WorldWideScience

Sample records for ultrasonic therapy equipment

  1. The digital ultrasonic test unit for automatic equipment

    International Nuclear Information System (INIS)

    Hiraoka, T.; Matsuyama, H.

    1976-01-01

    The operations and features of the ultrasonic test unit used and the digital data processing techniques employed are described. This unit is used for a few hundred multi-channel automatic ultrasonic test equipment

  2. Ultrasonic Histotripsy for Tissue Therapy

    Science.gov (United States)

    Pahk, K. J.; Dhar, D. K.; Malago, M.; Saffari, N.

    2015-01-01

    Hepatocyte transplantation has been considered and investigated as a promising and alternative method to liver transplantation for treating liver-based metabolic disorder in newborns over the past two decades. Although some clinical trials have been conducted and shown clinical benefits and outcomes, it is difficult to deliver and achieve a desired level of integration and transplantation of hepatocytes in the liver parenchyma. To overcome this problem, this work introduces an alternative method to a portal-infused-hepatocyte cell transplantation. To improve the level of engraftment of transplantable hepatocytes, these are injected directly into cavities generated by ultrasonic histotripsy. Histotripsy is an extracorporeal noninvasive technique which has been recently developed using high intensity focused ultrasound (HIFU) for inducing tissue fractionation with no coagulative necrosis. The exact mechanisms for the tissue fractionation are not well understood yet; but the possible mechanisms are thought to be a combination of nonlinear wave propagation effect, explosive bubble growth and ultrasonic atomization. The main objectives of this work are to demonstrate the feasibility of this new cell therapy and evaluate and distinguish between the different types of cavitation activity for either a thermally or a mechanically induced lesion. In the present work, numerical studies on the bubble dynamics (the Gilmore-Akulichev bubble model coupled with the Khokhlov-Zabolotskaya-Kuznetsov equation) and both ex- and in vivo liver experiments are conducted with histological analysis (haematoxylin and eosin stain). The numerical and the experimental results suggest that (a) the acoustic emissions emitted during the thermal ablation and the histotripsy exposure can be distinguished both numerically and experimentally and (b) the proposed cell therapy may potentially form an effective and safe clinical treatment for replacing and correcting disordered hepatocytes, although the

  3. Ultrasonic Histotripsy for Tissue Therapy

    International Nuclear Information System (INIS)

    Pahk, K J; Saffari, N; Dhar, D K; Malago, M

    2015-01-01

    Hepatocyte transplantation has been considered and investigated as a promising and alternative method to liver transplantation for treating liver-based metabolic disorder in newborns over the past two decades. Although some clinical trials have been conducted and shown clinical benefits and outcomes, it is difficult to deliver and achieve a desired level of integration and transplantation of hepatocytes in the liver parenchyma. To overcome this problem, this work introduces an alternative method to a portal-infused-hepatocyte cell transplantation. To improve the level of engraftment of transplantable hepatocytes, these are injected directly into cavities generated by ultrasonic histotripsy. Histotripsy is an extracorporeal noninvasive technique which has been recently developed using high intensity focused ultrasound (HIFU) for inducing tissue fractionation with no coagulative necrosis. The exact mechanisms for the tissue fractionation are not well understood yet; but the possible mechanisms are thought to be a combination of nonlinear wave propagation effect, explosive bubble growth and ultrasonic atomization. The main objectives of this work are to demonstrate the feasibility of this new cell therapy and evaluate and distinguish between the different types of cavitation activity for either a thermally or a mechanically induced lesion. In the present work, numerical studies on the bubble dynamics (the Gilmore-Akulichev bubble model coupled with the Khokhlov-Zabolotskaya-Kuznetsov equation) and both ex- and in vivo liver experiments are conducted with histological analysis (haematoxylin and eosin stain). The numerical and the experimental results suggest that (a) the acoustic emissions emitted during the thermal ablation and the histotripsy exposure can be distinguished both numerically and experimentally and (b) the proposed cell therapy may potentially form an effective and safe clinical treatment for replacing and correcting disordered hepatocytes, although the

  4. Equipment for examination of bodies by means of ultrasonic scanning

    International Nuclear Information System (INIS)

    Hoelzler, G.

    1977-01-01

    Equipment for linear or surface scanning of bodies by ultrasonics where an ultrasonic applicator, consisting of rows of transducer elements arranged one beside the other and made of e.g. piezoelectric crystal plates, and a control unit is used. Control and cadencing of the transducer elements is performed in groups of four or five of neighboring transducers. For control there may be provided for adjacent or engaging scanning of the groups. By this means the number of transducer elements is reduced e.g. by a factor of 2. (orig.) [de

  5. Development of automatic ultrasonic testing equipment for reactor pressure vessel

    International Nuclear Information System (INIS)

    Jang, Kee Ok; Park, Dae Yung; Park, Moon Hoh; Koo, Kil Mo; Park, Kwang Heui; Kang, Sang Sin; Bang, Heui Song; Noh, Heui Choong; Kong, Woon Sik

    1994-08-01

    The selected weld areas of reactor pressure vessel and adjacent piping are examined by remote mechanized ultrasonic testing(MUT) equipment. Since the MUT equipment was purchased from Southwest Research Institute (SwRI) in April 1985, we have performed 15 inservice inspections and 5 preservice inspections. However, the reliability of examination was recently decreased rapidly as the problems which results from the old age of equipment and the frequent movement to plant site to site have occurred frequently. Therefore, the 3-axis control system hardware in occurring many problems among the equipments of mechanized ultrasonic testing (MUT) was designed and developed to cover the examination areas of nozzle-shell weld as specified in ASME Code Section XI and to improve the examination reliability. The new 3-axis control system hardware with the performance of this project was developed to be compatible with the old one and it was used as dual system or spare parts of the old system. Furthermore, the established technologies are expected to be applied to the similar control systems in nuclear power plant. 17 figs, 2 pix, 2 tabs, 10 refs. (Author)

  6. Development of automatic ultrasonic testing equipment for reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Kee Ok; Park, Dae Yung; Park, Moon Hoh; Koo, Kil Mo; Park, Kwang Heui; Kang, Sang Sin; Bang, Heui Song; Noh, Heui Choong; Kong, Woon Sik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-08-01

    The selected weld areas of reactor pressure vessel and adjacent piping are examined by remote mechanized ultrasonic testing(MUT) equipment. Since the MUT equipment was purchased from Southwest Research Institute (SwRI) in April 1985, we have performed 15 inservice inspections and 5 preservice inspections. However, the reliability of examination was recently decreased rapidly as the problems which results from the old age of equipment and the frequent movement to plant site to site have occurred frequently. Therefore, the 3-axis control system hardware in occurring many problems among the equipments of mechanized ultrasonic testing (MUT) was designed and developed to cover the examination areas of nozzle-shell weld as specified in ASME Code Section XI and to improve the examination reliability. The new 3-axis control system hardware with the performance of this project was developed to be compatible with the old one and it was used as dual system or spare parts of the old system. Furthermore, the established technologies are expected to be applied to the similar control systems in nuclear power plant. 17 figs, 2 pix, 2 tabs, 10 refs. (Author).

  7. Development of automatic Ultrasonic testing equipment for reactor pressure vessel

    International Nuclear Information System (INIS)

    Kim, Kor R.; Kim, Jae H.; Lee, Jae C.

    1996-06-01

    The selected weld areas of a reactor pressure vessel and adjacent piping are examined by the remote mechanized ultrasonic testing (MUT) equipment. Since the MUT equipment was purchased from southwest Research Institute (SwRI) in April 1985, 15 inservice inspections and 5 preservice inspections are performed with this MUT equipment. However due to the old age of the equipment and frequent movements to plant sites, the reliability of examination was recently decreased rapidly and it is very difficult to keep spare parts. In order to resolve these problems and to meet the strong request from plant sites, we intend to develop a new 3-axis control system including hardware and software. With this control system, we expect more efficient and reliable examination of the nozzle to shell weld areas, which is specified in ASME Code Section XI. The new 3-axis control system hardware and software were designed and development of our own control system, the advanced technologies of computer control mechanism were established and examination reliability of the nozzle to shell weld area was improved. With the development of our 3-axis control system for PaR ISI-2 computer control system, the reliability of nozzle to shell weld area examination has been improved. The established technologies from the development and detailed analysis of existing control system, are expected to be applied to the similar control systems in nuclear power plants. (author). 12 refs., 4 tabs., 33 figs

  8. Development of automatic Ultrasonic testing equipment for reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kor R.; Kim, Jae H.; Lee, Jae C.

    1996-06-01

    The selected weld areas of a reactor pressure vessel and adjacent piping are examined by the remote mechanized ultrasonic testing (MUT) equipment. Since the MUT equipment was purchased from southwest Research Institute (SwRI) in April 1985, 15 inservice inspections and 5 preservice inspections are performed with this MUT equipment. However due to the old age of the equipment and frequent movements to plant sites, the reliability of examination was recently decreased rapidly and it is very difficult to keep spare parts. In order to resolve these problems and to meet the strong request from plant sites, we intend to develop a new 3-axis control system including hardware and software. With this control system, we expect more efficient and reliable examination of the nozzle to shell weld areas, which is specified in ASME Code Section XI. The new 3-axis control system hardware and software were designed and development of our own control system, the advanced technologies of computer control mechanism were established and examination reliability of the nozzle to shell weld area was improved. With the development of our 3-axis control system for PaR ISI-2 computer control system, the reliability of nozzle to shell weld area examination has been improved. The established technologies from the development and detailed analysis of existing control system, are expected to be applied to the similar control systems in nuclear power plants. (author). 12 refs., 4 tabs., 33 figs.

  9. Development of ultrasonic testing equipment incorporating electromagnetic acoustic transducer

    International Nuclear Information System (INIS)

    Sato, Michio; Kimura, Motohiko; Okano, Hideharu; Miyazawa, Tatsuo; Nagase, Koichi; Ishikawa, Masaaki

    1989-01-01

    An ultrasonic testing equipment for use in in-service inspection of nuclear power plant piping has been developed, which comprises an angle-beam electromagnetic acoustic transducer mounted on a vehicle for scanning the piping surface to be inspected. The transducer functions without direct contact with the piping surface through couplant, and the vehicle does not require a guide track installed on the piping surface, being equipped with magnetic wheels that adhere to the piping material, permitting it to travel along the circumferential weld joint of a carbon steel pipe. The equipment thus dispenses with the laborious manual work involved in preparing the piping for inspection, such as removal of protective coating, surface polishing and installation of guide track and thereby considerably reduces the duration of inspection. The functioning principle and structural features of the transducer and vehicle are described, together with the results of trial operation of a prototype unit, which proved a 1mm deep notch cut on a test piece of 25mm thick carbon steel plate to be locatable with an accuracy of ±2mm. (author)

  10. Improvement of remote control system of automatic ultrasonic equipment for inspection of reactor pressure vessel

    International Nuclear Information System (INIS)

    Cheong, Yong Moo; Jung, H. K.; Joo, Y. S.; Koo, K. M.; Hyung, H.; Sim, C. M.; Gong, U. S.; Kim, S. H.; Lee, J. P.; Rhoo, H. C.; Kim, M. S.; Ryoo, S. K.; Choi, C. H.; Oh, K. I.

    1999-12-01

    One of the important issues related to the nuclear safety is in-service inspection of reactor pressure vessel (RPV). A remote controlled automatic ultrasonic method is applied to the inspection. At present the automatic ultrasonic inspection system owned by KAERI is interrupted due to degradation of parts. In order to resume field inspection new remote control system for the equipment was designed and installed to the existing equipment. New ultrasonic sensors and their modules for RPV inspection were designed and fabricated in accordance with the new requirements of the inspection codes. Ultrasonic sensors were verified for the use in the RPV inspection. (author)

  11. Improvement of remote control system of automatic ultrasonic equipment for inspection of reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Yong Moo; Jung, H. K.; Joo, Y. S.; Koo, K. M.; Hyung, H.; Sim, C. M.; Gong, U. S.; Kim, S. H.; Lee, J. P.; Rhoo, H. C.; Kim, M. S.; Ryoo, S. K.; Choi, C. H.; Oh, K. I

    1999-12-01

    One of the important issues related to the nuclear safety is in-service inspection of reactor pressure vessel (RPV). A remote controlled automatic ultrasonic method is applied to the inspection. At present the automatic ultrasonic inspection system owned by KAERI is interrupted due to degradation of parts. In order to resume field inspection new remote control system for the equipment was designed and installed to the existing equipment. New ultrasonic sensors and their modules for RPV inspection were designed and fabricated in accordance with the new requirements of the inspection codes. Ultrasonic sensors were verified for the use in the RPV inspection. (autho0008.

  12. Enhancing reliability of ultrasonic testing of welds of nuclear power plant equipment

    International Nuclear Information System (INIS)

    Shcherbinskij, V.G.

    1981-01-01

    Results of investigation of factors influencing the reliability of manual ultrasonic testing of welded joints and weld deposited metal power-generating equipment are presented. Recommendations on the enhancing of reliability are given [ru

  13. Radiation therapy sources, equipment and installations

    International Nuclear Information System (INIS)

    2011-03-01

    The safety code for Telegamma Therapy Equipment and Installations, (AERB/SC/MED-1) and safety code for Brachytherapy Sources, Equipment and Installations, (AERB/SC/MED-3) were issued by AERB in 1986 and 1988 respectively. These codes specified mandatory requirements for radiation therapy facilities, covering the entire spectrum of operations ranging from the setting up of a facility to its ultimate decommissioning, including procedures to be followed during emergency situations. The codes also stipulated requirements of personnel and their responsibilities. With the advent of new techniques and equipment such as 3D-conformal radiation therapy, intensity modulated radiation therapy, image guided radiation therapy, treatment planning system, stereotactic radiosurgery, stereotactic radiotherapy, portal imaging, integrated brachytherapy and endovascular brachytherapy during the last two decades, AERB desires that these codes be revised and merged into a single code titled Radiation Therapy Sources, Equipment, and Installations

  14. Development of ultrasonic inspection equipment using phased array method

    International Nuclear Information System (INIS)

    Kikuchi, Osamu; Yamatoya, Naofumi; Umino, Tomohiro; Baba, Atsushi

    2008-01-01

    This study presents new phased array UT equipments, one is developed as portable type for field inspection and the other is developed for 2D-matrix array (3D Focus-UT). The pulser of square burst wave was adopted for these new equipments to enhance flaw echo amplitude. At over 3 cycles of square burst cycle, the authors confirmed over 10 dB enhancement of bottom echo amplitude. Moreover, a new flaw imaging method using S-SAFT was also adopted for equipments to improve SN ratio and flaw echo resolution in inspection image. The authors verified effects of S-SAFT using side drilled hole specimen, about 2 times of improvement of SN ratio and flaw echo resolution. (author)

  15. New equipment for the needs of mobile automatic ultrasonic testing

    International Nuclear Information System (INIS)

    Cost, H.; Vogt, M.

    1989-01-01

    A newly designed system of equipment - ECHOGRAPH 1030 MULTI - for multiplex operation is introduced. The frequency control unit which can distribute a pulse sequency frequency from a maximum of 8 KHz to up to 8 cycles and the monitor evaluation, are described. (MM) [de

  16. Diagnostic imaging and radiation therapy equipment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-05-01

    This is the third edition of CSA Standard C22.2 No. 114 (now CAN/CSA-C22.2 No. 114), which is one of a series of standards issued by the Canadian Standards Association under Part II of the Canadian Electrical Code. This edition marks an important shift towards harmonization of Canadian requirements with those of the European community and the United States. Also important to this edition is the expansion of its scope to include the complete range of diagnostic imaging and radiation therapy equipment, rather than solely radiation-emitting equipment. In so doing, equipment previously addressed by CSA Standard C22.2 No. 125, Electromedical Equipment, specifically lasers for medical applications and diagnostic ultrasound units, is now dealt with in the new edition. By virtue of this expanded scope, many of the technical requirements in the electromedical equipment standard have been introduced to the new edition, thereby bringing CSA Standard C22.2 No. 114 up to date. 14 tabs., 16 figs.

  17. Diagnostic imaging and radiation therapy equipment

    International Nuclear Information System (INIS)

    1990-05-01

    This is the third edition of CSA Standard C22.2 No. 114 (now CAN/CSA-C22.2 No. 114), which is one of a series of standards issued by the Canadian Standards Association under Part II of the Canadian Electrical Code. This edition marks an important shift towards harmonization of Canadian requirements with those of the European community and the United States. Also important to this edition is the expansion of its scope to include the complete range of diagnostic imaging and radiation therapy equipment, rather than solely radiation-emitting equipment. In so doing, equipment previously addressed by CSA Standard C22.2 No. 125, Electromedical Equipment, specifically lasers for medical applications and diagnostic ultrasound units, is now dealt with in the new edition. By virtue of this expanded scope, many of the technical requirements in the electromedical equipment standard have been introduced to the new edition, thereby bringing CSA Standard C22.2 No. 114 up to date. 14 tabs., 16 figs

  18. Application of ultrasonic inspection data in strength calculations for nuclear power plant equipment

    International Nuclear Information System (INIS)

    Ovchinnikov, A.V.; Rivkin, E.Yu.; Vasilchenko, G.S.; Zvezdin, Yu.I.

    1991-01-01

    Several kinds of test specimens were produced with three types of defects of defined sizes and positions in the particular localities of weld joints. Such specimens have been used for defect parameter characterization by ultrasonic testing. The principles for schematization of such defects and the formulae for the stress intensity factor calculations for elliptical and semielliptical cracks have been worked out. Methods for defining the sizes of defect which are acceptable have been designed for use for use on operational nuclear power plant equipment and take account of the mutual effects of the force, thermal and residual stresses. The method can be used in the brittle, transitional and tough material state. (author)

  19. Capacitive micromachined ultrasonic transducers for medical imaging and therapy

    International Nuclear Information System (INIS)

    Khuri-Yakub, Butrus T; Oralkan, Ömer

    2011-01-01

    Capacitive micromachined ultrasonic transducers (CMUTs) have been subject to extensive research for the last two decades. Although they were initially developed for air-coupled applications, today their main application space is medical imaging and therapy. This paper first presents a brief description of CMUTs, their basic structure and operating principles. Our progression of developing several generations of fabrication processes is discussed with an emphasis on the advantages and disadvantages of each process. Monolithic and hybrid approaches for integrating CMUTs with supporting integrated circuits are surveyed. Several prototype transducer arrays with integrated front-end electronic circuits we developed and their use for 2D and 3D, anatomical and functional imaging, and ablative therapies are described. The presented results prove the CMUT as a micro-electro-mechanical systems technology for many medical diagnostic and therapeutic applications

  20. Capacitive micromachined ultrasonic transducers for medical imaging and therapy.

    Science.gov (United States)

    Khuri-Yakub, Butrus T; Oralkan, Omer

    2011-05-01

    Capacitive micromachined ultrasonic transducers (CMUTs) have been subject to extensive research for the last two decades. Although they were initially developed for air-coupled applications, today their main application space is medical imaging and therapy. This paper first presents a brief description of CMUTs, their basic structure, and operating principles. Our progression of developing several generations of fabrication processes is discussed with an emphasis on the advantages and disadvantages of each process. Monolithic and hybrid approaches for integrating CMUTs with supporting integrated circuits are surveyed. Several prototype transducer arrays with integrated frontend electronic circuits we developed and their use for 2-D and 3-D, anatomical and functional imaging, and ablative therapies are described. The presented results prove the CMUT as a MEMS technology for many medical diagnostic and therapeutic applications.

  1. Radiation therapy in Africa: distribution and equipment

    International Nuclear Information System (INIS)

    Levin, C.V.; Meghzifene, A.; Gueddari, B. el

    1999-01-01

    Africa is the least developed continent as regards radiation oncology resources. The documented ASR of cancer is of the order of 1 to 2 per 1000. With improving health care this is becoming more significant. This review was undertaken to help develop priorities for the region. Radiation Oncology departments in Africa were identified and a survey of their equipment performed. These were compared to the reported situation in 1991. Population tables for the year 2000 were compared to available megavoltage machines. Of 56 countries in Africa, only 22 are confidently known to have megavoltage therapy concentrated in the southern and northern extremes of the continent. The 155 megavoltage machines operating represents over 100% increase over the past 8 years. The population served by each megavoltage machine ranges from 0.6 million to 70 million per machine. Overall, only 50% of the population have some access to Radiation Oncology services. Progress has been made in initiating radiation oncology in Ghana, Ethiopia and Namibia. There has been some increase in machines in Algeria, Egypt, Libya, Morocco and Tunisia. However, a large backlog exists for basic radiation services. (author.)

  2. Ultrasonic Imaging Technology Helps American Manufacturer of Nondestructive Evaluation Equipment Become More Competitive in the Global Market

    Science.gov (United States)

    1995-01-01

    Sonix, Inc., of Springfield, Virginia, has implemented ultrasonic imaging methods developed at the NASA Lewis Research Center. These methods have heretofore been unavailable on commercial ultrasonic imaging systems and provide significantly more sensitive material characterization than conventional high-resolution ultrasonic c-scanning. The technology transfer is being implemented under a cooperative agreement between NASA and Sonix, and several invention disclosures have been submitted by Dr. Roth to protect Lewis interests. Sonix has developed ultrasonic imaging systems used worldwide for microelectronics, materials research, and commercial nondestructive evaluation (NDE). In 1993, Sonix won the U.S. Department of Commerce "Excellence in Exporting" award. Lewis chose to work with Sonix for two main reasons: (1) Sonix is an innovative leader in ultrasonic imaging systems, and (2) Sonix was willing to apply the improvements we developed with our in-house Sonix equipment. This symbiotic joint effort has produced mutual benefits. Sonix recognized the market potential of our new and highly sensitive methods for ultrasonic assessment of material quality. We, in turn, see the cooperative effort as an effective means for transferring our technology while helping to improve the product of a domestic firm.

  3. Equipment for light therapy BIOFIE family

    International Nuclear Information System (INIS)

    Corcho Corcho, C. A.; Perez Garcia, A.; Herrera Rodriguez, R.

    2016-01-01

    The development experienced in the design and implementation of equipment are presented, within the subject matter of the application of low level laser and also them LED of high efficiency with therapeutic purposes in health and also in animal health, besides, the use of this technology for this application in agriculture. All the equipment that show up has been developed for the Dpto. of Bioengineer of High Politechnical Institute Jose A. Echeverria (CUJAE) in association with Dpto. of Prototypes of the same institution, under the trademark BIOFIE. Like fundamental and innovative characteristic we can make a comment that all equipment destined to health and animal health, work on continuos and modulated signal mode, using in this mode different bio frequencies. (Author)

  4. Pilot-scale continuous ultrasonic cleaning equipment reduces Listeria monocytogenes levels on conveyor belts.

    Science.gov (United States)

    Tolvanen, Riina; Lundén, Janne; Hörman, Ari; Korkeala, Hannu

    2009-02-01

    Ultrasonic cleaning of a conveyor belt was studied by building a pilot-scale conveyor with an ultrasonic cleaning bath. A piece of the stainless steel conveyor belt was contaminated with meat-based soil and Listeria monocytogenes strains (V1, V3, and B9) and incubated for 72 h to allow bacteria to attach to the conveyor belt surfaces. The effect of ultrasound with a potassium hydroxide-based cleaning detergent was determined by using the cleaning bath at 45 and 50 degrees C for 30 s with and without ultrasound. The detachment of L. monocytogenes from the conveyor belt caused by the ultrasonic treatment was significantly greater at 45 degrees C (independent samples t test, P conveyor belt is effective even with short treatment times.

  5. Computer-controlled ultrasonic equipment for automatic inspection of nuclear reactor components after manufacturing

    International Nuclear Information System (INIS)

    Moeller, P.; Roehrich, H.

    1983-01-01

    After foundation of the working team ''Automated US-Manufacture Testing'' in 1976 the realization of an ultrasonic test facility for nuclear reactor components after manufacturing has been started. During a period of about 5 years, an automated prototype facility has been developed, fabricated and successfully tested. The function of this facility is to replace the manual ultrasonic tests, which are carried out autonomically at different stages of the manufacturing process and to fulfil the test specification under improved economic conditions. This prototype facility has been designed as to be transported to the components to be tested at low expenditure. Hereby the reproduceability of a test is entirely guaranteed. (orig.) [de

  6. Study of the simulation of working of ultrasonic equipment in order to optimize the nondestructive control conditions

    International Nuclear Information System (INIS)

    Drai, R.

    1986-01-01

    The aim of this study is, for the long run, to define one or several procedures of ultrasonic nondestructive testing, allowing the use of the equipment, at their best conditions. In this work, the behaviour of the testing system is simulated. The water bounded by a reflector plane is taken as a propagation medium. The testing equipment is considered as a system composed by a set of sub-systems (generator, cable, transducers and reception amplifier). Each of these sub-systems is modelled by its respective transfer functions. Thus, an experimental procedure for measuring sub-system characteristics is given in order to calculate the different transfer functions. With this model, we have the possibility to obtain, by calculation, all signals given by testing system for any combination of these parameters: damping, attenuation, cable length... So, it is possible to establish prior to the test, the adequate conditions for the testing system (high sensitivity, good resolution or good compromise between both)

  7. Double-shell tank integrity assessments ultrasonic test equipment performance test

    Energy Technology Data Exchange (ETDEWEB)

    Pfluger, D.C.

    1996-09-26

    A double-shell tank (DST) inspection (DSTI) system was performance tested over three months until August 1995 at Pittsburgh, Pennsylvania, completing a contract initiated in February 1993 to design, fabricate, and test an ultrasonic inspection system intended to provide ultrasonic test (UT) and visual data to determine the integrity of 28 DSTs at Hanford. The DSTs are approximately one-million-gallon underground radioactive-waste storage tanks. The test was performed in accordance with a procedure (Jensen 1995) that included requirements described in the contract specification (Pfluger 1995). This report documents the results of tests conducted to evaluate the performance of the DSTI system against the requirements of the contract specification. The test of the DSTI system also reflects the performance of qualified personnel and operating procedures.

  8. Design of segmental ultrasonic cleaning equipment for removing the sludge in a steam generator

    International Nuclear Information System (INIS)

    Kim, Seok Tae; Jeong, Woo Tae; Byeon, Min Suk; Lee, Ho One

    2010-01-01

    In nuclear power plants, the water in the coolant system is managed to be clean but metallic sludge is accumulated on the top of tube-sheet in a steam generator. The sludge causes the corrosion of the tubesheet. The electric utility company in Korea removes the sludge with a lancing system for every outage of nuclear power plants. But the sludge is not perfectly removed with lancing system because the pressurized water of the lancing system cannot reach all area in a steam generator. Therefore the steam generator cleaning system with ultrasonic energy has been developed in KEPCO Research Institute. In this paper, the ultrasonic cleaning system is designed for removing the sludge on the steam generator

  9. Investigation with automatic ultrasonic equipment to trace flaws in a large test piece, and experience gained in carrying out inspections

    International Nuclear Information System (INIS)

    Lindner, J.P.

    1975-01-01

    Based on the FRG codes providing guide lines for the Reactor Safety Commission regarding the size and location of flaws to be detected during in-service inspections, investigations were carried out into the possibility of detecting defects in thick-walled reactor pressure vessel components with the aid of ultrasonic inspection systems. A large test rig was used and, in a similar manner to the in-service inspections on a reactor, the tests were carried out with remote-controlled, automatically guided inspection equipment. For this purpose, a test specimen weighing about 10 tons was produced and provided with two weld seams having a large number of artificial defects. Essential parameters for the various reflectors in the test specimen were the size, location, angle and roughness or structure of the reflecting surfaces. As it is known that austenitic cladding has a considerable influence on flaw detection, the tests were undertaken first without cladding and then with cladding. A manipulator was designed for automatic remote-controlled inspection with which the inspection system travels on a meandering route over the area to be inspected. The inspection system employed was of the same type as the one used for baseline tests during external inspections of reactor vessel walls with parallel surfaces. Digital data collection was by a magnetic tape recorder designed to store both the data of the ultrasonic inspection system as well as the allied position data. The data stored on the tape are evaluated with electronic data processing programmes especially developed for this purpose. These programmes allow locally coherent indication patterns to be prepared, thus simplifying the interpretation of the data obtained. The author initially describes the equipment with the aid of which the studies were undertaken. A detailed discussion is then presented on the design of the test specimen and the inspection systems employed. Following this, the results obtained are explained and

  10. Innovative ultrasonic technology to improve the life of NPP equipment at its manufacturing

    International Nuclear Information System (INIS)

    Trofimov, A.I.; Minin, S.I.; Trofimov, M.A.; Kirillov, Yu.A.

    2012-01-01

    The paper presents a theoretical and experimental justification for the effects of ultrasound on the welds during welding the equipment of nuclear power plants. Impact of ultrasound technology on the process of welding and surfacing is described as well [ru

  11. How to Design and Equip a Mentalization-Based Play Therapy Room.

    Science.gov (United States)

    Rüth, Ulrich; Holch, Astrid

    2018-01-01

    Designing and equipping a play therapy room as a differentiated tool in a psychodynamic approach to child psychotherapy is seldom discussed. This article sketches out the equipment and furnishing of a play therapy room to be used for mentalization-based psychodynamic psychotherapy and gives examples of the use of such a room in practice.

  12. Photodynamic therapy versus ultrasonic irrigation: interaction with endodontic microbial biofilm, an ex vivo study.

    Science.gov (United States)

    Muhammad, Omid H; Chevalier, Marlene; Rocca, Jean-Paul; Brulat-Bouchard, Nathalie; Medioni, Etienne

    2014-06-01

    Photodynamic therapy was introduced as an adjuvant to conventional chemo-mechanical debridement during endodontic treatment to overcome the persistence of biofilms. The aim of this study was to evaluate the ability of photodynamic therapy (PDT) to disrupt an experimental microbial biofilm inside the root canal in a clinically applicable working time. Thirty extracted teeth were prepared and then divided in three groups. All samples were infected with an artificially formed biofilm made of Enterococcus faecalis, Streptococcus salivarius, Porphyromonas gingivalis and Prevotella intermedia bacteria. First group was treated with Aseptim Plus® photo-activated (LED) disinfection system, second group by a 650 nm Diode Laser and Toluidine blue as photosensitizer, and the third group, as control group, by ultrasonic irrigation (PUI) using EDTA 17% and NaOCl 2.6% solutions. The working time for all three groups was fixed at 3 min. Presence or absence of biofilm was assessed by aerobic and anaerobic cultures. There was no statistically significant difference between results obtained from groups treated by Aseptim Plus® and Diode Laser (Pirrigation and NaOCl and EDTA solutions had the best results (Pendodontic artificial microbial biofilm and could not inhibit bacterial growth in a clinically favorable working time. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Ultrasonic flowmeters

    International Nuclear Information System (INIS)

    Wittekind, W.D.

    1979-01-01

    A prototype ultrasonic flowmeter was assembled and tested. The theoretical basis of this prototype ultrasonic flowmeter is reviewed; the equipment requirements for a portable unit are discussed; the individual electronic modules contained in the prototype are described; the operating procedures and configuration are explained; and the data from preliminary calibrations are presented. The calibration data confirm that the prototype operates according to theoretical predictions and can indeed provide nonintrusive flow measurements to predicted accuracies for pipes larger than two inches, under single phase stable flow conditions

  14. [Equipment design for magnetic therapy and "Polus" devices].

    Science.gov (United States)

    Viktorov, V A; Malkov, Iu V

    1994-01-01

    Low-frequency magnetotherapy is among the most original therapeutical techniques since it is effective in treating most diseases and has practically no contraindications. Due to atraumaticity of a low-frequency electromagnetic field, the application of magnetotherapy is indicated in geriatric care, in particular. The VNIIMP-VITA Joint-Stock Company has developed a family of the Polyus system equipment for magnetotherapy, whereby all the well-known therapeutical procedures of low-frequency magnetotherapy can be performed. The magnetotherapeutic room equipped with Polyus-2D, Polyus-3, and Polyus-4 ensures a complete set of magneto-therapeutical exposure. The rooms are supplied by the VNIIMP-VITA Joint-Stock Company.

  15. Quantitative Ultrasonic Nakagami Imaging of Neck Fibrosis After Head and Neck Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaofeng [Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Yoshida, Emi [Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California (United States); Cassidy, Richard J.; Beitler, Jonathan J.; Yu, David S.; Curran, Walter J. [Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Liu, Tian, E-mail: tliu34@emory.edu [Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia (United States)

    2015-06-01

    Purpose: To investigate the feasibility of ultrasound Nakagami imaging to quantitatively assess radiation-induced neck fibrosis, a common sequela of radiation therapy (RT) to the head and neck. Methods and Materials: In a pilot study, 40 study participants were enrolled and classified into 3 subgroups: (1) a control group of 12 healthy volunteers; (2) an asymptomatic group of 11 patients who had received intensity modulated RT for head and neck cancer and had experienced no neck fibrosis; and (3) a symptomatic group of 17 post-RT patients with neck fibrosis. Each study participant underwent 1 ultrasound study in which scans were performed in the longitudinal orientation of the bilateral neck. Three Nakagami parameters were calculated to quantify radiation-induced tissue injury: Nakagami probability distribution function, shape, and scaling parameters. Physician-based assessments of the neck fibrosis were performed according to the Radiation Therapy Oncology Group late morbidity scoring scheme, and patient-based fibrosis assessments were rated based on symptoms such as pain and stiffness. Results: Major discrepancies existed between physician-based and patient-based assessments of radiation-induced fibrosis. Significant differences in all Nakagami parameters were observed between the control group and 2 post-RT groups. Moreover, significant differences in Nakagami shape and scaling parameters were observed among asymptomatic and symptomatic groups. Compared with the control group, the average Nakagami shape parameter value increased by 32.1% (P<.001), and the average Nakagami scaling parameter increased by 55.7% (P<.001) for the asymptomatic group, whereas the Nakagami shape parameter increased by 74.1% (P<.001) and the Nakagami scaling parameter increased by 83.5% (P<.001) for the symptomatic group. Conclusions: Ultrasonic Nakagami imaging is a potential quantitative tool to characterize radiation-induced asymptomatic and symptomatic neck fibrosis.

