translational accuracy. High level of heterogeneity is seen among and between the genomes. Length of genes is also identified to influence the codon usage in 11 out of 32 phage genomes. Mycobacteriophage Cooper is identified to be the highly biased genome with better translation efficiency comparing well with the host specific tRNA genes.

  11. Synonymous codon bias and functional constraint on GC3-related DNA backbone dynamics in the prokaryotic nucleoid.

    Science.gov (United States)

    Babbitt, Gregory A; Alawad, Mohammed A; Schulze, Katharina V; Hudson, André O

    2014-01-01

    While mRNA stability has been demonstrated to control rates of translation, generating both global and local synonymous codon biases in many unicellular organisms, this explanation cannot adequately explain why codon bias strongly tracks neighboring intergene GC content; suggesting that structural dynamics of DNA might also influence codon choice. Because minor groove width is highly governed by 3-base periodicity in GC, the existence of triplet-based codons might imply a functional role for the optimization of local DNA molecular dynamics via GC content at synonymous sites (≈GC3). We confirm a strong association between GC3-related intrinsic DNA flexibility and codon bias across 24 different prokaryotic multiple whole-genome alignments. We develop a novel test of natural selection targeting synonymous sites and demonstrate that GC3-related DNA backbone dynamics have been subject to moderate selective pressure, perhaps contributing to our observation that many genes possess extreme DNA backbone dynamics for their given protein space. This dual function of codons may impose universal functional constraints affecting the evolution of synonymous and non-synonymous sites. We propose that synonymous sites may have evolved as an 'accessory' during an early expansion of a primordial genetic code, allowing for multiplexed protein coding and structural dynamic information within the same molecular context. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. CodonShuffle: a tool for generating and analyzing synonymously mutated sequences

    OpenAIRE

    Jorge, Daniel Macedo de Melo; Mills, Ryan E.; Lauring, Adam S.

    2015-01-01

    Because synonymous mutations do not change the amino acid sequence of a protein, they are generally considered to be selectively neutral. Empiric data suggest, however, that a significant fraction of viral mutational fitness effects may be attributable to synonymous mutation. Bias in synonymous codon usage in viruses may result from selection for translational efficiency, mutational bias, base pairing requirements in RNA structures, or even selection against specific dinucleotides by innate i...

  13. Genome-Wide Analysis of the Synonymous Codon Usage Patterns in Riemerella anatipestifer

    Directory of Open Access Journals (Sweden)

    Jibin Liu

    2016-08-01

    Full Text Available Riemerella anatipestifer (RA belongs to the Flavobacteriaceae family and can cause a septicemia disease in poultry. The synonymous codon usage patterns of bacteria reflect a series of evolutionary changes that enable bacteria to improve tolerance of the various environments. We detailed the codon usage patterns of RA isolates from the available 12 sequenced genomes by multiple codon and statistical analysis. Nucleotide compositions and relative synonymous codon usage (RSCU analysis revealed that A or U ending codons are predominant in RA. Neutrality analysis found no significant correlation between GC12 and GC3 (p > 0.05. Correspondence analysis and ENc-plot results showed that natural selection dominated over mutation in the codon usage bias. The tree of cluster analysis based on RSCU was concordant with dendrogram based on genomic BLAST by neighbor-joining method. By comparative analysis, about 50 highly expressed genes that were orthologs across all 12 strains were found in the top 5% of high CAI value. Based on these CAI values, we infer that RA contains a number of predicted highly expressed coding sequences, involved in transcriptional regulation and metabolism, reflecting their requirement for dealing with diverse environmental conditions. These results provide some useful information on the mechanisms that contribute to codon usage bias and evolution of RA.

  14. Analysis of synonymous codon usage patterns in the genus Rhizobium.

    Science.gov (United States)

    Wang, Xinxin; Wu, Liang; Zhou, Ping; Zhu, Shengfeng; An, Wei; Chen, Yu; Zhao, Lin

    2013-11-01

    The codon usage patterns of rhizobia have received increasing attention. However, little information is available regarding the conserved features of the codon usage patterns in a typical rhizobial genus. The codon usage patterns of six completely sequenced strains belonging to the genus Rhizobium were analysed as model rhizobia in the present study. The relative neutrality plot showed that selection pressure played a role in codon usage in the genus Rhizobium. Spearman's rank correlation analysis combined with correspondence analysis (COA) showed that the codon adaptation index and the effective number of codons (ENC) had strong correlation with the first axis of the COA, which indicated the important role of gene expression level and the ENC in the codon usage patterns in this genus. The relative synonymous codon usage of Cys codons had the strongest correlation with the second axis of the COA. Accordingly, the usage of Cys codons was another important factor that shaped the codon usage patterns in Rhizobium genomes and was a conserved feature of the genus. Moreover, the comparison of codon usage between highly and lowly expressed genes showed that 20 unique preferred codons were shared among Rhizobium genomes, revealing another conserved feature of the genus. This is the first report of the codon usage patterns in the genus Rhizobium.

  15. Amino acid repeats avert mRNA folding through conservative substitutions and synonymous codons, regardless of codon bias

    Directory of Open Access Journals (Sweden)

    Sailen Barik

    2017-12-01

    Full Text Available A significant number of proteins in all living species contains amino acid repeats (AARs of various lengths and compositions, many of which play important roles in protein structure and function. Here, I have surveyed select homopolymeric single [(An] and double [(ABn] AARs in the human proteome. A close examination of their codon pattern and analysis of RNA structure propensity led to the following set of empirical rules: (1 One class of amino acid repeats (Class I uses a mixture of synonymous codons, some of which approximate the codon bias ratio in the overall human proteome; (2 The second class (Class II disregards the codon bias ratio, and appears to have originated by simple repetition of the same codon (or just a few codons; and finally, (3 In all AARs (including Class I, Class II, and the in-betweens, the codons are chosen in a manner that precludes the formation of RNA secondary structure. It appears that the AAR genes have evolved by orchestrating a balance between codon usage and mRNA secondary structure. The insights gained here should provide a better understanding of AAR evolution and may assist in designing synthetic genes.

  16. Amino acid repeats avert mRNA folding through conservative substitutions and synonymous codons, regardless of codon bias.

    Science.gov (United States)

    Barik, Sailen

    2017-12-01

    A significant number of proteins in all living species contains amino acid repeats (AARs) of various lengths and compositions, many of which play important roles in protein structure and function. Here, I have surveyed select homopolymeric single [(A)n] and double [(AB)n] AARs in the human proteome. A close examination of their codon pattern and analysis of RNA structure propensity led to the following set of empirical rules: (1) One class of amino acid repeats (Class I) uses a mixture of synonymous codons, some of which approximate the codon bias ratio in the overall human proteome; (2) The second class (Class II) disregards the codon bias ratio, and appears to have originated by simple repetition of the same codon (or just a few codons); and finally, (3) In all AARs (including Class I, Class II, and the in-betweens), the codons are chosen in a manner that precludes the formation of RNA secondary structure. It appears that the AAR genes have evolved by orchestrating a balance between codon usage and mRNA secondary structure. The insights gained here should provide a better understanding of AAR evolution and may assist in designing synthetic genes.

  17. Triplet-Based Codon Organization Optimizes the Impact of Synonymous Mutation on Nucleic Acid Molecular Dynamics.

    Science.gov (United States)

    Babbitt, Gregory A; Coppola, Erin E; Mortensen, Jamie S; Ekeren, Patrick X; Viola, Cosmo; Goldblatt, Dallan; Hudson, André O

    2018-02-01

    Since the elucidation of the genetic code almost 50 years ago, many nonrandom aspects of its codon organization remain only partly resolved. Here, we investigate the recent hypothesis of 'dual-use' codons which proposes that in addition to allowing adjustment of codon optimization to tRNA abundance, the degeneracy in the triplet-based genetic code also multiplexes information regarding DNA's helical shape and protein-binding dynamics while avoiding interference with other protein-level characteristics determined by amino acid properties. How such structural optimization of the code within eukaryotic chromatin could have arisen from an RNA world is a mystery, but would imply some preadaptation in an RNA context. We analyzed synonymous (protein-silent) and nonsynonymous (protein-altering) mutational impacts on molecular dynamics in 13823 identically degenerate alternative codon reorganizations, defined by codon transitions in 7680 GPU-accelerated molecular dynamic simulations of implicitly and explicitly solvated double-stranded aRNA and bDNA structures. When compared to all possible alternative codon assignments, the standard genetic code minimized the impact of synonymous mutations on the random atomic fluctuations and correlations of carbon backbone vector trajectories while facilitating the specific movements that contribute to DNA polymer flexibility. This trend was notably stronger in the context of RNA supporting the idea that dual-use codon optimization and informational multiplexing in DNA resulted from the preadaptation of the RNA duplex to resist changes to thermostability. The nonrandom and divergent molecular dynamics of synonymous mutations also imply that the triplet-based code may have resulted from adaptive functional expansion enabling a primordial doublet code to multiplex gene regulatory information via the shape and charge of the minor groove.

  18. RESEARCH ARTICLE Codon usage vis-a-vis start and stop codon ...

    Indian Academy of Sciences (India)

    Prosen

    codon usage at start and stop site showed variation in codon selection in ..... pressure is 8.3%, 0.5% and 18.5% while the influence of other factors, for example natural ..... The codon Adaptation Index--a measure of directional synonymous.

  19. Tuning protein expression using synonymous codon libraries targeted to the 5' mRNA coding region

    DEFF Research Database (Denmark)

    Goltermann, Lise; Borch Jensen, Martin; Bentin, Thomas

    2011-01-01

    intermediate expression levels of green fluorescent protein in Escherichia coli. At least in one case, no apparent effect on protein stability was observed, pointing to RNA level effects as the principal reason for the observed expression differences. Targeting a synonymous codon library to the 5' coding...

  20. Codon usage vis-a-vis start and stop codon context analysis of three ...

    Indian Academy of Sciences (India)

    Prosenjit Paul

    2018-02-20

    Feb 20, 2018 ... Keywords. codon; dinucleotide; selection; mutation; genome. Introduction ..... influence of other factors, for example natural selection, is 91.7%, 99.5% ..... measure of directional synonymous codon usage bias, and its potential ...

  1. Complex Codon Usage Pattern and Compositional Features of Retroviruses

    Directory of Open Access Journals (Sweden)

    Sourav RoyChoudhury

    2013-01-01

    Full Text Available Retroviruses infect a wide range of organisms including humans. Among them, HIV-1, which causes AIDS, has now become a major threat for world health. Some of these viruses are also potential gene transfer vectors. In this study, the patterns of synonymous codon usage in retroviruses have been studied through multivariate statistical methods on ORFs sequences from the available 56 retroviruses. The principal determinant for evolution of the codon usage pattern in retroviruses seemed to be the compositional constraints, while selection for translation of the viral genes plays a secondary role. This was further supported by multivariate analysis on relative synonymous codon usage. Thus, it seems that mutational bias might have dominated role over translational selection in shaping the codon usage of retroviruses. Codon adaptation index was used to identify translationally optimal codons among genes from retroviruses. The comparative analysis of the preferred and optimal codons among different retroviral groups revealed that four codons GAA, AAA, AGA, and GGA were significantly more frequent in most of the retroviral genes inspite of some differences. Cluster analysis also revealed that phylogenetically related groups of retroviruses have probably evolved their codon usage in a concerted manner under the influence of their nucleotide composition.

  2. Influence of certain forces on evolution of synonymous codon usage bias in certain species of three basal orders of aquatic insects.

    Science.gov (United States)

    Selva Kumar, C; Nair, Rahul R; Sivaramakrishnan, K G; Ganesh, D; Janarthanan, S; Arunachalam, M; Sivaruban, T

    2012-12-01

    Forces that influence the evolution of synonymous codon usage bias are analyzed in six species of three basal orders of aquatic insects. The rationale behind choosing six species of aquatic insects (three from Ephemeroptera, one from Plecoptera, and two from Odonata) for the present analysis is based on phylogenetic position at the basal clades of the Order Insecta facilitating the understanding of the evolution of codon bias and of factors shaping codon usage patterns in primitive clades of insect lineages and their subtle differences in some of their ecological and environmental requirements in terms of habitat-microhabitat requirements, altitudinal preferences, temperature tolerance ranges, and consequent responses to climate change impacts. The present analysis focuses on open reading frames of the 13 protein-coding genes in the mitochondrial genome of six carefully chosen insect species to get a comprehensive picture of the evolutionary intricacies of codon bias. In all the six species, A and T contents are observed to be significantly higher than G and C, and are used roughly equally. Since transcription hypothesis on codon usage demands A richness and T poorness, it is quite likely that mutation pressure may be the key factor associated with synonymous codon usage (SCU) variations in these species because the mutation hypothesis predicts AT richness and GC poorness in the mitochondrial DNA. Thus, AT-biased mutation pressure seems to be an important factor in framing the SCU variation in all the selected species of aquatic insects, which in turn explains the predominance of A and T ending codons in these species. This study does not find any association between microhabitats and codon usage variations in the mitochondria of selected aquatic insects. However, this study has identified major forces, such as compositional constraints and mutation pressure, which shape patterns of codon usage in mitochondrial genes in the primitive clades of insect lineages.

  3. Comparative analysis of codon usage bias and codon context patterns between dipteran and hymenopteran sequenced genomes.

    Directory of Open Access Journals (Sweden)

    Susanta K Behura

    Full Text Available BACKGROUND: Codon bias is a phenomenon of non-uniform usage of codons whereas codon context generally refers to sequential pair of codons in a gene. Although genome sequencing of multiple species of dipteran and hymenopteran insects have been completed only a few of these species have been analyzed for codon usage bias. METHODS AND PRINCIPAL FINDINGS: Here, we use bioinformatics approaches to analyze codon usage bias and codon context patterns in a genome-wide manner among 15 dipteran and 7 hymenopteran insect species. Results show that GAA is the most frequent codon in the dipteran species whereas GAG is the most frequent codon in the hymenopteran species. Data reveals that codons ending with C or G are frequently used in the dipteran genomes whereas codons ending with A or T are frequently used in the hymenopteran genomes. Synonymous codon usage orders (SCUO vary within genomes in a pattern that seems to be distinct for each species. Based on comparison of 30 one-to-one orthologous genes among 17 species, the fruit fly Drosophila willistoni shows the least codon usage bias whereas the honey bee (Apis mellifera shows the highest bias. Analysis of codon context patterns of these insects shows that specific codons are frequently used as the 3'- and 5'-context of start and stop codons, respectively. CONCLUSIONS: Codon bias pattern is distinct between dipteran and hymenopteran insects. While codon bias is favored by high GC content of dipteran genomes, high AT content of genes favors biased usage of synonymous codons in the hymenopteran insects. Also, codon context patterns vary among these species largely according to their phylogeny.

  4. Codon usage and amino acid usage influence genes expression level.

    Science.gov (United States)

    Paul, Prosenjit; Malakar, Arup Kumar; Chakraborty, Supriyo

    2018-02-01

    Highly expressed genes in any species differ in the usage frequency of synonymous codons. The relative recurrence of an event of the favored codon pair (amino acid pairs) varies between gene and genomes due to varying gene expression and different base composition. Here we propose a new measure for predicting the gene expression level, i.e., codon plus amino bias index (CABI). Our approach is based on the relative bias of the favored codon pair inclination among the genes, illustrated by analyzing the CABI score of the Medicago truncatula genes. CABI showed strong correlation with all other widely used measures (CAI, RCBS, SCUO) for gene expression analysis. Surprisingly, CABI outperforms all other measures by showing better correlation with the wet-lab data. This emphasizes the importance of the neighboring codons of the favored codon in a synonymous group while estimating the expression level of a gene.

  5. Synonymous genes explore different evolutionary landscapes.

    Directory of Open Access Journals (Sweden)

    Guillaume Cambray

    2008-11-01

    Full Text Available The evolutionary potential of a gene is constrained not only by the amino acid sequence of its product, but by its DNA sequence as well. The topology of the genetic code is such that half of the amino acids exhibit synonymous codons that can reach different subsets of amino acids from each other through single mutation. Thus, synonymous DNA sequences should access different regions of the protein sequence space through a limited number of mutations, and this may deeply influence the evolution of natural proteins. Here, we demonstrate that this feature can be of value for manipulating protein evolvability. We designed an algorithm that, starting from an input gene, constructs a synonymous sequence that systematically includes the codons with the most different evolutionary perspectives; i.e., codons that maximize accessibility to amino acids previously unreachable from the template by point mutation. A synonymous version of a bacterial antibiotic resistance gene was computed and synthesized. When concurrently submitted to identical directed evolution protocols, both the wild type and the recoded sequence led to the isolation of specific, advantageous phenotypic variants. Simulations based on a mutation isolated only from the synthetic gene libraries were conducted to assess the impact of sub-functional selective constraints, such as codon usage, on natural adaptation. Our data demonstrate that rational design of synonymous synthetic genes stands as an affordable improvement to any directed evolution protocol. We show that using two synonymous DNA sequences improves the overall yield of the procedure by increasing the diversity of mutants generated. These results provide conclusive evidence that synonymous coding sequences do experience different areas of the corresponding protein adaptive landscape, and that a sequence's codon usage effectively constrains the evolution of the encoded protein.

  6. Gene expression, nucleotide composition and codon usage bias of genes associated with human Y chromosome.

    Science.gov (United States)

    Choudhury, Monisha Nath; Uddin, Arif; Chakraborty, Supriyo

    2017-06-01

    Analysis of codon usage pattern is important to understand the genetic and evolutionary characteristics of genomes. We have used bioinformatic approaches to analyze the codon usage bias (CUB) of the genes located in human Y chromosome. Codon bias index (CBI) indicated that the overall extent of codon usage bias was low. The relative synonymous codon usage (RSCU) analysis suggested that approximately half of the codons out of 59 synonymous codons were most frequently used, and possessed a T or G at the third codon position. The codon usage pattern was different in different genes as revealed from correspondence analysis (COA). A significant correlation between effective number of codons (ENC) and various GC contents suggests that both mutation pressure and natural selection affect the codon usage pattern of genes located in human Y chromosome. In addition, Y-linked genes have significant difference in GC contents at the second and third codon positions, expression level, and codon usage pattern of some codons like the SPANX genes in X chromosome.

  7. Genome-wide comparative analysis of codon usage bias and codon context patterns among cyanobacterial genomes.

    Science.gov (United States)

    Prabha, Ratna; Singh, Dhananjaya P; Sinha, Swati; Ahmad, Khurshid; Rai, Anil

    2017-04-01

    With the increasing accumulation of genomic sequence information of prokaryotes, the study of codon usage bias has gained renewed attention. The purpose of this study was to examine codon selection pattern within and across cyanobacterial species belonging to diverse taxonomic orders and habitats. We performed detailed comparative analysis of cyanobacterial genomes with respect to codon bias. Our analysis reflects that in cyanobacterial genomes, A- and/or T-ending codons were used predominantly in the genes whereas G- and/or C-ending codons were largely avoided. Variation in the codon context usage of cyanobacterial genes corresponded to the clustering of cyanobacteria as per their GC content. Analysis of codon adaptation index (CAI) and synonymous codon usage order (SCUO) revealed that majority of genes are associated with low codon bias. Codon selection pattern in cyanobacterial genomes reflected compositional constraints as major influencing factor. It is also identified that although, mutational constraint may play some role in affecting codon usage bias in cyanobacteria, compositional constraint in terms of genomic GC composition coupled with environmental factors affected codon selection pattern in cyanobacterial genomes. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Codon and amino acid usage in two major human pathogens of genus Bartonella--optimization between replicational-transcriptional selection, translational control and cost minimization.

    Science.gov (United States)

    Das, Sabyasachi; Paul, Sandip; Chatterjee, Sanjib; Dutta, Chitra

    2005-01-01

    Intra-genomic variation in synonymous codon and amino acid usage in two human pathogens Bartonella henselae and B. quintana has been carried out through multivariate analysis. Asymmetric mutational bias, coupled with replicational-transcriptional selection, has been identified as the prime selection force behind synonymous codon selection--a characteristic of the genus Bartonella, not exhibited by any other alpha-proteobacterial genome. Distinct codon usage patterns and low synonymous divergence values between orthologous sequences of highly expressed genes from the two Bartonella species indicate that there exists a residual intra-strand synonymous codon bias in the highly expressed genes, possibly operating at the level of translation. In the case of amino acid usage, the mean hydropathy level and aromaticity are the major sources of variation, both having nearly equal impact, while strand-specific mutational pressure and gene expressivity strongly influence the inter-strand variations. In both species under study, the highly expressed gene products tend not to contain heavy and/or aromatic residues, following the cost-minimization hypothesis in spite of their intracellular lifestyle. The codon and amino acid usage in these two human pathogens are, therefore, consequences of a complex balance between replicational-transcriptional selection, translational control, protein hydropathy and cost minimization.

  9. Synonymous codon usage analysis of hand, foot and mouth disease viruses: A comparative study on coxsackievirus A6, A10, A16, and enterovirus 71 from 2008 to 2015.

    Science.gov (United States)

    Su, Weiheng; Li, Xue; Chen, Meili; Dai, Wenwen; Sun, Shiyang; Wang, Shuai; Sheng, Xin; Sun, Shixiang; Gao, Chen; Hou, Ali; Zhou, Yan; Sun, Bo; Gao, Feng; Xiao, Jingfa; Zhang, Zhewen; Jiang, Chunlai

    2017-09-01

    Enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) have been considered major pathogens of hand, foot and mouth disease (HFMD) throughout the world for decades. In recent years, coxsackievirus A6 (CVA6) and coxsackievirus A10 (CVA10) have raised attention as two other serious pathogens of HFMD. The present study focused on the synonymous codon usage of four viruses isolated from 2008 to 2015, with particular attention on P1 (encoding capsid proteins) and P2-P3 regions (both encoding non-structural proteins) in the genomic RNA. Relative synonymous codon usage, effective number of codons, neutrality and correspondence were analyzed. The results indicated that these viruses prefer A/T at the third position in codons rather than G/C. The most frequent codons of 4 essential and 2 semi-essential amino acids, as well as a key amino acid of metabolic junctions (Glu) used in the four viruses are also the most frequently used in humans. Effective number of codons (ENC) values indicated weak codon usage bias in all the viruses. Relatively, the force of mutation pressure in the P1 region was found to be stronger than that in the P2-P3 region, and this force in the P1 region of CVA6 and EV71 was stronger than that of CVA10 and A16. The neutrality analysis results implied that mutation pressure plays a minor role in shaping codon bias of these viruses. Correspondence analysis indicated that the codon usage of EV71 strains varied much more than that of other viruses. In conclusion, the present study provides novel and comparative insight into the evolution of HFMD pathogens at the codon level. Copyright © 2017. Published by Elsevier B.V.

  10. Codon usage bias in phylum Actinobacteria: relevance to environmental adaptation and host pathogenicity.

    Science.gov (United States)

    Lal, Devi; Verma, Mansi; Behura, Susanta K; Lal, Rup

    2016-10-01

    Actinobacteria are Gram-positive bacteria commonly found in soil, freshwater and marine ecosystems. In this investigation, bias in codon usages of ninety actinobacterial genomes was analyzed by estimating different indices of codon bias such as Nc (effective number of codons), SCUO (synonymous codon usage order), RSCU (relative synonymous codon usage), as well as sequence patterns of codon contexts. The results revealed several characteristic features of codon usage in Actinobacteria, as follows: 1) C- or G-ending codons are used frequently in comparison with A- and U ending codons; 2) there is a direct relationship of GC content with use of specific amino acids such as alanine, proline and glycine; 3) there is an inverse relationship between GC content and Nc estimates, 4) there is low SCUO value (Actinobacteria, extreme GC content and codon bias are driven by mutation rather than natural selection; (2) traits like aerobicity are associated with effective natural selection and therefore low GC content and low codon bias, demonstrating the role of both mutational bias and translational selection in shaping the habitat and phenotype of actinobacterial species. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  11. Nucleotide composition bias and codon usage trends of gene ...

    Indian Academy of Sciences (India)

    2015-06-10

    Jun 10, 2015 ... In a wide variety of organisms, synonymous codons are selected with different ... In addition, a series of GC skew and AT skew data was calculated for codon positions 1, ..... bias from different perspectives. Interestingly .... This study was supported by programme for Changjiang Scholars and Innovative ...

  12. Analysis of amino acid and codon usage in Paramecium bursaria.

    Science.gov (United States)

    Dohra, Hideo; Fujishima, Masahiro; Suzuki, Haruo

    2015-10-07

    The ciliate Paramecium bursaria harbors the green-alga Chlorella symbionts. We reassembled the P. bursaria transcriptome to minimize falsely fused transcripts, and investigated amino acid and codon usage using the transcriptome data. Surface proteins preferentially use smaller amino acid residues like cysteine. Unusual synonymous codon and amino acid usage in highly expressed genes can reflect a balance between translational selection and other factors. A correlation of gene expression level with synonymous codon or amino acid usage is emphasized in genes down-regulated in symbiont-bearing cells compared to symbiont-free cells. Our results imply that the selection is associated with P. bursaria-Chlorella symbiosis. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. Patterns of mutation and selection at synonymous sites in Drosophila

    DEFF Research Database (Denmark)

    Singh, Nadia D; Bauer DuMont, Vanessa L; Hubisz, Melissa J

    2007-01-01

    , when applied to 18 coding sequences in 3 species of Drosophila, confirmed an earlier report that the Notch gene in Drosophila melanogaster was evolving under selection in favor of those codons defined as unpreferred in this species. This finding opened the possibility that synonymous sites may...... be subject to a variety of selective pressures beyond weak selection for increased frequencies of the codons currently defined as "preferred" in D. melanogaster. To further explore patterns of synonymous site evolution in Drosophila in a lineage-specific manner, we expanded the application of the maximum...... likelihood framework to 8,452 protein coding sequences with well-defined orthology in D. melanogaster, Drosophila sechellia, and Drosophila yakuba. Our analyses reveal intragenomic and interspecific variation in mutational patterns as well as in patterns and intensity of selection on synonymous sites. In D...

  14. The relationship between codon usage bias and cold resistant genes

    International Nuclear Information System (INIS)

    Barozai, M.Y.; Din, M.

    2014-01-01

    This research is based on synonymous codon usage which has been well-known as a feature that affects typical expression level of protein in an organism. Different organisms prefer different codons for same amino acid and this is called Codon Usage Bias (CUB). The codon usage directly affects the level or even direction of changes in protein expression in responses to environmental stimuli. Cold stress is a major abiotic factor that limits the agricultural productivity of plants. In the recent study CUB has been studied in Arabidopsis thaliana cold resistant and housekeeping genes and their homologs in rice (Oryza sativa) to understand the cold stress and housekeeping genes relation with CUB. Six cold resistant and three housekeeping genes in Arabidopsis thaliana and their homologs in rice, were subjected to CUB analysis. The three cold resistant genes (DREB1B, RCI and MYB15) showed more than 50% (52%, 61% and 66% respectively) similar codon usage bias for Arabidopsis thaliana and rice. On the other hand three cold resistant genes (MPK3, ICE1 and ZAT12) showed less than 50% (38%, 38% and 47% respectively) similar codon usage bias for Arabidopsis thaliana and rice. The three housekeeping genes (Actin, Tubulin and Ubiquitin) showed 76% similar codon usage bias for Arabidopsis thaliana and rice. This study will help to manage the plant gene expression through codon optimization under the cold stress. (author)

  15. Codon Usage Patterns of Tyrosinase Genes in Clonorchis sinensis.

    Science.gov (United States)

    Bae, Young-An

    2017-04-01

    Codon usage bias (CUB) is a unique property of genomes and has contributed to the better understanding of the molecular features and the evolution processes of particular gene. In this study, genetic indices associated with CUB, including relative synonymous codon usage and effective numbers of codons, as well as the nucleotide composition, were investigated in the Clonorchis sinensis tyrosinase genes and their platyhelminth orthologs, which play an important role in the eggshell formation. The relative synonymous codon usage patterns substantially differed among tyrosinase genes examined. In a neutrality analysis, the correlation between GC 12 and GC 3 was statistically significant, and the regression line had a relatively gradual slope (0.218). NC-plot, i.e., GC 3 vs effective number of codons (ENC), showed that most of the tyrosinase genes were below the expected curve. The codon adaptation index (CAI) values of the platyhelminth tyrosinases had a narrow distribution between 0.685/0.714 and 0.797/0.837, and were negatively correlated with their ENC. Taken together, these results suggested that CUB in the tyrosinase genes seemed to be basically governed by selection pressures rather than mutational bias, although the latter factor provided an additional force in shaping CUB of the C. sinensis and Opisthorchis viverrini genes. It was also apparent that the equilibrium point between selection pressure and mutational bias is much more inclined to selection pressure in highly expressed C. sinensis genes, than in poorly expressed genes.

  16. Comparative evolutionary genomics of Corynebacterium with special reference to codon and amino acid usage diversities.

    Science.gov (United States)

    Pal, Shilpee; Sarkar, Indrani; Roy, Ayan; Mohapatra, Pradeep K Das; Mondal, Keshab C; Sen, Arnab

    2018-02-01

    The present study has been aimed to the comparative analysis of high GC composition containing Corynebacterium genomes and their evolutionary study by exploring codon and amino acid usage patterns. Phylogenetic study by MLSA approach, indel analysis and BLAST matrix differentiated Corynebacterium species in pathogenic and non-pathogenic clusters. Correspondence analysis on synonymous codon usage reveals that, gene length, optimal codon frequencies and tRNA abundance affect the gene expression of Corynebacterium. Most of the optimal codons as well as translationally optimal codons are C ending i.e. RNY (R-purine, N-any nucleotide base, and Y-pyrimidine) and reveal translational selection pressure on codon bias of Corynebacterium. Amino acid usage is affected by hydrophobicity, aromaticity, protein energy cost, etc. Highly expressed genes followed the cost minimization hypothesis and are less diverged at their synonymous positions of codons. Functional analysis of core genes shows significant difference in pathogenic and non-pathogenic Corynebacterium. The study reveals close relationship between non-pathogenic and opportunistic pathogenic Corynebaterium as well as between molecular evolution and survival niches of the organism.

  17. Gaining insights into the codon usage patterns of TP53 gene across eight mammalian species.

    Directory of Open Access Journals (Sweden)

    Tarikul Huda Mazumder

    Full Text Available TP53 gene is known as the "guardian of the genome" as it plays a vital role in regulating cell cycle, cell proliferation, DNA damage repair, initiation of programmed cell death and suppressing tumor growth. Non uniform usage of synonymous codons for a specific amino acid during translation of protein known as codon usage bias (CUB is a unique property of the genome and shows species specific deviation. Analysis of codon usage bias with compositional dynamics of coding sequences has contributed to the better understanding of the molecular mechanism and the evolution of a particular gene. In this study, the complete nucleotide coding sequences of TP53 gene from eight different mammalian species were used for CUB analysis. Our results showed that the codon usage patterns in TP53 gene across different mammalian species has been influenced by GC bias particularly GC3 and a moderate bias exists in the codon usage of TP53 gene. Moreover, we observed that nature has highly favored the most over represented codon CTG for leucine amino acid but selected against the ATA codon for isoleucine in TP53 gene across all mammalian species during the course of evolution.

  18. E-CAI: a novel server to estimate an expected value of Codon Adaptation Index (eCAI

    Directory of Open Access Journals (Sweden)

    Garcia-Vallvé Santiago

    2008-01-01

    Full Text Available Abstract Background The Codon Adaptation Index (CAI is a measure of the synonymous codon usage bias for a DNA or RNA sequence. It quantifies the similarity between the synonymous codon usage of a gene and the synonymous codon frequency of a reference set. Extreme values in the nucleotide or in the amino acid composition have a large impact on differential preference for synonymous codons. It is thence essential to define the limits for the expected value of CAI on the basis of sequence composition in order to properly interpret the CAI and provide statistical support to CAI analyses. Though several freely available programs calculate the CAI for a given DNA sequence, none of them corrects for compositional biases or provides confidence intervals for CAI values. Results The E-CAI server, available at http://genomes.urv.es/CAIcal/E-CAI, is a web-application that calculates an expected value of CAI for a set of query sequences by generating random sequences with G+C and amino acid content similar to those of the input. An executable file, a tutorial, a Frequently Asked Questions (FAQ section and several examples are also available. To exemplify the use of the E-CAI server, we have analysed the codon adaptation of human mitochondrial genes that codify a subunit of the mitochondrial respiratory chain (excluding those genes that lack a prokaryotic orthologue and are encoded in the nuclear genome. It is assumed that these genes were transferred from the proto-mitochondrial to the nuclear genome and that its codon usage was then ameliorated. Conclusion The E-CAI server provides a direct threshold value for discerning whether the differences in CAI are statistically significant or whether they are merely artifacts that arise from internal biases in the G+C composition and/or amino acid composition of the query sequences.

  19. Large-scale analyses of synonymous substitution rates can be sensitive to assumptions about the process of mutation.

    Science.gov (United States)

    Aris-Brosou, Stéphane; Bielawski, Joseph P

    2006-08-15

    A popular approach to examine the roles of mutation and selection in the evolution of genomes has been to consider the relationship between codon bias and synonymous rates of molecular evolution. A significant relationship between these two quantities is taken to indicate the action of weak selection on substitutions among synonymous codons. The neutral theory predicts that the rate of evolution is inversely related to the level of functional constraint. Therefore, selection against the use of non-preferred codons among those coding for the same amino acid should result in lower rates of synonymous substitution as compared with sites not subject to such selection pressures. However, reliably measuring the extent of such a relationship is problematic, as estimates of synonymous rates are sensitive to our assumptions about the process of molecular evolution. Previous studies showed the importance of accounting for unequal codon frequencies, in particular when synonymous codon usage is highly biased. Yet, unequal codon frequencies can be modeled in different ways, making different assumptions about the mutation process. Here we conduct a simulation study to evaluate two different ways of modeling uneven codon frequencies and show that both model parameterizations can have a dramatic impact on rate estimates and affect biological conclusions about genome evolution. We reanalyze three large data sets to demonstrate the relevance of our results to empirical data analysis.

  20. Revelation of Influencing Factors in Overall Codon Usage Bias of Equine Influenza Viruses.

    Directory of Open Access Journals (Sweden)

    Naveen Kumar

    Full Text Available Equine influenza viruses (EIVs of H3N8 subtype are culprits of severe acute respiratory infections in horses, and are still responsible for significant outbreaks worldwide. Adaptability of influenza viruses to a particular host is significantly influenced by their codon usage preference, due to an absolute dependence on the host cellular machinery for their replication. In the present study, we analyzed genome-wide codon usage patterns in 92 EIV strains, including both H3N8 and H7N7 subtypes by computing several codon usage indices and applying multivariate statistical methods. Relative synonymous codon usage (RSCU analysis disclosed bias of preferred synonymous codons towards A/U-ended codons. The overall codon usage bias in EIVs was slightly lower, and mainly affected by the nucleotide compositional constraints as inferred from the RSCU and effective number of codon (ENc analysis. Our data suggested that codon usage pattern in EIVs is governed by the interplay of mutation pressure, natural selection from its hosts and undefined factors. The H7N7 subtype was found less fit to its host (horse in comparison to H3N8, by possessing higher codon bias, lower mutation pressure and much less adaptation to tRNA pool of equine cells. To the best of our knowledge, this is the first report describing the codon usage analysis of the complete genomes of EIVs. The outcome of our study is likely to enhance our understanding of factors involved in viral adaptation, evolution, and fitness towards their hosts.

  1. Revelation of Influencing Factors in Overall Codon Usage Bias of Equine Influenza Viruses

    Science.gov (United States)

    Bhatia, Sandeep; Sood, Richa; Selvaraj, Pavulraj

    2016-01-01

    Equine influenza viruses (EIVs) of H3N8 subtype are culprits of severe acute respiratory infections in horses, and are still responsible for significant outbreaks worldwide. Adaptability of influenza viruses to a particular host is significantly influenced by their codon usage preference, due to an absolute dependence on the host cellular machinery for their replication. In the present study, we analyzed genome-wide codon usage patterns in 92 EIV strains, including both H3N8 and H7N7 subtypes by computing several codon usage indices and applying multivariate statistical methods. Relative synonymous codon usage (RSCU) analysis disclosed bias of preferred synonymous codons towards A/U-ended codons. The overall codon usage bias in EIVs was slightly lower, and mainly affected by the nucleotide compositional constraints as inferred from the RSCU and effective number of codon (ENc) analysis. Our data suggested that codon usage pattern in EIVs is governed by the interplay of mutation pressure, natural selection from its hosts and undefined factors. The H7N7 subtype was found less fit to its host (horse) in comparison to H3N8, by possessing higher codon bias, lower mutation pressure and much less adaptation to tRNA pool of equine cells. To the best of our knowledge, this is the first report describing the codon usage analysis of the complete genomes of EIVs. The outcome of our study is likely to enhance our understanding of factors involved in viral adaptation, evolution, and fitness towards their hosts. PMID:27119730

  2. Analysis of transcriptome data reveals multifactor constraint on codon usage in Taenia multiceps.

    Science.gov (United States)

    Huang, Xing; Xu, Jing; Chen, Lin; Wang, Yu; Gu, Xiaobin; Peng, Xuerong; Yang, Guangyou

    2017-04-20

    Codon usage bias (CUB) is an important evolutionary feature in genomes that has been widely observed in many organisms. However, the synonymous codon usage pattern in the genome of T. multiceps remains to be clarified. In this study, we analyzed the codon usage of T. multiceps based on the transcriptome data to reveal the constraint factors and to gain an improved understanding of the mechanisms that shape synonymous CUB. Analysis of a total of 8,620 annotated mRNA sequences from T. multiceps indicated only a weak codon bias, with mean GC and GC3 content values of 49.29% and 51.43%, respectively. Our analysis indicated that nucleotide composition, mutational pressure, natural selection, gene expression level, amino acids with grand average of hydropathicity (GRAVY) and aromaticity (Aromo) and the effective selection of amino-acids all contributed to the codon usage in T. multiceps. Among these factors, natural selection was implicated as the major factor affecting the codon usage variation in T. multiceps. The codon usage of ribosome genes was affected mainly by mutations, while the essential genes were affected mainly by selection. In addition, 21codons were identified as "optimal codons". Overall, the optimal codons were GC-rich (GC:AU, 41:22), and ended with G or C (except CGU). Furthermore, different degrees of variation in codon usage were found between T. multiceps and Escherichia coli, yeast, Homo sapiens. However, little difference was found between T. multiceps and Taenia pisiformis. In this study, the codon usage pattern of T. multiceps was analyzed systematically and factors affected CUB were also identified. This is the first study of codon biology in T. multiceps. Understanding the codon usage pattern in T. multiceps can be helpful for the discovery of new genes, molecular genetic engineering and evolutionary studies.

  3. Features of Recent Codon Evolution: A Comparative Polymorphism-Fixation Study

    Directory of Open Access Journals (Sweden)

    Zhongming Zhao

    2010-01-01

    Full Text Available Features of amino-acid and codon changes can provide us important insights on protein evolution. So far, investigators have often examined mutation patterns at either interspecies fixed substitution or intraspecies nucleotide polymorphism level, but not both. Here, we performed a unique analysis of a combined set of intra-species polymorphisms and inter-species substitutions in human codons. Strong difference in mutational pattern was found at codon positions 1, 2, and 3 between the polymorphism and fixation data. Fixation had strong bias towards increasing the rarest codons but decreasing the most frequently used codons, suggesting that codon equilibrium has not been reached yet. We detected strong CpG effect on CG-containing codons and subsequent suppression by fixation. Finally, we detected the signature of purifying selection against A∣U dinucleotides at synonymous dicodon boundaries. Overall, fixation process could effectively and quickly correct the volatile changes introduced by polymorphisms so that codon changes could be gradual and directional and that codon composition could be kept relatively stable during evolution.

  4. Characterization of coding synonymous and non-synonymous variants in ADAMTS13 using ex vivo and in silico approaches.

    Directory of Open Access Journals (Sweden)

    Nathan C Edwards

    Full Text Available Synonymous variations, which are defined as codon substitutions that do not change the encoded amino acid, were previously thought to have no effect on the properties of the synthesized protein(s. However, mounting evidence shows that these "silent" variations can have a significant impact on protein expression and function and should no longer be considered "silent". Here, the effects of six synonymous and six non-synonymous variations, previously found in the gene of ADAMTS13, the von Willebrand Factor (VWF cleaving hemostatic protease, have been investigated using a variety of approaches. The ADAMTS13 mRNA and protein expression levels, as well as the conformation and activity of the variants have been compared to that of wild-type ADAMTS13. Interestingly, not only the non-synonymous variants but also the synonymous variants have been found to change the protein expression levels, conformation and function. Bioinformatic analysis of ADAMTS13 mRNA structure, amino acid conservation and codon usage allowed us to establish correlations between mRNA stability, RSCU, and intracellular protein expression. This study demonstrates that variants and more specifically, synonymous variants can have a substantial and definite effect on ADAMTS13 function and that bioinformatic analysis may allow development of predictive tools to identify variants that will have significant effects on the encoded protein.

  5. Codon usage bias: causative factors, quantification methods and genome-wide patterns: with emphasis on insect genomes.

    Science.gov (United States)

    Behura, Susanta K; Severson, David W

    2013-02-01

    Codon usage bias refers to the phenomenon where specific codons are used more often than other synonymous codons during translation of genes, the extent of which varies within and among species. Molecular evolutionary investigations suggest that codon bias is manifested as a result of balance between mutational and translational selection of such genes and that this phenomenon is widespread across species and may contribute to genome evolution in a significant manner. With the advent of whole-genome sequencing of numerous species, both prokaryotes and eukaryotes, genome-wide patterns of codon bias are emerging in different organisms. Various factors such as expression level, GC content, recombination rates, RNA stability, codon position, gene length and others (including environmental stress and population size) can influence codon usage bias within and among species. Moreover, there has been a continuous quest towards developing new concepts and tools to measure the extent of codon usage bias of genes. In this review, we outline the fundamental concepts of evolution of the genetic code, discuss various factors that may influence biased usage of synonymous codons and then outline different principles and methods of measurement of codon usage bias. Finally, we discuss selected studies performed using whole-genome sequences of different insect species to show how codon bias patterns vary within and among genomes. We conclude with generalized remarks on specific emerging aspects of codon bias studies and highlight the recent explosion of genome-sequencing efforts on arthropods (such as twelve Drosophila species, species of ants, honeybee, Nasonia and Anopheles mosquitoes as well as the recent launch of a genome-sequencing project involving 5000 insects and other arthropods) that may help us to understand better the evolution of codon bias and its biological significance. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.

  6. Probable relationship between partitions of the set of codons and the origin of the genetic code.

    Science.gov (United States)

    Salinas, Dino G; Gallardo, Mauricio O; Osorio, Manuel I

    2014-03-01

    Here we study the distribution of randomly generated partitions of the set of amino acid-coding codons. Some results are an application from a previous work, about the Stirling numbers of the second kind and triplet codes, both to the cases of triplet codes having four stop codons, as in mammalian mitochondrial genetic code, and hypothetical doublet codes. Extending previous results, in this work it is found that the most probable number of blocks of synonymous codons, in a genetic code, is similar to the number of amino acids when there are four stop codons, as well as it could be for a primigenious doublet code. Also it is studied the integer partitions associated to patterns of synonymous codons and it is shown, for the canonical code, that the standard deviation inside an integer partition is one of the most probable. We think that, in some early epoch, the genetic code might have had a maximum of the disorder or entropy, independent of the assignment between codons and amino acids, reaching a state similar to "code freeze" proposed by Francis Crick. In later stages, maybe deterministic rules have reassigned codons to amino acids, forming the natural codes, such as the canonical code, but keeping the numerical features describing the set partitions and the integer partitions, like a "fossil numbers"; both kinds of partitions about the set of amino acid-coding codons. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Codon usage bias and the evolution of influenza A viruses. Codon Usage Biases of Influenza Virus

    Directory of Open Access Journals (Sweden)

    Wong Emily HM

    2010-08-01

    Full Text Available Abstract Background The influenza A virus is an important infectious cause of morbidity and mortality in humans and was responsible for 3 pandemics in the 20th century. As the replication of the influenza virus is based on its host's machinery, codon usage of its viral genes might be subject to host selection pressures, especially after interspecies transmission. A better understanding of viral evolution and host adaptive responses might help control this disease. Results Relative Synonymous Codon Usage (RSCU values of the genes from segment 1 to segment 6 of avian and human influenza viruses, including pandemic H1N1, were studied via Correspondence Analysis (CA. The codon usage patterns of seasonal human influenza viruses were distinct among their subtypes and different from those of avian viruses. Newly isolated viruses could be added to the CA results, creating a tool to investigate the host origin and evolution of viral genes. It was found that the 1918 pandemic H1N1 virus contained genes with mammalian-like viral codon usage patterns, indicating that the introduction of this virus to humans was not through in toto transfer of an avian influenza virus. Many human viral genes had directional changes in codon usage over time of viral isolation, indicating the effect of host selection pressures. These changes reduced the overall GC content and the usage of G at the third codon position in the viral genome. Limited evidence of translational selection pressure was found in a few viral genes. Conclusions Codon usage patterns from CA allowed identification of host origin and evolutionary trends in influenza viruses, providing an alternative method and a tool to understand the evolution of influenza viruses. Human influenza viruses are subject to selection pressure on codon usage which might assist in understanding the characteristics of newly emerging viruses.

  8. Codon-triplet context unveils unique features of the Candida albicans protein coding genome

    Directory of Open Access Journals (Sweden)

    Oliveira José L

    2007-11-01

    Full Text Available Abstract Background The evolutionary forces that determine the arrangement of synonymous codons within open reading frames and fine tune mRNA translation efficiency are not yet understood. In order to tackle this question we have carried out a large scale study of codon-triplet contexts in 11 fungal species to unravel associations or relationships between codons present at the ribosome A-, P- and E-sites during each decoding cycle. Results Our analysis unveiled high bias within the context of codon-triplets, in particular strong preference for triplets of identical codons. We have also identified a surprisingly large number of codon-triplet combinations that vanished from fungal ORFeomes. Candida albicans exacerbated these features, showed an unbalanced tRNA population for decoding its pool of codons and used near-cognate decoding for a large set of codons, suggesting that unique evolutionary forces shaped the evolution of its ORFeome. Conclusion We have developed bioinformatics tools for large-scale analysis of codon-triplet contexts. These algorithms identified codon-triplets context biases, allowed for large scale comparative codon-triplet analysis, and identified rules governing codon-triplet context. They could also detect alterations to the standard genetic code.

  9. Preferred and avoided codon pairs in three domains of life

    Directory of Open Access Journals (Sweden)

    Tenson Tanel

    2008-10-01

    Full Text Available Abstract Background Alternative synonymous codons are not used with equal frequencies. In addition, the contexts of codons – neighboring nucleotides and neighboring codons – can have certain patterns. The codon context can influence both translational accuracy and elongation rates. However, it is not known how strong or conserved the codon context preferences in different organisms are. We analyzed 138 organisms (bacteria, archaea and eukaryotes to find conserved patterns of codon pairs. Results After removing the effects of single codon usage and dipeptide biases we discovered a set of neighboring codons for which avoidances or preferences were conserved in all three domains of life. Such biased codon pairs could be divided into subtypes on the basis of the nucleotide patterns that influence the bias. The most frequently avoided type of codon pair was nnUAnn. We discovered that 95.7% of avoided nnUAnn type patterns contain out-frame UAA or UAG triplets on the sense and/or antisense strand. On average, nnUAnn codon pairs are more frequently avoided in ORFeomes than in genomes. Thus we assume that translational selection plays a major role in the avoidance of these codon pairs. Among the preferred codon pairs, nnGCnn was the major type. Conclusion Translational selection shapes codon pair usage in protein coding sequences by rules that are common to all three domains of life. The most frequently avoided codon pairs contain the patterns nnUAnn, nnGGnn, nnGnnC, nnCGCn, GUCCnn, CUCCnn, nnCnnA or UUCGnn. The most frequently preferred codon pairs contain the patterns nnGCnn, nnCAnn or nnUnCn.

  10. Over Expression of a tRNALeu Isoacceptor Changes Charging Pattern of Leucine tRNAs and Reveals New Codon Reading

    DEFF Research Database (Denmark)

    Sørensen, Michael Askvad; Elf, J.; Bouakaz, E.

    2005-01-01

    During mRNA translation, synonymous codons for one amino acid are often read by different isoaccepting tRNAs. The theory of selective tRNA charging predicts greatly varying percentages of aminoacylation among isoacceptors in cells starved for their common amino acid. It also predicts major changes...... in tRNA charging patterns upon concentration changes of single isoacceptors, which suggests a novel type of translational control of gene expression. We therefore tested the theory by measuring with Northern blots the charging of Leu-tRNAs in Escherichia coli under Leu limitation in response to over...... postulated a previously unknown common codon for tRNALeu GAG and tRNALeu UAG. Subsequently, we demonstrated that the tRNALeu GAG codon CUU is, in fact, read also by tRNALeu UAG, due to a uridine-5-oxyacetic acid modification....

  11. Genomic composition factors affect codon usage in porcine genome

    African Journals Online (AJOL)

    j.khobondo

    2015-01-28

    Jan 28, 2015 ... The mutational bias hypothesis predicted that genes in the GC-rich regions of the genome ... observed codon divided by its expected frequency at equilibrium. An RSCU value close to 1 indicates lack of bias, ..... study our results points to preferred usage of both C or G and A or T at the synonyms sites as ...

  12. Genomic analysis of codon usage shows influence of mutation pressure, natural selection, and host features on Marburg virus evolution.

    Science.gov (United States)

    Nasrullah, Izza; Butt, Azeem M; Tahir, Shifa; Idrees, Muhammad; Tong, Yigang

    2015-08-26

    The Marburg virus (MARV) has a negative-sense single-stranded RNA genome, belongs to the family Filoviridae, and is responsible for several outbreaks of highly fatal hemorrhagic fever. Codon usage patterns of viruses reflect a series of evolutionary changes that enable viruses to shape their survival rates and fitness toward the external environment and, most importantly, their hosts. To understand the evolution of MARV at the codon level, we report a comprehensive analysis of synonymous codon usage patterns in MARV genomes. Multiple codon analysis approaches and statistical methods were performed to determine overall codon usage patterns, biases in codon usage, and influence of various factors, including mutation pressure, natural selection, and its two hosts, Homo sapiens and Rousettus aegyptiacus. Nucleotide composition and relative synonymous codon usage (RSCU) analysis revealed that MARV shows mutation bias and prefers U- and A-ended codons to code amino acids. Effective number of codons analysis indicated that overall codon usage among MARV genomes is slightly biased. The Parity Rule 2 plot analysis showed that GC and AU nucleotides were not used proportionally which accounts for the presence of natural selection. Codon usage patterns of MARV were also found to be influenced by its hosts. This indicates that MARV have evolved codon usage patterns that are specific to both of its hosts. Moreover, selection pressure from R. aegyptiacus on the MARV RSCU patterns was found to be dominant compared with that from H. sapiens. Overall, mutation pressure was found to be the most important and dominant force that shapes codon usage patterns in MARV. To our knowledge, this is the first detailed codon usage analysis of MARV and extends our understanding of the mechanisms that contribute to codon usage and evolution of MARV.

  13. Codon Bias Patterns of E. coli's Interacting Proteins.

    Directory of Open Access Journals (Sweden)

    Maddalena Dilucca

    Full Text Available Synonymous codons, i.e., DNA nucleotide triplets coding for the same amino acid, are used differently across the variety of living organisms. The biological meaning of this phenomenon, known as codon usage bias, is still controversial. In order to shed light on this point, we propose a new codon bias index, CompAI, that is based on the competition between cognate and near-cognate tRNAs during translation, without being tuned to the usage bias of highly expressed genes. We perform a genome-wide evaluation of codon bias for E.coli, comparing CompAI with other widely used indices: tAI, CAI, and Nc. We show that CompAI and tAI capture similar information by being positively correlated with gene conservation, measured by the Evolutionary Retention Index (ERI, and essentiality, whereas, CAI and Nc appear to be less sensitive to evolutionary-functional parameters. Notably, the rate of variation of tAI and CompAI with ERI allows to obtain sets of genes that consistently belong to specific clusters of orthologous genes (COGs. We also investigate the correlation of codon bias at the genomic level with the network features of protein-protein interactions in E.coli. We find that the most densely connected communities of the network share a similar level of codon bias (as measured by CompAI and tAI. Conversely, a small difference in codon bias between two genes is, statistically, a prerequisite for the corresponding proteins to interact. Importantly, among all codon bias indices, CompAI turns out to have the most coherent distribution over the communities of the interactome, pointing to the significance of competition among cognate and near-cognate tRNAs for explaining codon usage adaptation. Notably, CompAI may potentially correlate with translation speed measurements, by accounting for the specific delay induced by wobble-pairing between codons and anticodons.

  14. Chloroplast DNA codon use: evidence for selection at the psb A locus based on tRNA availability.

    Science.gov (United States)

    Morton, B R

    1993-09-01

    Codon use in the three sequenced chloroplast genomes (Marchantia, Oryza, and Nicotiana) is examined. The chloroplast has a bias in that codons NNA and NNT are favored over synonymous NNC and NNG codons. This appears to be a consequence of an overall high A + T content of the genome. This pattern of codon use is not followed by the psb A gene of all three genomes and other psb A sequences examined. In this gene, the codon use favors NNC over NNT for twofold degenerate amino acids. In each case the only tRNA coded by the genome is complementary to the NNC codon. This codon use is similar to the codon use by chloroplast genes examined from Chlamydomonas reinhardtii. Since psb A is the major translation product of the chloroplast, this suggests that selection is acting on the codon use of this gene to adapt codons to tRNA availability, as previously suggested for unicellular organisms.

  15. Codon usage regulates protein structure and function by affecting translation elongation speed in Drosophila cells.

    Science.gov (United States)

    Zhao, Fangzhou; Yu, Chien-Hung; Liu, Yi

    2017-08-21

    Codon usage biases are found in all eukaryotic and prokaryotic genomes and have been proposed to regulate different aspects of translation process. Codon optimality has been shown to regulate translation elongation speed in fungal systems, but its effect on translation elongation speed in animal systems is not clear. In this study, we used a Drosophila cell-free translation system to directly compare the velocity of mRNA translation elongation. Our results demonstrate that optimal synonymous codons speed up translation elongation while non-optimal codons slow down translation. In addition, codon usage regulates ribosome movement and stalling on mRNA during translation. Finally, we show that codon usage affects protein structure and function in vitro and in Drosophila cells. Together, these results suggest that the effect of codon usage on translation elongation speed is a conserved mechanism from fungi to animals that can affect protein folding in eukaryotic organisms. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Translational selection on codon usage in the genus Aspergillus.

    Science.gov (United States)

    Iriarte, Andrés; Sanguinetti, Manuel; Fernández-Calero, Tamara; Naya, Hugo; Ramón, Ana; Musto, Héctor

    2012-09-10

    Aspergillus is a genus of mold fungi that includes more than 200 described species. Many members of the group are relevant pathogens and other species are economically important. Only one species has been analyzed for codon usage, and this was performed with a small number of genes. In this paper, we report the codon usage patterns of eight completely sequenced genomes which belong to this genus. The results suggest that selection for translational efficiency and accuracy are the major factors shaping codon usage in all of the species studied so far, and therefore they were active in the last common ancestor of the group. Composition and molecular distances analyses show that highly expressed genes evolve slower at synonymous sites. We identified a conserved core of translationally optimal codons and study the tRNA gene pool in each genome. We found that the great majority of preferred triplets match the respective cognate tRNA with more copies in the respective genome. We discuss the possible scenarios that can explain the observed differences among the species analyzed. Finally we highlight the biotechnological application of this research regarding heterologous protein expression. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Enhanced expression of codon optimized Mycobacterium avium subsp. paratuberculosis antigens in Lactobacillus salivarius

    Directory of Open Access Journals (Sweden)

    Christopher D Johnston

    2014-09-01

    Full Text Available It is well documented that open reading frames containing high GC content show poor expression in A+T rich hosts. Specifically, G+C-rich codon usage is a limiting factor in heterologous expression of Mycobacterium avium subsp. paratuberculosis (MAP proteins using Lactobacillus salivarius. However, re-engineering opening reading frames through synonymous substitutions can offset codon bias and greatly enhance MAP protein production in this host. In this report, we demonstrate that codon-usage manipulation of two MAP genes (MAP2121c and MAP3733c can enhance the heterologous expression of two antigens (MMP and MptD respectively, analogous to the form to which they are produced natively by MAP bacilli. When heterologously over-expressed, antigenic determinants were preserved in synthetic MMP proteins as shown by monoclonal antibody mediated ELISA. Moreover, MMP is a membrane protein in MAP, which is also targeted to the cellular surface of recombinant L. salivarius at levels comparable to MAP. Additionally, codon optimised MptD displayed the tendency to associate with the cytoplasmic membrane boundary under confocal microscopy and the intracellularly accumulated protein selectively adhered with the MptD-specific bacteriophage fMptD. This work demonstrates there is potential for L. salivarius as a viable antigen delivery vehicle for MAP, which may provide an effective mucosal vaccine against Johne’s disease.

  18. Ribosomes slide on lysine-encoding homopolymeric A stretches

    Science.gov (United States)

    Koutmou, Kristin S; Schuller, Anthony P; Brunelle, Julie L; Radhakrishnan, Aditya; Djuranovic, Sergej; Green, Rachel

    2015-01-01

    Protein output from synonymous codons is thought to be equivalent if appropriate tRNAs are sufficiently abundant. Here we show that mRNAs encoding iterated lysine codons, AAA or AAG, differentially impact protein synthesis: insertion of iterated AAA codons into an ORF diminishes protein expression more than insertion of synonymous AAG codons. Kinetic studies in E. coli reveal that differential protein production results from pausing on consecutive AAA-lysines followed by ribosome sliding on homopolymeric A sequence. Translation in a cell-free expression system demonstrates that diminished output from AAA-codon-containing reporters results from premature translation termination on out of frame stop codons following ribosome sliding. In eukaryotes, these premature termination events target the mRNAs for Nonsense-Mediated-Decay (NMD). The finding that ribosomes slide on homopolymeric A sequences explains bioinformatic analyses indicating that consecutive AAA codons are under-represented in gene-coding sequences. Ribosome ‘sliding’ represents an unexpected type of ribosome movement possible during translation. DOI: http://dx.doi.org/10.7554/eLife.05534.001 PMID:25695637

  19. Positive selection for unpreferred codon usage in eukaryotic genomes

    Directory of Open Access Journals (Sweden)

    Galagan James E

    2007-07-01

    Full Text Available Abstract Background Natural selection has traditionally been understood as a force responsible for pushing genes to states of higher translational efficiency, whereas lower translational efficiency has been explained by neutral mutation and genetic drift. We looked for evidence of directional selection resulting in increased unpreferred codon usage (and presumably reduced translational efficiency in three divergent clusters of eukaryotic genomes using a simple optimal-codon-based metric (Kp/Ku. Results Here we show that for some genes natural selection is indeed responsible for causing accelerated unpreferred codon substitution, and document the scope of this selection. In Cryptococcus and to a lesser extent Drosophila, we find many genes showing a statistically significant signal of selection for unpreferred codon usage in one or more lineages. We did not find evidence for this type of selection in Saccharomyces. The signal of positive selection observed from unpreferred synonymous codon substitutions is coincident in Cryptococcus and Drosophila with the distribution of upstream open reading frames (uORFs, another genic feature known to reduce translational efficiency. Functional enrichment analysis of genes exhibiting low Kp/Ku ratios reveals that genes in regulatory roles are particularly subject to this type of selection. Conclusion Through genome-wide scans, we find recent selection for unpreferred codon usage at approximately 1% of genetic loci in a Cryptococcus and several genes in Drosophila. Unpreferred codons can impede translation efficiency, and we find that genes with translation-impeding uORFs are enriched for this selection signal. We find that regulatory genes are particularly likely to be subject to selection for unpreferred codon usage. Given that expression noise can propagate through regulatory cascades, and that low translational efficiency can reduce expression noise, this finding supports the hypothesis that translational

  20. Large-Scale Genomic Analysis of Codon Usage in Dengue Virus and Evaluation of Its Phylogenetic Dependence

    Science.gov (United States)

    Lara-Ramírez, Edgar E.; Salazar, Ma Isabel; López-López, María de Jesús; Salas-Benito, Juan Santiago; Sánchez-Varela, Alejandro

    2014-01-01

    The increasing number of dengue virus (DENV) genome sequences available allows identifying the contributing factors to DENV evolution. In the present study, the codon usage in serotypes 1–4 (DENV1–4) has been explored for 3047 sequenced genomes using different statistics methods. The correlation analysis of total GC content (GC) with GC content at the three nucleotide positions of codons (GC1, GC2, and GC3) as well as the effective number of codons (ENC, ENCp) versus GC3 plots revealed mutational bias and purifying selection pressures as the major forces influencing the codon usage, but with distinct pressure on specific nucleotide position in the codon. The correspondence analysis (CA) and clustering analysis on relative synonymous codon usage (RSCU) within each serotype showed similar clustering patterns to the phylogenetic analysis of nucleotide sequences for DENV1–4. These clustering patterns are strongly related to the virus geographic origin. The phylogenetic dependence analysis also suggests that stabilizing selection acts on the codon usage bias. Our analysis of a large scale reveals new feature on DENV genomic evolution. PMID:25136631

  1. Genome-wide analysis of codon usage bias in four sequenced cotton species.

    Science.gov (United States)

    Wang, Liyuan; Xing, Huixian; Yuan, Yanchao; Wang, Xianlin; Saeed, Muhammad; Tao, Jincai; Feng, Wei; Zhang, Guihua; Song, Xianliang; Sun, Xuezhen

    2018-01-01

    Codon usage bias (CUB) is an important evolutionary feature in a genome which provides important information for studying organism evolution, gene function and exogenous gene expression. The CUB and its shaping factors in the nuclear genomes of four sequenced cotton species, G. arboreum (A2), G. raimondii (D5), G. hirsutum (AD1) and G. barbadense (AD2) were analyzed in the present study. The effective number of codons (ENC) analysis showed the CUB was weak in these four species and the four subgenomes of the two tetraploids. Codon composition analysis revealed these four species preferred to use pyrimidine-rich codons more frequently than purine-rich codons. Correlation analysis indicated that the base content at the third position of codons affect the degree of codon preference. PR2-bias plot and ENC-plot analyses revealed that the CUB patterns in these genomes and subgenomes were influenced by combined effects of translational selection, directional mutation and other factors. The translational selection (P2) analysis results, together with the non-significant correlation between GC12 and GC3, further revealed that translational selection played the dominant role over mutation pressure in the codon usage bias. Through relative synonymous codon usage (RSCU) analysis, we detected 25 high frequency codons preferred to end with T or A, and 31 low frequency codons inclined to end with C or G in these four species and four subgenomes. Finally, 19 to 26 optimal codons with 19 common ones were determined for each species and subgenomes, which preferred to end with A or T. We concluded that the codon usage bias was weak and the translation selection was the main shaping factor in nuclear genes of these four cotton genomes and four subgenomes.

  2. Large-Scale Genomic Analysis of Codon Usage in Dengue Virus and Evaluation of Its Phylogenetic Dependence

    Directory of Open Access Journals (Sweden)

    Edgar E. Lara-Ramírez

    2014-01-01

    Full Text Available The increasing number of dengue virus (DENV genome sequences available allows identifying the contributing factors to DENV evolution. In the present study, the codon usage in serotypes 1–4 (DENV1–4 has been explored for 3047 sequenced genomes using different statistics methods. The correlation analysis of total GC content (GC with GC content at the three nucleotide positions of codons (GC1, GC2, and GC3 as well as the effective number of codons (ENC, ENCp versus GC3 plots revealed mutational bias and purifying selection pressures as the major forces influencing the codon usage, but with distinct pressure on specific nucleotide position in the codon. The correspondence analysis (CA and clustering analysis on relative synonymous codon usage (RSCU within each serotype showed similar clustering patterns to the phylogenetic analysis of nucleotide sequences for DENV1–4. These clustering patterns are strongly related to the virus geographic origin. The phylogenetic dependence analysis also suggests that stabilizing selection acts on the codon usage bias. Our analysis of a large scale reveals new feature on DENV genomic evolution.

  3. Enhanced expression of codon optimized Mycobacterium avium subsp. paratuberculosis antigens in Lactobacillus salivarius.

    Science.gov (United States)

    Johnston, Christopher D; Bannantine, John P; Govender, Rodney; Endersen, Lorraine; Pletzer, Daniel; Weingart, Helge; Coffey, Aidan; O'Mahony, Jim; Sleator, Roy D

    2014-01-01

    It is well documented that open reading frames containing high GC content show poor expression in A+T rich hosts. Specifically, G+C-rich codon usage is a limiting factor in heterologous expression of Mycobacterium avium subsp. paratuberculosis (MAP) proteins using Lactobacillus salivarius. However, re-engineering opening reading frames through synonymous substitutions can offset codon bias and greatly enhance MAP protein production in this host. In this report, we demonstrate that codon-usage manipulation of MAP2121c can enhance the heterologous expression of the major membrane protein (MMP), analogous to the form in which it is produced natively by MAP bacilli. When heterologously over-expressed, antigenic determinants were preserved in synthetic MMP proteins as shown by monoclonal antibody mediated ELISA. Moreover, MMP is a membrane protein in MAP, which is also targeted to the cellular surface of recombinant L. salivarius at levels comparable to MAP. Additionally, we previously engineered MAP3733c (encoding MptD) and show herein that MptD displays the tendency to associate with the cytoplasmic membrane boundary under confocal microscopy and the intracellularly accumulated protein selectively adheres to the MptD-specific bacteriophage fMptD. This work demonstrates there is potential for L. salivarius as a viable antigen delivery vehicle for MAP, which may provide an effective mucosal vaccine against Johne's disease.

  4. Numeral series hidden in the distribution of atomic mass of amino acids to codon domains in the genetic code.

    Science.gov (United States)

    Wohlin, Åsa

    2015-03-21

    The distribution of codons in the nearly universal genetic code is a long discussed issue. At the atomic level, the numeral series 2x(2) (x=5-0) lies behind electron shells and orbitals. Numeral series appear in formulas for spectral lines of hydrogen. The question here was if some similar scheme could be found in the genetic code. A table of 24 codons was constructed (synonyms counted as one) for 20 amino acids, four of which have two different codons. An atomic mass analysis was performed, built on common isotopes. It was found that a numeral series 5 to 0 with exponent 2/3 times 10(2) revealed detailed congruency with codon-grouped amino acid side-chains, simultaneously with the division on atom kinds, further with main 3rd base groups, backbone chains and with codon-grouped amino acids in relation to their origin from glycolysis or the citrate cycle. Hence, it is proposed that this series in a dynamic way may have guided the selection of amino acids into codon domains. Series with simpler exponents also showed noteworthy correlations with the atomic mass distribution on main codon domains; especially the 2x(2)-series times a factor 16 appeared as a conceivable underlying level, both for the atomic mass and charge distribution. Furthermore, it was found that atomic mass transformations between numeral systems, possibly interpretable as dimension degree steps, connected the atomic mass of codon bases with codon-grouped amino acids and with the exponent 2/3-series in several astonishing ways. Thus, it is suggested that they may be part of a deeper reference system. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.

  5. Mutations to Less-Preferred Synonymous Codons in a Highly Expressed Gene of Escherichia coli: Fitness and Epistatic Interactions.

    Directory of Open Access Journals (Sweden)

    David J Hauber

    Full Text Available Codon-tRNA coevolution to maximize protein production has been, until recently, the dominant hypothesis to explain codon-usage bias in highly expressed bacterial genes. Two predictions of this hypothesis are 1 selection is weak; and 2 similar silent replacements at different codons should have similar fitness consequence. We used an allele-replacement strategy to change five specific 3rd-codon-position (silent sites in the highly expressed Escherichia coli ribosomal protein gene rplQ from the wild type to a less-preferred alternative. We introduced the five mutations within a 10-codon region. Four of the silent sites were chosen to test the second prediction, with a CTG to CTA mutation being introduced at two closely linked leucine codons and an AAA to AAG mutation being introduced at two closely linked lysine codons. We also introduced a fifth silent mutation, a GTG to GTA mutation at a valine codon in the same genic region. We measured the fitness effect of the individual mutations by competing each single-mutant strain against the parental wild-type strain, using a disrupted form of the araA gene as a selectively neutral phenotypic marker to distinguish between strains in direct competition experiments. Three of the silent mutations had a fitness effect of |s| > 0.02, which is contradictory to the prediction that selection will be weak. The two leucine mutations had significantly different fitness effects, as did the two lysine mutations, contradictory to the prediction that similar mutations at different codons should have similar fitness effects. We also constructed a strain carrying all five silent mutations in combination. Its fitness effect was greater than that predicted from the individual fitness values, suggesting that negative synergistic epistasis acts on the combination allele.

  6. Improved production of membrane proteins in Escherichia coli by selective codon substitutions

    DEFF Research Database (Denmark)

    Nørholm, Morten H.H.; Toddo, Stephen; Virkki, Minttu T.I.

    2013-01-01

    Membrane proteins are extremely challenging to produce in sufficient quantities for biochemical and structural analysis and there is a growing demand for solutions to this problem. In this study we attempted to improve expression of two difficult-to-express coding sequences (araH and narK) for me......Membrane proteins are extremely challenging to produce in sufficient quantities for biochemical and structural analysis and there is a growing demand for solutions to this problem. In this study we attempted to improve expression of two difficult-to-express coding sequences (araH and nar......K) for membrane transporters. For both coding sequences, synonymous codon substitutions in the region adjacent to the AUG start led to significant improvements in expression, whereas multi-parameter sequence optimization of codons throughout the coding sequence failed. We conclude that coding sequences can be re...

  7. The effect of tRNA levels on decoding times of mRNA codons.

    Science.gov (United States)

    Dana, Alexandra; Tuller, Tamir

    2014-08-01

    The possible effect of transfer ribonucleic acid (tRNA) concentrations on codons decoding time is a fundamental biomedical research question; however, due to a large number of variables affecting this process and the non-direct relation between them, a conclusive answer to this question has eluded so far researchers in the field. In this study, we perform a novel analysis of the ribosome profiling data of four organisms which enables ranking the decoding times of different codons while filtering translational phenomena such as experimental biases, extreme ribosomal pauses and ribosome traffic jams. Based on this filtering, we show for the first time that there is a significant correlation between tRNA concentrations and the codons estimated decoding time both in prokaryotes and in eukaryotes in natural conditions (-0.38 to -0.66, all P values decoding times are not correlated with aminoacyl-tRNA levels. The reported results support the conjecture that translation efficiency is directly influenced by the tRNA levels in the cell. Thus, they should help to understand the evolution of synonymous aspects of coding sequences via the adaptation of their codons to the tRNA pool. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Relative codon adaptation: a generic codon bias index for prediction of gene expression.

    Science.gov (United States)

    Fox, Jesse M; Erill, Ivan

    2010-06-01

    The development of codon bias indices (CBIs) remains an active field of research due to their myriad applications in computational biology. Recently, the relative codon usage bias (RCBS) was introduced as a novel CBI able to estimate codon bias without using a reference set. The results of this new index when applied to Escherichia coli and Saccharomyces cerevisiae led the authors of the original publications to conclude that natural selection favours higher expression and enhanced codon usage optimization in short genes. Here, we show that this conclusion was flawed and based on the systematic oversight of an intrinsic bias for short sequences in the RCBS index and of biases in the small data sets used for validation in E. coli. Furthermore, we reveal that how the RCBS can be corrected to produce useful results and how its underlying principle, which we here term relative codon adaptation (RCA), can be made into a powerful reference-set-based index that directly takes into account the genomic base composition. Finally, we show that RCA outperforms the codon adaptation index (CAI) as a predictor of gene expression when operating on the CAI reference set and that this improvement is significantly larger when analysing genomes with high mutational bias.

  9. Accessibility of the Shine-Dalgarno sequence dictates N-terminal codon bias in E. coli

    OpenAIRE

    Shakhnovich, Eugene; Zhang, Wenli; Yan, Jin; Adkar, Bharat; Jacobs, William; Bhattacharyya, Sanchari; Adkar, Bharat

    2018-01-01

    Despite considerable efforts, no physical mechanism has been shown to explain N-terminal codon bias in prokaryotic genomes. Using a systematic study of synonymous substitutions in two endogenous E. coli genes, we show that interactions between the coding region and the upstream Shine-Dalgarno (SD) sequence modulate the efficiency of translation initiation, affecting both intracellular mRNA and protein levels due to the inherent coupling of transcription and translation in E. coli. We further ...

  10. Evolution of type 2 vaccine derived poliovirus lineages. Evidence for codon-specific positive selection at three distinct locations on capsid wall.

    Directory of Open Access Journals (Sweden)

    Tapani Hovi

    Full Text Available Partial sequences of 110 type 2 poliovirus strains isolated from sewage in Slovakia in 2003-2005, and most probably originating from a single dose of oral poliovirus vaccine, were subjected to a detailed genetic analysis. Evolutionary patterns of these vaccine derived poliovirus strains (SVK-aVDPV2 were compared to those of type 1 and type 3 wild poliovirus (WPV lineages considered to have a single seed strain origin, respectively. The 102 unique SVK-aVDPV VP1 sequences were monophyletic differing from that of the most likely parental poliovirus type 2/Sabin (PV2 Sabin by 12.5-15.6%. Judging from this difference and from the rate of accumulation of synonymous transversions during the 22 month observation period, the relevant oral poliovirus vaccine dose had been administered to an unknown recipient more than 12 years earlier. The patterns of nucleotide substitution during the observation period differed from those found in the studied lineages of WPV1 or 3, including a lower transition/transversion (Ts/Tv bias and strikingly lower Ts/Tv rate ratios at the 2(nd codon position for both purines and pyrimidines. A relatively low preference of transitions at the 2(nd codon position was also found in the large set of VP1 sequences of Nigerian circulating (cVDPV2, as well as in the smaller sets from the Hispaniola cVDPV1 and Egypt cVDPV2 outbreaks, and among aVDPV1and aVDPV2 strains recently isolated from sewage in Finland. Codon-wise analysis of synonymous versus non-synonymous substitution rates in the VP1 sequences suggested that in five codons, those coding for amino acids at sites 24, 144, 147, 221 and 222, there may have been positive selection during the observation period. We conclude that pattern of poliovirus VP1 evolution in prolonged infection may differ from that found in WPV epidemics. Further studies on sufficiently large independent datasets are needed to confirm this suggestion and to reveal its potential significance.

