WorldWideScience

Sample records for under-dense laser-produced plasma

  1. Diagnostics of laser-produced plasmas

    Directory of Open Access Journals (Sweden)

    Batani Dimitri

    2016-12-01

    Full Text Available We present the general challenges of plasma diagnostics for laser-produced plasmas and give a few more detailed examples: spherically bent crystals for X-ray imaging, velocity interferometers (VISAR for shock studies, and proton radiography.

  2. Energy transport in laser produced plasmas

    International Nuclear Information System (INIS)

    Key, M.H.

    1989-06-01

    The study of energy transport in laser produced plasmas is of great interest both because it tests and develops understanding of several aspects of basic plasma physics and also because it is of central importance in major applications of laser produced plasmas including laser fusion, the production of intense X-ray sources, and X-ray lasers. The three sections cover thermal electrons (energy transport in one dimension, plane targets and lateral transport from a focal spot, thermal smoothing, thermal instabilities), hot electrons (preheating in one dimension, lateral transport from a focal spot) and radiation (preheating in one dimension, lateral transport and smoothing, instabilities). (author)

  3. Adventures in Laser Produced Plasma Research

    Energy Technology Data Exchange (ETDEWEB)

    Key, M

    2006-01-13

    In the UK the study of laser produced plasmas and their applications began in the universities and evolved to a current system where the research is mainly carried out at the Rutherford Appleton Laboratory Central Laser Facility ( CLF) which is provided to support the universities. My own research work has been closely tied to this evolution and in this review I describe the history with particular reference to my participation in it.

  4. Ultra High Intensity laser produced fast electron transport in under-dense and over-dense matter

    International Nuclear Information System (INIS)

    Manclossi, Mauro

    2006-01-01

    This thesis is related to inertial fusion research, and particularly concerns the approach to fast ignition, which is based on the use of ultra-intense laser pulses to ignite the thermonuclear fuel. Until now, the feasibility of this scheme has not been proven and depends on many fundamental aspects of the underlying physics, which are not yet fully understood and which are also very far from controls. The main purpose of this thesis is the experimental study of transport processes in the material over-dense (solid) and under-dense (gas jet) of a beam of fast electrons produced by pulse laser at a intensity of some 10 19 Wcm -2 . (author)

  5. Measurement of Debye length in laser-produced plasma.

    Science.gov (United States)

    Ehler, W.

    1973-01-01

    The Debye length of an expanded plasma created by placing an evacuated chamber with an entrance slit in the path of a freely expanding laser produced plasma was measured, using the slab geometry. An independent measurement of electron density together with the observed value for the Debye length also provided a means for evaluating the plasma electron temperature. This temperature has applications in ascertaining plasma conductivity and magnetic field necessary for confinement of the laser produced plasma. Also, the temperature obtained would be useful in analyzing electron-ion recombination rates in the expanded plasma and the dynamics of the cooling process of the plasma expansion.

  6. Electron acceleration using laser produced plasmas

    CERN Multimedia

    CERN. Geneva; Landua, Rolf

    2005-01-01

    Low density plasmas have long been of interest as a potential medium for particle acceleration since relativistic plasma waves are capable of supporting electric fields greater than 100 GeV/m. The physics of particle acceleration using plasmas will be reviewed, and new results will be discussed which have demonstrated that relatively narrow energy spread (<3%) beams having energies greater than 100 MeV can be produced from femtosecond laser plasma interactions. Future experiments and potential applications will also be discussed.

  7. Interaction between laser-produced plasma and guiding magnetic field

    International Nuclear Information System (INIS)

    Hasegawa, Jun; Takahashi, Kazumasa; Ikeda, Shunsuke; Nakajima, Mitsuo; Horioka, Kazuhiko

    2013-01-01

    Transportation properties of laser-produced plasma through a guiding magnetic field were examined. A drifting dense plasma produced by a KrF laser was injected into an axisymmetric magnetic field induced by permanent ring magnets. The plasma ion flux in the guiding magnetic field was measured by a Faraday cup at various distances from the laser target. Numerical analyses based on a collective focusing model were performed to simulate plasma particle trajectories and then compared with the experimental results. (author)

  8. Laser produced plasma density measurement by Mach-Zehnder interferometry

    International Nuclear Information System (INIS)

    Vaziri, A.; Kohanzadeh, Y.; Mosavi, R.K.

    1976-06-01

    This report describes an optical interferometric method of measuring the refractive index of the laser-produced plasma, giving estimates of its electron density. The plasma is produced by the interaction of a high power pulsed CO 2 laser beam with a solid target in the vacuum. The time varying plasma has a transient electron density. This transient electron density gives rise to a changing plasma refractive index. A Mach-Zehnder ruby laser interferometer is used to measure this refractive index change

  9. Brillouin scatter in laser-produced plasmas

    International Nuclear Information System (INIS)

    Phillion, D.W.; Kruer, W.L.; Rupert, V.C.

    1977-01-01

    The absorption of intense laser light is found to be reduced when targets are irradiated by 1.06 μm light with long pulse widths (150-400 psec) and large focal spots (100-250 μm). Estimates of Brillouin scatter which account for the finite heat capacity of the underdense plasma predict this reduction. Spectra of the back reflected light show red shifts indicative of Brillouin scattering

  10. Simulation of radiation in laser produced plasmas

    Science.gov (United States)

    Colombant, D. G.; Klapisch, M.; Deniz, A. V.; Weaver, J.; Schmitt, A.

    1999-11-01

    The radiation hydrodynamics code FAST1D(J.H.Gardner,A.J.Schmitt,J.P.Dahlburg,C.J.Pawley,S.E.Bodner,S.P.Obenschain,V.Serlin and Y.Aglitskiy,Phys. Plasmas,5,1935(1998)) was used directly (i.e. without postprocessor) to simulate radiation emitted from flat targets irradiated by the Nike laser, from 10^12 W/cm^2 to 10^13W/cm^2. We use enough photon groups to resolve spectral lines. Opacities are obtained from the STA code(A.Bar-Shalom,J.Oreg,M.Klapisch and T.Lehecka,Phys.Rev.E,59,3512(1999)), and non LTE effects are described with the Busquet model(M.Busquet,Phys.Fluids B,5,4191(1993)). Results are compared to transmission grating spectra in the range 100-600eV, and to time-resolved calibrated filtered diodes (spectral windows around 100, 180, 280 and 450 eV).

  11. Study of charged fusion products in laser produced plasmas

    International Nuclear Information System (INIS)

    Rosenblum, M.

    1981-07-01

    Charged reaction products play a central role in inertial confinement fusion. The investigation of the various processes these particles undergo in laser produced plasmas, their influence on the dynamics of the fusion and their utilization as a diagnostic tool are the main subjects of this thesis. (author)

  12. Stark broadening in hot, dense laser-produced plasmas

    International Nuclear Information System (INIS)

    Tighe, R.J.; Hooper, C.F. Jr.

    1976-01-01

    Broadened Lyman-α x-ray lines from neon X and argon XVIII radiators, which are immersed in a hot, dense deuterium or deuterium-tritium plasma, are discussed. In particular, these lines are analyzed for several temperature-density cases, characteristic of laser-produced plasmas; special attention paid to the relative importance of ion, electron, and Doppler effects. Static ion microfield distribution functions are tabulated

  13. High resolution X-ray spectromicroscopy of laser produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Faenov, A.Ya. [Multi-charged Ions Spectra Data Center of VNIIFTRI (MISDC), Mendeleevo, Moscow region, (Russian Federation)

    2000-01-01

    In recent years new classes of X-ray spectroscopic instruments possessing both dispersive and focusing properties have been manufactured. Their principal advantage over more traditional instruments is that they combine very high luminosity with high spatial resolution, while preserving the highest possible spectral resolution of their dispersive elements. These instruments opened up the registration of plasmas in new regimes and surroundings. The measurements delivered new information about the properties of even previously studied traditional plasma objects (e.g. ns-laser produced plasmas). Also the detailed investigation of relatively new plasma laboratory sources with very small dimensions and low energy content (e.g. mJ fs-laser pulses) became possible. The purpose of this report is to give a short review of the experimental and theoretical results obtained in the past few years by MISDC (Multi-charged Ions Spectra Data Center) research team in the field of X-ray spectroscopy of a laser-produced plasma. Experimental spectra have been obtained at various laser installations with nanosecond, sub-nanosecond, picosecond and sub-picosecond pulses interacting with solid, gaseous or cluster targets in collaborations with research teams from Russia, USA, Germany, France, Poland, Belgium, Italy, China and Israel. Practically all results have been obtained with the help of spectrographs with spherically bent mica crystals operating in FSSR-1D, 2D schemes. (author)

  14. Collimation of laser-produced plasmas using axial magnetic field

    Czech Academy of Sciences Publication Activity Database

    Roy, Amitava; Harilal, S.S.; Hassan, S.M.; Endo, Akira; Mocek, Tomáš; Hassanein, A.

    2015-01-01

    Roč. 33, č. 2 (2015), s. 175-182 ISSN 0263-0346 R&D Projects: GA MŠk ED2.1.00/01.0027; GA MŠk EE2.3.20.0143; GA MŠk EE2.3.30.0057 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143; OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057 Institutional support: RVO:68378271 Keywords : laser-produced plasma * optical emission spectroscopy * plasma-B field interaction * plasma temperature and density * tin plasma Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.649, year: 2015

  15. Spectroscopic and corpuscular analysis of laser-produced carbon plasma

    International Nuclear Information System (INIS)

    Czarnecka, A.; Kubkowska, M.; Kowalska-Strzeciwilk, E.; Parys, P.; Sadowski, M.J.; Skladnik-Sadowska, E.; Malinowski, K.; Kwiatkowski, R.; Ladygina, M.

    2013-01-01

    The paper describes spectroscopic and corpuscular measurements of laser-produced carbon plasma, which was created at surfaces of three targets made of CFC of the Snecma-N11 type with different crystallographic orientations. In order to irradiate the investigated samples the use was made of a Nd:YAG laser. Experiments were performed in a vacuum chamber under the initial pressure equal to 5.10-5 mbar. A Mechelle 900 optical spectrometer equipped with a CCD detector was used to record spectra emitted from the produced carbon-plasma. The recorded optical spectra showed distinct carbon lines ranging from CI to CIV. Basing on the Stark broadening of the CII 426.7 nm line it was possible to estimate the electron density of plasma from each investigated sample. Corpuscular measurements of the emitted ions were carried out by means of an electrostatic ion-energy analyzer and ion collector.

  16. Laser optically pumped by laser-produced plasma

    International Nuclear Information System (INIS)

    Silfvast, W.T.; Wood, O.R. II.

    1975-01-01

    Laser solids, liquids and gases are pumped by a new technique in which the output from an efficient molecular laser, such as a CO 2 laser, ionizes a medium, such as xenon, into a generally cylindrical plasma volume, in proximity to the pumped laser body. Breakdown yields a visible and ultraviolet-radiation-emitting plasma in that volume to pump the laser body. The spectral radiance of the plasma is significantly higher than that produced by a dc-discharge-heated plasma at nearly all wavelengths in the plasma spectrum. The risetime of radiation from the laser-produced plasma can also be significantly shorter than that of a dc heated plasma. A further advantage resides in the fact that in some applications the attenuating walls needed by flashlamps may be eliminated with the result that laser threshold is more readily reached. Traveling wave excitation may be provided by oblique incidence of the pumping laser beam through the ionizable medium to create sequential ionization of portions of that medium along the length of the pumped laser body. (auth)

  17. Electrostatic fields and charged particle acceleration in laser produced plasmas

    International Nuclear Information System (INIS)

    Hora, H.

    1983-01-01

    Some new aspects pioneered recently by Alfven in the theory of cosmic plasmas, indicate the possibility of a new treatment of the action of electrostatic double layers in the periphery of an expanding laser produced plasma. The thermally produced electrostatic double layer which has been re-derived for a homogeneous plasma shows that a strong upshift of ion energies is possible, in agreement with experiments. The number of accelerated ions is many orders of magnitude smaller than observed at keV and MeV energies. The nonlinear force acceleration could explain the number and energy of the observed fast ions. It is shown, however, that electrostatic double layers can be generated which should produce super-fast ions. A derivation of the spread double layers in the case of inhomogeneous plasmas is presented. It is concluded that the hydrodynamically expected multi GeV heavy ions for 10 TW laser pulses should produce super-fast ions up to the TeV range. Further conclusions are drawn from the electrostatically measured upshifted (by 300 keV) DT fusion alphas from laser compressed plasma. An analysis of alpha spectra attempts to distinguish between different models of the stopping power in the plasmas. The analysis preliminarily arrives at a preference for the collective model. (author)

  18. EUV laser produced and induced plasmas for nanolithography

    Science.gov (United States)

    Sizyuk, Tatyana; Hassanein, Ahmed

    2017-10-01

    EUV produced plasma sources are being extensively studied for the development of new technology for computer chips production. Challenging tasks include optimization of EUV source efficiency, producing powerful source in 2 percentage bandwidth around 13.5 nm for high volume manufacture (HVM), and increasing the lifetime of collecting optics. Mass-limited targets, such as small droplet, allow to reduce contamination of chamber environment and mirror surface damage. However, reducing droplet size limits EUV power output. Our analysis showed the requirement for the target parameters and chamber conditions to achieve 500 W EUV output for HVM. The HEIGHTS package was used for the simulations of laser produced plasma evolution starting from laser interaction with solid target, development and expansion of vapor/plasma plume with accurate optical data calculation, especially in narrow EUV region. Detailed 3D modeling of mix environment including evolution and interplay of plasma produced by lasers from Sn target and plasma produced by in-band and out-of-band EUV radiation in ambient gas, used for the collecting optics protection and cleaning, allowed predicting conditions in entire LPP system. Effect of these conditions on EUV photon absorption and collection was analyzed. This work is supported by the National Science Foundation, PIRE project.

  19. GigaGauss solenoidal magnetic field inside bubbles excited in under-dense plasma

    Science.gov (United States)

    Lécz, Zs.; Konoplev, I. V.; Seryi, A.; Andreev, A.

    2016-10-01

    This paper proposes a novel and effective method for generating GigaGauss level, solenoidal quasi-static magnetic fields in under-dense plasma using screw-shaped high intensity laser pulses. This method produces large solenoidal fields that move with the driving laser pulse and are collinear with the accelerated electrons. This is in contrast with already known techniques which rely on interactions with over-dense or solid targets and generates radial or toroidal magnetic field localized at the stationary target. The solenoidal field is quasi-stationary in the reference frame of the laser pulse and can be used for guiding electron beams. It can also provide synchrotron radiation beam emittance cooling for laser-plasma accelerated electron and positron beams, opening up novel opportunities for designs of the light sources, free electron lasers, and high energy colliders based on laser plasma acceleration.

  20. Line intensities for diagnosing laser-produced plasmas

    International Nuclear Information System (INIS)

    Kauffman, R.L.; Matthews, D.L.; Lee, R.W.; Whitten, B.L.; Kilkenny, J.D.

    1983-01-01

    We have measured relative line intensities of the K x-ray spectra of Si, Cl, and Ca from laser-produced plasmas to assess their usefulness as a plasma diagnostic. The different elements are added at low concentrations to CH disks which are irradiated at 5 x 10 14 W/cm 2 with a 0.53 μm laser pulse of 20 Joules at 1 nsec. The concentration of each element is kept low in order not to change the Z of the plasma, and therefore the plasma dynamics. The various spectra are measured with a time-resolved spectrograph to obtain line intensities as a function of time over the length of the laser pulse. These relative intensities of various He-like and H-like lines are compared with calculations from a steady-state level population code. The results give good consistency among the various line ratios. Agreement is not as good for analysis of the Li-like satellite lines. Modelling of the Li-like lines need further investigation. 10 references, 9 figures

  1. Transition from isentropic to isothermal expansion in laser produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Barrero, A; Santartin, J R

    1980-07-01

    The transition that the expansion flow of laser-produced plasmas experiences when ones moves from long, low intensity pulses (temperature vanishing at the Isentropic plasma-vacuum front, lying at finite distance) to short, intense ones (non-zero, uni- form temperature at the plasma-vacuum front, lying at infinity) is studied. For planar geometry and large Ion number Z{sub j} the transition occurs for d {phi} / d t {approx_equal} 0.14(27/8)k{sup 7}/2 Z{sub j}{sup 3}/2/m{sub j}{sup 3}/2 K; {phi}, k, m{sub j}, and K are laser intensity, Boltzmann s constant, ion mass, and Spitzer s heat conduction coefficient. This result remains valid for finite Z{sub j} though the numerical factor in d{phi} / d t is different. In spherical geometry a similar transition occurs even in steady conditions. Shorter wavelength lasers and higher Z{sub j} plasmas allow faster rising pulses below transition. (Author) 13 refs.

  2. Saturation of Langmuir waves in laser-produced plasmas

    International Nuclear Information System (INIS)

    Baker, K.L.

    1996-04-01

    This dissertation deals with the interaction of an intense laser with a plasma (a quasineutral collection of electrons and ions). During this interaction, the laser drives large-amplitude waves through a class of processes known as parametric instabilities. Several such instabilities drive one type of wave, the Langmuir wave, which involves oscillations of the electrons relative to the nearly-stationary ions. There are a number of mechanisms which limit the amplitude to which Langmuir waves grow. In this dissertation, these mechanisms are examined to identify qualitative features which might be observed in experiments and/or simulations. In addition, a number of experiments are proposed to specifically look for particular saturation mechanisms. In a plasma, a Langmuir wave can decay into an electromagnetic wave and an ion wave. This parametric instability is proposed as a source for electromagnetic emission near half of the incident laser frequency observed from laser-produced plasmas. This interpretation is shown to be consistent with existing experimental data and it is found that one of the previous mechanisms used to explain such emission is not. The scattering version of the electromagnetic decay instability is shown to provide an enhanced noise source of electromagnetic waves near the frequency of the incident laser

  3. Hydrodynamic simulation of X-UV laser-produced plasmas

    International Nuclear Information System (INIS)

    Fajardo, M.; Zeitoun, P.; Gauthier, J.C.

    2004-01-01

    With the construction of novel X-UV sources, such as V-UV FEL's (free-electron lasers), X-UV laser-matter interaction will become available at ultra-high intensities. But even table-top facilities such as X-UV lasers or High Harmonic Generation, are starting to reach intensities high enough to produce dense plasmas. X-UV laser-matter interaction is studied by a 1-dimensional hydrodynamic Lagrangian code with radiative transfer for a range of interesting X-UV sources. Heating is found to be very different for Z=12-14 elements having L-edges around the X-UV laser wavelength. Possible absorption mechanisms were investigated in order to explain this behaviour, and interaction with cold dense matter proved to be dominant. Plasma sensitivity to X-UV laser parameters such as energy, pulse duration, and wavelength was also studied, covering ranges of existing X-UV lasers. We found that X-UV laser-produced plasmas could be studied using table-top lasers, paving the way for future V-UV-FEL high intensity experiments. (authors)

  4. 3-D magnetic reconnection in colliding laser-produced plasmas

    Science.gov (United States)

    Matteucci, Jackson; Fox, Will; Moissard, Clement; Bhattacharjee, Amitava

    2017-10-01

    Recent experiments have demonstrated magnetic reconnection between colliding plasma plumes, where the reconnecting magnetic fields were self-generated in the expanding laser-produced plasmas by the Biermann battery effect. Using fully kinetic 3-D particle in cell simulations, we conduct the first end-to-end simulations of these experiments, including self-consistent magnetic field generation via the Biermann effect through driven magnetic field reconnection. The simulations show rich, temporally and spatially dependent magnetic field reconnection. First, we find fast, vertically-localized ``Biermann-mediated reconnection,'' an inherently 3-D reconnection mechanism where the sign of the Biermann term reverses in the reconnection layer, destroying incoming flux and reconnecting flux downstream. Reconnection then transitions to fast, collisionless reconnection sustained by the non-gyrotropic pressure tensor. To separate out the role 3-D mechanisms, 2-D simulations are initialized based on reconnection-plane cuts of the 3-D simulations. These simulations demonstrate: (1) suppression of Biermann-mediated reconnection in 2-D; (2) similar efficacy of pressure tensor mechanisms in 2-D and 3-D; and (3) plasmoids develop in the reconnection layer in 2-D, where-as they are suppressed in 3-D. Supported by NDSEG Fellowship. This research used resources of the OLCF at ORNL, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

  5. Relative ion expansion velocity in laser-produced plasmas

    International Nuclear Information System (INIS)

    Goldsmith, S.; Moreno, J.C.; Griem, H.R.; Cohen, L.; Richardson, M.C.

    1988-01-01

    The spectra of highly ionized titanium, TiXIII through TiXXI, and CVI Lyman lines were excited in laser-produced plasmas. The plasma was produced by uniformly irradiating spherical glass microballoons coated with thin layers of titanium and parylene. The 24-beam Omega laser system produced short, 0.6 ns, and high intensity, 4 x 10 14 W/cm, 2 laser pulses at a wavelength of 351 nm. The measured wavelength for the 2p-3s TiXIII resonance lines had an average shift of +0.023 A relative to the CVI and TiXX spectral lines. No shift was found between the CVI, TiXIX, and TiXX lines. The shift is attributed to a Doppler effect, resulting from a difference of (2.6 +- 0.2) x 10 7 cm/s in the expansion velocities of TiXIX and TiXX ions compared to TiXIII ions

  6. Analysis of extreme ultraviolet spectra from laser produced rhenium plasmas

    Science.gov (United States)

    Wu, Tao; Higashiguchi, Takeshi; Li, Bowen; Suzuki, Yuhei; Arai, Goki; Dinh, Thanh-Hung; Dunne, Padraig; O'Reilly, Fergal; Sokell, Emma; Liu, Luning; O'Sullivan, Gerry

    2015-08-01

    Extreme ultraviolet spectra of highly-charged rhenium ions were observed in the 1-7 nm region using two Nd:YAG lasers with pulse lengths of 150 ps and 10 ns, respectively, operating at a number of laser power densities. The maximum focused peak power density was 2.6 × 1014 W cm-2 for the former and 5.5 × 1012 W cm-2 for the latter. The Cowan suite of atomic structure codes and unresolved transition array (UTA) approach were used to calculate and interpret the emission properties of the different spectra obtained. The results show that n = 4-n = 4 and n = 4-n = 5 UTAs lead to two intense quasi-continuous emission bands in the 4.3-6.3 nm and 1.5-4.3 nm spectral regions. As a result of the different ion stage distributions in the plasmas induced by ps and ns laser irradiation the 1.5-4.3 nm UTA peak moves to shorter wavelength in the ps laser produced plasma spectra. For the ns spectrum, the most populated ion stage during the lifetime of this plasma that could be identified from the n = 4-n = 5 transitions was Re23+ while for the ps plasma the presence of significantly higher stages was demonstrated. For the n = 4-n = 4 4p64dN-4p54dN+1 + 4p64dN-14f transitions, the 4d-4f transitions contribute mainly in the most intense 4.7-5.5 nm region while the 4p-4d subgroup gives rise to a weaker feature in the 4.3-4.7 nm region. A number of previously unidentified spectral features produced by n = 4-n = 5 transitions in the spectra of Re XVI to Re XXXIX are identified.

  7. Analysis of extreme ultraviolet spectra from laser produced rhenium plasmas

    International Nuclear Information System (INIS)

    Wu, Tao; Dunne, Padraig; O’Reilly, Fergal; Sokell, Emma; Liu, Luning; O’Sullivan, Gerry; Higashiguchi, Takeshi; Suzuki, Yuhei; Arai, Goki; Dinh, Thanh-Hung; Li, Bowen

    2015-01-01

    Extreme ultraviolet spectra of highly-charged rhenium ions were observed in the 1–7 nm region using two Nd:YAG lasers with pulse lengths of 150 ps and 10 ns, respectively, operating at a number of laser power densities. The maximum focused peak power density was 2.6 × 10 14 W cm −2 for the former and 5.5 × 10 12 W cm −2 for the latter. The Cowan suite of atomic structure codes and unresolved transition array (UTA) approach were used to calculate and interpret the emission properties of the different spectra obtained. The results show that n = 4-n = 4 and n = 4-n = 5 UTAs lead to two intense quasi-continuous emission bands in the 4.3–6.3 nm and 1.5–4.3 nm spectral regions. As a result of the different ion stage distributions in the plasmas induced by ps and ns laser irradiation the 1.5–4.3 nm UTA peak moves to shorter wavelength in the ps laser produced plasma spectra. For the ns spectrum, the most populated ion stage during the lifetime of this plasma that could be identified from the n = 4-n = 5 transitions was Re 23+ while for the ps plasma the presence of significantly higher stages was demonstrated. For the n = 4-n = 4 4p 6 4d N -4p 5 4d N+1  + 4p 6 4d N−1 4f transitions, the 4d-4f transitions contribute mainly in the most intense 4.7–5.5 nm region while the 4p-4d subgroup gives rise to a weaker feature in the 4.3–4.7 nm region. A number of previously unidentified spectral features produced by n = 4-n = 5 transitions in the spectra of Re XVI to Re XXXIX are identified. (paper)

  8. Plasma-particle interaction effects in induction plasma modelling under dense loading conditions

    International Nuclear Information System (INIS)

    Proulx, P.; Mostaghimi, J.; Boulos, M.

    1983-07-01

    The injection of solid particles or aerosol droplets in the fire-ball of an inductively coupled plasma can substantially perturb the plasma and even quench it under high loading conditions. This can be mainly attributed to the local cooling of the plasma by the particles or their vapour cloud, combined with the possible change of the thermodynamic and transport properties of the plasma in the presence of the particle vapour. This paper reports the state-of-the-art in the mathematical modelling of the induction plasma. A particle-in-cell model is used in order to combine the continuum approach for the calculation of the flow, temperature and concentration fields in the plasma, with the stochastic single particle approach, for the calculation of the particle trajectories and temperature histories. Results are given for an argon induction plasma under atmospheric pressure in which fine copper particles are centrally injected in the coil region of the discharge

  9. Direct isotope ratio measurement of uranium metal by emission spectrometry on a laser-produced plasma

    International Nuclear Information System (INIS)

    Pietsch, W.; Petit, A.; Briand, A.

    1995-01-01

    The method of Optical Emission Spectrometry on a Laser-Produced Plasma (OES/LPP) at reduced pressure has been studied for the determination of the uranium isotope ratio ( 235 U/ 238 U). Spectral profiles of the investigated transition U-II 424.437 nm show the possibility to obtain an isotopic spectral resolution in a laser-produced plasma under exactly defined experimental conditions. Spectroscopic data and results are presented. (author)

  10. Test of models for electron transport in laser produced plasmas

    International Nuclear Information System (INIS)

    Colombant, D.G.; Manheimer, W.M.; Busquet, M.

    2005-01-01

    This paper examines five different models of electron thermal transport in laser produced spherical implosions. These are classical, classical with a flux limit f, delocalization, beam deposition model, and Fokker-Planck solutions. In small targets, the results are strongly dependent on f for flux limit models, with small f's generating very steep temperature gradients. Delocalization models are characterized by large preheat in the center of the target. The beam deposition model agrees reasonably well with the Fokker-Planck simulation results. For large, high gain fusion targets, the delocalization model shows the gain substantially reduced by the preheat. However, flux limitation models show gain largely independent of f, with the beam deposition model also showing the same high gain

  11. Influence of low atomic number plasma component on the formation of laser-produced plasma jets

    Czech Academy of Sciences Publication Activity Database

    Kasperczuk, A.; Pisarczyk, T.; Badziak, J.; Borodziuk, S.; Chodukowski, T.; Gus’kov, S.Yu.; Demchenko, N. N.; Ullschmied, Jiří; Krouský, Eduard; Mašek, Karel; Pfeifer, Miroslav; Rohlena, Karel; Skála, Jiří; Pisarczyk, P.

    2010-01-01

    Roč. 17, č. 11 (2010), s. 114505 ISSN 1070-664X R&D Projects: GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z20430508; CEZ:AV0Z10100523 Keywords : Composed laser targets * target material * laser produced-plasma jets * PALS laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.320, year: 2010 http://pop.aip.org/ resource /1/phpaen/v17/i11/p114505_s1

  12. Polarization spectroscopy on laser-produced plasmas and Z-pinch plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong E. [POSTECH, Kyungbuk (Korea); Baronova, Elena O. [RRC Kurchatov Institute, Nuclear Fusion Institute, Moscow (Russian Federation); Jakubowski, Lech [Soltan Institute for Nuclear Studies, Swierk-Otwock (Poland)

    2002-08-01

    PPS experiments on laser-produced plasmas are reviewed. Polarization is interpreted in terms of the anisotropic velocity distribution of electrons due to non-local transport. The polarization of an x-ray laser, and recent results regarding the recombining plasma are also presented. X-ray polarization spectroscopy experiments on heliumlike ion lines from a vacuum spark and from a plasma focus are presented: in both cases, the resonance line of the heliumlike ions shows polarization in the direction perpendicular to the discharge axis. Two possible interpretations are suggested. (author)

  13. Interaction of a laser-produced copper plasma jet with ambient plastic plasma

    Czech Academy of Sciences Publication Activity Database

    Kasperczuk, A.; Pisarczyk, T.; Badziak, J.; Borodziuk, S.; Chodukowski, T.; Gus’kov, S.Yu.; Demchenko, N. N.; Klir, D.; Kravarik, J.; Kubes, P.; Rezac, K.; Ullschmied, Jiří; Krouský, Eduard; Mašek, Karel; Pfeifer, Miroslav; Rohlena, Karel; Skála, Jiří; Pisarczyk, P.

    2011-01-01

    Roč. 53, č. 9 (2011), 095003-095003 ISSN 0741-3335 R&D Projects: GA MŠk(CZ) 7E09092; GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z20430508; CEZ:AV0Z10100523 Keywords : laser produced-plasma jets * PALS laser * laser ablation * copper plasma * plastic plasma Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.425, year: 2011 http://iopscience.iop.org/0741-3335/53/9/095003/pdf/0741-3335_53_9_095003.pdf

  14. Study of a Laser-Produced Plasma by Langmuir Probes

    DEFF Research Database (Denmark)

    Chang, C. T.; Hasimi, M.; Pant, H. C.

    1977-01-01

    -emission peak and the main plasma from the target. The flow velocity, density and electron temperature of the plasma were determined. The expansion of the plasma was found to be adiabatic, yielding gamma =5/3. The spatial distribution of the plasma was observed to be strongly anisotropic.......The structure, the parameters and the expansion of the plasma produced by focusing a 7 J, 20 ns Nd-glass laser on stainless-steel and glass targets suspended in a high-vacuum chamber were investigated by Langmuir probes. It was observed that the probe signals consisted of a photoelectric...

  15. Ion collisions and deceleration in laser-produced plasma-jet interaction with walls

    Czech Academy of Sciences Publication Activity Database

    Renner, Oldřich; Krouský, Eduard; Liska, R.; Šmíd, M.; Larroche, O.; Dalimier, E.

    2011-01-01

    Roč. 56, - (2011), T165-T174 ISSN 0001-7043 R&D Projects: GA MŠk(CZ) LC528; GA ČR GAP205/10/0814 Institutional research plan: CEZ:AV0Z10100523 Keywords : laser-produced plasma jets * plasma-wall interaction * plasma diagnostics * X-ray spectroscopy * fluid and kinetic plasma simulation Subject RIV: BL - Plasma and Gas Discharge Physics

  16. Charge-exchange-induced formation of hollow atoms in high-intensity laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rosmej, F.B. [TU-Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Faenov, A.Ya.; Pikuz, T.A.; Magunov, A.I.; Skobelev, I.Yu. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo (Russian Federation); Auguste, T.; D' Oliveira, P.; Hulin, S.; Monot, P. [Commissariat a lEnergie Atomique DSM/DRECAM/SPAM, Gif-Sur-Yvette Cedex (France); Andreev, N.E.; Chegotov, M.V.; Veisman, M.E. [High Energy Density Research Centre, Institute of High Temperatures of Russian Academy of Sciences, Moscow (Russian Federation)

    1999-03-14

    For the first time registration of high-resolution soft x-ray emission and atomic data calculations of hollow-atom dielectronic satellite spectra of highly charged nitrogen have been performed. Double-electron charge-exchange processes from excited states are proposed for the formation of autoionizing levels nln'l' in high-intensity laser-produced plasmas, when field-ionized ions penetrate into the residual gas. Good agreement is found between theory and experiment. Plasma spectroscopy with hollow ions is proposed and a temperature diagnostic for laser-produced plasmas in the long-lasting recombining regime is developed. (author). Letter-to-the-editor.

  17. Study of multicharged ions in the laser-produced plasmas

    International Nuclear Information System (INIS)

    Jaegle, P.; Carillon, A.; Jamelot, G.; Wehenkel, C.; Sureau, A.; Guennou, H.

    1980-01-01

    With respect to hot plasmas, laser induced plasmas have an especially high density, with a steep partial gradient and a fast temporal variation of temperature and density. The study of multicharged ion radiation, wich is necessary to perform diagnostics of plasma parameters, opens a new field for atomic physics investigations, including identification of peculiar lines, which are not observed in other conditions, large changes in line profiles due to radiative transfer and to both shift and broadening by Stark effect. Departure from population equilibrium takes place in these plasmas, going possibly so far as population inversion between ionic levels in an energy range covering EUV and soft X-rays. Experimental and theoretical study of these phenomena are in progress and needs to find solutions for complicated problems. Here, recent works performed with the laser of the GRECO 'Interaction Laser-Matiere' are briefly presented [fr

  18. Ion turbulence and thermal transport in laser-produced plasmas

    International Nuclear Information System (INIS)

    Barr, H.C.; Boyd, T.J.M.

    1982-01-01

    In the interaction of high-intensity lasers with target plasmas the transport of thermal energy from the region in which the radiation is absorbed, to the cold dense plasma in the interior of the target, is an issue of central importance. The role of ion turbulence as a flux limiter is addressed with particular regard to recent experiments in which target plasmas were irradiated by 1.06 μm neodymium laser light at irradiances of 10 15 W cm - 2 and greater. Saturation levels of the ion-acoustic turbulence driven by a combination of a suprathermal electron current and a heat flux are calculated on the basis of perturbed orbit theory. The levels of turbulence are found to be markedly lower than those commonly estimated from simple trapping arguments and too low to explain the thermal flux inhibition observed in the experiments used as a basis for the model. (author)

  19. Nanosecond framing photography for laser-produced interstreaming plasmas

    International Nuclear Information System (INIS)

    McLean, E.A.; Ripin, B.H.; Stamper, J.A.; Manka, C.K.; Peyser, T.A.

    1988-01-01

    Using a fast-gated (120 psec-5 nsec) microchannel-plate optical camera (gated optical imager), framing photographs have been taken of the rapidly streaming laser plasma (∼ 5 x 10 7 cm/sec) passing through a vacuum or a background gas, with and without a magnetic field. Observations of Large-Larmor-Radius Interchange Instabilities are presented

  20. Soft x-ray source by laser produced Xe plasma

    International Nuclear Information System (INIS)

    Amano, Sho; Masuda, Kazuya; Miyamoto, Shuji; Mochizuki, Takayasu

    2010-01-01

    The laser plasma soft X-ray source in the wavelength rage of 5-17 nm was developed, which consisted of the rotating drum system supplying cryogenic Xe target and the high repetition rate pulse Nd:YAG slab laser. We found the maximum conversion efficiency of 30% and it demonstrated the soft X-ray generation with the high repetition rate pulse of 320 pps and the high average power of 20 W. The soft X-ray cylindrical mirror was developed and successfully focused the soft X-ray with an energy intensity of 1.3 mJ/cm 2 . We also succeeded in the plasma debris mitigation with Ar gas. This will allow a long lifetime of the mirror and a focusing power intensity of 400 mW/cm 2 with 320 pps. The high power soft X-ray is useful for various applications. (author)

  1. Spectral modeling of laser-produced underdense titanium plasmas

    Science.gov (United States)

    Chung, Hyun-Kyung; Back, Christina A.; Scott, Howard A.; Constantin, Carmen; Lee, Richard W.

    2004-11-01

    Experiments were performed at the NIKE laser to create underdense low-Z plasmas with a small amount of high-Z dopant in order to study non-LTE population kinetics. An absolutely calibrated spectra in 470-3000 eV was measured in time-resolved and time-averaged fashion from SiO2 aerogel target with 3% Ti dopant. K-shell Ti emission was observed as well as L-shell Ti emission. Time-resolved emission show that lower energy photons peak later than higher energy photons due to plasma cooling. In this work, we compare the measured spectra with non-LTE spectral calculations of titanium emission at relatively low temperatures distributions dominated by L-shell ions will be discussed.

  2. Recent developments in understanding the physics of laser produced plasmas

    International Nuclear Information System (INIS)

    Bezzerides, B.; DuBois, D.F.; Forslund, D.W.; Kindel, J.M.; Lee, K.; Lindman, E.L.

    1976-01-01

    The absorption of intense laser light by a plasma is known to produce a high energy component of electrons. Even though the hot electron pressure may be larger than the cold background pressure, the background temperature can control the self-consistent profile modification. Since temperatures in high intensity experiments seem to be similar for CO 2 and Nd glass lasers, the profile modification may be so severe for CO 2 and Nd glass lasers, the profile modification may be so severe for CO 2 that orders of magnitude change in density can occur over microns, leading to a softened electron spectrum. However, the resulting equilibrium of laser pressure balancing plasma pressure is unstable even when flow is properly taken into account. We also briefly discuss recent results for self-generated magnetic fields including important kinetic effects

  3. Density oscillations in laser produced plasma decelerated by ...

    Indian Academy of Sciences (India)

    during deceleration under the effect of external magnetic field. This has been verified with the help of figure 3, which shows the variation of x-ray intensity emitted from the plasma with laser intensity at 0.01 and 0.6 T magnetic field. Enhancement in the x-ray emission by 2–3 times in the presence of magnetic field has already ...

  4. Instabilities in superconductors and in intense laser produced plasma's

    International Nuclear Information System (INIS)

    Banerjee, Satyajit S.; Mohan, Shyam; Sinha, Jaivardhan; Kahaly, Subendhu; Ravindra Kumar, G.

    2007-01-01

    In this talk I will attempt to discuss phenomena's in two areas of physics which appear quite divorced from each other, viz., superconductivity and plasma's. The first portion of the talk will describe the behavior of a collection of vortices in superconductors in a random pinning environment. Vortices manifest themselves in a variety of systems, like in fluids and in type II superconductors. A collection of vortices inside superconductors behaves like an elastic media. Investigating this elastic medium of the vortex state is a convenient prototype for investigating similar physics in a wide variety of systems, viz., charge density waves, Wigner crystals, magnetic domains, etc. The behavior of all these systems can be generalized under, nature of elastic media in the presence of a random pinning environment and thermal fluctuations. Based on the idea that softer matter is easy to pin we have attempted to investigate how the vortex lattice disorders as its gets softer. Surprisingly we find evidence to two distinct types of instabilities in the vortex lattice instead of one. These two instabilities produce vastly different effects on certain quantities associated with the extent of disorder in the superconductor. It appears that prior to softening of the vortex state, a heterogeneously pinned state of the vortex matter appears, perhaps through a KT like transition. In the second part of the talk, I will attempt to describe some of our recent results pertaining to instabilities and the appearance of giant magnetic fields in plasma's. These results have been obtained with a high sensitivity magneto-optical imaging setup we have developed at IIT Kanpur. Using the setup, we investigate distribution of magnetic fields around dense solid plasmas generated by intense p-polarized laser (∼10 16 Wcm -2 , 100 fs) irradiation of magnetic tapes, using high sensitivity magneto optical imaging technique. We demonstrate giant axial magnetic fields and map out for the first time

  5. Simulations of X-ray transmission through laser-produced plasmas

    International Nuclear Information System (INIS)

    Yan Jun; Qu Yizhi; Li Jiaming

    1999-01-01

    Using the detailed configuration accounting with the term structures treated by the unresolved transition array model, the authors present a method to calculate the transmission spectra for high-power laser-produced plasmas in local thermodynamic equilibrium. Based on the quantum defect theory, the UTA parameters with high principal quantum numbers can be conveniently calculated with much less computational efforts. This ensure us to handle a huge number of transition arrays from many configurations occurring in typical laser-produced middle-Z and high-Z plasmas

  6. Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, Sivanandan S.; Brumfield, Brian E.; LaHaye, Nicole L.; Hartig, Kyle C.; Phillips, Mark C.

    2018-04-20

    This review article covers the present status of isotope detection through emission, absorption, and fluorescence spectroscopy of atoms and molecules in a laser-produced plasma formed from a solid sample. A description of the physics behind isotope shifts in atoms and molecules is presented, followed by the physics behind solid sampling of laser ablation plumes, optical methods for isotope measurements, the suitable physical conditions of laser-produced plasma plumes for isotopic analysis, and the current status. Finally, concluding remarks will be made on the existing gaps between previous works in the literature and suggestions for future work.

  7. Proton radiography of magnetic field in laser produced plasma

    International Nuclear Information System (INIS)

    Le Pape, S.; Patel, P.; Chen, S.; Town, R.; Mackinnon, A.

    2009-01-01

    Electromagnetic fields generated by the interaction with plasmas of long-pulse laser beams relevant to inertial confinement fusion have been measure. A proton beam generated by the interaction of an ultra intense laser with a thin metallic foil is used to probe the B-fields. The proton beam then generated is temporally short (of the order of a ps), highly laminar and hence equivalent to a virtual point which makes it an ideal source for radiography. We have investigated, using face-on radiography, B fields at intensity around 10 14 W/cm 2 due to the non co-linearity of temperature and density gradients. (authors)

  8. Experiments on hot and dense laser-produced plasmas

    International Nuclear Information System (INIS)

    Back, C.A.; Woolsey, N.C.; Asfaw, A.; Glenzer, S.H.; Hammel, B.A.; Keane, C.J.; Lee, R.W.; Liedahl, D.; Moreno, J.C.; Nash, J.K.; Osterheld, A.L.; Calisti, A.; Stamm, R.; Talin, B.; Godbert, L.; Mosse, C.; Ferri, S.; Klein, L.

    1996-01-01

    Plasmas generated by irradiating targets with ∼20 kJ of laser energy are routinely created in inertial confinement fusion research. X-ray spectroscopy provides one of the few methods for diagnosing the electron temperature and electron density. For example, electron densities approaching 10 24 cm -3 have been diagnosed by spectral linewidths. However, the accuracy of the spectroscopic diagnostics depends on the population kinetics, the radiative transfer, and the line shape calculations. Analysis for the complex line transitions has recently been improved and accelerated by the use of a database where detailed calculations can be accessed rapidly and interactively. Examples of data from Xe and Ar doped targets demonstrate the current analytic methods. First we will illustrate complications that arise from the presence of a multitude of underlying spectral lines. Then, we will consider the Ar He-like 1s 2 ( 1 S 0 ) - 1s3p( 1 P 0 ) transition where ion dynamic effects may affect the profile. Here, the plasma conditions are such that the static ion microfield approximation is no longer valid; therefore in addition to the width, the details of the line shape can be used to provide additional information. We will compare the data to simulations and discuss the possible pitfalls involved in demonstrating the effect of ion dynamics on lineshapes

  9. Ponderomotive force, magnetic fields and hydrodynamics of laser produced plasmas

    International Nuclear Information System (INIS)

    Bobin, J.-L.; Wee Woo; Degroot, J.-S.

    1977-01-01

    Nonlinear effects deeply change the structure of a laser driven plasma flow. For high intensities, the radiation pressure should be taken into account. It acts through a ponderomotive force proportional to the electron density and to the gradient of the mean electric field energy density of the incident wave. Static magnetic fields originate from a term in the ponderomotive force which includes radiation absorption and whose curl is non zero. The basic properties of the structure are determined analytically in the absence of thermal conductivity and magnetic fields: steep density gradient close to the cut-off density, shelf at lower densities. The conditions of a steady state regime are set up. The isothermal case is specially investigated. It is shown that the cavities which are created in a motionless plasma may disappear due to the onset of a flow. Regions in which electromagnetic forces arising from the static field compensate the ponderomotive force are determined. The subsequent effects on the flow itself are studied [fr

  10. Laser radiation forces in laser-produced plasmas

    International Nuclear Information System (INIS)

    Stamper, J.A.

    1975-01-01

    There are two contributions to laser radiation forces acting on the electrons. Transfer of momentum from the fields to the electrons results in a field pressure contribution and occurs whenever there is absorption or reflection. The quiver pressure contribution, associated with electron quiver motion, is due to inhomogeneous fields inducing momentum transfer within the electron system. It is shown that the ponderomotive force with force density, (epsilon-1)/8πdel 2 >, does not include the field contribution and does not lead to a general description of macroscopic processes. A theory is discussed which does give a general macroscopic description (absorption, reflection, refraction, and magnetic field generation) and which reduces to the ponderomotive force for purely sinusoidal fields in a neutral, homogeneous, nonabsorbing plasma

  11. Morphology of magnetic fields generated in laser-produced plasmas

    International Nuclear Information System (INIS)

    Boyd, T.J.M.; Cooke, D.

    1988-01-01

    Magnetic fields in the megagauss range have been measured in experiments on plasmas generated by irradiating targets with high power lasers. A study of the morphology of these self-generated fields is important not only for its intrinsic interest but for possible implications in laser--target physics. In this paper work on the numerical modeling of large magnetic fields generated in target experiments is reported. The results show generally satisfactory agreement with the fields measured experimentally both in terms of the magnitude of the peak fields and their morphology. In the numerical model the contribution from the Hall term in describing the evolution of the magnetic field is shown to be important especially in short pulse (≅100 psec) experiments

  12. Transition probabilities of some Si II lines obtained by laser produced plasma emission

    International Nuclear Information System (INIS)

    Blanco, F.; Botho, B.; Campos, J.

    1995-01-01

    The absolute transition probabilities for 28 Si II spectral lines have been determined by measurement of emission line intensities from laser-produced plasmas of Si in Ar and Kr atmospheres. The studied plasma has a temperature of about 2 . 10 4 K and 10 17 cm -3 electron density. The local thermodynamic equilibrium conditions and plasma homogeneity have been checked. The results are compared with the available experimental and theoretical data and with present Hartree-Fock calculations in LS coupling. (orig.)

  13. Intensity and shape of spectral lines from laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Jamelot, G; Jaegle, P; Carillon, A; Wehenkel, C [Centre National de la Recherche Scientifique, 91 - Orsay (France); Paris-11 Univ., 91 - Orsay (France); Ecole Polytechnique, 91 - Palaiseau (France))

    1979-01-01

    In starting from spectral studies of multicharged ions in dense laser-produced plasmas, the main processes which determine the intensity and the shape of lines in the X-UV range are described. The role of radiation transfer is underlined. Intensity anomalies resulting from occurrence of population inversions are considered and a recent experiment performed for investigating such anomalies is described.

  14. Self-phase modulation of laser light in laser produced plasma

    International Nuclear Information System (INIS)

    Yamanaka, C.; Yamanaka, T.; Mizui, J.; Yamaguchi, N.

    1975-02-01

    A spectrum broadening due to the self-phase modulation of a laser light was observed in the laser produced deuterium and hydrogen plasma. Qualitative treatments of the density modulation due to the self-focusing process and the modulational instability were discussed. The theoretical estimation of spectrum broadening fairly accorded with the experimental results. (auth.)

  15. Interaction of ultra-short ultra-intense laser pulses with under-dense plasmas

    International Nuclear Information System (INIS)

    Solodov, A.

    2000-12-01

    Different aspects of interaction of ultra-short ultra-intense laser pulses with underdense plasmas are studied analytically and numerically. These studies can be interesting for laser-driven electron acceleration in plasma, X-ray lasers, high-order harmonic generation, initial confinement fusion with fast ignition. For numerical simulations a fully-relativistic particle code WAKE was used, developed earlier at Ecole Polytechnique. It was modified during the work on the thesis in the part of simulation of ion motion, test electron motion, diagnostics for the field and plasma. The studies in the thesis cover the problems of photon acceleration in the plasma wake of a short intense laser pulse, phase velocity of the plasma wave in the Self-Modulated Laser Wake-Field Accelerator (SM LWFA), relativistic channeling of laser pulses with duration of the order of a plasma period, ion dynamics in the wake of a short intense laser pulse, plasma wave breaking. Simulation of three experiments on the laser pulse propagation in plasma and electron acceleration were performed. Among the main results of the thesis, it was found that reduction of the plasma wave phase velocity in the SM LWFA is crucial for electron acceleration, only if a plasma channel is used for the laser pulse guiding. Self-similar structures describing relativistic guiding of short laser pulses in plasmas were found and relativistic channeling of initially Gaussian laser pulses of a few plasma periods in duration was demonstrated. It was shown that ponderomotive force of a plasma wake excited by a short laser pulse forms a channel in plasma and plasma wave breaking in the channel was analyzed in detail. Effectiveness of electron acceleration by the laser field and plasma wave was compared and frequency shift of probe laser pulses by the plasma waves was found in conditions relevant to the current experiments. (author)

  16. Expansion of laser-produced plasmas into vacuum and ambient gases

    International Nuclear Information System (INIS)

    Williams, T.

    2001-01-01

    Presented in this thesis are observations recorded using optical absorption spectroscopy, laser induced fluorescence imaging and Langmuir probe techniques for a low temperature laser-produced plasma. The plasma was generated using a KrF (248 nm, 30ns) excimer laser system focused onto a solid target surface (Ti, Mg) housed within a vacuum chamber. Plasma studies were made within vacuum (x10 -5 mTorr) and low pressure ( 2 and Ar ambient gas environments. Experimental results from a volumetric integration technique for plasma species number densities are used to yield total plume content for a laser-produced plasma in vacuum. This was used to determine the threshold power density for titanium neutral species formation. Temporally resolved electron number densities were determined using a Langmuir probe technique, for a titanium plasma generated under 532 nm and 248 nm ablation, for similar power densities and spot geometries. In this case the ablation thresholds for titanium are determined in terms of average power density and peak power density. Plume opacity problems which limit OAS and LIF diagnostic techniques are minimised using novel ablations configurations. Both techniques used, the 'composite target' and the 'plasma-jet' configurations, rely on reducing the optical thickness of the plume. The plasma-jets produced were allowed to interact with an ambient argon background and the ion/neutral ratio of the plasma-jet determined. Laser-produced plasma interactions with a d.c. biased copper mesh ∼15 mm in front of the target surface are observed. Self-emission studies of plume interactions with the mesh are monitored for positive and negative biases. Also ground-state neutral and ion interactions with the mesh are observed using OAS and LIF techniques to study individual species effects. A simple model was used to predict the perturbations to charged species distributions resulting from positive and negative applied potentials, but more complex interaction

  17. Application of escape probability to line transfer in laser-produced plasmas

    International Nuclear Information System (INIS)

    Lee, Y.T.; London, R.A.; Zimmerman, G.B.; Haglestein, P.L.

    1989-01-01

    In this paper the authors apply the escape probability method to treat transfer of optically thick lines in laser-produced plasmas in plan-parallel geometry. They investigate the effect of self-absorption on the ionization balance and ion level populations. In addition, they calculate such effect on the laser gains in an exploding foil target heated by an optical laser. Due to the large ion streaming motion in laser-produced plasmas, absorption of an emitted photon occurs only over the length in which the Doppler shift is equal to the line width. They find that the escape probability calculated with the Doppler shift is larger compared to the escape probability for a static plasma. Therefore, the ion streaming motion contributes significantly to the line transfer process in laser-produced plasmas. As examples, they have applied escape probability to calculate transfer of optically thick lines in both ablating slab and exploding foil targets under irradiation of a high-power optical laser

  18. Magnetic confinement of laser produced LiH plasma in LITE

    International Nuclear Information System (INIS)

    Ard, W.B.; Stufflebeam, J.H.; Tomlinson, R.G.

    1976-01-01

    In the LITE experiment, a hot, dense plasma produced by laser heating of an approximately 100 μ dia LiH particle is used to fill a minimum-B baseball coil mirror magnetic containment field. The confined laser produced plasma subsequently serves as the target for an energetic neutral hydrogen beam in experiments to investigate the target plasma buildup approach for creating and sustaining an equilibrium, steady state mirror fusion plasma. In the experiments, the LiH particle is positioned in vacuum at the laser beam focus by a feedback particle suspension system and heated by two sided irradiation with the focused dual beam, 50 j, 7 nsec output of a Q-switched Nd-glass laser. The energy density of the laser produced plasma is initially much greater than that of the surrounding magnetic field and the plasma expands, converting its internal energy into expansion kinetic energy and displacement of the magnetic field. As the energy density falls below that of the magnetic field, the expansion is stopped and the plasma becomes trapped, making the transition to a low beta, mirror confined plasma. This report is concerned with the properties and behavior of the plasma in the confinement stage

  19. Ion emission from laser-produced plasmas with two electron temperatures

    International Nuclear Information System (INIS)

    Wickens, L.M.; Allen, J.E.; Rumsby, P.T.

    1978-01-01

    An analytic theory for the expansion of a laser-produced plasma with two electron temperatures is presented. It is shown that from the ion-emission velocity spectrum such relevant parameters as the hot- to -cold-electron density ratio, the absolute hot- and cold-electron temperatures, and a sensitive measure of hot- and cold-electron temperature ratio can be deduced. A comparison with experimental results is presented

  20. Analysis of the x-ray spectrum emitted by laser-produced plasma of dysprosium

    International Nuclear Information System (INIS)

    Marcus, Gilad; Louzon, Einat; Henis, Zohar; Maman, Shlomo; Mandelbaum, Pinchas

    2007-01-01

    A detailed analysis of the x-ray spectrum (5-10.2 A ring ) emitted by laser-produced plasma of dysprosium (Dy) is given using ab initio calculations with the HULLAC relativistic code and isoelectronic trends. Resonance 3d-4p, 3d-nf (n=4 to 7), 3p-4s, and 3p-4d transitions of Ni I-like Dy XXXIX and neighboring ion satellite transitions (from Dy XXXIV to Dy XL) are identified

  1. Ultrafast gated imaging of laser produced plasmas using the optical Kerr effect

    International Nuclear Information System (INIS)

    Symes, D. R.; Wegner, U.; Ahlswede, H.-C.; Streeter, M. J. V.; Gallegos, P. L.; Divall, E. J.; Rajeev, P. P.; Neely, D.; Smith, R. A.

    2010-01-01

    Optical imaging is a versatile diagnostic for investigations of plasmas generated under intense laser irradiation. Electro-optic gating techniques operating on the >100 ps timescale are commonly used to reduce the amount of light detected from self-emission of hot plasma or improve the temporal resolution of the detector. The use of an optical Kerr gate enables a superior dynamic range and temporal resolution compared to electronically gated devices. The application of this method for enhanced imaging of laser produced plasmas with gate time ∼100 fs is demonstrated, and the possibility to produce a sub-10 fs, high dynamic range 'all optical' streak camera is discussed.

  2. Kinetic magnetization by fast electrons in laser-produced plasmas at sub-relativistic intensities

    Czech Academy of Sciences Publication Activity Database

    Pisarczyk, T.; Gus'kov, S. Yu.; Chodukowski, T.; Dudžák, Roman; Korneev, Ph.; Demchenko, N. N.; Kalinowska, Z.; Dostál, Jan; Zaras-Szydlowska, A.; Borodziuk, S.; Juha, Libor; Cikhardt, Jakub; Krása, Josef; Klír, Daniel; Cikhardtová, B.; Kubeš, P.; Krouský, Eduard; Krůs, Miroslav; Ullschmied, Jiří; Jungwirth, Karel; Hřebíček, Jan; Medřík, Tomáš; Golasowski, Jiří; Pfeifer, Miroslav; Renner, Oldřich; Singh, Sushil K.; Kar, S.; Ahmed, H.; Skála, Jiří; Pisarczyk, P.

    2017-01-01

    Roč. 24, č. 10 (2017), s. 1-11, č. článku 102711. ISSN 1070-664X R&D Projects: GA MŠk EF15_008/0000162 EU Projects: European Commission(XE) 654148 - LASERLAB-EUROPE Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : laser-produced plasma * femtosecond polaro-interferometry * spontaneous magnetic fiel * spatial and temporal electron density distribution Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.115, year: 2016

  3. Final Technical Report: Magnetic Reconnection in High-Energy Laser-Produced Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Germaschewski, Kai [Univ. of New Hampshire, Durham, NH (United States); Fox, William [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Bhattacharjee, Amitava [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2017-04-06

    This report describes the final results from the DOE Grant DE-SC0007168, “Fast Magnetic Reconnection in HED Laser-Produced Plasmas.” The recent generation of laboratory high-energy-density physics facilities has opened significant physics opportunities for experimentally modeling astrophysical plasmas. The goal of this proposal is to use these new tools to study fundamental problems in plasma physics and plasma astrophysics. Fundamental topics in this area involve study of the generation, amplification, and fate of magnetic fields, which are observed to pervade the plasma universe and govern its evolution. This project combined experiments at DOE laser facilities with kinetic plasma simulation to study these processes. The primary original goal of the project was to study magnetic reconnection using a new experimental platform, colliding magnetized laser-produced plasmas. However through a series of fortuitous discoveries, the work broadened out to allow significant advancement on multiple topics in laboratory astrophysics, including magnetic reconnection, Weibel instability, and collisionless shocks.

  4. Propagation of an intense laser pulse in an under-dense plasma: channeling and stimulated Raman scattering

    International Nuclear Information System (INIS)

    Friou, A.

    2012-01-01

    This thesis is divided in two parts: i) the laser channeling in hundreds of microns long under-dense plasmas (0.1 nc ≤ n ≤ nc, nc being the critical density) of a laser pulse of intensity 10 18-20 W/cm 2 and duration 1-10 ps; ii) the saturation mechanisms of stimulated Raman back-scattering of a laser pulse of intensity 10 14 to 10 16 W/cm 2 and duration of about 1 ps. A parametric study was performed to study the channeling of a very intense laser pulse, using a 2D PIC (Particle In Cell) code. Various kinds of channels were obtained depending on the laser and plasma parameters, thereby reproducing and enlarging previous studies. Moreover, the channeling velocity was measured and scaling laws were established for homogeneous plasmas. They are then applied to inhomogeneous plasmas, similar to those encountered in inertial confinement fusion (ICF). It is then possible to estimate the energy necessary to channel to the critical density, an important step for the fast ignition scheme of ICF. Raman saturation was studied using numerical simulations, in order to determine if it is due to dephasing or to the growth of sidebands, using different approaches. The first is to study Raman simulations (electromagnetic) performed with kinetic PIC and Vlasov codes. The second, is to study the evolution of a plasma initialized with a distribution function after the adiabatic theory, using a Vlasov code (electrostatic). In this case, we observe the growth of a sideband, with dominant wave number and growth rate in good agreement with kinetic simulations. The saturation of the plasma wave can be caused by both saturation mechanisms. [fr

  5. Simultaneous streak and frame interferometry for electron density measurements of laser produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Quevedo, H. J., E-mail: hjquevedo@utexas.edu; McCormick, M.; Wisher, M.; Bengtson, Roger D.; Ditmire, T. [Center for High Energy Density Science, Department of Physics, University of Texas at Austin, Austin, Texas 78712 (United States)

    2016-01-15

    A system of two collinear probe beams with different wavelengths and pulse durations was used to capture simultaneously snapshot interferograms and streaked interferograms of laser produced plasmas. The snapshots measured the two dimensional, path-integrated, electron density on a charge-coupled device while the radial temporal evolution of a one dimensional plasma slice was recorded by a streak camera. This dual-probe combination allowed us to select plasmas that were uniform and axisymmetric along the laser direction suitable for retrieving the continuous evolution of the radial electron density of homogeneous plasmas. Demonstration of this double probe system was done by measuring rapidly evolving plasmas on time scales less than 1 ns produced by the interaction of femtosecond, high intensity, laser pulses with argon gas clusters. Experiments aimed at studying homogeneous plasmas from high intensity laser-gas or laser-cluster interaction could benefit from the use of this probing scheme.

  6. A Novel Spectrometer for Measuring Laser-Produced Plasma X-Ray in Inertial Confinement Fusion

    Directory of Open Access Journals (Sweden)

    Zhu Gang

    2012-01-01

    Full Text Available In the experimental investigations of inertial confinement fusion, the laser-produced high-temperature plasma contains very abundant information, such as the electron temperature and density, ionization. In order to diagnose laser-plasma distribution in space and evolution in time, an elliptical curved crystal spectrometer has been developed and applied to diagnose X-ray of laser-produced plasma in 0.2~2.46 nm region. According to the theory of Bragg diffraction, four kinds of crystal including LiF, PET, MiCa, and KAP were chosen as dispersive elements. The distance of crystal lattice varies from 0.4 to 2.6 nm. Bragg angle is in the range of 30°~67.5°, and the spectral detection angle is in 55.4°~134°. The curved crystal spectrometer mainly consists of elliptical curved crystal analyzer, vacuum configuration, aligning device, spectral detectors and three-dimensional microadjustment devices. The spectrographic experiment was carried out on the XG-2 laser facility. Emission spectrum of Al plasmas, Ti plasma, and Au plasmas have been successfully recorded by using X-ray CCD camera. It is demonstrated experimentally that the measured wavelength is accorded with the theoretical value.