  16. Quantitative Ultrasonic Nakagami Imaging of Neck Fibrosis After Head and Neck Radiation Therapy

    International Nuclear Information System (INIS)

    Yang, Xiaofeng; Yoshida, Emi; Cassidy, Richard J.; Beitler, Jonathan J.; Yu, David S.; Curran, Walter J.; Liu, Tian

    2015-01-01

    Purpose: To investigate the feasibility of ultrasound Nakagami imaging to quantitatively assess radiation-induced neck fibrosis, a common sequela of radiation therapy (RT) to the head and neck. Methods and Materials: In a pilot study, 40 study participants were enrolled and classified into 3 subgroups: (1) a control group of 12 healthy volunteers; (2) an asymptomatic group of 11 patients who had received intensity modulated RT for head and neck cancer and had experienced no neck fibrosis; and (3) a symptomatic group of 17 post-RT patients with neck fibrosis. Each study participant underwent 1 ultrasound study in which scans were performed in the longitudinal orientation of the bilateral neck. Three Nakagami parameters were calculated to quantify radiation-induced tissue injury: Nakagami probability distribution function, shape, and scaling parameters. Physician-based assessments of the neck fibrosis were performed according to the Radiation Therapy Oncology Group late morbidity scoring scheme, and patient-based fibrosis assessments were rated based on symptoms such as pain and stiffness. Results: Major discrepancies existed between physician-based and patient-based assessments of radiation-induced fibrosis. Significant differences in all Nakagami parameters were observed between the control group and 2 post-RT groups. Moreover, significant differences in Nakagami shape and scaling parameters were observed among asymptomatic and symptomatic groups. Compared with the control group, the average Nakagami shape parameter value increased by 32.1% (P<.001), and the average Nakagami scaling parameter increased by 55.7% (P<.001) for the asymptomatic group, whereas the Nakagami shape parameter increased by 74.1% (P<.001) and the Nakagami scaling parameter increased by 83.5% (P<.001) for the symptomatic group. Conclusions: Ultrasonic Nakagami imaging is a potential quantitative tool to characterize radiation-induced asymptomatic and symptomatic neck fibrosis

  17. Development of Automatic Ultrasonic Testing Equipment for Pressure-Retaining Studs and Bolts in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Suh, D. M.; Park, M. H.; Hong, S. S.

    1989-01-01

    Bolting degradation problems in primary coolant pressure boundary applications have become a major concern in the nuclear industry. In the bolts concerned, the failure mechanism was either corrosion wastage(loss of bolt diameter) or stress-corrosion cracking. Here the manual ultrasonic testing of RPV(Reactor Pressure Vessel) and RCP(Reactor Coolant Pump) stud has been performed. But it is difficult to detect indications because examiner can not exactly control the rotation angle and can not distinguish the indication from signals of bolt. In many cases, the critical sizes of damage depth are very small(1-2 mm order). At critical size, the crack tends to propagatecompletly through the bolt under stress, Resulting in total fracture. Automatic stud scanner for studs(bolts) was developed because the precise measurement of bolt diameter is required in this circumstance. By use of this scanner, the rotation angle of probe was exactly controlled and the exposure time of radiations was reduced

  18. Ultrasonic Testing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeong Jun; Kuk, Jeong Han

    2002-02-15

    This book introduces ultrasonic testing, which tells of outline of ultrasonic testing, principle of ultrasonic testing, prosperities of ultrasonic waves, radiographic test and ultrasonic test, basic theory on ultrasonic testing, mode conversion, transmission and diffraction, ultrasonic flaw detection and probe, standard test piece and reference test piece, like KS(JIS) ASME and ASTM, classification and properties of ultrasonic testing, straight beam method, angle beam method, ASME SEC.V.Art.5 ASTMA 388 and KS B 0817 Korean industrial standard.

  19. The proton therapy system for MGH's NPTC: equipment description and progress report

    International Nuclear Information System (INIS)

    Jongen, Y.; Beeckman, W.; Cohilis, P.

    1996-01-01

    At the beginning of 1994, the Massachusetts General Hospital (MGH) of the Harvard Medical School in Boston (MA, USA) a pioneer in proton therapy since 1959, selected a team led by Ion Beam Applications SA (IBA) to supply the proton therapy equipment of its new Northeast Proton Therapy Centre (NPTC),. The IBA integrated system includes a compact 235 MeV isochronous cyclotron, a short energy selection transforming the fixed energy beam extracted form the cyclotron into a variable energy beam, one or more isocentric gantries fitted with a nozzle, a system consisting of one or more horizontal beam lines, a global control system including an accelerator control unit and several independent but networked therapy control stations, a global safety management system, and a robotic patient positioning system. The present paper presents the equipment being built for the NPTC. (author)

  20. Ultrasonic horn design for ultrasonic machining technologies

    Directory of Open Access Journals (Sweden)

    Naď M.

    2010-07-01

    Full Text Available Many of industrial applications and production technologies are based on the application of ultrasound. In many cases, the phenomenon of ultrasound is also applied in technological processes of the machining of materials. The main element of equipments that use the effects of ultrasound for machining technology is the ultrasonic horn – so called sonotrode. The performance of ultrasonic equipment, respectively ultrasonic machining technologies depends on properly designed of sonotrode shape. The dynamical properties of different geometrical shapes of ultrasonic horns are presented in this paper. Dependence of fundamental modal properties (natural frequencies, mode shapes of various sonotrode shapes for various geometrical parameters is analyzed. Modal analyses of the models are determined by the numerical simulation using finite element method (FEM design procedures. The mutual comparisons of the comparable parameters of the various sonotrode shapes are presented.

  1. Metrological control of instruments, equipment and measurement system for ultrasonic meters of flow; Controle metrologico de instrumentos, equipamentos e sistema de medicao para medidores ultra-sonicos de vazao

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, Oscar de

    2004-07-01

    Following the actual tendency to obtaining greater precision in Natural Gas measurement, in the past few years the use of Ultrasonic Flow Meters as Custody Transfer applications has grown significantly. There are several units currently operating in Brazil. The legislation for model approval, measure system certification and periodical metrological control of the above mentioned equipment, is currently under elaboration final stage. It was placed under public inquire through the 'Portaria 037' of 2004 of INMETRO, which proposes the authorization to perform the Metrological control by the Operator, once it has a quality system implemented according NBR ISO 9001-2000 and/or ISO 17025. This paper describes the verification procedure adopted by most of ultrasonic meters manufacturers. It also describes the application of the procedure for create the 'Metrological Control System of the Measurement System' of a 12'' Ultrasonic Meter installed and operating, with 3 years operation's data. (author)

  2. Ultrasonic activation and chemical modification of photosensitizers enhances the effects of photodynamic therapy against Enterococcus faecalis root-canal isolates.

    Science.gov (United States)

    Tennert, C; Drews, A M; Walther, V; Altenburger, M J; Karygianni, L; Wrbas, K T; Hellwig, E; Al-Ahmad, A

    2015-06-01

    The aim of this study was to evaluate the effect of photodynamic therapy (PDT) on Enterococcus faecalis biofilms in artificially infected root canals using modified photosensitizers and passive ultrasonic activation. Two hundred and seventy extracted human teeth with one root canal were instrumented utilizing ProTaper files, autoclaved, infected with E. faecalis T9 for 72 h and divided into different groups: irrigation with 3% sodium hypochlorite (NaOCl), 20% ethylenediaminetetraacetic acid (EDTA), or 20% citric acid, PDT without irrigation, PDT accompanied by irrigation with NaOCl, EDTA, or citric acid, PDT using an EDTA-based photosensitizer or a citric-acid-based photosensitizer and PDT with ultrasonic activation of the photosensitizer. A 15 mg/ml toluidine blue served as the photosensitizer, activated by a 100 mW LED light source. Sterile paper points were used for sampling the root canals and dentin chips were collected to assess the remaining contamination after treatment. Samples were cultured on blood agar plates and colony forming units were quantified. PDT alone achieved a reduction in E. faecalis counts by 92.7%, NaOCl irrigation alone and combined with PDT by 99.9%. The antibacterial effects increased by the combination of irrigation using EDTA or citric acid and PDT compared to irrigation alone. More than 99% of E. faecalis were killed using PDT with the modified photosensitizers and ultrasonic activation. NaOCl based disinfection achieved the highest antimicrobial effect. Using PDT with an EDTA-based or citric-acid-based phozosensitizer or activating the photosensitizer with ultrasound resulted in a significantly higher reduction in E. faecalis counts compared to conventional PDT. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Design and construction of stepper motor controller for brachy-therapy equipment

    International Nuclear Information System (INIS)

    Ahmad Rifai; Usep Setia Gunawan; Indarzah Masbatin Putra

    2011-01-01

    Based on a microcontroller, a stepper motor controller for brachy-therapy equipment has been designed and prototyped. The embedded control program routine and its other associated routines enable the microcontroller to generate required pulses via external commands for stepper motor based position control. The controller receives ASCII text command via a serial port. The constructed algorithm implements the widely used method that allows motor to rotate in three phases, i.e: acceleration, constant speed, and deceleration. (author)

  4. Magneto-laser-ultrasonic therapy. Particular methodic of different diseases treatment. Scientific materials used in practice. V.4(2)

    International Nuclear Information System (INIS)

    Samosyuk, I.Z.; Chukhraev, N.V.; Myasnikov, V.G.; Samosyuk, N.I.

    2001-01-01

    Contemporary data about the use of magnetotherapy, ultrasound and magnetolaser therapy in resonance energy ranges are presented in this book. Practical methodics of simultaneous and combined use of these physical factors in different branches of clinical medicine (neurology, cardiology, gastroenterology and others) are described. Modern principles of the sensitive zone choice, bases of biorhythmic and resonance phenomena are presented. Practical uses of them became more and more important in physiotherapy and acupuncture. Diseases of different organs are considered, and magnetic, laser and ultrasound mehtods of their treatment are discussed. Special attention is paid to the use of magneto-laser and low-frequency ultrasonic therapy methods for diabetus melitus and respiratory organ treatment. Diseases of urinary tract, of ischemia, insult, ophthalmological ones and series of surgery profile diseases are considered in connection with different modern treatment methods of them. Review of cardiovascular, skin, digestive system diseases, those of ophtalmology, stomatology, otolaryngology nervous-psychic violations is presented and optimum methods of their treatment are recommended. The most part of magneto-laser-ultrasound therapy uses refers to the new generation of series 'MIT' and 'MIT-11' apparata which combine all three treatment factors

  5. Development of transfer standard devices for ensuring the accurate calibration of ultrasonic physical therapy machines in clinical use

    International Nuclear Information System (INIS)

    Hekkenberg, R T; Richards, A; Beissner, K; Zeqiri, B; Prout, G; Cantrall, Ch; Bezemer, R A; Koch, Ch; Hodnett, M

    2004-01-01

    Physical therapy ultrasound is widely applied to patients. However, many devices do not comply with the relevant standard stating that the actual power output shall be within ±20% of the device indication. Extreme cases have been reported: from delivering effectively no ultrasound or operating at maximum power at all powers indicated. This can potentially lead to patient injury as well as mistreatment. The present European (EC) project is an ongoing attempt to improve the quality of the treatment of patients being treated with ultrasonic physical-therapy. A Portable ultrasound Power Standard (PPS) is being developed and accurately calibrated. The PPS includes: Ultrasound transducers (including one exhibiting an unusual output) and a driver for the ultrasound transducers that has calibration and proficiency test functions. Also included with the PPS is a Cavitation Detector to determine the onset of cavitation occurring within the propagation medium. The PPS will be suitable for conducting in-the-field accreditation (proficiency testing and calibration). In order to be accredited it will be important to be able to show traceability of the calibration, the calibration process and qualification of testing staff. The clinical user will benefit from traceability because treatments will be performed more reliably

  6. Regulations No. 59 of 20 February 1978 on X-ray skin therapy equipment up to 50 kV

    International Nuclear Information System (INIS)

    1978-01-01

    These regulations lay down the provisions to be complied with for the protection of medical staff and patients when using X-ray equipment for skin therapy. The operators of such equipment must comply with the technical guidelines contained in the regulations and provision is made for annual inspections to ensure that the devices meet the necessary safety standards. (NEA) [fr

  7. A detector for monitoring the onset of cavitation during therapy-level measurements of ultrasonic power

    Energy Technology Data Exchange (ETDEWEB)

    Hodnett, M; Zeqiri, B [National Physical Laboratory, Queens Road, Teddington, Middlesex, TW11 0LW (United Kingdom)

    2004-01-01

    Acoustic cavitation occurring in the water path between a transducer and the target of a radiation force balance can provide a significant source of error during measurements of ultrasonic power. These problems can be particularly acute at physiotherapy levels (>1 W), and low frequencies ({<=} 1 MHz). The cavitating bubbles can absorb and scatter incident ultrasound, leading to an underestimate in the measured power. For these reasons, International Specification standards demand the use of degassed water. This imposes requirements that may actually be difficult to meet, for example, in the case of hospitals. Also, initially degassed water will rapidly re-gas, increasing the likelihood of cavitation occurring. For these reasons, NPL has developed a device that monitors acoustic emissions generated by bubble activity, for detecting the onset of cavitation during power measurements. A commercially available needle hydrophone is used to detect these emissions. The acoustic signals are then monitored using a Cavitation Detector (CD) unit, comprising an analogue electrical filter that may be tuned to detect frequency components generated by cavitating bubbles, and which provides an indication of when the measured level exceeds a pre-defined threshold. This paper describes studies to establish a suitable detection scheme, the principles of operation of the CD unit, and the performance tests carried out with a range of propagation media.

  8. A detector for monitoring the onset of cavitation during therapy-level measurements of ultrasonic power

    International Nuclear Information System (INIS)

    Hodnett, M; Zeqiri, B

    2004-01-01

    Acoustic cavitation occurring in the water path between a transducer and the target of a radiation force balance can provide a significant source of error during measurements of ultrasonic power. These problems can be particularly acute at physiotherapy levels (>1 W), and low frequencies (≤ 1 MHz). The cavitating bubbles can absorb and scatter incident ultrasound, leading to an underestimate in the measured power. For these reasons, International Specification standards demand the use of degassed water. This imposes requirements that may actually be difficult to meet, for example, in the case of hospitals. Also, initially degassed water will rapidly re-gas, increasing the likelihood of cavitation occurring. For these reasons, NPL has developed a device that monitors acoustic emissions generated by bubble activity, for detecting the onset of cavitation during power measurements. A commercially available needle hydrophone is used to detect these emissions. The acoustic signals are then monitored using a Cavitation Detector (CD) unit, comprising an analogue electrical filter that may be tuned to detect frequency components generated by cavitating bubbles, and which provides an indication of when the measured level exceeds a pre-defined threshold. This paper describes studies to establish a suitable detection scheme, the principles of operation of the CD unit, and the performance tests carried out with a range of propagation media

  9. Design principles and clinical possibilities with a new generation of radiation therapy equipment

    Energy Technology Data Exchange (ETDEWEB)

    Ruden, B P [Department of Hospital physics Karolinska institute, (Sudan)

    1997-12-31

    The main steps in the development of isocentric megavoltage external beam radiation therapy machines are briefly reviewed identifying three principal types or generations of equipment to date. The new fourth generation of equipment presented here is characterized by considerably increased flexibility in dose delivery through the use of scanned elementary electron and photon beams of very high quality. Furthermore, the wide energy range and the possibility of using high resolution multi leaf collimation with all beam modalities makes it possible to simplify irradiation techniques and increase the accuracy in dose delivery. The main design features are described including a dual magnet scanning system, a photon beam purging magnet, a helium atmosphere in the treatment head, a beam`s eye view video read-out system of the collimator setting and a radiotherapeutic computed tomography facility. Some of the clinical applications of this new type of radiation therapy machine are finally reviewed, such as the ease of performance, became flattening, beam filtering and compensation, and the simplification of many treatment techniques using the wide spectrum of high quality electron and photon beams. Finally, the interesting possibility of doing conformation and more general isocentric treatments with non-uniform beams using the multi leaf collimator and the scanning systems are demonstrated. 9 figs., 1 tab.

  10. Low-level laser therapy equipment needs calibration before clinical use

    Science.gov (United States)

    Machado de Senna, André; Machado-de-sena, Rosa Maria; Facundes, Arseni Lázaro; Barros Nepomuceno, Patrícia; Sávya Florentino, Wanilza; Olegário de Araújo, Ronyere

    2018-04-01

    Many factors can influence the radiant power delivered by the low-level laser therapy (LLLT) equipment, such as its cleaning and condition, as well as the use of plastic films for protecting the laser or even its time of use. Radiant power is an important factor to consider because it affects the amount of energy delivered to the target tissue. The difference between real radiant power (RRP) and nominal radiant power (NRP) may interfere in the expected results, because the delivered energy is different from the desired energy. Purpose: The objective of this study was to compare the NRP with the RRP offered by LLLT devices under clinical conditions of use. Material and Methods: For data collection to this study, 61 LLLT devices used in private and public dental practices in the state of Tocantins, Brazil, were evaluated. Three consecutive power measurements were performed at one-minute intervals and then the average of the measured power was calculated. The RRP was compared to the NRP. Results: The equipment presented NRP from 30 to 500mW while RRP ranged from 17.3 to 107.0mW. Discussion and Conclusion: The mean power measured in clinical conditions of use of the laser equipment was different from the nominal power reported by the manufacturers of the devices (p<0,01). The RRP ranged between 12.92% and 107% of NRP. This fact is worrisome, since one of the most important parameters for the success of the treatment of an injury using LLLT is the energy (power x time) delivered. These findings reinforce the need of calibrating the equipment before each laser application in order to avoid failures in the therapeutic conduct.

  11. Outcome of low level lasers versus ultrasonic therapy in de Quervain’s tenosynovitis

    Directory of Open Access Journals (Sweden)

    Renu Sharma

    2015-01-01

    Results: Significant improvement was seen within both groups in the following outcome measures assessed: Ritchie’s tenderness scale, grip strength and VAS. Finkelstein’s test was not significantly improved in either groups. Ultrasonographic measurement of tendon sheath diameters, the mediolateral (ML, and anteroposterior (AP diameters was not found to be significantly different in the US Th. group and the laser therapy group after treatment. On comparing both the groups, no statistically significant difference was found. However, looking at the mean values, the grip strength and VAS showed better improvement in the US Th. group as compared to the laser therapy group.

  12. Ultrasonic weld testing.

    Science.gov (United States)

    1970-12-01

    The study was broken down into two phases. Phase I consisted of a laboratory investigation of test specimens to determine the reliability of the ultrasonic equipment and testing procedure. Phase II was a field study where the knowledge, skills and ab...

  13. Ultrasonic signature

    International Nuclear Information System (INIS)

    Borloo, E.; Crutzen, S.

    1974-12-01

    The unique and tamperproof identification technique developed at Ispra is based on ultrasonic Non-Destructive-Techniques. Reading fingerprints with ultrasonic requires high reproducibility of standard apparatus and transducers. The present report gives an exhaustive description of the ultrasonic technique developed for identification purposes. Different applications of the method are described

  14. Magneto-laser-ultrasonic therapy. Scientific materials used in practice. V.4(1)

    International Nuclear Information System (INIS)

    Samosyuk, I.Z.; Chukhraev, N.V.; Myasnikov, V.G.; Samosyuk, N.I.

    2001-01-01

    Contemporary data about the use of magnetotherapy, ultrasound and magnetolaser therapy in resonance energy ranges are presented in this book. Practical methodics of simultaneous and combined use of these physical factors in different branches of clinical medicine (neurology, cardiology, gastroenterology and others) are described. General idea of biological rhythms is given and it is considered as a background of living systems development. Biorhythms are used for determination of 'biological resonance', the optimum correlation between vibrations of the organism and external ones. In such a way the best results of treatment are achieved. Modern principles of the sensitive zone choice, bases of biorhythmic and resonance phenomena are presented. Practical uses of them became more and more important in physiotherapy and acupuncture. Human biological rhythms are taken into consideration during bioresonance treatment. Features of each treatment method are described. Reactions of different organism systems (nervous, hearth and vessel, bone, respiratory systems, internal secretion) on magnetic field influence, obtained treatment effects of magnetotherapy and possible mistakes in treatment are discussed. Special advices on the use of ultrasound therapy and magnetotherapy are given. The most part of magneto-laser-ultrasound therapy uses refers to the new generation of series 'MIT' and 'MIT-11' apparat which combine all three treatment factors

  15. The one million volt X-ray therapy equipment at St Bartholomew's Hospital, 1936-1960

    International Nuclear Information System (INIS)

    Innes, G.S.

    1988-01-01

    St Bartholomew's Hospital in 1934 placed a contract with Messrs Metropolitan Vickers, of Manchester, for an X-ray therapy equipment to operate at 600 kV, 2mA d.c., but with the proviso that every effort would be made to attain an operating condition of 1000 kV, 4mA. The X-ray tube and rectifiers were to be continuously evacuated and demountable. This meant that components such as filaments, anodes and the target could be easily replaced, so providing cheap maintenance and continuous availability of the plant. No specification exists today, but one was assembled from the minutes of the Cancer Committee of the hospital and the contract pricing. A brief outline historical review is also presented, particularly of the personalities involved, and the War years 1939-1945. (author)

  16. 21 CFR 872.4850 - Ultrasonic scaler.

    Science.gov (United States)

    2010-04-01

    ... DEVICES DENTAL DEVICES Surgical Devices § 872.4850 Ultrasonic scaler. (a) Identification. An ultrasonic scaler is a device intended for use during dental cleaning and periodontal (gum) therapy to remove calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth. (b...

  17. Ultrasonic testing

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sung Jin [Sungkwunkwan Univ., Seoul (Korea, Republic of); Jeong, Hyun Jo [Wonkwang Univ., Iksan (Korea, Republic of)

    2004-02-15

    For the proper performance of ultrasonic testing of steel welded joints, and anisotropic material it is necessary to have sound understanding on the underlying physics. To provide such an understanding, it is beneficial to have simulation tools for ultrasonic testing. In order to address such a need, we develop effective approaches to simulate angle beam ultrasonic testing with a personal computer. The simulation is performed using ultrasonic measurement models based on the computationally efficient multi-Gaussian beams. This reach will describe the developed ultrasonic testing models together with the experimental verification of their accuracy.

  18. Novel Cranial Implants of Yttria-Stabilized Zirconia as Acoustic Windows for Ultrasonic Brain Therapy.

    Science.gov (United States)

    Gutierrez, Mario I; Penilla, Elias H; Leija, Lorenzo; Vera, Arturo; Garay, Javier E; Aguilar, Guillermo

    2017-11-01

    Therapeutic ultrasound can induce changes in tissues by means of thermal and nonthermal effects. It is proposed for treatment of some brain pathologies such as Alzheimer's, Parkinson's, Huntington's diseases, and cancer. However, cranium highly absorbs ultrasound reducing transmission efficiency. There are clinical applications of transcranial focused ultrasound and implantable ultrasound transducers proposed to address this problem. In this paper, biocompatible materials are proposed for replacing part of the cranium (cranial implants) based on low porosity polycrystalline 8 mol% yttria-stabilized-zirconia (8YSZ) ceramics as acoustic windows for brain therapy. In order to assess the viability of 8YSZ implants to effectively transmit ultrasound, various 8YSZ ceramics with different porosity are tested; their acoustic properties are measured; and the results are validated using finite element models simulating wave propagation to brain tissue through 8YSZ windows. The ultrasound attenuation is found to be linearly dependent on ceramics' porosity. Results for the nearly pore-free case indicate that 8YSZ is highly effective in transmitting ultrasound, with overall maximum transmission efficiency of ≈81%, compared to near total absorption of cranial bone. These results suggest that 8YSZ polycrystals could be suitable acoustic windows for ultrasound brain therapy at 1 MHz. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The application of low lever laser therapy using equipment produced at CEADEN

    International Nuclear Information System (INIS)

    Orellana Molina, A.; Combarro Romero, A. M.; Morales Valdes, O.; Hernandez Diaz, A.; Corcho Corcho, C. A.; Fernandez Yanes, S.; Arteche Diaz, J.; Porrua Garcia, A.; Larrea Cox, P. J.

    2012-01-01

    The development of the use of light with medical purposes, constitute the fundamental basis for the introduction of the laser radiation in medicine. The magnificent results obtained and the amplification of the number of pathologies that can be treated with it, led to the introduction in 1985 of this technology in Cuban hospitals. However, the price of available commercial systems in the market was prohibitive for us, reason for which it was organized a national program that allowed the design and production of this kind of medical equipment, which is being carried out by our center (CEADEN). This technique is known as Low Level Laser Therapy (LLLT). Used for more than four decades, its main goal is to achieve beneficial effects on the human body, like analgesic and anti-inflammatory. It makes damaged soft tissues heal faster, offers a reparative effect on the nervous tissue, muscular tissue, soft tissue, and skin, tissue regeneration, cellular and mitochondrial ATP multiplication, increases the vascular activity, activates the immunological system, and so on. Laser therapy in Cuba has been used in different medical specialties. (Author)

  20. P-Scan provides accuracy and repeatability in ultrasonics

    International Nuclear Information System (INIS)

    Keys, R.L.

    1987-01-01

    The P-Scan (Projection image scanning technique) is an automated ultrasonic inspection technique, developed to overcome the problems with accuracy and repeatability experienced with manual ultrasonic systems. The equipment and its applications are described. (author)

  1. Adaptive Focusing For Ultrasonic Transcranial Brain Therapy: First In Vivo Investigation On 22 Sheep

    Science.gov (United States)

    Pernot, Mathieu; Aubry, Jean-François; Tanter, Mickael; Boch, Anne Laure; Kujas, Michelle; Fink, Mathias

    2005-03-01

    A high power prototype dedicated to trans-skull therapy has been tested in vivo on 22 sheep. The array is made of 300 high power transducers working at 1MHz central frequency and is able to achieve 400 bars at focus in water during five seconds with a 50% percent duty cycle. In the first series of experiments, 10 sheep were treated and sacrificed immediately after treatment. A complete craniotomy was performed on half of the treated animal models in order to get a reference model. On the other half, minimally invasive surgery has been performed: a hydrophone was inserted at a given target location inside the brain through a craniotomy of a few mm2. A time reversal experiment was then conducted through the skull bone with the therapeutic array to treat the targeted point. Thanks to the high power technology of the prototype, trans-skull adaptive treatment could be achieved. In a second series of experiments, 12 animals were divided into three groups and sacrificed respectively one, two or three weeks after treatment. Finally, Magnetic Resonance Imaging and histological examination were performed to confirm tissue damage.

  2. Ultrasonic brain therapy: First trans-skull in vivo experiments on sheep using adaptive focusing

    Science.gov (United States)

    Pernot, Mathieu; Aubry, Jean-Francois; Tanter, Michael; Fink, Mathias; Boch, Anne-Laure; Kujas, Michèle

    2004-05-01

    A high-power prototype dedicated to trans-skull therapy has been tested in vivo on 20 sheep. The array is made of 200 high-power transducers working at 1-MHz central and is able to reach 260 bars at focus in water. An echographic array connected to a Philips HDI 1000 system has been inserted in the therapeutic array in order to perform real-time monitoring of the treatment. A complete craniotomy has been performed on half of the treated animal models in order to get a reference model. On the other animals, a minimally invasive surgery has been performed thanks to a time-reversal experiment: a hydrophone was inserted at the target inside the brain thanks to a 1-mm2 craniotomy. A time-reversal experiment was then conducted through the skull bone with the therapeutic array to treat the targeted point. For all the animals a specified region around the target was treated thanks to electronic beam steering. Animals were finally divided into three groups and sacrificed, respectively, 0, 1, and 2 weeks after treatment. Finally, histological examination confirmed tissue damage. These in vivo experiments highlight the strong potential of high-power time-reversal technology.

  3. Real-time detection of intracellular reactive oxygen species and mitochondrial membrane potential in THP-1 macrophages during ultrasonic irradiation for optimal sonodynamic therapy.

    Science.gov (United States)

    Sun, Xin; Xu, Haobo; Shen, Jing; Guo, Shuyuan; Shi, Sa; Dan, Juhua; Tian, Fang; Tian, Yanfeng; Tian, Ye

    2015-01-01

    Reactive oxygen species (ROS) elevation and mitochondrial membrane potential (MMP) loss have been proven recently to be involved in sonodynamic therapy (SDT)-induced macrophage apoptosis and necrosis. This study aims to develop an experimental system to monitor intracellular ROS and MMP in real-time during ultrasonic irradiation in order to achieve optimal effect in SDT. Cultured THP-1 derived macrophages were incubated with 5-aminolevulinic acid (ALA), and then sonicated at different intensities. Intracellular ROS elevation and MMP loss were detected in real-time by fluorospectrophotometer using fluorescence probe DCFH-DA and jc-1, respectively. Ultrasound at low intensities (less than 0.48W/cm(2)) had no influence on ROS and MMP in macrophages, whereas at an intensity of 0.48W/cm(2), ROS elevation and MMP loss were observed during ultrasonic irradiation. These effects were strongly enhanced in the presence of ALA. Quantitative analysis showed that ROS elevation and MMP loss monotonically increased with the rise of ultrasonic intensity between 0.48 and 1.16W/cm(2). SDT at 0.48 and 0.84W/cm(2) induced mainly apoptosis in THP-1 macrophages while SDT at 1.16W/cm(2) mainly cell necrosis. This study supports the validity and potential utility of real-time ROS and MMP detection as a dosimetric tool for the determination of optimal SDT. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Ultrasonic physics

    CERN Document Server

    Richardson, E G

    1962-01-01

    Ultrasonic Physics, Second Edition, provides an introduction to the fundamental principles of ultrasonic physics. The book opens with a discussion of the sources of ultrasound. This is followed by separate chapters on the properties and detection of ultrasonic radiation; measurement of propagation constants, i.e., the velocity and absorption, of ultrasound; ultrasound propagation in gases, liquids, and solids; and ultrasound propagation in aerosols, suspensions, and emulsions. The final chapter covers miscellaneous physical and physico-chemical actions, including dispersion and coagulation of

  5. Physical therapy clinic therapeutic ultrasound equipment as a source for bacterial contamination.

    Science.gov (United States)

    Spratt, Henry G; Levine, David; Tillman, Larry

    2014-10-01

    A procedure commonly used in physical therapy (PT) clinics is therapeutic ultrasound (US). This equipment and associated gel comes in contact with patient skin, potentially serving as a reservoir for bacteria. In this study, we sampled US heads, gel bottle tips and gel from nine outpatient PT clinics in Southeastern Tennessee. Samples were collected using sterile swabs. At the microbiology laboratory, these swabs were used to inoculate mannitol salt agar and CHROM-MRSA agar (for Staphylococcal species) and tryptic soy broth to determine non-specific bacterial contamination. US heads, gel bottle tips and gel had variable levels of contamination. Tips of gel bottles had the highest contamination, with 52.7% positive for non-specific bacterial contamination and 3.6% positive for methicillin-resistant Staphylococcus aureus (MRSA). Contamination of gel by non-specific bacteria was found in 14.5% of bottles sampled. US heads (35.5% of those sampled) had non-specific bacterial contamination, with no MRSA detected. Disinfecting US heads after initial swabbing resulted in removal of 90.9% of non-specific contamination. Gel storage at temperatures below 40 °C was found to encourage the growth of mesophilic bacteria. This study demonstrates the need for better cleaning and storage protocols for US heads and gel bottles in PT clinics.

  6. On line ultrasonic integrated backscatter

    International Nuclear Information System (INIS)

    Landini, L.; Picano, E.; Mazzarisi, A.; Santarelli, F.; Benassi, A.; De Pieri, G.

    1988-01-01

    A new equipment for on-line evaluation of index based on two-dimensional integrated backscatter from ultrasonic images is described. The new equipment is fully integrated into a B-mode ultrasonic apparatus which provides a simultaneous display of conventional information together with parameters of tissue characterization. The system has been tested with a backscattering model of microbubbles in polysaccharide solution, characterized by a physiological exponential time decay. An exponential fitting to the experimental data was performed which yielded r=0.95

  7. Procedure for field axes measurement, beam indication adjustment, and figure of convergence determination within performance tests for radiation therapy equipment

    Energy Technology Data Exchange (ETDEWEB)

    Quast, U; Krause, K; Rassow, J [Essen Univ. (Gesamthochschule) (Germany, F.R.). Abt. fuer Klinische Strahlenphysik

    1976-09-01

    A routine measuring procedure for the verification of radiation field axes and figure of convergence within a spatial resolution of +- 0.5 mm is described. Measurements are done in two parallel planes in a certain distance before and behind the presumed isocentre. The used test arrangement permits rapid check and controlled adjustment of the alignment of beam or isocentre indicating devices for all isocentric radiation therapy equipment.

  8. Compliance to Standard Equipment Requirements by Exercise Therapy/Fitness Outfits in The South-South Geopolitical Zone of Nigeria

    Directory of Open Access Journals (Sweden)

    Oluwaseun S. Kubeyinje

    2016-08-01

    Full Text Available The purpose of this study was to assess the compliance of exercise therapy/fitness outfits in the south-south geopolitical zone of Nigeria to standard equipment requirements. Descriptive survey design was adopted for the conduct of the study using a sample size of 51centres/managers purposively selected from a population of 102 managers of fitness outfits in the six states of the south-south geopolitical zone of Nigeria. A self- developed structured questionnaire and a facility checklist were used to collect the data. Data collected were analysed using frequency counts and percentages. The study revealed in this analysis that only treadmills (66.7%, bicycle ergometers (66.7%, dumbbells (84.3% and weight racks (57.0% met the benchmark minimum in more than 50% of the exercise therapy/fitness outfits surveyed in six states of the south-south geopolitical zone of Nigeria. Most of the equipment surveyed were functional with the highest non-functionality occurring in treadmill machines in 9.8% of the surveyed centres followed by sit-up benches (5.9% and bicycle ergometers (3.9%. In conclusion, it could be deduced from the results that there’s gross inadequacy of equipment and low level of compliance to established standard in the exercise therapy/fitness outfits evaluated in the south-south geopolitical zone of Nigeria.