  11. CodonLogo: a sequence logo-based viewer for codon patterns.

    Science.gov (United States)

    Sharma, Virag; Murphy, David P; Provan, Gregory; Baranov, Pavel V

    2012-07-15

    Conserved patterns across a multiple sequence alignment can be visualized by generating sequence logos. Sequence logos show each column in the alignment as stacks of symbol(s) where the height of a stack is proportional to its informational content, whereas the height of each symbol within the stack is proportional to its frequency in the column. Sequence logos use symbols of either nucleotide or amino acid alphabets. However, certain regulatory signals in messenger RNA (mRNA) act as combinations of codons. Yet no tool is available for visualization of conserved codon patterns. We present the first application which allows visualization of conserved regions in a multiple sequence alignment in the context of codons. CodonLogo is based on WebLogo3 and uses the same heuristics but treats codons as inseparable units of a 64-letter alphabet. CodonLogo can discriminate patterns of codon conservation from patterns of nucleotide conservation that appear indistinguishable in standard sequence logos. The CodonLogo source code and its implementation (in a local version of the Galaxy Browser) are available at http://recode.ucc.ie/CodonLogo and through the Galaxy Tool Shed at http://toolshed.g2.bx.psu.edu/.

  12. Stop Codon Reassignment in the Wild

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, Natalia [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Schwientek, Patrick [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Tripp, H. James [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Rinke, Christian [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Pati, Amrita [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Huntemann, Marcel [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Visel, Axel [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Woyke, Tanja [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Kyrpides, Nikos [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Rubin, Edward [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.

    2014-03-21

    Since the discovery of the genetic code and protein translation mechanisms (1), a limited number of variations of the standard assignment between unique base triplets (codons) and their encoded amino acids and translational stop signals have been found in bacteria and phages (2-3). Given the apparent ubiquity of the canonical genetic code, the design of genomically recoded organisms with non-canonical codes has been suggested as a means to prevent horizontal gene transfer between laboratory and environmental organisms (4). It is also predicted that genomically recoded organisms are immune to infection by viruses, under the assumption that phages and their hosts must share a common genetic code (5). This paradigm is supported by the observation of increased resistance of genomically recoded bacteria to phages with a canonical code (4). Despite these assumptions and accompanying lines of evidence, it remains unclear whether differential and non-canonical codon usage represents an absolute barrier to phage infection and genetic exchange between organisms. Our knowledge of the diversity of genetic codes and their use by viruses and their hosts is primarily derived from the analysis of cultivated organisms. Advances in single-cell sequencing and metagenome assembly technologies have enabled the reconstruction of genomes of uncultivated bacterial and archaeal lineages (6). These initial findings suggest that large scale systematic studies of uncultivated microorganisms and viruses may reveal the extent and modes of divergence from the canonical genetic code operating in nature. To explore alternative genetic codes, we carried out a systematic analysis of stop codon reassignments from the canonical TAG amber, TGA opal, and TAA ochre codons in assembled metagenomes from environmental and host-associated samples, single-cell genomes of uncultivated bacteria and archaea, and a collection of phage sequences

  13. Annonaceae substitution rates: a codon model perspective

    Directory of Open Access Journals (Sweden)

    Lars Willem Chatrou

    2014-01-01

    Full Text Available The Annonaceae includes cultivated species of economic interest and represents an important source of information for better understanding the evolution of tropical rainforests. In phylogenetic analyses of DNA sequence data that are used to address evolutionary questions, it is imperative to use appropriate statistical models. Annonaceae are cases in point: Two sister clades, the subfamilies Annonoideae and Malmeoideae, contain the majority of Annonaceae species diversity. The Annonoideae generally show a greater degree of sequence divergence compared to the Malmeoideae, resulting in stark differences in branch lengths in phylogenetic trees. Uncertainty in how to interpret and analyse these differences has led to inconsistent results when estimating the ages of clades in Annonaceae using molecular dating techniques. We ask whether these differences may be attributed to inappropriate modelling assumptions in the phylogenetic analyses. Specifically, we test for (clade-specific differences in rates of non-synonymous and synonymous substitutions. A high ratio of nonsynonymous to synonymous substitutions may lead to similarity of DNA sequences due to convergence instead of common ancestry, and as a result confound phylogenetic analyses. We use a dataset of three chloroplast genes (rbcL, matK, ndhF for 129 species representative of the family. We find that differences in branch lengths between major clades are not attributable to different rates of non-synonymous and synonymous substitutions. The differences in evolutionary rate between the major clades of Annonaceae pose a challenge for current molecular dating techniques that should be seen as a warning for the interpretation of such results in other organisms.

  14. Insight into pattern of codon biasness and nucleotide base usage in serotonin receptor gene family from different mammalian species.

    Science.gov (United States)

    Dass, J Febin Prabhu; Sudandiradoss, C

    2012-07-15

    5-HT (5-Hydroxy-tryptamine) or serotonin receptors are found both in central and peripheral nervous system as well as in non-neuronal tissues. In the animal and human nervous system, serotonin produces various functional effects through a variety of membrane bound receptors. In this study, we focus on 5-HT receptor family from different mammals and examined the factors that account for codon and nucleotide usage variation. A total of 110 homologous coding sequences from 11 different mammalian species were analyzed using relative synonymous codon usage (RSCU), correspondence analysis (COA) and hierarchical cluster analysis together with nucleotide base usage frequency of chemically similar amino acid codons. The mean effective number of codon (ENc) value of 37.06 for 5-HT(6) shows very high codon bias within the family and may be due to high selective translational efficiency. The COA and Spearman's rank correlation reveals that the nucleotide compositional mutation bias as the major factors influencing the codon usage in serotonin receptor genes. The hierarchical cluster analysis suggests that gene function is another dominant factor that affects the codon usage bias, while species is a minor factor. Nucleotide base usage was reported using Goldman, Engelman, Stietz (GES) scale reveals the presence of high uracil (>45%) content at functionally important hydrophobic regions. Our in silico approach will certainly help for further investigations on critical inference on evolution, structure, function and gene expression aspects of 5-HT receptors family which are potential antipsychotic drug targets. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Automated design of degenerate codon libraries.

    Science.gov (United States)

    Mena, Marco A; Daugherty, Patrick S

    2005-12-01

    Degenerate codon libraries are frequently used in protein engineering and evolution studies but are often limited to targeting a small number of positions to adequately limit the search space. To mitigate this, codon degeneracy can be limited using heuristics or previous knowledge of the targeted positions. To automate design of libraries given a set of amino acid sequences, an algorithm (LibDesign) was developed that generates a set of possible degenerate codon libraries, their resulting size, and their score relative to a user-defined scoring function. A gene library of a specified size can then be constructed that is representative of the given amino acid distribution or that includes specific sequences or combinations thereof. LibDesign provides a new tool for automated design of high-quality protein libraries that more effectively harness existing sequence-structure information derived from multiple sequence alignment or computational protein design data.

  16. Essentiality, conservation, evolutionary pressure and codon bias in bacterial genomes.

    Science.gov (United States)

    Dilucca, Maddalena; Cimini, Giulio; Giansanti, Andrea

    2018-07-15

    Essential genes constitute the core of genes which cannot be mutated too much nor lost along the evolutionary history of a species. Natural selection is expected to be stricter on essential genes and on conserved (highly shared) genes, than on genes that are either nonessential or peculiar to a single or a few species. In order to further assess this expectation, we study here how essentiality of a gene is connected with its degree of conservation among several unrelated bacterial species, each one characterised by its own codon usage bias. Confirming previous results on E. coli, we show the existence of a universal exponential relation between gene essentiality and conservation in bacteria. Moreover, we show that, within each bacterial genome, there are at least two groups of functionally distinct genes, characterised by different levels of conservation and codon bias: i) a core of essential genes, mainly related to cellular information processing; ii) a set of less conserved nonessential genes with prevalent functions related to metabolism. In particular, the genes in the first group are more retained among species, are subject to a stronger purifying conservative selection and display a more limited repertoire of synonymous codons. The core of essential genes is close to the minimal bacterial genome, which is in the focus of recent studies in synthetic biology, though we confirm that orthologs of genes that are essential in one species are not necessarily essential in other species. We also list a set of highly shared genes which, reasonably, could constitute a reservoir of targets for new anti-microbial drugs. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Hand gesture recognition by analysis of codons

    Science.gov (United States)

    Ramachandra, Poornima; Shrikhande, Neelima

    2007-09-01

    The problem of recognizing gestures from images using computers can be approached by closely understanding how the human brain tackles it. A full fledged gesture recognition system will substitute mouse and keyboards completely. Humans can recognize most gestures by looking at the characteristic external shape or the silhouette of the fingers. Many previous techniques to recognize gestures dealt with motion and geometric features of hands. In this thesis gestures are recognized by the Codon-list pattern extracted from the object contour. All edges of an image are described in terms of sequence of Codons. The Codons are defined in terms of the relationship between maxima, minima and zeros of curvature encountered as one traverses the boundary of the object. We have concentrated on a catalog of 24 gesture images from the American Sign Language alphabet (Letter J and Z are ignored as they are represented using motion) [2]. The query image given as an input to the system is analyzed and tested against the Codon-lists, which are shape descriptors for external parts of a hand gesture. We have used the Weighted Frequency Indexing Transform (WFIT) approach which is used in DNA sequence matching for matching the Codon-lists. The matching algorithm consists of two steps: 1) the query sequences are converted to short sequences and are assigned weights and, 2) all the sequences of query gestures are pruned into match and mismatch subsequences by the frequency indexing tree based on the weights of the subsequences. The Codon sequences with the most weight are used to determine the most precise match. Once a match is found, the identified gesture and corresponding interpretation are shown as output.

  18. Gene composer: database software for protein construct design, codon engineering, and gene synthesis.

    Science.gov (United States)

    Lorimer, Don; Raymond, Amy; Walchli, John; Mixon, Mark; Barrow, Adrienne; Wallace, Ellen; Grice, Rena; Burgin, Alex; Stewart, Lance

    2009-04-21

    To improve efficiency in high throughput protein structure determination, we have developed a database software package, Gene Composer, which facilitates the information-rich design of protein constructs and their codon engineered synthetic gene sequences. With its modular workflow design and numerous graphical user interfaces, Gene Composer enables researchers to perform all common bio-informatics steps used in modern structure guided protein engineering and synthetic gene engineering. An interactive Alignment Viewer allows the researcher to simultaneously visualize sequence conservation in the context of known protein secondary structure, ligand contacts, water contacts, crystal contacts, B-factors, solvent accessible area, residue property type and several other useful property views. The Construct Design Module enables the facile design of novel protein constructs with altered N- and C-termini, internal insertions or deletions, point mutations, and desired affinity tags. The modifications can be combined and permuted into multiple protein constructs, and then virtually cloned in silico into defined expression vectors. The Gene Design Module uses a protein-to-gene algorithm that automates the back-translation of a protein amino acid sequence into a codon engineered nucleic acid gene sequence according to a selected codon usage table with minimal codon usage threshold, defined G:C% content, and desired sequence features achieved through synonymous codon selection that is optimized for the intended expression system. The gene-to-oligo algorithm of the Gene Design Module plans out all of the required overlapping oligonucleotides and mutagenic primers needed to synthesize the desired gene constructs by PCR, and for physically cloning them into selected vectors by the most popular subcloning strategies. We present a complete description of Gene Composer functionality, and an efficient PCR-based synthetic gene assembly procedure with mis-match specific endonuclease

  19. Gene Composer: database software for protein construct design, codon engineering, and gene synthesis

    Directory of Open Access Journals (Sweden)

    Mixon Mark

    2009-04-01

    Full Text Available Abstract Background To improve efficiency in high throughput protein structure determination, we have developed a database software package, Gene Composer, which facilitates the information-rich design of protein constructs and their codon engineered synthetic gene sequences. With its modular workflow design and numerous graphical user interfaces, Gene Composer enables researchers to perform all common bio-informatics steps used in modern structure guided protein engineering and synthetic gene engineering. Results An interactive Alignment Viewer allows the researcher to simultaneously visualize sequence conservation in the context of known protein secondary structure, ligand contacts, water contacts, crystal contacts, B-factors, solvent accessible area, residue property type and several other useful property views. The Construct Design Module enables the facile design of novel protein constructs with altered N- and C-termini, internal insertions or deletions, point mutations, and desired affinity tags. The modifications can be combined and permuted into multiple protein constructs, and then virtually cloned in silico into defined expression vectors. The Gene Design Module uses a protein-to-gene algorithm that automates the back-translation of a protein amino acid sequence into a codon engineered nucleic acid gene sequence according to a selected codon usage table with minimal codon usage threshold, defined G:C% content, and desired sequence features achieved through synonymous codon selection that is optimized for the intended expression system. The gene-to-oligo algorithm of the Gene Design Module plans out all of the required overlapping oligonucleotides and mutagenic primers needed to synthesize the desired gene constructs by PCR, and for physically cloning them into selected vectors by the most popular subcloning strategies. Conclusion We present a complete description of Gene Composer functionality, and an efficient PCR-based synthetic gene

  20. Codon based co-occurrence network motifs in human mitochondria

    Directory of Open Access Journals (Sweden)

    Pramod Shinde

    2017-10-01

    Full Text Available The nucleotide polymorphism in human mitochondrial genome (mtDNA tolled by codon position bias plays an indispensable role in human population dispersion and expansion. Herein, we constructed genome-wide nucleotide co-occurrence networks using a massive data consisting of five different geographical regions and around 3000 samples for each region. We developed a powerful network model to describe complex mitochondrial evolutionary patterns between codon and non-codon positions. It was interesting to report a different evolution of Asian genomes than those of the rest which is divulged by network motifs. We found evidence that mtDNA undergoes substantial amounts of adaptive evolution, a finding which was supported by a number of previous studies. The dominance of higher order motifs indicated the importance of long-range nucleotide co-occurrence in genomic diversity. Most notably, codon motifs apparently underpinned the preferences among codon positions for co-evolution which is probably highly biased during the origin of the genetic code. Our analyses manifested that codon position co-evolution is very well conserved across human sub-populations and independently maintained within human sub-populations implying the selective role of evolutionary processes on codon position co-evolution. Ergo, this study provided a framework to investigate cooperative genomic interactions which are critical in underlying complex mitochondrial evolution.

  1. Selection on start codons in prokaryotes and potential compensatory nucleotide substitutions.

    Science.gov (United States)

    Belinky, Frida; Rogozin, Igor B; Koonin, Eugene V

    2017-09-29

    Reconstruction of the evolution of start codons in 36 groups of closely related bacterial and archaeal genomes reveals purifying selection affecting AUG codons. The AUG starts are replaced by GUG and especially UUG significantly less frequently than expected under the neutral expectation derived from the frequencies of the respective nucleotide triplet substitutions in non-coding regions and in 4-fold degenerate sites. Thus, AUG is the optimal start codon that is actively maintained by purifying selection. However, purifying selection on start codons is significantly weaker than the selection on the same codons in coding sequences, although the switches between the codons result in conservative amino acid substitutions. The only exception is the AUG to UUG switch that is strongly selected against among start codons. Selection on start codons is most pronounced in evolutionarily conserved, highly expressed genes. Mutation of the start codon to a sub-optimal form (GUG or UUG) tends to be compensated by mutations in the Shine-Dalgarno sequence towards a stronger translation initiation signal. Together, all these findings indicate that in prokaryotes, translation start signals are subject to weak but significant selection for maximization of initiation rate and, consequently, protein production.

  2. Functional role of bacteriophage transfer RNAs: codon usage analysis of genomic sequences stored in the GENBANK/EMBL/DDBJ databases

    Directory of Open Access Journals (Sweden)

    T Kunisawa

    2006-01-01

    Full Text Available Complete genomic sequence data are stored in the public GenBank/EMBL/DDBJ databases so that any investigator can make use of the data. This report describes a comparative analysis of codon usage that is impossible without such a public and open data system. A limited number of bacteriophages harbor their own transfer RNAs. Based on a comparison between T4 phage-encoded tRNA species and the relative cellular amounts of host Escherichia coli tRNAs, it is hypothesized that T4 tRNAs could serve to supplement host isoacceptor tRNA species that are present in minor amounts and thus enhance the translational efficiency of phage proteins. When compared to their respective host bacteria, the codon usage data of bacteriophages D3, φC31, HP1, D29 and 933W all show an increased frequency of synonymous codons or amino acids that correspond to phage tRNA species, suggesting their supplemental role in the efficient production of phage proteins. The data-analysis presents an example in which the availability of an open and fully accessible database system would allow one to obtain comprehensive insights into a fundamental problem in molecular biology.

  3. Mutation-selection models of codon substitution and their use to estimate selective strengths on codon usage

    DEFF Research Database (Denmark)

    Yang, Ziheng; Nielsen, Rasmus

    2008-01-01

    Current models of codon substitution are formulated at the levels of nucleotide substitution and do not explicitly consider the separate effects of mutation and selection. They are thus incapable of inferring whether mutation or selection is responsible for evolution at silent sites. Here we impl...... codon usage in mammals. Estimates of selection coefficients nevertheless suggest that selection on codon usage is weak and most mutations are nearly neutral. The sensitivity of the analysis on the assumed mutation model is discussed.......Current models of codon substitution are formulated at the levels of nucleotide substitution and do not explicitly consider the separate effects of mutation and selection. They are thus incapable of inferring whether mutation or selection is responsible for evolution at silent sites. Here we...... implement a few population genetics models of codon substitution that explicitly consider mutation bias and natural selection at the DNA level. Selection on codon usage is modeled by introducing codon-fitness parameters, which together with mutation-bias parameters, predict optimal codon frequencies...

  4. Codon cassette mutagenesis: a general method to insert or replace individual codons by using universal mutagenic cassettes.

    OpenAIRE

    Kegler-Ebo, D M; Docktor, C M; DiMaio, D

    1994-01-01

    We describe codon cassette mutagenesis, a simple method of mutagenesis that uses universal mutagenic cassettes to deposit single codons at specific sites in double-stranded DNA. A target molecule is first constructed that contains a blunt, double-strand break at the site targeted for mutagenesis. A double-stranded mutagenic codon cassette is then inserted at the target site. Each mutagenic codon cassette contains a three base pair direct terminal repeat and two head-to-head recognition sequen...

  5. Immunological responses during a virologically failing antiretroviral regimen are associated with in vivo synonymous mutation rates of HIV type-1 env

    DEFF Research Database (Denmark)

    Mens, Helene; Jørgensen, Louise Bruun; Kronborg, Gitte

    2009-01-01

    BACKGROUND: Little is known about the underlying causes of differences in immunological response to antiretroviral therapy during multidrug-resistant (MDR) HIV type-1 (HIV-1) infection. This study aimed to identify virological factors associated with immunological response during therapy failure...... for analysis. In a longitudinal mixed-effects model, plasma HIV-1 RNA only tended to predict immunological response (P=0.06), whereas minor protease inhibitor (PI) and nucleoside reverse transcriptase (NRTI) mutations at baseline correlated significantly with CD4+ T-cell count slopes (r= -0.56, P=0.04 and r......= -0.64, P=0.008, respectively). Interestingly, synonymous mutations of env correlated inversely with CD4+ T-cell count slopes (r=-0.60; P=0.01) and individuals with codons under positive selection had significantly better CD4+ T-cell responses than individuals without (0.42 versus -5.34; P=0...

  6. Selective forces and mutational biases drive stop codon usage in the human genome: a comparison with sense codon usage.

    Science.gov (United States)

    Trotta, Edoardo

    2016-05-17

    The three stop codons UAA, UAG, and UGA signal the termination of mRNA translation. As a result of a mechanism that is not adequately understood, they are normally used with unequal frequencies. In this work, we showed that selective forces and mutational biases drive stop codon usage in the human genome. We found that, in respect to sense codons, stop codon usage was affected by stronger selective forces but was less influenced by neutral mutational biases. UGA is the most frequent termination codon in human genome. However, UAA was the preferred stop codon in genes with high breadth of expression, high level of expression, AT-rich coding sequences, housekeeping functions, and in gene ontology categories with the largest deviation from expected stop codon usage. Selective forces associated with the breadth and the level of expression favoured AT-rich sequences in the mRNA region including the stop site and its proximal 3'-UTR, but acted with scarce effects on sense codons, generating two regions, upstream and downstream of the stop codon, with strongly different base composition. By favouring low levels of GC-content, selection promoted labile local secondary structures at the stop site and its proximal 3'-UTR. The compositional and structural context favoured by selection was surprisingly emphasized in the class of ribosomal proteins and was consistent with sequence elements that increase the efficiency of translational termination. Stop codons were also heterogeneously distributed among chromosomes by a mechanism that was strongly correlated with the GC-content of coding sequences. In human genome, the nucleotide composition and the thermodynamic stability of stop codon site and its proximal 3'-UTR are correlated with the GC-content of coding sequences and with the breadth and the level of gene expression. In highly expressed genes stop codon usage is compositionally and structurally consistent with highly efficient translation termination signals.

  7. Codon usage vis-a-vis start and stop codon context analysis of three ...

    Indian Academy of Sciences (India)

    To understand the variation in genomic composition and its effect on codon usage, we performed the comparative analysis of codon usage and nucleotide usage in the genes of three dicots, Glycine max, Arabidopsis thaliana and Medicago truncatula. The dicot genes were found to be A/T rich and have predominantly ...

  8. Locating protein-coding sequences under selection for additional, overlapping functions in 29 mammalian genomes

    DEFF Research Database (Denmark)

    Lin, Michael F; Kheradpour, Pouya; Washietl, Stefan

    2011-01-01

    conservation compared to typical protein-coding genes—especially at synonymous sites. In this study, we use genome alignments of 29 placental mammals to systematically locate short regions within human ORFs that show conspicuously low estimated rates of synonymous substitution across these species. The 29......-species alignment provides statistical power to locate more than 10,000 such regions with resolution down to nine-codon windows, which are found within more than a quarter of all human protein-coding genes and contain ~2% of their synonymous sites. We collect numerous lines of evidence that the observed...... synonymous constraint in these regions reflects selection on overlapping functional elements including splicing regulatory elements, dual-coding genes, RNA secondary structures, microRNA target sites, and developmental enhancers. Our results show that overlapping functional elements are common in mammalian...

  9. Reassigning stop codons via translation termination: How a few eukaryotes broke the dogma.

    Science.gov (United States)

    Alkalaeva, Elena; Mikhailova, Tatiana

    2017-03-01

    The genetic code determines how amino acids are encoded within mRNA. It is universal among the vast majority of organisms, although several exceptions are known. Variant genetic codes are found in ciliates, mitochondria, and numerous other organisms. All revealed genetic codes (standard and variant) have at least one codon encoding a translation stop signal. However, recently two new genetic codes with a reassignment of all three stop codons were revealed in studies examining the protozoa transcriptomes. Here, we discuss this finding and the recent studies of variant genetic codes in eukaryotes. We consider the possible molecular mechanisms allowing the use of certain codons as sense and stop signals simultaneously. The results obtained by studying these amazing organisms represent a new and exciting insight into the mechanism of stop codon decoding in eukaryotes. Also see the video abstract here. © 2017 WILEY Periodicals, Inc.

  10. Codon-Precise, Synthetic, Antibody Fragment Libraries Built Using Automated Hexamer Codon Additions and Validated through Next Generation Sequencing

    Directory of Open Access Journals (Sweden)

    Laura Frigotto

    2015-05-01

    Full Text Available We have previously described ProxiMAX, a technology that enables the fabrication of precise, combinatorial gene libraries via codon-by-codon saturation mutagenesis. ProxiMAX was originally performed using manual, enzymatic transfer of codons via blunt-end ligation. Here we present Colibra™: an automated, proprietary version of ProxiMAX used specifically for antibody library generation, in which double-codon hexamers are transferred during the saturation cycling process. The reduction in process complexity, resulting library quality and an unprecedented saturation of up to 24 contiguous codons are described. Utility of the method is demonstrated via fabrication of complementarity determining regions (CDR in antibody fragment libraries and next generation sequencing (NGS analysis of their quality and diversity.

  11. A codon window in mRNA downstream of the initiation codon where NGG codons give strongly reduced gene expression in Escherichia coli

    DEFF Research Database (Denmark)

    Gonzalez de Valdivia, Ernesto I; Isaksson, Leif A

    2004-01-01

    and GGG, but not GGN or GNG (where N is non-G), are unique since they are associated with a very low gene expression also if located at positions +2, +3 and +5. All codons, including NGG, give a normal gene expression if placed at positions +7. The negative effect by the NGG codons is true for both...

  12. Phylogenetic inference with weighted codon evolutionary distances.

    Science.gov (United States)

    Criscuolo, Alexis; Michel, Christian J

    2009-04-01

    We develop a new approach to estimate a matrix of pairwise evolutionary distances from a codon-based alignment based on a codon evolutionary model. The method first computes a standard distance matrix for each of the three codon positions. Then these three distance matrices are weighted according to an estimate of the global evolutionary rate of each codon position and averaged into a unique distance matrix. Using a large set of both real and simulated codon-based alignments of nucleotide sequences, we show that this approach leads to distance matrices that have a significantly better treelikeness compared to those obtained by standard nucleotide evolutionary distances. We also propose an alternative weighting to eliminate the part of the noise often associated with some codon positions, particularly the third position, which is known to induce a fast evolutionary rate. Simulation results show that fast distance-based tree reconstruction algorithms on distance matrices based on this codon position weighting can lead to phylogenetic trees that are at least as accurate as, if not better, than those inferred by maximum likelihood. Finally, a well-known multigene dataset composed of eight yeast species and 106 codon-based alignments is reanalyzed and shows that our codon evolutionary distances allow building a phylogenetic tree which is similar to those obtained by non-distance-based methods (e.g., maximum parsimony and maximum likelihood) and also significantly improved compared to standard nucleotide evolutionary distance estimates.

  13. The mitochondrial genome sequence of the ciliate Paramecium caudatum reveals a shift in nucleotide composition and codon usage within the genus Paramecium

    Directory of Open Access Journals (Sweden)

    Berendonk Thomas U

    2011-05-01

    Full Text Available Abstract Background Despite the fact that the organization of the ciliate mitochondrial genome is exceptional, only few ciliate mitochondrial genomes have been sequenced until today. All ciliate mitochondrial genomes are linear. They are 40 kb to 47 kb long and contain some 50 tightly packed genes without introns. Earlier studies documented that the mitochondrial guanine + cytosine contents are very different between Paramecium tetraurelia and all studied Tetrahymena species. This raises the question of whether the high mitochondrial G+C content observed in P. tetraurelia is a characteristic property of Paramecium mtDNA, or whether it is an exception of the ciliate mitochondrial genomes known so far. To test this question, we determined the mitochondrial genome sequence of Paramecium caudatum and compared the gene content and sequence properties to the closely related P. tetraurelia. Results The guanine + cytosine content of the P. caudatum mitochondrial genome was significantly lower than that of P. tetraurelia (22.4% vs. 41.2%. This difference in the mitochondrial nucleotide composition was accompanied by significantly different codon usage patterns in both species, i.e. within P. caudatum clearly A/T ending codons dominated, whereas for P. tetraurelia the synonymous codons were more balanced with a higher number of G/C ending codons. Further analyses indicated that the nucleotide composition of most members of the genus Paramecium resembles that of P. caudatum and that the shift observed in P. tetraurelia is restricted to the P. aurelia species complex. Conclusions Surprisingly, the codon usage bias in the P. caudatum mitochondrial genome, exemplified by the effective number of codons, is more similar to the distantly related T. pyriformis and other single-celled eukaryotes such as Chlamydomonas, than to the closely related P. tetraurelia. These differences in base composition and codon usage bias were, however, not reflected in the amino

  14. Utilisation of ISA Reverse Genetics and Large-Scale Random Codon Re-Encoding to Produce Attenuated Strains of Tick-Borne Encephalitis Virus within Days.

    Science.gov (United States)

    de Fabritus, Lauriane; Nougairède, Antoine; Aubry, Fabien; Gould, Ernest A; de Lamballerie, Xavier

    2016-01-01

    Large-scale codon re-encoding is a new method of attenuating RNA viruses. However, the use of infectious clones to generate attenuated viruses has inherent technical problems. We previously developed a bacterium-free reverse genetics protocol, designated ISA, and now combined it with large-scale random codon-re-encoding method to produce attenuated tick-borne encephalitis virus (TBEV), a pathogenic flavivirus which causes febrile illness and encephalitis in humans. We produced wild-type (WT) and two re-encoded TBEVs, containing 273 or 273+284 synonymous mutations in the NS5 and NS5+NS3 coding regions respectively. Both re-encoded viruses were attenuated when compared with WT virus using a laboratory mouse model and the relative level of attenuation increased with the degree of re-encoding. Moreover, all infected animals produced neutralizing antibodies. This novel, rapid and efficient approach to engineering attenuated viruses could potentially expedite the development of safe and effective new-generation live attenuated vaccines.

  15. Codon bias and gene ontology in holometabolous and hemimetabolous insects.

    Science.gov (United States)

    Carlini, David B; Makowski, Matthew

    2015-12-01

    The relationship between preferred codon use (PCU), developmental mode, and gene ontology (GO) was investigated in a sample of nine insect species with sequenced genomes. These species were selected to represent two distinct modes of insect development, holometabolism and hemimetabolism, with an aim toward determining whether the differences in developmental timing concomitant with developmental mode would be mirrored by differences in PCU in their developmental genes. We hypothesized that the developmental genes of holometabolous insects should be under greater selective pressure for efficient translation, manifest as increased PCU, than those of hemimetabolous insects because holometabolism requires abundant protein expression over shorter time intervals than hemimetabolism, where proteins are required more uniformly in time. Preferred codon sets were defined for each species, from which the frequency of PCU for each gene was obtained. Although there were substantial differences in the genomic base composition of holometabolous and hemimetabolous insects, both groups exhibited a general preference for GC-ending codons, with the former group having higher PCU averaged across all genes. For each species, the biological process GO term for each gene was assigned that of its Drosophila homolog(s), and PCU was calculated for each GO term category. The top two GO term categories for PCU enrichment in the holometabolous insects were anatomical structure development and cell differentiation. The increased PCU in the developmental genes of holometabolous insects may reflect a general strategy to maximize the protein production of genes expressed in bursts over short time periods, e.g., heat shock proteins. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 686-698, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  16. CodonTest: modeling amino acid substitution preferences in coding sequences.

    Directory of Open Access Journals (Sweden)

    Wayne Delport

    2010-08-01

    Full Text Available Codon models of evolution have facilitated the interpretation of selective forces operating on genomes. These models, however, assume a single rate of non-synonymous substitution irrespective of the nature of amino acids being exchanged. Recent developments have shown that models which allow for amino acid pairs to have independent rates of substitution offer improved fit over single rate models. However, these approaches have been limited by the necessity for large alignments in their estimation. An alternative approach is to assume that substitution rates between amino acid pairs can be subdivided into rate classes, dependent on the information content of the alignment. However, given the combinatorially large number of such models, an efficient model search strategy is needed. Here we develop a Genetic Algorithm (GA method for the estimation of such models. A GA is used to assign amino acid substitution pairs to a series of rate classes, where is estimated from the alignment. Other parameters of the phylogenetic Markov model, including substitution rates, character frequencies and branch lengths are estimated using standard maximum likelihood optimization procedures. We apply the GA to empirical alignments and show improved model fit over existing models of codon evolution. Our results suggest that current models are poor approximations of protein evolution and thus gene and organism specific multi-rate models that incorporate amino acid substitution biases are preferred. We further anticipate that the clustering of amino acid substitution rates into classes will be biologically informative, such that genes with similar functions exhibit similar clustering, and hence this clustering will be useful for the evolutionary fingerprinting of genes.

  17. Genome-wide analysis of codon usage bias in Ebolavirus.

    Science.gov (United States)

    Cristina, Juan; Moreno, Pilar; Moratorio, Gonzalo; Musto, Héctor

    2015-01-22

    Ebola virus (EBOV) is a member of the family Filoviridae and its genome consists of a 19-kb, single-stranded, negative sense RNA. EBOV is subdivided into five distinct species with different pathogenicities, being Zaire ebolavirus (ZEBOV) the most lethal species. The interplay of codon usage among viruses and their hosts is expected to affect overall viral survival, fitness, evasion from host's immune system and evolution. In the present study, we performed comprehensive analyses of codon usage and composition of ZEBOV. Effective number of codons (ENC) indicates that the overall codon usage among ZEBOV strains is slightly biased. Different codon preferences in ZEBOV genes in relation to codon usage of human genes were found. Highly preferred codons are all A-ending triplets, which strongly suggests that mutational bias is a main force shaping codon usage in ZEBOV. Dinucleotide composition also plays a role in the overall pattern of ZEBOV codon usage. ZEBOV does not seem to use the most abundant tRNAs present in the human cells for most of their preferred codons. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3.

    Science.gov (United States)

    Cingolani, Pablo; Platts, Adrian; Wang, Le Lily; Coon, Melissa; Nguyen, Tung; Wang, Luan; Land, Susan J; Lu, Xiangyi; Ruden, Douglas M

    2012-01-01

    We describe a new computer program, SnpEff, for rapidly categorizing the effects of variants in genome sequences. Once a genome is sequenced, SnpEff annotates variants based on their genomic locations and predicts coding effects. Annotated genomic locations include intronic, untranslated region, upstream, downstream, splice site, or intergenic regions. Coding effects such as synonymous or non-synonymous amino acid replacement, start codon gains or losses, stop codon gains or losses, or frame shifts can be predicted. Here the use of SnpEff is illustrated by annotating ~356,660 candidate SNPs in ~117 Mb unique sequences, representing a substitution rate of ~1/305 nucleotides, between the Drosophila melanogaster w(1118); iso-2; iso-3 strain and the reference y(1); cn(1) bw(1) sp(1) strain. We show that ~15,842 SNPs are synonymous and ~4,467 SNPs are non-synonymous (N/S ~0.28). The remaining SNPs are in other categories, such as stop codon gains (38 SNPs), stop codon losses (8 SNPs), and start codon gains (297 SNPs) in the 5'UTR. We found, as expected, that the SNP frequency is proportional to the recombination frequency (i.e., highest in the middle of chromosome arms). We also found that start-gain or stop-lost SNPs in Drosophila melanogaster often result in additions of N-terminal or C-terminal amino acids that are conserved in other Drosophila species. It appears that the 5' and 3' UTRs are reservoirs for genetic variations that changes the termini of proteins during evolution of the Drosophila genus. As genome sequencing is becoming inexpensive and routine, SnpEff enables rapid analyses of whole-genome sequencing data to be performed by an individual laboratory.

  19. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff

    Science.gov (United States)

    Cingolani, Pablo; Platts, Adrian; Wang, Le Lily; Coon, Melissa; Nguyen, Tung; Wang, Luan; Land, Susan J.; Lu, Xiangyi; Ruden, Douglas M.

    2012-01-01

    We describe a new computer program, SnpEff, for rapidly categorizing the effects of variants in genome sequences. Once a genome is sequenced, SnpEff annotates variants based on their genomic locations and predicts coding effects. Annotated genomic locations include intronic, untranslated region, upstream, downstream, splice site, or intergenic regions. Coding effects such as synonymous or non-synonymous amino acid replacement, start codon gains or losses, stop codon gains or losses, or frame shifts can be predicted. Here the use of SnpEff is illustrated by annotating ~356,660 candidate SNPs in ~117 Mb unique sequences, representing a substitution rate of ~1/305 nucleotides, between the Drosophila melanogaster w1118; iso-2; iso-3 strain and the reference y1; cn1 bw1 sp1 strain. We show that ~15,842 SNPs are synonymous and ~4,467 SNPs are non-synonymous (N/S ~0.28). The remaining SNPs are in other categories, such as stop codon gains (38 SNPs), stop codon losses (8 SNPs), and start codon gains (297 SNPs) in the 5′UTR. We found, as expected, that the SNP frequency is proportional to the recombination frequency (i.e., highest in the middle of chromosome arms). We also found that start-gain or stop-lost SNPs in Drosophila melanogaster often result in additions of N-terminal or C-terminal amino acids that are conserved in other Drosophila species. It appears that the 5′ and 3′ UTRs are reservoirs for genetic variations that changes the termini of proteins during evolution of the Drosophila genus. As genome sequencing is becoming inexpensive and routine, SnpEff enables rapid analyses of whole-genome sequencing data to be performed by an individual laboratory. PMID:22728672

  20. Codon cassette mutagenesis: a general method to insert or replace individual codons by using universal mutagenic cassettes.

    Science.gov (United States)

    Kegler-Ebo, D M; Docktor, C M; DiMaio, D

    1994-05-11

    We describe codon cassette mutagenesis, a simple method of mutagenesis that uses universal mutagenic cassettes to deposit single codons at specific sites in double-stranded DNA. A target molecule is first constructed that contains a blunt, double-strand break at the site targeted for mutagenesis. A double-stranded mutagenic codon cassette is then inserted at the target site. Each mutagenic codon cassette contains a three base pair direct terminal repeat and two head-to-head recognition sequences for the restriction endonuclease Sapl, an enzyme that cleaves outside of its recognition sequence. The intermediate molecule containing the mutagenic cassette is then digested with Sapl, thereby removing most of the mutagenic cassette, leaving only a three base cohesive overhang that is ligated to generate the final insertion or substitution mutation. A general method for constructing blunt-end target molecules suitable for this approach is also described. Because the mutagenic cassette is excised during this procedure and alters the target only by introducing the desired mutation, the same cassette can be used to introduce a particular codon at all target sites. Each cassette can deposit two different codons, depending on the orientation in which it is inserted into the target molecule. Therefore, a series of eleven cassettes is sufficient to insert all possible amino acids at any constructed target site. Thus codon cassettes are 'off-the-shelf' reagents, and this methodology should be a particularly useful and inexpensive approach for subjecting multiple different positions in a protein sequence to saturation mutagenesis.

  1. Emergent Rules for Codon Choice Elucidated by Editing Rare Arginine Codons in Escherichia coli

    Science.gov (United States)

    2016-09-20

    the successful 110 CGU con- versions with the 13 optimized codon substitutions to produce strain C123, in which all 123 AGR codons have been removed...culture medium consisted of LBL autoclaved with 1.5% (wt/vol) Bacto Agar (Fisher), containing the same concentrations of antibiotics as necessary. ColE1...controlling the ef- ficiency of protein translation. Cell 141(2):344–354. 15. Li GW (2015) How do bacteria tune translation efficiency? Curr Opin Microbiol

  2. Three synonymous genes encode calmodulin in a reptile, the Japanese tortoise, Clemmys japonica

    Directory of Open Access Journals (Sweden)

    Kouji Shimoda

    2002-01-01

    Full Text Available Three distinct calmodulin (CaM-encoding cDNAs were isolated from a reptile, the Japanese tortoise (Clemmys japonica, based on degenerative primer PCR. Because of synonymous codon usages, the deduced amino acid (aa sequences were exactly the same in all three genes and identical to the aa sequence of vertebrate CaM. The three cDNAs, referred to as CaM-A, -B, and -C, seemed to belong to the same type as CaMI, CaMII, and CaMIII, respectively, based on their sequence identity with those of the mammalian cDNAs and the glutamate codon biases. Northern blot analysis detected CaM-A and -B as bands corresponding to 1.8 kb, with the most abundant levels in the brain and testis, while CaM-C was detected most abundantly in the brain as bands of 1.4 and 2.0 kb. Our results indicate that, in the tortoise, CaM protein is encoded by at least three non-allelic genes, and that the ‘multigene-one protein' principle of CaM synthesis is applicable to all classes of vertebrates, from fishes to mammals.

  3. ANT: Software for Generating and Evaluating Degenerate Codons for Natural and Expanded Genetic Codes.

    Science.gov (United States)

    Engqvist, Martin K M; Nielsen, Jens

    2015-08-21

    The Ambiguous Nucleotide Tool (ANT) is a desktop application that generates and evaluates degenerate codons. Degenerate codons are used to represent DNA positions that have multiple possible nucleotide alternatives. This is useful for protein engineering and directed evolution, where primers specified with degenerate codons are used as a basis for generating libraries of protein sequences. ANT is intuitive and can be used in a graphical user interface or by interacting with the code through a defined application programming interface. ANT comes with full support for nonstandard, user-defined, or expanded genetic codes (translation tables), which is important because synthetic biology is being applied to an ever widening range of natural and engineered organisms. The Python source code for ANT is freely distributed so that it may be used without restriction, modified, and incorporated in other software or custom data pipelines.

  4. Selection of functional 2A sequences within foot-and-mouth disease virus; requirements for the NPGP motif with a distinct codon bias.

    Science.gov (United States)

    Kjær, Jonas; Belsham, Graham J

    2018-01-01

    Foot-and-mouth disease virus (FMDV) has a positive-sense ssRNA genome including a single, large, open reading frame. Splitting of the encoded polyprotein at the 2A/2B junction is mediated by the 2A peptide (18 residues long), which induces a nonproteolytic, cotranslational "cleavage" at its own C terminus. A conserved feature among variants of 2A is the C-terminal motif N 16 P 17 G 18 /P 19 , where P 19 is the first residue of 2B. It has been shown previously that certain amino acid substitutions can be tolerated at residues E 14 , S 15 , and N 16 within the 2A sequence of infectious FMDVs, but no variants at residues P 17 , G 18 , or P 19 have been identified. In this study, using highly degenerate primers, we analyzed if any other residues can be present at each position of the NPG/P motif within infectious FMDV. No alternative forms of this motif were found to be encoded by rescued FMDVs after two, three, or four passages. However, surprisingly, a clear codon preference for the wt nucleotide sequence encoding the NPGP motif within these viruses was observed. Indeed, the codons selected to code for P 17 and P 19 within this motif were distinct; thus the synonymous codons are not equivalent. © 2018 Kjær and Belsham; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  5. Codon Deviation Coefficient: a novel measure for estimating codon usage bias and its statistical significance

    Directory of Open Access Journals (Sweden)

    Zhang Zhang

    2012-03-01

    Full Text Available Abstract Background Genetic mutation, selective pressure for translational efficiency and accuracy, level of gene expression, and protein function through natural selection are all believed to lead to codon usage bias (CUB. Therefore, informative measurement of CUB is of fundamental importance to making inferences regarding gene function and genome evolution. However, extant measures of CUB have not fully accounted for the quantitative effect of background nucleotide composition and have not statistically evaluated the significance of CUB in sequence analysis. Results Here we propose a novel measure--Codon Deviation Coefficient (CDC--that provides an informative measurement of CUB and its statistical significance without requiring any prior knowledge. Unlike previous measures, CDC estimates CUB by accounting for background nucleotide compositions tailored to codon positions and adopts the bootstrapping to assess the statistical significance of CUB for any given sequence. We evaluate CDC by examining its effectiveness on simulated sequences and empirical data and show that CDC outperforms extant measures by achieving a more informative estimation of CUB and its statistical significance. Conclusions As validated by both simulated and empirical data, CDC provides a highly informative quantification of CUB and its statistical significance, useful for determining comparative magnitudes and patterns of biased codon usage for genes or genomes with diverse sequence compositions.

  6. Functional Versatility of AGY Serine Codons in Immunoglobulin Variable Region Genes

    Directory of Open Access Journals (Sweden)

    Thiago Detanico

    2016-11-01

    Full Text Available In systemic autoimmunity, autoantibodies directed against nuclear antigens (Ag often arise by somatic hypermutation (SHM that converts AGT and AGC (AGY Ser codons into Arg codons. This can occur by three different single-base changes. Curiously, AGY Ser codons are far more abundant in complementarity-determining regions (CDRs of IgV-region genes than expected for random codon use or from species-specific codon frequency data. CDR AGY codons are also more abundant than TCN Ser codons. We show that these trends hold even in cartilaginous fishes. Because AGC is a preferred target for SHM by activation-induced cytidine deaminase (AID, we asked whether the AGY abundance was solely due to a selection pressure to conserve high mutability in CDRs regardless of codon context but found that this was not the case. Instead, AGY triplets were selectively enriched in the Ser codon reading frame. Motivated by reports implicating a functional role for poly/autoreactive specificities in anti-viral antibodies, we also analyzed mutations at AGY in antibodies directed against a number of different viruses, and found that mutations producing Arg codons in anti-viral antibodies were indeed frequent. Unexpectedly, however, we also found that AGY codons mutated often to encode nearly all of the amino acids that are reported to provide the most frequent contacts with antigen (Ag. In many cases, mutations producing codons for these alternative amino acids in anti-viral antibodies were more frequent than those producing Arg codons. Mutations producing each of these key amino acids required only single-base changes in AGY. AGY is the only codon group in which 2/3rds of random mutations generate codons for these key residues. Finally, by directly analyzing x-ray structures of immune complexes from the RCSB protein database, we found that Ag-contact residues generated via somatic hypermutation occurred more often at AGY than at any other codon group. Thus, preservation of

  7. A common periodic table of codons and amino acids.

    Science.gov (United States)

    Biro, J C; Benyó, B; Sansom, C; Szlávecz, A; Fördös, G; Micsik, T; Benyó, Z

    2003-06-27

    A periodic table of codons has been designed where the codons are in regular locations. The table has four fields (16 places in each) one with each of the four nucleotides (A, U, G, C) in the central codon position. Thus, AAA (lysine), UUU (phenylalanine), GGG (glycine), and CCC (proline) were placed into the corners of the fields as the main codons (and amino acids) of the fields. They were connected to each other by six axes. The resulting nucleic acid periodic table showed perfect axial symmetry for codons. The corresponding amino acid table also displaced periodicity regarding the biochemical properties (charge and hydropathy) of the 20 amino acids and the position of the stop signals. The table emphasizes the importance of the central nucleotide in the codons and predicts that purines control the charge while pyrimidines determine the polarity of the amino acids. This prediction was experimentally tested.

  8. eCodonOpt: a systematic computational framework for optimizing codon usage in directed evolution experiments

    OpenAIRE

    Moore, Gregory L.; Maranas, Costas D.

    2002-01-01

    We present a systematic computational framework, eCodonOpt, for designing parental DNA sequences for directed evolution experiments through codon usage optimization. Given a set of homologous parental proteins to be recombined at the DNA level, the optimal DNA sequences encoding these proteins are sought for a given diversity objective. We find that the free energy of annealing between the recombining DNA sequences is a much better descriptor of the extent of crossover formation than sequence...

  9. Codon Deviation Coefficient: A novel measure for estimating codon usage bias and its statistical significance

    KAUST Repository

    Zhang, Zhang

    2012-03-22

    Background: Genetic mutation, selective pressure for translational efficiency and accuracy, level of gene expression, and protein function through natural selection are all believed to lead to codon usage bias (CUB). Therefore, informative measurement of CUB is of fundamental importance to making inferences regarding gene function and genome evolution. However, extant measures of CUB have not fully accounted for the quantitative effect of background nucleotide composition and have not statistically evaluated the significance of CUB in sequence analysis.Results: Here we propose a novel measure--Codon Deviation Coefficient (CDC)--that provides an informative measurement of CUB and its statistical significance without requiring any prior knowledge. Unlike previous measures, CDC estimates CUB by accounting for background nucleotide compositions tailored to codon positions and adopts the bootstrapping to assess the statistical significance of CUB for any given sequence. We evaluate CDC by examining its effectiveness on simulated sequences and empirical data and show that CDC outperforms extant measures by achieving a more informative estimation of CUB and its statistical significance.Conclusions: As validated by both simulated and empirical data, CDC provides a highly informative quantification of CUB and its statistical significance, useful for determining comparative magnitudes and patterns of biased codon usage for genes or genomes with diverse sequence compositions. 2012 Zhang et al; licensee BioMed Central Ltd.

  10. Codon usage bias analysis for the coding sequences of Camellia ...

    African Journals Online (AJOL)

    sunny t

    2016-02-24

    Feb 24, 2016 ... suggested that codon usage bias is driven by selection, particularly for .... For example, as mentioned above, highly expressed genes tend to use fewer ... directional codon bias measure effective number of codons (ENc) was ...

  11. Differential trends in the codon usage patterns in HIV-1 genes.

    Directory of Open Access Journals (Sweden)

    Aridaman Pandit

    Full Text Available Host-pathogen interactions underlie one of the most complex evolutionary phenomena resulting in continual adaptive genetic changes, where pathogens exploit the host's molecular resources for growth and survival, while hosts try to eliminate the pathogen. Deciphering the molecular basis of host-pathogen interactions is useful in understanding the factors governing pathogen evolution and disease propagation. In host-pathogen context, a balance between mutation, selection, and genetic drift is known to maintain codon bias in both organisms. Studies revealing determinants of the bias and its dynamics are central to the understanding of host-pathogen evolution. We considered the Human Immunodeficiency Virus (HIV type 1 and its human host to search for evolutionary signatures in the viral genome. Positive selection is known to dominate intra-host evolution of HIV-1, whereas high genetic variability underlies the belief that neutral processes drive inter-host differences. In this study, we analyze the codon usage patterns of HIV-1 genomes across all subtypes and clades sequenced over a period of 23 years. We show presence of unique temporal correlations in the codon bias of three HIV-1 genes illustrating differential adaptation of the HIV-1 genes towards the host preferred codons. Our results point towards gene-specific translational selection to be an important force driving the evolution of HIV-1 at the population level.

  12. Distribution of ADAT-Dependent Codons in the Human Transcriptome

    Directory of Open Access Journals (Sweden)

    Àlbert Rafels-Ybern

    2015-07-01

    Full Text Available Nucleotide modifications in the anticodons of transfer RNAs (tRNA play a central role in translation efficiency, fidelity, and regulation of translation, but, for most of these modifications, the details of their function remain unknown. The heterodimeric adenosine deaminases acting on tRNAs (ADAT2-ADAT3, or ADAT are enzymes present in eukaryotes that convert adenine (A to inosine (I in the first anticodon base (position 34 by hydrolytic deamination. To explore the influence of ADAT activity on mammalian translation, we have characterized the human transcriptome and proteome in terms of frequency and distribution of ADAT-related codons. Eight different tRNAs can be modified by ADAT and, once modified, these tRNAs will recognize NNC, NNU and NNA codons, but not NNG codons. We find that transcripts coding for proteins highly enriched in these eight amino acids (ADAT-aa are specifically enriched in NNC, NNU and NNA codons. We also show that the proteins most enriched in ADAT-aa are composed preferentially of threonine, alanine, proline, and serine (TAPS. We propose that the enrichment in ADAT-codons in these proteins is due to the similarities in the codons that correspond to TAPS.

  13. Codon-optimized antibiotic resistance gene improves efficiency of ...

    Indian Academy of Sciences (India)

    2013-10-01

    Oct 1, 2013 ... transient transformation and cell growth in selective culture were significantly increased by use of fgmR ... Our result shows that similarity in codon usage pattern is an important factor ... Codon adaptation index (CAI) (Sharp.

  14. Codes in the codons: construction of a codon/amino acid periodic table and a study of the nature of specific nucleic acid-protein interactions.

    Science.gov (United States)

    Benyo, B; Biro, J C; Benyo, Z

    2004-01-01

    The theory of "codon-amino acid coevolution" was first proposed by Woese in 1967. It suggests that there is a stereochemical matching - that is, affinity - between amino acids and certain of the base triplet sequences that code for those amino acids. We have constructed a common periodic table of codons and amino acids, where the nucleic acid table showed perfect axial symmetry for codons and the corresponding amino acid table also displayed periodicity regarding the biochemical properties (charge and hydrophobicity) of the 20 amino acids and the position of the stop signals. The table indicates that the middle (2/sup nd/) amino acid in the codon has a prominent role in determining some of the structural features of the amino acids. The possibility that physical contact between codons and amino acids might exist was tested on restriction enzymes. Many recognition site-like sequences were found in the coding sequences of these enzymes and as many as 73 examples of codon-amino acid co-location were observed in the 7 known 3D structures (December 2003) of endonuclease-nucleic acid complexes. These results indicate that the smallest possible units of specific nucleic acid-protein interaction are indeed the stereochemically compatible codons and amino acids.

  15. The Effect of Codon Mismatch on the Protein Translation System.

    Directory of Open Access Journals (Sweden)

    Dinglin Zhang

    Full Text Available Incorrect protein translation, caused by codon mismatch, is an important problem of living cells. In this work, a computational model was introduced to quantify the effects of codon mismatch and the model was used to study the protein translation of Saccharomyces cerevisiae. According to simulation results, the probability of codon mismatch will increase when the supply of amino acids is unbalanced, and the longer is the codon sequence, the larger is the probability for incorrect translation to occur, making the synthesis of long peptide chain difficult. By comparing to simulation results without codon mismatch effects taken into account, the fraction of mRNAs with bound ribosome decrease faster along the mRNAs, making the 5' ramp phenomenon more obvious. It was also found in our work that the premature mechanism resulted from codon mismatch can reduce the proportion of incorrect translation when the amino acid supply is extremely unbalanced, which is one possible source of high fidelity protein synthesis after peptidyl transfer.

  16. The Effect of Codon Mismatch on the Protein Translation System.

    Science.gov (United States)

    Zhang, Dinglin; Chen, Danfeng; Cao, Liaoran; Li, Guohui; Cheng, Hong

    2016-01-01

    Incorrect protein translation, caused by codon mismatch, is an important problem of living cells. In this work, a computational model was introduced to quantify the effects of codon mismatch and the model was used to study the protein translation of Saccharomyces cerevisiae. According to simulation results, the probability of codon mismatch will increase when the supply of amino acids is unbalanced, and the longer is the codon sequence, the larger is the probability for incorrect translation to occur, making the synthesis of long peptide chain difficult. By comparing to simulation results without codon mismatch effects taken into account, the fraction of mRNAs with bound ribosome decrease faster along the mRNAs, making the 5' ramp phenomenon more obvious. It was also found in our work that the premature mechanism resulted from codon mismatch can reduce the proportion of incorrect translation when the amino acid supply is extremely unbalanced, which is one possible source of high fidelity protein synthesis after peptidyl transfer.

  17. Universality and Shannon entropy of codon usage

    CERN Document Server

    Frappat, L; Sciarrino, A; Sorba, Paul

    2003-01-01

    The distribution functions of the codon usage probabilities, computed over all the available GenBank data, for 40 eukaryotic biological species and 5 chloroplasts, do not follow a Zipf law, but are best fitted by the sum of a constant, an exponential and a linear function in the rank of usage. For mitochondriae the analysis is not conclusive. A quantum-mechanics-inspired model is proposed to describe the observed behaviour. These functions are characterized by parameters that strongly depend on the total GC content of the coding regions of biological species. It is predicted that the codon usage is the same in all exonic genes with the same GC content. The Shannon entropy for codons, also strongly depending on the exonic GC content, is computed.

  18. Correlation matrix for quartet codon usage

    CERN Document Server

    Frappat, L; Sorba, Paul

    2005-01-01

    It has been argued that the sum of usage probabilities for codons, belonging to quartets, that have as third nucleotide C or A, is independent of the biological species for vertebrates. The comparison between the theoretical correlation matrix derived from these sum rules and the experimentally computed matrix for 26 species shows a satisfactory agreement. The Shannon entropy, weakly depending on the biological species, gives further support. Suppression of codons containing the dinucleotides CG or AU is put in evidence.

  19. A detailed analysis of codon usage patterns and influencing factors in Zika virus.

    Science.gov (United States)

    Singh, Niraj K; Tyagi, Anuj

    2017-07-01

    Recent outbreaks of Zika virus (ZIKV) in Africa, Latin America, Europe, and Southeast Asia have resulted in serious health concerns. To understand more about evolution and transmission of ZIKV, detailed codon usage analysis was performed for all available strains. A high effective number of codons (ENC) value indicated the presence of low codon usage bias in ZIKV. The effect of mutational pressure on codon usage bias was confirmed by significant correlations between nucleotide compositions at third codon positions and ENCs. Correlation analysis between Gravy values, Aroma values and nucleotide compositions at third codon positions also indicated some influence of natural selection. However, the low codon adaptation index (CAI) value of ZIKV with reference to human and mosquito indicated poor adaptation of ZIKV codon usage towards its hosts, signifying that natural selection has a weaker influence than mutational pressure. Additionally, relative dinucleotide frequencies, geographical distribution, and evolutionary processes also influenced the codon usage pattern to some extent.

  20. AUG is the only initiation codon in eukaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, F; McKnight, G; Stewart, J W

    1980-01-01

    An analysis of mutants of the yeast Saccharomyces cerevisiae indicates that AUG is the sole codon capable of initiating translation of iso-1-cytochrome c. This result with yeast and the sequence results of numerous eukaryotic genes indicate that AUG is the only initiation codon in eukaryotes; in contrast, results with Escherichia colia and bacteriophages indicate that both AUG and GUG are initiation codons in prokaryotes. The difference can be explained by the lack of the t/sup 6/ A hypermodified nucleoside (N-(9-(..beta..-D-ribofuranosyl)purin-6-ylcarbamoyl)threonine) in prokaryotic initiator tRNA and its presence in eukaryotic initiator tRNA.

  1. Codon 219 polymorphism of PRNP in healthy caucasians and Creutzfeldt-Jakob disease patients

    Energy Technology Data Exchange (ETDEWEB)

    Petraroli, R.; Pocchiari, M. [Instituto Superiore di Sanita, Rome (Italy)

    1996-04-01

    A number of point and insert mutations of the PrP gene (PRNP) have been linked to familial Creutzfeldt-Jakob disease (CJD) and Gerstmann-Straussler-Scheinker disease (GSS). Moreover, the methionine/valine homozygosity at the polymorphic codon 129 of PRNP may cause a predisposition to sporadic and iatrogenic CJD or may control the age at onset of familial cases carrying either the 144-bp insertion or codon 178, codon 198, and codon 210 pathogenic mutations in PRNP. In addition, the association of methionine or valine at codon 129 and the point mutation at codon 178 on the same allele seem to play an important role in determining either fatal familial insomnia or CJD. However, it is noteworthy that a relationship between codon 129 polymorphism and accelerated pathogenesis (early age at onset or shorter duration of the disease) has not been seen in familial CJD patients with codon 200 mutation or in GSS patients with codon 102 mutation, arguing that other, as yet unidentified, gene products or environmental factors, or both, may influence the clinical expression of these diseases. 17 refs.

  2. Age-related macular degeneration-associated silent polymorphisms in HtrA1 impair its ability to antagonize insulin-like growth factor 1.

    Science.gov (United States)

    Jacobo, Sarah Melissa P; Deangelis, Margaret M; Kim, Ivana K; Kazlauskas, Andrius

    2013-05-01

    Synonymous single nucleotide polymorphisms (SNPs) within a transcript's coding region produce no change in the amino acid sequence of the protein product and are therefore intuitively assumed to have a neutral effect on protein function. We report that two common variants of high-temperature requirement A1 (HTRA1) that increase the inherited risk of neovascular age-related macular degeneration (NvAMD) harbor synonymous SNPs within exon 1 of HTRA1 that convert common codons for Ala34 and Gly36 to less frequently used codons. The frequent-to-rare codon conversion reduced the mRNA translation rate and appeared to compromise HtrA1's conformation and function. The protein product generated from the SNP-containing cDNA displayed enhanced susceptibility to proteolysis and a reduced affinity for an anti-HtrA1 antibody. The NvAMD-associated synonymous polymorphisms lie within HtrA1's putative insulin-like growth factor 1 (IGF-1) binding domain. They reduced HtrA1's abilities to associate with IGF-1 and to ameliorate IGF-1-stimulated signaling events and cellular responses. These observations highlight the relevance of synonymous codon usage to protein function and implicate homeostatic protein quality control mechanisms that may go awry in NvAMD.

  3. Stringent Nucleotide Recognition by the Ribosome at the Middle Codon Position.

    Science.gov (United States)

    Liu, Wei; Shin, Dongwon; Ng, Martin; Sanbonmatsu, Karissa Y; Tor, Yitzhak; Cooperman, Barry S

    2017-08-29

    Accurate translation of the genetic code depends on mRNA:tRNA codon:anticodon base pairing. Here we exploit an emissive, isosteric adenosine surrogate that allows direct measurement of the kinetics of codon:anticodon University of California base formation during protein synthesis. Our results suggest that codon:anticodon base pairing is subject to tighter constraints at the middle position than at the 5'- and 3'-positions, and further suggest a sequential mechanism of formation of the three base pairs in the codon:anticodon helix.

  4. Stringent Nucleotide Recognition by the Ribosome at the Middle Codon Position

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2017-08-01

    Full Text Available Accurate translation of the genetic code depends on mRNA:tRNA codon:anticodon base pairing. Here we exploit an emissive, isosteric adenosine surrogate that allows direct measurement of the kinetics of codon:anticodon University of California base formation during protein synthesis. Our results suggest that codon:anticodon base pairing is subject to tighter constraints at the middle position than at the 5′- and 3′-positions, and further suggest a sequential mechanism of formation of the three base pairs in the codon:anticodon helix.

  5. Five new synonyms in Epimedium (Berberidaceae) from China.

    Science.gov (United States)

    Zhang, Yanjun; Dang, Haishan; Li, Shengyu; Li, Jianqiang; Wang, Ying

    2015-01-01

    Five new synonyms in Chinese Epimedium are designated in the present paper. Epimediumchlorandrum is treated as a synonym of Epimediumacuminatum; Epimediumrhizomatosum as a synonym of Epimediummembranaceum; Epimediumbrachyrrhizum as a synonym of Epimediumleptorrhizum; Epimediumdewuense as a synonym of Epimediumdolichostemon; and Epimediumsagittatumvar.oblongifoliolatum as a synonym of Epimediumborealiguizhouense.

  6. Codon Usage Bias and Determining Forces in Taenia solium Genome.

    Science.gov (United States)

    Yang, Xing; Ma, Xusheng; Luo, Xuenong; Ling, Houjun; Zhang, Xichen; Cai, Xuepeng

    2015-12-01

    The tapeworm Taenia solium is an important human zoonotic parasite that causes great economic loss and also endangers public health. At present, an effective vaccine that will prevent infection and chemotherapy without any side effect remains to be developed. In this study, codon usage patterns in the T. solium genome were examined through 8,484 protein-coding genes. Neutrality analysis showed that T. solium had a narrow GC distribution, and a significant correlation was observed between GC12 and GC3. Examination of an NC (ENC vs GC3s)-plot showed a few genes on or close to the expected curve, but the majority of points with low-ENC (the effective number of codons) values were detected below the expected curve, suggesting that mutational bias plays a major role in shaping codon usage. The Parity Rule 2 plot (PR2) analysis showed that GC and AT were not used proportionally. We also identified 26 optimal codons in the T. solium genome, all of which ended with either a G or C residue. These optimal codons in the T. solium genome are likely consistent with tRNAs that are highly expressed in the cell, suggesting that mutational and translational selection forces are probably driving factors of codon usage bias in the T. solium genome.

  7. Deconstruction of archaeal genome depict strategic consensus in core pathways coding sequence assembly.

    Directory of Open Access Journals (Sweden)

    Ayon Pal

    Full Text Available A comprehensive in silico analysis of 71 species representing the different taxonomic classes and physiological genre of the domain Archaea was performed. These organisms differed in their physiological attributes, particularly oxygen tolerance and energy metabolism. We explored the diversity and similarity in the codon usage pattern in the genes and genomes of these organisms, emphasizing on their core cellular pathways. Our thrust was to figure out whether there is any underlying similarity in the design of core pathways within these organisms. Analyses of codon utilization pattern, construction of hierarchical linear models of codon usage, expression pattern and codon pair preference pointed to the fact that, in the archaea there is a trend towards biased use of synonymous codons in the core cellular pathways and the Nc-plots appeared to display the physiological variations present within the different species. Our analyses revealed that aerobic species of archaea possessed a larger degree of freedom in regulating expression levels than could be accounted for by codon usage bias alone. This feature might be a consequence of their enhanced metabolic activities as a result of their adaptation to the relatively O2-rich environment. Species of archaea, which are related from the taxonomical viewpoint, were found to have striking similarities in their ORF structuring pattern. In the anaerobic species of archaea, codon bias was found to be a major determinant of gene expression. We have also detected a significant difference in the codon pair usage pattern between the whole genome and the genes related to vital cellular pathways, and it was not only species-specific but pathway specific too. This hints towards the structuring of ORFs with better decoding accuracy during translation. Finally, a codon-pathway interaction in shaping the codon design of pathways was observed where the transcription pathway exhibited a significantly different coding

  8. Deconstruction of archaeal genome depict strategic consensus in core pathways coding sequence assembly.

    Science.gov (United States)

    Pal, Ayon; Banerjee, Rachana; Mondal, Uttam K; Mukhopadhyay, Subhasis; Bothra, Asim K

    2015-01-01

    A comprehensive in silico analysis of 71 species representing the different taxonomic classes and physiological genre of the domain Archaea was performed. These organisms differed in their physiological attributes, particularly oxygen tolerance and energy metabolism. We explored the diversity and similarity in the codon usage pattern in the genes and genomes of these organisms, emphasizing on their core cellular pathways. Our thrust was to figure out whether there is any underlying similarity in the design of core pathways within these organisms. Analyses of codon utilization pattern, construction of hierarchical linear models of codon usage, expression pattern and codon pair preference pointed to the fact that, in the archaea there is a trend towards biased use of synonymous codons in the core cellular pathways and the Nc-plots appeared to display the physiological variations present within the different species. Our analyses revealed that aerobic species of archaea possessed a larger degree of freedom in regulating expression levels than could be accounted for by codon usage bias alone. This feature might be a consequence of their enhanced metabolic activities as a result of their adaptation to the relatively O2-rich environment. Species of archaea, which are related from the taxonomical viewpoint, were found to have striking similarities in their ORF structuring pattern. In the anaerobic species of archaea, codon bias was found to be a major determinant of gene expression. We have also detected a significant difference in the codon pair usage pattern between the whole genome and the genes related to vital cellular pathways, and it was not only species-specific but pathway specific too. This hints towards the structuring of ORFs with better decoding accuracy during translation. Finally, a codon-pathway interaction in shaping the codon design of pathways was observed where the transcription pathway exhibited a significantly different coding frequency signature.

  9. Eukaryotic evolutionary transitions are associated with extreme codon bias in functionally-related proteins.

    Directory of Open Access Journals (Sweden)

    Nicholas J Hudson

    Full Text Available Codon bias in the genome of an organism influences its phenome by changing the speed and efficiency of mRNA translation and hence protein abundance. We hypothesized that differences in codon bias, either between-species differences in orthologous genes, or within-species differences between genes, may play an evolutionary role. To explore this hypothesis, we compared the genome-wide codon bias in six species that occupy vital positions in the Eukaryotic Tree of Life. We acquired the entire protein coding sequences for these organisms, computed the codon bias for all genes in each organism and explored the output for relationships between codon bias and protein function, both within- and between-lineages. We discovered five notable coordinated patterns, with extreme codon bias most pronounced in traits considered highly characteristic of a given lineage. Firstly, the Homo sapiens genome had stronger codon bias for DNA-binding transcription factors than the Saccharomyces cerevisiae genome, whereas the opposite was true for ribosomal proteins--perhaps underscoring transcriptional regulation in the origin of complexity. Secondly, both mammalian species examined possessed extreme codon bias in genes relating to hair--a tissue unique to mammals. Thirdly, Arabidopsis thaliana showed extreme codon bias in genes implicated in cell wall formation and chloroplast function--which are unique to plants. Fourthly, Gallus gallus possessed strong codon bias in a subset of genes encoding mitochondrial proteins--perhaps reflecting the enhanced bioenergetic efficiency in birds that co-evolved with flight. And lastly, the G. gallus genome had extreme codon bias for the Ciliary Neurotrophic Factor--which may help to explain their spontaneous recovery from deafness. We propose that extreme codon bias in groups of genes that encode functionally related proteins has a pathway-level energetic explanation.

  10. Five new synonyms in Epimedium ( Berberidaceae ) from China

    OpenAIRE

    Zhang, Yanjun; Dang, Haishan; Li, Shengyu; Li, Jianqiang; Wang, Ying

    2015-01-01

    Abstract Five new synonyms in Chinese Epimedium are designated in the present paper. Epimedium chlorandrum is treated as a synonym of Epimedium acuminatum ; Epimedium rhizomatosum as a synonym of Epimedium membranaceum ; Epimedium brachyrrhizum as a synonym of Epimedium leptorrhizum ; Epimedium dewuense as a synonym of Epimedium dolichostemon ; and Epimedium sagittatum var. oblongifoliolatum as a synonym of Epimedium borealiguizhouense .

  11. Five new synonyms in Epimedium (Berberidaceae from China

    Directory of Open Access Journals (Sweden)

    Yanjun Zhang

    2015-04-01

    Full Text Available Five new synonyms in Chinese Epimedium are designated in the present paper. Epimedium chlorandrum is treated as a synonym of E. acuminatum; Epimedium rhizomatosum as a synonym of E. membranaceum; Epimedium brachyrrhizum as a synonym of E. leptorrhizum; Epimedium dewuense as a synonym of E. dolichostemon; and Epimedium sagittatum var. oblongifoliolatum as a synonym of E. borealiguizhouense.

  12. Efficient Reassignment of a Frequent Serine Codon in Wild-Type Escherichia coli.

    Science.gov (United States)

    Ho, Joanne M; Reynolds, Noah M; Rivera, Keith; Connolly, Morgan; Guo, Li-Tao; Ling, Jiqiang; Pappin, Darryl J; Church, George M; Söll, Dieter

    2016-02-19

    Expansion of the genetic code through engineering the translation machinery has greatly increased the chemical repertoire of the proteome. This has been accomplished mainly by read-through of UAG or UGA stop codons by the noncanonical aminoacyl-tRNA of choice. While stop codon read-through involves competition with the translation release factors, sense codon reassignment entails competition with a large pool of endogenous tRNAs. We used an engineered pyrrolysyl-tRNA synthetase to incorporate 3-iodo-l-phenylalanine (3-I-Phe) at a number of different serine and leucine codons in wild-type Escherichia coli. Quantitative LC-MS/MS measurements of amino acid incorporation yields carried out in a selected reaction monitoring experiment revealed that the 3-I-Phe abundance at the Ser208AGU codon in superfolder GFP was 65 ± 17%. This method also allowed quantification of other amino acids (serine, 33 ± 17%; phenylalanine, 1 ± 1%; threonine, 1 ± 1%) that compete with 3-I-Phe at both the aminoacylation and decoding steps of translation for incorporation at the same codon position. Reassignments of different serine (AGU, AGC, UCG) and leucine (CUG) codons with the matching tRNA(Pyl) anticodon variants were met with varying success, and our findings provide a guideline for the choice of sense codons to be reassigned. Our results indicate that the 3-iodo-l-phenylalanyl-tRNA synthetase (IFRS)/tRNA(Pyl) pair can efficiently outcompete the cellular machinery to reassign select sense codons in wild-type E. coli.

  13. Synonymy and synonyms in Lexicography

    DEFF Research Database (Denmark)

    Bergenholtz, Henning; Gouws, Rufus

    2012-01-01

    In this paper we work with the assumption that items giving synonyms in dictionaries are primarily of assistance in the case of text production problems. We assume furthermore that synonymy does not prevail between lexemes but rather between textual items in concrete texts. Accordingly a rich...... selection of synonyms in text production dictionaries will offer the possibility to select the appropriate item – but only for mother-tongue speakers. We are not discussing items giving synonyms in learners' dictionaries and school dictionaries. From a selection of existing dictionaries it shows, as could...... be expected, that there is no uniform lexicographic practice but also numerous ways of dealing with synonyms that offers very little assistance to the intended target users of a specific dictionary. This could be due to the fact that too often the inclusion and presentation of synonyms are done without taking...

  14. Stop codons in the hepatitis B surface proteins are enriched during antiviral therapy and are associated with host cell apoptosis

    International Nuclear Information System (INIS)

    Colledge, Danielle; Soppe, Sally; Yuen, Lilly; Selleck, Lucy; Walsh, Renae; Locarnini, Stephen; Warner, Nadia

    2017-01-01

    Premature stop codons in the hepatitis B virus (HBV) surface protein can be associated with nucleos(t)ide analogue resistance due to overlap of the HBV surface and polymerase genes. The aim of this study was to determine the effect of the replication of three common surface stop codon variants on the hepatocyte. Cell lines were transfected with infectious HBV clones encoding surface stop codons rtM204I/sW196*, rtA181T/sW172*, rtV191I/sW182*, and a panel of substitutions in the surface proteins. HBsAg was measured by Western blotting. Proliferation and apoptosis were measured using flow cytometry. All three surface stop codon variants were defective in HBsAg secretion. Cells transfected with these variants were less proliferative and had higher levels of apoptosis than those transfected with variants that did not encode surface stop codons. The most cytopathic variant was rtM204I/sW196*. Replication of HBV encoding surface stop codons was toxic to the cell and promoted apoptosis, exacerbating disease progression. - Highlights: •Under normal circumstances, HBV replication is not cytopathic. •Premature stop codons in the HBV surface protein can be selected and enriched during nucleos(t)ide analogue therapy. •Replication of these variants can be cytopathic to the cell and promote apoptosis. •Inadequate antiviral therapy may actually promote disease progression.

  15. Stop codons in the hepatitis B surface proteins are enriched during antiviral therapy and are associated with host cell apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Colledge, Danielle; Soppe, Sally; Yuen, Lilly; Selleck, Lucy; Walsh, Renae; Locarnini, Stephen, E-mail: stephen.locarnini@mh.org.au; Warner, Nadia

    2017-01-15

    Premature stop codons in the hepatitis B virus (HBV) surface protein can be associated with nucleos(t)ide analogue resistance due to overlap of the HBV surface and polymerase genes. The aim of this study was to determine the effect of the replication of three common surface stop codon variants on the hepatocyte. Cell lines were transfected with infectious HBV clones encoding surface stop codons rtM204I/sW196*, rtA181T/sW172*, rtV191I/sW182*, and a panel of substitutions in the surface proteins. HBsAg was measured by Western blotting. Proliferation and apoptosis were measured using flow cytometry. All three surface stop codon variants were defective in HBsAg secretion. Cells transfected with these variants were less proliferative and had higher levels of apoptosis than those transfected with variants that did not encode surface stop codons. The most cytopathic variant was rtM204I/sW196*. Replication of HBV encoding surface stop codons was toxic to the cell and promoted apoptosis, exacerbating disease progression. - Highlights: •Under normal circumstances, HBV replication is not cytopathic. •Premature stop codons in the HBV surface protein can be selected and enriched during nucleos(t)ide analogue therapy. •Replication of these variants can be cytopathic to the cell and promote apoptosis. •Inadequate antiviral therapy may actually promote disease progression.