  7. Influence of the laser pulse duration on laser-produced plasma properties

    International Nuclear Information System (INIS)

    Drogoff, B Le; Margot, J; Vidal, F; Laville, S; Chaker, M; Sabsabi, M; Johnston, T W; Barthelemy, O

    2004-01-01

    In the framework of laser-induced plasma spectroscopy (LIPS) applications, time-resolved characteristics of laser-produced aluminium plasmas in air at atmospheric pressure are investigated for laser pulse durations ranging from 100 fs to 270 ps. Measurements show that for delays after the laser pulse longer than ∼100 ns, the plasma temperature increases slightly with the laser pulse duration, while the electron density is independent of it. In addition, as the pulse duration increases, the plasma radiation emission lasts longer and the spectral lines arise later from the continuum emission. The time dependence of the continuum emission appears to be similar whatever the duration of the laser pulse is, while the temporal evolution of the line emission seems to be affected mainly by the plasma temperature. Finally, as far as spectrochemical applications (such as LIPS) of laser-produced plasmas are concerned, this study highlights the importance of the choice of appropriate temporal gating parameters for each laser pulse duration

  8. Measurements of hydrogen gas stopping efficiency for tin ions from laser-produced plasma

    Science.gov (United States)

    Abramenko, D. B.; Spiridonov, M. V.; Krainov, P. V.; Krivtsun, V. M.; Astakhov, D. I.; Medvedev, V. V.; van Kampen, M.; Smeets, D.; Koshelev, K. N.

    2018-04-01

    Experimental studies of stopping of ion fluxes from laser-produced plasma by a low-pressure gas atmosphere are presented. A modification of the time-of-flight spectroscopy technique is proposed for the stopping cross-sectional measurements in the ion energy range of 0.1-10 keV. The application of the proposed technique is demonstrated for Sn ion stopping by H2 gas. This combination of elements is of particular importance for the development of plasma-based sources of extreme ultraviolet radiation for lithographic applications.

  9. Spectral tomographic analysis of Bremsstrahlung X-rays generated in a laser-produced plasma

    Czech Academy of Sciences Publication Activity Database

    Rhee, Y.-J.; Nam, S. M.; Peebles, W.; Sawada, H.; Wei, M.; Vaisseau, X.; Sasaki, T.; Giuffrida, Lorenzo; Hulin, S.; Vauzour, B.; Santos, J.J.; Batani, D.; McLean, H. S.; Patel, P. K.; Li, Y.; Yuan, D. W.; Zhang, K.; Zhong, J. Y.; Fu, C. B.; Hua, N.; Li, K.; Zhang, Y.; Zhu, J. Q.; Kim, I. J.; Jeon, J. H.; Jeong, T.M.; Choi, I.W.; Lee, H. W.; Sung, J.H.; Lee, S.K.; Nam, C.H.

    2016-01-01

    Roč. 34, č. 4 (2016), s. 645-654 ISSN 0263-0346 R&D Projects: GA MŠk LQ1606; GA MŠk EF15_008/0000162 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : Bremsstrahlung X-ray * filter stack spectrometer * laser-produced plasma Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.420, year: 2016

  10. Development of a compact laser-produced plasma soft X-ray source for radiobiology experiments

    Czech Academy of Sciences Publication Activity Database

    Adjei, D.; Ayele, M. G.; Wachulak, P.; Bartnik, A.; Wegrzynski, L.; Fiedorowicz, H.; Vyšín, Luděk; Wiechec, A.; Lekki, J.; Kwiatek, W. M.; Pina, L.; Davídková, Marie; Juha, Libor

    2015-01-01

    Roč. 364, Dec (2015), s. 27-32 ISSN 0168-583X R&D Projects: GA ČR(CZ) GBP108/12/G108; GA ČR GA13-28721S EU Projects: European Commission(XE) 284464 - LASERLAB-EUROPE Institutional support: RVO:68378271 ; RVO:61389005 Keywords : laser-produced plasma * soft X-rays * radiobiology * gas puff target * water window Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.389, year: 2015

  11. Ultra high speed framing photographs of laser produced plasmas using a picosecond optical shutter

    International Nuclear Information System (INIS)

    Gillman, G.B.; Ramsden, S.A.

    1975-01-01

    A study has been carried out of the spatial transmission properties of the optical Kerr effect shutter and it has been used to take ultra high speed framing photographs of laser produced plasmas in air and from solid targets. With a 1cm long CS 2 cell of aperture 5cm 2 a transmission of approximately 5% and an on/off contrast ratio of 10 4 was obtained. An image intensifier was necessary to obtain adequately exposed photographs of the plasma and the overall spatial resolution of the system was approximately 2μ. (author)

  12. 4d--4f emission resonances in laser-produced plasmas

    International Nuclear Information System (INIS)

    O'Sullivan, G.; Carroll, P.K.

    1981-01-01

    Using targets containing compounds of the elements cesium through lutetium, we studied the spectra of laser-produced plasmas in the grazing-incidence region from 40 to 200 A. The spectra are characterized by strong regions of resonancelike emission extending typically over 9--18 eV. With increasing Z, the spectra show certain systematic variations in character and move monotonically toward shorter wavelengths. From a collisional-radiative plasma model, the ion stages responsible for the emision are identified as VIII through XVI. The resonances are attributed to 4-4f transitions that, because Dn = 0, tend to overlap for different ion stages of the same element

  13. Shack-Hartmann Electron Densitometer (SHED): An Optical System for Diagnosing Free Electron Density in Laser-Produced Plasmas

    Science.gov (United States)

    2016-11-01

    Free Electron Density in Laser-Produced Plasmas by Anthony R Valenzuela Approved for public release; distribution is...AND SUBTITLE Shack-Hartmann Electron Densitometer (SHED): An Optical System for Diagnosing Free Electron Density in Laser-Produced Plasmas 5a...SUPPLEMENTARY NOTES 14. ABSTRACT The Shack-Hartmann Electron Densitometer is a novel method to diagnose ultrashort pulse laser–produced plasmas

  14. Experimental and theoretical investigation of radiation and dynamics properties in laser-produced carbon plasmas

    Science.gov (United States)

    Min, Qi; Su, Maogen; Wang, Bo; Cao, Shiquan; Sun, Duixiong; Dong, Chenzhong

    2018-05-01

    The radiation and dynamics properties of laser-produced carbon plasma in vacuum were studied experimentally with aid of a spatio-temporally resolved emission spectroscopy technique. In addition, a radiation hydrodynamics model based on the fluid dynamic equations and the radiative transfer equation was presented, and calculation of the charge states was performed within the time-dependent collisional radiative model. Detailed temporal and spatial evolution behavior about plasma parameters have been analyzed, such as velocity, electron temperature, charge state distribution, energy level population, and various atomic processes. At the same time, the effects of different atomic processes on the charge state distribution were examined. Finally, the validity of assuming a local thermodynamic equilibrium in the carbon plasma expansion was checked, and the results clearly indicate that the assumption was valid only at the initial (applicable near the plasma boundary because of a sharp drop of plasma temperature and electron density.

  15. Characterization of laser-produced plasma density profiles using grid image refractometry

    International Nuclear Information System (INIS)

    Craxton, R.S.; Turner, F.S.; Hoefen, R.; Darrow, C.; Gabl, E.F.; Busch, G.E.

    1993-01-01

    Grid image refractometry (GIR) is proposed as a technique for determining the two-dimensional density profiles of long scale-length laser-produced plasmas. Its distinctive feature is that an optical probe beam is broken up into ''rays'' by being passed through a grid before traversing the plasma. The refraction angles of the rays are measured by imaging the plasma at two or more object planes and are integrated to yield the phase front. For cylindrically symmetric plasmas the density profile is then determined using Abel inversion. The feasibility of GIR is illustrated by an experiment in which a thick CH target was irradiated with ∼100 J of 527 nm radiation and diagnosed with a 20 ps, 263 nm probe. The resulting density profile is substantially larger than any that have previously been reported using interferometry and compares quite closely with hydrodynamic simulations

  16. First experiments probing the collision of parallel magnetic fields using laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, M. J., E-mail: mros@lle.rochester.edu; Li, C. K.; Séguin, F. H.; Frenje, J. A.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Fox, W. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Igumenshchev, I.; Stoeckl, C.; Glebov, V. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Town, R. P. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-04-15

    Novel experiments to study the strongly-driven collision of parallel magnetic fields in β ∼ 10, laser-produced plasmas have been conducted using monoenergetic proton radiography. These experiments were designed to probe the process of magnetic flux pileup, which has been identified in prior laser-plasma experiments as a key physical mechanism in the reconnection of anti-parallel magnetic fields when the reconnection inflow is dominated by strong plasma flows. In the present experiments using colliding plasmas carrying parallel magnetic fields, the magnetic flux is found to be conserved and slightly compressed in the collision region. Two-dimensional (2D) particle-in-cell simulations predict a stronger flux compression and amplification of the magnetic field strength, and this discrepancy is attributed to the three-dimensional (3D) collision geometry. Future experiments may drive a stronger collision and further explore flux pileup in the context of the strongly-driven interaction of magnetic fields.

  17. Angular distribution of ions and extreme ultraviolet emission in laser-produced tin droplet plasma

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hong; Duan, Lian; Lan, Hui [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Wang, Xinbing, E-mail: xbwang@hust.edu.cn; Chen, Ziqi; Zuo, Duluo [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Lu, Peixiang [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2015-05-21

    Angular-resolved ion time-of-flight spectra as well as extreme ultraviolet radiation in laser-produced tin droplet plasma are investigated experimentally and theoretically. Tin droplets with a diameter of 150 μm are irradiated by a pulsed Nd:YAG laser. The ion time-of-flight spectra measured from the plasma formed by laser irradiation of the tin droplets are interpreted in terms of a theoretical elliptical Druyvesteyn distribution to deduce ion density distributions including kinetic temperatures of the plasma. The opacity of the plasma for extreme ultraviolet radiation is calculated based on the deduced ion densities and temperatures, and the angular distribution of extreme ultraviolet radiation is expressed as a function of the opacity using the Beer–Lambert law. Our results show that the calculated angular distribution of extreme ultraviolet radiation is in satisfactory agreement with the experimental data.

  18. Angular distribution of ions and extreme ultraviolet emission in laser-produced tin droplet plasma

    International Nuclear Information System (INIS)

    Chen, Hong; Duan, Lian; Lan, Hui; Wang, Xinbing; Chen, Ziqi; Zuo, Duluo; Lu, Peixiang

    2015-01-01

    Angular-resolved ion time-of-flight spectra as well as extreme ultraviolet radiation in laser-produced tin droplet plasma are investigated experimentally and theoretically. Tin droplets with a diameter of 150 μm are irradiated by a pulsed Nd:YAG laser. The ion time-of-flight spectra measured from the plasma formed by laser irradiation of the tin droplets are interpreted in terms of a theoretical elliptical Druyvesteyn distribution to deduce ion density distributions including kinetic temperatures of the plasma. The opacity of the plasma for extreme ultraviolet radiation is calculated based on the deduced ion densities and temperatures, and the angular distribution of extreme ultraviolet radiation is expressed as a function of the opacity using the Beer–Lambert law. Our results show that the calculated angular distribution of extreme ultraviolet radiation is in satisfactory agreement with the experimental data

  19. Late-time particle emission from laser-produced graphite plasma

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, S. S.; Hassanein, A.; Polek, M. [School of Nuclear Engineering, Center for Materials Under Extreme Environment, Purdue University, West Lafayette, Indiana 47907 (United States)

    2011-09-01

    We report a late-time ''fireworks-like'' particle emission from laser-produced graphite plasma during its evolution. Plasmas were produced using graphite targets excited with 1064 nm Nd: yttrium aluminum garnet (YAG) laser in vacuum. The time evolution of graphite plasma was investigated using fast gated imaging and visible emission spectroscopy. The emission dynamics of plasma is rapidly changing with time and the delayed firework-like emission from the graphite target followed a black-body curve. Our studies indicated that such firework-like emission is strongly depended on target material properties and explained due to material spallation caused by overheating the trapped gases through thermal diffusion along the layer structures of graphite.

  20. Late-time particle emission from laser-produced graphite plasma

    International Nuclear Information System (INIS)

    Harilal, S. S.; Hassanein, A.; Polek, M.

    2011-01-01

    We report a late-time ''fireworks-like'' particle emission from laser-produced graphite plasma during its evolution. Plasmas were produced using graphite targets excited with 1064 nm Nd: yttrium aluminum garnet (YAG) laser in vacuum. The time evolution of graphite plasma was investigated using fast gated imaging and visible emission spectroscopy. The emission dynamics of plasma is rapidly changing with time and the delayed firework-like emission from the graphite target followed a black-body curve. Our studies indicated that such firework-like emission is strongly depended on target material properties and explained due to material spallation caused by overheating the trapped gases through thermal diffusion along the layer structures of graphite.

  1. Active-passively mode-locked dye laser for diagnosis of laser-produced plasmas

    International Nuclear Information System (INIS)

    Teng, Y.L.; Fedosejevs, R.; Sigel, R.

    1981-03-01

    In this report an active-passively mode-locked, flashlamp-pumped dye laser for diagnosis of laser-produced plasmas is described. This dye laser system used as a pulsed light source for high-speed photography of laser-target experiments was synchronized to the ASTERIX III iodine laser pulse with better than 100 ps accuracy. The single pulse energy was 10 μJ, pulse duration less than 10 ps. In 111 shots clear shadowgrams were obtained during a total of 151 target shots, i.e. the system worked well in 74% of the shots. (orig.)

  2. Target surface structure effects on x-ray generation from laser produced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, Tadashi; Nakano, Hidetoshi; Uesugi, Naoshi [NTT Basic Research Laboratories, Atsugi, Kanagawa (Japan)

    2000-03-01

    We demonstrated two different methods to increase the x-ray conversion efficiency of laser-produced plasma by modifying the target surface structure. One way is making a rectangular groove on a target surface and confining a laser-produced plasma in it. By the plasma collision process, a time and wavelength (4-10 nm) integrated soft x-ray fluence enhancement of 35 times was obtained at a groove width of 20 {mu}m and a groove depth of 100 {mu}m on a Nd-doped glass target. The other way is making an array of nanoholes on an alumina target and increasing the laser interaction depth with it. The x-ray fluence enhancement increases as the ionization level of Al becomes higher and the x-ray wavelength becomes shorter. Over 50-fold enhancement was obtained at a soft x-ray wavelength around 6 nm, which corresponds to the emission from Al{sup 8+,9+} ions. (author)

  3. Target surface structure effects on x-ray generation from laser produced plasma

    International Nuclear Information System (INIS)

    Nishikawa, Tadashi; Nakano, Hidetoshi; Uesugi, Naoshi

    2000-01-01

    We demonstrated two different methods to increase the x-ray conversion efficiency of laser-produced plasma by modifying the target surface structure. One way is making a rectangular groove on a target surface and confining a laser-produced plasma in it. By the plasma collision process, a time and wavelength (4-10 nm) integrated soft x-ray fluence enhancement of 35 times was obtained at a groove width of 20 μm and a groove depth of 100 μm on a Nd-doped glass target. The other way is making an array of nanoholes on an alumina target and increasing the laser interaction depth with it. The x-ray fluence enhancement increases as the ionization level of Al becomes higher and the x-ray wavelength becomes shorter. Over 50-fold enhancement was obtained at a soft x-ray wavelength around 6 nm, which corresponds to the emission from Al 8+,9+ ions. (author)

  4. Dynamics of C2 formation in laser-produced carbon plasma in helium environment

    International Nuclear Information System (INIS)

    Al-Shboul, K. F.; Harilal, S. S.; Hassanein, A.; Polek, M.

    2011-01-01

    We investigated the role of helium ambient gas on the dynamics of C 2 species formation in laser-produced carbon plasma. The plasma was produced by focusing 1064 nm pulses from an Nd:YAG laser onto a carbon target. The emission from the C 2 species was studied using optical emission spectroscopy, and spectrally resolved and integrated fast imaging. Our results indicate that the formation of C 2 in the plasma plume is strongly affected by the pressure of the He gas. In vacuum, the C 2 emission zone was located near the target and C 2 intensity oscillations were observed both in axial and radial directions with increasing the He pressure. The oscillations in C 2 intensity at higher pressures in the expanding plume could be caused by various formation zones of carbon dimers.

  5. Sn ion energy distributions of ns- and ps-laser produced plasmas

    Science.gov (United States)

    Bayerle, A.; Deuzeman, M. J.; van der Heijden, S.; Kurilovich, D.; de Faria Pinto, T.; Stodolna, A.; Witte, S.; Eikema, K. S. E.; Ubachs, W.; Hoekstra, R.; Versolato, O. O.

    2018-04-01

    Ion energy distributions arising from laser-produced plasmas of Sn are measured over a wide laser parameter space. Planar-solid and liquid-droplet targets are exposed to infrared laser pulses with energy densities between 1 J cm‑2 and 4 kJ cm‑2 and durations spanning 0.5 ps to 6 ns. The measured ion energy distributions are compared to two self-similar solutions of a hydrodynamic approach assuming isothermal expansion of the plasma plume into vacuum. For planar and droplet targets exposed to ps-long pulses, we find good agreement between the experimental results and the self-similar solution of a semi-infinite simple planar plasma configuration with an exponential density profile. The ion energy distributions resulting from solid Sn exposed to ns-pulses agrees with solutions of a limited-mass model that assumes a Gaussian-shaped initial density profile.

  6. Behaviour of laser-produced plasma in a uniform magnetic field

    International Nuclear Information System (INIS)

    Okada, Shigefumi; Sato, Kohnosuke; Sekiguchi, Tadashi.

    1979-11-01

    A column of a laser-produced plasma is successfully made in a uniform magnetic field. The radius of the column increases and then decreases (bouncing motion). On the surface of this plasma column, where the steep density gradient exists with the scale length shorter than the ion Larmor radius, an azimuthal modulation appears in the plasma luminosity. This is indicative of the flute-like instability with the azimuthal wave number; k sub(perpendicular) -- 4 x 10 3 B sup(0.8) (in the MKSA system of units). The dispersion equation based on the linearized Vlasov equation with the local approximation is derived and the occurrence of the lower-hybrid-drift instability is predicted. A fairly good agreement between the theory and experiments is seen. (author)

  7. Dynamics expansion of laser produced plasma with different materials in magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Rabia Qindeel; Noriah Bte Bidin; Yaacob Mat daud [Laser Technology Laboratory, Physics Department, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia)], E-mail: plasmaqindeel@yahoo.com

    2008-12-01

    The dynamics expansion of the plasma generated by laser ablation of different materials has been investigated. The dynamics and confinement of laser generated plasma plumes are expanding across variable magnetic fields. A Q-switched neodymium-doped yttrium aluminum garnet laser with 1064 nm, 8 ns pulse width and 0.125 J laser energy was used to generate plasma that was allowed to expand across variable magnetic within 0.1 - 0.8 T. The expansions of laser-produced plasma of different materials are characterized by using constant laser power. CCD video camera was used to visualize and record the activities in the focal region. The plasma plume length, width and area were measured by using Matrox Inpector 2.1 and video Test 0.5 software. Spectrums of plasma beam from different materials are studied via spectrometer. The results show that the plasma generated by aluminum target is the largest than Brass and copper. The optical radiation from laser generated plasma beam spectrums are obtained in the range of UV to visible light.

  8. Optimising hard X-ray generation from laser-produced plasmas

    International Nuclear Information System (INIS)

    Lindheimer, C.

    1995-04-01

    The aim of this work is to increase the X-ray yield for a laser produced plasma by optimising the focusing conditions and temporal shape of the laser pulses. The focusing conditions are improved by introducing a control system that secures the laser target surface to exact focus within a range of a few micrometers, allowing continuously high laser intensity for plasma generation. The temporal shape of the laser pulses is changed by introducing a saturable absorber in the laser beam. The laser produces a substantial pre-pulse that heats and expands the target material prior to main pulse arrival. The saturable absorber can increase the main pulse/pre-pulse ratio of the laser pulse up to four orders of magnitude and consequently reduce expansion of the target material before the main pulse. The belief is that an increase in target density at the time of main pulse arrival will change the energy distribution of the X-rays, towards a more efficient X-ray production in the hard X-ray region. This report and the work connected to it, includes the preliminary measurements and results for these improvements. 17 refs

  9. Calculation for laser-produced plasmas conditions of thin middle-Z targets: Pt.I

    International Nuclear Information System (INIS)

    Peng Huimin; Zhang Guoping; Sheng Jiatian; Shao Yunfeng; Zhang Yinchun

    1988-01-01

    An one-dimentional non-LTE laser irradiated code was used to simulate the laser-produced plasmas conditions of thin middle Z targets with high intensities (about 10 13 W/cm 2 ) irradiation. Following physical processes are considered: bremsstrahlung, radiative ionization, collisional ionization by electrons and their inverse processes, Compton scattering. Fokker-Planck approximtaion is used in Compton scattering; the thermal flux limits are taken for electrons and ions in the calculating, and the multigroup flux-limited diffusion approximation is taken for the radiative transport equations. The average-atom model is used to calculate the population probabilities of atoms. Laser absorption via inverse bremsstrahlung is considered to be the most important in the simulation. Using laser beams with intensities 5 x 10 13 W/cm 2 and 1 x 10 14 W/cm 2 , λ L = 0.53 μm, τ = 450 ps to irradiate thin Se target from single-side and double-sides separately, the computational results for laser-produced plasmas conditions are well agree with experimental results

  10. Convective mechanism for inhibition of heat conduction in laser produced plasmas

    International Nuclear Information System (INIS)

    Lee, P.H.Y.; Willi, O.; Trainor, R.J.

    1984-01-01

    In laser-produced plasmas, the laser energy is absorbed only below and up to the critical density. For laser fusion applications, this energy must be transported beyond the corona via electron thermal conduction towards colder, higher density regions of the target to heat up material and cause ablation, which in turn generates an inward pressure to compress the fusion fuel. If the heat conduction is inhibited, the consequences will be a weaker ablation and therefore a weaker implosion. For many years now, the inhibition of heat conduction, i.e., the reduction of heat conduction relative to classical conduction, in laser-produced plasmas at relevant irradiances has been apparent from the large body of experimental evidence. Many mechanisms, such as dc magnetic fields, ion acoustic turbulence, and Weibel instabilities, have been proposed to be the cause of inhibition of heat conduction. Even improved calculations of the classical heat flux have been carried out to solve this problem. Nevertheless, no single one of the above mentioned mechanisms can explain the large inhibition observed in the experiments

  11. Application of laser-produced-plasmas to determination of carbon content in steel

    International Nuclear Information System (INIS)

    Ortiz, M.; Aragon, C.; Aguilera, J.A.; Campos, J.

    1994-01-01

    This paper describes an analytical method to determine carbon content in solid and molten steel. It is based on the study of the emission spectrum from a Nd-YAG laser produced plasma. The light emitted from the plasma is focused to the entrance slit of a spectrometer and detected by an OMA III system. For every laser pulse an spectral range of 100 A are recorded. With the use of time-resolved spectroscopy a precision of 1.6% and a detection limit of 65 ppm of carbon content in steel have been obtained. These values are similar to those of other accurate conventional techniques but using optics fiber and laser excitation it is possible to made sample calibrations in hostile environments. Also, as the analysis are made in real time changes in sample composition can be measured without stopping production processes. (Author) 26 refs

  12. Laser-produced plasma-extreme ultraviolet light source for next generation lithography

    International Nuclear Information System (INIS)

    Nishihara, Katsunobu; Nishimura, Hiroaki; Gamada, Kouhei; Murakami, Masakatsu; Mochizuki, Takayasu; Sasaki, Akira; Sunahara, Atsushi

    2005-01-01

    Extreme ultraviolet (EUV) lithography is the most promising candidate for the next generation lithography for the 45 nm technology node and below. EUV light sources under consideration use 13.5 nm radiations from multicharged xenon, tin and lithium ions, because Mo/Si multiplayer mirrors have high reflectivity at this wavelength. A review of laser-produced plasma (LPP) EUV light sources is presented with a focus on theoretical and experimental studies under the auspices of the Leading Project promoted by MEXT. We discuss three theoretical topics: atomic processes in the LPP-EUV light source, conversion efficiency from laser light to EUV light at 13.5 nm wave-length with 2% bound width, and fast ion spectra. The properties of EUV emission from tin and xenon plasmas are also shown based on experimental results. (author)

  13. On the line broadening and shifts of Al laser produced plasma

    International Nuclear Information System (INIS)

    She Yongbo; Chen Yunfang; Zhao Ruwen; Zhang Xiulan; Pan Guangyan

    1985-01-01

    We have studied the spatially resolved spectra of Al laser produced plasma. In the range from 2300-4000A about thirty emission lines have been observed belonging to the neutral, singly and doubly ionized Al species. Their line widths and shifts vary with the distance between the plasma and the Al-target surface. Five lines from differently ionized species have been examined with the aid of the theoretical formula given by Griem, and the distribution of electron density near the target has been determined semi-empirically. We found that the line broadening of the different species coincided well with each other, and could be used as a measure of electron density in the range from 1.10 17 to 5.10 18 cm -3 . But the coincidence between the line shifts seems not so good, especially for the lines of 3587 A of Al II and 3610 A of Al III. It remains to be further investigated

  14. Astrophysics of magnetically collimated jets generated from laser-produced plasmas.

    Science.gov (United States)

    Ciardi, A; Vinci, T; Fuchs, J; Albertazzi, B; Riconda, C; Pépin, H; Portugall, O

    2013-01-11

    The generation of astrophysically relevant jets, from magnetically collimated, laser-produced plasmas, is investigated through three-dimensional, magnetohydrodynamic simulations. We show that for laser intensities I∼10(12)-10(14) W cm(-2), a magnetic field in excess of ∼0.1  MG, can collimate the plasma plume into a prolate cavity bounded by a shock envelope with a standing conical shock at its tip, which recollimates the flow into a supermagnetosonic jet beam. This mechanism is equivalent to astrophysical models of hydrodynamic inertial collimation, where an isotropic wind is focused into a jet by a confining circumstellar toruslike envelope. The results suggest an alternative mechanism for a large-scale magnetic field to produce jets from wide-angle winds.

  15. Application of laser-produced-plasmas to determination of carbon content in steel

    International Nuclear Information System (INIS)

    Ortiz, M.; Aragon, C.; Aguilera, J. A.; Campos, J.

    1994-01-01

    This paper describes an analytical method to determine carbon content in solid and molten steel. It is based on the study of the emission spectrum from a Nd-YAG laser produced plasma. The light emitted from the plasma is focused to the entrance slit of a spectrometer and detected by an OMA III system. For every laser pulse an spectral range of 100 A are recorded. With the use of time-resolved spectroscopy a precision of 1.6 % and a detection limit of 65 ppm of carbon content in steel have been obtained. These values are similar to those of other accurate conventional techniques but using optics fiber and laser excitation it is possible to made sample calibrations in hostile environments. Also, as the analysis are made in real time changes in sample composition can be measured without stopping production processes. (Author) 26 refs

  16. Hot electron effects on the satellite spectrum of laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, J. [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM (United States); Faenov, A.Y.; Pikuz, T.A. [MISDC, NPO ' VNIIFTRI' , Mendeleevo, Moscow Region, 141570 (Russian Federation); Wilke, M.D.; Kyrala, G.A.; Clark, R.E.H. [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM (United States)

    1999-05-01

    In laser-produced plasmas, the interaction of the intense laser light with plasma electrons can produce high-energy superthermal electrons with energies in the keV range. These hot electrons can influence the level populations which determine spectral line structure. In the present paper, the effect of hot electrons on the X-ray satellite spectrum of laser-produced plasmas is studied. Calculated spectra are compared with experimental observations. Magnesium targets irradiated by three different types of laser pulses are considered. These include, a high-intensity 600 fs Nd-glass laser, a 1 ns Nd-glass laser, and a 2ns CO{sub 2} laser. The Nd-glass laser experiments were conducted recently at the Los Alamos Trident Facility and the CO{sub 2} data were recorded by MISDC. High-resolution spectra were measured near the He-like resonance line of magnesium. The calculations employ an electron energy distribution which includes a thermal and a hot electron component, as part of a detailed collisional-radiative model. Plasma parameters including electron temperature, density, and hot electron fraction are estimated by choosing best fits to the experimental measurements. The calculations show that hot electrons can cause several anomalous effects. The Li-like jkl, abcd, and qr satellites can show intensities which are generally attributed to electron densities in excess of 10{sup 23} cm{sup -3}. In addition, the relative amplitude of the intercombination line can be unusually large even at high electron densities due to enhanced collisional excitation of the 1s2p{sup 3}P state by hot electrons. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  17. Atomic data of Ti II from laser produced Ti plasmas by optical emission spectroscopy

    International Nuclear Information System (INIS)

    Refaie, A.I.; Farrag, A.A.; El Sharkawy, H.; El Sherbini, T.M.

    2005-06-01

    In the present study, the emission spectrum of titanium produced from laser induced plasma has been measured at different distances from the target. The Titanium target is irradiated by using the high power Q-switched Nd:YAG laser (λ=1064 nm) that generates energy 750 mJ/pulse of duration rate 6 ns and repetition rate 10 Hz in vacuum and at different distances. The variation of the distance from the target affects the measured plasma parameters, i.e. the electron density, the ion temperature and the velocity distribution. The electron density increases with the increase of the distance from the target. At a distance 0.6 mm from the target it decreases to 2.28·10 16 cm -3 . The temperature increases with the distance from the get until a distance of 1 mm, after that it decreases. It is found that the plasma velocity increases with the distance then it decreases again. Then, Energy levels and transition probabilities for 3d 2 4p →(3d 2 4s + 3d 3 ) lines have been determined by measurement of emission line intensities from an optically thin laser produced plasma of Ti II in vacuum. Calculations with intermediate coupling using Hartree-Fock wave functions have been carried out in order to place the experimental data on an absolute scale and also to evaluate the lifetimes. The plasma parameters in different regions of the plasma plume have been measured and used to obtain further transition probabilities. (author)

  18. The role of current sheet formation in driven plasmoid reconnection in laser-produced plasma bubbles

    Science.gov (United States)

    Lezhnin, Kirill; Fox, William; Bhattacharjee, Amitava

    2017-10-01

    We conduct a multiparametric study of driven magnetic reconnection relevant to recent experiments on colliding magnetized laser produced plasmas using the PIC code PSC. Varying the background plasma density, plasma resistivity, and plasma bubble geometry, the results demonstrate a variety of reconnection behavior and show the coupling between magnetic reconnection and global fluid evolution of the system. We consider both collision of two radially expanding bubbles where reconnection is driven through an X-point, and collision of two parallel fields where reconnection must be initiated by the tearing instability. Under various conditions, we observe transitions between fast, collisionless reconnection to a Sweet-Parker-like slow reconnection to complete stalling of the reconnection. By varying plasma resistivity, we observe the transition between fast and slow reconnection at Lundquist number S 103 . The transition from plasmoid reconnection to a single X-point reconnection also happens around S 103 . We find that the criterion δ /di < 1 is necessary for fast reconnection onset. Finally, at sufficiently high background density, magnetic reconnection can be suppressed, leading to bouncing motion of the magnetized plasma bubbles.

  19. Characteristics of X-ray photons in tilted incident laser-produced plasma

    International Nuclear Information System (INIS)

    Wang Ruirong; Chen Weimin; Xie Dongzhu

    2008-01-01

    Characteristics of X-ray and spout direction of heat plasma flow were studied on Shenguang-II laser facility. Using of pinhole X-ray camera, X-ray photons from the plasma of aluminum (Al) irradiated by 1.053 μm laser, was measured and analysed. It is observed that the spatial distribution of X-ray photons in Al plasma for tilted irradiation is symmetic at the center of the target. The spout direction of heat plasma flow is inferred by the distribution contour of X-ray photons. the experimental results show that the spout direction of heat plasma flow is normal to target plane and the output intensity of X-ray photons does not increase significantly for tilted laser incidence. Uniformity of laser energy deposition is improved by superposing tilted incident and laser perpendicularly incident laser. At the same time, it is found that the conversion efficiency from the tilted incident laser energy to X-ray photons of laser-produced plasma is decreased. (authors)

  20. Influence of the focal point position on the properties of a laser-produced plasma

    International Nuclear Information System (INIS)

    Kasperczuk, A.; Pisarczyk, T.; Badziak, J.; Miklaszewski, R.; Parys, P.; Rosinski, M.; Wolowski, J.; Stenz, CH.; Ullschmied, J.; Krousky, E.; Masek, K.; Pfeifer, M.; Rohlena, K.; Skala, J.; Pisarczyk, P.

    2007-01-01

    This paper deals with investigations of the influence of the focusing lens focal point position on the properties of a plasma produced by a defocused laser beam. The experiment was carried out at the Prague Asterix Laser System iodine laser [K. Jungwirth, A. Cejnarova, L. Juha, B. Kralikova, J. Krasa, E. Krousky, P. Krupickova, L. Laska, K. Masek, T. Mocek, M. Pfeifer, A. Prag, O. Renner, K. Rohlena, B. Rus, J. Skala, P. Straka, and J. Ullschmied, Phys. Plasmas 8, 2495 (2001)] by using the third harmonic of laser radiation (λ=0.438 μm), laser energy of 70 J, pulse duration of 250 ps (full width at half-maximum), and beam spot radii of 250 and 400 μm. Cu and Ta were chosen as target materials. The experimental data were obtained by means of a three-frame interferometric system, ion collectors, and crater replica techniques. The reported results allow formulating an important hypothesis that the laser-produced plasma modifies strongly the laser intensity distribution. It is shown how such a modification depends on the relative position and distance of the focal point to the target surface. Of particular importance is whether the focal point is located inside or in front of the target. The irradiation geometry is crucial for the possibility of generating plasma jets by laser radiation. Well-formed jet-like plasma structures can be created if an initially homogeneous laser intensity distribution is transformed in the plasma to an annular one

  1. Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis

    Science.gov (United States)

    Harilal, S. S.; Brumfield, B. E.; LaHaye, N. L.; Hartig, K. C.; Phillips, M. C.

    2018-06-01

    Rapid, in-field, and non-contact isotopic analysis of solid materials is extremely important to a large number of applications, such as nuclear nonproliferation monitoring and forensics, geochemistry, archaeology, and biochemistry. Presently, isotopic measurements for these and many other fields are performed in laboratory settings. Rapid, in-field, and non-contact isotopic analysis of solid material is possible with optical spectroscopy tools when combined with laser ablation. Laser ablation generates a transient vapor of any solid material when a powerful laser interacts with a sample of interest. Analysis of atoms, ions, and molecules in a laser-produced plasma using optical spectroscopy tools can provide isotopic information with the advantages of real-time analysis, standoff capability, and no sample preparation requirement. Both emission and absorption spectroscopy methods can be used for isotopic analysis of solid materials. However, applying optical spectroscopy to the measurement of isotope ratios from solid materials presents numerous challenges. Isotope shifts arise primarily due to variation in nuclear charge distribution caused by different numbers of neutrons, but the small proportional nuclear mass differences between nuclei of various isotopes lead to correspondingly small differences in optical transition wavelengths. Along with this, various line broadening mechanisms in laser-produced plasmas and instrumental broadening generated by the detection system are technical challenges frequently encountered with emission-based optical diagnostics. These challenges can be overcome by measuring the isotope shifts associated with the vibronic emission bands from molecules or by using the techniques of laser-based absorption/fluorescence spectroscopy to marginalize the effect of instrumental broadening. Absorption and fluorescence spectroscopy probe the ground state atoms existing in the plasma when it is cooler, which inherently provides narrower

  2. X-ray spectroscopic characterization of laser produced hot dense plasmas

    International Nuclear Information System (INIS)

    Kontogiannopoulos, N.

    2007-12-01

    In this work we performed experiments of emission and absorption spectroscopy of laser produced plasmas, to provide well characterized spectral data which permit to benchmark atomic physics codes. More precisely, we produced xenon and krypton plasmas in NLTE (non local thermodynamic equilibrium) conditions and studied their emission spectra. In a second experiment, we characterized the absorption spectra of zinc sulfide and aluminium plasmas in LTE (local thermodynamic equilibrium) conditions.The first two chapters give an outline of the theory involved in the study of the emission and absorption plasma spectroscopy. Chapter 1 describes the different atomic processes occurring in a plasma. The LTE and the NLTE statistics ruling the equilibrium of the atomic processes are presented. Then, we give a brief description of the different codes of plasma atomic physics used in the analysis of our experimental data, namely HULLAC, SCO and TRANSPEC/AVERROES. In Chapter 2 the macroscopic theory of the radiation transport through a plasma is given. We describe also the self-similar model of Basko and the view factor approach, which permits us to calculate the heating conditions of the absorption foils achieved in the interior of the spherical gold cavity. Chapter 3 gives a description of the instruments used for realizing the two experiments, as well as the technical characteristics of the LULI2000 laser facility used to perform the experiments. Chapter 4 presents the experiment realized to characterize the emission spectra of the xenon and krypton plasmas in NLTE, as well the analysis of the experimental data with TRANSPEC/AVERROES. Finally, the experiment for measuring the absorption spectrum of the ZnS plasma mixture and the analysis of the experimental data with the code SCO are given in Chapter 5

  3. High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy.

    Science.gov (United States)

    Mantouvalou, Ioanna; Witte, Katharina; Grötzsch, Daniel; Neitzel, Michael; Günther, Sabrina; Baumann, Jonas; Jung, Robert; Stiel, Holger; Kanngiesser, Birgit; Sandner, Wolfgang

    2015-03-01

    In this work, a novel laser-produced plasma source is presented which delivers pulsed broadband soft X-radiation in the range between 100 and 1200 eV. The source was designed in view of long operating hours, high stability, and cost effectiveness. It relies on a rotating and translating metal target and achieves high stability through an on-line monitoring device using a four quadrant extreme ultraviolet diode in a pinhole camera arrangement. The source can be operated with three different laser pulse durations and various target materials and is equipped with two beamlines for simultaneous experiments. Characterization measurements are presented with special emphasis on the source position and emission stability of the source. As a first application, a near edge X-ray absorption fine structure measurement on a thin polyimide foil shows the potential of the source for soft X-ray spectroscopy.

  4. Sub-keV, subnanosecond measurements of x-ray spectra from laser-produced plasmas

    International Nuclear Information System (INIS)

    Kornblum, H.N.; Koppel, L.N.; Slivinsky, V.W.; Glaros, S.S.; Ahlstrom, H.G.; Larsen, J.T.

    1977-01-01

    As part of the effort to extend our x-ray diagnostic capabilities, we have made x-ray spectral measurements of laser-produced plasmas for photon energies down to 100 eV with a time response of 0.5 nsec. Fast, windowless x-ray diodes were used in conjunction with critical angle reflecting mirrors and thin filters for energy definition for two channels, 300 to 600 eV and 800 to 1300 eV. A third channel, using only an x-ray diode and filter, provided spectral information in the 100 to 300 eV region. Results from exploding pusher targets will be presented and compared with those of other diagnostic techniques and Lasnex calculations. Future expansion and modifications of the present system will be discussed

  5. Systems and methods for imaging using radiation from laser produced plasmas

    Science.gov (United States)

    Renard-Le Galloudec, Nathalie; Cowan, Thomas E.; Sentoku, Yasuhiko; Rassuchine, Jennifer

    2009-06-30

    In particular embodiments, the present disclosure provides systems and methods for imaging a subject using radiation emitted from a laser produced plasma generating by irradiating a target with a laser. In particular examples, the target includes at least one radiation enhancing component, such as a fluor, cap, or wire. In further examples, the target has a metal layer and an internal surface defining an internal apex, the internal apex of less than about 15 .mu.m, such as less than about 1 .mu.m. The targets may take a variety of shapes, including cones, pyramids, and hemispheres. Certain aspects of the present disclosure provide improved imaging of a subject, such as improved medical images of a radiation dose than typical conventional methods and systems.

  6. Time-resolved spectroscopy of nonequilibrium ionization in laser-produced plasmas

    International Nuclear Information System (INIS)

    Marjoribanks, R.S.

    1988-01-01

    The highly transient ionization characteristic of laser-produced plasmas at high energy densities has been investigated experimentally, using x-ray spectroscopy with time resolution of less than 20 ps. Spectroscopic diagnostics of plasma density and temperature were used, including line ratios, line profile broadening and continuum emission, to characterize the plasma conditions without relying immediately on ionization modeling. The experimentally measured plasma parameters were used as independent variables, driving an ionization code, as a test of ionization modeling, divorced from hydrodynamic calculations. Several state-of-the-art streak spectrographs, each recording a fiducial of the laser peak along with the time-resolved spectrum, characterized the laser heating of thin signature layers of different atomic numbers imbedded in plastic targets. A novel design of crystal spectrograph, with a conically curved crystal, was developed. Coupled with a streak camera, it provided high resolution (λ/ΔΛ > 1000) and a collection efficiency roughly 20-50 times that of planar crystal spectrographs, affording improved spectra for quantitative reduction and greater sensitivity for the diagnosis of weak emitters. Experimental results were compared to hydrocode and ionization code simulations, with poor agreement. The conclusions question the appropriateness of describing electron velocity distributions by a temperature parameter during the time of laser illumination and emphasis the importance of characterizing the distribution more generally

  7. Effects of a static inhomogeneous magnetic field acting on a laser-produced carbon plasma plume

    Directory of Open Access Journals (Sweden)

    M. Favre

    2017-08-01

    Full Text Available We present time- and space-resolved observations of the dynamics of a laser-produced carbon plasma, propagating in a sub-Tesla inhomogeneous magnetic field, with both, axial and radial field gradients. An Nd:YAG laser pulse, 340 mJ, 3.5 ns, at 1.06 μm, with a fluence of 7 J/cm2, is used to generate the plasma from a solid graphite target, in vacuum. The magnetic field is produced using two coaxial sets of two NeFeB ring magnets, parallel to the laser target surface. The diagnostics include plasma imaging with 50 ns time resolution, spatially resolved optical emission spectroscopy and Faraday cup. Based on our observations, evidence of radial and axial plasma confinement due to magnetic field gradients is presented. Formation of C2 molecules, previously observed in the presence of a low pressure neutral gas background, and enhanced on-axis ion flux, are ascribed to finite Larmor radius effects and reduced radial transport due to the presence of the magnetic field.

  8. Spatial-Resolved Measurement and Analysis of Extreme-Ultraviolet Emission Spectra from Laser-Produced Al Plasmas

    International Nuclear Information System (INIS)

    Cao Shi-Quan; Su Mao-Gen; Sun Dui-Xiong; Min Qi; Dong Chen-Zhong

    2016-01-01

    Extreme ultraviolet emission from laser-produced Al plasma is experimentally and theoretically investigated. Spatial-evolution emission spectra are measured by using the spatio-temporally resolved laser produced plasma technique. Based on the assumptions of a normalized Boltzmann distribution among the excited states and a steady-state collisional-radiative model, we succeed in reproducing the spectra at different detection positions, which are in good agreement with experiments. The decay curves about the electron temperature and electron density, as well as the fractions of individual Al ions and average ionization stage with increasing the detection distance are obtained by comparison with the experimental measurements. These parameters are critical points for deeply understanding the expanding and cooling of laser produced plasmas in vacuum. (paper)

  9. Characteristics of laser produced plasmas of hafnium and tantalum in the 1-7 nm region

    Science.gov (United States)

    Li, Bowen; Otsuka, Takamitsu; Sokell, Emma; Dunne, Padraig; O'Sullivan, Gerry; Hara, Hiroyuki; Arai, Goki; Tamura, Toshiki; Ono, Yuichi; Dinh, Thanh-Hung; Higashiguchi, Takeshi

    2017-11-01

    Soft X-ray (SXR) spectra from hafnium and tantalum laser produced plasmas were recorded in the 1-7 nm region using two Nd:YAG lasers with pulse lengths of 170 ps and 10 ns, respectively, operating at a range of power densities. The maximum focused peak power density was 2. 3 × 1014 W cm-2 for 170 ps pulses and 1. 8 × 1012 W cm-2 for 10 ns pulses, respectively. Two intense quasicontinuous intensity bands resulting from n = 4 - n = 4 and n = 4 - n = 5 unresolved transition arrays (UTAs) dominate both sets of experimental spectra. Comparison with calculations performed with the Cowan suite of atomic structure codes as well as consideration of previous experimental and theoretical results aided identification of the most prominent features in the spectra. For the 10 ns spectrum, the highest ion stage that could be identified from the n = 4 - n = 5 arrays were lower than silver-like Hf25+ and Ta26+ (which has a 4 d 104 f ground configuration) indicating that the plasma temperature attained was too low to produce ions with an outermost 4 d subshell, while for the 170 ps plasmas the presence of significantly higher stages was deduced and lines due to 4 d-5 p transitions were clearly evident. Furthermore, we show an enhancement of emission from tantalum using dual laser irradiation, and the effect of pre-pulse durations and delay times between two pulses are demonstrated.

  10. Laser-produced plasma EUV source using a colloidal microjet target containing tin dioxide nanoparticles

    Science.gov (United States)

    Higashiguchi, Takeshi; Dojyo, Naoto; Sasaki, Wataru; Kubodera, Shoichi

    2006-10-01

    We realized a low-debris laser-produced plasma extreme ultraviolet (EUV) source by use of a colloidal microjet target, which contained low-concentration (6 wt%) tin-dioxide nanoparticles. An Nd:YAG laser was used to produce a plasma at the intensity on the order of 10^11 W/cm^2. The use of low concentration nanoparticles in a microjet target with a diameter of 50 μm regulated the neutral debris emission from a target, which was monitored by a silicon witness plate placed 30 cm apart from the source in a vacuum chamber. No XPS signals of tin and/or oxygen atoms were observed on the plate after ten thousand laser exposures. The low concentration nature of the target was compensated and the conversion efficiency (CE) was improved by introducing double pulses of two Nd:YAG lasers operated at 532 and 1064 nm as a result of controlling the micro-plasma characteristics. The EUV CE reached its maximum of 1.2% at the delay time of approximately 100 ns with the main laser intensiy of 2 x10^11 W/cm^2. The CE value was comparable to that of a tin bulk target, which, however, produced a significant amount of neutral debris.

  11. Laser-produced lithium plasma as a narrow-band extended ultraviolet radiation source for photoelectron spectroscopy.

    Science.gov (United States)

    Schriever, G; Mager, S; Naweed, A; Engel, A; Bergmann, K; Lebert, R

    1998-03-01

    Extended ultraviolet (EUV) emission characteristics of a laser-produced lithium plasma are determined with regard to the requirements of x-ray photoelectron spectroscopy. The main features of interest are spectral distribution, photon flux, bandwidth, source size, and emission duration. Laser-produced lithium plasmas are characterized as emitters of intense narrow-band EUV radiation. It can be estimated that the lithium Lyman-alpha line emission in combination with an ellipsoidal silicon/molybdenum multilayer mirror is a suitable EUV source for an x-ray photoelectron spectroscopy microscope with a 50-meV energy resolution and a 10-mum lateral resolution.

  12. The application of photoconductive detectors to the measurement of x-ray production in laser produced plasmas

    International Nuclear Information System (INIS)

    Kania, D.R.; Bell, P.; Trebes, J.

    1987-08-01

    Photoconductive detectors (PCDs) offer an attractive alternative for the measurement of pulsed x-rays from laser produced plasmas. These devices are fast (FWHM ∼100 ps), sensitive and simple to use. We have used InP, GaAs, and Type IIa diamond as PCDs to measure x-rays emission from 100 eV to 100 keV. Specifically, we have used these detectors to measure total radiation yields, corona temperatures, and hot electron generated x-rays from laser produced plasmas. 5 refs., 4 figs

  13. Thermophysical property measurement at high temperatures by laser-produced plasmas

    International Nuclear Information System (INIS)

    Kim, Y.W.

    1993-01-01

    Excitation by a high-power laser pulse of a material surface generates a sequence of plasma, fluid flow, and acoustic events. These are well separated in time, and their detection and analysis can lead to determination of material properties of the condensed phase target. We have developed a new methodology for real-time determination of molten metal composition by time-resolved spectroscopy of laser-produced plasmas (LPP). If the laser pulse is shaped in such a way that the movement of the bulk surface due to evaporation is kept in pace with the thermal diffusion front advancing into the interior of the target, the LPP plume becomes representative of the bulk in elemental composition. In addition, the mass loss due to LPP ablation is very well correlated with the thermal diffusivity of the target matter. For several elemental solid specimens, we show that the product of the ablation thickness and heat of formation is proportional to the thermal diffusivity per unit molecular weight. Such measurements can be extended to molten metal specimens if the mass loss by ablation, density, heat of formation, and molecular weight can be determined simultaneously. The results from the solid specimen and the progress with a levitation-assisted molten metal experiment are presented

  14. X-ray High-resolution Spectroscopy for Laser-produced Plasma

    Science.gov (United States)

    Barbato, F.; Scarpellini, D.; Malizia, A.; Gaudio, P.; Richetta, M.; Antonelli, L.

    The study of the emission spectrum gives information about the material generating the spectrum itself and the condition in which this is generated. The wavelength spectra lines are linked to the specific element and plasma conditions (electron temperature, density), while their shape is influenced by several physical effects like Stark and Doppler ones. In this work we study the X-ray emission spectra of a copper laser-produced plasma by using a spherical bent crystal spectrometer to measure the electron temperature. The facility used is the laser TVLPS, at the Tor Vergata University in Rome. It consists of a Nd:Glass source (in first harmonic - 1064 nm) whose pulse parameters are: 8 J in energy, time duration of 15 ns and a focal spot diameter of 200 μm. The adopted spectrometer is based on a spherical bent crystal of muscovite. The device combines the focusing property of a spherical mirror with the Bragg's law. This allows to obtain a great power resolution but a limited range of analysis. In our case the resolution is on average 80 eV. As it is well-known, the position of the detector on the Rowland's circle is linked to the specific spectral range which has been studied. To select the area to be investigated, we acquired spectra by means of a flat spectrometer. The selected area is centered on 8.88 Å. To calibrate the spectrum we wrote a ray-tracing MATLAB code, which calculates the detector alignment parameters and calibration curve. We used the method of line ratio to measure the electron temperature. This is possible because we assumed the plasma to be in LTE condition. The temperature value was obtained comparing the experimental one, given by the line ratio, with the theoretical one, preceded by FLYCHK simulations.

  15. Efficient soft x-ray generation in short wavelength laser produced plasmas

    International Nuclear Information System (INIS)

    Mochizuki, T.; Yamanaka, C.

    1987-01-01

    Intense x-ray generation in 1.053, 0.53, 0.26 μm laser-produced plasma has been investigated in the photon energy range of 0.1 to 3keV. The x-ray spectrum is found to have several humps which move to the higher energy side as the atomic number of the target increases. This atomic dependence is explained by a semi-Moseley's law and allows us to predict a target material most suitable for generating the photons of desired energies. Conversion efficiencies of 1.5 -- 3keV x-rays are obtained also as a function of laser wavelength at the intensity of 10/sup 13/W/cm/sup 2/. The conversion efficiency of keV x rays has been enhanced by a factor of 2 -- 3 with a controlled prepulse laser. From the semi-Moseley's law we find that cryogenic targets using either Xe or Kr in a liquid or solid phase may be most useful for a number of applications because they radiate 1 -- 3 keV x rays efficiently and never deposit on the x-ray optical components and the objects to be exposed

  16. Short-wavelength out-of-band EUV emission from Sn laser-produced plasma

    Science.gov (United States)

    Torretti, F.; Schupp, R.; Kurilovich, D.; Bayerle, A.; Scheers, J.; Ubachs, W.; Hoekstra, R.; Versolato, O. O.

    2018-02-01

    We present the results of spectroscopic measurements in the extreme ultraviolet regime (7-17 nm) of molten tin microdroplets illuminated by a high-intensity 3 J, 60 ns Nd:YAG laser pulse. The strong 13.5 nm emission from this laser-produced plasma (LPP) is of relevance for next-generation nanolithography machines. Here, we focus on the shorter wavelength features between 7 and 12 nm which have so far remained poorly investigated despite their diagnostic relevance. Using flexible atomic code calculations and local thermodynamic equilibrium arguments, we show that the line features in this region of the spectrum can be explained by transitions from high-lying configurations within the Sn{}8+-Sn{}15+ ions. The dominant transitions for all ions but Sn{}8+ are found to be electric-dipole transitions towards the n = 4 ground state from the core-excited configuration in which a 4p electron is promoted to the 5s subshell. Our results resolve some long-standing spectroscopic issues and provide reliable charge state identification for Sn LPP, which could be employed as a useful tool for diagnostic purposes.

  17. Instantaneous x-ray radiation energy from laser produced polystyrene plasmas for shock ignition conditions

    International Nuclear Information System (INIS)

    Shang, Wanli; Wei, Huiyue; Li, Zhichao; Yi, Rongqing; Zhu, Tuo; Song, Tianmin; Huang, Chengwu; Yang, Jiamin

    2013-01-01

    Laser target energy coupling mechanism is crucial in the shock ignition (SI) scheme, and x-ray radiation energy is a non-negligible portion of the laser produced plasma energy. To evaluate the x-ray radiation energy amount at conditions relevant to SI scheme, instantaneous x-ray radiation energy is investigated experimentally with continuum phase plates smoothed lasers irradiating layer polystyrene targets. Comparative laser pulses without and with shock spike are employed. With the measured x-ray angular distribution, full space x-ray radiation energy and conversion efficiency are observed. Instantaneous scaling law of x-ray conversion efficiency is obtained as a function of laser intensity and time. It should be pointed out that the scaling law is available for any laser pulse shape and intensity, with which irradiates polystyrene planar target with intensity from 2 × 10 14 to 1.8 × 10 15 W/cm 2 . Numerical analysis of the laser energy transformation is performed, and the simulation results agree with the experimental data

  18. Traveling-wave laser-produced-plasma energy source for photoionization laser pumping and lasers incorporating said

    Science.gov (United States)

    Sher, Mark H.; Macklin, John J.; Harris, Stephen E.

    1989-09-26

    A traveling-wave, laser-produced-plasma, energy source used to obtain single-pass gain saturation of a photoionization pumped laser. A cylindrical lens is used to focus a pump laser beam to a long line on a target. Grooves are cut in the target to present a surface near normal to the incident beam and to reduce the area, and hence increase the intensity and efficiency, of plasma formation.

  19. Laser-produced aluminum plasma expansion inside a plastic plasma envelope

    Czech Academy of Sciences Publication Activity Database

    Kasperczuk, A.; Pisarczyk, T.; Chodukowski, T.; Kalinowska, Z.; Parys, P.; Renner, Oldřich; Gus´kov, S.Y.; Demchenko, N. N.; Ullschmied, Jiří; Krouský, Eduard; Pfeifer, Miroslav; Rohlena, Karel; Skála, Jiří

    2012-01-01

    Roč. 19, č. 9 (2012), s. 1-8 ISSN 1070-664X R&D Projects: GA MŠk(CZ) 7E09092; GA MŠk(CZ) LC528; GA ČR GAP205/10/0814 Grant - others:7FP LASERLAB-EUROPE(XE) 228334 Program:FP7 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : laser-mater interaction * plasma jets production * x-ray spectroscopy * particle plasma diagnosis * ion charge density * plasma temperature Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.376, year: 2012

  20. Plasma conditions for non-Maxwellian electron distributions in high current discharges and laser-produced plasmas

    International Nuclear Information System (INIS)

    Whitney, K.G.; Pulsifer, P.E.

    1993-01-01

    Results from the standard quasilinear theory of ion-acoustic and Langmuir plasma microturbulence are incorporated into the kinetic theory of the electron distribution function. The theory is then applied to high current discharges and laser-produced plasmas, where either the current flow or the nonlinear laser-light absorption acts, respectively, as the energy source for the microturbulence. More specifically, the theory is applied to a selenium plasma, whose charge state is determined under conditions of collisional-radiative equilibrium, and plasma conditions are found under which microturbulence strongly influences the electron kinetics. In selenium, we show that this influence extends over a wide range of plasma conditions. For ion-acoustic turbulence, a criterion is derived, analogous to one previously obtained for laser heated plasmas, that predicts when Ohmic heating dominates over electron-electron collisions. This dominance leads to the generation of electron distributions with reduced high-energy tails relative to a Maxwellian distribution of the same temperature. Ion-acoustic turbulence lowers the current requirements needed to generate these distributions. When the laser heating criterion is rederived with ion-acoustic turbulence included in the theory, a similar reduction in the laser intensity needed to produce non-Maxwellian distributions is found. Thus we show that ion-acoustic turbulence uniformly (i.e., by the same numerical factor) reduces the electrical and heat conductivities, as well as the current (squared) and laser intensity levels needed to drive the plasma into non-Maxwellian states

  1. Instabilities observed at the bubble edge of a laser produced plasma during its expansion in an ambient tenuous plasma

    Science.gov (United States)

    Lee, Bo Ram; Clark, S. E.; Hoffmann, D. H. H.; Niemann, C.

    2014-10-01

    The Raptor kJ class 1053 nm Nd:Glass laser in the Phoenix laser laboratory at University of California, Los Angeles, is used to ablate a dense debris plasma from a graphite or plastic target embedded in a tenuous, uniform, and quiescent ambient magnetized plasma in the Large Plasma Device (LAPD) which provides a peak plasma density of ni ~ 1013 cm-3. Its background magnetic field can vary between 200 and 1200 G. Debris ions from laser produced plasma expand out conically with super-Alfvénic speed (MA ~ 2) and expel the background magnetic field and ambient ions to form a diamagnetic bubble. The debris plasma interacts with the ambient plasma and the magnetic field and acts as a piston which can create collisionless shocks. Flute-type instabilities, which are probably large Larmor radius Rayleigh Taylor instabilities or lower hybrid drift instabilities, are developed at the bubble edge and also observed in the experiment. The amplitude and wavelength dependence of the instabilities, which might be a strong function of debris to ambient mass to charge ratio, is studied and the experimental results are compared to the two dimensional hybrid simulations. the Deutsche Forschungsgemeinschaft in the framework of the Excellence Initiative Darmstadt Graduate School of Energy Science and Engineering (GSC1070).

  2. Studies of high repetition rate laser-produced plasma soft-X-ray amplifiers

    International Nuclear Information System (INIS)

    Cassou, K.

    2006-12-01

    The progress made as well on the Ti:Sa laser system, as in the control and the knowledge of laser produced X-UV sources allowed the construction of a X-UV laser station dedicated to the applications. My thesis work falls under the development of this station and more particularly on the characterization of a X-UV laser plasma amplifier. The experimental study relates to the coupling improvement of the pump infra-red laser with plasma within the framework of the transient collisional X-UV laser generation. These X-UV lasers are generated in a plasma formed by the interaction of a solid target and a laser pulse of approximately 500 ps duration, followed by a second infra-red laser pulse known as of pump (about 5 ps) impinging on the target in grazing incidence. For the first time, a complete parametric study was undertaken on the influence of the grazing angle on the pumping of the amplifying medium. One of the results was to reach very high peak brightness about 10 28 ph/s/mm 2 /mrad 2 /(0.1%bandwidth), which compares well with the free-electron laser brightness. Moreover, we modified then used a new two-dimensional hydrodynamic code with adaptive mesh refinement in order to understand the influence of the space-time properties of the infra-red laser on the formation and the evolution of the amplifying plasma. Our modeling highlighted the interest to use a super Gaussian transverse profile for the line focus leading to an increase in a factor two of the gain region size and a reduction of the electron density gradient by three orders of magnitude. These improvements should strongly increase the energy contained in X-UV laser beam. We thus used X-UV laser to study the appearance of transient defects produced by a laser IR on a beam-splitter rear side. We also began research on the mechanisms of DNA damage induced by a very intense X-UV radiation. (author)

  3. Hosing, sausaging, filamentation and side-scatter of a high-intensity short-pulse laser in an under-dense plasma

    International Nuclear Information System (INIS)

    Najmudin, Z.; Krushelnick, K.; Clark, E.L.; Salvati, M.; Santala, M.I.K.; Tatarakis, M.; Dangor, A.E.