  9. Ultrasonic inspection

    International Nuclear Information System (INIS)

    Satittada, Gannaga

    1984-01-01

    Ultrasonic inspection is one of the most widely used methods for nondestructive inspection. The beam of high-frequency sound wave, ultrasonic wave, is introduced into the material. It travels through the material with some attendant loss of energy and can be reflected at interfaces. The reflected beam is detected and analyzed. Ultrasonic inspection is used to detect flaws in metal parts as well as in welded, brazed and bonded joints during research work and developing production and service. It is also used to detect and locate porosity, pipe, and flakes. In addition, it can be used for the measurement of metal thickness. Ultrasonic inspection is therefore used for quality control and material inspection in all major industries

  10. Ultrasonic mammography

    International Nuclear Information System (INIS)

    Hueneke, B.

    1982-01-01

    608 women are examined by means of ultrasonic mammography during the period of 1 year. 432 patients were examined with the compound method with the U.I. Octoson, a water tank scanner, and 176 patients with the real time method with a directly connected linear-array-scanner. The following results were obtained at the end of the examination period: In the ultrasonic and also in the X-ray mammogram tumour diameters can be determined with an error rate of +- 30%. In the diagnosing of carcinomas, a significant dependence of the exactness on the sice of the tumour is found for the combination of the five methods tested (clinical examination, X-ray mammography, ultrasonic mammography, thermography, cytology). Classifying the individual methods with regard to their exactness, X-ray mammography ranks in front of ultrasonic mammography. Mastopathic changes in the breast can be screened by means of ultrasonic mammography. The structure of the changes can be determined more exactly than with an X-ray picture which is due to the possibility of differentiating solid and cystic structures. In diagnosing fibro-adenomas and establishing diagnoses on young women with dense gland bodies, ultrasonic mammography is superior to radiology both in the ability of screening a finding of a fibro-adenoma (US=88%, X-ray=75%) and in the possibility of classifying it as ''more benign than malignant''. (orig./MG) [de

  11. Training methods in non-destructive examination with ultrasonic testing

    International Nuclear Information System (INIS)

    Walte, F.

    1986-01-01

    German concept for inspection of LWR, leak before break, basic safety; General inspection methods; Ultrasonic inspection - basic principle, generation of ultrasound, bulk and surface waves, piezo electric and electromagnetic transducers, energy balance, scattering and adsorption, divergence; Ultra techniques in compliance with KTA-rules - pulse-echo, tandem, throughtransmission; Valuation of ultrasonic indications; Pre- and in-service inspection; Practical part - ultrasonic equipment, ultrasonic piezo electric transducers, wall thickness measurement, crack depth measurement with potential drop technique. (orig.)

  12. Method of case hardening depth testing by using multifunctional ultrasonic testing instrument

    International Nuclear Information System (INIS)

    Salchak, Y A; Sednev, D A; Ardashkin, I B; Kroening, M

    2015-01-01

    The paper describes usability of ultrasonic case hardening depth control applying standard instrument of ultrasonic inspections. The ultrasonic method of measuring the depth of the hardened layer is proposed. Experimental series within the specified and multifunctional ultrasonic equipment are performed. The obtained results are compared with the results of a referent method of analysis. (paper)

  13. Ultrasonic Linear Motor with Two Independent Vibrations

    Science.gov (United States)

    Muneishi, Takeshi; Tomikawa, Yoshiro

    2004-09-01

    We propose a new structure of an ultrasonic linear motor in order to solve the problems of high-power ultrasonic linear motors that drive the XY-stage for electron beam equipment and to expand the application fields of the motor. We pay special attention to the following three points: (1) the vibration in two directions of the ultrasonic linear motor should not influence mutually each other, (2) the vibration in two directions should be divided into the stage traveling direction and the pressing direction of the ultrasonic linear motor, and (3) the rigidity of the stage traveling direction of the ultrasonic linear motor should be increased. As a result, the supporting method of ultrasonic linear motors is simplified. The efficiency of the motor is improved and temperature rise is reduced. The stage position drift is also improved.

  14. Ultrasonic flowmeters. Progress report II

    International Nuclear Information System (INIS)

    Wittekind, W.D.

    1980-01-01

    This progress report presents results of in-plant testing of the prototype ultrasonic flowmeter and describes modifications to the prototype as a result of these tests. The modified prototype, designated MOD-I, is described in detail including the principle of operation, equipment used and the results of both laboratory and in-plant demonstrations

  15. Ultrasonic neuromodulation

    Science.gov (United States)

    Naor, Omer; Krupa, Steve; Shoham, Shy

    2016-06-01

    Ultrasonic waves can be non-invasively steered and focused into mm-scale regions across the human body and brain, and their application in generating controlled artificial modulation of neuronal activity could therefore potentially have profound implications for neural science and engineering. Ultrasonic neuro-modulation phenomena were experimentally observed and studied for nearly a century, with recent discoveries on direct neural excitation and suppression sparking a new wave of investigations in models ranging from rodents to humans. In this paper we review the physics, engineering and scientific aspects of ultrasonic fields, their control in both space and time, and their effect on neuronal activity, including a survey of both the field’s foundational history and of recent findings. We describe key constraints encountered in this field, as well as key engineering systems developed to surmount them. In closing, the state of the art is discussed, with an emphasis on emerging research and clinical directions.

  16. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Science.gov (United States)

    2010-04-01

    ... system. (a) Identification. An ultrasonic pulsed doppler imaging system is a device that combines the... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic pulsed doppler imaging system. 892.1550... include signal analysis and display equipment, patient and equipment supports, component parts, and...

  17. The helical tomo-therapy: appeal to projects Inca 2005 first assessment of the three equipped establishments

    International Nuclear Information System (INIS)

    Zefkili, S.; Francois, P.; Giraud, P.; Caron, J.; Dejean, C.; Kantor, G.; Munos, C.; Mahe, M.A.; Lisbona, A.

    2007-01-01

    The centers of fight against cancer ( C.L.C.C.) Institute Curie of Paris, Institute Bergonie of Bordeaux, Center Rene Gauducheau of Nantes have got to exploit the helical radiotherapy (tomo-therapy) in the frame of an appeal to projects launched in 2005 by the National Institute of cancer (I.n.c.a.) in relation with the innovating techniques in radiotherapy and presenting one of the measures of the Cancer plan 2003-2007. This communication constitutes a step report in the installation and use of equipments. (N.C.)

  18. Quality assurance study for dosimetry of Radiation Therapy equipment in Saudi Arabia

    International Nuclear Information System (INIS)

    Al-Mokhlef, Jazi M.; Nabaz, Noori

    2003-01-01

    International standards address the accuracy of dose delivery for radiation therapy machines as well as quality assurance and staffing levels for radiation therapy centers. We performed absolute calibrations of gamma ,X-ray and electron radiotherapy beams in all radiation therapy centers in Saudi Arabia. We also assessed quality assurance and staffing levels Dosimetric measurements were made with a portable dosimetry system, which consisted of a calibrated Farmer ionization chamber and an electrometer, small water phantom, barometer and thermometer. Differences between the measured and the expected output (c Gy/MU or c Gy/min) were found to be in the range of -11%+5%. About 17% of radiotherapy beams were not within the acceptable tolerance level (+/-3%). Quality assurance in some radiation centers was poor and staffing levels were inadequate. We found poor compliance with internationally accepted tolerance levels for dose calibration of radiotherapy beams at radiation therapy centers in Saudi Arabia. Analysis of medical physics staffing revealed severe discrepancies from those recommended by international guidelines .We recommend that radiation therapy centers be adequately staffed with qualified medical physics personnel and that periodic audit programs be required a governmental body. (author)

  19. Dosimetric characterization of a 2-D array of 223 solid state detectors for daily morning checks in Tomo Therapy equipment

    International Nuclear Information System (INIS)

    Reyes S, U.; Sosa A, M.; Vega C, H. R.

    2015-10-01

    Tomo Therapy is a new technique for the cancer treatment; however, the equipment must meet nearly all mechanical and dosimetric characteristics of a conventional linear accelerator for medical use. Daily quality controls are vital to the good operation of the equipment and thus guarantee excellent quality in the daily delivery of treatments. This paper presents the procedure of the dosimetric characterization of a two-dimensional array of 223 solid state detectors, called TomoDose of the Sun Nuclear Company. Dosimetric important criteria are established to perform these checks quickly and accurately. Dosimetric tests proposed are: repeatability, linearity, dependence of Sad and SSD. Some results are compared with readings of the ionization chamber Exradim A1SL. Finally the results of 30 consecutive days are presented to establish criteria for evidence of dose, field size, symmetry and flattening of the radiation beam on Tomo Therapy equipment. Expected values for daily verification are: Dose constancy of 194.89 c Gy, σ= 1.31 c Gy, symmetry in the X axis of -0.19 %, σ=0.08 %, symmetry in the Y axis of 1.66 %, σ= 0.05 %, flattened in the X axis of 25.71 %, σ= 0.05 % and flattened in the Y axis of 6.41 %, σ= 10.23 %. Field sizes obtained were 40.45 cm in the X axis and 5.10 on the Y axis, with standard deviations of 0.02 cm and 0.01 cm, respectively. TomoDose dosimetric values, compared to the values obtained with ionization chamber, presented differences smaller than 2%. (Author)

  20. Ultrasonic inspection development at HEDL

    International Nuclear Information System (INIS)

    Day, C.K.; Mech, S.J.; Michaels, T.E.; Dixon, N.E.

    1978-01-01

    Ultrasonic testing methods and equipment are being developed to support preservice and in-service inspection of selected FFTF welds. A digital computer system is employed in the analysis of both simulated FFTF pipe sections and plate specimens containing fatigue cracks. It is anticipated that test evaluation standards containing fatigue cracks will partially eliminate questions formerly associated with weld test calibration producers by providing natural cracks which follow grain boundaries and stress patterns resembling piping situ conditions. Studies have revealed that commercial transducers may satisfy LMFBR ultrasonic pipe inspection applications: The test system evaluation included transducers and wedge coupling and fluid coupling materials which exhibited acceptable performance at temperatures to 2300C. Results are presented that demonstrate the feasibility of ultrasonic inspection of components immersed in sodium at temperatures to 2600C. (UK)

  1. Review of Real-Time 3-Dimensional Image Guided Radiation Therapy on Standard-Equipped Cancer Radiation Therapy Systems: Are We at the Tipping Point for the Era of Real-Time Radiation Therapy?

    Science.gov (United States)

    Keall, Paul J; Nguyen, Doan Trang; O'Brien, Ricky; Zhang, Pengpeng; Happersett, Laura; Bertholet, Jenny; Poulsen, Per R

    2018-04-14

    To review real-time 3-dimensional (3D) image guided radiation therapy (IGRT) on standard-equipped cancer radiation therapy systems, focusing on clinically implemented solutions. Three groups in 3 continents have clinically implemented novel real-time 3D IGRT solutions on standard-equipped linear accelerators. These technologies encompass kilovoltage, combined megavoltage-kilovoltage, and combined kilovoltage-optical imaging. The cancer sites treated span pelvic and abdominal tumors for which respiratory motion is present. For each method the 3D-measured motion during treatment is reported. After treatment, dose reconstruction was used to assess the treatment quality in the presence of motion with and without real-time 3D IGRT. The geometric accuracy was quantified through phantom experiments. A literature search was conducted to identify additional real-time 3D IGRT methods that could be clinically implemented in the near future. The real-time 3D IGRT methods were successfully clinically implemented and have been used to treat more than 200 patients. Systematic target position shifts were observed using all 3 methods. Dose reconstruction demonstrated that the delivered dose is closer to the planned dose with real-time 3D IGRT than without real-time 3D IGRT. In addition, compromised target dose coverage and variable normal tissue doses were found without real-time 3D IGRT. The geometric accuracy results with real-time 3D IGRT had a mean error of real-time 3D IGRT methods using standard-equipped radiation therapy systems that could also be clinically implemented. Multiple clinical implementations of real-time 3D IGRT on standard-equipped cancer radiation therapy systems have been demonstrated. Many more approaches that could be implemented were identified. These solutions provide a pathway for the broader adoption of methods to make radiation therapy more accurate, impacting tumor and normal tissue dose, margins, and ultimately patient outcomes. Copyright © 2018

  2. Development of the New Kibou® Equipment for Continuous Renal Replacement Therapy from Scratch to the Final Configuration.

    Science.gov (United States)

    Neri, Mauro; Lorenzin, Anna; Brendolan, Alessandra; Garzotto, Francesco; Ferrari, Fiorenza; De Rosa, Silvia; Bonato, Raffaele; Villa, Gianluca; Bazzano, Simona; D''Ippoliti, Fiorella; Ricci, Zaccaria; La Manna, Gaetano; Ronco, Claudio

    2017-01-01

    A new technology has recently appeared in the area of extracorporeal therapies for critically ill patients with acute kidney injury. The International Renal Research Institute of Vicenza was involved from the beginning in the development of a new continuous renal replacement therapy (CRRT) equipment with peculiar characteristics. We report the overall experience from design of the new machine to its in vitro and in vivo testing. Kibou® (Asahi Kasei Kuraray Medical Co., Ltd., Tokyo, Japan) is a new multifunctional machine designed for delivering RRT. Kibou® carries out many features of the fourth generation CRRT machines including the possibility of a dynamic prescription and reduction of nursing workload. We describe our first experience with this new device, focusing on several usability and performance parameters. A specific in vitro protocol was designed to analyze the various characteristics and accuracy of performance of the machine. Furthermore, a preliminary in vivo alpha trial with 12 CRRT sessions was performed to test, characterize and evaluate the machine in terms of usability, flexibility and reliability. The in vitro evaluation confirmed an adequate design and a good usability of the machine with accurate delivery of prescribed parameters. No adverse events were observed during the in vivo test that confirmed usability and safety together with accuracy of treatment delivery in different modalities. In general, the machine was rated by physicians and nurses involved in the evaluation as practical and easy to use, although a specific training is required to familiarize with the equipment. A large-scale multicenter beta trial is required to confirm the results reported in this preliminary evaluation in terms of safety, accuracy and performance of Kibou®. © 2017 S. Karger AG, Basel.

  3. Ultrasonic hydrometer

    Science.gov (United States)

    Swoboda, Carl A.

    1984-01-01

    The disclosed ultrasonic hydrometer determines the specific gravity (density) of the electrolyte of a wet battery, such as a lead-acid battery. The hydrometer utilizes a transducer that when excited emits an ultrasonic impulse that traverses through the electrolyte back and forth between spaced sonic surfaces. The transducer detects the returning impulse, and means measures the time "t" between the initial and returning impulses. Considering the distance "d" between the spaced sonic surfaces and the measured time "t", the sonic velocity "V" is calculated with the equation "V=2d/t". The hydrometer also utilizes a thermocouple to measure the electrolyte temperature. A hydrometer database correlates three variable parameters including sonic velocity in and temperature and specific gravity of the electrolyte, for temperature values between 0.degree. and 40.degree. C. and for specific gravity values between 1.05 and 1.30. Upon knowing two parameters (the calculated sonic velocity and the measured temperature), the third parameter (specific gravity) can be uniquely found in the database. The hydrometer utilizes a microprocessor for data storage and manipulation. The disclosed modified battery has a hollow spacer nub on the battery side wall, the sonic surfaces being on the inside of the nub and the electrolyte filling between the surfaces to the exclusion of intervening structure. An accessible pad exposed on the nub wall opposite one sonic surface allows the reliable placement thereagainst of the transducer.

  4. Comparisons of negative pressure wound therapy and ultrasonic debridement for diabetic foot ulcers: a network meta-analysis.

    Science.gov (United States)

    Wang, Ruran; Feng, Yanhua; Di, Bo

    2015-01-01

    a network meta-analysis was performed to compare the strength and weakness of negative pressure wound therapy (NPWT) with ultrasound debridement (UD) as for diabetic foot ulcers (DFU). PubMed, Ovid EMBASE, Web of Science, Cochrane library databases, and Chinese Biomedical Literature Database were searched till February 2015. Clinical compared studies of negative pressure wound therapy and ultrasound debridement were enrolled. The primary efficacy outcomes included healed ulcers, reduction of ulcer areas and time to closure. Secondary amputation including major and minor amputations was used to assess the safety profile. Out of 715 studies, 32 were selected which enrolled 2880 diabetic patients. The pooled analysis revealed that NPWT including vacuum assisted closure (VAC) and vacuum sealing drainage (VSD) were as efficacious as ultrasound debridement improving healed ulcers, odds ratio, 0.86; 95% CI 0.28 to 2.6 and 1.2; 95% CI 0.38 to 4, respectively. However, both were better to standard wound care in wound healing patients. Compared with the standard wound care treated diabetic foot ulcers, NPWT and UD resulted in a significantly superior efficacy in time to wound closure and decrement in area of wound. No significances were observed between NPWT and UD groups in both indicators. Fewer patients tended to receive amputation in NPWT and UD groups compared to standard wound care group. The results of the network meta-analysis indicated that negative pressure wound therapy was similar to ultrasound debridement for diabetic foot ulcers, but better than standard wound care both in efficacy and safety profile.

  5. Comparisons of negative pressure wound therapy and ultrasonic debridement for diabetic foot ulcers: a network meta-analysis

    Science.gov (United States)

    Wang, Ruran; Feng, Yanhua; Di, Bo

    2015-01-01

    Objective: a network meta-analysis was performed to compare the strength and weakness of negative pressure wound therapy (NPWT) with ultrasound debridement (UD) as for diabetic foot ulcers (DFU). Methods: PubMed, Ovid EMBASE, Web of Science, Cochrane library databases, and Chinese Biomedical Literature Database were searched till February 2015. Clinical compared studies of negative pressure wound therapy and ultrasound debridement were enrolled. The primary efficacy outcomes included healed ulcers, reduction of ulcer areas and time to closure. Secondary amputation including major and minor amputations was used to assess the safety profile. Results: Out of 715 studies, 32 were selected which enrolled 2880 diabetic patients. The pooled analysis revealed that NPWT including vacuum assisted closure (VAC) and vacuum sealing drainage (VSD) were as efficacious as ultrasound debridement improving healed ulcers, odds ratio, 0.86; 95% CI 0.28 to 2.6 and 1.2; 95% CI 0.38 to 4, respectively. However, both were better to standard wound care in wound healing patients. Compared with the standard wound care treated diabetic foot ulcers, NPWT and UD resulted in a significantly superior efficacy in time to wound closure and decrement in area of wound. No significances were observed between NPWT and UD groups in both indicators. Fewer patients tended to receive amputation in NPWT and UD groups compared to standard wound care group. Conclusions: The results of the network meta-analysis indicated that negative pressure wound therapy was similar to ultrasound debridement for diabetic foot ulcers, but better than standard wound care both in efficacy and safety profile. PMID:26550165

  6. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Science.gov (United States)

    2010-04-01

    ... system. (a) Identification. An ultrasonic pulsed echo imaging system is a device intended to project a... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic pulsed echo imaging system. 892.1560... receiver. This generic type of device may include signal analysis and display equipment, patient and...

  7. Monitoring of PHWR end cap weld quality by ultrasonic testing

    International Nuclear Information System (INIS)

    Laxminarayana, B.

    1996-01-01

    In Pressurized Heavy Water Reactor fuel fabrication, the end cap welding is an important process. Till date about 16,000 welds have been studied ultrasonically. This paper discusses the experimental results and the design of a semi automatic ultrasonic equipment incorporating features for both backward and forward integration. (author)

  8. Transfer of Minibeam Radiation Therapy into a cost-effective equipment for radiobiological studies: a proof of concept.

    Science.gov (United States)

    Prezado, Y; Dos Santos, M; Gonzalez, W; Jouvion, G; Guardiola, C; Heinrich, S; Labiod, D; Juchaux, M; Jourdain, L; Sebrie, C; Pouzoulet, F

    2017-12-11

    Minibeam radiation therapy (MBRT) is an innovative synchrotron radiotherapy technique able to shift the normal tissue complication probability curves to significantly higher doses. However, its exploration was hindered due to the limited and expensive beamtime at synchrotrons. The aim of this work was to develop a cost-effective equipment to perform systematic radiobiological studies in view of MBRT. Tumor control for various tumor entities will be addressable as well as studies to unravel the distinct biological mechanisms involved in normal and tumor tissues responses when applying MBRT. With that aim, a series of modifications of a small animal irradiator were performed to make it suitable for MBRT experiments. In addition, the brains of two groups of rats were irradiated. Half of the animals received a standard irradiation, the other half, MBRT. The animals were followed-up for 6.5 months. Substantial brain damage was observed in the group receiving standard RT, in contrast to the MBRT group, where no significant lesions were observed. This work proves the feasibility of the transfer of MBRT outside synchrotron sources towards a small animal irradiator.

  9. Aferição dos equipamentos de laser de baixa intensidade Calibration of low-level laser therapy equipment

    Directory of Open Access Journals (Sweden)

    Thiago Y. Fukuda

    2010-08-01

    Full Text Available CONTEXTUALIZAÇÃO: A laserterapia de baixa intensidade (LBI vem sendo cada vez mais utilizada, porém ainda não há consenso na literatura quanto ao tempo em que os equipamentos devem ser submetidos à aferição ou calibragem. OBJETIVO: Analisar a potência média real (PmR dos equipamentos de LBI na região da Grande São Paulo. MÉTODOS: Para análise dos equipamentos, utilizou-se um potenciômetro (Lasercheck, próprio para aferição de equipamentos contínuos, o qual foi programado com dados referentes ao comprimento de onda do laser a ser avaliado, obtendo-se assim a PmR emitida. Os equipamentos foram analisados de duas formas: uma, com o LBI desaquecido, e outra, após 10 minutos de uso (aquecido, sendo que três análises foram feitas para cada condição. A caneta emissora foi acoplada ao potenciômetro, o qual fornecia a PmR emitida pelo LBI. Todos os dados e informações referentes à aplicação do laser foram coletados por um questionário respondido pelos responsáveis. RESULTADOS: Os 60 equipamentos avaliados mostraram déficit na PmR com os equipamentos desaquecidos e aquecidos. A análise estatística (ANOVA mostrou diminuição significativa (PBACKGROUND: Despite the increase in the use of low-level laser therapy (LLLT, there is still a lack of consensus in the literature regarding how often the equipment must be calibrated. OBJECTIVE: To evaluate the real average power of LLLT devices in the Greater São Paulo area. METHODS: For the evaluation, a LaserCheck power meter designed to calibrate continuous equipment was used. The power meter was programmed with data related to the laser's wavelength to gauge the real average power being emitted. The LLLT devices were evaluated in two ways: first with the device cooled down and then with the device warmed up for 10 minutes. For each condition, three tests were performed. The laser probe was aligned with the power meter, which provided the real average power being emitted by the

  10. Development of coaxial ultrasonic probe for fatty liver diagnostic system using ultrasonic velocity change

    Science.gov (United States)

    Hori, Makoto; Yokota, Daiki; Aotani, Yuhei; Kumagai, Yuta; Wada, Kenji; Matsunaka, Toshiyuki; Morikawa, Hiroyasu; Horinaka, Hiromichi

    2017-07-01

    A diagnostic system for fatty liver at an early stage is needed because fatty liver is linked to metabolic syndrome. We have already proposed a fatty liver diagnosis method based on the temperature coefficient of ultrasonic velocity. In this study, we fabricated a coaxial ultrasonic probe by integrating two kinds of transducers for warming and signal detection. The diagnosis system equipped with the coaxial probe was applied to tissue-mimicking phantoms including the fat area. The fat content rates corresponding to the set rates of the phantoms were estimated by the ultrasonic velocity-change method.

  11. Nondestructive control of materials by ultrasonic tests

    International Nuclear Information System (INIS)

    Mercier, Noelle.

    1974-01-01

    A bibliographic study of nondestructive control methods of solids by ultrasonic tests, and of the ultrasonic emission of a transducer of finite dimension, is first presented. The principle of two of these methods is verified experimentally; they should permit the measurement of various physical parameters of solids, and the detection of local inhomogeneities. The first method calls upon the analysis of the ultrasonic signal (amplitude and phase), after it has crossed a constant thickness of a metallic specimen. This analysis reveals variations of attenuation and of ultrasonic propagation velocity within the specimen. A good spatial resolution is obtained by using 1mm-diameter probes. The second method leads, thanks to a test rig equipped with broad frequency band electrostatic transducers, to the knowledge of the attenuation law of the specimens as a function of frequency (present range: 5 to 15MHz); from this a classification of these specimens as regards their granulometry is deduced [fr

  12. Ultrasonic testing of materials at level 2

    International Nuclear Information System (INIS)

    1988-06-01

    Ultrasonic inspection is a nondestructive method in which high frequency sound waves are introduced into the material being inspected. Ultrasonic testing has a superior penetrating power to radiography and can detect flaws deep in the test specimen (say up to about 6 to 7 meters of steel). It is quite sensitive to small flaws and allows the precise determination of the location and size of the flaws. Basic ultrasonic test methods such as the through transmission method and the resonance method, sensors and testing techniques are described. Pulse echo type flaw detectors and their applications for inspection of welds are surveyed. Ultrasonic standards, calibration of the equipment and evaluation methods are presented. Examples of practical applications in welding, casting and forging processes are given. Figs and tabs

  13. Effect of Heat Generation of Ultrasound Transducer on Ultrasonic Power Measured by Calorimetric Method

    Science.gov (United States)

    Uchida, Takeyoshi; Kikuchi, Tsuneo

    2013-07-01

    Ultrasonic power is one of the key quantities closely related to the safety of medical ultrasonic equipment. An ultrasonic power standard is required for establishment of safety. Generally, an ultrasonic power standard below approximately 20 W is established by the radiation force balance (RFB) method as the most accurate measurement method. However, RFB is not suitable for high ultrasonic power because of thermal damage to the absorbing target. Consequently, an alternative method to RFB is required. We have been developing a measurement technique for high ultrasonic power by the calorimetric method. In this study, we examined the effect of heat generation of an ultrasound transducer on ultrasonic power measured by the calorimetric method. As a result, an excessively high ultrasonic power was measured owing to the effect of heat generation from internal loss in the transducer. A reference ultrasound transducer with low heat generation is required for a high ultrasonic power standard established by the calorimetric method.

  14. Quality assurance of brazed copper plates through advanced ultrasonic NDE

    OpenAIRE

    Segreto, T.; Caggiano, A.; Teti, R.

    2016-01-01

    Ultrasonic non-destructive methods have demonstrated great potential for the detection of flaws in a material under examination. In particular, discontinuities produced by welding, brazing, and soldering are regularly inspected through ultrasonic techniques. In this paper, an advanced ultrasonic non-destructive evaluation technique is applied for the quality control of brazed copper cells in order to realize an accelerometer prototype for cancer proton therapy. The cells are composed of two h...

  15. Calculation of the structural shielding of the radiotherapy treatment room equipped with a linear accelerator type Tomo therapy Hi-Art in the Oncology Center of Chihuahua, Mexico

    International Nuclear Information System (INIS)

    Caballero G, C. A.; Plascencia, J. C.; Vargas V, M. X.; Toledo J, P.

    2010-09-01

    The helicoid tomo therapy is an external radiotherapy system of modulated intensity, guided by image, in which the radiation is imparted to the patient using a narrow radiation beam in helicoid form, in a similar way to the scanning process with a computerized tomography. The tomo therapy equipment (Tomo Therapy Hi-Art) consists in an electrons linear accelerator with acceleration voltages of 6 MV for treatment and 3.5 MV for image, coupled to a ring that turn around the patient as this is transferred through this ring in perpendicular sense to the radiation beam. The radiation beam is narrow because has the maximum size of 5 x 40 cm 2 in the isocenter. The intensity modulation of the beam is carried out with a binary dynamic collimator of 64 crisscross sheets, and the guide by image though a system of megavoltage computerized tomography. Opposed to the radiation beam, also coupled to the rotational ring, a group of lead plates exists with a total thickness of 13 cm that acts as barrier of the primary radiation beam. The special configuration of the tomography equipment makes to have the following characteristics: 1) the presence of the lead barrier of the equipment reduces the intensity of the primary beam that reaches the bunker walls in considerable way, 2) the disperse and leakage radiations are increased with regard to a conventional accelerator due to the increase in the necessary irradiation time to produce modulated intensity fields by means of the narrow radiation beam. These special characteristics of the tomo therapy equipment make that particularities exist in the application of the formulations for structural shielding calculations that appears in the NCRP reports 49, NCRP 151 and IAEA-SRS-47. For this reason, several researches have development analytic models based on geometric considerations of continuous rotation of the equipment ring to determine the shielding requirements for the primary beam, the dispersed and leakage radiation in tomo therapy

  16. Ultrasonic methods for locating hold-up

    International Nuclear Information System (INIS)

    Sinha, D.N.; Olinger, C.T.

    1995-01-01

    Hold-up remains one of the major contributing factors to unaccounted for materials and can be a costly problem in decontamination and decommissioning activities. Ultrasonic techniques are being developed to noninvasively monitor hold-up in process equipment where the inner surface of such equipment may be in contact with the hold-up material. These techniques may be useful in improving hold-up measurements as well as optimizing decontamination techniques

  17. Debridement of vaginal radiation ulcers using the surgical Ultrasonic Aspirator

    International Nuclear Information System (INIS)

    Vanderburgh, E.; Nahhas, W.A.

    1990-01-01

    The surgical Ultrasonic Aspirator (USA) is a fairly new surgical instrument used for an increasingly wide range of procedures. This paper introduces a new application: debridement of vulvovaginal necrotic ulcers resulting from intracavitary radiation therapy. The ultrasonic aspirator allowed removal of the soft, necrotic tissue while preserving underlying healthy, firm tissue and blood vessels

  18. Studies on Section XI ultrasonic repeatability

    International Nuclear Information System (INIS)

    Jamison, T.D.; McDearman, W.R.

    1981-05-01

    A block representative of a nuclear component has been welded containing intentional defects. Acoustic emission data taken during the welding correlate well with ultrasonic data. Repetitive ultrasonic examinations have been performed by skilled operators using a procedure based on that desribed in ASME Section XI. These examinations were performed by different examination teams using different ultrasonic equipment in such a manner that the effects on the repeatability of the ultrasonic test method caused by the operator and by the use of different equipment could be estimated. It was tentatively concluded that when considering a large number of inspections: (1) there is no significant difference in indication sizing between operators, and (2) there is a significant difference in amplitude and defect sizing when instruments having different, Code acceptable operating characteristics are used. It was determined that the Section XI sizing parameters follow a bivariate normal distribution. Data derived from ultrasonically and physically sizing indications in nuclear components during farication show that the Section XI technique tends to overestimate the size of the reflectors

  19. Plasma Sterilizer with Ultrasonic Cavitation

    International Nuclear Information System (INIS)

    Krasnyj, V.V.; Klosovsky, A.V.; Panasko, T.A.; Shvets, O.M.; Semenova, O.T.; Taran, V.S.; Tereshin, V.I.

    2006-01-01

    A sterilizer consists of ozone generator based on a barrier glow discharge with the flat electrodes covered with dielectric with a high-voltage pulsed power supply of up to 250 W (1). The sterilization camera is equipped with ultrasonic source with the power of 100 W. The experiments on the inactivation of bacteria of the Bacillus Cereus type were carried out in the distilled water saturated by ozone. Ozone concentration in the aqueous solution was 6 mg/liter with ozone concentration at the output of ozone generator 30 mg/liter. The complete inactivation of spores took 15 min

  20. Ultrasonic Ranging System With Increased Resolution

    Science.gov (United States)

    Meyer, William E.; Johnson, William G.

    1987-01-01

    Master-oscillator frequency increased. Ultrasonic range-measuring system with 0.1-in. resolution provides continuous digital display of four distance readings, each updated four times per second. Four rangefinder modules in system are modified versions of rangefinder used for automatic focusing in commercial series of cameras. Ultrasonic pulses emitted by system innocuous to both people and equipment. Provides economical solutions to such distance-measurement problems as posed by boats approaching docks, truck backing toward loading platform, runway-clearance readout for tail of airplane with high angle attack, or burglar alarm.

  1. Electrical signature analysis to quantify human and animal performance on fitness and therapy equipment such as a treadmill

    Science.gov (United States)

    Cox, Daryl F.; Hochanadel, Charles D.; Haynes, Howard D.

    2010-05-18

    The invention is a human and animal performance data acquisition, analysis, and diagnostic system for fitness and therapy devices having an interface box removably disposed on incoming power wiring to a fitness and therapy device, at least one current transducer removably disposed on said interface box for sensing current signals to said fitness and therapy device, and a means for analyzing, displaying, and reporting said current signals to determine human and animal performance on said device using measurable parameters.

  2. Electromagnetic ultrasonic guided waves

    CERN Document Server

    Huang, Songling; Li, Weibin; Wang, Qing

    2016-01-01

    This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author’s intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.

  3. Ultrasonic testing device

    International Nuclear Information System (INIS)

    Lawrie, W.E.

    1978-01-01

    The ultrasonic transmitter made of polarized ferroelectric ceramic material (lead zirconate titanate) is arranged in a strip carrier which allows it to be introduced between the fuel elements of a fuel subassembly in a water cooled nuclear reactor. The ultrasonic transmitter is insulated relative to the carrier. The echo of the ra dal ultrasonic pulse is recorded which changes as faulty water filled fuel elements are detected. (RW) [de

  4. Equipment for inspection of austenitic stainless steel pipe welds

    International Nuclear Information System (INIS)

    Boehmer, W.D.; Horn, J.E.