  16. Complete motif analysis of sequence requirements for translation initiation at non-AUG start codons.

    Science.gov (United States)

    Diaz de Arce, Alexander J; Noderer, William L; Wang, Clifford L

    2018-01-25

    The initiation of mRNA translation from start codons other than AUG was previously believed to be rare and of relatively low impact. More recently, evidence has suggested that as much as half of all translation initiation utilizes non-AUG start codons, codons that deviate from AUG by a single base. Furthermore, non-AUG start codons have been shown to be involved in regulation of expression and disease etiology. Yet the ability to gauge expression based on the sequence of a translation initiation site (start codon and its flanking bases) has been limited. Here we have performed a comprehensive analysis of translation initiation sites that utilize non-AUG start codons. By combining genetic-reporter, cell-sorting, and high-throughput sequencing technologies, we have analyzed the expression associated with all possible variants of the -4 to +4 positions of non-AUG translation initiation site motifs. This complete motif analysis revealed that 1) with the right sequence context, certain non-AUG start codons can generate expression comparable to that of AUG start codons, 2) sequence context affects each non-AUG start codon differently, and 3) initiation at non-AUG start codons is highly sensitive to changes in the flanking sequences. Complete motif analysis has the potential to be a key tool for experimental and diagnostic genomics. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Analysis of codon usage patterns in Morus notabilis based on genome and transcriptome data.

    Science.gov (United States)

    Wen, Yan; Zou, Ziliang; Li, Hongshun; Xiang, Zhonghuai; He, Ningjia

    2017-06-01

    Codons play important roles in regulating gene expression levels and mRNA half-lives. However, codon usage and related studies in multicellular organisms still lag far behind those in unicellular organisms. In this study, we describe for the first time genome-wide patterns of codon bias in Morus notabilis (mulberry tree), and analyze genome-wide codon usage in 12 other species within the order Rosales. The codon usage of M. notabilis was affected by nucleotide composition, mutation pressure, nature selection, and gene expression level. Translational selection optimal codons were identified and highly expressed genes of M. notabilis tended to use the optimal codons. Genes with higher expression levels have shorter coding region and lower amino acid complexity. Housekeeping genes showed stronger translational selection, which, notably, was not caused by the large differences between the expression level of housekeeping genes and other genes.

  18. Codon Distribution in Error-Detecting Circular Codes

    Directory of Open Access Journals (Sweden)

    Elena Fimmel

    2016-03-01

    Full Text Available In 1957, Francis Crick et al. suggested an ingenious explanation for the process of frame maintenance. The idea was based on the notion of comma-free codes. Although Crick’s hypothesis proved to be wrong, in 1996, Arquès and Michel discovered the existence of a weaker version of such codes in eukaryote and prokaryote genomes, namely the so-called circular codes. Since then, circular code theory has invariably evoked great interest and made significant progress. In this article, the codon distributions in maximal comma-free, maximal self-complementary C3 and maximal self-complementary circular codes are discussed, i.e., we investigate in how many of such codes a given codon participates. As the main (and surprising result, it is shown that the codons can be separated into very few classes (three, or five, or six with respect to their frequency. Moreover, the distribution classes can be hierarchically ordered as refinements from maximal comma-free codes via maximal self-complementary C3 codes to maximal self-complementary circular codes.

  19. Codon Distribution in Error-Detecting Circular Codes.

    Science.gov (United States)

    Fimmel, Elena; Strüngmann, Lutz

    2016-03-15

    In 1957, Francis Crick et al. suggested an ingenious explanation for the process of frame maintenance. The idea was based on the notion of comma-free codes. Although Crick's hypothesis proved to be wrong, in 1996, Arquès and Michel discovered the existence of a weaker version of such codes in eukaryote and prokaryote genomes, namely the so-called circular codes. Since then, circular code theory has invariably evoked great interest and made significant progress. In this article, the codon distributions in maximal comma-free, maximal self-complementary C³ and maximal self-complementary circular codes are discussed, i.e., we investigate in how many of such codes a given codon participates. As the main (and surprising) result, it is shown that the codons can be separated into very few classes (three, or five, or six) with respect to their frequency. Moreover, the distribution classes can be hierarchically ordered as refinements from maximal comma-free codes via maximal self-complementary C(3) codes to maximal self-complementary circular codes.

  20. Codon optimisation to improve expression of a Mycobacterium avium ssp. paratuberculosis-specific membrane-associated antigen by Lactobacillus salivarius.

    Science.gov (United States)

    Johnston, Christopher; Douarre, Pierre E; Soulimane, Tewfik; Pletzer, Daniel; Weingart, Helge; MacSharry, John; Coffey, Aidan; Sleator, Roy D; O'Mahony, Jim

    2013-06-01

    Subunit and DNA-based vaccines against Mycobacterium avium ssp. paratuberculosis (MAP) attempt to overcome inherent issues associated with whole-cell formulations. However, these vaccines can be hampered by poor expression of recombinant antigens from a number of disparate hosts. The high G+C content of MAP invariably leads to a codon bias throughout gene expression. To investigate if the codon bias affects recombinant MAP antigen expression, the open reading frame of a MAP-specific antigen MptD (MAP3733c) was codon optimised for expression against a Lactobacillus salivarius host. Of the total 209 codons which constitute MAP3733c, 172 were modified resulting in a reduced G+C content from 61% for the native gene to 32.7% for the modified form. Both genes were placed under the transcriptional control of the PnisA promoter; allowing controlled heterologous expression in L. salivarius. Expression was monitored using fluorescence microscopy and microplate fluorometry via GFP tags translationally fused to the C-termini of the two MptD genes. A > 37-fold increase in expression was observed for the codon-optimised MAP3733synth variant over the native gene. Due to the low cost and improved expression achieved, codon optimisation significantly improves the potential of L. salivarius as an oral vaccine stratagem against Johne's disease. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  1. Complete mitochondrial genome sequence from an endangered Indian snake, Python molurus molurus (Serpentes, Pythonidae).

    Science.gov (United States)

    Dubey, Bhawna; Meganathan, P R; Haque, Ikramul

    2012-07-01

    This paper reports the complete mitochondrial genome sequence of an endangered Indian snake, Python molurus molurus (Indian Rock Python). A typical snake mitochondrial (mt) genome of 17258 bp length comprising of 37 genes including the 13 protein coding genes, 22 tRNA genes, and 2 ribosomal RNA genes along with duplicate control regions is described herein. The P. molurus molurus mt. genome is relatively similar to other snake mt. genomes with respect to gene arrangement, composition, tRNA structures and skews of AT/GC bases. The nucleotide composition of the genome shows that there are more A-C % than T-G% on the positive strand as revealed by positive AT and CG skews. Comparison of individual protein coding genes, with other snake genomes suggests that ATP8 and NADH3 genes have high divergence rates. Codon usage analysis reveals a preference of NNC codons over NNG codons in the mt. genome of P. molurus. Also, the synonymous and non-synonymous substitution rates (ka/ks) suggest that most of the protein coding genes are under purifying selection pressure. The phylogenetic analyses involving the concatenated 13 protein coding genes of P. molurus molurus conformed to the previously established snake phylogeny.

  2. P-value based visualization of codon usage data

    Directory of Open Access Journals (Sweden)

    Fricke Wolfgang

    2006-06-01

    Full Text Available Abstract Two important and not yet solved problems in bacterial genome research are the identification of horizontally transferred genes and the prediction of gene expression levels. Both problems can be addressed by multivariate analysis of codon usage data. In particular dimensionality reduction methods for visualization of multivariate data have shown to be effective tools for codon usage analysis. We here propose a multidimensional scaling approach using a novel similarity measure for codon usage tables. Our probabilistic similarity measure is based on P-values derived from the well-known chi-square test for comparison of two distributions. Experimental results on four microbial genomes indicate that the new method is well-suited for the analysis of horizontal gene transfer and translational selection. As compared with the widely-used correspondence analysis, our method did not suffer from outlier sensitivity and showed a better clustering of putative alien genes in most cases.

  3. Complete mitochondrial genome sequences of three bats species and whole genome mitochondrial analyses reveal patterns of codon bias and lend support to a basal split in Chiroptera.

    Science.gov (United States)

    Meganathan, P R; Pagan, Heidi J T; McCulloch, Eve S; Stevens, Richard D; Ray, David A

    2012-01-15

    Order Chiroptera is a unique group of mammals whose members have attained self-powered flight as their main mode of locomotion. Much speculation persists regarding bat evolution; however, lack of sufficient molecular data hampers evolutionary and conservation studies. Of ~1200 species, complete mitochondrial genome sequences are available for only eleven. Additional sequences should be generated if we are to resolve many questions concerning these fascinating mammals. Herein, we describe the complete mitochondrial genomes of three bats: Corynorhinus rafinesquii, Lasiurus borealis and Artibeus lituratus. We also compare the currently available mitochondrial genomes and analyze codon usage in Chiroptera. C. rafinesquii, L. borealis and A. lituratus mitochondrial genomes are 16438 bp, 17048 bp and 16709 bp, respectively. Genome organization and gene arrangements are similar to other bats. Phylogenetic analyses using complete mitochondrial genome sequences support previously established phylogenetic relationships and suggest utility in future studies focusing on the evolutionary aspects of these species. Comprehensive analyses of available bat mitochondrial genomes reveal distinct nucleotide patterns and synonymous codon preferences corresponding to different chiropteran families. These patterns suggest that mutational and selection forces are acting to different extents within Chiroptera and shape their mitochondrial genomes. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. A single sequence context cannot satisfy all non-AUG initiator codons in yeast†

    Directory of Open Access Journals (Sweden)

    Wang Tzu-Ling

    2010-07-01

    Full Text Available Abstract Background Previous studies in Saccharomyces cerevisiae showed that ALA1 (encoding alanyl-tRNA synthetase and GRS1 (encoding glycyl-tRNA synthetase respectively use ACG and TTG as their alternative translation initiator codons. To explore if any other non-ATG triplets can act as initiator codons in yeast, ALA1 was used as a reporter for screening. Results We show herein that except for AAG and AGG, all triplets that differ from ATG by a single nucleotide were able to serve as initiator codons in ALA1. Among these initiator codons, TTG, CTG, ACG, and ATT had ~50% initiating activities relative to that of ATG, while GTG, ATA, and ATC had ~20% initiating activities relative to that of ATG. Unexpectedly, these non-AUG initiator codons exhibited different preferences toward various sequence contexts. In particular, GTG was one of the most efficient non-ATG initiator codons, while ATA was essentially inactive in the context of GRS1. Conclusion This finding indicates that a sequence context that is favorable for a given non-ATG initiator codon might not be as favorable for another.

  5. Four new synonyms and a new combination in Parnassia (Celastraceae).

    Science.gov (United States)

    Shu, Yumin; Zhang, Zhixiang

    2017-01-01

    Parnassia yunnanensis had been previously described based on mixed specimens containing materials partially belonging to Parnassia cacuminum , which makes the application of Parnassia yunnanensis ambiguous. Therefore, we lectotypified Parnassia yunnanensis and meanwhile synonymized Parnassia lanceolata var. oblongipetala under it. Parnassia yunnanensis var. longistipitata was found more similar to Parnassia cacuminum rather than Parnassia yunnanensis , thus a new combination, Parnassia cacuminum var. longistipitata comb. nov. was proposed. Furthermore, other three names ( Parnassia vevusta , Parnassia degeensis and Parnassia kangdingensis ) were reduced to synonyms of Parnassia cacuminum too.

  6. Codon usage is associated with the evolutionary age of genes in metazoan genomes

    Directory of Open Access Journals (Sweden)

    Linial Nathan

    2009-12-01

    Full Text Available Abstract Background Codon usage may vary significantly between different organisms and between genes within the same organism. Several evolutionary processes have been postulated to be the predominant determinants of codon usage: selection, mutation, and genetic drift. However, the relative contribution of each of these factors in different species remains debatable. The availability of complete genomes for tens of multicellular organisms provides an opportunity to inspect the relationship between codon usage and the evolutionary age of genes. Results We assign an evolutionary age to a gene based on the relative positions of its identified homologues in a standard phylogenetic tree. This yields a classification of all genes in a genome to several evolutionary age classes. The present study starts from the observation that each age class of genes has a unique codon usage and proceeds to provide a quantitative analysis of the codon usage in these classes. This observation is made for the genomes of Homo sapiens, Mus musculus, and Drosophila melanogaster. It is even more remarkable that the differences between codon usages in different age groups exhibit similar and consistent behavior in various organisms. While we find that GC content and gene length are also associated with the evolutionary age of genes, they can provide only a partial explanation for the observed codon usage. Conclusion While factors such as GC content, mutational bias, and selection shape the codon usage in a genome, the evolutionary history of an organism over hundreds of millions of years is an overlooked property that is strongly linked to GC content, protein length, and, even more significantly, to the codon usage of metazoan genomes.

  7. Examining Method Effect of Synonym and Antonym Test in Verbal Abilities Measure

    Directory of Open Access Journals (Sweden)

    Wahyu Widhiarso

    2015-08-01

    Full Text Available Many researchers have assumed that different methods could be substituted to measure the same attributes in assessment. Various models have been developed to accommodate the amount of variance attributable to the methods but these models application in empirical research is rare. The present study applied one of those models to examine whether method effects were presents in synonym and antonym tests. Study participants were 3,469 applicants to graduate school. The instrument used was the Graduate Academic Potential Test (PAPS, which includes synonym and antonym questions to measure verbal abilities. Our analysis showed that measurement models that using correlated trait–correlated methods minus one, CT-C(M–1, that separated trait and method effect into distinct latent constructs yielded slightly better values for multiple goodness-of-fit indices than one factor model. However, either for the synonym or antonym items, the proportion of variance accounted for by the method is smaller than trait variance. The correlation between factor scores of both methods is high (r = 0.994. These findings confirm that synonym and antonym tests represent the same attribute so that both tests cannot be treated as two unique methods for measuring verbal ability.

  8. Examining Method Effect of Synonym and Antonym Test in Verbal Abilities Measure.

    Science.gov (United States)

    Widhiarso, Wahyu; Haryanta

    2015-08-01

    Many researchers have assumed that different methods could be substituted to measure the same attributes in assessment. Various models have been developed to accommodate the amount of variance attributable to the methods but these models application in empirical research is rare. The present study applied one of those models to examine whether method effects were presents in synonym and antonym tests. Study participants were 3,469 applicants to graduate school. The instrument used was the Graduate Academic Potential Test (PAPS), which includes synonym and antonym questions to measure verbal abilities. Our analysis showed that measurement models that using correlated trait-correlated methods minus one, CT-C(M-1), that separated trait and method effect into distinct latent constructs yielded slightly better values for multiple goodness-of-fit indices than one factor model. However, either for the synonym or antonym items, the proportion of variance accounted for by the method is smaller than trait variance. The correlation between factor scores of both methods is high (r = 0.994). These findings confirm that synonym and antonym tests represent the same attribute so that both tests cannot be treated as two unique methods for measuring verbal ability.

  9. ChloroMitoCU: Codon patterns across organelle genomes for functional genomics and evolutionary applications.

    Science.gov (United States)

    Sablok, Gaurav; Chen, Ting-Wen; Lee, Chi-Ching; Yang, Chi; Gan, Ruei-Chi; Wegrzyn, Jill L; Porta, Nicola L; Nayak, Kinshuk C; Huang, Po-Jung; Varotto, Claudio; Tang, Petrus

    2017-06-01

    Organelle genomes are widely thought to have arisen from reduction events involving cyanobacterial and archaeal genomes, in the case of chloroplasts, or α-proteobacterial genomes, in the case of mitochondria. Heterogeneity in base composition and codon preference has long been the subject of investigation of topics ranging from phylogenetic distortion to the design of overexpression cassettes for transgenic expression. From the overexpression point of view, it is critical to systematically analyze the codon usage patterns of the organelle genomes. In light of the importance of codon usage patterns in the development of hyper-expression organelle transgenics, we present ChloroMitoCU, the first-ever curated, web-based reference catalog of the codon usage patterns in organelle genomes. ChloroMitoCU contains the pre-compiled codon usage patterns of 328 chloroplast genomes (29,960 CDS) and 3,502 mitochondrial genomes (49,066 CDS), enabling genome-wide exploration and comparative analysis of codon usage patterns across species. ChloroMitoCU allows the phylogenetic comparison of codon usage patterns across organelle genomes, the prediction of codon usage patterns based on user-submitted transcripts or assembled organelle genes, and comparative analysis with the pre-compiled patterns across species of interest. ChloroMitoCU can increase our understanding of the biased patterns of codon usage in organelle genomes across multiple clades. ChloroMitoCU can be accessed at: http://chloromitocu.cgu.edu.tw/. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  10. Four new synonyms and a new combination in Parnassia (Celastraceae

    Directory of Open Access Journals (Sweden)

    Yumin Shu

    2017-03-01

    Full Text Available Parnassia yunnanensis had been previously described based on mixed specimens containing materials partially belonging to P. cacuminum, which makes the application of P. yunnanensis ambiguous. Therefore, we lectotypified P. yunnanensis and meanwhile synonymized P. lanceolata var. oblongipetala under it. P. yunnanensis var. longistipitata was found more similar to P. cacuminum rather than P. yunnanensis, thus a new combination, P. cacuminum var. longistipitata comb. nov. was proposed. Furthermore, other three names (P. vevusta, P. degeensis and P. kangdingensis were reduced to synonyms of P. cacuminum too.

  11. Terminological synonyms in Czech and English sports terminologies

    Directory of Open Access Journals (Sweden)

    Michaela Cocca

    2016-11-01

    Full Text Available The following paper deals with the concept and typology of terminological synonyms in English and Czech, focusing on the official sport terms codified in English and/or Czech dictionaries. The analysis focuses on Anglicisms as terminological doublets, hyposynonyms, stylistic synonyms, and false friends. Results show that a high number of synonyms were generated by the process of transshaping or translating English terms into Czech. Our analysis suggests that there may be found three types of sports synonyms in English (real, quasi-, and pseudo- synonyms and four main types in Czech (terminological doublets, Anglicisms as hyposynonyms, false friends, and stylistic synonyms. The use of synonyms is even more evident in modern or newly created sports; mass media and the accessibility of data through the Internet playing an essential role as they mediate an immense input of information to the target population.

  12. Three-cohort targeted gene screening reveals a non-synonymous TRKA polymorphism associated with schizophrenia

    DEFF Research Database (Denmark)

    van Schijndel, Jessica E; van Loo, Karen M J; van Zweeden, Martine

    2009-01-01

    selected non-synonymous single-nucleotide polymorphisms (SNPs) in three independent Caucasian schizophrenia case-control cohorts (USA, Denmark and Norway). A meta-analysis revealed ten non-synonymous SNPs that were nominally associated with schizophrenia, nine of which have not been previously linked...... attractive candidate for further study concerns SNP rs6336 (q=0.12) that causes the substitution of an evolutionarily highly conserved amino acid residue in the kinase domain of the neurodevelopmentally important receptor TRKA. Thus, TRKA signaling may represent a novel susceptibility pathway...

  13. Prion protein gene analysis in three kindreds with fatal familial insomnia (FFI): Codon 178 mutation and codon 129 polymorphism

    Energy Technology Data Exchange (ETDEWEB)

    Medori, R.; Tritschler, H.J. (Universita di Bologna (Italy))

    1993-10-01

    Fatal familial insomnia (FFI) is a disease linked to a GAC(Asp) [yields] AAC(Asn) mutation in codon 178 of the prion protein (PrP) gene. FFI is characterized clinically by untreatable progressive insomnia, dysautonomia, and motor dysfunctions and is characterized pathologically by selective thalamic atrophy. The authors confirmed the 178[sup Asn] mutation in the PrP gene of a third FFI family of French ancestry. Three family members who are under 40 years of age and who inherited the mutation showed only reduced perfusion in the basal ganglia on single photon emission computerized tomography. Some FFI features differ from the clinical and neuropathologic findings associated with 178[sup Asn] reported elsewhere. However, additional intragenic mutations accounting for the phenotypic differences were not observed in two affected individuals. In other sporadic and familial forms of Creutzfeldt-Jakob disease and Gerstmann-Straeussler syndrome, Met or Val homozygosity at polymorphic codon 129 is associated with a more severe phenotype, younger age at onset, and faster progression. In FFI, young and old individuals at disease onset had 129[sup Met/Val]. Moreover, of five 178[sup Asn] individuals who are above age-at-onset range and who are well, two have 129[sup Met] and three have 129[sup Met/Val], suggesting that polymorphic site 129 does not modulate FFI phenotypic expression. Genetic heterogeneity and environment may play an important role in inter- and intrafamilial variability of the 178[sup Asn] mutation. 32 refs., 5 figs., 1 tab.

  14. A Simple Combinatorial Codon Mutagenesis Method for Targeted Protein Engineering.

    Science.gov (United States)

    Belsare, Ketaki D; Andorfer, Mary C; Cardenas, Frida S; Chael, Julia R; Park, Hyun June; Lewis, Jared C

    2017-03-17

    Directed evolution is a powerful tool for optimizing enzymes, and mutagenesis methods that improve enzyme library quality can significantly expedite the evolution process. Here, we report a simple method for targeted combinatorial codon mutagenesis (CCM). To demonstrate the utility of this method for protein engineering, CCM libraries were constructed for cytochrome P450 BM3 , pfu prolyl oligopeptidase, and the flavin-dependent halogenase RebH; 10-26 sites were targeted for codon mutagenesis in each of these enzymes, and libraries with a tunable average of 1-7 codon mutations per gene were generated. Each of these libraries provided improved enzymes for their respective transformations, which highlights the generality, simplicity, and tunability of CCM for targeted protein engineering.

  15. Why has nature invented three stop codons of DNA and only one start codon?

    Czech Academy of Sciences Publication Activity Database

    Křížek, Michal; Křížek, P.

    2012-01-01

    Roč. 304, Jul 7 (2012), s. 183-187 ISSN 0022-5193 R&D Projects: GA AV ČR(CZ) IAA100190803 Institutional support: RVO:67985840 Keywords : DNA * RNA * stop codon * synchronization shift * drosophila genome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.351, year: 2012 http://www.sciencedirect.com/science/article/pii/S0022519312001580

  16. Canine parvovirus type 2 (CPV-2) and Feline panleukopenia virus (FPV) codon bias analysis reveals a progressive adaptation to the new niche after the host jump.

    Science.gov (United States)

    Franzo, Giovanni; Tucciarone, Claudia Maria; Cecchinato, Mattia; Drigo, Michele

    2017-09-01

    Based on virus dependence from host cell machinery, their codon usage is expected to show a strong relation with the host one. Even if this association has been stated, especially for bacteria viruses, the linkage is considered to be less consistent for more complex organisms and a codon bias adaptation after host jump has never been proven. Canine parvovirus type 2 (CPV-2) was selected as a model because it represents a well characterized case of host jump, originating from Feline panleukopenia virus (FPV). The current study demonstrates that the adaptation to specific tissue and host codon bias affected CPV-2 evolution. Remarkably, FPV and CPV-2 showed a higher closeness toward the codon bias of the tissues they display the higher tropism for. Moreover, after the host jump, a clear and significant trend was evidenced toward a reduction in the distance between CPV-2 and the dog codon bias over time. This evidence was not confirmed for FPV, suggesting that an equilibrium has been reached during the prolonged virus-host co-evolution. Additionally, the presence of an intermediate pattern displayed by some strains infecting wild species suggests that these could have facilitated the host switch also by acting on codon bias. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Codon 201Gly Polymorphic Type of the DCC Gene is Related to Disseminated Neuroblastoma

    Directory of Open Access Journals (Sweden)

    Xiao-Tang Kong

    2001-01-01

    Full Text Available The deleted in colorectal carcinoma (DCC gene is a potential tumor- suppressor gene on chromosome 18821.3. The relatively high frequency of loss of heterozygosity (LOH and loss of expression of this gene in neuroblastoma, especially in the advanced stages, imply the possibility of involvement of the DCC gene in progression of neuroblastoma. However, only few typical mutations have been identified in this gene, indicating that other possible mechanisms for the inactivation of this gene may exist. A polymorphic change (Arg to Gly at DCC codon 201 is related to advanced colorectal carcinoma and increases in the tumors with absent DCC protein expression. In order to understand whether this change is associated with the development or progression of neuroblastoma, we investigated codon 201 polymorphism of the DCC gene in 102 primary neuroblastomas by polymerase chain reaction single-strand conformation polymorphism. We found no missense or nonsense mutations, but a polymorphic change from CGA (Arg to GGA (Gly at codon 201 resulting in three types of polymorphism: codon 201Gly type, codon 201Arg/Gly type, and codon 201Arg type. The codon 201Gly type occurred more frequently in disseminated (stages IV and IVs neuroblastomas (72% than in localized (stages I, II, and III tumors (48% (P=.035, and normal controls (38% (P=.024. In addition, the codon 201Gly type was significantly more common in tumors found clinically (65% than in those found by mass screening (35% (P=.002. The results suggested that the codon 201Gly type of the DCC gene might be associated with a higher risk of disseminating neuroblastoma.

  18. Synonyms for some species of Mexican anoles (Squamata: Dactyloidae).

    Science.gov (United States)

    De Oca, Adrián Nieto Montes; Poe, Steven; Scarpetta, Simon; Gray, Levi; Lieb, Carl S

    2013-01-01

    We studied type material and freshly collected topotypical specimens to assess the taxonomic status of five names associated with species of Mexican Anolis. We find A. schmidti to be a junior synonym of A. nebulosus, A. breedlovei to be a junior synonym of A. cuprinus, A. polyrhachis to be a junior synonym of A. rubiginosus, A. simmonsi to be a junior synonym of A. nebuloides, and A. adleri to be a junior synonym of A. liogaster.

  19. Polymorphism at codon 36 of the p53 gene.

    Science.gov (United States)

    Felix, C A; Brown, D L; Mitsudomi, T; Ikagaki, N; Wong, A; Wasserman, R; Womer, R B; Biegel, J A

    1994-01-01

    A polymorphism at codon 36 in exon 4 of the p53 gene was identified by single strand conformation polymorphism (SSCP) analysis and direct sequencing of genomic DNA PCR products. The polymorphic allele, present in the heterozygous state in genomic DNAs of four of 100 individuals (4%), changes the codon 36 CCG to CCA, eliminates a FinI restriction site and creates a BccI site. Including this polymorphism there are four known polymorphisms in the p53 coding sequence.

  20. The Study of Synonymous Word "Mistake"

    OpenAIRE

    Suwardi, Albertus

    2016-01-01

    This article discusses the synonymous word "mistake*.The discussion will also cover the meaning of 'word' itself. Words can be considered as form whether spoken or written, or alternatively as composite expression, which combine and meaning. Synonymous are different phonological words which have the same or very similar meanings. The synonyms of mistake are error, fault, blunder, slip, slipup, gaffe and inaccuracy. The data is taken from a computer program. The procedure of data collection is...

  1. Genetic and codon usage bias analyses of polymerase genes of equine influenza virus and its relation to evolution.

    Science.gov (United States)

    Bera, Bidhan Ch; Virmani, Nitin; Kumar, Naveen; Anand, Taruna; Pavulraj, S; Rash, Adam; Elton, Debra; Rash, Nicola; Bhatia, Sandeep; Sood, Richa; Singh, Raj Kumar; Tripathi, Bhupendra Nath

    2017-08-23

    Equine influenza is a major health problem of equines worldwide. The polymerase genes of influenza virus have key roles in virus replication, transcription, transmission between hosts and pathogenesis. Hence, the comprehensive genetic and codon usage bias of polymerase genes of equine influenza virus (EIV) were analyzed to elucidate the genetic and evolutionary relationships in a novel perspective. The group - specific consensus amino acid substitutions were identified in all polymerase genes of EIVs that led to divergence of EIVs into various clades. The consistent amino acid changes were also detected in the Florida clade 2 EIVs circulating in Europe and Asia since 2007. To study the codon usage patterns, a total of 281,324 codons of polymerase genes of EIV H3N8 isolates from 1963 to 2015 were systemically analyzed. The polymerase genes of EIVs exhibit a weak codon usage bias. The ENc-GC3s and Neutrality plots indicated that natural selection is the major influencing factor of codon usage bias, and that the impact of mutation pressure is comparatively minor. The methods for estimating host imposed translation pressure suggested that the polymerase acidic (PA) gene seems to be under less translational pressure compared to polymerase basic 1 (PB1) and polymerase basic 2 (PB2) genes. The multivariate statistical analysis of polymerase genes divided EIVs into four evolutionary diverged clusters - Pre-divergent, Eurasian, Florida sub-lineage 1 and 2. Various lineage specific amino acid substitutions observed in all polymerase genes of EIVs and especially, clade 2 EIVs underwent major variations which led to the emergence of a phylogenetically distinct group of EIVs originating from Richmond/1/07. The codon usage bias was low in all the polymerase genes of EIVs that was influenced by the multiple factors such as the nucleotide compositions, mutation pressure, aromaticity and hydropathicity. However, natural selection was the major influencing factor in defining the

  2. Development of a codon optimization strategy using the efor RED reporter gene as a test case

    Science.gov (United States)

    Yip, Chee-Hoo; Yarkoni, Orr; Ajioka, James; Wan, Kiew-Lian; Nathan, Sheila

    2018-04-01

    Synthetic biology is a platform that enables high-level synthesis of useful products such as pharmaceutically related drugs, bioplastics and green fuels from synthetic DNA constructs. Large-scale expression of these products can be achieved in an industrial compliant host such as Escherichia coli. To maximise the production of recombinant proteins in a heterologous host, the genes of interest are usually codon optimized based on the codon usage of the host. However, the bioinformatics freeware available for standard codon optimization might not be ideal in determining the best sequence for the synthesis of synthetic DNA. Synthesis of incorrect sequences can prove to be a costly error and to avoid this, a codon optimization strategy was developed based on the E. coli codon usage using the efor RED reporter gene as a test case. This strategy replaces codons encoding for serine, leucine, proline and threonine with the most frequently used codons in E. coli. Furthermore, codons encoding for valine and glycine are substituted with the second highly used codons in E. coli. Both the optimized and original efor RED genes were ligated to the pJS209 plasmid backbone using Gibson Assembly and the recombinant DNAs were transformed into E. coli E. cloni 10G strain. The fluorescence intensity per cell density of the optimized sequence was improved by 20% compared to the original sequence. Hence, the developed codon optimization strategy is proposed when designing an optimal sequence for heterologous protein production in E. coli.

  3. Combination of the Endogenous lhcsr1 Promoter and Codon Usage Optimization Boosts Protein Expression in the Moss Physcomitrella patens

    Directory of Open Access Journals (Sweden)

    Manuel Hiss

    2017-10-01

    Full Text Available The moss Physcomitrella patens is used both as an evo-devo model and biotechnological production system for metabolites and pharmaceuticals. Strong in vivo expression of genes of interest is important for production of recombinant proteins, e.g., selectable markers, fluorescent proteins, or enzymes. In this regard, the choice of the promoter sequence as well as codon usage optimization are two important inside factors to consider in order to obtain optimum protein accumulation level. To reliably quantify fluorescence, we transfected protoplasts with promoter:GFP fusion constructs and measured fluorescence intensity of living protoplasts in a plate reader system. We used the red fluorescent protein mCherry under 2x 35S promoter control as second reporter to normalize for different transfection efficiencies. We derived a novel endogenous promoter and compared deletion variants with exogenous promoters. We used different codon-adapted green fluorescent protein (GFP genes to evaluate the influence of promoter choice and codon optimization on protein accumulation in P. patens, and show that the promoter of the gene of P. patens chlorophyll a/b binding protein lhcsr1 drives expression of GFP in protoplasts significantly (more than twofold better than the commonly used 2x 35S promoter or the rice actin1 promoter. We identified a shortened 677 bp version of the lhcsr1 promoter that retains full activity in protoplasts. The codon optimized GFP yields significantly (more than twofold stronger fluorescence signals and thus demonstrates that adjusting codon usage in P. patens can increase expression strength. In combination, new promotor and codon optimized GFP conveyed sixfold increased fluorescence signal.

  4. Codon optimization of the HIV-1 vpu and vif genes stabilizes their mRNA and allows for highly efficient Rev-independent expression

    International Nuclear Information System (INIS)

    Nguyen, Kim-Lien; Llano, Manuel; Akari, Hirofumi; Miyagi, Eri; Poeschla, Eric M.; Strebel, Klaus; Bour, Stephan

    2004-01-01

    Two HIV-1 accessory proteins, Vpu and Vif, are notoriously difficult to express autonomously in the absence of the viral Tat and Rev proteins. We examined whether the codon bias observed in the vpu and vif genes relative to highly expressed human genes contributes to the Rev dependence and low expression level outside the context of the viral genome. The entire vpu gene as well as the 5' half of the vif gene were codon optimized and the resulting open reading frames (ORFs) (vphu and hvif, respectively) were cloned in autonomous expression vectors under the transcriptional control of the CMV promoter. Codon optimization efficiently removed the expression block observed in the native genes and allowed high levels of Rev- and Tat-independent expression of Vpu and Vif. Most of the higher protein levels detected are accounted for by enhanced steady-state levels of the mRNA encoding the optimized species. Nuclear run-on experiments show for the first time that codon optimization has no effect on the rate of transcriptional initiation or elongation of the vphu mRNA. Instead, optimization of the vpu gene was found to stabilize the vphu mRNA in the nucleus and enhance its export to the cytoplasm. This was achieved by allowing the optimized mRNA to use a new CRM1-independent nuclear export pathway. This work provides a better understanding of the molecular mechanisms underlying the process of codon optimization and introduces novel tools to study the biological functions of the Vpu and Vif proteins independently of other viral proteins

  5. Fine-tuning translation kinetics selection as the driving force of codon usage bias in the hepatitis A virus capsid.

    Science.gov (United States)

    Aragonès, Lluís; Guix, Susana; Ribes, Enric; Bosch, Albert; Pintó, Rosa M

    2010-03-05

    Hepatitis A virus (HAV), the prototype of genus Hepatovirus, has several unique biological characteristics that distinguish it from other members of the Picornaviridae family. Among these, the need for an intact eIF4G factor for the initiation of translation results in an inability to shut down host protein synthesis by a mechanism similar to that of other picornaviruses. Consequently, HAV must inefficiently compete for the cellular translational machinery and this may explain its poor growth in cell culture. In this context of virus/cell competition, HAV has strategically adopted a naturally highly deoptimized codon usage with respect to that of its cellular host. With the aim to optimize its codon usage the virus was adapted to propagate in cells with impaired protein synthesis, in order to make tRNA pools more available for the virus. A significant loss of fitness was the immediate response to the adaptation process that was, however, later on recovered and more associated to a re-deoptimization rather than to an optimization of the codon usage specifically in the capsid coding region. These results exclude translation selection and instead suggest fine-tuning translation kinetics selection as the underlying mechanism of the codon usage bias in this specific genome region. Additionally, the results provide clear evidence of the Red Queen dynamics of evolution since the virus has very much evolved to re-adapt its codon usage to the environmental cellular changing conditions in order to recover the original fitness.

  6. Fine-tuning translation kinetics selection as the driving force of codon usage bias in the hepatitis A virus capsid.

    Directory of Open Access Journals (Sweden)

    Lluís Aragonès

    2010-03-01

    Full Text Available Hepatitis A virus (HAV, the prototype of genus Hepatovirus, has several unique biological characteristics that distinguish it from other members of the Picornaviridae family. Among these, the need for an intact eIF4G factor for the initiation of translation results in an inability to shut down host protein synthesis by a mechanism similar to that of other picornaviruses. Consequently, HAV must inefficiently compete for the cellular translational machinery and this may explain its poor growth in cell culture. In this context of virus/cell competition, HAV has strategically adopted a naturally highly deoptimized codon usage with respect to that of its cellular host. With the aim to optimize its codon usage the virus was adapted to propagate in cells with impaired protein synthesis, in order to make tRNA pools more available for the virus. A significant loss of fitness was the immediate response to the adaptation process that was, however, later on recovered and more associated to a re-deoptimization rather than to an optimization of the codon usage specifically in the capsid coding region. These results exclude translation selection and instead suggest fine-tuning translation kinetics selection as the underlying mechanism of the codon usage bias in this specific genome region. Additionally, the results provide clear evidence of the Red Queen dynamics of evolution since the virus has very much evolved to re-adapt its codon usage to the environmental cellular changing conditions in order to recover the original fitness.

  7. Disruption of the Opal Stop Codon Attenuates Chikungunya Virus-Induced Arthritis and Pathology.

    Science.gov (United States)

    Jones, Jennifer E; Long, Kristin M; Whitmore, Alan C; Sanders, Wes; Thurlow, Lance R; Brown, Julia A; Morrison, Clayton R; Vincent, Heather; Peck, Kayla M; Browning, Christian; Moorman, Nathaniel; Lim, Jean K; Heise, Mark T

    2017-11-14

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus responsible for several significant outbreaks of debilitating acute and chronic arthritis and arthralgia over the past decade. These include a recent outbreak in the Caribbean islands and the Americas that caused more than 1 million cases of viral arthralgia. Despite the major impact of CHIKV on global health, viral determinants that promote CHIKV-induced disease are incompletely understood. Most CHIKV strains contain a conserved opal stop codon at the end of the viral nsP3 gene. However, CHIKV strains that encode an arginine codon in place of the opal stop codon have been described, and deep-sequencing analysis of a CHIKV isolate from the Caribbean identified both arginine and opal variants within this strain. Therefore, we hypothesized that the introduction of the arginine mutation in place of the opal termination codon may influence CHIKV virulence. We tested this by introducing the arginine mutation into a well-characterized infectious clone of a CHIKV strain from Sri Lanka and designated this virus Opal524R. This mutation did not impair viral replication kinetics in vitro or in vivo Despite this, the Opal524R virus induced significantly less swelling, inflammation, and damage within the feet and ankles of infected mice. Further, we observed delayed induction of proinflammatory cytokines and chemokines, as well as reduced CD4 + T cell and NK cell recruitment compared to those in the parental strain. Therefore, the opal termination codon plays an important role in CHIKV pathogenesis, independently of effects on viral replication. IMPORTANCE Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes significant outbreaks of viral arthralgia. Studies with CHIKV and other alphaviruses demonstrated that the opal termination codon within nsP3 is highly conserved. However, some strains of CHIKV and other alphaviruses contain mutations in the opal termination codon. These mutations alter the virulence

  8. Evidence of positive selection at codon sites localized in extracellular domains of mammalian CC motif chemokine receptor proteins

    Directory of Open Access Journals (Sweden)

    Metzger Kelsey J

    2010-05-01

    Full Text Available Abstract Background CC chemokine receptor proteins (CCR1 through CCR10 are seven-transmembrane G-protein coupled receptors whose signaling pathways are known for their important roles coordinating immune system responses through targeted trafficking of white blood cells. In addition, some of these receptors have been identified as fusion proteins for viral pathogens: for example, HIV-1 strains utilize CCR5, CCR2 and CCR3 proteins to obtain cellular entry in humans. The extracellular domains of these receptor proteins are involved in ligand-binding specificity as well as pathogen recognition interactions. In mammals, the majority of chemokine receptor genes are clustered together; in humans, seven of the ten genes are clustered in the 3p21-24 chromosome region. Gene conversion events, or exchange of DNA sequence between genes, have been reported in chemokine receptor paralogs in various mammalian lineages, especially between the cytogenetically closely located pairs CCR2/5 and CCR1/3. Datasets of mammalian orthologs for each gene were analyzed separately to minimize the potential confounding impact of analyzing highly similar sequences resulting from gene conversion events. Molecular evolution approaches and the software package Phylogenetic Analyses by Maximum Likelihood (PAML were utilized to investigate the signature of selection that has acted on the mammalian CC chemokine receptor (CCR gene family. The results of neutral vs. adaptive evolution (positive selection hypothesis testing using Site Models are reported. In general, positive selection is defined by a ratio of nonsynonymous/synonymous nucleotide changes (dN/dS, or ω >1. Results Of the ten mammalian CC motif chemokine receptor sequence datasets analyzed, only CCR2 and CCR3 contain amino acid codon sites that exhibit evidence of positive selection using site based hypothesis testing in PAML. Nineteen of the twenty codon sites putatively indentified as likely to be under positive

  9. Effect of the nucleotides surrounding the start codon on the translation of foot-and-mouth disease virus RNA.

    Science.gov (United States)

    Ma, X X; Feng, Y P; Gu, Y X; Zhou, J H; Ma, Z R

    2016-06-01

    As for the alternative AUGs in foot-and-mouth disease virus (FMDV), nucleotide bias of the context flanking the AUG(2nd) could be used as a strong signal to initiate translation. To determine the role of the specific nucleotide context, dicistronic reporter constructs were engineered to contain different versions of nucleotide context linking between internal ribosome entry site (IRES) and downstream gene. The results indicate that under FMDV IRES-dependent mechanism, the nucleotide contexts flanking start codon can influence the translation initiation efficiencies. The most optimal sequences for both start codons have proved to be UUU AUG(1st) AAC and AAG AUG(2nd) GAA.

  10. Codon usage and expression level of human mitochondrial 13 protein coding genes across six continents.

    Science.gov (United States)

    Chakraborty, Supriyo; Uddin, Arif; Mazumder, Tarikul Huda; Choudhury, Monisha Nath; Malakar, Arup Kumar; Paul, Prosenjit; Halder, Binata; Deka, Himangshu; Mazumder, Gulshana Akthar; Barbhuiya, Riazul Ahmed; Barbhuiya, Masuk Ahmed; Devi, Warepam Jesmi

    2017-12-02

    The study of codon usage coupled with phylogenetic analysis is an important tool to understand the genetic and evolutionary relationship of a gene. The 13 protein coding genes of human mitochondria are involved in electron transport chain for the generation of energy currency (ATP). However, no work has yet been reported on the codon usage of the mitochondrial protein coding genes across six continents. To understand the patterns of codon usage in mitochondrial genes across six different continents, we used bioinformatic analyses to analyze the protein coding genes. The codon usage bias was low as revealed from high ENC value. Correlation between codon usage and GC3 suggested that all the codons ending with G/C were positively correlated with GC3 but vice versa for A/T ending codons with the exception of ND4L and ND5 genes. Neutrality plot revealed that for the genes ATP6, COI, COIII, CYB, ND4 and ND4L, natural selection might have played a major role while mutation pressure might have played a dominant role in the codon usage bias of ATP8, COII, ND1, ND2, ND3, ND5 and ND6 genes. Phylogenetic analysis indicated that evolutionary relationships in each of 13 protein coding genes of human mitochondria were different across six continents and further suggested that geographical distance was an important factor for the origin and evolution of 13 protein coding genes of human mitochondria. Copyright © 2017 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  11. A novel nuclear genetic code alteration in yeasts and the evolution of codon reassignment in eukaryotes.

    Science.gov (United States)

    Mühlhausen, Stefanie; Findeisen, Peggy; Plessmann, Uwe; Urlaub, Henning; Kollmar, Martin

    2016-07-01

    The genetic code is the cellular translation table for the conversion of nucleotide sequences into amino acid sequences. Changes to the meaning of sense codons would introduce errors into almost every translated message and are expected to be highly detrimental. However, reassignment of single or multiple codons in mitochondria and nuclear genomes, although extremely rare, demonstrates that the code can evolve. Several models for the mechanism of alteration of nuclear genetic codes have been proposed (including "codon capture," "genome streamlining," and "ambiguous intermediate" theories), but with little resolution. Here, we report a novel sense codon reassignment in Pachysolen tannophilus, a yeast related to the Pichiaceae. By generating proteomics data and using tRNA sequence comparisons, we show that Pachysolen translates CUG codons as alanine and not as the more usual leucine. The Pachysolen tRNACAG is an anticodon-mutated tRNA(Ala) containing all major alanine tRNA recognition sites. The polyphyly of the CUG-decoding tRNAs in yeasts is best explained by a tRNA loss driven codon reassignment mechanism. Loss of the CUG-tRNA in the ancient yeast is followed by gradual decrease of respective codons and subsequent codon capture by tRNAs whose anticodon is not part of the aminoacyl-tRNA synthetase recognition region. Our hypothesis applies to all nuclear genetic code alterations and provides several testable predictions. We anticipate more codon reassignments to be uncovered in existing and upcoming genome projects. © 2016 Mühlhausen et al.; Published by Cold Spring Harbor Laboratory Press.

  12. Genotyping of K-ras codons 12 and 13 mutations in colorectal cancer by capillary electrophoresis.

    Science.gov (United States)

    Chen, Yen-Ling; Chang, Ya-Sian; Chang, Jan-Gowth; Wu, Shou-Mei

    2009-06-26

    Point mutations of the K-ras gene located in codons 12 and 13 cause poor responses to the anti-epidermal growth factor receptor (anti-EGFR) therapy of colorectal cancer (CRC) patients. Besides, mutations of K-ras gene have also been proven to play an important role in human tumor progression. We established a simple and effective capillary electrophoresis (CE) method for simultaneous point mutation detection in codons 12 and 13 of K-ras gene. We combined one universal fluorescence-based nonhuman-sequence primer and two fragment-oriented primers in one tube, and performed this two-in-one polymerase chain reaction (PCR). PCR fragments included wild type and seven point mutations at codons 12 and 13 of K-ras gene. The amplicons were analyzed by single-strand conformation polymorphism (SSCP)-CE method. The CE analysis was performed by using a 1x Tris-borate-EDTA (TBE) buffer containing 1.5% (w/v) hydroxyethylcellulose (HEC) (MW 250,000) under reverse polarity with 15 degrees C and 30 degrees C. Ninety colorectal cancer patients were blindly genotyped using this developed method. The results showed good agreement with those of DNA sequencing method. The SSCP-CE was feasible for mutation screening of K-ras gene in populations.

  13. The importance of species name synonyms in literature searches

    Science.gov (United States)

    Guala, Gerald

    2016-01-01

    The synonyms of biological species names are shown to be an important component in comprehensive searches of electronic scientific literature databases but they are not well leveraged within the major literature databases examined. For accepted or valid species names in the Integrated Taxonomic Information System (ITIS) which have synonyms in the system, and which are found in citations within PLoS, PMC, PubMed or Scopus, both the percentage of species for which citations will not be found if synonyms are not used, and the percentage increase in number of citations found by including synonyms are very often substantial. However, there is no correlation between the number of synonyms per species and the magnitude of the effect. Further, the number of citations found does not generally increase proportionally to the number of synonyms available. Users looking for literature on specific species across all of the resources investigated here are often missing large numbers of citations if they are not manually augmenting their searches with synonyms. Of course, missing citations can have serious consequences by effectively hiding critical information. Literature searches should include synonym relationships and a new web service in ITIS, with examples of how to apply it to this issue, was developed as a result of this study, and is here announced, to aide in this.

  14. The Importance of Species Name Synonyms in Literature Searches.

    Science.gov (United States)

    Guala, Gerald F

    2016-01-01

    The synonyms of biological species names are shown to be an important component in comprehensive searches of electronic scientific literature databases but they are not well leveraged within the major literature databases examined. For accepted or valid species names in the Integrated Taxonomic Information System (ITIS) which have synonyms in the system, and which are found in citations within PLoS, PMC, PubMed or Scopus, both the percentage of species for which citations will not be found if synonyms are not used, and the percentage increase in number of citations found by including synonyms are very often substantial. However, there is no correlation between the number of synonyms per species and the magnitude of the effect. Further, the number of citations found does not generally increase proportionally to the number of synonyms available. Users looking for literature on specific species across all of the resources investigated here are often missing large numbers of citations if they are not manually augmenting their searches with synonyms. Of course, missing citations can have serious consequences by effectively hiding critical information. Literature searches should include synonym relationships and a new web service in ITIS, with examples of how to apply it to this issue, was developed as a result of this study, and is here announced, to aide in this.

  15. The Importance of Species Name Synonyms in Literature Searches.

    Directory of Open Access Journals (Sweden)

    Gerald F Guala

    Full Text Available The synonyms of biological species names are shown to be an important component in comprehensive searches of electronic scientific literature databases but they are not well leveraged within the major literature databases examined. For accepted or valid species names in the Integrated Taxonomic Information System (ITIS which have synonyms in the system, and which are found in citations within PLoS, PMC, PubMed or Scopus, both the percentage of species for which citations will not be found if synonyms are not used, and the percentage increase in number of citations found by including synonyms are very often substantial. However, there is no correlation between the number of synonyms per species and the magnitude of the effect. Further, the number of citations found does not generally increase proportionally to the number of synonyms available. Users looking for literature on specific species across all of the resources investigated here are often missing large numbers of citations if they are not manually augmenting their searches with synonyms. Of course, missing citations can have serious consequences by effectively hiding critical information. Literature searches should include synonym relationships and a new web service in ITIS, with examples of how to apply it to this issue, was developed as a result of this study, and is here announced, to aide in this.

  16. Animal products and K-ras codon 12 and 13 mutations in colon carcinomas

    NARCIS (Netherlands)

    Kampman, E.; Voskuil, D.W.; Kraats, A.A. van; Balder, H.F.; Muijen, G.N.P. van; Goldbohm, R.A.; Veer, P. van 't

    2000-01-01

    K-ras gene mutations (codons 12 and 13) were determined by PCR-based mutant allele-specific amplification (MASA) in tumour tissue of 185 colon cancer patients: 36% harboured mutations, of which 82% were located in codon 12. High intakes of animal protein, calcium and poultry were differently

  17. Large scale comparative codon-pair context analysis unveils general rules that fine-tune evolution of mRNA primary structure.

    Directory of Open Access Journals (Sweden)

    Gabriela Moura

    Full Text Available BACKGROUND: Codon usage and codon-pair context are important gene primary structure features that influence mRNA decoding fidelity. In order to identify general rules that shape codon-pair context and minimize mRNA decoding error, we have carried out a large scale comparative codon-pair context analysis of 119 fully sequenced genomes. METHODOLOGIES/PRINCIPAL FINDINGS: We have developed mathematical and software tools for large scale comparative codon-pair context analysis. These methodologies unveiled general and species specific codon-pair context rules that govern evolution of mRNAs in the 3 domains of life. We show that evolution of bacterial and archeal mRNA primary structure is mainly dependent on constraints imposed by the translational machinery, while in eukaryotes DNA methylation and tri-nucleotide repeats impose strong biases on codon-pair context. CONCLUSIONS: The data highlight fundamental differences between prokaryotic and eukaryotic mRNA decoding rules, which are partially independent of codon usage.

  18. Codon 129 polymorphism of prion protein gene in is not a risk factor for Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Jerusa Smid

    2013-07-01

    Full Text Available Interaction of prion protein and amyloid-b oligomers has been demonstrated recently. Homozygosity at prion protein gene (PRNP codon 129 is associated with higher risk for Creutzfeldt-Jakob disease. This polymorphism has been addressed as a possible risk factor in Alzheimer disease (AD. Objective To describe the association between codon 129 polymorphisms and AD. Methods We investigated the association of codon 129 polymorphism of PRNP in 99 AD patients and 111 controls, and the association between this polymorphism and cognitive performance. Other polymorphisms of PRNP and additive effect of apolipoprotein E gene (ApoE were evaluated. Results Codon 129 genotype distribution in AD 45.5% methionine (MM, 42.2% methionine valine (MV, 12.1% valine (VV; and 39.6% MM, 50.5% MV, 9.9% VV among controls (p>0.05. There were no differences of cognitive performance concerning codon 129. Stratification according to ApoE genotype did not reveal difference between groups. Conclusion Codon 129 polymorphism is not a risk factor for AD in Brazilian patients.

  19. Codon usage bias and phylogenetic analysis of mitochondrial ND1 gene in pisces, aves, and mammals.

    Science.gov (United States)

    Uddin, Arif; Choudhury, Monisha Nath; Chakraborty, Supriyo

    2018-01-01

    The mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 1 (MT-ND1) gene is a subunit of the respiratory chain complex I and involved in the first step of the electron transport chain of oxidative phosphorylation (OXPHOS). To understand the pattern of compositional properties, codon usage and expression level of mitochondrial ND1 genes in pisces, aves, and mammals, we used bioinformatic approaches as no work was reported earlier. In this study, a perl script was used for calculating nucleotide contents and different codon usage bias parameters. The codon usage bias of MT-ND1 was low but the expression level was high as revealed from high ENC and CAI value. Correspondence analysis (COA) suggests that the pattern of codon usage for MT-ND1 gene is not same across species and that compositional constraint played an important role in codon usage pattern of this gene among pisces, aves, and mammals. From the regression equation of GC12 on GC3, it can be inferred that the natural selection might have played a dominant role while mutation pressure played a minor role in influencing the codon usage patterns. Further, ND1 gene has a discrepancy with cytochrome B (CYB) gene in preference of codons as evident from COA. The codon usage bias was low. It is influenced by nucleotide composition, natural selection, mutation pressure, length (number) of amino acids, and relative dinucleotide composition. This study helps in understanding the molecular biology, genetics, evolution of MT-ND1 gene, and also for designing a synthetic gene.

  20. Improved secretory production of calf prochymosin by codon ...

    African Journals Online (AJOL)

    Administrator

    2011-09-12

    Sep 12, 2011 ... results show that codon optimization and disruption of the PMR1 gene synergistically stimulate the secretion of ... With developments in recombinant DNA technology, .... regulated, it is of importance to optimize the variables.

  1. Translational control of Nrf2 within the open reading frame

    International Nuclear Information System (INIS)

    Perez-Leal, Oscar; Barrero, Carlos A.; Merali, Salim

    2013-01-01

    Highlights: •Identification of a novel Nrf2 translational repression mechanism. •The repressor is within the 3′ portion of the Nrf2 ORF. •The translation of Nrf2 or eGFP is reduced by the regulatory element. •The translational repression can be reversed with synonymous codon substitutions. •The molecular mechanism requires the mRNA sequence, but not the encoded amino acids. -- Abstract: Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) is a transcription factor that is essential for the regulation of an effective antioxidant and detoxifying response. The regulation of its activity can occur at transcription, translation and post-translational levels. Evidence suggests that under environmental stress conditions, new synthesis of Nrf2 is required – a process that is regulated by translational control and is not fully understood. Here we described the identification of a novel molecular process that under basal conditions strongly represses the translation of Nrf2 within the open reading frame (ORF). This mechanism is dependent on the mRNA sequence within the 3′ portion of the ORF of Nrf2 but not in the encoded amino acid sequence. The Nrf2 translational repression can be reversed with the use of synonymous codon substitutions. This discovery suggests an additional layer of control to explain the reason for the low Nrf2 concentration under quiescent state

  2. Limits of variation, specific infectivity, and genome packaging of massively recoded poliovirus genomes.

    Science.gov (United States)

    Song, Yutong; Gorbatsevych, Oleksandr; Liu, Ying; Mugavero, JoAnn; Shen, Sam H; Ward, Charles B; Asare, Emmanuel; Jiang, Ping; Paul, Aniko V; Mueller, Steffen; Wimmer, Eckard

    2017-10-10

    Computer design and chemical synthesis generated viable variants of poliovirus type 1 (PV1), whose ORF (6,189 nucleotides) carried up to 1,297 "Max" mutations (excess of overrepresented synonymous codon pairs) or up to 2,104 "SD" mutations (randomly scrambled synonymous codons). "Min" variants (excess of underrepresented synonymous codon pairs) are nonviable except for P2 Min , a variant temperature-sensitive at 33 and 39.5 °C. Compared with WT PV1, P2 Min displayed a vastly reduced specific infectivity (si) (WT, 1 PFU/118 particles vs. P2 Min , 1 PFU/35,000 particles), a phenotype that will be discussed broadly. Si of haploid PV presents cellular infectivity of a single genotype. We performed a comprehensive analysis of sequence and structures of the PV genome to determine if evolutionary conserved cis-acting packaging signal(s) were preserved after recoding. We showed that conserved synonymous sites and/or local secondary structures that might play a role in determining packaging specificity do not survive codon pair recoding. This makes it unlikely that numerous "cryptic, sequence-degenerate, dispersed RNA packaging signals mapping along the entire viral genome" [Patel N, et al. (2017) Nat Microbiol 2:17098] play the critical role in poliovirus packaging specificity. Considering all available evidence, we propose a two-step assembly strategy for +ssRNA viruses: step I, acquisition of packaging specificity, either ( a ) by specific recognition between capsid protein(s) and replication proteins (poliovirus), or ( b ) by the high affinity interaction of a single RNA packaging signal (PS) with capsid protein(s) (most +ssRNA viruses so far studied); step II, cocondensation of genome/capsid precursors in which an array of hairpin structures plays a role in virion formation.

  3. Analysis of phylogeny and codon usage bias and relationship of GC content, amino acid composition with expression of the structural nif genes.

    Science.gov (United States)

    Mondal, Sunil Kanti; Kundu, Sudip; Das, Rabindranath; Roy, Sujit

    2016-08-01

    Bacteria and archaea have evolved with the ability to fix atmospheric dinitrogen in the form of ammonia, catalyzed by the nitrogenase enzyme complex which comprises three structural genes nifK, nifD and nifH. The nifK and nifD encodes for the beta and alpha subunits, respectively, of component 1, while nifH encodes for component 2 of nitrogenase. Phylogeny based on nifDHK have indicated that Cyanobacteria is closer to Proteobacteria alpha and gamma but not supported by the tree based on 16SrRNA. The evolutionary ancestor for the different trees was also different. The GC1 and GC2% analysis showed more consistency than GC3% which appeared to below for Firmicutes, Cyanobacteria and Euarchaeota while highest in Proteobacteria beta and clearly showed the proportional effect on the codon usage with a few exceptions. Few genes from Firmicutes, Euryarchaeota, Proteobacteria alpha and delta were found under mutational pressure. These nif genes with low and high GC3% from different classes of organisms showed similar expected number of codons. Distribution of the genes and codons, based on codon usage demonstrated opposite pattern for different orientation of mirror plane when compared with each other. Overall our results provide a comprehensive analysis on the evolutionary relationship of the three structural nif genes, nifK, nifD and nifH, respectively, in the context of codon usage bias, GC content relationship and amino acid composition of the encoded proteins and exploration of crucial statistical method for the analysis of positive data with non-constant variance to identify the shape factors of codon adaptation index.

  4. TP53 codon 72 polymorphism in pigmentary phenotypes

    Indian Academy of Sciences (India)

    2012-01-20

    Jan 20, 2012 ... pigmentation by acting as a transcription factor for other genes that are ... skin phototype I-II, burns after exposure to UVR and the development of .... morphisms of TP53 codon 72 with breast carcinoma risk: evidence from ...

  5. Establishment and comparison of three different codon optimization ...

    African Journals Online (AJOL)

    Yomi

    2012-02-16

    C. elegan). It can raise the n-3/n-6 .... value) could help to judge the numbers of codon types. High level ..... function and health in mammal, especially in .... Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nat.

  6. Adaptive synonymous mutations in an experimentally evolved Pseudomonas fluorescens population

    DEFF Research Database (Denmark)

    Bailey, Susan; Hinz, Aaron; Kassen, Rees

    2014-01-01

    Conventional wisdom holds that synonymous mutations, nucleotide changes that do not alter the encoded amino acid, have no detectable effect on phenotype or fitness. However, a growing body of evidence from both comparative and experimental studies suggests otherwise. Synonymous mutations have been...... shown to impact gene expression, protein folding and fitness, however, direct evidence that they can be positively selected, and so contribute to adaptation, is lacking. Here we report the recovery of two beneficial synonymous single base pair changes that arose spontaneously and independently...... in an experimentally evolved population of Pseudomonas fluorescens. We show experimentally that these mutations increase fitness by an amount comparable to non-synonymous mutations and that the fitness increases stem from increased gene expression. These results provide unequivocal evidence that synonymous mutations...

  7. THE LEXICOGRAFIC PRINCIPLES OF WORD MEANINGS IN THE MULTILINGUAL SYNONYMIC DICTIONARIES

    Directory of Open Access Journals (Sweden)

    Siddikova, I.A.

    2018-03-01

    Full Text Available This article is dedicated to study of principles of description of the meaning of words in the multilingual synonymic dictionaries. The dictionary of synonyms must have full enough and absolutely explicit description of their semantic similarity and distinctions. The description can be full if it includes all existing features of the words, adequately denote every meaning and help the language learners and speakers in choosing possible meanings of synonyms owing to situation. The synonymic dictionary must include all synonyms, their meanings, lexico-semantic combination, distribution, grammatical constructions and stylistic features showing their usage in certain contexts and situations. In some cases according to their contextual meanings synonyms may be substituted depending on situation. The article is based on examples of English, Uzbek and Russian languages.

  8. Comparative investigation of the various determinants that influence the codon and amino acid usage patterns in the genus Bifidobacterium.

    Science.gov (United States)

    Roy, Ayan; Mukhopadhyay, Subhasish; Sarkar, Indrani; Sen, Arnab

    2015-06-01

    Various strains of the genus Bifidobacterium are crucial members of the human, animal and insect gut, associated with beneficial probiotic activities. An extensive analysis on codon and amino acid usage of the GC rich genus Bifidobacterium has been executed in the present study. Multivariate statistical analysis revealed a coupled effect of GC compositional constraint and natural selection for translational efficiency to be operative in producing the observed codon usage variations. Gene expression level was inferred to be the most crucial factor governing the codon usage patterns. Amino acid usage was found to be influenced significantly by hydrophobic and aromatic character of the encoded proteins. Gene expressivity and protein energetic cost also had considerable impact on the differential mode of amino acid usage. The genus was found to strictly obey the cost-minimization hypothesis as was reflected from the amino acid usage patterns of the potential highly expressed gene products. Evolutionary analysis revealed that the highly expressed genes were candidates to extreme evolutionary selection pressure and indicated a high degree of conservation at the proteomic level. Interestingly, the complimentary strands of replication appeared to evolve under similar evolutionary constraints which might be addressed as a consequence of absence of replicational selection and lack of strand-specific asymmetry among the members of the genus. Thus, the present endeavor confers considerable know-how pertaining to the codon and amino acid usage intricacies in Bifidobacterium and might prove handy for further scientific investigations associated with the concerned domain.

  9. Comparative analysis of codon usage bias in Crenarchaea and ...

    Indian Academy of Sciences (India)

    ending codons even within the WWY (nucleotide ambiguity code) families in Crenarchaea ...... this work. Acknowledgements. Authors thank Mr Ajit Kumar Sahoo and Ms ... November J. A. 2002 Accounting for background nucleotide com-.

  10. Establishment and comparison of three different codon optimization ...

    African Journals Online (AJOL)

    C. elegan). It can raise the n-3/n-6 polyunsaturated fatty acids (PUFAs) ratio in mammalian cells. To reveal the impact of different codon optimizations of fat1 gene in influencing the catalysis efficiency of n-6 PUFAs into n-3 PUFAs in mammalian ...

  11. Mapping the Plasticity of the E. coli Genetic Code with Orthogonal Pair Directed Sense Codon Reassignment.

    Science.gov (United States)

    Schmitt, Margaret A; Biddle, Wil; Fisk, John Domenic

    2018-04-18

    The relative quantitative importance of the factors that determine the fidelity of translation is largely unknown, which makes predicting the extent to which the degeneracy of the genetic code can be broken challenging. Our strategy of using orthogonal tRNA/aminoacyl tRNA synthetase pairs to precisely direct the incorporation of a single amino acid in response to individual sense and nonsense codons provides a suite of related data with which to examine the plasticity of the code. Each directed sense codon reassignment measurement is an in vivo competition experiment between the introduced orthogonal translation machinery and the natural machinery in E. coli. This report discusses 20 new, related genetic codes, in which a targeted E. coli wobble codon is reassigned to tyrosine utilizing the orthogonal tyrosine tRNA/aminoacyl tRNA synthetase pair from Methanocaldococcus jannaschii. One at a time, reassignment of each targeted sense codon to tyrosine is quantified in cells by measuring the fluorescence of GFP variants in which the essential tyrosine residue is encoded by a non-tyrosine codon. Significantly, every wobble codon analyzed may be partially reassigned with efficiencies ranging from 0.8% to 41%. The accumulation of the suite of data enables a qualitative dissection of the relative importance of the factors affecting the fidelity of translation. While some correlation was observed between sense codon reassignment and either competing endogenous tRNA abundance or changes in aminoacylation efficiency of the altered orthogonal system, no single factor appears to predominately drive translational fidelity. Evaluation of relative cellular fitness in each of the 20 quantitatively-characterized proteome-wide tyrosine substitution systems suggests that at a systems level, E. coli is robust to missense mutations.

  12. Whole-gene positive selection, elevated synonymous substitution rates, duplication, and indel evolution of the chloroplast clpP1 gene.

    Directory of Open Access Journals (Sweden)

    Per Erixon

    Full Text Available BACKGROUND: Synonymous DNA substitution rates in the plant chloroplast genome are generally relatively slow and lineage dependent. Non-synonymous rates are usually even slower due to purifying selection acting on the genes. Positive selection is expected to speed up non-synonymous substitution rates, whereas synonymous rates are expected to be unaffected. Until recently, positive selection has seldom been observed in chloroplast genes, and large-scale structural rearrangements leading to gene duplications are hitherto supposed to be rare. METHODOLOGY/PRINCIPLE FINDINGS: We found high substitution rates in the exons of the plastid clpP1 gene in Oenothera (the Evening Primrose family and three separate lineages in the tribe Sileneae (Caryophyllaceae, the Carnation family. Introns have been lost in some of the lineages, but where present, the intron sequences have substitution rates similar to those found in other introns of their genomes. The elevated substitution rates of clpP1 are associated with statistically significant whole-gene positive selection in three branches of the phylogeny. In two of the lineages we found multiple copies of the gene. Neighboring genes present in the duplicated fragments do not show signs of elevated substitution rates or positive selection. Although non-synonymous substitutions account for most of the increase in substitution rates, synonymous rates are also markedly elevated in some lineages. Whereas plant clpP1 genes experiencing negative (purifying selection are characterized by having very conserved lengths, genes under positive selection often have large insertions of more or less repetitive amino acid sequence motifs. CONCLUSIONS/SIGNIFICANCE: We found positive selection of the clpP1 gene in various plant lineages to correlated with repeated duplication of the clpP1 gene and surrounding regions, repetitive amino acid sequences, and increase in synonymous substitution rates. The present study sheds light on the

  13. Transient erythromycin resistance phenotype associated with peptidyl-tRNA drop-off on early UGG and GGG codons

    DEFF Research Database (Denmark)

    Macvanin, Mirjana; Gonzalez de Valdivia, Ernesto I; Ardell, David H

    2007-01-01

    -peptide-encoding sequence, we asked whether the codons UGG and GGG, which are known to promote peptidyl-tRNA drop-off at early positions in mRNA, would result in a phenotype of erythromycin resistance if located after this sequence. We find that UGG or GGG, at either position +4 or +5, without a following stop codon......, is associated with an erythromycin resistance phenotype upon gene induction. Our results suggest that, while a stop codon at +4 gives a tripeptide product (MIL) and erythromycin sensitivity, UGG or GGG codons at the same position give a tetrapeptide product (MILW or MILG) and phenotype of erythromycin...... resistance. Thus, the drop-off event on GGG or UGG codons occurs after incorporation of the corresponding amino acid into the growing peptide chain. Drop-off gives rise to a peptidyl-tRNA where the peptide moiety functionally mimics a minigene peptide product of the type previously associated...

  14. Evaluating codon bias perspective in barbiturase gene using ...

    African Journals Online (AJOL)

    Abdullah

    2014-01-08

    Jan 8, 2014 ... along with codon usage was done to reveal dynamics of gene evolution and expression ... analysis is a potent approach for detecting mutations, selection methods and finding rationale of biased and unbiased gene changes and hence, evolutionary ... in the perception of the molecular basics plus potential.

  15. Genes adopt non-optimal codon usage to generate cell cycle-dependent oscillations in protein levels

    DEFF Research Database (Denmark)

    Frenkel-Morgenstern, Milana; Danon, Tamar; Christian, Thomas

    2012-01-01

    The cell cycle is a temporal program that regulates DNA synthesis and cell division. When we compared the codon usage of cell cycle-regulated genes with that of other genes, we discovered that there is a significant preference for non-optimal codons. Moreover, genes encoding proteins that cycle a...

  16. Codon usage determines translation rate in Escherichia coli

    DEFF Research Database (Denmark)

    Sørensen, Michael Askvad; Kurland, C G; Pedersen, Steen

    1989-01-01

    We wish to determine whether differences in translation rate are correlated with differences in codon usage or with differences in mRNA secondary structure. We therefore inserted a small DNA fragment in the lacZ gene either directly or flanked by a few frame-shifting bases, leaving the reading fr...

  17. Adaptive molecular evolution of the Major Histocompatibility Complex genes, DRA and DQA, in the genus Equus.

    Science.gov (United States)

    Kamath, Pauline L; Getz, Wayne M

    2011-05-18

    Major Histocompatibility Complex (MHC) genes are central to vertebrate immune response and are believed to be under balancing selection by pathogens. This hypothesis has been supported by observations of extremely high polymorphism, elevated nonsynonymous to synonymous base pair substitution rates and trans-species polymorphisms at these loci. In equids, the organization and variability of this gene family has been described, however the full extent of diversity and selection is unknown. As selection is not expected to act uniformly on a functional gene, maximum likelihood codon-based models of selection that allow heterogeneity in selection across codon positions can be valuable for examining MHC gene evolution and the molecular basis for species adaptations. We investigated the evolution of two class II MHC genes of the Equine Lymphocyte Antigen (ELA), DRA and DQA, in the genus Equus with the addition of novel alleles identified in plains zebra (E. quagga, formerly E. burchelli). We found that both genes exhibited a high degree of polymorphism and inter-specific sharing of allele lineages. To our knowledge, DRA allelic diversity was discovered to be higher than has ever been observed in vertebrates. Evidence was also found to support a duplication of the DQA locus. Selection analyses, evaluated in terms of relative rates of nonsynonymous to synonymous mutations (dN/dS) averaged over the gene region, indicated that the majority of codon sites were conserved and under purifying selection (dN codon models allowed for variable rates of selection across codon sites at both loci and, at the DQA, supported the hypothesis of positive selection acting on specific sites. Observations of elevated genetic diversity and trans-species polymorphisms supported the conclusion that balancing selection may be acting on these loci. Furthermore, at the DQA, positive selection was occurring at antigen binding sites, suggesting that a few

  18. Adaptive molecular evolution of the Major Histocompatibility Complex genes, DRA and DQA, in the genus Equus

    Directory of Open Access Journals (Sweden)

    Getz Wayne M

    2011-05-01

    Full Text Available Abstract Background Major Histocompatibility Complex (MHC genes are central to vertebrate immune response and are believed to be under balancing selection by pathogens. This hypothesis has been supported by observations of extremely high polymorphism, elevated nonsynonymous to synonymous base pair substitution rates and trans-species polymorphisms at these loci. In equids, the organization and variability of this gene family has been described, however the full extent of diversity and selection is unknown. As selection is not expected to act uniformly on a functional gene, maximum likelihood codon-based models of selection that allow heterogeneity in selection across codon positions can be valuable for examining MHC gene evolution and the molecular basis for species adaptations. Results We investigated the evolution of two class II MHC genes of the Equine Lymphocyte Antigen (ELA, DRA and DQA, in the genus Equus with the addition of novel alleles identified in plains zebra (E. quagga, formerly E. burchelli. We found that both genes exhibited a high degree of polymorphism and inter-specific sharing of allele lineages. To our knowledge, DRA allelic diversity was discovered to be higher than has ever been observed in vertebrates. Evidence was also found to support a duplication of the DQA locus. Selection analyses, evaluated in terms of relative rates of nonsynonymous to synonymous mutations (dN/dS averaged over the gene region, indicated that the majority of codon sites were conserved and under purifying selection (dN dS. However, the most likely evolutionary codon models allowed for variable rates of selection across codon sites at both loci and, at the DQA, supported the hypothesis of positive selection acting on specific sites. Conclusions Observations of elevated genetic diversity and trans-species polymorphisms supported the conclusion that balancing selection may be acting on these loci. Furthermore, at the DQA, positive selection was

  19. Abortive translation caused by peptidyl-tRNA drop-off at NGG codons in the early coding region of mRNA

    DEFF Research Database (Denmark)

    Gonzalez de Valdivia, Ernesto I; Isaksson, Leif A

    2005-01-01

    In Escherichia coli the codons CGG, AGG, UGG or GGG (NGG codons) but not GGN or GNG (where N is non-G) are associated with low expression of a reporter gene, if located at positions +2 to +5. Induction of a lacZ reporter gene with any one of the NGG codons at position +2 to +5 does not influence......-type or the mutant strain. The inhibitory effect on the pth mutant strain by NGG codons at location +5 was suppressed by overexpression of the Pth enzyme from a plasmid. However, the overexpression of cognate tRNAs for AGG or GGG did not rescue from the growth inhibition associated with these codons early...

  20. Comparative analysis of codon usage patterns and identification of predicted highly expressed genes in five Salmonella genomes

    Directory of Open Access Journals (Sweden)

    Mondal U

    2008-01-01

    Full Text Available Purpose: To anlyse codon usage patterns of five complete genomes of Salmonella , predict highly expressed genes, examine horizontally transferred pathogenicity-related genes to detect their presence in the strains, and scrutinize the nature of highly expressed genes to infer upon their lifestyle. Methods: Protein coding genes, ribosomal protein genes, and pathogenicity-related genes were analysed with Codon W and CAI (codon adaptation index Calculator. Results: Translational efficiency plays a role in codon usage variation in Salmonella genes. Low bias was noticed in most of the genes. GC3 (guanine cytosine at third position composition does not influence codon usage variation in the genes of these Salmonella strains. Among the cluster of orthologous groups (COGs, translation, ribosomal structure biogenesis [J], and energy production and conversion [C] contained the highest number of potentially highly expressed (PHX genes. Correspondence analysis reveals the conserved nature of the genes. Highly expressed genes were detected. Conclusions: Selection for translational efficiency is the major source of variation of codon usage in the genes of Salmonella . Evolution of pathogenicity-related genes as a unit suggests their ability to infect and exist as a pathogen. Presence of a lot of PHX genes in the information and storage-processing category of COGs indicated their lifestyle and revealed that they were not subjected to genome reduction.

  1. Fulltext PDF

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    with the wild-type sequence at position 3435, and so linkage disequilibrium was not ... of microenvironmental control of translation elongation rate in eukaryotic cells ... Synonymous codon substitutions affect ribosome traffic and protein folding.