    2000-01-01

    Previous studies of high-intensity short-pulse laser beams propagating in under-dense plasma have relied on spectrally integrated Thomson scattering images. Though interesting, many significant features of the interaction cannot be diagnosed by this method. We report on shadow-graphy and spectrally resolved Thomson scattering of such an interaction. These images reveal many processes previously predicted but unseen, such as the Raman side-scatter and filamentation instabilities. Also the interaction is shown to clearly demonstrate many propagation instabilities such as 'sausaging' and 'hosing' for the first time. (authors)

  4. Development of a compact laser-produced plasma soft X-ray source for radiobiology experiments

    Energy Technology Data Exchange (ETDEWEB)

    Adjei, Daniel, E-mail: nana.adjeidan@gmail.com [Institute of Optoelectronics, Military University of Technology, 2, Kaliskiego Str., 00-908 Warsaw (Poland); Radiation Protection Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon, Accra (Ghana); Ayele, Mesfin Getachew; Wachulak, Przemyslaw; Bartnik, Andrzej; Wegrzynski, Łukasz; Fiedorowicz, Henryk [Institute of Optoelectronics, Military University of Technology, 2, Kaliskiego Str., 00-908 Warsaw (Poland); Vyšín, Luděk [Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8 (Czech Republic); Faculty of Nuclear Sciences and Engineering Physics, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1 (Czech Republic); Wiechec, Anna; Lekki, Janusz; Kwiatek, Wojciech M. [Institute of Nuclear Physics, Polish Academy of Sciences, 152, Radzikowskiego Str., 31-342 Cracow (Poland); Pina, Ladislav [Faculty of Nuclear Sciences and Engineering Physics, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1 (Czech Republic); Davídková, Marie [Institute of Nuclear Physics, Czech Academy of Sciences, Řež (Czech Republic); Juha, Libor [Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8 (Czech Republic)

    2015-12-01

    A desk-top laser-produced plasma (LPP) source of soft X-rays (SXR) has been developed for radiobiology research. The source is based on a double-stream gas puff target, irradiated with the focused beam of a commercial Nd:YAG laser. The source has been optimized to get a maximum photon emission from LPP in the X-ray “water window” spectral wavelength range from 2.3 nm (i.e., an absorption edge of oxygen) to 4.4 nm (i.e., an absorption edge of carbon) (280–540 eV in photon energy units) by using argon gas-puff target and spectral filtering by free-standing thin foils. The present source delivers nanosecond pulses of soft X-rays at a fluence of about 4.2 × 10{sup 3} photons/μm{sup 2}/pulse on a sample placed inside the vacuum chamber. In this paper, the source design, radiation output characterization measurements and initial irradiation experiments are described. The source can be useful in addressing observations related to biomolecular, cellular and organisms’ sensitivity to pulsed radiation in the “water window”, where carbon atoms absorb X-rays more strongly than the oxygen, mostly present in water. The combination of the SXR source and the radiobiology irradiation layout, reported in this article, make possible a systematic investigation of relationships between direct and indirect action of ionizing radiation, an increase of a local dose in carbon-rich compartments of the cell (e.g., lipid membranes), an experimental estimation of a particular role of the Auger effect (in particular in carbon atoms) in the damage to biological systems, and the study of ionization/excitation-density (LET – Linear Energy Transfer) and dose-rate effects in radiobiology.

  5. The effects of microstructure on propagation of laser-driven radiative heat waves in under-dense high-Z plasma

    Science.gov (United States)

    Colvin, J. D.; Matsukuma, H.; Brown, K. C.; Davis, J. F.; Kemp, G. E.; Koga, K.; Tanaka, N.; Yogo, A.; Zhang, Z.; Nishimura, H.; Fournier, K. B.

    2018-03-01

    This work was motivated by previous findings that the measured laser-driven heat front propagation velocity in under-dense TiO2/SiO2 foams is slower than the simulated one [Pérez et al., Phys. Plasmas 21, 023102 (2014)]. In attempting to test the hypothesis that these differences result from effects of the foam microstructure, we designed and conducted an experiment on the GEKKO laser using an x-ray streak camera to compare the heat front propagation velocity in "equivalent" gas and foam targets, that is, targets that have the same initial density, atomic weight, and average ionization state. We first discuss the design and the results of this comparison experiment. To supplement the x-ray streak camera data, we designed and conducted an experiment on the Trident laser using a new high-resolution, time-integrated, spatially resolved crystal spectrometer to image the Ti K-shell spectrum along the laser-propagation axis in an under-dense TiO2/SiO2 foam cylinder. We discuss the details of the design of this experiment, and present the measured Ti K-shell spectra compared to the spectra simulated with a detailed superconfiguration non-LTE atomic model for Ti incorporated into a 2D radiation hydrodynamic code. We show that there is indeed a microstructure effect on heat front propagation in under-dense foams, and that the measured heat front velocities in the TiO2/SiO2 foams are consistent with the analytical model of Gus'kov et al. [Phys. Plasmas 18, 103114 (2011)].

  6. Theory and experimental show up of axial magnetic fields self-generated in dense laser-produced plasmas

    International Nuclear Information System (INIS)

    El Tamer, M.

    1986-09-01

    The work presented in this thesis concerns the magnetic fields generated in laser produced plasma. A summary of the theoretical and experimental studies concerning the toroidal magnetic fields and realised by different groups of research is presented. Then, we present our original contribution on the generation of axial magnetic fields by the dynamo effect. The experimental work for the detection of magnetic field is based on the Faraday rotation and Zeeman effects. The experimental diagrams are detailed and discussed. The experimental results are presented and compared to the theory. Finaly, we present some consequences of the generation of the axial magnetic fields in laser produced plasma as a discussion of the thermal conductivity [fr

  7. Bent crystal X-ray optics for the diagnosis and applications of laser-produced plasmas

    International Nuclear Information System (INIS)

    Loetzsch, Robert

    2012-01-01

    The present thesis discussed several aspects of X-ray optics based on bent crystals and a number of applications of these optics. First, a deeper insight into the reflection properties of elastically bent perfect crystal optics was gained by the consideration of all deformation effects. It was shown that the reflection properties depend on the lateral position on the crystal, an effect that was not addressed before, neither experimentally nor theoretically. To investigate this effect, an apparatus for the measurement of Bragg angles of bent crystals with high angular resolution was built. It was measured that the lattice plane distances of two-dimensionally bent crystals vary laterally by up to 10 -4 . This effect has to be considered in high resolution X-ray spectroscopy and imaging with these bent crystals. It can explain discrepancies in theoretical and experimental spectrometer resolution with spherically bent crystals. Besides these principal investigations, in this thesis a number of X-ray optics were presented that demonstrate the application potential of bent crystal optics. This includes two optics that are used in the field of applications of laser-produced plasmas as high repeating hard X-ray sources. It was shown that an X-ray spectrometer based on full cylinder rings of highly oriented pyrolytic graphite is capable to record the rather weak single shot pulses from a high repeating 1 er-plasma X-ray source. This is possible due to the high collection efficiency of the instrument of up to 5.10 -4 . Furthermore, X-ray optics based on toroidally bent crystals that make it possible to spectrally select a bandwidth of ∝1 eV and focus the ultrashort X-ray pulses from such a laser-plasma source, were designed, prepared and characterized. It was shown that these bent crystals provide the calculated integrated reflectivity, the predicted bandwidth and focus to spot sizes smaller than 60 μm. A novel application of toroidally bent crystals was pointed out: a

  8. Detailed hydrodynamic and X-ray spectrocsopic analysis of a laser-produced rapidly-explanding aluminium plasma

    Czech Academy of Sciences Publication Activity Database

    Chambers, D. M.; Glenzer, S. H.; Hawreliak, J.; Wolfrum, E.; Gouveia, A.; Lee, R. W.; Marjoribanks, R. S.; Renner, Oldřich; Sondhauss, P.; Topping, S.

    2001-01-01

    Roč. 71, - (2001), s. 237-247 ISSN 0022-4073 Grant - others:US DOE(US) DESG03-99D-P00297; US Department of Energy(US) W-7405 ENG 48 Institutional research plan: CEZ:AV0Z1010921 Keywords : laser produced plasma * x-ray spectroscopy * Thomson scattering * hydrocode Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.493, year: 2001

  9. Spectral lines and characteristic of temporal variations in photoionized plasmas induced with laser-produced plasma extreme ultraviolet source

    Science.gov (United States)

    Saber, I.; Bartnik, A.; Wachulak, P.; Skrzeczanowski, W.; Jarocki, R.; Fiedorowicz, H.

    2017-11-01

    Spectral lines for Kr/Ne/H2 photoionized plasma in the ultraviolet and visible (UV/Vis) wavelength ranges have been created using a laser-produced plasma (LPP) EUV source. The source is based on a double-stream gas puff target irradiated with a commercial Nd:YAG laser. The laser pulses were focused onto a gas stream, injected into a vacuum chamber synchronously with the EUV pulses. Spectral lines from photoionization in neutral Kr/Ne/H2 and up to few charged states were observed. The intense emission lines were associated with the Kr transition lines. Experimental and theoretical investigations on intensity variations for some ionic lines are presented. A decrease in the intensity with the delay time between the laser pulse and the spectrum acquisition was revealed. Electron temperature and electron density in the photoionized plasma have been estimated from the characteristic emission lines. Temperature was obtained using Boltzmann plot method, assuming that the population density of atoms and ions are considered in a local thermodynamic equilibrium (LTE). Electron density was calculated from the Stark broadening profile. The temporal evaluation of the plasma and the way of optimizing the radiation intensity of LPP EUV sources is discussed.

  10. Optical measurements of lateral energy flow and plasma motion in laser-produced plasmas

    International Nuclear Information System (INIS)

    Benjamin, R.F.; Riffle, J.H.

    1979-01-01

    An optical system consisting of a telephoto lens and multi-image camera is described and the experimental results and their implications are presented. We will also describe the opto-electronic system that will measure the time history of the energy flow with sub-nanosecond resolution. The system will be useful to study both one- and two-dimensional geometries. The third optical diagnostic is a laser probe utilizing detection by the opto-electronic system mentioned above. This diagnostic measures plasma motion as well as energy flow. The laser probe and detection system mounts directly onto the target chamber at LASLs Gemini CO 2 laser, causing severe alignment and stability problems whose solutions will be shown

  11. X-ray spectrum in the range (6-12) A emitted by laser-produced plasma of samarium

    International Nuclear Information System (INIS)

    Louzon, Einat; Henis, Zohar; Levi, Izhak; Hurvitz, Gilad; Ehrlich, Yosi; Fraenkel, Moshe; Maman, Shlomo; Mandelbaum, Pinchas

    2009-01-01

    A detailed analysis of the x-ray spectrum emitted by laser-produced plasma of samarium (6-12 A) is presented, using ab initio calculations with the HULLAC relativistic code and isoelectronic considerations. Resonance 3d-nf (n=4 to 7), 3p-4d, 3d-4p, and 3p-4s transitions in Ni samarium ions and in neighboring ionization states (from Mn to Zn ions) were identified. The experiment results show changes in the fine details of the plasma spectrum for different laser intensities.

  12. Influence of micro- and macro-processes on the high-order harmonic generation in laser-produced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ganeev, R. A., E-mail: rashid-ganeev@mail.ru [Ophthalmology and Advanced Laser Medical Center, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama 350-0495 (Japan); Physical Department, Voronezh State University, Voronezh 394006 (Russian Federation)

    2016-03-21

    We compare the resonance-induced enhancement of single harmonic and the quasi-phase-matching-induced enhancement of the group of harmonics during propagation of the tunable mid-infrared femtosecond pulses through the perforated laser-produced indium plasma. We show that the enhancement of harmonics using the macro-process of quasi-phase-matching is comparable with the one using micro-process of resonantly enhanced harmonic. These studies show that joint implementation of the two methods of the increase of harmonic yield could be a useful tool for generation of strong short-wavelength radiation in different spectral regions. We compare these effects in indium, as well as in other plasmas.

  13. Simulation of some nonstationary astrophysical processes in laser-produced-plasma experiments

    International Nuclear Information System (INIS)

    Antonov, V.M.; Zakharov, Yu.P.; Orishich, A.M.; Ponomarenko, A.G.; Posukh, V.G.

    1985-01-01

    Preliminary results and calibration are reported on the astrophysical plasma dynamics simulator. This apparatus creates a spherical plasma cloud by the irradiation of a perlon filament target from two radial opposite directions by pulses of highly ionized background plasma in a high-vacuum chamber with diameter of 1.2 m and length of 5 m. The spherical plasma cloud simulates the exploding peripheric part of a supernova, expanding into the interstellar medium. (author)

  14. The Influence of spot size on the expansion dynamics of nanosecond-laser-produced copper plasmas in atmosphere

    International Nuclear Information System (INIS)

    Li, Xingwen; Wei, Wenfu; Wu, Jian; Jia, Shenli; Qiu, Aici

    2013-01-01

    Laser produced copper plasmas of different spot sizes in air were investigated using fast photography and optical emission spectroscopy (OES). The laser energy was 33 mJ. There were dramatic changes in the plasma plume expansion into the ambient air when spot sizes changed from ∼0.1 mm to ∼0.6 mm. A stream-like structure and a hemispherical structure were, respectively, observed. It appeared that the same spot size resulted in similar expansion dynamics no matter whether the target was located in the front of or behind the focal point, although laser-induced air breakdown sometimes occurred in the latter case. Plasma plume front positions agree well with the classic blast wave model for the large spot-size cases, while an unexpected stagnation of ∼80 ns occurred after the laser pulse ends for the small spot size cases. This stagnation can be understood in terms of the evolution of enhanced plasma shielding effects near the plasma front. Axial distributions of plasma components by OES revealed a good confinement effect. Electron number densities were estimated and interpreted using the recorded Intensified Charge Coupled Device (ICCD) images.

  15. Energy dependence of the stopping power of MeV 16O ions in a laser-produced plasma

    International Nuclear Information System (INIS)

    Sakumi, A.; Shibata, K.; Sato, R.; Tsubuku, K.; Nishimoto, T.; Hasegawa, J.; Ogawa, M.; Oguri, Y.; Katayama, T.

    2001-01-01

    The energy dependence of the stopping power of 16 O ions in a laser-produced plasma target was experimentally investigated in the projectile energy range of 150-350 keV/u. In order to produce the target plasma a Q-Switched Nd-glass laser was focused onto a small lithium hydride (LiH) pellet. The plasma electron temperature and the electron line density were 15 eV and 2x10 17 cm -2 , respectively. The energy loss of 16 O ions in the plasma was measured by a time-of-flight (TOF) method. We found that the stopping power in the plasma agreed with the theoretical estimation based on a modified Bohr equation with correction at low velocities. In this evaluation, the effective charge of the projectile was calculated by means of rate equations on the loss and capture of electrons. It has been also found that in this projectile energy range the stopping power of the 16 O ions in the plasma still increases with decreasing projectile energy, while it decreases in cold equivalent

  16. XUV laser-produced plasma sheet beam and microwave agile mirror

    International Nuclear Information System (INIS)

    Shen, W.; Scharer, J.E.; Porter, B.; Lam, N.T.

    1994-01-01

    An excimer-laser (λ = 193 nm) produced plasma in an organic gas (TMAE) has been generated and studied. These studies have determined the ion-electron recombination coefficient and the photon absorption cross-section, of the neutral gas. The dependences of wave transmission, reflection and absorption on plasma density are obtained. A new optical system with an array of cylindrical XUV coated lenses has been implemented to form a plasma sheet to study its usage as agile mirror microwave reflector. The lens system expands the incident laser beam in X direction and compresses it in Y direction to form a sheet beam. The expanded beam then passes through a vacuum chamber filled with TMAE at 50--500 nTorr to produce the plasma sheet. Space-time measurements of the plasma density and temperature as measured by a Langmuir probe are presented. XUV optical measurements of the laser beam as measured by a photodiode are presented. Initial experiments have generated a plasma sheet of 5--10 mm x 11 cm with peak plasma density of 5 x 10 13 cm -3 . A microwave source will be utilized to study the agile mirror character of the plasma sheet. Modeling of the microwave reflection from the plasma profile will also be discussed

  17. Stimulated Brillouin backscattering and magnetic field generation in laser-produced plasmas

    International Nuclear Information System (INIS)

    Bawa'aneh, M.S.

    1999-01-01

    This thesis is concerned with aspects of laser-plasma interactions related to fusion reactions; in particular thermoelectric magnetic field generation around a hole dug in plasma by intense laser beams, and stimulated Brillouin back scattering (SBBS) from plasmas containing hot spots. A hole, of the size of the laser focal spot, is dug in the plasma when illuminated by intense laser if the laser pressure exceeds the plasma thermal pressure. This hole is found to have steep, radial density gradients. My first concern arose from the prediction that magnetic fields might be generated around the hole-plasma interface in places where the steep density gradients overlap with the non-aligned temperature gradients. When a high-power laser beam is focused on a solid pellet, plasma is formed at the surface. In order to create conditions for thermonuclear reactions in the interior of the pellet, an effective deposition of the laser energy to thermal energy of the pellet via laser-plasma coupling is necessary. When light irradiates a plasma collective processes occur, which can either enhance or reduce the light absorption. For a better understanding of the fusion problem a knowledge of the nature of these collective processes and of the fraction of light reflected from the plasma modes is required. Local hot spots seen experimentally lead to higher gain levels of scattered light. These local temperature inhomogeneities could lead to non-equilibrium distributions, which result in a free energy leading to some interesting phenomena in plasma. In the second part of the thesis stimulated Brillouin back scattering from an ion acoustic mode in a hot spot is studied. Temperature inhomogeneities lead to an ion acoustic instability, and to higher levels of SBBS gain, which leads to lower thresholds for the same electron to ion temperature ratios. This could be the answer for the observed high levels of scattering from hot spots. (author)

  18. High beta capture and mirror confinement of laser produced plasmas. Final report

    International Nuclear Information System (INIS)

    Haught, A.F.; Tomlinson, R.G.; Ard, W.B.; Boedeker, L.R.; Churchill, T.L.; Fader, W.J.; Jong, R.A.; Mensing, A.E.; Polk, D.H.; Stufflebeam, J.H.

    1977-12-01

    The LITE fusion plasma research program at UTRC has been investigating the stabilization and confinement physics of a mirror plasma created by energetic neutral beam heating of a confined target plasma. During the period covered by this report work has been concentrated on the investigation of hot ion losses in a warm target plasma, development of a cryocondensation pump for the LITE beam line neutralizer, theoretical studies of ECRH modification of the ambipolar potential in mirror plasmas, and analysis of the effects of localized cold plasma on DCLC stabilization. The results of these investigations are summarized below and detailed in four papers which comprise the body of this report. Measurements of the lifetime of hot ions in a mirror confined warm plasma have been carried out by observations of the hot ion buildup time obtained with energetic neutral beam injection. A cryocondensation pump of novel design has been constructed and incorporated in the neutralizer chamber of the LITE neutral beam line. Calculations have been carried out to evaluate the sizes and shapes of ambipolar potential modification produced by electron cyclotron resonance heated electrons and to determine the spatial distribution and densities of cold ions trapped in the potential wells. The effects of the spatial distribution of the cold ions on their effectiveness for stabilizing the drift cyclotron loss cone instability has been studied numerically using the formulation of Pearlstein in which the dispersion relation for the DCLC mode is solved for finite-size plasmas containing hot and cold components

  19. Validity of spherical quantitative refractometry: application to laser-produced plasmas

    International Nuclear Information System (INIS)

    Benattar, R.; Popovics, C.

    1983-01-01

    We report an experimental laser technique of quantitative Schlieren imaging of spherical plasmas combined with streak camera recording. We show that quantitative refractometry applies for small values of refraction angles, i.e., when the law giving the refraction angle versus the impact parameter of rays passing through the plasma is a linearly decreasing function

  20. Spectroscopic observations in the visible and near ultraviolet of a laser-produced plasma

    International Nuclear Information System (INIS)

    Zago, A.; Tondello, G.

    1985-01-01

    The emission from a plasma produced by laser focusing on plane targets of the elements Be, B, C and N has been observed in the visible and near ultraviolet. The spectra have been recorded mainly with an optical multichannel analyser allowing great sensitivity of detection. Both continua and line emission have been analysed in terms of plasma properties. Very broad lines of the type Δn = 1 appear prominent in the spectrum and, through their Stark broadening, the electron density of the plasma has been derived

  1. Spectroscopic observations in the visible and near ultraviolet of a laser-produced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Zago, A.; Tondello, G.

    1985-01-11

    The emission from a plasma produced by laser focusing on plane targets of the elements Be, B, C and N has been observed in the visible and near ultraviolet. The spectra have been recorded mainly with an optical multichannel analyser allowing great sensitivity of detection. Both continua and line emission have been analysed in terms of plasma properties. Very broad lines of the type ..delta..n = 1 appear prominent in the spectrum and, through their Stark broadening, the electron density of the plasma has been derived.

  2. Space-time resolved measurements of spontaneous magnetic fields in laser-produced plasma

    Czech Academy of Sciences Publication Activity Database

    Pisarczyk, T.; Gus’kov, S.Yu.; Dudžák, Roman; Chodukowski, T.; Dostál, Jan; Demchenko, N. N.; Korneev, Ph.; Kalinowska, Z.; Kalal, M.; Renner, Oldřich; Šmíd, Michal; Borodziuk, S.; Krouský, Eduard; Ullschmied, Jiří; Hřebíček, Jan; Medřík, Tomáš; Golasowski, Jiří; Pfeifer, Miroslav; Skála, Jiří; Pisarczyk, P.

    2015-01-01

    Roč. 22, č. 10 (2015), č. článku 102706. ISSN 1070-664X R&D Projects: GA MŠk LM2010014; GA MŠk(CZ) LD14089; GA ČR GPP205/11/P712 Grant - others:FP7(XE) 284464 Program:FP7 Institutional support: RVO:61389021 ; RVO:68378271 Keywords : space-time resolved spontaneous magnetic field (SMF) * Laser System Subject RIV: BL - Plasma and Gas Discharge Physics; BL - Plasma and Gas Discharge Physics (FZU-D) OBOR OECD: Fluids and plasma physics (including surface physics); Fluids and plasma physics (including surface physics) (FZU-D) Impact factor: 2.207, year: 2015 http://scitation.aip.org/content/aip/journal/pop/22/10/10.1063/1.4933364

  3. Self-modulation and anomalous collective scattering of laser produced intense ion beam in plasmas

    Directory of Open Access Journals (Sweden)

    K. Mima

    2018-05-01

    Full Text Available The collective interaction between intense ion beams and plasmas is studied by simulations and experiments, where an intense proton beam produced by a short pulse laser is injected into a pre-ionized gas. It is found that, depending on its current density, collective effects can significantly alter the propagated ion beam and the stopping power. The quantitative agreement that is found between theories and experiments constitutes the first validation of the collective interaction theory. The effects in the interaction between intense ion beams and background gas plasmas are of importance for the design of laser fusion reactors as well as for beam physics. Keywords: Two stream instabilities, Ultra intense short pulse laser, Proton beam, Wake field, Electron plasma wave, Laser plasma interaction, PACS codes: 52.38.Kd, 29.27.Fh, 52.40.Kh, 52.70.Nc

  4. Propagation velocities of laser-produced plasmas from copper wire targets and water droplets

    Science.gov (United States)

    Song, Kyo-Dong; Alexander, Dennis R.

    1994-01-01

    Experiments were performed to determine the plasma propagation velocities resulting from KrF laser irradiation of copper wire target (75 microns diameter) and water droplets (75 microns diameter) at irradiance levels ranging from 25 to 150 GW/sq cm. Plasma propagation velocities were measured using a streak camera system oriented orthogonally to the high-energy laser propagation axis. Plasma velocities were studied as a function of position in the focused beam. Results show that both the shape of the plasma formation and material removal from the copper wire are different and depend on whether the targets are focused or slightly defocused (approximately = 0.5 mm movement in the beam axis). Plasma formation and its position relative to the target is an important factor in determining the practical focal point during high-energy laser interaction with materials. At irradiance of 100 GW/sq cm, the air plasma has two weak-velocity components which propagate toward and away from the incident laser while a strong-velocity component propagates away from the laser beam as a detonation wave. Comparison of the measured breakdown velocities (in the range of 2.22-2.27 x 10(exp 5) m/s) for air and the value calculated by the nonlinear breakdown wave theory at irradiance of 100 GW/sq cm showed a quantitative agreement within approximately 50% while the linear theory and Gaussian pulse theory failed. The detonation wave velocities of plasma generated from water droplets and copper wire targets for different focused cases were measured and analyzed theoretically. The propagation velocities of laser-induced plasma liquid droplets obtained by previous research are compared with current work.

  5. An isotopic analysis process with optical emission spectrometry on a laser-produced plasma

    International Nuclear Information System (INIS)

    Mauchien, P.; Pietsch, W.; Petit, A.; Briand, A.

    1994-01-01

    The sample that is to be analyzed is irradiated with a laser beam to produce a plasma at the sample surface; the spectrum of the light emitted by the plasma is analyzed and the isotope composition of the sample is derived from the spectrometry. The process is preferentially applied to uranium and plutonium; it is rapid, simpler and cheaper than previous methods, and may be applied to 'in-situ' isotopic analysis in nuclear industry. 2 figs

  6. Nonlinear processes in laser-produced dense plasma (observation of the fractional harmonics)

    International Nuclear Information System (INIS)

    Lyu, K.S.

    1988-01-01

    One of the main issues of laser plasma physics interactions is harmonic generation. The harmonic emission spectrum provides clues as to which non-linear processes take place in the plasma. Several effects contribute to a given line as judged from the complexity of the actual spectra. Unfolding of them has not been done satisfactorily yet. Harmonic lines with half integer or integer orders have been observed, but the physics are far from complete. In this dissertation research, we observed the usual second harmonic generation and a set of fractional harmonics which we believe have been observed for the first time in plasma physics. The plasma was produced by a high power laser and we have characterized its properties from the analysis of the radiation spectra, including the harmonic lines, as measured using the methods of transient spectroscopy. We produced the plasma with a Nd:glass laser which had a 65 nsec pulse width (FWHM) with a total energy of up to 6 Joules. The targets were steel alloys, copper, and aluminum. The harmonic generation from the plasma with a planar metal target was not strong. But, it became stronger when we made a dead hole (cavity) at the laser spot on the target surface. The second harmonic line appears first before the time of the peak of laser pulse. The fractional harmonics, which are related to the laser wavelength by rational number other than integers or half integers, appear near or after the time of the laser peak and weaker in UV wavelength range but stronger if some atomic emission line are near by. To understand the plasma evolution better, we developed computer simulation codes. The codes contain all relevant processes necessary to compute the plasma evolution

  7. Asymmetry of Stark-broadened Layman lines from laser-produced plasmas

    International Nuclear Information System (INIS)

    Joyce, R.F.; Woltz, L.A.; Hooper, C.F. Jr.

    1986-01-01

    This paper discusses three significant causes of spectral line asymmetry: the ion-quadrupole interaction, the quadratic Stark effect and fine structure splitting that are included in the calculation of Lyman line profiles emitted by highly-ionized hydrogenic radiators in a dense, hot plasma. The line asymmetries are shown to be strongly dependent on the plasma density, indicating that the asymmetry may be of use as a density diagnostic

  8. Experimental study of the behavior of two laser produced plasmas in air

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zefeng; Wei, Wenfu; Han, Jiaxun; Wu, Jian, E-mail: jxjawj@gmail.com; Li, Xingwen; Jia, Shenli [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Shaanxi 710049 (China)

    2015-07-15

    The interactions among two laser ablated Al plasmas and their shock wave fronts (SWFs) induced by double laser pulses in air were studied experimentally. The evolution processes, including the expansion and interaction of the two plasmas and their shocks, were investigated by laser shadowgraphs, schlieren images, and interferograms. Remarkably, the distribution of the compressed air and the laser plasmas during the colliding process was clearly obtained using the Mach-Zehnder interferometer. From the refractive index profiles, typical plasmas density and gas density behind the shock front were estimated as ∼5.2 × 10{sup 18 }cm{sup −3} and ∼2.4 × 10{sup 20 }cm{sup −3}. A stagnation layer formed by the collision of gas behind the shock front is observed. The SWFs propagated, collided, and reflected with a higher velocity than plasmas. The results indicated that the slower plasma collided at middle, leading to the formation of the soft stagnation.

  9. Spectral and ion emission features of laser-produced Sn and SnO2 plasmas

    Science.gov (United States)

    Hui, Lan; Xin-Bing, Wang; Du-Luo, Zuo

    2016-03-01

    We have made a detailed comparison of the atomic and ionic debris, as well as the emission features of Sn and SnO2 plasmas under identical experimental conditions. Planar slabs of pure metal Sn and ceramic SnO2 are irradiated with 1.06 μm, 8 ns Nd:YAG laser pulses. Fast photography employing an intensified charge coupled device (ICCD), optical emission spectroscopy (OES), and optical time of flight emission spectroscopy are used as diagnostic tools. Our results show that the Sn plasma provides a higher extreme ultraviolet (EUV) conversion efficiency (CE) than the SnO2 plasma. However, the kinetic energies of Sn ions are relatively low compared with those of SnO2. OES studies show that the Sn plasma parameters (electron temperature and density) are lower compared to those of the SnO2 plasma. Furthermore, we also give the effects of the vacuum degree and the laser pulse energy on the plasma parameters. Project supported by the National Natural Science Foundation of China (Grant No. 11304235) and the Director Fund of WNLO, China.

  10. Interaction of Cu and plastic plasmas as a method of forming laser produced Cu plasma streams with a narrow jet or pipe geometry

    Czech Academy of Sciences Publication Activity Database

    Kasperczuk, A.; Pisarczyk, T.; Chodukowski, T.; Kalinowska, Z.; Parys, P.; Ullschmied, Jiří; Krouský, Eduard; Pfeifer, Miroslav; Skála, Jiří; Klir, D.; Kravarik, J.; Kubes, P.; Rezac, K.; Pisarczyk, P.

    2011-01-01

    Roč. 18, č. 4 (2011), 044503/1-044503/4 ISSN 1070-664X R&D Projects: GA MŠk(CZ) 7E09092; GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z20430508; CEZ:AV0Z10100523 Keywords : laser-produced plasma * plasma streams * Cu-plasma jets * laser targets Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.147, year: 2011 http://pop.aip.org/ resource /1/phpaen/v18/i4/p044503_s1

  11. Low-debris, efficient laser-produced plasma extreme ultraviolet source by use of a regenerative liquid microjet target containing tin dioxide (SnO2) nanoparticles

    Science.gov (United States)

    Higashiguchi, Takeshi; Dojyo, Naoto; Hamada, Masaya; Sasaki, Wataru; Kubodera, Shoichi

    2006-05-01

    We demonstrated a low-debris, efficient laser-produced plasma extreme ultraviolet (EUV) source by use of a regenerative liquid microjet target containing tin-dioxide (SnO2) nanoparticles. By using a low SnO2 concentration (6%) solution and dual laser pulses for the plasma control, we observed the EUV conversion efficiency of 1.2% with undetectable debris.

  12. Low-debris, efficient laser-produced plasma extreme ultraviolet source by use of a regenerative liquid microjet target containing tin dioxide (SnO2) nanoparticles

    International Nuclear Information System (INIS)

    Higashiguchi, Takeshi; Dojyo, Naoto; Hamada, Masaya; Sasaki, Wataru; Kubodera, Shoichi

    2006-01-01

    We demonstrated a low-debris, efficient laser-produced plasma extreme ultraviolet (EUV) source by use of a regenerative liquid microjet target containing tin-dioxide (SnO 2 ) nanoparticles. By using a low SnO 2 concentration (6%) solution and dual laser pulses for the plasma control, we observed the EUV conversion efficiency of 1.2% with undetectable debris

  13. On- and off-axis spectral emission features from laser-produced gas breakdown plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, S. S.; Skrodzki, P. J.; Miloshevsky, A.; Brumfield, B. E.; Phillips, M. C.; Miloshevsky, G.

    2017-06-01

    Laser-heated gas breakdown plasmas or sparks emit profoundly in the ultraviolet and visible region of the electromagnetic spectrum with contributions from ionic, atomic, and molecular species. Laser created kernels expand into a cold ambient with high velocities during its early lifetime followed by confinement of the plasma kernel and eventually collapse. However, the plasma kernels produced during laser breakdown of gases are also capable of exciting and ionizing the surrounding ambient medium. Two mechanisms can be responsible for excitation and ionization of surrounding ambient: viz. photoexcitation and ionization by intense ultraviolet emission from the sparks produced during the early times of its creation and/or heating by strong shocks generated by the kernel during its expansion into the ambient. In this study, an investigation is made on the spectral features of on- and off-axis emission features of laser-induced plasma breakdown kernels generated in atmospheric pressure conditions with an aim to elucidate the mechanisms leading to ambient excitation and emission. Pulses from an Nd:YAG laser emitting at 1064 nm with 6 ns pulse duration are used to generate plasma kernels. Laser sparks were generated in air, argon, and helium gases to provide different physical properties of expansion dynamics and plasma chemistry considering the differences in laser absorption properties, mass density and speciation. Point shadowgraphy and time-resolved imaging were used to evaluate the shock wave and spark self-emission morphology at early and late times while space and time resolved spectroscopy is used for evaluating the emission features as well as for inferring plasma fundaments at on- and off-axis. Structure and dynamics of the plasma kernel obtained using imaging techniques are also compared to numerical simulations using computational fluid dynamics code. The emission from the kernel showed that spectral features from ions, atoms and molecules are separated in

  14. Measurement of the energy loss of heavy ions in laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Knobloch-Maas, Renate

    2009-11-25

    The interaction of ions with plasma is not yet fully understood today, although it is important for inertial fusion technology. During recent years, the energy loss of heavy ions in plasma has therefore been a subject of research in the Laser and Plasma Physics group of Darmstadt University of Technology. Several experiments were carried out at the Gesellschaft fuer Schwerionenforschung (GSI) in Darmstadt using laser-created plasma, thereby taking advantage of the unique combination of GSI's accelerator facility and the laser system nhelix, which is also described in this work. The experiments focus on the measurement of the energy loss of medium heavy ions in a plasma created by directly heating a thin carbon foil with the nhelix laser, at an energy of about 50 J. In order to measure the energy loss using a time-of-flight method, a stop detector is used to register the arrival of the ion pulses after passing the plasma and a 12 m drift space. At the beginning of the work on this thesis, the ion detector types formerly used were found to be inadequately suited to the difficult task; this was changed during this thesis. The ion detector has to be able to temporarily resolve ion pulses with a frequency of 108 MHz and a width (FWHM) of 3 ns at a very low current. It also has to withstand the X-ray burst from the plasma with a dead time shorter than the difference between the X-ray and the ion time of flight between the plasma and the detector. In order to satisfy these and other demands, a new diamond detector was designed and has now been used for several measurements. In addition to the new detector, other improvements were made concerning the diagnostics and the laser. The laser-created plasma now reaches a maximum temperature exceeding 200 eV and a free electron density of up to 10{sup 22} cm{sup -3}. With this greatly improved setup, energy loss data could be obtained with a temporal resolution several times better than before, using an ion beam with a

  15. Using self-generated harmonics as a diagnostic of high intensity laser-produced plasmas

    International Nuclear Information System (INIS)

    Krushelnick, K; Watts, I; Tatarakis, M; Gopal, A; Wagner, U; Beg, F N; Clark, E L; Clarke, R J; Dangor, A E; Norreys, P A; Wei, M S; Zepf, M

    2002-01-01

    The interaction of high intensity laser pulses (up to I∼10 20 W cm -2 ) with plasmas can generate very high order harmonics of the laser frequency (up to the 75th order have been observed). Measurements of the properties of these harmonics can provide important insights into the plasma conditions which exist during such interactions. For example, observations of the spectrum of the harmonic emission can provide information of the dynamics of the critical surface as well as information on relativistic non-linear optical effects in the plasma. However, most importantly, observations of the polarization properties of the harmonics can provide a method to measure the ultra-strong magnetic fields (greater than 350 MG) which can be generated during these interactions. It is likely that such techniques can be scaled to provide a significant amount of information from experiments at even higher intensities

  16. Measurement of the energy loss of heavy ions in laser-produced plasmas

    International Nuclear Information System (INIS)

    Knobloch-Maas, Renate

    2009-01-01

    The interaction of ions with plasma is not yet fully understood today, although it is important for inertial fusion technology. During recent years, the energy loss of heavy ions in plasma has therefore been a subject of research in the Laser and Plasma Physics group of Darmstadt University of Technology. Several experiments were carried out at the Gesellschaft fuer Schwerionenforschung (GSI) in Darmstadt using laser-created plasma, thereby taking advantage of the unique combination of GSI's accelerator facility and the laser system nhelix, which is also described in this work. The experiments focus on the measurement of the energy loss of medium heavy ions in a plasma created by directly heating a thin carbon foil with the nhelix laser, at an energy of about 50 J. In order to measure the energy loss using a time-of-flight method, a stop detector is used to register the arrival of the ion pulses after passing the plasma and a 12 m drift space. At the beginning of the work on this thesis, the ion detector types formerly used were found to be inadequately suited to the difficult task; this was changed during this thesis. The ion detector has to be able to temporarily resolve ion pulses with a frequency of 108 MHz and a width (FWHM) of 3 ns at a very low current. It also has to withstand the X-ray burst from the plasma with a dead time shorter than the difference between the X-ray and the ion time of flight between the plasma and the detector. In order to satisfy these and other demands, a new diamond detector was designed and has now been used for several measurements. In addition to the new detector, other improvements were made concerning the diagnostics and the laser. The laser-created plasma now reaches a maximum temperature exceeding 200 eV and a free electron density of up to 10 22 cm -3 . With this greatly improved setup, energy loss data could be obtained with a temporal resolution several times better than before, using an ion beam with a diameter of only

  17. Time-resolved x-ray line diagnostics of laser-produced plasmas

    International Nuclear Information System (INIS)

    Kauffman, R.L.; Matthews, D.L.; Kilkenny, J.D.; Lee, R.W.

    1982-01-01

    We have examined the underdense plasma conditions of laser irradiated disks using K x-rays from highly ionized ions. A 900 ps laser pulse of 0.532 μm light is used to irradiate various Z disks which have been doped with low concentrations of tracer materials. The tracers whose Z's range from 13 to 22 are chosen so that their K x-ray spectrum is sensitive to typical underdense plasma temperatures and densities. Spectra are measured using a time-resolved crystal spectrograph recording the time history of the x-ray spectrum. A spatially-resolved, time-integrated crystal spectrograph also monitors the x-ray lines. Large differences in Al spectra are observed when the host plasma is changed from SiO 2 to PbO or In. Spectra will be presented along with preliminary analysis of the data

  18. Study of X-ray spectrum of laser-produced gold plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Busquet, M. (CEA Centre d' Etudes de Limeil, 94 - Villeneuve-Saint-Georges (France)); Pain, D.; Bauche, J.; Luc-Koenig, E. (Centre National de la Recherche Scientifique, 91 - Orsay (France). Lab. Aime Cotton)

    1985-02-01

    Aiming at the spectroscopic diagnostic of gold plasmas, we have studied the wavelengths and intensities of X-ray spectral lines emitted in the range 4.4 to 6.2 angstroms by a target made of gold alloyed to a few percent of aluminium irradiated by a laser pulse. Aluminium yields the wavelength calibration and a monitoring of the temperature and the density of the plasma. The main features of the gold spectrum in this spectral range are due to the 3d-4f, 3p-4s and 3d-4p transitions of gold in the Co I through Cu I isoelectronic sequences.

  19. Study of X-ray spectrum of laser-produced gold plasmas

    International Nuclear Information System (INIS)

    Busquet, M.; Pain, D.; Bauche, J.; Luc-Koenig, E.

    1985-01-01

    Aiming at the spectroscopic diagnostic of gold plasmas, we have studied the wavelengths and intensities of X-ray spectral lines emitted in the range 4.4 to 6.2 angstroms by a target made of gold alloyed to a few percent of aluminium irradiated by a laser pulse. Aluminium yields the wavelength calibration and a monitoring of the temperature and the density of the plasma. The main features of the gold spectrum in this spectral range are due to the 3d-4f, 3p-4s and 3d-4p transitions of gold in the Co I through Cu I isoelectronic sequences. (orig.)

  20. CO2-laser--produced plasma columns in a solenoidal magnetic field

    International Nuclear Information System (INIS)

    Offenberger, A.A.; Cervenan, M.R.; Smy, P.R.

    1976-01-01

    A 1-GW CO 2 laser pulse has been used to produce extended column breakdown of hydrogen at low pressure in a 20-cm-long solenoid. Magnetic fields of up to 110 kG were used to inhibit radial losses of the plasma column. A differential pumping scheme was devised to prevent formation of an opaque absorption wave travelling out of the solenoid back toward the focusing lens. Target burns give direct evidence for trapped laser beam propagation along the plasma column

  1. High-speed interferometry of expanding and collapsing laser produced plasma

    International Nuclear Information System (INIS)

    Basov, N.G.; Boiko, V.A.; Gribkov, V.A.; Zakharov, S.M.; Krokhin, O.N.; Nikulin, V.Ya.; Sklizkov, G.V.

    An installation with a good time and space resolution for the interferometric investigation of dense non-stationary plasma is described. The installation consists of a Mach-Zender interferometer, an electro-optical image converter camera and a ruby laser with an impulse of variable duration of 1nsec to 150nsec

  2. Experimental investigation of linear mode conversion in laser-produced plasmas

    International Nuclear Information System (INIS)

    Maaswinkel, A.G.M.

    1980-12-01

    In this work absorption mechanisms are investigated in hot dense plasmas produced by intense laser irradiation of planar targets. Central in this investigation stands the absorption by linear mode conversion; this process occurs in inhomogeneous plasmas if the electric field vector of the incident EM-wave has a component parallel to the density gradient; this causes electrostatic oscillations at the critical density (where ωsub(p)sub(e) = ω). In addition, absorption of the laser light by inverse bremsstrahlung is investigated. The absorption is determined by the reflection of the laser light from the plasma. To this aim optical diagnostics are used. The reflection into 4π sr is measured with an Ulbricht sphere, also the reflection in specular (geometric) direction is recorded. The absorption mechanisms have been isolated by variation of the polarization of the beam and the angle of incidence to the target. An essential part of the work has been the frequency up-conversion of the laser beam by nonlinear crystals; in this way the wavelength-dependence of the absorption in the plasma has been investigated at wavelengths 1.06 μm, 0.53 μm and 0.26 μm; the pulse duration in the experiments was 30 ps, the maximum irradiation on target was 10 14 W/cm 2 . (orig./HT)

  3. Two dimensional analytical considerations of large magnetic and electric fields in laser produced plasmas

    International Nuclear Information System (INIS)

    Eliezer, S.; Loeb, A.

    1985-08-01

    A simple model in two dimensions is developed and solved analytically taking into account the electric and magnetic fields in laser procuded plasmas. The electric potential in this model is described by a nonlinear differential equation. The stationary solution of this model is consistent for -0.1 less than or equal to psi 6 v/cm]/[B/MGauss] approx. 1

  4. Recent experiments on the hydrodynamics of laser-produced plasmas conducted at the PALS laboratory

    Czech Academy of Sciences Publication Activity Database

    Batani, D.; Dezulian, R.; Redaelli, R.; Benocci, R.; Stabile, H.; Canova, F.; Desai, T.; Lucchini, G.; Krouský, Eduard; Mašek, Karel; Pfeifer, Miroslav; Skála, Jiří; Dudžák, Roman; Rus, Bedřich; Ullschmied, Jiří; Malka, V.; Fauré, J.; Koenig, M.; Limpouch, J.; Nazarov, W.; Pepler, D.; Nagai, K.; Norimatsu, T.; Nishimura, H.

    2007-01-01

    Roč. 25, - (2007), s. 127-141 ISSN 0263-0346 R&D Projects: GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : equation of state * laboratory astrophysics * plasma hydrodynamics * shock acceleration * pressure * smoothing. Subject RIV: BH - Optics, Masers, Lasers Impact factor: 4.696, year: 2007

  5. Coherent bremsstrahlung generation of harmonics in a laser-produced plasma

    International Nuclear Information System (INIS)

    Silin, Viktor P

    1999-01-01

    Foundations of a theory of generation of the harmonics of a laser pump in a fully ionised plasma are proposed. This theory makes it possible to describe the relationships governing harmonic generation in an analytical form. For an elliptically polarised pump field with a low degree of circular polarisation A, the range of plasma parameters is established in which the number of harmonics is found to be of the order of A -1 . Anomalous polarisation properties of the harmonics are predicted. In this case, their polarisation is seen to be nearly perpendicular to the pump polarisation and the degree of circular polarisation increases with the harmonic order number. The harmonic-order-dependent intensity of the pump field which results in circular polarisation of a harmonic is determined making allowance for thermal plasma motion. The conditions under which increasing the low degree of circular pump polarisation increases the efficiency of harmonic generation are established. The nonlinear dependence of the pump polarisation on its intensity under the conditions of collisional absorption in a plasma are identified and an instability of the circular polarisation is revealed. For a plane-polarised pump, it is shown how the maximum power of a harmonic and the pump power corresponding to this maximum scale up with the harmonic order number. The conditions under which the number of harmonics generated is limited owing to the relativistic nature of electron motion in the pump field are established. This effect appears for an unexpectedly weak relativity. (invited paper)

  6. Picosecond streak camera diagnostics of CO2 laser-produced plasmas

    International Nuclear Information System (INIS)

    Jaanimagi, P.A.; Marjoribanks, R.S.; Sancton, R.W.; Enright, G.D.; Richardson, M.C.

    1979-01-01

    The interaction of intense laser radiation with solid targets is currently of considerable interest in laser fusion studies. Its understanding requires temporal knowledge of both laser and plasma parameters on a picosecond time scale. In this paper we describe the progress we have recently made in analysing, with picosecond time resolution, various features of intense nanosecond CO 2 laser pulse interaction experiments. An infrared upconversion scheme, having linear response and <20 ps temporal resolution, has been utilized to characterise the 10 μm laser pulse. Various features of the interaction have been studied with the aid of picosecond IR and x-ray streak cameras. These include the temporal and spatial characteristics of high harmonic emission from the plasma, and the temporal development of the x-ray continuum spectrum. (author)

  7. Diffraction, self-focusing, and the geometrical optics limit in laser produced plasmas

    International Nuclear Information System (INIS)

    Marchand, R.; Rankin, R.; Capjack, C.E.; Birnboim, A.

    1987-01-01

    The effect of diffraction on the self-modulation of an intense laser beam in an initially uniform hydrogen plasma is investigated. A formalism is used in which the diffraction term in the paraxial wave equation can be arbitrarily reduced by the use of a weight factor iota. In the limit where iota approaches zero, it is shown that the paraxial wave equation correctly reduces to the geometrical optics limit and that the problem then becomes formally equivalent to solving the ray-tracing equations. When iota = 1, the paraxial wave equation takes its usual form and diffraction is fully accounted for. This formalism is applied to the simulation of self-modulation of an intense laser beam in a hydrogen plasma, for which diffraction is shown to be significant

  8. Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma

    International Nuclear Information System (INIS)

    Labaune, C.; Baccou, C.; Loisel, G.; Yahia, V.; Depierreux, S.; Goyon, C.; Rafelski, J.

    2013-01-01

    The advent of high-intensity-pulsed laser technology enables the generation of extreme states of matter under conditions that are far from thermal equilibrium. This in turn could enable different approaches to generating energy from nuclear fusion. Relaxing the equilibrium requirement could widen the range of isotopes used in fusion fuels permitting cleaner and less hazardous reactions that do not produce high-energy neutrons. Here we propose and implement a means to drive fusion reactions between protons and boron-11 nuclei by colliding a laser-accelerated proton beam with a laser-generated boron plasma. We report proton-boron reaction rates that are orders of magnitude higher than those reported previously. Beyond fusion, our approach demonstrates a new means for exploring low-energy nuclear reactions such as those that occur in astrophysical plasmas and related environments. (authors)

  9. Time-resolved x-ray line diagnostics of laser-produced plasmas

    International Nuclear Information System (INIS)

    Kauffman, R.L.; Matthews, D.L.; Kilkenny, J.D.; Lee, R.W.

    1982-11-01

    We have examined the underdense plasma conditions of laser irradiated disks using K x-rays from highly ionized ions. A 900 ps laser pulse of 0.532 μm light is used to irradiate various Z disks which have been doped with low concentrations of tracer materials. The tracers, whose Z's range from 13 to 22, are chosen so that their K x-ray spectrum is sensitive to typical underdense plasma temperatures and densities. Spectra are measured using a time-resolved crystal spectrograph recording the time history of the x-ray spectrum. A spatially-resolved, time-integrated crystal spectrograph also monitors the x-ray lines. Large differences in Al spectra are observed when the host plasms is changed from SiO 2 to PbO or In. Spectra will be presented along with preliminary analysis of the data

  10. Non local-thermodynamical-equilibrium effects in the simulation of laser-produced plasmas

    Science.gov (United States)

    Klapisch, M.; Bar-Shalom, A.; Oreg, J.; Colombant, D.

    1998-05-01

    Local thermodynamic equilibrium (LTE) breaks down in directly or indirectly driven laser plasmas because of sharp gradients, energy deposition, etc. For modeling non-LTE effects in hydrodynamical simulations, Busquet's model [Phys. Fluids B 5, 4191 (1993)] is very convenient and efficient. It uses off-line generated LTE opacities and equation of states via an effective, radiation-dependent ionization temperature Tz. An overview of the model is given. The results are compared with an elaborate collisional radiative model based on superconfigurations. The agreements for average charge Z* and opacities are surprisingly good, even more so when the plasma is immersed in a radiation field. Some remaining discrepancy at low density is attributed to dielectronic recombination. Improvement appears possible, especially for emissivities, because the concept of ionization temperature seems to be validated.

  11. Non local-thermodynamical-equilibrium effects in the simulation of laser-produced plasmas

    International Nuclear Information System (INIS)

    Klapisch, M.; Bar-Shalom, A.; Oreg, J.; Colombant, D.

    1998-01-01

    Local thermodynamic equilibrium (LTE) breaks down in directly or indirectly driven laser plasmas because of sharp gradients, energy deposition, etc. For modeling non-LTE effects in hydrodynamical simulations, Busquet close-quote s model [Phys. Fluids B 5, 4191 (1993)] is very convenient and efficient. It uses off-line generated LTE opacities and equation of states via an effective, radiation-dependent ionization temperature T z . An overview of the model is given. The results are compared with an elaborate collisional radiative model based on superconfigurations. The agreements for average charge Z * and opacities are surprisingly good, even more so when the plasma is immersed in a radiation field. Some remaining discrepancy at low density is attributed to dielectronic recombination. Improvement appears possible, especially for emissivities, because the concept of ionization temperature seems to be validated. copyright 1998 American Institute of Physics

  12. X-ray spectral line shapes for the excimer-laser-produced high density plasma diagnostics

    International Nuclear Information System (INIS)

    Magunov, A.; Faenov, A.; Skobelev, I.; Pikuz, T.; Batani, D.; Milani, M.; Conti, A.; Masini, A.; Costato, M.; Pozzi, A.; Turcu, E.; Allot, R.; Lisi, N.; Koenig, M.; Benuzzi, A.; Flora, F.; Letardi, T.; Palladino, L.; Reale, A.

    1997-01-01

    The time and space-integrated emission spectra measurements have been performed in plasma produced by 308 nm wavelength XeCl laser radiation (I L =(4-10)·10 12 W/cm 2 , τ=10 ns) and by 248 nm wavelength KrF laser pulse train radiation (I L =5·10 15 W/cm 2 , τ=7 ps, 16 pulses in train) on CF n plane target. The lines' shapes and intensities modeling of Lyman series and He-like ion resonance series of fluorine up to n=7 by fitting experimental data shows the considerable difference of plasma formation features for these two sets of the laser pulse parameters

  13. Unresolved transition array based water window soft x-ray source by laser-produced high-Z plasma

    International Nuclear Information System (INIS)

    Higashiguchi, Takeshi; Dunne, Padraig; O'Sullivan, Gerry

    2013-01-01

    We demonstrate a table-top broadband emission water window source based on laser-produced high-Z plasmas. resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs) in the 2 to 4 nm region, extending below the carbon K edge (4.37 nm). Arrays resulting from n=4-n=4 transitions are overlaid with n=4-n=5 emission and shift to shorter wavelength with increasing atomic number. An outline of a microscope design for single-shot live cell imaging is proposed based on a bismuth plasma UTA source, coupled to multilayer mirror optics. At power densities available from 'table-top' solid-state lasers, comparison of emission from a number of targets has shown that 3d-4f UTA in zirconium plasmas have highest overall brightness and in an imaging system based on reflective multilayer mirrors, may, depending on bandwidth, have superior performance than either line or broader-band sources. (author)

  14. Stimulated Brillouin backscattering losses in weakly inhomogeneous laser-produced plasmas

    International Nuclear Information System (INIS)

    Eidmann, K.; Brederlow, G.; Brodmann, R.; Petsch, R.; Sigel, R.; Tsarkiris, G.; Volk, R.; Witkowski, S.

    1979-02-01

    Studies of the reflection from a plane solid target plasma produced with a 1TW iodine laser (lambda = 1.3μm) at pulse durations of 300 ps are presented. The specularly reflected and the backscattered light was observed separately at different angles of incidence, intensities and spot sizes (up to 400 μm). Stimulated Brillouin scattering was identified as the main mechanism for backscattering with saturation at 20 - 30% reflection. (orig.) [de

  15. Self-absorption influence on the optical spectroscopy of zinc oxide laser produced plasma

    Energy Technology Data Exchange (ETDEWEB)

    De Posada, E; Arronte, M A; Ponce, L; Rodriguez, E; Flores, T [Centro de Investigacion en Ciencia Aplicada y TecnologIa Avanzada-Unidad Altamira, Tamaulipas (Mexico); Lunney, J G, E-mail: edeposada@ipn.mx [School of Physics, Trinity College Dublin (Ireland)

    2011-01-01

    Optical spectroscopy is used to study the laser ablation process of ZnO targets. It is demonstrated that even if Partial Local Thermal Equilibrium is present, self absorption process leads to a decrease of recorded lines emission intensities and have to be taken into account to obtain correct values of such parameters. It is presented a method that combines results of both Langmuir probe technique and Anisimov model to obtain correct values of plasma parameters.

  16. High beta capture and mirror confinement of laser produced plasmas. Semiannual report, April 1, 1977--September 30, 1977

    International Nuclear Information System (INIS)

    Haught, A.F.; Tomlinson, R.G.; Ard, W.B.

    1977-09-01

    The LITE research program is addressing two aspects of mirror confinement physics. ECRH heating of the confined LITE plasma is being investigated as a means for producing a local electrostatic well to trap cold ions within the plasma and provide DCLC stabilization without the energy drain effects obtained with a cold stabilizing stream. Concurrently, the heavy ion beam probe diagnostic being developed in LITE to experimentally measure the space potential within a minimum-B mirror plasma. During the period, 10-A beam injection focused on the target location has been achieved with the neutral beam source; investigations of hot ion building have been carried out with both a laser produced and a washer gun target; calculations modeling the ECRH stabilization have been performed, the experimental program defined, and preparations for the ECRH stabilization investigation undertaken; and the high current cesium source and high resolution electrostatic analyzer have been developed for the heavy ion beam probe. The physics of the ECRH stabilization model is studied, and conditions necessary to produce a local potential well for trapping cold ions are examined. An analysis of the stabilizing effect of this potential dip on the DCLC mode is presented. The heavy ion probe, under development for direct measurement of the mirror plasma space potential, is discussed. Using Thomson scattering measurements to calibrate the complex response of an electron cyclotron resonance microwave radiometer, measurements have been made of the time history of the electron temperature for the decaying mirror confined laser plasma target with and without streaming plasma stabilization and are reported

  17. Effect of Ponderomotive Terms on Heat Flux in Laser-Produced Plasmas

    Science.gov (United States)

    Li, G.

    2005-10-01

    A laser electromagnetic field introduces ponderomotive termsootnotetextV. N. Goncharov and G. Li, Phys. Plasmas 11, 5680 (2004). in the heat flux in a plasma. To account for the nonlocal effects in the ponderomotive terms, first, the kinetic equation coupled with the Maxwell equations is numerically solved for the isotropic part of the electron distribution function. Such an equation includes self-consistent electromagnetic fields and laser absorption through the inverse bremsstrahlung. Then, the anisotropic part is found by solving a simplified Fokker--Planck equation. Using the distribution function, the electric current and heat flux are obtained and substituted into the hydrocode LILAC to simulate ICF implosions. The simulation results are compared against the existing nonlocal electron conduction modelsootnotetextG. P. Schurtz, P. D. Nicola"i, and M. Busquet, Phys. Plasmas 9, 4238 (2000). and Fokker--Planck simulations. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-92SF19460.

  18. Broadening of hydrogenic X rays emitted by a laser-produced plasma

    International Nuclear Information System (INIS)

    Nguyen, Hoe; Grumberg, J.; Caby, M.; Leboucher, E.; Coulaud, G.

    1980-01-01

    This study is devoted to X-rays broadened by laser impact or implosion. In addition to usual broadening processes due to the high and low components of plasma microfield, we have examined the influence of the self-generated magnetic field B which is correlated to the Doppler effect by the motional electric field. Concerning the interaction between plasma electrons and radiating ions with high charge number Zsub(E), it is shown that the curvature of electron trajectories must be taken into account in the broadening operator calculation. The influence of this curvature consists in reducing the contribution of dipolar interaction and enhancing the contribution of multipolar interactions with higher order. As a particular consequence on the half-width of Lyman-α-lines we have found values ten times larger than those obtained from the usual dipolar approximation. In the other hand, spectral lines emitted from the plasma critical region exhibits a strong self-generated magnetic field effect. Principally, it consists in polarizing the spectral profiles and introducing a large dependence with respect to the observation direction k. Particularly, profiles observed in the direction parallel to the magnetic field exhibit a deep central minimum which must be taken into account in a quantitative study of the line absorption properties [fr

  19. Compact laser-produced plasma EUV sources for processing polymers and nanoimaging

    International Nuclear Information System (INIS)

    Fiedorowicz, H.; Bartnik, A.; Jarocki, R.; Kostecki, J.; Szczurek, M.; Wachulak, P.

    2010-01-01

    Complete text of publication follows. Extreme ultraviolet (EUV) can be produced form a high-temperature plasma generated by interaction of high power laser pulses with matter. Laser plasma EUV sources are considered to be used in various applications in physics, material science, biomedicine, and technology. In the paper new compact laser plasma EUV sources developed for processing polymers and imaging are presented. The sources are based on a gas puff target formed by pulsed injection of a small amount of gas under high-pressure into a laser focus region. The use of the gas puff target instead of a solid target allows for efficient generation of EUV radiation without debris production. The compact laser plasma EUV source based on a gas puff target was developed for metrology applications. The EUV source developed for processing polymers is equipped with a grazing incidence axisymmetrical ellipsoidal mirror to focus EUV radiation in the relatively broad spectral range with the strong maximum near 10 nm. The size of the focal spot is about 1.3 mm in diameter with the maximum fluence up to 70 mJ/cm 2 . EUV radiation in the wavelength range of about 5 to 50 nm is produced by irradiation of xenon or krypton gas puff target with a Nd:YAG laser operating at 10 Hz and delivering 4 ns pulses of energy up to 0.8 J per pulse. The experiments on EUV irradiation of various polymers have been performed. Modification of polymer surfaces was achieved, primarily due to direct photo-etching with EUV photons and formation of micro- and nanostructures onto the surface. The mechanism of the interaction is similar to the UV laser ablation where energetic photons cause chemical bonds of the polymer chain to be broken. However, because of very low penetration depth of EUV radiation, the interaction region is limited to a very thin surface layer (<100 nm). This makes it possible to avoid degradation of bulk material caused by deeply penetrating UV radiation. The results of the studies

  20. Excimer laser produced plasmas in copper wire targets and water droplets

    Science.gov (United States)

    Song, Kyo-Dong; Alexander, D. R.

    1994-01-01

    Elastically scattered incident radiation (ESIR) from a copper wire target illuminated by a KrF laser pulse at lambda = 248 nm shows a dinstinct two-peak structure which is dependent on the incident energy. The time required to reach the critical electron density (n(sub c) approximately = 1.8 x 10(exp 22) electrons/cu cm) is estimated at 11 ns based on experimental results. Detailed ESIR characteristics for water have been reported previously by the authors. Initiation of the broadband emission for copper plasma begins at 6.5 +/- 1.45 ns after the arrival of the laser pulse. However, the broadband emission occurs at 11 +/- 0.36 ns for water. For a diatomic substance such as water, the electron energy rapidly dissipates due to dissociation of water molecules, which is absent in a monatomic species such as copper. When the energy falls below the excitation energy of the lowest electron state for water, it becomes a subexcitation electron. Lifetimes of the subexcited electrons to the vibrational states are estimated to be of the order of 10(exp -9) s. In addition, the ionization potential of copper (440-530 nm) is approximately 6 eV, which is about two times smaller than the 13 eV ionization potential reported for water. The higher ionization potential contributes to the longer observed delay time for plasma formation in water. After initiation, a longer time is required for copper plasma to reach its peak value. This time delay in reaching the maximum intensity is attributed to the energy loss during the interband transition in copper.