    1979-01-01

    A computer controlled ultrasonic scanning system and a data acquisition and analysis system have been developed to perform the inservice inspection of welds in stainless steel sodium piping in the Fast Flux Test Facility. The scanning equipment consists of a six axis motion mechanism and control system which allows full articulation of an ultrasonic transducer as it follows the circumferential pipe welds. The data acquisition and analysis system consists of high speed ultrasonic waveform digitizing equipment, dedicated processors to perform on-line analysis, and data storage and display equipment

  5. Further Investigations on Simultaneous Ultrasonic Coal Flotation

    Directory of Open Access Journals (Sweden)

    Safak Gokhan Ozkan

    2017-09-01

    Full Text Available This study investigates the flotation performance of a representative hard coal slime sample (d80 particle size of minus 0.2 mm obtained from the Prosper-Haniel coal preparation plant located in Bottrop, Germany. Flotation was carried out with a newly designed flotation cell refurbished from an old ultrasonic cleaning bath (2.5 L volume equipped with a single frequency (35 kHz and two different power levels (80–160 W and a sub-aeration-type flotation machine operating at a stable impeller speed (1200 rpm and air rate (2.5 L/min. The reagent combination for conventional and simultaneous ultrasonic coal flotation tests was Ekofol-440 at variable dosages (40–300 g/t with controlling water temperature (20–25 °C at natural pH (6.5–7.0. The batch coal flotation results were analyzed by comparing the combustible recovery (% and separation efficiency (% values, taking mass yield and ash concentrations of the froths and tailings into account. It was found that simultaneous ultrasonic coal flotation increased yield and recovery values of the floated products with lower ash values than the conventional flotation despite using similar reagent dosages. Furthermore, particle size distribution of the ultrasonically treated and untreated coals was measured. Finely distributed coal particles seemed to be agglomerated during the ultrasonic treatment, while ash-forming slimes were removed by hydrodynamic cavitation.

  6. Ultrasonic Low-Friction Containment Plate for Thermal and Ultrasonic Stir Weld Processes

    Science.gov (United States)

    Graff, Karl; Short, Matt

    2013-01-01

    The thermal stir welding (TSW) process is finding applications in fabrication of space vehicles. In this process, workpieces to be joined by TSW are drawn, by heavy forces, between "containment plates," past the TSW tool that then causes joining of the separate plates. It is believed that the TSW process would be significantly improved by reducing the draw force, and that this could be achieved by reducing the friction forces between the workpieces and containment plates. Based on use of high-power ultrasonics in metal forming processes, where friction reduction in drawing dies has been achieved, it is believed that ultrasonic vibrations of the containment plates could achieve similar friction reduction in the TSW process. By applying ultrasonic vibrations to the containment plates in a longitudinal vibration mode, as well as by mounting and holding the containment plates in a specific manner such as to permit the plates to acoustically float, friction between the metal parts and the containment plates is greatly reduced, and so is the drawing force. The concept was to bring in the ultrasonics from the sides of the plates, permitting the ultrasonic hardware to be placed to the side, away from the equipment that contains the thermal stir tooling and that applies clamping forces to the plates. Tests demonstrated that one of the major objectives of applying ultrasonics to the thermal stir system, that of reducing draw force friction, should be achievable on a scaled-up system.

  7. Ultrasonic flow meter

    NARCIS (Netherlands)

    Lötters, Joost Conrad; Snijders, G.J.; Volker, A.W.F.

    2014-01-01

    The invention relates to an ultrasonic flow meter comprising a flow tube for the fluid whose flow rate is to be determined. The flow meter comprises a transmitting element for emitting ultrasonic waves, which is provided on the outer jacket of the flow tube. A receiving element, which is provided on

  8. Ultrasonic decontamination robot

    International Nuclear Information System (INIS)

    Patenaude, R.S.

    1984-01-01

    An ultrasonic decontamination robot removes radioactive contamination from the internal surface of the inlet and outlet headers, divider plate, tube sheet, and lower portions of tubes of a nuclear power plant steam generator. A programmable microprocessor controller guides the movement of a robotic arm mounted in the header manway. An ultrasonic transducer having a solvent delivery subsystem through which ultrasonic action is achieved is moved by the arm over the surfaces. A solvent recovery suction tube is positioned within the header to remove solvent therefrom while avoiding interference with the main robotic arm. The solvent composition, temperature, pressure, viscosity, and purity are controlled to optimize the ultrasonic scrubbing action. The ultrasonic transducer is controlled at a power density, frequency, and on-off mode cycle such as to optimize scrubbing action within the range of transducer-to-surface distance and solvent layer thickness selected for the particular conditions encountered. Both solvent and transducer control actions are optimized by the programmable microprocessor. (author)

  9. Augmented reality application for training in pipe defects ultrasonic investigation

    Directory of Open Access Journals (Sweden)

    Amza Cătălin Gheorghe

    2017-01-01

    Full Text Available The paper presents the development process of an Augmented Reality (AR application used for training operators in using ultrasonic equipment for non-destructive testing (NDT of pipework. The application provides workers useful information regarding the process steps, the main components of ultrasonic equipment and the proper modality of placing, aligning and moving it on pipe and weld. Using tablet or mobile phone device, an operator can see on screen written details and images on standardized working method, thus offering assistance during the training process. Allowing 3D augmented visualization of ultrasonic equipment overlaid on the real-world environment consisting in pipes and welds, the AR application makes the NDT process easier to understand and learn, as the initial evaluation results showed.

  10. Ultrasonic colour Doppler imaging

    DEFF Research Database (Denmark)

    Evans, David H; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2011-01-01

    Ultrasonic colour Doppler is an imaging technique that combines anatomical information derived using ultrasonic pulse-echo techniques with velocity information derived using ultrasonic Doppler techniques to generate colour-coded maps of tissue velocity superimposed on grey-scale images of tissue...... anatomy. The most common use of the technique is to image the movement of blood through the heart, arteries and veins, but it may also be used to image the motion of solid tissues such as the heart walls. Colour Doppler imaging is now provided on almost all commercial ultrasound machines, and has been...

  11. In-service ultrasonic inspection of nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Prepechal, J.; Sulc, J.

    1982-01-01

    Ultrasonic tests of pressure vessels for WWER 440 reactors, type 213 V, are carried out partly manually and partly by test equipment. The inner surface of the pressure vessel is tested using device REACTORTEST TRC which is fully mobile. The outer surface of the cylindrical parts and bottoms of the body is tested using handling equipment permanently in-built under the pressure vessel and dismountable testing heads. A set of these heads may be used for two reactor units. The testing equipment REACTORTEST TRC is equipped with a TRC 800 ultrasound device. The equipment for testing the outer surface of the vessel operates with the UDAR 16 ultrasound apparatus to which may be simultaneously connected 10 ultrasound probes and six probes for acoustic feedback. The whole system of ultrasonic tests makes possible a first-rate and reliable volume control of the whole pressure vessel and all points where cracks may originate and grow. (Z.M.)

  12. Ultrasonic testing X gammagraphy

    International Nuclear Information System (INIS)

    Mello Campos, A.M. de

    1989-01-01

    The experience of 10 years for substituting gammagraphy tests by ultrasonic tests is related. A comparative evaluation of data obtained from both techniques applied to welded butt joints is presented. (author)

  13. Ultrasonic grinding method

    International Nuclear Information System (INIS)

    Miyahara, Shuji.

    1990-01-01

    An ultrasonic generator and a liquid supply nozzle are opposed to an object to be ground and a pump is started in this state to supply an organic solvent. Matters to be decontaminated which adheres to the surface of the object to be ground and are difficult to be removed by a mere mechanical removing method can be eliminated previously by the surface active effect of the organic solvent such as ethanol prior to the oscillation of the ultrasonic generator. Subsequently, when the ultrasonic generator is oscillated, scales in the floated state can be removed simply. Further, since the organic solvent can penetrate to provide the surface active effect even in such a narrow portion that the top end of the ultrasonic generator is difficult to the intruded at the surface of the object to be ground, the decontaminating treatment can be applied also to such a narrow portion. (T.M.)

  14. Fundamentals of Medical Ultrasonics

    CERN Document Server

    Postema, Michiel

    2011-01-01

    This book sets out the physical and engineering principles of acoustics and ultrasound as used for medical applications. It covers the basics of linear acoustics, wave propagation, non-linear acoustics, acoustic properties of tissue, transducer components, and ultrasonic imaging modes, as well as the most common diagnostic and therapeutic applications. It offers students and professionals in medical physics and engineering a detailed overview of the technical aspects of medical ultrasonic imaging, whilst serving as a reference for clinical and research staff.

  15. Assessing ultrasonic examination results

    International Nuclear Information System (INIS)

    Deutsch, V.; Vogt, M.

    1977-01-01

    Amongst nondestructive examination methods, the ultrasonic examination plays an important role. The reason why its scope of application is so wide is because the sound conducting capacity is the only property the material of a test specimen has to have. As the fields are so manifold, only main aspects can be described briefly. The list of references, however, is very extensive and gives plenty of information of all the problems concerning the assessment of ultrasonic examination results. (orig./RW) [de

  16. Development of an ultrasonic process for soil remediation

    International Nuclear Information System (INIS)

    Wu, J.M.; Huang, H.S.; Livengood, C.D.

    1995-01-01

    An ultrasonic process for the detoxification of carbon tetrachloride- (CCl 4 - ) contaminated soil was investigated in the laboratory by using a batch irradiation reactor equipped with a 600-W ultrasonic power supply operated at a frequency of 20 kHz. Key parameters studied included soil characteristics, irradiation time, CCl 4 concentration, steady-state operating temperature, applied ultrasonic-wave energy, and the ratio of soil to water in the system. The results of the experiments showed that (1) residual CCl 4 concentrations could be decreased with longer irradiation periods and (2) detoxification efficiency was proportional to steady-state operating temperature and applied ultrasonic-wave energy. The characteristics of the contaminated soil were found to be an important factor in the design of an ultrasonic detoxification system. A soil-phase CCl 4 concentration below 1 ppm (initial concentration of 56 ppm) was achieved through this process, indicating that the application of ultrasonic irradiation is feasible and effective in the detoxification of soil contaminated by organic compounds. On the basis of the experimental results, a schematic of a full-scale ultrasonic soil-detoxification system was developed. Improvements to this novel process are discussed

  17. Development of ultrasonic instrument 'UT1000 Series'

    International Nuclear Information System (INIS)

    Ogura, Yukio; Ikeda, Toshimichi

    1984-01-01

    The ultrasonic flaw detectors with 'A-scope indication' have been frequently used as the means for confirming the soundness of structures and equipments, but there are problems in their operational, quantifying and recording capabilities. Recently, the digital ultrasonic measuring instrument of touch panel type ''UT 1000 Series'' has been developed, which resolves these problems by a single effort. This measuring instrument is that of portable type, which gives the digital output of measured results in real time only by lightly touching the peak point of an echo on the Brown tube. This instrument contains the rich software for measurement, and can measure the positions and dimensions of defects and the pressure on contact surfaces with high accuracy. 'A-scope indication' is the indication with an oscilloscope taking the intensity of echo and the propagation time of ultrasonic waves on the ordinate and abscissa, respectively. There are three types of the instrument, that is, for detecting defects, for measuring contact surface pressure and for both purposes. The size of the instrument is 240 mm width, 350 mm length and 175 mm height, and the weight is 8.5 kgf. The specification, function and features of the ultrasonic flaw detector, touch panel, gain setter, key board, microcomputer and others are reported. (Kako, I.)

  18. Ultrasonic viewing device

    International Nuclear Information System (INIS)

    Ito, Juro.

    1979-01-01

    Purpose: To improve the safety of reactor operation by enabling to detect the states and positions of fuel assemblies over a wide range with a set of ultrasonic viewing device comprising a rotatable ultrasonic transmitter-receiver and a reflector mounted with an adjustable angle. Constitution: A driving portion for a ultrasonic viewing device is provided to a rotary plug closing the opening of a reactor vessel and a guide pipe suspending below the coolant level is provided to the driving portion. An ultrasonic transmitter-receiver is provided at the end of the holder tube in the guide pipe. A reflector is provided at the upper position of the reactor core so as to correspond to the ultrasonic transmitter-receiver. The ultrasonic transmitter-receiver, positioned by the driving portion, performs horizontal movement for scanning the entire surface of the top of the reactor core, as well as vertical movement covering the gap between the upper mechanism on the reactor and the reactor core, whereby the confirmation for the separation of the control rod and the detection for the states of the reactor core can be conducted by the reflection waves from the reflector. (Moriyama, K.)

  19. ULTRASONIC ASSEMBLY [REVIEW

    Directory of Open Access Journals (Sweden)

    PORAV Viorica

    2015-05-01

    Full Text Available The paper exposes the possibility of machine producesers to optimize the costs of clothes assembling. Ultrasonic systems being frequently utilized have many advantages on semi products of synthetic textile and technical textile. First of all, sewing – cutting process can be accomplished under high speeds and rate of losses can be minimized. Cutting seal applications are frequently used for underwear and sportswear. Slicing and unit cutting machines, as well as portable sealing machines are available for labeling sector. Products such as bag, pocket and cover can be sewed in a seamless manner for promotion purposes. All objects in terms of accessories are obtained in same standard. Our quilting machines are preferred in worldwide due to its threadless, high quality sealing. An alternative to the classic sewing assembly, with thread and needles is ultrasonic seaming. In ultrasonic welding, there are no connective bolts, nails, soldering materials, or adhesives necessary to bind the materials together. Ultrasonic is defined as acoustic frequencies above the range audible to the human ear. Ultrasonic frequencies are administered to the fabric from the sonotrode of bonding machine. The high frequency and powerful energy produced, when is release in one special environment, the ultrasound heating this environment. The ability to ultrasonic weld textiles and films depend on their thermoplastic contents and the desired end results. The paper defines the weld ability of more common textiles and films. The welding refers to all types of bonding and sealing, as in point bonding of fabric, or continuous sealing of film.

  20. PROSPECTS FOR APPLICATION OF FLEXIBLE ULTRASONIC WAVEGUIDE SYSTEMS IN MEDICINE AND ENGINEERING

    Directory of Open Access Journals (Sweden)

    V. T. Minchenya

    2010-01-01

    Full Text Available The article presents comprehensive review of current and possible future applications of flexible ultrasonic waveguides in medicine and engineering. Issues of design, modelling and manufacturing of flexible waveguides are considered. The article also presents some results of the authors in this field, particularly modelling techniques developed for the design of flexible waveguides and ultrasonic technologies and equipment for ultrasonic thromboectomy, heating of frozen fuel and ultrasonic drilling of brittle materials. Novel technology for manufacturing flexible waveguides based on electrolytic-plasma machining is also described

  1. Acceptance Test Report for the 241-AZ-101 Ultrasonic Interface Level Analyzer

    International Nuclear Information System (INIS)

    ANDREWS, J.E.

    2000-01-01

    This document comprises the Acceptance Test Report for the 241-AZ-101 Ultrasonic Interface Level Analyzer. This document presents the results of Acceptance Testing of the 241-AZ-101 Ultrasonic Interface Level Analyzers (URSILLAs). Testing of the URSILLAs was performed in accordance with ATP-260-001, ''URSILLA Pre-installation Acceptance Test Procedure''. The objective of the testing was to verify that all equipment and components function in accordance with design specifications and original equipment manufacturer's specifications

  2. Inspection device for buried equipment

    International Nuclear Information System (INIS)

    Hanawa, Jun.

    1994-01-01

    In an inspection device for a buried equipment, a rail is suspended at the upper portion of a vessel of a pit-vessel type pump buried in a plant building floor, and a truck movable vertical in the vessel along the rail, and an ultrasonic wave probe contained in the truck and urged to the vessel by an electromagnet are disposed. In addition, an elevator moving vertically along a shaft is disposed, and an arm having the ultrasonic probe disposed at the end portion and driven by a piston are disposed to the elevator. The ultrasonic wave probe moves vertically together with the truck along the rail in the vessel while being urged to the vessel by the electromagnet to inspect and measure the state at the inner and outer surfaces of the vessel. Further, the length of the arm is controlled so as to set a predetermined distance between the ultrasonic wave probe and the vessel. Subsequently, the elevator is moved vertically along a shaft passing through a shaft hole of a mount, and the shaft is rotated thereby enabling to inspect and measure the state of the inner and outer surfaces of the vessel. (N.H.)

  3. Remote consulting based on ultrasonic digital immages and dynamic ultrasonic sequences

    Science.gov (United States)

    Margan, Anamarija; Rustemović, Nadan

    2006-03-01

    Telematic ultrasonic diagnostics is a relatively new tool in providing health care to patients in remote, islolated communities. Our project facility, "The Virtual Polyclinic - A Specialists' Consulting Network for the Islands", is located on the island of Cres in the Adriatic Sea in Croatia and has been extending telemedical services to the archipelago population since 2000. Telemedicine applications include consulting services by specialists at the University Clinical Hospital Center Rebro in Zagreb and at "Magdalena", a leading cardiology clinic in Croatia. After several years of experience with static high resolution ultrasonic digital immages for referral consulting diagnostics purposes, we now also use dynamic ultrasonic sequences in a project with the Department of Emmergency Gastroenterology at Rebro in Zagreb. The aim of the ongoing project is to compare the advantages and shortcomings in transmitting static ultrasonic digital immages and live sequences of ultrasonic examination in telematic diagnostics. Ultrasonic examination is a dynamic process in which the diagnostic accuracy is highly dependent on the dynamic moment of an ultrasound probe and signal. Our first results indicate that in diffuse parenchymal organ pathology the progression and the follow up of a disease is better presented to a remote consulting specialist by dynamic ultrasound sequences. However, the changes that involve only one part of a parenchymal organ can be suitably presented by static ultrasonic digital images alone. Furthermore, we need less time for digital imaging and such tele-consultations overall are more economical. Our previous telemedicine research and practice proved that we can greatly improve the level of medical care in remote healthcare facilities and cut healthcare costs considerably. The experience in the ongoing project points to a conclusion that we can further optimize remote diagnostics benefits by a right choice of telematic application thus reaching a

  4. Equipment considerations

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Trace or ultratrace analyses require that the HPLC equipment used, including the detector, be optimal for such determinations. HPLC detectors are discussed at length in Chapter 4; discussion here is limited to the rest of the equipment. In general, commercial equipment is adequate for trace analysis; however, as the authors approach ultratrace analysis, it becomes very important to examine the equipment thoroughly and optimize it, where possible. For this reason they will review the equipment commonly used in HPLC and discuss the optimization steps. Detectability in HPLC is influenced by two factors (1): (a) baseline noise or other interferences that lead to errors in assigning the baseline absorbance; (b) peak width. 87 refs

  5. Accelerator beam data commissioning equipment and procedures: Report of the TG-106 of the Therapy Physics Committee of the AAPM

    International Nuclear Information System (INIS)

    Das, Indra J.; Cheng, C.-W.; Watts, Ronald J.; Ahnesjoe, Anders; Gibbons, John; Li, X. Allen; Lowenstein, Jessica; Mitra, Raj K.; Simon, William E.; Zhu, Timothy C.

    2008-01-01

    For commissioning a linear accelerator for clinical use, medical physicists are faced with many challenges including the need for precision, a variety of testing methods, data validation, the lack of standards, and time constraints. Since commissioning beam data are treated as a reference and ultimately used by treatment planning systems, it is vitally important that the collected data are of the highest quality to avoid dosimetric and patient treatment errors that may subsequently lead to a poor radiation outcome. Beam data commissioning should be performed with appropriate knowledge and proper tools and should be independent of the person collecting the data. To achieve this goal, Task Group 106 (TG-106) of the Therapy Physics Committee of the American Association of Physicists in Medicine was formed to review the practical aspects as well as the physics of linear accelerator commissioning. The report provides guidelines and recommendations on the proper selection of phantoms and detectors, setting up of a phantom for data acquisition (both scanning and no-scanning data), procedures for acquiring specific photon and electron beam parameters and methods to reduce measurement errors (<1%), beam data processing and detector size convolution for accurate profiles. The TG-106 also provides a brief discussion on the emerging trend in Monte Carlo simulation techniques in photon and electron beam commissioning. The procedures described in this report should assist a qualified medical physicist in either measuring a complete set of beam data, or in verifying a subset of data before initial use or for periodic quality assurance measurements. By combining practical experience with theoretical discussion, this document sets a new standard for beam data commissioning

  6. Industrial Applications of High Power Ultrasonics

    Science.gov (United States)

    Patist, Alex; Bates, Darren

    Since the change of the millennium, high-power ultrasound has become an alternative food processing technology applicable to large-scale commercial applications such as emulsification, homogenization, extraction, crystallization, dewatering, low-temperature pasteurization, degassing, defoaming, activation and inactivation of enzymes, particle size reduction, extrusion, and viscosity alteration. This new focus can be attributed to significant improvements in equipment design and efficiency during the late 1990 s. Like most innovative food processing technologies, high-power ultrasonics is not an off-the-shelf technology, and thus requires careful development and scale-up for each and every application. The objective of this chapter is to present examples of ultrasonic applications that have been successful at the commercialization stage, advantages, and limitations, as well as key learnings from scaling up an innovative food technology in general.

  7. Automated ultrasonic pipe weld inspection. Part 1

    International Nuclear Information System (INIS)

    Karl Deutsch, W.A.; Schulte, P.; Joswig, M.; Kattwinkel, R.

    2006-01-01

    This article contains a brief overview on automated ultrasonic welded inspection for various pipe types. Some inspection steps might by carried out with portable test equipment (e.g. pipe and test), but the weld inspection in all internationally relevant specification must be automated. The pipe geometry, the production process, and the pipe usage determine the number of required probes. Recent updates for some test specifications enforce a large number of ultrasonic probes, e.g. the Shell standard. Since seamless pipes are sometimes replaced by ERW pipes and LSAW pipes (in both cases to save production cost), the inspection methods change gradually between the various pipe types. Each testing system is unique and shows its specialties which have to be discussed by supplier, testing system user and final customer of the pipe. (author)

  8. Análise da dose do laser de baixa potência em equipamentos nacionais Analysis of low-level laser therapy doses in Brazilian equipment

    Directory of Open Access Journals (Sweden)

    TY Fukuda

    2008-02-01

    Full Text Available CONTEXTUALIZAÇÃO: A laserterapia de baixa potência vem sendo cada vez mais utilizada, e o crescente interesse por seus efeitos relaciona-se com a grande quantidade de publicações científicas. Muitos terapeutas e pesquisadores têm-se baseado na definição da dose do laser pela densidade energética (deltaE; porém, a grande variedade de equipamentos de laser pode levar a diferença nos resultados terapêuticos encontrados, por fornecerem parâmetros que variam de acordo com o fabricante. OBJETIVO: Analisar a energia final transmitida ao tecido ao aplicar-se a mesma deltaE em equipamentos de diferentes marcas nacionais. MATERIAIS E MÉTODOS: Foram avaliados sete equipamentos nacionais, com potência média (Pm diferentes, e foram realizadas simulações aplicando deltaE de 1J/cm² em cada aparelho, para avaliar possíveis diferenças na energia final. RESULTADOS: A mesmadeltaE aplicada em diferentes aparelhos nacionais forneceu energia final que variou entre 10 e 90mJ. Esta variação na energia deveu-se principalmente a diferenças na Pm, sendo encontrados valores entre 5,4 e 75mW. CONCLUSÃO: Esta variabilidade na energia final, que é transmitida ao tecido, indica que a deltaE parece não ser o parâmetro que melhor descreve a dose a ser utilizada. É preciso mencionar não só a deltaE, mas também a energia final, para que se possa estabelecer a dose para obtenção do melhor resultado terapêutico.INTRODUCTION: Low-level laser therapy is becoming more popular and there is a growing interest in its effects, as reflected in the increased number of articles published about the subject. Many therapists and researchers have used a laser dose definition based on energy density (deltaE. However, the variety of laser equipments may lead to differences in the therapeutic results found, since the parameters supplied by these equipments vary according to the manufacturer. OBJECTIVE: To analyze the final energy transmitted to the tissue when

  9. The Antifouling of ACLW-CAR Based on Ultrasonic Cleaner

    Science.gov (United States)

    Zhang, Guohua; Liu, Shixuan; Qin, Qingliang

    2017-10-01

    Equipped with ACLW-CAR, the buoy provided effective technical platform for on-site rapid monitoring of the chlorophyll and turbidity. Performance index and usage in the ocean buoy of ACLW-CAR was introduced. Ultrasonic cleaning method in seawater was developed for preventing ACLW-CAR from biofouling. Marine chlorophyll and turbidity data can serve for oceanographic research and marine resource exploitation.

  10. Examination of Sandwich Materials Using Air-Coupled Ultrasonics

    DEFF Research Database (Denmark)

    Borum, K.K.; Berggreen, Carl Christian

    2004-01-01

    The air-coupled ultrasonic techniques have been improved drastically in recent years. Better equipment has made this technique much more useful. This paper focuses on the examination of sandwich materials used in naval ships. It is more convenient to be able to make the measurements directly...

  11. Ultrasonic dip seal maintenance system

    International Nuclear Information System (INIS)

    Poindexter, A.M.; Ricks, H.E.

    1978-01-01

    Disclosed is a system for removing impurities from the surfaces of liquid dip seals and for wetting the metal surfaces of liquid dip seals in nuclear components. The system comprises an ultrasonic transducer that transmits ultrasonic vibrations along an ultrasonic probe to the metal and liquid surfaces of the dip seal thereby loosening and removing those impurities

  12. Artificial Intelligence Assists Ultrasonic Inspection

    Science.gov (United States)

    Schaefer, Lloyd A.; Willenberg, James D.

    1992-01-01

    Subtle indications of flaws extracted from ultrasonic waveforms. Ultrasonic-inspection system uses artificial intelligence to help in identification of hidden flaws in electron-beam-welded castings. System involves application of flaw-classification logic to analysis of ultrasonic waveforms.

  13. Ultrasonic sectional imaging for crack identification. Part 1. Confirmation test of essential factors for ultrasonic imaging

    International Nuclear Information System (INIS)

    Sasahara, Toshihiko

    2008-01-01

    Since the first reports of inter-granular stress corrosion crack (IGSCC) in boiling water reactor (BWR) pipe in the 1970s, nuclear power industry has focused considerable attention on service induced crack detection and sizing using ultrasonic examination. In recent years, phased array systems, those reconstruct high quality flaw images at real time are getting to apply for crack detection and sizing. But because the price of phased array systems are expensive for inspection vendors, field application of phased array systems are limited and reliable ultrasonic imaging systems with reasonable price are expected. This paper will discuss cost effective ultrasonic equipment with sectional image (B-scan) presentation as the simplified imaging system for assisting ultrasonic examination personnel. To develop the simplified B-scan imaging system, the frequency characteristics of IGSCC echoes and neighboring geometry echoes such as base-metal to weld interface and inner surface of a pipe are studied. The experimental study confirmed the reflectors have different frequency characteristics and 2MHz is suitable to visualize IGSCC and 5MHz and higher frequency are suitable to reconstruct geometry images. The other study is the amplifier selection for the imaging system. To reconstruct images of IGSCC and geometry echoes, the ultrasonic imaging instrument with linear amplifier has to adjust gain setting to the target. On the other hand, the ultrasonic imaging instrument with logarithmic amplifier can collect and display wider dynamic range on a screen and this wider dynamic range are effective to visualize IGSCC and geometry echoes on a B-scan presentation at a time. (author)

  14. Ultrasonic Stir Welding

    Science.gov (United States)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  15. Ultrasonic nondestructive materials characterization

    Science.gov (United States)

    Green, R. E., Jr.

    1986-01-01

    A brief review of ultrasonic wave propagation in solid materials is presented with consideration of the altered behavior in anisotropic and nonlinear elastic materials in comparison with isotropic and linear elastic materials. Some experimental results are described in which ultrasonic velocity and attenuation measurements give insight into materials microstructure and associated mechanical properties. Recent developments with laser beam non-contact generation and detection of ultrasound are presented. The results of several years of experimental measurements using high-power ultrasound are discussed, which provide substantial evidence of the inability of presently accepted theories to fully explain the interaction of ultrasound with solid materials. Finally, a special synchrotron X-ray topographic system is described which affords the possibility of observing direct interaction of ultrasonic waves with the microstructural features of real crystalline solid materials for the first time.

  16. Ultrasonic colour Doppler imaging

    DEFF Research Database (Denmark)

    Evans, David H.; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2011-01-01

    Ultrasonic colour Doppler is an imaging technique that combines anatomical information derived using ultrasonic pulse-echo techniques with velocity information derived using ultrasonic Doppler techniques to generate colour-coded maps of tissue velocity superimposed on grey-scale images of tissue...... anatomy. The most common use of the technique is to image the movement of blood through the heart, arteries and veins, but it may also be used to image the motion of solid tissues such as the heart walls. Colour Doppler imaging is now provided on almost all commercial ultrasound machines, and has been...... vectors. This review briefly introduces the principles behind colour Doppler imaging and describes some clinical applications. It then describes the basic components of conventional colour Doppler systems and the methods used to derive velocity information from the ultrasound signal. Next, a number of new...

  17. Ultrasonic tests. Pt. 2

    International Nuclear Information System (INIS)

    Goebbels, K.

    1980-01-01

    After a basic treatment of ultrasonic wave propagation, of the state-of-the-art methods and the technical background in the preceeding part, advanced ultrasonic NDT techniques are presented here. The discussion of new development includes - manipulation systems, - automation of ultrasonic testing methods, documentation and evaluation. In the middle of this part the main problem areas will be discussed: - detection of defects (e.g. in coarse grained structures and welds), - classification of defects (e.g. discrimination between crack-like and volumetric faults), - sizing of defects. Research in the field of acoustical holography, development of probes and phased arrays, electromagnetic acoustic transducers and signal enhancement are the main contributing parts to the report. (orig./RW)

  18. Inspection of austenitic welds with ultrasonic phased array technology

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A.; Fernandez, F. [Tecnatom (Spain); Dutruc, R.; Ferriere, R. [Metalscan (France)

    2011-07-01

    This series of slides presents the use of ultrasonic phased array technology in the inspection of austenitic welds. The inspection from outside surface (the inspection is performed in contact using wedges to couple the probe to the outer surface of the component) shows that longitudinal wave is the most adequate for perpendicular scans and transversal ultrasonic wave is the most adequate for parallel scans. Detection and length sizing are performed optimally in perpendicular scans. The inspection from inside surface shows: -) Good results in the detection of defects (Sizing has met the requirements imposed by the Authority of the Russian Federation); -) The new design of the mechanical equipment and of the numerous ultrasonic beams refracted by the array probes has increased the volume inspected. The design of the mechanical equipment has also allowed new areas to be inspected (example a piping weld that was not accessible from the outer surface; -) The ultrasonic procedure and Inspection System developed have been validated by the Authority of the Russian Federation. Phase array technique supplies solutions to solve accessibility concerns and improve the ultrasonic inspections of nuclear components

  19. Using piezoelectric sensors for ultrasonic pulse velocity measurements in concrete

    International Nuclear Information System (INIS)

    Kee, Seong-Hoon; Zhu, Jinying

    2013-01-01

    The ultrasonic pulse velocity (UPV) test has been a widely used non-destructive testing method for concrete structures. However, the conventional UPV test has limitations in consistency of results and applicability in hard-to-access regions of structures. The authors explore the feasibility of embedded piezoelectric (PZT) sensors for ultrasonic measurements in concrete structures. Two PZT sensors were embedded in a reinforced concrete specimen. One sensor worked as an actuator driven by an ultrasonic pulse-receiver, and another sensor worked as a receiver. A series of ultrasonic tests were conducted to investigate the performance of the embedded sensors in crack-free concrete and concrete specimens having a surface-breaking crack under various external loadings. Signals measured by the embedded sensors show a broad bandwidth with a centre frequency around 80 kHz, and very good coherence in the frequency range from 30 to 180 kHz. Furthermore, experimental variability in ultrasonic pulse velocity and attenuation is substantially reduced compared to previously reported values from conventional UPV equipment. Findings from this study demonstrate that the embedded sensors have great potential as a low-cost solution for ultrasonic transducers for health monitoring of concrete in structures. (paper)

  20. A study on Computer-controlled Ultrasonic Scanning Device

    International Nuclear Information System (INIS)

    Huh, H.; Park, C. S.; Hong, S. S.; Park, J. H.

    1989-01-01

    Since the nuclear power plants in Korea have been operated in 1979, the nondestructive testing (NDT) of pressure vessels and/or piping welds plays an important role for maintaining the safety and integrity of the plants. Ultrasonic method is superior to the other NDT method in the viewpoint of the detectability of small flaw and accuracy to determine the locations, sizes, orientations, and shapes. As the service time of the nuclear power plants is increased, the radiation level from the components is getting higher. In order to get more quantitative and reliable results and secure the inspector from the exposure to high radiation level, automation of the ultrasonic equipment has been one of the important research and development(R and D) subject. In this research, it was attempted to visualize the shape of flaws presented inside the specimen using a Modified C-Scan technique. In order to develop Modified C-Scan technique, an automatic ultrasonic scanner and a module to control the scanner were designed and fabricated. IBM-PC/XT was interfaced to the module to control the scanner. Analog signals from the SONIC MARK II were digitized by Analog-Digital Converter(ADC 0800) for Modified C-Scan display. A computer program has been developed and has capability of automatic data acquisition and processing from the digital data, which consist of maximum amplitudes in each gate range and locations. The data from Modified C-Scan results was compared with shape from artificial defects using the developed system. Focal length of focused transducer was measured. The automatic ultrasonic equipment developed through this study is essential for more accurate, reliable, and repeatable ultrasonic experiments. If the scanner are modified to meet to appropriate purposes, it can be applied to automation of ultrasonic examination of nuclear power plants and helpful to the research on ultrasonic characterization of the materials

  1. Ultrasonic leak detection

    International Nuclear Information System (INIS)

    Murphy, R.V.

    1977-01-01

    A scanning ultrasonic microphone was used to detect the presence and locate the sources of hydraulic noises in piping systems in a reactor environment. The intensity changes of the noises correspond to changes of flow conditions within the system caused by throttled valves, flow rate changes, and leaks. (author)

  2. A thinker's guide to ultrasonic imaging

    International Nuclear Information System (INIS)

    Powis, R.L.; Powis, W.J.