  2. Analysis of Low Frequency Protein Truncating Stop-Codon Variants and Fasting Concentration of Growth Hormone.

    Directory of Open Access Journals (Sweden)

    Erik Hallengren

    Full Text Available The genetic background of Growth Hormone (GH secretion is not well understood. Mutations giving rise to a stop codon have a high likelihood of affecting protein function.To analyze likely functional stop codon mutations that are associated with fasting plasma concentration of Growth Hormone.We analyzed stop codon mutations in 5451 individuals in the Malmö Diet and Cancer study by genotyping the Illumina Exome Chip. To enrich for stop codon mutations with likely functional effects on protein function, we focused on those disrupting >80% of the predicted amino acid sequence, which were carried by ≥ 10 individuals. Such mutations were related to GH concentration, measured with a high sensitivity assay (hs-GH and, if nominally significant, to GH related phenotypes, using linear regression analysis.Two stop codon mutations were associated with the fasting concentration of hs-GH. rs121909305 (NP_005370.1:p.R93* [Minor Allele Frequency (MAF = 0.8%] in the Myosin 1A gene (MYO1A was associated with a 0.36 (95%CI, 0.04 to 0.54; p=0.02 increment of the standardized value of the natural logarithm of hs-GH per 1 minor allele and rs35699176 (NP_067040.1:p.Q100* in the Zink Finger protein 77 gene (ZNF77 (MAF = 4.8% was associated with a 0.12 (95%CI, 0.02 to 0.22; p = 0.02 increase of hs-GH. The mutated high hs-GH associated allele of MYO1A was related to lower BMI (β-coefficient, -0.22; p = 0.05, waist (β-coefficient, -0.22; p = 0.04, body fat percentage (β-coefficient, -0.23; p = 0.03 and with higher HDL (β-coefficient, 0.23; p = 0.04. The ZNF77 stop codon was associated with height (β-coefficient, 0.11; p = 0.02 but not with cardiometabolic risk factors.We here suggest that a stop codon of MYO1A, disrupting 91% of the predicted amino acid sequence, is associated with higher hs-GH and GH-related traits suggesting that MYO1A is involved in GH metabolism and possibly body fat distribution. However, our results are preliminary and need replication in

  3. Codon size reduction as the origin of the triplet genetic code.

    Directory of Open Access Journals (Sweden)

    Pavel V Baranov

    Full Text Available The genetic code appears to be optimized in its robustness to missense errors and frameshift errors. In addition, the genetic code is near-optimal in terms of its ability to carry information in addition to the sequences of encoded proteins. As evolution has no foresight, optimality of the modern genetic code suggests that it evolved from less optimal code variants. The length of codons in the genetic code is also optimal, as three is the minimal nucleotide combination that can encode the twenty standard amino acids. The apparent impossibility of transitions between codon sizes in a discontinuous manner during evolution has resulted in an unbending view that the genetic code was always triplet. Yet, recent experimental evidence on quadruplet decoding, as well as the discovery of organisms with ambiguous and dual decoding, suggest that the possibility of the evolution of triplet decoding from living systems with non-triplet decoding merits reconsideration and further exploration. To explore this possibility we designed a mathematical model of the evolution of primitive digital coding systems which can decode nucleotide sequences into protein sequences. These coding systems can evolve their nucleotide sequences via genetic events of Darwinian evolution, such as point-mutations. The replication rates of such coding systems depend on the accuracy of the generated protein sequences. Computer simulations based on our model show that decoding systems with codons of length greater than three spontaneously evolve into predominantly triplet decoding systems. Our findings suggest a plausible scenario for the evolution of the triplet genetic code in a continuous manner. This scenario suggests an explanation of how protein synthesis could be accomplished by means of long RNA-RNA interactions prior to the emergence of the complex decoding machinery, such as the ribosome, that is required for stabilization and discrimination of otherwise weak triplet codon

  4. Identification of the translational start site of codon-optimized mCherry in Mycobacterium tuberculosis

    OpenAIRE

    Carroll, Paul; Muwanguzi-Karugaba, Julian; Melief, Eduard; Files, Megan; Parish, Tanya

    2014-01-01

    Background Fluorescent proteins are used widely as reporter genes in many organisms. We previously codon-optimized mCherry for Mycobacterium tuberculosis and generated expression constructs with high level expression in mycobacteria with multiple uses in vitro and in vivo. However, little is known about the expression of fluorescent proteins in mycobacteria and the translational start codon for mCherry has not been experimentally determined. Results We determined the translational start site ...

  5. Mutations at the cysteine codons of the recA gene of Escherichia coli

    International Nuclear Information System (INIS)

    Weisemann, J.M.; Weinstock, G.M.

    1988-01-01

    Each of the three cysteine residues in the Escherichia coli RecA protein was replaced with a number of other amino acids. To do this, each cysteine codon was first converted to a chain-terminating amber codon by oligonucleotide-directed mutagenesis. These amber mutants were then either assayed for function in different suppressor strains or reverted by a second round of mutagenesis with oligonucleotides that had random sequences at the amber codon. Thirty-three different amino acid substitutions were obtained. Mutants were tested for three functions of RecA: survival following UV irradiation, homologous recombination, and induction of the SOS response. It was found that although none of the cysteines is essential for activity, mutations at each of these positions can affect one or more of the activities of RecA, depending on the particular amino acid substitution. In addition, the cysteine at position 116 appears to be involved in the RecA-promoted cleavage of the LexA protein

  6. High-confidence assessment of functional impact of human mitochondrial non-synonymous genome variations by APOGEE.

    Directory of Open Access Journals (Sweden)

    Stefano Castellana

    2017-06-01

    Full Text Available 24,189 are all the possible non-synonymous amino acid changes potentially affecting the human mitochondrial DNA. Only a tiny subset was functionally evaluated with certainty so far, while the pathogenicity of the vast majority was only assessed in-silico by software predictors. Since these tools proved to be rather incongruent, we have designed and implemented APOGEE, a machine-learning algorithm that outperforms all existing prediction methods in estimating the harmfulness of mitochondrial non-synonymous genome variations. We provide a detailed description of the underlying algorithm, of the selected and manually curated training and test sets of variants, as well as of its classification ability.

  7. Transgenic rice expressing a codon-modified synthetic CP4-EPSPS confers tolerance to broad-spectrum herbicide, glyphosate.

    Science.gov (United States)

    Chhapekar, Sushil; Raghavendrarao, Sanagala; Pavan, Gadamchetty; Ramakrishna, Chopperla; Singh, Vivek Kumar; Phanindra, Mullapudi Lakshmi Venkata; Dhandapani, Gurusamy; Sreevathsa, Rohini; Ananda Kumar, Polumetla

    2015-05-01

    Highly tolerant herbicide-resistant transgenic rice was developed by expressing codon-modified synthetic CP4--EPSPS. The transformants could tolerate up to 1% commercial glyphosate and has the potential to be used for DSR (direct-seeded rice). Weed infestation is one of the major biotic stress factors that is responsible for yield loss in direct-seeded rice (DSR). Herbicide-resistant rice has potential to improve the efficiency of weed management under DSR. Hence, the popular indica rice cultivar IR64, was genetically modified using Agrobacterium-mediated transformation with a codon-optimized CP4-EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) gene, with N-terminal chloroplast targeting peptide from Petunia hybrida. Integration of the transgenes in the selected rice plants was confirmed by Southern hybridization and expression by Northern and herbicide tolerance assays. Transgenic plants showed EPSPS enzyme activity even at high concentrations of glyphosate, compared to untransformed control plants. T0, T1 and T2 lines were tested by herbicide bioassay and it was confirmed that the transgenic rice could tolerate up to 1% of commercial Roundup, which is five times more in dose used to kill weeds under field condition. All together, the transgenic rice plants developed in the present study could be used efficiently to overcome weed menace.

  8. Effect of Polymorphisms at Codon 146 of the Goat PRNP Gene on Susceptibility to Challenge with Classical Scrapie by Different Routes.

    Science.gov (United States)

    Papasavva-Stylianou, Penelope; Simmons, Marion Mathieson; Ortiz-Pelaez, Angel; Windl, Otto; Spiropoulos, John; Georgiadou, Soteria

    2017-11-15

    This report presents the results of experimental challenges of goats with scrapie by both the intracerebral (i.c.) and oral routes, exploring the effects of polymorphisms at codon 146 of the goat PRNP gene on resistance to disease. The results of these studies illustrate that while goats of all genotypes can be infected by i.c. challenge, the survival distribution of the animals homozygous for asparagine at codon 146 was significantly shorter than those of animals of all other genotypes (chi-square value, 10.8; P = 0.001). In contrast, only those animals homozygous for asparagine at codon 146 (NN animals) succumbed to oral challenge. The results also indicate that any cases of infection in non-NN animals can be detected by the current confirmatory test (immunohistochemistry), although successful detection with the rapid enzyme-linked immunosorbent assay (ELISA) was more variable and dependent on the polymorphism. Together with data from previous studies of goats exposed to infection in the field, these data support the previously reported observations that polymorphisms at this codon have a profound effect on susceptibility to disease. It is concluded that only animals homozygous for asparagine at codon 146 succumb to scrapie under natural conditions. IMPORTANCE In goats, like in sheep, there are PRNP polymorphisms that are associated with susceptibility or resistance to scrapie. However, in contrast to the polymorphisms in sheep, they are more numerous in goats and may be restricted to certain breeds or geographical regions. Therefore, eradication programs must be specifically designed depending on the identification of suitable polymorphisms. An initial analysis of surveillance data suggested that such a polymorphism in Cypriot goats may lie in codon 146. In this study, we demonstrate experimentally that NN animals are highly susceptible after i.c. inoculation. The presence of a D or S residue prolonged incubation periods significantly, and prions were detected

  9. Genomic characteristics comparisons of 12 food-related filamentous fungi in tRNA gene set, codon usage and amino acid composition.

    Science.gov (United States)

    Chen, Wanping; Xie, Ting; Shao, Yanchun; Chen, Fusheng

    2012-04-10

    Filamentous fungi are widely exploited in food industry due to their abilities to secrete large amounts of enzymes and metabolites. The recent availability of fungal genome sequences has provided an opportunity to explore the genomic characteristics of these food-related filamentous fungi. In this paper, we selected 12 representative filamentous fungi in the areas of food processing and safety, which were Aspergillus clavatus, A. flavus, A. fumigatus, A. nidulans, A. niger, A. oryzae, A. terreus, Monascus ruber, Neurospora crassa, Penicillium chrysogenum, Rhizopus oryzae and Trichoderma reesei, and did the comparative studies of their genomic characteristics of tRNA gene distribution, codon usage pattern and amino acid composition. The results showed that the copy numbers greatly differed among isoaccepting tRNA genes and the distribution seemed to be related with translation process. The results also revealed that genome compositional variation probably constrained the base choice at the third codon, and affected the overall amino acid composition but seemed to have little effect on the integrated physicochemical characteristics of overall amino acids. The further analysis suggested that the wobble pairing and base modification were the important mechanisms in codon-anticodon interaction. In the scope of authors' knowledge, it is the first report about the genomic characteristics analysis of food-related filamentous fungi, which would be informative for the analysis of filamentous fungal genome evolution and their practical application in food industry. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. A Uniform Approach to Analogies, Synonyms, Antonyms, and Associations

    OpenAIRE

    Turney, Peter D.

    2008-01-01

    Recognizing analogies, synonyms, antonyms, and associations appear to be four distinct tasks, requiring distinct NLP algorithms. In the past, the four tasks have been treated independently, using a wide variety of algorithms. These four semantic classes, however, are a tiny sample of the full range of semantic phenomena, and we cannot afford to create ad hoc algorithms for each semantic phenomenon; we need to seek a unified approach. We propose to subsume a broad range of phenomena under anal...

  11. Comparative studies on codon usage pattern of chloroplasts and ...

    Indian Academy of Sciences (India)

    Unknown

    different genomic organization and mutation pressures in nuclear and chloroplast genes. The results of Nc-plots and neutrality plots ... As an important organelle of plants, the chloroplast has its own genomic environment and ... leading to the suggestion that the translation mechanism and patterns of codon usage in ...

  12. Analysis of EFL Students' Ability in Reading Vocabulary of Synonyms and Antonyms

    Directory of Open Access Journals (Sweden)

    Vina Fathira

    2017-02-01

    Full Text Available Reading is an important thing for academic level. Every student must have many vocabularies to encourage her/his reading skill. The aim of this research is to analyze the students' understanding of reading vocabularies of synonyms and antonyms in the higher education level. Synonyms and antonyms are two important things should be mastered to get better reading comprehension. The method used in this research was quantitative with survey design. The population same as the sample of this research was from fifth semester students of STIBA Persada Bunda Pekanbaru. The procedures of the research were divided into 3 parts. First, students were asked to choose the best choice in the multiple choice for synonyms and anton, number and the wrong number, and grouped the wrong number into difficulties level. Last, the researcher analyzed the students' ability in reading vocabulary of synonyms and antonyms and concluded the result of students' ability in reading vocabulary of synonyms and antonyms in elementary, intermediate, and advanced level. The result of this research showed that the students' ability in reading vocabulary of synonyms and antonyms was categorized into "excellent" level with mean score 85. From the three difficulties level of question, the findings of this research were explained every level of question. In synonyms, the mean score of students' ability were 89, 85, and 84 for elementary, intermediate, and advanced level of question. Whereas, in antonyms, the mean score of students' ability were 97, 85, and 69 for elementary, intermediate, and advanced level of question.Keywords: students' ability, reading vocabulary, synonyms and antonyms

  13. Selective modes determine evolutionary rates, gene compactness and expression patterns in Brassica.

    Science.gov (United States)

    Guo, Yue; Liu, Jing; Zhang, Jiefu; Liu, Shengyi; Du, Jianchang

    2017-07-01

    It has been well documented that most nuclear protein-coding genes in organisms can be classified into two categories: positively selected genes (PSGs) and negatively selected genes (NSGs). The characteristics and evolutionary fates of different types of genes, however, have been poorly understood. In this study, the rates of nonsynonymous substitution (K a ) and the rates of synonymous substitution (K s ) were investigated by comparing the orthologs between the two sequenced Brassica species, Brassica rapa and Brassica oleracea, and the evolutionary rates, gene structures, expression patterns, and codon bias were compared between PSGs and NSGs. The resulting data show that PSGs have higher protein evolutionary rates, lower synonymous substitution rates, shorter gene length, fewer exons, higher functional specificity, lower expression level, higher tissue-specific expression and stronger codon bias than NSGs. Although the quantities and values are different, the relative features of PSGs and NSGs have been largely verified in the model species Arabidopsis. These data suggest that PSGs and NSGs differ not only under selective pressure (K a /K s ), but also in their evolutionary, structural and functional properties, indicating that selective modes may serve as a determinant factor for measuring evolutionary rates, gene compactness and expression patterns in Brassica. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  14. Detecting consistent patterns of directional adaptation using differential selection codon models.

    Science.gov (United States)

    Parto, Sahar; Lartillot, Nicolas

    2017-06-23

    Phylogenetic codon models are often used to characterize the selective regimes acting on protein-coding sequences. Recent methodological developments have led to models explicitly accounting for the interplay between mutation and selection, by modeling the amino acid fitness landscape along the sequence. However, thus far, most of these models have assumed that the fitness landscape is constant over time. Fluctuations of the fitness landscape may often be random or depend on complex and unknown factors. However, some organisms may be subject to systematic changes in selective pressure, resulting in reproducible molecular adaptations across independent lineages subject to similar conditions. Here, we introduce a codon-based differential selection model, which aims to detect and quantify the fine-grained consistent patterns of adaptation at the protein-coding level, as a function of external conditions experienced by the organism under investigation. The model parameterizes the global mutational pressure, as well as the site- and condition-specific amino acid selective preferences. This phylogenetic model is implemented in a Bayesian MCMC framework. After validation with simulations, we applied our method to a dataset of HIV sequences from patients with known HLA genetic background. Our differential selection model detects and characterizes differentially selected coding positions specifically associated with two different HLA alleles. Our differential selection model is able to identify consistent molecular adaptations as a function of repeated changes in the environment of the organism. These models can be applied to many other problems, ranging from viral adaptation to evolution of life-history strategies in plants or animals.

  15. Are Synonymous Substitutions in Flowering Plant Mitochondria Neutral?

    Science.gov (United States)

    Wynn, Emily L; Christensen, Alan C

    2015-10-01

    Angiosperm mitochondrial genes appear to have very low mutation rates, while non-gene regions expand, diverge, and rearrange quickly. One possible explanation for this disparity is that synonymous substitutions in plant mitochondrial genes are not truly neutral and selection keeps their occurrence low. If this were true, the explanation for the disparity in mutation rates in genes and non-genes needs to consider selection as well as mechanisms of DNA repair. Rps14 is co-transcribed with cob and rpl5 in most plant mitochondrial genomes, but in some genomes, rps14 has been duplicated to the nucleus leaving a pseudogene in the mitochondria. This provides an opportunity to compare neutral substitution rates in pseudogenes with synonymous substitution rates in the orthologs. Genes and pseudogenes of rps14 have been aligned among different species and the mutation rates have been calculated. Neutral substitution rates in pseudogenes and synonymous substitution rates in genes are significantly different, providing evidence that synonymous substitutions in plant mitochondrial genes are not completely neutral. The non-neutrality is not sufficient to completely explain the exceptionally low mutation rates in land plant mitochondrial genomes, but selective forces appear to play a small role.

  16. Decoding options and accuracy of translation of developmentally regulated UUA codon in Streptomyces: bioinformatic analysis.

    Science.gov (United States)

    Rokytskyy, Ihor; Koshla, Oksana; Fedorenko, Victor; Ostash, Bohdan

    2016-01-01

    The gene bldA for leucyl [Formula: see text] is known for almost 30 years as a key regulator of morphogenesis and secondary metabolism in genus Streptomyces. Codon UUA is the rarest one in Streptomyces genomes and is present exclusively in genes with auxiliary functions. Delayed accumulation of translation-competent [Formula: see text] is believed to confine the expression of UUA-containing transcripts to stationary phase. Implicit to the regulatory function of UUA codon is the assumption about high accuracy of its translation, e.g. the latter should not occur in the absence of cognate [Formula: see text]. However, a growing body of facts points to the possibility of mistranslation of UUA-containing transcripts in the bldA-deficient mutants. It is not known what type of near-cognate tRNA(s) may decode UUA in the absence of cognate tRNA in Streptomyces, and whether UUA possesses certain inherent properties (such as increased/decreased accuracy of decoding) that would favor its use for regulatory purposes. Here we took bioinformatic approach to address these questions. We catalogued the entire complement of tRNA genes from several relevant Streptomyces and identified genes for posttranscriptional modifications of tRNA that might be involved in UUA decoding by cognate and near-cognate tRNAs. Based on tRNA gene content in Streptomyces genomes, we propose possible scenarios of UUA codon mistranslation. UUA is not associated with an increased rate of missense errors as compared to other leucyl codons, contrasting general belief that low-abundant codons are more error-prone than the high-abundant ones.

  17. PCR-RFLP to Detect Codon 248 Mutation in Exon 7 of "p53" Tumor Suppressor Gene

    Science.gov (United States)

    Ouyang, Liming; Ge, Chongtao; Wu, Haizhen; Li, Suxia; Zhang, Huizhan

    2009-01-01

    Individual genome DNA was extracted fast from oral swab and followed up with PCR specific for codon 248 of "p53" tumor suppressor gene. "Msp"I restriction mapping showed the G-C mutation in codon 248, which closely relates to cancer susceptibility. Students learn the concepts, detection techniques, and research significance of point mutations or…

  18. Characteristics of forming of synonymic rows within lexical phraseological field

    Directory of Open Access Journals (Sweden)

    Мария Валерьевна Волнакова

    2011-03-01

    Full Text Available The article deals with the characteristics of forming of phraseological synonymic rows with a lexical identifier as a dominant of a row. Revealed synonymic rows mirror the deepness of systematic language relationships between lexis and phraseology.

  19. Salicornia strobilacea (synonym of Halocnemum strobilaceum) Grown Under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth

    KAUST Repository

    Marasco, Ramona; Mapelli, Francesca; Rolli, Eleonora; Mosqueira Santillá n, Marí a José ; Fusi, Marco; Bariselli, Paola; Reddy, Muppala P.; Cherif, Ameur; Tsiamis, George; Borin, Sara; Daffonchio, Daniele

    2016-01-01

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the PGP potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  20. Salicornia strobilacea (synonym of Halocnemum strobilaceum) Grown Under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth

    KAUST Repository

    Marasco, Ramona

    2016-04-01

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the PGP potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  1. Selection of Representative Models for Decision Analysis Under Uncertainty

    Science.gov (United States)

    Meira, Luis A. A.; Coelho, Guilherme P.; Santos, Antonio Alberto S.; Schiozer, Denis J.

    2016-03-01

    The decision-making process in oil fields includes a step of risk analysis associated with the uncertainties present in the variables of the problem. Such uncertainties lead to hundreds, even thousands, of possible scenarios that are supposed to be analyzed so an effective production strategy can be selected. Given this high number of scenarios, a technique to reduce this set to a smaller, feasible subset of representative scenarios is imperative. The selected scenarios must be representative of the original set and also free of optimistic and pessimistic bias. This paper is devoted to propose an assisted methodology to identify representative models in oil fields. To do so, first a mathematical function was developed to model the representativeness of a subset of models with respect to the full set that characterizes the problem. Then, an optimization tool was implemented to identify the representative models of any problem, considering not only the cross-plots of the main output variables, but also the risk curves and the probability distribution of the attribute-levels of the problem. The proposed technique was applied to two benchmark cases and the results, evaluated by experts in the field, indicate that the obtained solutions are richer than those identified by previously adopted manual approaches. The program bytecode is available under request.

  2. Using Student Writing and Lexical Analysis to Reveal Student Thinking about the Role of Stop Codons in the Central Dogma.

    Science.gov (United States)

    Prevost, Luanna B; Smith, Michelle K; Knight, Jennifer K

    2016-01-01

    Previous work has shown that students have persistent difficulties in understanding how central dogma processes can be affected by a stop codon mutation. To explore these difficulties, we modified two multiple-choice questions from the Genetics Concept Assessment into three open-ended questions that asked students to write about how a stop codon mutation potentially impacts replication, transcription, and translation. We then used computer-assisted lexical analysis combined with human scoring to categorize student responses. The lexical analysis models showed high agreement with human scoring, demonstrating that this approach can be successfully used to analyze large numbers of student written responses. The results of this analysis show that students' ideas about one process in the central dogma can affect their thinking about subsequent and previous processes, leading to mixed models of conceptual understanding. © 2016 L. B. Prevost et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. Antonyms and Synonyms: Cognitive Aspects of Negation in Positive Sentences

    OpenAIRE

    Arimitsu, Nami

    2017-01-01

    This paper investigates the cognitive orientation of the negative meaning in antonyms and synonyms. While the negative meaning in antonyms is a reflection of the cognitive mapping of our mental contiguity, the negative images in synonymous words are more closely associated with aspects of subjective semantics and factors related to politeness

  4. Salicornia strobilacea (synonym of Halocnemum strobilaceum Grown Under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth

    Directory of Open Access Journals (Sweden)

    Ramona Marasco

    2016-08-01

    Full Text Available Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the PGP potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  5. Salicornia strobilacea (Synonym of Halocnemum strobilaceum) Grown under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth.

    Science.gov (United States)

    Marasco, Ramona; Mapelli, Francesca; Rolli, Eleonora; Mosqueira, Maria J; Fusi, Marco; Bariselli, Paola; Reddy, Muppala; Cherif, Ameur; Tsiamis, George; Borin, Sara; Daffonchio, Daniele

    2016-01-01

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the plant growth promoting (PGP) potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  6. Salicornia strobilacea (Synonym of Halocnemum strobilaceum) Grown under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth

    KAUST Repository

    Marasco, Ramona; Mapelli, Francesca; Rolli, Eleonora; Mosqueira, Maria J.; Fusi, Marco; Bariselli, Paola; Reddy, Muppala P.; Cherif, Ameur; Tsiamis, George; Borin, Sara; Daffonchio, Daniele

    2016-01-01

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the plant growth promoting (PGP) potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  7. Salicornia strobilacea (Synonym of Halocnemum strobilaceum) Grown under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth

    KAUST Repository

    Marasco, Ramona

    2016-08-22

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the plant growth promoting (PGP) potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  8. Complete mitochondrial genome sequence of Urechis caupo, a representative of the phylum Echiura.

    Science.gov (United States)

    Boore, Jeffrey L

    2004-09-15

    Mitochondria contain small genomes that are physically separate from those of nuclei. Their comparison serves as a model system for understanding the processes of genome evolution. Although hundreds of these genome sequences have been reported, the taxonomic sampling is highly biased toward vertebrates and arthropods, with many whole phyla remaining unstudied. This is the first description of a complete mitochondrial genome sequence of a representative of the phylum Echiura, that of the fat innkeeper worm, Urechis caupo. This mtDNA is 15,113 nts in length and 62% A+T. It contains the 37 genes that are typical for animal mtDNAs in an arrangement somewhat similar to that of annelid worms. All genes are encoded by the same DNA strand which is rich in A and C relative to the opposite strand. Codons ending with the dinucleotide GG are more frequent than would be expected from apparent mutational biases. The largest non-coding region is only 282 nts long, is 71% A+T, and has potential for secondary structures. Urechis caupo mtDNA shares many features with those of the few studied annelids, including the common usage of ATG start codons, unusual among animal mtDNAs, as well as gene arrangements, tRNA structures, and codon usage biases.

  9. Comparison of codon usage bias across Leishmania and Trypanosomatids to understand mRNA secondary structure, relative protein abundance and pathway functions.

    Science.gov (United States)

    Subramanian, Abhishek; Sarkar, Ram Rup

    2015-10-01

    Understanding the variations in gene organization and its effect on the phenotype across different Leishmania species, and to study differential clinical manifestations of parasite within the host, we performed large scale analysis of codon usage patterns between Leishmania and other known Trypanosomatid species. We present the causes and consequences of codon usage bias in Leishmania genomes with respect to mutational pressure, translational selection and amino acid composition bias. We establish GC bias at wobble position that governs codon usage bias across Leishmania species, rather than amino acid composition bias. We found that, within Leishmania, homogenous codon context coding for less frequent amino acid pairs and codons avoiding formation of folding structures in mRNA are essentially chosen. We predicted putative differences in global expression between genes belonging to specific pathways across Leishmania. This explains the role of evolution in shaping the otherwise conserved genome to demonstrate species-specific function-level differences for efficient survival. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Elevation of the Yields of Very Long Chain Polyunsaturated Fatty Acids via Minimal Codon Optimization of Two Key Biosynthetic Enzymes.

    Directory of Open Access Journals (Sweden)

    Fei Xia

    Full Text Available Eicosapentaenoic acid (EPA, 20:5Δ5,8,11,14,17 and Docosahexaenoic acid (DHA, 22:6Δ4,7,10,13,16,19 are nutritionally beneficial to human health. Transgenic production of EPA and DHA in oilseed crops by transferring genes originating from lower eukaryotes, such as microalgae and fungi, has been attempted in recent years. However, the low yield of EPA and DHA produced in these transgenic crops is a major hurdle for the commercialization of these transgenics. Many factors can negatively affect transgene expression, leading to a low level of converted fatty acid products. Among these the codon bias between the transgene donor and the host crop is one of the major contributing factors. Therefore, we carried out codon optimization of a fatty acid delta-6 desaturase gene PinD6 from the fungus Phytophthora infestans, and a delta-9 elongase gene, IgASE1 from the microalga Isochrysis galbana for expression in Saccharomyces cerevisiae and Arabidopsis respectively. These are the two key genes encoding enzymes for driving the first catalytic steps in the Δ6 desaturation/Δ6 elongation and the Δ9 elongation/Δ8 desaturation pathways for EPA/DHA biosynthesis. Hence expression levels of these two genes are important in determining the final yield of EPA/DHA. Via PCR-based mutagenesis we optimized the least preferred codons within the first 16 codons at their N-termini, as well as the most biased CGC codons (coding for arginine within the entire sequences of both genes. An expression study showed that transgenic Arabidopsis plants harbouring the codon-optimized IgASE1 contained 64% more elongated fatty acid products than plants expressing the native IgASE1 sequence, whilst Saccharomyces cerevisiae expressing the codon optimized PinD6 yielded 20 times more desaturated products than yeast expressing wild-type (WT PinD6. Thus the codon optimization strategy we developed here offers a simple, effective and low-cost alternative to whole gene synthesis for high

  11. Single nucleotide polymorphisms of Helicobacter pylori dupA that lead to premature stop codons.

    Science.gov (United States)

    Moura, Sílvia B; Costa, Rafaella F A; Anacleto, Charles; Rocha, Gifone A; Rocha, Andreia M C; Queiroz, Dulciene M M

    2012-06-01

     The detection of the putative disease-specific Helicobacter pylori marker duodenal ulcer promoting gene A (dupA) is currently based on PCR detection of jhp0917 and jhp0918 that form the gene. However, mutations that lead to premature stop codons that split off the dupA leading to truncated products cannot be evaluated by PCR. We directly sequence the complete dupA of 75 dupA-positive strains of H. pylori isolated from patients with gastritis (n = 26), duodenal ulcer (n = 29), and gastric carcinoma (n = 20), to search for frame-shifting mutations that lead to stop codon. Thirty-four strains had single nucleotide mutations in dupA that lead to premature stop codon creating smaller products than the predicted 1839 bp product and, for this reason, were considered as dupA-negative. Intact dupA was more frequently observed in strains isolated from duodenal ulcer patients (65.5%) than in patients with gastritis only (46.2%) or with gastric carcinoma (50%). In logistic analysis, the presence of the intact dupA independently associated with duodenal ulcer (OR = 5.06; 95% CI = 1.22-20.96, p = .02).  We propose the primer walking methodology as a simple technique to sequence the gene. When we considered as dupA-positive only those strains that carry dupA gene without premature stop codons, the gene was associated with duodenal ulcer and, therefore, can be used as a marker for this disease in our population. © 2012 Blackwell Publishing Ltd.

  12. Three types of preS1 start codon deletion variants in the natural course of chronic hepatitis B infection.

    Science.gov (United States)

    Choe, Won Hyeok; Kim, Hong; Lee, So-Young; Choi, Yu-Min; Kwon, So Young; Moon, Hee Won; Hur, Mina; Kim, Bum-Joon

    2017-12-12

    Naturally occurring hepatitis B virus variants carrying a deletion in the preS1 start codon region may evolve during long-lasting virus-host interactions in chronic hepatitis B (CHB). The aim of this study was to determine the immune phase-specific prevalent patterns of preS1 start codon deletion variants and related factors during the natural course of CHB. A total of 399 CHB patients were enrolled. Genotypic analysis of three different preS1 start codon deletion variants (classified by deletion size: 15-base pair [bp], 18-bp, and 21-bp deletion variants) was performed. PreS1 start codon deletion variants were detected in 155 of 399 patients (38.8%). The predominant variant was a 15-bp deletion in the immune-tolerance phase (18/50, 36%) and an 18-bp deletion in the immune-clearance phase (69/183, 37.7%). A 21-bp deletion was the predominant variant in the low replicative phase (3/25, 12.0%) and reactivated hepatitis Be antigen (HBeAg)-negative phase (22/141, 15.6%). The 15-bp and 18-bp deletion variants were more frequently found in HBeAg-positive patients (P start codon deletion variants changes according to the immune phases of CHB infection, and each variant type is associated with different clinical parameters. PreS1 start codon deletion variants might interact with the host immune response differently according to their variant types. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  13. Tail-extension following the termination codon is critical for release of the nascent chain from membrane-bound ribosomes in a reticulocyte lysate cell-free system.

    Science.gov (United States)

    Takahara, Michiyo; Sakaue, Haruka; Onishi, Yukiko; Yamagishi, Marifu; Kida, Yuichiro; Sakaguchi, Masao

    2013-01-11

    Nascent chain release from membrane-bound ribosomes by the termination codon was investigated using a cell-free translation system from rabbit supplemented with rough microsomal membrane vesicles. Chain release was extremely slow when mRNA ended with only the termination codon. Tail extension after the termination codon enhanced the release of the nascent chain. Release reached plateau levels with tail extension of 10 bases. This requirement was observed with all termination codons: TAA, TGA and TAG. Rapid release was also achieved by puromycin even in the absence of the extension. Efficient translation termination cannot be achieved in the presence of only a termination codon on the mRNA. Tail extension might be required for correct positioning of the termination codon in the ribosome and/or efficient recognition by release factors. Copyright © 2012. Published by Elsevier Inc.

  14. Rare codons effect on expression of recombinant gene cassette in Escherichia coli BL21(DE3

    Directory of Open Access Journals (Sweden)

    Aghil Esmaeili-Bandboni

    2017-11-01

    Full Text Available Objective: To demonstrate the sensitivity of expression of fusion genes to existence of a large number of rare codons in recombinant gene sequenced. Methods: Primers for amplification of cholera toxin B, Shiga toxin B and gfp genes were designed by Primer3 software and synthesized. All of these 3 genes were cloned. Then the genes were fused together by restriction sites and enzymatic method. Two linkers were used as a flexible bridge in connection of these genes. Results: Cloning and fusion of cholera toxin B, Shiga toxin B and gfp genes were done correctly. After that, expression of the recombinant gene construction was surveyed. Conclusions: According to what was seen, because of the accumulation of 12 rare codons of Shiga toxin B and 19 rare codons of cholera toxin B in this gene cassette, the expression of the recombinant gene cassette, in Escherichia coli BL21, failed.

  15. Synonymous codon usage in different protein secondary structural ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    2007-06-21

    Jun 21, 2007 ... in the DSSP file, beta-sheets by E and B and coils by the rest. 3. Results ...... Authors are thankful to the Department of Biotechnology,. New Delhi for ... thermophilic Aquifex aeolicus and mesophilic Bacillus subtilis;. J. Biomol.

  16. Digging deeper: new gene order rearrangements and distinct patterns of codons usage in mitochondrial genomes among shrimps from the Axiidea, Gebiidea and Caridea (Crustacea: Decapoda

    Directory of Open Access Journals (Sweden)

    Mun Hua Tan

    2017-03-01

    Full Text Available Background Whole mitochondrial DNA is being increasingly utilized for comparative genomic and phylogenetic studies at deep and shallow evolutionary levels for a range of taxonomic groups. Although mitogenome sequences are deposited at an increasing rate into public databases, their taxonomic representation is unequal across major taxonomic groups. In the case of decapod crustaceans, several infraorders, including Axiidea (ghost shrimps, sponge shrimps, and mud lobsters and Caridea (true shrimps are still under-represented, limiting comprehensive phylogenetic studies that utilize mitogenomic information. Methods Sequence reads from partial genome scans were generated using the Illumina MiSeq platform and mitogenome sequences were assembled from these low coverage reads. In addition to examining phylogenetic relationships within the three infraorders, Axiidea, Gebiidea, and Caridea, we also investigated the diversity and frequency of codon usage bias and mitogenome gene order rearrangements. Results We present new mitogenome sequences for five shrimp species from Australia that includes two ghost shrimps, Callianassa ceramica and Trypaea australiensis, along with three caridean shrimps, Macrobrachium bullatum, Alpheus lobidens, and Caridina cf. nilotica. Strong differences in codon usage were discovered among the three infraorders and significant gene order rearrangements were observed. While the gene order rearrangements are congruent with the inferred phylogenetic relationships and consistent with taxonomic classification, they are unevenly distributed within and among the three infraorders. Discussion Our findings suggest potential for mitogenome rearrangements to be useful phylogenetic markers for decapod crustaceans and at the same time raise important questions concerning the drivers of mitogenome evolution in different decapod crustacean lineages.

  17. Preferences of AAA/AAG codon recognition by modified nucleosides, τm5s2U34 and t6A37 present in tRNALys.

    Science.gov (United States)

    Sonawane, Kailas D; Kamble, Asmita S; Fandilolu, Prayagraj M

    2017-12-27

    Deficiency of 5-taurinomethyl-2-thiouridine, τm 5 s 2 U at the 34th 'wobble' position in tRNA Lys causes MERRF (Myoclonic Epilepsy with Ragged Red Fibers), a neuromuscular disease. This modified nucleoside of mt tRNA Lys , recognizes AAA/AAG codons during protein biosynthesis process. Its preference to identify cognate codons has not been studied at the atomic level. Hence, multiple MD simulations of various molecular models of anticodon stem loop (ASL) of mt tRNA Lys in presence and absence of τm 5 s 2 U 34 and N 6 -threonylcarbamoyl adenosine (t 6 A 37 ) along with AAA and AAG codons have been accomplished. Additional four MD simulations of multiple ASL mt tRNA Lys models in the context of ribosomal A-site residues have also been performed to investigate the role of A-site in recognition of AAA/AAG codons. MD simulation results show that, ASL models in presence of τm 5 s 2 U 34 and t 6 A 37 with codons AAA/AAG are more stable than the ASL lacking these modified bases. MD trajectories suggest that τm 5 s 2 U recognizes the codons initially by 'wobble' hydrogen bonding interactions, and then tRNA Lys might leave the explicit codon by a novel 'single' hydrogen bonding interaction in order to run the protein biosynthesis process smoothly. We propose this model as the 'Foot-Step Model' for codon recognition, in which the single hydrogen bond plays a crucial role. MD simulation results suggest that, tRNA Lys with τm 5 s 2 U and t 6 A recognizes AAA codon more preferably than AAG. Thus, these results reveal the consequences of τm 5 s 2 U and t 6 A in recognition of AAA/AAG codons in mitochondrial disease, MERRF.

  18. Efficient Coproduction of Mannanase and Cellulase by the Transformation of a Codon-Optimized Endomannanase Gene from Aspergillus niger into Trichoderma reesei.

    Science.gov (United States)

    Sun, Xianhua; Xue, Xianli; Li, Mengzhu; Gao, Fei; Hao, Zhenzhen; Huang, Huoqing; Luo, Huiying; Qin, Lina; Yao, Bin; Su, Xiaoyun

    2017-12-20

    Cellulase and mannanase are both important enzyme additives in animal feeds. Expressing the two enzymes simultaneously within one microbial host could potentially lead to cost reductions in the feeding of animals. For this purpose, we codon-optimized the Aspergillus niger Man5A gene to the codon-usage bias of Trichoderma reesei. By comparing the free energies and the local structures of the nucleotide sequences, one optimized sequence was finally selected and transformed into the T. reesei pyridine-auxotrophic strain TU-6. The codon-optimized gene was expressed to a higher level than the original one. Further expressing the codon-optimized gene in a mutated T. reesei strain through fed-batch cultivation resulted in coproduction of cellulase and mannanase up to 1376 U·mL -1 and 1204 U·mL -1 , respectively.

  19. Benzimidazole -Resistance in Haemonchus Contortus: New PCR-RFLP Method for the Detection of Point Mutation at Codon 167 of Isotype 1 Β-Tubulin Gene

    Directory of Open Access Journals (Sweden)

    A Eslami

    2012-12-01

    Full Text Available Background: Due to the lack of a suitable and economic test for the analysis of the polymorphism at codon 167, we developed a new PCR-RFLP technique, based on a modified forward primer (UT-HC167 MF-primer, to identify simultaneously the SNPs at codons 167 and 200 of isotype 1 β-tubu­lin gene of Haemonchus contortus.Methods: There already are several safe and easy methods for identification of point mutations at codons 198 and 200. Due to the lack of a reliable and easy method for the detection of the single nucleo­tide polymorphism (SNP at codon 167, we developed an innovative PCR-RFLP technique based on a modified forward primer (UT-HC167 MF-primer, in which the nucleotide T at the posi­tion 443 was substituted through a nucleotide A creating a restriction site for restriction endonuc­lease SnaB I in the nucleotide sequences including codon 167. A total of 138 adult male H. contortus were collected from three different geo-climatic areas of Iran. The isolated genomic DNA of each single worm was amplified by PCR using primers flanking codon 167. The PCR product (527 bp was then amplified by semi-nested PCR using the UT-HC167 MF-primer and the reverse primer achiev­ing a PCR product of 451 bp in length. This PCR product was subsequently digested with the restriction endonucleases SnaB I and TaaI for analysis of the mutations at codons 167 and 200, respec­tively.Results: All worms had two alleles encoding for phenylalanine (BZss homozygote for both codons.Conclusion: Using the UT-HC167 MF-primer and a suitable reverse primer designed upstream from codon 200, it is possible to amplify a PCR product which can be used for analysis of the SNPs at all three mentioned codons using RFLP.

  20. Maximum likelihood estimation of ancestral codon usage bias parameters in Drosophila

    DEFF Research Database (Denmark)

    Nielsen, Rasmus; Bauer DuMont, Vanessa L; Hubisz, Melissa J

    2007-01-01

    : the selection coefficient for optimal codon usage (S), allowing joint maximum likelihood estimation of S and the dN/dS ratio. We apply the method to previously published data from Drosophila melanogaster, Drosophila simulans, and Drosophila yakuba and show, in accordance with previous results, that the D...

  1. Complete mitochondrial genome sequence of Urechis caupo, a representative of the phylum Echiura

    Directory of Open Access Journals (Sweden)

    Boore Jeffrey L

    2004-09-01

    Full Text Available Abstract Background Mitochondria contain small genomes that are physically separate from those of nuclei. Their comparison serves as a model system for understanding the processes of genome evolution. Although hundreds of these genome sequences have been reported, the taxonomic sampling is highly biased toward vertebrates and arthropods, with many whole phyla remaining unstudied. This is the first description of a complete mitochondrial genome sequence of a representative of the phylum Echiura, that of the fat innkeeper worm, Urechis caupo. Results This mtDNA is 15,113 nts in length and 62% A+T. It contains the 37 genes that are typical for animal mtDNAs in an arrangement somewhat similar to that of annelid worms. All genes are encoded by the same DNA strand which is rich in A and C relative to the opposite strand. Codons ending with the dinucleotide GG are more frequent than would be expected from apparent mutational biases. The largest non-coding region is only 282 nts long, is 71% A+T, and has potential for secondary structures. Conclusions Urechis caupo mtDNA shares many features with those of the few studied annelids, including the common usage of ATG start codons, unusual among animal mtDNAs, as well as gene arrangements, tRNA structures, and codon usage biases.

  2. Comprehensive analysis of the codon usage patterns in the envelope glycoprotein E2 gene of the classical swine fever virus.

    Directory of Open Access Journals (Sweden)

    Ye Chen

    Full Text Available The classical swine fever virus (CSFV, circulating worldwide, is a highly contagious virus. Since the emergence of CSFV, it has caused great economic loss in swine industry. The envelope glycoprotein E2 gene of the CSFV is an immunoprotective antigen that induces the immune system to produce neutralizing antibodies. Therefore, it is essential to study the codon usage of the E2 gene of the CSFV. In this study, 140 coding sequences of the E2 gene were analyzed. The value of effective number of codons (ENC showed low codon usage bias in the E2 gene. Our study showed that codon usage could be described mainly by mutation pressure ENC plot analysis combined with principal component analysis (PCA and translational selection-correlation analysis between the general average hydropathicity (Gravy and aromaticity (Aroma, and nucleotides at the third position of codons (A3s, T3s, G3s, C3s and GC3s. Furthermore, the neutrality analysis, which explained the relationship between GC12s and GC3s, revealed that natural selection had a key role compared with mutational bias during the evolution of the E2 gene. These results lay a foundation for further research on the molecular evolution of CSFV.

  3. An environmental signature for 323 microbial genomes based on codon adaptation indices

    DEFF Research Database (Denmark)

    Willenbrock, Hanni; Friis, Carsten; Juncker, Agnieszka

    2006-01-01

    , we show that codon usage preference provides an environmental signature by which it is possible to group bacteria according to their lifestyle, for instance soil bacteria and soil symbionts, spore formers, enteric bacteria, aquatic bacteria, and intercellular and extracellular pathogens. Conclusion...

  4. Absolute in vivo translation rates of individual codons in Escherichia coli: The two glutamic acid codons GAA and GAG are translated with a threefold difference in rate

    DEFF Research Database (Denmark)

    Sørensen, M.A.; Pedersen, Steen

    1991-01-01

    We have determined the absolute translation rates for four individual codons in Escherichia coli. We used our previously described system for direct measurements of in vivo translation rates using small, in-frame inserts in the lacZ gene. The inserts consisted of multiple synthetic 30 base-pair D...

  5. Thrombosis in Hb Taybe [codons 38/39 (-ACC) (α1)

    DEFF Research Database (Denmark)

    Juul, Maja Bech; Vestergaard, Hanne; Petersen, Jesper

    2012-01-01

    Hb Taybe is a highly unstable hemoglobin (Hb) variant caused by a 3 bp deletion at codons 38/39 (-ACC) on the α1-globin gene. We report for the first time, a patient with a compound heterozygosity for Hb Taybe and a 5 bp deletion at the splice donor site of IVS-I on the α2-globin gene and ischemic...

  6. The worldwide holoparasitic Apodanthaceae confidently placed in the Cucurbitales by nuclear and mitochondrial gene trees

    Directory of Open Access Journals (Sweden)

    Renner Susanne S

    2010-07-01

    Full Text Available Abstract Background Of the c. 450 families of flowering plants, only two are left "unplaced" in the most recent APG classification of angiosperms. One of these is the Apodanthaceae, a clade of c. 19 holoparasitic species in two or three genera occurring in North and South America, Africa, the Near East, and Australia. Because of lateral gene transfer between Apodanthaceae and their hosts it has been difficult to infer the family's true closest relatives. Results Here we report a phylogenetic analysis of 16 accessions representing six species of Apodanthaceae from the United States, Chile, Iran, and Australia, using the mitochondrial matR gene and the nuclear 18S gene. Data matrices include 190 matR sequences from up to 95 families in 39 orders of flowering plants and 197 18S sequences from 101 families representing the 16 orders of rosids. Analyses were performed at the nucleotide and at the amino acid level. Both gene trees agree with angiosperm phylogenies found in other studies using more genes. Apodanthaceae and the seven families of the order Cucurbitales form a clade with 100% bootstrap support from matR and 56% from 18 S. In addition, the Apodanthaceae and Cucurbitales matR gene sequences uniquely share two non-synonymous codon changes and one synonymous change, as well as a codon insertion, already found by Barkman et al. (2007. Conclusions Apodanthaceae belong in the Cucurbitales with which they share inferior ovaries, parietal placentation and a dioecious mating system, traits that are ancestral in Cucurbitales and which can now be interpreted as possible synapomorphies of an enlarged order Cucurbitales. The occurrence of Apodanthaceae in the Americas, Africa, the Near East, and Australia, and their adaptation to distantly related host species in the Fabaceae and Salicaceae suggest a long evolutionary history.

  7. Association between the p53 codon 72 polymorphism and primary open-angle glaucoma risk: Meta-analysis based on 11 case–control studies

    Directory of Open Access Journals (Sweden)

    Mohsen Gohari

    2016-01-01

    Full Text Available The TP53 is important in functions of cell cycle control, apoptosis, and maintenance of DNA integrity. Studies on the association between p53 codon 72 polymorphism and primary open-angle glaucoma (POAG risk have yielded conflicting results. Published literature from PubMed and Web of Science databases was retrieved. All studies evaluating the association between p53 codon 72 polymorphisms and POAG were included. Pooled odds ratio (OR and 95% confidence interval (CI were calculated. Eleven separate studies including 2541 cases and 1844 controls were pooled in the meta-analysis. We did not detect a significant association between POAG risk and p53 codon 72 polymorphism overall population except allele genetic model (C vs. G: OR = 0.961, 95% CI = 0.961–0.820, P = 0.622. In the stratified analysis for Asians and Caucasians, there was an association between p53 codon 72 polymorphism and POAG. In the dominant model in the overall population and by ethnicity subgroups, the highest elevated POAG risk was presented. In summary, these results indicate that p53 codon 72 polymorphism is likely an important genetic factor contributing to susceptibility of POAG. However, more case–controls studies based on larger sample size and stratified by ethnicity are suggested to further clarify the relationship between p53 codon 72 polymorphism and POAG.

  8. Positive Selection or Free to Vary? Assessing the Functional Significance of Sequence Change Using Molecular Dynamics.

    Directory of Open Access Journals (Sweden)

    Jane R Allison

    Full Text Available Evolutionary arms races between pathogens and their hosts may be manifested as selection for rapid evolutionary change of key genes, and are sometimes detectable through sequence-level analyses. In the case of protein-coding genes, such analyses frequently predict that specific codons are under positive selection. However, detecting positive selection can be non-trivial, and false positive predictions are a common concern in such analyses. It is therefore helpful to place such predictions within a structural and functional context. Here, we focus on the p19 protein from tombusviruses. P19 is a homodimer that sequesters siRNAs, thereby preventing the host RNAi machinery from shutting down viral infection. Sequence analysis of the p19 gene is complicated by the fact that it is constrained at the sequence level by overprinting of a viral movement protein gene. Using homology modeling, in silico mutation and molecular dynamics simulations, we assess how non-synonymous changes to two residues involved in forming the dimer interface-one invariant, and one predicted to be under positive selection-impact molecular function. Interestingly, we find that both observed variation and potential variation (where a non-synonymous change to p19 would be synonymous for the overprinted movement protein does not significantly impact protein structure or RNA binding. Consequently, while several methods identify residues at the dimer interface as being under positive selection, MD results suggest they are functionally indistinguishable from a site that is free to vary. Our analyses serve as a caveat to using sequence-level analyses in isolation to detect and assess positive selection, and emphasize the importance of also accounting for how non-synonymous changes impact structure and function.

  9. Characterization of Variant Creutzfeldt-Jakob Disease Prions in Prion Protein-humanized Mice Carrying Distinct Codon 129 Genotypes*

    Science.gov (United States)

    Takeuchi, Atsuko; Kobayashi, Atsushi; Ironside, James W.; Mohri, Shirou; Kitamoto, Tetsuyuki

    2013-01-01

    To date, all clinical variant Creutzfeldt-Jakob disease (vCJD) patients are homozygous for methionine at polymorphic codon 129 (129M/M) of the prion protein (PrP) gene. However, the appearance of asymptomatic secondary vCJD infection in individuals with a PRNP codon 129 genotype other than M/M and transmission studies using animal models have raised the concern that all humans might be susceptible to vCJD prions, especially via secondary infection. To reevaluate this possibility and to analyze in detail the transmission properties of vCJD prions to transgenic animals carrying distinct codon 129 genotype, we performed intracerebral inoculation of vCJD prions to humanized knock-in mice carrying all possible codon 129 genotypes (129M/M, 129M/V, or 129V/V). All humanized knock-in mouse lines were susceptible to vCJD infection, although the attack rate gradually decreased from 129M/M to 129M/V and to 129V/V. The amount of PrP deposition including florid/amyloid plaques in the brain also gradually decreased from 129M/M to 129M/V and to 129V/V. The biochemical properties of protease-resistant abnormal PrP in the brain and transmissibility of these humanized mouse-passaged vCJD prions upon subpassage into knock-in mice expressing bovine PrP were not affected by the codon 129 genotype. These results indicate that individuals with the 129V/V genotype may be more susceptible to secondary vCJD infection than expected and may lack the neuropathological characteristics observed in vCJD patients with the 129M/M genotype. Besides the molecular typing of protease-resistant PrP in the brain, transmission studies using knock-in mice carrying bovine PrP may aid the differential diagnosis of secondary vCJD infection, especially in individuals with the 129V/V genotype. PMID:23792955

  10. Characterization of variant Creutzfeldt-Jakob disease prions in prion protein-humanized mice carrying distinct codon 129 genotypes.

    Science.gov (United States)

    Takeuchi, Atsuko; Kobayashi, Atsushi; Ironside, James W; Mohri, Shirou; Kitamoto, Tetsuyuki

    2013-07-26

    To date, all clinical variant Creutzfeldt-Jakob disease (vCJD) patients are homozygous for methionine at polymorphic codon 129 (129M/M) of the prion protein (PrP) gene. However, the appearance of asymptomatic secondary vCJD infection in individuals with a PRNP codon 129 genotype other than M/M and transmission studies using animal models have raised the concern that all humans might be susceptible to vCJD prions, especially via secondary infection. To reevaluate this possibility and to analyze in detail the transmission properties of vCJD prions to transgenic animals carrying distinct codon 129 genotype, we performed intracerebral inoculation of vCJD prions to humanized knock-in mice carrying all possible codon 129 genotypes (129M/M, 129M/V, or 129V/V). All humanized knock-in mouse lines were susceptible to vCJD infection, although the attack rate gradually decreased from 129M/M to 129M/V and to 129V/V. The amount of PrP deposition including florid/amyloid plaques in the brain also gradually decreased from 129M/M to 129M/V and to 129V/V. The biochemical properties of protease-resistant abnormal PrP in the brain and transmissibility of these humanized mouse-passaged vCJD prions upon subpassage into knock-in mice expressing bovine PrP were not affected by the codon 129 genotype. These results indicate that individuals with the 129V/V genotype may be more susceptible to secondary vCJD infection than expected and may lack the neuropathological characteristics observed in vCJD patients with the 129M/M genotype. Besides the molecular typing of protease-resistant PrP in the brain, transmission studies using knock-in mice carrying bovine PrP may aid the differential diagnosis of secondary vCJD infection, especially in individuals with the 129V/V genotype.

  11. Mutations in the codon for a conserved arginine-1563 in the COL4A5 collagen gene in Alport syndrome

    DEFF Research Database (Denmark)

    Zhou, J; Gregory, M C; Hertz, Jens Michael

    1993-01-01

    for arginine to the translation stop codon TGA. In Utah kindred 2123 and in the Danish kindred A13, there was a C-->T mutation in the noncoding strand changing the same codon to CAA for glutamine. Both mutations were confirmed by allele-specific hybridization on PCR-amplified DNA from other family members....

  12. SCREENING FOR GENETIC CHANGES AND CODON 129 POLYMORPHISM IN PRNP GENE IN HEALTHY SLOVENIAN POPULATION AND SPORADIC CASES OF CREUTZFELDT-JAKOB DISEASE

    Directory of Open Access Journals (Sweden)

    Sava Smerkolj

    2004-11-01

    Full Text Available Background. Prion protein has an important role in development of prion diseases, fatal neurodegenerative disorders. As the codon 129 genotype of the prion protein gene (PRNP is a known susceptibility factor for the diseases, we wanted to determine its distribution in healthy Slovenian population and also in cases of sporadic Creutzfeldt-Jakob disease (sCJD. Furthermore, we wanted to screen the whole gene in order to establish the presence of genetic changes.Methods. We screened 350 DNA samples of healthy blood donors and 12 DNA samples of patients deceased of sCJD. After the amplification and conformation analysis had been done, the gene was sequenced using an automatic sequencer.Results. Methionine homozygotes comprised 46.8% of healthy population, valine homozygotes 12.1% and heterozygotes 41.1%; out of 12 sCJD patients 10 were methionine homozygotes (83.3%, 1 was valine homozygote (8.3% and 1 was heterozygote (8.3%.Found SNPs were combination of codon 76 change (228C > T and codon 84 change (252T > C in a single sample of healthy population, combination of codon 68 change (204T > C and codon 76 change (228C > T in two samples of healthy population and codon 117 change (351A > G in a healthy population sample and in a valine homozygote patient.Conclusions. In comparison to the pooled Caucasian population is genotype M/M frequency slightly increased on account of decreased genotype M/V frequency in healthy Slovenian population, suggesting a little higher risk for acquiring a new variant of CJD (vCJD, because up to date all confirmed vCJD cases except one heterozygote were methionine homozygotes. Codon 129 genotype distribution in sCJD can be described as disease-specific. The absence of pathogenic mutations in sCJD patients confirms the non-familial, sporadic disease form.

  13. Nucleotide composition of the Zika virus RNA genome and its codon usage

    NARCIS (Netherlands)

    van Hemert, Formijn; Berkhout, Ben

    2016-01-01

    RNA viruses have genomes with a distinct nucleotide composition and codon usage. We present the global characteristics of the RNA genome of Zika virus (ZIKV), an emerging pathogen within the Flavivirus genus. ZIKV was first isolated in 1947 in Uganda, caused a widespread epidemic in South and

  14. Codon and amino-acid distribution in DNA

    International Nuclear Information System (INIS)

    Kim, J.K.; Yang, S.I.; Kwon, Y.H.; Lee, E.I.

    2005-01-01

    According to the Zipf's law, the distribution of rank-ordered frequency of words in the natural language can be modelled on the power law. In this paper, we examine the frequency distribution of 64 codons over the coding and non-coding regions of 88 DNA from EMBL and GenBank database, using exponential fitting. Also, we regard 20 amino-acids as vocabulary, perform the same frequency analysis to the same database and show that amino-acids can be used as biological meaningful words for Zipf's approach. Our analysis suggests that a natural language structure may exist not only in the coding region of DNA but in the non-coding one of DNA

  15. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Cotranslational protein folding reveals the selective use of synonymous codons along the coding sequence of a low expression gene ... Genetic analysis to identify good combiners for ToLCV resistance and yield components in tomato ... The colocation of O. nivara-derived yield QTL with yield meta-QTL on chromosomes 1, ...

  16. Identification and codon reading properties of 5-cyanomethyl uridine, a new modified nucleoside found in the anticodon wobble position of mutant haloarchaeal isoleucine tRNAs.

    Science.gov (United States)

    Mandal, Debabrata; Köhrer, Caroline; Su, Dan; Babu, I Ramesh; Chan, Clement T Y; Liu, Yuchen; Söll, Dieter; Blum, Paul; Kuwahara, Masayasu; Dedon, Peter C; Rajbhandary, Uttam L

    2014-02-01

    Most archaea and bacteria use a modified C in the anticodon wobble position of isoleucine tRNA to base pair with A but not with G of the mRNA. This allows the tRNA to read the isoleucine codon AUA without also reading the methionine codon AUG. To understand why a modified C, and not U or modified U, is used to base pair with A, we mutated the C34 in the anticodon of Haloarcula marismortui isoleucine tRNA (tRNA2(Ile)) to U, expressed the mutant tRNA in Haloferax volcanii, and purified and analyzed the tRNA. Ribosome binding experiments show that although the wild-type tRNA2(Ile) binds exclusively to the isoleucine codon AUA, the mutant tRNA binds not only to AUA but also to AUU, another isoleucine codon, and to AUG, a methionine codon. The G34 to U mutant in the anticodon of another H. marismortui isoleucine tRNA species showed similar codon binding properties. Binding of the mutant tRNA to AUG could lead to misreading of the AUG codon and insertion of isoleucine in place of methionine. This result would explain why most archaea and bacteria do not normally use U or a modified U in the anticodon wobble position of isoleucine tRNA for reading the codon AUA. Biochemical and mass spectrometric analyses of the mutant tRNAs have led to the discovery of a new modified nucleoside, 5-cyanomethyl U in the anticodon wobble position of the mutant tRNAs. 5-Cyanomethyl U is present in total tRNAs from euryarchaea but not in crenarchaea, eubacteria, or eukaryotes.

  17. Landmark Image Retrieval Using Visual Synonyms

    NARCIS (Netherlands)

    Gavves, E.; Snoek, C.G.M.

    2010-01-01

    In this paper, we consider the incoherence problem of the visual words in bag-of-words vocabularies. Different from existing work, which performs assignment of words based solely on closeness in descriptor space, we focus on identifying pairs of independent, distant words - the visual synonyms -

  18. THE MIGHT OF RUSSIAN LANGUAGE ACCORDING TO SYNONYMIC DICTIONARY BY COMPUTER EVALUATION SYSTEM ASIS®

    Directory of Open Access Journals (Sweden)

    Vitaly N. Trishin

    2013-01-01

    Full Text Available The article describes electronic dictionary of synonyms in Russian language by ASIS® system (more than 500 000 words and collocations, 190 000 synonymic connections.The program can be used not just as a dictionary of synonyms and close meaning words, but also as spelling dictionary and definition dictionary of Russian language in order to check the orthography and define the meaning of unknown words. The dictionary is also designed to be an instrument of philological surveys and studies of the language trough the extensive query system on different characteristic of words (definition, composition, synonymy, etc.. Program’s lexical base includes words from dictionaries and guides in all subject areas - from astronomy to Japanese painting. Over compilation of dictionary developer used published dictionaries: spelling, synonymic, definition dictionaries, dictionary of collocations, dictionary of foreign words and etc. of 19-21 cc. Newspapers, magazines and web-resources were active used as well for appending the dictionary. This dictionary practically shows, that by the amount of words Russian language belongs with the most developed languages in the world, and by the scale and density of synonymic space, in the author’s opinion, it has no equal.

  19. Reduce manual curation by combining gene predictions from multiple annotation engines, a case study of start codon prediction.

    Directory of Open Access Journals (Sweden)

    Thomas H A Ederveen

    Full Text Available Nowadays, prokaryotic genomes are sequenced faster than the capacity to manually curate gene annotations. Automated genome annotation engines provide users a straight-forward and complete solution for predicting ORF coordinates and function. For many labs, the use of AGEs is therefore essential to decrease the time necessary for annotating a given prokaryotic genome. However, it is not uncommon for AGEs to provide different and sometimes conflicting predictions. Combining multiple AGEs might allow for more accurate predictions. Here we analyzed the ab initio open reading frame (ORF calling performance of different AGEs based on curated genome annotations of eight strains from different bacterial species with GC% ranging from 35-52%. We present a case study which demonstrates a novel way of comparative genome annotation, using combinations of AGEs in a pre-defined order (or path to predict ORF start codons. The order of AGE combinations is from high to low specificity, where the specificity is based on the eight genome annotations. For each AGE combination we are able to derive a so-called projected confidence value, which is the average specificity of ORF start codon prediction based on the eight genomes. The projected confidence enables estimating likeliness of a correct prediction for a particular ORF start codon by a particular AGE combination, pinpointing ORFs notoriously difficult to predict start codons. We correctly predict start codons for 90.5±4.8% of the genes in a genome (based on the eight genomes with an accuracy of 81.1±7.6%. Our consensus-path methodology allows a marked improvement over majority voting (9.7±4.4% and with an optimal path ORF start prediction sensitivity is gained while maintaining a high specificity.

  20. Visual synonyms for landmark image retrieval

    NARCIS (Netherlands)

    Gavves, E.; Snoek, C.G.M.; Smeulders, A.W.M.

    2012-01-01

    In this paper, we address the incoherence problem of the visual words in bag-of-words vocabularies. Different from existing work, which assigns words based on closeness in descriptor space, we focus on identifying pairs of independent, distant words - the visual synonyms - that are likely to host

  1. Cloning, Codon Optimization, and Expression of Yersinia intermedia Phytase Gene in E. coli.

    Science.gov (United States)

    Mirzaei, Maryam; Saffar, Behnaz; Shareghi, Behzad

    2016-06-01

    Phytate is an anti-nutritional factor in plants, which catches the most phosphorus contents and some vital minerals. Therefore, Phytase is added mainly as an additive to the monogastric animals' foods to hydrolyze phytate and increase absorption of phosphorus. Y. intermedia phytase is a new phytase with special characteristics such as high specific activity, pH stability, and thermostability. Our aim was to clone, express, and characterizea codon optimized Y. intermedia phytase gene in E. coli . The Y. intermedia phytase gene was optimized according to the codon usage in E. coli . The sequence was synthesized and sub-cloned in pET-22b (+) vector and transformed into E. coli Bl21 (DE3). The protein was expressed in the presence of IPTG at a final concentration of 1 mM at 30°C. The purification of recombinant protein was performed by Ni 2+ affinity chromatography. Phytase activity and stability were determined in various pH and temperatures. The codon optimized Y. intermedia phytase gene was sub-cloned successfully.The expression was confirmed by SDS-PAGE and Western blot analysis. The recombinant enzyme (approximately 45 kDa) was purified. Specific activity of enzyme was 3849 (U.mg -1 ) with optimal pH 5 and optimal temperature of 55°C. Thermostability (80°C for 15 min) and pH stability (3-6) of the enzyme were 56 and more than 80%, respectively. The results of the expression and enzyme characterization revealed that the optimized Y. intermedia phytase gene has a good potential to be produced commercially andto be applied in animals' foodsindustry.

  2. Stabilization of the genome of the mismatch repair deficient Mycobacterium tuberculosis by context-dependent codon choice.

    Science.gov (United States)

    Wanner, Roger M; Güthlein, Carolin; Springer, Burkhard; Böttger, Erik C; Ackermann, Martin

    2008-05-28

    The rate at which a stretch of DNA mutates is determined by the cellular systems for DNA replication and repair, and by the nucleotide sequence of the stretch itself. One sequence feature with a particularly strong influence on the mutation rate are nucleotide repeats. Some microbial pathogens use nucleotide repeats in their genome to stochastically vary phenotypic traits and thereby evade host defense. However, such unstable sequences also come at a cost, as mutations are often deleterious. Here, we analyzed how these opposing forces shaped genome stability in the human pathogen Mycobacterium tuberculosis. M. tuberculosis lacks a mismatch repair system, and this renders nucleotide repeats particularly unstable. We found that proteins of M. tuberculosis are encoded by using codons in a context-dependent manner that prevents the emergence of nucleotide repeats. This context-dependent codon choice leads to a strong decrease in the estimated frame-shift mutation rate and thus to an increase in genome stability. These results indicate that a context-specific codon choice can partially compensate for the lack of a mismatch repair system, and helps to maintain genome integrity in this pathogen.

  3. Stabilization of the genome of the mismatch repair deficient Mycobacterium tuberculosis by context-dependent codon choice

    Directory of Open Access Journals (Sweden)

    Ackermann Martin

    2008-05-01

    Full Text Available Abstract Background The rate at which a stretch of DNA mutates is determined by the cellular systems for DNA replication and repair, and by the nucleotide sequence of the stretch itself. One sequence feature with a particularly strong influence on the mutation rate are nucleotide repeats. Some microbial pathogens use nucleotide repeats in their genome to stochastically vary phenotypic traits and thereby evade host defense. However, such unstable sequences also come at a cost, as mutations are often deleterious. Here, we analyzed how these opposing forces shaped genome stability in the human pathogen Mycobacterium tuberculosis. M. tuberculosis lacks a mismatch repair system, and this renders nucleotide repeats particularly unstable. Results We found that proteins of M. tuberculosis are encoded by using codons in a context-dependent manner that prevents the emergence of nucleotide repeats. This context-dependent codon choice leads to a strong decrease in the estimated frame-shift mutation rate and thus to an increase in genome stability. Conclusion These results indicate that a context-specific codon choice can partially compensate for the lack of a mismatch repair system, and helps to maintain genome integrity in this pathogen.

  4. Genome-wide analysis of codon usage bias in Bovine Coronavirus

    OpenAIRE

    Castells, Mat?as; Victoria, Mat?as; Colina, Rodney; Musto, H?ctor; Cristina, Juan

    2017-01-01

    Background Bovine coronavirus (BCoV) belong to the genus Betacoronavirus of the family Coronaviridae. BCoV are widespread around the world and cause enteric or respiratory infections among cattle, leading to important economic losses to the beef and dairy industry worldwide. To study the relation of codon usage among viruses and their hosts is essential to understand host-pathogen interaction, evasion from host?s immune system and evolution. Methods We performed a comprehensive analysis of co...

  5. Celebrating wobble decoding: Half a century and still much is new.

    Science.gov (United States)

    Agris, Paul F; Eruysal, Emily R; Narendran, Amithi; Väre, Ville Y P; Vangaveti, Sweta; Ranganathan, Srivathsan V

    2017-08-16

    A simple post-transcriptional modification of tRNA, deamination of adenosine to inosine at the first, or wobble, position of the anticodon, inspired Francis Crick's Wobble Hypothesis 50 years ago. Many more naturally-occurring modifications have been elucidated and continue to be discovered. The post-transcriptional modifications of tRNA's anticodon domain are the most diverse and chemically complex of any RNA modifications. Their contribution with regards to chemistry, structure and dynamics reveal individual and combined effects on tRNA function in recognition of cognate and wobble codons. As forecast by the Modified Wobble Hypothesis 25 years ago, some individual modifications at tRNA's wobble position have evolved to restrict codon recognition whereas others expand the tRNA's ability to read as many as four synonymous codons. Here, we review tRNA wobble codon recognition using specific examples of simple and complex modification chemistries that alter tRNA function. Understanding natural modifications has inspired evolutionary insights and possible innovation in protein synthesis.

  6. Glyphosate resistance: state of knowledge

    Science.gov (United States)

    Sammons, Robert Douglas; Gaines, Todd A

    2014-01-01

    Studies of mechanisms of resistance to glyphosate have increased current understanding of herbicide resistance mechanisms. Thus far, single-codon non-synonymous mutations of EPSPS (5-enolypyruvylshikimate-3-phosphate synthase) have been rare and, relative to other herbicide mode of action target-site mutations, unconventionally weak in magnitude for resistance to glyphosate. However, it is possible that weeds will emerge with non-synonymous mutations of two codons of EPSPS to produce an enzyme endowing greater resistance to glyphosate. Today, target-gene duplication is a common glyphosate resistance mechanism and could become a fundamental process for developing any resistance trait. Based on competition and substrate selectivity studies in several species, rapid vacuole sequestration of glyphosate occurs via a transporter mechanism. Conversely, as the chloroplast requires transporters for uptake of important metabolites, transporters associated with the two plastid membranes may separately, or together, successfully block glyphosate delivery. A model based on finite glyphosate dose and limiting time required for chloroplast loading sets the stage for understanding how uniquely different mechanisms can contribute to overall glyphosate resistance. PMID:25180399

  7. Collaborative testing for key-term definitions under representative conditions: Efficiency costs and no learning benefits.

    Science.gov (United States)

    Wissman, Kathryn T; Rawson, Katherine A

    2018-01-01

    Students are expected to learn key-term definitions across many different grade levels and academic disciplines. Thus, investigating ways to promote understanding of key-term definitions is of critical importance for applied purposes. A recent survey showed that learners report engaging in collaborative practice testing when learning key-term definitions, with outcomes also shedding light on the way in which learners report engaging in collaborative testing in real-world contexts (Wissman & Rawson, 2016, Memory, 24, 223-239). However, no research has directly explored the effectiveness of engaging in collaborative testing under representative conditions. Accordingly, the current research evaluates the costs (with respect to efficiency) and the benefits (with respect to learning) of collaborative testing for key-term definitions under representative conditions. In three experiments (ns = 94, 74, 95), learners individually studied key-term definitions and then completed retrieval practice, which occurred either individually or collaboratively (in dyads). Two days later, all learners completed a final individual test. Results from Experiments 1-2 showed a cost (with respect to efficiency) and no benefit (with respect to learning) of engaging in collaborative testing for key-term definitions. Experiment 3 evaluated a theoretical explanation for why collaborative benefits do not emerge under representative conditions. Collectively, outcomes indicate that collaborative testing versus individual testing is less effective and less efficient when learning key-term definitions under representative conditions.

  8. Comparative Mitogenomic Analysis of Species Representing Six Subfamilies in the Family Tenebrionidae

    Directory of Open Access Journals (Sweden)

    Hong-Li Zhang

    2016-05-01

    Full Text Available To better understand the architecture and evolution of the mitochondrial genome (mitogenome, mitogenomes of ten specimens representing six subfamilies in Tenebrionidae were selected, and comparative analysis of these mitogenomes was carried out in this study. Ten mitogenomes in this family share a similar gene composition, gene order, nucleotide composition, and codon usage. In addition, our results show that nucleotide bias was strongly influenced by the preference of codon usage for A/T rich codons which significantly correlated with the G + C content of protein coding genes (PCGs. Evolutionary rate analyses reveal that all PCGs have been subjected to a purifying selection, whereas 13 PCGs displayed different evolution rates, among which ATPase subunit 8 (ATP8 showed the highest evolutionary rate. We inferred the secondary structure for all RNA genes of Tenebrio molitor (Te2 and used this as the basis for comparison with the same genes from other Tenebrionidae mitogenomes. Some conserved helices (stems and loops of RNA structures were found in different domains of ribosomal RNAs (rRNAs and the cloverleaf structure of transfer RNAs (tRNAs. With regard to the AT-rich region, we analyzed tandem repeat sequences located in this region and identified some essential elements including T stretches, the consensus motif at the flanking regions of T stretch, and the secondary structure formed by the motif at the 3′ end of T stretch in major strand, which are highly conserved in these species. Furthermore, phylogenetic analyses using mitogenomic data strongly support the relationships among six subfamilies: ((Tenebrionidae incertae sedis + (Diaperinae + Tenebrioninae + (Pimeliinae + Lagriinae, which is consistent with phylogenetic results based on morphological traits.

  9. mRNA secondary structure at start AUG codon is a key limiting factor for human protein expression in Escherichia coli

    International Nuclear Information System (INIS)

    Zhang Weici; Xiao Weihua; Wei Haiming; Zhang Jian; Tian Zhigang

    2006-01-01

    Codon usage and thermodynamic optimization of the 5'-end of mRNA have been applied to improve the efficiency of human protein production in Escherichia coli. However, high level expression of human protein in E. coli is still a challenge that virtually depends upon each individual target genes. Using human interleukin 10 (huIL-10) and interferon α (huIFN-α) coding sequences, we systematically analyzed the influence of several major factors on expression of human protein in E. coli. The results from huIL-10 and reinforced by huIFN-α showed that exposing AUG initiator codon from base-paired structure within mRNA itself significantly improved the translation of target protein, which resulted in a 10-fold higher protein expression than the wild-type genes. It was also noted that translation process was not affected by the retained short-range stem-loop structure at Shine-Dalgarno (SD) sequences. On the other hand, codon-optimized constructs of huIL-10 showed unimproved levels of protein expression, on the contrary, led to a remarkable RNA degradation. Our study demonstrates that exposure of AUG initiator codon from long-range intra-strand secondary structure at 5'-end of mRNA may be used as a general strategy for human protein production in E. coli

  10. Fidelity of HIS4 start codon selection influences 3-Amino-1,2,4 ...

    Indian Academy of Sciences (India)

    Pankaj Alone

    Fidelity of HIS4 start codon selection influences 3-Amino-1,2,4-Triazole (3AT) .... media in presence or absence of 3AT and harvested at 6000xg at room ..... The overnight cultures were serially diluted (with O.D600 of 0.5, 0.05, 0.005, 0.0005,.

  11. A 250 plastome phylogeny of the grass family (Poaceae): topological support under different data partitions

    Science.gov (United States)

    Burke, Sean V.; Wysocki, William P.; Clark, Lynn G.

    2018-01-01

    The systematics of grasses has advanced through applications of plastome phylogenomics, although studies have been largely limited to subfamilies or other subgroups of Poaceae. Here we present a plastome phylogenomic analysis of 250 complete plastomes (179 genera) sampled from 44 of the 52 tribes of Poaceae. Plastome sequences were determined from high throughput sequencing libraries and the assemblies represent over 28.7 Mbases of sequence data. Phylogenetic signal was characterized in 14 partitions, including (1) complete plastomes; (2) protein coding regions; (3) noncoding regions; and (4) three loci commonly used in single and multi-gene studies of grasses. Each of the four main partitions was further refined, alternatively including or excluding positively selected codons and also the gaps introduced by the alignment. All 76 protein coding plastome loci were found to be predominantly under purifying selection, but specific codons were found to be under positive selection in 65 loci. The loci that have been widely used in multi-gene phylogenetic studies had among the highest proportions of positively selected codons, suggesting caution in the interpretation of these earlier results. Plastome phylogenomic analyses confirmed the backbone topology for Poaceae with maximum bootstrap support (BP). Among the 14 analyses, 82 clades out of 309 resolved were maximally supported in all trees. Analyses of newly sequenced plastomes were in agreement with current classifications. Five of seven partitions in which alignment gaps were removed retrieved Panicoideae as sister to the remaining PACMAD subfamilies. Alternative topologies were recovered in trees from partitions that included alignment gaps. This suggests that ambiguities in aligning these uncertain regions might introduce a false signal. Resolution of these and other critical branch points in the phylogeny of Poaceae will help to better understand the selective forces that drove the radiation of the BOP and PACMAD

  12. The highly conserved codon following the slippery sequence supports -1 frameshift efficiency at the HIV-1 frameshift site.