  1. Vacuum laser-produced plasma for analytical application in fusion technologies

    International Nuclear Information System (INIS)

    Almaviva, S; Caneve, L; Colao, F; Fantoni, R; Maddaluno, G

    2012-01-01

    LIBS is a well established tool for qualitative, semi-quantitative and quantitative analysis of surfaces, with micro-destructive characteristics and some capabilities for stratigraphy. In this work, the depth profiling capabilities of LIBS has been checked by determining the composition of multilayered samples simulating the plasma facing components fusion device covered with co-deposited impurity layers. A new experimental setup has been designed and realized in order to optimize the characteristics of a LIBS system working at low pressure and remotely.

  2. Supersonic Ionization Wave Driven by Radiation Transport in a Short-Pulse Laser-Produced Plasma

    International Nuclear Information System (INIS)

    Ditmire, T.; Gumbrell, E.T.; Smith, R.A.; Mountford, L.; Hutchinson, M.H.

    1996-01-01

    Through the use of an ultrashort (2ps) optical probe, we have time resolved the propagation of an ionization wave into solid fused silica. This ionization wave results when a plasma is created by the intense irradiation of a solid target with a 2ps laser pulse. We find that the velocity of the ionization wave is consistent with radiation driven thermal transport, exceeding the velocity expected from simple electron thermal conduction by nearly an order of magnitude. copyright 1996 The American Physical Society

  3. Supersonic propagation of ionization waves in an underdense, laser-produced plasma

    International Nuclear Information System (INIS)

    Constantin, C.; Back, C.A.; Fournier, K.B.; Gregori, G.; Landen, O.L.; Glenzer, S.H.; Dewald, E.L.; Miller, M.C.

    2005-01-01

    A laser-driven supersonic ionization wave propagating through a millimeter-scale plasma of subcritical density up to 2-3 keV electron temperatures was observed. Propagation velocities initially ten times the sound speed were measured by means of time-resolved x-ray imaging diagnostics. The measured ionization wave trajectory is modeled analytically and by a two-dimensional radiation-hydrodynamics code. The comparison to the modeling suggests that nonlocal heat transport effects may contribute to the attenuation of the heat-wave propagation

  4. Method and device for the powerful compression of laser-produced plasmas for nuclear fusion

    International Nuclear Information System (INIS)

    Hora, H.

    1975-01-01

    According to the invention, more than 10% of the laser energy are converted into mechanical energy of compression, in that the compression is produced by non-linear excessive radiation pressure. The time and local spectral and intensity distribution of the laser pulse must be controlled. The focussed laser beams must increase to over 10 15 W/cm 2 in less than 10 -9 seconds and the time variation of the intensities must be carried out so that the dynamic absorption of the outer plasma corona by rippling consumes less than 90% of the laser energy. (GG) [de

  5. Analysis of processes participating during intense iodine-laser-beam interactions with laser-produced plasmas

    Czech Academy of Sciences Publication Activity Database

    Láska, Leoš; Badziak, J.; Jungwirth, Karel; Kalal, M.; Krása, Josef; Krouský, Eduard; Kubeš, P.; Margarone, Daniele; Parys, P.; Pfeifer, Miroslav; Rohlena, Karel; Rosinski, M.; Ryč, L.; Skála, Jiří; Torrisi, L.; Ullschmied, Jiří; Velyhan, Andriy; Wolowski, J.

    2010-01-01

    Roč. 165, 6-10 (2010), s. 463-471 ISSN 1042-0150 R&D Projects: GA MŠk(CZ) LC528; GA AV ČR IAA100100715 EU Projects: European Commission(XE) 228334 - LASERLAB-EUROPE Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : laser plasma * non-linear processes * magnetic self-focusing * pinching Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.660, year: 2010

  6. Review of x-ray spectroscopy from laser-produced plasmas

    International Nuclear Information System (INIS)

    Kauffman, R.L.

    1987-09-01

    Recent progress in x-ray spectroscopy from laser plasmas is reviewed. Advances in the use of K-shell spectra as a diagnostic tool is discussed. Much activity in understanding complex spectra especially from Ne I and Ni I isoelectronic series have been made. Much of the progress has been due to observation of amplification from Δn = O transitions from these configurations. The spectroscopy will be discussed and examples of spectra of the amplified lines will be shown. Finally, recent work on using x-ray spectroscopy to diagnose high density implosions will be discussed. 33 refs

  7. Picosecond high power laser systems and picosecond diagnostic technique in laser produced plasma

    International Nuclear Information System (INIS)

    Kuroda, Hiroto; Masuko, H.; Maekawa, Shigeru; Suzuki, Yoshiji; Sugiyama, Masaru.

    1979-01-01

    Highly repetitive, high power YAG and Glass laser systems have been developed and been successfully used for the studies of laser-plasma interactions. Various picosecond diagnostic techniques have been developed for such purposes in the regions from optical to X-ray frequency. Recently highly sensitive X-ray (1 - 10 KeV) streak camera for highly repetitive operations have been developed. Preliminary experiment shows the achievement of 28ps temporal resolution (100μm slit) and good sensitivity with detectable minimum number of 10E3-1KeV photons/shot/slit area. (author)

  8. Photoconductive Detectors with Fast Temporal Response for Laser Produced Plasma Experiments

    International Nuclear Information System (INIS)

    M. J. May; C. Halvorson; T. Perry; F. Weber; P. Young; C. Silbernagel

    2008-01-01

    Processes during laser plasma experiments typically have time scales that are less than 100 ps. The measurement of these processes requires X-ray detectors with fast temporal resolution. We have measured the temporal responses and linearity of several different X-ray sensitive Photoconductive Detectors (PCDs). The active elements of the detectors investigated include both diamond (natural and synthetic) and GaAs crystals. The typical time responses of the GaAs PCDs are approximately 60 ps, respectively. Some characterizations using X-ray light from a synchrotron light source are presented

  9. Soft x-ray microradiography and lithograph using a laser produced plasma source

    International Nuclear Information System (INIS)

    Cheng, P.C.

    1992-01-01

    Considering the hardware characteristics of the laser-induced plasma X-ray source and the limitations of the conventional cone-beam reconstruction algorithm, a general cone-beam reconstruction algorithm has been developed at our laboratory, in which the motion locus of the X-ray source is an arbitrary curve corresponding to at least a 2π continuous horizontal angular displacement in the coordinate system of the specimen. The preliminary simulation shows that the general cone-beam reconstruction algorithm consistently results in visually satisfactory images

  10. Time-resolved Thomson scattering on high-intensity laser-produced hot dense helium plasmas

    International Nuclear Information System (INIS)

    Sperling, P; Liseykina, T; Bauer, D; Redmer, R

    2013-01-01

    The introduction of brilliant free-electron lasers enables new pump–probe experiments to characterize warm and hot dense matter states, i.e. systems at solid-like densities and temperatures of one to several hundred eV. Such extreme conditions are relevant for high-energy density studies such as, e.g., in planetary physics and inertial confinement fusion. We consider here a liquid helium jet pumped with a high-intensity optical short-pulse laser that is subsequently probed with brilliant soft x-ray radiation. The optical short-pulse laser generates a strongly inhomogeneous helium plasma which is characterized with particle-in-cell simulations. We derive the respective Thomson scattering spectrum based on the Born–Mermin approximation for the dynamic structure factor considering the full density and temperature-dependent Thomson scattering cross section throughout the target. We observe plasmon modes that are generated in the interior of the target and study their temporal evolution. Such pump–probe experiments are promising tools to measure the important plasma parameters density and temperature. The method described here can be applied to various pump–probe scenarios by combining optical lasers, soft x-rays and hard x-ray sources. (paper)

  11. Soft x-ray emission from postpulse expanding laser-produced plasmas

    International Nuclear Information System (INIS)

    Weaver, J.L.; Feldman, U.; Mostovych, A.N.; Seely, J.F.; Colombant, D.; Holland, G.

    2003-01-01

    A diagnostic spectrometer has been developed at the Naval Research Laboratory to measure the time resolved absolute intensity of radiation emitted from targets irradiated by the Nike laser. The spectrometer consists of a dispersive transmission grating of 2500 lines/mm or 5000 lines/mm and a detection system consisting of an absolutely calibrated Si photodiode array and a charge coupled device camera. In this article, this spectrometer was used to study the spatial distribution of soft x-ray radiation from low Z elements (primarily carbon) that lasted tens of nanoseconds after the main laser illumination was over. We recorded soft x-ray emission as a function of the target material and target orientation with respect to the incoming laser beam and the spectrometer line of sight. While a number of spectral features have been identified in the data, the instrument's combined temporal and spatial resolution allowed observation of the plasma expansion from CH targets for up to ∼25 ns after the cessation of the main laser pulse. The inferred plasma expansion velocities are slightly higher than those previously reported

  12. Analysis of two colliding laser-produced plasmas by emission spectroscopy and fast photography

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Ake, C., E-mail: citlali.sanchez@ccadet.unam.m [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-186, Mexico D.F., C.P. 04510 (Mexico); Mustri-Trejo, D. [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-186, Mexico D.F., C.P. 04510 (Mexico); Garcia-Fernandez, T. [Universidad Autonoma de la Ciudad de Mexico, Prolongacion San Isidro 151, Col. San Lorenzo Tezonco, Mexico DF, C.P. 09790 (Mexico); Villagran-Muniz, M. [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-186, Mexico D.F., C.P. 04510 (Mexico)

    2010-05-15

    In this work two colliding laser-induced plasmas (LIP) on Cu and C were studied by means of time resolved emission spectroscopy and fast photography. The experiments were performed using two opposing parallel targets of Cu and C in vacuum, ablated with two synchronized ns lasers. The results showed an increased emission intensity from copper ions Cu II (368.65, 490.97, 493.16, 495.37 and 630.10 nm) and Cu III (374.47 and 379.08 nm) due to the ionization that occurs during collisions of Cu and C species. It was found that the optimum delay between pulses, which yields the maximum emission enhancement of Cu ions, depends on the sampling distance. On the other hand, the emission intensity of C lines, C II (426.70 nm), C III (406.99 and 464.74 nm) and C IV (465.83 nm), decreased and the formation of C{sub 2} molecules was observed. A comparison between the temporal evolution of the individual plasmas and their collision performed by combining imaging and the time resolved emission diagnostics, revealed an increase of the electron temperature and electron density and the splitting of the plume into slow and fast components.

  13. Soft x-ray emission from postpulse expanding laser-produced plasmas

    Science.gov (United States)

    Weaver, J. L.; Feldman, U.; Mostovych, A. N.; Seely, J. F.; Colombant, D.; Holland, G.

    2003-12-01

    A diagnostic spectrometer has been developed at the Naval Research Laboratory to measure the time resolved absolute intensity of radiation emitted from targets irradiated by the Nike laser. The spectrometer consists of a dispersive transmission grating of 2500 lines/mm or 5000 lines/mm and a detection system consisting of an absolutely calibrated Si photodiode array and a charge coupled device camera. In this article, this spectrometer was used to study the spatial distribution of soft x-ray radiation from low Z elements (primarily carbon) that lasted tens of nanoseconds after the main laser illumination was over. We recorded soft x-ray emission as a function of the target material and target orientation with respect to the incoming laser beam and the spectrometer line of sight. While a number of spectral features have been identified in the data, the instrument's combined temporal and spatial resolution allowed observation of the plasma expansion from CH targets for up to ˜25 ns after the cessation of the main laser pulse. The inferred plasma expansion velocities are slightly higher than those previously reported.

  14. Analysis of neon soft x-ray spectra from short-pulse laser-produced plasmas

    International Nuclear Information System (INIS)

    Abare, A.C.; Keane, C.J.; Crane, J.K.; DaSilva, L.B.; Lee, R.W.; Perry, M.D.; Falcone, R.W.

    1993-04-01

    We report preliminary results from the analysis of streaked soft x-ray neon spectra a gas jet target. In obtained from the interaction of a picosecond Nd:glass laser with these experiments streaked spectra show prompt harmonic emission followed by longer time duration soft x-ray line emission. The majority of the line emission observed was found to originate from Li- and Be-like Ne and the major transitions in the observed spectra have been identified. Li-like emission lines were observed to decay faster in time than Be-like transitions, suggesting that recombination is taking place. Line ratios of n=4-2 and n=3-2 transitions supported the view that these lines were optically thin and thick, respectively. The time history of Li-like Ne 2p-4d and 2p-3d lines is in good agreement with a simple adiabatic expansion model coupled to a time dependent collisional-radiative code. Further x-ray spectroscopic analysis is underway which is aimed at diagnosing plasma conditions and assessing the potential of this recombining neon plasma as a quasi-steady-state recombination x-ray laser medium

  15. Time-resolved soft x-ray spectra from laser-produced Cu plasma

    International Nuclear Information System (INIS)

    Cone, K.V.; Dunn, J.; Baldis, H.A.; May, M.J.; Purvis, M.A.; Scott, H.A.; Schneider, M.B.

    2012-01-01

    The volumetric heating of a thin copper target has been studied with time resolved x-ray spectroscopy. The copper target was heated from a plasma produced using the Lawrence Livermore National Laboratory's Compact Multipulse Terrawatt (COMET) laser. A variable spaced grating spectrometer coupled to an x-ray streak camera measured soft x-ray emission (800-1550 eV) from the back of the copper target to characterize the bulk heating of the target. Radiation hydrodynamic simulations were modeled in 2-dimensions using the HYDRA code. The target conditions calculated by HYDRA were post-processed with the atomic kinetics code CRETIN to generate synthetic emission spectra. A comparison between the experimental and simulated spectra indicates the presence of specific ionization states of copper and the corresponding electron temperatures and ion densities throughout the laser-heated copper target.

  16. Simultaneously time- and space-resolved spectroscopic characterization of laser-produced plasmas

    International Nuclear Information System (INIS)

    Charatis, G.; Young, B.K.F.; Busch, G.E.

    1988-01-01

    The CHROMA laser facility at KMS Fusion has been used to irradiate a variety of microdot targets. These include aluminum dots and mixed bromine dots doped with K-shell (magnesium) emitters. Simultaneously time- and space-resolved K-shell and L-shell spectra have been measured and compared to dynamic model predictions. The electron density profiles are measured using holographic interferometry. Temperatures, densities, and ionization distributions are determined using K-shell and L-shell spectral techniques. Time and spatial gradients are resolved simultaneously using three diagnostics: a framing crystal x-ray spectrometer, an x-ray streaked crystal spectrometer with a spatial imaging slit, and a 4-frame holographic interferometer. Significant differences have been found between the interferometric and the model-dependent spectral measurements of plasma density. Predictions by new non-stationary L-shell models currently being developed are also presented. 14 refs., 10 figs

  17. Some E.U.V. spectra from laser produced plasma of heavy elements

    International Nuclear Information System (INIS)

    Even-Zohar, M.

    1975-09-01

    The spectra of Al, Mo, Ag, In, Sn, Cs, Ba, La, Ce, Ta and W produced by a Nd doped glass laser (energy about 15J, power near 5.10 8 W) were photographed in the region 20-240A utilizing a 3 m grazing incidence spectrograph. The continuum behavior is described. New identifications of Al XI, Mo XVII, Mo XVIII, Ag XII, Ag XVIII, Ag XIX, Ag XX, Ag XXI, In XIV, In XXI, In XXII, In XXIII, Sn XV, Sn XX, Sn XXI, Sn XXII, Sn XXIV, Cs VIII, Cs IX, Cs X, Cs XXVII, Ba IX, Ba X, Ba XI, La X, La XI, La XII and W VII are given. Lists of measured lines of Mo, Ag, Cs, Ba, La, and W are given. The spectra appear as absorption and emission lines where the transition from absorption to emission occurs in the same element for ions with ionization potential of 200 to 350eV. Absorption and emission spectra from the same ion of the same plasma are observed [fr

  18. Dynamics of ZnO laser produced plasma in high pressure argon

    International Nuclear Information System (INIS)

    Kaydashev, V.E.; Lunney, J.G.

    2011-01-01

    Pulsed laser deposition of ZnO in high pressure gas offers a route for the catalyst-free preparation of ZnO nanorods less than 10 nm in diameter. This paper describes the results of some experiments to investigate the laser plume dynamics in the high gas pressure (5 x 10 3 -10 4 Pa) regime used for PLD of ZnO nanorods. In this regime the ablation plume is strongly coupled to the gas and the plume expansion is brought to a halt within about 1 cm from the target. A 248 nm excimer laser was used to ablate a ceramic ZnO target in various pressures of argon. Time- and space-resolved UV/vis emission spectroscopy and Langmuir probe measurements were used to diagnose the plasma and follow the plume dynamics. By measuring the spatial profiles of Zn I and Zn II spectral lines it was possible to follow the propagation of the external and internal shock waves associated with the interaction of the ablation plume with the gas. The Langmuir probe measurements showed that the electron density was 10 9 -10 10 cm -3 and the electron temperature was several eV. At these conditions the ionization equilibrium is described by the collisional-radiative model. The plume dynamics was also studied for ZnO targets doped with elements which are lighter (Mg), comparable to (Ga), and heavier (Er) than Zn, to see if there is any elemental segregation in the plume.

  19. Experimental studies of the effect target geometry on the evolution of laser produced plasma plumes

    Science.gov (United States)

    Beatty, Cuyler; Anderson, Austin; Iratcabal, Jeremy; Dutra, Eric; Covington, Aaron

    2016-10-01

    The expansion of the laser plumes was shown to be dependent on the initial target geometry. A 16 channel framing camera was used to record the plume shape and propagation speeds were determined from analysis of the images. Plastic targets were manufactured using different methods including 3D printing, CNC machining and vacuum casting. Preliminary target designs were made using a 3D printer and ABS plastic material. These targets were then tested using a 3 J laser with a 5 ns duration pulse. Targets with a deep conical depression were shown to produce highly collimated plumes when compared to flat top targets. Preliminary results of these experiments will be discussed along with planned future experiments that will use the indented targets with a 30 J laser with a 0.8 ns duration pulse in preparation for pinched laser plume experiments at the Nevada Terawatt Facility. Other polymers that are readily available in a deuterated form will also be explored as part of an effort to develop a cost effective plasma plume target for follow on neutron production experiments. Dr. Austin Anderson.

  20. Demonstration of Ion Kinetic Effects in Inertial Confinement Fusion Implosions and Investigation of Magnetic Reconnection Using Laser-Produced Plasmas

    Science.gov (United States)

    Rosenberg, M. J.

    2016-10-01

    Shock-driven laser inertial confinement fusion (ICF) implosions have demonstrated the presence of ion kinetic effects in ICF implosions and also have been used as a proton source to probe the strongly driven reconnection of MG magnetic fields in laser-generated plasmas. Ion kinetic effects arise during the shock-convergence phase of ICF implosions when the mean free path for ion-ion collisions (λii) approaches the size of the hot-fuel region (Rfuel) and may impact hot-spot formation and the possibility of ignition. To isolate and study ion kinetic effects, the ratio of N - K =λii /Rfuel was varied in D3He-filled, shock-driven implosions at the Omega Laser Facility and the National Ignition Facility, from hydrodynamic-like conditions (NK 0.01) to strongly kinetic conditions (NK 10). A strong trend of decreasing fusion yields relative to the predictions of hydrodynamic models is observed as NK increases from 0.1 to 10. Hydrodynamics simulations that include basic models of the kinetic effects that are likely to be present in these experiments-namely, ion diffusion and Knudsen-layer reduction of the fusion reactivity-are better able to capture the experimental results. This type of implosion has also been used as a source of monoenergetic 15-MeV protons to image magnetic fields driven to reconnect in laser-produced plasmas at conditions similar to those encountered at the Earth's magnetopause. These experiments demonstrate that for both symmetric and asymmetric magnetic-reconnection configurations, when plasma flows are much stronger than the nominal Alfvén speed, the rate of magnetic-flux annihilation is determined by the flow velocity and is largely insensitive to initial plasma conditions. This work was supported by the Department of Energy Grant Number DENA0001857.

  1. Toward 3-D E-field visualization in laser-produced plasma by polarization-spectroscopic imaging

    International Nuclear Information System (INIS)

    Kim, Yong W.

    2004-01-01

    A 3-D volume radiator such as laser-produced plasma (LPP) plumes is observed in the form of a 2-D projection of its radiative structure. The traditional approach to 3-D structure reconstruction relies on multiple projections but is not suitable as a general method for unsteady radiating objects. We have developed a general method for 3-D structure reconstruction for LPP plumes in stages of increasing complexity. We have chosen neutral gas-confined LPP plumes from an aluminum target immersed in high-density argon because the plasma experiences Rayleigh-Taylor instability. We make use of two time-resolved, mutually orthogonal side views of a LPP plume and a front-view snapshot. No symmetry assumptions are needed. Two scaling relations are invoked that connects the plasma temperature and pressure to local specific intensity at selected wavelength(s). Two mutually-orthogonal lateral luminosity views of the plume at each known distance from the target surface are compared with those computed from the trial specific intensity profiles and the scaling relations. The luminosity error signals are minimized to find the structure. The front-view snapshot is used to select the initial trial profile and as a weighting function for allocation of the error signal into corrections for specific intensities from the plasma cells along the line of sight. Full Saha equilibrium for multiple stages of ionization is treated, together with the self-absorption, in the computation of the luminosity. We show the necessary optics for determination of local electric fields through polarization-resolved imaging. (author)

  2. X-ray optical diagnostic of laser produced plasmas for nuclear fusion and X-ray lasers

    Energy Technology Data Exchange (ETDEWEB)

    Butzbach, R.

    2001-07-01

    In the present work, the conception, design and appliance of toroidally bent crystals for the X-ray optical diagnostics of laser produced plasmas is discussed. The first part of this work deals with the development, design and characterization of an X-Ray microscope for the observation of Rayleigh-Taylor instabilities, which act against the confinement and ignition of the fuel in the inertial confinement fusion process. The aim of the second part of the present work was the diagnostic of the lasing medium for amplified spontaneous emission close to the water window. For this purpose, an one-dimensionally (1-D) imaging X-ray spectrometer based on toroidally bent quartz crystals was developed for the observation of the Ni-like 4f-3d transition of Yb, Hf, Ta, and W ions, which should be related to the amplified 4d-4p emission, since the 4f niveau is very close to the 4d niveau. Thus, the 4f-3d transition can serve as an indicator for the population of the 4d niveau. (orig.)

  3. Application of laser-produced-plasmas to determination of carbon content in steel; Aplicacion de los plasmas generados por laser a la determinacion de carbono en aceros

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, M; Aragon, C; Aguilera, J A; Campos, J

    1994-07-01

    This paper describes an analytical method to determine carbon content in solid and molten steel. It is based on the study of the emission spectrum from a Nd-YAG laser produced plasma. The light emitted from the plasma is focused to the entrance slit of a spectrometer and detected by an OMA III system. For every laser pulse an spectral range of 100 A are recorded. With the use of time-resolved spectroscopy a precision of 1.6 % and a detection limit of 65 ppm of carbon content in steel have been obtained. These values are similar to those of other accurate conventional techniques but using optics fiber and laser excitation it is possible to made sample calibrations in hostile environments. Also, as the analysis are made in real time changes in sample composition can be measured without stopping production processes. (Author) 26 refs.

  4. Low-energy x-ray and electron physics and applications to diagnostics development for laser-produced plasma research. Final report, April 30, 1980-April 29, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Henke, B.L.

    1981-08-01

    This final report describes a collaborative extension of an ongoing research program in low-energy x-ray and electron physics into particular areas of immediate need for the diagnostics of plasmas as involved in laser-produced fusion research. It has been for the continued support for one year of a post-doctoral research associate and for three student research assistants who have been applied to the following specific efforts: (1) the continuation of our research on the absolute characterization of x-ray photocathode systems for the 0.1 to 10 keV photon energy region. The research results were applied collaboratively to the design, construction and calibration of photocathodes for time-resolved detection with the XRD and the streak and framing cameras; (2) the design, construction and absolute calibration of optimized, bolt-on spectrographs for the absolute measurement of laser-produced plasma spectra.

  5. Low-energy x-ray and electron physics and applications to diagnostics development for laser-produced plasma research. Final report, April 30, 1980-April 29, 1981

    International Nuclear Information System (INIS)

    Henke, B.L.

    1981-08-01

    This final report describes a collaborative extension of an ongoing research program in low-energy x-ray and electron physics into particular areas of immediate need for the diagnostics of plasmas as involved in laser-produced fusion research. It has been for the continued support for one year of a post-doctoral research associate and for three student research assistants who have been applied to the following specific efforts: (1) the continuation of our research on the absolute characterization of x-ray photocathode systems for the 0.1 to 10 keV photon energy region. The research results were applied collaboratively to the design, construction and calibration of photocathodes for time-resolved detection with the XRD and the streak and framing cameras; (2) the design, construction and absolute calibration of optimized, bolt-on spectrographs for the absolute measurement of laser-produced plasma spectra

  6. Laser-produced dense plasma in extremely high pressure gas and its application to a plasma-bridged gap switch

    International Nuclear Information System (INIS)

    Yamada, J.; Okuda, A.

    1989-01-01

    When an extremely high pressure gas is irradiated by an intense laser light, a dense plasma produced at the focal spot moves towards the focusing lens with a high velocity. Making use of this phenomenon, a new plasma-bridged gap switch is proposed and its switching characteristics is experimentally examined. From the experiments, it is confirmed that the switching time is almost constant with the applied voltage only when the focal spot is just on the positive electrode, indicating that the bridging of gap is caused by the laser light. (author)

  7. X-ray spectroscopic characterization of laser produced hot dense plasmas; Caracterisation par spectroscopie X de plasmas chauds et denses crees par lasers de puissance

    Energy Technology Data Exchange (ETDEWEB)

    Kontogiannopoulos, N

    2007-12-15

    In this work we performed experiments of emission and absorption spectroscopy of laser produced plasmas, to provide well characterized spectral data which permit to benchmark atomic physics codes. More precisely, we produced xenon and krypton plasmas in NLTE (non local thermodynamic equilibrium) conditions and studied their emission spectra. In a second experiment, we characterized the absorption spectra of zinc sulfide and aluminium plasmas in LTE (local thermodynamic equilibrium) conditions.The first two chapters give an outline of the theory involved in the study of the emission and absorption plasma spectroscopy. Chapter 1 describes the different atomic processes occurring in a plasma. The LTE and the NLTE statistics ruling the equilibrium of the atomic processes are presented. Then, we give a brief description of the different codes of plasma atomic physics used in the analysis of our experimental data, namely HULLAC, SCO and TRANSPEC/AVERROES. In Chapter 2 the macroscopic theory of the radiation transport through a plasma is given. We describe also the self-similar model of Basko and the view factor approach, which permits us to calculate the heating conditions of the absorption foils achieved in the interior of the spherical gold cavity. Chapter 3 gives a description of the instruments used for realizing the two experiments, as well as the technical characteristics of the LULI2000 laser facility used to perform the experiments. Chapter 4 presents the experiment realized to characterize the emission spectra of the xenon and krypton plasmas in NLTE, as well the analysis of the experimental data with TRANSPEC/AVERROES. Finally, the experiment for measuring the absorption spectrum of the ZnS plasma mixture and the analysis of the experimental data with the code SCO are given in Chapter 5.

  8. Sharpening of the 6.8 nm peak in an Nd:YAG laser produced Gd plasma by using a pre-formed plasma

    Directory of Open Access Journals (Sweden)

    Yong Tian

    2016-03-01

    Full Text Available For effective use of a laser-produced-plasma (LPP light source, an LPP is desired to emit a narrow spectral peak because the reflection spectrum of multilayer mirrors for guiding emission from the source is very narrow. While a Gd plasma has been studied extensively as an extreme ultraviolet (EUV light source at around 6.8 nm, where La/B4C multilayer is reported to have a high reflectivity with a bandwidth of about 0.6 %, all previous works using an Nd:YAG laser reported very broad spectra. This paper reports the first narrowing of the 6.8 nm peak in the case of using an Nd:YAG laser to generate a Gd plasma by using a pre-pulse. The best peak narrowing is observed when a pre-formed plasma is heated by a 1064 nm main laser pulse with a duration of 10 ns at the irradiation density of 4x 1011 W/cm2 at a delay time of 50 ns after the pre-pulse irradiation. The observed spectral width of about 0.3 nm is about one fifth of the value for no pre-formed plasma. The peak wavelength of the 6.8 nm band shifted to a longer wavelength side and the peak was broadened both for lower and higher laser irradiation density. It is discussed that this robustness of the peak position of the 6.8 nm Gd peak against temperature change is suitable to achieve a narrow bandwidth from an LPP generated on solid. The observed spectra are compared with those previously reported in various conditions.

  9. QCL seeded, ns-pulse, multi-line, CO2 laser oscillator for laser-produced-plasma extreme-UV source

    Science.gov (United States)

    Nowak, Krzysztof Michał; Suganuma, Takashi; Kurosawa, Yoshiaki; Ohta, Takeshi; Kawasuji, Yasufumi; Nakarai, Hiroaki; Saitou, Takashi; Fujimoto, Junichi; Mizoguchi, Hakaru; Sumitani, Akira; Endo, Akira

    2017-01-01

    Successful merger of state-of-the-art, semiconductor quantum-cascade lasers (QCL), with the mature CO2 laser technology, resulted in a delivery of highly-desired qualities of CO2 laser output that were not available previously without much effort. These qualities, such as multi-line operation, excellent spectro-temporal stability and pulse waveform control, became available from a single device of moderate complexity. This paper describes the operation principle and the unique properties of the solid{state seeded CO2 laser, invented for an application in laser-produced-plasma (LPP), extreme-UV (EUV) light source.

  10. The observation of the Ne-like ion resonance line satellites for CrXV ... Ni XIX CO2-laser produced plasma

    International Nuclear Information System (INIS)

    Khakhalin, S.Ya.; Faenov, A.Ya.; Skobelev, I.Yu.; Pikuz, S.A.; Nilsen, J.; Osterheld, A.

    1994-01-01

    We present an analysis of dielectronic satellite spectra of Ne-like ion resonance lines for elements from Cr to Ni. For these low-Z elements, we use spectra from strongly underionized CO 2 -laser produced plasma to minimize the emission from open L-shell ions. This simplifies the spectra and allows the identification of satellite lines caused by radiative transitions from autoionizing states of sodium like ions. Good agreement between the satellite structure calculations and the experimental emission spectra is obtained. (orig.)

  11. The observation of the Ne-like ion resonance line satellites for CrXV. Ni XIX CO[sub 2]-laser produced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Khakhalin, S.Ya. (MISDC, NPO ' ' VNIIFTRI' ' , Mendeleevo (Russian Federation)); Faenov, A.Ya. (MISDC, NPO ' ' VNIIFTRI' ' , Mendeleevo (Russian Federation)); Skobelev, I.Yu. (MISDC, NPO ' ' VNIIFTRI' ' , Mendeleevo (Russian Federation)); Pikuz, S.A. (P. N. Lebedev Physical Inst., Russian Academy of Science, Moscow (Russian Federation)); Nilsen, J. (Lawrence Livermore National Lab., Livermore, CA (United States)); Osterheld, A. (Lawrence Livermore National Lab., Livermore, CA (United States))

    1994-08-01

    We present an analysis of dielectronic satellite spectra of Ne-like ion resonance lines for elements from Cr to Ni. For these low-Z elements, we use spectra from strongly underionized CO[sub 2]-laser produced plasma to minimize the emission from open L-shell ions. This simplifies the spectra and allows the identification of satellite lines caused by radiative transitions from autoionizing states of sodium like ions. Good agreement between the satellite structure calculations and the experimental emission spectra is obtained. (orig.).

  12. X-ray spectrum emitted by a laser-produced cerium plasma in the 7.5 to 12 A wavelength range

    International Nuclear Information System (INIS)

    Doron, R.; Behar, E.; Fraenkel, M.; Mandelbaum, P.; Schwob, J.L.; Zigler, A.

    2001-01-01

    A highly stripped cerium (Z = 58) plasma is produced by irradiating a solid cerium target with an intense short laser pulse. The X-ray spectrum emitted from the plasma is recorded in the 7.5-12 A wavelength range using a flat RAP crystal spectrometer. Ab-initio calculations using the RELAC relativistic computer code, as well as isoelectronic trends deduced from previous works, together with spectra obtained under different laser beam focusing conditions, are all employed for the identification of the spectral lines and features emitted by various ions from Fe-like Ce 32+ to As-like Ce 25+ . The technique of comparing spectra obtained using different laser intensities is also employed to confirm or to resolve some ambiguous identifications of spectral features in the spectrum of a laser-produced lanthanum plasma studied in a previous work. (orig.)

  13. X-ray spectrum emitted by a laser-produced cerium plasma in the 7.5 to 12 A wavelength range

    Energy Technology Data Exchange (ETDEWEB)

    Doron, R.; Behar, E.; Fraenkel, M.; Mandelbaum, P.; Schwob, J.L.; Zigler, A. [Hebrew Univ., Jerusalem (Israel). Racah Inst. of Physics; Faenov, A.Ya.; Pikuz, T.A. [Multicharged Ion Spectra Data Center, VNIIFTRI, Mendeleevo (Russian Federation)

    2001-01-01

    A highly stripped cerium (Z = 58) plasma is produced by irradiating a solid cerium target with an intense short laser pulse. The X-ray spectrum emitted from the plasma is recorded in the 7.5-12 A wavelength range using a flat RAP crystal spectrometer. Ab-initio calculations using the RELAC relativistic computer code, as well as isoelectronic trends deduced from previous works, together with spectra obtained under different laser beam focusing conditions, are all employed for the identification of the spectral lines and features emitted by various ions from Fe-like Ce{sup 32+} to As-like Ce{sup 25+}. The technique of comparing spectra obtained using different laser intensities is also employed to confirm or to resolve some ambiguous identifications of spectral features in the spectrum of a laser-produced lanthanum plasma studied in a previous work. (orig.)

  14. Studies of anomalous phenomena in Nd and CO2 lasers produced plasma at average reduced power densities: 1012Wcm-2μm2 LλL2 14Wcm-2μm2

    International Nuclear Information System (INIS)

    Wolowski, J.

    1990-01-01

    The methodics and instrumentation use for plasma diagnostics are described. The results of carried out experiments are presented and discussed taking into account classical models of laser-produced plasma. Phenomenological analysis, quantitative assessments and the synthetic description of collisional processes and anomalous phenomena in studied plasma are given. 273 refs. (A.S.)

  15. High beta capture and mirror confinement of laser produced plasmas. Semiannual report, July 1, 1975--January 31, 1976

    International Nuclear Information System (INIS)

    Haught, A.F.; Polk, D.H.; Fader, W.J.; Tomlinson, R.G.; Jong, R.A.; Ard, W.B.; Mensing, A.E.; Churchill, T.L.; Stufflebeam, J.H.; Bresnock, F.J.

    1976-01-01

    The Laser Initiated Target Experiment (LITE) at the United Technologies Research Center is designed to address the target plasma buildup approach to a steady state mirror fusion device. A dense, mirror confined, target plasma is produced by high power laser irradiation of a solid lithium hydride particle, electrically suspended in a vacuum at the center of an established minimum-B magnetic field. Following expansion in and capture by the magnetic field, this target plasma is irradiated by an energetic neutral hydrogen beam. Charge exchange collisions with energetic beam particles serve to heat the confined plasma while ionization of the neutral beam atoms and trapping in the mirror magnetic field add particles to the confined plasma. For sufficiently high beam intensities, confined plasmas losses will be offset so that buildup of the plasma density occurs, thus demonstrating sustenance and fueling as well as the heating by neutral beam injection of a steady state mirror fusion device. Investigations of the decay of the magnetically confined target plasmas and initial studies of energetic neutral beam injection into confined target plasmas, conducted during this report period, are presented. Additional development of the LITE experimental systems including improvements in the laser plasma production facility, the energetic neutral beam line, and the heavy ion probe diagnostic is reported. A series of calculations on enhanced scattering and classical decay for plasma mirror confined in a LITE type system are discussed

  16. Using X-ray spectroheliograph technique for investigations of laser-produced plasma under interaction with strong magnetic field

    International Nuclear Information System (INIS)

    Faenov, A.; Dyakin, V.; Magunov, A.; Pikuz, T.; Skobelev, I.; Pikuz, S.; Pisarczyk, T.; Wolowski, J.; Zielinska, E.

    1996-01-01

    A dense jet of a plasma consisting of multiply charged ions was generated in the interaction of a laser plasma with a strong external axial magnetic field. It is shown that using the high-luminosity X-ray spectroheliograph technique allows to measure plasma emission spectra with 2-dimensional spatial resolution even in the cases when these spectra have small intensities. The X-ray spectroscopy and interferometry methods are used to measure plasma parameter distributions. The dependencies of N e (z) and T e (z) measured in this paper can be used to calculate the evolution of plasma ionization state during plasma expansion. The quasihomogeneous laser jet, which appears when a laser plasma interacts with an external magnetic field can be used not only to form an active medium of a short wavelength laser, but probably also to tackle the urgent problem of transport in a laser ion injector. (orig.)

  17. Using X-ray spectroheliograph technique for investigations of laser-produced plasma under interaction with strong magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Faenov, A. [MISDC of VNIIFTRI, Mendeleevo (Russian Federation); Dyakin, V. [MISDC of VNIIFTRI, Mendeleevo (Russian Federation); Magunov, A. [MISDC of VNIIFTRI, Mendeleevo (Russian Federation); Pikuz, T. [MISDC of VNIIFTRI, Mendeleevo (Russian Federation); Skobelev, I. [MISDC of VNIIFTRI, Mendeleevo (Russian Federation); Pikuz, S. [Rossijskaya Akademiya Nauk, Moscow (Russian Federation). Fizicheskij Inst.; Kasperczyk, A. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Pisarczyk, T. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Wolowski, J. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Zielinska, E. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland)

    1996-08-01

    A dense jet of a plasma consisting of multiply charged ions was generated in the interaction of a laser plasma with a strong external axial magnetic field. It is shown that using the high-luminosity X-ray spectroheliograph technique allows to measure plasma emission spectra with 2-dimensional spatial resolution even in the cases when these spectra have small intensities. The X-ray spectroscopy and interferometry methods are used to measure plasma parameter distributions. The dependencies of N{sub e}(z) and T{sub e}(z) measured in this paper can be used to calculate the evolution of plasma ionization state during plasma expansion. The quasihomogeneous laser jet, which appears when a laser plasma interacts with an external magnetic field can be used not only to form an active medium of a short wavelength laser, but probably also to tackle the urgent problem of transport in a laser ion injector. (orig.).

  18. Analysis of time- and space-resolved Na-, Ne-, and F-like emission from a laser-produced bromine plasma

    International Nuclear Information System (INIS)

    Goldstein, W.H.; Young, B.K.F.; Osterheld, A.L.; Stewart, R.E.; Walling, R.S.; Bar-Shalom, A.

    1991-01-01

    Advances in the efficiency and accuracy of computational atomic physics and collisional radiative modeling promise to place the analysis and diagnostic application of L-shell emission on a par with the simpler K-shell regime. Coincident improvements in spectroscopic plasma measurements yield optically thin emission spectra from small, homogeneous regions of plasma, localized both in space and time. Together, these developments can severely test models for high-density, high-temperature plasma formation and evolution, and non-LTE atomic kinetics. In this paper we present highly resolved measurements of n=3 to n=2 X-ray line emission from a laser-produced bromine micro plasma. The emission is both space- and time-resolved, allowing us to apply simple, steady-state, 0-dimensional spectroscopic models to the analysis. These relativistic, multi-configurational, distorted wave collisional-radiative models were created using the HULLAC atomic physics package. Using these models, we have analyzed the F-like, Ne-like and Na-like (satellite) spectra with respect to temperature, density and charge-state distribution. This procedure leads to a full characterization of the plasma conditions. 9 refs., 3 figs

  19. Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Albertazzi, B. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); INRS-EMT, Varennes, Quebec J3X 1S2 (Canada); Beard, J.; Billette, J.; Portugall, O. [LNCMI, UPR 3228, CNRS-UFJ-UPS-INSA, 31400 Toulouse (France); Ciardi, A. [LERMA, Observatoire de Paris, Ecole Normale Superieure, Universite Pierre et Marie Curie, CNRS UMR 8112, Paris (France); Vinci, T.; Albrecht, J.; Chen, S. N.; Da Silva, D.; Hirardin, B.; Nakatsutsumi, M.; Romagnagni, L.; Simond, S.; Veuillot, E.; Fuchs, J. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Burris-Mog, T.; Dittrich, S.; Herrmannsdoerfer, T.; Kroll, F.; Nitsche, S. [Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany); and others

    2013-04-15

    The production of strongly magnetized laser plasmas, of interest for laboratory astrophysics and inertial confinement fusion studies, is presented. This is achieved by coupling a 16 kV pulse-power system. This is achieved by coupling a 16 kV pulse-power system, which generates a magnetic field by means of a split coil, with the ELFIE laser facility at Ecole Polytechnique. In order to influence the plasma dynamics in a significant manner, the system can generate, repetitively and without debris, high amplitude magnetic fields (40 T) in a manner compatible with a high-energy laser environment. A description of the system and preliminary results demonstrating the possibility to magnetically collimate plasma jets are given.

  20. Effect of irradiation angle on the efficiency of formation of multiply charged ions in a laser-produced plasma

    International Nuclear Information System (INIS)

    Bedilov, M R; Beisembaeva, Kh B; Tsoi, T G; Satybaldiev, T B; Sabitov, M S

    2000-01-01

    Mass spectrometry is used to investigate the emission behaviour and the characteristics of multiply charged ions in a plasma produced at small angles of incidence of laser radiation (α∼20 0 ) and also at grazing incidence (α∼85 0 ). It is found that upon grazing incidence of the laser radiation onto a target, the efficiency of production of multiply charged ions is reduced compared to that for α∼20 0 . However, this geometry of laser irradiation of solids can be used for the elemental analysis of surface layers of a sample. (interaction of laser radiation with matter. laser plasma)

  1. Transition probabilities for lines of Cr II, Na II and Sb I by laser produced plasma atomic emission spectroscopy

    International Nuclear Information System (INIS)

    Gonzalez, A. M.; Ortiz, M.; Campos, J.

    1995-01-01

    Absolute transition probabilities for lines of CR II, Na II and Sb I were determined by emission spectroscopy of laser induced plasmas. the plasma was produced focusing the emission of a pulsed Nd-Yag laser on solid samples containing the atom in study. the light arising from the plasma region was collected by and spectrometer. the detector used was a time-resolved optical multichannel analyzer (OMA III EG and G). The wavelengths of the measured transitions range from 2000 sto 4100 A. The spectral resolution of the system was 0. 2 A. The method can be used in insulators materials as Cl Na crystals and in metallic samples as Al-Cr and Sn-Sn alloys. to avoid self-absorption effects the alloys were made with low Sb or Cr content. Relative transition probabilities have been determined from measurements of emission-line intensities and were placed on an absolute scale by using, where possible, accurate experimental lifetime values form the literature or theoretical data. From these measurements, values for plasma temperature (8000-24000 K), electron densities (∼∼ 10''16 cm ''-3) and self-absorption coefficients have been obtained. (Author) 56 refs

  2. Transition probabilities for lines of Cr II, Na II and Sb I by laser produced plasma atomic emission spectroscopy

    International Nuclear Information System (INIS)

    Gonzalez, A.M.; Ortiz, M.; Campos, J.

    1995-09-01

    Absolute transition probabilities for lines of Cr II, Na II and Sb I were determined by emission spectroscopy of laser induced plasmas. The plasma was produced focusing the emission of a pulsed Nd-Yag laser on solid samples containing the atom in study. The light arising from the plasma region was collected by and spectrometer. the detector used was a time-resolved optical multichannel analyzer (OMA III EG and G). The wavelengths of the measured transitions range from 2000 to 4100 A. The spectral resolution of the system was 0.2 A. The method can be used in insulators materials as Cl Na crystals and in metallic samples as Al-Cr and Sn-Sb alloys. To avoid self-absorption effects the alloys were made with low Sb or Cr content. Relative transition probabilities have been determined from measurements of emission-line intensities and were placed on an absolute scale by using, where possible, accurate experimental lifetime values form the literature or theoretical data. From these measurements, values for plasma temperature (8000-24000K), electron densities (approx 10 ''16 cm''-3) and self-absorption coefficients have been obtained

  3. Properties of laser-produced GaAs plasmas measured from highly resolved X-ray line shapes and ratios

    Science.gov (United States)

    Seely, J. F.; Fein, J.; Manuel, M.; Keiter, P.; Drake, P.; Kuranz, C.; Belancourt, Patrick; Ralchenko, Yu.; Hudson, L.; Feldman, U.

    2018-03-01

    The properties of hot, dense plasmas generated by the irradiation of GaAs targets by the Titan laser at Lawrence Livermore National Laboratory were determined by the analysis of high resolution K shell spectra in the 9 keV to 11 keV range. The laser parameters, such as relatively long pulse duration and large focal spot, were chosen to produce a steady-state plasma with minimal edge gradients, and the time-integrated spectra were compared to non-LTE steady state spectrum simulations using the FLYCHK and NOMAD codes. The bulk plasma streaming velocity was measured from the energy shifts of the Ga He-like transitions and Li-like dielectronic satellites. The electron density and the electron energy distribution, both the thermal and the hot non-thermal components, were determined from the spectral line ratios. After accounting for the spectral line broadening contributions, the plasma turbulent motion was measured from the residual line widths. The ionization balance was determined from the ratios of the He-like through F-like spectral features. The detailed comparison of the experimental Ga spectrum and the spectrum simulated by the FLYCHK code indicates two significant discrepancies, the transition energy of a Li-like dielectronic satellite (designated t) and the calculated intensity of a He-like line (x), that should lead to improvements in the kinetics codes used to simulate the X-ray spectra from highly-charged ions.

  4. An experimental investigation of stimulated Brillouin scattering in laser-produced plasmas relevant to inertial confinement fusion

    International Nuclear Information System (INIS)

    Bradley, K.S.

    1993-01-01

    Despite the apparent simplicity of controlled fusion, there are many phenomena which have prevented its achievement. One phenomenon is laser-plasma instabilities. An investigation of one such instability, stimulated Brillouin scattering (SBS), is reported here. SBS is a parametric process whereby an electromagnetic wave (the parent wave) decays into another electromagnetic wave and an ion acoustic wave (the daughter waves). SBS impedes controlled fusion since it can scatter much or all of the incident laser light, resulting in poor drive symmetry and inefficient laser-plasma coupling. It is widely believed that SBS becomes convectively unstable--that is, it grows as it traverses the plasma. Though it has yet to be definitively tested, convective theory is often invoked to explain experimental observations, even when one or more of the theory's assumptions are violated. In contrast, the experiments reported here not only obeyed the assumptions of the theory, but were also conducted in plasmas with peak densities well below quarter-critical density. This prevented other competing or coexisting phenomena from occurring, thereby providing clearly interpretable results. These are the first SBS experiments that were designed to be both a clear test of linear convective theory and pertinent to controlled fusion research. A crucial part of this series of experiments was the development of a new instrument, the Multiple Angle Time Resolving Spectrometer (MATRS). MATRS has the unique capability of both spectrally and temporally resolving absolute levels of scattered light at many angles simultaneously, and is the first of its kind used in laser-plasma experiments. A detailed comparison of the theoretical predictions and the experimental observations is made

  5. Anisotropic instability of the photoelectrons generated by soft x-ray radiation of the laser-produced plasma focus

    International Nuclear Information System (INIS)

    Klumov, B.A.; Tarakanov, V.P.

    1994-01-01

    The electron field with the anisotropic distribution function is being formed when the gas is being affected with ionizing radiation. The anisotropy of the distribution function occurs due to the fact that photoelectrons fly mainly in the direction perpendicular to that of ionizing radiation quantum propagation. In order to emphasize the most typical features of the developed anisotropic instability, photoelectrons were believed to fly strictly across the photon propagation direction. Two-dimensional electromagnetic particle simulations have been carried out to study high-frequency disturbances in the plasma produced by ionizing radiation. Elastic processes were taken into account. It has been shown, in particular, that the energy of anisotropic electrons transforms mainly into that of magnetic pulsations (approximately 7% of the energy transforms into that of magnetic pulsations). Development of the anisotropic instability result in a space stratification into current filaments. The anisotropic instability study can be important for an interpretation of electromagnetic emission spectra for a plasma disturbed by radiation

  6. Observation of scattered light between omega/2 and 3/2 omega in short wavelength laser produced plasmas

    International Nuclear Information System (INIS)

    Goldman, L.M.; Seka, W.; Tanaka, K.; Simon, A.; Short, R.

    1984-01-01

    Extensive measurements have been carried out on scattered radiation in the spectral region between omega/2 and 3/2 omega from plasmas produced by 351 nm lasers. The relative intensities of the continuum radiation relative to the line features at omega/2 and 3/2 omega will be shown. A new spectral feature has been observed between 3/2 omega and omega which may be interpreted as an upscattered component produced by ordinary Raman scattering. The overall experimental evidence for ordinary Raman scattering vs stimulated Raman scattering will be discussed

  7. Spatial coherence properties of a compact and ultrafast laser-produced plasma keV x-ray source

    International Nuclear Information System (INIS)

    Boschetto, D.; Mourou, G.; Rousse, A.; Mordovanakis, A.; Hou, Bixue; Nees, J.; Kumah, D.; Clarke, R.

    2007-01-01

    The authors use Fresnel diffraction from knife-edges to demonstrate the spatial coherence of a tabletop ultrafast x-ray source produced by laser-plasma interaction. Spatial coherence is achieved in the far field by producing micrometer-scale x-ray spot dimensions. The results show an x-ray source size of 6 μm that leads to a transversal coherence length of 20 μm at a distance of 60 cm from the source. Moreover, they show that the source size is limited by the spatial spread of the absorbed laser energy

  8. Proton radiography of dynamic electric and magnetic fields in laser-produced high-energy-density plasmas

    International Nuclear Information System (INIS)

    Li, C. K.; Seguin, F. H.; Frenje, J. A.; Manuel, M.; Casey, D.; Sinenian, N.; Petrasso, R. D.; Amendt, P. A.; Landen, O. L.; Rygg, J. R.; Town, R. P. J.; Betti, R.; Meyerhofer, D. D.; Delettrez, J.; Knauer, J. P.; Marshall, F.; Sangster, T. C.; Smalyuk, V. A.; Soures, J. M.; Shvarts, D.

    2009-01-01

    Time-gated, monoenergetic-proton radiography provides unique measurements of the electric (E) and magnetic (B) fields produced in laser-foil interactions and during the implosion of inertial-confinement-fusion capsules. These experiments resulted in the first observations of several new and important features: (1) observations of the generation, decay dynamics, and instabilities of megagauss B fields in laser-driven planar plastic foils, (2) the observation of radial E fields inside an imploding capsule, which are initially directed inward, reverse direction during deceleration, and are likely related to the evolution of the electron pressure gradient, and (3) the observation of many radial filaments with complex electromagnetic field striations in the expanding coronal plasmas surrounding the capsule. The physics behind and implications of such observed fields are discussed.

  9. Experimental studies of particle acceleration with ultra-intense lasers - Applications to nuclear physics experiments involving laser-produced plasmas

    International Nuclear Information System (INIS)

    Plaisir, C.

    2010-11-01

    For the last ten years, the Ultra High Intensity Lasers offer the opportunity to produce accelerated particle beams which contain more than 10 12 electrons, protons accelerated into a few ps. We have simulated and developed some diagnostics based on nuclear activation to characterize both the angular and the energy distributions of the particle beams produced with intense lasers. The characterization methods which are presented are illustrated by means of results obtained in different experiments. We would use the particle beams produced to excite nuclear state in a plasma environment. It can modify intrinsic characteristics of the nuclei such as the half-life of some isomeric states. To prepare this kind of experiments, we have measured the nuclear reaction cross section (gamma,n) to produce the isomeric state of the 84 Rb, which has an excitation energy of 463 keV, with the electron accelerator ELSA of CEA/DIF in Bruyeres-le-Chatel (France). (author)

  10. Relative strength of second harmonic and 3/2 omega emissions from long-scale-length laser produced plasmas

    International Nuclear Information System (INIS)

    Sinha, B.K.; Kumbhare, S.R.

    1988-01-01

    Experiments were conducted on the planar slab targets of carbon, aluminum, and copper, using a 1.0641 μm laser, at laser intensities varying from 2 x 10/sup 12/ to 1 x 10/sup 14/ W/cm/sup 2/. The laser had a fluorescent linewidth of 4.5 A. Spectral profiles of parametrically modulated second harmonic as well as 3/2/ω/sub 0/ emissions have been measured for the long-scale-length plasmas so generated. Relative strengths of three emissions with respect to peak signal intensity and spectral energy content as a function of laser intensity are graphically reported. Results are discussed on the basis of two plasmon and parametric decay instabilities

  11. Classification of X-ray spectra from laser produced plasmas of atoms from Tm to Pt in the range 6-9A

    International Nuclear Information System (INIS)

    Mandelbaum, P.; Klapisch, M.; Bar-Shalom, A.; Schwob, J.L.; Zigler, A.

    1983-01-01

    X-ray spectra of highly ionized tungsten and neighbouring atoms (Tm, Yb, Hf, Ta, W, Re and Pt) has been observed from laser produced plasmas in the lambda = 6-9A range. Beside the prominent lines of the Ni I-like ions, lines belonging to Co I (3d 9 -3d 8 4p), Cu I (3d 10 4s-3d 9 4s4p, 3d 10 4p-3d 9 4p 2 ) and Zn I-like ions (3d 10 4s 2 -3d 9 4s 2 4p, 3d 10 4s4p-3d 9 4s4p 2 ) have been identified. Classification was based on isoelectronic sequence analysis and on comparison with ab-initio relativistic calculations. A collisional-radiative model of the Cu I-like ions in the plasma is used to show that the contribution of the 3d 10 4d-3d 9 4p4d and 3d 10 4f-3d 9 4f4p transition arrays to the 3d-4p spectrum is small. The importance of configuration interaction is pointed out. Computations agree with measurements within experimental uncertainty. (Auth.)

  12. Heights integrated model as instrument for simulation of hydrodynamic, radiation transport, and heat conduction phenomena of laser-produced plasma in EUV applications.

    Energy Technology Data Exchange (ETDEWEB)

    Sizyuk, V.; Hassanein, A.; Morozov, V.; Sizyuk, T.; Mathematics and Computer Science

    2007-01-16

    The HEIGHTS integrated model has been developed as an instrument for simulation and optimization of laser-produced plasma (LPP) sources relevant to extreme ultraviolet (EUV) lithography. The model combines three general parts: hydrodynamics, radiation transport, and heat conduction. The first part employs a total variation diminishing scheme in the Lax-Friedrich formulation (TVD-LF); the second part, a Monte Carlo model; and the third part, implicit schemes with sparse matrix technology. All model parts consider physical processes in three-dimensional geometry. The influence of a generated magnetic field on laser plasma behavior was estimated, and it was found that this effect could be neglected for laser intensities relevant to EUV (up to {approx}10{sup 12} W/cm{sup 2}). All applied schemes were tested on analytical problems separately. Benchmark modeling of the full EUV source problem with a planar tin target showed good correspondence with experimental and theoretical data. Preliminary results are presented for tin droplet- and planar-target LPP devices. The influence of three-dimensional effects on EUV properties of source is discussed.

  13. Spatially and spectrally resolved filamentary structures in the (3/2)omega 0 emission from laser produced plasmas

    International Nuclear Information System (INIS)

    Lin, Z.; Willi, O.; Rumsby, P.T.

    This study was conducted to explore the problem of filamentation of laser light in the underdense plasma corona surrounding ablatively imploded spherical targets, a phenomenon which may prevent the realization of laser-driven fusion schemes. Preliminary observations were made of filamentary structures in the (3/2)(omega sub o) emission from microballoon targets irradiated in the ablative mode. Time integrated spectroscopy showed double and single peaked (3/2)(omega sub o) emission spectra. A simple model for the growth and collapse of filaments was based on the movement of the density contours at the bottom of the filament with large velocity. Here the laser intensity was high and various decay instabilities and scattering processes took place. In particular the two plasmon decay instability occurred where the electron density was nc/4, a region of (3/2)(omega sub o) emission. The model was consistent with the experimentally observed spectra and predicted the type of omega sub o and 2 omega sub o that should be observed in future experiments

  14. X-ray spectroscopic study of nonequilibrium laser produced plasma in porous targets of low average density

    Energy Technology Data Exchange (ETDEWEB)

    Burdonskiy, I.N.; Dimitrenko, V.V.; Fasakhov, I.K.; Gavrilov, V.V.; Goltsov, A.Y.; Kovalskii, N.G.; Mironov, B.N. [Science Research Center of Russian Federation Troitsk Institute for Innovation and Fusion Research, Troitsk, Moscow Reg. (Russian Federation); Faenov, A.Y.; Magunov, A.I.; Pikuz, T.A.; Skobelev, I.Y. [Multicharged Ions Spectra Data Center, VNIIFTRI, Mendeleevo (Russian Federation)

    2006-06-15

    New experimental results on laser irradiation (I {<=} 10{sup 14} W/cm{sup 2}, {lambda} = 1.053 {mu}m) of low-density fibrous agar are presented. X-ray spectrometers with spherically bent mica crystals were used for measuring with high spectral resolution the line spectra of multicharged ions. Detailed analysis of the measured spectra made it possible to determine the temperature of electrons and ions in hot plasma created in laser irradiated low-density samples in dependence on average material density and average intensity within a focal spot. Both the ion and electron temperatures are found to decrease by a factor 1.5 - 2 following a factor of about 3 as increase of the target average density (5 mg/cm{sup 3} and 15 mg/cm{sup 3}) for I 5*10{sup 13} W/cm{sup 2}. In all cases the ion temperature exceeds the electron temperature by a factor of 2 - 3.

  15. Self-focusing in laser produced spark

    International Nuclear Information System (INIS)

    Bakos, J.S.; Foeldes, I.B.

    1983-05-01

    The self-focusing effect appearing in different phases of development of laser produced breakdown plasma in air is investigated. Self-focusing during the ionization process is demonstrated. Thermal self-focusing was observed in the later stage of the plasma development at moderate light intensities. Plasma development was investigated by forward and side scattering of the laser light in the plasma. A crossed beam experiment gave evidence of the thermal mechanism of self-focusing. (author)

  16. Broadband time-resolved elliptical crystal spectrometer for X-ray spectroscopic measurements in laser-produced plasmas

    International Nuclear Information System (INIS)

    Wang Rui-Rong; Jia Guo; Fang Zhi-Heng; Wang Wei; Meng Xiang-Fu; Xie Zhi-Yong; Zhang Fan

    2014-01-01

    The X-ray spectrometer used in high-energy-density plasma experiments generally requires both broad X-ray energy coverage and high temporal, spatial, and spectral resolutions for overcoming the difficulties imposed by the X-ray background, debris, and mechanical shocks. By using an elliptical crystal together with a streak camera, we resolve this issue at the SG-II laser facility. The carefully designed elliptical crystal has a broad spectral coverage with high resolution, strong rejection of the diffuse and/or fluorescent background radiation, and negligible source broadening for extended sources. The spectra that are Bragg reflected (23° < θ < 38°) from the crystal are focused onto a streak camera slit 18 mm long and about 80 μm wide, to obtain a time-resolved spectrum. With experimental measurements, we demonstrate that the quartz(1011) elliptical analyzer at the SG-II laser facility has a single-shot spectral range of (4.64–6.45) keV, a typical spectral resolution of E/ΔE = 560, and an enhanced focusing power in the spectral dimension. For titanium (Ti) data, the lines of interest show a distribution as a function of time and the temporal variations of the He-α and Li-like Ti satellite lines and their spatial profiles show intensity peak red shifts. The spectrometer sensitivity is illustrated with a temporal resolution of better than 25 ps, which satisfies the near-term requirements of high-energy-density physics experiments. (atomic and molecular physics)

  17. Analysis of x-ray spectra emitted from highly ionized atoms in the vacuum spark and laser-produced high power plasma sources

    International Nuclear Information System (INIS)

    Mandelbaum, P.