    1984-01-01

    Bridging the gap between elementary physics and advanced ultrasonographic theory, this book provides the clinician with an indispensable tool for the most effective use of ultrasound equipment. It is directed to every individual who must take a transducer in hand, make an ultrasonic study, and interpret the visual results. It stands between the very rudimentary texts that provide simple basics and texts in advanced ultrasound science and applications. It is designed to provide an intermediate step in the continuing education of both physician and sonographer. Each chapter stands alone, yet is connected with the others by reference and suggested readings

  3. Ultrasonic Bat Deterrent Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kinzie, Kevin; Rominger, Kathryn M.

    2017-12-14

    The project objective was to advance the development and testing of an Near commercial bat-deterrent system with a goal to increase the current GE deterrent system effectiveness to over 50% with broad species applicability. Additionally, the research supported by this program has provided insights into bat behavior and ultrasonic deterrent design that had not previously been explored. Prior research and development had demonstrated the effectiveness of a commercial-grade, air-powered, ultrasonic bat deterrent to be between 30-50% depending upon the species of bat. However, the previous research provided limited insight into the behavioral responses of bats in the presence of ultrasonic deterrent sound fields that could be utilized to improve effectiveness. A unique bat flight room was utilized to observe the behavioral characteristics of bats in the presence of ultrasonic sound fields. Behavioral testing in the bat flight facility demonstrated that ultrasonic sounds similar to those produced by the GE deterrent influenced the activities and behaviors, primarily those associated with foraging, of the species exposed. The study also indicated that continuous and pulsing ultrasonic signals had a similar effect on the bats, and confirmed that as ultrasonic sounds attenuate, their influence on the bats’ activities and behavior decreases. Ground testing at Wolf Ridge Wind, LLC and Shawnee National Forest assessed both continuous and pulsing deterrent signals emitted from the GE deterrent system and further enhanced the behavioral understanding of bats in the presence of the deterrent. With these data and observations, the existing 4-nozzle continuous, or steady, emission ultrasonic system was redesigned to a 6-nozzle system that could emit a pulsing signal covering a larger air space around a turbine. Twelve GE 1.6-100 turbines were outfitted with the deterrent system and a formal three-month field study was performed using daily carcass searches beneath the 12

  4. Ultrasonic transducer design for uniform insonation

    International Nuclear Information System (INIS)

    Harrison, G.H.; Balcer-Kubiczek, E.K.; McCulloch, D.

    1984-01-01

    Techniques used in transducer development for acoustical imaging have been evaluated for the purpose of producing broad, uniform ultrasonic fields from planar radiators. Such fields should be useful in hyperthermia, physical therapy, and ultrasonic bioeffects studies. Fourier inversion of the circ function yielded a source velocity distribution proportional to (P/r) exp ((-ik/2Z) (2Z/sup 2/+r/sup 2/)) J/sub 1/(krP/Z), where r is the radial source coordinate, k is the wave number, and P is the desired radius of uniform insonation at a depth Z in water. This source distribution can be truncated without significantly degrading the solution. A simpler solution consists of exponentially shading the edge of an otherwise uniformly excited disk transducer. This approach was successfully approximated experimentally

  5. Computerized ultrasonic quality control system in the production of helical welded tubes

    International Nuclear Information System (INIS)

    Tar, J.

    1976-01-01

    The inspection of helical welded steel tubes by means of an ultrasonic automatic equipment is described. This equipment is able to recognize the defects of the weld, to identify them and to continuously report back the informations necessary for their elimination

  6. Ultrasonic calibration assembly

    International Nuclear Information System (INIS)

    1981-01-01

    Ultrasonic transducers for in-service inspection of nuclear reactor vessels have several problems associated with them which this invention seeks to overcome. The first is that of calibration or referencing a zero start point for the vertical axis of transducer movement to locate a weld defect. The second is that of verifying the positioning (vertically or at a predetermined angle). Thirdly there is the problem of ascertaining the speed per unit distance in the operating medium of the transducer beam prior to the actual inspection. The apparatus described is a calibration assembly which includes a fixed, generally spherical body having a surface for reflecting an ultrasonic beam from one of the transducers which can be moved until the reflection from the spherical body is the highest amplitude return signal indicating radial alignment from the body. (U.K.)

  7. Ultrasonic analysis of UO{sub 2} pellets

    Energy Technology Data Exchange (ETDEWEB)

    Bittencourt, Marcelo de S.Q.; Baroni, Douglas B.; Martorelli, Daniel S., E-mail: bittenc@ien.gov.br, E-mail: douglasbaroni@ien.gov.br, E-mail: daniel@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Ultrassom; Dias, Fabio C.; Silva, Jose W.S. da, E-mail: fabio@ird.gov.br, E-mail: wanderley@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Salvaguardas

    2013-07-01

    Ceramic materials have been widely used for various purposes in many different industries due to certain characteristics, such as high melting point and high resistance to corrosion. In the nuclear area, ceramics are of great importance due to the process of fabrication of fuel pellets for nuclear reactors. Generally, high accuracy destructive techniques are used to characterize nuclear materials for fuel fabrication. These techniques usually require costly equipment and facilities, as well as experienced personnel. This paper aims at presenting an analysis methodology for UO2 pellets using a non-destructive ultrasonic technique for porosity measurement. This technique differs from traditional ultrasonic techniques in the sense it uses ultrasonic pulses in frequency domain instead of time domain. Therefore, specific characteristics of the analyzed material are associated with the obtained frequency spectrum. In the present work, four fuel grade UO2 pellets were analyzed and the corresponding results evaluated. (author)

  8. Benefits of the Multiple Echo Technique for Ultrasonic Thickness Testing

    Energy Technology Data Exchange (ETDEWEB)

    Elder, J.; Vandekamp, R.

    2011-02-10

    Much effort has been put into determining methods to make accurate thickness measurements, especially at elevated temperatures. An accuracy of +/- 0.001 inches is typically noted for commercial ultrasonic thickness gauges and ultrasonic thickness techniques. Codes and standards put limitations on many inspection factors including equipment, calibration tolerance and temperature variations. These factors are important and should be controlled, but unfortunately do not guarantee accurate and repeatable measurements in the field. Most technicians long for a single technique that is best for every situation, unfortunately, there are no 'silver bullets' when it comes to nondestructive testing. This paper will describe and discuss some of the major contributors to measurement error as well as some advantages and limitations of multiple echo techniques and why multiple echo techniques should be more widely utilized for ultrasonic thickness measurements.

  9. Optimization of Ultrasonic Fabric Cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Hand, T.E.

    1998-05-13

    The fundamental purpose of this project was to research and develop a process that would reduce the cost and improve the environmental efficiency of the present dry-cleaning industry. This second phase of research (see report KCP-94-1006 for information gathered during the first phase) was intended to allow the optimal integration of all factors of ultrasonic fabric cleaning. For this phase, Garment Care performed an extensive literature search and gathered data from other researchers worldwide. The Garment Care-AlliedSignal team developed the requirements for a prototype cleaning tank for studies and acquired that tank and the additional equipment required to use it properly. Garment Care and AlliedSignal acquired the transducers and generators from Surftran Martin-Walter in Sterling Heights, Michigan. Amway's Kelly Haley developed the test protocol, supplied hundreds of test swatches, gathered the data on the swatches before and after the tests, assisted with the cleaning tests, and prepared the final analysis of the results. AlliedSignal personnel, in conjunction with Amway and Garment Care staff, performed all the tests. Additional planning is under way for future testing by outside research facilities. The final results indicated repeatable performance and good results for single layered fabric swatches. Swatches that were cleaned as a ''sandwich,'' that is, three or more layers.

  10. Pulsed ultrasonic stir welding system

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    An ultrasonic stir welding system includes a welding head assembly having a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. During a welding operation, ultrasonic pulses are applied to the rod as it rotates about its longitudinal axis. The ultrasonic pulses are applied in such a way that they propagate parallel to the longitudinal axis of the rod.

  11. Artificial intelligence and ultrasonic tests in detection of defects

    International Nuclear Information System (INIS)

    Barrera Cardiel, G.; Fabian Alvarez, M. a.; Velez Martinez, M.; Villasenor, L.

    2001-01-01

    One of the most serious problems in the quality control of welded unions is the location, identification and classification of defects. As a solution to this problem, a technique for classification, applicable to welded unions done by electric arc welding as well as by friction, is proposed; it is based on ultrasonic signals. The neuronal networks proposed are Kohonen and Multilayer Percept ron, all in a virtual instrument environment. Currently the techniques most used in this field are: radiological analysis (X-rays) and ultrasonic analysis (ultrasonic waves). The X-ray technique in addition to being dangerous requires highly specialized personnel and equipment, therefore its use is restricted. The ultrasonic technique, in spite of being one of the most used for detection of discontinuities, requires personnel with wide experience in the interpretation of ultrasonic signals, this is a time-consuming process which necessarily increases its operation cost. The classification techniques that we propose turn out to be safe, reliable, inexpensive and easy to implement for the solution of this important problem. (Author) 8 refs

  12. Final results of double-shell tank 241-AZ-101 ultrasonic inspection

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    1999-01-01

    This document presents the results and documentation of the nondestructive ultrasonic examination of tank 241-AZ-101. A tank inspection supplier was retained to provide and use an ultrasonic examination system (equipment, procedures, and inspectors) to scan a limited area of double-shell tank 241-AZ-101 primary tank wall and welds. The inspection found one reportable indication of thinning and no reportable pitting, corrosion, or cracking

  13. Final results of double-shell tank 241-AY-102 ultrasonic inspection

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    1999-01-01

    This document presents the results and documentation of the nondestructive ultrasonic examination of tank 241-AY-102. A tank inspection supplier was retained to provide and use an ultrasonic examination system (equipment, procedures, and inspectors) to scan a limited area of double-shell tank 241-AY-102 primary tank wall and welds. The inspection found some indication of insignificant general and local wall thinning with no cracks detected

  14. Final results of double-shell tank 241-AN-105 ultrasonic inspection

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    1999-01-01

    This document presents the results and documentation of the nondestructive ultrasonic examination of tank 241-AN-105. A tank inspection supplier was retained to provide and use an ultrasonic examination system (equipment, procedures, and inspectors) to scan a limited area of double-shell tank 241-AN-105 primary tank wall primary knuckle, and secondary tank bottom. The inspection found some indication of general and local wall thinning with no cracks detected

  15. Turbulence enhancement by ultrasonically induced gaseous cavitation in the CO2 saturated water

    International Nuclear Information System (INIS)

    Lee, Seung Youp; Choi, Young Don

    2002-01-01

    Recent primary concern for the design of high performance heat exchanger and highly integrated electronic equipment is to develop an active and creative technologies which enhance the heat transfer without obstructing the coolant flows. In this study, we found through the LDV measurement that the gaseous cavitation induced by ultrasonic vibration applied to the CO 2 saturated water in the square cross-sectioned straight duct flow enhances the turbulence much more than the case of non-ultrasonic or normal ultrasonic conditions without gaseous cavitation does. We also found that gaseous cavitation can enhance effectively the turbulent heat transfer between the heating surfaces and coolants by destructing the viscous sublayer

  16. Ultrasonic attenuation in superconducting zinc

    International Nuclear Information System (INIS)

    Auluck, S.

    1978-01-01

    The differences in the Zn ultrasonic attenuation data of different workers are analyzed. The superconducting energy gaps deduced from our analysis of the ultrasonic-attenuation data of Cleavelin and Marshall are consistent with the gaps deduced from the knowledge of the Fermi surface and the electron-phonon mass enhancement factor

  17. Lumber defect detection by ultrasonics

    Science.gov (United States)

    K. A. McDonald

    1978-01-01

    Ultrasonics, the technology of high-frequency sound, has been developed as a viable means for locating most defects In lumber for use in digital form in decision-making computers. Ultrasonics has the potential for locating surface and internal defects in lumber of all species, green or dry, and rough sawn or surfaced.

  18. Ultrasonic inspection of austenitic welds

    International Nuclear Information System (INIS)

    Baikie, B.L.; Wagg, A.R.; Whittle, M.J.; Yapp, D.

    1976-01-01

    The ultrasonic examination of austenitic stainless steel weld metal has always been regarded as a difficult proposition because of the large and variable ultrasonic attenuations and back scattering obtained from apparently similar weld deposits. The work to be described shows how the existence of a fibre texture within each weld deposit (as a result of epitaxial growth through successive weld beads) produces a systematic variation in the ultrasonic attenuation coefficient and the velocity of sound, depending upon the angle between the ultrasonic beam and the fibre axis. Development work has shown that it is possible to adjust the welding parameters to ensure that the crystallographic texture within each weld is compatible with improved ultrasonic transmission. The application of the results to the inspection of a specific weld in type 316 weld metal is described

  19. Ultrasonic variables affecting inspection

    International Nuclear Information System (INIS)

    Lautzenheiser, C.E.; Whiting, A.R.; McElroy, J.T.

    1977-01-01

    There are many variables which affect the detection of the effects and reproducibility of results when utilizing ultrasonic techniques. The most important variable is the procedure, as this document specifies, to a great extent, the controls that are exercised over the other variables. The most important variable is personnel with regards to training, qualification, integrity, data recording, and data analysis. Although the data is very limited, these data indicate that, if the procedure is carefully controlled, reliability of defect detection and reproducibility of results are both approximately 90 percent for reliability of detection, this applies to relatively small defects as reliability increases substantially as defect size increases above the recording limit. (author)

  20. Imperfection detection probability at ultrasonic testing of reactor vessels

    International Nuclear Information System (INIS)

    Kazinczy, F. de; Koernvik, L.Aa.

    1980-02-01

    The report is a lecture given at a symposium organized by the Swedish nuclear power inspectorate on February 1980. Equipments, calibration and testing procedures are reported. The estimation of defect detection probability for ultrasonic tests and the reliability of literature data are discussed. Practical testing of reactor vessels and welded joints are described. Swedish test procedures are compared with other countries. Series of test data for welded joints of the OKG-2 reactor are presented. Future recommendations for testing procedures are made. (GBn)

  1. An Examination of the Feasibility of Ultrasonic Communications Links

    Science.gov (United States)

    2010-06-01

    achieved by human speech and by certain systems of whistled languages (Busnel and Classe, 1976). Hence he concluded that advanced modulation techniques...is that our application area and the ultrasound field are both designated under the umbrella term of ultrasonics. And though the technology of... ultrasound is extensive, the frequency regime at which this equipment operates (200–300 kHz) limits its application to our research. Ultrasound

  2. Studies on the Influence of Various factors in Ultrasonic Flaw Detection in Ferrite Steel Butt Weld Joints

    International Nuclear Information System (INIS)

    Baby, Sony; Balasubramanian, T.; Pardikar, R. J.

    2003-01-01

    Parametric studies have been conducted into the variability of the factors affecting the ultrasonic testing applied to weldments. The influence of ultrasonic equipment, transducer parameters, test technique, job parameters, defect type and characteristics on reliability far defect detection and sizing was investigated by experimentation. The investigation was able to build up substantial bank of information on the reliability of manual ultrasonic method for testing weldments. The major findings of the study separate into two parts, one dealing with correlation between ultrasonic techniques, equipment and defect parameters and inspection performance effectiveness and other with human factors. Defect detection abilities are dependent on the training, experience and proficiency of the UT operators, the equipment used, the effectiveness of procedures and techniques

  3. Advanced ultrasonic inspections

    International Nuclear Information System (INIS)

    Ghia, S.

    1990-08-01

    Acoustic Emission (AE) continuous monitoring and periodical inspections by advanced ultrasonic have been applied to evaluate defect evolution within a PWR reduced scale (1:5) pressure vessel subjected to cyclic mechanical fatigue test. This experimental activity has been carried out in the frame of the Primary Circuit Component Life Prediction programme. In the time period covered by this report actions were performed as following: (1) Ultrasonic examination by multifrequency acoustic holography to evaluate defect evolution subsequently repair and heat treatment of the R2 vessel carried out in March 1988. For the purpose, measurements were performed both at 0 and 200 bar of internal pressure. As uniformity of the procedures adopted, for calibration and testing, made the results comparable with the previous ones no evidence for significant growing of the examined defects has been found. (2) Acoustic emission monitoring has then been carried out during fatigue test from 416000 to 565000 fatigue cycles. Analysis of a large amount of data has been performed paying particular attention to the distinction between friction phenomena and crack growth in order to obtain a correct diagnosis of flaw evolution. The signal duration distribution and the correlation of AE appearance time versus load cycle phase were considered to characterise stick-slip processes. A general intensification of AE activity has been recorded during this last period of monitoring and previous known AE sources were confirmed together with the appearance of new AE sources some of them correlable with real defects

  4. System for ultrasonic examination

    International Nuclear Information System (INIS)

    Lund, S.A.; Kristensen, W.D.

    1987-01-01

    A computerized system for the recording of flaw images by ultrasonic examination according to the pulse-echo method includes at least one ultrasonic probe which can be moved in steps over the surface of an object along a rectilinear scanning path. Digital signals containing information on the successive positions of the sound beam, on echo amplitudes, and on the lengths of sound paths to reflectors inside the object, are processed and used for the accumulated storage of circular patterns of echo amplitude data in a matrix memory associated with a sectional plane through the object. A video screen terminal controls the system and transforms the accumulated data into displays of sectional flaw images of greatly improved precision and sharpness of definition. A gradual transfer of filtered data from a number of parallel sectional planes to three further matrix memories associated with projection planes at right angles to each other permits presentation in three dimensions of equally improved projection flaw images. (author) 2 figs

  5. Imaging techniques for ultrasonic testing

    International Nuclear Information System (INIS)

    2013-01-01

    These seminar proceedings contain 16 lectures on the following topics: 1. From imaging to quantification - ultrasound methods in medical diagnostics; 2. SAFT, TOFD, Phased Array - classical applications and recent developments in ultrasonic imaging; 3. Innovative ultrasonic imaging methods in research and application; 4. Industrial ultrasonic testing of fibre-reinforced structures of complex geometry; 5. Visualisation of crack tips in the inspection of wheel set shafts with longitudinal boreholes as a means of avoiding unnecessary wheel set changes; 6. Areal analysis of the propagation of Lamb waves on curved, anisotropic structures; 7. High-resolution representation in immersion technique testing; 8. Variants in generating images from phased array measurement data - practical examples involving copper, carbon-fibre reinforced plastic and other materials; 9. GIUM - an unconventional method of microstructure imaging using ultrasonic stimulation and laser vibrometry scanning; 10. Innovative air-ultrasonic testing concepts for improved imaging; 11. Use of imaging methods for improving the quality of test results from nondestructive testing; 12. Modelling and visualisation of EMUS stimulation for transducer optimisation; 13. Use of SAFT in the manufacture of energy conversion machines; 14. Ultrasonic imaging tests for improved defect characterisation during weld seam inspection on longitudinally welded large-diameter pipes; 15. SAFT reconstruction for testing austenitic weld seams and dissimilar metal weld seams for transverse cracks; 16. Imaging-based optimisation method for quantitative ultrasonic testing of anisotropic inhomogeneous austenitic welded joints with determination and utilisation of their elastic properties. One contribution has been abstracted separately. [de

  6. [Hydrotherapy equipment].

    Science.gov (United States)

    Tsibikov, V B; Ragozin, S I; Mikheeva, L V

    1985-01-01

    A flow-chart is developed demonstrating the relation between medical and prophylactic institutions within the organizational structure of the rehabilitation system and main types of rehabilitation procedures. In order to ascertain the priority in equipping rehabilitation services with adequate hardware the special priority criterion is introduced. The highest priority is assigned to balneotherapeutic and fangotherapeutic services. Based on the operation-by-operation analysis of clinical processes related to service and performance of balneologic procedures the preliminary set of clinical devices designed for baths, basins and showers in hospitals and rehabilitation departments is defined in a generalized form.

  7. Irradiation Testing of Ultrasonic Transducers

    International Nuclear Information System (INIS)

    Daw, J.; Rempe, J.; Palmer, J.; Tittmann, B.; Reinhardt, B.; Kohse, G.; Ramuhalli, P.; Montgomery, R.; Chien, H.T.; Villard, J.F.

    2013-06-01

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of numerous parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 10 21 n/cm 2 (E> 0.1 MeV). This test will be an instrumented lead test; and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. By characterizing magnetostrictive and piezoelectric transducer survivability during irradiation, test results will enable the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. (authors)

  8. Instrument maintenance of ultrasonic influences parameters measurement in technological processes

    Directory of Open Access Journals (Sweden)

    Tomal V. S.

    2008-04-01

    Full Text Available The contact and non-contact vibration meters for intermittent and continuous control of the vibration amplitude in the ultrasonic technological equipment have been developed. And in order to estimate the cavitation intensity in liquids the authors have developed cavitation activity indicators and cavitation sensitivity meters, allowing to measure the magnitude of the signal level in the range of maximum spectral density of cavitation noise. The developed instruments allow to improve the quality of products, reduce the defect rate and power consumption of equipment by maintaining optimum conditions of the process.

  9. Pulsed ultrasonic stir welding method

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    A method of performing ultrasonic stir welding uses a welding head assembly to include a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. In the method, the rod is rotated about its longitudinal axis during a welding operation. During the welding operation, a series of on-off ultrasonic pulses are applied to the rod such that they propagate parallel to the rod's longitudinal axis. At least a pulse rate associated with the on-off ultrasonic pulses is controlled.

  10. Fundamentals of ultrasonic phased arrays

    CERN Document Server

    Schmerr, Lester W

    2014-01-01

    This book describes in detail the physical and mathematical foundations of ultrasonic phased array measurements.?The book uses linear systems theory to develop a comprehensive model of the signals and images that can be formed with phased arrays. Engineers working in the field of ultrasonic nondestructive evaluation (NDE) will find in this approach a wealth of information on how to design, optimize and interpret ultrasonic inspections with phased arrays. The fundamentals and models described in the book will also be of significant interest to other fields, including the medical ultrasound and

  11. Enhancement of the automatic ultrasonic signal processing system using digital technology

    International Nuclear Information System (INIS)

    Koo, In Soo; Park, H. Y.; Suh, Y. S.; Kim, D. Hoon; Huh, S.; Sung, S. H.; Jang, G. S.; Ryoo, S. G.; Choi, J. H.; Kim, Y. H.; Lee, J. C.; Kim, D. Hyun; Park, H. J.; Kim, Y. C.; Lee, J. P.; Park, C. H.; Kim, M. S.

    1999-12-01

    The objective of this study is to develop the automatic ultrasonic signal processing system which can be used in the inspection equipment to assess the integrity of the reactor vessel by enhancing the performance of the ultrasonic signal processing system. Main activities of this study divided into three categories such as the development of the circuits for generating ultrasonic signal and receiving the signal from the inspection equipment, the development of signal processing algorithm and H/W of the data processing system, and the development of the specification for application programs and system S/W for the analysis and evaluation computer. The results of main activities are as follows 1) the design of the ultrasonic detector and the automatic ultrasonic signal processing system by using the investigation of the state-of-the-art technology in the inside and outside of the country. 2) the development of H/W and S/W of the data processing system based on the results. Especially, the H/W of the data processing system, which have both advantages of digital and analog controls through the real-time digital signal processing, was developed using the DSP which can process the digital signal in the real-time, and was developed not only firmware of the data processing system in order for the peripherals but also the test algorithm of specimen for the calibration. The application programs and the system S/W of the analysis/evaluation computer were developed. Developed equipment was verified by the performance test. Based on developed prototype for the automatic ultrasonic signal processing system, the localization of the overall ultrasonic inspection equipment for nuclear industries would be expected through the further studies of the H/W establishment of real applications, developing the S/W specification of the analysis computer. (author)

  12. Ultrasonic Examination of Jet Pump Diffuser Assemblies

    International Nuclear Information System (INIS)

    Hacker, M.; Levesque, M.; Whitman, G.

    1998-01-01

    In October 1997 the Boiling Water REactor Vessel and Internals Project (BWRVIP) issued the BWR Jet Pump Assembly Inspection and Flaw Evaluation Guidelines (BWRVIP-41). This document identified several welds on the jet pump diffuser assembly that are susceptible to Intergranular Stress Corrosion Cracking (IGSCC) or fatigue, and whose failure could result in jet pump disassembly. Based on the potential for failures, the document recommends inspection of 50% of the high priority welds at the next refueling outage for each BWR, with 100% expansion if flaws are identified. Because each diffuser assembly contains as many as six high priority welds, and access to these welds from the annulus is very restricted, implementing these recommendations can have a significant impact on outage critical path. In an effort to minimize the impact of implementing these recommendations, Framatome Technologies, Inc (FTI) developed a method to perform ultrasonic examinations of the jet pump diffuser assembly welds utilizing remotely operated equipment from the inner diameter (ID) of the diffuser assembly. This paper will discuss the tooling, ultrasonic methods, and delivery techniques used to perform the examinations, as well as the results obtained from a spring 1998 deployment of the system at a U.S. Nuclear Generating Plant. (Author)

  13. Acceptance Test Report for the 241-AZ-101 Ultrasonic Interface Level Analyzer

    Energy Technology Data Exchange (ETDEWEB)

    ANDREWS, J.E.

    2000-01-27

    This document comprises the Acceptance Test Report for the 241-AZ-101 Ultrasonic Interface Level Analyzer. This document presents the results of Acceptance Testing of the 241-AZ-101 Ultrasonic Interface Level Analyzers (URSILLAs). Testing of the URSILLAs was performed in accordance with ATP-260-001, ''URSILLA Pre-installation Acceptance Test Procedure''. The objective of the testing was to verify that all equipment and components function in accordance with design specifications and original equipment manufacturer's specifications.

  14. Proceedings of a specialist meeting on the ultrasonic inspection of reactor components

    International Nuclear Information System (INIS)

    1976-01-01

    Beside synthesis of two conferences on nondestructive testing and on inspection, the contributions of this conference are reporting experimental observations and research works on ultrasonic techniques, methods, procedures (pre-service or in-service) and equipment for the inspection of nuclear reactor components (pressure vessels, tubing and piping), generally in stainless steel (often austenitic or ferritic) material or in zirconium alloy. Some contributions are also dealing with the relationship between material microstructure and ultrasonic inspection method and equipment, or with the detection and sizing precision of flaws (cracks)

  15. Computer automation of ultrasonic testing. [inspection of ultrasonic welding

    Science.gov (United States)

    Yee, B. G. W.; Kerlin, E. E.; Gardner, A. H.; Dunmyer, D.; Wells, T. G.; Robinson, A. R.; Kunselman, J. S.; Walker, T. C.

    1974-01-01

    Report describes a prototype computer-automated ultrasonic system developed for the inspection of weldments. This system can be operated in three modes: manual, automatic, and computer-controlled. In the computer-controlled mode, the system will automatically acquire, process, analyze, store, and display ultrasonic inspection data in real-time. Flaw size (in cross-section), location (depth), and type (porosity-like or crack-like) can be automatically discerned and displayed. The results and pertinent parameters are recorded.

  16. Apparatus for ultrasonic nebulization

    International Nuclear Information System (INIS)

    Olson, K.W.; Haas, W.J. Jr.; Fassel, V.A.

    1978-01-01

    An improved apparatus is described for ultrasonic nebulization of liquid samples or suspensions in which the piezoelectric transducer is protected from chemical attack and erosion. The transducer is protected by being bonded to the inner surface of a glass plate which forms one end wall of a first hollow body provided with apparatus for circulating a fluid for cooling and stabilizing the transducer. The glass plate, which is one-half wavelength in thickness to provide an acoustically coupled outer nebulizing surface, seals an opening in a second hollow body which encloses an aerosol mixing chamber. The second body includes apparatus for delivering the sample solution to the nebulizing surface, a gas inlet for providing a flow of carrier gas for transporting the aerosol of the nebulized sample and an aerosol outlet

  17. High resolution ultrasonic densitometer

    International Nuclear Information System (INIS)

    Dress, W.B.

    1983-01-01

    The velocity of torsional stress pulses in an ultrasonic waveguide of non-circular cross section is affected by the temperature and density of the surrounding medium. Measurement of the transit times of acoustic echoes from the ends of a sensor section are interpreted as level, density, and temperature of the fluid environment surrounding that section. This paper examines methods of making these measurements to obtain high resolution, temperature-corrected absolute and relative density and level determinations of the fluid. Possible applications include on-line process monitoring, a hand-held density probe for battery charge state indication, and precise inventory control for such diverse fluids as uranium salt solutions in accountability storage and gasoline in service station storage tanks

  18. Ultrasonic imaging in concrete

    International Nuclear Information System (INIS)

    Ribay, G.; Paris, O.; Rambach, J.M.

    2009-01-01

    The third and final protection barrier confining nuclear reactors is usually a concrete containment structure. Monitoring the structural integrity of these barriers is critical in ensuring the safety of nuclear power plants. The Institute for Radiological Protection and Nuclear Safety (IRSN) in France in collaboration with the French Atomic commission (CEA/LIST) has developed an ultrasonic phased-array technique capable of inspecting thick concrete walls. The non-destructive method is dedicated to detect cracks and bulk defects. Given the thickness of the structure (1.2 m) undergoing inspection and the heterogeneity of the concrete, the optimal frequency lies in the 50-300 kHz range. At these frequencies, the ultrasonic beam profiles are widespread (non-directive) with poor signal-to-noise ratio. Previous studies have shown the potential of using phased-array techniques (i.e., beam focusing and beam steering) in order to improve detection resolution and sizing accuracy. In this paper we present experimental studies performed with array up to 16 transducers working at 200 kHz. Experiments are carried out on representative concrete blocks containing artificial defects. One is a reinforced mock-up representative of the first reinforcing mesh of wall containment. Experimental results show that in spite of the reinforcement, artificial defects deep as half a meter can be detected. Reconstructed images resulting from phased array acquisitions on an artificial crack embedded in a concrete block are also presented and discussed. The presented method allows detecting oriented defects in concrete with improved signal to noise ratio and sensibility. A simulation model of the interaction of ultrasound with a heterogeneous medium like concrete is briefly commented. (authors)

  19. Cryogenic equipment

    International Nuclear Information System (INIS)

    Leger, L.; Javellaud, J.; Caro, C.; Gilguy, R.; Testard, O.

    1966-06-01

    The cryostats presented here were built from standard parts; this makes it possible to construct a great variety of apparatus at minimum cost. The liquid nitrogen and helium reservoirs were designed so as to reduce losses to a minimum, and so as to make the cryostats as autonomous as possible. The experimental enclosure which is generally placed in the lower part of the apparatus requires a separate study in every case. Furthermore, complete assemblies such as transfer rods, isolated traps and high vacuum valves, were designed with a similar regard for the economic aspects and for the need for standardization. This equipment thus satisfies a great variety of experimental needs; it is readily adaptable and the consumptions of helium and liquid nitrogen are very low. (authors) [fr

  20. A study for soundness of turbine blade root using ultrasonic and phased array

    International Nuclear Information System (INIS)

    Gil, Doo Song; Park, Sang Ki; Cho, Yong Sang; Lee, Sang Gug; Huh, Kuang Bum

    2003-01-01

    Power plant is consisted of many component parts for the generation of the electricity, and occasionally, turbine equipment may be caused in break-down because of the damage of the blade root. Phased array ultrasonic testing system has become available for practical application in complicated geometry such as turbine blade root, tenon, disc in power industry. This research describes the characteristics of phased array ultrasonic testing signal for various type of blade roots in thermal Power Plant turbines. This application of Phased array ultrasonic testing system has been promoted mainly to save inspection time and labor cost of turbine inspection. The characteristic of phased array ultrasonic testing signal for power plant component in very simple to understand but to difficult for perform the inspection. This paper is focused on the safety of the turbine equipment by the ultrasonic measurement and phased array analysis. As a result of the test through ultrasonic and phased array method, we have concluded that the main damage in these turbine blade root parts could be generated by the concentrated stress and centrifugal force.

  1. A study for soundness of turbine blade root using ultrasonic and phased array

    International Nuclear Information System (INIS)

    Gil, Doo Song; Park, Sang Ki; Cho, Yong Sang; Lee, Sang Gug; Huh, Kuang Bum

    2003-01-01

    Power plant is consisted of many component parts for the generation of the electricity and occasionally, turbine equipment may be caused in break-down because of the damage of the blade root. Phased array ultrasonic testing system has become available for power industry. This research describes the characteristics of phased array ultrasonic testing signal for various type of blade roots in thermal power plant turbines. This application of Phased array ultrasonic testing system has been promoted mainly to save inspection time and labor cost of turbine inspection. The characteristic of phased array ultrasonic testing signal for power plant component in very simple to understand but to difficult for perform the inspection. This paper is focused on the safety of the turbine equipment by the ultrasonic measurement and phased array analysis. As a result of the test through ultrasonic and phased array method, we have concluded that the main damage in these turbine blade roots parts could be generated by the concentrated stress and centrifugal force.

  2. Case studies in ultrasonic testing

    International Nuclear Information System (INIS)

    Prasad, V.; Satheesh, C.; Varde, P.V.

    2015-01-01

    Ultrasonic testing is widely used Non Destructive Testing (NDT) method and forms the essential part of In-service inspection programme of nuclear reactors. Main application of ultrasonic testing is for volumetric scanning of weld joints followed by thickness gauging of pipelines and pressure vessels. Research reactor Dhruva has completed the first In Service Inspection programme in which about 325 weld joints have been volumetrically scanned, in addition to thickness gauging of 300 meters of pipe lines of various sizes and about 24 nos of pressure vessels. Ultrasonic testing is also used for level measurements, distance measurements and cleaning and decontamination of tools. Two case studies are brought out in this paper in which ultrasonic testing is used successfully for identification of butterfly valve opening status and extent of choking in pipe lines in Dhruva reactor systems

  3. Ultrasonic Technology in Duress Alarms.

    Science.gov (United States)

    Lee, Martha A.

    2000-01-01

    Provides the pros and cons of the most commonly used technologies in personal duress alarm systems in the school environment. Discussed are radio frequency devices, infrared systems, and ultrasonic technology. (GR)

  4. Ultrasonic extensometer measures bolt preload

    Science.gov (United States)

    Daniels, C. M., Jr.

    1978-01-01

    Extensometer using ultrasonic pulse reflections to measure elongations in tightened belts and studs is much more accurate than conventional torque wrenches in application of specified preload to bolts and other threaded fasteners.