    Directory of Open Access Journals (Sweden)

    Suneeth F Mathew

    Full Text Available HIV-1 utilises -1 programmed ribosomal frameshifting to translate structural and enzymatic domains in a defined proportion required for replication. A slippery sequence, U UUU UUA, and a stem-loop are well-defined RNA features modulating -1 frameshifting in HIV-1. The GGG glycine codon immediately following the slippery sequence (the 'intercodon' contributes structurally to the start of the stem-loop but has no defined role in current models of the frameshift mechanism, as slippage is inferred to occur before the intercodon has reached the ribosomal decoding site. This GGG codon is highly conserved in natural isolates of HIV. When the natural intercodon was replaced with a stop codon two different decoding molecules-eRF1 protein or a cognate suppressor tRNA-were able to access and decode the intercodon prior to -1 frameshifting. This implies significant slippage occurs when the intercodon is in the (perhaps distorted ribosomal A site. We accommodate the influence of the intercodon in a model of frame maintenance versus frameshifting in HIV-1.

  13. Correcting the bias of empirical frequency parameter estimators in codon models.

    Directory of Open Access Journals (Sweden)

    Sergei Kosakovsky Pond

    2010-07-01

    Full Text Available Markov models of codon substitution are powerful inferential tools for studying biological processes such as natural selection and preferences in amino acid substitution. The equilibrium character distributions of these models are almost always estimated using nucleotide frequencies observed in a sequence alignment, primarily as a matter of historical convention. In this note, we demonstrate that a popular class of such estimators are biased, and that this bias has an adverse effect on goodness of fit and estimates of substitution rates. We propose a "corrected" empirical estimator that begins with observed nucleotide counts, but accounts for the nucleotide composition of stop codons. We show via simulation that the corrected estimates outperform the de facto standard estimates not just by providing better estimates of the frequencies themselves, but also by leading to improved estimation of other parameters in the evolutionary models. On a curated collection of sequence alignments, our estimators show a significant improvement in goodness of fit compared to the approach. Maximum likelihood estimation of the frequency parameters appears to be warranted in many cases, albeit at a greater computational cost. Our results demonstrate that there is little justification, either statistical or computational, for continued use of the -style estimators.

  14. Methods for selecting fixed-effect models for heterogeneous codon evolution, with comments on their application to gene and genome data.

    Science.gov (United States)

    Bao, Le; Gu, Hong; Dunn, Katherine A; Bielawski, Joseph P

    2007-02-08

    Models of codon evolution have proven useful for investigating the strength and direction of natural selection. In some cases, a priori biological knowledge has been used successfully to model heterogeneous evolutionary dynamics among codon sites. These are called fixed-effect models, and they require that all codon sites are assigned to one of several partitions which are permitted to have independent parameters for selection pressure, evolutionary rate, transition to transversion ratio or codon frequencies. For single gene analysis, partitions might be defined according to protein tertiary structure, and for multiple gene analysis partitions might be defined according to a gene's functional category. Given a set of related fixed-effect models, the task of selecting the model that best fits the data is not trivial. In this study, we implement a set of fixed-effect codon models which allow for different levels of heterogeneity among partitions in the substitution process. We describe strategies for selecting among these models by a backward elimination procedure, Akaike information criterion (AIC) or a corrected Akaike information criterion (AICc). We evaluate the performance of these model selection methods via a simulation study, and make several recommendations for real data analysis. Our simulation study indicates that the backward elimination procedure can provide a reliable method for model selection in this setting. We also demonstrate the utility of these models by application to a single-gene dataset partitioned according to tertiary structure (abalone sperm lysin), and a multi-gene dataset partitioned according to the functional category of the gene (flagellar-related proteins of Listeria). Fixed-effect models have advantages and disadvantages. Fixed-effect models are desirable when data partitions are known to exhibit significant heterogeneity or when a statistical test of such heterogeneity is desired. They have the disadvantage of requiring a priori

  15. Unassigned Codons, Nonsense Suppression, and Anticodon Modifications in the Evolution of the Genetic Code

    NARCIS (Netherlands)

    P.T.S. van der Gulik (Peter); W.D. Hoff (Wouter)

    2011-01-01

    htmlabstractThe origin of the genetic code is a central open problem regarding the early evolution of life. Here, we consider two undeveloped but important aspects of possible scenarios for the evolutionary pathway of the translation machinery: the role of unassigned codons in early stages

  16. THE EXISTENCE OF SYNONYMS IN A LANGUAGE - 2 FORMS BUT ONE, OR RATHER 2 MEANINGS

    NARCIS (Netherlands)

    DEJONGE, B

    1993-01-01

    This paper focuses on the problem of synonymy. In practice, the existence of synonyms is generally accepted, but in theory, synonymy is undesirable. In this article an attempt is made to show that functional differences in meaning can distinguish two apparently synonymous verbs in Modern Italian.

  17. Enhanced phosphoserine insertion during Escherichia coli protein synthesis via partial UAG codon reassignment and release factor 1 deletion

    Science.gov (United States)

    Heinemann, Ilka U.; Rovner, Alexis J.; Aerni, Hans R.; Rogulina, Svetlana; Cheng, Laura; Olds, William; Fischer, Jonathan T.; Söll, Dieter; Isaacs, Farren J.; Rinehart, Jesse

    2012-01-01

    Genetically encoded phosphoserine incorporation programmed by the UAG codon was achieved by addition of engineered elongation factor and an archaeal aminoacyl-tRNA synthetase to the normal Escherichia coli translation machinery (Park (2011) Science 333, 1151). However, protein yield suffers from expression of the orthogonal phosphoserine translation system and competition with release factor 1 (RF-1). In a strain lacking RF-1, phosphoserine phosphatase, and where 7 UAG codons residing in essential genes were converted to UAA, phosphoserine incorporation into GFP and WNK4 was significantly elevated, but with an accompanying loss in cellular fitness and viability. PMID:22982858

  18. Synonymous Mutations at the Beginning of the Influenza A Virus Hemagglutinin Gene Impact Experimental Fitness.

    Science.gov (United States)

    Canale, Aneth S; Venev, Sergey V; Whitfield, Troy W; Caffrey, Daniel R; Marasco, Wayne A; Schiffer, Celia A; Kowalik, Timothy F; Jensen, Jeffrey D; Finberg, Robert W; Zeldovich, Konstantin B; Wang, Jennifer P; Bolon, Daniel N A

    2018-04-13

    The fitness effects of synonymous mutations can provide insights into biological and evolutionary mechanisms. We analyzed the experimental fitness effects of all single-nucleotide mutations, including synonymous substitutions, at the beginning of the influenza A virus hemagglutinin (HA) gene. Many synonymous substitutions were deleterious both in bulk competition and for individually isolated clones. Investigating protein and RNA levels of a subset of individually expressed HA variants revealed that multiple biochemical properties contribute to the observed experimental fitness effects. Our results indicate that a structural element in the HA segment viral RNA may influence fitness. Examination of naturally evolved sequences in human hosts indicates a preference for the unfolded state of this structural element compared to that found in swine hosts. Our overall results reveal that synonymous mutations may have greater fitness consequences than indicated by simple models of sequence conservation, and we discuss the implications of this finding for commonly used evolutionary tests and analyses. Copyright © 2018. Published by Elsevier Ltd.

  19. Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11.

    Science.gov (United States)

    Li, Manqing; Kao, Elaine; Gao, Xia; Sandig, Hilary; Limmer, Kirsten; Pavon-Eternod, Mariana; Jones, Thomas E; Landry, Sebastien; Pan, Tao; Weitzman, Matthew D; David, Michael

    2012-11-01

    In mammals, one of the most pronounced consequences of viral infection is the induction of type I interferons, cytokines with potent antiviral activity. Schlafen (Slfn) genes are a subset of interferon-stimulated early response genes (ISGs) that are also induced directly by pathogens via the interferon regulatory factor 3 (IRF3) pathway. However, many ISGs are of unknown or incompletely understood function. Here we show that human SLFN11 potently and specifically abrogates the production of retroviruses such as human immunodeficiency virus 1 (HIV-1). Our study revealed that SLFN11 has no effect on the early steps of the retroviral infection cycle, including reverse transcription, integration and transcription. Rather, SLFN11 acts at the late stage of virus production by selectively inhibiting the expression of viral proteins in a codon-usage-dependent manner. We further find that SLFN11 binds transfer RNA, and counteracts changes in the tRNA pool elicited by the presence of HIV. Our studies identified a novel antiviral mechanism within the innate immune response, in which SLFN11 selectively inhibits viral protein synthesis in HIV-infected cells by means of codon-bias discrimination.

  20. Analysis of EFL Students' Ability in Reading Vocabulary of Synonyms and Antonyms

    OpenAIRE

    Vina Fathira

    2017-01-01

    Reading is an important thing for academic level. Every student must have many vocabularies to encourage her/his reading skill. The aim of this research is to analyze the students' understanding of reading vocabularies of synonyms and antonyms in the higher education level. Synonyms and antonyms are two important things should be mastered to get better reading comprehension. The method used in this research was quantitative with survey design. The population same as the sample of this researc...

  1. Association of the p53 codon 72 polymorphism to gastric cancer risk in a high risk population of Costa Rica

    International Nuclear Information System (INIS)

    Alpizar-Alpizar, Warner; Sierra, Rafaela; Cuenca, Patricia; Une, Clas; Mena, Fernando; Perez-Perez, Guillermo Ignacio

    2005-01-01

    Gastric cancer is the second most common cancer associated death cause worldwide. Several factors have been associated with higher risk to develop gastric cancer, among them genetic predisposition. The p53 gene has a polymorphism located at codon 72, which has been associated with higher risk of several types of cancer, including gastric cancer. The aim of this study was to determine the association of p53, codon 72 polymorphism, with the risk of gastric cancer and pre-malignant lesions in a high-risk population from Costa Rica. The genotyping was carried out by PCR-RFLP in a sample of 58 gastric cancer patients, 99 control persons and 41 individuals classified as group I and II, according to the Japanese histological classification. No association was found for p53, codon 72 polymorphism with neither the risk of gastric cancer nor the risk of less severe gastric lesions in the studied sample. Based on this study and taking into account other studies carried out with p53, codon 72 polymorphism, the role of this polymorphism in the development of gastric cancer remains unclear. De novo mutations on p53 gene produced during neoplastic development of this disease might play a greater role than germinal polymorphisms of this same gene. Other polymorphic genes have been associated with higher risk to develop gastric cancer. (author) [es

  2. Bridging two scholarly islands enriches both: COI DNA barcodes for species identification versus human mitochondrial variation for the study of migrations and pathologies.

    Science.gov (United States)

    Thaler, David S; Stoeckle, Mark Y

    2016-10-01

    DNA barcodes for species identification and the analysis of human mitochondrial variation have developed as independent fields even though both are based on sequences from animal mitochondria. This study finds questions within each field that can be addressed by reference to the other. DNA barcodes are based on a 648-bp segment of the mitochondrially encoded cytochrome oxidase I. From most species, this segment is the only sequence available. It is impossible to know whether it fairly represents overall mitochondrial variation. For modern humans, the entire mitochondrial genome is available from thousands of healthy individuals. SNPs in the human mitochondrial genome are evenly distributed across all protein-encoding regions arguing that COI DNA barcode is representative. Barcode variation among related species is largely based on synonymous codons. Data on human mitochondrial variation support the interpretation that most - possibly all - synonymous substitutions in mitochondria are selectively neutral. DNA barcodes confirm reports of a low variance in modern humans compared to nonhuman primates. In addition, DNA barcodes allow the comparison of modern human variance to many other extant animal species. Birds are a well-curated group in which DNA barcodes are coupled with census and geographic data. Putting modern human variation in the context of intraspecies variation among birds shows humans to be a single breeding population of average variance.

  3. Contribution of single amino acid and codon substitutions to the production and secretion of a lipase by Bacillus subtilis.

    Science.gov (United States)

    Skoczinski, Pia; Volkenborn, Kristina; Fulton, Alexander; Bhadauriya, Anuseema; Nutschel, Christina; Gohlke, Holger; Knapp, Andreas; Jaeger, Karl-Erich

    2017-09-25

    Bacillus subtilis produces and secretes proteins in amounts of up to 20 g/l under optimal conditions. However, protein production can be challenging if transcription and cotranslational secretion are negatively affected, or the target protein is degraded by extracellular proteases. This study aims at elucidating the influence of a target protein on its own production by a systematic mutational analysis of the homologous B. subtilis model protein lipase A (LipA). We have covered the full natural diversity of single amino acid substitutions at 155 positions of LipA by site saturation mutagenesis excluding only highly conserved residues and qualitatively and quantitatively screened about 30,000 clones for extracellular LipA production. Identified variants with beneficial effects on production were sequenced and analyzed regarding B. subtilis growth behavior, extracellular lipase activity and amount as well as changes in lipase transcript levels. In total, 26 LipA variants were identified showing an up to twofold increase in either amount or activity of extracellular lipase. These variants harbor single amino acid or codon substitutions that did not substantially affect B. subtilis growth. Subsequent exemplary combination of beneficial single amino acid substitutions revealed an additive effect solely at the level of extracellular lipase amount; however, lipase amount and activity could not be increased simultaneously. Single amino acid and codon substitutions can affect LipA secretion and production by B. subtilis. Several codon-related effects were observed that either enhance lipA transcription or promote a more efficient folding of LipA. Single amino acid substitutions could improve LipA production by increasing its secretion or stability in the culture supernatant. Our findings indicate that optimization of the expression system is not sufficient for efficient protein production in B. subtilis. The sequence of the target protein should also be considered as an

  4. The Nym Family: Synonyms, Antonyms, Homonyms, Acronyms.

    Science.gov (United States)

    Cummings, Melodie

    Intended to help students improve their vocabulary and spelling skills, this booklet offers activities on synonyms, antonyms, homonyms (including homophones and homographs), and acronyms. It is suggested that the teacher present these types of words as members of the "Nym Family." Ideas for posters and books to be used as instructional…

  5. Idiosyncratic recognition of UUG/UUA codons by modified nucleoside 5-taurinomethyluridine, τm5U present at 'wobble' position in anticodon loop of tRNALeu: A molecular modeling approach.

    Directory of Open Access Journals (Sweden)

    Asmita S Kamble

    Full Text Available Lack of naturally occurring modified nucleoside 5-taurinomethyluridine (τm5U at the 'wobble' 34th position in tRNALeu causes mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS. The τm5U34 specifically recognizes UUG and UUA codons. Structural consequences of τm5U34 to read cognate codons have not been studied so far in detail at the atomic level. Hence, 50ns multiple molecular dynamics (MD simulations of various anticodon stem loop (ASL models of tRNALeu in presence and absence of τm5U34 along with UUG and UUA codons were performed to explore the dynamic behaviour of τm5U34 during codon recognition process. The MD simulation results revealed that τm5U34 recognizes G/A ending codons by 'wobble' as well as a novel 'single' hydrogen bonding interactions. RMSD and RMSF values indicate the comparative stability of the ASL models containing τm5U34 modification over the other models, lacking τm5U34. Another MD simulation study of 55S mammalian mitochondrial rRNA with tRNALeu showed crucial interactions between the A-site residues, A918, A919, G256 and codon-anticodon bases. Thus, these results could improve our understanding about the decoding efficiency of human mt tRNALeu with τm5U34 to recognize UUG and UUA codons.

  6. Comparative study of the hemagglutinin and neuraminidase genes of influenza A virus H3N2, H9N2, and H5N1 subtypes using bioinformatics techniques.

    Science.gov (United States)

    Ahn, Insung; Son, Hyeon S

    2007-07-01

    To investigate the genomic patterns of influenza A virus subtypes, such as H3N2, H9N2, and H5N1, we collected 1842 sequences of the hemagglutinin and neuraminidase genes from the NCBI database and parsed them into 7 categories: accession number, host species, sampling year, country, subtype, gene name, and sequence. The sequences that were isolated from the human, avian, and swine populations were extracted and stored in a MySQL database for intensive analysis. The GC content and relative synonymous codon usage (RSCU) values were calculated using JAVA codes. As a result, correspondence analysis of the RSCU values yielded the unique codon usage pattern (CUP) of each subtype and revealed no extreme differences among the human, avian, and swine isolates. H5N1 subtype viruses exhibited little variation in CUPs compared with other subtypes, suggesting that the H5N1 CUP has not yet undergone significant changes within each host species. Moreover, some observations may be relevant to CUP variation that has occurred over time among the H3N2 subtype viruses isolated from humans. All the sequences were divided into 3 groups over time, and each group seemed to have preferred synonymous codon patterns for each amino acid, especially for arginine, glycine, leucine, and valine. The bioinformatics technique we introduce in this study may be useful in predicting the evolutionary patterns of pandemic viruses.

  7. From Poule de Luxe to Geisha: Source Languages behind the Present-Day English Synonyms of Prostitute

    Directory of Open Access Journals (Sweden)

    Bożena Duda

    2014-11-01

    Full Text Available This paper aims at drawing a picture, as complete as possible, of an anthropocentric reality hidden in the synonyms of prostitute which have been incorporated into the English lexico-semantic system from other languages since the beginning of the 19th century. The body of Present-day English synonyms of prostitute to be analysed includes horizontal, geisha, shawl and poule de luxe. Apart from providing the source languages from which English borrowed the afore-mentioned synonyms of prostitute, an attempt will be made at discovering the plausible cultural and sociological justification for the lexical borrowings to have taken place. In order to make the onomasiological picture of the sense ‘prostitute’ as complete as it can be within the limits of this paper, a mention will be made of the lexical heritage within the range of the synonyms of prostitute which were incorporated into the English language in the course of Middle English, Early Modern English and Late Modern English.

  8. Local synteny and codon usage contribute to asymmetric sequence divergence of Saccharomyces cerevisiae gene duplicates

    Directory of Open Access Journals (Sweden)

    Bergthorsson Ulfar

    2011-09-01

    Full Text Available Abstract Background Duplicated genes frequently experience asymmetric rates of sequence evolution. Relaxed selective constraints and positive selection have both been invoked to explain the observation that one paralog within a gene-duplicate pair exhibits an accelerated rate of sequence evolution. In the majority of studies where asymmetric divergence has been established, there is no indication as to which gene copy, ancestral or derived, is evolving more rapidly. In this study we investigated the effect of local synteny (gene-neighborhood conservation and codon usage on the sequence evolution of gene duplicates in the S. cerevisiae genome. We further distinguish the gene duplicates into those that originated from a whole-genome duplication (WGD event (ohnologs versus small-scale duplications (SSD to determine if there exist any differences in their patterns of sequence evolution. Results For SSD pairs, the derived copy evolves faster than the ancestral copy. However, there is no relationship between rate asymmetry and synteny conservation (ancestral-like versus derived-like in ohnologs. mRNA abundance and optimal codon usage as measured by the CAI is lower in the derived SSD copies relative to ancestral paralogs. Moreover, in the case of ohnologs, the faster-evolving copy has lower CAI and lowered expression. Conclusions Together, these results suggest that relaxation of selection for codon usage and gene expression contribute to rate asymmetry in the evolution of duplicated genes and that in SSD pairs, the relaxation of selection stems from the loss of ancestral regulatory information in the derived copy.

  9. Leadership Competencies: Do They Differ for Women and Under-Represented Minority Faculty Members?

    Science.gov (United States)

    Skarupski, Kimberly A.; Levine, Rachel B.; Yang, Wan Rou; González-Fernández, Marlís; Bodurtha, Joann; Barone, Michael A.; Fivush, Barbara

    2017-01-01

    The literature on leadership competencies does not include an understanding of how stakeholders perceive competencies for women and under-represented minority faculty members. We surveyed three groups of leaders (N = 113) to determine their perceptions of the importance of 23 leadership competencies. All three groups endorsed the same five…

  10. Future changes in global warming potentials under representative concentration pathways

    Energy Technology Data Exchange (ETDEWEB)

    Reisinger, Andy [New Zealand Agricultural Greenhouse Gas Research Centre, PO Box 10002, Wellington 6143 (New Zealand); Meinshausen, Malte [Earth System Analysis, Potsdam Institute for Climate Impact Research (Germany); Manning, Martin, E-mail: andy.reisinger@nzagrc.org.nz [Climate Change Research Institute, Victoria University of Wellington (New Zealand)

    2011-04-15

    Global warming potentials (GWPs) are the metrics currently used to compare emissions of different greenhouse gases under the United Nations Framework Convention on Climate Change. Future changes in greenhouse gas concentrations will alter GWPs because the radiative efficiencies of marginal changes in CO{sub 2}, CH{sub 4} and N{sub 2}O depend on their background concentrations, the removal of CO{sub 2} is influenced by climate-carbon cycle feedbacks, and atmospheric residence times of CH{sub 4} and N{sub 2}O also depend on ambient temperature and other environmental changes. We calculated the currently foreseeable future changes in the absolute GWP of CO{sub 2}, which acts as the denominator for the calculation of all GWPs, and specifically the GWPs of CH{sub 4} and N{sub 2}O, along four representative concentration pathways (RCPs) up to the year 2100. We find that the absolute GWP of CO{sub 2} decreases under all RCPs, although for longer time horizons this decrease is smaller than for short time horizons due to increased climate-carbon cycle feedbacks. The 100-year GWP of CH{sub 4} would increase up to 20% under the lowest RCP by 2100 but would decrease by up to 10% by mid-century under the highest RCP. The 100-year GWP of N{sub 2}O would increase by more than 30% by 2100 under the highest RCP but would vary by less than 10% under other scenarios. These changes are not negligible but are mostly smaller than the changes that would result from choosing a different time horizon for GWPs, or from choosing altogether different metrics for comparing greenhouse gas emissions, such as global temperature change potentials.

  11. Protein evolution via amino acid and codon elimination

    DEFF Research Database (Denmark)

    Goltermann, Lise; Larsen, Marie Sofie Yoo; Banerjee, Rajat

    2010-01-01

    BACKGROUND: Global residue-specific amino acid mutagenesis can provide important biological insight and generate proteins with altered properties, but at the risk of protein misfolding. Further, targeted libraries are usually restricted to a handful of amino acids because there is an exponential...... correlation between the number of residues randomized and the size of the resulting ensemble. Using GFP as the model protein, we present a strategy, termed protein evolution via amino acid and codon elimination, through which simplified, native-like polypeptides encoded by a reduced genetic code were obtained...... simultaneously), while retaining varying levels of activity. Combination of these substitutions to generate a Phe-free variant of GFP abolished fluorescence. Combinatorial re-introduction of five Phe residues, based on the activities of the respective single amino acid replacements, was sufficient to restore GFP...

  12. A System for Anesthesia Drug Administration Using Barcode Technology: The Codonics Safe Label System and Smart Anesthesia Manager.

    Science.gov (United States)

    Jelacic, Srdjan; Bowdle, Andrew; Nair, Bala G; Kusulos, Dolly; Bower, Lynnette; Togashi, Kei

    2015-08-01

    Many anesthetic drug errors result from vial or syringe swaps. Scanning the barcodes on vials before drug preparation, creating syringe labels that include barcodes, and scanning the syringe label barcodes before drug administration may help to prevent errors. In contrast, making syringe labels by hand that comply with the recommendations of regulatory agencies and standards-setting bodies is tedious and time consuming. A computerized system that uses vial barcodes and generates barcoded syringe labels could address both safety issues and labeling recommendations. We measured compliance of syringe labels in multiple operating rooms (ORs) with the recommendations of regulatory agencies and standards-setting bodies before and after the introduction of the Codonics Safe Label System (SLS). The Codonics SLS was then combined with Smart Anesthesia Manager software to create an anesthesia barcode drug administration system, which allowed us to measure the rate of scanning syringe label barcodes at the time of drug administration in 2 cardiothoracic ORs before and after introducing a coffee card incentive. Twelve attending cardiothoracic anesthesiologists and the OR satellite pharmacy participated. The use of the Codonics SLS drug labeling system resulted in >75% compliant syringe labels (95% confidence interval, 75%-98%). All syringe labels made using the Codonics SLS system were compliant. The average rate of scanning barcodes on syringe labels using Smart Anesthesia Manager was 25% (730 of 2976) over 13 weeks but increased to 58% (956 of 1645) over 8 weeks after introduction of a simple (coffee card) incentive (P < 0.001). An anesthesia barcode drug administration system resulted in a moderate rate of scanning syringe label barcodes at the time of drug administration. Further, adaptation of the system will be required to achieve a higher utilization rate.

  13. The mutational spectrum in Treacher Collins syndrome reveals a predominance of mutations that create a premature-termination codon

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, S.J.; Gladwin, A.J.; Dixon, M.J. [Univ. of Manchester (United Kingdom)

    1997-03-01

    Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development, the features of which include conductive hearing loss and cleft palate. The TCS locus has been mapped to human chromosome 5q31.3-32 and the mutated gene identified. In the current investigation, 25 previously undescribed mutations, which are spread throughout the gene, are presented. This brings the total reported to date to 35, which represents a detection rate of 60%. Of the mutations that have been reported to date, all but one result in the introduction of a premature-termination codon into the predicted protein, treacle. Moreover, the mutations are largely family specific, although a common 5-bp deletion in exon 24 (seven different families) and a recurrent splicing mutation in intron 3 (two different families) have been identified. This mutational spectrum supports the hypothesis that TCS results from haploin-sufficiency. 49 refs., 4 figs., 3 tabs.

  14. Translational Control of the SigR-Directed Oxidative Stress Response in Streptomyces via IF3-Mediated Repression of a Noncanonical GTC Start Codon.

    Science.gov (United States)

    Feeney, Morgan A; Chandra, Govind; Findlay, Kim C; Paget, Mark S B; Buttner, Mark J

    2017-06-13

    The major oxidative stress response in Streptomyces is controlled by the sigma factor SigR and its cognate antisigma factor RsrA, and SigR activity is tightly controlled through multiple mechanisms at both the transcriptional and posttranslational levels. Here we show that sigR has a highly unusual GTC start codon and that this leads to another level of SigR regulation, in which SigR translation is repressed by translation initiation factor 3 (IF3). Changing the GTC to a canonical start codon causes SigR to be overproduced relative to RsrA, resulting in unregulated and constitutive expression of the SigR regulon. Similarly, introducing IF3* mutations that impair its ability to repress SigR translation has the same effect. Thus, the noncanonical GTC sigR start codon and its repression by IF3 are critical for the correct and proper functioning of the oxidative stress regulatory system. sigR and rsrA are cotranscribed and translationally coupled, and it had therefore been assumed that SigR and RsrA are produced in stoichiometric amounts. Here we show that RsrA can be transcribed and translated independently of SigR, present evidence that RsrA is normally produced in excess of SigR, and describe the factors that determine SigR-RsrA stoichiometry. IMPORTANCE In all sigma factor-antisigma factor regulatory switches, the relative abundance of the two proteins is critical to the proper functioning of the system. Many sigma-antisigma operons are cotranscribed and translationally coupled, leading to a generic assumption that the sigma and antisigma factors are produced in a fixed 1:1 ratio. In the case of sigR - rsrA , we show instead that the antisigma factor is produced in excess over the sigma factor, providing a buffer to prevent spurious release of sigma activity. This excess arises in part because sigR has an extremely rare noncanonical GTC start codon, and as a result, SigR translation initiation is repressed by IF3. This finding highlights the potential significance

  15. Contributions towards a monograph of Phoma (Coelomycetes) — III. 2. Misapplications of the type species name and the generic synonyms of section Plenodomus (Excluded species)

    NARCIS (Netherlands)

    Boerema, G.H.; Loerakker, W.M.; Hamers, Maria E.C.

    1996-01-01

    Various old records of Phoma lingam (teleomorph Leptosphaeria maculans) on non-cruciferous plants proved to be based on misidentifications. In the past the fungus has also often been confused with other fungi occurring on crucifers. Forty-five species formerly classified under the generic synonyms

  16. Mutation at codon 442 in the rpoB gene of Mycobacterium leprae does not confer resistance to rifampicin.

    Science.gov (United States)

    Lavania, Mallika; Hena, Abu; Reja, Hasanoor; Nigam, Astha; Biswas, Nibir Kumar; Singh, Itu; Turankar, Ravindra P; Gupta, Ud; Kumar, Senthil; Rewaria, Latika; Patra, Pradip K R; Sengupta, Utpal; Bhattacharya, Basudeb

    2016-03-01

    Rifampicin is the major drug in the treatment of leprosy. The rifampicin resistance of Mycobacterium leprae results from a mutation in the rpoB gene, encoding the β subunit of RNA polymerase. As M. leprae is a non-cultivable organism observation of its growth using mouse food-pad (MFP) is the only Gold Standard assay used for confirmation of "in-vivo" drug resistance. Any mutation at molecular level has to be verified by MFP assay for final confirmation of drug resistance in leprosy. In the present study, M. leprae strains showing a mutation only at codon 442 Gln-His and along with mutation either at codon 424 Val-Gly or at 438 Gln-Val within the Rifampicin Resistance Determining Region (RRDR) confirmed by DNA sequencing and by high resolution melting (HRM) analysis were subjected for its growth in MFP. The M. leprae strain having the new mutation at codon 442 Gln-His was found to be sensitive to all the three drugs and strains having additional mutations at 424 Val-Gly and 438 Gln-Val were conferring resistance with Multi drug therapy (MDT) in MFP. These results indicate that MFP is the gold standard method for confirming the mutations detected by molecular techniques.

  17. The MSPDBL2 codon 591 polymorphism is associated with lumefantrine in vitro drug responses in Plasmodium falciparum isolates from Kilifi, Kenya.

    Science.gov (United States)

    Ochola-Oyier, Lynette Isabella; Okombo, John; Mwai, Leah; Kiara, Steven M; Pole, Lewa; Tetteh, Kevin K A; Nzila, Alexis; Marsh, Kevin

    2015-03-01

    The mechanisms of drug resistance development in the Plasmodium falciparum parasite to lumefantrine (LUM), commonly used in combination with artemisinin, are still unclear. We assessed the polymorphisms of Pfmspdbl2 for associations with LUM activity in a Kenyan population. MSPDBL2 codon 591S was associated with reduced susceptibility to LUM (P = 0.04). The high frequency of Pfmspdbl2 codon 591S in Kenya may be driven by the widespread use of lumefantrine in artemisinin combination therapy (Coartem). Copyright © 2015, Ochola-Oyier et al.

  18. A New Synonym of Odontochilus saprophyticus (Goodyerinae: Orchidoideae: Orchidaceae

    Directory of Open Access Journals (Sweden)

    Huai-Zhen Tian

    2014-06-01

    Full Text Available Zeuxine hainanensis H. Xu, H. J. Yang & Y. D. Li is treated as a heterotypic synonym of Odontochilus saprophyticus (Aver. Ormerod in the present communication. Detailed description and relevant photographs are provided to facilitate identification of the species.

  19. Synonyms, Antonyms, and Retroactive Inhibition with Meaningful Material

    Science.gov (United States)

    Weisshed, Ethel

    1973-01-01

    The determination of the extent to which generalizations derived from studies of rote verbal learning, particularly paired-associate learning applied to highly meaningful materials, was the focus of this study. It was found that discriminating tags to synonyms and antonyms permitting the application of appropriate transfer rules may be attached.…

  20. Comparative Mitogenomics of Plant Bugs (Hemiptera: Miridae): Identifying the AGG Codon Reassignments between Serine and Lysine

    Science.gov (United States)

    Wang, Pei; Song, Fan; Cai, Wanzhi

    2014-01-01

    Insect mitochondrial genomes are very important to understand the molecular evolution as well as for phylogenetic and phylogeographic studies of the insects. The Miridae are the largest family of Heteroptera encompassing more than 11,000 described species and of great economic importance. For better understanding the diversity and the evolution of plant bugs, we sequence five new mitochondrial genomes and present the first comparative analysis of nine mitochondrial genomes of mirids available to date. Our result showed that gene content, gene arrangement, base composition and sequences of mitochondrial transcription termination factor were conserved in plant bugs. Intra-genus species shared more conserved genomic characteristics, such as nucleotide and amino acid composition of protein-coding genes, secondary structure and anticodon mutations of tRNAs, and non-coding sequences. Control region possessed several distinct characteristics, including: variable size, abundant tandem repetitions, and intra-genus conservation; and was useful in evolutionary and population genetic studies. The AGG codon reassignments were investigated between serine and lysine in the genera Adelphocoris and other cimicomorphans. Our analysis revealed correlated evolution between reassignments of the AGG codon and specific point mutations at the antidocons of tRNALys and tRNASer(AGN). Phylogenetic analysis indicated that mitochondrial genome sequences were useful in resolving family level relationship of Cimicomorpha. Comparative evolutionary analysis of plant bug mitochondrial genomes allowed the identification of previously neglected coding genes or non-coding regions as potential molecular markers. The finding of the AGG codon reassignments between serine and lysine indicated the parallel evolution of the genetic code in Hemiptera mitochondrial genomes. PMID:24988409

  1. Effect of DNA sequence of Fab fragment on yield characteristics and cell growth of E. coli.

    Science.gov (United States)

    Kulmala, Antti; Huovinen, Tuomas; Lamminmäki, Urpo

    2017-06-19

    Codon usage is one of the factors influencing recombinant protein expression. We were interested in the codon usage of an antibody Fab fragment gene exhibiting extreme toxicity in the E. coli host. The toxic synthetic human Fab gene contained domains optimized by the "one amino acid-one codon" method. We redesigned five segments of the Fab gene with a "codon harmonization" method described by Angov et al. and studied the effects of these changes on cell viability, Fab yield and display on filamentous phage using different vectors and bacterial strains. The harmonization considerably reduced toxicity, increased Fab expression from negligible levels to 10 mg/l, and restored the display on phage. Testing the impact of the individual redesigned segments revealed that the most significant effects were conferred by changes in the constant domain of the light chain. For some of the Fab gene variants, we also observed striking differences in protein yields when cloned from a chloramphenicol resistant vector into an identical vector, except with ampicillin resistance. In conclusion, our results show that the expression of a heterodimeric secretory protein can be improved by harmonizing selected DNA segments by synonymous codons and reveal additional complexity involved in heterologous protein expression.

  2. Immune-escape mutations and stop-codons in HBsAg develop in a large proportion of patients with chronic HBV infection exposed to anti-HBV drugs in Europe

    DEFF Research Database (Denmark)

    Colagrossi, Luna; Hermans, Lucas E; Salpini, Romina

    2018-01-01

    structure of HBV genome, some immune-escape mutations or stop-codons in HBsAg can derive from drug-resistance mutations in RT. This study is aimed at gaining insight in prevalence and characteristics of immune-associated escape mutations, and stop-codons in HBsAg in chronically HBV-infected patients...

  3. Serial MRI in early Creutzfeldt-Jacob disease with a point mutation of prion protein at codon 180

    International Nuclear Information System (INIS)

    Ishida, S.; Sugino, M.; Shinoda, K.; Ohsawa, N.; Koizumi, N.; Ohta, T.; Kitamoto, T.; Tateishi, J.

    1995-01-01

    We report a 66-year-old woman with histologically diagnosed Creutzfeld-Jacob disease (CJD), followed with MRI from an early clinical stage. MRI demonstrated expansion of the high cortical signal on T2-weighted images, which differs from previous MRI reports of CJD. This patient followed an atypical clinical course: 16 months had passed before she developed akinetic mutism, and periodic sharp waves had not been detected on EEG after 2 years in spite of her akinetic mutism. Brain biopsy showed primary spongiform changes in the grey matter, and a point mutation of the prion protein gene at codon 180 was discovered using polymerase chain reaction direct sequencing and Tth 111 I cutting. This is the first case with the point mutation of the codon 180 variant with an atypical clinical course and characteristic MRI findings. (orig.)

  4. Application of Saying, Synonyms, Antonyms, and Indonesian Dictionary Using Microsoft Visual Basic 6.0

    OpenAIRE

    Agus Budi Setyawan; Yudi Irawan Chandra, SKom, MMSI

    2005-01-01

    This writing describes the application of the proverb, synonym, antonym, and dictionaries Indonesian. Basically, this application to find out about the meaning of the proverb, synonym, antonym and meaning of the word in Indonesian. For that the author wanted to show them in computerized form using Microsoft Visual Basic 6.0. by presenting it in the form of computerized data that the authors hope that we get a more accurate or the possibility of error becomes smaller. Also expected this appli...

  5. RNA editing makes mistakes in plant mitochondria: editing loses sense in transcripts of a rps19 pseudogene and in creating stop codons in coxI and rps3 mRNAs of Oenothera.

    Science.gov (United States)

    Schuster, W; Brennicke, A

    1991-01-01

    An intact gene for the ribosomal protein S19 (rps19) is absent from Oenothera mitochondria. The conserved rps19 reading frame found in the mitochondrial genome is interrupted by a termination codon. This rps19 pseudogene is cotranscribed with the downstream rps3 gene and is edited on both sides of the translational stop. Editing, however, changes the amino acid sequence at positions that were well conserved before editing. Other strange editings create translational stops in open reading frames coding for functional proteins. In coxI and rps3 mRNAs CGA codons are edited to UGA stop codons only five and three codons, respectively, downstream to the initiation codon. These aberrant editings in essential open reading frames and in the rps19 pseudogene appear to have been shifted to these positions from other editing sites. These observations suggest a requirement for a continuous evolutionary constraint on the editing specificities in plant mitochondria. Images PMID:1762921

  6. Two cloned β thalassemia genes are associated with amber mutations at codon 39

    Science.gov (United States)

    Pergolizzi, Robert; Spritz, Richard A.; Spence, Sally; Goossens, Michel; Kan, Yuet Wai; Bank, Arthur

    1981-01-01

    Two β globin genes from patients with the β+ thalassemia phenotype have been cloned and sequenced. A single nucleotide change from CAG to TAG (an amber mutation) at codon 39 is the only difference from normal in both genes analyzed. The results are consistent with the assumption that both patients are doubly heterozygous for β+ and β° thalassemia, and that we have isolated and analyzed the β° thalassemia gene. Images PMID:6278453

  7. Roughness Versus Charge Contributions to Representative Discrete Heterogeneity Underlying Mechanistic Prediction of Colloid Attachment, Detachment and Breakthrough-Elution Behavior Under Environmental Conditions.

    Science.gov (United States)

    Johnson, William; Farnsworth, Anna; Vanness, Kurt; Hilpert, Markus

    2017-04-01

    The key element of a mechanistic theory to predict colloid attachment in porous media under environmental conditions where colloid-collector repulsion exists (unfavorable conditions for attachment) is representation of the nano-scale surface heterogeneity (herein called discrete heterogeneity) that drives colloid attachment under unfavorable conditions. The observed modes of colloid attachment under unfavorable conditions emerge from simulations that incorporate discrete heterogeneity. Quantitative prediction of attachment (and detachment) requires capturing the sizes, spatial frequencies, and other properties of roughness asperities and charge heterodomains in discrete heterogeneity representations of different surfaces. The fact that a given discrete heterogeneity representation will interact differently with different-sized colloids as well as different ionic strengths for a given sized colloid allows backing out representative discrete heterogeneity via comparison of simulations to experiments performed across a range of colloid size, solution IS, and fluid velocity. This has been achieved on unfavorable smooth surfaces yielding quantitative prediction of attachment, and qualitative prediction of detachment in response to ionic strength or flow perturbations. Extending this treatment to rough surfaces, and representing the contributions of nanoscale roughness as well as charge heterogeneity is a focus of this talk. Another focus of this talk is the upscaling the pore scale simulations to produce contrasting breakthrough-elution behaviors at the continuum (column) scale that are observed, for example, for different-sized colloids, or same-sized colloids under different ionic strength conditions. The outcome of mechanistic pore scale simulations incorporating discrete heterogeneity and subsequent upscaling is that temporal processes such as blocking and ripening will emerge organically from these simulations, since these processes fundamentally stem from the

  8. Sequencing and characterization of the complete mitochondrial genome of Japanese Swellshark (Cephalloscyllium umbratile).

    Science.gov (United States)

    Zhu, Ke-Cheng; Liang, Yin-Yin; Wu, Na; Guo, Hua-Yang; Zhang, Nan; Jiang, Shi-Gui; Zhang, Dian-Chang

    2017-11-10

    To further comprehend the genome features of Cephalloscyllium umbratile (Carcharhiniformes), an endangered species, the complete mitochondrial DNA (mtDNA) was firstly sequenced and annotated. The full-length mtDNA of C. umbratile was 16,697 bp and contained ribosomal RNA (rRNA) genes, 13 protein-coding genes (PCGs), 23 transfer RNA (tRNA) genes, and a major non-coding control region. Each PCG was initiated by an authoritative ATN codon, except for COX1 initiated by a GTG codon. Seven of 13 PCGs had a typical TAA termination codon, while others terminated with a single T or TA. Moreover, the relative synonymous codon usage of the 13 PCGs was consistent with that of other published Carcharhiniformes. All tRNA genes had typical clover-leaf secondary structures, except for tRNA-Ser (GCT), which lacked the dihydrouridine 'DHU' arm. Furthermore, the analysis of the average Ka/Ks in the 13 PCGs of three Carcharhiniformes species indicated a strong purifying selection within this group. In addition, phylogenetic analysis revealed that C. umbratile was closely related to Glyphis glyphis and Glyphis garricki. Our data supply a useful resource for further studies on genetic diversity and population structure of C. umbratile.

  9. Prevalence of codon 72 P53 polymorphism in Brazilian women with cervix cancer

    Directory of Open Access Journals (Sweden)

    Sylvia Michelina Fernandes Brenna

    2004-01-01

    Full Text Available The p53 codon 72 polymorphism seems to be associated with HPV-carcinogenesis, although controversial data have been reported. A series of Brazilian women with cervix carcinomas were analyzed. Ninety-nine (67% of 148 women were found to be homozygous (arg/arg for the arginine polymorphism, and 49 (33% were heterozygous (arg/pro. This polymorphism may be an important determinant of the risk for cervix cancer, but does not seem to be sufficient for carcinogenesis.

  10. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and 'Bacillus oryzicola' are later heterotypic synonyms of Bacillus velezensis based on phylogenomics.

    Science.gov (United States)

    Dunlap, Christopher A; Kim, Soo-Jin; Kwon, Soon-Wo; Rooney, Alejandro P

    2016-03-01

    Bacillus velezensis was previously reported to be a later heterotypic synonym of Bacillus amyloliquefaciens , based primarily on DNA-DNA relatedness values. We have sequenced a draft genome of B. velezensis NRRL B-41580 T . Comparative genomics and DNA-DNA relatedness calculations show that it is not a synonym of B. amyloliquefaciens. It was instead synonymous with Bacillus methylotrophicus. ' Bacillus oryzicola ' is a recently described species that was isolated as an endophyte of rice ( Oryza sativa ). The strain was demonstrated to have plant-pathogen antagonist activity in greenhouse assays, and the 16S rRNA gene was reported to have 99.7 % sequence similarity with Bacillus siamensis and B. methylotrophicus , which are both known for their plant pathogen antagonism. To better understand the phylogenetics of these closely related strains, we sequenced the genome of ' B . oryzicola ' KACC 18228. Comparative genomic analysis showed only minor differences between this strain and the genomes of B. velezensis NRRL B-41580 T , B. methylotrophicus KACC 13015 T and Bacillus amyloliquefaciens subsp. plantarum FZB42 T . The pairwise in silico DNA-DNA hybridization values calculated in comparisons between the strains were all greater than 84 %, which is well above the standard species threshold of 70 %. The results of morphological, physiological, chemotaxonomic and phylogenetic analyses indicate that the strains share phenotype and genotype coherence. Therefore, we propose that B. methylotrophicus KACC 13015 T , B. amyloliquefaciens subsp. plantarum FZB42 T , and ' B. oryzicola' KACC 18228 should be reclassified as later heterotypic synonyms of B. velezensis NRRL B-41580 T , since the valid publication date of B. velezensis precedes the other three strains.

  11. GUG is an efficient initiation codon to translate the human mitochondrial ATP6 gene

    Czech Academy of Sciences Publication Activity Database

    Dubot, A.; Godinot, C.; Dumur, V.; Sablonniere, B.; Stojkovic, T.; Cuisset, J. M.; Vojtíšková, Alena; Pecina, Petr; Ješina, Pavel; Houštěk, Josef

    2004-01-01

    Roč. 313, č. 3 (2004), s. 687-693 ISSN 0006-291X R&D Projects: GA MŠk LN00A079; GA MZd NE6533 Grant - others:Fondation Jerome LeJeune(XE) Grant project; GA-(FR) CNRS; GA-(FR) Rhone Alpes Region Institutional research plan: CEZ:AV0Z5011922 Keywords : GUG initiation codon * ATP6 gene * mitochondrial diseases Subject RIV: CE - Biochemistry Impact factor: 2.904, year: 2004

  12. Molecular evolutionary analysis of the Alfin-like protein family in Arabidopsis lyrata, Arabidopsis thaliana, and Thellungiella halophila.

    Directory of Open Access Journals (Sweden)

    Yu Song

    Full Text Available In previous studies, the Alfin1 gene, a transcription factor, enhanced salt tolerance in alfalfa, primarily through altering gene expression levels in the root. Here, we examined the molecular evolution of the Alfin-like (AL proteins in two Arabidopsis species (A. lyrata and A. thaliana and a salt-tolerant close relative Thellungiella halophila. These AL-like proteins could be divided into four groups and the two known DUF3594 and PHD-finger domains had co-evolved within each group of genes, irrespective of species, due to gene duplication events in the common ancestor of all three species while gene loss was observed only in T. halophila. To detect whether natural selection acted in the evolution of AL genes, we calculated synonymous substitution ratios (dn/ds and codon usage statistics, finding positive selection operated on four branches and significant differences in biased codon usage in the AL family between T. halophila and A. lyrata or A. thaliana. Distinctively, only the AL7 branch was under positive selection on the PHD-finger domain and the three members on the branch showed the smallest difference when codon bias was evaluated among the seven clusters. Functional analysis based on transgenic overexpression lines and T-DNA insertion mutants indicated that salt-stress-induced AtAL7 could play a negative role in salt tolerance of A. thaliana, suggesting that adaptive evolution occurred in the members of AL gene family.

  13. Evolution of hypothalamus-pituitary growth axis among fish, amphibian, birds and mammals

    Directory of Open Access Journals (Sweden)

    Moaeen-Ud-Din M.

    2015-01-01

    Full Text Available Hypothalamus-pituitary growth axis (HP growth axis regulates animal growth and development in pre-natal and post natal life governed by many factors. However, until recently, the evolutionary history of this axis among lineages is not understood. Aim of the present study was to understand the major events in evolution and evolutionary history and trend of HP growth axis. The diversity among Homo sapience, Mus musculus, Rattus norvegicus, Gallus gallus, Danio rerio and Xenopus laevis was determined for genes involved in HP growth axis in current study. Sequences of HP growth axis genes were retrieved from NCBI (http://www.ncbi.nlm.nih.gov/. Nucleotide diversity using Kimura’s two-parameter method; codon-based test of positive selection using the Nei-Gojobori; equality of evolutionary rate with Tajima's relative rate test and phylogenetic history using the RelTime method were estimated in MEGA6. Estimates of the coefficients of evolutionary differentiation based on nucleotides and amino acids substitution patterns of HP growth axis genes showed contrasting evolutionary patterns among the lineages. The results demonstrated that although these genes might have crucial functional roles in each of the species, however, their sequence divergence did not necessarily reflect similar molecular evolution among the species. Codon-based test of positive selection revealed that Human vs Mouse, Chicken vs Rat, Human vs Rat and Mouse vs Rat had similar and higher non synonymous substitutions (P > 0.05. Higher rate of non-synonymous substitutions at similar orthologs level among species indicated a similar positive selection pressure in these species. Results for relative rate test assessed with the chi-squared test showed difference on unique mutations among lineages at synonymous and non synonymous sites except Chicken vs Mouse, Human vs Mouse, Chicken vs Rat, Human vs Rat and Mouse vs Rat. This indicated that the mutagenic process that generates

  14. [Association between HRE-2 gene polymorphism at codon 655 and genetic susceptibility of colorectal cancer].

    Science.gov (United States)

    Liang, Xia; Zhang, Yong-jing; Liu, Bing; Ni, Qin; Jin, Ming-juan; Ma, Xin-yuan; Yao, Kai-yan; Li, Qi-long; Chen, Kun

    2009-06-01

    To explore the distribution of HER-2 genetic polymorphism at codon 655 and its association with susceptibility of colorectal cancer in Chinese. A population-based case-control study was carried out. 292 patients with colorectal cancer and 842 healthy controls were interviewed. Meanwhile, the genetic polymorphism of HRE-2 was detected using polymerase chain reaction-restriction fragment length polymorphism. The frequencies of Ile/Val+Val/Val genotypes and Val allele were both higher in cases (25.34% and 13.36%) than those in controls (18.41% and 9.74%) (P<0.05). Compared with Ile/Ile genotype, Ile/Val+Val/Val genotypes were significantly associated with colorectal cancer [ORadjusted=1.54, 95% CI: 1.11-2.14]. The adjusted odds ratio of interactions between this polymorphism and smoking, alcohol drinking were 1.43 (95%CI: 0.88-2.30) and 1.29 (95%CI: 0.73-2.29), respectively. The present findings suggest that HER-2 genetic polymorphism at codon 655 may be associated with the risk of colorectal cancer in Chinese. In addition, there are no interactions between this polymorphism and smoking, alcohol drinking, respectively.

  15. Asparaginase treatment side-effects may be due to genes with homopolymeric Asn codons (Review-Hypothesis)

    Science.gov (United States)

    BANERJI, JULIAN

    2015-01-01

    The present treatment of childhood T-cell leukemias involves the systemic administration of prokary-otic L-asparaginase (ASNase), which depletes plasma Asparagine (Asn) and inhibits protein synthesis. The mechanism of therapeutic action of ASNase is poorly understood, as are the etiologies of the side-effects incurred by treatment. Protein expression from genes bearing Asn homopolymeric coding regions (N-hCR) may be particularly susceptible to Asn level fluctuation. In mammals, N-hCR are rare, short and conserved. In humans, misfunctions of genes encoding N-hCR are associated with a cluster of disorders that mimic ASNase therapy side-effects which include impaired glycemic control, dislipidemia, pancreatitis, compromised vascular integrity, and neurological dysfunction. This paper proposes that dysregulation of Asn homeostasis, potentially even by ASNase produced by the microbiome, may contribute to several clinically important syndromes by altering expression of N-hCR bearing genes. By altering amino acid abundance and modulating ribosome translocation rates at codon repeats, the microbiomic environment may contribute to genome decoding and to shaping the proteome. We suggest that impaired translation at poly Asn codons elevates diabetes risk and severity. PMID:26178806

  16. Asparaginase treatment side-effects may be due to genes with homopolymeric Asn codons (Review-Hypothesis).

    Science.gov (United States)

    Banerji, Julian

    2015-09-01

    The present treatment of childhood T-cell leukemias involves the systemic administration of prokaryotic L-asparaginase (ASNase), which depletes plasma Asparagine (Asn) and inhibits protein synthesis. The mechanism of therapeutic action of ASNase is poorly understood, as are the etiologies of the side-effects incurred by treatment. Protein expression from genes bearing Asn homopolymeric coding regions (N-hCR) may be particularly susceptible to Asn level fluctuation. In mammals, N-hCR are rare, short and conserved. In humans, misfunctions of genes encoding N-hCR are associated with a cluster of disorders that mimic ASNase therapy side-effects which include impaired glycemic control, dislipidemia, pancreatitis, compromised vascular integrity, and neurological dysfunction. This paper proposes that dysregulation of Asn homeostasis, potentially even by ASNase produced by the microbiome, may contribute to several clinically important syndromes by altering expression of N-hCR bearing genes. By altering amino acid abundance and modulating ribosome translocation rates at codon repeats, the microbiomic environment may contribute to genome decoding and to shaping the proteome. We suggest that impaired translation at poly Asn codons elevates diabetes risk and severity.

  17. Elixir, Alchemy and the Metamorphoses of Two Synonyms

    Directory of Open Access Journals (Sweden)

    Gotthard Strohmaier

    2017-03-01

    Full Text Available The history of the terms ‘elixir’ and ‘alchemy’ seems paradoxical; derived from Greek, the Arabic al-iksīr signified a dry powder capable of transforming base metals into gold or silver. Evolving through the European languages, elixir has come to mean a magic liquid that can be ingested to cure illness. The second term, al-kīmiyāʼ, which was in its Arabic beginnings almost synonymous with elixir, took a different turn and changed its meaning from a miraculous substance into an abstract noun connoting the art of alchemy. This article intends to show that these changes of meaning are linked to inevitable interrelations between the two synonyms and, consequently, the generally assumed etymology of the Arabic alkīmiyāʼ from the seemingly corresponding Greek expression χυμεία must be questioned. Of particular interest is the hitherto overlooked fact that al-kīmiyāʼ ends in a glottal stop, indicated by the hamza and being a consonant in its own right, which ultimately points to a non-Greek origin.

  18. Predicting the effects of non-synonymous amino acid variants on ...

    African Journals Online (AJOL)

    amino acid change) coding SNPs to cause functional impact on protein at the PRLR locus of cattle and chicken using the MEGA MD bioinformatics tool. In cattle, sixteen out of the first twenty non synonymous amino substitutions obtained: V5A, T9V, ...

  19. TP53 codon 72 polymorphism and cervical cancer : a pooled analysis of individual data from 49 studies

    NARCIS (Netherlands)

    Klug, Stefanie J.; Ressing, Meike; Koenig, Jochem; Abba, Martin C.; Agorastos, Theodoros; Brenna, Sylvia M. F.; Ciotti, Marco; Das, B. R.; Del Mistro, Annarosa; Dybikowska, Aleksandra; Giuliano, Anna R.; Gudleviciene, Zivile; Gyllensten, Ulf; Haws, Andrea L. F.; Helland, Aslaug; Herrington, C. Simon; Hildesheim, Alan; Humbey, Olivier; Jee, Sun H.; Kim, Jae Weon; Madeleine, Margaret M.; Menczer, Joseph; Ngan, Hextan Y. S.; Nishikawa, Akira; Niwa, Yoshimitsu; Pegoraro, Rosemary; Pillai, M. R.; Ranzani, Gulielmina; Rezza, Giovanni; Rosenthal, Adam N.; Roychoudhury, Susanta; Saranath, Dhananjaya; Schmitt, Virginia M.; Sengupta, Sharmila; Settheetham-Ishida, Wannapa; Shirasawa, Hiroshi; Snijders, Peter J. F.; Stoler, Mark H.; Suarez-Rincon, Angel E.; Szarka, Krisztina; Tachezy, Ruth; Ueda, Masatsugu; van der Zee, Ate G. J.; Doeberitz, Magnus von Knebel; Wu, Ming-Tsang; Yamashita, Tsuyoshi; Zehbe, Ingeborg; Blettner, Maria

    Background Cervical cancer is caused primarily by human papillomaviruses (HPV). The polymorphism rs1042522 at codon 72 of the TP53 tumour-suppressor gene has been investigated as a genetic cofactor. More than 80 studies were done between 1998 and 2006, after it was initially reported that women who

  20. Enriching the international clinical nomenclature with Chinese daily used synonyms and concept recognition in physician notes.

    Science.gov (United States)

    Zhang, Rui; Liu, Jialin; Huang, Yong; Wang, Miye; Shi, Qingke; Chen, Jun; Zeng, Zhi

    2017-05-02

    It has been shown that the entities in everyday clinical text are often expressed in a way that varies from how they are expressed in the nomenclature. Owing to lots of synonyms, abbreviations, medical jargons or even misspellings in the daily used physician notes in clinical information system (CIS), the terminology without enough synonyms may not be adequately suitable for the task of Chinese clinical term recognition. This paper demonstrates a validated system to retrieve the Chinese term of clinical finding (CTCF) from CIS and map them to the corresponding concepts of international clinical nomenclature, such as SNOMED CT. The system focuses on the SNOMED CT with Chinese synonyms enrichment (SCCSE). The literal similarity and the diagnosis-related similarity metrics were used for concept mapping. Two CTCF recognition methods, the rule- and terminology-based approach (RTBA) and the conditional random field machine learner (CRF), were adopted to identify the concepts in physician notes. The system was validated against the history of present illness annotated by clinical experts. The RTBA and CRF could be combined to predict new CTCFs besides SCCSE persistently. Around 59,000 CTCF candidates were accepted as valid and 39,000 of them occurred at least once in the history of present illness. 3,729 of them were accordant with the description in referenced Chinese clinical nomenclature, which could cross map to other international nomenclature such as SNOMED CT. With the hybrid similarity metrics, another 7,454 valid CTCFs (synonyms) were succeeded in concept mapping. For CTCF recognition in physician notes, a series of experiments were performed to find out the best CRF feature set, which gained an F-score of 0.887. The RTBA achieved a better F-score of 0.919 by the CTCF dictionary created in this research. This research demonstrated that it is feasible to help the SNOMED CT with Chinese synonyms enrichment based on physician notes in CIS. With continuous

  1. Transient B cell depletion or improved transgene expression by codon optimization promote tolerance to factor VIII in gene therapy.

    Directory of Open Access Journals (Sweden)

    Brandon K Sack

    Full Text Available The major complication in the treatment of hemophilia A is the development of neutralizing antibodies (inhibitors against factor VIII (FVIII. The current method for eradicating inhibitors, termed immune tolerance induction (ITI, is costly and protracted. Clinical protocols that prevent rather than treat inhibitors are not yet established. Liver-directed gene therapy hopes to achieve long-term correction of the disease while also inducing immune tolerance. We sought to investigate the use of adeno-associated viral (serotype 8 gene transfer to induce tolerance to human B domain deleted FVIII in hemophilia A mice. We administered an AAV8 vector with either human B domain deleted FVIII or a codon-optimized transgene, both under a liver-specific promoter to two strains of hemophilia A mice. Protein therapy or gene therapy was given either alone or in conjunction with anti-CD20 antibody-mediated B cell depletion. Gene therapy with a low-expressing vector resulted in sustained near-therapeutic expression. However, supplementary protein therapy revealed that gene transfer had sensitized mice to hFVIII in a high-responder strain but not in mice of a low-responding strain. This heightened response was ameliorated when gene therapy was delivered with anti-murine CD20 treatment. Transient B cell depletion prevented inhibitor formation in protein therapy, but failed to achieve a sustained hypo-responsiveness. Importantly, use of a codon-optimized hFVIII transgene resulted in sustained therapeutic expression and tolerance without a need for B cell depletion. Therefore, anti-CD20 may be beneficial in preventing vector-induced immune priming to FVIII, but higher levels of liver-restricted expression are preferred for tolerance.

  2. Investigation of Polymorphisms in Coding Region of OsHKT1 in Relation to Salinity in Rice

    Directory of Open Access Journals (Sweden)

    Pham Quynh-Hoa

    2016-11-01

    Full Text Available Rice (Oryza sativa is sensitive to salinity, but the salt tolerance level differs among cultivars, which might result from natural variations in the genes that are responsible for salt tolerance. High-affinity potassium transporter (HKTs has been proven to be involved in salt tolerance in plants. Therefore, we screened for natural nucleotide polymorphism in the coding sequence of OsHKT1, which encodes the HKT protein in eight Vietnamese rice cultivars differing in salt tolerance level. In total, seven nucleotide substitutions in coding sequence of OsHKT1 were found, including two non-synonymous and five synonymous substitutions. Further analysis revealed that these two non-synonymous nucleotide substitutions (G50T and T1209A caused changes in amino acids (Gly17Val and Asp403Glu at signal peptide and the loop of the sixth transmembrane domain, respectively. To assess the potential effect of these substitutions on the protein function, the 3D structure of HKT protein variants was modelled by using PHYRE2 webserver. The results showed that no difference was observed when compared those predicted 3D structure of HKT protein variants with each other. In addition, the codon bias of synonymous substitutions cannot clearly show correlation with salt tolerance level. It might be interesting to further investigate the functional roles of detected non-synonymous substitutions as it might correlate to salt tolerance in rice.

  3. A study in the lexicographical treatment of Arabic synonyms | Heliel ...

    African Journals Online (AJOL)

    Recently three dictionaries of Arabic synonyms were published with the aim of helping Arabic learners, writers and translators. Though Classical Arabic lexicography distinguishes itself in the field of synonymy, Modern Standard Arabic lacks reliable dictionaries in the field and hence the importance of analysing these three ...

  4. Beta 2 adrenergic receptor polymorphisms, at codons 16 and 27, and bronchodilator responses in adult Venezuelan asthmatic patients.

    Science.gov (United States)

    Larocca, Nancy; Moreno, Dolores; Garmendia, Jenny Valentina; Velasquez, Olga; Martin-Rojo, Joana; Talamo, Carlos; Garcia, Alexis; De Sanctis, Juan Bautista

    2013-12-01

    One of the gene polymorphisms often studied in asthmatic patients is the β2 adrenergic receptor (ADRβ2). Even though in the Venezuelan Mestizo population there is a high incidence of asthma, there are no direct reports of ADRβ2 gene polymorphism, and treatment response. The aim of this study was to assess, in this population, the gene frequency of ADRβ2 polymorphisms at codons 16 Arg/Gly and 27 Gln/Glu, allergen sensitization, and its relationship to bronchodilator response. Purified genomic DNA was obtained form 105 Mestizo asthmatic and 100 Mestizo healthy individuals from Venezuela. The two polymorphisms were assessed by PCR-RFLP. Patient sensitization to aeroallergens and their response to bronchodilatation were correlated. Significant differences between patients and controls were recorded in: 1) the prevalence of Arg/Arg at codon 16 (28.6% in patients vs. 47% in controls, P<0.01), 2) the frequency of heterozygotes Arg/Gly (55% in patients vs. 35% in controls, P<0.01). Conversely, no differences in polymorphism frequencies were found at codon 27. The haplotypes Arg/Gly-Gln/Gln were more common in patients than controls (P <0.01), whereas the Arg/Arg-Gln/Glu combination prevailed in the control group (P<0.01). The Arg/Gly and Gln/Glu genotypes were associated with better responses after salbutamol. The asthmatic homozygotes Arg/Arg have higher sensitivity to aeroallergens. The difference in Arg/Arg frequency between groups suggests that this could be a protective genotype although the asthmatic group had a higher sensitivity to aeroallergens. The asthmatic heterozygotes had better bronchodilator responses than the homozygotes.

  5. Molecular mimicry of human tRNALys anti-codon domain by HIV-1 RNA genome facilitates tRNA primer annealing.

    Science.gov (United States)

    Jones, Christopher P; Saadatmand, Jenan; Kleiman, Lawrence; Musier-Forsyth, Karin

    2013-02-01

    The primer for initiating reverse transcription in human immunodeficiency virus type 1 (HIV-1) is tRNA(Lys3). Host cell tRNA(Lys) is selectively packaged into HIV-1 through a specific interaction between the major tRNA(Lys)-binding protein, human lysyl-tRNA synthetase (hLysRS), and the viral proteins Gag and GagPol. Annealing of the tRNA primer onto the complementary primer-binding site (PBS) in viral RNA is mediated by the nucleocapsid domain of Gag. The mechanism by which tRNA(Lys3) is targeted to the PBS and released from hLysRS prior to annealing is unknown. Here, we show that hLysRS specifically binds to a tRNA anti-codon-like element (TLE) in the HIV-1 genome, which mimics the anti-codon loop of tRNA(Lys) and is located proximal to the PBS. Mutation of the U-rich sequence within the TLE attenuates binding of hLysRS in vitro and reduces the amount of annealed tRNA(Lys3) in virions. Thus, LysRS binds specifically to the TLE, which is part of a larger LysRS binding domain in the viral RNA that includes elements of the Psi packaging signal. Our results suggest that HIV-1 uses molecular mimicry of the anti-codon of tRNA(Lys) to increase the efficiency of tRNA(Lys3) annealing to viral RNA.

  6. Prophylactic thyroidectomy for asymptomatic 3-year-old boy with positive multiple endocrine neoplasia type 2A mutation (codon 634).

    Science.gov (United States)

    Jesić, Maja D; Tancić-Gajić, Milina; Jesić, Milos M; Zivaljević, Vladan; Sajić, Silvija; Vujović, Svetlana; Damjanović, Svetozar

    2014-01-01

    The multiple endocrine neoplasia type 2A (MEN 2A) syndrome, comprising medullary thyroid carcinoma (MTC), pheochromocytoma and primary hyperparathyroidism (PHPT) is most frequently caused by codon 634 activating mutations of the RET (rearranged during transfection) proto-oncogene on chromosome 10. For this codon-mutation carriers, earlier thyroidectomy (before the age of 5 years) would be advantageous in limiting the potential for the development of MTC as well as parathyroid adenomas. This is a case report of 3-year-old boy from the MEN 2A family (the boy's father and grandmother and paternal aunt) in which cysteine substitutes for phenylalanine at codon 634 in exon 11 of the RET proto-oncogene, who underwent thyroidectomy solely on the basis of genetic information. A boy had no thyromegaly, thyroidal irregularities or lymphadenopathy and no abnormality on the neck ultrasound examination. The pathology finding of thyroid gland was negative for MTC. Two years after total thyroidectomy, 5-year-old boy is healthy with permanent thyroxine replacement. His serum calcitonin level is < 2 pg/ml (normal < 13 pg/ml), has normal serum calcium and parathyroid hormone levels and negative urinary catecholamines. Long-term follow-up of this patient is required to determine whether very early thyroidectomy improves the long-term outcome of PHPT. Children with familial antecedents of MEN 2A should be genetically studied for the purpose of determining the risk of MTC and assessing the possibilities of making prophylactic thyroidectomy before the age of 5 years.

  7. Biochemical features of genetic Creutzfeldt-Jakob disease with valine-to-isoleucine substitution at codon 180 on the prion protein gene.

    Science.gov (United States)

    Ito, Yoko; Sanjo, Nobuo; Hizume, Masaki; Kobayashi, Atsushi; Ohgami, Tetsuya; Satoh, Katsuya; Hamaguchi, Tsuyoshi; Yamada, Masahito; Kitamoto, Tetsuyuki; Mizusawa, Hidehiro; Yokota, Takanori

    2018-02-19

    Valine-to-isoleucine substitution at codon 180 of the prion protein gene is only observed in patients with Creutzfeldt-Jakob disease and accounts for approximately half of all cases of genetic prion disease in Japan. In the present study, we investigated the biochemical characteristics of valine-to-isoleucine substitution at codon 180 in the prion protein gene, using samples obtained from the autopsied brains of seven patients with genetic Creutzfeldt-Jakob disease exhibiting this mutation (diagnoses confirmed via neuropathological examination). Among these patients, we observed an absence of diglycosylated and monoglycosylated forms of PrP res at codon 181. Our findings further indicated that the abnormal prion proteins were composed of at least three components, although smaller carboxyl-terminal fragments were predominant. Western blot analyses revealed large amounts of PrP res in the cerebral neocortices, where neuropathological examination revealed marked spongiosis. Relatively smaller amounts of PrP res were detected in the hippocampus, where milder spongiosis was observed, than in the cerebral neocortex. These findings indicate that abnormal prion proteins in the neocortex are associated with severe toxicity, resulting in severe spongiosis. Our findings further indicate that the valine-to-isoleucine substitution is not a polymorphism, but rather an authentic pathogenic mutation associated with specific biochemical characteristics that differ from those observed in sporadic Creutzfeldt-Jakob disease. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Under-Representation in Nationally Representative Secondary Data

    Science.gov (United States)

    Frederick, Karen; Barnard-Brak, Lucy; Sulak, Tracey

    2012-01-01

    There has been a significant increase in the use of secondary data sets. Many such data sets purport to be nationally representative. Secondary data sets include research commissioned by the National Center for Education Statistics, the Centers for Disease Control, and other public entities. Research increasingly utilizes these secondary data in…

  9. Kissing loops hide premature termination codons in pre-mRNAof selenoprotein genes and in genes containing programmedribosomal frameshifts

    DEFF Research Database (Denmark)

    Knudsen, Steen; Brunak, Søren

    1997-01-01

    A novel RNA secondary structure that places the selenocysteine codon UGA in one hairpin and a donor splice site in another, has been discovered in selenoprotein genes. The presence of the structure resolves the discrepancy that the selenocysteine triplet, UGA, should block splicing. Without a spe...

  10. Application of computational algorithms to assess the functionality of non-synonymous substitutions in MHC DRB gene of Nigerian goats

    Directory of Open Access Journals (Sweden)

    Yakubu Abdulmojeed

    2017-01-01

    Full Text Available The Major Histocompatibility Complex (MHC contains highly variable multi-gene families, which play a key role in the adaptive immune response within vertebrates. Among the Capra MHC class II genes, the expressed DRB locus is highly polymorphic, particularly in exon 2, which encodes the antigen-binding site. Models of variable non-synonymous/synonymous rate ratios among sites may provide important insights into functional constraints at different amino acid sites and may be used to detect sites under positive selection. Many non-synonymous single nucleotide polymorphisms (nsSNPs at the DRB locus in goats are suspected to impact protein function. This study, therefore, aimed at comparing the efficiency of six computational approaches to predict the likelihood of a particular non-synonymous (amino acid change coding SNP to cause a functional impact on the protein. This involved the use of PANTHER, SNAP, SIFT, PolyPhen-2, PROVEAN and nsSNPAnalyzer bioinformatics analytical tools in detecting harmful and beneficial effects at H57G, Y89R, V104D and Y112I substitutions in the peptide binding region of the DRB gene of Nigerian goats. The results from PANTHER analysis revealed that H57G, Y89R and Y112I substitutions (Pdeleterious= 0.113, 0.204 and 0.472, respectively were beneficial; while that of V104D was deleterious (Pdeleterious= 0.756, an indication that it was non-neutral. As regards the SNAP approach, H57G and Y89R substitutions were returned neutral with expected accuracy of 53 and 69%, respectively while V104D and Y112I substitutions were harmful. H57G and Y89R substitutions were also found harmless in the SIFT analysis. However, only H57G (PROVEAN and V104D (nsSNPAnalyzer amino acid substitutions were found to be beneficial. Interestingly, the predicted 3D structures of both native and mutant DRB protein appeared similar as validated by Ramachandran plots. The consensus reached by PANTHER, SNAP, SIFT and PolyPhen-2 approaches on the neutrality

  11. Is political conservatism synonymous with authoritarianism?

    Science.gov (United States)

    Crowson, H Michael; Thoma, Stephen J; Hestevold, Nita

    2005-10-01

    The authors performed 2 studies that tested the distinction between conservative political ideology and right-wing authoritarianism (RWA). Across these studies, moderate relationships emerged between RWA and our measures of cognitive rigidity, whereas the relationship between rigidity and mainstream conservative ideology was not as strong. The authors used partial-correlation and path analyses to assess the possibility that RWA mediates the relationship between (a) cognitive rigidity and (b) mainstream conservative attitudes and self-identified conservatism. The results indicated that conservatism is not synonymous with RWA. Additionally, RWA appeared to partially mediate the relationship between cognitive rigidity and mainstream conservatism.

  12. Evidence of test detachment in Astrorhiza limicola and two consequential synonyms: Amoeba gigantea and Megamoebomyxa argillobia (Foraminiferida)

    DEFF Research Database (Denmark)

    Cedhagen, Tomas; Tendal, Ole S.

    1989-01-01

    Laboratory observations and experiments demonstrate that the naked rhizopods Amoeba gigantea SANDAHL, 1857 and Megamoebomyxa argillo~ia NYHOLM, 1950, and the foraminifers Astrorhiza arenifera STSCHEDRlNA, 1946, A. sabulifera STSCHEDRINA, 1946 and A. arctlca STSCHEDRINA, 1958 are synonyms of Astro......Laboratory observations and experiments demonstrate that the naked rhizopods Amoeba gigantea SANDAHL, 1857 and Megamoebomyxa argillo~ia NYHOLM, 1950, and the foraminifers Astrorhiza arenifera STSCHEDRlNA, 1946, A. sabulifera STSCHEDRINA, 1946 and A. arctlca STSCHEDRINA, 1958 are synonyms...

  13. Codon Optimization Significantly Improves the Expression Level of α-Amylase Gene from Bacillus licheniformis in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Jian-Rong Wang

    2015-01-01

    Full Text Available α-Amylase as an important industrial enzyme has been widely used in starch processing, detergent, and paper industries. To improve expression efficiency of recombinant α-amylase from Bacillus licheniformis (B. licheniformis, the α-amylase gene from B. licheniformis was optimized according to the codon usage of Pichia pastoris (P. pastoris and expressed in P. pastoris. Totally, the codons encoding 305 amino acids were optimized in which a total of 328 nucleotides were changed and the G+C content was increased from 47.6 to 49.2%. The recombinants were cultured in 96-deep-well microplates and screened by a new plate assay method. Compared with the wild-type gene, the optimized gene is expressed at a significantly higher level in P. pastoris after methanol induction for 168 h in 5- and 50-L bioreactor with the maximum activity of 8100 and 11000 U/mL, which was 2.31- and 2.62-fold higher than that by wild-type gene. The improved expression level makes the enzyme a good candidate for α-amylase production in industrial use.

  14. Codon 972 polymorphism in the insulin receptor substrate-1 gene, obesity, and risk of noninsulin-dependent diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Sigal, R.J.; Doria, A.; Warram, J.H.; Krolewski, A.S. [Joslin Diabetes Center, Boston, MA (United States)

    1996-04-01

    Because of the role of insulin receptor substrate-1 in insulin action, the insulin receptor substrate-1 gene is a candidate gene for noninsulin-dependent diabetes mellitus (NIDDM). Modest associations between NIDDM and a GGG-AGG single base substitution (corresponding to a glycine-arginine amino acid substitution) in codon 972 of the gene have been found, but none reached statistical significance. To examine further how large a proportion of NIDDM cases could be caused by the mutation, we performed a stratified analysis combining the results from the 6 earlier studies and those from our panel of 192 unrelated NIDDM subjects and 104 healthy controls. In addition, we looked for a possibility that the codon 972 mutation plays a role only in the presence of certain conditions. Genomic DNA samples obtained from NIDDM cases and healthy controls were genotyped using a PCR-restriction fragment length polymorphism protocol modified for genomic DNA. The GGG{r_arrow}AGG substitution was found in 5.7% of the diabetic subjects (11 of 192) and 6.9% of the controls (7 of 104). The difference between groups was not statistically significant, and it was not different from the results of other studies. The Mantel-Haenszel summary odds ratio across all studies was 1.49 (P < 0.05; 95% confidence intervals, 1.01-2.2). This summary odds ratio is consistent with a small proportion of NIDDM cases ({approximately}3%) being caused by the mutation. Exploratory subgroup analyses on our panel suggested a clustering of NIDDM, the codon 972 mutation, and overweight, raising the hypothesis that the mutation may predispose to NIDDM only in the presence of excess body weight. 9 refs., 2 tabs.