    1987-05-01

    The interest in atomic spectroscopy has greatly been reinforced in the last ten years. This gain of interest is directly related to the developments in different fields of research where hot plasmas are created. These fields include in particular controlled thermonuclear fusion research by means of inertial or magnetic confinement approaches and also the most recent efforts to achieve lasers in the XUV region. The present work is based on the specific contribution of the atomic spectroscopy group at the Hebrew University. The recent development of both theoretical and experimental tools allowed us to progress in the understanding of the highly ionized states of heavy elements. In this work the low-inductance vacuum-spark developed at the Hebrew University was used as the hot plasma source. The spectra were recorded in the 7-300 A range by means of a high-resolution extreme-grazing-incidence spectrometer developed at the Racah Institute by Profs. J.L. Schwob and B.S. Fraenkel. To the extend the spectroscopic studies to higher-Z atoms, the laser-produced plasma facility at Soreq Nuclear Center was used. In this work the spectra of the sixth row elements were recorded in the x-rays by means of a crystal spectrometer. All these experimental systems are briefly described in chapter one. Chapter two deals with the theoretical methods used in the present work for the atomic calculations. Chapter three deals with the spectra of elements of the fifth row emitted from the vacuum-spark in the 30-150 A range. These spectra as experimental data were used in order to test ab-initio computations along the NiI sequence 3d-nl transitions. The results of this work are presented in chapter four. Chapter five is devoted to the measurement and analysis of spectra emitted from the vacuum-spark by rare-earth elements. (author)

  18. Laser-produced Sm{sub 1-x}Nd{sub x}NiO{sub 3} plasma dynamic through Langmuir probe and ICCD imaging combined analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ngom, B.D. [Universite Cheikh Anta Diop de Dakar (UCAD), Laboratoire de Photonique et Nano-Fabrication, Groupe de Physique du Solide et Sciences des Materiaux (GPSSM), Faculte des Sciences et Techniques, Dakar-Fann Dakar (Senegal); University of South Africa, UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, Pretoria (South Africa); National Research Foundation, Nanosciences African Network (NANOAFNET), iThemba LABS, Somerset West, Western Cape (South Africa); Lafane, S.; Abdelli-Messaci, S.; Kerdja, T. [Centre de Developpement des Technologies Avancees, Division des Milieux Ionises et Laser, Baba Hassen (Algeria); Maaza, M. [University of South Africa, UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, Pretoria (South Africa); National Research Foundation, Nanosciences African Network (NANOAFNET), iThemba LABS, Somerset West, Western Cape (South Africa)

    2016-01-15

    The dynamics of laser-produced plasma of Sm{sub 1-x}Nd{sub x}NiO{sub 3} is studied over oxygen pressure ranging from vacuum up to 2 mbar via Langmuir probe, and intensified charge-coupled device-imaging techniques. The analysis of the oxygen pressure dependence of the ion yield points out to four different regimes. More accurately, the specific ionic current shows a first drop at about 2 x 10{sup -2} mbar corresponding to the appearance of two peaks in the profile of the ionic signal. Likewise, this pressure marks the early stage of the plume splitting into two prominent components as observed by the ICCD imaging. Below 2 x 10{sup -2} mbar, the dynamic of the plume is directive (1D), while a quasi-stable behavior on the ionic current signal is observed. In the 0.2- to 0.5-mbar region, a quasi-stationary regime is obtained. More accurately, both the ionic yield and the plume stopping distance vary very slowly in such pressures range. Above 0.5 mbar, the ionic yield is altered again corresponding to the appearance of the diffusion regime. At a pressure of 1.5 mbar we observe a second appearance of an ionic signal peak. A correlation between the results obtained by Langmuir probe and ICCD imaging is made, presented, and discussed within this contribution. (orig.)

  19. Electric field measurements from satellites-to-forbidden line ratios in an Omega-Upgrade laser-produced plasma. Semi-annual report, February 1--May 31, 1996

    International Nuclear Information System (INIS)

    Griem, H.R.; Elton, R.C.; Welch, B.L.

    1996-01-01

    Under this FY-96 NLUF program, the authors began their search for satellite lines to forbidden transitions for localized laser-induced electric field measurements by preparing in their laboratory a flat-field grazing incidence spectrograph for use on the OMEGA-Upgrade facility. This involved wavelength calibration using a (small) laser-produced plasma, as well as designing and constructing a mounting table compatible with the large 60-beam target chamber at LLE. Beginning in April 1996 they installed and aligned the spectrograph at LLE. Following final alignment on Monday, April 29, they obtained the following day their first time-integrated spectral data in the 30--250 angstrom range. A total of 28 successful shots were obtained. For most shots, two beams of the OMEGA-Upgrade laser were used at nominal uv-pulse widths of 1.1 ns and energies ranging from 76--470 J/beam, with focal spots of 80--450 microm and irradiances covering approximately 10 14 --10 16 Watt/cm 2 . Planar targets used consisted of Mg and NaF, as well as boron mounted on a plastic film, with some of the former two overcoated with 5 microm of CH on each side for containing the plasma, at least during the early portion of the pulse. Preliminary analyses indicate that they do indeed observe the desired Li-like L-shell spectra for oxygen, fluorine, sodium and magnesium, as well as L-shell lines in the corresponding H-(Balmer) and He-like species. Similarly, they recorded K-shell lines from B and C. Sample traces for Mg and Na fluoride from their soft x-ray spectrograph are shown. Both of these shots were obtained at a rather low applied irradiance of 2 X 10 14 W/cm 2 , and were chosen mainly for line identification. The parent Li-like 2s-3p allowed lines corresponding to the forbidden-line satellites sought for E-field determinations are clearly present. The calculated satellite line intensity relative to the intensity from this 2s-3p transition is ∼ 3%

  20. Interaction of ultra-short ultra-intense laser pulses with under-dense plasmas; Interaction d'impulsions laser ultra-courtes et ultra-intenses avec des plasmas sous denses

    Energy Technology Data Exchange (ETDEWEB)

    Solodov, A

    2000-12-15

    Different aspects of interaction of ultra-short ultra-intense laser pulses with underdense plasmas are studied analytically and numerically. These studies can be interesting for laser-driven electron acceleration in plasma, X-ray lasers, high-order harmonic generation, initial confinement fusion with fast ignition. For numerical simulations a fully-relativistic particle code WAKE was used, developed earlier at Ecole Polytechnique. It was modified during the work on the thesis in the part of simulation of ion motion, test electron motion, diagnostics for the field and plasma. The studies in the thesis cover the problems of photon acceleration in the plasma wake of a short intense laser pulse, phase velocity of the plasma wave in the Self-Modulated Laser Wake-Field Accelerator (SM LWFA), relativistic channeling of laser pulses with duration of the order of a plasma period, ion dynamics in the wake of a short intense laser pulse, plasma wave breaking. Simulation of three experiments on the laser pulse propagation in plasma and electron acceleration were performed. Among the main results of the thesis, it was found that reduction of the plasma wave phase velocity in the SM LWFA is crucial for electron acceleration, only if a plasma channel is used for the laser pulse guiding. Self-similar structures describing relativistic guiding of short laser pulses in plasmas were found and relativistic channeling of initially Gaussian laser pulses of a few plasma periods in duration was demonstrated. It was shown that ponderomotive force of a plasma wake excited by a short laser pulse forms a channel in plasma and plasma wave breaking in the channel was analyzed in detail. Effectiveness of electron acceleration by the laser field and plasma wave was compared and frequency shift of probe laser pulses by the plasma waves was found in conditions relevant to the current experiments. (author)

  1. 3d-4p x-ray spectrum emitted by highly ionized uranium from a laser-produced plasma in the 3.8<λ<4.4-A wavelength range

    International Nuclear Information System (INIS)

    Mandelbaum, P.; Seely, J.F.; Kania, D.R.; Kauffman, R.L.

    1992-01-01

    This work extends a previous analysis of the x-ray spectrum of a laser-produced uranium plasma [P. Mandelbaum et al., Phys. Rev. A 44, 5752 (1991)] to the longer-wavelength range (3.8 +65 ) through As-like (U +59 ) isoelectronic sequences are identified in the spectrum, in good agreement with the previous analysis of the spectrum emitted at shorter wavelengths

  2. [The spectra of a laser-produced plasma source with CO2, O2 and CF4 liquid aerosol spray target].

    Science.gov (United States)

    Ni, Qi-Liang; Chen, Bo

    2008-11-01

    A laser-produced plasma (LPP) source with liquid aerosol spray target and nanosecond laser was developed, based on both soft X-ray radiation metrology and extreme ultraviolet projection lithography (EUVL). The LPP source is composed of a stainless steel solenoid valve whose temperature can be continuously controlled, a Nd : YAG laser with pulse width, working wavelength and pulse energy being 7 ns, 1.064 microm and 1J respectively, and a pulse generator which can synchronously control the valve and the laser. A standard General Valve Corporation series 99 stainless steel solenoid valve with copper gasket seals and a Kel-F poppet are used in order to minimize leakage and poppet deformation during high-pressure cryogenic operation. A close fitting copper cooling jacket surrounds the valve body. The jacket clamps a copper coolant carrying tube 3 mm in diameter, which is fed by an automatically pressurized liquid nitrogen-filled dewar. The valve temperature can be controlled between 77 and 473 K. For sufficiently high backing pressure and low temperature, the valve reservoir gas can undergo a gas-to-liquid phase transition. Upon valve pulsing, the liquid is ejected into a vacuum and breaks up into droplets, which is called liquid aerosol spray target. For the above-mentioned LPP source, firstly, by the use of Cowan program on the basis of non-relativistic quantum mechanics, the authors computed the radiative transition wavelengths and probabilities in soft X-ray region for O4+, O5+, O6+, O7+, F5+, F6+ and F7+ ions which were correspondingly produced from the interaction of the 10(11)-10(12) W x cm(-2) power laser with liquid O2, CO2 and CF4 aerosol spray targets. Secondly, the authors measured the spectra of liquid O2, CO2 and CF4 aerosol spray target LPP sources in the 6-20 nm band for the 8 x 10(11) W x cm(-2) laser irradiance. The measured results were compared with the Cowan calculated results ones, and the radiative transition wavelength and probability for the

  3. High-resolution measurement, line identification, and spectral modeling of the Kβ spectrum of heliumlike argon emitted by a laser-produced plasma using a gas-puff target

    International Nuclear Information System (INIS)

    Skobelev, I.Y.; Faenov, A.Y.; Dyakin, V.M.; Fiedorowicz, H.; Bartnik, A.; Szczurek, M.; Beiersdorfer, P.; Nilsen, J.; Osterheld, A.L.

    1997-01-01

    We present an analysis of the spectrum of satellite transitions to the He-β line in ArXVII. High-resolution measurements of the spectra from laser-heated Ar-gas-puff targets are made with spectral resolution of 10000 and spatial resolution of better than 50 μm. These are compared with tokamak measurements. Several different lines are identified in the spectra and the spectral analysis is used to determine the plasma parameters in the gas-puff laser-produced plasma. The data complement those from tokamak measurements to provide more complete information on the satellite spectra. copyright 1997 The American Physical Society

  4. Optical emission from laser-produced chromium and magnesium ...

    Indian Academy of Sciences (India)

    Abstract. Parametric study of optical emission from two successive laser pulses pro- ... The hot laser-produced plasma radiates various types of emissions ..... lasers. The qualitative agreement of this analysis with our observations confirms.

  5. Space and time resolved spectroscopy of laser-produced plasmas: A study of density-sensitive x-ray transitions in helium-like and neon-like ions

    International Nuclear Information System (INIS)

    Young, Bruce Kai Fong.

    1988-09-01

    The determination of level populations and detailed population mechanisms in dense plasmas has become an increasingly important problem in atomic physics. In this work, the density variation of line intensities and level populations in aluminum K-shell and molybdenum and silver L-shell emission spectra have been measured from high-powered, laser-produced plasmas. For each case, the density dependence of the observed line emission is due to the effect of high frequency electron-ion collisions on metastable levels. The density dependent line intensities vary greatly in laser-produced plasmas and can be used to extract detailed information concerning the population kinetics and level populations of the ions. The laser-plasmas had to be fully characterized in order to clearly compare the observed density dependence with atomic theory predictions. This has been achieved through the combined use of new diagnostic instruments and microdot targets which provided simultaneously space, time, and spectrally resolved data. The plasma temperatures were determined from the slope of the hydrogen-like recombination continuum. The time resolved electron density profiles were measured using multiple frame holographic interferometry. Thus, the density dependence of K-shell spectral lines could be clearly examined, independent of assumptions concerning the dynamics of the plasma. In aluminum, the electron density dependence of various helium-like line intensity ratios were measured. Standard collisional radiative equilibrium models fail to account for the observed density dependence measured for the ''He/sub α//IC'' ratio. Instead, a quasi-steady state atomic model based on a purely recombining plasma is shown to accurately predict the measured density dependence. This same recombining plasma calculation successfully models the density dependence of the high-n ''He/sub γ//He/sub β/'' and ''He/sub δ//He/sub β/'' helium-like resonance line intensity ratios

  6. Space and time resolved spectroscopy of laser-produced plasmas: A study of density-sensitive x-ray transitions in helium-like and neon-like ions

    Energy Technology Data Exchange (ETDEWEB)

    Young, Bruce Kai Fong

    1988-09-01

    The determination of level populations and detailed population mechanisms in dense plasmas has become an increasingly important problem in atomic physics. In this work, the density variation of line intensities and level populations in aluminum K-shell and molybdenum and silver L-shell emission spectra have been measured from high-powered, laser-produced plasmas. For each case, the density dependence of the observed line emission is due to the effect of high frequency electron-ion collisions on metastable levels. The density dependent line intensities vary greatly in laser-produced plasmas and can be used to extract detailed information concerning the population kinetics and level populations of the ions. The laser-plasmas had to be fully characterized in order to clearly compare the observed density dependence with atomic theory predictions. This has been achieved through the combined use of new diagnostic instruments and microdot targets which provided simultaneously space, time, and spectrally resolved data. The plasma temperatures were determined from the slope of the hydrogen-like recombination continuum. The time resolved electron density profiles were measured using multiple frame holographic interferometry. Thus, the density dependence of K-shell spectral lines could be clearly examined, independent of assumptions concerning the dynamics of the plasma. In aluminum, the electron density dependence of various helium-like line intensity ratios were measured. Standard collisional radiative equilibrium models fail to account for the observed density dependence measured for the ''He/sub ..cap alpha..//IC'' ratio. Instead, a quasi-steady state atomic model based on a purely recombining plasma is shown to accurately predict the measured density dependence. This same recombining plasma calculation successfully models the density dependence of the high-n ''He/sub ..gamma..//He/sub ..beta../'' and ''He/sub delta

  7. Analysis of the X-ray spectra emitted by laser-produced plasma of highly ionized lanthanum and praseodymium in the 8. 4 to 12. 0 A wavelength range

    Energy Technology Data Exchange (ETDEWEB)

    Zigler, A [Racah Inst. of Physics, Hebrew Univ., Jerusalem (Israel); Mandelbaum, P [Racah Inst. of Physics, Hebrew Univ., Jerusalem (Israel); Schwob, J L [Racah Inst. of Physics, Hebrew Univ., Jerusalem (Israel); Mitnik, D [Racah Inst. of Physics, Hebrew Univ., Jerusalem (Israel)

    1994-06-01

    A detailed analysis of the X-ray spectra emitted by laser produced plasma of lanthanum (8.5-12.5 A) and praseodymium (8.4-11.3 A) is given, using ab-initio calculations with the HULLAC relativistic code. Resonance 3d-nf (n 4, 5, 6) and 3p-4s, 4d transitions of the La XXX and Pr XXXII Ni I-like ions and neighbouring ionization states (La XXVIII to La XXXVI, Pr XXX to Pr XXXVI) have been identified. (orig.).

  8. Optical emission from laser-produced chromium and magnesium

    Indian Academy of Sciences (India)

    Optical emission from laser-produced chromium and magnesium plasma under the effect of two sequential laser pulses ... Laser Plasma Division, Centre for Advanced Technology, Indore 452 013, India; Diagnostic Instrumentation and Analysis Laboratory, Mississippi State University, 205 Research Boulevard, Starkville, ...

  9. Studies of high repetition rate laser-produced plasma soft-X-ray amplifiers; Etudes d'amplificateurs plasma laser a haute cadence dans le domaine X-UV et applications

    Energy Technology Data Exchange (ETDEWEB)

    Cassou, K

    2006-12-15

    The progress made as well on the Ti:Sa laser system, as in the control and the knowledge of laser produced X-UV sources allowed the construction of a X-UV laser station dedicated to the applications. My thesis work falls under the development of this station and more particularly on the characterization of a X-UV laser plasma amplifier. The experimental study relates to the coupling improvement of the pump infra-red laser with plasma within the framework of the transient collisional X-UV laser generation. These X-UV lasers are generated in a plasma formed by the interaction of a solid target and a laser pulse of approximately 500 ps duration, followed by a second infra-red laser pulse known as of pump (about 5 ps) impinging on the target in grazing incidence. For the first time, a complete parametric study was undertaken on the influence of the grazing angle on the pumping of the amplifying medium. One of the results was to reach very high peak brightness about 10{sup 28} ph/s/mm{sup 2}/mrad{sup 2}/(0.1%bandwidth), which compares well with the free-electron laser brightness. Moreover, we modified then used a new two-dimensional hydrodynamic code with adaptive mesh refinement in order to understand the influence of the space-time properties of the infra-red laser on the formation and the evolution of the amplifying plasma. Our modeling highlighted the interest to use a super Gaussian transverse profile for the line focus leading to an increase in a factor two of the gain region size and a reduction of the electron density gradient by three orders of magnitude. These improvements should strongly increase the energy contained in X-UV laser beam. We thus used X-UV laser to study the appearance of transient defects produced by a laser IR on a beam-splitter rear side. We also began research on the mechanisms of DNA damage induced by a very intense X-UV radiation. (author)

  10. Space-resolved XUV spectra of CVI and BV lines from a 10 ps KrF laser-produced plasma

    International Nuclear Information System (INIS)

    Iglesias, E.J.; Griem, H.R.; Elton, R.C.; Scott, H.

    1999-01-01

    We produced a plasma using highly focused ∼50 mJ, 10 ps pulses from a KrF laser on graphite and boron-carbide targets. We measured space-resolved (along the plasma axis) line profiles of Hydrogen-like and Helium-like Carbon and Boron resonance lines, using a crossed-slit, 1 m grazing-incidence spectrometer, with a spatial resolution ∼50 μm. Synthetic spectra generated with the atomic postprocessor CRETIN provided preliminary estimates of the plasma electron temperature and density. copyright 1999 American Institute of Physics

  11. Interferometric investigation of shock waves induced by a TEA-CO2 laser produced plasma in air in front of a solid target

    International Nuclear Information System (INIS)

    Apostol, D.; Apostol, I.; Cojocaru, E.; Draganescu, V.; Mihailescu, N.I.; Morjan, I.; Konov, I.V.

    1979-06-01

    The shock waves induced in the surrounding atmosphere by an air plasma were investigated by laser interferometry. The air breakdown plasma was produced by a TEA-CO 2 laser in front of a solid target. The results were compared to the predictions of theory of intense explosions in gases and a good agreement was inferred. It was also determined that the symmetry of the expansion of the initial shock wave is determined by the plasma source shape and, accordingly, depends on the laser power density incident on the target surface. However, for further stages all the shock waves expand spherically. (author)

  12. Emissive properties of xenon ions from a laser-produced plasma in the 100-140 Aa spectral range: Atomic-physics analysis of the experimental data

    International Nuclear Information System (INIS)

    Gilleron, F.; Poirier, M.; Blenski, T.; Schmidt, M.; Ceccotti, T.

    2003-01-01

    In order to design extreme ultraviolet (EUV) sources for nanolithography, xenon EUV emission has been experimentally studied in a plasma generated by the interaction of a high-power laser with a droplet jet. A theoretical model assuming that the resulting plasma is optically thick allows one to find the distribution of the relevant ions and transitions involved in the emission process. Atomic physics computations are performed using the HULLAC code to give a detailed account of the transitions involved. The importance of 4p-4d, 4d-4f, and 4d-5p transitions is stressed, as well as the need for configuration-interaction treatment of the Δn=0 transitions. Comparisons of a modeled local thermodynamical equilibrium spectrum with experiment provides qualitative agreement and permits an estimate of the plasma temperature, density, and dimensions

  13. Variable pattern of high-order harmonic spectra from a laser-produced plasma by using the chirped pulses of narrow-bandwidth radiation

    International Nuclear Information System (INIS)

    Ganeev, R. A.; Suzuki, M.; Baba, M.; Kuroda, H.; Redkin, P. V.

    2007-01-01

    Various plasmas prepared by laser ablation of the surfaces of solid targets were examined by the narrow-bandwidth radiation of different chirp and pulse durations. The high-order harmonics generated during laser-plasma interaction showed different brightness, wavelength shift, harmonic cutoff, and efficiency by using variable chirps of pump radiation. An analysis of harmonic optimization at these conditions is presented. The blueshifted and redshifted harmonics observed in this case were analyzed and attributed to the abundance of free electrons and self-phase modulation of the driving pulse. The resonance-induced enhancement of the 15th harmonic from GaN-nanoparticle-containing plasma caused by the tuning of harmonic wavelength close to the ionic transition was demonstrated

  14. The development of a Krook model for nonlocal transport in laser produced plasmas. II. Application of the theory and comparisons with other models

    International Nuclear Information System (INIS)

    Colombant, Denis; Manheimer, Wallace

    2008-01-01

    This paper incorporates the Krook model for nonlocal transport into a fluid simulation. It uses these fluid simulations to compare with Fokker-Planck simulations and also with a recent NRL NIKE [S. P. Obenschain et al., Phys. Plasmas 3, 2098 (1996)] experiment. The paper also examines several other models for electron energy transport that have been used in laser fusion research. With regards to the comparison with Fokker-Planck simulation, the Krook model gives better agreement, especially in the time asymptotic limit. With regards to the NRL experiment, all models except one give reasonable agreement

  15. The study of 3s3p4 configuration in the P-Sequence, Co X III - Ni X IV, by laser-produced plasmas

    International Nuclear Information System (INIS)

    Borges, F.O.; Cavalcanti, G.H.; Farias, E.E.; Trigueiros, A.G.

    2007-01-01

    Wavelengths from radiation of plasmas produced by a Nd:YAG/glass laser focused on target of Co and Ni have been recorded photographically in the region 240-600 A with a 3m normal incidence spectrograph. For this sequence (Co X III and Ni X IV) we have identified 13 new lines belonging to the array 3s 2 3p 3 -3s3p 4 and derived 7 new levels for the 3s3p 4 configuration. The classification was established by comparison of the relative intensities for the lines along the isoelectronic sequence, extrapolation, and Hartree-Fock calculation. (author)

  16. Fabrication of nanoscale patterns in lithium fluoride crystal using a 13.5 nm Schwarzschild objective and a laser produced plasma source

    International Nuclear Information System (INIS)

    Wang Xin; Mu Baozhong; Jiang Li; Zhu Jingtao; Yi Shengzhen; Wang Zhanshan; He Pengfei

    2011-01-01

    Lithium fluoride (LiF) crystal is a radiation sensitive material widely used as EUV and soft x-ray detector. The LiF-based detector has high resolution, in principle limited by the point defect size, large field of view, and wide dynamic range. Using LiF crystal as an imaging detector, a resolution of 900 nm was achieved by a projection imaging of test meshes with a Schwarzschild objective operating at 13.5 nm. In addition, by imaging of a pinhole illuminated by the plasma, an EUV spot of 1.5 μm diameter in the image plane of the objective was generated, which accomplished direct writing of color centers with resolution of 800 nm. In order to avoid sample damage and contamination due to the influence of huge debris flux produced by the plasma source, a spherical normal-incidence condenser was used to collect EUV radiation. Together with a description of experimental results, the development of the Schwarzschild objective, the influence of condenser on energy density and the alignment of the imaging system are also reported.

  17. Spectroscopic investigations of hard x-ray emission from 120 ps laser-produced plasmas at intensities near 1017 W cm-2

    International Nuclear Information System (INIS)

    Dunn, J.; Young, B.K.F.; Osterheld, A.L.; Foord, M.E.; Walling, R.S.; Stewart, R.E.; Faenov, A.Y.

    1995-11-01

    Spectroscopic investigations of the x-ray emission of plasmas heated by 120 ps, frequency doubled pulses from the JANUS Nd: glass laser are presented. High Z K-shell spectra emitted from slab targets heated to near 10 17 W cm -2 intensity are investigated. High resolution (γ/Δγ>5000) x-ray spectra of multicharged ions of H-like Ti, Co, Ni, Cu, and also H-like Sc in the spectral range 1.5--3.0 angstrom are obtained in single laser shots using a spherically bent Mica crystal spectrograph with a 186 mm radius of curvature. The spectra- have one dimensional spatial resolution of about 25μm and indicate that the size of the emission zone of the resonance, transitions is 2 keV and density∼10 22 cm -3 . These experiments demonstrate that with modest laser energy, plasmas heated by high-intensity 120 ps lasers provide a very bright source of hard ∼8 keV x-ray emission

  18. Optimization of Kα bursts for photon energies between 1.7 and 7 keV produced by femtosecond-laser-produced plasmas of different scale length

    International Nuclear Information System (INIS)

    Ziener, Ch.; Uschmann, I.; Stobrawa, G.; Reich, Ch.; Gibbon, P.; Feurer, T.; Morak, A.; Duesterer, S.; Schwoerer, H.; Foerster, E.; Sauerbrey, R.

    2002-01-01

    The conversion efficiency of a 90 fs high-power laser pulse focused onto a solid target into x-ray Kα line emission was measured. By using three different elements as target material (Si, Ti, and Co), interesting candidates for fast x-ray diffraction applications were selected. The Kα output was measured with toroidally bent crystal monochromators combined with a GaAsP Schottky diode. Optimization was performed for different laser intensities as well as for different density scale lengths of a preformed plasma. These different scale lengths were realized by prepulses of different intensities and delay times with respect to the main pulse. Whereas the Kα yield varied by a factor of 1.8 for different laser intensities, the variation of the density scale length could provide a gain factor up to 4.6 for the Kα output

  19. An Anomaly in the Inglis-Teller Limits of the C VI Lyman and Balmer Series in Laser-Produced Plasmas

    Science.gov (United States)

    Elton, R.; Iglesias, E.; Griem, H.; Weaver, J.; Pien, G.; Mancini, R.

    2002-11-01

    Soft x-ray spectra from thin carbon layers heated by the OMEGA and NIKE lasers have been obtained with both spherical and planar targets, respectively, using a flat-field grazing incidence spectrograph equipped with a gated microchannel plate for temporal resolution. In both experiments, late-time (recombining) hydrogenic C VI spectra show an n-to-1 Lyman spectral series blending with the continuum at n=4, contrary to n=9 in the n-to-2 Balmer series. It appears unlikely that plasma inhomogeneities are the sole cause of this anomaly, given the difference in the experimental configurations. Other explanations for the line-to-continuum merging (other than the usual Stark-broadened Inglis-Teller effect) under consideration include non-thermal Doppler broadening, deviations from statistical sublevel population distributions, and opacity effects. Collisional-radiative and hydrodynamic modeling, including cascades, is employed to further understand this phenomenon.

  20. Observations of high-n transitions in the spectra of near-neon-like copper ions from laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, K.B. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Faenov, A.Ya.; Pikuz, T.A.; Skobelev, I.Yu. [Multicharged Ions Spectra Data Center of VNIIFTRI, Moscow (Russian Federation); Flora, F.; Bollanti, S.; Lazzaro, P.Di.; Murra, D. [ENEA, Dipartimento Innovazione, Settore Fisica Applicata, Frascati, Rome (Italy); Grilli, A. [INFN Frascati, Rome (Italy); Reale, A.; Reale, L.; Tomassetti, G.; Ritucci, A. [Dipartimento di Fisica e INFM, INFN g.c. LNGS, Universita dell' Aquila, L' Aquila (Italy); Bellucci, I.; Martellucci, S.; Petrocelli, G. [INFM, Dipartimento di Scienze e Tecnologie Fisiche ed Energetiche, Universita di Roma Tor Vergata, Rome (Italy)

    2002-08-14

    Spectra in the 7.50-8.70 A range from highly charged copper ions are analysed, and line identifications are made for the Na-, Ne-, F- and O-like charge states. The spectra are recorded with a spherically bent crystal spectrometer using either a mica or quartz crystal for moderate ({lambda}/{delta}{lambda}=3000) and high ({lambda}/{delta}{lambda}=8000) energy resolution, respectively. The plasmas from which the spectra are emitted are formed with either a Nd:glass (15 ns pulse) or a XeCl (12 ns pulse) laser. Systematic variations in the observed spectra with pulse energy are studied. Using different laser energies, and defocusing of the laser to reduce the intensity, we create plasmas with different ionization state distributions, which allows us to deconvolve blended lines from different copper ions. Line identifications are made based on relativistic atomic structure calculations that account for configuration interaction in level energies and transition rates. We use full kinetics simulations of ion emissivities, not just calculations of theoretical transition energies, to identify the strong and weak lines in crowded spectral regions. We identify 2p-nl transitions for Ne-like Cu{sup 19+} for 4{<=}n{<=}8 and 2s-np transitions for 4{<=}n{<=}6. We offer the first identification of high-n (n{<=}8) Na-like satellites to Ne-like Rydberg resonance lines. The first and second ionization energies for Cu{sup 19+} are found, at 1689.02 and 1709.16 eV, respectively, based on our observations. (author)

  1. Wavefront measurement of single-mode quantum cascade laser beam for seed application in laser-produced plasma extreme ultraviolet system.

    Science.gov (United States)

    Nowak, Krzysztof M; Ohta, Takeshi; Suganuma, Takashi; Yokotsuka, Toshio; Fujimoto, Junichi; Mizoguchi, Hakaru

    2012-12-01

    Quantum cascade laser (QCL) is a very attractive seed source for a multikilowatt pulsed CO2 lasers applied for driving extreme ultraviolet emitting plasmas. In this Letter, we investigate output beam properties of a QCL designed to address P18 and P20 lines of 10.6 micron band of CO2 molecule. In particular, output beam quality and stability are investigated for the first time. A well-defined linear polarization and a single-mode operation enabled a use of phase retrieval method for full description of QCL output beam. A direct, multi-image numerical phase retrieval technique was developed and successfully applied to the measured intensity patterns of a QCL beam. Very good agreement between the measured and reconstructed beam profiles was observed at distances ranging from QCL aperture to infinity, proving a good understanding of the beam propagation. The results also confirm a high spatial coherence and high stability of the beam parameters, the features expected from an excellent seed source.

  2. Dependence of Parameters of Laser-Produced Au Plasmas on the Incident Laser Energy of Sub-Nanosecond and Picosecond Laser Pulses

    International Nuclear Information System (INIS)

    Woryna, E.; Badziak, J.; Makowski, J.; Parys, P.; Vankov, A.B.; Wolowski, J.; Krasa, J.; Laska, L.; Rohlena, K.

    2001-01-01

    The parameters of Au plasma as functions of laser energy for ps pulses are presented and compared with the ones for sub-ns pulses at nearly the same densities of laser energy. The experiments were performed at the IPPLM with the use of CPA (chirped pulse amplification) Nd:glass laser system. Thick Au foil targets were irradiated by normally incident focused laser beams with maximum intensities of 8x10 16 and 2x10 14 W/cm 2 for ps and sub-ns laser pulses, respectively. The characteristics of ion streams were investigated with the use of ion diagnostics methods based on the time-of flight technique. In these experiments the laser energies were changed in the range from 90 to 700 mJ and the measurements were performed at a given focus position FP = 0 and along the target normal for both the laser pulses. The charge carried by the ions, the maximum ion velocities of fast and thermal ion groups, the maximum ion current density as well as the area of photopeak in dependence on the incident laser energy for sub-ns and ps pulses were investigated and discussed. (author)

  3. Laser-produced X-ray sources

    International Nuclear Information System (INIS)

    Hudson, L.T.; Seely, J.F.

    2010-01-01

    A formidable array of advanced laser systems are emerging that produce extreme states of light and matter. By irradiating solid and gaseous targets with lasers of increasing energy densities, new physical regimes of radiation effects are being explored for the first time in controlled laboratory settings. One result that is being accomplished or pursued using a variety of techniques, is the realization of novel sources of X-rays with unprecedented characteristics and light-matter interactions, the mechanisms of which are in many cases still being elucidated. Examples include the megajoule class of laser-produced plasmas designed in pursuit of alternative-energy and security applications and the petawatt class of lasers used for fast ignition and X-ray radiographic applications such as medical imaging and real-time imaging of plasma hydrodynamics. As these technologies mature, increased emphasis will need to be placed on advanced instrumentation and diagnostic metrology to characterize the spectra, time structure, and absolute brightness of X-rays emitted by these unconventional sources. Such customized and absolutely calibrated measurement tools will serve as an enabling technology that can help in assessing the overall system performance and progress, as well as identification of the underlying interaction mechanisms of interest to basic and applied strong-field and high-energy-density science.

  4. Spectroscopy of laser-produced plasmas

    Indian Academy of Sciences (India)

    It is a well-known fact that laser-induced breakdown spectroscopy (LIBS) has emerged as one of the best analytical techniques for multi-elemental compositional analysis of samples. We report assembling and optimization of LIBS set up using high resolution and broad-range echelle spectrograph coupled to an intensified ...

  5. Experimental and theoretical investigations about the vaporization of laser-produced aerosols and individual particles inside inductively-coupled plasmas — Implications for the extraction efficiency of ions prior to mass spectrometry

    International Nuclear Information System (INIS)

    Flamigni, Luca; Koch, Joachim; Günther, Detlef

    2012-01-01

    Current quantification capabilities of laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) are known to be restricted by elemental fractionation as a result of LA-, transport-, and ICP-induced effects which, particularly, may provoke inaccuracies whenever calibration strategies on the basis of non-matrix matched standard materials are applied. The present study is dealing with the role of ICP in this complex scenario. Therefore, the vaporization process of laser-produced aerosols and subsequent diffusion losses occurring inside ICP sources were investigated using 2-D optical emission spectrometry (OES) and ICP-quadrupole (Q)MS of individual particles. For instance, Na- and Ca-specific OES of aerosols produced by LA of silicate glasses or metals revealed axial shifts in the onset and maximum position of atomic emission which were in the range of a few millimeters. The occurrence of these shifts was found to arise from composition-dependent particle/aerosol penetration depths, i.e. the displacement of axial vaporization starting points controlling the ion extraction efficiency through the ICP-MS vacuum interface due to a delayed, diffusion-driven expansion of oxidic vs. metallic aerosols. Furthermore, ICP-QMS of individual particles resulted in 1/e half-value signal durations of approximately 100 μs, which complies with modeled values if OES maxima are assumed to coincide with positions of instantaneous vaporization and starting points for atomic diffusion. To prove phenomena observed for their consistency, in addition, “ab initio” as well as semi-empirical simulations of particle/aerosol penetration depths followed by diffusion-driven expansion was accomplished indicating differences of up to 15% in the relative ion extraction efficiency depending on whether analytes are supplied as metals or oxides. Implications of these findings on the accuracy achievable by state-of-the-art LA-ICP-MS systems are outlined. - Highlights: ► Specification

  6. Transition probabilities for lines of Cr II, Na II and Sb I by laser produced plasma atomic emission spectroscopy; Probabilidades de transicion de algunos niveles de Cr II, Na II y Sb I medediante espectroscopia de plasma producidos por laser

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, A. M.; Ortiz, M.; Campos, J.

    1995-07-01

    Absolute transition probabilities for lines of CR II, Na II and Sb I were determined by emission spectroscopy of laser induced plasmas. the plasma was produced focusing the emission of a pulsed Nd-Yag laser on solid samples containing the atom in study. the light arising from the plasma region was collected by and spectrometer. the detector used was a time-resolved optical multichannel analyzer (OMA III EG and G). The wavelengths of the measured transitions range from 2000 sto 4100 A. The spectral resolution of the system was 0. 2 A. The method can be used in insulators materials as Cl Na crystals and in metallic samples as Al-Cr and Sn-Sn alloys. to avoid self-absorption effects the alloys were made with low Sb or Cr content. Relative transition probabilities have been determined from measurements of emission-line intensities and were placed on an absolute scale by using, where possible, accurate experimental lifetime values form the literature or theoretical data. From these measurements, values for plasma temperature (8000-24000 K), electron densities ({approx}{approx} 10''16 cm ''-3) and self-absorption coefficients have been obtained. (Author) 56 refs.

  7. Recent Progress on Laser Produced Positron Research At LLN

    Science.gov (United States)

    Chen, Hui; Hermann, M.; Kalantar, D.; Kemp, A.; Link, A.; Jiang, S.; Martinez, D.; Park, J.; Remington, B.; Sherlock, M.; Williams, Gj; Beg, F.; Edghill, B.; Fedosejevs, R.; Kerr, S.; D'Humieres, E.; Fiuza, F.; Willingale, L.; Fiksel, G.; Nakai, N.; Arikawa, Y.; Morace, A.; Sentoku, Y.

    2017-10-01

    We report the recent results on laser-produced relativistic electron-positron plasma jets. This includes: the prepulse and material dependence of pair generation; time dependent positron acceleration and maximum achieved pair density. We will highlight the results from recent experiments on the Omega EP laser testing nanostructured target to increase pair yield. We will also report on a newly commissioned platform using the NIF ARC lasers which was developed for efficient pair creation using 10 ps laser duration at near relativistic laser intensity. This work was performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344, and funded by LDRD (#17-ERD-010).

  8. Optimization of soft x-ray line emission from laser-produced carbon ...

    Indian Academy of Sciences (India)

    Intense XUV soft x-ray emission from laser-produced plasma sources is currently ... absorption edges of oxygen and carbon respectively) is particularly attractive as it permits ... ability of the target element producing intense discrete lines in the water .... ficient due to Pert [17] and dielectronic recombination coefficient due to ...

  9. Characterization of laser-produced plasma EUV light

    International Nuclear Information System (INIS)

    Mizoguchi, Hakaru; Endo, Akira; Takabayashi, Yuichi; Sasaki, Akira; Komori, Hiroshi; Suganuma, Takashi

    2005-01-01

    Resolution of optical microlithography process becomes smaller and smaller. Wavelength of the light source for these optical lithography reduced from KrF, ArF to F2 to meet the resolution requirement. Recently EUV is spotlighted as promising candidate for next generation lithography light source. This paper summarizes the requirement and studies of experiments and simulation to improve the convention efficiency of EUV light source. (author)

  10. Multiple charge states of titanium ions in laser produced plasma

    Indian Academy of Sciences (India)

    An Nd:glass laser (KAMETRON) delivering 50 J energy (λ = 0.53 μm) in ... voltage on the deflection plates decides the energy (E/Z) of the charged particles to be ... of two ion groups viz fast ions (+22 to +12) and thermal ions (+11 to +1) as shown in ... ions survive the recombination losses in the early phase of expansion.

  11. Heating and conduction in laser-produced plasmas

    International Nuclear Information System (INIS)

    Shay, H.D.; Zimmerman, G.B.; Nuckolls, J.H.

    1974-01-01

    A series of experiments conducted by G. McCall of LASL provides important clues concerning the electron distributions heated in the absorption of intense (less than or approximately equal to 10/sup lb/ W/cm 2 ) laser radiation and the thermal transport of energy. Presented here is a tentative interpretation of these experiments obtained from LASNEX calculations. (U.S.)

  12. A radiation dependent ionization model for laser produced plasmas

    International Nuclear Information System (INIS)

    Busquet, M.

    1996-01-01

    RADIOM is a non-Local Thermodynamical Equilibrium Atomic Physics model, accounting for x-ray reabsorption. We present shortly the model, its introduction in hydrodynamic codes and a few application. copyright 1996 American Institute of Physics

  13. XUV spectra of laser-produced zirconium plasmas

    Czech Academy of Sciences Publication Activity Database

    Li, B.; Higashiguchi, T.; Otsuka, T.; Jiang, W.; Endo, Akira; Dunne, P.; O'Sullivan, G.

    2012-01-01

    Roč. 45, č. 24 (2012), "245004-1"-"245004-6" ISSN 0953-4075 R&D Projects: GA MŠk ED2.1.00/01.0027; GA MŠk EE2.3.20.0143 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6 k HILASE(XE) CZ.1.07/2.3.00/20.0143 Program:EE Institutional support: RVO:68378271 Keywords : x-ray-spectra * dielectronic recombination * transitions * spectroscopy * microscopy * ions Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.031, year: 2012

  14. Study of XUV lasers produced by a CO/sub 2/ laser

    International Nuclear Information System (INIS)

    Daido, H.; Miura, E.; Kitagawa, Y.; Kato, Y.; Nishihara, K.; Sawai, K.; Nakai, S.S.; Yamanaka, C.

    1988-01-01

    The authors present recent progress at ILE, Osaka University in plasma recombination-pumped XUV lasers produced by a CO/sub 2/ laser. One way to produce large-population inversion with this scheme is rapid cooling of the gain medium keeping a high electron density, because the three-body recombination probability is proportional to the square of the electron density. The authors used a cylinder-type target made of 30-μm thick parylene (C/sub 8/H/sub 8/) whose diameter and length are 3 and 4 mm. The laser irradiated the 2500-A thick parylene foil attached to the center of the cylinder. The fully ablated plasma expands isotropically, producing an almost uniform plasma on the cylinder wall. Then the almost fully ionized carbon plasma is cooled by heat transport from the hot plasma to the wall. The estimated cooling time is a few nanoseconds assuming classical heat transport

  15. Laser-produced multi-charged heavy ions as efficient soft x-ray sources

    International Nuclear Information System (INIS)

    Higashiguchi, Takeshi; Suzuki, Yuhei; Kawasaki, Masato

    2016-01-01

    We demonstrate EUV and soft x-ray sources in the 2 to 7 nm spectral region related to the beyond EUV (BEUV) question at 6x nm and a water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs), extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on a high-Z plasma UTA source, coupled to x-ray optics. We will discuss the progress and Z-scaling of UTA emission spectra to achieve lab-scale table-top, efficient, high-brightness high-Z plasma EUV-soft x-ray sources for in vivo bio-imaging applications. (author)

  16. Properties of Laser-Produced Highly Charged Heavy Ions for Direct Injection Scheme

    CERN Document Server

    Sakakibara, Kazuhiko; Hayashizaki, Noriyosu; Ito, Taku; Kashiwagi, Hirotsugu; Okamura, Masahiro

    2005-01-01

    To accelerate highly charged intense ion beam, we have developed the Direct Plasma Injection Scheme (DPIS) with laser ion source. In this scheme an ion beam from a laser ion source is injected directly to a RFQ linac without a low energy beam transport (LEBT) and the beam loss in the LEBT can be avoided. We achieved high current acceleration of carbon ions (60mA) by DPIS with the high current optimized RFQ. As the next setp we will use heavier elements like Ag, Pb, Al and Cu as target in LIS (using CO2, Nd-YAG or other laser) for DPIS and will examine properties of laser-produced plasma (the relationship of between charge state and laser power density, the current dependence of the distance from the target, etc).

  17. Theoretical and numerical study of the expansion of a laser-produced plasma: high energy ion acceleration; Etude theorique et numerique de l'expansion d'un plasma cree par laser: acceleration d'ions a haute energie

    Energy Technology Data Exchange (ETDEWEB)

    Grismayer, T

    2006-12-15

    This work is a theoretical and numerical study on the high energy ion acceleration in laser created plasma expansion. The ion beams produced on the rear side of an irradiated foil reveal some characteristics (low divergence, wide spectra) which distinguish them from the ones coming from the front side. The discovery of these beams has renewed speculation for applications such as proton-therapy or proton radiography. The ion acceleration is performed via a self-consistent electrostatic field due to the charge separation between ions and hot electrons. In the first part of this dissertation, we present the fluid theoretical model and the hybrid code which simulates the plasma expansion. The numerical simulation of a recent experience on the dynamic of the electric field by proton radiography validates the theoretical model. The second part deals with the influence of an initial ion density gradient on the acceleration efficiency. We establish a model which relates the plasma dynamic and more precisely the wave breaking of the ion flow. The numerical results which predict a strong decrease of the ion maximum energy for large gradient length are in agreement with the experimental data. The Boltzmann equilibrium for the electron assumed in the first part has been thrown back into doubt in the third part. We adopt a kinetic description for the electron. The new version of the code can measure the Boltzmann law deviation which does not strongly modify the maximum energy that can reach the ions. (author)

  18. Laser-supported ionization wave in under-dense gases and foams

    International Nuclear Information System (INIS)

    Gus'kov, S. Yu.; Limpouch, J.; Nicolaie, Ph.; Tikhonchuk, V. T.

    2011-01-01

    Propagation of laser-supported ionization wave in homogeneous and porous materials with a mean density less than the critical plasma density is studied theoretically in the one-dimensional geometry. It is shown that the velocity of the ionization wave in a foam is significantly decreased in comparison with the similar wave in a homogeneous fully ionized plasma of the same density. That difference is attributed to the ionization and hydro-homogenization processes forming an under-critical density environment in the front of ionization wave. The rate of energy transfer from laser to plasma is found to be in a good agreement with available experimental data.

  19. Electron acceleration by laser produced wake field: Pulse shape effect

    Science.gov (United States)

    Malik, Hitendra K.; Kumar, Sandeep; Nishida, Yasushi

    2007-12-01

    Analytical expressions are obtained for the longitudinal field (wake field: Ex), density perturbations ( ne') and the potential ( ϕ) behind a laser pulse propagating in a plasma with the pulse duration of the electron plasma period. A feasibility study on the wake field is carried out with Gaussian-like (GL) pulse, rectangular-triangular (RT) pulse and rectangular-Gaussian (RG) pulse considering one-dimensional weakly nonlinear theory ( ne'/n0≪1), and the maximum energy gain acquired by an electron is calculated for all these three types of the laser pulse shapes. A comparative study infers that the RT pulse yields the best results: In its case maximum electron energy gain is 33.5 MeV for a 30 fs pulse duration whereas in case of GL (RG) pulse of the same duration the gain is 28.6 (28.8)MeV at the laser frequency of 1.6 PHz and the intensity of 3.0 × 10 18 W/m 2. The field of the wake and hence the energy gain get enhanced for the higher laser frequency, larger pulse duration and higher laser intensity for all types of the pulses.

  20. Modelling and optimisation of fs laser-produced Kα sources

    International Nuclear Information System (INIS)

    Gibbon, P.; Masek, M.; Teubner, U.; Lu, W.; Nicoul, M.; Shymanovich, U.; Tarasevitch, A.; Zhou, P.; Sokolowski-Tinten, K.; Linde, D. von der

    2009-01-01

    Recent theoretical and numerical studies of laser-driven femtosecond K α sources are presented, aimed at understanding a recent experimental campaign to optimize emission from thin coating targets. Particular attention is given to control over the laser-plasma interaction conditions defined by the interplay between a controlled prepulse and the angle of incidence. It is found that the x-ray efficiency for poor-contrast laser systems in which a large preplasma is suspected can be enhanced by using a near-normal incidence geometry even at high laser intensities. With high laser contrast, similar efficiencies can be achieved by going to larger incidence angles, but only at the expense of larger X-ray spot size. New developments in three-dimensional modelling are also reported with the goal of handling interactions with geometrically complex targets and finite resistivity. (orig.)

  1. Modification of semiconductor materials using laser-produced ion streams additionally accelerated in the electric fields

    International Nuclear Information System (INIS)

    Rosinski, M.; Badziak, B.; Parys, P.; Wolowski, J.; Pisarek, M.

    2009-01-01

    The laser-produced ion stream may be attractive for direct ultra-low-energy ion implantation in thin layer of semiconductor for modification of electrical and optical properties of semiconductor devices. Application of electrostatic fields for acceleration and formation of laser-generated ion stream enables to control the ion stream parameters in broad energy and current density ranges. It also permits to remove the useless laser-produced ions from the ion stream designed for implantation. For acceleration of ions produced with the use of a low fluence repetitive laser system (Nd:glass: 2 Hz, pulse duration: 3.5 ns, pulse energy:∼0.5 J, power density: 10 10 W/cm 2 ) in IPPLM the special electrostatic system has been prepared. The laser-produced ions passing through the diaphragm (a ring-shaped slit in the HV box) have been accelerated in the system of electrodes. The accelerating voltage up to 40 kV, the distance of the diaphragm from the target, the diaphragm diameter and the gap width were changed for choosing the desired parameters (namely the energy band of the implanted ions) of the ion stream. The characteristics of laser-produced Ge ion streams were determined with the use of precise ion diagnostic methods, namely: electrostatic ion energy analyser and various ion collectors. The laser-produced and post-accelerated Ge ions have been used for implantation into semiconductor materials for nanocrystal fabrication. The characteristics of implanted samples were measured using AES

  2. Volume effect of laser produced plasma on X-ray emissions

    Indian Academy of Sciences (India)

    A polished copper tip attached to a simple BNC connector was used as Langmuir probes. The probe is kept at a ... 300 ps duration. Two sets of x-ray data taken with 15 J and 11 J constant energy shots clearly shows that two lateral maxima appear in the x-ray signal plotted against the target position relative to the best focus ...

  3. Supersonic Heat Wave Propagation in Laser-Produced Underdense Plasma for Efficient X-Ray Generation

    International Nuclear Information System (INIS)

    Tanabe, M.; Nishimura, H.; Fujioka, S.; Nagai, K.; Iwamae, A.; Ohnishi, N.; Fournier, K.B.; Girard, F.; Primout, M.; Villette, B.; Tobin, M.; Mima, K.

    2008-01-01

    We have observed supersonic heat wave propagation in a low-density aerogel target (ρ ∼ 3.2 mg/cc) irradiated at the intensity of 4 x 10 14 W/cm 2 . The heat wave propagation was measured with a time-resolved x-ray imaging diagnostics, and the results were compared with simulations made with the two-dimensional radiation-hydrodynamic code, RAICHO. Propagation velocity of the ionization front gradually decreased as the wave propagates into the target. The reason of decrease is due to increase of laser absorption region as the front propagates and interplay of hydrodynamic motion and reflection of laser propagation. These features are well reported with the simulation

  4. Turbulent Dynamo Amplification of Magnetic Fields in Laser-Produced Plasmas: Simulations and Experiments

    Science.gov (United States)

    Tzeferacos, P.; Rigby, A.; Bott, A.; Bell, A.; Bingham, R.; Casner, A.; Cattaneo, F.; Churazov, E.; Forest, C.; Katz, J.; Koenig, M.; Li, C.-K.; Meinecke, J.; Petrasso, R.; Park, H.-S.; Remington, B.; Ross, J.; Ryutov, D.; Ryu, D.; Reville, B.; Miniati, F.; Schekochihin, A.; Froula, D.; Lamb, D.; Gregori, G.

    2017-10-01

    The universe is permeated by magnetic fields, with strengths ranging from a femtogauss in the voids between the filaments of galaxy clusters to several teragauss in black holes and neutron stars. The standard model for cosmological magnetic fields is the nonlinear amplification of seed fields via turbulent dynamo. We have conceived experiments to demonstrate and study the turbulent dynamo mechanism in the laboratory. Here, we describe the design of these experiments through large-scale 3D FLASH simulations on the Mira supercomputer at ANL, and the laser-driven experiments we conducted with the OMEGA laser at LLE. Our results indicate that turbulence is capable of rapidly amplifying seed fields to near equipartition with the turbulent fluid motions. This work was supported in part from the ERC (FP7/2007-2013, No. 256973 and 247039), and the U.S. DOE, Contract No. B591485 to LLNL, FWP 57789 to ANL, Grant No. DE-NA0002724 and DE-SC0016566 to the University of Chicago, and DE-AC02-06CH11357 to ANL.

  5. Modelling of thermal transport using Fokker-Planck equations in laser produced plasma

    International Nuclear Information System (INIS)

    Nakarmi, J.J.; Jha, L.N.

    1996-12-01

    The kinetic equation with Fokker-Planck collision term has been presented to obtain the distribution function in the corona of inertial confinement fusion, in the presence of the self generated magnetic field. The resulting distribution has non-local form with the convolution in Maxwellian. An expression for thermal flux with self generated magnetic field is obtained. (author). 22 refs

  6. Studies of momentum transfer and X-ray spectra in a laser-produced plasma

    International Nuclear Information System (INIS)

    Leroy, Pierre

    Studies of momentum transfer from a ballistic pendulum appear to give satisfactory results for absorbed laser energies in excess of 200 mJ i.e. for fluxes in the 3.10 10 to 3.10 12 W.cm -2 range. A hard X-ray component attributed to fast electrons was revealed by an X-ray spectrometer with a PM system of greater sensitivity than PIN diodes. The laser energy is however too weak to enable studies to be conducted as a function of laser flux or measurements to be performed on targets of low Z [fr

  7. TuFF3. Self-focusing in underdense ultraviolet laser-produced plasmas

    International Nuclear Information System (INIS)

    Tanaka, K.; Boswell, B.; Craxton, R.S.; Goldman, L.M.; Richardson, M.C.; Seka, W.; Short, R.W.; Soures, J.M.

    1984-01-01

    Ultraviolet laser-matter interaction processes are of considerable interest to laser fusion. Among these processes, filamentation (or self-focusing) is of particular importance, since it could prevent attainment of the illumination uniformity required for high target compression. In addition self-focusing may complicate the interpretation of target interaction experiments. Self-focusing has been studied experimentally by side-on x-ray pinhole camera photography and backscatter spectrometry. These results are compared with two-dimensional simulations using the hydro code SAGE, which is well suited to model thermal self-focusing (no ponderomotive forces are included in these simulations)

  8. Stabilization of Rayleigh-Taylor instability due to the spontaneous magnetic field in laser produced plasma

    International Nuclear Information System (INIS)

    Ogasawara, Masatada; Takita, Masami.

    1981-08-01

    Spontaneous magnetic fields due to the temperature gradient nabla T 0 produced by a focussed laser beam on one point of a pellet are taken into account in deriving the dispersion relation of Rayleigh-Taylor instability. Growth rate γ decreases with time. Density fluctuation with wavelength shorter than 1.5(R/L sub(T)) x (n sub(s)/n 0 )sup(1/2) μm is remarkably stabilized, where R, L sub(T), n sub(s) and n 0 are the radius of a pellet, L sub(T)sup(-1) = + nabla T 0 /T 0 + , number densities of solid and the pellet. Validity condition of the theory is γt 0 >> 1 or in another form R >> L, where t 0 is the time of thermal expansion of a pellet and L -1 = + nabla n 0 /n 0 + . (author)

  9. Measurements of spatially resolved high resolution spectra of laser-produced plasmas. FY 83 annual report

    International Nuclear Information System (INIS)

    Feldman, U.

    1984-01-01

    A high resolution grazing incidence spectrograph, provided by the Naval Research Laboratory and the Goddard Space Flight Center, has been installed on the Omega laser facility of the Laboratory for Laser Energetics (LLE) at the University of Rochester. This 3 meter instrument, with a 1200 lines/mm grating blazed at 2 0 35', has produced extremely high quality spectra in the wavelength region 10 A to 100 A. Spectra have been obtained from glass microballoon targets that are coated with a variety of high-Z materials. Transitions from the Na-like and Ne-like ionization stages of Fe, Ni, Cu, and Kr have been identified

  10. Application of X-ray imagery with coded aperture to laser-produced plasmas

    International Nuclear Information System (INIS)

    Fleurot, N.; Gex, J.P.; Sauneuf, R.; Beaucoudray, N. de.

    1981-05-01

    The analysis of the phenomena occurring inside microplasmas generated by laser techniques is often performed with images obtained by the X-rays or alpha particles emitted. Pinhole chambers are extensively used for this type of diagnostic. The number of photons or particles collected, however, decreases with increasing resolution as does the signal-to-noise (S/B) ratio. The coding schema shows that the coder and detector are both flat and parallel to one another. Each object point projects the shadow of the coder onto the detector. The coder shadow is a homothetic figure of the coder. The dimensions and the position of this shadow depend on the position of the point in space, which gives three dimensional information [fr

  11. Studies on production of metastable core-excited atoms by laser-produced x-rays. Final report, 1 October 1984-30 September 1985

    International Nuclear Information System (INIS)

    Harris, S.E.; Young, J.F.

    1986-04-01

    The overall objective of the work on this program was to study methods for production of core-excited metastable atoms by laser-generated x-rays. We are interested in the spectroscopy of these levels, their autoionizing and radiative rates, and their metastability in the presence of hot electrons and ions. The concept of using x-rays emitted from a laser-produced plasma to excite large densities of energetic excited levels in atoms and ions has been thoroughly experimentally investigated using modest, 100 mJ, plasma-producing lasers. One of the objectives of this work was to verify that these techniques could be scaled up to higher energies, such as 20 J. Thus a major effort this year has been devoted to the design and construction of the high energy (20 J) 1064 nm plasma-forming laser system and the tunable probe/transfer laser

  12. Applications of laser produced ion beams to nuclear analysis of materials

    International Nuclear Information System (INIS)

    Mima, K.; Azuma, H.; Fujita, K.; Yamazaki, A.; Okuda, C.; Ukyo, Y.; Kato, Y.; Arrabal, R. Gonzalez; Soldo, F.; Perlado, J. M.; Nishimura, H.; Nakai, S.

    2012-01-01

    Laser produced ion beams have unique characteristics which are ultra-short pulse, very low emittance, and variety of nuclear species. These characteristics could be used for analyzing various materials like low Z ion doped heavy metals or ceramics. Energies of laser produced ion beam extend from 0.1MeV to 100MeV. Therefore, various nuclear processes can be induced in the interactions of ion beams with samples. The ion beam driven nuclear analysis has been developed for many years by using various electrostatic accelerators. To explore the applicability of laser ion beam to the analysis of the Li ion battery, a proton beam with the diameter of ∼ 1.0 μm at Takasaki Ion Acceleration for Advanced Radiation Application (TIARA), JAEA was used. For the analysis, the PIGE (Particle-Induced Gamma Ray Emission) is used. The proton beam scans over Li battery electrode samples to diagnose Li density in the LiNi 0.85 Co 0.15 O 2 anode. As the results, PIGE images for Li area density distributions are obtained with the spatial resolution of better than 1.5μm FWHM. By the Li PIGE images, the depth dependence of de-intercalation levels of Li in the anode is obtained. By the POP experiments at TIARA, it is clarified that laser produced ion beam is appropriate for the Li ion battery analysis. 41.85.Lc, 41.75.Jv, 42.62.cf.

  13. Non equilibrium atomic processes and plasma spectroscopy

    International Nuclear Information System (INIS)

    Kato, Takako

    2003-01-01

    Along with the technical progress in plasma spectroscopy, non equilibrium ionization processes have been recently observed. We study non local thermodynamic equilibrium and non ionization equilibrium for various kinds of plasmas. Specifically we discuss non equilibrium atomic processes in magnetically confined plasmas, solar flares and laser produced plasmas using a collisional radiative model based on plasma spectroscopic data. (author)

  14. Microwave plasma mode conversion

    International Nuclear Information System (INIS)

    Torres, H.S.; Sakanaka, P.H.; Villarroel, C.H.

    1985-01-01

    The behavior of hot electrons during the process of laser-produced plasma is studied. The basic equations of mode conversion from electromagnetic waves to electrostatic waves are presented. It is shown by mode conversion, that, the resonant absorption and parametric instabilities appear simultaneously, but in different plasma regions. (M.C.K.) [pt

  15. Influence of femtosecond laser produced nanostructures on biofilm growth on steel

    Science.gov (United States)

    Epperlein, Nadja; Menzel, Friederike; Schwibbert, Karin; Koter, Robert; Bonse, Jörn; Sameith, Janin; Krüger, Jörg; Toepel, Jörg

    2017-10-01

    Biofilm formation poses high risks in multiple industrial and medical settings. However, the robust nature of biofilms makes them also attractive for industrial applications where cell biocatalysts are increasingly in use. Since tailoring material properties that affect bacterial growth or its inhibition is gaining attention, here we focus on the effects of femtosecond laser produced nanostructures on bacterial adhesion. Large area periodic surface structures were generated on steel surfaces using 30-fs laser pulses at 790 nm wavelength. Two types of steel exhibiting a different corrosion resistance were used, i.e., a plain structural steel (corrodible) and a stainless steel (resistant to corrosion). Homogeneous fields of laser-induced periodic surface structures (LIPSS) were realized utilizing laser fluences close to the ablation threshold while scanning the sample under the focused laser beam in a multi-pulse regime. The nanostructures were characterized with optical and scanning electron microscopy. For each type of steel, more than ten identical samples were laser-processed. Subsequently, the samples were subjected to microbial adhesion tests. Bacteria of different shape and adhesion behavior (Escherichia coli and Staphylococcus aureus) were exposed to laser structures and to polished reference surfaces. Our results indicate that E. coli preferentially avoids adhesion to the LIPSS-covered areas, whereas S. aureus favors these areas for colonization.

  16. Application of laser produced ion beams to nuclear analysis of materials

    International Nuclear Information System (INIS)

    Mima, K.; Fujita, K.; Azuma, H.; Yamazaki, A.; Kato, Y.; Okuda, C.; Ukyo, Y.; Sawada, H.; Gonzalez-Arrabal, R.; Perlado, J. M.; Nishimura, H.; Nakai, S.