  5. Flaw detection of welded joints in NPP equipment assembly

    International Nuclear Information System (INIS)

    Kesler, N.A.; Polevik, V.A.; Orlov, N.S.

    1984-01-01

    State of the art and prospects of development of ultrasonic and radiography testing of welded joints for quality used in NPP equipment assembly are considered. Recommendations are given on reducing the labour content with the use of these methods. Specifications for the developed facilities intended for automation and mechanization of the described quality control methods are presented

  6. Experimental study on titanium wire drawing with ultrasonic vibration.

    Science.gov (United States)

    Liu, Shen; Shan, Xiaobiao; Guo, Kai; Yang, Yuancai; Xie, Tao

    2018-02-01

    Titanium and its alloys have been widely used in aerospace and biomedical industries, however, they are classified as difficult-to-machine materials. In this paper, ultrasonic vibration is imposed on the die to overcome the difficulties during conventional titanium wire drawing processes at the room temperature. Numerical simulations were performed to investigate the variation of axial stress within the contacting region and study the change of the drawing stress with several factors in terms of the longitudinal amplitude and frequency of the applied ultrasonic vibration, the diameter reduction ratio, and the drawing force. An experimental testing equipment was established to measure the drawing torque and rotational velocity of the coiler drum during the wire drawing process. The result indicates the drawing force increases with the growth of the drawing velocity and the reduction ratio, whether with or without vibrations. Application of either form of ultrasonic vibrations contributes to the further decrease of the drawing force, especially the longitudinal vibration with larger amplitude. SEM was employed to detect the surface morphology of the processed wires drawn under the three circumstances. The surface quality of the drawn wires with ultrasonic vibrations was apparently improved compared with those using conventional method. In addition, the longitudinal and torsional composite vibration was more effective for surface quality improvement than pure longitudinal vibration, however, at the cost of weakened drawing force reduction effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Validation of Sizewell ''B'' ultrasonic inspections -- Messages for performance demonstration

    International Nuclear Information System (INIS)

    Conroy, P.J.; Leyland, K.S.; Waites, C.

    1994-01-01

    At the time that the decisions leading to the construction of the Sizewell ''B'' plant were being made, public concern over the potential hazards of nuclear power was increasing. This concern was heightened by the accident at USA's Three Mile Island plant. The result of this and public pressure was that an extensive public inquiry was held in addition to the UK's normal licensing process. Part of the evidence to the inquiry supporting the safety case relied upon the ability of ultrasonic inspections to demonstrate that the Reactor Pressure Vessel (RPV) and other key components were free from defects that could threaten structural integrity. Evidence from a variety of trials designed to investigate the performance capability of ultrasonic inspection revealed that although ultrasonic inspection had the potential to satisfy this requirement its performance in practice was heavily dependent upon the details of application. It was therefore generally recognized that some form of inspection validation was required to provide assurance that the equipment, procedures and operators to be employed were adequate for purpose. The concept of inspection validation was therefore included in the safety case for the licensing of Sizewell ''B''. The UK validation trials covering the ultrasonic inspections of the Sizewell ''B'' PWR Reactor Pressure Vessel are now nearing completion. This paper summarizes the results of the RPV validations and considers some of the implications for ASME 11 Appendix 8 the US code covering performance demonstration

  8. Myocardial ultrasonic tissue characterization in patients with thyroid dysfunction

    Directory of Open Access Journals (Sweden)

    Schmidt André

    2010-04-01

    Full Text Available Abstract Background Structural myocardial abnormalities have been extensively documented in hypothyroidism. Experimental studies in animal models have also shown involvement of thyroid hormones in gene expression of myocardial collagen. This study was planned to investigate the ability of ultrasonic tissue characterization, as evaluated by integrated backscatter (IBS, to early identify myocardial involvement in thyroid dysfunction. Patients and Methods We studied 15 patients with hyperthyroidism (HYPER, 8 patients with hypothyroidism (HYPO, 14 patients with subclinical hypothyroidism (SCH and 19 normal (N subjects, who had normal LV systolic function. After treatment, 10 HYPER, 6 HYPO, and 8 SCH patients were reevaluated. IBS images were obtained and analyzed in parasternal short axis (papillary muscle level view, at left ventricular (LV posterior wall. The following IBS variables were analyzed: 1 the corrected coefficient (CC of IBS, obtained by dividing IBS intensity by IBS intensity measured in a rubber phantom, using the same equipment adjustments, at the same depth; 2 cardiac cyclic variation (CV of IBS - peak-to-peak difference between maximal and minimal values of IBS during cardiac cycle; 3 cardiac cyclic variation index (CVI of IBS - percentual relationship between the cyclic variation (CV and the mean value of IBS intensity. Results CC of IBS was significantly larger (p Conclusions CC of IBS was able to differentiate cardiac involvement in patients with overt HYPO and HYPER who had normal LV systolic function. These early myocardial structural abnormalities were partially reversed by drug therapy in HYPER group. On the other hand, although mean IBS intensity tended to be slightly larger in patients with SCH as compared to N, this difference was not statistical significant.

  9. Estimating adipose tissue in the chest wall using ultrasonic and alternate 40K and biometric measurements

    International Nuclear Information System (INIS)

    Anderson, A.L.; Campbell, G.W.; Singh, M.S.

    1982-01-01

    The percentage of adipose (fat) tissue in the chest wall must be known to accurately measure Pu in the human lung. Correction factors of 100% or more in X-ray detection efficiency are common in a normal population of individuals of differing body composition and have been determined in the past by means of elaborate and costly ultrasonic measurements of the subject's chest. Methods using simple 40 K and biometric measurement techniques have been investigated to determine the adipose content in the human chest wall. These methods compare favorably with ultrasonic measurements and allow laboratories not possessing ultrasonic equipment to make appropriate corrections for x-ray detection efficiency. These methods predict adipose content to within 15% of the absolute ultrasonic value. (author)

  10. Ultrasonic detection technology based on joint robot on composite component with complex surface

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Juan; Xu, Chunguang; Zhang, Lan [School of Mechanical Engineering, Beijing Institute of Technology, Beijing (China)

    2014-02-18

    Some components have complex surface, such as the airplane wing and the shell of a pressure vessel etc. The quality of these components determines the reliability and safety of related equipment. Ultrasonic nondestructive detection is one of the main methods used for testing material defects at present. In order to improve the testing precision, the acoustic axis of the ultrasonic transducer should be consistent with the normal direction of the measured points. When we use joint robots, automatic ultrasonic scan along the component surface normal direction can be realized by motion trajectory planning and coordinate transformation etc. In order to express the defects accurately and truly, the robot position and the signal of the ultrasonic transducer should be synchronized.

  11. Ultrasonic process for destruction of chlorinated organic compounds in aqueous solution

    International Nuclear Information System (INIS)

    Wu, Jiann M.; Huang, Hann S.

    1993-01-01

    Laboratory investigations of the ultrasonic process for destruction of low concentrations of carbon tetrachloride (CCl 4 ) into nonhazardous end products were carried out in a bench-scale batch reactor, equipped with a 600-W ultrasonic power supply. Process parameters studied included irradiation time, concentration, steady-state operating temperature, pH, and the intensity of applied ultrasonic-wave energy. High destruction efficiencies of greater than 99% were achieved through this process, and the irradiation time and the intensity of applied energy were identified to be the most important process parameters. The irradiation time required for a given degree of destruction decreased with increasing intensity of the applied ultrasonic energy. In addition, a detailed chemical reaction mechanism for the destruction of CCl 4 in water was formulated. The agreement between the model and experimental results is generally good

  12. Application of Ultrasonic for Decontamination of Contaminated Soil - 13142

    International Nuclear Information System (INIS)

    Vasilyev, A.P.; Lebedev, N.M.; Savkin, A.E.

    2013-01-01

    The trials of soil decontamination were carried out with the help of a pilot ultrasonic installation in different modes. The installation included a decontamination bath equipped with ultrasonic sources, a precipitator for solution purification from small particles (less than 80 micrometer), sorption filter for solution purification from radionuclides washing out from soil, a tank for decontamination solution, a pump for decontamination solution supply. The trials were carried out on artificially contaminated sand with specific activity of 4.5 10 5 Bk/kg and really contaminated soil from Russian Scientific Center 'Kurchatovsky Institute' (RSC'KI') with specific activity of 2.9 10 4 Bk/kg. It was established that application of ultrasonic intensify the process of soil reagent decontamination and increase its efficiency. The decontamination factor for the artificially contaminated soil was ∼200 and for soil from RSC'KI' ∼30. The flow-sheet diagram has been developed for the new installation as well as determined the main technological characteristics of the equipment. (authors)

  13. Application of Ultrasonic for Decontamination of Contaminated Soil - 13142

    Energy Technology Data Exchange (ETDEWEB)

    Vasilyev, A.P. [JRC ' NIKIET' , Moscow (Russian Federation); Lebedev, N.M. [LLC ' Aleksandra-Plus' , Vologda (Russian Federation); Savkin, A.E. [SUE SIA ' Radon' , Moscow (Russian Federation)

    2013-07-01

    The trials of soil decontamination were carried out with the help of a pilot ultrasonic installation in different modes. The installation included a decontamination bath equipped with ultrasonic sources, a precipitator for solution purification from small particles (less than 80 micrometer), sorption filter for solution purification from radionuclides washing out from soil, a tank for decontamination solution, a pump for decontamination solution supply. The trials were carried out on artificially contaminated sand with specific activity of 4.5 10{sup 5} Bk/kg and really contaminated soil from Russian Scientific Center 'Kurchatovsky Institute' (RSC'KI') with specific activity of 2.9 10{sup 4} Bk/kg. It was established that application of ultrasonic intensify the process of soil reagent decontamination and increase its efficiency. The decontamination factor for the artificially contaminated soil was ∼200 and for soil from RSC'KI' ∼30. The flow-sheet diagram has been developed for the new installation as well as determined the main technological characteristics of the equipment. (authors)

  14. Determination of plant components degradation using ultrasonic C-scan

    International Nuclear Information System (INIS)

    Mohamad Pauzi Ismail; Suhairy Sani; Abdul Nassir Ibrahim

    2002-01-01

    C-scan Ultrasonic Inspection technique is increasingly used for the assessment of plant integrity. Due to the advancement of the equipment, Probability of Detection (POD) of this technique increased significantly as compared with the conventional techniques. Thus in many cases, the technique is accepted by engineers to be used to replace the conventional inspection methods such as visual inspections, thickness gauging and ultrasonic B-Scan. Thickness gauging and ultrasonic B-scan is still widely used by industries. However, both techniques have their own disadvantages. The most notable disadvantages of these techniques are related to the reliability of readings given by the equipment. In addition to this, thickness gauge would only provide data at certain points and B-scan would only provide data for certain lines. This paper presents and discusses results of C-scan measurement performed in power generation, chemical and petro-chemical plants. Due to its high accuracy, results from these measurements were used to establish the true condition of plant and to calculate its remaining safe life. Results presented in this paper include those related to corrosion, erosion and lamination in acid and gas pipelines, finger sludge catcher, steam drums in vessels and piping and electron beam machine. (Author)

  15. Detailed simulation of ultrasonic inspections

    International Nuclear Information System (INIS)

    Chaplin, K.R.; Douglas, S.R.; Dunford, D.

    1997-01-01

    Simulation of ultrasonic inspection of engineering components have been performed at the Chalk River Laboratories of AECL for over 10 years. The computer model, called EWE for Elastic Wave Equations, solves the Elastic Wave Equations using a novel finite difference scheme. It simulates the propagation of an ultrasonic wave from the transducer to a flaw, the scatter of waves from the flaw, and measurement of signals at a receive transducer. Regions of different materials, water and steel for example, can be simulated. In addition, regions with slightly different material properties from the parent material can be investigated. The two major types of output are displays of the ultrasonic waves inside the component and the corresponding A-scans. EPRI and other organizations have used ultrasonic models for: defining acceptable ultrasonic inspection procedures, designing and evaluating inspection techniques, and for quantifying inspection reliability. The EWE model has been applied to the inspection of large pipes in a nuclear plant, gas pipeline welds and steam generator tubes. Most recent work has dealt with the ultrasonic inspection of pressure tubes in CANDU reactors. Pressure tube inspections can reliably detect and size defects; however, there are improvements that can be made. For example, knowing the sharpness of a flaw-tip is crucial for fitness for service assessments. Computer modelling of the ultrasonic inspection of flaws with different root radius has suggested inspection techniques that provide flaw tip radius information. A preliminary investigation of these methods has been made in the laboratory. The basis for the model will be reviewed at the presentation. Then the results of computer simulations will be displayed on a PC using an interactive program that analyzes simulated A-scans. This software tool gives inspection staff direct access to the results of computer simulations. (author)

  16. Ultrasonic measurements and technologies

    CERN Document Server

    Kočiš, Štefan

    1996-01-01

    An impulse for writing this book has originated from the effort to sum­ marize and publicise the acquired results of a research team at the De­ partment of Automation of the Faculty of Electrical Engineering and In­ formatics, Slovak Technical University in Bratislava. The research team has been involved for a long time with control problems for machine production mechanisms and, in recent (approximately 15) years, its effort was aimed mostly at the control of electrical servosystems of robots. Within this scope, the members of the authors' staff solved the State Re­ search Task Ultrasonic sensing of the position of a robot hand, which was coordinated by the Institute of Technical Cybernetics of the Slovak Academy of Sciences in Bratislava. The problem was solved in a complex way, i.e. from a conceptual de­ sign of the measurement, through the measurement and evaluation sys­ tem, up to connection to the control system of a robot. Compensation of the atmospheric influence on the precision of measurement,...

  17. Ultrasonic-testing method

    International Nuclear Information System (INIS)

    Thome, Paul.

    1973-01-01

    Description is given of a device adapted to the detection, by means of ultrasonic waves, of all the flaws and defects included in workpieces when only one face of the latter is accessible. A beam is directed towards the rear-face of the workpiece (e.g. a plate) on which it is reflected. The image thus reflected is fed into a receiver. The latter is under the control of the displacement of that image; simultaneously a transducer checks the condition of the mirror at the places where the beam is reflected. Whenever a flow or defect comes between, a silent zone is formed. By recording the silent zones with respect to the positions of several emitters, it is possible to locates a flaw and to define the outline thereof. The apparatus comprises several ''emitter-receiver'' groups intersecting over the emitter used in order to check the good conditions of the mirror. The invention can be used for searching and identifying flaws and defects in buildings which have to be of top quality (e.g., cofferdams, nuclear devices, shipbuilding yards, aeronautics) [fr

  18. Ultrasonic monitoring system

    International Nuclear Information System (INIS)

    McLain, R.E.

    1975-01-01

    The ultrasonic monitoring system is used in LMFBR's, BWR's or PWR's. A remotely controlled, movable instrument carrier may be used which contains the piezo-electric transducer and is connected to the main control console by a transmission cable. An excitation pulse coming from a pulse generator is used to excite the transducer with a maximum of energy, independent of the length of the transmission line. Pulse width and pulse amplitude can be set without any direct interference into the transducer. For this purpose, a resistor whose impedance has been matched to that of the transmission line is connected to the input of the transmission line. Moreover, a capacitor for generation of the excitation pulse is coupled with the transmission line by means of a four-layer switching diode and is discharged. For termination of the excitation and the control pulses, respectively, another four-layer switching diode connected parallel to the capacitor quickly discharges the capacitor. The capacitor and the capacitance of the line constitute a voltage divider. In this way it is possible to change the length of the transmission line and, to safeguard the generation of a pulse of the desired amplitude, only vary the capacitance of the capacitor. (DG/RF) [de

  19. Medical Issues: Equipment

    Science.gov (United States)

    ... Information Packets Equipment Pool Living With SMA Medical Issues Palliative Breathing Orthopedics Nutrition Equipment Daily Life At ... curesma.org > support & care > living with sma > medical issues > equipment Equipment Individuals with SMA often require a ...

  20. The use of ultrasound for decontamination of tools and equipment in nuclear power plant Krshko

    International Nuclear Information System (INIS)

    Erman, R.

    1987-01-01

    This paper describes the main principles of the ultrasonic generator functioning and the use of ultrasound for decontamination of tools and equipment in nuclear power plant Krshko. The paper gives the operating procedure and presents decontamination results of tools and equipment fabricated from various materials. (author) 3 refs.; 1 tab

  1. Ultrasonic inspection of AA6013 laser welded joints

    Directory of Open Access Journals (Sweden)

    Adriano Passini

    2011-09-01

    Full Text Available Interest in laser beam welding for aerospace applications is continuously growing, mainly for aluminum alloys. The joints quality is usually assessed by non-destructive inspection (NDI. In this work, bead on plate laser welds on 1.6 mm thick AA6013 alloy sheets, using a 2 kW Yb-fiber laser were obtained and inspected by pulse/echo ultrasonic phased-array technique. Good and poor quality welds were inspected in order to verify the limits of inspection, comparing also to X-ray radiography and metallographic inspections. The results showed that ultrasonic phased array technique was able to identify the presence of grouped porosity, through the attenuation of the amplitude of the echo signal. This attenuation is attributed to the scattering of the waves caused by micro pores, with individual size below the resolution limit of the equipment, but when grouped, can cause a perceptive effect on the reflection spectra.

  2. Ultrasonic Sensors in Urban Traffic Driving-Aid Systems

    Directory of Open Access Journals (Sweden)

    Teresa de Pedro

    2011-01-01

    Full Text Available Currently, vehicles are often equipped with active safety systems to reduce the risk of accidents, most of which occur in urban environments. The most prominent include Antilock Braking Systems (ABS, Traction Control and Stability Control. All these systems use different kinds of sensors to constantly monitor the conditions of the vehicle, and act in an emergency. In this paper the use of ultrasonic sensors in active safety systems for urban traffic is proposed, and the advantages and disadvantages when compared to other sensors are discussed. Adaptive Cruise Control (ACC for urban traffic based on ultrasounds is presented as an application example. The proposed system has been implemented in a fully-automated prototype vehicle and has been tested under real traffic conditions. The results confirm the good performance of ultrasonic sensors in these systems.

  3. Ultrasonic sensors in urban traffic driving-aid systems.

    Science.gov (United States)

    Alonso, Luciano; Milanés, Vicente; Torre-Ferrero, Carlos; Godoy, Jorge; Oria, Juan P; de Pedro, Teresa

    2011-01-01

    Currently, vehicles are often equipped with active safety systems to reduce the risk of accidents, most of which occur in urban environments. The most prominent include Antilock Braking Systems (ABS), Traction Control and Stability Control. All these systems use different kinds of sensors to constantly monitor the conditions of the vehicle, and act in an emergency. In this paper the use of ultrasonic sensors in active safety systems for urban traffic is proposed, and the advantages and disadvantages when compared to other sensors are discussed. Adaptive Cruise Control (ACC) for urban traffic based on ultrasounds is presented as an application example. The proposed system has been implemented in a fully-automated prototype vehicle and has been tested under real traffic conditions. The results confirm the good performance of ultrasonic sensors in these systems.

  4. Semiconductor Manufacturing equipment introduction

    International Nuclear Information System (INIS)

    Im, Jong Sun

    2001-02-01

    This book deals with semiconductor manufacturing equipment. It is comprised of nine chapters, which are manufacturing process of semiconductor device, history of semiconductor manufacturing equipment, kinds and role of semiconductor manufacturing equipment, construction and method of semiconductor manufacturing equipment, introduction of various semiconductor manufacturing equipment, spots of semiconductor manufacturing, technical elements of semiconductor manufacturing equipment, road map of technology of semiconductor manufacturing equipment and semiconductor manufacturing equipment in the 21st century.

  5. Ultrasonic propulsion of kidney stones.

    Science.gov (United States)

    May, Philip C; Bailey, Michael R; Harper, Jonathan D

    2016-05-01

    Ultrasonic propulsion is a novel technique that uses short bursts of focused ultrasonic pulses to reposition stones transcutaneously within the renal collecting system and ureter. The purpose of this review is to discuss the initial testing of effectiveness and safety, directions for refinement of technique and technology, and opinions on clinical application. Preclinical studies with a range of probes, interfaces, and outputs have demonstrated feasibility and consistent safety of ultrasonic propulsion with room for increased outputs and refinement toward specific applications. Ultrasonic propulsion was used painlessly and without adverse events to reposition stones in 14 of 15 human study participants without restrictions on patient size, stone size, or stone location. The initial feasibility study showed applicability in a range of clinically relevant situations, including facilitating passage of residual fragments following ureteroscopy or shock wave lithotripsy, moving a large stone at the ureteropelvic junction with relief of pain, and differentiating large stones from a collection of small fragments. Ultrasonic propulsion shows promise as an office-based system for transcutaneously repositioning kidney stones. Potential applications include facilitating expulsion of residual fragments following ureteroscopy or shock wave lithotripsy, repositioning stones prior to treatment, and repositioning obstructing ureteropelvic junction stones into the kidney to alleviate acute renal colic.

  6. Ultrasonic stir welding process and apparatus

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2009-01-01

    An ultrasonic stir welding device provides a method and apparatus for elevating the temperature of a work piece utilizing at least one ultrasonic heater. Instead of relying on a rotating shoulder to provide heat to a workpiece an ultrasonic heater is utilized to provide ultrasonic energy to the workpiece. A rotating pin driven by a motor assembly performs the weld on the workpiece. A handheld version can be constructed as well as a fixedly mounted embodiment.

  7. The effects of ultrasonic solidification on aluminum

    OpenAIRE

    Đorđević Slavko 1

    2003-01-01

    The effect of ultrasound on characteristics of solidified aluminum was shown. An ultrasonic head and ultrasonic system for modification was designed and applied to the crystallizing aluminum melt. The ultrasonic generator allows power of 50-500 W, amplitude of oscillations 10-100 um.m and the operating frequency of 25 kHz. Ultrasonic modification was done by ultrasound introduced from above into the melt. Microstructure photographs show decreasing of the grain size more than five times.

  8. The effects of ultrasonic solidification on aluminum

    Directory of Open Access Journals (Sweden)

    Đorđević Slavko 1

    2003-01-01

    Full Text Available The effect of ultrasound on characteristics of solidified aluminum was shown. An ultrasonic head and ultrasonic system for modification was designed and applied to the crystallizing aluminum melt. The ultrasonic generator allows power of 50-500 W, amplitude of oscillations 10-100 um.m and the operating frequency of 25 kHz. Ultrasonic modification was done by ultrasound introduced from above into the melt. Microstructure photographs show decreasing of the grain size more than five times.

  9. System for ultrasonic testing of welded seams. Einrichtung zur Ultraschallpruefung von Schweissnaehten

    Energy Technology Data Exchange (ETDEWEB)

    Bondarenko, J K; Troizkij, V A; Agronskaja, E V; Vasiliev, L N; Orel, V G; Naida, V L; Baldakov, V F; Ustjusanin, J V; Litvinenko, V A; Petrovskij, S N

    1984-07-12

    The invention concerns a device for the ultrasonic testing of welded joints which can be used in particular for quality control of multi-layer weldments. The testing equipment consists of probe, material testing device, amplitude discriminator, recording device, up and down counters and threshold value stages. (GSCH).

  10. Pitch-catch only ultrasonic fluid densitometer

    Science.gov (United States)

    Greenwood, M.S.; Harris, R.V.

    1999-03-23

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.

  11. Ultrasonic techniques for fluids characterization

    CERN Document Server

    Povey, Malcolm J W

    1997-01-01

    This book is a comprehensive and practical guide to the use of ultrasonic techniques for the characterization of fluids. Focusing on ultrasonic velocimetry, the author covers the basic topics and techniques necessaryfor successful ultrasound measurements on emulsions, dispersions, multiphase media, and viscoelastic/viscoplastic materials. Advanced techniques such as scattering, particle sizing, and automation are also presented. As a handbook for industrial and scientific use, Ultrasonic Techniques for Fluids Characterization is an indispensable guide to chemists and chemical engineers using ultrasound for research or process monitoring in the chemical, food processing, pharmaceutical, cosmetic, biotechnology,and fuels industries. Key Features * Appeals to anyone using ultrasound to study fluids * Provides the first detailed description of the ultrasound profiling technique for dispersions * Describes new techniques for measuring phase transitions and nucleation, such as water/ice and oil/fat * Presents the l...

  12. Ultrasonic wave propagation in powders

    Science.gov (United States)

    Al-Lashi, R. S.; Povey, M. J. W.; Watson, N. J.

    2018-05-01

    Powder clumps (cakes) has a significant effect on the flowability and stability of powders. Powder caking is mainly caused by moisture migration due to wetting and environmental (temperature and humidity) changes. The process of moisture migration caking involves creating liquid bridges between the particles during condensation which subsequently harden to form solid bridges. Therefore, an effective and reliable technique is required to quantitatively and non-invasively monitor caking kinetics and effective stiffness. This paper describes two ultrasonic instruments (ultrasonic velocity pulse and airborne ultrasound systems) that have been used to monitor the caking phenomenon. Also, it discusses the relationship between the ultrasonic velocity and attenuation measurements and tracking caking kinetics and the effective stiffness of powders.

  13. Ultrasonically assisted drilling of rocks

    Science.gov (United States)

    Mikhailova, N. V.; Onawumi, P. Y.; Roy, A.; Silberschmidt, V. V.

    2018-05-01

    Conventional drilling of rocks can generate significant damage in the drilled material; a material layer is often split off a back surface of a sample during drilling, negatively affecting its strength. To improve finish quality, ultrasonically assisted drilling (UAD) was employed in two rocks - sandstone and marble. Damage areas in both materials were reduced in UAD when compared to conventional drilling. Reductions in a thrust force and a torque reduction were observed only for UAD in marble; ultrasonic assistance in sandstone drilling did not result in improvements in this regard.

  14. Very high temperature ultrasonic thermometer

    International Nuclear Information System (INIS)

    Jorzik, E.

    1983-01-01

    An ultrasonic thermometer comprises an electric pulse transducer head, a pulse transmission line, a notched sensor wire attached to and extending along the axis of said transmission line and a sheath enclosing the transmission line and the sensor wire, a portion of the interior face of the sheath being covered by a stuffing material along at least the length of the notched part of the sensor wire, such that contact between the sensor wire and the stuffing material does not substantially give rise to reflection of an ultrasonic pulse at the point of contact. (author)

  15. Measurement of a 3D Ultrasonic Wavefield Using Pulsed Laser Holographic Microscopy for Ultrasonic Nondestructive Evaluation

    Directory of Open Access Journals (Sweden)

    Xing Wang

    2018-02-01

    Full Text Available In ultrasonic array imaging, 3D ultrasonic wavefields are normally recorded by an ultrasonic piezo array transducer. Its performance is limited by the configuration and size of the array transducer. In this paper, a method based on digital holographic interferometry is proposed to record the 3D ultrasonic wavefields instead of the array transducer, and the measurement system consisting of a pulsed laser, ultrasonic excitation, and synchronization and control circuit is designed. A consecutive sequence of holograms of ultrasonic wavefields are recorded by the system. The interferograms are calculated from the recorded holograms at different time sequence. The amplitudes and phases of the transient ultrasonic wavefields are recovered from the interferograms by phase unwrapping. The consecutive sequence of transient ultrasonic wavefields are stacked together to generate 3D ultrasonic wavefields. Simulation and experiments are carried out to verify the proposed technique, and preliminary results are presented.

  16. Selection of equipment for equipment qualification

    International Nuclear Information System (INIS)

    Torr, K.G.

    1989-01-01

    This report describes the methodology applied in selecting equipment in the special safety systems for equipment qualification in the CANDU 600 MW nuclear generating stations at Gentilly 2 and Point Lepreau. Included is an explanation of the selection procedure adopted and the rationale behind the criteria used in identifying the equipment. The equipment items on the list have been grouped into three priority categories as a planning aid to AECB staff for a review of the qualification status of the special safety systems

  17. Ultrasonic inspection of austenitic welds

    International Nuclear Information System (INIS)

    Baikie, B.L.; Wagg, A.R.; Whittle, M.J.; Yapp, D.

    1976-01-01

    Optical and X-ray metallography combined with ultrasonic testing by compression waves was used for inspection of stainless steel weld metal produced by three different welding techniques. X-ray diffraction showed that each weld possessed a characteristic fibre textured structure which was shown by optical microscopy to be parallel to columnar grain boundaries. Metallographic evidence suggested that the development of fibre texture is due to the mechanism of competitive growth. From observations made as a result of optical metallographic examination the orientation of the fibre axis could be predicted if the weld geometry and welding procedure were known. Ultrasonic velocity and attenuation measurements as a continuous function of grain orientation, made on cylinders machined from weld samples, showed that attenuation was strongly orientation dependent. It was concluded that the sensitivity of ultrasonic inspection to small defects is unlikely to be as high for austenitic welds as for ferritic even when transmission is improved by modifying the welding procedure to improve the ultrasonic transmission. (U.K.)

  18. Atmospheric contamination during ultrasonic scaling

    NARCIS (Netherlands)

    Timmerman, MF; Menso, L; Steinfort, J; van Winkelhoff, AJ; van der Weijden, GA

    Objective: The aim of this study was to determine the microbial atmospheric contamination during initial periodontal treatment using a piezoelectric ultrasonic scaler in combination with either high-volume evacuation (HVE) or conventional dental suction (CDS). Methods: The study included 17

  19. Automated evaluation of ultrasonic indications

    International Nuclear Information System (INIS)

    Hansch, M.K.T.; Stegemann, D.

    1994-01-01

    Future requirements of reliability and reproducibility in quality assurance demand computer evaluation of defect indications. The ultrasonic method with its large field of applications and a high potential for automation provides all preconditions for fully automated inspection. The survey proposes several desirable hardware improvements, data acquisition requirements and software configurations. (orig.) [de

  20. Calculations for Piezoelectric Ultrasonic Transducers

    DEFF Research Database (Denmark)

    Jensen, Henrik

    1986-01-01

    Analysis of piezoelectric ultrasonic transducers implies a solution of a boundary value problem, for a boay which consists of different materials, including a piezoelectric part. The problem is dynamic at frequencies, where a typical wavelength is somewhat less than the size of the body. Radiation...

  1. Eddy current and ultrasonic fuel channel inspection at Karachi Nuclear Power Plant

    International Nuclear Information System (INIS)

    Mayo, W.R.; Alam, M.M.

    1997-01-01

    In November of 1993 and in-service inspection was performed on eight fuel channels in the Karachi Nuclear Power Plant (KANUPP) reactor. The workscope included ultrasonic and eddy current volumetric examinations, and eddy current measurement of pressure-to calandria tube gap. This paper briefly discusses the planning strategy of the ultrasonic and eddy current examinations, and describes the equipment developed to meet the requirements, followed by details of the actual channel inspection campaign. The presented nondestructive examinations assisted in determining fitness for service of KANUPP reactor channels in general, and confirmed that the problems associated with channel G12 were not generic in nature. (author)

  2. The Ontario hydro low pressure turbine disc inspection program automated ultrasonic inspection systems - an overview

    International Nuclear Information System (INIS)

    Huggins, J.W.; Chopcian, M.; Grabish, M.

    1990-01-01

    An overview of the Ontario Hydro Low Pressure Turbine Disc Inspection Program is presented. The ultrasonic inspection systems developed in-house to inspect low pressure turbine discs at Pickering and Bruce Nuclear Generating stations are described. Three aspects of the program are covered: PART I - Background to inspection program, disc cracking experience, and development of an in-house inspection capability: PART II - System development requirements; ultrasonic equipment, electromechanical subsystems and instrumentation console: PART III - Customized software for flaw detection, sizing, data acquisition/storage, advanced signal processing, reports, documentation and software based diagnostics

  3. Reproducibility of ultrasonic testing

    International Nuclear Information System (INIS)

    Lecomte, J.-C.; Thomas, Andre; Launay, J.-P.; Martin, Pierre

    The reproducibility of amplitude quotations for both artificial and natural reflectors was studied for several combinations of instrument/search unit, all being of the same type. This study shows that in industrial inspection if a range of standardized equipment is used, a margin of error of about 6 decibels has to be taken into account (confidence interval of 95%). This margin is about 4 to 5 dB for natural or artificial defects located in the central area and about 6 to 7 dB for artificial defects located on the back surface. This lack of reproducibility seems to be attributable first to the search unit and then to the instrument and operator. These results were confirmed by analysis of calibration data obtained from 250 tests performed by 25 operators under shop conditions. The margin of error was higher than the 6 dB obtained in the study [fr

  4. Ultrasonic testing of electron beam closure weld on pressure vessel

    International Nuclear Information System (INIS)

    Andrews, R.W.

    1975-01-01

    One of the special products manufactured at the General Electric Neutron Devices Department (GEND) is a small stainless steel vessel designed to hold a component under high pressure for long periods. The vessel is a thick-walled cylinder with a threaded receptacle into which a plug is screwed and welded after receiving the unit to be tested. The test cavity is then pressurized through a small diameter opening in the bottom and that opening is welded closed. When x-ray inspection techniques did not reveal defective welds at the threaded plug in a pressured vessel, occasional ''leakers'' occurred. With normal equipment tolerances, the electron beam spike tends to wander from the desired path, particularly at the root of the weld. Ultrasonic techniques were used to successfully inspect the weld. The testing technique is based on the observation that ultrasonic energy is reflected from the unwelded screw threads and not from the regions where the threads are completely fused together by welding. Any gas pore or any threaded region outside the weld bead can produce an echo. The units are rotated while the ultrasonic transducer travels in a direction parallel to the axis of rotation and toward the welded end. This produces a helical scan which is converted to a two-dimensional presentation in which incomplete welds can be noted. (U.S.)

  5. The STADUS ultrasonic data acquisition and processing system

    International Nuclear Information System (INIS)

    Frappier, J.C.; Birac, A.M.; Saglio, R.