  15. Optimization of translation profiles enhances protein expression and solubility.

    Directory of Open Access Journals (Sweden)

    Anne-Katrin Hess

    Full Text Available mRNA is translated with a non-uniform speed that actively coordinates co-translational folding of protein domains. Using structure-based homology we identified the structural domains in epoxide hydrolases (EHs and introduced slow-translating codons to delineate the translation of single domains. These changes in translation speed dramatically improved the solubility of two EHs of metagenomic origin in Escherichia coli. Conversely, the importance of transient attenuation for the folding, and consequently solubility, of EH was evidenced with a member of the EH family from Agrobacterium radiobacter, which partitions in the soluble fraction when expressed in E. coli. Synonymous substitutions of codons shaping the slow-transiting regions to fast-translating codons render this protein insoluble. Furthermore, we show that low protein yield can be enhanced by decreasing the free folding energy of the initial 5'-coding region, which can disrupt mRNA secondary structure and enhance ribosomal loading. This study provides direct experimental evidence that mRNA is not a mere messenger for translation of codons into amino acids but bears an additional layer of information for folding, solubility and expression level of the encoded protein. Furthermore, it provides a general frame on how to modulate and fine-tune gene expression of a target protein.

  16. Prophylactic thyroidectomy for asymptomatic 3-year-old boy with positive multiple endocrine neoplasia type 2A mutation (codon 634

    Directory of Open Access Journals (Sweden)

    Ješić Maja D.

    2014-01-01

    Full Text Available Introduction. The multiple endocrine neoplasia type 2A (MEN 2A syndrome, comprising medullary thyroid carcinoma (MTC, pheochromocytoma and primary hyperparathyroidism (PHPT is most frequently caused by codon 634 activating mutations of the RET (rearranged during transfection proto-oncogene on chromosome 10. For this codon-mutation carriers, earlier thyroidectomy (before the age of 5 years would be advantageous in limiting the potential for the development of MTC as well as parathyroid adenomas. Case Outline. This is a case report of 3-year-old boy from the MEN 2A family (the boy’s father and grandmother and paternal aunt in which cysteine substitutes for phenylalanine at codon 634 in exon 11 of the RET proto-oncogene, who underwent thyroidectomy solely on the basis of genetic information. A boy had no thyromegaly, thyroidal irregularities or lymphadenopathy and no abnormality on the neck ultrasound examination. The pathology finding of thyroid gland was negative for MTC. Two years after total thyroidectomy, 5-year-old boy is healthy with permanent thyroxine replacement. His serum calcitonin level is <2 pg/ml (normal <13 pg/ml, has normal serum calcium and parathyroid hormone levels and negative urinary catecholamines. Long-term follow-up of this patient is required to determine whether very early thyroidectomy improves the long-term outcome of PHPT. Conclusion. Children with familial antecedents of MEN 2A should be genetically studied for the purpose of determining the risk of MTC and assessing the possibilities of making prophylactic thyroidectomy before the age of 5 years.

  17. Toward reconstructing the evolution of advanced moths and butterflies (Lepidoptera: Ditrysia: an initial molecular study

    Directory of Open Access Journals (Sweden)

    Hausmann Axel

    2009-12-01

    Full Text Available Abstract Background In the mega-diverse insect order Lepidoptera (butterflies and moths; 165,000 described species, deeper relationships are little understood within the clade Ditrysia, to which 98% of the species belong. To begin addressing this problem, we tested the ability of five protein-coding nuclear genes (6.7 kb total, and character subsets therein, to resolve relationships among 123 species representing 27 (of 33 superfamilies and 55 (of 100 families of Ditrysia under maximum likelihood analysis. Results Our trees show broad concordance with previous morphological hypotheses of ditrysian phylogeny, although most relationships among superfamilies are weakly supported. There are also notable surprises, such as a consistently closer relationship of Pyraloidea than of butterflies to most Macrolepidoptera. Monophyly is significantly rejected by one or more character sets for the putative clades Macrolepidoptera as currently defined (P P ≤ 0.005, and nearly so for the superfamily Drepanoidea as currently defined (P Separate analyses of mostly synonymous versus non-synonymous character sets revealed notable differences (though not strong conflict, including a marked influence of compositional heterogeneity on apparent signal in the third codon position (nt3. As available model partitioning methods cannot correct for this variation, we assessed overall phylogeny resolution through separate examination of trees from each character set. Exploration of "tree space" with GARLI, using grid computing, showed that hundreds of searches are typically needed to find the best-feasible phylogeny estimate for these data. Conclusion Our results (a corroborate the broad outlines of the current working phylogenetic hypothesis for Ditrysia, (b demonstrate that some prominent features of that hypothesis, including the position of the butterflies, need revision, and (c resolve the majority of family and subfamily relationships within superfamilies as thus far

  18. Evidence of translation efficiency adaptation of the coding regions of the bacteriophage lambda.

    Science.gov (United States)

    Goz, Eli; Mioduser, Oriah; Diament, Alon; Tuller, Tamir

    2017-08-01

    Deciphering the way gene expression regulatory aspects are encoded in viral genomes is a challenging mission with ramifications related to all biomedical disciplines. Here, we aimed to understand how the evolution shapes the bacteriophage lambda genes by performing a high resolution analysis of ribosomal profiling data and gene expression related synonymous/silent information encoded in bacteriophage coding regions.We demonstrated evidence of selection for distinct compositions of synonymous codons in early and late viral genes related to the adaptation of translation efficiency to different bacteriophage developmental stages. Specifically, we showed that evolution of viral coding regions is driven, among others, by selection for codons with higher decoding rates; during the initial/progressive stages of infection the decoding rates in early/late genes were found to be superior to those in late/early genes, respectively. Moreover, we argued that selection for translation efficiency could be partially explained by adaptation to Escherichia coli tRNA pool and the fact that it can change during the bacteriophage life cycle.An analysis of additional aspects related to the expression of viral genes, such as mRNA folding and more complex/longer regulatory signals in the coding regions, is also reported. The reported conclusions are likely to be relevant also to additional viruses. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  19. Peroxisomal monodehydroascorbate reductase. Genomic clone characterization and functional analysis under environmental stress conditions.

    Science.gov (United States)

    Leterrier, Marina; Corpas, Francisco J; Barroso, Juan B; Sandalio, Luisa M; del Río, Luis A

    2005-08-01

    In plant cells, ascorbate is a major antioxidant that is involved in the ascorbate-glutathione cycle. Monodehydroascorbate reductase (MDAR) is the enzymatic component of this cycle involved in the regeneration of reduced ascorbate. The identification of the intron-exon organization and the promoter region of the pea (Pisum sativum) MDAR 1 gene was achieved in pea leaves using the method of walking polymerase chain reaction on genomic DNA. The nuclear gene of MDAR 1 comprises nine exons and eight introns, giving a total length of 3,770 bp. The sequence of 544 bp upstream of the initiation codon, which contains the promoter and 5' untranslated region, and 190 bp downstream of the stop codon were also determined. The presence of different regulatory motifs in the promoter region of the gene might indicate distinct responses to various conditions. The expression analysis in different plant organs by northern blots showed that fruits had the highest level of MDAR. Confocal laser scanning microscopy analysis of pea leaves transformed with Agrobacterium tumefaciens having the binary vectors pGD, which contain the autofluorescent proteins enhanced green fluorescent protein and enhanced yellow fluorescent protein with the full-length cDNA for MDAR 1 and catalase, indicated that the MDAR 1 encoded the peroxisomal isoform. The functional analysis of MDAR by activity and protein expression was studied in pea plants grown under eight stress conditions, including continuous light, high light intensity, continuous dark, mechanical wounding, low and high temperature, cadmium, and the herbicide 2,4-dichlorophenoxyacetic acid. This functional analysis is representative of all the MDAR isoforms present in the different cell compartments. Results obtained showed a significant induction by high light intensity and cadmium. On the other hand, expression studies, performed by semiquantitative reverse transcription-polymerase chain reaction demonstrated differential expression patterns of

  20. Expression of chicken parvovirus VP2 in chicken embryo fibroblasts requires codon optimization for production of naked DNA and vectored meleagrid herpesvirus type 1 vaccines.

    Science.gov (United States)

    Spatz, Stephen J; Volkening, Jeremy D; Mullis, Robert; Li, Fenglan; Mercado, John; Zsak, Laszlo

    2013-10-01

    Meleagrid herpesvirus type 1 (MeHV-1) is an ideal vector for the expression of antigens from pathogenic avian organisms in order to generate vaccines. Chicken parvovirus (ChPV) is a widespread infectious virus that causes serious disease in chickens. It is one of the etiological agents largely suspected in causing Runting Stunting Syndrome (RSS) in chickens. Initial attempts to express the wild-type gene encoding the capsid protein VP2 of ChPV by insertion into the thymidine kinase gene of MeHV-1 were unsuccessful. However, transient expression of a codon-optimized synthetic VP2 gene cloned into the bicistronic vector pIRES2-Ds-Red2, could be demonstrated by immunocytochemical staining of transfected chicken embryo fibroblasts (CEFs). Red fluorescence could also be detected in these transfected cells since the red fluorescent protein gene is downstream from the internal ribosome entry site (IRES). Strikingly, fluorescence could not be demonstrated in cells transiently transfected with the bicistronic vector containing the wild-type or non-codon-optimized VP2 gene. Immunocytochemical staining of these cells also failed to demonstrate expression of wild-type VP2, indicating that the lack of expression was at the RNA level and the VP2 protein was not toxic to CEFs. Chickens vaccinated with a DNA vaccine consisting of the bicistronic vector containing the codon-optimized VP2 elicited a humoral immune response as measured by a VP2-specific ELISA. This VP2 codon-optimized bicistronic cassette was rescued into the MeHV-1 genome generating a vectored vaccine against ChPV disease.

  1. The influence of the polymorphism in apolipoprotein B codon 2488 on insulin and lipid levels in a Danish twin population

    DEFF Research Database (Denmark)

    Bentzen, J; Poulsen, P; Vaag, A

    2002-01-01

    on parameters associated with the insulin resistance syndrome in Danish twins. METHODS: The effect of the polymorphism on lipid, glucose and insulin measures was studied in 548 same sex twins aged 55-74 years. RESULTS: The codon 2488 polymorphism influenced fasting triglyceride levels, as well as insulin......, as measured at 120 min in an oral glucose tolerance test. Subjects with the genotype T2488T had 14% higher triglyceride levels (P = 0.02) and 31% higher insulin levels (P = 0.004) than subjects with genotype C2488C. In twins discordant for genotype, the T-allele was associated with higher levels......AIMS: The apolipoprotein B codon 2488 polymorphism has been associated with the metabolism of lipoproteins in subjects with Type 2 diabetes. However, no data are available on the influence of the polymorphism on insulin or glucose metabolism. This study examines the impact of the polymorphism...

  2. Gene prediction using the Self-Organizing Map: automatic generation of multiple gene models.

    Science.gov (United States)

    Mahony, Shaun; McInerney, James O; Smith, Terry J; Golden, Aaron

    2004-03-05

    Many current gene prediction methods use only one model to represent protein-coding regions in a genome, and so are less likely to predict the location of genes that have an atypical sequence composition. It is likely that future improvements in gene finding will involve the development of methods that can adequately deal with intra-genomic compositional variation. This work explores a new approach to gene-prediction, based on the Self-Organizing Map, which has the ability to automatically identify multiple gene models within a genome. The current implementation, named RescueNet, uses relative synonymous codon usage as the indicator of protein-coding potential. While its raw accuracy rate can be less than other methods, RescueNet consistently identifies some genes that other methods do not, and should therefore be of interest to gene-prediction software developers and genome annotation teams alike. RescueNet is recommended for use in conjunction with, or as a complement to, other gene prediction methods.

  3. Human apolipoprotein B (apoB) mRNA: Identification of two distinct apoB mRNAs, an mRNA with the apoB-100 sequence and an apoB mRNA containing a premature in-frame translational stop codon, in both liver and intestine

    International Nuclear Information System (INIS)

    Higuchi, K.; Hospattankar, A.V.; Law, S.W.; Meglin, N.; Cortright, J.; Brewer, H.B. Jr.

    1988-01-01

    Human apolipoprotein B (apoB) is present in plasma as two separate isoproteins, designated apoB-100 (512 kDa) and apoB-48 (250 kDa). ApoB is encoded by a single gene on chromosome 2, and a single nuclear mRNA is edited and processed into two separate apoB mRNAs. A 14.1-kilobase apoB mRNA codes for apoB-100, and the second mRNA, which codes for apoB-48, contains a premature stop codon generated by a single base substitution of cytosine to uracil at nucleotide 6,538, which converts the translated CAA codon coding for the amino acid glutamine at residue 2,153 in apoB-100 to a premature in-frame stop codon (UAA). Two 30-base synthetic oligonucleotides, designated apoB-Stop and apoB-Gln, were synthesized containing the complementary sequence to the stop codon (UAA) and glutamine codon (CAA), respectively. The combined results from these studies establish that both human intestine and liver contain the two distinct apoB mRNAs, an mRNA that codes for apoB-100 and an apoB mRNA that contains the premature stop codon, which codes for apoB-48. The premature in-frame stop codon is not tissue specific and is present in both human liver and intestine

  4. Synonyms and homonyms of Malvasia cultivars (Vitis vinifera L.) existing in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Torres, I.; Ibanez, J.; Andres, M. T. de; Rubio, C.; Borrego, J.; Cabello, F.; Zerolo, J.; Munoz Organero, G.

    2009-07-01

    Malvasia is a common name for different grape cultivars that have long been grown in Spain. In many cases, these cultivars are noted as being aromatic, sweet, and similar to Muscat in flavour. However, not all grapes that share this name exhibit these characteristics. This study compares the Malvasia cultivars in the Spanish Denominations of Origin with those grape cultivars grown in the grapevine collection of El Encin (Alcala de Henares, Spain) using morphological, iso enzymatic, and micro satellite analysis as well as a large bibliographic search of the studied cultivars. Despite their Malvasia denomination, some cultivars have been identified as synonyms of Macabeo, Alarije, Dona Blanca, Chasselas, or Planta Nova, all included on the official Spanish list of commercial grape cultivars. Malvasia de Sitges and Malvasia de Lanzarote have the characteristic flavour of Malvasia grapes and no synonyms were found among the cultivars grown in Spain, whereas Malvasia Rosada resulted from a colour mutation in Malvasia de Sitges. (Author) 26 refs.

  5. Under-five mortality among mothers employed in agriculture: findings from a nationally representative sample

    Directory of Open Access Journals (Sweden)

    Rajvir Singh

    2015-01-01

    Full Text Available Background. India accounts for 24% to all under-five mortality in the world. Residence in rural area, poverty and low levels of mother’s education are known confounders of under-five mortality. Since two-thirds of India’s population lives in rural areas, mothers employed in agriculture present a particularly vulnerable population in the Indian context and it is imperative that concerns of this sizeable population are addressed in order to achieve MDG4 targets of reducing U5MR to fewer than 41 per 1,000 by 2015. This study was conducted to examine factors associated with under-five mortality among mothers employed in agriculture.Methods. Data was retrieved from National Family Household Survey-3 in India (2008. The study population is comprised of a national representative sample of single children aged 0 to 59 months and born to mothers aged 15 to 49 years employed in agriculture from all 29 states of India. Univariate and Multivariate Cox PH regression analysis was used to analyse the Hazard Rates of mortality. The predictive power of child mortality among mothers employed in agriculture was assessed by calculating the area under the receiver operating characteristic (ROC curve.Results. An increase in mothers’ ages corresponds with a decrease in child mortality. Breastfeeding reduces child mortality by 70% (HR 0.30, 0.25–0.35, p = 0.001. Standard of Living reduces child mortality by 32% with high standard of living (HR 0.68, 0.52–0.89, 0.001 in comparison to low standard of living. Prenatal care (HR 0.40, 0.34–0.48, p = 0.001 and breastfeeding health nutrition education (HR 0.45, 0.31–0.66, p = 0.001 are associated significant factors for child mortality. Birth Order five is a risk factor for mortality (HR 1.49, 1.05–2.10, p = 0.04 in comparison to Birth Order one among women engaged in agriculture while the household size (6–10 members and ≥ 11 members is significant in reducing child mortality in comparison to ≤5 members

  6. Under-five mortality among mothers employed in agriculture: findings from a nationally representative sample.

    Science.gov (United States)

    Singh, Rajvir; Tripathi, Vrijesh

    2015-01-01

    Background. India accounts for 24% to all under-five mortality in the world. Residence in rural area, poverty and low levels of mother's education are known confounders of under-five mortality. Since two-thirds of India's population lives in rural areas, mothers employed in agriculture present a particularly vulnerable population in the Indian context and it is imperative that concerns of this sizeable population are addressed in order to achieve MDG4 targets of reducing U5MR to fewer than 41 per 1,000 by 2015. This study was conducted to examine factors associated with under-five mortality among mothers employed in agriculture. Methods. Data was retrieved from National Family Household Survey-3 in India (2008). The study population is comprised of a national representative sample of single children aged 0 to 59 months and born to mothers aged 15 to 49 years employed in agriculture from all 29 states of India. Univariate and Multivariate Cox PH regression analysis was used to analyse the Hazard Rates of mortality. The predictive power of child mortality among mothers employed in agriculture was assessed by calculating the area under the receiver operating characteristic (ROC) curve. Results. An increase in mothers' ages corresponds with a decrease in child mortality. Breastfeeding reduces child mortality by 70% (HR 0.30, 0.25-0.35, p = 0.001). Standard of Living reduces child mortality by 32% with high standard of living (HR 0.68, 0.52-0.89, 0.001) in comparison to low standard of living. Prenatal care (HR 0.40, 0.34-0.48, p = 0.001) and breastfeeding health nutrition education (HR 0.45, 0.31-0.66, p = 0.001) are associated significant factors for child mortality. Birth Order five is a risk factor for mortality (HR 1.49, 1.05-2.10, p = 0.04) in comparison to Birth Order one among women engaged in agriculture while the household size (6-10 members and ≥ 11 members) is significant in reducing child mortality in comparison to ≤5 members in the house. Under

  7. A synonymous polymorphic variation in ACADM exon 11 affects splicing efficiency and may affect fatty acid oxidation

    DEFF Research Database (Denmark)

    Bruun, Gitte Hoffmann; Doktor, Thomas Koed; Andresen, Brage Storstein

    2013-01-01

    beta-oxidation of medium-chain fatty acids. We examined the functional basis for this association and identified linkage between rs211718 and the intragenic synonymous polymorphic variant c.1161A>G in ACADM exon 11 (rs1061337). Employing minigene studies we show that the c.1161A allele is associated......, perhaps due to improved splicing. This study is a proof of principle that synonymous SNPs are not neutral. By changing the binding sites for splicing regulatory proteins they can have significant effects on pre-mRNA splicing and thus protein function. In addition, this study shows that for a sequence...

  8. Translation Initiation from Conserved Non-AUG Codons Provides Additional Layers of Regulation and Coding Capacity

    Directory of Open Access Journals (Sweden)

    Ivaylo P. Ivanov

    2017-06-01

    Full Text Available Neurospora crassa cpc-1 and Saccharomyces cerevisiae GCN4 are homologs specifying transcription activators that drive the transcriptional response to amino acid limitation. The cpc-1 mRNA contains two upstream open reading frames (uORFs in its >700-nucleotide (nt 5′ leader, and its expression is controlled at the level of translation in response to amino acid starvation. We used N. crassa cell extracts and obtained data indicating that cpc-1 uORF1 and uORF2 are functionally analogous to GCN4 uORF1 and uORF4, respectively, in controlling translation. We also found that the 5′ region upstream of the main coding sequence of the cpc-1 mRNA extends for more than 700 nucleotides without any in-frame stop codon. For 100 cpc-1 homologs from Pezizomycotina and from selected Basidiomycota, 5′ conserved extensions of the CPC1 reading frame are also observed. Multiple non-AUG near-cognate codons (NCCs in the CPC1 reading frame upstream of uORF2, some deeply conserved, could potentially initiate translation. At least four NCCs initiated translation in vitro. In vivo data were consistent with initiation at NCCs to produce N-terminally extended N. crassa CPC1 isoforms. The pivotal role played by CPC1, combined with its translational regulation by uORFs and NCC utilization, underscores the emerging significance of noncanonical initiation events in controlling gene expression.

  9. Phylogeny and intraspecific variability of holoparasitic Orobanche (Orobanchaceae) inferred from plastid rbcL sequences.

    Science.gov (United States)

    Manen, Jean-François; Habashi, Christine; Jeanmonod, Daniel; Park, Jeong-Mi; Schneeweiss, Gerald M

    2004-11-01

    The rbcL sequences of 106 specimens representing 28 species of the four recognized sections of Orobanche were analyzed and compared. Most sequences represent pseudogenes with premature stop codons. This study confirms that the American lineage (sects. Gymnocaulis and Myzorrhiza) contains potentially functional rbcL-copies with intact open reading frames and low rates of non-synonymous substitutions. For the first time, this is also shown for a member of the Eurasian lineage, O. coerulescens of sect. Orobanche, while all other investigated species of sects. Orobanche and Trionychon contain pseudogenes with distorted reading frames and significantly higher rates of non-synonymous substitutions. Phylogenetic analyses of the rbcL sequences give equivocal results concerning the monophyly of Orobanche, and the American lineage might be more closely related to Boschniakia and Cistanche than to the other sections of Orobanche. Additionally, species of sect. Trionychon phylogenetically nest in sect. Orobanche. This is in concordance with results from other plastid markers (rps2 and matK), but in disagreement with other molecular (nuclear ITS), morphological, and karyological data. This might indicate that the ancestor of sect. Trionychon has captured the plastid genome, or parts of it, of a member of sect. Orobanche. Apart from the phylogenetically problematic position of sect. Trionychon, the phylogenetic relationships within sect. Orobanche are similar to those inferred from nuclear ITS data and are close to the traditional groupings traditionally recognized based on morphology. The intraspecific variation of rbcL is low and is neither correlated with intraspecific morphological variability nor with host range. Ancestral character reconstruction using parsimony suggests that the ancestor of O. sect. Orobanche had a narrow host range.

  10. Association of TP53 codon 72 and CDH1 genetic polymorphisms with colorectal cancer risk in Bangladeshi population.

    Science.gov (United States)

    Rivu, Sanzana Fareen; Apu, Mohd Nazmul Hasan; Shabnaz, Samia; Nahid, Noor Ahmed; Islam, Md Reazul; Al-Mamun, Mir Md Abdullah; Nahar, Zabun; Rabbi, Sikder Nahidul Islam; Ahmed, Maizbha Uddin; Islam, Mohammad Safiqul; Hasnat, Abul

    2017-08-01

    Till now no pharmacogenetic study of TP53 codon 72 (Arg72Pro) and CDH1 rs16260 (-160Ccolorectal cancer. So the aim of the study is to determine whether there is an elevated risk of colorectal cancer development with TP53 codon 72 and CDH1 rs16260 genetic polymorphism in Bangladeshi population for the first time. To investigate the association of these two SNPs, we conducted a case-control study with 288 colorectal cancer patients and 295 healthy volunteers by using polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) method. We found an increased risk of association between Arg/Pro heterozygosity (adjusted OR=2.58, 95% CI=1.77-3.77, pcolorectal cancer predisposition. In case of CDH1 rs16260 polymorphism, C/A heterozygous and A/A mutant homozygous are significantly (pcolorectal cancer risk with adjusted OR of 1.94 and 2.63, respectively. The combined genotype of C/A and A/A was also found to be strongly associated with colorectal cancer risk compared to C/C genotype (adjusted OR=2.02, 95% CI=1.42-2.87, pcolorectal cancer development in Bangladeshi population. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A L2HGDH initiator methionine codon mutation in a Yorkshire terrier with L-2-hydroxyglutaric aciduria

    Directory of Open Access Journals (Sweden)

    Farias Fabiana HG

    2012-07-01

    Full Text Available Abstract Background L-2-hydroxyglutaric aciduria is a metabolic repair deficiency characterized by elevated levels of L-2-hydroxyglutaric acid in urine, blood and cerebrospinal fluid. Neurological signs associated with the disease in humans and dogs include seizures, ataxia and dementia. Case presentation Here we describe an 8 month old Yorkshire terrier that presented with episodes of hyperactivity and aggressive behavior. Between episodes, the dog’s behavior and neurologic examinations were normal. A T2 weighted MRI of the brain showed diffuse grey matter hyperintensity and a urine metabolite screen showed elevated 2-hydroxyglutaric acid. We sequenced all 10 exons and intron-exon borders of L2HGDH from the affected dog and identified a homozygous A to G transition in the initiator methionine codon. The first inframe methionine is at p.M183 which is past the mitochondrial targeting domain of the protein. Initiation of translation at p.M183 would encode an N-terminal truncated protein unlikely to be functional. Conclusions We have identified a mutation in the initiation codon of L2HGDH that is likely to result in a non-functional gene. The Yorkshire terrier could serve as an animal model to understand the pathogenesis of L-2-hydroxyglutaric aciduria and to evaluate potential therapies.

  12. Mutation rate switch inside Eurasian mitochondrial haplogroups: impact of selection and consequences for dating settlement in Europe.

    Directory of Open Access Journals (Sweden)

    Denis Pierron

    Full Text Available R-lineage mitochondrial DNA represents over 90% of the European population and is significantly present all around the planet (North Africa, Asia, Oceania, and America. This lineage played a major role in migration "out of Africa" and colonization in Europe. In order to determine an accurate dating of the R lineage and its sublineages, we analyzed 1173 individuals and complete mtDNA sequences from Mitomap. This analysis revealed a new coalescence age for R at 54.500 years, as well as several limitations of standard dating methods, likely to lead to false interpretations. These findings highlight the association of a striking under-accumulation of synonymous mutations, an over-accumulation of non-synonymous mutations, and the phenotypic effect on haplogroup J. Consequently, haplogroup J is apparently not a Neolithic group but an older haplogroup (Paleolithic that was subjected to an underestimated selective force. These findings also indicated an under-accumulation of synonymous and non-synonymous mutations localized on coding and non-coding (HVS1 sequences for haplogroup R0, which contains the major haplogroups H and V. These new dates are likely to impact the present colonization model for Europe and confirm the late glacial resettlement scenario.

  13. Using Student Writing and Lexical Analysis to Reveal Student Thinking about the Role of Stop Codons in the Central Dogma

    Science.gov (United States)

    Prevost, Luanna B.; Smith, Michelle K.; Knight, Jennifer K.

    2016-01-01

    Previous work has shown that students have persistent difficulties in understanding how central dogma processes can be affected by a stop codon mutation. To explore these difficulties, we modified two multiple-choice questions from the Genetics Concept Assessment into three open-ended questions that asked students to write about how a stop codon…

  14. Neural substrates of semantic relationships: common and distinct left-frontal activities for generation of synonyms vs. antonyms.

    Science.gov (United States)

    Jeon, Hyeon-Ae; Lee, Kyoung-Min; Kim, Young-Bo; Cho, Zang-Hee

    2009-11-01

    Synonymous and antonymous relationships among words may reflect the organization and/or processing in the mental lexicon and its implementation in the brain. In this study, functional magnetic resonance imaging (fMRI) is employed to compare brain activities during generation of synonyms (SYN) and antonyms (ANT) prompted by the same words. Both SYN and ANT, when compared with reading nonwords (NW), activated a region in the left middle frontal gyrus (BA 46). Neighboring this region, there was a dissociation observed in that the ANT activation extended more anteriorly and laterally to the SYN activation. The activations in the left middle frontal gyrus may be related to mental processes that are shared in the SYN and ANT generations, such as engaging semantically related parts of mental lexicon for the word search, whereas the distinct activations unique for either SYN or ANT generation may reflect the additional component of antonym retrieval, namely, reversing the polarity of semantic relationship in one crucial dimension. These findings suggest that specific components in the semantic processing, such as the polarity reversal for antonym generation and the similarity assessment for synonyms, are separately and systematically laid out in the left-frontal cortex.

  15. Temporal analysis of reassortment and molecular evolution of Cucumber mosaic virus: Extra clues from its segmented genome

    Energy Technology Data Exchange (ETDEWEB)

    Ohshima, Kazusato, E-mail: ohshimak@cc.saga-u.ac.jp [Laboratory of Plant Virology, Faculty of Agriculture, Saga University, Saga (Japan); The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima (Japan); Matsumoto, Kosuke [Laboratory of Plant Virology, Faculty of Agriculture, Saga University, Saga (Japan); Yasaka, Ryosuke [Laboratory of Plant Virology, Faculty of Agriculture, Saga University, Saga (Japan); The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima (Japan); Nishiyama, Mai; Soejima, Kenta [Laboratory of Plant Virology, Faculty of Agriculture, Saga University, Saga (Japan); Korkmaz, Savas [Department of Plant Protection, Faculty of Agriculture, University of Canakkale Onsekiz Mart, Canakkale (Turkey); Ho, Simon Y.W. [School of Biological Sciences, University of Sydney, Sydney, New South Wales (Australia); Gibbs, Adrian J. [Emeritus Faculty, Australian National University, Canberra (Australia); Takeshita, Minoru [Laboratory of Plant Pathology, Faculty of Agriculture, University of Miyazaki, Miyazaki (Japan)

    2016-01-15

    Cucumber mosaic virus (CMV) is a damaging pathogen of over 200 mono- and dicotyledonous crop species worldwide. It has the broadest known host range of any virus, but the timescale of its evolution is unknown. To investigate the evolutionary history of this virus, we obtained the genomic sequences of 40 CMV isolates from brassicas sampled in Iran, Turkey and Japan, and combined them with published sequences. Our synonymous ('silent') site analyses revealed that the present CMV population is the progeny of a single ancestor existing 1550–2600 years ago, but that the population mostly radiated 295–545 years ago. We found that the major CMV lineages are not phylogeographically confined, but that recombination and reassortment is restricted to local populations and that no reassortant lineage is more than 251 years old. Our results highlight the different evolutionary patterns seen among viral pathogens of brassica crops across the world. - Highlights: • Present-day CMV lineages had a most recent common ancestor 1550–2600 years ago. • The CMV population mostly radiated less than 295–545 years ago. • No reassortant found in the present populations is more than 251 years old. • The open-reading frames evolve at around 2.3–4.7×10{sup −4} substitutions/site/year. • Synonymous codons of CMV seem to have a more precise temporal signal than all codons.

  16. Distribution of Voltage-Gated Sodium Channel (Nav) Alleles among the Aedes aegypti Populations In Central Java Province and Its Association with Resistance to Pyrethroid Insecticides.

    Science.gov (United States)

    Sayono, Sayono; Hidayati, Anggie Puspa Nur; Fahri, Sukmal; Sumanto, Didik; Dharmana, Edi; Hadisaputro, Suharyo; Asih, Puji Budi Setia; Syafruddin, Din

    2016-01-01

    The emergence of insecticide resistant Aedes aegypti mosquitoes has hampered dengue control efforts. WHO susceptibility tests, using several pyrethroid compounds, were conducted on Ae. aegypti larvae that were collected and raised to adulthood from Semarang, Surakarta, Kudus and Jepara in Java. The AaNaV gene fragment encompassing kdr polymorphic sites from both susceptible and resistant mosquitoes was amplified, and polymorphisms were associated with the resistant phenotype. The insecticide susceptibility tests demonstrated Ae, aegypti resistance to the pyrethroids, with mortality rates ranging from 1.6%-15.2%. Three non-synonymous polymorphisms (S989P, V1016G and F1534C) and one synonymous polymorphism (codon 982) were detected in the AaNaV gene. Eight AaNaV alleles were observed in specimens from Central Java. Allele 3 (SGF) and allele 7 (PGF) represent the most common alleles found and demonstrated strong associations with resistance to pyrethroids (OR = 2.75, CI: 0.97-7.8 and OR = 7.37, CI: 2.4-22.5, respectively). This is the first report of 8 Ae. aegypti AaNaV alleles, and it indicates the development of resistance in Ae. aegypti in response to pyrethroid insecticide-based selective pressure. These findings strongly suggest the need for an appropriate integrated use of insecticides in the region. The 989P, 1016G and 1534C polymorphisms in the AaNaV gene are potentially valuable molecular markers for pyrethroid insecticide resistance monitoring.

  17. Mycobacterium tuberculosis Is Resistant to Isoniazid at a Slow Growth Rate by Single Nucleotide Polymorphisms in katG Codon Ser315.

    Directory of Open Access Journals (Sweden)

    Rose E Jeeves

    Full Text Available An important aim for improving TB treatment is to shorten the period of antibiotic therapy without increasing relapse rates or encouraging the development of antibiotic-resistant strains. In any M. tuberculosis population there is a proportion of bacteria that are drug-tolerant; this might be because of pre-existing populations of slow growing/non replicating bacteria that are protected from antibiotic action due to the expression of a phenotype that limits drug activity. We addressed this question by observing populations of either slow growing (constant 69.3h mean generation time or fast growing bacilli (constant 23.1h mean generation time in their response to the effects of isoniazid exposure, using controlled and defined growth in chemostats. Phenotypic differences were detected between the populations at the two growth rates including expression of efflux mechanisms and the involvement of antisense RNA/small RNA in the regulation of a drug-tolerant phenotype, which has not been explored previously for M. tuberculosis. Genotypic analyses showed that slow growing bacilli develop resistance to isoniazid through mutations specifically in katG codon Ser315 which are present in approximately 50-90% of all isoniazid-resistant clinical isolates. The fast growing bacilli persisted as a mixed population with katG mutations distributed throughout the gene. Mutations in katG codon Ser315 appear to have a fitness cost in vitro and particularly in fast growing cultures. Our results suggest a requirement for functional katG-encoded catalase-peroxide in the slow growers but not the fast-growing bacteria, which may explain why katG codon Ser315 mutations are favoured in the slow growing cultures.

  18. Evolutionary interpretations of mycobacteriophage biodiversity and host-range through the analysis of codon usage bias.

    Science.gov (United States)

    Esposito, Lauren A; Gupta, Swati; Streiter, Fraida; Prasad, Ashley; Dennehy, John J

    2016-10-01

    In an genomics course sponsored by the Howard Hughes Medical Institute (HHMI), undergraduate students have isolated and sequenced the genomes of more than 1,150 mycobacteriophages, creating the largest database of sequenced bacteriophages able to infect a single host, Mycobacterium smegmatis , a soil bacterium. Genomic analysis indicates that these mycobacteriophages can be grouped into 26 clusters based on genetic similarity. These clusters span a continuum of genetic diversity, with extensive genomic mosaicism among phages in different clusters. However, little is known regarding the primary hosts of these mycobacteriophages in their natural habitats, nor of their broader host ranges. As such, it is possible that the primary host of many newly isolated mycobacteriophages is not M. smegmatis , but instead a range of closely related bacterial species. However, determining mycobacteriophage host range presents difficulties associated with mycobacterial cultivability, pathogenicity and growth. Another way to gain insight into mycobacteriophage host range and ecology is through bioinformatic analysis of their genomic sequences. To this end, we examined the correlations between the codon usage biases of 199 different mycobacteriophages and those of several fully sequenced mycobacterial species in order to gain insight into the natural host range of these mycobacteriophages. We find that UPGMA clustering tends to match, but not consistently, clustering by shared nucleotide sequence identify. In addition, analysis of GC content, tRNA usage and correlations between mycobacteriophage and mycobacterial codon usage bias suggests that the preferred host of many clustered mycobacteriophages is not M. smegmatis but other, as yet unknown, members of the mycobacteria complex or closely allied bacterial species.

  19. Design parameters to control synthetic gene expression in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Mark Welch

    Full Text Available BACKGROUND: Production of proteins as therapeutic agents, research reagents and molecular tools frequently depends on expression in heterologous hosts. Synthetic genes are increasingly used for protein production because sequence information is easier to obtain than the corresponding physical DNA. Protein-coding sequences are commonly re-designed to enhance expression, but there are no experimentally supported design principles. PRINCIPAL FINDINGS: To identify sequence features that affect protein expression we synthesized and expressed in E. coli two sets of 40 genes encoding two commercially valuable proteins, a DNA polymerase and a single chain antibody. Genes differing only in synonymous codon usage expressed protein at levels ranging from undetectable to 30% of cellular protein. Using partial least squares regression we tested the correlation of protein production levels with parameters that have been reported to affect expression. We found that the amount of protein produced in E. coli was strongly dependent on the codons used to encode a subset of amino acids. Favorable codons were predominantly those read by tRNAs that are most highly charged during amino acid starvation, not codons that are most abundant in highly expressed E. coli proteins. Finally we confirmed the validity of our models by designing, synthesizing and testing new genes using codon biases predicted to perform well. CONCLUSION: The systematic analysis of gene design parameters shown in this study has allowed us to identify codon usage within a gene as a critical determinant of achievable protein expression levels in E. coli. We propose a biochemical basis for this, as well as design algorithms to ensure high protein production from synthetic genes. Replication of this methodology should allow similar design algorithms to be empirically derived for any expression system.

  20. Analysis of transitions at two-fold redundant sites in mammalian genomes. Transition redundant approach-to-equilibrium (TREx distance metrics

    Directory of Open Access Journals (Sweden)

    Liberles David A

    2006-03-01

    Full Text Available Abstract Background The exchange of nucleotides at synonymous sites in a gene encoding a protein is believed to have little impact on the fitness of a host organism. This should be especially true for synonymous transitions, where a pyrimidine nucleotide is replaced by another pyrimidine, or a purine is replaced by another purine. This suggests that transition redundant exchange (TREx processes at the third position of conserved two-fold codon systems might offer the best approximation for a neutral molecular clock, serving to examine, within coding regions, theories that require neutrality, determine whether transition rate constants differ within genes in a single lineage, and correlate dates of events recorded in genomes with dates in the geological and paleontological records. To date, TREx analysis of the yeast genome has recognized correlated duplications that established a new metabolic strategies in fungi, and supported analyses of functional change in aromatases in pigs. TREx dating has limitations, however. Multiple transitions at synonymous sites may cause equilibration and loss of information. Further, to be useful to correlate events in the genomic record, different genes within a genome must suffer transitions at similar rates. Results A formalism to analyze divergence at two fold redundant codon systems is presented. This formalism exploits two-state approach-to-equilibrium kinetics from chemistry. This formalism captures, in a single equation, the possibility of multiple substitutions at individual sites, avoiding any need to "correct" for these. The formalism also connects specific rate constants for transitions to specific approximations in an underlying evolutionary model, including assumptions that transition rate constants are invariant at different sites, in different genes, in different lineages, and at different times. Therefore, the formalism supports analyses that evaluate these approximations. Transitions at synonymous

  1. Synonymic notes on Lepidanthrax osten sacken and redescription of L. tinctus (Thomson (Diptera, Bombyliidae, Anthracinae

    Directory of Open Access Journals (Sweden)

    Carlos José Einicker Lamas

    1996-01-01

    Full Text Available Based on the analysis of types, Lepidanthrax brachialis (Thomson, 1869 and L. quinquepunclatus (Thomson, 1869 are considered junior synonyms of L. tinctus (Thomson, 1869. Notes and illustrations of the type are presented.

  2. The Graph, Geometry and Symmetries of the Genetic Code with Hamming Metric

    Directory of Open Access Journals (Sweden)

    Reijer Lenstra

    2015-07-01

    Full Text Available The similarity patterns of the genetic code result from similar codons encoding similar messages. We develop a new mathematical model to analyze these patterns. The physicochemical characteristics of amino acids objectively quantify their differences and similarities; the Hamming metric does the same for the 64 codons of the codon set. (Hamming distances equal the number of different codon positions: AAA and AAC are at 1-distance; codons are maximally at 3-distance. The CodonPolytope, a 9-dimensional geometric object, is spanned by 64 vertices that represent the codons and the Euclidian distances between these vertices correspond one-to-one with intercodon Hamming distances. The CodonGraph represents the vertices and edges of the polytope; each edge equals a Hamming 1-distance. The mirror reflection symmetry group of the polytope is isomorphic to the largest permutation symmetry group of the codon set that preserves Hamming distances. These groups contain 82,944 symmetries. Many polytope symmetries coincide with the degeneracy and similarity patterns of the genetic code. These code symmetries are strongly related with the face structure of the polytope with smaller faces displaying stronger code symmetries. Splitting the polytope stepwise into smaller faces models an early evolution of the code that generates this hierarchy of code symmetries. The canonical code represents a class of 41,472 codes with equivalent symmetries; a single class among an astronomical number of symmetry classes comprising all possible codes.

  3. Pterospoda nigrescens (Hulst, a synonym of Ixala klotsi Sperry (Lepidoptera, Geometridae, Ennominae

    Directory of Open Access Journals (Sweden)

    Clifford Ferris

    2011-11-01

    Full Text Available Comparison of the types of Ixala klotsi (Sperry and Pterospoda nigrescens (Hulst shows that they are the same species, with I. klotsi a synonym of P. nigrescens. A lectotype of Selidosema nigrescens is designated, and the types of S. nigrescens and I. klotsi are illustrated. Male and female habitus and genitalia of P. nigrescens are illustrated.

  4. Functional non-synonymous variants of ABCG2 and gout risk.

    Science.gov (United States)

    Stiburkova, Blanka; Pavelcova, Katerina; Zavada, Jakub; Petru, Lenka; Simek, Pavel; Cepek, Pavel; Pavlikova, Marketa; Matsuo, Hirotaka; Merriman, Tony R; Pavelka, Karel

    2017-11-01

    Common dysfunctional variants of ATP binding cassette subfamily G member 2 (Junior blood group) (ABCG2), a high-capacity urate transporter gene, that result in decreased urate excretion are major causes of hyperuricemia and gout. In the present study, our objective was to determine the frequency and effect on gout of common and rare non-synonymous and other functional allelic variants in the ABCG2 gene. The main cohort recruited from the Czech Republic consisted of 145 gout patients; 115 normouricaemic controls were used for comparison. We amplified, directly sequenced and analysed 15 ABCG2 exons. The associations between genetic variants and clinical phenotype were analysed using the t-test, Fisher's exact test and a logistic and linear regression approach. Data from a New Zealand Polynesian sample set and the UK Biobank were included for the p.V12M analysis. In the ABCG2 gene, 18 intronic (one dysfunctional splicing) and 11 exonic variants were detected: 9 were non-synonymous (2 common, 7 rare including 1 novel), namely p.V12M, p.Q141K, p.R147W, p.T153M, p.F373C, p.T434M, p.S476P, p.D620N and p.K360del. The p.Q141K (rs2231142) variant had a significantly higher minor allele frequency (0.23) in the gout patients compared with the European-origin population (0.09) and was significantly more common among gout patients than among normouricaemic controls (odds ratio = 3.26, P gout (42 vs 48 years, P = 0.0143) and a greater likelihood of a familial history of gout (41% vs 27%, odds ratio = 1.96, P = 0.053). In a meta-analysis p.V12M exerted a protective effect from gout (P gout. Non-synonymous allelic variants of ABCG2 had a significant effect on earlier onset of gout and the presence of a familial gout history. ABCG2 should thus be considered a common and significant risk factor for gout. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  5. A class representative model for Pure Parsimony Haplotyping under uncertain data.

    Directory of Open Access Journals (Sweden)

    Daniele Catanzaro

    Full Text Available The Pure Parsimony Haplotyping (PPH problem is a NP-hard combinatorial optimization problem that consists of finding the minimum number of haplotypes necessary to explain a given set of genotypes. PPH has attracted more and more attention in recent years due to its importance in analysis of many fine-scale genetic data. Its application fields range from mapping complex disease genes to inferring population histories, passing through designing drugs, functional genomics and pharmacogenetics. In this article we investigate, for the first time, a recent version of PPH called the Pure Parsimony Haplotype problem under Uncertain Data (PPH-UD. This version mainly arises when the input genotypes are not accurate, i.e., when some single nucleotide polymorphisms are missing or affected by errors. We propose an exact approach to solution of PPH-UD based on an extended version of Catanzaro et al.[1] class representative model for PPH, currently the state-of-the-art integer programming model for PPH. The model is efficient, accurate, compact, polynomial-sized, easy to implement, solvable with any solver for mixed integer programming, and usable in all those cases for which the parsimony criterion is well suited for haplotype estimation.

  6. Human tRNALys3UUU Is Pre-Structured by Natural Modifications for Cognate and Wobble Codon Binding through Keto-Enol Tautomerism

    Energy Technology Data Exchange (ETDEWEB)

    Vendeix, Franck A.P.; Murphy, IV, Frank V.; Cantara, William A.; Leszczy,; #324; ska, Gra; #380; yna,; Gustilo, Estella M.; Sproat, Brian; Malkiewicz, Andrzej; Agris, Paul F. [Cornell; (NCSU); (Poland); (Integrated DNA); (SUNYA)

    2013-09-27

    Human tRNALys3UUU (htRNALys3UUU) decodes the lysine codons AAA and AAG during translation and also plays a crucial role as the primer for HIV-1 (human immunodeficiency virus type 1) reverse transcription. The posttranscriptional modifications 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U34), 2-methylthio-N6-threonylcarbamoyladenosine (ms2t6A37), and pseudouridine (Ψ39) in the tRNA's anticodon domain are critical for ribosomal binding and HIV-1 reverse transcription. To understand the importance of modified nucleoside contributions, we determined the structure and function of this tRNA's anticodon stem and loop (ASL) domain with these modifications at positions 34, 37, and 39, respectively (hASLLys3UUU-mcm5s2U34;ms2t6A3739). Ribosome binding assays in vitro revealed that the hASLLys3UUU-mcm5s2U34;ms2t6A3739 bound AAA and AAG codons, whereas binding of the unmodified ASLLys3UUU was barely detectable. The UV hyperchromicity, the circular dichroism, and the structural analyses indicated that Ψ39 enhanced the thermodynamic stability of the ASL through base stacking while ms2t6A37 restrained the anticodon to adopt an open loop conformation that is required for ribosomal binding. The NMR-restrained molecular-dynamics-derived solution structure revealed that the modifications provided an open, ordered loop for codon binding. The crystal structures of the hASLLys3UUU-mcm5s2U34;ms2t6A3739 bound to the 30S ribosomal subunit with each codon in the A site showed that the

  7. A Stress-Induced Bias in the Reading of the Genetic Code in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Adi Oron-Gottesman

    2016-11-01

    Full Text Available Escherichia coli mazEF is an extensively studied stress-induced toxin-antitoxin (TA system. The toxin MazF is an endoribonuclease that cleaves RNAs at ACA sites. Thereby, under stress, the induced MazF generates a stress-induced translation machinery (STM, composed of MazF-processed mRNAs and selective ribosomes that specifically translate the processed mRNAs. Here, we further characterized the STM system, finding that MazF cleaves only ACA sites located in the open reading frames of processed mRNAs, while out-of-frame ACAs are resistant. This in-frame ACA cleavage of MazF seems to depend on MazF binding to an extracellular-death-factor (EDF-like element in ribosomal protein bS1 (bacterial S1, apparently causing MazF to be part of STM ribosomes. Furthermore, due to the in-frame MazF cleavage of ACAs under stress, a bias occurs in the reading of the genetic code causing the amino acid threonine to be encoded only by its synonym codon ACC, ACU, or ACG, instead of by ACA.

  8. Species-delimitation and phylogenetic analyses of some cosmopolitan species of Hypnea (Rhodophyta) reveal synonyms and misapplied names to H. cervicornis, including a new species from Brazil.

    Science.gov (United States)

    de Jesus, Priscila Barreto; Nauer, Fabio; Lyra, Goia de Mattos; Cassano, Valéria; Oliveira, Mariana Cabral; Nunes, José Marcos de Castro; Schnadelbach, Alessandra Selbach

    2016-10-01

    Hypnea has an intricate nomenclatural history due to a wide pantropical distribution and considerable morphological variation. Recent molecular studies have provided further clarification on the systematics of the genus; however, species of uncertain affinities remain due to flawed taxonomic identification. Detailed analyses coupled with literature review indicated a strong relationship among H. aspera, H. cervicornis, H. flexicaulis, and H. tenuis, suggesting a need for further taxonomic studies. Here, we analyzed sequences from two molecular markers (COI-5P and rbcL) and performed several DNA-based delimitation methods (mBGD, ABGD, SPN, PTP and GMYC). These molecular approaches were contrasted with morphological and phylogenetic evidence from type specimens and/or topotype collections of related species under a conservative approach. Our results demonstrate that H. aspera and H. flexicaulis represent heterotypic synonyms of H. cervicornis and indicate the existence of a misidentified Hypnea species, widely distributed on the Brazilian coast, described here as a new species: H. brasiliensis. Finally, inconsistencies observed among our results based on six different species delimitation methods evidence the need for adequate sampling and marker choice for different methods. © 2016 Phycological Society of America.

  9. Introducing COCOS: codon consequence scanner for annotating reading frame changes induced by stop-lost and frame shift variants.

    Science.gov (United States)

    Butkiewicz, Mariusz; Haines, Jonathan L; Bush, William S

    2017-05-15

    Reading frame altering genomic variants can impact gene expression levels and the structure of protein products, thus potentially inducing disease phenotypes. Current annotation approaches report the impact of such variants in the context of altered DNA sequence only; attributes of the resulting transcript, reading frame and translated protein product are not reported. To remedy this shortcoming, we present a new genetic annotation approach termed Codon Consequence Scanner (COCOS). Implemented as an Ensembl variant effect predictor (VEP) plugin, COCOS captures amino acid sequence alterations stemming from variants that produce an altered reading frame, such as stop-lost variants and small insertions and deletions (InDels). To highlight its significance, COCOS was applied to data from the 1000 Genomes Project. Transcripts affected by stop-lost variants introduce a median of 15 amino acids, while InDels have a more extensive impact with a median of 66 amino acids being incorporated. Captured sequence alterations are written out in FASTA format and can be further analyzed for impact on the underlying protein structure. COCOS is available to all users on github: https://github.com/butkiem/COCOS. mariusz.butkiewicz@case.edu. © The Author 2017. Published by Oxford University Press.

  10. regSNPs-splicing: a tool for prioritizing synonymous single-nucleotide substitution.

    Science.gov (United States)

    Zhang, Xinjun; Li, Meng; Lin, Hai; Rao, Xi; Feng, Weixing; Yang, Yuedong; Mort, Matthew; Cooper, David N; Wang, Yue; Wang, Yadong; Wells, Clark; Zhou, Yaoqi; Liu, Yunlong

    2017-09-01

    While synonymous single-nucleotide variants (sSNVs) have largely been unstudied, since they do not alter protein sequence, mounting evidence suggests that they may affect RNA conformation, splicing, and the stability of nascent-mRNAs to promote various diseases. Accurately prioritizing deleterious sSNVs from a pool of neutral ones can significantly improve our ability of selecting functional genetic variants identified from various genome-sequencing projects, and, therefore, advance our understanding of disease etiology. In this study, we develop a computational algorithm to prioritize sSNVs based on their impact on mRNA splicing and protein function. In addition to genomic features that potentially affect splicing regulation, our proposed algorithm also includes dozens structural features that characterize the functions of alternatively spliced exons on protein function. Our systematical evaluation on thousands of sSNVs suggests that several structural features, including intrinsic disorder protein scores, solvent accessible surface areas, protein secondary structures, and known and predicted protein family domains, show significant differences between disease-causing and neutral sSNVs. Our result suggests that the protein structure features offer an added dimension of information while distinguishing disease-causing and neutral synonymous variants. The inclusion of structural features increases the predictive accuracy for functional sSNV prioritization.

  11. Under-represented students' engagement in secondary science learning: A non-equivalent control group design

    Science.gov (United States)

    Vann-Hamilton, Joy J.

    Problem. A significant segment of the U.S. population, under-represented students, is under-engaged or disengaged in secondary science education. International and national assessments and various research studies illuminate the problem and/or the disparity between students' aspirations in science and the means they have to achieve them. To improve engagement and address inequities among these students, more contemporary and/or inclusive pedagogy is recommended. More specifically, multicultural science education has been suggested as a potential strategy for increased equity so that all learners have access to and are readily engaged in quality science education. While multicultural science education emphasizes the integration of students' backgrounds and experiences with science learning , multimedia has been suggested as a way to integrate the fundamentals of multicultural education into learning for increased engagement. In addition, individual characteristics such as race, sex, academic track and grades were considered. Therefore, this study examined the impact of multicultural science education, multimedia, and individual characteristics on under-represented students' engagement in secondary science. Method. The Under-represented Students Engagement in Science Survey (USESS), an adaptation of the High School Survey of Student Engagement, was used with 76 high-school participants. The USESS was used to collect pretest and posttest data concerning their types and levels of student engagement. Levels of engagement were measured with Strongly Agree ranked as 5, down to Strongly Disagree ranked at 1. Participants provided this feedback prior to and after having interacted with either the multicultural or the non-multicultural version of the multimedia science curriculum. Descriptive statistics for the study's participants and the survey items, as well as Cronbach's alpha coefficient for internal consistency reliability with respect to the survey subscales, were

  12. [Correlation of codon biases and potential secondary structures with mRNA translation efficiency in unicellular organisms].

    Science.gov (United States)

    Vladimirov, N V; Likhoshvaĭ, V A; Matushkin, Iu G

    2007-01-01

    Gene expression is known to correlate with degree of codon bias in many unicellular organisms. However, such correlation is absent in some organisms. Recently we demonstrated that inverted complementary repeats within coding DNA sequence must be considered for proper estimation of translation efficiency, since they may form secondary structures that obstruct ribosome movement. We have developed a program for estimation of potential coding DNA sequence expression in defined unicellular organism using its genome sequence. The program computes elongation efficiency index. Computation is based on estimation of coding DNA sequence elongation efficiency, taking into account three key factors: codon bias, average number of inverted complementary repeats, and free energy of potential stem-loop structures formed by the repeats. The influence of these factors on translation is numerically estimated. An optimal proportion of these factors is computed for each organism individually. Quantitative translational characteristics of 384 unicellular organisms (351 bacteria, 28 archaea, 5 eukaryota) have been computed using their annotated genomes from NCBI GenBank. Five potential evolutionary strategies of translational optimization have been determined among studied organisms. A considerable difference of preferred translational strategies between Bacteria and Archaea has been revealed. Significant correlations between elongation efficiency index and gene expression levels have been shown for two organisms (S. cerevisiae and H. pylori) using available microarray data. The proposed method allows to estimate numerically the coding DNA sequence translation efficiency and to optimize nucleotide composition of heterologous genes in unicellular organisms. http://www.mgs.bionet.nsc.ru/mgs/programs/eei-calculator/.

  13. Representing vision and blindness.

    Science.gov (United States)

    Ray, Patrick L; Cox, Alexander P; Jensen, Mark; Allen, Travis; Duncan, William; Diehl, Alexander D

    2016-01-01

    There have been relatively few attempts to represent vision or blindness ontologically. This is unsurprising as the related phenomena of sight and blindness are difficult to represent ontologically for a variety of reasons. Blindness has escaped ontological capture at least in part because: blindness or the employment of the term 'blindness' seems to vary from context to context, blindness can present in a myriad of types and degrees, and there is no precedent for representing complex phenomena such as blindness. We explore current attempts to represent vision or blindness, and show how these attempts fail at representing subtypes of blindness (viz., color blindness, flash blindness, and inattentional blindness). We examine the results found through a review of current attempts and identify where they have failed. By analyzing our test cases of different types of blindness along with the strengths and weaknesses of previous attempts, we have identified the general features of blindness and vision. We propose an ontological solution to represent vision and blindness, which capitalizes on resources afforded to one who utilizes the Basic Formal Ontology as an upper-level ontology. The solution we propose here involves specifying the trigger conditions of a disposition as well as the processes that realize that disposition. Once these are specified we can characterize vision as a function that is realized by certain (in this case) biological processes under a range of triggering conditions. When the range of conditions under which the processes can be realized are reduced beyond a certain threshold, we are able to say that blindness is present. We characterize vision as a function that is realized as a seeing process and blindness as a reduction in the conditions under which the sight function is realized. This solution is desirable because it leverages current features of a major upper-level ontology, accurately captures the phenomenon of blindness, and can be

  14. Streptomyces ciscaucasicus Sveshnikova et al. 1983 is a later subjective synonym of Streptomyces canus Heinemann et al. 1953.

    Science.gov (United States)

    Kämpfer, Peter; Rückert, Christian; Blom, Jochen; Goesmann, Alexander; Wink, Joachim; Kalinowski, Jörn; Glaeser, Stefanie P

    2018-01-01

    Streptomyces canuswas described in 1953 and the name was listed in the Approved List of Bacterial Names in 1980. Three years later, Streptomyces ciscaucasicus was published and the name was subsequently validated in Validation List no. 22 in 1986. On the basis of genome comparison and multilocus sequence analysis of the type strains of Streptomyces canus and Streptomyces ciscaucasicus it can now be shown that these two species despite some phenotypic differences are subjective synonyms. In such a case Rule 24 of the Bacteriological Code applies, in which priority of names is determined by the date of the original publication. Hence, we propose that S. ciscaucasicus is a later subjective synonym of S. canus.

  15. Evidence for a novel coding sequence overlapping the 5'-terminal ~90 codons of the Gill-associated and Yellow head okavirus envelope glycoprotein gene

    Directory of Open Access Journals (Sweden)

    Atkins John F

    2009-12-01

    Full Text Available Abstract The genus Okavirus (order Nidovirales includes a number of viruses that infect crustaceans, causing major losses in the shrimp industry. These viruses have a linear positive-sense ssRNA genome of ~26-27 kb, encoding a large replicase polyprotein that is expressed from the genomic RNA, and several additional proteins that are expressed from a nested set of 3'-coterminal subgenomic RNAs. In this brief report, we describe the bioinformatic discovery of a new, apparently coding, ORF that overlaps the 5' end of the envelope glycoprotein encoding sequence, ORF3, in the +2 reading frame. The new ORF has a strong coding signature and, in fact, is more conserved at the amino acid level than the overlapping region of ORF3. We propose that translation of the new ORF initiates at a conserved AUG codon separated by just 2 nt from the ORF3 AUG initiation codon, resulting in a novel 86 amino acid protein.

  16. Using co-occurrence network structure to extract synonymous gene and protein names from MEDLINE abstracts

    Directory of Open Access Journals (Sweden)

    Spackman K

    2005-04-01

    Full Text Available Abstract Background Text-mining can assist biomedical researchers in reducing information overload by extracting useful knowledge from large collections of text. We developed a novel text-mining method based on analyzing the network structure created by symbol co-occurrences as a way to extend the capabilities of knowledge extraction. The method was applied to the task of automatic gene and protein name synonym extraction. Results Performance was measured on a test set consisting of about 50,000 abstracts from one year of MEDLINE. Synonyms retrieved from curated genomics databases were used as a gold standard. The system obtained a maximum F-score of 22.21% (23.18% precision and 21.36% recall, with high efficiency in the use of seed pairs. Conclusion The method performs comparably with other studied methods, does not rely on sophisticated named-entity recognition, and requires little initial seed knowledge.

  17. ANCAC: amino acid, nucleotide, and codon analysis of COGs--a tool for sequence bias analysis in microbial orthologs.

    Science.gov (United States)

    Meiler, Arno; Klinger, Claudia; Kaufmann, Michael

    2012-09-08

    The COG database is the most popular collection of orthologous proteins from many different completely sequenced microbial genomes. Per definition, a cluster of orthologous groups (COG) within this database exclusively contains proteins that most likely achieve the same cellular function. Recently, the COG database was extended by assigning to every protein both the corresponding amino acid and its encoding nucleotide sequence resulting in the NUCOCOG database. This extended version of the COG database is a valuable resource connecting sequence features with the functionality of the respective proteins. Here we present ANCAC, a web tool and MySQL database for the analysis of amino acid, nucleotide, and codon frequencies in COGs on the basis of freely definable phylogenetic patterns. We demonstrate the usefulness of ANCAC by analyzing amino acid frequencies, codon usage, and GC-content in a species- or function-specific context. With respect to amino acids we, at least in part, confirm the cognate bias hypothesis by using ANCAC's NUCOCOG dataset as the largest one available for that purpose thus far. Using the NUCOCOG datasets, ANCAC connects taxonomic, amino acid, and nucleotide sequence information with the functional classification via COGs and provides a GUI for flexible mining for sequence-bias. Thereby, to our knowledge, it is the only tool for the analysis of sequence composition in the light of physiological roles and phylogenetic context without requirement of substantial programming-skills.

  18. Heterozygous genotype at codon 129 correlates with prolonged disease course in Heidenhain variant sporadic CJD: case report.

    Science.gov (United States)

    Townley, Ryan A; Dawson, Elliot T; Drubach, Daniel A

    2018-02-01

    Sporadic Creutzfeldt-Jakob disease (sCJD) is a rapid and fatal neurodegenerative disease defined by misfolded prion proteins accumulating in the brain. A minority of cases initially present with posterior cortical atrophy (PCA) phenotype, also known as Heidenhain variant or visual variant CJD. This case provides further evidence of sCJD presenting as PCA. The case also provides evidence for early DWI changes and cortical atrophy over 30 months before neurologic decline and subsequent death. The prolonged disease course correlates with prion protein codon 129 heterozygosity and coexistence of multiple prion strains.

  19. [Comparison of protective properties of the smallpox DNA-vaccine based on the variola virus A30L gene and its variant with modified codon usage].

    Science.gov (United States)

    Maksiutov, R A; Shchelkunov, S N

    2011-01-01

    Efficacy of candidate DNA-vaccines based on the variola virus natural gene A30L and artificial gene A30Lopt with modified codon usage, optimized for expression in mammalian cells, was tested. The groups of mice were intracutaneously immunized three times with three-week intervals with candidate DNA-vaccines: pcDNA_A30L or pcDNA_A30Lopt, and in three weeks after the last immunization all mice in the groups were intraperitoneally infected by the ectromelia virus K1 strain in 10 LD50 dose for the estimation of protection. It was shown that the DNA-vaccines based on natural gene A30L and codon-optimized gene A30Lopt elicited virus, thereby neutralizing the antibody response and protected mice from lethal intraperitoneal challenge with the ectromelia virus with lack of statistically significant difference.

  20. The p53 codon 72 PRO/PRO genotype may be associated with initial central visual field defects in caucasians with primary open angle glaucoma.

    Directory of Open Access Journals (Sweden)

    Janey L Wiggs

    Full Text Available Loss of vision in glaucoma is due to apoptotic retinal ganglion cell loss. While p53 modulates apoptosis, gene association studies between p53 variants and glaucoma have been inconsistent. In this study we evaluate the association between a p53 variant functionally known to influence apoptosis (codon 72 Pro/Arg and the subset of primary open angle glaucoma (POAG patients with early loss of central visual field.Genotypes for the p53 codon 72 polymorphism (Pro/Arg were obtained for 264 POAG patients and 400 controls from the U.S. and in replication studies for 308 POAG patients and 178 controls from Australia (GIST. The glaucoma patients were divided into two groups according to location of initial visual field defect (either paracentral or peripheral. All cases and controls were Caucasian with European ancestry.The p53-PRO/PRO genotype was more frequent in the U.S. POAG patients with early visual field defects in the paracentral regions compared with those in the peripheral regions or control group (p=2.7 × 10(-5. We replicated this finding in the GIST cohort (p  =7.3 × 10(-3, and in the pooled sample (p=6.6 × 10(-7 and in a meta-analysis of both the US and GIST datasets (1.3 × 10(-6, OR 2.17 (1.58-2.98 for the PRO allele.These results suggest that the p53 codon 72 PRO/PRO genotype is potentially associated with early paracentral visual field defects in primary open-angle glaucoma patients.

  1. Phylogenetic relationships of seven previously unclassified viruses within the family Rhabdoviridae using partial nucleoprotein gene sequences.

    Science.gov (United States)

    Kuzmin, I V; Hughes, G J; Rupprecht, C E

    2006-08-01

    Partial nucleoprotein (N) gene sequences of the rhabdoviruses Obodhiang (OBOV), Kotonkon (KOTV), Rochambeau (RBUV), Kern canyon (KCV), Mount Elgon bat (MEBV), Kolongo (KOLV) and Sandjimba (SJAV) were generated and their phylogenetic positions within the family Rhabdoviridae were determined. Both OBOV and KOTV were placed within the genus Ephemerovirus. RBUV was joined to the same cluster, but more distantly. MEBV and KCV were grouped into a monophyletic cluster (putative genus) with Oita virus (OITAV). These three viruses, originating from different regions of the world, were all isolated from insectivorous bats and may be specific for these mammals. African avian viruses KOLV and SJAV were joined to each other and formed another clade at the genus level. Further, they were grouped with the recently characterized rhabdovirus Tupaia virus (TRV). Although the genetic distance was great, the grouping was supported by consistent bootstrap values. This observation suggests that viruses of this group may be distributed widely in the Old World. Non-synonymous/synonymous substitution ratio estimations (dN/dS) using a partial N gene fragment (241 codons) for the three rhabdovirus genera revealed contrasting patterns of evolution, where dN/dS values follow the pattern Ephemerovirus > Vesiculovirus > Lyssavirus. The magnitude of this ratio corresponds well with the number of negatively selected codons. The accumulation of dS appears evenly distributed along the gene fragment for all three genera. These estimations demonstrated clearly that lyssaviruses are subjected to the strongest constraints against amino acid substitutions, probably related to their particular niche and unique pathobiology.

  2. A Frameshift Mutation in the Cubilin Gene (CUBN) in Border Collies with Imerslund-Gräsbeck Syndrome (Selective Cobalamin Malabsorption)

    Science.gov (United States)

    Owczarek-Lipska, Marta; Jagannathan, Vidhya; Drögemüller, Cord; Lutz, Sabina; Glanemann, Barbara

    2013-01-01

    Imerslund-Gräsbeck syndrome (IGS) or selective cobalamin malabsorption has been described in humans and dogs. IGS occurs in Border Collies and is inherited as a monogenic autosomal recessive trait in this breed. Using 7 IGS cases and 7 non-affected controls we mapped the causative mutation by genome-wide association and homozygosity mapping to a 3.53 Mb interval on chromosome 2. We re-sequenced the genome of one affected dog at ∼10× coverage and detected 17 non-synonymous variants in the critical interval. Two of these non-synonymous variants were in the cubilin gene (CUBN), which is known to play an essential role in cobalamin uptake from the ileum. We tested these two CUBN variants for association with IGS in larger cohorts of dogs and found that only one of them was perfectly associated with the phenotype. This variant, a single base pair deletion (c.8392delC), is predicted to cause a frameshift and premature stop codon in the CUBN gene. The resulting mutant open reading frame is 821 codons shorter than the wildtype open reading frame (p.Q2798Rfs*3). Interestingly, we observed an additional nonsense mutation in the MRC1 gene encoding the mannose receptor, C type 1, which was in perfect linkage disequilibrium with the CUBN frameshift mutation. Based on our genetic data and the known role of CUBN for cobalamin uptake we conclude that the identified CUBN frameshift mutation is most likely causative for IGS in Border Collies. PMID:23613799

  3. A novel mutation in the FGB: c.1105C>T turns the codon for amino acid Bβ Q339 into a stop codon causing hypofibrinogenemia.

    Science.gov (United States)

    Marchi, Rita; Brennan, Stephen; Meyer, Michael; Rojas, Héctor; Kanzler, Daniela; De Agrela, Marisela; Ruiz-Saez, Arlette

    2013-03-01

    Routine coagulation tests on a 14year-old male with frequent epistaxis showed a prolonged thrombin time together with diminished functional (162mg/dl) and gravimetric (122mg/dl) fibrinogen concentrations. His father showed similar aberrant results and sequencing of the three fibrinogen genes revealed a novel heterozygous nonsense mutation in the FGB gene c.1105C>T, which converts the codon for residue Bβ 339Q to stop, causing deletion of Bβ chain residues 339-461. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and RP-HPLC (reverse-phase high-pressure liquid chromatography) of purified fibrinogen showed only normal Aα, Bβ, and γ chains, indicating that molecules with the truncated 37,990Da β chain were not secreted into plasma. Functional analysis showed impaired fibrin polymerization, fibrin porosity, and elasticity compared to controls. By laser scanning confocal microscopy the patient's fibers were slightly thinner than normal. Electrospray ionization mass spectrometry (ESI MS) presented normal sialylation of the oligosaccharide chains, and liver function tests showed no evidence of liver dysfunction that might explain the functional abnormalities. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Identification of seven haplotypes of the caprine PrP gene at codons 127, 142, 154, 211, 222 and 240 in French Alpine and Saanen breeds and their association with classical scrapie.

    Science.gov (United States)

    Barillet, F; Mariat, D; Amigues, Y; Faugeras, R; Caillat, H; Moazami-Goudarzi, K; Rupp, R; Babilliot, J M; Lacroux, C; Lugan, S; Schelcher, F; Chartier, C; Corbière, F; Andréoletti, O; Perrin-Chauvineau, C

    2009-03-01

    In sheep, susceptibility to scrapie is mainly influenced by polymorphisms of the PrP gene. In goats, there are to date few data related to scrapie susceptibility association with PrP gene polymorphisms. In this study, we first investigated PrP gene polymorphisms of the French Alpine and Saanen breeds. Based on PrP gene open reading frame sequencing of artificial insemination bucks (n=404), six encoding mutations were identified at codons 127, 142, 154, 211, 222 and 240. However, only seven haplotypes could be detected: four (GIH(154)RQS, GIRQ(211)QS, GIRRK(222)S and GIRRQP(240)) derived from the wild-type allele (G(127)I(142)R(154)R(211)Q(222)S(240)) by a single-codon mutation, and two (S(127)IRRQP(240) and GM(142)RRQP(240)) by a double-codon mutation. A case-control study was then implemented in a highly affected Alpine and Saanen breed herd (90 cases/164 controls). Mutations at codon 142 (I/M), 154 (R/H), 211 (R/Q) and 222 (Q/K) were found to induce a significant degree of protection towards natural scrapie infection. Compared with the baseline homozygote wild-type genotype I(142)R(154)R(211)Q(222)/IRRQ goats, the odds of scrapie cases in IRQ(211)Q/IRRQ and IRRK(222)/IRRQ heterozygous animals were significantly lower [odds ratio (OR)=0.133, PFrench Alpine and Saanen breeds were low (0.5-18.5 %), which prevent us from assessing the influence of all the possible genotypes in natural exposure conditions.

  5. The Genome Sequence of the psychrophilic archaeon, Methanococcoides burtonii: the Role of Genome Evolution in Cold-adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Michelle A.; Lauro, Federico M.; Williams, Timothy J.; Burg, Dominic; Siddiqui, Khawar S.; De Francisci, David; Chong, Kevin W.Y.; Pilak, Oliver; Chew, Hwee H.; De Maere, Matthew Z.; Ting, Lily; Katrib, Marilyn; Ng, Charmaine; Sowers, Kevin R.; Galperin, Michael Y.; Anderson, Iain J.; Ivanova, Natalia; Dalin, Eileen; Martinez, Michelle; Lapidus, Alla; Hauser, Loren; Land, Miriam; Thomas, Torsten; Cavicchioli, Ricardo

    2009-04-01

    Psychrophilic archaea are abundant and perform critical roles throughout the Earth's expansive cold biosphere. Here we report the first complete genome sequence for a psychrophilic methanogenic archaeon, Methanococcoides burtonii. The genome sequence was manually annotated including the use of a five tiered Evidence Rating system that ranked annotations from Evidence Rating (ER) 1 (gene product experimentally characterized from the parent organism) to ER5 (hypothetical gene product) to provide a rapid means of assessing the certainty of gene function predictions. The genome is characterized by a higher level of aberrant sequence composition (51%) than any other archaeon. In comparison to hyper/thermophilic archaea which are subject to selection of synonymous codon usage, M. burtonii has evolved cold adaptation through a genomic capacity to accommodate highly skewed amino acid content, while retaining codon usage in common with its mesophilic Methanosarcina cousins. Polysaccharide biosynthesis genes comprise at least 3.3% of protein coding genes in the genome, and Cell wall/membrane/envelope biogenesis COG genes are over-represented. Likewise, signal transduction (COG category T) genes are over-represented and M. burtonii has a high 'IQ' (a measure of adaptive potential) compared to many methanogens. Numerous genes in these two over-represented COG categories appear to have been acquired from {var_epsilon}- and {delta}-proteobacteria, as do specific genes involved in central metabolism such as a novel B form of aconitase. Transposases also distinguish M. burtonii from other archaea, and their genomic characteristics indicate they play an important role in evolving the M. burtonii genome. Our study reveals a capacity for this model psychrophile to evolve through genome plasticity (including nucleotide skew, horizontal gene transfer and transposase activity) that enables adaptation to the cold, and to the biological and physical changes that have

  6. Levels of H-ras codon 61 CAA to AAA mutation: response to 4-ABP-treatment and Pms2-deficiency.

    Science.gov (United States)

    Parsons, Barbara L; Delongchamp, Robert R; Beland, Frederick A; Heflich, Robert H

    2006-01-01

    DNA mismatch repair (MMR) deficiencies result in increased frequencies of spontaneous mutation and tumor formation. In the present study, we tested the hypothesis that a chemically-induced mutational response would be greater in a mouse with an MMR-deficiency than in the MMR-proficient mouse models commonly used to assay for chemical carcinogenicity. To accomplish this, the induction of H-ras codon 61 CAA-->AAA mutation was examined in Pms2 knockout mice (Pms2-/-, C57BL/6 background) and sibling wild-type mice (Pms2+/+). Groups of five or six neonatal male mice were treated with 0.3 micromol 4-aminobiphenyl (4-ABP) or the vehicle control, dimethylsulfoxide. Eight months after treatment, liver DNAs were isolated and analysed for levels of H-ras codon 61 CAA-->AAA mutation using allele-specific competitive blocker-PCR. In Pms2-proficient and Pms2-deficient mice, 4-ABP treatment caused an increase in mutant fraction (MF) from 1.65x10(-5) to 2.91x10(-5) and from 3.40x10(-5) to 4.70x10(-5), respectively. Pooling data from 4-ABP-treated and control mice, the approximately 2-fold increase in MF observed in Pms2-deficient as compared with Pms2-proficient mice was statistically significant (P=0.0207) and consistent with what has been reported previously in terms of induction of G:C-->T:A mutation in a Pms2-deficient background. Pooling data from both genotypes, the increase in H-ras MF in 4-ABP-treated mice, as compared with control mice, did not reach the 95% confidence level of statistical significance (P=0.0606). The 4-ABP treatment caused a 1.76-fold and 1.38-fold increase in average H-ras MF in Pms2-proficient and Pms2-deficient mice, respectively. Furthermore, the levels of induced mutation in Pms2-proficient and Pms2-deficient mice were nearly identical (1.26x10(-5) and 1.30x10(-5), respectively). We conclude that Pms2-deficiency does not result in an amplification of the H-ras codon 61 CAA-->AAA mutational response induced by 4-ABP.