    2013-01-01

    The ion beam driven nuclear analysis has been developed for many years by using various electrostatic accelerators. A proton micro-beam with the beam diameter of ∼1.5 μm at Takasaki Ion Acceleration for Advanced Radiation Application (TIARA), JAEA was used to analyze the positive electrode of the Li-ion battery with PIGE and PIXE. WThe PIGE and PIXE images of Li and Ni respectively for Li x Ni 0.8 Co 0.15 Al 0.05 O 2 (x = 0.75 ∼ 1.0) anodes have been taken. The PIGE images of Li x Ni 0.8 Co 0.15 Al 0.05 O 2 particles and the depth profile of the Li density have been obtained with high spatial resolution (a few μm). The images of the Li density distribution are very useful for the RandD of the Li ion battery. In order to make the in-situ ion beam analysis of the Li battery possible, a compact accelerator for a high quality MeV proton beam is necessary. Form this point of view, the diagnostics of Li ion battery is an appropriate field for the applications of laser produced ion beams. (authors)

  17. Modelling and optimisation of fs laser-produced K (alpha) sources

    Czech Academy of Sciences Publication Activity Database

    Gibbon, P.; Mašek, Martin; Teubner, U.; Lu, W.; Nicoul, M.; Shymanovich, U.; Tarasevitch, A.; Zhou, P.; Sokolowski-Tinten, K.; von der Linde, D.

    2009-01-01

    Roč. 96, č. 1 (2009), 23-31 ISSN 0947-8396 R&D Projects: GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z10100523 Keywords : fs laser-plasma interaction * K (alpha) sources * 3D numerical modelling Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.595, year: 2009

  18. Plasma polarization spectroscopy

    International Nuclear Information System (INIS)

    Iwamae, Atsushi; Horimoto, Yasuhiro; Fujimoto, Takashi; Hasegawa, Noboru; Sukegawa, Kouta; Kawachi, Tetsuya

    2005-01-01

    The electron velocity distribution function (EVDF) in plasma can be anisotropic in laser-produced plasmas. We have developed a new technique to evaluate the polarization degree of the emission lines in the extreme vacuum ultra violet wavelength region. The polarization of the emission lines and the continuums from the lithium-like nitrogen and from helium- and hydrogen-like carbon in recombining plasma is evaluated. Particle simulation in the velocity space gives the time scale for relaxation of anisotropic EVDFs. (author)

  19. Abstracts of the 23rd European physical society conference on controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Goutych, I F; Gresillon, D; Sitenko, A G

    1997-12-31

    This document contains the abstracts of the invited and contributed papers presented at 23 EPS conference on controlled fusion and plasma physics. The main contents are: tokamaks, stellarators; alternative magnetic confinement; plasma edge physics; plasma heating and current drive; plasma diagnostics; basic collisionless plasma physics; high intensity laser produced plasmas and inertial confinement; low-temperature plasmas.

  20. Abstracts of the 23rd European physical society conference on controlled fusion and plasma physics

    International Nuclear Information System (INIS)

    Goutych, I.F.; Gresillon, D.; Sitenko, A.G.

    1996-01-01

    This document contains the abstracts of the invited and contributed papers presented at 23 EPS conference on controlled fusion and plasma physics. The main contents are: tokamaks, stellarators; alternative magnetic confinement; plasma edge physics; plasma heating and current drive; plasma diagnostics; basic collisionless plasma physics; high intensity laser produced plasmas and inertial confinement; low-temperature plasmas

  1. Statistics and characteristics of xuv transition arrays from laser-produced plasmas of the elements tin through iodine

    DEFF Research Database (Denmark)

    Svendsen, Winnie Edith; O'Sullivan, G.

    1994-01-01

    , inclusion of configuration interaction effects between the 4d9nf levels showed that 4d94f and 4d95f mixing shifts this minimum to the thirteenth spectrum. The theoretical data were then parametrized within the UTA formalism and the different order moments corresponding to weighted mean energy, variance...

  2. High resolution soft X-Ray spectrometer with 5-picosecond time-resolution for laser-produced plasma diagnostics

    International Nuclear Information System (INIS)

    Mexmain, J.M.; Bourgade, J.L.; Louis-Jacquet, M.; Mascureau, J. de; Sauneuf, R.; Schwob, J.L.

    1987-01-01

    A new XUV spectrometer designed to have a time-resolution of 3 ps and a spectral resolution of 0.1 A is described. It is basically a modified version of a Schwob-Fraenkel spectrometer, which is coupled to a new ultrafast electronic streak camera

  3. Influence of irradiation conditions on polytetrafluoroethylen ablation induced by soft x-rays emitted from laser-produced plasma

    Czech Academy of Sciences Publication Activity Database

    Viskup, Richard; Juha, Libor; Krása, Josef

    2004-01-01

    Roč. 54, č. 3 (2004), s. 277-284 ISSN 0323-0465 R&D Projects: GA MŠk LA 055; GA MŠk 1P04LA235; GA MŠk LN00A100 Institutional research plan: CEZ:AV0Z1010921 Keywords : ablation * X-rays Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.513, year: 2004

  4. Development of a liquid tin microjet target for an efficient laser-produced plasma extreme ultraviolet source.

    Science.gov (United States)

    Higashiguchi, Takeshi; Hamada, Masaya; Kubodera, Shoichi

    2007-03-01

    A regenerative tin liquid microjet target was developed for a high average power extreme ultraviolet (EUV) source. The diameter of the target was smaller than 160 microm and good vacuum lower than 0.5 Pa was maintained during the operation. A maximum EUV conversion efficiency of 1.8% at the Nd:yttrium-aluminum-garnet laser intensity of around 2 x 10(11) Wcm(2) with a spot diameter of 175 microm (full width at half maximum) was observed. The angular distribution of the EUV emission remained almost isotropic, whereas suprathermal ions mainly emerged toward the target normal.

  5. Development of a liquid tin microjet target for an efficient laser-produced plasma extreme ultraviolet source

    Science.gov (United States)

    Higashiguchi, Takeshi; Hamada, Masaya; Kubodera, Shoichi

    2007-03-01

    A regenerative tin liquid microjet target was developed for a high average power extreme ultraviolet (EUV) source. The diameter of the target was smaller than 160 μm and good vacuum lower than 0.5 Pa was maintained during the operation. A maximum EUV conversion efficiency of 1.8% at the Nd:yttrium-aluminum-garnet laser intensity of around 2×1011 W/cm2 with a spot diameter of 175 μm (full width at half maximum) was observed. The angular distribution of the EUV emission remained almost isotropic, whereas suprathermal ions mainly emerged toward the target normal.

  6. Development of a liquid tin microjet target for an efficient laser-produced plasma extreme ultraviolet source

    International Nuclear Information System (INIS)

    Higashiguchi, Takeshi; Hamada, Masaya; Kubodera, Shoichi

    2007-01-01

    A regenerative tin liquid microjet target was developed for a high average power extreme ultraviolet (EUV) source. The diameter of the target was smaller than 160 μm and good vacuum lower than 0.5 Pa was maintained during the operation. A maximum EUV conversion efficiency of 1.8% at the Nd:yttrium-aluminum-garnet laser intensity of around 2x10 11 W/cm 2 with a spot diameter of 175 μm (full width at half maximum) was observed. The angular distribution of the EUV emission remained almost isotropic, whereas suprathermal ions mainly emerged toward the target normal

  7. The x-ray emission spectra of multicharged xenon ions in a gas puff laser-produced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Skobelev, I.Yu.; Dyakin, V.M.; Faenov, A.Ya. [Multicharged Ion Spectra Data Center, VNIIFTRI, Mendeleevo (Russian Federation); Bartnik, A.; Fiedorowicz, H.; Jarocki, R.; Kostecki, J.; Szczurek, M. [Institute of Optoelectronics, Military University of Technology, Warsaw (Poland); Biemont, E. [Institut de Physique Nucleaire Experimentale, Universite de Liege, Liege (Belgium); Astrophysique et Spectroscopie, Universite de Mons-Hainaut, Mons (Belgium); Quinet, P. [Astrophysique et Spectroscopie, Universite de Mons-Hainaut, Mons (Belgium); Nilsen, J. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Behar, E.; Doron, R.; Mandelbaum, P.; Schwob, J.L. [Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem (Israel)

    1999-01-14

    Emission spectra of multicharged xenon ions produced by a laser gas puff are observed with high spectral resolution in the 8.5-9.5 and 17-19 A wavelength ranges. Three different theoretical methods are employed to obtain 3l-n'l'(n' = 4 to 10) wavelengths and Einstein coefficients for Ni-like Xe{sup 26+}. For the 3d-4p transitions, very good agreement is found between the experimental wavelengths and the various theoretical wavelengths. These accurate energy level measurements can be useful for studying the Ni-like xenon x-ray laser scheme. On the other hand, several intense spectral lines could not be identified as 3l-n'l' lines of Ni-like xenon, despite the very good agreement between the wavelengths and Einstein coefficients calculated for these transitions using the three different methods. (author)

  8. Scaling of x-ray emission and ion velocity in laser produced Cu ...

    Indian Academy of Sciences (India)

    Laser plasma; x-ray emission; conversion efficiency; ion velocities. ... fits from this kind of optimization studies are in the fields of x-ray lithography, x-ray lasers etc. .... formula between the x-ray conversion rate versus different parameters of the ...

  9. The 26th IEEE international conference on plasma science

    International Nuclear Information System (INIS)

    1999-01-01

    Some of the sessions covered by this conference are: Basic Processes in Fully and Partially Ionized Plasmas; Slow Wave Devices; Laser-Produced Plasma; Non-Equilibrium Plasma Processing; Space Plasmas and Partially Ionized Gases; Microwave Plasmas; Inertial Confinement Fusion; Plasma Diagnostics; Computational Plasma Physics; Microwave Systems; Laser Produced Plasmas and Dense Plasma Focus; Intense Electron and Ion Beams; Fast Wave Devices; Spherical Configurations and Ball Lightning; Thermal Plasma Chemistry and Processing and Environmental Issues in Plasma Science; Plasma, Ion, and Electron Sources; Fast Wave Devices and Intense Beams; Fast Z-pinches and X-ray Lasers; Plasma Opening Switches; Plasma for Lighting; Intense Beams; Vacuum Microwaves; Magnetic Fusion Energy; and Plasma Thrusters and Arcs. Separate abstracts were prepared for some of the papers in this volume

  10. Diagnostics of Carbon Nanotube Formation in a Laser Produced Plume: An Investigation of the Metal Catalyst by Laser Ablation Atomic Fluorescence Spectroscopy

    Science.gov (United States)

    deBoer, Gary; Scott, Carl

    2003-01-01

    Carbon nanotubes, elongated molecular tubes with diameters of nanometers and lengths in microns, hold great promise for material science. Hopes for super strong light-weight material to be used in spacecraft design is the driving force behind nanotube work at JSC. The molecular nature of these materials requires the appropriate tools for investigation of their structure, properties, and formation. The mechanism of nanotube formation is of particular interest because it may hold keys to controlling the formation of different types of nanotubes and allow them to be produced in much greater quantities at less cost than is currently available. This summer's work involved the interpretation of data taken last summer and analyzed over the academic year. The work involved diagnostic studies of carbon nanotube formation processes occurring in a laser-produced plume. Laser ablation of metal doped graphite to produce a plasma plume in which carbon nanotubes self assemble is one method of making carbon nanotube. The laser ablation method is amenable to applying the techniques of laser spectroscopy, a powerful tool for probing the energies and dynamics of atomic and molecular species. The experimental work performed last summer involved probing one of the metal catalysts, nickel, by laser induced fluorescence. The nickel atom was studied as a function of oven temperature, probe laser wavelength, time after ablation, and position in the laser produced plume. This data along with previously obtained data on carbon was analyzed over the academic year. Interpretations of the data were developed this summer along with discussions of future work. The temperature of the oven in which the target is ablated greatly influences the amount of material ablated and the propagation of the plume. The ablation conditions and the time scale of atomic and molecular lifetimes suggest that initial ablation of the metal doped carbon target results in atomic and small molecular species. The metal

  11. Radial focusing and energy compression of a laser-produced proton beam by a synchronous rf field

    Directory of Open Access Journals (Sweden)

    Masahiro Ikegami

    2009-06-01

    Full Text Available The dynamics of a MeV laser-produced proton beam affected by a radio frequency (rf electric field has been studied. The proton beam was emitted normal to the rear surface of a thin polyimide target irradiated with an ultrashort pulsed laser with a power density of 4×10^{18}  W/cm^{2}. The energy spread was compressed to less than 11% at the full width at half maximum (FWHM by an rf field. Focusing and defocusing effects of the transverse direction were also observed. These effects were analyzed and reproduced by Monte Carlo simulations. The simulation results show that the transversely focused protons had a broad continuous spectrum, while the peaks in the proton spectrum were defocused. Based on this new information, we propose that elimination of the continuous energy component of laser-produced protons is possible by utilizing a focal length difference between the continuous spectral protons and the protons included in the spectral peak.

  12. Isochoric heating of DT fuels through PW-laser-produced proton beams

    International Nuclear Information System (INIS)

    Maynard, G.; Barriga-Carrasco, M.D.

    2005-01-01

    Laser Proton Source (LPS) can generate short bunch of energetic protons with a nearly zero initial emittance. It is thus expected that LPS can deposit a very high density of energy inside dense matter, in particular, in the context of fast ignition of an inertial fusion target. We investigate here one of the factors that can limit the density of deposited energy. It concerns the transverse diffusion, occurring during the transport between the LPS and DT. As the rear surface of LPS should be efficiently protected, the proton along its path has to interact with a substantial amount of high-Z material. Therefore the induced transverse dispersion can become significant. The transport of the proton beam inside a plasma target is calculated using a numerical code, which main features are presented

  13. Isochoric heating of DT fuels through PW-laser-produced proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Maynard, G. [Laboratoire de Physique des Gaz et des Pasmas, CNRS UMR8578, bat. 210, Universite Paris XI, F-91405, Orsay (France)]. E-mail: gilles.maynard@pgp.u-psud.fr; Barriga-Carrasco, M.D. [Laboratoire de Physique des Gaz et des Pasmas, CNRS UMR8578, bat. 210, Universite Paris XI, F-91405, Orsay (France)

    2005-05-21

    Laser Proton Source (LPS) can generate short bunch of energetic protons with a nearly zero initial emittance. It is thus expected that LPS can deposit a very high density of energy inside dense matter, in particular, in the context of fast ignition of an inertial fusion target. We investigate here one of the factors that can limit the density of deposited energy. It concerns the transverse diffusion, occurring during the transport between the LPS and DT. As the rear surface of LPS should be efficiently protected, the proton along its path has to interact with a substantial amount of high-Z material. Therefore the induced transverse dispersion can become significant. The transport of the proton beam inside a plasma target is calculated using a numerical code, which main features are presented.

  14. Turbulent amplification of magnetic fields in laboratory laser-produced shock waves

    International Nuclear Information System (INIS)

    Meinecke, J.; Doyle, H.W.; Bell, A.R.; Schekochihin, A.A.; Miniati, F.; Bingham, R.; Koenig, M.; Pelka, A.; Ravasio, A.; Yurchak, R.

    2014-01-01

    X-ray and radio observations of the supernova remnant Cassiopeia A reveal the presence of magnetic fields about 100 times stronger than those in the surrounding interstellar medium. Field coincident with the outer shock probably arises through a nonlinear feedback process involving cosmic rays. The origin of the large magnetic field in the interior of the remnant is less clear but it is presumably stretched and amplified by turbulent motions. Turbulence may be generated by hydrodynamic instability at the contact discontinuity between the supernova ejecta and the circumstellar gas. However, optical observations of Cassiopeia A indicate that the ejecta are interacting with a highly inhomogeneous, dense circumstellar cloud bank formed before the supernova explosion. Here we investigate the possibility that turbulent amplification is induced when the outer shock overtakes dense clumps in the ambient medium. We report laboratory experiments that indicate the magnetic field is amplified when the shock interacts with a plastic grid. We show that our experimental results can explain the observed synchrotron emission in the interior of the remnant. The experiment also provides a laboratory example of magnetic field amplification by turbulence in plasmas, a physical process thought to occur in many astrophysical phenomena. (authors)

  15. The 22nd AINSE plasma science and technology conference. Conference handbook

    International Nuclear Information System (INIS)

    1999-01-01

    These proceedings contain the extended abstracts of the papers and posters presented at the 22nd AINSE plasma science and technology conference hosted by the Australian National University in Canberra. Topics under discussion included: fusion devices and experiments; plasma production; plasma confinement; plasma heating and current drive; plasma waves; plasma diagnostics; basic collisionless plasma physics; laser produced plasmas and inertial confinement; low-temperature plasmas and interferometry. The individual papers were indexed separately

  16. Laser plasma X-ray for non-destructive inspection

    International Nuclear Information System (INIS)

    Yagi, T.; Kusama, H.

    1995-01-01

    External electric field is applied to the laser produced plasma, and its found that plasma shape in soft X-ray region is changed due to the penetrating electric field. The plasma emits strong hard X-ray, which can be used as a compact light source for non-destructive inspection. (author)

  17. Recombination of a fast expanding plasma

    International Nuclear Information System (INIS)

    Salvat, M.

    1979-05-01

    The goal of the following calculations is to determine numerically the recombination of dense plasmas (for instance of laser-produced plasmas). The recombination is computed for plasmas with initial densities of 10 24 27 [m -3 ] and with initial temperatures >= 50 eV. The ionization of the plasma remains essentially constant during the early phase of expansion. The time for which the ionization is 'frozen-in' grows with decreasing initial density and with increasing initial temperature. (orig.) [de

  18. Proceedings of the 1. Brazilian Congress on Plasma Physics. v. 3

    International Nuclear Information System (INIS)

    1991-01-01

    These proceedings cover the technical papers on plasma production, heating, diagnostics, laser-produced and waves, instabilities and confinement. Theoretical and experimental works are presented. (l.c.j.a.)

  19. Tecnical report- Group of Plasma

    International Nuclear Information System (INIS)

    Sakanaka, P.H.; Boeckelmann, H.K.; Marotta, A.

    1985-01-01

    The research activities of Plasma Laboratory at UNICAMP (University of Campinas, Brazil) in the period from november 84 to july/85 are described. In the TUPA project, several works related to substructure and research programs were developed. Diagnostic techniques to analyse the theta Pinch implosion phase, a presure probe, an electrostatic ion energy analyser and laser-produced plasma spectroscopy were developed. The experimental results were obtained, using multiple magnetic probes inserted in the plasma. These results were analysed by numerical code using some MHD equations in 2 dimensions. A description of plasma dynamic was determined and the plasma parameters such as density and temperature were estimated. (M.C.K.) [pt

  20. Determination of self generated magnetic field and the plasma density using Cotton Mouton polarimetry with two color probes

    Directory of Open Access Journals (Sweden)

    Joshi A.S.

    2013-11-01

    Full Text Available Self generated magnetic fields (SGMF in laser produced plasmas are conventionally determined by measuring the Faraday rotation angle of a linearly polarized laser probe beam passing through the plasma along with the interferogram for obtaining plasma density. In this paper, we propose a new method to obtain the plasma density and the SGMF distribution from two simultaneous measurements of Cotton Mouton polarimetry of two linearly polarized probe beams of different colors that pass through plasma in a direction normal to the planar target. It is shown that this technique allows us to determine the distribution of SGMF and the plasma density without doing interferometry of laser produced plasmas.

  1. High-quality laser-produced proton beam realized by the application of a synchronous RF electric field

    International Nuclear Information System (INIS)

    Nakamura, Shu; Ikegami, Masahiro; Iwashita, Yoshihisa; Shirai, Toshiyuki; Tongu, Hiromu; Souda, Hikaru; Noda, Akira; Daido, Hiroyuki; Mori, Michiaki; Kado, Masataka; Sagisaka, Akito; Ogura, Koichi; Nishiuchi, Mamiko; Orimo, Satoshi; Hayashi, Yukio; Yogo, Akifumi; Pirozhkov, Alexander S.; Bulanov, Sergei V.; Esirkepov, Timur; Nagashima, Akira; Kimura, Toyoaki; Tajima, Toshiki; Takeuchi, Takeshi; Fukumi, Atsushi; Li, Zhong

    2007-01-01

    A short-pulse (∼210fs) high-power (∼1 TW) laser was focused on a tape target 3 and 5 μm in thickness to a size of 11 x 15 μm 2 with an intensity of 3 x 10 17 W/cm 2 . Protons produced by this laser with an energy spread of 100% were found to be improved to create peaks in the energy distribution with a spread of ∼7% by the application of the RF electric field with an amplitude of ±40kV synchronous to the pulsed laser. This scheme combines the conventional RF acceleration technique with laser-produced protons for the first time. It is possible to be operated up to 10 Hz, and is found to have good reproducibility for every laser shot with the capability of adjusting the peak positions by control of the relative phase between the pulsed laser and the RF electric field. (author)

  2. Diagnostics of laser ablated plasma plumes

    DEFF Research Database (Denmark)

    Amoruso, S.; Toftmann, B.; Schou, Jørgen

    2004-01-01

    The effect of an ambient gas on the expansion dynamics of laser ablated plasmas has been studied for two systems by exploiting different diagnostic techniques. First, the dynamics of a MgB2 laser produced plasma plume in an Ar atmosphere has been investigated by space-and time-resolved optical...... of the laser ablated plasma plume propagation in a background gas. (C) 2003 Elsevier B.V All rights reserved....

  3. Self-focusing of laser beam crossing a laser plasma

    International Nuclear Information System (INIS)

    Bakos, J.S.; Foeldes, I.B.; Ignacz, P.N.; Soerlei, Zs.

    1983-03-01

    A crossed-beam experiment was performed to clarify the mechanism of self-focusing in a laser produced spark. The plasma was created by one beam and self-focusing was observed in the weak probe beam which crossed the plasma. Experimental results show that the cause of self-focusing is the nonuniform heating mechanism. (author)

  4. Development of a test bed plasma and diagnostic methods for detailed K-shell spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Hall, I.M.; Chambers, D.M.; Courtois, C.; Förster, E.; Gregory, C.D.; Howe, J.; Renner, Oldřich; Uschmann, I.; Woolsey, N.C.

    2006-01-01

    Roč. 133, - (2006), s. 1009-1011 ISSN 1155-4339 R&D Projects: GA MŠk LC528 Institutional research plan: CEZ:AV0Z10100523 Keywords : laser-produced plasmas * x-ray and optical emission * plasma modelling * plasma diagnostics Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.315, year: 2006

  5. Characteristics of soft x-ray and extreme ultraviolet (XUV) emission from laser-produced highly charged rhodium ions

    Science.gov (United States)

    Barte, Ellie Floyd; Hara, Hiroyuki; Tamura, Toshiki; Gisuji, Takuya; Chen, When-Bo; Lokasani, Ragava; Hatano, Tadashi; Ejima, Takeo; Jiang, Weihua; Suzuki, Chihiro; Li, Bowen; Dunne, Padraig; O'Sullivan, Gerry; Sasaki, Akira; Higashiguchi, Takeshi; Limpouch, Jiří

    2018-05-01

    We have characterized the soft x-ray and extreme ultraviolet (XUV) emission of rhodium (Rh) plasmas produced using dual pulse irradiation by 150-ps or 6-ns pre-pulses, followed by a 150-ps main pulse. We have studied the emission enhancement dependence on the inter-pulse time separation and found it to be very significant for time separations less than 10 ns between the two laser pulses when using 6-ns pre-pulses. The behavior using a 150-ps pre-pulse was consistent with such plasmas displaying only weak self-absorption effects in the expanding plasma. The results demonstrate the advantage of using dual pulse irradiation to produce the brighter plasmas required for XUV applications.

  6. Laser plasma focus produced in a ring target

    International Nuclear Information System (INIS)

    Saint-Hilaire, G.; Szili, Z.

    1976-01-01

    A new geometry for generating a laser-produced plasma is presented. A toroidal mirror is used to focus a CO 2 laser beam on the inside wall of a copper ring target. The plasma produced converges at the center of the ring where an axial plasma focus is formed. High-speed photography shows details of a plasma generated at a distance from the target surface. This new geometry could have important applications in the field of x-ray lasers

  7. Study of aluminum emission spectra in astrophysical plasmas

    International Nuclear Information System (INIS)

    Jin Zhan; Zhang Jie

    2001-01-01

    High temperature, high density and strong magnetic fields in plasmas produced by ultra-high intensity and ultrashort laser pulses are similar to the main characteristics of astrophysical plasmas. This makes it possible to simulate come astrophysical processes at laboratories. The author presents the theoretic simulation of aluminum emission spectra in astrophysical plasmas. It can be concluded that using laser produced plasmas, the authors can obtain rich information on astrophysical spectroscopy, which is unobservable for astronomer

  8. Advanced diagnostics for laser plasma interaction studies and some recent experiments

    International Nuclear Information System (INIS)

    Chaurasia, S.; Munda, D.S.; Dhareshwar, L.J.

    2008-10-01

    The complete characterization of Laser plasma interaction studies related to inertial confinement fusion laser and Equation of state (EOS) studies needs many diagnostics to explain the several physical phenomena occurring simultaneously in the laser produced plasma. This involves many on ion emission are important to understand physical phenomena which are responsible for generation of laser plasma as well as its interaction with an intense laser. In this report we describe the development of various x-ray diagnostics which are used in determining temporal, spatial and spectral properties of x-rays radiated from laser produced plasma. Diagnostics which have been used in experiments for investigation of laser-produced plasma as a source of ions are also described. Techniques using an optical streak camera and VISAR which are being used in the Equation of States (EOS) studies of various materials, which are important for material science, astrophysics as well as ICF is described in details. (author)

  9. High-resolution K-shell spectra from laser excited molybdenum plasmas

    Directory of Open Access Journals (Sweden)

    Szabo C.I.

    2013-11-01

    Full Text Available X-ray spectra from Molybdenum plasmas were recorded by a Cauchois-type cylindrically bent Transmission Crystal Spectrometer (TCS. The absolutely calibrated spectrometer provides an unprecedented resolution of inner shell transitions (K x-ray radiation. This tool allows us to resolve individual lines from different charge states existing inside the laser-produced plasma. The inner shell transitions from highly charged Molybdenum shown in this report have never been resolved before in such detail in a laser-produced plasma.

  10. Interaction of two plasma jets produced successively from Cu target

    Czech Academy of Sciences Publication Activity Database

    Kasperczuk, A.; Pisarczyk, T.; Badziak, J.; Borodziuk, S.; Chodukowski, T.; Parys, P.; Ullschmied, Jiří; Krouský, Eduard; Mašek, Karel; Pfeifer, Miroslav; Rohlena, Karel; Skála, Jiří; Pisarczyk, P.

    2010-01-01

    Roč. 28, č. 3 (2010), s. 497-504 ISSN 0263-0346 R&D Projects: GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z20430508; CEZ:AV0Z10100523 Keywords : Laser targets * laser produced-plasma jets * interaction of plasma jets * PALS laser Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.656, year: 2010

  11. Particle range in a laser-plasma generated soft X-ray chamber

    International Nuclear Information System (INIS)

    Bollanti, S.; Letardi, T.

    1999-01-01

    Some analytical forms are deduced for calculating the flight range of a spherical particle ejected from the laser plasma target and retarded by gas resistance. it is shown that the gas pressure influence on viscosity can not be neglected when are estimated the expansion ranges fro debris of various sizes in a helium gas-buffered, laser produced plasma chamber [it

  12. Radiation transfer effects on the spectra of laser-generated plasmas

    Czech Academy of Sciences Publication Activity Database

    Renner, Oldřich; Kerr, F.M.; Wolfrum, E.; Hawreliak, J.; Chambers, D.; Rose, S. J.; Wark, J. S.; Scott, H.A.; Patel, P.

    2006-01-01

    Roč. 96, č. 18 (2006), 185002/1-185002/4 ISSN 0031-9007 R&D Projects: GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z10100523 Keywords : laser-produced plasma * spectral line shapes * plasma modeling * radiative transfer effects Subject RIV: BH - Optics, Masers, Lasers Impact factor: 7.072, year: 2006

  13. X-ray spectroscopic characterization of shock-ignition-relevant plasmas

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Michal; Antonelli, L.; Renner, Oldřich

    2013-01-01

    Roč. 53, č. 2 (2013), 233-236 ISSN 1210-2709 R&D Projects: GA ČR GAP205/10/0814 Institutional support: RVO:68378271 Keywords : hot electrons * shock ignition * laser-produced plasma * X-ray spectroscopy * Kα radiation Subject RIV: BL - Plasma and Gas Discharge Physics

  14. Soft X-ray spectroscopy of high-Z ions in a cool dense plasma

    International Nuclear Information System (INIS)

    Presnyakov, L.P.; Shevelko, A.P.; Uskov, D.B.

    1991-01-01

    Spectra of multiply-charged ions with one and two electrons are investigated when a laser-produced plasma interacts with a solid obstacle. The level population densities of the Mg ions, recombining in the region of dense cool plasma near the obstacle, are studied both experimentally and theoretically. Values of the gain coefficient are calculated for the case of carbon ions. (orig.)

  15. Phytochrome A, phytochrome B and HY4 are involved in hypocotyl growth responses to natural radiation in Arabidopsis: weak de-etiolation of the phyA mutant under dense canopies

    International Nuclear Information System (INIS)

    Yanovsky, M.J.; Casal, J.J.; Whitelam, G.C.

    1995-01-01

    The roles of phytochrome A (phyA), phytochrome B (phyB) and a putative blue-light (BL) photoreceptor (HY4) in the control of hypocotyl growth by natural radiation were investigated using phyA, phyB and hy4 mutants of Arabidopsis thaliana. Full sunlight inhibited hypocotyl growth to a larger extent in wild-type (WT) than in phyA, phyB and, particularly, hy4 seedlings. In WT seedlings, hypocotyl growth was promoted by selectively lowering BL irradiance, lowering red-light (R) plus far-red-light (FR) irradiance or lowering the R/FR ratio (which was achieved either by increasing FR or by reducing R). The effects of lowering BL were reduced in hy4 and exaggerated in phyA seedlings. The effects of lowering R+FR were reduced in phyA and exaggerated in hy4 seedlings. Neither phyB nor hy4 mutants responded to low R/FR ratios. Neighbouring plants reflecting FR without shading caused subtle reductions of the R/FR ratio. This signal promoted hypocotyl growth in WT but not in phyA, phyB or hy4 seedlings. Intermediate canopy shade produced similar effects in all genotypes. Under deep shade, de-etiolation was severely impaired in phyA seedlings, which died prematurely. Thus, the FR ‘high-irradiance reaction’ mediated by phyA could be important for seedling survival under dense canopies. (author)

  16. Correlation of highly charged ion and x-ray emissions from the laser-produced plasma in the presence of non-linear phenomena

    Czech Academy of Sciences Publication Activity Database

    Láska, Leoš; Ryc, L.; Badziak, J.; Boody, F. P.; Gammino, S.; Jungwirth, Karel; Krása, Josef; Krouský, Eduard; Mezzasalma, A.; Parys, P.; Pfeifer, Miroslav; Rohlena, Karel; Torrisi, L.; Ullschmied, Jiří; Wolowski, J.

    2005-01-01

    Roč. 160, 10-12 (2005), s. 557-566 ISSN 1042-0150. [Workshop PIBHI 2005 /2./. Giardini Naxos, 08.06.06-11.06.06] R&D Projects: GA MŠk(CZ) LC528; GA AV ČR(CZ) IAA1010405 Institutional research plan: CEZ:AV0Z10100523 Keywords : laser beam interactions * non-linear processes * self-focusing * highly charged ions * soft and hard x-rays Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.353, year: 2005

  17. Reply to the ''Comment on 'The significance of the distribution of hot spots on the interpretation of laser-produced plasma experiments' ''

    International Nuclear Information System (INIS)

    Arad, B.; Eliezer, S.

    1979-01-01

    We disagree with the conclusion reached by Goel, Gupta, and Bhatnagar that the effect of hot spots is not significant in analyzing scaling laws using transformed variables. We believe they have overlooked the main points of our analysis

  18. A simplified numerical model for atomic processes of the low and medium Z-ions in the laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Takashi; Kato, Susumu; Mima, Kunioki (Osaka Univ., Suita (Japan). Inst. of Laser Engineering); Nishiguchi, Akio

    1992-11-01

    To calculate the ion fractional abundance of every charge state with the short computation time, we tried to build a suitable model for describing atomic processes. In 1982, Busquet proposed a mixed model, where he introduced two superlevels. They are related to a ground state and a ionized state, respectively, and the local-thermodynamic equilibrium (LET) is assumed over the excited states with the ionized state. In order to treat the atomic processes more accurately, we introduce the three superlevels which are the ground state, the first excited state and ionized state. The transition rates between them are evaluated by using Burguess formula which is used in the rate equations. The present model (Extended Mixed Model; EMM) gives results closer to the collisional-radiative model (CRM) than the original mixed model. The emissivity calculated by average-ion model (AIM) is compared with the one by EMM. The x-ray spectra are also obtained by using the EMM together with the hydrodynamic implosion code HIMICO. (author).

  19. A simplified numerical model for atomic processes of the low and medium Z-ions in the laser-produced plasmas

    International Nuclear Information System (INIS)

    Inoue, Takashi; Kato, Susumu; Mima, Kunioki; Nishiguchi, Akio.

    1992-01-01

    To calculate the ion fractional abundance of every charge state with the short computation time, we tried to build a suitable model for describing atomic processes. In 1982, Busquet proposed a mixed model, where he introduced two superlevels. They are related to a ground state and a ionized state, respectively, and the local-thermodynamic equilibrium (LET) is assumed over the excited states with the ionized state. In order to treat the atomic processes more accurately, we introduce the three superlevels which are the ground state, the first excited state and ionized state. The transition rates between them are evaluated by using Burguess formula which is used in the rate equations. The present model (Extended Mixed Model; EMM) gives results closer to the collisional-radiative model (CRM) than the original mixed model. The emissivity calculated by average-ion model (AIM) is compared with the one by EMM. The x-ray spectra are also obtained by using the EMM together with the hydrodynamic implosion code HIMICO. (author)

  20. Simulations of radiative shocks and jet formation in laboratory plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Velarde, P; Gonzalez, M; GarcIa-Fernandez, C; Oliva, E [Instituto de Fusion Nuclear, Universidad Politcnica de Madrid, Madrid (Spain) (Spain); Kasperczuk, A; Pisarczyk, T [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland) (Poland); Ullschmied, J [Institute of Plasma Physics AS CR, Prague (Czech Republic) (Czech Republic); Stehle, C [LERMA, Observatoire de Paris, Meudon (France) (France); Rus, B [Institute of Physics, PALS Center, Prague (Czech Republic) (Czech Republic); GarcIa-Senz, D; Bravo, E; Relano, A [Departament de Fisica i Enginyeria Nuclear. Universitat Politecnica de Catalunya. Barcelona (Spain) (Spain)], E-mail: velarde@din.upm.es

    2008-05-01

    We present the simulations of two relevant hydrodynamical problems related to astrophysical phenomena performed by three different codes. The numerical results from these codes will be compared in order to test both the numerical method implemented inside them and the influence of the physical phenomena simulated by the codes. Under some conditions laser produced plasmas could be scaled to the typical conditions prevailing in astrophysical plasmas. Therefore, such similarity allows to use existing laser facilities and numerical codes suitable to a laser plasma regime, for studying astrophysical proccesses. The codes are the radiation fluid dynamic 2D ARWEN code and the 3D HERACLES, and, without radiation energy transport, a Smoothed-Particle Hydrodynamics (SPH) code. These codes use different numerical techniques and have overlapping range of application, from laser produced plasmas to astrophysical plasmas. We also present the first laser experiments obtaining cumulative jets with a velocity higher than 100 km/s.

  1. IEEE conference record -- Abstracts: 1996 IEEE international conference on plasma science

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    This meeting covered the following topics: space plasmas; non-equilibrium plasma processing; computer simulation of vacuum power tubes; vacuum microelectronics; microwave systems; basic phenomena in partially ionized gases -- gaseous electronics, electrical discharges; ball lightning/spherical plasma configuration; plasma diagnostics; plasmas for lighting; dense plasma focus; intense ion and electron beams; plasma, ion, and electron sources; flat panel displays; fast z-pinches and x-ray lasers; environmental/energy issues in plasma science; thermal plasma processing; computational plasma physics; magnetic confinement fusion; microwave-plasma interactions; space plasma engineering; EM and ETH launchers; fast wave devices; intense beam microwaves; slow wave devices; space plasma measurements; basic phenomena in fully ionized plasma -- waves, instabilities, plasma theory, etc; plasma closing switches; fast opening switches; and laser-produced plasma. Separate abstracts were prepared for most papers in this conference

  2. Lasers plasmas and magnetic field

    International Nuclear Information System (INIS)

    Albertazzi, Bruno

    2014-01-01

    We studied the coupling between a laser produced plasmas and a magnetic field in two cases: 1) in the context of Inertial Fusion Confinement (ICF), we first studied how magnetic fields are self generated during the interaction between a target and a laser, then 2) to progress in the understanding of the large-scale shaping of astrophysical jets, we studied the influence of an externally applied magnetic field on the dynamics of a laser-produced plasma expanding into vacuum. The first part of this thesis is thus dedicated to a numerical and experimental study of the self generated magnetic fields that are produced following the irradiation of a solid target by a high power laser (having pulse duration in the nanosecond and picosecond regimes). These fields play an important role in the frame of ICF since they influence the dynamics of the electrons produced during the laser-matter interaction, and thus condition the success of ICF experiments. The second part of this thesis is a numerical and experimental study of the influence of an externally applied magnetic field on the morphology of a laser produced plasma freely otherwise expanding into vacuum. This work aims at better understanding the observed large-scale collimation of astrophysical jets which cannot be understood in the frame of existing models. We notably show that a purely axial magnetic field can force an initially isotropic laboratory flow, scaled to be representative of a flow emerging from a Young Star Object, in a re-collimation shock, from which emerges a narrow, well collimated jet. We also show that the plasma heating induced at the re-collimation point could explain the 'puzzling' observations of stationary X ray emission zones embedded within astrophysical jets. (author) [fr

  3. MED101: a laser-plasma simulation code. User guide

    International Nuclear Information System (INIS)

    Rodgers, P.A.; Rose, S.J.; Rogoyski, A.M.

    1989-12-01

    Complete details for running the 1-D laser-plasma simulation code MED101 are given including: an explanation of the input parameters, instructions for running on the Rutherford Appleton Laboratory IBM, Atlas Centre Cray X-MP and DEC VAX, and information on three new graphics packages. The code, based on the existing MEDUSA code, is capable of simulating a wide range of laser-produced plasma experiments including the calculation of X-ray laser gain. (author)

  4. Distortion of plasma diagnostics by an ambient gas

    International Nuclear Information System (INIS)

    Pearlman, J.S.; Matzen, M.K.

    1978-03-01

    The effect of vacuum chamber background gas on the ion measurements of a laser-produced, expanding plasma is studied over a wide range of background gas pressures. Experimental measurements are compared with calculations from a coupled rate equation-hydrodynamics code. The code is then used for a parametric study of the effect of background gas pressure on plasma diagnostic measurements. Charge exchange is found to be an important process in our diagnostics above vacuum chamber pressures of 10 -5 Torr

  5. Estimating plasma temperatures

    International Nuclear Information System (INIS)

    Nash, J.K.; Iglesias, C.A.; Chen, M.H.; Rogers, F.J.

    1992-04-01

    Recent laser-produced plasma experiments have relied on spectroscopic comparisons with models to infer plasma temperatures. The models use an experimentally determined value for the matter density as input and treat the temperature as a free parameter to obtain a best fit to the experimental absorption spectrum. However, uncertainties in the ionization balance theories lead to inferred temperatures that are model dependent. We report results of a new approach which combines high=quality atomic data with an ionization balance obtained from systematic expansions of the grand canonical ensemble. The latter avoids the ad hoc cutoffs required in free energy minimization schemes and includes Coulomb corrections usually neglected in other models. Comparisons to experimental spectra show excellent agreement

  6. Experiments on the interaction of heavy ions with dense plasma at GSI-Darmstadt

    International Nuclear Information System (INIS)

    Stoeckl, C.; Boine-Frankenheim, O.; Geissel, M.; Roth, M.; Wetzler, H.; Seelig, W.; Iwase, O.; Spiller, P.; Bock, R.; Suess, W.; Hoffmann, D.H.H.

    1998-01-01

    One of the main objectives of the experimental plasma physics activities at the Gesellschaft fuer Schwerionenforschung (GSI) are the interaction processes of heavy ions with dense ionized matter. Gas-discharge plasma targets were used for energy loss and charge state measurements in a regime of electron density and temperature up to 10 19 cm -3 and 20 eV, respectively. An improved model of the charge exchange processes in fully ionized hydrogen plasma, taking into account multiple excited electronic configurations which subsequently ionize, has removed the discrepancies of previous theoretical descriptions. The energy loss of the ion beam in partially ionized plasmas such as argon was found to agree very well with our simple theoretical model based on the modified Bethe-Bloch theory. A new setup with a 100 J/5 GW Nd-glass laser now provides access to density ranges up to 10 21 cm -3 and temperatures of up to 100 eV. First results of interaction experiments with laser-produced plasma are presented. To fully exploit the experimental possibilities of the new laser-plasma setup both improved charge state detection systems and better plasma diagnostics are indispensable. Present developments and future possibilities in these fields are presented. This paper summarizes the following contributions: Interaction of heavy-ion beams with laser plasma by C. Stoeckl et al. Energy loss of heavy ions in a laser-produced plasma by M. Roth et al. Charge state measurements of heavy ions passing a laser produced plasma with high time resolution by W. Suess et al. Plasma diagnostics for laser-produced plasma by O. Iwase et al. Future possibilities of plasma diagnostics at GSI by M. Geissel et al. (orig.)

  7. 5. Laser plasma interaction

    International Nuclear Information System (INIS)

    Labaune, C.; Fuchs, J.; Bandulet, H.

    2002-01-01

    Imprint elimination, smoothing and preheat control are considerable problems in inertial fusion and their possible solution can be achieved by using low-density porous materials as a buffer in target design. The articles gathered in this document present various aspects of the laser-plasma interaction, among which we have noticed: -) numerical algorithmic improvements of the Vlasov solver toward the simulation of the laser-plasma interaction are proposed, -) the dependence of radiation temperatures and X-ray conversion efficiencies of hohlraum on the target structures and laser irradiation conditions are investigated, -) a study of laser interaction with ultra low-density (0,5 - 20 mg/cm 3 ) porous media analyzing backscattered light at incident laser frequency ω 0 and its harmonics 3*ω 0 /2 and 2*ω 0 is presented, -) investigations of laser interaction with solid targets and crater formation are carried out with the objective to determine the ablation loading efficiency, -) a self organization in an intense laser-driven plasma and the measure of the relative degree of order of the states in an open system based on the S-theorem are investigated, and -) the existence and stability of electromagnetic solitons generated in a relativistic interaction of an intense laser light with uniform under-dense cold plasma are studied

  8. Experimental and theoretical investigations of mechanisms responsible for plasma jets formation at PALS

    Czech Academy of Sciences Publication Activity Database

    Kasperczuk, A.; Pisarczyk, T.; Demchenko, N. N.; Gus'kov, S. Yu.; Kálal, M.; Ullschmied, Jiří; Krouský, Eduard; Mašek, Karel; Pfeifer, Miroslav; Rohlena, Karel; Skála, Jiří; Pisarczyk, P.

    2009-01-01

    Roč. 27, č. 3 (2009), s. 415-427 ISSN 0263-0346 R&D Projects: GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z20430508; CEZ:AV0Z10100523 Keywords : Laser-plasma interaction * laser produced-plasma jet * radiative cooling * target irradiation geometry * PALS laser * laser interferometry Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.420, year: 2008

  9. Charge exchange signatures in x-ray line emission accompanying plasma-wall interaction

    Czech Academy of Sciences Publication Activity Database

    Renner, Oldřich; Dalimier, E.; Liska, R.; Oks, E.; Šmíd, Michal

    2012-01-01

    Roč. 397, č. 1 (2012), s. 1-6 ISSN 1742-6588 R&D Projects: GA ČR GAP205/10/0814; GA ČR GAP208/10/2302; GA AV ČR IAAX00100903 Institutional research plan: CEZ:AV0Z10100523 Keywords : laser-produced plasma * particle jets generation * plasma-wall interaction * x-ray spectroscopy * charge exchange Subject RIV: BL - Plasma and Gas Discharge Physics

  10. Velocity gradient induced line splitting in x-ray emission accompanying plasma-wall interaction

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Michal; Renner, Oldřich; Liska, R.

    2013-01-01

    Roč. 125, Aug (2013), s. 38-44 ISSN 0022-4073 R&D Projects: GA ČR GAP205/10/0814; GA ČR GAP205/11/0571 Institutional support: RVO:68378271 Keywords : laser-produced plasmas * x-ray spectroscopy * plasma-wall interaction * spectral line profiles * Doppler shift * ion velocity gradients Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.288, year: 2013

  11. Tomography of laser fusion plasmas

    International Nuclear Information System (INIS)

    Ceglio, N.M.

    1977-01-01

    Experimental programs exist in a number of laboratories throughout the world to test the feasibility of using powerful laser systems to drive the implosion of hydrogen isotope fuel to thermonuclear burn conditions. In a typical experiment multiple laser beams are focused onto a glass microshell (typically 50 μm to 200 μm diameter) filled with an equimolar D-T gas mixture. X-ray and particle emissions from the target provide important information about the hydrodynamic implosion of the glass shell and the associated compression and heating of the D-T fuel. Standard diagnostics for imaging such emissions are the grazing incidence reflection (GIR) x-ray microscope and the pinhole camera. Recently, a particular coded imaging technique, Zone Plate Coded Imaging (ZPCI), has been successfully used for x-ray and particle microscopy of laser fusion plasmas. ZPCI is highly attractive for investigating laser produced plasmas because it possesses a tomographic capability not shared by either the GIR or pinhole imaging techniques. This presentation provides a brief discussion of the tomographic potential of ZPCI. In addition, the first tomographic x-ray images (tomographic resolution approximately 74 μm) of a laser produced plasma are presented

  12. Magnetized relativistic electron-ion plasma expansion

    Science.gov (United States)

    Benkhelifa, El-Amine; Djebli, Mourad

    2016-03-01

    The dynamics of relativistic laser-produced plasma expansion across a transverse magnetic field is investigated. Based on a one dimensional two-fluid model that includes pressure, enthalpy, and rest mass energy, the expansion is studied in the limit of λD (Debye length) ≤RL (Larmor radius) for magnetized electrons and ions. Numerical investigation conducted for a quasi-neutral plasma showed that the σ parameter describing the initial plasma magnetization, and the plasma β parameter, which is the ratio of kinetic to magnetic pressure are the key parameters governing the expansion dynamics. For σ ≪ 1, ion's front shows oscillations associated to the break-down of quasi-neutrality. This is due to the strong constraining effect and confinement of the magnetic field, which acts as a retarding medium slowing the plasma expansion.

  13. Electron plasma waves in CO/sub 2/ laser plasma interactions

    International Nuclear Information System (INIS)

    Baldis, H.A.; Villeneuve, D.M.; Walsh, C.J.

    1984-01-01

    During the past few years, the use of Thomson scattering in CO/sub 2/ laser produced plasmas has permitted the identification and study of electron plasma waves and ion waves, driven by various instabilities in the plasma corona, such as Stimulated Raman Scattering (SRS), two plasmon decay, and Stimulated Brillouin Scattering (SBS). Since these instabilities may coexist in the plasma, the density fluctuations associated with one wave may influence the behaviour of one or more of the other instabilities. The authors discuss the experimental evidence of such effects and, in particular, the consequences of a recent experiment in which the ion waves driven by SBS were observed to adversely affect the production of the electron plasma waves driven by SRS. In that experiment, a strong correlation was observed between the onset of SBS and the disappearance of the electron plasma waves driven by SRS at low densities (n/sub e/ n/sub e/ > 0.05 n/sub c/)

  14. Mechanism of laser beam reentry into a laser breakdown plasma

    International Nuclear Information System (INIS)

    Savic, P.; Kekez, M.M.; Makomaski, A.H.

    1975-01-01

    It is shown that the focus-directed filament often observed in streak photographs of CO 2 -laser produced gas breakdown can be explained by the lateral expansion and consequent cooling of the plasma behind the radiation supported shock. A simple analysis and more detailed numerical calculations show a temperature maximum developing in the plasma, which travels either towards or away from the light source, depending on the nature of the gas. Thus, the locus of the cutoff temperature also travels along the beam, allowing it to reenter the plasma at a velocity which may attain the speed of light. (Auth.)

  15. X-ray Spectroscopy of Hot Dense Plasmas: Experimental Limits, Line Shifts and Field Effects

    International Nuclear Information System (INIS)

    Renner, Oldrich; Sauvan, Patrick; Dalimier, Elisabeth; Riconda, Caterina; Rosmej, Frank B.; Weber, Stefan; Nicolai, Philippe; Peyrusse, Olivier; Uschmann, Ingo; Hoefer, Sebastian; Kaempfer, Tino; Loetzsch, Robert; Zastrau, Ulf; Foerster, Eckhart; Oks, Eugene

    2008-01-01

    High-resolution x-ray spectroscopy is capable of providing complex information on environmental conditions in hot dense plasmas. Benefiting from application of modern spectroscopic methods, we report experiments aiming at identification of different phenomena occurring in laser-produced plasma. Fine features observed in broadened profiles of the emitted x-ray lines and their satellites are interpreted using theoretical models predicting spectra modification under diverse experimental situations.

  16. High-intensity laser for Ta and Ag implantation into different substrates for plasma diagnostics

    Czech Academy of Sciences Publication Activity Database

    Cutroneo, Mariapompea; Macková, Anna; Malinský, Petr; Matoušek, J.; Torrisi, L.; Ullschmied, Jiří

    2015-01-01

    Roč. 354, JUL (2015), s. 56-59 ISSN 0168-583X R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2011019 Institutional support: RVO:61389005 ; RVO:68378271 Keywords : multi-energy implantation * laser-produced plasma * RBS analysis Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BL - Plasma and Gas Discharge Physics (FZU-D) Impact factor: 1.389, year: 2015

  17. Statistical approach for calculating opacities of high-Z plasmas

    International Nuclear Information System (INIS)

    Nishikawa, Takeshi; Nakamura, Shinji; Takabe, Hideaki; Mima, Kunioki

    1992-01-01

    For simulating the X-ray radiation from laser produced high-Z plasma, an appropriate atomic modeling is necessary. Based on the average ion model, we have used a rather simple atomic model for opacity calculation in a hydrodynamic code and obtained a fairly good agreement with the experiment on the X-ray spectra from the laser-produced plasmas. We have investigated the accuracy of the atomic model used in the hydrodynamic code. It is found that transition energies of 4p-4d, 4d-4f, 4p-5d, 4d-5f and 4f-5g, which are important in laser produced high-Z plasma, can be given within an error of 15 % compared to the values by the Hartree-Fock-Slater (HFS) calculation and their oscillator strengths obtained by HFS calculation vary by a factor two according to the difference of charge state. We also propose a statistical method to carry out detail configuration accounting for electronic state by use of the population of bound electrons calculated with the average ion model. The statistical method is relatively simple and provides much improvement in calculating spectral opacities of line radiation, when we use the average ion model to determine electronic state. (author)

  18. Modeling the astrophysical dynamical process with laser-plasmas

    International Nuclear Information System (INIS)

    Xia Jiangfan; Zhang Jun; Zhang Jie

    2001-01-01

    The use of the state-of-the-art laser facility makes it possible to create conditions of the same or similar to those in the astrophysical processes. The introduction of the astrophysics-relevant ideas in laser-plasma experiments is propitious to the understanding of the astrophysical phenomena. However, the great difference between the laser-produced plasmas and the astrophysical processes makes it awkward to model the latter by laser-plasma experiments. The author addresses the physical backgrounds for modeling the astrophysical plasmas by laser plasmas, connecting these two kinds of plasmas by scaling laws. Thus, allowing the creation of experimental test beds where observations and models can be quantitatively compared with laser-plasma data. Special attentions are paid on the possibilities of using home-made laser facilities to model astrophysical phenomena

  19. Diagnostics of ytterbium/aluminium laser plasmas

    International Nuclear Information System (INIS)

    Bailey, J.; Lee, R.W.; Landen, O.L.; Kilkenny, J.D.; Lewis, C.L.; Busquet, M.

    1986-11-01

    Microdot spectroscopy was used to study the x-ray emission from laser-produced plasmas consisting of 10% ytterbium, 90% aluminium. Spectra were recorded with a space-resolving flat crystal (PET) mini-spectrometer in the 4.0-8.0 A range. The Janus research laser at LLNL irradiated the targets with green (0.53 μm) light in a 1 nsec pulse. The power density was varied between 4x10 13 and 3x10 14 W/cm 2 . The plasma electron density and temperature were determined from the aluminium XI, XII and XIII line emission. By examining correlations between changes in the plasma conditions with changes in the ytterbium spectra, we will determine the potential for using ytterbium line emission as a plasma diagnostic

  20. Proceedings of the Japan-US workshop on plasma polarization spectroscopy and the fourth international symposium on plasma polarization spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Takashi; Beiersdorfer, Peter [eds.

    2004-07-01

    The international meeting on Plasma Polarization Spectroscopy (PPS) was held at Kyoto University during February 4-6, 2004. This Proceedings book includes the summaries of the talks given in that meeting. Starting with the Overview talk by Csanak, the subjects cover: x-ray polarization experiments on z-pinches (plasma foci), and an x-pinch, a laser-produced plasma in a gas atmosphere, an interpretation of the polarized 1<- 0 x-ray laser line, polarization observation from various laser-produced plasmas including a recombining phase plasma, a report on the on-going project of a laser facility, several polarization observations on magnetically confined plasmas including the Large Helical Device and an ECR plasma, a new laser-induced fluorescence diagnostic method. On atomic physics side given are: various polarization measurements on EBIT, precision spectroscopy on the TEXTOR, user-friendly atomic codes. Instrumentation is also a subject of this book. The 18 of the presented papers are indexed individually. (J.P.N.)

  1. Current new applications of laser plasmas

    International Nuclear Information System (INIS)

    Hauer, A.A.; Forslund, D.W.; McKinstrie, C.J.; Wark, J.S.; Hargis, P.J. Jr.; Hamil, R.A.; Kindel, J.M.

    1988-09-01

    This report describes several new applications of laser-produced plasmas that have arisen in the last few years. Most of the applications have been an outgrowth of the active research in laser/matter interaction inspired by the pursuit of laser fusion. Unusual characteristics of high-intensity laser/matter interaction, such as intense x-ray and particle emission, were noticed early in the field and are now being employed in a significant variety of applications outside the fusion filed. Applications range from biology to materials science to pulsed-power control and particle accelerators. 92 refs., 23 figs., 4 tabs

  2. Review of laser produced multi-keV X-ray sources from metallic foils, cylinders with liner, and low density aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Girard, Frédéric [CEA, DAM, DIF, F-91297 Arpajon (France)

    2016-04-15

    Experimental results obtained within the last fifteen years on multi-keV X-ray sources irradiated with nanosecond scale pulse duration 3ω laser light at TW power levels by CEA and collaborators are discussed in this review paper. Experiments were carried out on OMEGA and GEKKO XII laser facilities where emitting materials in the 5–10 keV multi-keV energy range are intermediate Z value metals from titanium to germanium. Results focused on conversion efficiency improvement by a factor of 2 when an underdense plasma is created using a laser pre-pulse on a metallic foil, which is then heated by a second laser pulse delayed in time. Metal coated inner surface walls of plastic cylindrical tube ablated by laser beam impacts showed that plasma confinement doubles X-ray emission duration as it gives adequate plasma conditions (electron temperature and density) over a long period of time. Low-density aerogels (doped with metal atoms uniformly distributed throughout their volume or metal oxides) contained in a plastic cylinder have been developed and their results are comparable to gas targets. A hybrid target concept consisting of a thin metal foil placed at the end of a cylinder filled with low density aerogel has emerged as it could collect benefits from pre-exploded thin foils, efficient laser absorption in aerogel, and confinement by cylinder walls. All target geometry performances are relatively close together at a given photon energy and mainly depend on laser irradiation condition optimizations. Results are compared with gas target performances from recent NIF experiments allowing high electron temperatures over large dimension low density plasmas, which are the principal parameters for efficient multi-keV X-ray production.

  3. Effect of laser peening with glycerol as plasma confinement layer

    Science.gov (United States)

    Tsuyama, Miho; Ehara, Naoya; Yamashita, Kazuma; Heya, Manabu; Nakano, Hitoshi

    2018-03-01

    The effects of controlling the plasma confinement layer on laser peening were investigated by measuring the hardness and residual stress of laser-peened stainless steels. The plasma confinement layer contributes to increasing the pressure of shock waves by suppressing the expansion of the laser-produced plasma. Most previous studies on laser peening have employed water as the plasma confinement layer. In this study, a glycerol solution is used in the context of a large acoustic impedance. It is found that this glycerol solution is superior to water in its ability to confine plasma and that suitable conditions exist for the glycerol solution to act as a plasma confinement layer to achieve efficient laser peening.

  4. Start broadened profiles with self-consistent radiation transfer and atomic kinetics in plasmas produced by high intensity lasers

    International Nuclear Information System (INIS)

    Olson, G.L.; Comly, J.C.; La Gattuta, J.K.; Kilcrease, D.P.

    1993-01-01

    Spectral line shapes and line strengths have long been used to diagnose plasma temperatures and densities. In dense plasmas, the additional broadening due to Stark effects give additional information about the plasma density. We present calculations that are self-consistent in that the radiation fields of the line transitions and the atomic kinetics are iterated to convergence. Examples are given for simple plasmas with temperature gradients, density gradients, and velocity fields. Then a more complex example of a laser produced plasma is presented

  5. Proceedings of the Japan-US workshop on plasma polarization spectroscopy and the international seminar on plasma polarization spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Takashi; Beiersdorfer, Peter [eds.

    1998-06-01

    The international meeting on Plasma Polarization Spectroscopy (PPS) was held in Kyoto during January 26-28, 1998. This Proceedings book includes the papers of the talks given at the meeting. These include: overviews of PPS from the aspects of atomic physics, and of plasma physics; several PPS and MSE (motional Stark effect) experiments on magnetically confined plasmas and a laser-produced plasma; polarized laser-induced fluorescence spectroscopy, several experiments on EBITs (electron beam ion trap) and their theoretical interpretations; polarized profiles of spectral lines, basic formulation of PPS; inelastic and elastic electron collisions leading to polarized atomic states; polarization in recombining plasma; relationship between the collisional polarization relaxation and the line broadening; and characteristics of the plasma produced by very short pulse and high power laser irradiation. The 19 of the presented papers are indexed individually. (J.P.N.)

  6. Experimental Studies of Simultaneous 351 nm and 527 nm Laser Beam Interactions in a Long Scalelength Plasma

    International Nuclear Information System (INIS)

    Moody, J D; Divol, L; Glenzer, S H; MacKinnon, A J; Froula, D H; Gregori, G; Kruer, W L; Suter, L J; Williams, E A; Bahr, R; Seka, W

    2003-01-01

    We describe experiments investigating the simultaneous backscattering from 351 nm (3w) and 527 nm (2w) interaction beams in a long scalelength laser-produced plasma for intensities (le) 1 x 10 15 W/cm 2 . Measurements show comparable scattering fractions for both color probe beams. Time resolved spectra of stimulated Raman and Brillouin scattering (SRS and SBS) indicate the effects of laser intensity and smoothing as well as plasma composition and parameters on the scattering levels

  7. Single crystal silicon carbide detector of emitted ions and soft x rays from power laser-generated plasmas

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Foti, G.; Giuffrida, L.; Puglisi, D.; Wolowski, J.; Badziak, J.; Parys, P.; Rosinski, M.; Margarone, D.; Krása, Josef; Velyhan, Andriy; Ullschmied, Jiří

    2009-01-01

    Roč. 105, č. 12 (2009), 123304/1-123304/7 ISSN 0021-8979 R&D Projects: GA AV ČR IAA100100715 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : laser-produced plasma * SiC detector * ion collector Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.072, year: 2009

  8. High Power Laser Laboratory at the Institute of Plasma Physics and Laser Microfusion: equipment and preliminary research

    Directory of Open Access Journals (Sweden)

    Zaraś-Szydłowska Agnieszka

    2015-06-01

    Full Text Available The purpose of this paper is to present the newly-opened High Power Laser Laboratory (HPLL at the Institute of Plasma Physics and Laser Microfusion (IPPLM. This article describes the laser, the main laboratory accessories and the diagnostic instruments. We also present preliminary results of the first experiment on ion and X-ray generation from laser-produced plasma that has been already performed at the HPLL.