    1983-01-01

    The use of the PRODUS software for real-time system management results in definitely improved date acquisition, although signal arrival is, of course, a random process. As regards data processing and display; the STADUS-PRODUS combination provides the operator with a high degree of flexibility in changing the parameters from which the three standard A-SCAN, B-SCAN, and C-SCAN displays are generated. STADUS effectivity has been demonstrated in the field through the many reactor vessel inspections performed to date. The system has been a key element in the success of underclad cracking detection and evaluation methods. The STADUS equipment, designed and built by CEA, has the advantage of being capable of acquiring a large number of ultrasonic date simultaneously generated by several transducers (up to sixteen), and to immediately process the date for creating pictures of the zone under examination, as required by the operator. Through these improvements in ultrasonic data acquisition and interpretation, the STADUS system helps enhance the quality of automatic ultrasonic examinations

  6. Ultrasonic superlensing jets and acoustic-fork sheets

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F.G., E-mail: F.G.Mitri@ieee.org

    2017-05-18

    Focusing acoustical (and optical) beams beyond the diffraction limit has remained a major challenge in imaging instruments and systems, until recent advances on “hyper” or “super” lensing and higher-resolution imaging techniques have shown the counterintuitive violation of this rule under certain circumstances. Nonetheless, the proposed technologies of super-resolution acoustical focusing beyond the diffraction barrier require complex tools such as artificially engineered metamaterials, and other hardware equipment that may not be easily synthesized or manufactured. The present contribution therefore suggests a simple and reliable method of using a sound-penetrable circular cylinder lens illuminated by a nonparaxial Gaussian acoustical sheet (i.e. finite beam in 2D) to produce non-evanescent ultrasonic superlensing jets (or bullets) and acoustical ‘snail-fork’ shaped wavefronts with limited diffraction. The generalized (near-field) scattering theory for acoustical sheets of arbitrary wavefronts and incidence is utilized to synthesize the incident beam based upon the angular spectrum decomposition method and the multipole expansion method in cylindrical wave functions to compute the scattered pressure around the cylinder with particular emphasis on its physical properties. The results show that depending on the beam and lens parameters, a tight focusing (with dimensions much smaller than the beam waist) can be achieved. Subwavelength resolution can be also achieved by selecting a lens material with a speed of sound exceeding that of the host fluid medium. The ultrasonic superlensing jets provide the impetus to develop improved subwavelength microscopy and acoustical image-slicing systems, cell lysis and surgery, and photoacoustic imaging to name a few examples. Moreover, an acoustical fork-sheet generation may open innovative avenues in reconfigurable on-chip micro/nanoparticle tweezers and surface acoustic waves devices. - Highlights: • Ultrasonic

  7. Stand for visual ultrasonic testing of spent fuel

    International Nuclear Information System (INIS)

    Czajkowski, W.; Borek-Kruszewska, E.

    2001-01-01

    A stand for visual and ultrasonic testing of spent fuel, constructed under Strategic Governmental Programme for management of spent fuel and radioactive waste, is presented in the paper. The stand, named 'STEND-1', built up at the Institute of Atomic Energy in Swjerk, is appointed for underwater visual testing of spent fuel elements type MR6 and WWR by means of TV-CCD camera and image processing system and for ultrasonic scanning of external surface of these elements by means of video scan immersion transducer and straight UHT connector. 'STEND-1' is built using flexible in use, high-tensile, anodized aluminum profiles. All the profiles feature longitudinal grooves to accommodate connecting elements and for the attachment of accessories at any position. They are also characterised by straight-through core bores for use with standard fastening elements and to accommodate accessory components. Stand, equipped with automatic control and processing system based on personal computer, may be manually or automatically controlled. Control system of movements of the camera in the vertical axis and rotational movement of spent fuel element permits to fix chosen location of fuel element with accuracy better than 0.1 mm. High resolution of ultrasonic method allows to record damages of outer surface of order 0.1 mm. The results of visual testing of spent fuel are recorded on video tape and then may be stored on the hard disc of the personal computer and presented in shape of photo or picture. Only selected damage surfaces of spent fuel elements are tested by means of ultrasonic scanning. All possibilities of the stand and results of visual testing of spent fuel type WWR are presented in the paper. (author)

  8. Effect of Ultrasonic Frequency on Lactic Acid Fermentation Promotion by Ultrasonic Irradiation

    Science.gov (United States)

    Shimada, Tadayuki; Ohdaira, Etsuzo; Masuzawa, Nobuyoshi

    2004-05-01

    The authors have been researching the promotion of lactic acid fermentation by ultrasonic irradiation. In the past research, it was proven that ultrasonic irradiation is effective in the process of fermentation, and the production of yoghurt and kefir was promoted. In this study, the effect of the ultrasonic frequency in this fermentation process was examined. In the frequency range of this study, it was found that the action of fermentation promotion was exponentially proportionate to the irradiated ultrasonic frequency.

  9. High-resolution ultrasonic spectroscopy

    Directory of Open Access Journals (Sweden)

    V. Buckin

    2018-03-01

    Full Text Available High-resolution ultrasonic spectroscopy (HR-US is an analytical technique for direct and non-destructive monitoring of molecular and micro-structural transformations in liquids and semi-solid materials. It is based on precision measurements of ultrasonic velocity and attenuation in analysed samples. The application areas of HR-US in research, product development, and quality and process control include analysis of conformational transitions of polymers, ligand binding, molecular self-assembly and aggregation, crystallisation, gelation, characterisation of phase transitions and phase diagrams, and monitoring of chemical and biochemical reactions. The technique does not require optical markers or optical transparency. The HR-US measurements can be performed in small sample volumes (down to droplet size, over broad temperature range, at ambient and elevated pressures, and in various measuring regimes such as automatic temperature ramps, titrations and measurements in flow.

  10. Ultrasonic inspection of austenitic welds

    Energy Technology Data Exchange (ETDEWEB)

    Tomlinson, J R; Wagg, A R; Whittle, M J [N.D.T. Applications Centre, CEGB, Manchester (United Kingdom)

    1980-11-01

    The metallurgical structure of austenitic welds is described and contrasted with that found in ferritic welds. It is shown that this structure imparts a marked elastic anisotropy in the ultrasonic propagation parameters. Measurements of variations in the apparent attenuation of sound and deviations in the beam direction are described. The measurements are interpreted in terms of the measured velocity anisotropy. Two applications of the fundamental work are described. In the first it is shown how, by using short pulse compression wave probes, and with major modification of the welding procedure, a stainless steel fillet weld in an AGR boiler can be inspected. In the second application, alternative designs of a transition butt weld have been compared for ease of ultrasonic inspection. The effects of two different welding processes on such an inspection are described. Finally, the paper examines the prospects for future development of inspection and defect-sizing techniques for austenitic welds. (author)

  11. Application of ultrasonic sensor for measuring distances in robotics

    Science.gov (United States)

    Zhmud, V. A.; Kondratiev, N. O.; Kuznetsov, K. A.; Trubin, V. G.; Dimitrov, L. V.

    2018-05-01

    Ultrasonic sensors allow us to equip robots with a means of perceiving surrounding objects, an alternative to technical vision. Humanoid robots, like robots of other types, are, first, equipped with sensory systems similar to the senses of a human. However, this approach is not enough. All possible types and kinds of sensors should be used, including those that are similar to those of other animals and creations (in particular, echolocation in dolphins and bats), as well as sensors that have no analogues in the wild. This paper discusses the main issues that arise when working with the HC-SR04 ultrasound rangefinder based on the STM32VLDISCOVERY evaluation board. The characteristics of similar modules for comparison are given. A subroutine for working with the sensor is given.

  12. Anchoring submersible ultrasonic receivers in river channels with stable substrate

    Science.gov (United States)

    Bettoli, Phillip William; Scholten, G.D.; Hubbs, D.

    2010-01-01

    We developed an anchoring system for submersible ultrasonic receivers (SURs) that we placed on the bottom of the riverine reaches of three main-stem reservoirs in the upper Tennessee River. Each anchor consisted of a steel tube (8.9 x 35.6 cm) welded vertically to a round plate of steel (5.1 x 40.6 cm). All seven SURs and their 57-kg anchors were successfully deployed and retrieved three times over 547 d by a dive team employing surface air-breathing equipment and a davit-equipped boat. All of the anchors and their SURs remained stationary over two consecutive winters on the hard-bottom, thalweg sites where they were deployed. The SUR and its anchor at the most downriver site experienced flows that exceeded 2,100 m(3)/s and mean water column velocities of about 0.9 m/s.

  13. Proposed new ultrasonic test bed

    International Nuclear Information System (INIS)

    Maxfield, B.W.

    1978-01-01

    Within the last four or five years, a great deal of progress has been made both here and in a number of other laboratories in developing techniques that will enable considerably more information to be obtained from the ultrasonic examination of an object. Some of these recent developments relate to information contained within the diffracted beam which does not return along the incident path. An ultrasonic examination based upon an evaluation of diffracted energy must use at least two transducers, one for transmission and the other for reception. Current indications are that even more reliable test results will be achieved using a receiving transducer that can scan a significant portion of the diffracted field including that portion which is back-reflected. In general, this scan can be interpreted most accurately if it follows a path related to the surface shape. If more than one region within the object is to be interrogated, then the transmitting transducer must also be scanned, again along a path related to the surface shape. The large quantity of information obtained as the result of such an examination must be subjected to sophisticated computer analysis in order to be displayed in a meaningful and intelligible manner. Although one motivation for building such an instrument is to explore new ultrasonic test procedures that are evolving from current laboratory research, this is neither the sole motivation nor the only use for this instrument. Such a mechanical and electronic device would permit conventional ultrasonic tests to be performed on parts of complex geometry without the expensive and time-consuming special fixturing that is currently required. May possible test geometries could be explored in practice prior to the construction of a specialized test apparatus. Hence, it would be necessary to design much, if any, flexibility into the special test apparatus

  14. Ultrasonic sizing of fatigue cracks

    International Nuclear Information System (INIS)

    Burns, D.J.

    1983-12-01

    Surface and buried fatigue cracks in steel plates have been sized using immersion probes as transmitters-receivers, angled to produce shear waves in the steel. Sizes have been estimated by identifying the ultrasonic waves diffracted from the crack tip and by measuring the time taken for a signal to travel to and from the crack tip. The effects of compression normal to a fatigue crack and of crack front curvature are discussed. Another diffraction technique, developed by UKAEA, Harwell, is reviewed

  15. Ultrasonic inspection of nodular cast iron

    International Nuclear Information System (INIS)

    Hersh, S.; Zhang, Yingda

    1990-01-01

    On the basis of experimental results collected from several nodular cast iron (NCI) specimens, Amdata, Inc., has developed a tentative procedure for performing ultrasonic testing (UT) preservice inspection of NCI casks and qualifying personnel and equipment. The authors anticipate that this procedure will be a component in a comprehensive program to certify that casks are free from critical flaws prior to their introduction into service, with testing being performed on a production line basis by UT inspection personnel. The tentative procedure was applied to inspection of NCI block SGR-483-001 manufactured by Siempelkamp Giesserei GmbH and Co. of West Germany. This block is 59 by 39.5 by 13.8 inches and weighs 5.2 tons. Several indications were detected with the I/98, in accordance with the tentative procedure, and they were analyzed using two-dimensional synthetic aperture technique (Line-SAFT). When compared with conventional sizing methods that may confound the effects of beam spread with flaw size, Line-SAFT significantly improved sizing accuracy. SAFT is an electronic simulation of a lens and has the property of reducing the effect of beam spread on the resultant indication sizes. Although a higher-precision 3-D SAFT option was also available, it would necessitate data transfer to a separate VAX computer and lengthy calculations. As an alternative, Line-SAFT, a faster but less precise 2-D simplification, was implemented on the I/98 data acquisition system

  16. Ultrasonic characterization of yogurt fermentation process

    OpenAIRE

    IZBAIM , DRIS; FAIZ , BOUAZZA; MOUDDEN , ALI; MALAININE , MOHAMED; ABOUDAOUD , Idriss

    2012-01-01

    International audience; The objective of this work is to characterize the fermentation of yogurt based on an ultrasonic technique. Conventionally, the acidity of the yogurt is measured by a pH meter to determine the progress of fermentation. However, the pH meter should be cleaned and calibrated for each measurement and, therefore, this method is not practical. In this regard, ultrasonic techniques are fast, non-invasive and inexpensive. The measurement of ultrasonic parameters such as amplit...

  17. Experimental investigation of ultrasonic velocity anisotropy in ...

    Indian Academy of Sciences (India)

    Permanent link: https://www.ias.ac.in/article/fulltext/pram/077/02/0345-0355. Keywords. Magnetic fluids; ultrasonic wave; sound velocity; anisotropy. Abstract. Magnetic field-induced dispersion of ultrasonic velocity in a Mn0.7Zn0.3Fe2O4 fluid (applied magnetic field is perpendicular to the ultrasonic propagation vector) is ...

  18. Ultrasonic assisted consolidation of commingled thermoplastic/glass fibers rovings

    Directory of Open Access Journals (Sweden)

    Francesca eLionetto

    2015-04-01

    Full Text Available Thermoplastic matrix composites are finding new applications in different industrial area thanks to their intrinsic advantages related to environmental compatibility and processability. The approach presented in this work consists in the development of a technology for the simultaneous deposition and consolidation of commingled thermoplastic rovings through to the application of high energy ultrasound. An experimental equipment, integrating both fiber impregnation and ply consolidation in a single process, has been designed and tested. It is made of an ultrasonic welder, whose titanium sonotrode is integrated on a filament winding machine. During winding, the commingled roving is at the same time in contact with the mandrel and the horn. The intermolecular friction generated by ultrasound is able to melt the thermoplastic matrix and impregnate the reinforcement fibers. The heat transfer phenomena occurring during the in situ consolidation were simulated solving by finite element (FE analysis an energy balance accounting for the heat generated by ultrasonic waves and the melting characteristics of the matrix. To this aim, a calorimetric characterization of the thermoplastic matrix has been carried out to obtain the input parameters for the model. The FE analysis has enabled to predict the temperature distribution in the composite during heating and cooling The simulation results have been validated by the measurement of the temperature evolution during ultrasonic consolidation.The reliability of the developed consolidation equipment was proved by producing hoop wound cylinder prototypes using commingled continuous E-glass rovings and Polypropylene (PP filaments. The consolidated composite cylinders are characterized by high mechanical properties, with values comparable with the theoretical ones predicted by the micromechanical analysis.

  19. Automated ultrasonic inspection using PULSDAT

    International Nuclear Information System (INIS)

    Naybour, P.J.

    1992-01-01

    PULSDAT (Portable Ultrasonic Data Acquisition Tool) is a system for recording the data from single probe automated ultrasonic inspections. It is one of a range of instruments and software developed by Nuclear Electric to carry out a wide variety of high quality ultrasonic inspections. These vary from simple semi-automated inspections through to multi-probe, highly automated ones. PULSDAT runs under the control of MIPS software, and collects data which is compatible with the GUIDE data display system. PULSDAT is therefore fully compatible with Nuclear Electric's multi-probe inspection systems and utilises all the reliability and quality assurance of the software. It is a rugged, portable system that can be used in areas of difficult access. The paper discusses the benefits of automated inspection and gives an outline of the main features of PULSDAT. Since April 1990 PULSDAT has been used in several applications within Nuclear Electric and this paper presents two examples: the first is a ferritic set-through nozzle and the second is an austenitic fillet weld. (Author)

  20. Recent progress in online ultrasonic process monitoring

    Science.gov (United States)

    Wen, Szu-Sheng L.; Chen, Tzu-Fang; Ramos-Franca, Demartonne; Nguyen, Ky T.; Jen, Cheng-Kuei; Ihara, Ikuo; Derdouri, A.; Garcia-Rejon, Andres

    1998-03-01

    On-line ultrasonic monitoring of polymer co-extrusion and gas-assisted injection molding are presented. During the co- extrusion of high density polyethylene and Santoprene ultrasonic sensors consisting of piezoelectric transducers and clad ultrasonic buffer rods are used to detect the interface between these two polymers and the stability of the extrusion. The same ultrasonic sensor also measures the surface temperature of the extruded polymer. The results indicate that temperature measurements using ultrasound have a faster response time than those obtained by conventional thermocouple. In gas-assisted injection molding the polymer and gas flow front positions are monitored simultaneously. This information may be used to control the plunger movement.

  1. Internal ultrasonic inspection of flexible pipe

    Energy Technology Data Exchange (ETDEWEB)

    Baltzersen, O. (IKU Petroleumsforskning A/S, Trondheim (Norway) Norwegian Inst. of Tech., Trondheim (Norway). Div. of Petroleum Engineering and Applied Geophysics); Waag, T.I. (IKU Petroleumsforskning A/S, Trondheim (Norway))

    1993-10-01

    Methods for internal ultrasonic inspection of flexible pipe have been investigated through experiments with a short sample of Coflexip pipe. Ultrasonic backscatter methods using normal and non-normal incidence have been used for qualitative high contrast ultrasonic imaging of the inner surface of the pipe. Analysis of the internal cross-section has been performed based on the use of a non-contact ultrasonic caliper, and processing procedures which enable calculation of, and compensation for, eccentricity of the tool in the pipe. The methods developed can be used to quantitatively estimate the thickness of the internal carcass, and perform high resolution topographic mapping of the inner surface. (Author)

  2. Under sodium ultrasonic imaging system for PFBR

    International Nuclear Information System (INIS)

    Patankar, V.H.; Lalwani, S.K.; Agashe, A.A.

    2014-01-01

    Under Sodium UltraSonic Scanner (USUSS) has been developed to detect the growth and protrusion of fuel sub-assemblies of PFBR, submerged in liquid sodium by using the ultrasonic imaging technique during reactor shut-down when liquid sodium is at 180 ℃. The imaging is carried out prior to every Fuel handling operation. Electronics Division, BARC has designed and developed an 8-Channel Ultrasonic Imaging System (UIS) which consists of 4 downward viewing and 4 side viewing ultrasonic transducers alongwith pulser-receiver, signal processing electronics hardware and software. An automated mechanical scanner developed by IGCAR houses sodium immersible transducers to image the fuel sub assemblies. The system has been successfully tested with dummy protruding and grown FSAs, submerged under liquid sodium. Such ultrasonic imaging systems are not available to India from international market. The USUSS developed indigenously has all the features available in similar systems developed by other countries. After every imaging campaign, the mechanical scanner containing ultrasonic transducers is stored in the Argon filled storage-pit. Before every campaign of USUSS, it is necessary to check the healthiness of the sodium immersible and contaminated ultrasonic transducers, as the under-sodium scanner is decontaminated once in five years. For this purpose, a novel Non Contact Ultrasonic Inspection System (NCUIS) has been designed and developed by Electronics Division, BARC to check the functionality of the high-temperature and contaminated transducers of USUSS, using air-coupled ultrasonic technique. (author)

  3. Stresses in ultrasonically assisted bone cutting

    International Nuclear Information System (INIS)

    Alam, K; Mitrofanov, A V; Silberschmidt, V V; Baeker, M

    2009-01-01

    Bone cutting is a frequently used procedure in the orthopaedic surgery. Modern cutting techniques, such as ultrasonic assisted drilling, enable surgeons to perform precision operations in facial and spinal surgeries. Advanced understanding of the mechanics of bone cutting assisted by ultrasonic vibration is required to minimise bone fractures and to optimise the technique performance. The paper presents results of finite element simulations on ultrasonic and conventional bone cutting analysing the effects of ultrasonic vibration on cutting forces and stress distribution. The developed model is used to study the effects of cutting and vibration parameters (e.g. amplitude and frequency) on the stress distributions in the cutting region.

  4. A fully automated system for ultrasonic power measurement and simulation accordingly to IEC 61161:2006

    International Nuclear Information System (INIS)

    Costa-Felix, Rodrigo P B; Alvarenga, Andre V; Hekkenberg, Rob

    2011-01-01

    The ultrasonic power measurement, worldwide accepted, standard is the IEC 61161, presently in its 2nd edition (2006), but under review. To fulfil its requirements, considering that a radiation force balance is to be used as ultrasonic power detector, a large amount of raw data (mass measurement) shall be collected as function of time to perform all necessary calculations and corrections. Uncertainty determination demands calculation effort of raw and processed data. Although it is possible to be undertaken in an old-fashion way, using spread sheets and manual data collection, automation software are often used in metrology to provide a virtually error free environment concerning data acquisition and repetitive calculations and corrections. Considering that, a fully automate ultrasonic power measurement system was developed and comprehensively tested. A 0,1 mg of precision balance model CP224S (Sartorius, Germany) was used as measuring device and a calibrated continuous wave ultrasound check source (Precision Acoustics, UK) was the device under test. A 150 ml container filled with degassed water and containing an absorbing target at the bottom was placed on the balance pan. Besides the feature of automation software, a routine of power measurement simulation was implemented. It was idealized as a teaching tool of how ultrasonic power emission behaviour is with a radiation force balance equipped with an absorbing target. Automation software was considered as an effective tool for speeding up ultrasonic power measurement, while allowing accurate calculation and attractive graphical partial and final results.

  5. A new multiple channel data recording system for mechanised ultrasonic testing of pipes and nozzles by A-scan processing

    International Nuclear Information System (INIS)

    Heumueller, R.; Rathgeb, W.; Szafarska, E.; Bertus, N.; Erhard, A.; Montag, H.J.; Wuestenberg, H.

    1989-01-01

    A system of equipment for ultrasonic testing in nuclear technique is introduced. This is a four channel ultrasonic equipment, which consists of a manipulator suitable for components, up to four conventional test heads, a test head connection box connected with them via 20 metres of coaxial cable, a documentation unit for signal detection and conversion, a data collection computer for parametricising the equipment, measurement display and representation and a disc memory. The advantages of this test system lie in its easy use because of the compact equipment dimensions, in the data collection of the complete A picture by the documentation unit and in the flexible evaluation of the collected data by the computer. (MM) [de

  6. Are community pharmacists equipped to ensure the safe use of oral anticancer therapy in the community setting? Results of a cross-country survey of community pharmacists in Canada.

    Science.gov (United States)

    Abbott, Rick; Edwards, Scott; Whelan, Maria; Edwards, Jonathan; Dranitsaris, George

    2014-02-01

    Oral anticancer agents offer significant benefits over parenteral anticancer therapy in terms of patient convenience and reduced intrusiveness. Oral anticancer agents give many cancer patients freedom from numerous hospital visits, allowing them to obtain their medications from their local community pharmacy. However, a major concern with increased use of oral anticancer agents is shift of responsibility in ensuring the proper use of anticancer agents from the hospital/clinical oncology team to the patient/caregiver and other healthcare providers such as the community pharmacists who may not be appropriately trained for this. This study assessed the readiness of community pharmacists across Canada to play this increased role with respect to oral anticancer agents. Using a structured electronic mailing strategy, a standardized survey was mailed to practicing pharmacists in five provinces where community pharmacists were dispensing the majority of oral anticancer agents. In addition to collecting basic demographic and their practice setting, the survey assessed the pharmacists' knowledge regarding cancer therapy and oral anticancer agents in particular, their education needs and access to resources on oral anticancer agents, the quality of prescriptions for oral anticancer agents received by them in terms of the required elements, their role in patient education, and steps to enhance patient and personal safety. There were 352 responses to the survey. Only 13.6% of respondents felt that they had received adequate oncology education at the undergraduate level and approximately 19% had attended a continuing education event related to oncology in the past 2 years. Only 24% of the pharmacists who responded were familiar with the common doses of oral anticancer agents and only 9% felt comfortable educating patients on these medications. A substantial portion of community pharmacists in Canada lack a solid understanding of oral anticancer agents and thus are poorly

  7. Irradiation position-control equipment for the HIMAC

    Energy Technology Data Exchange (ETDEWEB)

    Higashi, Seiichi; Kuma, Shoichiro [Mitsubishi Electric Corp., Tokyo (Japan); Nomura, Kazuaki; Endo, Masahiro; Minohara, Shin-ichi

    1995-02-01

    Use of heavy-ion beams to mount a pinpoint attack on unhealthy tissue requires that the target tissue be placed in the precise location specified by the therapy planning equipment. The article reports on the detailed specifications, positioning mechanism, position verification method and the interface with the therapy planning equipment. (author).

  8. Ultrasonic Abrasive Removal Of EDM Recast

    Science.gov (United States)

    Mandel, Johnny L.; Jacobson, Marlowe S.

    1990-01-01

    Ultrasonic abrasive process removes layer of recast material generated during electrical-discharge machining (EDM) of damper pocket on turbine blade. Form-fitted tool vibrated ultrasonically in damper pocket from which material removed. Vibrations activate abrasive in pocket. Amount of material removed controlled precisely.

  9. Defect detection and sizing in ultrasonic imaging

    International Nuclear Information System (INIS)

    Moysan, J.; Benoist, P.; Chapuis, N.; Magnin, I.

    1991-01-01

    This paper introduces imaging processing developed with the SPARTACUS system in the field of ultrasonic testing. The aim of the imaging processing is to detect and to separate defects echoes from background noise. Image segmentation and particularities of ultrasonic images are the base of studied methods. 4 figs.; 6 refs [fr

  10. Reproducibility of the results in ultrasonic testing

    International Nuclear Information System (INIS)

    Chalaye, M.; Launay, J.P.; Thomas, A.

    1980-12-01

    This memorandum reports on the conclusions of the tests carried out in order to evaluate the reproducibility of ultrasonic tests made on welded joints. FRAMATOME have started a study to assess the dispersion of results afforded by the test line and to characterize its behaviour. The tests covered sensors and ultrasonic generators said to be identical to each other (same commercial batch) [fr

  11. Backward ray tracing for ultrasonic imaging

    NARCIS (Netherlands)

    Breeuwer, R.

    1990-01-01

    Focused ultrasonic beams frequently pass one or more media interfaces, strongly affecting the ultrasonic beamshape and focusing. A computer program, based on backward ray tracing was developed to compute the shape of a corrected focusing mirror. This shape is verified with another program; then the

  12. Beat-Frequency/Microsphere Medical Ultrasonic Imaging

    Science.gov (United States)

    Yost, William T.; Cantrell, John H.; Pretlow, Robert A., III

    1995-01-01

    Medical ultrasonic imaging system designed to provide quantitative data on various flows of blood in chambers, blood vessels, muscles, and tissues of heart. Sensitive enough to yield readings on flows of blood in heart even when microspheres used as ultrasonic contrast agents injected far from heart and diluted by circulation of blood elsewhere in body.

  13. Shipboard and laboratory equipment

    Digital Repository Service at National Institute of Oceanography (India)

    Shyamprasad, M.; Ramaswamy, V.

    The polymetallic nodules occur at an average depth of 4500 m. Adequate equipment and techniques are required for the exploration at such depths. Shipboard and various laboratory equipments for the sampling of polymetallic nodules is described...

  14. Remote handling equipment

    International Nuclear Information System (INIS)

    Clement, G.

    1984-01-01

    After a definition of intervention, problems encountered for working in an adverse environment are briefly analyzed for development of various remote handling equipments. Some examples of existing equipments are given [fr

  15. The Dynamic Performance of Flexural Ultrasonic Transducers

    Directory of Open Access Journals (Sweden)

    Andrew Feeney

    2018-01-01

    Full Text Available Flexural ultrasonic transducers are principally used as proximity sensors and for industrial metrology. Their operation relies on a piezoelectric ceramic to generate a flexing of a metallic membrane, which delivers the ultrasound signal. The performance of flexural ultrasonic transducers has been largely limited to excitation through a short voltage burst signal at a designated mechanical resonance frequency. However, a steady-state amplitude response is not generated instantaneously in a flexural ultrasonic transducer from a drive excitation signal, and differences in the drive characteristics between transmitting and receiving transducers can affect the measured response. This research investigates the dynamic performance of flexural ultrasonic transducers using acoustic microphone measurements and laser Doppler vibrometry, supported by a detailed mechanical analog model, in a process which has not before been applied to the flexural ultrasonic transducer. These techniques are employed to gain insights into the physics of their vibration behaviour, vital for the optimisation of industrial ultrasound systems.

  16. On-line ultrasonic inside-diameter control system for Zircaloy

    International Nuclear Information System (INIS)

    Tanaka, Y.; Fujii, N.; Komatsu, M.; Kubota, H.

    1984-01-01

    An ultrasonic inside-diameter (ID) control system was used during the final etching process for producing Zircaloy nuclear fuel cladding tubes. This results in establishing automatic inside-diameter control during etching with an automatic etching system. In this system, the inside-diameter at the center point in the length of each tube is continuously measured with the ultrasonic inside-diameter measuring equipment during the etching process and the etching is automatically stopped by a signal from the control equipment when the inside-diameter reaches the target value. This made the final etching process economical and suitable for large-scale production, having an equal or better level at the inside-diameter of tubes etched with this system than those made by a process controlled by an air-micrometer

  17. Exercise Equipment: Neutral Buoyancy

    Science.gov (United States)

    Shackelford, Linda; Valle, Paul

    2016-01-01

    Load Bearing Equipment for Neutral Buoyancy (LBE-NB) is an exercise frame that holds two exercising subjects in position as they apply counter forces to each other for lower extremity and spine loading resistance exercises. Resistance exercise prevents bone loss on ISS, but the ISS equipment is too massive for use in exploration craft. Integrating the human into the load directing, load generating, and motion control functions of the exercise equipment generates safe exercise loads with less equipment mass and volume.

  18. BP volume reduction equipment

    International Nuclear Information System (INIS)

    Kitamura, Yoshinori; Muroo, Yoji; Hamanaka, Isao

    2003-01-01

    A new type of burnable poison (BP) volume reduction system is currently being developed. Many BP rods, a subcomponent of spent fuel assemblies are discharged from nuclear power reactors. This new system reduces the overall volume of BP rods. The main system consists of BP rod cutting equipment, equipment for the recovery of BP cut pieces, and special transport equipment for the cut rods. The equipment is all operated by hydraulic press cylinders in water to reduce operator exposure to radioactivity. (author)

  19. Ultrasonic imaging of projected components of PFBR

    Energy Technology Data Exchange (ETDEWEB)

    Sylvia, J.I., E-mail: sylvia@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India); Jeyan, M.R.; Anbucheliyan, M.; Asokane, C.; Babu, V. Rajan; Babu, B.; Rajan, K.K.; Velusamy, K.; Jayakumar, T. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India)

    2013-05-15

    Highlights: ► Under sodium ultrasonic scanner in PFBR is for detecting protruding objects. ► Feasibility study for detecting Absorber rods and its drive mechanisms. ► Developed in-house PC based ultrasonic imaging system. ► Different case studies were carried out on simulated ARDM's. ► Implemented the experimental results to PFBR application. -- Abstract: The 500 MWe, sodium cooled, Prototype Fast Breeder Reactor (PFBR) is under advanced stage of construction at Kalpakkam in India. Opacity of sodium restricts visual inspection of components immersed in sodium by optical means. Ultrasonic wave passes through sodium hence ultrasonic techniques using under sodium ultrasonic scanners are developed to obtain under sodium images. The main objective of such an Under Sodium Ultrasonic Scanner (USUSS) for Prototype Fast Breeder Reactor (PFBR) is to detect and ensure that no core Sub Assembly (SA) or Absorber Rod or its Drive Mechanism is protruded in the above core plenum before starting the fuel handling operation. Hence, it is necessary to detect and locate the object, if it is protruding the above core plenum. To study the feasibility of detecting the absorber rods and their drive mechanisms using direct ultrasonic imaging technique, experiments were carried out for different orientations and profiles of the projected components in a 5 m diameter water tank. The in-house developed PC based ultrasonic scanning system is used for acquisition and analysis of data. The pseudo three dimensional color images obtained are discussed and the results are applicable for PFBR. This paper gives the details of the features of the absorber rods and their drive mechanisms, their orientation in the reactor core, experimental setup, PC based ultrasonic scanning system, ultrasonic images and the discussion on the results.

  20. Actual problems of ultrasonic control of welded anticorrosion coatings (ch. 1)

    International Nuclear Information System (INIS)

    Zubchenko, A.S.; Razygraev, N.P.; Runov, A.E.; Sobolev, Yu.A.; Kretov, E.F.; Tabakma, R.L.

    1988-01-01

    Results of investigations into heat treatment effect on the size of discontinuities revealed under ultrasonic control (USC) of welded anticorrosion coatings are presented. Comparison of dimensions of equivalent area of allowable and non-allowable reflector-discantinuities (defectiveness standards) in the alloying zone of melted anticorrosion coatings and bimetal sheet, applied in NPP equipment, is given. It is shown that USC on the side of basic metal monifest almost by an order more defects than USC on the side of melting surface

  1. The application of ultrasonic techniques to the quality checking of encapsulated radioactive waste

    International Nuclear Information System (INIS)

    Wood, J.M.

    1985-03-01

    The work described in this report was in two parts. First, a literature survey was conducted to review the current practice of ultrasonic inspection of concrete. In particular, the relevance of each technique to the inspection of encapsulated radioactive waste was assessed. Secondly, a limited amount of experimental work was performed on samples of cementitious samples, using available commercial equipment. Conclusions are drawn from the study and experimental work and recommendations made for possible future programmes of work. (author)

  2. Experiments of Long-range Inspection Method in Straight Pipes using Ultrasonic Guided Waves

    International Nuclear Information System (INIS)

    Eom, H. S.; Lim, S. H.; Kim, J. H.; Joo, Y.S.

    2006-02-01

    This report describes experimental results of a long-range inspection method of pipes using ultrasonic guided waves. In chapter 2, theory of guided wave was reviewed. In chapter 3, equipment and procedures which were used in the experiments were described. Detailed specifications of the specimens described in chapter 4. In chapter 5, we analyzed characteristics of guided wave signals according to shapes and sizes of defects and presents results of various signal processing methods

  3. Remote controlled ultrasonic pre-service and in-service inspections of reactor pressure vessels

    International Nuclear Information System (INIS)

    Mueller, G.

    1990-01-01

    The first mechanised in-service inspection of the reactor pressure vessel on unit one of Eskom's Koeberg nuclear power station has been carried out. Since 1968 a whole range of manipulators to carry out remote controlled ultrasonic inspections of nuclear power station equipment has been developed. The inspection of a reactor pressure vessel using a central mast manipulator is described. 3 figs., 1 ill

  4. Ultrasonic inspection of the Calder Hall and Chaplecross reactor pressure vessels

    International Nuclear Information System (INIS)

    Pennick, A.M.