  7. The role of polarity in antonym and synonym conceptual knowledge: evidence from stroke aphasia and multidimensional ratings of abstract words.

    Science.gov (United States)

    Crutch, Sebastian J; Williams, Paul; Ridgway, Gerard R; Borgenicht, Laura

    2012-09-01

    This study describes an investigation of different types of semantic relationship among abstract words: antonyms (e.g. good-bad), synonyms (e.g. good-great), non-antonymous, non-synonymous associates (NANSAs; e.g. good-fun) and unrelated words (e.g. good-late). The comprehension and semantic properties of these words were examined using two distinct methodologies. Experiment 1 tested the comprehension of pairs of abstract words in three patients with global aphasia using a spoken word to written word matching paradigm. Contrary to expectations, all three patients showed superior antonym comprehension compared with synonyms or NANSAs, discriminating antonyms with a similar level of accuracy as unrelated words. Experiment 2 aimed to explore the content or semantic attributes of the abstract words used in Experiment 1 through the generation of control ratings across nine cognitive dimensions (sensation, action, thought, emotion, social interaction, space, time, quantity and polarity). Discrepancy analyses revealed that antonyms were as or more similar to one another than synonyms on all but one measure: polarity. The results of Experiment 2 provide a possible explanation for the novel pattern of neuropsychological data observed in Experiment 1, namely that polarity information is more important than other semantic attributes when discriminating the meaning of abstract words. It is argued that polarity is a critical semantic attribute of abstract words, and that simple 'dissimilarity' metrics mask fundamental consistencies in the semantic representation of antonyms. It is also suggested that mapping abstract semantic space requires the identification and quantification of the contribution made to abstract concepts by not only sensorimotor and emotional information but also a host of other cognitive dimensions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. A computational prospect to aspirin side effects: aspirin and COX-1 interaction analysis based on non-synonymous SNPs.

    Science.gov (United States)

    Marjan, Mojtabavi Naeini; Hamzeh, Mesrian Tanha; Rahman, Emamzadeh; Sadeq, Vallian

    2014-08-01

    Aspirin (ASA) is a commonly used nonsteroidal anti-inflammatory drug (NSAID), which exerts its therapeutic effects through inhibition of cyclooxygenase (COX) isoform 2 (COX-2), while the inhibition of COX-1 by ASA leads to apparent side effects. In the present study, the relationship between COX-1 non-synonymous single nucleotide polymorphisms (nsSNPs) and aspirin related side effects was investigated. The functional impacts of 37 nsSNPs on aspirin inhibition potency of COX-1 with COX-1/aspirin molecular docking were computationally analyzed, and each SNP was scored based on DOCK Amber score. The data predicted that 22 nsSNPs could reduce COX-1 inhibition, while 15 nsSNPs showed increasing inhibition level in comparison to the regular COX-1 protein. In order to perform a comparing state, the Amber scores for two Arg119 mutants (R119A and R119Q) were also calculated. Moreover, among nsSNP variants, rs117122585 represented the closest Amber score to R119A mutant. A separate docking computation validated the score and represented a new binding position for ASA that acetyl group was located within the distance of 3.86Å from Ser529 OH group. This could predict an associated loss of activity of ASA through this nsSNP variant. Our data represent a computational sub-population pattern for aspirin COX-1 related side effects, and provide basis for further research on COX-1/ASA interaction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. New generic synonyms in the Palaeotropical genus Urothrips (Thysanoptera: Phlaeothripinae) with one new species from Seychelles.

    Science.gov (United States)

    Ulitzka, Manfred R; Mound, Laurence A

    2014-01-28

    Urothrips kobroi sp. n. is described from Seychelles, and reasons are given for considering Biconothrips Stannard and Coxothrips Bournier as new synonyms of Urothrips Bagnall. This genus now includes nine species, distributed between Africa and Australia, and a key to these species is provided.

  10. New method of steganalysis for text data obtained by synonym run-length encoding

    Directory of Open Access Journals (Sweden)

    Ivan V. Nechta

    2018-05-01

    Full Text Available In this article, we present a new stegoanalysis method for detecting a text obtained by the synonym Run-Length Encoding. The analyzed RLE-method allows us to keep some statistical properties of the text after a secret message embedding. In particular, the probabilities distribution of the bits in the extracted message and the probabilities distribution of using text synonyms keep unchanged, that ensures a high secrecy degree of the considered embedding method. In this paper we show that the embedded message changes the probabilities distribution of bit-series lengths in the extracted message, and this fact is used for our stegoanalysis. It was shown that the embedded message breaks the statistical structure of the container, and this fact is used for the stegoanalysis. The constructed stegotest compares the probability distribution of runs (with length no more than 5 bits in the message extracted from the container with reference distributions corresponding to an empty and embedded containers.  Reference distributions were obtained by analysing of 1000 natural-text containers taken from the Gutenberg Project library. In this paper we consider two approaches for obtaining reference distributions. The first approach deals with analyzing the statistic of the message extracted from the container in the usual way (using the Tyrannosaurus Lex program. The second approach involves an additional decoding of the message in accordance with the analyzed run-length encoding algorithm. Experimental results allow us to assert that the first approach is more effective. The Kullback-Leibler measure is used as a divergence measure of two probability distributions. It was shown that the proposed method makes it possible to detect presence of the secret message in the container with a number of synonyms equal to 500, while false negative error is 1.5% and false positive error is 1.3%. In comparison with the known analogs, the proposed method demonstrates higher

  11. Low Major Histocompatibility Complex Class II Variation in the Endangered Indo-Pacific Humpback Dolphin (Sousa chinensis): Inferences About the Role of Balancing Selection.

    Science.gov (United States)

    Zhang, Xiyang; Lin, Wenzhi; Zhou, Ruilian; Gui, Duan; Yu, Xinjian; Wu, Yuping

    2016-03-01

    It has been widely reported that the major histocompatibility complex (MHC) is under balancing selection due to its immune function across terrestrial and aquatic mammals. The comprehensive studies at MHC and other neutral loci could give us a synthetic evaluation about the major force determining genetic diversity of species. Previously, a low level of genetic diversity has been reported among the Indo-Pacific humpback dolphin (Sousa chinensis) in the Pearl River Estuary (PRE) using both mitochondrial marker and microsatellite loci. Here, the expression and sequence polymorphism of 2 MHC class II genes (DQB and DRB) in 32 S. chinensis from PRE collected between 2003 and 2011 were investigated. High ratios of non-synonymous to synonymous substitution rates, codon-based selection analysis, and trans-species polymorphism (TSP) support the hypothesis that balancing selection acted on S. chinensis MHC sequences. However, only 2 haplotypes were detected at either DQB or DRB loci. Moreover, the lack of deviation from the Hardy-Weinberg expectation at DRB locus combined with the relatively low heterozygosity at both DQB locus and microsatellite loci suggested that balancing selection might not be sufficient, which further suggested that genetic drift associated with historical bottlenecks was not mitigated by balancing selection in terms of the loss of MHC and neutral variation in S. chinensis. The combined results highlighted the importance of maintaining the genetic diversity of the endangered S. chinensis. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Characterization of the Complete Mitochondrion Genome of Diurnal Moth Amata emma (Butler) (Lepidoptera: Erebidae) and Its Phylogenetic Implications

    Science.gov (United States)

    Lu, Hui-Fen; Su, Tian-Juan; Luo, A-Rong; Zhu, Chao-Dong; Wu, Chun-Sheng

    2013-01-01

    Mitogenomes can provide information for phylogenetic analyses and evolutionary biology. The complete mitochondrial genome of Amata emma (Lepidoptera: Erebidae) was sequenced and analyzed in the study. The circular genome is 15,463 bp in size, with the gene content, orientation and order identical to other ditrysian insects. The genome composition of the major strand shows highly A+T biased and exhibits negative AT-skew and GC-skew. The initial codons are the canonical putative start codons ATN with the exception of cox1 gene which uses CGA instead. Ten genes share complete termination codons TAA, and three genes use incomplete stop codons TA or T. Additionally, the codon distribution and Relative Synonymous Codon Usage of the 13 PCGs in the A. emma mitogenome are consistent with those in other Noctuid mitogenomes. All tRNA genes have typical cloverleaf secondary structures, except for the trnS1 (AGN) gene, in which the dihydrouridine (DHU) arm is simplified down to a loop. The secondary structures of two rRNA genes broadly conform with the models proposed for these genes of other Lepidopteran insects. Except for the A+T-rich region, there are three major intergenic spacers, spanning at least 10 bp and five overlapping regions. There are obvious differences in the A+T-rich region between A. emma and other Lepidopteran insects reported previously except that the A+T-rich region contains an ‘ATAGA’ -like motif followed by a 19 bp poly-T stretch and a (AT)9 element preceded by the ‘ATTTA’ motif. It neither has a poly-A (in the α strand) upstream trnM nor potential stem-loop structures and just has some simple structures like (AT)nGTAT. The phylogenetic relationships based on nucleotide sequences of 13 PCGs using Bayesian inference and maximum likelihood methods provided a well-supported a broader outline of Lepidoptera and which agree with the traditional morphological classification and recently working, but with a much higher support. PMID:24069145

  13. Resequencing of 200 human exomes identifies an excess of low-frequency non-synonymous coding variants

    DEFF Research Database (Denmark)

    Li, Yingrui; Vinckenbosch, Nicolas; Tian, Geng

    2010-01-01

    data, we derived the allele frequency spectrum of cSNPs with a minor allele frequency greater than 0.02. We identified a 1.8-fold excess of deleterious, non-syonomyous cSNPs over synonymous cSNPs in the low-frequency range (minor allele frequencies between 2% and 5%). This excess was more pronounced...

  14. What makes ribosome-mediated transcriptional attenuation sensitive to amino acid limitation?

    Directory of Open Access Journals (Sweden)

    Johan Elf

    2005-06-01

    Full Text Available Ribosome-mediated transcriptional attenuation mechanisms are commonly used to control amino acid biosynthetic operons in bacteria. The mRNA leader of such an operon contains an open reading frame with "regulatory" codons, cognate to the amino acid that is synthesized by the enzymes encoded by the operon. When the amino acid is in short supply, translation of the regulatory codons is slow, which allows transcription to continue into the structural genes of the operon. When amino acid supply is in excess, translation of regulatory codons is rapid, which leads to termination of transcription. We use a discrete master equation approach to formulate a probabilistic model for the positioning of the RNA polymerase and the ribosome in the attenuator leader sequence. The model describes how the current rate of amino acid supply compared to the demand in protein synthesis (signal determines the expression of the amino acid biosynthetic operon (response. The focus of our analysis is on the sensitivity of operon expression to a change in the amino acid supply. We show that attenuation of transcription can be hyper-sensitive for two main reasons. The first is that its response depends on the outcome of a race between two multi-step mechanisms with synchronized starts: transcription of the leader of the operon, and translation of its regulatory codons. The relative change in the probability that transcription is aborted (attenuated can therefore be much larger than the relative change in the time it takes for the ribosome to read a regulatory codon. The second is that the general usage frequencies of codons of the type used in attenuation control are small. A small percentage decrease in the rate of supply of the controlled amino acid can therefore lead to a much larger percentage decrease in the rate of reading a regulatory codon. We show that high sensitivity further requires a particular choice of regulatory codon among several synonymous codons for the

  15. Redescription of the Indo-West Pacific scorpionfish (Scorpaenidae), Neomerinthe erostris (Alcock 1896), a senior synonym of Scorpaena gibbifrons Fowler 1938, N. rotunda Chen 1981, and N. bathyperimensis Zajonz & Klausewitz 2002.

    Science.gov (United States)

    Motomura, Hiroyuki; Causse, Romain; Béarez, Philippe; Mishra, Subhrendu Sekhar

    2015-09-29

    The Indo-West Pacific species, Neomerinthe erostris (Alcock 1896), originally described as Scorpaena erostris, is redescribed as a senior synonym of Scorpaena gibbifrons Fowler 1938, N. rotunda Chen 1981, and N. bathyperimensis Zajonz & Klausewitz 2002. Although the latter three nominal species have been regarded as valid species and N. erostris has not been reported since 1898, examinations of type specimens of the four nominal species revealed that they represent a single species. A lectotype of Scorpaena erostris is herein designated. Neomerinthe erostris is characterized by having a distinct longitudinal ridge on the lateral surface of the maxilla and a strongly rounded dorsal profile of the head.

  16. Illustrated key for identification of the species included in the genus Leptoglossus (Hemiptera: Heteroptera: Coreidae: Coreinae: Anisoscelini), and descriptions of five new species and new synonyms.

    Science.gov (United States)

    Brailovsky, Harry

    2014-05-05

    Five new species of Leptoglossus are described: L.caicosensis from Turks and Caicos Island, L. egeri and L. impensus from Bolivia, L. franckei from Costa Rica, and L. polychromus from Ecuador, Cooperative Republic of Guiana (British Guiana), and French Guiana. Leptoglossus argentinus Bergroth is synonymized under L. chilensis chilensis (Spinola) and Narnia anaticula Brailovsky & Barrera under Leptoglossus occidentalis Heidemann. Dorsal view drawings and key to the 61 known species and 1 subspecies are included; a complete checklist, and the position of each species within the species-group defined herein, are given except for two species L. macrophylus Stål and L. polychromus sp.nov., that are insertae-sedis. The pronotal disk, hind legs, and male genital capsule of the new species here described are illustrated.

  17. The systematic position of the Cladrastis Rafin. genus: history of research, synonyms, place in modern phylogenetic systems

    Directory of Open Access Journals (Sweden)

    Porokhniava Olga L.

    2015-12-01

    C. kentukea has many synonyms, which were relevant in different historical periods. The correct and current, according to the rules of the International Code of the botanical nomenclature, is the name Cladrastis kentukea (Dum. - Cours. Rudd, established by V. E. Rudd in 1972.

  18. No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation

    Directory of Open Access Journals (Sweden)

    Hellberg Michael E

    2006-03-01

    Full Text Available Abstract Background The mitochondrial DNA (mtDNA of most animals evolves more rapidly than nuclear DNA, and often shows higher levels of intraspecific polymorphism and population subdivision. The mtDNA of anthozoans (corals, sea fans, and their kin, by contrast, appears to evolve slowly. Slow mtDNA evolution has been reported for several anthozoans, however this slow pace has been difficult to put in phylogenetic context without parallel surveys of nuclear variation or calibrated rates of synonymous substitution that could permit quantitative rate comparisons across taxa. Here, I survey variation in the coding region of a mitochondrial gene from a coral species (Balanophyllia elegans known to possess high levels of nuclear gene variation, and estimate synonymous rates of mtDNA substitution by comparison to another coral (Tubastrea coccinea. Results The mtDNA surveyed (630 bp of cytochrome oxidase subunit I was invariant among individuals sampled from 18 populations spanning 3000 km of the range of B. elegans, despite high levels of variation and population subdivision for allozymes over these same populations. The synonymous substitution rate between B. elegans and T. coccinea (0.05%/site/106 years is similar to that in most plants, but 50–100 times lower than rates typical for most animals. In addition, while substitutions to mtDNA in most animals exhibit a strong bias toward transitions, mtDNA from these corals does not. Conclusion Slow rates of mitochondrial nucleotide substitution result in low levels of intraspecific mtDNA variation in corals, even when nuclear loci vary. Slow mtDNA evolution appears to be the basal condition among eukaryotes. mtDNA substitution rates switch from slow to fast abruptly and unidirectionally. This switch may stem from the loss of just one or a few mitochondrion-specific DNA repair or replication genes.

  19. SYNONYMS IN GERMAN ONLINE MONOLINGUAL DICTIONARIES

    Directory of Open Access Journals (Sweden)

    Paloma Sánchez Hernández

    2017-03-01

    Full Text Available This study includes both theoretical and qualitative research and falls within the framework of semantics and lexicography. It is based on work conducted as a part of the COMBIDIGILEX research project: MINECO-FEDER FFI2015-64476-P. The lexicographical description proposed in the COMBIDIGILEX project is based on the foundations of bilingual lexicography from an onomasiological perspective, including paradigmatic information and syntagmatic analysis, which is useful to users creating texts for students at an advanced level. The project analyses verbal lexemes in German and Spanish based on a paradigmatic, syntagmatic, orthographic and morphological perspective (among others. Subsequently, a contrastive analysis was conducted between both languages. In this contribution, we first analyse what paradigmatic information is, including its relevance to a dictionary. Paradigmatic information includes not only synonyms and antonyms but also hyperonyms and hyponyms, which often complete the lexicographical article in a general dictionary. Paradigmatic relations can be observed in light of semantic definitions or may independently become part of the lexical entry. Forming the paradigmatic information of an entry in an independent manner is known as “intentionelle Paradigmatik”, and it constitutes a series of advantages in the dictionary (Hausmann 1991b: 2794. This type of information aids the processes of production and expands vocabulary. Next, we examine the appearance of synonyms in three German online monolingual dictionaries – DWDS, WORTSCHATZLEXIKON and DUDEN ONLINE – from the semantic perspective of cognition verbs. The primary objective of the study is to demonstrate the relevance of this type of information as well as the needs it covers from a user’s perspective. Offering the user a series of lexical elements along with information on semantic relations of a paradigmatic nature thus addresses the issue of users having an array of

  20. In silico analysis of consequences of non-synonymous SNPs of Slc11a2 gene in Indian bovines

    Directory of Open Access Journals (Sweden)

    Shreya M. Patel

    2015-09-01

    Full Text Available The aim of our study was to analyze the consequences of non-synonymous SNPs in Slc11a2 gene using bioinformatic tools. There is a current need of efficient bioinformatic tools for in-depth analysis of data generated by the next generation sequencing technologies. SNPs are known to play an imperative role in understanding the genetic basis of many genetic diseases. Slc11a2 is one of the major metal transporter families in mammals and plays a critical role in host defenses. In this study, we performed a comprehensive analysis of the impact of all non-synonymous SNPs in this gene using multiple tools like SIFT, PROVEAN, I-Mutant and PANTHER. Among the total 124 SNPs obtained from amplicon sequencing of Slc11a2 gene by Ion Torrent PGM involving 10 individuals of Gir cattle and Murrah buffalo each, we found 22 non-synonymous. Comparing the prediction of these 4 methods, 5 nsSNPs (G369R, Y374C, A377V, Q385H and N492S were identified as deleterious. In addition, while tested out for polar interactions with other amino acids in the protein, from above 5, Y374C, Q385H and N492S showed a change in interaction pattern and further confirmed by an increase in total energy after energy minimizations in case of mutant protein compared to the native.

  1. A behavior analytic analogue of learning to use synonyms, syntax, and parts of speech.

    Science.gov (United States)

    Chase, Philip N; Ellenwood, David W; Madden, Gregory

    2008-01-01

    Matching-to-sample and sequence training procedures were used to develop responding to stimulus classes that were considered analogous to 3 aspects of verbal behavior: identifying synonyms and parts of speech, and using syntax. Matching-to-sample procedures were used to train 12 paired associates from among 24 stimuli. These pairs were analogous to synonyms. Then, sequence characteristics were trained to 6 of the stimuli. The result was the formation of 3 classes of 4 stimuli, with the classes controlling a sequence response analogous to a simple ordering syntax: first, second, and third. Matching-to-sample procedures were then used to add 4 stimuli to each class. These stimuli, without explicit sequence training, also began to control the same sequence responding as the other members of their class. Thus, three 8-member functionally equivalent sequence classes were formed. These classes were considered to be analogous to parts of speech. Further testing revealed three 8-member equivalence classes and 512 different sequences of first, second, and third. The study indicated that behavior analytic procedures may be used to produce some generative aspects of verbal behavior related to simple syntax and semantics.

  2. ANCAC: amino acid, nucleotide, and codon analysis of COGs – a tool for sequence bias analysis in microbial orthologs

    Directory of Open Access Journals (Sweden)

    Meiler Arno

    2012-09-01

    Full Text Available Abstract Background The COG database is the most popular collection of orthologous proteins from many different completely sequenced microbial genomes. Per definition, a cluster of orthologous groups (COG within this database exclusively contains proteins that most likely achieve the same cellular function. Recently, the COG database was extended by assigning to every protein both the corresponding amino acid and its encoding nucleotide sequence resulting in the NUCOCOG database. This extended version of the COG database is a valuable resource connecting sequence features with the functionality of the respective proteins. Results Here we present ANCAC, a web tool and MySQL database for the analysis of amino acid, nucleotide, and codon frequencies in COGs on the basis of freely definable phylogenetic patterns. We demonstrate the usefulness of ANCAC by analyzing amino acid frequencies, codon usage, and GC-content in a species- or function-specific context. With respect to amino acids we, at least in part, confirm the cognate bias hypothesis by using ANCAC’s NUCOCOG dataset as the largest one available for that purpose thus far. Conclusions Using the NUCOCOG datasets, ANCAC connects taxonomic, amino acid, and nucleotide sequence information with the functional classification via COGs and provides a GUI for flexible mining for sequence-bias. Thereby, to our knowledge, it is the only tool for the analysis of sequence composition in the light of physiological roles and phylogenetic context without requirement of substantial programming-skills.

  3. ANCAC: amino acid, nucleotide, and codon analysis of COGs – a tool for sequence bias analysis in microbial orthologs

    Science.gov (United States)

    2012-01-01

    Background The COG database is the most popular collection of orthologous proteins from many different completely sequenced microbial genomes. Per definition, a cluster of orthologous groups (COG) within this database exclusively contains proteins that most likely achieve the same cellular function. Recently, the COG database was extended by assigning to every protein both the corresponding amino acid and its encoding nucleotide sequence resulting in the NUCOCOG database. This extended version of the COG database is a valuable resource connecting sequence features with the functionality of the respective proteins. Results Here we present ANCAC, a web tool and MySQL database for the analysis of amino acid, nucleotide, and codon frequencies in COGs on the basis of freely definable phylogenetic patterns. We demonstrate the usefulness of ANCAC by analyzing amino acid frequencies, codon usage, and GC-content in a species- or function-specific context. With respect to amino acids we, at least in part, confirm the cognate bias hypothesis by using ANCAC’s NUCOCOG dataset as the largest one available for that purpose thus far. Conclusions Using the NUCOCOG datasets, ANCAC connects taxonomic, amino acid, and nucleotide sequence information with the functional classification via COGs and provides a GUI for flexible mining for sequence-bias. Thereby, to our knowledge, it is the only tool for the analysis of sequence composition in the light of physiological roles and phylogenetic context without requirement of substantial programming-skills. PMID:22958836

  4. Genetic variability in G2 and F2 region between biological clones of human respiratory syncytial virus with or without host immune selection pressure

    Directory of Open Access Journals (Sweden)

    Claudia Trigo Pedroso Moraes

    2015-02-01

    Full Text Available Human respiratory syncytial virus (HRSV is an important respiratory pathogens among children between zero-five years old. Host immunity and viral genetic variability are important factors that can make vaccine production difficult. In this work, differences between biological clones of HRSV were detected in clinical samples in the absence and presence of serum collected from children in the convalescent phase of the illness and from their biological mothers. Viral clones were selected by plaque assay in the absence and presence of serum and nucleotide sequences of the G2 and F2 genes of HRSV biological clones were compared. One non-synonymous mutation was found in the F gene (Ile5Asn in one clone of an HRSV-B sample and one non-synonymous mutation was found in the G gene (Ser291Pro in four clones of the same HRSV-B sample. Only one of these clones was obtained after treatment with the child's serum. In addition, some synonymous mutations were determined in two clones of the HRSV-A samples. In conclusion, it is possible that minor sequences could be selected by host antibodies contributing to the HRSV evolutionary process, hampering the development of an effective vaccine, since we verify the same codon alteration in absence and presence of human sera in individual clones of BR-85 sample.

  5. Genetic variability in G2 and F2 region between biological clones of human respiratory syncytial virus with or without host immune selection pressure.

    Science.gov (United States)

    Moraes, Claudia Trigo Pedroso; Oliveira, Danielle Bruna Leal; Campos, Angelica Cristine Almeida; Bosso, Patricia Alves; Lima, Hildener Nogueira; Stewien, Klaus Eberhard; Gilio, Alfredo Elias; Vieira, Sandra Elisabete; Botosso, Viviane Fongaro; Durigon, Edison Luiz

    2015-02-01

    Human respiratory syncytial virus (HRSV) is an important respiratory pathogens among children between zero-five years old. Host immunity and viral genetic variability are important factors that can make vaccine production difficult. In this work, differences between biological clones of HRSV were detected in clinical samples in the absence and presence of serum collected from children in the convalescent phase of the illness and from their biological mothers. Viral clones were selected by plaque assay in the absence and presence of serum and nucleotide sequences of the G2 and F2 genes of HRSV biological clones were compared. One non-synonymous mutation was found in the F gene (Ile5Asn) in one clone of an HRSV-B sample and one non-synonymous mutation was found in the G gene (Ser291Pro) in four clones of the same HRSV-B sample. Only one of these clones was obtained after treatment with the child's serum. In addition, some synonymous mutations were determined in two clones of the HRSV-A samples. In conclusion, it is possible that minor sequences could be selected by host antibodies contributing to the HRSV evolutionary process, hampering the development of an effective vaccine, since we verify the same codon alteration in absence and presence of human sera in individual clones of BR-85 sample.

  6. Non-synonymous polymorphisms in the P2RX ( 4 ) are related to bone mineral density and osteoporosis risk in a cohort of Dutch fracture patients

    DEFF Research Database (Denmark)

    Wesselius, Anke; Bours, Martijn Jl; Jørgensen, Niklas R

    2013-01-01

    of these two receptors on osteoporosis risk. Patients with fracture (690 females and 231 males, aged ≥50 years) were genotyped for three non-synonymous P2X ( 4 ) R SNPs. Bone mineral density (BMD) was measured at the total hip, lumbar spine, and femoral neck. Subject carrying the variant allele of the Tyr315...... of non-synonymous polymorphisms in the P2RX ( 4 ) and the risk of osteoporosis, suggesting a role of the P2X ( 4 ) R in the regulation of bone mass....

  7. Optimizing Restriction Site Placement for Synthetic Genomes

    Science.gov (United States)

    Montes, Pablo; Memelli, Heraldo; Ward, Charles; Kim, Joondong; Mitchell, Joseph S. B.; Skiena, Steven

    Restriction enzymes are the workhorses of molecular biology. We introduce a new problem that arises in the course of our project to design virus variants to serve as potential vaccines: we wish to modify virus-length genomes to introduce large numbers of unique restriction enzyme recognition sites while preserving wild-type function by substitution of synonymous codons. We show that the resulting problem is NP-Complete, give an exponential-time algorithm, and propose effective heuristics, which we show give excellent results for five sample viral genomes. Our resulting modified genomes have several times more unique restriction sites and reduce the maximum gap between adjacent sites by three to nine-fold.

  8. Sous le pavage territorial, les réseaux de la Culture.

    Directory of Open Access Journals (Sweden)

    Patrick Poncet

    2004-12-01

    Full Text Available «  L’offre artistique et patrimoniale en région, proximité et rayonnement culturel. » Décodons a priori . Offre : concept fondamental de l’économie ; art et patrimoine : binôme inspiré du Trivial pursuit ; en région : synonyme péjoratif de « en province »; proximité : notion géographique complexe ; rayonnement culturel : métaphore nucléaire appliquée aux Beaux Arts (s.l.. Le moins que l’on puisse dire, c’est que, par un tel titre, Fabrice Thuriot ...

  9. 40 CFR 60.4111 - Alternate Hg designated representative.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Alternate Hg designated representative... Times for Coal-Fired Electric Steam Generating Units Hg Designated Representative for Hg Budget Sources § 60.4111 Alternate Hg designated representative. (a) A certificate of representation under § 60.4113...

  10. 20 CFR 266.7 - Accountability of a representative payee.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Accountability of a representative payee. 266.7 Section 266.7 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS UNDER THE RAILROAD RETIREMENT ACT REPRESENTATIVE PAYMENT § 266.7 Accountability of a representative payee. (a) A representative...

  11. HRAS mutations in Costello syndrome: detection of constitutional activating mutations in codon 12 and 13 and loss of wild-type allele in malignancy.

    Science.gov (United States)

    Estep, Anne L; Tidyman, William E; Teitell, Michael A; Cotter, Philip D; Rauen, Katherine A

    2006-01-01

    Costello syndrome (CS) is a complex developmental disorder involving characteristic craniofacial features, failure to thrive, developmental delay, cardiac and skeletal anomalies, and a predisposition to develop neoplasia. Based on similarities with other cancer syndromes, we previously hypothesized that CS is likely due to activation of signal transduction through the Ras/MAPK pathway [Tartaglia et al., 2003]. In this study, the HRAS coding region was sequenced for mutations in a large, well-characterized cohort of 36 CS patients. Heterogeneous missense point mutations predicting an amino acid substitution were identified in 33/36 (92%) patients. The majority (91%) had a 34G --> A transition in codon 12. Less frequent mutations included 35G --> C (codon 12) and 37G --> T (codon 13). Parental samples did not have an HRAS mutation supporting the hypothesis of de novo heterogeneous mutations. There is phenotypic variability among patients with a 34G --> A transition. The most consistent features included characteristic facies and skin, failure to thrive, developmental delay, musculoskeletal abnormalities, visual impairment, cardiac abnormalities, and generalized hyperpigmentation. The two patients with 35G --> C had cardiac arrhythmias whereas one patient with a 37G --> T transversion had an enlarged aortic root. Of the patients with a clinical diagnosis of CS, neoplasia was the most consistent phenotypic feature for predicating an HRAS mutation. To gain an understanding of the relationship between constitutional HRAS mutations and malignancy, HRAS was sequenced in an advanced biphasic rhabdomyosarcoma/fibrosarcoma from an individual with a 34G --> A mutation. Loss of the wild-type HRAS allele was observed, suggesting tumorigenesis in CS patients is accompanied by additional somatic changes affecting HRAS. Finally, due to phenotypic overlap between CS and cardio-facio-cutaneous (CFC) syndromes, the HRAS coding region was sequenced in a well-characterized CFC cohort

  12. Translation attenuation via 3′ terminal codon usage in bovine csn1s2 is responsible for the difference in αs2- and β-casein profile in milk

    Science.gov (United States)

    Kim, Julie J; Yu, Jaeju; Bag, Jnanankur; Bakovic, Marica; Cant, John P

    2015-01-01

    The rate of secretion of αs2-casein into bovine milk is approximately 25% of that of β-casein, yet mammary expression of their respective mRNA transcripts (csn1s2 and csn2) is not different. Our objective was to identify molecular mechanisms that explain the difference in translation efficiency between csn1s2 and csn2. Cell-free translational efficiency of csn2 was 5 times that of csn1s2. Transcripts of csn1s2 distributed into heavier polysomes than csn2 transcripts, indicating an attenuation of elongation and/or termination. Stimulatory and inhibitory effects of the 5′ and 3′ UTRs on translational efficiency were different with luciferase and casein sequences in the coding regions. Substituting the 5′ and 3′ UTRs from csn2 into csn1s2 did not improve csn1s2 translation, implicating the coding region itself in the translation difference. Deletion of a 28-codon fragment from the 3′ terminus of the csn1s2 coding region, which displays codons with low correlations to cell fitness, increased translation to a par with csn2. We conclude that the usage of the last 28 codons of csn1s2 is the main regulatory element that attenuates its expression and is responsible for the differential translational expression of csn1s2 and csn2. PMID:25826667

  13. Genetic variation in codons 167, 198 and 200 of the beta-tubulin gene in whipworms (Trichuris spp.) from a range of domestic animals and wildlife

    DEFF Research Database (Denmark)

    Hansen, Tina Vicky Alstrup; Nejsum, Peter; Olsen, Annette

    2013-01-01

    A recurrent problem in the control of whipworm (Trichuris spp.) infections in many animal species and man is the relatively low efficacy of treatment with a single application of benzimidazoles (BZs). The presence of single nucleotide polymorphisms (SNPs) in codons 167, 198 and 200 in the beta...

  14. MEDIACRACY TURNS INTO A SYNONYM OF MEDIOCRITY?

    Directory of Open Access Journals (Sweden)

    Valentina CHIPER

    2014-11-01

    Full Text Available The link between freedom of speech and democracy is based on ideological legitimacy report. A new phenomenon which is worth noticing is the conversion of the freedom of expression from a freedom seen in certain aspects as a solitary freedom into a communication of the masses. Another challenge is prompted by the change of the traditional communication system at the dawn of technology, Internet and its various applications, as well as of the channels used. A weak point is the change in the values scale. If a journalist or a book is deemed good or valuable in terms of competence and ideas, these values are now unfortunately inspired by what we watch on TV. In this train of thoughts, reliable opinion leaders are no longer the same. Mediacracy turns into a synonym of mediocrity with affectivity and emotion prevailing over reason and instead of the communication of thoughts and opinions.

  15. TG-MS analysis and kinetic study for thermal decomposition of six representative components of municipal solid waste under steam atmosphere.

    Science.gov (United States)

    Zhang, Jinzhi; Chen, Tianju; Wu, Jingli; Wu, Jinhu

    2015-09-01

    Thermal decomposition of six representative components of municipal solid waste (MSW, including lignin, printing paper, cotton, rubber, polyvinyl chloride (PVC) and cabbage) was investigated by thermogravimetric-mass spectroscopy (TG-MS) under steam atmosphere. Compared with TG and derivative thermogravimetric (DTG) curves under N2 atmosphere, thermal decomposition of MSW components under steam atmosphere was divided into pyrolysis and gasification stages. In the pyrolysis stage, the shapes of TG and DTG curves under steam atmosphere were almost the same with those under N2 atmosphere. In the gasification stage, the presence of steam led to a greater mass loss because of the steam partial oxidation of char residue. The evolution profiles of H2, CH4, CO and CO2 were well consistent with DTG curves in terms of appearance of peaks and relevant stages in the whole temperature range, and the steam partial oxidation of char residue promoted the generation of more gas products in high temperature range. The multi-Gaussian distributed activation energy model (DAEM) was proved plausible to describe thermal decomposition behaviours of MSW components under steam atmosphere. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Expression of a codon-optimized β-glucosidase from Cellulomonas flavigena PR-22 in Saccharomyces cerevisiae for bioethanol production from cellobiose.

    Science.gov (United States)

    Ríos-Fránquez, Francisco Javier; González-Bautista, Enrique; Ponce-Noyola, Teresa; Ramos-Valdivia, Ana Carmela; Poggi-Varaldo, Héctor Mario; García-Mena, Jaime; Martinez, Alfredo

    2017-05-01

    Bioethanol is one of the main biofuels produced from the fermentation of saccharified agricultural waste; however, this technology needs to be optimized for profitability. Because the commonly used ethanologenic yeast strains are unable to assimilate cellobiose, several efforts have been made to express cellulose hydrolytic enzymes in these yeasts to produce ethanol from lignocellulose. The C. flavigenabglA gene encoding β-glucosidase catalytic subunit was optimized for preferential codon usage in S. cerevisiae. The optimized gene, cloned into the episomal vector pRGP-1, was expressed, which led to the secretion of an active β-glucosidase in transformants of the S. cerevisiae diploid strain 2-24D. The volumetric and specific extracellular enzymatic activities using pNPG as substrate were 155 IU L -1 and 222 IU g -1 , respectively, as detected in the supernatant of the cultures of the S. cerevisiae RP2-BGL transformant strain growing in cellobiose (20 g L -1 ) as the sole carbon source for 48 h. Ethanol production was 5 g L -1 after 96 h of culture, which represented a yield of 0.41 g g -1 of substrate consumed (12 g L -1 ), equivalent to 76% of the theoretical yield. The S. cerevisiae RP2-BGL strain expressed the β-glucosidase extracellularly and produced ethanol from cellobiose, which makes this microorganism suitable for application in ethanol production processes with saccharified lignocellulose.

  17. Can K-ras codon 12 mutations be used to distinguish benign bile duct proliferations from metastases in the liver? A molecular analysis of 101 liver lesions from 93 patients

    NARCIS (Netherlands)

    Hruban, R. H.; Sturm, P. D.; Slebos, R. J.; Wilentz, R. E.; Musler, A. R.; Yeo, C. J.; Sohn, T. A.; van Velthuysen, M. L.; Offerhaus, G. J.

    1997-01-01

    It can be difficult to distinguish benign bile duct proliferations (BDPs) from well-differentiated metastatic peripancreatic adenocarcinomas on histological grounds alone. Most peripancreatic carcinomas harbor activating point mutations in codon 12 of the K-ras oncogene, suggesting that K-ras

  18. Identification of a rare point mutation at C-terminus of merozoite surface antigen-1 gene of Plasmodium falciparum in eastern Indian isolates.

    Science.gov (United States)

    Raj, Dipak Kumar; Das, Bibhu Ranjan; Dash, A P; Supakar, Prakash C

    2004-01-01

    Merozoite surface antigen-1 (MSA-1) of Plasmodium falciparum is highly immunogenic in human. Several studies suggest that MSA-1 protein is an effective target for a protective immune response. Attempt has been made to find new point mutations by analyzing 244 bp [codon 1655(R) to 1735 (I)] relatively conserved C-terminus region of MSA-1 gene in 125 isolates. This region contains two EGF like domains, which are involved in generating protective immune response in human. Point mutations in this region are very much important in view of vaccine development. Searching of mutational hot spots in MSA-1 protein by sequencing method in a representative number of isolates is quite critical and expensive. Therefore, in this study slot blot and PCR-SSCP method have been used to find out new mutations in the individual isolates showing alterations in the mobility of DNA fragment. Sequencing of the altered bands from the SSCP gel shows a rare non-synonymous point mutation in 7 (5.6%) of the 125 isolates at amino acid position 1704 of MSA-1 gene where isoleucine is replaced by valine.

  19. Amino acid and nucleotide recurrence in aligned sequences: synonymous substitution patterns in association with global and local base compositions.

    Science.gov (United States)

    Nishizawa, M; Nishizawa, K

    2000-10-01

    The tendency for repetitiveness of nucleotides in DNA sequences has been reported for a variety of organisms. We show that the tendency for repetitive use of amino acids is widespread and is observed even for segments conserved between human and Drosophila melanogaster at the level of >50% amino acid identity. This indicates that repetitiveness influences not only the weakly constrained segments but also those sequence segments conserved among phyla. Not only glutamine (Q) but also many of the 20 amino acids show a comparable level of repetitiveness. Repetitiveness in bases at codon position 3 is stronger for human than for D.melanogaster, whereas local repetitiveness in intron sequences is similar between the two organisms. While genes for immune system-specific proteins, but not ancient human genes (i.e. human homologs of Escherichia coli genes), have repetitiveness at codon bases 1 and 2, repetitiveness at codon base 3 for these groups is similar, suggesting that the human genome has at least two mechanisms generating local repetitiveness. Neither amino acid nor nucleotide repetitiveness is observed beyond the exon boundary, denying the possibility that such repetitiveness could mainly stem from natural selection on mRNA or protein sequences. Analyses of mammalian sequence alignments show that while the 'between gene' GC content heterogeneity, which is linked to 'isochores', is a principal factor associated with the bias in substitution patterns in human, 'within gene' heterogeneity in nucleotide composition is also associated with such bias on a more local scale. The relationship amongst the various types of repetitiveness is discussed.

  20. Diabetic macular oedema: under-represented in the genetic analysis of diabetic retinopathy.

    Science.gov (United States)

    Broadgate, Suzanne; Kiire, Christine; Halford, Stephanie; Chong, Victor

    2018-04-01

    Diabetic retinopathy, a complication of both type 1 and type 2 diabetes, is a complex disease and is one of the leading causes of blindness in adults worldwide. It can be divided into distinct subclasses, one of which is diabetic macular oedema. Diabetic macular oedema can occur at any time in diabetic retinopathy and is the most common cause of vision loss in patients with type 2 diabetes. The purpose of this review is to summarize the large number of genetic association studies that have been performed in cohorts of patients with type 2 diabetes and published in English-language journals up to February 2017. Many of these studies have produced positive associations with gene polymorphisms and diabetic retinopathy. However, this review highlights that within this large body of work, studies specifically addressing a genetic association with diabetic macular oedema, although present, are vastly under-represented. We also highlight that many of the studies have small patient numbers and that meta-analyses often inappropriately combine patient data sets. We conclude that there will continue to be conflicting results and no meaningful findings will be achieved if the historical approach of combining all diabetic retinopathy disease states within patient cohorts continues in future studies. This review also identifies several genes that would be interesting to analyse in large, well-defined cohorts of patients with diabetic macular oedema in future candidate gene association studies. © 2018 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  1. Development and testing of monoclonal antibody-based rapid immunodiagnostic test kits for direct detection of Vibrio cholerae O139 synonym Bengal.

    Science.gov (United States)

    Hasan, J A; Huq, A; Nair, G B; Garg, S; Mukhopadhyay, A K; Loomis, L; Bernstein, D; Colwell, R R

    1995-11-01

    We report on the development and testing of two monoclonal antibody-based rapid immunodiagnostic test kits, BengalScreen, a coagglutination test, and Bengal DFA, a direct fluorescent-antibody test, for direct detection of Vibrio cholerae O139 synonym Bengal in clinical and environmental specimens. The BengalScreen test requires less than 5 min to complete and can be used in the field. Bengal DFA, being more sensitive than BengalScreen, requires only one reagent and less than 20 min for detection and enumeration of V. cholerae O139 synonym Bengal. In tests for specificity, all 40 strains of V. cholerae O139 reacted with both test kits, whereas 157 strains of heterologous species examined did not, yielding 100% specificity in this study. A field trial was conducted in with both BengalScreen and Bengal DFA, and the results were compared with those obtained by conventional culture methods. BengalScreen demonstrated a sensitivity of 95%, a specificity of 100%, a positive predictive value of 100%, and a negative predictive value of 94%. Results obtained by Bengal DFA, on the other hand, were 100% sensitive and 100% specific and yielded 100% positive and negative predictive values compared with culture methods. In a second evaluation, 93 stool specimens from Mexico that were negative for V. cholerae O139 by culture were also tested with both the BengalScreen and Bengal DFA kits. None of the 93 specimens were positive for V. cholerae O139 by both tests. A concentration method was optimized for screening of environmental water samples for V. cholerae O139 synonym Bengal with rapid test kits. BengalScreen results were unequivocally positive when water samples contained at least 2.0 x 10(3) CFU/ml, whereas Bengal DFA demonstrated an unequivocally positive reaction when the water sample contained at least 1.5 x 10(2) CFU/ml. When Bengal DFA was compared with conventional culture methods for enumeration of V. cholerae O139 synonym Bengal organisms, no difference was observed.

  2. Simulated evolution applied to study the genetic code optimality using a model of codon reassignments.

    Science.gov (United States)

    Santos, José; Monteagudo, Angel

    2011-02-21

    As the canonical code is not universal, different theories about its origin and organization have appeared. The optimization or level of adaptation of the canonical genetic code was measured taking into account the harmful consequences resulting from point mutations leading to the replacement of one amino acid for another. There are two basic theories to measure the level of optimization: the statistical approach, which compares the canonical genetic code with many randomly generated alternative ones, and the engineering approach, which compares the canonical code with the best possible alternative. Here we used a genetic algorithm to search for better adapted hypothetical codes and as a method to guess the difficulty in finding such alternative codes, allowing to clearly situate the canonical code in the fitness landscape. This novel proposal of the use of evolutionary computing provides a new perspective in the open debate between the use of the statistical approach, which postulates that the genetic code conserves amino acid properties far better than expected from a random code, and the engineering approach, which tends to indicate that the canonical genetic code is still far from optimal. We used two models of hypothetical codes: one that reflects the known examples of codon reassignment and the model most used in the two approaches which reflects the current genetic code translation table. Although the standard code is far from a possible optimum considering both models, when the more realistic model of the codon reassignments was used, the evolutionary algorithm had more difficulty to overcome the efficiency of the canonical genetic code. Simulated evolution clearly reveals that the canonical genetic code is far from optimal regarding its optimization. Nevertheless, the efficiency of the canonical code increases when mistranslations are taken into account with the two models, as indicated by the fact that the best possible codes show the patterns of the

  3. Simulated evolution applied to study the genetic code optimality using a model of codon reassignments

    Directory of Open Access Journals (Sweden)

    Monteagudo Ángel

    2011-02-01

    Full Text Available Abstract Background As the canonical code is not universal, different theories about its origin and organization have appeared. The optimization or level of adaptation of the canonical genetic code was measured taking into account the harmful consequences resulting from point mutations leading to the replacement of one amino acid for another. There are two basic theories to measure the level of optimization: the statistical approach, which compares the canonical genetic code with many randomly generated alternative ones, and the engineering approach, which compares the canonical code with the best possible alternative. Results Here we used a genetic algorithm to search for better adapted hypothetical codes and as a method to guess the difficulty in finding such alternative codes, allowing to clearly situate the canonical code in the fitness landscape. This novel proposal of the use of evolutionary computing provides a new perspective in the open debate between the use of the statistical approach, which postulates that the genetic code conserves amino acid properties far better than expected from a random code, and the engineering approach, which tends to indicate that the canonical genetic code is still far from optimal. We used two models of hypothetical codes: one that reflects the known examples of codon reassignment and the model most used in the two approaches which reflects the current genetic code translation table. Although the standard code is far from a possible optimum considering both models, when the more realistic model of the codon reassignments was used, the evolutionary algorithm had more difficulty to overcome the efficiency of the canonical genetic code. Conclusions Simulated evolution clearly reveals that the canonical genetic code is far from optimal regarding its optimization. Nevertheless, the efficiency of the canonical code increases when mistranslations are taken into account with the two models, as indicated by the

  4. Reexamination of the holotype of Pseuderythrinus rosapinnis Hoedeman, 1950, a synonym of Hoplerythrinus unitaeniatus Agassiz, 1829 (Pisces, Characiformes, Erythrinidae)

    NARCIS (Netherlands)

    Jongh, de Bas O.

    1991-01-01

    The holotype and only known specimen of Pseuderythrinus rosapinnis Hoedeman, 1950 from Surinam is reexamined for the dentition of its palatal arch. Its morphometric and meristic data are compared with four species of erythrinids from the Guianas. Pseuderythrinus rosapinnis turns out to be a synonym

  5. Second generation codon optimized minicircle (CoMiC) for nonviral reprogramming of human adult fibroblasts.

    Science.gov (United States)

    Diecke, Sebastian; Lisowski, Leszek; Kooreman, Nigel G; Wu, Joseph C

    2014-01-01

    The ability to induce pluripotency in somatic cells is one of the most important scientific achievements in the fields of stem cell research and regenerative medicine. This technique allows researchers to obtain pluripotent stem cells without the controversial use of embryos, providing a novel and powerful tool for disease modeling and drug screening approaches. However, using viruses for the delivery of reprogramming genes and transcription factors may result in integration into the host genome and cause random mutations within the target cell, thus limiting the use of these cells for downstream applications. To overcome this limitation, various non-integrating techniques, including Sendai virus, mRNA, minicircle, and plasmid-based methods, have recently been developed. Utilizing a newly developed codon optimized 4-in-1 minicircle (CoMiC), we were able to reprogram human adult fibroblasts using chemically defined media and without the need for feeder cells.

  6. Diversity and frequency of kdr mutations within Anopheles sinensis populations from Guangxi, China.

    Science.gov (United States)

    Yang, Chan; Feng, Xiangyang; Huang, Zushi; Li, Mei; Qiu, Xinghui

    2016-08-15

    Anopheles sinensis is a major vector of malaria in China and its control is under great threat as the development of insecticide resistance. Voltage-gated sodium channel (VGSC) is the target of several classes of insecticides. Genetic mutations of VGSC have been documented to confer knockdown resistance (kdr) to dichlorodiphenyltrichloroethane (DDT) and pyrethroids in mosquitoes. To control this vector efficiently, it is important to know the resistance-associated genetic mutations, their distribution frequencies and genealogical relations. Three hundreds and thirteen (313) adults of An. sinensis collected from nine locations across Guangxi Zhuang Autonomous Region were used. The partial sequence of the An. sinensis voltage gated sodium channel gene (AS-VGSC) containing codon 1014 was sequenced. PHASE2.1 was used to construct the haplotypes of each individual, and the accuracy of haplotypes was further confirmed by clone sequencing. The genealogical relations of kdr mutations in AS-VGSC was analysed using TCS 2.1 and Network 5.0. Sixteen AS-VGSC haplotypes including seven haplotypes carrying non-synonymous mutations at codon 1014, and fifty-five AS-VGSC genotypes were identified from 313 mosquitoes collected from nine geographical locations across Guangxi. The number of haplotypes in each of the nine populations ranged from 5 to 13. The frequency of haplotypes carrying kdr mutations ranged from 2.7 to 80.0 % within the nine populations, of which 1014C was unexpectedly high in the northeast of Guangxi. Genealogical analysis suggested multiple origins of kdr mutations in An. sinensis. Diverse haplotypes of AS-VGSC are distributed in Guangxi. The presence of haplotypes carrying mutations at codon 1014 indicates a risk of pyrethroid and DDT resistance. The kdr mutations show differential distribution geographically, with high frequencies occurred in the northeast of Guangxi. Genealogical analysis suggests multiple origins of kdr mutations in An. sinensis populations

  7. Ballistic Impact Response of Kevlar 49 and Zylon under Conditions Representing Jet Engine Fan Containment

    Science.gov (United States)

    Pereira, J. Michael; Revilock, Duane M.

    2007-01-01

    A ballistic impact test program was conducted to provide validation data for the development of numerical models of blade out events in fabric containment systems. The impact response of two different fiber materials - Kevlar 49 (E.I. DuPont Nemours and Company) and Zylon AS (Toyobo Co., Ltd.) was studied by firing metal projectiles into dry woven fabric specimens using a gas gun. The shape, mass, orientation and velocity of the projectile were varied and recorded. In most cases the tests were designed such that the projectile would perforate the specimen, allowing measurement of the energy absorbed by the fabric. The results for both Zylon and Kevlar presented here represent a useful set of data for the purposes of establishing and validating numerical models for predicting the response of fabrics under conditions simulating those of a jet engine blade release situation. In addition some useful empirical observations were made regarding the effects of projectile orientation and the relative performance of the different materials.

  8. Non-Synonymous Polymorphisms in the FCN1 Gene Determine Ligand-Binding Ability and Serum Levels of M-Ficolin

    DEFF Research Database (Denmark)

    Ammitzbøll, Christian Gytz; Kjær, Troels Rønn; Steffensen, Rudi

    2012-01-01

    The innate immune system encompasses various recognition molecules able to sense both exogenous and endogenous danger signals arising from pathogens or damaged host cells. One such pattern-recognition molecule is M-ficolin, which is capable of activating the complement system through the lectin...... of non-synonymous SNPs on protein function....

  9. Combined protein construct and synthetic gene engineering for heterologous protein expression and crystallization using Gene Composer

    Directory of Open Access Journals (Sweden)

    Walchli John

    2009-04-01

    Full Text Available Abstract Background With the goal of improving yield and success rates of heterologous protein production for structural studies we have developed the database and algorithm software package Gene Composer. This freely available electronic tool facilitates the information-rich design of protein constructs and their engineered synthetic gene sequences, as detailed in the accompanying manuscript. Results In this report, we compare heterologous protein expression levels from native sequences to that of codon engineered synthetic gene constructs designed by Gene Composer. A test set of proteins including a human kinase (P38α, viral polymerase (HCV NS5B, and bacterial structural protein (FtsZ were expressed in both E. coli and a cell-free wheat germ translation system. We also compare the protein expression levels in E. coli for a set of 11 different proteins with greatly varied G:C content and codon bias. Conclusion The results consistently demonstrate that protein yields from codon engineered Gene Composer designs are as good as or better than those achieved from the synonymous native genes. Moreover, structure guided N- and C-terminal deletion constructs designed with the aid of Gene Composer can lead to greater success in gene to structure work as exemplified by the X-ray crystallographic structure determination of FtsZ from Bacillus subtilis. These results validate the Gene Composer algorithms, and suggest that using a combination of synthetic gene and protein construct engineering tools can improve the economics of gene to structure research.

  10. A recoding method to improve the humoral immune response to an HIV DNA vaccine.

    Directory of Open Access Journals (Sweden)

    Yaoxing Huang

    Full Text Available This manuscript describes a novel strategy to improve HIV DNA vaccine design. Employing a new information theory based bioinformatic algorithm, we identify a set of nucleotide motifs which are common in the coding region of HIV, but are under-represented in genes that are highly expressed in the human genome. We hypothesize that these motifs contribute to the poor protein expression of gag, pol, and env genes from the c-DNAs of HIV clinical isolates. Using this approach and beginning with a codon optimized consensus gag gene, we recode the nucleotide sequence so as to remove these motifs without modifying the amino acid sequence. Transfecting the recoded DNA sequence into a human kidney cell line results in doubling the gag protein expression level compared to the codon optimized version. We then turn both sequences into DNA vaccines and compare induced antibody response in a murine model. Our sequence, which has the motifs removed, induces a five-fold increase in gag antibody response compared to the codon optimized vaccine.

  11. Zymoseptoria ardabiliae and Z. pseudotritici, two progenitor species of the septoria tritici leaf blotch fungus Z. tritici (synonym: Mycosphaerella graminicola)

    NARCIS (Netherlands)

    Stukenbrock, E.H.; Quaedvlieg, W.; Javan-Nikhah, M.; Zala, M.; Crous, P.W.; McDonald, B.A.

    2012-01-01

    Zymoseptoria is a newly described genus that includes the prominent wheat pathogen Zymoseptoria tritici (synonyms Mycosphaerella graminicola and Septoria tritici). Studies indicated that the center of origin of Z. tritici is in the Middle East where this important pathogen emerged during the

  12. Two non-synonymous markers in PTPN21, identified by genome-wide association study data-mining and replication, are associated with schizophrenia.

    LENUS (Irish Health Repository)

    Chen, Jingchun

    2011-09-01

    We conducted data-mining analyses of genome wide association (GWA) studies of the CATIE and MGS-GAIN datasets, and found 13 markers in the two physically linked genes, PTPN21 and EML5, showing nominally significant association with schizophrenia. Linkage disequilibrium (LD) analysis indicated that all 7 markers from PTPN21 shared high LD (r(2)>0.8), including rs2274736 and rs2401751, the two non-synonymous markers with the most significant association signals (rs2401751, P=1.10 × 10(-3) and rs2274736, P=1.21 × 10(-3)). In a meta-analysis of all 13 replication datasets with a total of 13,940 subjects, we found that the two non-synonymous markers are significantly associated with schizophrenia (rs2274736, OR=0.92, 95% CI: 0.86-0.97, P=5.45 × 10(-3) and rs2401751, OR=0.92, 95% CI: 0.86-0.97, P=5.29 × 10(-3)). One SNP (rs7147796) in EML5 is also significantly associated with the disease (OR=1.08, 95% CI: 1.02-1.14, P=6.43 × 10(-3)). These 3 markers remain significant after Bonferroni correction. Furthermore, haplotype conditioned analyses indicated that the association signals observed between rs2274736\\/rs2401751 and rs7147796 are statistically independent. Given the results that 2 non-synonymous markers in PTPN21 are associated with schizophrenia, further investigation of this locus is warranted.

  13. Climate Change and the Representative Agent

    Energy Technology Data Exchange (ETDEWEB)

    Howarth, R.B. [Environmental Studies Program, Dartmouth College, Hanover, New Hampshire 03755 (United States)

    2000-02-01

    The artifice of an infinitely-lived representative agent is commonly invoked to balance the present costs and future benefits of climate stabilization policies. Since actual economies are populated by overlapping generations of finite-lived persons, this approach begs important questions of welfare aggregation. This paper compares the results of representative agent and overlapping generations models that are numerically calibrated based on standard assumptions regarding climate economy interactions. Under two social choice rules - Pareto efficiency and classical utilitarianism - the models generate closely similar simulation results. In the absence of policies to redistribute income between present and future generations, efficient rates of carbon dioxide emissions abatement rise from 15 to 20% between the years 2000 and 2105. Under classical utilitarianism, in contrast, optimal control rates rise from 48 to 79% this same period. 23 refs.

  14. Mantis indica Mukherjee, 1995: a synonym of Statilia nemoralis (Saussure, 1870 (Insecta: Mantodea

    Directory of Open Access Journals (Sweden)

    P. Chatterjee

    2014-10-01

    Full Text Available Mantis indica (Mukherjee, 1995 was erected on the basis of some distinctive characters. Based on morphological characters, it was supposed to belong to the genus Statilia (Roy (1999: 163. However, in the absence of the knowledge of the structure of genitalia, its species status remained confusing. A further study on the structure of genitalia revealed that Mantis indica (Mukherjee, 1995 is undoubtedly a synonym of Statilia nemoralis (Saussure, 1870. A table is provided to compare significant features of related species. Colour photographs of holotype and genitalia of comparable species are also provided.

  15. Loss and gain of function in SERPINB11: an example of a gene under selection on standing variation, with implications for host-pathogen interactions.

    Directory of Open Access Journals (Sweden)

    Susana Seixas

    Full Text Available Serine protease inhibitors (SERPINs are crucial in the regulation of diverse biological processes including inflammation and immune response. SERPINB11, located in the 18q21 gene cluster, is a polymorphic gene/pseudogene coding for a non-inhibitory SERPIN. In a genome-wide scan for recent selection, SERPINB11 was identified as a potential candidate gene for adaptive evolution in Yoruba. The present study sought a better understanding of the evolutionary history of SERPINB11, with special focus on evaluating its selective signature. Through the resequencing of coding and noncoding regions of SERPINB11 in 20 Yorubans and analyzing primate orthologous sequences, we identified a full-length SERPINB11 variant encoding a non-inhibitory SERPIN as the putative candidate of selection--probably driven to higher frequencies by an adaptive response using preexisting variation. In addition, we detected contrasting evolutionary features of SERPINB11 in primates: While primate phylogeny as a whole is under purifying selection, the human lineage shows evidence of positive selection in a few codons, all associated with the active SERPINB11. Comparative modeling studies suggest that positively selected codons reduce SERPINB11's ability to undergo the conformational changes typical of inhibitory SERPINs--suggesting that it is evolving towards a new non-inhibitory function in humans. Significant correlations between SERPINB11 variants and the environmental variables, pastoralism and pathogen richness, have led us to propose a selective advantage through host-pathogen interactions, possibly linked to an adaptive response combating the emergence of infectious diseases in recent human evolution. This work represents the first description of a resurrected gene in humans, and may well exemplify selection on standing variation triggered by drastic ecological shifts.

  16. Signatures of positive selection in Toll-like receptor (TLR genes in mammals

    Directory of Open Access Journals (Sweden)

    Areal Helena

    2011-12-01

    Full Text Available Abstract Background Toll-like receptors (TLRs are a major class of pattern recognition receptors (PRRs expressed in the cell surface or membrane compartments of immune and non-immune cells. TLRs are encoded by a multigene family and represent the first line of defense against pathogens by detecting foreigner microbial molecular motifs, the pathogen-associated molecular patterns (PAMPs. TLRs are also important by triggering the adaptive immunity in vertebrates. They are characterized by the presence of leucine-rich repeats (LRRs in the ectodomain, which are associated with the PAMPs recognition. The direct recognition of different pathogens by TLRs might result in different evolutionary adaptations important to understand the dynamics of the host-pathogen interplay. Ten mammal TLR genes, viral (TLR3, 7, 8, 9 and non-viral (TLR1-6, 10, were selected to identify signatures of positive selection that might have been imposed by interacting pathogens and to clarify if viral and non-viral TLRs might display different patterns of molecular evolution. Results By using Maximum Likelihood approaches, evidence of positive selection was found in all the TLRs studied. The number of positively selected codons (PSC ranged between 2-26 codons (0.25%-2.65% with the non-viral TLR4 as the receptor with higher percentage of positively selected codons (2.65%, followed by the viral TLR8 (2.50%. The results indicated that viral and non-viral TLRs are similarly under positive selection. Almost all TLRs have at least one PSC located in the LRR ectodomain which underlies the importance of the pathogen recognition by this region. Conclusions Our results are not in line with previous studies on primates and birds that identified more codons under positive selection in non-viral TLRs. This might be explained by the fact that both primates and birds are homogeneous groups probably being affected by only a restricted number of related viruses with equivalent motifs to be

  17. Taxonomic and nomenclatural notes on Laccaria B. & Br. Laccaria amethystea, L. fraterna, L. laccata, L. pumila, and their synonyms

    NARCIS (Netherlands)

    Mueller, Gregory M.; Vellinga, Else C.

    1986-01-01

    Laccaria amethystea, not L. amethystina nor L. calospora, is shown to be the correct name for the amethyst colored Laccaria. A neotype for L. amethystea is proposed and a complete list of its synonyms is given. Data which support placing L. ohiensis and L. tetraspora in synonymy with L. laccata are

  18. Analysis of four families with the Stickler syndrome by linkage studies. Identification of a new premature stop codon in the COL2A1 gene in a family

    Energy Technology Data Exchange (ETDEWEB)

    Bonaventure, J.; Lasselin, C. [Hopital Necker, Paris (France); Toutain, A. [CHU Bretonneau, Tours (France)] [and others

    1994-09-01

    The Stickler syndrome is an arthro-ophthalmopathy which associates progressive myopia with vitreal degeneration and retinal detachment. Cleft palate, cranio-facial abnormalities, deafness and osteoarthritis are often associated symptoms. Genetic heterogeneity of this autosomal dominant disease was consistent with its large clinical variability. Linkage studies have provided evidence for cosegregation of the disease with COL2A1, the gene coding for type II collagen, in about 50% of the families. Four additional families are reported here. Linkage analyses by using a VNTR located in the 3{prime} region of the gene were achieved. In three families, positive lod scores were obtained with a cumulative maximal value of 3.5 at a recombination fraction of 0. In one of these families, single strand conformation analysis of 25 exons disclosed a new mutation in exon 42. Codon for glutamic acid at position a1-803 was converted into a stop codon. The mutation was detected in DNA samples from all the affected members of the family but not in the unaffected. This result confirms that most of the Stickler syndromes linked to COL2A1 are due to premature stop codons. In a second family, an abnormal SSCP pattern of exon 34 was detected in all the affected individuals. The mutation is likely to correspond to a splicing defect in the acceptor site of intron 33. In one family the disease did not segregate with the COL2A1 locus. Further linkage studies with intragenic dimorphic sites in the COL10A1 gene and highly polymorphic markers close to the COL9A1 locus indicated that this disorder did not result from defects in these two genes.

  19. The identity and distribution of Fiorinia phantasma (Cockerell & Robinson) (Hemiptera: Coccomorpha: Diaspididae), with a new synonym.

    Science.gov (United States)

    Watson, Gillian W; Williams, Douglas J; Miller, Douglass R

    2015-11-25

    The morphologies of Fiorinia phantasma (Cockerell & Robinson) (Hemiptera: Coccomorpha: Diaspididae) and F. coronata Williams & Watson are reviewed, and the name F. coronata is placed as a junior synonym of the name F. phantasma syn. n. The known geographical distribution and host range of F. phantasma is documented and discussed. An identification key to 12 of the 16 species of Fiorinia known from the Australasian, Nearctic and Neotropical Regions is provided.

  20. Common non-synonymous SNPs associated with breast cancer susceptibility: findings from the Breast Cancer Association Consortium

    OpenAIRE

    Milne, Roger L.; Burwinkel, Barbara; Michailidou, Kyriaki; Arias-Perez, Jose-Ignacio; Zamora, M. Pilar; Menéndez-Rodríguez, Primitiva; Hardisson, David; Mendiola, Marta; González-Neira, Anna; Pita, Guillermo; Alonso, M. Rosario; Dennis, Joe; Wang, Qin; Bolla, Manjeet K.; Swerdlow, Anthony

    2014-01-01

    Candidate variant association studies have been largely unsuccessful in identifying common breast cancer susceptibility variants, although most studies have been underpowered to detect associations of a realistic magnitude. We assessed 41 common non-synonymous single-nucleotide polymorphisms (nsSNPs) for which evidence of association with breast cancer risk had been previously reported. Case-control data were combined from 38 studies of white European women (46 450 cases and 42 600 controls) ...

  1. Performance evaluation of unified medical language system®'s synonyms expansion to query PubMed

    Directory of Open Access Journals (Sweden)

    Griffon Nicolas

    2012-02-01

    Full Text Available Abstract Background PubMed is the main access to medical literature on the Internet. In order to enhance the performance of its information retrieval tools, primarily non-indexed citations, the authors propose a method: expanding users' queries using Unified Medical Language System' (UMLS synonyms i.e. all the terms gathered under one unique Concept Unique Identifier. Methods This method was evaluated using queries constructed to emphasize the differences between this new method and the current PubMed automatic term mapping. Four experts assessed citation relevance. Results Using UMLS, we were able to retrieve new citations in 45.5% of queries, which implies a small increase in recall. The new strategy led to a heterogeneous 23.7% mean increase in non-indexed citation retrieved. Of these, 82% have been published less than 4 months earlier. The overall mean precision was 48.4% but differed according to the evaluators, ranging from 36.7% to 88.1% (Inter rater agreement was poor: kappa = 0.34. Conclusions This study highlights the need for specific search tools for each type of user and use-cases. The proposed strategy may be useful to retrieve recent scientific advancement.

  2. 27 CFR 71.31 - Attorneys and other representatives.

    Science.gov (United States)

    2010-04-01

    ... representatives. 71.31 Section 71.31 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... applicant may be represented by an attorney, certified public accountant, or other person enrolled to practice before the Alcohol and Tobacco Tax and Trade Bureau under 31 CFR part 8—Practice before the...

  3. Evolutionary rates at codon sites may be used to align sequences and infer protein domain function

    Directory of Open Access Journals (Sweden)

    Hazelhurst Scott

    2010-03-01

    Full Text Available Abstract Background Sequence alignments form part of many investigations in molecular biology, including the determination of phylogenetic relationships, the prediction of protein structure and function, and the measurement of evolutionary rates. However, to obtain meaningful results, a significant degree of sequence similarity is required to ensure that the alignments are accurate and the inferences correct. Limitations arise when sequence similarity is low, which is particularly problematic when working with fast-evolving genes, evolutionary distant taxa, genomes with nucleotide biases, and cases of convergent evolution. Results A novel approach was conceptualized to address the "low sequence similarity" alignment problem. We developed an alignment algorithm termed FIRE (Functional Inference using the Rates of Evolution, which aligns sequences using the evolutionary rate at codon sites, as measured by the dN/dS ratio, rather than nucleotide or amino acid residues. FIRE was used to test the hypotheses that evolutionary rates can be used to align sequences and that the alignments may be used to infer protein domain function. Using a range of test data, we found that aligning domains based on evolutionary rates was possible even when sequence similarity was very low (for example, antibody variable regions. Furthermore, the alignment has the potential to infer protein domain function, indicating that domains with similar functions are subject to similar evolutionary constraints. These data suggest that an evolutionary rate-based approach to sequence analysis (particularly when combined with structural data may be used to study cases of convergent evolution or when sequences have very low similarity. However, when aligning homologous gene sets with sequence similarity, FIRE did not perform as well as the best traditional alignment algorithms indicating that the conventional approach of aligning residues as opposed to evolutionary rates remains the

  4. Evolutionary rate patterns of the Gibberellin pathway genes

    Directory of Open Access Journals (Sweden)

    Zhang Fu-min

    2009-08-01

    Full Text Available Abstract Background Analysis of molecular evolutionary patterns of different genes within metabolic pathways allows us to determine whether these genes are subject to equivalent evolutionary forces and how natural selection shapes the evolution of proteins in an interacting system. Although previous studies found that upstream genes in the pathway evolved more slowly than downstream genes, the correlation between evolutionary rate and position of the genes in metabolic pathways as well as its implications in molecular evolution are still less understood. Results We sequenced and characterized 7 core structural genes of the gibberellin biosynthetic pathway from 8 representative species of the rice tribe (Oryzeae to address alternative hypotheses regarding evolutionary rates and patterns of metabolic pathway genes. We have detected significant rate heterogeneity among 7 GA pathway genes for both synonymous and nonsynonymous sites. Such rate variation is mostly likely attributed to differences of selection intensity rather than differential mutation pressures on the genes. Unlike previous argument that downstream genes in metabolic pathways would evolve more slowly than upstream genes, the downstream genes in the GA pathway did not exhibited the elevated substitution rate and instead, the genes that encode either the enzyme at the branch point (GA20ox or enzymes catalyzing multiple steps (KO, KAO and GA3ox in the pathway had the lowest evolutionary rates due to strong purifying selection. Our branch and codon models failed to detect signature of positive selection for any lineage and codon of the GA pathway genes. Conclusion This study suggests that significant heterogeneity of evolutionary rate of the GA pathway genes is mainly ascribed to differential constraint relaxation rather than the positive selection and supports the pathway flux theory that predicts that natural selection primarily targets enzymes that have the greatest control on fluxes.

  5. Mannose-binding lectin codon 54 gene polymorphism in relation to risk of nosocomial invasive fungal infection in preterm neonates in the neonatal intensive care unit.

    Science.gov (United States)

    Aydemir, Cumhur; Onay, Huseyin; Oguz, Serife Suna; Ozdemir, Taha Resid; Erdeve, Omer; Ozkinay, Ferda; Dilmen, Ugur

    2011-09-01

    Preterm neonates are susceptible to infection due to a combination of sub-optimal immunity and increased exposure to invasive organisms. Invasive fungal infections are associated with significant morbidity and mortality among preterm infants cared for in the neonatal intensive care unit (NICU). Mannose-binding lectin (MBL) is a component of the innate immune system, which may be especially important in the neonatal setting. The objective of this study was to investigate the presence of any association between MBL gene polymorphism and nosocomial invasive fungal infection in preterm neonates. Codon 54 (B allele) polymorphism in exon 1 of the MBL gene was investigated in 31 patients diagnosed as nosocomial invasive fungal infection and 30 control preterm neonates. AB genotype was determined in 26% and 30% of patient and control groups, respectively, and the difference was not statistically significant. AA genotype was determined in 74% of the patient group and in 67% of the control group, and the difference was not statistically significant. B allele frequency was not different significantly in the patient group (13%) compared to the control group (18%). In our study, no relationship was found between MBL codon 54 gene polymorphism and the risk of nosocomial invasive fungal infection in preterm neonates in NICU.

  6. New synonyms and a new name in Asteraceae: Senecioneae from the southern African winter rainfall region

    Directory of Open Access Journals (Sweden)

    J. C. Manning

    2010-07-01

    Full Text Available A review of the genera Othonna and Senecio undertaken for the forthcoming Greater Cape plants 2: Namaqualand-southern Namib and western Karoo (Manning in prep. led to a re-examination of the taxonomic status of several species. This was facilitated by the recent availability of high-resolution digital images on the Aluka website (www.aluka.org of the Drege isotypes in the Paris Herbarium that formed the basis of many species described by De Candolle in his Prodromus systematis naturalis regni vegetabilis. These images made it possible to identify several names whose application had remained uncertain until now. Each case is briefly discussed, with citation of additional relevant herbarium specimens. The following species are reduced to synonomy: O. incisa Harv. is included in O. rosea Harv.; O. spektakelensis Compton and O. zeyheri Sond. ex Harv. are included in O. retrorsa DC.; S. maydae Merxm. is included in S. albopunctatus Bolus, which is now considered to include forms with radiate and discoid capitula; S. cakilefolius DC. is included in  O. arenarius Thunb.; S. pearsonii Hutch, is included in O. aspertdus DC.; S. parvifolius DC. is included in S. carroensis DC.; S. eriobasis DC. is included in S. erosus L.f.; and S. lobelioides DC. is included in S. flavus (Decne. Sch.Bip. The name S. panduratus (Thunb. Less, is identified as a synonym of S. erosus L.f. and plants that are currently know n under this name should be called S. robertiifolius DC. The confusion in the application o f the names O. perfoliata (L.f. Jacq. and O. filicaulis Jacq. is examined. O. perfoliata is lecto- typified against a specimen in the Linnaean Herbarium (LINN  w ith radiate capitula. The name O. filicaulis correctly applies to a radiate species and is treated as a synonym of O. perfoliata. The vegetatively similar taxon with disciform capitula that is currently known as O. filicaulis should be known as (  undulosa (DC. J.C.Manning  & Goldblatt, comb. nov. The

  7. Common non-synonymous SNPs associated with breast cancer susceptibility

    DEFF Research Database (Denmark)

    Milne, Roger L; Burwinkel, Barbara; Michailidou, Kyriaki

    2014-01-01

    Candidate variant association studies have been largely unsuccessful in identifying common breast cancer susceptibility variants, although most studies have been underpowered to detect associations of a realistic magnitude. We assessed 41 common non-synonymous single-nucleotide polymorphisms (ns......SNPs) for which evidence of association with breast cancer risk had been previously reported. Case-control data were combined from 38 studies of white European women (46 450 cases and 42 600 controls) and analyzed using unconditional logistic regression. Strong evidence of association was observed for three ns...... associations reached genome-wide statistical significance in a combined analysis of available data, including independent data from nine genome-wide association studies (GWASs): for ATXN7-K264R, OR = 1.07 (95% CI = 1.05-1.10, P = 1.0 × 10(-8)); for AKAP9-M463I, OR = 1.05 (95% CI = 1.04-1.07, P = 2.0 × 10...

  8. Common non-synonymous SNPs associated with breast cancer susceptibility: findings from the Breast Cancer Association Consortium

    OpenAIRE

    Milne, Roger L.; Burwinkel, Barbara; Michailidou, Kyriaki; Arias-Perez, Jose-Ignacio; Zamora, M. Pilar; Menéndez-Rodríguez, Primitiva; Hardisson, David; Mendiola, Marta; González-Neira, Anna; Pita, Guillermo; Alonso, M. Rosario; Dennis, Joe; Wang, Qin; Bolla, Manjeet K.; Swerdlow, Anthony

    2014-01-01

    Candidate variant association studies have been largely unsuccessful in identifying common breast cancer susceptibility\\ud variants, although most studies have been underpowered to detect associations of a realistic magnitude.\\ud We assessed 41 common non-synonymous single-nucleotide polymorphisms (nsSNPs) for which\\ud evidence of association with breast cancer risk had been previously reported. Case-control data were combined\\ud from 38 studies of white European women (46 450 cases and 42 60...