  9. Efficient soft x-ray emission source at 13.5 nm by use of a femtosecond-laser-produced Li-based microplasma

    International Nuclear Information System (INIS)

    Higashiguchi, Takeshi; Rajyaguru, Chirag; Kubodera, Shoichi; Sasaki, Wataru; Yugami, Noboru; Kikuchi, Takashi; Kawata, Shigeo; Andreev, Alex

    2005-01-01

    A proof-of-principle experiment was demonstrated to optimize a Li-based microjet target coupled to dual subpicosecond laser pulses as a 13.5 nm soft x-ray emission source. An optimum pulse duration of 450 fs to achieve a maximum emission at 13.5 nm was well explained by the resonant absorption process. Utilization of dual femtosecond pulses revealed that the optimum pulse separation around 500 ps was necessary to achieve a maximum soft x-ray conversion efficiency of 0.2%, where plasma hydrodynamics could not be neglected. A one-fluid two-temperature hydrodynamic simulation reproduced this optimum pulse separation behavior

  10. Characteristics of extreme ultraviolet emission from high-Z plasmas

    International Nuclear Information System (INIS)

    Ohashi, H.; Higashiguchi, T.; Suzuki, Y.; Kawasaki, M.; Suzuki, C.; Tomita, K.; Nishikino, M.; Fujioka, S.; Endo, A.; Li, B.; Otsuka, T.; Dunne, P.; O'Sullivan, G.

    2016-01-01

    We demonstrate the extreme ultraviolet (EUV) and soft x-ray sources in the 2 to 7 nm spectral region related to the beyond EUV (BEUV) question at 6.x nm and the water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs), extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on high-Z plasma UTA source, coupled to multilayer mirror optics. (paper)

  11. High resolution X-ray spectroscopy of laser generated plasmas

    International Nuclear Information System (INIS)

    Faenov, A.Ya.; Skobelev, I.Yu.; Rosmej, F.B.

    1999-01-01

    The application of recently developed spectroscopic instruments in laser produced plasmas with simultaneous high spectral and spatial resolution combined with high luminosity discovered new types of X-ray spectra. These new types are characterised by the disappearance of the resonance lines and the strong emission of dielectronic satellite spectra. Several types of transitions of highly charged ions are discovered which are unknown from usual sources employed in atomic physics. New theoretical models are developed and successfully applied for the interpretation and for plasma diagnostics. (orig.)

  12. Characteristics of extreme ultraviolet emission from high-Z plasmas

    Science.gov (United States)

    Ohashi, H.; Higashiguchi, T.; Suzuki, Y.; Kawasaki, M.; Suzuki, C.; Tomita, K.; Nishikino, M.; Fujioka, S.; Endo, A.; Li, B.; Otsuka, T.; Dunne, P.; O'Sullivan, G.

    2016-03-01

    We demonstrate the extreme ultraviolet (EUV) and soft x-ray sources in the 2 to 7 nm spectral region related to the beyond EUV (BEUV) question at 6.x nm and the water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs), extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on high-Z plasma UTA source, coupled to multilayer mirror optics.

  13. High resolution X-ray spectroscopy of laser generated plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Faenov, A.Ya.; Skobelev, I.Yu. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo (Russian Federation); Rosmej, F.B. [Technische Hochschule Darmstadt (Germany). Inst. fuer Kernphysik

    1999-11-01

    The application of recently developed spectroscopic instruments in laser produced plasmas with simultaneous high spectral and spatial resolution combined with high luminosity discovered new types of X-ray spectra. These new types are characterised by the disappearance of the resonance lines and the strong emission of dielectronic satellite spectra. Several types of transitions of highly charged ions are discovered which are unknown from usual sources employed in atomic physics. New theoretical models are developed and successfully applied for the interpretation and for plasma diagnostics. (orig.) 28 refs.

  14. Artificial neural networks for plasma spectroscopy analysis

    International Nuclear Information System (INIS)

    Morgan, W.L.; Larsen, J.T.; Goldstein, W.H.

    1992-01-01

    Artificial neural networks have been applied to a variety of signal processing and image recognition problems. Of the several common neural models the feed-forward, back-propagation network is well suited for the analysis of scientific laboratory data, which can be viewed as a pattern recognition problem. The authors present a discussion of the basic neural network concepts and illustrate its potential for analysis of experiments by applying it to the spectra of laser produced plasmas in order to obtain estimates of electron temperatures and densities. Although these are high temperature and density plasmas, the neural network technique may be of interest in the analysis of the low temperature and density plasmas characteristic of experiments and devices in gaseous electronics

  15. X-ray lasing in colliding plasmas

    International Nuclear Information System (INIS)

    Clark, R.W.; Davis, J.; Velikovich, A.L.; Whitney, K.G.

    1997-01-01

    Conditions favorable for the achievement of population inversion and large gains in short-pulse laser-heated selenium have been reported on previously [K. G. Whitney et al., Phys. Rev. E 50, 468 (1994)]. However, the required density profiles to minimize refraction and amplification losses can be difficult to achieve in conventional laser heated blowoff plasmas. The feasibility of accelerating plasma with a laser, and letting it collide with a solid density wall plasma has been explored. The density of the resulting shocked plasma can be controlled and refraction can be reduced in this design. A radiation hydrodynamics model is used to simulate the collision of the laser produced selenium plasma with the wall plasma. The heating of the stagnated plasma with a short-pulse laser is then simulated, providing the hydrodynamic response of the selenium plasma and detailed configuration nonequilibrium atomic populations. From the results of these calculations, it appears feasible to create an x-ray lasing selenium plasma with gains in the J=0 endash 1 line at 182 Angstrom in excess of 100cm -1 . copyright 1997 American Institute of Physics

  16. Atomic processes and equation of state of high Z plasmas for EUV sources and their effects on the spatial and temporal evolution of the plasmas

    Science.gov (United States)

    Sasaki, Akira; Sunahara, Atushi; Furukawa, Hiroyuki; Nishihara, Katsunobu; Nishikawa, Takeshi; Koike, Fumihiro

    2016-03-01

    Laser-produced plasma (LPP) extreme ultraviolet (EUV) light sources have been intensively investigated due to potential application to next-generation semiconductor technology. Current studies focus on the atomic processes and hydrodynamics of plasmas to develop shorter wavelength sources at λ = 6.x nm as well as to improve the conversion efficiency (CE) of λ = 13.5 nm sources. This paper examines the atomic processes of mid-z elements, which are potential candidates for λ = 6.x nm source using n=3-3 transitions. Furthermore, a method to calculate the hydrodynamics of the plasmas in terms of the initial interaction between a relatively weak prepulse laser is presented.

  17. Angular filter refractometry analysis using simulated annealing [An improved method for characterizing plasma density profiles using angular filter refractometry

    International Nuclear Information System (INIS)

    Angland, P.; Haberberger, D.; Ivancic, S. T.; Froula, D. H.

    2017-01-01

    Here, a new method of analysis for angular filter refractometry images was developed to characterize laser-produced, long-scale-length plasmas using an annealing algorithm to iterative converge upon a solution. Angular filter refractometry (AFR) is a novel technique used to characterize the density pro files of laser-produced, long-scale-length plasmas. A synthetic AFR image is constructed by a user-defined density profile described by eight parameters, and the algorithm systematically alters the parameters until the comparison is optimized. The optimization and statistical uncertainty calculation is based on a minimization of the χ2 test statistic. The algorithm was successfully applied to experimental data of plasma expanding from a flat, laser-irradiated target, resulting in average uncertainty in the density profile of 5-10% in the region of interest.

  18. Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd:YAG laser pulses

    Science.gov (United States)

    Wu, Tao; Higashiguchi, Takeshi; Li, Bowen; Arai, Goki; Hara, Hiroyuki; Kondo, Yoshiki; Miyazaki, Takanori; Dinh, Thanh-Hung; Dunne, Padraig; O'Reilly, Fergal; Sokell, Emma; O'Sullivan, Gerry

    2016-02-01

    The unresolved transition arrays (UTAs) emitted from laser produced bismuth (Bi) plasma sources show potential for single-shot live cell imaging. We have measured extreme ultraviolet spectra from bismuth laser produced plasmas in the 1-7 nm region using a λ = 1064 nm Nd:YAG laser with a pulse duration of 150 ps. Comparison of spectra obtained under different laser power densities with calculations using the Hartree-Fock with configuration interaction Cowan suite of codes and the UTA formalism, as well as consideration of previous predictions of isoelectronic trends, are employed to identify lines and a number of new features in spectra from Bi XXIII to Bi XLVII. The results show that Δn = 0, n = 4-4 emission from highly charged ions merges to form intense UTAs in the 4 nm region and Δn = 1, n = 4-5 resonance transitions UTAs dominate the 1-3 nm region of the Bi spectrum.

  19. Ionization mechanism of cesium plasma produced by irradiation of dye laser

    International Nuclear Information System (INIS)

    Yamada, Jun; Shibata, Kohji; Uchida, Yoshiyuki; Hioki, Yoshiaki; Sahashi, Toshio.

    1992-01-01

    When a cesium vapor was irradiated by a dye laser which was tuned to the cesium atomic transition line, the number of charged particles produced by the laser radiation was observed. Several sharp peaks in the number of charged particles were observed, which corresponded to the atomic transition where the lower level was the 6P excited atom. The ionization mechanism of the laser-produced cesium plasma has been discussed. An initial electron is produced by laser absorptions of the cesium dimer. When the cesium density is high, many 6P excited atoms are excited by electron collisions. The 6P excited atom further absorbs the laser photon and is ionized through the higher-energy state. As the cesium vapor pressure increases, the resonance effect becomes observable. The 6P excited atom plays dominant role in the ionization mechanism of the laser-produced cesium plasma. (author)

  20. Numerical fluid solutions for nonlocal electron transport in hot plasmas: Equivalent diffusion versus nonlocal source

    International Nuclear Information System (INIS)

    Colombant, Denis; Manheimer, Wallace

    2010-01-01

    Flux limitation and preheat are important processes in electron transport occurring in laser produced plasmas. The proper calculation of both of these has been a subject receiving much attention over the entire lifetime of the laser fusion project. Where nonlocal transport (instead of simple single flux limit) has been modeled, it has always been with what we denote the equivalent diffusion solution, namely treating the transport as only a diffusion process. We introduce here a new approach called the nonlocal source solution and show it is numerically viable for laser produced plasmas. It turns out that the equivalent diffusion solution generally underestimates preheat. Furthermore, the advance of the temperature front, and especially the preheat, can be held up by artificial 'thermal barriers'. The nonlocal source method of solution, on the other hand more accurately describes preheat and can stably calculate the solution for the temperature even if the heat flux is up the gradient.

  1. Spectrum of reflected light by self-focusing of light in a laser plasma

    International Nuclear Information System (INIS)

    Gorbunov, L.M.

    1983-01-01

    The spectrum of the radiation reflected by a laser-produced plasma is considered. In this situation, self-focusing occurs and a region of low density (caviton) is formed. It is shown that the process leads to a considerable broadening of the spectrum on the ''red'' side, and to the appearance of a line structure in the spectrum. The results can explain data for the reflected light spectrum [L. M. Gorbunov et al., FIAN Preprint No. 126 (1979)] as being due to the nonstationary self-focusing of light in a laser-produced plasma that has recently been observed [V. L. Artsimovich et al., FIAN Preprint No. 252 (1981); Sov. Phys. Doklady 27, 618 (1982)

  2. Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd:YAG laser pulses

    International Nuclear Information System (INIS)

    Wu, Tao; Higashiguchi, Takeshi; Arai, Goki; Hara, Hiroyuki; Kondo, Yoshiki; Miyazaki, Takanori; Dinh, Thanh-Hung; Li, Bowen; Dunne, Padraig; O’Reilly, Fergal; Sokell, Emma; O’Sullivan, Gerry

    2016-01-01

    The unresolved transition arrays (UTAs) emitted from laser produced bismuth (Bi) plasma sources show potential for single-shot live cell imaging. We have measured extreme ultraviolet spectra from bismuth laser produced plasmas in the 1–7 nm region using a λ = 1064 nm Nd:YAG laser with a pulse duration of 150 ps. Comparison of spectra obtained under different laser power densities with calculations using the Hartree–Fock with configuration interaction Cowan suite of codes and the UTA formalism, as well as consideration of previous predictions of isoelectronic trends, are employed to identify lines and a number of new features in spectra from Bi XXIII to Bi XLVII. The results show that Δn = 0, n = 4–4 emission from highly charged ions merges to form intense UTAs in the 4 nm region and Δn = 1, n = 4–5 resonance transitions UTAs dominate the 1–3 nm region of the Bi spectrum. (paper)

  3. Propagation of an ultra intense laser pulse in an under dense plasma: production of quasi monoenergetic electron beams and development of applications; Propagation d'une impulsion laser ultra-intense dans un plasma sous-dense: generation de faisceaux d'electrons quasi monoenergetiques et developpement d'applications

    Energy Technology Data Exchange (ETDEWEB)

    Glinec, Y

    2006-09-15

    This experimental study concerns the generation of electron beams with original properties. These electrons beams originate from the interaction of an ultra-intense and short laser pulse with a gas jet. Previously, these electron beams had a large divergence and a broad spectrum. A major improvement in this field was achieved when an electron beam with low divergence (10 mrad) and a peaked spectrum (170 MeV) was observed during this thesis, using a new single shot electron spectrometer. A parametric study of the interaction allowed to observe the evolution of the electron beam. Experiments have been carried out to deepen the characterization of the electron beam. The observation of transition radiation generated by the electrons at an interface shows that the electron beam interacts with the laser pulse during the acceleration. Radial oscillations of the electron beam around the laser axis, named betatron oscillations, were also observed on the electron spectra. Such a quasi-monoenergetic spectrum is essential for many applications. In order to justify the interest of this electron beam, several applications are presented: a sub-milli-metric gamma-ray radiography of dense objects, a dose profile of the electron beam comparable to present capabilities of photon sources for radiotherapy, a very short temporal profile useful for water radiolysis and the generation of a bright X-ray source with low divergence. (author)

  4. Propagation of an ultra intense laser pulse in an under dense plasma: production of quasi monoenergetic electron beams and development of applications; Propagation d'une impulsion laser ultra-intense dans un plasma sous-dense: generation de faisceaux d'electrons quasi monoenergetiques et developpement d'applications

    Energy Technology Data Exchange (ETDEWEB)

    Glinec, Y

    2006-09-15

    This experimental study concerns the generation of electron beams with original properties. These electrons beams originate from the interaction of an ultra-intense and short laser pulse with a gas jet. Previously, these electron beams had a large divergence and a broad spectrum. A major improvement in this field was achieved when an electron beam with low divergence (10 mrad) and a peaked spectrum (170 MeV) was observed during this thesis, using a new single shot electron spectrometer. A parametric study of the interaction allowed to observe the evolution of the electron beam. Experiments have been carried out to deepen the characterization of the electron beam. The observation of transition radiation generated by the electrons at an interface shows that the electron beam interacts with the laser pulse during the acceleration. Radial oscillations of the electron beam around the laser axis, named betatron oscillations, were also observed on the electron spectra. Such a quasi-monoenergetic spectrum is essential for many applications. In order to justify the interest of this electron beam, several applications are presented: a sub-milli-metric gamma-ray radiography of dense objects, a dose profile of the electron beam comparable to present capabilities of photon sources for radiotherapy, a very short temporal profile useful for water radiolysis and the generation of a bright X-ray source with low divergence. (author)

  5. Proton moire fringes for diagnosing electromagnetic fields in opaque materials and plasmas

    International Nuclear Information System (INIS)

    Mackinnon, A.J.; Patel, P.K.; Price, D.W.; Hicks, D.; Romagnani, L.; Borghesi, M.

    2003-01-01

    High contrast proton moire fringes have been obtained in a laser-produced proton beam. Moire fringes with modulation of 20%-30% were observed in protons with energies in the range of 4-7 MeV. Monte Carlo simulations with simple test fields showed that shifts in the moire fringes can be used to give quantitative information on the strength of transient electromagnetic fields inside plasmas and materials that are opaque to conventional probing methods

  6. Investigation of plasma ablation and crater formation processes in the Prague Asterix Laser System laser facility

    Czech Academy of Sciences Publication Activity Database

    Borodziuk, S.; Kasperczuk, A.; Pisarczyk, T.; Gus'kov, S.; Ullschmied, Jiří; Králiková, Božena; Rohlena, Karel; Skála, Jiří; Pisarczyk, P.; Kálal, M.

    2004-01-01

    Roč. 34, č. 1 (2004), s. 31-42 ISSN 0078-5466 R&D Projects: GA MŠk LN00A100 Grant - others:HPRI-CT(XX) 1999-00053 Institutional research plan: CEZ:AV0Z2043910; CEZ:AV0Z1010921 Source of funding: R - rámcový projekt EK Keywords : laser-produced plasma * interferometric measurements * crater Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.308, year: 2004

  7. Limb-darkening opacity experiment using a laser-heated plasma

    International Nuclear Information System (INIS)

    Hoffman, N.M.; Miller, L.W.; Mack, J.M.

    1978-10-01

    The limb-darkening technique, a method for measuring monochromatic opacity information, which has had successful astrophysical applications, is reviewed. The application of the technique to laser-produced plasmas in materials and regimes of temperature and density of interest to weapons designers is discussed, and the magnitude of the limb-darkening effect in such situations is estimated. Finally, an experimental study, now in progress, to evaluate the feasibility of this approach is described. 10 figures

  8. Proton Radiography of Laser-Plasma Interactions with Picosecond Time Resolution

    International Nuclear Information System (INIS)

    Mackinnon, A J; Patel, P K; Town, R J; Hatchett, S P; Hicks, D; Phillips, T H; Wilks, S C; Price, D; Key, M H; Lasinski, B; Langdon, B; Borghesi, M; Romagnani, L; Kar, S

    2005-01-01

    Radiography of laser-produced plasmas with MeV protons has the potential to provide new information on plasma conditions in extreme states of matter. Protons with energies up to many hundreds MeV, produced by large scale accelerators have been recently been used to obtain mass density radiographs of the behavior of large samples which have been shocked on microsecond timescales with approximately mm spatial resolution. The recent discovery of laminar proton beams accelerated to multi-MeV energies by picosecond duration laser beams has provided the opportunity to probe dense plasmas with hitherto unparalleled temporal and spatial resolution

  9. Relativistic electron acceleration by net inverse bremsstrahlung in a laser-irradiated plasma

    International Nuclear Information System (INIS)

    Kim, S.H.; Chen, K.W.

    1985-01-01

    Using the quantum-kinetic method, the net acceleration of relativistic electrons in a laser-irradiated plasma is studied as a function of the relevant parameters of the incident laser wave and the plasma wave. It is suggested that, in general, the net acceleration in laser-produced turbulent plasmas is primarily due to inverse bremsstrahlung proceses, and the acceleration gradient exceeds several hundreds gigavolt per meter when the electron energy is large (TeV) and the momentum spread of the beam is properly controlled

  10. Linear conversion theory on the second harmonic emission from a plasma filament

    International Nuclear Information System (INIS)

    Tan Weihan; Gu Min

    1989-01-01

    The linear conversion theory of laser produced plasma filaments is studied. By calculations for the energy flux of the second harmonic emission on the basis of the planar wave-plasma interaction model, it has been found that there exists no 2ω 0 harmonic emission in the direction perpendicular to the incident laser, in contradiction with the experiments. A linear conversion theory is proposed on the second harmonic emission from a plasma filament and discovered the intense 2ω 0 harmonic emission in the direction perpendicular to the incident laser, which is in agreement with the experiments. (author)

  11. Radiation damage in nonmetallic solids under dense electronic excitation

    International Nuclear Information System (INIS)

    Itoh, Noriaki; Tanimura, Katsumi; Nakai, Yasuo

    1992-01-01

    Basic processes of radiation damage of insulators by dense electronic excitation are reviewed. First it is pointed out that electronic excitation of nonmetallic solids produces the self-trapped excitons and defect-related metastable states having relatively long lifetimes, and that the excitation of these metastable states, produces stable defects. The effects of irradiation with heavy ions, including track registration, are surveyed on the basis of the microscopic studies. It is pointed out also that the excitation of the metastable states plays a role in laser-induced damage at relatively low fluences, while the laser damage has been reported to be governed by heating of free electrons produced by multiphoton excitation. Difference in the contributions of the excitation of metastable defects to laser-induced damage of surfaces, or laser ablation, and laser-induced bulk damage is stressed. (orig.)

  12. 16. Hot dense plasma atomic processes

    International Nuclear Information System (INIS)

    Werner, Dappen; Totsuji, H.; Nishii, Y.

    2002-01-01

    This document gathers 13 articles whose common feature is to deal with atomic processes in hot plasmas. Density functional molecular dynamics method is applied to the hydrogen plasma in the domain of liquid metallic hydrogen. The effects of the density gradient are taken into account in both the electronic kinetic energy and the exchange energy and it is shown that they almost cancel with each other, extending the applicability of the Thomas-Fermi-Dirac approximation to the cases where the density gradient is not negligible. Another article reports about space and time resolved M-shell X-ray measurements of a laser-produced gas jet xenon plasma. Plasma parameters have been measured by ion acoustic and electron plasma waves Thomson scattering. Photo-ionization becomes a dominant atomic process when the density and the temperature of plasmas are relatively low and when the plasma is submitted to intense external radiation. It is shown that 2 plasmas which have a very different density but have the same ionization parameters, are found in a similar ionization state. Most radiation hydrodynamics codes use radiative opacity data from available libraries of atomic data. Several articles are focused on the determination of one group Rosseland and Planck mean analytical formulas for several single elements used in inertial fusion targets. In another paper the plasma density effect on population densities, effective ionization, recombination rate coefficients and on emission lines from carbon and Al ions in hot dense plasma, is studied. The last article is devoted to a new atomic model in plasmas that considers the occupation probability of the bound state and free state density in the presence of the plasma micro-field. (A.C.)

  13. The application of high-speed photography and spectrography for investigations of erosive pulsed plasma streams

    International Nuclear Information System (INIS)

    Kiselevskiy, L.I.; Minko, L.Ja.

    The extensive information of pulsed plasma dynamic processes related to formation and interaction of plasma streams with a surrounding medium and obstacles is obtained with the help of high-speed photo and spectrography. The wave structure of pulsed supersonic under-expanded erosive plasma jets is studied. Some physical processes which are due to interactions of laser radiation with the laser-produced erosive plasma and of this plasma with a surrounding medium are investigated. The wide possibilities of frame photography of spectra quantitative spectroscopic investigations of fast-proceeding plasma processes are shown on the basis of joint use of high-speed photographic apparatus (type SFR) and standard spectrographs. The radial distribution of charged-particle concentrations at separate moments of time is obtained from the broadening of spectral lines at the brightness of the continuous spectrum of an erosive plasma jet from a pulsed accelerator

  14. Early-time measurements of soft x-ray emission in an omega-upgrade laser-produced plasma. Semi-annual report, October 1, 1996--March 31, 1997

    International Nuclear Information System (INIS)

    Griem, H.R.; Elton, R.C.; Welch, B.L.

    1997-01-01

    Beginning in January 1997 (following arrival of the FY-97 funding) we have been preparing for our first series of experiments under this grant at the University of Rochester Laboratory for Laser Energetics (LLE) on the Omega Upgrade laser facility, now scheduled to commence June 2, 1997. For these experiments we have purchased (just arrived) a four-channel gated-stripline microchannel plate (MCP) detector to be coupled to our soft x-ray flat-field grazing incidence spectrograph used previously at LLE. This will permit time-resolved 'snapshots' of the complete spectra with a resolution to times as short as 180 ps per strip. An advantage of this technique over the streak camera used previously is the lack of any carbon absorbers such as in the thin plastic cathode required for the streak camera. This eliminates absorption in the 30-44 angstrom spectral region in which we are interested for intermediate-Z target materials such as Mg, Al and Si. An auxiliary turbomolecular-drag pump has also been installed in order to obtain the necessary vacuum for optimum MCP operation

  15. Raman sidescatter instability in a nonuniform plasma

    International Nuclear Information System (INIS)

    Mostrom, M.A.

    1977-01-01

    In the various laser-fusion concepts, an intense electromagnetic wave (the laser) must propagate through an under-dense plasma region where it could decay, via the stimulated Raman instability, into a Langmuir plasma wave and a scattered electromagnetic wave. This process could, therefore, scatter a significant fraction of the laser energy before it could be deposited in the plasma. A density gradient, in the direction of laser incidence, localizes the instability to a narrow resonance zone where the local plasma wave frequency approximately equals the difference-frequency between the incident and scattered electromagnetic waves. The narrowness of this zone can strongly inhibit the growth of back- or oblique-scattered electromagnetic waves since they quickly propagate out of their resonance region; however, the density gradient has a much weaker effect on side-scattered waves (which propagate perpendicular to the density gradient) since they remain in their resonance zone until refraction bends them out or they exit through the side of the finite diameter laser beam. Thus, we place particular emphasis on evaluating, in a manner valid for the side scattered electromagnetic waves (which are at their turning point), the level of exponentiation at which the growth is linearly saturated due to convection of the waves out of their resonance zone. We also determine the general nature and propagation of the scattered electromagnetic waves and obtain approximate values for the resonance zone size and the time required for the above saturation

  16. High-power laser-plasma chemistry in planetary atmospheres

    Czech Academy of Sciences Publication Activity Database

    Juha, Libor; Ferus, Martin; Kubelík, Petr; Krása, Josef; Skála, Jiří; Pfeifer, Miroslav; Civiš, Svatopluk; Cihelka, Jaroslav; Babánková, Dagmar

    2007-01-01

    Roč. 7, č. 3 (2007), s. 516-517 ISSN 1531-1074. [Bioastronomy 2007. San Juach, 16.07.2007-20.07.2007] R&D Projects: GA ČR GA203/06/1278; GA MŠk(CZ) LC528; GA MŠk LC510 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z40400503 Keywords : laser spark * laser-produced plasma * chemical evolution * plasmachemistry Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.025, year: 2007

  17. Numerical simulation of filamentation in laser-plasma interactions

    International Nuclear Information System (INIS)

    Nicholas, D.J.; Sajjadi, S.G.

    1986-01-01

    Numerical studies of beam filamentation in laser-produced plasma are presented. This involves the numerical solution of the parabolic wave equation, known as the Schroedinger equation, coupled with the thermal transport equations for both ions and electrons, in two dimensions. The solution of the resulting equation with non-linear refractive index due to thermal and pondermotive forces, shows self-focusing and a variety of strong aberration effects. Intensity amplification at the final focus is found to be between one and two orders of magnitude greater than the initial beam intensity, governed in general by diffraction and aberration effects within the beam. (author)

  18. Numerical simulation of filamentation in laser-plasma interactions

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas, D.J.; Sajjadi, S.G.

    1986-05-14

    Numerical studies of beam filamentation in laser-produced plasma are presented. This involves the numerical solution of the parabolic wave equation, known as the Schroedinger equation, coupled with the thermal transport equations for both ions and electrons, in two dimensions. The solution of the resulting equation with non-linear refractive index due to thermal and pondermotive forces, shows self-focusing and a variety of strong aberration effects. Intensity amplification at the final focus is found to be between one and two orders of magnitude greater than the initial beam intensity, governed in general by diffraction and aberration effects within the beam.

  19. Hydrogenic ionization model for mixtures in non-LTE plasmas

    International Nuclear Information System (INIS)

    Djaoui, A.

    1999-01-01

    The Hydrogenic Ionization Model for Mixtures (HIMM) is a non-Local Thermodynamic Equilibrium (non-LTE), time-dependent ionization model for laser-produced plasmas containing mixtures of elements (species). In this version, both collisional and radiative rates are taken into account. An ionization distribution for each species which is consistent with the ambient electron density is obtained by use of an iterative procedure in a single calculation for all species. Energy levels for each shell having a given principal quantum number and for each ion stage of each species in the mixture are calculated using screening constants. Steady-state non-LTE as well as LTE solutions are also provided. The non-LTE rate equations converge to the LTE solution at sufficiently high densities or as the radiation temperature approaches the electron temperature. The model is particularly useful at low temperatures where convergence problems are usually encountered in our previous models. We apply our model to typical situation in x-ray laser research, laser-produced plasmas and inertial confinement fusion. Our results compare well with previously published results for a selenium plasma. (author)

  20. Annual review of the Institute of Plasma Physics, Nagoya University, for fiscal 1978

    International Nuclear Information System (INIS)

    1979-01-01

    Activities of Institute of Plasma Physics, Nagoya University, from April 1978 to March 1979, are described in individual short summaries. As a main project, the JIPP T-II program aims at confinement and heating of hot plasmas in a tokamak/stellarator hybrid system. The STP-3 system for high beta pinch plasma has now almost been completed. Installation of the RFC-XX is now complete with the delivery of two rf oscillators for point cusp plugs. In high energy beam experiment, toroidal magnetic configurations maintained by intense relativistic currents were demonstrated. The Nagoya Bumpy Torus is a race track convertible to a circular torus. In parallel with the above research projects, there continued experiments on basic plasma physics, laser-produced plasma, the atomic processes and the surface physics related to the plasma-wall interaction. Theoretical and computational divisions worked in close collaboration with the above. (J.P.N.)

  1. Characterization of nova plasmas using an x-ray spectrometer with temporal and spatial resolution

    International Nuclear Information System (INIS)

    Back, C.A.; Kauffman, R.L.; Bell, P.; Kilkenny, J.D.

    1994-05-01

    Spectroscopic diagnostics have great potential to obtain high temperature measurements of plasmas created in ICF targets. The plasmas may be over 1 mm in size and therefore, one of the first steps in making accurate spectroscopic measurements has been to improve the resolution of the instrument. A spectrograph is now available for Nova experiments which takes advantage of gated technology by coupling a Bragg crystal to a microchannel plate that can record data over a 250 ps time frame. The crystal disperses the x-rays, while slits add the ability to image the plasmas in the perpendicular direction. The characteristics of this diagnostic, TSPEC, will be evaluated for laser-produced plasmas. Recent data will be presented from colliding plasmas and large-scale hohlraums which indicate that imaging can greatly enhance the ability to diagnose these plasmas

  2. Study in the plasma with non-equilibrium ionization state by relative intensities in K-spectra of multicharged ions

    International Nuclear Information System (INIS)

    Bojko, V.A.; Skobelev, I.Yu.; Faenov, A.Ya.

    1984-01-01

    The pressure of the K-spectra formation of multicharge h-, He-, Li-like ions in a plasma with an arbitrary ionization state are considered. It is shown that comparison of experimental and theoretical data on the intensities of f a number of spectral lines belonging to such ions allows one to determine both the plasma electron temperature and ion distribution versus the ionization degre ees. The proposed method of plasma diagnostics is used for measuring parameters of the expanding laser-produced magnesium plasme

  3. Topical Conference on High Temperature Plasma Diagnostics, 7th, Napa, CA, Mar. 13-17, 1988, Proceedings

    International Nuclear Information System (INIS)

    Luhmann, N.C. Jr.; Peebles, W.A.

    1988-01-01

    Various papers concerning scientific instruments are presented. The general topics addressed include: laser scattering and optical diagnostics, collective scattering and interferometry, millimeter wave and current profile measurements, particle-based diagnostics, data acquisition and analysis, X-ray diagnostics, and particle- and photon-based diagnostics. Individual subjects discussed include: atomic hydrogen density measurements in an ion source plasma using VUV absorption spectrometer, resonant diagnostics of laser-produced Ba plasmas, radiative and diffusional effects to the population densities of the excited-state atoms in hydrogen plasma, and Watt-level millimeter-wave monolithic diode-grid frequency multipliers

  4. Efficient 'water window' soft x-ray high-Z plasma source

    International Nuclear Information System (INIS)

    Higashiguchi, T; Otsuka, T; Jiang, W; Endo, A; Li, B; Dunne, P; O'Sullivan, G

    2013-01-01

    Unresolved transition array (UTA) is scalable to shorter wavelengths, and we demonstrate a table-top broadband emission 'water window' soft x-ray source based on laser-produced plasmas. Resonance emission from multiply charged ions merges to produce intense UTAs in the 2 to 4 nm region, extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on a bismuth (Bi) plasma UTA source, coupled to multilayer mirror optics

  5. Spectroscopic analysis of Zirconium plasma in different ambient and optimizing conditions for nanoclusters formation

    International Nuclear Information System (INIS)

    Yadav, Dheerendra; Thareja, Raj K.

    2010-01-01

    The laser produced zirconium plasma has been studied by emission spectroscopy and fast photography using intensified charged coupled device at different ambient pressures of nitrogen (0.1, 1.0 and 10 mbar). Formation of zirconium clusters are arising at ambient pressure of 1.0 mbar at the plume periphery due to the chemical reactions between the plasma plume and the ambient and confirmed using optical emission spectroscopy. The optimum parameters for existence cluster formation are reported. The ZrN clusters are deposited on silicon substrate and characterized by AFM, XRD and EDAX techniques. (author)

  6. Recent results from experimental studies on laser-plasma coupling in a shock ignition relevant regime

    Czech Academy of Sciences Publication Activity Database

    Koester, P.; Antonelli, L.; Atzeni, S.; Badziak, J.; Baffigi, F.; Batani, D.; Cecchetti, C.A.; Chodukowski, T.; Consoli, F.; Cristoforetti, G.; De Angelis, R.; Folpini, G.; Gizzi, L.A.; Kalinowska, Z.; Krouský, Eduard; Kuchařík, M.; Labate, L.; Levato, T.; Liška, R.; Malka, G.; Maheut, Y.; Marocchino, A.; Nicolai, P.; O´Dell, T.; Parys, P.; Pisarczyk, T.; Rączka, P.; Renner, Oldřich; Rhee, Y.-J.; Ribeyre, X.; Richetta, M.; Rosinski, M.; Ryc, L.; Skála, Jiří; Schiavi, A.; Schurtz, G.; Šmíd, Michal; Spindloe, C.; Ullschmied, Jiří; Wolowski, J.; Zaras, A.

    2013-01-01

    Roč. 55, č. 12 (2013), , "124045-1"-"124045-8" ISSN 0741-3335 R&D Projects: GA MŠk(CZ) LC528; GA MŠk LM2010014 EU Projects: European Commission(XE) 284464 - LASERLAB-EUROPE Institutional support: RVO:68378271 ; RVO:61389021 Keywords : laser-produced plasma s * inertial confinement fusion * shock ignition * X-ray imaging spectroscopy * ion diagnostics * interferometry * shock breakout chron Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.386, year: 2013

  7. Particle range in a laser-plasma generated soft X-ray chamber

    Energy Technology Data Exchange (ETDEWEB)

    Bollanti, S.; Letardi, T. [ENEA, Centro Ricerche Frascati, Rome (Italy). Dipt. Innovazione; Zheng, C. [EL.EN, Calenzano, Florence (Italy)

    1999-07-01

    Some analytical forms are deduced for calculating the flight range of a spherical particle ejected from the laser plasma target and retarded by gas resistance. it is shown that the gas pressure influence on viscosity can not be neglected when are estimated the expansion ranges fro debris of various sizes in a helium gas-buffered, laser produced plasma chamber. [Italian] Vengono ricavate alcune formule analitiche per il calcolo del range di frammenti sferici espulsi con velocita' iniziale dati e frenati dalla resistenza di un fondo gassoso. Si mostra che nei gas considerati non si puo' ignorare influenza della pressione nella viscosita' del gas.

  8. Fast Magnetic Reconnection: Bridging Laboratory and Space Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Amitava [University New Hampshire- Durham

    2012-02-16

    Recent developments in experimental and theoretical studies of magnetic reconnection hold promise for providing solutions to outstanding problems in laboratory and space plasma physics. Examples include sawtooth crashes in tokamaks, substorms in the Earth’s Magnetosphere, eruptive solar flares, and more recently, fast reconnection in laser-produced high energy density plasmas. In each of these examples, a common and long-standing challenge has been to explain why fast reconnection proceeds rapidly from a relatively quiescent state. In this talk, we demonstrate the advantages of viewing these problems and their solutions from a common perspective. We focus on some recent, surprising discoveries regarding the role of secondary plasmoid instabilities of thin current sheets. Nonlinearly, these instabilities lead to fast reconnection rates that are very weakly dependent on the Lundquist number of the plasma.

  9. Collisionless coupling of a high- β expansion to an ambient, magnetized plasma. II. Experimental fields and measured momentum coupling

    Science.gov (United States)

    Bonde, Jeffrey; Vincena, Stephen; Gekelman, Walter

    2018-04-01

    The momentum coupled to a magnetized, ambient argon plasma from a high- β, laser-produced carbon plasma is examined in a collisionless, weakly coupled limit. The total electric field was measured by separately examining the induced component associated with the rapidly changing magnetic field of the high- β (kinetic β˜106), expanding plasma and the electrostatic component due to polarization of the expansion. Their temporal and spatial structures are discussed and their effect on the ambient argon plasma (thermal β˜10-2) is confirmed with a laser-induced fluorescence diagnostic, which directly probed the argon ion velocity distribution function. For the given experimental conditions, the electrostatic field is shown to dominate the interaction between the high- β expansion and the ambient plasma. Specifically, the expanding plasma couples energy and momentum into the ambient plasma by pulling ions inward against the flow direction.

  10. Space-time evolution of the power absorbed by creating and heating a hydrogen plasma column by a pulsed laser beam

    International Nuclear Information System (INIS)

    Pincosy, Philip; Dufresne, Daniel; Bournot, Philippe; Caressa, J.-P.; Autric, Michel

    1976-01-01

    Space-time measurements of light intensity are presented for the analysis of the processes involved in the creation and heating of an under-dense hydrogen plasma column by a pulsed CO 2 laser beam. The laser beam trapping due to the rapid development of a radial electron density gradient is specifically demonstrated. Time measurements of the changes in the laser power longitudinally transmitted through the plasma give evidence for a significant absorption of the incident power during the first 150 nanoseconds of the interaction [fr

  11. Effects of ponderomotive forces and space-charge field on laser plasma hydrodynamics

    International Nuclear Information System (INIS)

    Cang Yu; Lu Xin; Wu Huichun; Zhang Jie

    2005-01-01

    Using a two-fluid two-temperature hydrodynamic code, authors studied the hydrodynamics in the interaction of intense (10 15 W/cm 2 ) ultrashort (150 fs) laser pulses and linear density plasmas. The simulation results show the ponderomotive force effect on the formation of the electron density ripples in under-dense region, such ripples increase the reflection of the laser pulse, and on the separation of the plasma in critical surface. Quasi-electroneutrality is not suitable in this case because of the different ponderomotive force and the gradient of thermal-pressure for ions and electrons. Ions are moved by the electrostatic force. Comparing with the simulation results from one-fluid two-temperature code, authors find that under strong ponderomotive force and gradient of thermo-pressure, two-fluid code is more suitable to simulate the hydrodynamics of plasmas. (authors)

  12. Plasma turbulence

    International Nuclear Information System (INIS)

    Horton, W.

    1998-07-01

    The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates

  13. Laser-Plasma Modeling Using PERSEUS Extended-MHD Simulation Code for HED Plasmas

    Science.gov (United States)

    Hamlin, Nathaniel; Seyler, Charles

    2017-10-01

    We discuss the use of the PERSEUS extended-MHD simulation code for high-energy-density (HED) plasmas in modeling the influence of Hall and electron inertial physics on laser-plasma interactions. By formulating the extended-MHD equations as a relaxation system in which the current is semi-implicitly time-advanced using the Generalized Ohm's Law, PERSEUS enables modeling of extended-MHD phenomena (Hall and electron inertial physics) without the need to resolve the smallest electron time scales, which would otherwise be computationally prohibitive in HED plasma simulations. We first consider a laser-produced plasma plume pinched by an applied magnetic field parallel to the laser axis in axisymmetric cylindrical geometry, forming a conical shock structure and a jet above the flow convergence. The Hall term produces low-density outer plasma, a helical field structure, flow rotation, and field-aligned current, rendering the shock structure dispersive. We then model a laser-foil interaction by explicitly driving the oscillating laser fields, and examine the essential physics governing the interaction. This work is supported by the National Nuclear Security Administration stewardship sciences academic program under Department of Energy cooperative agreements DE-FOA-0001153 and DE-NA0001836.

  14. Department of Plasma Physics and Technology - Overview

    International Nuclear Information System (INIS)

    Rabinski, M.

    2008-01-01

    Full text: The activities of the Department in 2007 continued previous studies in the following fields of plasma physics, controlled nuclear fusion and plasma technology of surface engineering: · Studies of physical phenomena in pulsed discharges in the Plasma-Focus (PF) and RPI-IBIS facilities; · Development of selected methods for high-temperature plasma diagnostics; · Research on plasma technologies; · Selected problems of plasma theory and computational modelling. As for the experimental studies particular attention was paid to the analysis of the correlation of X-ray pulses with pulsed electron beams and other corpuscular emissions from different Plasma-Focus (PF) facilities. A collisional-radiative model, taking into account the Stark effect and strong electric fields in the so called '' hot- spot '' regions of a pinch, was applied in those analyses. The main aim of these studies was to identify the physical phenomena responsible for the emission during the PF-type discharges. The emitted protons were also measured with nuclear track detectors. The measurements made it possible to obtain images of the regions, where the D-D fusion reactions occurred, as well as to determine the angular distribution of the emitted protons. Pulsed plasma streams were also investigated by means of time-resolved optical spectroscopy and corpuscular diagnostics. In a frame of the EURATOM program, efforts were devoted to the development of diagnostic methods for tokamak-type facilities. Such studies include the design and construction of the 4-channel Cherenkov-type detection system for the TORE-SUPRA tokamak at CEA-Cadarache. In the meantime in order to collect some experience a new measuring head was especially prepared for experiments within small facilities. Other fusion- oriented efforts are connected with the application of the solid-state nuclear track detectors for investigation of protons from tokamak plasma and high-energy beams emitted from laser produced plasmas

  15. Effect of laser beam focus position on ion emission from plasmas produced by picosecond and sub-nanosecond laser pulses from solid targets

    Czech Academy of Sciences Publication Activity Database

    Woryna, E.; Badziak, J.; Makowski, J.; Parys, P.; Wolowski, J.; Krása, Josef; Láska, Leoš; Rohlena, Karel; Vankov, A. B.

    2001-01-01

    Roč. 31, č. 4 (2001), s. 791-798 ISSN 0078-5466 R&D Projects: GA AV ČR IAA1010105 Grant - others:KBN(PL) 2 P03B 082 19 Institutional research plan: CEZ:AV0Z1010921 Keywords : laser-produced plasma * laser beam focus position influence Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.298, year: 2001

  16. Strong temperature effect on X-ray photo-etching of polytetrafluoroethylene using a 10Hz laser-plasma radiation source based on a gas puff target

    Czech Academy of Sciences Publication Activity Database

    Bartnik, A.; Fiedorowicz, H.; Jarocki, R.; Juha, Libor; Kostecki, J.; Rakowski, R.; Szczurek, M.

    2006-01-01

    Roč. 82, - (2006), s. 529-532 ISSN 0946-2171 R&D Projects: GA MŠk(CZ) LC510 Grant - others:Ministery of Scientific Research(PL) 3 T08C 002 27 Institutional research plan: CEZ:AV0Z10100523 Keywords : photo-etching * organic polymers * laser-produced plasmas Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.023, year: 2006

  17. Generation of ultra-high-pressure shocks by collision of a fast plasma projectile driven in the laser-induced cavity pressure acceleration scheme with a solid target

    Czech Academy of Sciences Publication Activity Database

    Badziak, J.; Rosinski, M.; Krouský, Eduard; Kucharik, M.; Liska, R.; Ullschmied, Jiří

    2015-01-01

    Roč. 22, č. 3 (2015), s. 1-11, č. článku 032709. ISSN 1070-664X R&D Projects: GA MŠk(CZ) LD14089; GA MŠk LM2010014 EU Projects: European Commission(XE) 284464 - LASERLAB-EUROPE Institutional support: RVO:68378271 ; RVO:61389021 Keywords : laser-produced plasma * ultra-high-pressure shocks * laser-induced cavity pressure acceleration Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.207, year: 2015

  18. Response to „Comment on Avalanche proton-boron fusion based on elastic nuclear collisions” [Phys. Plasmas 23, 094703 (2016)

    Czech Academy of Sciences Publication Activity Database

    Eliezer, S.; Hora, H.; Korn, Georg; Nissim, N.; Val, J.M.M.

    2016-01-01

    Roč. 23, č. 9 (2016), s. 1-2, č. článku 094704. ISSN 1070-664X R&D Projects: GA MŠk ED1.1.00/02.0061 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061 Institutional support: RVO:68378271 Keywords : laser-produced plasma Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.115, year: 2016

  19. The specific features of self-action of high-power laser radiation propagating through a fully ionised cold plasma and the development of modulation instability

    International Nuclear Information System (INIS)

    Aleshkevich, Viktor A; Kartashev, Ya V; Vysloukh, Victor A

    2000-01-01

    The specific features of the propagation of soliton-like light beams through a fully ionised two-dimensional cold plasma are considered employing analytical and numerical methods commonly used in nonlinear optics. Exact soliton profiles for the lower and upper soliton branches are found numerically in the presence of optical bistability. It is shown that the interaction of incoherent soliton-like laser beams in such a plasma may result both in the destruction of one of the beams and in production of new ones. The regime of the modulation instability of a plane wave propagating through a cold laser-produced plasma is studied. (nonlinear optical phenomena)

  20. Plasma properties

    International Nuclear Information System (INIS)

    Weitzner, H.

    1990-06-01

    This paper discusses the following topics: MHD plasma activity: equilibrium, stability and transport; statistical analysis; transport studies; edge physics studies; wave propagation analysis; basic plasma physics and fluid dynamics; space plasma; and numerical methods

  1. Plasma accelerators

    International Nuclear Information System (INIS)

    Bingham, R.; Angelis, U. de; Johnston, T.W.

    1991-01-01

    Recently attention has focused on charged particle acceleration in a plasma by a fast, large amplitude, longitudinal electron plasma wave. The plasma beat wave and plasma wakefield accelerators are two efficient ways of producing ultra-high accelerating gradients. Starting with the plasma beat wave accelerator (PBWA) and laser wakefield accelerator (LWFA) schemes and the plasma wakefield accelerator (PWFA) steady progress has been made in theory, simulations and experiments. Computations are presented for the study of LWFA. (author)

  2. Plasma Evolution within an Erupting Coronal Cavity

    Science.gov (United States)

    Long, David M.; Harra, Louise K.; Matthews, Sarah A.; Warren, Harry P.; Lee, Kyoung-Sun; Doschek, George A.; Hara, Hirohisa; Jenkins, Jack M.

    2018-03-01

    Coronal cavities have previously been observed to be associated with long-lived quiescent filaments and are thought to correspond to the associated magnetic flux rope. Although the standard flare model predicts a coronal cavity corresponding to the erupting flux rope, these have only been observed using broadband imaging data, restricting an analysis to the plane-of-sky. We present a unique set of spectroscopic observations of an active region filament seen erupting at the solar limb in the extreme ultraviolet. The cavity erupted and expanded rapidly, with the change in rise phase contemporaneous with an increase in nonthermal electron energy flux of the associated flare. Hot and cool filamentary material was observed to rise with the erupting flux rope, disappearing suddenly as the cavity appeared. Although strongly blueshifted plasma continued to be observed flowing from the apex of the erupting flux rope, this outflow soon ceased. These results indicate that the sudden injection of energy from the flare beneath forced the rapid eruption and expansion of the flux rope, driving strong plasma flows, which resulted in the eruption of an under-dense filamentary flux rope.

  3. Higher order structure analysis of nano-materials by spectral reflectance of laser-plasma soft x-ray

    International Nuclear Information System (INIS)

    Azuma, Hirozumi; Takeichi, Akihiro; Noda, Shoji

    1995-01-01

    We have proposed a new experimental arrangement to measure spectral reflectance of nano-materials for analyzing higher order structure with laser-plasma soft x-rays. Structure modification of annealed Mo/Si multilayers and a nylon-6/clay hybrid with poor periodicity was investigated. The measurement of the spectral reflectance of soft x-rays from laser-produced plasma was found to be a useful method for the structure analysis of nano-materials, especially those of rather poor periodicity

  4. A model for the nonlocal transport and the associated distribution function deformation in magnetized laser-plasmas

    Science.gov (United States)

    Nicolaï, Ph.; Feugeas, J.-L.; Schurtz, G.

    2006-06-01

    We present a model of nonlocal transport for multidimensional radiation magneto hydrodynamic codes. In laser produced plasmas, it is now believed that the heat transfert can be strongly modified by the nonlocal nature of the electron conduction. Nevertheless other mechanisms as self generated magnetic fields may affect heat transport too. The model described in this work aims at extending the formula of G. Schurtz, Ph. Nicolaï and M. Busquet [1] to magnetized plasmas. A system of nonlocal equations is derived from kinetic equations with self-consistent electric and magnetic fields. These equations are analyzed and applied to a physical problem in order to demonstrate the main features of the model.

  5. Iron plasma generation using a Nd:YAG laser pulse of several hundred picoseconds

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Jun, E-mail: jtamura@post.j-parc.jp [J-PARC Center, Japan Atomic Energy Agency, Ibaraki 319-1195 (Japan); Kumaki, Masafumi [Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Kondo, Kotaro [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo 152-8550 (Japan); Kanesue, Takeshi; Okamura, Masahiro [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2016-02-15

    We investigated the high intensity plasma generated by using a Nd:YAG laser to apply a laser-produced plasma to the direct plasma injection scheme. The capability of the source to generate high charge state ions strongly depends on the power density of the laser irradiation. Therefore, we focused on using a higher power laser with several hundred picoseconds of pulse width. The iron target was irradiated with the pulsed laser, and the ion current of the laser-produced iron plasma was measured using a Faraday cup and the charge state distribution was investigated using an electrostatic ion analyzer. We found that higher charge state iron ions (up to Fe{sup 21+}) were obtained using a laser pulse of several hundred picoseconds in comparison to those obtained using a laser pulse of several nanoseconds (up to Fe{sup 19+}). We also found that when the laser irradiation area was relatively large, the laser power was absorbed mainly by the contamination on the target surface.

  6. Thomson scattering measurements from asymmetric interpenetrating plasma flows

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J. S., E-mail: ross36@llnl.gov; Moody, J. D.; Fiuza, F.; Ryutov, D.; Divol, L.; Huntington, C. M.; Park, H.-S. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

    2014-11-15

    Imaging Thomson scattering measurements of collective ion-acoustic fluctuations have been utilized to determine ion temperature and density from laser produced counter-streaming asymmetric flows. Two foils are heated with 8 laser beams each, 500 J per beam, at the Omega Laser facility. Measurements are made 4 mm from the foil surface using a 60 J 2ω probe laser with a 200 ps pulse length. Measuring the electron density and temperature from the electron-plasma fluctuations constrains the fit of the multi-ion species, asymmetric flows theoretical form factor for the ion feature such that the ion temperatures, ion densities, and flow velocities for each plasma flow are determined.

  7. High speed manyframe optical methods for plasma diagnostics

    International Nuclear Information System (INIS)

    Erokhin, A.A.; Shikanov, A.S.; Sklizkov, G.V.; Zakharenkov, Yu.A.; Zorev, N.N.

    1979-01-01

    A complex of active optical plasma and strong ionized shock wave diagnostics is described. The complex consisted of a specially developed high speed manyframe systems of shadow, schlieren and interferometric photography. The comparison of results obtained by a simultaneous registration of investigated object by means of different optical methods allowed us to determine optimal employment range for the methods. The sensitivity, temporal and space resolution of each optical method under conditions of high probe radiation refraction are discussed. The application boundaries of these methods for ionized shock wave investigation were found to depend on the shock wave front width. The methods described were used for the study of laser-produced plasma phenomena, occuring in the experiments on powerful nine-channel laser installation ''Kalmar''. (author)

  8. Hot and dense plasma probing by soft X-ray lasers

    Czech Academy of Sciences Publication Activity Database

    Krůs, Miroslav; Kozlová, Michaela; Nejdl, Jaroslav; Rus, B.

    2018-01-01

    Roč. 13, č. 1 (2018), č. článku C01004. ISSN 1748-0221. [International Symposium on Laser-Aided Plasma Diagnostics/18./. Prague, 24.09.2017-28.09.2017] R&D Projects: GA MŠk LM2010014; GA MŠk(CZ) LM2015083 Institutional support: RVO:61389021 Keywords : Plasma diagnostics - interferometry * spectroscopy and imaging * Plasma diagnostics - probes * Plasma generation (laser-produced, RF, x ray-produced) Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: 2.11 Other engineering and technologies Impact factor: 1.220, year: 2016 http://iopscience.iop.org/article/10.1088/1748-0221/13/01/C01004

  9. Measurements of laser-hole boring into overdense plasmas using x-ray laser refractometry (invited)

    International Nuclear Information System (INIS)

    Kodama, R.; Takahashi, K.; Tanaka, K.A.; Kato, Y.; Murai, K.; Weber, F.; Barbee, T.W.; DaSilva, L.B.

    1999-01-01

    We developed a 19.6 nm laser x-ray laser grid-image refractometer (XRL-GIR) to diagnose laser-hole boring into overdense plasmas. The XRL-GIR was optimized to measure two-dimensional electron density perturbation on a scale of a few tens of μm in underdense plasmas. Electron density profiles of laser-produced plasmas were obtained for 10 20 - 10 22 cm -3 with the XRL-GIR and for 10 19 - 10 20 cm -3 from an ultraviolet interferometer, the profiles of which were compared with those from hydrodynamic simulation. By using this XRL-GIR, we directly observed laser channeling into overdense plasmas accompanied by a bow shock wave showing a Mach cone ascribed to supersonic propagation of the channel front. copyright 1999 American Institute of Physics

  10. Spectroscopic characterization of post-cluster argon plasmas during the blast wave expansion

    International Nuclear Information System (INIS)

    Chung, H.-K.; Fournier, K.B.; Edwards, M.J.; Scott, H.A.; Lee, R.W.; Cattolica, R.; Ditmire, T.

    2002-01-01

    In this work we present temperature diagnostics of an expanding laser-produced argon plasma. A short-pulse (35fs) laser with an intensity of I = 1017 W/cm deposits ∼ 100 mJ of energy into argon clusters. This generates a hot plasma filament that develops into a cylindrically expanding shock. We develop spectral diagnostics for the temperatures of the argon plasma in the shock region and the preionized region ahead of the shock. A collisional-radiative model is applied to explore line intensity ratios derived from Ar II-Ar IV spectra that are sensitive to temperatures in a few eV range. The results of hydrodynamic simulations are employed to derive a time dependent radiative transport calculation that generates the theoretical emission spectra from the expanding plasma

  11. Spectroscopic Characterization of Post-Cluster Argon Plasmas During the Blast Wave Expansion

    International Nuclear Information System (INIS)

    Ching, H-K.; Fournier, K.B.; Edwards, M.J.; Scott, H.A.; Cattolica, R.; Ditmire, T.; Lee, R.W.

    2002-01-01

    In this work we present temperature diagnostics of an expanding laser-produced argon plasma. A short-pulse (35fs) laser with an intensity of I = 10 17 W/cm 2 deposits ∼ 100 mJ of energy into argon clusters. This generates a hot plasma filament that develops into a cylindrically expanding shock. We develop spectral diagnostics for the temperatures of the argon plasma in the shock region and the preionized region ahead of the shock. A collisional-radiative model is applied to explore line intensity ratios derived from Ar II - Ar IV spectra that are sensitive to temperatures in a few eV range. The results of hydrodynamic simulations are employed to derive a time dependent radiative transport calculation that generates the theoretical emission spectra from the expanding plasma

  12. Diagnosing high density, fast-evolving plasmas using x-ray lasers

    International Nuclear Information System (INIS)

    Cauble, R.; Da Silva, L.B.; Barbee, T.W. Jr.

    1994-09-01

    As x-ray laser (XRL) research has matured, it has become possible to reliably utilize XRLs for applications in the laboratory. Laser coherence, high brightness and short pulse duration all make the XRL a unique tool for the diagnosis of laboratory plasmas. The high brightness of XRLs makes them well-suited for imaging and for interferometry when used in conjunction with multilayer mirrors and beamsplitters. We have utilized a soft x-ray laser in such an imaging system to examine laser-produced plasmas using radiography, moire deflectometry, and interferometry. Radiography experiments yield 100-200 ps snapshots of laser driven foils at a resolution of 1-2 μm. Moire deflectometry with an XRL has been used to probe plasmas at higher density than by optical means. Interferograms, which allow direct measurement of electron density in laser plasmas, have been obtained with this system

  13. Numerical Study on Blast Wave Propagation Driven by Unsteady Ionization Plasma

    International Nuclear Information System (INIS)

    Ogino, Yousuke; Sawada, Keisuke; Ohnishi, Naofumi

    2008-01-01

    Understanding the dynamics of laser-produced plasma is essential for increasing the available thrust and energy conversion efficiency from a pulsed laser to a blast wave in a gas-driven laser-propulsion system. The performance of a gas-driven laser-propulsion system depends heavily on the laser-driven blast wave dynamics as well as on the ionizing and/or recombining plasma state that sustains the blast wave. In this study, we therefore develop a numerical simulation code for a laser-driven blast wave coupled with time-dependent rate equations to explore the formation of unsteady ionizing plasma produced by laser irradiation. We will also examine the various properties of blast waves and unsteady ionizing plasma for different laser input energies

  14. Local thermodynamic equilibrium in a laser-induced plasma evidenced by blackbody radiation

    Science.gov (United States)

    Hermann, Jörg; Grojo, David; Axente, Emanuel; Craciun, Valentin

    2018-06-01

    We show that the plasma produced by laser ablation of solid materials in specific conditions has an emission spectrum that is characterized by the saturation of the most intense spectral lines at the blackbody radiance. The blackbody temperature equals the excitation temperature of atoms and ions, proving directly and unambiguously a plasma in local thermodynamic equilibrium. The present investigations take benefit from the very rich and intense emission spectrum generated by ablation of a nickel-chromium-molybdenum alloy. This alternative and direct proof of the plasma equilibrium state re-opens the perspectives of quantitative material analyses via calibration-free laser-induced breakdown spectroscopy. Moreover, the unique properties of this laser-produced plasma promote its use as radiation standard for intensity calibration of spectroscopic instruments.

  15. Applications of nanosecond, kilojoule lasers to the basic physics of waves in plasmas

    International Nuclear Information System (INIS)

    Drake, R.P.

    1992-01-01

    Plasmas can sustain many normal modes of oscillation (waves), including both electromagnetic and electrostatic modes. These waves can interact by a wide variety of linear and nonlinear mechanisms, including mode coupling, mixing, and instabilities. Furthermore, such mechanisms compete, so that a given wave might be absorbed, might mode convert, or might decay by one of several instabilities, depending upon the specific circumstances in which it is produced. Moreover, such waves are important in many applications, including for example laser fusion, x-ray lasers, plasma accelerators, and ionospheric heating. Laser-produced plasmas can provide an effective medium for the studies of such waves and the related mechanisms. New opportunities will be made possible by the advent of comparatively inexpensive nanosecond, kilojoule lasers. One can now contemplate affordable experiments, not limited by programmatic constraints, that could study such the basic physics of the waves in such plasmas with unprecedented precision and in unprecedented detail

  16. Plasma device

    International Nuclear Information System (INIS)

    Thode, L.E.

    1981-01-01

    A method is described for electron beam heating of a high-density plasma to drive a fast liner. An annular or solid relativistic electron beam is used to heat a plasma to kilovolt temperatures through streaming instabilities in the plasma. Energy deposited in the plasma then converges on a fast liner to explosively or ablatively drive the liner to implosion. (U.K.)

  17. Laser plasma simulations of the generation processes of Alfven and collisionless shock waves in space plasma

    International Nuclear Information System (INIS)

    Prokopov, P A; Zakharov, Yu P; Tishchenko, V N; Shaikhislamov, I F; Boyarintsev, E L; Melekhov, A V; Ponomarenko, A G; Posukh, V G; Terekhin, V A

    2016-01-01

    Generation of Alfven waves propagating along external magnetic field B 0 and Collisionless Shock Waves propagating across B 0 are studied in experiments with laser- produced plasma and magnetized background plasma. The collisionless interaction of interpenetrating plasma flows takes place through a so-called Magnetic Laminar Mechanism (MLM) or Larmor Coupling. At the edge of diamagnetic cavity LP-ions produce induction electric field E φ which accelerates BP-ions while LP-ions rotate in opposite direction. The ions movement generates sheared azimuthal magnetic field B φ which could launches torsional Alfven wave. In previous experiments at KI-1 large scale facility a generation of strong perturbations propagating across B 0 with magnetosonic speed has been studied at a moderate value of interaction parameter δ∼0.3. In the present work we report on experiments at conditions of 5∼R2 and large Alfven-Mach number M A ∼10 in which strong transverse perturbations traveling at a scale of ∼1 m in background plasma at a density of ∼3*10 13 cm -3 is observed. At the same conditions but smaller M A ∼ 2 a generation, the structure and dynamic of Alfven wave with wavelength ∼0.5 m propagating along fields B 0 ∼100÷500 G for a distance of ∼2.5 m is studied. (paper)

  18. Plasma Modes

    Science.gov (United States)

    Dubin, D. H. E.

    This chapter explores several aspects of the linear electrostatic normal modes of oscillation for a single-species non-neutral plasma in a Penning trap. Linearized fluid equations of motion are developed, assuming the plasma is cold but collisionless, which allow derivation of the cold plasma dielectric tensor and the electrostatic wave equation. Upper hybrid and magnetized plasma waves in an infinite uniform plasma are described. The effect of the plasma surface in a bounded plasma system is considered, and the properties of surface plasma waves are characterized. The normal modes of a cylindrical plasma column are discussed, and finally, modes of spheroidal plasmas, and finite temperature effects on the modes, are briefly described.

  19. Experimental platform for investigations of high-intensity laser plasma interactions in the magnetic field of a pulsed power generator

    Science.gov (United States)

    Ivanov, V. V.; Maximov, A. V.; Swanson, K. J.; Wong, N. L.; Sarkisov, G. S.; Wiewior, P. P.; Astanovitskiy, A. L.; Covington, A. M.

    2018-03-01

    An experimental platform for the studying of high-intensity laser plasma interactions in strong magnetic fields has been developed based on the 1 MA Zebra pulsed power generator coupled with the 50-TW Leopard laser. The Zebra generator produces 100-300 T longitudinal and transverse magnetic fields with different types of loads. The Leopard laser creates plasma at an intensity of 1019 W/cm2 in the magnetic field of coil loads. Focusing and targeting systems are integrated in the vacuum chamber of the pulsed power generator and protected from the plasma debris and strong mechanical shock. The first experiments with plasma at laser intensity >2 × 1018 W/cm2 demonstrated collimation of the laser produced plasma in the axial magnetic field strength >100 T.

  20. Kr photoionized plasma induced by intense extreme ultraviolet pulses

    Science.gov (United States)

    Bartnik, A.; Wachulak, P.; Fiedorowicz, H.; Skrzeczanowski, W.

    2016-04-01

    Irradiation of any gas with an intense EUV (extreme ultraviolet) radiation beam can result in creation of photoionized plasmas. The parameters of such plasmas can be significantly different when compared with those of the laser produced plasmas (LPP) or discharge plasmas. In this work, the photoionized plasmas were created in a krypton gas irradiated using an LPP EUV source operating at a 10 Hz repetition rate. The Kr gas was injected into the vacuum chamber synchronously with the EUV radiation pulses. The EUV beam was focused onto a Kr gas stream using an axisymmetrical ellipsoidal collector. The resulting low temperature Kr plasmas emitted electromagnetic radiation in the wide spectral range. The emission spectra were measured either in the EUV or an optical range. The EUV spectrum was dominated by emission lines originating from Kr III and Kr IV ions, and the UV/VIS spectra were composed from Kr II and Kr I lines. The spectral lines recorded in EUV, UV, and VIS ranges were used for the construction of Boltzmann plots to be used for the estimation of the electron temperature. It was shown that for the lowest Kr III and Kr IV levels, the local thermodynamic equilibrium (LTE) conditions were not fulfilled. The electron temperature was thus estimated based on Kr II and Kr I species where the partial LTE conditions could be expected.

  1. Changing fluorescence in a streaming barium plasma due to an axial magnetic field

    International Nuclear Information System (INIS)

    Bonin, K.D.; Mason, T.G.

    1991-01-01

    The present investigations consider the case of a low-density laser-produced plasma expanding into a vacuum in the presence of an axial magnetic field. The time-integrated line intensities of neutral and singly ionized barium have been measured for magnetic fields up to 300 G. These measurements reveal three prominent changes in the intensities of individual lines as a function of increasing magnetic field: extinction, growth, and severe attenuation followed by enhancement. Measurements support a model that predicts the quenching of higher-lying transitions and the enhancement of lower-lying transitions for increasing magnetic fields

  2. DNA strand breaks induced by soft X-ray pulses from a compact laser plasma source

    Czech Academy of Sciences Publication Activity Database

    Adjei, D.; Wiechec, A.; Wachulak, P.; Ayele, M. G.; Lekki, J.; Kwiatek, W. M.; Bartnik, A.; Davídková, Marie; Vyšín, Luděk; Juha, Libor; Pina, L.; Fiedorowicz, H.

    2016-01-01

    Roč. 120, MAR (2016), s. 17-25 ISSN 0969-806X R&D Projects: GA ČR GA13-28721S; GA ČR(CZ) GBP108/12/G108 EU Projects: European Commission(XE) 284464 - LASERLAB-EUROPE Institutional support: RVO:68378271 ; RVO:61389005 Keywords : laser-produced plasma * soft X-rays * radiobiology * gas puff target * water window * DNA strand break Subject RIV: BO - Biophysics Impact factor: 1.315, year: 2016

  3. An imaging proton spectrometer for short-pulse laser plasma experiments

    International Nuclear Information System (INIS)

    Chen Hui; Hazi, A. U.; Maren, R. van; Chen, S. N.; Le Pape, S.; Rygg, J. R.; Shepherd, R.; Fuchs, J.; Gauthier, M.

    2010-01-01

    The ultraintense short pulse laser pulses incident on solid targets can generate energetic protons. In addition to their potentially important applications such as in cancer treatments and proton fast ignition, these protons are essential to understand the complex physics of intense laser plasma interaction. To better characterize these laser-produced protons, we designed and constructed a novel spectrometer that will not only measure proton energy distribution with high resolution but also provide its angular characteristics. The information obtained from this spectrometer compliments those from commonly used diagnostics including radiochromic film packs, CR39 nuclear track detectors, and nonimaging magnetic spectrometers. The basic characterizations and sample data from this instrument are presented.

  4. An imaging proton spectrometer for short-pulse laser plasma experiments

    Energy Technology Data Exchange (ETDEWEB)

    Chen Hui; Hazi, A. U.; Maren, R. van; Chen, S. N.; Le Pape, S.; Rygg, J. R.; Shepherd, R. [Lawrence Livermore National Laboratory, Livemore, California 94551 (United States); Fuchs, J.; Gauthier, M. [LULI Ecole Polytechnique, 91128 Palaiseau Cedex (France)

    2010-10-15

    The ultraintense short pulse laser pulses incident on solid targets can generate energetic protons. In addition to their potentially important applications such as in cancer treatments and proton fast ignition, these protons are essential to understand the complex physics of intense laser plasma interaction. To better characterize these laser-produced protons, we designed and constructed a novel spectrometer that will not only measure proton energy distribution with high resolution but also provide its angular characteristics. The information obtained from this spectrometer compliments those from commonly used diagnostics including radiochromic film packs, CR39 nuclear track detectors, and nonimaging magnetic spectrometers. The basic characterizations and sample data from this instrument are presented.

  5. Plasma centrifuges

    International Nuclear Information System (INIS)

    Karchevskij, A.I.; Potanin, E.P.

    2000-01-01

    The review of the most important studies on the isotope separation processes in the rotating plasma is presented. The device is described and the characteristics of operation of the pulse plasma centrifuges with weakly and strongly ionized plasma as well as the stationary plasma centrifuges with the medium weak ionization and devices, applying the stationary vacuum arc with the high ionization rate and the stationary beam-plasma discharge with complete ionization, are presented. The possible mechanisms of the isotope separation in plasma centrifuges are considered. The specific energy consumption for isotope separation in these devices is discussed [ru

  6. Plasma astrophysics

    CERN Document Server

    Kaplan, S A; ter Haar, D

    2013-01-01

    Plasma Astrophysics is a translation from the Russian language; the topics discussed are based on lectures given by V.N. Tsytovich at several universities. The book describes the physics of the various phenomena and their mathematical formulation connected with plasma astrophysics. This book also explains the theory of the interaction of fast particles plasma, their radiation activities, as well as the plasma behavior when exposed to a very strong magnetic field. The text describes the nature of collective plasma processes and of plasma turbulence. One author explains the method of elementary

  7. Plasma waves

    CERN Document Server

    Swanson, DG

    1989-01-01

    Plasma Waves discusses the basic development and equations for the many aspects of plasma waves. The book is organized into two major parts, examining both linear and nonlinear plasma waves in the eight chapters it encompasses. After briefly discussing the properties and applications of plasma wave, the book goes on examining the wave types in a cold, magnetized plasma and the general forms of the dispersion relation that characterize the waves and label the various types of solutions. Chapters 3 and 4 analyze the acoustic phenomena through the fluid model of plasma and the kinetic effects. Th

  8. Probing colliding Calcium plasmas with emission and VUV absorption imaging

    International Nuclear Information System (INIS)

    Kavanagh, K.D.; Hirsch, J.S.; Kennedy, E.T.; Costello, T.; Poletto, L.; Nicolosi, P.

    2004-01-01

    Full text: Laser produced plasmas are formed when a short pulse and high power laser is focused onto a surface. Applications range from VUV/X-ray sources for lithography, microscopy and radiography to X-ray lasers, thin film deposition, analytical spectroscopy and electron/ion beam generation (and even acceleration). A battery of particle and optical techniques are now used to diagnose laser plasmas. One highly successful technique is gated-CCD (Charged Coupled Device) imaging of plasma plumes. It provides critical data on the early (creation) and late (expansion) phases of plasma plumes. However, this technique is limited to detecting only the excited (emitting) species in the plume. Recently, we developed a vacuum-UV (VUV) photoabsorption imaging facility called VPIF which enables one can track the evolution of dark plume matter or non-emitting plasma species residing in ground and metastable states. Although much is known about the dynamics of single laser plasma plumes expanding freely, little is known about the overlap between colliding plasma plumes. We are currently performing combined conventional gated CCD imaging and spectroscopy with VUV absorption imaging to map the evolution of the overlap volume of two colliding and interpenetrating plasma plumes. We are specifically tracking ground state singly ionized calcium in the plasmas by tuning into the inner shell 3p to 3d transition at 33.2 eV while the excited state species are tracked using transitions in the UV -NIR spectral range. The experiment may be cast as a model system for atmospheric and/or astrophysical colliding systems, e.g., when tracer elements are injected into supersonic winds at high altitude or when supernovae eject plasma into the solar wind

  9. Topics in high-intensity laser plasma interaction

    International Nuclear Information System (INIS)

    Leemans, W.P.

    1991-01-01

    The interaction of high intensity laser pulses with pre-formed and laser-produced plasmas is studied. Through experiments and simulations we have investigated stimulated Compton scattering in preformed plasmas and the plasma physics aspects of tunnel-ionized gases. A theoretical study is presented on the nonlinear dynamics of relativistic plasma waves driven by colinear optical mixing. The electron density-fluctuation spectra induced by stimulated Compton scattering have been directly observed for the first time. A CO2 laser was focused into pre-formed plasmas with densities n(e) varied from 0.4-6 x 10(exp 16) cu cm. The fluctuations corresponding to backscatter were probed using Thomson scattering. At low n(e), the scattered spectra peak at a frequency shift Delta omega is approximately kv e and appears to be in a linear regime. At the highest n(e), a nonlinear saturation of the SCS instability is observed due to a self-induced perturbation of the electron distribution function. Tunnel-ionized plasmas have been studied through experiments and particle simulations. Experimentally, qualitative evidence for plasma temperature control by varying the laser polarization was obtained by the measurement of stimulated Compton scattering fluctuation spectra and x-ray emission from such plasmas. A higher parallel temperature than expected from the single-particle tunneling model was observed. Simulations indicate that stochastic heating and the Weibel instability play an important role in plasma heating in all directions and isotropization. The non-linear dynamics associated with beatwave (Delta omega, Delta k) excited long wavelength plasma waves in the presence of strong, short wavelength density ripple have been examined, using the relativistic Lagrangian oscillator model. This model shows period doubling that roughly follows Feigenbaum scaling, and a transition to chaos

  10. Plasma device

    International Nuclear Information System (INIS)

    Thode, L.E.

    1981-01-01

    A method is described of providing electron beam heating of a high-density plasma to drive a fast liner to implode a structured microsphere. An annular relativistic electron beam is used to heat an annular plasma to kilovolt temperatures through streaming instabilities in the plasma. Energy deposited in the annular plasma then converges on a fast liner to explosively or ablatively drive the liner to convergence to implode the structured microsphere. (U.K.)

  11. The effect of Lyman α self-absorption on population inversions between quantum states 2 and 3 of hydrogen-like ions in recombining plasmas

    International Nuclear Information System (INIS)

    Tallents, G.J.

    1978-01-01

    The effect in recombining plasmas of Lyman α self-absorption on quasi-steady-state population inversions between quantum states n = 2 and 3 of hydrogen-like ions is theoretically investigated. It is shown how the electron density range over which population inversion is possible diminishes as Lyman α self-absorption increases. The highest degree of absorption which can be tolerated and still achieve an inversion is shown to occur when the thermal limit corresponds to n approximately equal to 4. The results of the computations are related to the conditions to be found in the expansion plume of laser-produced plasmas. (author)

  12. Active Detectors for Plasma Soft X-Ray Detection at PALS

    Directory of Open Access Journals (Sweden)

    C. Granja

    2010-01-01

    Full Text Available This paper summarizes the work carried out for an experimental study of low-energy nuclear excitation by laser-produced plasma at the PALS Prague laser facility. We describe the adaptation and shielding of single-quantum active radiation detectors developed at IEAP CTU Prague to facilitate their operation inside the laser interaction chamber in the vicinity of the plasma target. The goal of this effort is direct real-time single-quantum detection of plasma soft X-ray radiation with energy above a few keV and subsequent identification of the decay of the excited nuclear states via low-energy gamma rays in a highly radiative environment with strong electromagnetic interference.

  13. Spectra of neutrons and fusion charged products produced in a dense laser plasma

    International Nuclear Information System (INIS)

    Burtsev, V.A.; Dyatlov, V.D.; Krzhizhanovskij, R.E.; Levkovskij, A.A.

    1977-01-01

    The possibility of laser-produced plasma diagnostics has been investigated by measuring spectra of neutrons and alpha particles produced in the T(d,n) 4 He reaction. Using the Monte Carlo method the spectra have been calculated for nine states of the deuterium-tritium plasma with the temperature of 1;5 and 10 keV and the density of 0.2; 1 and 10 g/cm 3 respectively. The initial radius of the target was assumed to be 0.01 cm at the density of 0.2 g/cm 3 . It is shown that the neutron and alpha spectra can serve as plasma diagnostics parameters in laser fusion

  14. A practical nonlocal model for heat transport in magnetized laser plasmas

    International Nuclear Information System (INIS)

    Nicolaie, Ph.D.; Feugeas, J.-L.A.; Schurtz, G.P.

    2006-01-01

    A model of nonlocal transport for multidimensional radiation magnetohydrodynamics codes is presented. In laser produced plasmas, it is now believed that the heat transport can be strongly modified by the nonlocal nature of the electron conduction. Other mechanisms, such as self-generated magnetic fields, may also affect the heat transport. The model described in this work, based on simplified Fokker-Planck equations aims at extending the model of G. Schurtz, Ph. Nicolaie, and M. Busquet [Phys. Plasmas 7, 4238 (2000)] to magnetized plasmas. A complete system of nonlocal equations is derived from kinetic equations with self-consistent electric and magnetic fields. These equations are analyzed and simplified in order to be implemented into large laser fusion codes and coupled to other relevant physics. The model is applied to two laser configurations that demonstrate the main features of the model and point out the nonlocal Righi-Leduc effect in a multidimensional case

  15. A practical nonlocal model for heat transport in magnetized laser plasmas

    Science.gov (United States)

    Nicolaï, Ph. D.; Feugeas, J.-L. A.; Schurtz, G. P.

    2006-03-01

    A model of nonlocal transport for multidimensional radiation magnetohydrodynamics codes is presented. In laser produced plasmas, it is now believed that the heat transport can be strongly modified by the nonlocal nature of the electron conduction. Other mechanisms, such as self-generated magnetic fields, may also affect the heat transport. The model described in this work, based on simplified Fokker-Planck equations aims at extending the model of G. Schurtz, Ph. Nicolaï, and M. Busquet [Phys. Plasmas 7, 4238 (2000)] to magnetized plasmas. A complete system of nonlocal equations is derived from kinetic equations with self-consistent electric and magnetic fields. These equations are analyzed and simplified in order to be implemented into large laser fusion codes and coupled to other relevant physics. The model is applied to two laser configurations that demonstrate the main features of the model and point out the nonlocal Righi-Leduc effect in a multidimensional case.

  16. Two-dimensional hydrodynamics of uniform ion plasma in electrostatic field

    International Nuclear Information System (INIS)

    Mahdieh, M. H.; Gavili, A.

    2005-01-01

    Two-dimensional hydrodynamics of ion extraction from uniform quasi-neutral plasma, in electrostatic field has been simulated numerically. Experimentally, tunable pulsed lasers produce non-uniform plasma through stepwise photo-excitation and photo-ionization or multi-photo-ionization processes. Poisson's equation was solved simultaneously with the equations of mass, and momentum, assuming the Maxwell-Boltzmann distribution for electrons. In the calculation, the initial density profile at the boundaries has been assumed to be very steep for the ion plasma. In these calculations dynamics of electric potential and the ions density were assessed. The ion extraction time was also estimated from the calculation. The knowledge of spatial distribution of the ions across the cathode is very important for the practical purposes. In this simulation, the spatial distribution of the ion current density across the cathode as well as its temporal distribution was calculated

  17. Interaction of a laser-breakdown plasma with a charged metallic target

    International Nuclear Information System (INIS)

    Vasil'ev, B.I.; Grasyuk, A.Z.; Dyad'kin, A.P.; Sukhanov, A.N.

    1981-01-01

    A study was made of the influence of a laser plasma on the potential of an insulated conducting target. It was discovered that the target potential changed stepwise on illumination with a high-power TEA CO 2 laser. A step, ΔU, in the target potential was observed and the dependences of ΔU on the initial potential, laser radiation energy density, and geometrical dimensions of the illuminated region were determined. There was an optimal pressure of the surrounding air for which ΔU had the maximum value. The dependence of ΔU on the pressure was determined, when illuminating a target in air and in nitrogen. The temporal characteristics of the variation in ΔU were correlated with the time variation of the visible and ultraviolet luminescence from the plasma. A mechanism was proposed to explain the potential step accompanying the interaction of a laser-produced plasma with a charged metallic target

  18. Dependence of high order harmonics intensity on laser focal spot position in preformed plasma plumes

    International Nuclear Information System (INIS)

    Singhal, H.; Ganeev, R.; Naik, P. A.; Arora, V.; Chakravarty, U.; Gupta, P. D.

    2008-01-01

    The dependence of the high-order harmonic intensity on the laser focal spot position in laser produced plasma plumes is experimentally studied. High order harmonics up to the 59th order (λ∼13.5 nm) were generated by focusing 48 fs laser pulses from a Ti:sapphire laser system in silver plasma plume produced using 300 ps uncompressed laser radiation as the prepulse. The intensity of harmonics nearly vanished when the best focus was located in the plume center, whereas it peaked on either side with unequal intensity. The focal spot position corresponding to the peak harmonic intensity moved away from the plume center for higher order harmonics. The results are explained in terms of the variation of phase mismatch between the driving laser beam and harmonics radiation produced, relativistic drift of electrons, and defocusing effect due to radial ionization gradient in the plasma for different focal spot positions

  19. Enhanced noise and Raman scattering in plasma

    International Nuclear Information System (INIS)

    Simon, A.; Short, R.W.

    1987-04-01

    Observations of Raman scattering from laser-produced plasma have shown a number of puzzling features. These can be explained by assuming the presence of a bump-on-tail electron distribution created by pulses of fast electrons arising from instabilities at the critical (n/sub c/) or the quarter-critical (n/sub c//4) surface. Experiments using thin foils, in which the target density drops below n/sub c/ and even n/sub c//4 early in the laser pulse, have continued to show the same agreement as is seen for thick targets between the observed Raman spectrum and the predictions of this theory. This raises the issue of the time scale on which such directed pulses of fast electrons can continue to exist in the plasma after their source at n/sub c/ or n/sub c//4 disappears. We show that the classical degradation process is quite slow (of the order of 100 ps or more). Collective processes would appear to broaden and flatten the beam on a faster time scale. However, inclusion of finite spatial size strongly reduces the effect. Furthermore, we will show that broadening of the beam has little effect on the predicted spectrum

  20. Laser propagation and soliton generation in strongly magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Feng, W.; Li, J. Q.; Kishimoto, Y. [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2016-03-15

    The propagation characteristics of various laser modes with different polarization, as well as the soliton generation in strongly magnetized plasmas are studied numerically through one-dimensional (1D) particle-in-cell (PIC) simulations and analytically by solving the laser wave equation. PIC simulations show that the laser heating efficiency substantially depends on the magnetic field strength, the propagation modes of the laser pulse and their intensities. Generally, large amplitude laser can efficiently heat the plasma with strong magnetic field. Theoretical analyses on the linear propagation of the laser pulse in both under-dense and over-dense magnetized plasmas are well confirmed by the numerical observations. Most interestingly, it is found that a standing or moving soliton with frequency lower than the laser frequency is generated in certain magnetic field strength and laser intensity range, which can greatly enhance the laser heating efficiency. The range of magnetic field strength for the right-hand circularly polarized (RCP) soliton formation with high and low frequencies is identified by solving the soliton equations including the contribution of ion's motion and the finite temperature effects under the quasi-neutral approximation. In the limit of immobile ions, the RCP soliton tends to be peaked and stronger as the magnetic field increases, while the enhanced soliton becomes broader as the temperature increases. These findings in 1D model are well validated by 2D simulations.

  1. Dusty plasmas

    International Nuclear Information System (INIS)

    Jones, M.E.; Winske, D.; Keinigs, R.; Lemons, D.

    1996-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project has been to develop a fundamental understanding of dusty plasmas at the Laboratory. While dusty plasmas are found in space in galactic clouds, planetary rings, and cometary tails, and as contaminants in plasma enhanced fabrication of microelectronics, many of their properties are only partially understood. Our work has involved both theoretical analysis and self-consistent plasma simulations to understand basic properties of dusty plasmas related to equilibrium, stability, and transport. Such an understanding can improve the control and elimination of plasma dust in industrial applications and may be important in the study of planetary rings and comet dust tails. We have applied our techniques to the study of charging, dynamics, and coagulation of contaminants in plasma processing reactors for industrial etching and deposition processes and to instabilities in planetary rings and other space plasma environments. The work performed in this project has application to plasma kinetics, transport, and other classical elementary processes in plasmas as well as to plasma waves, oscillations, and instabilities

  2. Plasma chromatography

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    This book examines the fundamental theory and various applications of ion mobility spectroscopy. Plasma chromatography developed from research on the diffusion and mobility of ions. Topics considered include instrument design and description (e.g., performance, spectral interpretation, sample handling, mass spectrometry), the role of ion mobility in plasma chromatography (e.g., kinetic theory of ion transport), atmospheric pressure ionization (e.g., rate equations), the characterization of isomers by plasma chromatography (e.g., molecular ion characteristics, polynuclear aromatics), plasma chromatography as a gas chromatographic detection method (e.g., qualitative analysis, continuous mobility monitoring, quantitative analysis), the analysis of toxic vapors by plasma chromatography (e.g., plasma chromatograph calibration, instrument control and data processing), the analysis of semiconductor devices and microelectronic packages by plasma chromatography/mass spectroscopy (e.g., analysis of organic surface contaminants, analysis of water in sealed electronic packages), and instrument design and automation (hardware, software)

  3. Plasma shifts of C VI Lyman lines to shorter wavelengths. Final report, November 4, 1981-September 30, 1983

    International Nuclear Information System (INIS)

    Griem, H.R.

    1984-07-01

    The first two years of this ongoing research program were devoted to experimental observations of shifts and widths of hydrogenic ion lines emitted by very dense plasmas. This search is an essential step in the general study of the properties of bound states of multiply charged ions in dense plasmas. This research is of importance in a number of areas, notably equilibrium statistical mechanics (equation of state), plasma radiation physics (energy transport and diagnostics) and calibration of wavelengths in the extreme vacuum uv region (10 A < lambda < 200 A). In the latter case, the wavelengths of lines from one-electron ions are generally accepted to be well known theoretically and are considered as standards for plate calibration. The question nevertheless arises whether or not significant changes in wavelength can occur, e.g., in low-inductance sparks or laser produced plasma which are often used as line sources

  4. EBIT spectroscopy of highly charged heavy ions relevant to hot plasmas

    Science.gov (United States)

    Nakamura, Nobuyuki

    2013-05-01

    An electron beam ion trap (EBIT) is a versatile device for studying highly charged ions. We have been using two types of EBITs for the spectroscopic studies of highly charged ions. One is a high-energy device called the Tokyo-EBIT, and another is a compact low-energy device called CoBIT. Complementary use of them enables us to obtain spectroscopic data for ions over a wide charge-state range interacting with electrons over a wide energy range. In this talk, we present EBIT spectra of highly charged ions for tungsten, iron, bismuth, etc., which are relevant to hot plasmas. Tungsten is considered to be the main impurity in the ITER (the next generation nuclear fusion reactor) plasma, and thus its emission lines are important for diagnosing and controlling the ITER plasma. We have observed many previously unreported lines to supply the lack of spectroscopic data of tungsten ions. Iron is one of the main components of the solar corona, and its spectra are used to diagnose temperature, density, etc. The diagnostics is usually done by comparing observed spectra with model calculations. An EBIT can provide spectra under a well-defined condition; they are thus useful to test the model calculations. Laser-produced bismuth plasma is one of the candidates for a soft x-ray source in the water window region. An EBIT has a narrow charge state distribution; it is thus useful to disentangle the spectra of laser-produced plasma containing ions with a wide charge-state range. Performed with the support and under the auspices of the NIFS Collaboration Research program (NIFS09KOAJ003) and JSPS KAKENHI Number 23246165, and partly supported by the JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics.

  5. High-order harmonic generation in laser plasma plumes

    CERN Document Server

    Ganeev, Rashid A

    2013-01-01

    This book represents the first comprehensive treatment of high-order harmonic generation in laser-produced plumes, covering the principles, past and present experimental status and important applications. It shows how this method of frequency conversion of laser radiation towards the extreme ultraviolet range matured over the course of multiple studies and demonstrated new approaches in the generation of strong coherent short-wavelength radiation for various applications. Significant discoveries and pioneering contributions of researchers in this field carried out in various laser scientific centers worldwide are included in this first attempt to describe the important findings in this area of nonlinear spectroscopy. "High-Order Harmonic Generation in Laser Plasma Plumes" is a self-contained and unified review of the most recent achievements in the field, such as the application of clusters (fullerenes, nanoparticles, nanotubes) for efficient harmonic generation of ultrashort laser pulses in cluster-containin...

  6. Experimental study of radiative energy transport in dense plasmas by emission and absorption spectroscopy

    International Nuclear Information System (INIS)

    Dozieres, Maylis

    2016-01-01

    This PhD work is an experimental study, based on emission and absorption spectroscopy of hot and dense nanosecond laser-produced plasmas. Atomic physics in such plasmas is a complex subject and of great interest especially in the fields of astrophysics or inertial confinement fusion. On the atomic physics point of view, this means determining parameters such as the average ionization or opacity in plasmas at given electronic temperature and density. Atomic physics codes then need of experimental data to improve themselves and be validated so that they can be predictive for a wide range of plasmas. With this work we focus on plasmas whose electronic temperature varies from 10 eV to more than a hundred and whose density range goes from 10 -5 ato10 -2 g/cm 3 . In this thesis, there are two types of spectroscopic data presented which are both useful and necessary to the development of atomic physics codes because they are both characteristic of the state of the studied plasma: 1) some absorption spectra from Cu, Ni and Al plasmas close to local thermodynamic equilibrium; 2) some emission spectra from non local thermodynamic equilibrium plasmas of C, Al and Cu. This work highlights the different experimental techniques and various comparisons with atomic physics codes and hydrodynamics codes. (author) [fr

  7. Characterization of a gamma-ray source based on a laser-plasma accelerator with applications to radiography

    International Nuclear Information System (INIS)

    Edwards, R.D.; Sinclair, M.A.; Goldsack, T.J.; Krushelnick, K.; Beg, F.N.; Clark, E.L.; Dangor, A.E.; Najmudin, Z.; Tatarakis, M.; Walton, B.; Zepf, M.; Ledingham, K.W.D.; Spencer, I.; Norreys, P.A.; Clarke, R.J.; Kodama, R.; Toyama, Y.; Tampo, M.

    2002-01-01

    The application of high intensity laser-produced gamma rays is discussed with regard to picosecond resolution deep-penetration radiography. The spectrum and angular distribution of these gamma rays is measured using an array of thermoluminescent detectors for both an underdense (gas) target and an overdense (solid) target. It is found that the use of an underdense target in a laser plasma accelerator configuration produces a much more intense and directional source. The peak dose is also increased significantly. Radiography is demonstrated in these experiments and the source size is also estimated

  8. High-energy x-ray microscopy of laser-fusion plasmas at the National Ignition Facility

    International Nuclear Information System (INIS)

    Koch, J.A.; Landen, O.L.; Hammel, B.A.

    1997-01-01

    Multi-keV x-ray microscopy will be an important laser-produced plasma diagnostic at future megajoule facilities such as the National Ignition Facility (NIF).In preparation for the construction of this facility, we have investigated several instrumentation options in detail, and we conclude that near normal incidence single spherical or toroidal crystals may offer the best general solution for high-energy x-raymicroscopy at NIF and at similar large facilities. Kirkpatrick-Baez microscopes using multi-layer mirrors may also be good secondary options, particularly if apertures are used to increase the band-width limited field of view

  9. Plasma physics

    CERN Document Server

    Drummond, James E

    1961-01-01

    A historic snapshot of the field of plasma physics, this fifty-year-old volume offers an edited collection of papers by pioneering experts in the field. In addition to assisting students in their understanding of the foundations of classical plasma physics, it provides a source of historic context for modern physicists. Highly successful upon its initial publication, this book was the standard text on plasma physics throughout the 1960s and 70s.Hailed by Science magazine as a ""well executed venture,"" the three-part treatment ranges from basic plasma theory to magnetohydrodynamics and microwa

  10. Plasma generator

    International Nuclear Information System (INIS)

    Omichi, Takeo; Yamanaka, Toshiyuki.

    1976-01-01

    Object: To recycle a coolant in a sealed hollow portion formed interiorly of a plasma limiter itself to thereby to cause direct contact between the coolant and the plasma limiter and increase of contact area therebetween to cool the plasma limiter. Structure: The heat resulting from plasma generated during operation and applied to the body of the plasma limiter is transmitted to the coolant, which recycles through an inlet and outlet pipe, an inlet and outlet nozzle and a hollow portion to hold the plasma limiter at a level less than a predetermined temperature. On the other hand, the heater wire is, at the time of emergency operation, energized to heat the plasma limiter, but this heat is transmitted to the limiter body to increase the temperature thereof. However, the coolant recycling the hollow portion comes into direct contact with the limiter body, and since the plasma limiter surround the hollow portion, the heat amount transmitted from the limiter body to the coolant increases to sufficiently cool the plasma limiter. (Yoshihara, H.)

  11. Bridge between fusion plasma and plasma processing

    International Nuclear Information System (INIS)

    Ohno, Noriyasu; Takamura, Shuichi

    2008-01-01

    In the present review, relationship between fusion plasma and processing plasma is discussed. From boundary-plasma studies in fusion devices new applications such as high-density plasma sources, erosion of graphite in a hydrogen plasma, formation of helium bubbles in high-melting-point metals and the use of toroidal plasmas for plasma processing are emerging. The authors would like to discuss a possibility of knowledge transfer from fusion plasmas to processing plasmas. (T. Ikehata)

  12. Plasma waves

    National Research Council Canada - National Science Library

    Swanson, D. G

    1989-01-01

    ... Swanson, D.G. (Donald Gary), D a t e - Plasma waves. Bibliography: p. Includes index. 1. Plasma waves. QC718.5.W3S43 1989 ISBN 0-12-678955-X I. Title. 530.4'4 88-34388 Printed in the United Sta...

  13. Plasma properties

    International Nuclear Information System (INIS)

    Weitzner, H.

    1991-06-01

    The Magneto-Fluid Dynamics Division continues to study a broad range of problems originating in plasma physics. Its principal focus is fusion plasma physics, and most particularly topics of particular significance for the world magnetic fusion program. During the calendar year 1990 we explored a wide range of topics including RF-induced transport as a plasma control mechanism, edge plasma modelling, further statistical analysis of L and H mode tokamak plasmas, antenna design, simulation of the edge of a tokamak plasma and the L-H transition, interpretation of the CCT experimental results at UCLA, turbulent transport, studies in chaos, the validity of moment approximations to kinetic equations and improved neoclassical modelling. In more basic studies we examined the statistical mechanisms of Coulomb systems and applied plasma ballooning mode theory to conventional fluids in order to obtain novel fluid dynamics stability results. In space plasma physics we examined the problem of reconnection, the effect of Alfven waves in space environments, and correct formulation of boundary conditions of the Earth for waves in the ionosphere

  14. Plasma container

    International Nuclear Information System (INIS)

    Ebisawa, Katsuyuki.

    1985-01-01

    Purpose: To enable to easily detect that the thickness of material to be abraded is reduced to an allowable limit from the outerside of the plasma container even during usual operation in a plasma vessel for a thermonuclear device. Constitution: A labelled material is disposed to the inside or rear face of constituent members of a plasma container undergoing the irradiation of plasma particles. A limiter plate to be abraded in the plasma container is composed of an armour member and heat removing plate, in which the armour member is made of graphite and heat-removing plate is made of copper. If the armour member is continuously abraded under the effect of sputtering due to plasma particles, silicon nitride embedded so far in the graphite at last appears on the surface of the limiter plate to undergo the impact shocks of the plasma particles. Accordingly, abrasion of the limiter material can be detected by a detector comprising gas chromatography and it can easily be detected from the outside of the plasma content even during normal operation. (Horiuchi, T.)

  15. Cosmic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Alfven, H [California Univ., San Diego, La Jolla (USA)

    1981-01-01

    The properties of space plasmas are analyzed, based on laboratory results and data obtained by in situ measurements in the magnetosphere (including the heliosphere). Attention is given to the question of how much knowledge can be gained by a systematic comparison of different regions of plasma, and plasmas are considered with linear dimensions varying from laboratory size up to the Hubble distance. The traditional magnetic field description of plasmas is supplemented by an electric current description and it is demonstrated that many problems are easier to understand with a dualistic approach. Using the general plasma properties obtained, the origin and evolution of the solar system is summarized and the evolution and present structure of the universe (cosmology) is discussed.

  16. Plasma device

    International Nuclear Information System (INIS)

    Thode, L.E.

    1981-01-01

    A relativistic electron beam generator or accelerator produces a high-voltage electron beam which is modulated to initiate electron bunching within the beam which is then applied to a high-density target plasma which typically comprises DT, DD, or similar thermonuclear gas at a density of 10 17 to 10 20 electrons per cubic centimeter. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region of the high-density plasma target. The high-temperature plasma can be used to heat a high Z material to generate radiation. Alternatively, a tunable radiation source is produced by using a moderate Z gas or a mixture of high Z and low Z gas as the target plasma. (author)

  17. Superconducting plasmas

    International Nuclear Information System (INIS)

    Ohnuma, Toshiro; Ohno, J.

    1994-01-01

    Superconducting (SC) plasmas are proposed and investigated. The SC plasmas are not yet familiar and have not yet been studied. However, the existence and the importance of SC plasmas are stressed in this report. The existence of SC plasmas are found as follows. There is a fundamental property of Meissner effect in superconductors, which shows a repulsive effect of magnetic fields. Even in that case, in a microscopic view, there is a region of magnetic penetration. The penetration length λ is well-known as London's penetration depth, which is expressed as δ = (m s /μ 0 n s q s 2 ) 1/2 where m s , n s , q s and μ o show the mass, the density, the charge of SC electron and the permeability in free space, respectively. Because this expression is very simple, no one had tried it into more simple and meaningful form. Recently, one of the authors (T.O.) has found that the length can be expressed into more simple and understandable fundamental form as λ = c/ω ps where c = (ε 0 μ 0 ) -1/2 and ω ps = (n s q s 2 /m s ε 0 ) 1/2 are the light velocity and the superconducting plasma frequency. From this simple expression, the penetration depth of the magnetic field to SC is found as a SC plasma skin depth, that is, the fundamental property of SC can be expressed by the SC plasmas. This discovery indicates an importance of the studies of superconducting plasmas. From these points, several properties (propagating modes et al) of SC plasmas, which consist of SC electrons, normal electrons and lattice ions, are investigated in this report. Observations of SC plasma frequency is also reported with a use of Terahertz electromagnet-optical waves

  18. The Inverse Faraday Effect In Plasma

    International Nuclear Information System (INIS)

    Eliezer, S.; Paiss, Y.; Horovitz, Y.; Henis, Z.

    1999-01-01

    The existence of axial magnetic field 1-3 induced by the interaction of circularly polarized laser light with plasma is reported. Axial magnetic fields from 500 Gauss up to 2.17 MegaGauss were measured using a Nd:YAG laser with a pulse duration of 7 ns for irradiance from 10 9 to 10 14 W/cm'2 accordingly. Up to 5 - 10 13 W/cm 2 , the results are in agreement with a nonlinear model of the inverse Faraday effect dominated by the ponderomotive force. Two diagnostic methods were used to measure the axial magnetic field. At low irradiance (10 9 - 10 1 '1 W/cm 2 ) the axial magnetic field induced by the circularly polarized laser light (CPLL) in a ferrite target was measured from the voltage signal induced by the magnetic field in an output coil. At higher irradiance the axial magnetic field was measured using the Faraday rotation diagnostic. The scaling law of the measured axial magnetic field B from the experiments performed with CPLL, in the intensities range of 10 9 - 10 13 W/cm 2 , is B ∼ I / 1/2 . At higher intensities of the order of 3 . 10 1 '4 W/cm 2 a sudden increase of the axial magnetic field beyond the above scaling law is observed in the experiments performed with CPLL. This study might have interesting implications in creating a mini tokamak configuration in laser produced plasmas, with intermediate plasma densities (10 22 cm 3 ) and confinement times (100 ns). Such an approach to fusion circumvents many of the complexities of inertial confinement fusion where very symmetric implosions using many laser beams are required. Intermediate fusion density may also overcome severe requirements of tokamak fusion

  19. Study of the Matrix Effect on the Plasma Characterization of Heavy Elements in Soil Sediments

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-01-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to perform a study of the matrix effect on the plasma characterization of soil sediment targets. The plasma is generated by focusing a pulsed Nd: YAG laser on the target in air at atmospheric pressure. The plasma emission spectrum was detected using a portable Echelle spectrometer (Mechelle 7500 — Multichannel Instruments, Stockholm, Sweden with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, and electron temperature. Four heavy elements V, Pb, Mn and Co were determined in the obtained spectra. The LTE and optically thin plasma conditions were verified for the produced plasma. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of the spectral lines of the heavy elements in the soil sediments. The electron temperature does not change with concentration. For environmental applications, the obtained results showed the capability of the proposed LIBS setup with the portable Mechelle 7500 spectrometer to be applied in-situ for real-time measurements of the variation of the matrix elemental composition of soil sediments by following up only a single element as a marker for the composition of the soil sediment without need of analysis of the other elements.

  20. Emission spectra of photoionized plasmas induced by intense EUV pulses: Experimental and theoretical investigations

    Science.gov (United States)

    Saber, Ismail; Bartnik, Andrzej; Skrzeczanowski, Wojciech; Wachulak, Przemysław; Jarocki, Roman; Fiedorowicz, Henryk

    2017-03-01

    Experimental measurements and numerical modeling of emission spectra in photoionized plasma in the ultraviolet and visible light (UV/Vis) range for noble gases have been investigated. The photoionized plasmas were created using laser-produced plasma (LPP) extreme ultraviolet (EUV) source. The source was based on a gas puff target; irradiated with 10ns/10J/10Hz Nd:YAG laser. The EUV radiation pulses were collected and focused using grazing incidence multifoil EUV collector. The laser pulses were focused on a gas stream, injected into a vacuum chamber synchronously with the EUV pulses. Irradiation of gases resulted in a formation of low temperature photoionized plasmas emitting radiation in the UV/Vis spectral range. Atomic photoionized plasmas produced this way consisted of atomic and ionic with various ionization states. The most dominated observed spectral lines originated from radiative transitions in singly charged ions. To assist in a theoretical interpretation of the measured spectra, an atomic code based on Cowan's programs and a collisional-radiative PrismSPECT code have been used to calculate the theoretical spectra. A comparison of the calculated spectral lines with experimentally obtained results is presented. Electron temperature in plasma is estimated using the Boltzmann plot method, by an assumption that a local thermodynamic equilibrium (LTE) condition in the plasma is validated in the first few ionization states. A brief discussion for the measured and computed spectra is given.

  1. Plasma universe

    International Nuclear Information System (INIS)

    Alfven, H.

    1986-04-01

    Traditionally the views in our cosmic environment have been based on observations in the visual octave of the electromagnetic spectrum, during the last half-century supplemented by infrared and radio observations. Space research has opened the full spectrum. Of special importance are the X-ray-gamma-ray regions, in which a number of unexpected phenomena have been discovered. Radiations in these regions are likely to originate mainly from magnetised cosmic plasma. Such a medium may also emit synchrotron radiation which is observable in the radio region. If we try to base a model of the universe on the plasma phenomena mentioned we find that the plasma universe is drastically different from the traditional visual universe. Information about the plasma universe can also be obtained by extrapolation of laboratory experiments and magnetospheric in situ measurements of plasma. This approach is possible because it is likely that the basic properties of plasma are the same everywhere. In order to test the usefulness of the plasma universe model we apply it to cosmogony. Such an approach seems to be rather successful. For example, the complicated structure of the Saturnian C ring can be accounted for. It is possible to reconstruct certain phenomena 4-5 bilions years ago with an accuracy of better than 1 percent

  2. Experimental study of population inversion and spectral line broadening in a plasma containing a mixture of high Z and low Z ions

    International Nuclear Information System (INIS)

    Griem, H.R.

    1988-10-01

    In our work this past year at the University of Rochester's Laboratory for Laser Energetics we have studied laser-produced plasmas using spherical targets continuing layers of high Z and low Z materials. Our emphasis was on quantitative spectroscopy of ions in a very dense, recombining plasma. The targets used consisted of carbon-copper, carbon-gold, and aluminum-gold mixtures, instead of the originally proposed Fe or Mo mixtures with carbon. The thickness of the Cu and the Au layers were varied in order to study the effect of higher Z ions cooling the plasma. Indeed a pronounced cooling effect was observed by increasing the thickness of the Au layer in targets with Al-Au layers. Electron temperatures were studied by measuring the 1s-2p/1s 2 -1s2p line ratio of Al XIII to Al XII. Our experimental measurements, together with a collisional-radiative model and a 1-D hydrodynamic code, indicate that the electron temperature falls from 1500 eV with no gold to 950 eV with a 500 angstrom layer of gold. A detailed discussion of our results with Al-Au targets can be found in the enclosed preprint entitled Radiation Cooling in Laser-Produced Plasmas Due to High-Z Layers

  3. Efficient extreme ultraviolet plasma source generated by a CO2 laser and a liquid xenon microjet target

    Science.gov (United States)

    Ueno, Yoshifumi; Ariga, Tatsuya; Soumagne, George; Higashiguchi, Takeshi; Kubodera, Shoichi; Pogorelsky, Igor; Pavlishin, Igor; Stolyarov, Daniil; Babzien, Marcus; Kusche, Karl; Yakimenko, Vitaly

    2007-05-01

    We demonstrated efficacy of a CO2-laser-produced xenon plasma in the extreme ultraviolet (EUV) spectral region at 13.5nm at variable laser pulse widths between 200ps and 25ns. The plasma target was a 30μm liquid xenon microjet. To ensure the optimum coupling of CO2 laser energy with the plasma, they applied a prepulse yttrium aluminum garnet laser. The authors measured the conversion efficiency (CE) of the 13.5nm EUV emission for different pulse widths of the CO2 laser. A maximum CE of 0.6% was obtained for a CO2 laser pulse width of 25ns at an intensity of 5×1010W/cm2.

  4. Efficient extreme ultraviolet plasma source generated by a CO2 laser and a liquid xenon microjet target

    International Nuclear Information System (INIS)

    Ueno, Yoshifumi; Ariga, Tatsuya; Soumagne, George; Higashiguchi, Takeshi; Kubodera, Shoichi; Pogorelsky, Igor; Pavlishin, Igor; Stolyarov, Daniil; Babzien, Marcus; Kusche, Karl; Yakimenko, Vitaly

    2007-01-01

    We demonstrated efficacy of a CO 2 -laser-produced xenon plasma in the extreme ultraviolet (EUV) spectral region at 13.5 nm at variable laser pulse widths between 200 ps and 25 ns. The plasma target was a 30 μm liquid xenon microjet. To ensure the optimum coupling of CO 2 laser energy with the plasma, they applied a prepulse yttrium aluminum garnet laser. The authors measured the conversion efficiency (CE) of the 13.5 nm EUV emission for different pulse widths of the CO 2 laser. A maximum CE of 0.6% was obtained for a CO 2 laser pulse width of 25 ns at an intensity of 5x10 10 W/cm 2

  5. Modeling of EUV emission from xenon and tin plasma sources for nanolithography

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. [Service Photons, Atomes, et Molecules, CEA Saclay, bat. 522, F91191 Gif/Yvette Cedex (France)]. E-mail: michel.poirier@cea.fr; Blenski, T. [Service Photons, Atomes, et Molecules, CEA Saclay, bat. 522, F91191 Gif/Yvette Cedex (France); Gaufridy de Dortan, F. de [Service Photons, Atomes, et Molecules, CEA Saclay, bat. 522, F91191 Gif/Yvette Cedex (France); Gilleron, F. [CEA-DAM, F91680 Bruyeres-le-Chatel (France)

    2006-05-15

    Over the last decade there has been a major effort devoted to the development of efficient extreme UV sources designed for nanolithography, operating in the 13.5-nm range. Possible sources include laser-produced plasmas and discharge-produced plasmas. This paper, devoted to the modeling of such emission, emphasizes the atomic physics effects and particularly the effects of configuration interaction. Two types of theoretical approaches are presented, one involving the detailed computation with the parametric potential code HULLAC, the other based on the superconfiguration code SCO. Computations of emission spectra in xenon and tin are presented. The possible influence of non-local thermodynamic equilibrium (NLTE) effects is investigated using populations given by the simple collisional-radiative formulas from Colombant and Tonon. Convergence to LTE is analyzed in the tin case.

  6. Plasma physics

    International Nuclear Information System (INIS)

    1979-01-01

    This report contains the papers delivered at the AEB - Natal University summer school on plasma physics held in Durban during January 1979. The following topics were discussed: Tokamak devices; MHD stability; trapped particles in tori; Tokamak results and experiments; operating regime of the AEB Tokamak; Tokamak equilibrium; high beta Tokamak equilibria; ideal Tokamak stability; resistive MHD instabilities; Tokamak diagnostics; Tokamak control and data acquisition; feedback control of Tokamaks; heating and refuelling; neutral beam injection; radio frequency heating; nonlinear drift wave induced plasma transport; toroidal plasma boundary layers; microinstabilities and injected beams and quasilinear theory of the ion acoustic instability

  7. Plasma centrifuge

    International Nuclear Information System (INIS)

    Ikehata, Takashi; Mase, Hiroshi

    1998-01-01

    The plasma centrifuge is one of statistical isotope separation processes which uses the centrifugal force of a J x B driven rotating plasma in a magnetic field to give rise to the mass-dependent radial transport of isotopic ions. The system has been developed as an alternative to the gas centrifuge because a much higher rotational velocity and separation factor have been achieved. In this review, the physical aspects of the plasma centrifuge followed by the recent experimental achievements are described, especially in comparison with the gas centrifuge. (author)

  8. Recombination effect on the expansion process of the laser-producted plasma in the absence and presence of an external magnetic field

    International Nuclear Information System (INIS)

    Sudo, S.

    1979-05-01

    The change of the ionization ratio of the laser-produced plasma during expansion is calculated with a simple model. The results for expansion in the absence of a magnetic field are compared with the experimental results obtained by Baumhacker et al. The recombination is not negligible and it takes place mainly in the first stage of expansion. The ionization ratio of the expanding plasma remains distinctly higher in the presence of a magnetic field. However, in order to maintain full ionization in the plasma during the filling process in a magnetic container, the lower initial density is more favorable and the use of a CO 2 laser (at least in the final stage of plasma heating) seems necessary in the range of currently possible parameters. (orig.)

  9. Plasma Cleaning

    Science.gov (United States)

    Hintze, Paul E.

    2016-01-01

    NASA's Kennedy Space Center has developed two solvent-free precision cleaning techniques: plasma cleaning and supercritical carbon dioxide (SCCO2), that has equal performance, cost parity, and no environmental liability, as compared to existing solvent cleaning methods.

  10. Laser Plasmas

    Indian Academy of Sciences (India)

    -focusing in a plasma ... Center for Energy Studies, Indian Institute of Technology, New Delhi 110 016, India; Tata Consultancy Services, Gurgaon, India; Ideal Institute of Technology, Ghaziabad, India; Center for Research in Cognitive, ...

  11. Plasma will…

    Czech Academy of Sciences Publication Activity Database

    Lunov, Oleg

    2016-01-01

    Roč. 174, č. 3 (2016), s. 486-487 ISSN 0007-0963 Institutional support: RVO:68378271 Keywords : plasma * ionized gas Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 4.706, year: 2016

  12. Plasma technology

    International Nuclear Information System (INIS)

    Drouet, M.G.

    1984-03-01

    IREQ was contracted by the Canadian Electrical Association to review plasma technology and assess the potential for application of this technology in Canada. A team of experts in the various aspects of this technology was assembled and each team member was asked to contribute to this report on the applications of plasma pertinent to his or her particular field of expertise. The following areas were examined in detail: iron, steel and strategic-metals production; surface treatment by spraying; welding and cutting; chemical processing; drying; and low-temperature treatment. A large market for the penetration of electricity has been identified. To build up confidence in the technology, support should be provided for selected R and D projects, plasma torch demonstrations at full power, and large-scale plasma process testing

  13. Plasma metallization

    International Nuclear Information System (INIS)

    Crowther, J.M.

    1997-09-01

    Many methods are currently used for the production of thin metal films. However, all of these have drawbacks associated with them, for example the need for UHV conditions, high temperatures, exotic metal precursors, or the inability to coat complex shaped objects. Reduction of supported metal salts by non-isothermal plasma treatment does not suffer from these drawbacks. In order to produce and analyse metal films before they become contaminated, a plasma chamber which could be attached directly to a UHV chamber with XPS capability was designed and built. This allowed plasma treatment of supported metal salts and surface analysis by XPS to be performed without exposure of the metal film to the atmosphere. Non-equilibrium plasma treatment of Nylon 66 supported gold(lll) chloride using hydrogen as the feed gas resulted in a 95% pure gold film, the remaining 5% of the film being carbon. If argon or helium were used as the feed gases during plasma treatment the resultant gold films were 100% pure. Some degree of surface contamination of the films due to plasma treatment was observed but was easily removed by argon ion cleaning. Hydrogen plasma reduction of glass supported silver(l) nitrate and palladium(ll) acetate films reveals that this metallization technique is applicable to a wide variety of metal salts and supports, and has also shown the ability of plasma reduction to retain the complex 'fern-like' structures seen for spin coated silver(l) nitrate layers. Some metal salts are susceptible to decomposition by X-rays. The reduction of Nylon 66 supported gold(lll) chloride films by soft X-rays to produce nanoscopic gold particles has been studied. The spontaneous reduction of these X-ray irradiated support gold(lll) chloride films on exposure to the atmosphere to produce gold rich metallic films has also been reported. (author)

  14. Plasma confinement

    CERN Document Server

    Hazeltine, R D

    2003-01-01

    Detailed and authoritative, this volume examines the essential physics underlying international research in magnetic confinement fusion. It offers readable, thorough accounts of the fundamental concepts behind methods of confining plasma at or near thermonuclear conditions. Designed for a one- or two-semester graduate-level course in plasma physics, it also represents a valuable reference for professional physicists in controlled fusion and related disciplines.

  15. Plasma Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Zaveryaev, V [Kurchatov Institute, Moscow (Russian Federation); others, and

    2012-09-15

    The success in achieving peaceful fusion power depends on the ability to control a high temperature plasma, which is an object with unique properties, possibly the most complicated object created by humans. Over years of fusion research a new branch of science has been created, namely plasma diagnostics, which involves knowledge of almost all fields of physics, from electromagnetism to nuclear physics, and up-to-date progress in engineering and technology (materials, electronics, mathematical methods of data treatment). Historically, work on controlled fusion started with pulsed systems and accordingly the methods of plasma parameter measurement were first developed for short lived and dense plasmas. Magnetically confined hot plasmas require the creation of special experimental techniques for diagnostics. The diagnostic set is the most scientifically intensive part of a plasma device. During many years of research operation some scientific tasks have been solved while new ones arose. New tasks often require significant changes in the diagnostic system, which is thus a very flexible part of plasma machines. Diagnostic systems are designed to solve several tasks. As an example here are the diagnostic tasks for the International Thermonuclear Experimental Reactor - ITER: (1) Measurements for machine protection and basic control; (2) Measurements for advanced control; (3) Additional measurements for performance evaluation and physics. Every new plasma machine is a further step along the path to the main goal - controlled fusion - and nobody knows in advance what new phenomena will be met on the way. So in the planning of diagnostic construction we should keep in mind further system upgrading to meet possible new scientific and technical challenges. (author)

  16. High density plasmas formation in Inertial Confinement Fusion and Astrophysics

    International Nuclear Information System (INIS)

    Martinez-Val, J. M.; Minguez, E.; Velarde, P.; Perlado, J. M.; Velarde, G.; Bravo, E.; Eliezer, S.; Florido, R.; Garcia Rubiano, J.; Garcia-Senz, D.; Gil de la Fe, J. M.; Leon, P. T.; Martel, P.; Ogando, F.; Piera, M.; Relano, A.; Rodriguez, R.; Garcia, C.; Gonzalez, E.; Lachaise, M.; Oliva, E.

    2005-01-01

    In inertially confined fusion (ICF), high densities are required to obtain high gains. In Fast Ignition, a high density, low temperature plasma can be obtained during the compression. If the final temperature reached is low enough, the electrons of the plasma can be degenerate. In degenerate plasmas. Bremsstrahlung emission is strongly suppressed an ignition temperature becomes lower than in classical plasmas, which offers a new design window for ICF. The main difficulty of degenerate plasmas in the compression energy needed for high densities. Besides that, the low specific heat of degenerate electrons (as compared to classical values) is also a problem because of the rapid heating of the plasma. Fluid dynamic evolution of supernovae remnants is a very interesting problem in order to predict the thermodynamical conditions achieved in their collision regions. Those conditions have a strong influence in the emission of light and therefore the detection of such events. A laboratory scale system has been designed reproducing the fluid dynamic field in high energy experiments. The evolution of the laboratory system has been calculated with ARWEN code, 2D Radiation CFD that works with Adaptive Mesh Refinement. Results are compared with simulations on the original system obtained with a 3D SPH astrophysical code. New phenomena at the collision plane and scaling of the laboratory magnitudes will be described. Atomic physics for high density plasmas has been studied with participation in experiments to obtain laser produced high density plasmas under NLTE conditions, carried out at LULI. A code, ATOM3R, has been developed which solves rate equations for optically thin plasmas as well as for homogeneous optically thick plasmas making use of escape factors. New improvements in ATOM3R are been done to calculate level populations and opacities for non homogeneous thick plasmas in NLTE, with emphasis in He and H lines for high density plasma diagnosis. Analytical expression

  17. New photoionization lasers pumped by laser-induced plasma radiation

    International Nuclear Information System (INIS)

    Hube, M.; Dieckmann, M.; Beigang, R.; Welling, H.; Wellegehausen, B.

    1988-01-01

    Innershell photoionization of atomic gases and vapors by soft x rays from a laser-produced plasma is a potential method for making lasers at short wavelengths. Normally, in such experiments only a single plasma spot or plasma line is created for the excitation. This gives high excitation rates but only a short excitation length. At high excitation rates detrimental influences, such as amplified spontaneous emission, optical saturation, or quenching processes, may decrease or even destroy a possible inversion. Therefore, it seems to be more favorable to use a number of separated plasma spots with smaller excitation rates and larger excitation lengths. As a test, a three-plasma spot device was constructed and used in the well-known Cd-photoionization laser at 442 nm. With a 600-mJ Nd:YAH laser (pulse length, 8 ns) for plasma production, output energies up to 300 μJ have been measured, which is more than a doubling of so far obtained data. On innershell excitation, levels may be populated that allow direct lasers as in the case of Cd or that are metastable and cannot be directly coupled to lower levels. In this case modifications in the excitation process are necessary. Such modifications may be an optical pump process in the atom prior to the innershell photoionization or an optical pump process (population transfer process) after the innershell ionization, leading to Raman or anti-Stokes Raman-type laser emissions. With these techniques and the developed multiplasma spot excitation device a variety of new laser emissions in K and Cs ions have been achieved which are indicated in the level schemes

  18. Measurement of the development and evolution of shock waves in a laser-induced gas breakdown plasma

    International Nuclear Information System (INIS)

    Chu, T.K.; Johnson, L.C.

    1975-01-01

    Space- and time-resolved interferometric measurements of electron density in CO 2 -laser produced plasmas in helium or hydrogen are made near the laser focal spot. Immediately after breakdown, a rapidly growing region of approximately uniform plasma density appears at the focal spot. After a few tens of nanoseconds, shock waves are formed, propagating both transverse and parallel to the incident laser beam direction. Behind the transverse propagating shock is an on-axis density minimum, which results in laser-beam self-trapping. The shock wave propagating toward the focusing lens effectively shields the interior plasma from the incident beam because the lower plasma temperature and higher plasma density in the shock allow strong absorption of the incident beam energy. By arranging the laser radiation-plasma interaction to begin at a plasma-vacuum interface at the exit of a free-expansion jet, this backward propagating shock wave is eliminated, thus permitting efficient energy deposition in the plasma interior

  19. Cold plasmas

    International Nuclear Information System (INIS)

    Franz, G.

    1990-01-01

    This textbook discusses the following topics: Phenomenological description of a direct current glow discharge; the plasma (temperature distribution and measurement, potential variation, electron energy distribution function, charge neutralization, wall potentials, plasma oscillations); Production of charge carriers (ions, electrons, ionization in the cathode zone, negative glowing zone, Faraday dark space, positive column, anode zone, hollow cathode discharges); RF-discharges (charge carrier production, RF-Shields, scattering mechanisms); Sputtering (ion-surface interaction, kinetics, sputtering yield and energy distribution, systems and conditions, film formation and stresses, contamination, bias techniques, multicomponent film deposition, cohesion, magnetrons, triode systems, plasma enhanced chemical vapor deposition); Dry etching (sputter etching, reactive etching, topography, process control, quantitative investigations); Etching mechanisms (etching of Si and SiO 2 with CF 4 , of III/V-compound-semiconductors, combination of isotrope and anisotrope etching methods, surface cleaning); ion beam systems (applications, etching); Dyclotron-resonance-systems (electron cyclotron resonance systems, whistler-sources and 'resonant inductive plasma etching'); Appendix (electron energy distribution functions, Bohm's transition zone, plasma oscillations, scattering cross sections and mean free path, metastable states, Child-Langmuir-Schottky equation, loss mechanisms, charge carrier distribution in the positive column, breakdown at high frequencies, motion in a magnetic field, skin depth of an electric field for a HF-discharge, whistler waves, dispersion relations for plane wave propagation). (orig.) With 138 figs

  20. Plasma heating

    International Nuclear Information System (INIS)

    Wilhelm, R.

    1989-01-01

    Successful plasma heating is essential in present fusion experiments, for the demonstration of DpT burn in future devices and finally for the fusion reactor itself. This paper discusses the common heating systems with respect to their present performance and their applicability to future fusion devices. The comparative discussion is oriented to the various function of heating, which are: - plasma heating to fusion-relevant parameters and to ignition in future machines, -non-inductive, steady-pstate current drive, - plasma profile control, -neutral gas breakdown and plasma build-up. In view of these different functions, the potential of neutral beam injection (NBI) and the various schemes of wave heating (ECRH, LH, ICRH and Alven wave heating) is analyzed in more detail. The analysis includes assessments of the present physical and technical state of these heating methods, and makes suggestions for future developments and about outstanding problems. Specific attention is given to the still critical problem of efficient current drive, especially with respect to further extrapolation towards an economically operating tokamak reactor. Remarks on issues such as reliability, maintenance and economy conclude this comparative overview on plasma heating systems. (author). 43 refs.; 13 figs.; 3 tabs