  9. Multi-country Survey Revealed Prevalent and Novel F1534S Mutation in Voltage-Gated Sodium Channel (VGSC Gene in Aedes albopictus.

    Directory of Open Access Journals (Sweden)

    Jiabao Xu

    2016-05-01

    Full Text Available Aedes albopictus is an important dengue vector because of its aggressive biting behavior and rapid spread out of its native home range in Southeast Asia. Pyrethroids are widely used for adult mosquito control, and resistance to pyrethroids should be carefully monitored because vector control is the only effective method currently available to prevent dengue transmission. The voltage-gated sodium channel gene is the target site of pyrethroids, and mutations in this gene cause knockdown resistance (kdr. Previous studies reported various mutations in the voltage-gated sodium channel (VGSC gene, but the spatial distribution of kdr mutations in Ae. albopictus has not been systematically examined, and the association between kdr mutation and phenotypic resistance has not been established.A total of 597 Ae. albopictus individuals from 12 populations across Asia, Africa, America and Europe were examined for mutations in the voltage-gated sodium channel gene. Three domains for a total of 1,107 bp were sequenced for every individual. Two populations from southern China were examined for pyrethroid resistance using the World Health Organization standard tube bioassay, and the association between kdr mutations and phenotypic resistance was tested.A total of 29 synonymous mutations were found across domain II, III and IV of the VGSC gene. Non-synonymous mutations in two codons of the VGSC gene were detected in 5 populations from 4 countries. A novel mutation at 1532 codon (I1532T was found in Rome, Italy with a frequency of 19.7%. The second novel mutation at codon 1534 (F1534S was detected in southern China and Florida, USA with a frequency ranging from 9.5-22.6%. The WHO insecticide susceptibility bioassay found 90.1% and 96.1% mortality in the two populations from southern China, suggesting resistance and probable resistance. Positive association between kdr mutations with deltamethrin resistance was established in these two populations.Two novel kdr

  10. A new look at an old virus: patterns of mutation accumulation in the human H1N1 influenza virus since 1918

    Directory of Open Access Journals (Sweden)

    Carter Robert W

    2012-10-01

    Full Text Available Abstract Background The H1N1 influenza A virus has been circulating in the human population for over 95 years, first manifesting itself in the pandemic of 1917–1918. Initial mortality was extremely high, but dropped exponentially over time. Influenza viruses have high mutation rates, and H1N1 has undergone significant genetic changes since 1918. The exact nature of H1N1 mutation accumulation over time has not been fully explored. Methods We have made a comprehensive historical analysis of mutational changes within H1N1 by examining over 4100 fully-sequenced H1N1 genomes. This has allowed us to examine the genetic changes arising within H1N1 from 1918 to the present. Results We document multiple extinction events, including the previously known extinction of the human H1N1 lineage in the 1950s, and an apparent second extinction of the human H1N1 lineage in 2009. These extinctions appear to be due to a continuous accumulation of mutations. At the time of its disappearance in 2009, the human H1N1 lineage had accumulated over 1400 point mutations (more than 10% of the genome, including approximately 330 non-synonymous changes (7.4% of all codons. The accumulation of both point mutations and non-synonymous amino acid changes occurred at constant rates (μ = 14.4 and 2.4 new mutations/year, respectively, and mutations accumulated uniformly across the entire influenza genome. We observed a continuous erosion over time of codon-specificity in H1N1, including a shift away from host (human, swine, and bird [duck] codon preference patterns. Conclusions While there have been numerous adaptations within the H1N1 genome, most of the genetic changes we document here appear to be non-adaptive, and much of the change appears to be degenerative. We suggest H1N1 has been undergoing natural genetic attenuation, and that significant attenuation may even occur during a single pandemic. This process may play a role in natural pandemic cessation and has apparently

  11. Multi-country Survey Revealed Prevalent and Novel F1534S Mutation in Voltage-Gated Sodium Channel (VGSC) Gene in Aedes albopictus.

    Science.gov (United States)

    Xu, Jiabao; Bonizzoni, Mariangela; Zhong, Daibin; Zhou, Guofa; Cai, Songwu; Li, Yiji; Wang, Xiaoming; Lo, Eugenia; Lee, Rebecca; Sheen, Roger; Duan, Jinhua; Yan, Guiyun; Chen, Xiao-Guang

    2016-05-01

    Aedes albopictus is an important dengue vector because of its aggressive biting behavior and rapid spread out of its native home range in Southeast Asia. Pyrethroids are widely used for adult mosquito control, and resistance to pyrethroids should be carefully monitored because vector control is the only effective method currently available to prevent dengue transmission. The voltage-gated sodium channel gene is the target site of pyrethroids, and mutations in this gene cause knockdown resistance (kdr). Previous studies reported various mutations in the voltage-gated sodium channel (VGSC) gene, but the spatial distribution of kdr mutations in Ae. albopictus has not been systematically examined, and the association between kdr mutation and phenotypic resistance has not been established. A total of 597 Ae. albopictus individuals from 12 populations across Asia, Africa, America and Europe were examined for mutations in the voltage-gated sodium channel gene. Three domains for a total of 1,107 bp were sequenced for every individual. Two populations from southern China were examined for pyrethroid resistance using the World Health Organization standard tube bioassay, and the association between kdr mutations and phenotypic resistance was tested. A total of 29 synonymous mutations were found across domain II, III and IV of the VGSC gene. Non-synonymous mutations in two codons of the VGSC gene were detected in 5 populations from 4 countries. A novel mutation at 1532 codon (I1532T) was found in Rome, Italy with a frequency of 19.7%. The second novel mutation at codon 1534 (F1534S) was detected in southern China and Florida, USA with a frequency ranging from 9.5-22.6%. The WHO insecticide susceptibility bioassay found 90.1% and 96.1% mortality in the two populations from southern China, suggesting resistance and probable resistance. Positive association between kdr mutations with deltamethrin resistance was established in these two populations. Two novel kdr mutations, I1532T

  12. DNA Translator and Aligner: HyperCard utilities to aid phylogenetic analysis of molecules.

    Science.gov (United States)

    Eernisse, D J

    1992-04-01

    DNA Translator and Aligner are molecular phylogenetics HyperCard stacks for Macintosh computers. They manipulate sequence data to provide graphical gene mapping, conversions, translations and manual multiple-sequence alignment editing. DNA Translator is able to convert documented GenBank or EMBL documented sequences into linearized, rescalable gene maps whose gene sequences are extractable by clicking on the corresponding map button or by selection from a scrolling list. Provided gene maps, complete with extractable sequences, consist of nine metazoan, one yeast, and one ciliate mitochondrial DNAs and three green plant chloroplast DNAs. Single or multiple sequences can be manipulated to aid in phylogenetic analysis. Sequences can be translated between nucleic acids and proteins in either direction with flexible support of alternate genetic codes and ambiguous nucleotide symbols. Multiple aligned sequence output from diverse sources can be converted to Nexus, Hennig86 or PHYLIP format for subsequent phylogenetic analysis. Input or output alignments can be examined with Aligner, a convenient accessory stack included in the DNA Translator package. Aligner is an editor for the manual alignment of up to 100 sequences that toggles between display of matched characters and normal unmatched sequences. DNA Translator also generates graphic displays of amino acid coding and codon usage frequency relative to all other, or only synonymous, codons for approximately 70 select organism-organelle combinations. Codon usage data is compatible with spreadsheet or UWGCG formats for incorporation of additional molecules of interest. The complete package is available via anonymous ftp and is free for non-commercial uses.

  13. Nota sinonímica em Chinaia Bruner & Metcalf (Hemiptera, Cicadellidae, Neocoelidiinae Synonymic note in Chinaia Bruner & Metcalf (Hemiptera, Cicadellidae, Neocoelidiinae

    Directory of Open Access Journals (Sweden)

    Ana Paula Marques-Costa

    2009-01-01

    Full Text Available Uma nova sinonímia é proposta: Chinaia caprella Kramer, 1958 = Neocoelidiana chlorata DeLong & Kolbe, 1975 syn. nov. A espécie é redescrita e ilustrada.A new synonym is proposed: Chinaia caprella Kramer, 1958 = Neocoelidiana chlorata DeLong & Kolbe, 1975 syn. nov. The species is redescribed and illustrated.

  14. Study of five novel non-synonymous polymorphisms in human brain-expressed genes in a Colombian sample.

    Science.gov (United States)

    Ojeda, Diego A; Forero, Diego A

    2014-10-01

    Non-synonymous single nucleotide polymorphisms (nsSNPs) in brain-expressed genes represent interesting candidates for genetic research in neuropsychiatric disorders. To study novel nsSNPs in brain-expressed genes in a sample of Colombian subjects. We applied an approach based on in silico mining of available genomic data to identify and select novel nsSNPs in brain-expressed genes. We developed novel genotyping assays, based in allele-specific PCR methods, for these nsSNPs and genotyped them in 171 Colombian subjects. Five common nsSNPs (rs6855837; p.Leu395Ile, rs2305160; p.Thr394Ala, rs10503929; p.Met289Thr, rs2270641; p.Thr4Pro and rs3822659; p.Ser735Ala) were studied, located in the CLOCK, NPAS2, NRG1, SLC18A1 and WWC1 genes. We reported allele and genotype frequencies in a sample of South American healthy subjects. There is previous experimental evidence, arising from genome-wide expression and association studies, for the involvement of these genes in several neuropsychiatric disorders and endophenotypes, such as schizophrenia, mood disorders or memory performance. Frequencies for these nsSNPSs in the Colombian samples varied in comparison to different HapMap populations. Future study of these nsSNPs in brain-expressed genes, a synaptogenomics approach, will be important for a better understanding of neuropsychiatric diseases and endophenotypes in different populations.

  15. OSMOSE experiment representativity studies.

    Energy Technology Data Exchange (ETDEWEB)

    Aliberti, G.; Klann, R.; Nuclear Engineering Division

    2007-10-10

    The OSMOSE program aims at improving the neutronic predictions of advanced nuclear fuels through measurements in the MINERVE facility at the CEA-Cadarache (France) on samples containing the following separated actinides: Th-232, U-233, U-234, U-235, U-236, U-238, Np-237, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, Am-241, Am-243, Cm-244 and Cm-245. The goal of the experimental measurements is to produce a database of reactivity-worth measurements in different neutron spectra for the separated heavy nuclides. This database can then be used as a benchmark for integral reactivity-worth measurements to verify and validate reactor analysis codes and integral cross-section values for the isotopes tested. In particular, the OSMOSE experimental program will produce very accurate sample reactivity-worth measurements for a series of actinides in various spectra, from very thermalized to very fast. The objective of the analytical program is to make use of the experimental data to establish deficiencies in the basic nuclear data libraries, identify their origins, and provide guidelines for nuclear data improvements in coordination with international programs. To achieve the proposed goals, seven different neutron spectra can be created in the MINERVE facility: UO2 dissolved in water (representative of over-moderated LWR systems), UO2 matrix in water (representative of LWRs), a mixed oxide fuel matrix, two thermal spectra containing large epithermal components (representative of under-moderated reactors), a moderated fast spectrum (representative of fast reactors which have some slowing down in moderators such as lead-bismuth or sodium), and a very hard spectrum (representative of fast reactors with little moderation from reactor coolant). The different spectra are achieved by changing the experimental lattice within the MINERVE reactor. The experimental lattice is the replaceable central part of MINERVE, which establishes the spectrum at the sample location. This configuration

  16. UV-C decontamination of hand-held tablet devices in the healthcare environment using the Codonics D6000™ disinfection system.

    Science.gov (United States)

    Muzslay, M; Yui, S; Ali, S; Wilson, A P R

    2018-04-09

    Mobile phones and tablet computers may be contaminated with microorganisms and become a potential reservoir for cross-transmission of pathogens between healthcare workers and patients. There is no generally accepted guidance how to reduce contamination on mobile devices in healthcare settings. Our aim was to determine the efficacy of the Codonics D6000™ UV-C disinfection device. Daily disinfection reduced contamination on screens and on protective cases (test) significantly, but not all cases (control) could be decontaminated. The median aerobic colony count on the control and the test cases was 52 (IQR 33-89) cfu/25cm 2 and 22 (IQR 10.5-41) cfu/25cm 2 respectively before disinfection. Copyright © 2018. Published by Elsevier Ltd.

  17. Phlebotomus (Paraphlebotomus) riouxi: a synonym of Phlebotomus chabaudi without any proven vectorial role in Tunisia and Algeria.

    Science.gov (United States)

    Tabbabi, A; Rhim, A; Ghrab, J; Martin, O; Aoun, K; Bouratbine, A; Ready, P D

    2014-08-01

    Phlebotomus (Paraphlebotomus) riouxi Depaquit, Léger & Killick-Kendrick (Diptera: Psychodidae) was described as a typological species based on a few morphological characters distinguishing it from Phlebotomus (Paraphlebotomus) chabaudi Croset, Abonnenc & Rioux. The naming of P. riouxi coincided with its incrimination as a rural vector of Leishmania tropica Wright (junior synonym: Leishmania killicki Rioux, Lanotte & Pratlong) in Tataouine governorate, an arid region of southern Tunisia. The current report finds insufficient evidence to incriminate either phlebotomine sandfly as a vector of L. tropica in North Africa. Phlebotomus riouxi was found not to have the characteristics of a phylogenetic or biological species, and therefore it is synonymized with P. chabaudi. Both taxa were recorded together for the first time in Tunisia, in Tataouine, where three of 12 males showed intermediate morphology and both sexes of each taxon were not characterized by specific lineages of the nuclear gene elongation factor-1α or the mitochondrial gene cytochrome b, for which a long 3' terminal fragment is recommended for phlebotomine phylogenetics. This case study indicates that the eco-epidemiology of leishmaniasis should focus more on identifying key components of vectorial transmission that are susceptible to interventions for disease control, rather than on defining sibling species of vectors. © 2014 The Royal Entomological Society.

  18. Testing the validity of a Cd soil quality standard in representative Mediterranean agricultural soils under an accumulator crop

    International Nuclear Information System (INIS)

    Recatala, L.; Sanchez, J.; Arbelo, C.; Sacristan, D.

    2010-01-01

    The validity of a quality standard for cadmium (Cd) in representative agricultural Mediterranean soils under an accumulator crop (Lactuca sativa L.) is evaluated in this work considering both its effect on the crop growth (biomass production) and the metal accumulation in the edible part of the plant. Four soils with different properties relevant to regulate the behaviour of heavy metals were selected from the Valencian Region, a representative area of the European Mediterranean Region. For all soils, the effective concentration of added Cd causing 50% inhibition (EC 50 ) on the biomass production was much higher than the minimum legal concentration used to declare soils as contaminated by cadmium, i.e. 100 times the baseline value for Cd, in Spain (Spanish Royal Decree 9/2005). As expected, Cd toxicity in the crop was higher in the soils having less carbonate content. On the other hand, for all soils, from the second dose on, which represents 10-times the baseline value for Cd, the metal content in crops exceeded the maximum level established for leaf crops by the European legislation (Regulation EC no. 466/2001). Soil salinity and coarse textures make the accumulation of Cd in the edible part of the plant easier. Therefore, the legal baseline soil cadmium content established by the Spanish legislation seems not valid neither from the point of view of the effect on the crop growth nor from the point of view of the metal accumulation in the edible part of the plant. In order to realistically declare contaminated soils by heavy metals, soil quality standards should be proposed taking into account the soil properties. Further research in other agricultural areas of the region would improve the basis for proposing adequate soil quality standards for heavy metals as highlighted by the European Thematic Strategy for Soil Protection.

  19. Testing the validity of a Cd soil quality standard in representative Mediterranean agricultural soils under an accumulator crop

    Energy Technology Data Exchange (ETDEWEB)

    Recatala, L., E-mail: luis.recatala@uv.es [Departamento de Planificacion Territorial, Centro de Investigaciones sobre Desertificacion-CIDE (CSIC-Universitat de Valencia-Generalitat Valenciana), Cami de la Marjal S/N, 46470 Albal (Valencia) (Spain); Sanchez, J. [Departamento de Planificacion Territorial, Centro de Investigaciones sobre Desertificacion-CIDE (CSIC-Universitat de Valencia-Generalitat Valenciana), Cami de la Marjal S/N, 46470 Albal (Valencia) (Spain); Arbelo, C. [Departamento de Edafologia y Geologia, Facultad de Biologia, Universidad de La Laguna, 38206 La Laguna (Tenerife), Islas Canarias (Spain); Sacristan, D. [Departamento de Planificacion Territorial, Centro de Investigaciones sobre Desertificacion-CIDE (CSIC-Universitat de Valencia-Generalitat Valenciana), Cami de la Marjal S/N, 46470 Albal (Valencia) (Spain)

    2010-12-01

    The validity of a quality standard for cadmium (Cd) in representative agricultural Mediterranean soils under an accumulator crop (Lactuca sativa L.) is evaluated in this work considering both its effect on the crop growth (biomass production) and the metal accumulation in the edible part of the plant. Four soils with different properties relevant to regulate the behaviour of heavy metals were selected from the Valencian Region, a representative area of the European Mediterranean Region. For all soils, the effective concentration of added Cd causing 50% inhibition (EC{sub 50}) on the biomass production was much higher than the minimum legal concentration used to declare soils as contaminated by cadmium, i.e. 100 times the baseline value for Cd, in Spain (Spanish Royal Decree 9/2005). As expected, Cd toxicity in the crop was higher in the soils having less carbonate content. On the other hand, for all soils, from the second dose on, which represents 10-times the baseline value for Cd, the metal content in crops exceeded the maximum level established for leaf crops by the European legislation (Regulation EC no. 466/2001). Soil salinity and coarse textures make the accumulation of Cd in the edible part of the plant easier. Therefore, the legal baseline soil cadmium content established by the Spanish legislation seems not valid neither from the point of view of the effect on the crop growth nor from the point of view of the metal accumulation in the edible part of the plant. In order to realistically declare contaminated soils by heavy metals, soil quality standards should be proposed taking into account the soil properties. Further research in other agricultural areas of the region would improve the basis for proposing adequate soil quality standards for heavy metals as highlighted by the European Thematic Strategy for Soil Protection.

  20. Sequencing of complete mitochondrial genomes confirms synonymization of Hyalomma asiaticum asiaticum and kozlovi, and advances phylogenetic hypotheses for the Ixodidae.

    Science.gov (United States)

    Liu, Zhi-Qiang; Liu, Yan-Feng; Kuermanali, Nuer; Wang, Deng-Feng; Chen, Shi-Jun; Guo, Hui-Ling; Zhao, Li; Wang, Jun-Wei; Han, Tao; Wang, Yuan-Zhi; Wang, Jie; Shen, Chen-Feng; Zhang, Zhuang-Zhi; Chen, Chuang-Fu

    2018-01-01

    Phylogeny of hard ticks (Ixodidae) remains unresolved. Mitochondrial genomes (mitogenomes) are increasingly used to resolve phylogenetic controversies, but remain unavailable for the entire large Hyalomma genus. Hyalomma asiaticum is a parasitic tick distributed throughout the Asia. As a result of great morphological variability, two subspecies have been recognised historically; until a morphological data-based synonymization was proposed. However, this hypothesis was never tested using molecular data. Therefore, objectives of this study were to: 1. sequence the first Hyalomma mitogenome; 2. scrutinise the proposed synonymization using molecular data, i.e. complete mitogenomes of both subspecies: H. a. asiaticum and kozlovi; 3. conduct phylogenomic and comparative analyses of all available Ixodidae mitogenomes. Results corroborate the proposed synonymization: the two mitogenomes are almost identical (99.6%). Genomic features of both mitogenomes are standard for Metastriata; which includes the presence of two control regions and all three "Tick-Box" motifs. Gene order and strand distribution are perfectly conserved for the entire Metastriata group. Suspecting compositional biases, we conducted phylogenetic analyses (29 almost complete mitogenomes) using homogeneous and heterogeneous (CAT) models of substitution. The results were congruent, apart from the deep-level topology of prostriate ticks (Ixodes): the homogeneous model produced a monophyletic Ixodes, but the CAT model produced a paraphyletic Ixodes (and thereby Prostriata), divided into Australasian and non-Australasian clades. This topology implies that all metastriate ticks have evolved from the ancestor of the non-Australian branch of prostriate ticks. Metastriata was divided into three clades: 1. Amblyomminae and Rhipicephalinae (Rhipicephalus, Hyalomma, Dermacentor); 2. Haemaphysalinae and Bothriocrotoninae, plus Amblyomma sphenodonti; 3. Amblyomma elaphense, basal to all Metastriata. We conclude that

  1. Common non-synonymous SNPs associated with breast cancer susceptibility: findings from the Breast Cancer Association Consortium

    OpenAIRE

    Milne, Roger L; Burwinkel, Barbara; Michailidou, Kyriaki; Arias-Perez, Jose-Ignacio; Zamora, M Pilar; Menéndez-Rodríguez, Primitiva; Hardisson, David; Mendiola, Marta; González-Neira, Anna; Pita, Guillermo; Alonso, M Rosario; Dennis, Joe; Wang, Qin; Bolla, Manjeet K; Swerdlow, Anthony

    2014-01-01

    Candidate variant association studies have been largely unsuccessful in identifying common breast cancer susceptibility variants, although most studies have been underpowered to detect associations of a realistic magnitude We assessed 41 common non-synonymous single-nucleotide polymorphisms (nsSNPs) for which evidence of association with breast cancer risk had been previously reported. Case-control data were combined from 38 studies of white European women (46 450 cases and 42 600 controls) a...

  2. LS-SNP/PDB: annotated non-synonymous SNPs mapped to Protein Data Bank structures.

    Science.gov (United States)

    Ryan, Michael; Diekhans, Mark; Lien, Stephanie; Liu, Yun; Karchin, Rachel

    2009-06-01

    LS-SNP/PDB is a new WWW resource for genome-wide annotation of human non-synonymous (amino acid changing) SNPs. It serves high-quality protein graphics rendered with UCSF Chimera molecular visualization software. The system is kept up-to-date by an automated, high-throughput build pipeline that systematically maps human nsSNPs onto Protein Data Bank structures and annotates several biologically relevant features. LS-SNP/PDB is available at (http://ls-snp.icm.jhu.edu/ls-snp-pdb) and via links from protein data bank (PDB) biology and chemistry tabs, UCSC Genome Browser Gene Details and SNP Details pages and PharmGKB Gene Variants Downloads/Cross-References pages.

  3. Enhanced Efficacy of a Codon-Optimized DNA Vaccine Encoding the Glycoprotein Precursor Gene of Lassa Virus in a Guinea Pig Disease Model When Delivered by Dermal Electroporation

    Directory of Open Access Journals (Sweden)

    Niranjan Y. Sardesai

    2013-07-01

    Full Text Available Lassa virus (LASV causes a severe, often fatal, hemorrhagic fever endemic to West Africa. Presently, there are no FDA-licensed medical countermeasures for this disease. In a pilot study, we constructed a DNA vaccine (pLASV-GPC that expressed the LASV glycoprotein precursor gene (GPC. This plasmid was used to vaccinate guinea pigs (GPs using intramuscular electroporation as the delivery platform. Vaccinated GPs were protected from lethal infection (5/6 with LASV compared to the controls. However, vaccinated GPs experienced transient viremia after challenge, although lower than the mock-vaccinated controls. In a follow-on study, we developed a new device that allowed for both the vaccine and electroporation pulse to be delivered to the dermis. We also codon-optimized the GPC sequence of the vaccine to enhance expression in GPs. Together, these innovations resulted in enhanced efficacy of the vaccine. Unlike the pilot study where neutralizing titers were not detected until after virus challenge, modest neutralizing titers were detected in guinea pigs before challenge, with escalating titers detected after challenge. The vaccinated GPs were never ill and were not viremic at any timepoint. The combination of the codon-optimized vaccine and dermal electroporation delivery is a worthy candidate for further development.

  4. Characterization of the mitochondrial genome of the montane grasshopper, Qinlingacris elaeodes (Orthoptera: Catantopidae).

    Science.gov (United States)

    Li, Ran; Jiang, Guo-Fang; Liang, Ai-Ping; Zhong, Xin-Tong; Liu, Ying

    2016-05-01

    Qinlingacris elaeodes is the dominant grasshopper at an altitude of 3000 meters and above, and is a representative species of the genus Qinlingacris endemic to China. The sequenced mitochondrial genome of this grasshopper is 14,818 bp in length, including 13 protein-coding genes (ND1-6, COI-III, ATP6, ATP8, ND4L, CTYB), 21 transfer RNAs, and 2 ribosomal RNAs (12S and 16S). The orientation and gene order of these genes are identical to those found in the putative ancestral insect mitogenome. The 13 PCGs start with a typical ATN codon as their start codons. The usual TAA and TAG termination codons are found for 12 PCGs. However, the ND5 gene has an incomplete termination codon (T).

  5. Ommatius: synonyms, new record, redescription of Ommatius erythropus and description of the female of Ommatius trifidus (Diptera: Asilidae: Ommatiinae

    Directory of Open Access Journals (Sweden)

    Sheila Lima

    2017-10-01

    Full Text Available ABSTRACT Ommatius erythropus Schiner, 1867 is redescribed and a lectotype is established. The female of Ommatius trifidus Vieira, Bravo & Rafael, 2010 is described and a new record is provided. Ommatius ruficaudus Curran, 1928 is established as a new synonym of Ommatius pulcher (Engel, 1885. An identification key is presented to the Ommatius costatus species group. A map with the geographic records is provided.

  6. Creutzfeldt-Jakob Disease with a prion protein gene codon 180 mutation presenting asymmetric cortical high-intensity on magnetic resonance imaging.

    Science.gov (United States)

    Amano, Yuko; Kimura, Noriyuki; Hanaoka, Takuya; Aso, Yasuhiro; Hirano, Teruyuki; Murai, Hiroyuki; Satoh, Katsuya; Matsubara, Etsuro

    2015-01-01

    Here we report a genetically confirmed case of Creutzfeldt-Jakob disease with a prion protein gene codon 180 mutation presenting atypical magnetic resonance imaging findings. The present case exhibited an acute onset and lateralized neurologic signs, and progressive cognitive impairment. No myoclonus or periodic synchronous discharges on electroencephalography were observed. Diffusion-weighted images revealed areas of high signal intensity in the right frontal and temporal cortices at onset that extended to the whole cortex and basal ganglia of the right cerebral hemisphere at 3 months. Although the cerebrospinal fluid (CSF) was initially negative for neuron specific enolase, tau protein, 14-3-3 protein, and abnormal prion protein, the CSF was positive for these brain-derived proteins at 3 months after onset.

  7. Clinical Expression and New SPINK5 Splicing Defects in Netherton Syndrome: Unmasking a Frequent Founder Synonymous Mutation and Unconventional Intronic Mutations

    DEFF Research Database (Denmark)

    Lacroix, Matthieu; Lacaze-Buzy, Laetitia; Furio, Laetitia

    2012-01-01

    a clinical triad suggestive of NS with variations in inter- and intra-familial disease expression. We identified a new and frequent synonymous mutation c.891C>T (p.Cys297Cys) in exon 11 of the 12 NS patients. This mutation disrupts an exonic splicing enhancer sequence and causes out-of-frame skipping of exon...

  8. De novo assembly and next-generation sequencing to analyse full-length gene variants from codon-barcoded libraries.

    Science.gov (United States)

    Cho, Namjin; Hwang, Byungjin; Yoon, Jung-ki; Park, Sangun; Lee, Joongoo; Seo, Han Na; Lee, Jeewon; Huh, Sunghoon; Chung, Jinsoo; Bang, Duhee

    2015-09-21

    Interpreting epistatic interactions is crucial for understanding evolutionary dynamics of complex genetic systems and unveiling structure and function of genetic pathways. Although high resolution mapping of en masse variant libraries renders molecular biologists to address genotype-phenotype relationships, long-read sequencing technology remains indispensable to assess functional relationship between mutations that lie far apart. Here, we introduce JigsawSeq for multiplexed sequence identification of pooled gene variant libraries by combining a codon-based molecular barcoding strategy and de novo assembly of short-read data. We first validate JigsawSeq on small sub-pools and observed high precision and recall at various experimental settings. With extensive simulations, we then apply JigsawSeq to large-scale gene variant libraries to show that our method can be reliably scaled using next-generation sequencing. JigsawSeq may serve as a rapid screening tool for functional genomics and offer the opportunity to explore evolutionary trajectories of protein variants.

  9. Management of High-Throughput DNA Sequencing Projects: Alpheus.

    Science.gov (United States)

    Miller, Neil A; Kingsmore, Stephen F; Farmer, Andrew; Langley, Raymond J; Mudge, Joann; Crow, John A; Gonzalez, Alvaro J; Schilkey, Faye D; Kim, Ryan J; van Velkinburgh, Jennifer; May, Gregory D; Black, C Forrest; Myers, M Kathy; Utsey, John P; Frost, Nicholas S; Sugarbaker, David J; Bueno, Raphael; Gullans, Stephen R; Baxter, Susan M; Day, Steve W; Retzel, Ernest F

    2008-12-26

    High-throughput DNA sequencing has enabled systems biology to begin to address areas in health, agricultural and basic biological research. Concomitant with the opportunities is an absolute necessity to manage significant volumes of high-dimensional and inter-related data and analysis. Alpheus is an analysis pipeline, database and visualization software for use with massively parallel DNA sequencing technologies that feature multi-gigabase throughput characterized by relatively short reads, such as Illumina-Solexa (sequencing-by-synthesis), Roche-454 (pyrosequencing) and Applied Biosystem's SOLiD (sequencing-by-ligation). Alpheus enables alignment to reference sequence(s), detection of variants and enumeration of sequence abundance, including expression levels in transcriptome sequence. Alpheus is able to detect several types of variants, including non-synonymous and synonymous single nucleotide polymorphisms (SNPs), insertions/deletions (indels), premature stop codons, and splice isoforms. Variant detection is aided by the ability to filter variant calls based on consistency, expected allele frequency, sequence quality, coverage, and variant type in order to minimize false positives while maximizing the identification of true positives. Alpheus also enables comparisons of genes with variants between cases and controls or bulk segregant pools. Sequence-based differential expression comparisons can be developed, with data export to SAS JMP Genomics for statistical analysis.

  10. Invasion risk of the yellow crazy ant (Anoplolepis gracilipes under the Representative Concentration Pathways 8.5 climate change scenario in South Korea

    Directory of Open Access Journals (Sweden)

    Jae-Min Jung

    2017-12-01

    Full Text Available The yellow crazy ant (Anoplolepis gracilipes has destroyed local ecosystems in numerous countries, and their population sizes and distribution are likely to increase under global warming. To evaluate the risk of invasion by yellow crazy ant in South Korea, this study identified their potential habitats and predicted their future global distribution by modeling various climate change scenarios using CLIMEX software. Our modeling predicted that future climate conditions in South Korea will be favorable for the yellow crazy ant, and they could invade by the mid-21st century. We highlight the use of predictive algorithms to establish geographical areas with a high risk of yellow crazy ant invasion under Representative Concentration Pathways (RCP 8.5 climate scenarios. Keywords: Anoplolepis gracilipes, climate change scenario, CLIMEX, invasive species, yellow crazy ant

  11. Different mutation patterns of atovaquone resistance to Plasmodium falciparum in vitro and in vivo: rapid detection of codon 268 polymorphisms in the cytochrome b as potential in vivo resistance marker

    DEFF Research Database (Denmark)

    Schwöbel, Babett; Alifrangis, Michael; Salanti, Ali

    2003-01-01

    , we developed a detection method for the diagnostic of codon 268 polymorphisms as a potential atovaquone/proguanil resistance marker. A nested PCR with 3 different pairs of primers for the second round was designed. Each product was digested with restriction enzymes, capable to distinguish the wild...

  12. Methacholine PC20 In African Americans And Whites With Asthma With Homozygous Genotypes at ADRB2 Codon 16

    Science.gov (United States)

    Blake, Kathryn; Cury, James D.; Hossain, Jobayer; Tantisira, Kelan; Wang, Jianwei; Mougey, Edward; Lima, John

    2013-01-01

    BACKGROUND African Americans have worse asthma outcomes compared to whites. Adrenoceptor beta 2, surface gene (ADRB2) Gly16Arg genotypes have been associated with β2-agonist bronchodilator response, asthma exacerbation rate, response to methacholine, and lung function decline but not specifically in African Americans. OBJECTIVE We sought to compare the provocative concentration of methacholine that causes a 20% fall in FEV1 (PC20) in African Americans and whites with asthma who were ADRB2 homozygous at codon16 (Arg16Arg or Gly16Gly). METHODS African Americans and whites whose parents and grandparents were of the same race, aged ≥ 10 years, with baseline FEV1 of ≥60% predicted, and no upper or lower respiratory tract infection within the previous 2 weeks meeting genotype criteria were enrolled. PC20 was measured after withholding short-acting and long-acting β2-agonists for 8 and 12 hours respectively, montelukast for 24 hours, ipratropium bromide and inhaled corticosteroids for 12 hours, and antihistamines for 72 hours. RESULTS 423 participants were screened and 88 had a positive challenge. Participants were 32yrs ± 19yrs (mean ± SD), 70% female, 51% White (vs. African American), 6% Hispanic. Similar numbers of participants were using inhaled corticosteroids by race and genotype. There were significant differences in log PC20 between race/genotype groups (p=0.012). African American Arg16Arg participants had a lower log PC20 than White Gly16Gly (p=0.009) and African American Gly16Gly (p=0.041) participants. Both race and genotype contributed significantly to the model (p=0.037 and p=0.014, respectively) but there was no interaction between race and genotype on log PC20. CONCLUSIONS AND CLINICAL RELEVANCE Airway hyperresponsiveness is influenced by race and the ADRB2 codon 16 polymorphism. African Americans with the Arg16Arg genotype have increased airway reactivity and may be at risk for worse asthma outcomes. Inclusion of genetic information as an

  13. X-linked Alport syndrome associated with a synonymous p.Gly292Gly mutation alters the splicing donor site of the type IV collagen alpha chain 5 gene.

    Science.gov (United States)

    Fu, Xue Jun; Nozu, Kandai; Eguchi, Aya; Nozu, Yoshimi; Morisada, Naoya; Shono, Akemi; Taniguchi-Ikeda, Mariko; Shima, Yuko; Nakanishi, Koichi; Vorechovsky, Igor; Iijima, Kazumoto

    2016-10-01

    X-linked Alport syndrome (XLAS) is a progressive hereditary nephropathy caused by mutations in the type IV collagen alpha chain 5 gene (COL4A5). Although many COL4A5 mutations have previously been identified, pathogenic synonymous mutations have not yet been described. A family with XLAS underwent mutational analyses of COL4A5 by PCR and direct sequencing, as well as transcript analysis of potential splice site mutations. In silico analysis was also conducted to predict the disruption of splicing factor binding sites. Immunohistochemistry (IHC) of kidney biopsies was used to detect α2 and α5 chain expression. We identified a hemizygous point mutation, c.876A>T, in exon 15 of COL4A5 in the proband and his brother, which is predicted to result in a synonymous amino acid change, p.(Gly292Gly). Transcript analysis showed that this mutation potentially altered splicing because it disrupted the splicing factor binding site. The kidney biopsy of the proband showed lamellation of the glomerular basement membrane (GBM), while IHC revealed negative α5(IV) staining in the GBM and Bowman's capsule, which is typical of XLAS. This is the first report of a synonymous COL4A5 substitution being responsible for XLAS. Our findings suggest that transcript analysis should be conducted for the future correct assessment of silent mutations.

  14. HOW TO REPRESENT THE GENETIC CODE?

    Directory of Open Access Journals (Sweden)

    N.S. Santos-Magalhães

    2004-05-01

    Full Text Available The advent of molecular genetic comprises a true revolution of far-reaching consequences for human-kind, which evolved into a specialized branch of the modern-day Biochemistry. The analysis of specicgenomic information are gaining wide-ranging interest because of their signicance to the early diag-nosis of disease, and the discovery of modern drugs. In order to take advantage of a wide assortmentof signal processing (SP algorithms, the primary step of modern genomic SP involves convertingsymbolic-DNA sequences into complex-valued signals. How to represent the genetic code? Despitebeing extensively known, the DNA mapping into proteins is one of the relevant discoveries of genetics.The genetic code (GC is revisited in this work, addressing other descriptions for it, which can beworthy for genomic SP. Three original representations are discussed. The inner-to-outer map buildson the unbalanced role of nucleotides of a codon. A two-dimensional-Gray genetic representationis oered as a structured map that can help interpreting DNA spectrograms or scalograms. Theseare among the powerful visual tools for genome analysis, which depends on the choice of the geneticmapping. Finally, the world-chart for the GC is investigated. Evoking the cyclic structure of thegenetic mapping, it can be folded joining the left-right borders, and the top-bottom frontiers. As aresult, the GC can be drawn on the surface of a sphere resembling a world-map. Eight parallels oflatitude are required (four in each hemisphere as well as four meridians of longitude associated tofour corresponding anti-meridians. The tropic circles have 11.25o, 33.75o, 56.25o, and 78.5o (Northand South. Starting from an arbitrary Greenwich meridian, the meridians of longitude can be plottedat 22.5o, 67.5o, 112.5o, and 157.5o (East and West. Each triplet is assigned to a single point on thesurface that we named Nirenberg-Kohamas Earth. Despite being valuable, usual representations forthe GC can be

  15. Severe Hemophilia A in a Male Old English Sheep Dog with a C→T Transition that Created a Premature Stop Codon in Factor VIII

    Science.gov (United States)

    Lozier, Jay N; Kloos, Mark T; Merricks, Elizabeth P; Lemoine, Nathaly; Whitford, Margaret H; Raymer, Robin A; Bellinger, Dwight A; Nichols, Timothy C

    2016-01-01

    Animals with hemophilia are models for gene therapy, factor replacement, and inhibitor development in humans. We have actively sought dogs with severe hemophilia A that have novel factor VIII mutations unlike the previously described factor VIII intron 22 inversion. A male Old English Sheepdog with recurrent soft-tissue hemorrhage and hemarthrosis was diagnosed with severe hemophilia A (factor VIII activity less than 1% of normal). We purified genomic DNA from this dog and ruled out the common intron 22 inversion; we then sequenced all 26 exons. Comparing the results with the normal canine factor VIII sequence revealed a C→T transition in exon 12 of the factor VIII gene that created a premature stop codon at amino acid 577 in the A2 domain of the protein. In addition, 2 previously described polymorphisms that do not cause hemophilia were present at amino acids 909 and 1184. The hemophilia mutation creates a new TaqI site that facilitates rapid genotyping of affected offspring by PCR and restriction endonuclease analyses. This mutation is analogous to the previously described human factor VIII mutation at Arg583, which likewise is a CpG dinucleotide transition causing a premature stop codon in exon 12. Thus far, despite extensive treatment with factor VIII, this dog has not developed neutralizing antibodies (‘inhibitors’) to the protein. This novel mutation in a dog gives rise to severe hemophilia A analogous to a mutation seen in humans. This model will be useful for studies of the treatment of hemophilia. PMID:27780008

  16. Genetic profile of scrapie codons 146, 211 and 222 in the PRNP gene locus in three breeds of dairy goats.

    Science.gov (United States)

    Vouraki, Sotiria; Gelasakis, Athanasios I; Alexandri, Panoraia; Boukouvala, Evridiki; Ekateriniadou, Loukia V; Banos, Georgios; Arsenos, Georgios

    2018-01-01

    Polymorphisms at PRNP gene locus have been associated with resistance against classical scrapie in goats. Genetic selection on this gene within appropriate breeding programs may contribute to the control of the disease. The present study characterized the genetic profile of codons 146, 211 and 222 in three dairy goat breeds in Greece. A total of 766 dairy goats from seven farms were used. Animals belonged to two indigenous Greek, Eghoria (n = 264) and Skopelos (n = 287) and a foreign breed, Damascus (n = 215). Genomic DNA was extracted from blood samples from individual animals. Polymorphisms were detected in these codons using Real-Time PCR analysis and four different Custom TaqMan® SNP Genotyping Assays. Genotypic, allelic and haplotypic frequencies were calculated based on individual animal genotypes. Chi-square tests were used to examine Hardy-Weinberg equilibrium state and compare genotypic distribution across breeds. Genetic distances among the three breeds, and between these and 30 breeds reared in other countries were estimated based on haplotypic frequencies using fixation index FST with Arlequin v3.1 software; a Neighbor-Joining tree was created using PHYLIP package v3.695. Level of statistical significance was set at P = 0.01. All scrapie resistance-associated alleles (146S, 146D, 211Q and 222K) were detected in the studied population. Significant frequency differences were observed between the indigenous Greek and Damascus breeds. Alleles 222K and 146S had the highest frequency in the two indigenous and the Damascus breed, respectively (ca. 6.0%). The studied breeds shared similar haplotypic frequencies with most South Italian and Turkish breeds but differed significantly from North-Western European, Far East and some USA goat breeds. Results suggest there is adequate variation in the PRNP gene locus to support breeding programs for enhanced scrapie resistance in goats reared in Greece. Genetic comparisons among goat breeds indicate that separate

  17. BF integrase genes of HIV-1 circulating in São Paulo, Brazil, with a recurrent recombination region.

    Directory of Open Access Journals (Sweden)

    Atila Iamarino

    Full Text Available Although some studies have shown diversity in HIV integrase (IN genes, none has focused particularly on the gene evolving in epidemics in the context of recombination. The IN gene in 157 HIV-1 integrase inhibitor-naïve patients from the São Paulo State, Brazil, were sequenced tallying 128 of subtype B (23 of which were found in non-B genomes, 17 of subtype F (8 of which were found in recombinant genomes, 11 integrases were BF recombinants, and 1 from subtype C. Crucially, we found that 4 BF recombinant viruses shared a recurrent recombination breakpoint region between positions 4900 and 4924 (relative to the HXB2 that includes 2 gRNA loops, where the RT may stutter. Since these recombinants had independent phylogenetic origin, we argue that these results suggest a possible recombination hotspot not observed so far in BF CRF in particular, or in any other HIV-1 CRF in general. Additionally, 40% of the drug-naïve and 45% of the drug-treated patients had at least 1 raltegravir (RAL or elvitegravir (EVG resistance-associated amino acid change, but no major resistance mutations were found, in line with other studies. Importantly, V151I was the most common minor resistance mutation among B, F, and BF IN genes. Most codon sites of the IN genes had higher rates of synonymous substitutions (dS indicative of a strong negative selection. Nevertheless, several codon sites mainly in the subtype B were found under positive selection. Consequently, we observed a higher genetic diversity in the B portions of the mosaics, possibly due to the more recent introduction of subtype F on top of an ongoing subtype B epidemics and a fast spread of subtype F alleles among the B population.

  18. Relationship between mRNA secondary structure and sequence variability in Chloroplast genes: possible life history implications.

    Science.gov (United States)

    Krishnan, Neeraja M; Seligmann, Hervé; Rao, Basuthkar J

    2008-01-28

    Synonymous sites are freer to vary because of redundancy in genetic code. Messenger RNA secondary structure restricts this freedom, as revealed by previous findings in mitochondrial genes that mutations at third codon position nucleotides in helices are more selected against than those in loops. This motivated us to explore the constraints imposed by mRNA secondary structure on evolutionary variability at all codon positions in general, in chloroplast systems. We found that the evolutionary variability and intrinsic secondary structure stability of these sequences share an inverse relationship. Simulations of most likely single nucleotide evolution in Psilotum nudum and Nephroselmis olivacea mRNAs, indicate that helix-forming propensities of mutated mRNAs are greater than those of the natural mRNAs for short sequences and vice-versa for long sequences. Moreover, helix-forming propensity estimated by the percentage of total mRNA in helices increases gradually with mRNA length, saturating beyond 1000 nucleotides. Protection levels of functionally important sites vary across plants and proteins: r-strategists minimize mutation costs in large genes; K-strategists do the opposite. Mrna length presumably predisposes shorter mRNAs to evolve under different constraints than longer mRNAs. The positive correlation between secondary structure protection and functional importance of sites suggests that some sites might be conserved due to packing-protection constraints at the nucleic acid level in addition to protein level constraints. Consequently, nucleic acid secondary structure a priori biases mutations. The converse (exposure of conserved sites) apparently occurs in a smaller number of cases, indicating a different evolutionary adaptive strategy in these plants. The differences between the protection levels of functionally important sites for r- and K-strategists reflect their respective molecular adaptive strategies. These converge with increasing domestication levels of

  19. Aegla rosanae Campos Jr., um novo sinônimo de Aegla paulensis Schmitt (Crustacea, Aeglidae Aegla rosanae Campos Jr., a new synonym of Aegla paulensis Schmitt (Crustacea, Aeglidae

    Directory of Open Access Journals (Sweden)

    Georgina Bond-Buckup

    2000-06-01

    Full Text Available The validity of Aegla rosanae Campos Jr., 1998 as a new species was analysed. On the basis of comparisons with Aegla paulensis Schmitt, A. rosanae was considered its junior synonym.

  20. Representing cognitive activities and errors in HRA trees

    International Nuclear Information System (INIS)

    Gertman, D.I.

    1992-01-01

    A graphic representation method is presented herein for adapting an existing technology--human reliability analysis (HRA) event trees, used to support event sequence logic structures and calculations--to include a representation of the underlying cognitive activity and corresponding errors associated with human performance. The analyst is presented with three potential means of representing human activity: the NUREG/CR-1278 HRA event tree approach; the skill-, rule- and knowledge-based paradigm; and the slips, lapses, and mistakes paradigm. The above approaches for representing human activity are integrated in order to produce an enriched HRA event tree -- the cognitive event tree system (COGENT)-- which, in turn, can be used to increase the analyst's understanding of the basic behavioral mechanisms underlying human error and the representation of that error in probabilistic risk assessment. Issues pertaining to the implementation of COGENT are also discussed

  1. Marketing norm perception among medical representatives in Indian pharmaceutical industry.

    Science.gov (United States)

    Nagashekhara, Molugulu; Agil, Syed Omar Syed; Ramasamy, Ravindran

    2012-03-01

    Study of marketing norm perception among medical representatives is an under-portrayed component that deserves further perusal in the pharmaceutical industry. The purpose of this study is to find out the perception of marketing norms among medical representatives. The research design is quantitative and cross sectional study with medical representatives as unit of analysis. Data is collected from medical representatives (n=300) using a simple random and cluster sampling using a structured questionnaire. Results indicate that there is no difference in the perception of marketing norms among male and female medical representatives. But there is a difference in opinion among domestic and multinational company's medical representatives. Educational back ground of medical representatives also shows the difference in opinion among medical representatives. Degree holders and multinational company medical representatives have high perception of marketing norms compare to their counterparts. The researchers strongly believe that mandatory training on marketing norms is beneficial in decision making process during the dilemmas in the sales field.

  2. Linguistic Representation of the Category of Oppositeness in English Folk Tales

    Directory of Open Access Journals (Sweden)

    Наталия Владимировна Соловьева

    2016-12-01

    Full Text Available The purpose of the article is to study manifestations of the category of oppositeness at all language levels in order to establish a classification of textual oppositions found in folktales. Achieving this goal requires using integrated multi-disciplinary research methods such as hypothetical-deductive, inductive, descriptive, comparative and classification methods. The study also involves specifically linguistic research procedures: the method of phonological oppositions which served as the methodological basis for further research into morphological and grammatical oppositions, transformational and component analyses to describe the semantic content of the considered language units, the logical and semantic procedures in text analysis. English is used as the basis for the research, the theoretical principles are illustrated by the data included in The Oxford Dictionary of Synonyms and Antonyms, The Merriam-Webster Dictionary of Synonyms and Antonyms, and The Collins Dictionary of Synonyms and Antonyms, the collection of folktales edited by J. Jacobs serves as the material for the empirical analysis. The category of oppositeness is seen as a phenomenon represented by phonological, semantic and grammatical oppositions and their subclasses. The textual oppositions under consideration are based on semantic and grammatical oppositions and represent the opposed spatial images, the opposed characters and the opposed beginning and ending of a folktale. The phenomenon of neutralization, which is the removal of the opposition in certain positions, is found at all levels of the language system, manifesting itself on the textual level in the ambivalent nature and the contradictory functional roles of certain folktale characters.

  3. The non-random clustering of non-synonymous substitutions and its relationship to evolutionary rate

    Directory of Open Access Journals (Sweden)

    Stone Eric A

    2011-08-01

    Full Text Available Abstract Background Protein sequences are subject to a mosaic of constraint. Changes to functional domains and buried residues, for example, are more apt to disrupt protein structure and function than are changes to residues participating in loops or exposed to solvent. Regions of constraint on the tertiary structure of a protein often result in loose segmentation of its primary structure into stretches of slowly- and rapidly-evolving amino acids. This clustering can be exploited, and existing methods have done so by relying on local sequence conservation as a signature of selection to help identify functionally important regions within proteins. We invert this paradigm by leveraging the regional nature of protein structure and function to both illuminate and make use of genome-wide patterns of local sequence conservation. Results Our hypothesis is that the regional nature of structural and functional constraints will assert a positive autocorrelation on the evolutionary rates of neighboring sites, which, in a pairwise comparison of orthologous proteins, will manifest itself as the clustering of non-synonymous changes across the amino acid sequence. We introduce a dispersion ratio statistic to test this and related hypotheses. Using genome-wide interspecific comparisons of orthologous protein pairs, we reveal a strong log-linear relationship between the degree of clustering and the intensity of constraint. We further demonstrate how this relationship varies with the evolutionary distance between the species being compared. We provide some evidence that proteins with a history of positive selection deviate from genome-wide trends. Conclusions We find a significant association between the evolutionary rate of a protein and the degree to which non-synonymous changes cluster along its primary sequence. We show that clustering is a non-redundant predictor of evolutionary rate, and we speculate that conflicting signals of clustering and constraint may

  4. When silence is noise: infantile-onset Barth syndrome caused by a synonymous substitution affecting TAZ gene transcription.

    Science.gov (United States)

    Ferri, L; Dionisi-Vici, C; Taurisano, R; Vaz, F M; Guerrini, R; Morrone, A

    2016-11-01

    Barth syndrome (BTHS) is an X-linked inborn error of metabolism which affects males. The main manifestations are cardiomyopathy, myopathy, hypotonia, growth delay, intermittent neutropenia and 3-methylglutaconic aciduria. Diagnosis is confirmed by mutational analysis of the TAZ gene and biochemical dosage of the monolysocardiolipin/tetralinoleoyl cardiolipin (MLCL:L4-CL) ratio. We report a 6-year-old boy who presented with severe hypoglycemia, lactic acidosis and severe dilated cardiomyopathy soon after birth. The MLCL:L4-CL ratio confirmed BTHS (3.90 on patient's fibroblast, normal: 0-0.3). Subsequent sequencing of the TAZ gene revealed only the new synonymous variant NM_000116.3 (TAZ):c.348C>T p.(Gly116Gly), which did not appear to affect the protein sequence. In silico prediction analysis suggested the new c.348C>T nucleotide change could alter the TAZ mRNA splicing processing. We analyzed TAZ mRNAs in the patient's fibroblasts and found an abnormal skipping of 24 bases (NM_000116.3:c.346_371), with the consequent ablation of 8 amino acid residues in the tafazzin protein (NP_000107.1:p.Lys117_Gly124del). Molecular analysis of at risk female family members identified the patient's sister and mother as heterozygous carriers. Apparently harmless synonymous variants in the TAZ gene can damage gene expression. Such findings widen our knowledge of molecular heterogeneity in BTHS. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Association of mRNA expression of TP53 and the TP53 codon 72 Arg/Pro gene polymorphism with colorectal cancer risk in Asian population: a bioinformatics analysis and meta-analysis.

    Science.gov (United States)

    Dong, Zhiyong; Zheng, Longzhi; Liu, Weimin; Wang, Cunchuan

    2018-01-01

    The relationship between TP53 codon 72 Pro/Arg gene polymorphism and colorectal cancer risk in Asians is still controversial, and this bioinformatics analysis and meta-analysis was performed to assess the associations. The association studies were identified from PubMed, and eligible reports were included. RevMan 5.3.1 software, Oncolnc, cBioPortal, and Oncomine online tools were used for statistical analysis. A random/fixed effects model was used in meta-analysis. The data were reported as risk ratios or mean differences with corresponding 95% CI. We confirmed that TP53 was associated with colorectal cancer, the alteration frequency of TP53 was 53% mutation and 7% deep deletion, and TP53 mRNA expression was different in different types of colorectal cancer based on The Cancer Genome Atlas database. Then, 18 studies were included that examine the association of TP53 codon 72 gene polymorphism with colorectal cancer risk in Asians. The meta-analysis indicated that TP53 Pro allele and Pro/Pro genotype were associated with colorectal cancer risk in Asian population, but Arg/Arg genotype was not (Pro allele: odds ratios [OR]=1.20, 95% CI: 1.06 to 1.35, P =0.003; Pro/Pro genotype: OR=1.39, 95% CI: 1.15 to 1.69, P =0.0007; Arg/Arg genotype: OR=0.86, 95% CI: 0.74 to 1.00, P =0.05). Interestingly, in the meta-analysis of the controls from the population-based studies, we found that TP53 codon 72 Pro/Arg gene polymorphism was associated with colorectal cancer risk (Pro allele: OR=1.33, 95% CI: 1.15 to 1.55, P =0.0002; Pro/Pro genotype: OR=1.61, 95% CI: 1.28 to 2.02, P colorectal cancer, but the different value levels of mRNA expression were not associated with survival rate of colon and rectal cancer. TP53 Pro allele and Pro/Pro genotype were associated with colorectal cancer risk in Asians.

  6. Citizen's initiatives and the representative system

    International Nuclear Information System (INIS)

    Guggenberger, B.; Kempf, U.

    1978-01-01

    This anthology containing contributions of 19 sociologists is a systematic investigation of the locality, the possibilities and the effective radius of citizen's initiatives under the functional conditions of the parliamentary - representative system. The intellectual and political surroundings, the sociologic context, the institutional, political and judical overall conditions as well as the consequences of this movement for the whole political system of the Federal Republic of Germany. (orig.) [de

  7. c-Ha-ras BamHI RFLP in human urothelial tumors and point mutations in hot codons

    International Nuclear Information System (INIS)

    Weismanova, E; Skovraga, M.; Kaluz, S.

    1993-01-01

    High-molecular weights DNAs from 30 bladder and renal cell carcinomas (RCC) were isolated and the c-Ha-ras the c-Ha-ras gene BamHI RFLP was examined. Amplification of c-Ha-ras with normal localization with regard to the size of alleles was found only in the case. One of the normally localized c-Ha-ras allele termed RCC c-H-ras of a length of about 6.6 kbp was cloned and an oncogene-activating point mutation was identified using two restriction enzymes. After comparison of CfrI and Cfr10I cleavage maps of RCC c-Ha-ras to complete nucleotide sequences of EJ/T24 c-Ha-ras oncogene and its normal counterpart, a point mutation was identified within codon 11 or 12. The use of CfrI and Cfr10I is of value for clinical practice in identification of point mutations in c-Ha-ras PCR product in neoplasia accompanied by somatic mutation of c-Ha-ras. The correlation among c-Ha-ras allele, amplification/loss, presence of point mutation and progression of neoplasia is discussed. (author)

  8. Synonymization of key pest species within the Bactrocera dorsalis species complex (Diptera: Tephritidae): taxonomic changes based on a review of 20 years of integrative morphological, molecular, cytogenetic, behavioural and chemoecological data

    International Nuclear Information System (INIS)

    Schutze, Mark K.

    2015-01-01

    Bactrocera papayae Drew & Hancock, Bactrocera philippinensis Drew & Hancock, Bactrocera carambolae Drew & Hancock, and Bactrocera invadens Drew, Tsuruta & White are four horticultural pest tephritid fruit fly species that are highly similar, morphologically and genetically, to the destructive pest, the Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). This similarity has rendered the discovery of reliable diagnostic characters problematic, which, in view of the economic importance of these taxa and the international trade implications, has resulted in ongoing difficulties for many areas of plant protection and food security. Consequently, a major international collaborative and integrated multidisciplinary research effort was initiated in 2009 to build upon existing literature with the specific aim of resolving biological species limits among B. papayae, B. philippinensis, B. carambolae, B. invadens and B. dorsalis to overcome constraints to pest management and international trade. Bactrocera philippinensis has recently been synonymized with B. papayae as a result of this initiative and this review corroborates that finding; however, the other names remain in use. While consistent characters have been found to reliably distinguish B. carambolae from B. dorsalis, B. invadens and B. papayae, no such characters have been found to differentiate the latter three putative species. We conclude that B. carambolae is a valid species and that the remaining taxa, B. dorsalis, B. invadens and B. papayae, represent the same species. Thus, we consider B. dorsalis (Hendel) as the senior synonym of B. papayae Drew and Hancock syn.n. and B. invadens Drew, Tsuruta & White syn.n. A redescription of B. dorsalis is provided. Given the agricultural importance of B. dorsalis, this taxonomic decision will have significant global plant biosecurity implications, affecting pest management, quarantine, international trade, postharvest treatment and basic research

  9. High yield expression in a recombinant E. coli of a codon optimized chicken anemia virus capsid protein VP1 useful for vaccine development

    Directory of Open Access Journals (Sweden)

    You Bang-Jau

    2011-07-01

    Full Text Available Abstract Background Chicken anemia virus (CAV, the causative agent chicken anemia, is the only member of the genus Gyrovirus of the Circoviridae family. CAV is an immune suppressive virus and causes anemia, lymph organ atrophy and immunodeficiency. The production and biochemical characterization of VP1 protein and its use in a subunit vaccine or as part of a diagnostic kit would be useful to CAV infection prevention. Results Significantly increased expression of the recombinant full-length VP1 capsid protein from chicken anemia virus was demonstrated using an E. coli expression system. The VP1 gene was cloned into various different expression vectors and then these were expressed in a number of different E. coli strains. The expression of CAV VP1 in E. coli was significantly increased when VP1 was fused with GST protein rather than a His-tag. By optimizing the various rare amino acid codons within the N-terminus of the VP1 protein, the expression level of the VP1 protein in E. coli BL21(DE3-pLysS was further increased significantly. The highest protein expression level obtained was 17.5 g/L per liter of bacterial culture after induction with 0.1 mM IPTG for 2 h. After purification by GST affinity chromatography, the purified full-length VP1 protein produced in this way was demonstrated to have good antigenicity and was able to be recognized by CAV-positive chicken serum in an ELISA assay. Conclusions Purified recombinant VP1 protein with the gene's codons optimized in the N-terminal region has potential as chimeric protein that, when expressed in E. coli, may be useful in the future for the development of subunit vaccines and diagnostic tests.

  10. Characterization of novel and uncharacterized p53 SNPs in the Chinese population--intron 2 SNP co-segregates with the common codon 72 polymorphism.

    Directory of Open Access Journals (Sweden)

    Beng Hooi Phang

    Full Text Available Multiple single nucleotide polymorphisms (SNPs have been identified in the tumor suppressor gene p53, though the relevance of many of them is unclear. Some of them are also differentially distributed in various ethnic populations, suggesting selective functionality. We have therefore sequenced all exons and flanking regions of p53 from the Singaporean Chinese population and report here the characterization of some novel and uncharacterized SNPs - four in intron 1 (nucleotide positions 8759/10361/10506/11130, three in intron 3 (11968/11969/11974 and two in the 3'UTR (19168/19514. Allelic frequencies were determined for all these and some known SNPs, and were compared in a limited scale to leukemia and lung cancer patient samples. Intron 2 (11827 and 7 (14181/14201 SNPs were found to have a high minor allele frequency of between 26-47%, in contrast to the lower frequencies found in the US population, but similar in trend to the codon 72 polymorphism (SNP12139 that shows a distribution pattern correlative with latitude. Several of the SNPs were linked, such as those in introns 1, 3 and 7. Most interestingly, we noticed the co-segregation of the intron 2 and the codon 72 SNPs, the latter which has been shown to be expressed in an allele-specific manner, suggesting possible regulatory cross-talk. Association analysis indicated that the T/G alleles in both the co-segregating intron 7 SNPs and a 4tagSNP haplotype was strongly associated increased susceptibility to lung cancer in non-smoker females [OR: 1.97 (1.32, 3.394]. These data together demonstrate high SNP diversity in p53 gene between different populations, highlighting ethnicity-based differences, and their association with cancer risk.

  11. Veel kord regilaulu parallelismist, poeetilisest sünonüümiast ja analoogiast/ Once more on the parallelism of runosong, on the poetical synonymy and analogy

    Directory of Open Access Journals (Sweden)

    Mari Sarv

    2016-01-01

    Relying on her own previous research on runosongs and proverbs demonstrating the mutual dependency of alliteration and parallelism typical to runosong (Sarv 1999, 2000, 2003, the results of syntactic analysis of runosong texts in H. Metslang’s dissertation (1978, Juhan Peegel’s definition of poetical synonyms in runosong (Peegel 2004, and Ewald Lang’s concept of quasisynonymy (Lang 1987, the author proposes the definition of the canonical parallelism of runosong as follows: it is a grammatical verse parallelism where all or some of the syntactic elements of the main verse have corresponding parallels in the successive lines representing the same general notion, and interpreted in the context of the parallelism as semantically equivalent, irrespective of their semantic relations in the colloquial language (equivalence, synonymy, metonymy, metaphor, analogy, antonymy, hyponymy etc.. Because of this semantical equivalence, the parallel words can be selected and combined into the parallel verses according to their formal features enabling the metrical alignment and alliteration. The article also points to the problems with the classification of runosong parallelism to the analogous and synonymous by Wolfgang Steinitz (1934, widely used in the runosong discourse: although analogy and synonymy probably represent the most remarkable semantic relations between the parallel lines, it is not easy to make clear distinction between synonymous and analogous lines (or concepts—even in the colloquial non-poetic language the synonyms are usually not equivalent in all aspects of meaning; the regular use of poetical synonyms in runosongs makes it impossible at all—the geese, ducks, and grouses as different birds are analogous in the colloquial language, but synonymous in the runosong all denoting the group of maidens.

  12. ADO: a disease ontology representing the domain knowledge specific to Alzheimer's disease.

    Science.gov (United States)

    Malhotra, Ashutosh; Younesi, Erfan; Gündel, Michaela; Müller, Bernd; Heneka, Michael T; Hofmann-Apitius, Martin

    2014-03-01

    Biomedical ontologies offer the capability to structure and represent domain-specific knowledge semantically. Disease-specific ontologies can facilitate knowledge exchange across multiple disciplines, and ontology-driven mining approaches can generate great value for modeling disease mechanisms. However, in the case of neurodegenerative diseases such as Alzheimer's disease, there is a lack of formal representation of the relevant knowledge domain. Alzheimer's disease ontology (ADO) is constructed in accordance to the ontology building life cycle. The Protégé OWL editor was used as a tool for building ADO in Ontology Web Language format. ADO was developed with the purpose of containing information relevant to four main biological views-preclinical, clinical, etiological, and molecular/cellular mechanisms-and was enriched by adding synonyms and references. Validation of the lexicalized ontology by means of named entity recognition-based methods showed a satisfactory performance (F score = 72%). In addition to structural and functional evaluation, a clinical expert in the field performed a manual evaluation and curation of ADO. Through integration of ADO into an information retrieval environment, we show that the ontology supports semantic search in scientific text. The usefulness of ADO is authenticated by dedicated use case scenarios. Development of ADO as an open ADO is a first attempt to organize information related to Alzheimer's disease in a formalized, structured manner. We demonstrate that ADO is able to capture both established and scattered knowledge existing in scientific text. Copyright © 2014 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  13. Asociación del polimorfismo del codon 72 del gen p53 con el riesgo de cáncer gástrico en una población de alto riesgo de Costa Rica

    Directory of Open Access Journals (Sweden)

    Warner Alpízar-Alpízar

    2005-09-01

    Full Text Available El cáncer gástrico es la segunda causa de muerte por cáncer en el mundo. Varios factores han sido asociados con el riesgo de llegar a desarrollarlo, entre ellos la predisposición genética. El gen p53 presenta un polimorfismo en el codón 72, el cual ha sido asociado con un mayor riesgo de desarrollar varios tipos de cáncer entre ellos el gástrico. El objetivo de este estudio fue determinar la asociación del polimorfismo localizado en el codón 72 del gen p53 con el riesgo de cáncer gástrico y lesiones gástricas leves en una población de alto riesgo de Costa Rica. El análisis del polimorfismo se llevó a cabo mediante PCR-RFLP, en una muestra de 58 pacientes de cáncer gástrico, 99 personas controles y 41 individuos clasificados como grupos I y II de acuerdo con la clasificación histológica japonesa. No se determinó asociación del polimorfismo del codón 72 de p53 con el riesgo de cáncer gástrico, ni de lesiones gástricas leves en la muestra estudiada. Con base en este estudio y otros que han investigado el polimorfismo del codón 72 del gen p53, no está claro el papel que podría estar jugando dicho polimorfismo en el desarrollo de cáncer gástrico. Mutaciones de novo en el gen p53 producidas durante el desarrollo neoplásico de la enfermedad podrían tener un mayor efecto que polimorfismos de línea germinal de este mismo gen. Existen otros genes polimórficos que también se han asociado con el riesgo de desarrollar cáncer gástrico.Association of the p53 codon 72 polymorphism to gastric cancer risk in a hight risk population of Costa Rica. Gastric cancer is the second most common cancer associated death cause worldwide. Several factors have been associated with higher risk to develop gastric cancer, among them genetic predisposition. The p53 gene has a polymorphism located at codon 72, which has been associated with higher risk of several types of cancer, including gastric cancer. The aim of this study was to determine

  14. Bacillus velezensis is a later heterotypic synonym of Bacillus amyloliquefaciens.

    Science.gov (United States)

    Wang, Li-Ting; Lee, Fwu-Ling; Tai, Chun-Ju; Kuo, Hsiao-Ping

    2008-03-01

    Strain BCRC 14193, isolated from soil, shared more than 99 % 16S rRNA gene sequence similarity with Bacillus amyloliquefaciens BCRC 11601(T) and Bacillus velezensis BCRC 17467(T). This strain was previously identified as B. amyloliquefaciens, based on DNA-DNA hybridization, but its DNA relatedness value with B. velezensis BCRC 17467(T) was 89 %. To investigate the relatedness of strain BCRC 14193, B. amyloliquefaciens and B. velezensis, the partial sequence of the gene encoding the subunit B protein of DNA gyrase (gyrB) was determined. B. velezensis BCRC 17467(T) shared high gyrB gene sequence similarity with B. amyloliquefaciens BCRC 14193 (98.4 %) and all of the B. amyloliquefaciens strains available (95.5-95.6 %). DNA-DNA hybridization experiments revealed high relatedness values between B. velezensis BCRC 17467(T) and B. amyloliquefaciens BCRC 11601(T) (74 %) and the B. amyloliquefaciens reference strains (74-89 %). Based on these data and the lack of phenotypic distinctive characteristics, we propose Bacillus velezensis as a later heterotypic synonym of Bacillus amyloliquefaciens.

  15. EcoGene 3.0.

    Science.gov (United States)

    Zhou, Jindan; Rudd, Kenneth E

    2013-01-01

    EcoGene (http://ecogene.org) is a database and website devoted to continuously improving the structural and functional annotation of Escherichia coli K-12, one of the most well understood model organisms, represented by the MG1655(Seq) genome sequence and annotations. Major improvements to EcoGene in the past decade include (i) graphic presentations of genome map features; (ii) ability to design Boolean queries and Venn diagrams from EcoArray, EcoTopics or user-provided GeneSets; (iii) the genome-wide clone and deletion primer design tool, PrimerPairs; (iv) sequence searches using a customized EcoBLAST; (v) a Cross Reference table of synonymous gene and protein identifiers; (vi) proteome-wide indexing with GO terms; (vii) EcoTools access to >2000 complete bacterial genomes in EcoGene-RefSeq; (viii) establishment of a MySql relational database; and (ix) use of web content management systems. The biomedical literature is surveyed daily to provide citation and gene function updates. As of September 2012, the review of 37 397 abstracts and articles led to creation of 98 425 PubMed-Gene links and 5415 PubMed-Topic links. Annotation updates to Genbank U00096 are transmitted from EcoGene to NCBI. Experimental verifications include confirmation of a CTG start codon, pseudogene restoration and quality assurance of the Keio strain collection.

  16. EcoGene 3.0

    Science.gov (United States)

    Zhou, Jindan; Rudd, Kenneth E.

    2013-01-01

    EcoGene (http://ecogene.org) is a database and website devoted to continuously improving the structural and functional annotation of Escherichia coli K-12, one of the most well understood model organisms, represented by the MG1655(Seq) genome sequence and annotations. Major improvements to EcoGene in the past decade include (i) graphic presentations of genome map features; (ii) ability to design Boolean queries and Venn diagrams from EcoArray, EcoTopics or user-provided GeneSets; (iii) the genome-wide clone and deletion primer design tool, PrimerPairs; (iv) sequence searches using a customized EcoBLAST; (v) a Cross Reference table of synonymous gene and protein identifiers; (vi) proteome-wide indexing with GO terms; (vii) EcoTools access to >2000 complete bacterial genomes in EcoGene-RefSeq; (viii) establishment of a MySql relational database; and (ix) use of web content management systems. The biomedical literature is surveyed daily to provide citation and gene function updates. As of September 2012, the review of 37 397 abstracts and articles led to creation of 98 425 PubMed-Gene links and 5415 PubMed-Topic links. Annotation updates to Genbank U00096 are transmitted from EcoGene to NCBI. Experimental verifications include confirmation of a CTG start codon, pseudogene restoration and quality assurance of the Keio strain collection. PMID:23197660

  17. Porphyromonas crevioricanis is an earlier heterotypic synonym of Porphyromonas cansulci and has priority.

    Science.gov (United States)

    Sakamoto, Mitsuo; Ohkuma, Moriya

    2013-02-01

    A DNA-DNA hybridization experiment was carried out to clarify the relationship between Porphyromonas crevioricanis and Porphyromonas cansulci. The taxonomic standing of these two species was unclear so far because of the high 16S rRNA gene sequence similarity value (99.9 %). The DNA-DNA relatedness values between P. crevioricanis JCM 15906(T) and P. cansulci JCM 13913(T) were above 91 % (91-99 %). In addition, P. crevioricanis JCM 15906(T) exhibited high hsp60 gene sequence similarity with P. cansulci JCM 13913(T) (100 %). The hsp60 gene sequence analysis and the DNA-DNA relatedness values demonstrated that P. crevioricanis JCM 15906(T) and P. cansulci JCM 13913(T) are a single species. Based on these data, we propose Porphyromonas cansulci as a later heterotypic synonym of Porphyromonas crevioricanis.

  18. The Impact of climate change on heat-related mortality in six major cities, South Korea, under representative concentration pathways (RCPs

    Directory of Open Access Journals (Sweden)

    Youngmin eKim

    2014-02-01

    Full Text Available Background: We aimed to quantify the excess mortality associated with increased temperature due to climate change in six major Korean cities under Representative Concentration Pathways (RCPs which are new emission scenarios designed for the fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC. Methods: We first examined the association between daily mean temperature and mortality in each during the summertime (June to September from 2001 to 2008. This was done using a generalized linear Poisson model with adjustment for a long-term time trend, relative humidity, air pollutants, and day of the week. We then computed heat-related mortality attributable to future climate change using estimated mortality risks, projected future populations, and temperature increments for both future years 2041-2070 and 2071-2100 under RCP 4.5 and 8.5. We considered effects from added days with high temperatures over thresholds and shifted effects from high to higher temperature.Results: Estimated excess all-cause mortalities for six cities in Korea ranged from 500 (95% CI: 313-703 for 2041-2070 to 2,320 (95% CI: 1,430-3,281 deaths per year for 2071-2100 under two RCPs. Excess cardiovascular mortality was estimated to range from 192 (95% CI: 41-351 to 896 (95% CI: 185-1,694 deaths per year, covering about 38.5% of all-cause excess mortality. Increased rates of heat-related mortality were higher in cities located at relatively lower latitude than cities with higher latitude. Estimated excess mortality under RCP 8.5, a fossil fuel-intensive emission scenario, was more than twice as high compared with RCP 4.5, low to medium emission scenario.Conclusions: Excess mortality due to climate change is expected to be profound in the future showing spatial variation. Efforts to mitigate climate change can cause substantial health benefits via reducing heat-related mortality.

  19. Evolutionary force in confamiliar marine vertebrates of different temperature realms: adaptive trends in zoarcid fish transcriptomes

    Directory of Open Access Journals (Sweden)

    Windisch Heidrun Sigrid

    2012-10-01

    Full Text Available Abstract Background Studies of temperature-induced adaptation on the basis of genomic sequence data were mainly done in extremophiles. Although the general hypothesis of an increased molecular flexibility in the cold is widely accepted, the results of thermal adaptation are still difficult to detect at proteomic down to the genomic sequence level. Approaches towards a more detailed picture emerge with the advent of new sequencing technologies. Only small changes in primary protein structure have been shown to modify kinetic and thermal properties of enzymes, but likewise for interspecies comparisons a high genetic identity is still essential to specify common principles. The present study uses comprehensive transcriptomic sequence information to uncover general patterns of thermal adaptation on the RNA as well as protein primary structure. Results By comparing orthologous sequences of two closely related zoarcid fish inhabiting different latitudinal zones (Antarctica: Pachycara brachycephalum, temperate zone: Zoarces viviparus we were able to detect significant differences in the codon usage. In the cold-adapted species a lower GC content in the wobble position prevailed for preserved amino acids. We were able to estimate 40-60% coverage of the functions represented within the two compared zoarcid cDNA-libraries on the basis of a reference genome of the phylogenetically closely related fish Gasterosteus aculeatus. A distinct pattern of amino acid substitutions could be identified for the non-synonymous codon exchanges, with a remarkable surplus of serine and reduction of glutamic acid and asparagine for the Antarctic species. Conclusion Based on the differences between orthologous sequences from confamiliar species, distinguished mainly by the temperature regimes of their habitats, we hypothesize that temperature leaves a signature on the composition of biological macromolecules (RNA, proteins with implications for the transcription and

  20. Engaging Diverse Students in Statistical Inquiry: A Comparison of Learning Experiences and Outcomes of Under-Represented and Non-Underrepresented Students Enrolled in a Multidisciplinary Project-Based Statistics Course

    Science.gov (United States)

    Dierker, Lisa; Alexander, Jalen; Cooper, Jennifer L.; Selya, Arielle; Rose, Jennifer; Dasgupta, Nilanjana

    2016-01-01

    Introductory statistics needs innovative, evidence-based teaching practices that support and engage diverse students. To evaluate the success of a multidisciplinary, project-based course, we compared experiences of under-represented (URM) and non-underrepresented students in 4 years of the course. While URM students considered the material more…