    1993-01-01

    This paper describes the ultrasonic inspection surveys that have recently been carried out on the Calder Hall and Chapelcross Magnox steel reactor pressure vessels. The development of the inspection system, which is based on the Rediman manipulator and uses the Sonomatic Zipscan equipment and Time-of-Flight diffraction techniques is discussed. The inspection results are presented and compared with the original inspection findings and limiting crack sizes. (author)

  5. 21 CFR 882.1925 - Ultrasonic scanner calibration test block.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic scanner calibration test block. 882... Ultrasonic scanner calibration test block. (a) Identification. An ultrasonic scanner calibration test block is a block of material with known properties used to calibrate ultrasonic scanning devices (e.g., the...

  6. Electrical equipment qualification

    International Nuclear Information System (INIS)

    Farmer, W.S.

    1983-01-01

    Electrical equipment qualification research programs being carried out by CEA, JAERI, and Sandia Laboratories are discussed. Objectives of the program are: (1) assessment of accident simulation methods for electrical equipment qualification testing; lower coarse (2) evaluation of equipment aging and accelerated aging methods; (3) determine radiation dose spectrum to electrical equipment and assess simulation methods for qualification; (4) identify inadequacies in electrical equipment qualification procedures and standards and potential failure modes; and (5) provide data for verifying and improving standards, rules and regulatory guides

  7. Ultrasonic relaxations in borate glasses

    International Nuclear Information System (INIS)

    D'Angelo, G.; Tripodo, G.; Carini, G.; Cosio, E.; Bartolotta, A.; Di Marco, G.

    2004-01-01

    The attenuation and velocity of ultrasonic waves of frequencies in the range from 10 to 70 MHz have been measured in M 2 O-B 2 O 3 borate glasses (M: Li or Ag) as a function of temperature between 15 and 350 K. The velocity of sound waves decreases with increasing temperature in all the glasses, the decrease as the temperature is increased is larger in glasses containing silver than in those with lithium. A broad relaxation peak characterises the attenuation behaviour of the lithium and silver borate glasses at temperatures below 100 K and is paralleled by a corresponding dispersive behaviour of the sound velocity. Above 100 K, the ultrasonic velocity shows a nearly linear behaviour regulated by the vibrational anharmonicity, which decreases with increasing content of modifier oxide and is smaller in lithium than in silver borates. These results suggest that the relaxation of structural defects and the anharmonicity of borate glasses are strongly affected by two parameters: the number of bridging bonds per network forming ion and the polarising power of network modifier ions which occupy sites in the existing interstices

  8. Dynamics of ultrasonic additive manufacturing.

    Science.gov (United States)

    Hehr, Adam; Dapino, Marcelo J

    2017-01-01

    Ultrasonic additive manufacturing (UAM) is a solid-state technology for joining similar and dissimilar metal foils near room temperature by scrubbing them together with ultrasonic vibrations under pressure. Structural dynamics of the welding assembly and work piece influence how energy is transferred during the process and ultimately, part quality. To understand the effect of structural dynamics during UAM, a linear time-invariant model is proposed to relate the inputs of shear force and electric current to resultant welder velocity and voltage. Measured frequency response and operating performance of the welder under no load is used to identify model parameters. Using this model and in-situ measurements, shear force and welder efficiency are estimated to be near 2000N and 80% when welding Al 6061-H18 weld foil, respectively. Shear force and welder efficiency have never been estimated before in UAM. The influence of processing conditions, i.e., welder amplitude, normal force, and weld speed, on shear force and welder efficiency are investigated. Welder velocity was found to strongly influence the shear force magnitude and efficiency while normal force and weld speed showed little to no influence. The proposed model is used to describe high frequency harmonic content in the velocity response of the welder during welding operations and coupling of the UAM build with the welder. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Deconvolution algorithms applied in ultrasonics

    International Nuclear Information System (INIS)

    Perrot, P.

    1993-12-01

    In a complete system of acquisition and processing of ultrasonic signals, it is often necessary at one stage to use some processing tools to get rid of the influence of the different elements of that system. By that means, the final quality of the signals in terms of resolution is improved. There are two main characteristics of ultrasonic signals which make this task difficult. Firstly, the signals generated by transducers are very often non-minimum phase. The classical deconvolution algorithms are unable to deal with such characteristics. Secondly, depending on the medium, the shape of the propagating pulse is evolving. The spatial invariance assumption often used in classical deconvolution algorithms is rarely valid. Many classical algorithms, parametric and non-parametric, have been investigated: the Wiener-type, the adaptive predictive techniques, the Oldenburg technique in the frequency domain, the minimum variance deconvolution. All the algorithms have been firstly tested on simulated data. One specific experimental set-up has also been analysed. Simulated and real data has been produced. This set-up demonstrated the interest in applying deconvolution, in terms of the achieved resolution. (author). 32 figs., 29 refs

  10. Ultrasonic Characterization of Aerospace Composites

    Science.gov (United States)

    Leckey, Cara; Johnston, Patrick; Haldren, Harold; Perey, Daniel

    2015-01-01

    Composite materials have seen an increased use in aerospace in recent years and it is expected that this trend will continue due to the benefits of reduced weight, increased strength, and other factors. Ongoing work at NASA involves the investigation of the large-scale use of composites for spacecraft structures (SLS components, Orion Composite Crew Module, etc). NASA is also involved in work to enable the use of composites in advanced aircraft structures through the Advanced Composites Project (ACP). In both areas (space and aeronautics) there is a need for new nondestructive evaluation and materials characterization techniques that are appropriate for characterizing composite materials. This paper will present an overview of NASA's needs for characterizing aerospace composites, including a description of planned and ongoing work under ACP for the detection of composite defects such as fiber waviness, reduced bond strength, delamination damage, and microcracking. The research approaches include investigation of angle array, guided wave, and phase sensitive ultrasonic methods. The use of ultrasonic simulation tools for optimizing and developing methods will also be discussed.

  11. Ultrasonic inspection of inpile tubes

    International Nuclear Information System (INIS)

    Boyd, D.M.; Bossi, H.

    1985-01-01

    The in-service inspection (ISI) of inpile tubes can be performed accurately and safely with a semiautomatic ultrasonic inspection system. The ultrasonic technique uses a set of multiple transducers to detect and size cracks, voids, and laminations radially and circumferentially. Welds are also inspected for defects. The system is designed to inspect stainless steel and Inconel tubes ranging from 53.8 mm (2.12 in.) to 101.6 mm (4 in.) inner diameter with wall thickness on the order of 5 mm. The inspection head contains seven transducers mounted in a surface-following device. Six angle-beam transducers generate shear waves in the tubes. Two of the six are oriented to detect circumferential cracks, and two detect axial cracks. Although each of these four transducers is used in the pulse-echo mode, they are oriented in aligned sets so pitch-catch operation is possible if desired. The remaining angle-beam transducers are angulated to detect flaws that are off axial or circumferential orientation. The seventh transducer is used for longitudinal inspection and detects and sizes laminar-type defects

  12. Calculations for piezoelectric ultrasonic transducers

    International Nuclear Information System (INIS)

    Jensen, H.

    1986-05-01

    Analysis of piezoelectric ultrasonic transducers implies a solution of a boundary value problem, for a body which consists of different materials, including a piezoelectric part. The problem is dynamic at frequencies, where a typical wavelength is somewhat less than the size of the body. Radiation losses as well as internal losses may be important. Due to the complexity of the problem, a closed form solution is the exception rather than the rule. For this reason, it is necessary to use approximate methods for the analysis. Equivalent circuits, the Rayleigh-Ritz method, Mindlin plate theory and in particular the finite element method are considered. The finite element method is utilized for analysis of axisymmetric transducers. An explicit, fully piezoelectric, triangular ring element, with linear variations in displacement and electric potential is given. The influence of a fluid half-space is also given, in the form of a complex stiffness matrix. A special stacking procedure, for analysis of the backing has been developed. This procedure gives a saving, which is similar to that of the fast fourier transform algorithm, and is also wellsuited for analysis of finite and infinite waveguides. Results obtained by the finite element method are shown and compared with measurements and exact solutions. Good agreement is obtained. It is concluded that the finite element method can be a valueable tool in analysis and design of ultrasonic transducers. (author)

  13. Reliability of nondestructive testing of metal strength properties for power equipment

    International Nuclear Information System (INIS)

    Bugaj, N.V.; Lebedev, A.A.; Sharko, A.V.

    1985-01-01

    Ultrasonic control which is a constituent part of a complex control system which includes specimen-free (by hardness) tests, random breaking tests and acoustic measurements is stUdied for its reliability with respect to strength properties of power-equipment metal. Quantitative and alternative criteria are developed to estimate quality of elements for power-equipment according to results of metal strength properties. Acoustic control results are presented for ultimate strength in 12Kh1MF-steel

  14. Space Heating Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin D.

    1998-01-01

    The performance evaluation of space heating equipment for a geothermal application is generally considered from either of two perspectives: (a) selecting equipment for installation in new construction, or (b) evaluating the performance and retrofit requirements of an existing system. With regard to new construction, the procedure is relatively straightforward. Once the heating requirements are determined, the process need only involve the selection of appropriately sized hot water heating equipment based on the available water temperature. It is important to remember that space heating equipment for geothermal applications is the same equipment used in non-geothermal applications. What makes geothermal applications unique is that the equipment is generally applied at temperatures and flow rates that depart significantly from traditional heating system design. This chapter presents general considerations for the performance of heating equipment at non-standard temperature and flow conditions, retrofit of existing systems, and aspects of domestic hot water heating.

  15. Renewal of radiological equipment.

    Science.gov (United States)

    2014-10-01

    In this century, medical imaging is at the heart of medical practice. Besides providing fast and accurate diagnosis, advances in radiology equipment offer new and previously non-existing options for treatment guidance with quite low morbidity, resulting in the improvement of health outcomes and quality of life for the patients. Although rapid technological development created new medical imaging modalities and methods, the same progress speed resulted in accelerated technical and functional obsolescence of the same medical imaging equipment, consequently creating a need for renewal. Older equipment has a high risk of failures and breakdowns, which might cause delays in diagnosis and treatment of the patient, and safety problems both for the patient and the medical staff. The European Society of Radiology is promoting the use of up-to-date equipment, especially in the context of the EuroSafe Imaging Campaign, as the use of up-to-date equipment will improve quality and safety in medical imaging. Every healthcare institution or authority should have a plan for medical imaging equipment upgrade or renewal. This plan should look forward a minimum of 5 years, with annual updates. Teaching points • Radiological equipment has a definite life cycle span, resulting in unavoidable breakdown and decrease or loss of image quality which renders equipment useless after a certain time period.• Equipment older than 10 years is no longer state-of-the art equipment and replacement is essential. Operating costs of older equipment will be high when compared with new equipment, and sometimes maintenance will be impossible if no spare parts are available.• Older equipment has a high risk of failure and breakdown, causing delays in diagnosis and treatment of the patient and safety problems both for the patient and the medical staff.• Every healthcare institution or authority should have a plan for medical imaging equipment upgrade or replacement. This plan should look forward a

  16. Quality control of disinfection in ultrasonic baths

    Energy Technology Data Exchange (ETDEWEB)

    Schoene, H. [Technical University Dresden (Germany). Faculty of Mechanical Engineering; Jatzwauk, L. [University Hospital of the Technical University Dresden (Germany). Abt. Krankenhaushygiene

    2002-07-01

    Numerous investigations under laboratory conditions confirmed the microbicidal efficacy of ultrasonication. Morphological destruction was shown on bacteria and fungi as well as on different virus species. Ultrasonic treatment seems to increase the effect of different antibiotics and disinfectants. Reasons for this synergism are largely unknown and uninvestigated, but the active principle seems to bee the dispersing effect of ultrasonication in combination with the destruction of cell wall or cell membrane. Unfortunately no validation of test conditions exists for most of these investigations, regarding intensity and frequency of ultrasonic waves, temperature of liquid medium and measurement of cavitation which is an essential part of physical and chemical effects in ultrasonic baths. In contrast to most laboratory experiments sound density of ultrasound for treatment of medical instruments is below 1 W/cm{sup 2} because instruments will be destroyed under stronger ultrasonic conditions. The frequency is below 50 KHz. This paper describes bactericidal and fungicidal effects of low- intensity-ultrasonication and its synergistical support to chemical disinfection. (orig.)

  17. Ultrasonic tests on materials with protective coatings

    International Nuclear Information System (INIS)

    Whaley, H.L.

    1977-01-01

    Protective coatings are applied to some nuclear components such as reactor vessels to inhibit surface corrosion. Since in-service ultrasonic inspection is required for such components, a study was performed to determine whether the use of protective coatings can affect ultrasonic tests. Two 2 in. thick steel plates were uniformly machined, sandblasted, and used as bases for two types of protective coatings. The type and thickness of the coating and the presence of contamination, such as fingerprints or mild oxidation under the paint, were the independent variables associated with the coating. Tests were run to determine the effects of the protective coatings on ultrasonic tests conducted on the steel plates. Significant variations in ultrasonic test sensitivity occurred as a function of the type and thickness of protective coating, couplant (material that conducts the ultrasound from the transducer into the test part, normally water or some type of oil), transducer wear plate, and ultrasonic test frequency. Ultrasonic tests can be strongly affected by a protective coating on the component to be inspected. As compared to the test sensitivity for an uncoated reference sample, the sensitivity may be dramatically shifted up or down on the coated surface. In certain coating thickness ranges, the sensitivity can fluctuate widely with small changes in coating thickness. If a coating is chosen properly, however, components with protective coatings can be tested ultrasonically with valid results. These results are for the case of ultrasonic input on the coated surface. It is not expected that an ultrasonic test conducted from the front surface would be appreciably affected by a coating on the rear surface

  18. Development and applications of a computer-aided phased array assembly for ultrasonic testing

    International Nuclear Information System (INIS)

    Schenk, G.; Montag, H.J.; Wuestenberg, H.; Erhard, A.

    1985-01-01

    The use of modern electronic equipment for programmable signal delay increasingly allows transit-time controlled phased arrays to be applied in non-destructive, ultrasonic materials testing. A phased-array assembly is described permitting fast variation of incident angle of acoustic wave and of sonic beam focus, together with numerical evaluation of measured data. Phased arrays can be optimized by adding programmable electronic equipment so that the quality of conventional designs can be achieved. Applications of the new technical improvement are explained, referring to stress corrosion cracking, turbine testing, echo tomography of welded joints. (orig./HP) [de

  19. Characterization of the ultrasonic welding process in the production of women's health devices

    International Nuclear Information System (INIS)

    Morales Elizondo, Jenniffer

    2014-01-01

    The characterization of the ultrasonic welding process in the area of women's health is performed to determine appropriate levels for the critical variables of the process to guarantee the quality specifications of the devices. The handle of the product A is detached. The assembly was made under pressure. Available technologies have been studied to comply with the regulations of medical industry to propose a change in process to a product B. The ultrasonic technology is used to weld the handle of the device to prevent the release of the two parts of the handle of the medical device. A variable characterization process was performed to determine which variables are critical to the process and define the operation parameters of ultrasonic welding. A number of designs of experiments is carried out, first the parameters behavior of the equipment is evaluated to analyze which have greater influence on the quality of the weld. A full factorial design was developed with all process input variables and input variables that are significant was performed another series of designs of experiments to determine the parameters of the process.The conclusion for the ultrasonic welding process in the product B has been that the critical variables or that have had a greater influence on the quality and appearance in experienced designs are: pressure and soldier collapse. The process of ultrasonic welded cycle has started to arrive at the value of driving force that tells the computer. The input variable is recommended to be the lowest possible to weld components using the ordering of particles product of ultrasonic welded avoiding compression component. (author) [es

  20. Calculation of the structural shielding of the radiotherapy treatment room equipped with a linear accelerator type Tomo therapy Hi-Art in the Oncology Center of Chihuahua, Mexico; Calculo del blindaje estructural de la sala de tratamiento de radioterapia equipada con un acelerador lineal del tipo Tomotherapy Hi-Art en el Centro Oncologico de Chihuahua, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Caballero G, C. A. [Southwest Oncology Centers, North Civic Center Plaza No. 2926, Scottsdale, Arizona (United States); Plascencia, J. C. [Centro Oncologico Louis and Lucille Grado, Republica del Peru No. 102-5, Col. Americas, Aguascalientes (Mexico); Vargas V, M. X.; Toledo J, P., E-mail: cabshm@msn.co [Centro Oncologico de Chihuahua, Hacienda de la Esperanza No. 6304, Fracc. Cima Comercial, Chihuahua (Mexico)

    2010-09-15

    The helicoid tomo therapy is an external radiotherapy system of modulated intensity, guided by image, in which the radiation is imparted to the patient using a narrow radiation beam in helicoid form, in a similar way to the scanning process with a computerized tomography. The tomo therapy equipment (Tomo Therapy Hi-Art) consists in an electrons linear accelerator with acceleration voltages of 6 MV for treatment and 3.5 MV for image, coupled to a ring that turn around the patient as this is transferred through this ring in perpendicular sense to the radiation beam. The radiation beam is narrow because has the maximum size of 5 x 40 cm{sup 2} in the isocenter. The intensity modulation of the beam is carried out with a binary dynamic collimator of 64 crisscross sheets, and the guide by image though a system of megavoltage computerized tomography. Opposed to the radiation beam, also coupled to the rotational ring, a group of lead plates exists with a total thickness of 13 cm that acts as barrier of the primary radiation beam. The special configuration of the tomography equipment makes to have the following characteristics: 1) the presence of the lead barrier of the equipment reduces the intensity of the primary beam that reaches the bunker walls in considerable way, 2) the disperse and leakage radiations are increased with regard to a conventional accelerator due to the increase in the necessary irradiation time to produce modulated intensity fields by means of the narrow radiation beam. These special characteristics of the tomo therapy equipment make that particularities exist in the application of the formulations for structural shielding calculations that appears in the NCRP reports 49, NCRP 151 and IAEA-SRS-47. For this reason, several researches have development analytic models based on geometric considerations of continuous rotation of the equipment ring to determine the shielding requirements for the primary beam, the dispersed and leakage radiation in tomo

  1. Development of a sludge lancing equipment and FOSAR technology

    International Nuclear Information System (INIS)

    Jeong, W. T.; Choi, Y. S.; Son, S. Y.; Hong, S. Y.

    2003-01-01

    A program for developing steam generator lancing equipment was started in 1999 on the request of the Chemistry Division of KHNP of Kori NPP No.1. Based on the program, KALANS r -I lancing system was developed firstly in Korea. Lancing equipments for Ulchin NPP No.2(KSNP) and Youngkwang NPP No.1 have been being developed since 2001. A project for developing FOSAR(Foreign Object Search and Retrieval) equipment has been being developed since 2001. The FOSAR equipment is going to automate the search and retrieval operation which has been manual, thus minimizes radiation exposure and improves the performance of inspection work. Besides, a research to evaluate the feasibility of an ultrasonic cleaning method is also under consideration. A project to develop an Upper Bundle Hydraulic Cleaning (UBHC) system was started on May 2003. In this paper, a steam generator lancing system for Kori NPP No.1 is presented. A research activities for developing FOSAR(Foreign Object Search and Retrieval) system, UBHC(Upper Bundle Hydraulic Cleaning) system, and ultrasonic cleaning system are also presented briefly

  2. Computer simulation of ultrasonic waves in solids

    International Nuclear Information System (INIS)

    Thibault, G.A.; Chaplin, K.

    1992-01-01

    A computer model that simulates the propagation of ultrasonic waves has been developed at AECL Research, Chalk River Laboratories. This program is called EWE, short for Elastic Wave Equations, the mathematics governing the propagation of ultrasonic waves. This report contains a brief summary of the use of ultrasonic waves in non-destructive testing techniques, a discussion of the EWE simulation code explaining the implementation of the equations and the types of output received from the model, and an example simulation showing the abilities of the model. (author). 2 refs., 2 figs

  3. Ultrasonic characterization of vegetable oil product

    International Nuclear Information System (INIS)

    Sidek Hj Abd Aziz; Chow Sai Pew; Abdul Halim Shaari; Nor Azizah Shaari

    1992-01-01

    The ultrasonic wave velocity and attenuation of a number vegetable oil products were measured using an ultrasonic pulse echo overlap technique from room temperature up to 90 0 C. Among the liquid samples studied were refined bleach deodorized (RED) palm oil, palm olein, coconut oil, corn oil and soya bean oil. The velocity of sound in vegetable oil products varies from about 1200 to 200 ms-1 and decrease linearly as the temperature increases. The ultrasonic properties of the oil are much dependent on their viscosity, density, relaxation effect and vibrational anharmonicity

  4. On-line ultrasonic gas entrainment monitor

    International Nuclear Information System (INIS)

    Day, C.K.; Pedersen, H.N.

    1978-01-01

    Apparatus employing ultrasonic energy for detecting and measuring the quantity of gas bubbles present in liquids being transported through pipes is described. An ultrasonic transducer is positioned along the longitudinal axis of a fluid duct, oriented to transmit acoustic energy radially of the duct around the circumference of the enclosure walls. The back-reflected energy is received centrally of the duct and interpreted as a measure of gas entrainment. One embodiment employs a conical reflector to direct the transmitted acoustic energy radially of the duct and redirect the reflected energy back to the transducer for reception. A modified embodiment employs a cylindrical ultrasonic transducer for this purpose

  5. Fundamentals and applications of ultrasonic waves

    CERN Document Server

    Cheeke, J David N

    2002-01-01

    Ultrasonics. A subject with applications across all the basic sciences, engineering, medicine, and oceanography, yet even the broader topic of acoustics is now rarely offered at undergraduate levels. Ultrasonics is addressed primarily at the doctoral level, and texts appropriate for beginning graduate students or newcomers to the field are virtually nonexistent.Fundamentals and Applications of Ultrasonic Waves fills that void. Designed specifically for senior undergraduates, beginning graduate students, and those just entering the field, it begins with the fundamentals, but goes well beyond th

  6. Ultrasonic phased arrays for nondestructive inspection of forgings

    International Nuclear Information System (INIS)

    Wuestenberg, H.; Rotter, B.; Klanke, H.P.; Harbecke, D.

    1993-01-01

    Ultrasonic examinations on large forgings like rotor shafts for turbines or components for nuclear reactors are carried out at various manufacturing stages and during in-service inspections. During the manufacture, most of the inspections are carried out manually. Special in-service conditions, such as those at nuclear pressure vessels, have resulted in the development of mechanized scanning equipment. Ultrasonic probes have improved, and well-adapted sound fields and pulse shapes and based on special imaging procedures for the representation of the reportable reflectors have been applied. Since the geometry of many forgings requires the use of a multitude of angles for the inspections in-service and during manufacture, phased-array probes can be used successfully. The main advantages of the phased-array concept, e.g. the generation of a multitude of angles with the typical increase of redundancy in detection and quantitative evaluation and the possibility to produce pictures of defect situations, will be described in this contribution

  7. Mechanized scaling with ultrasonics: Perils and proactive measures

    Directory of Open Access Journals (Sweden)

    Rashmi Paramashivaiah

    2013-01-01

    Full Text Available Mechanized scaling for plaque removal is a routine procedure in the practice of periodontics. Though it appears innocuous by itself, there are retinues of hazards associated with it on various organ systems in the body. Some of these unwanted effects and measures to avoid or ameliorate the same are elaborated here. Exposure to ultrasonic scaling is inevitable before any other treatment procedure. Aerosol contamination, vibrational hazards, thermal effects on the dental pulp, altered vascular dynamics, disruption in electromagnetic device, diminished hearing and dental unit waterline contamination are some of the probable off-shoots a patient has to bear. Uses of barrier devices, proper attention to usage of equipment, protection for ear and water treatment are few of solutions for the same. Though documented evidence for the existence of all effects is lacking, it is never the less significant for the overall safety of the patient. A conscientious clinician should therefore inculcate the available steps to overcome the hazards of ultrasonic scaling.

  8. New contributions to granite characterization by ultrasonic testing.

    Science.gov (United States)

    Cerrillo, C; Jiménez, A; Rufo, M; Paniagua, J; Pachón, F T

    2014-01-01

    Ultrasound evaluation permits the state of rocks to be determined quickly and cheaply, satisfying the demands faced by today's producers of ornamental stone, such as environmental sustainability, durability and safety of use. The basic objective of the present work is to analyse and develop the usefulness of ultrasound testing in estimating the physico-mechanical properties of granite. Various parameters related to Fast Fourier Transform (FFTs) and attenuation have been extracted from some of the studies conducted (parameters which have not previously been considered in work on this topic, unlike the ultrasonic pulse velocity). The experimental study was carried out on cubic specimens of 30 cm edges using longitudinal and shear wave transducers and equipment which extended the normally used natural resonance frequency range up to 500 kHz. Additionally, a validation study of the laboratory data has been conducted and some methodological improvements have been implemented. The main contribution of the work is the analysis of linear statistical correlations between the aforementioned new ultrasound parameters and physico-mechanical properties of the granites that had not previously been studied, i.e., resistance to salt crystallization and breaking load for anchors. Being properties that directly affect the durability and safety of use of granites, these correlations consolidate ultrasonics as a nondestructive method well suited to this type of material. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. RETRIEVAL EQUIPMENT DESCRIPTIONS

    International Nuclear Information System (INIS)

    J. Steinhoff

    1997-01-01

    The objective and the scope of this document are to list and briefly describe the major mobile equipment necessary for waste package (WP) retrieval from the proposed subsurface nuclear waste repository at Yucca Mountain. Primary performance characteristics and some specialized design features of the equipment are explained and summarized in the individual subsections of this document. There are no quality assurance requirements or QA controls in this document. Retrieval under normal conditions is accomplished with the same fleet of equipment as is used for emplacement. Descriptions of equipment used for retrieval under normal conditions is found in Emplacement Equipment Descriptions, DI: BCAF00000-01717-5705-00002 (a document in progress). Equipment used for retrieval under abnormal conditions is addressed in this document and consists of the following: (1) Inclined Plane Hauler; (2) Bottom Lift Transporter; (3) Load Haul Dump (LHD) Loader; (4) Heavy Duty Forklift for Emplacement Drifts; (5) Covered Shuttle Car; (6) Multipurpose Vehicle; and (7) Scaler

  10. Track type ultrasonic inspection device

    International Nuclear Information System (INIS)

    Kajiyama, Shigeru; Sasaki, Tsukasa; Takahisa, Kazuo.

    1993-01-01

    The present invention concerns an improvement of a scanning device disposed near an object to be inspected such as a nuclear pressure vessel and having an ultrasonic probe, mounted thereon that travel along a running track. Specifically, one of wheel supports on both sides is attached being secured to the scanning device. The other of the supports is capable of fixing and releasing, as well as providing and releasing pressure to and from wheels upon mounting and detachment. This enables to provide a structure capable of pressing the wheels of the running device to the plane of the track and release thereof. Accordingly, it is possible to improve the running performance, reduce the size and weight and shorten the time for mounting and detachment of the running inspection device. (I.S.)

  11. Cracks assessment using ultrasonic technology

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Maria Pia; Tomasella, Marcelo [OLDELVAL S.A. Oleoductos del Valle, Rio Negro (Argentina). Pipeline Integrity Dept.

    2005-07-01

    The goal of Oldelval Integrity Program is to prevent ruptures and leaks, developing strategies for a better handling of the integrity of our pipelines. In order to achieve it we have studied and modeled each process that involved in the integrity pipeline. Those processes are mainly based on defects reported by an internal inspection tool and supplied with field inspection and monitoring data. Years of evaluation, study and the continuous effort overturned towards a phenomenon that worries to the industry, as it is the SCC. Since 1998 up to 2004 SCC was included in the integrity program with some preventive maintenance programs. The accomplishment of the inspection based on ultrasound tools, is the culmination of years of evaluation and investigations supported by field digs and materials susceptibility. This paper describes Oldelval's results with ultrasonic crack detection tool, and how it can be reliably to detect SCC. (author)

  12. Integrated Ultrasonic-Photonic Devices

    DEFF Research Database (Denmark)

    Barretto, Elaine Cristina Saraiva

    in channel waveguides and Mach-Zehnder interferometers. Numerical models are developed based on the finite element method, and applied to several scenarios, such as optimization of the geometrical parameters of waveguides, use of slow light in photonic crystal waveguides and use of Lamb waves in membranized......This thesis deals with the modeling, design, fabrication and characterization of integrated ultrasonic-photonic devices, with particular focus on the use of standard semiconductor materials such as GaAs and silicon. The devices are based on the use of guided acoustic waves to modulate the light...... investigated. Comparisons are made with the numerical and experimental results, and they validate the obtained response of the acoustic and photonic components of the device. Finally, a new design for an optical frequency shifter is proposed, posing several advantages over existing devices in terms of size...

  13. Medical equipment management

    CERN Document Server

    Willson, Keith; Tabakov, Slavik

    2013-01-01

    Know What to Expect When Managing Medical Equipment and Healthcare Technology in Your Organization As medical technology in clinical care becomes more complex, clinical professionals and support staff must know how to keep patients safe and equipment working in the clinical environment. Accessible to all healthcare professionals and managers, Medical Equipment Management presents an integrated approach to managing medical equipment in healthcare organizations. The book explains the underlying principles and requirements and raises awareness of what needs to be done and what questions to ask. I

  14. Data communication equipment

    International Nuclear Information System (INIS)

    Kim, Hak Seon; Lee, Sang Mok

    1998-02-01

    The contents of this book are introduction of data communication on definition, purpose and history, information terminal about data communication system and data transmission system, data transmit equipment of summary, transmission cable, data port, concentrator and front-end processor, audio communication equipment like phones, radio communication equipment of summary on foundation of electromagnetic waves, AM transmitter, AM receiver, FM receiver and FM transmitter, a satellite and mobile communication equipment such as earth station, TT and C and Cellular phone, video telephone and new media apparatus.

  15. Ultrasonic off-normal imaging techniques for under sodium viewing

    International Nuclear Information System (INIS)

    Michaels, T.E.; Horn, J.E.

    1979-01-01

    Advanced imaging methods have been evaluated for the purpose of constructing images of objects from ultrasonic data. Feasibility of imaging surfaces which are off-normal to the sound beam has been established. Laboratory results are presented which show a complete image of a typical core component. Using the previous system developed for under sodium viewing (USV), only normal surfaces of this object could be imaged. Using advanced methods, surfaces up to 60 degrees off-normal have been imaged. Details of equipment and procedures used for this image construction are described. Additional work on high temperature transducers, electronics, and signal analysis is required in order to adapt the off-normal viewing process described here to an eventual USV application

  16. Double-shell tank ultrasonic inspection plan. Revision 1

    International Nuclear Information System (INIS)

    Pfluger, D.C.

    1994-01-01

    The waste tank systems managed by the Tank Waste Remediation System Division of Westinghouse Hanford Company includes 28 large underground double-shell tanks (DST) used for storing hazardous radioactive waste. The ultrasonic (UT) inspection of these tanks is part of their required integrity assessment (WAC 1993) as described in the tank systems integrity assessment program plan (IAPP) (Pfluger 1994a) submitted to the Ecology Department of the State of Washington. Because these tanks hold radioactive waste and are located underground examinations and inspections must be done remotely from the tank annuli with specially designed equipment. This document describes the UT inspection system (DSTI system), the qualification of the equipment and procedures, field inspection readiness, DST inspections, and post-inspection activities. Although some of the equipment required development, the UT inspection technology itself is the commercially proven and available projection image scanning technique (P-scan). The final design verification of the DSTI system will be a performance test in the Hanford DST annulus mockup that includes the demonstration of detecting and sizing corrosion-induced flaws

  17. Ultrasonically-assisted Thermal Stir Welding System

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A welding head assembly has a work piece disposed between its containment plates' opposing surfaces with the work piece being maintained in a plastic state thereof at least in a vicinity of the welding head assembly's stir rod as the rod is rotated about its longitudinal axis. The welding head assembly and the work piece experience relative movement there between in a direction perpendicular to the rod's longitudinal axis as the work piece is subjected to a compressive force applied by the containment plates. A first source coupled to the first containment plate applies a first ultrasonic wave thereto such that the first ultrasonic wave propagates parallel to the direction of relative movement. A second source coupled to the second containment plate applies a second ultrasonic wave thereto such that the second ultrasonic wave propagates parallel to the direction of relative movement.propagates parallel to the direction of relative movement.

  18. Ultrasonic determination of the size of defects

    International Nuclear Information System (INIS)

    Zetterwall, T.

    1989-01-01

    The paper presents results from a study of ultrasonic testing of materials. The main topic has been the determination of the size, length and deep, of cracks or defects in stainless steel plates. (K.A.E)

  19. Advanced ultrasonic technology for natural gas measurement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    In recent years, due to rising environmental and safety concerns, increasing commodity prices, and operational inefficiencies, a paradigm shift has been taking place with respect to gas measurement. The price of natural gas depends on the location, time of the year, and type of consumer. There is wide uncertainty associated with an orifice meter. This paper presents the use of advanced ultrasonic technology for the measurement of natural gas. For many years, multi-path ultrasonic meters with intelligent sensor technology have been used for gas measurement. This paper gives the various applications of ultrasonic technology along with their advantages and a draws a comparison with orifice meters. From the study it can be concluded that extensive advances in the use of ultrasonic technology for gas measurement have widened the areas of application and that varying frequencies combined with sealed transducer designs make it possible to measure atmospheric and sour gas in custody transfer process control and flaring accurately.

  20. Ultrasonic assisted hot metal powder compaction.

    Science.gov (United States)

    Abedini, Rezvan; Abdullah, Amir; Alizadeh, Yunes

    2017-09-01

    Hot pressing of metal powders is used in production of parts with similar properties to wrought materials. During hot pressing processes, particle rearrangement, plastic deformation, creep, and diffusion are of the most effective powder densification mechanisms. Applying ultrasonic vibration is thought to result in great rates of densification and therefore higher efficiency of the process is expected. This paper deals with the effects of power ultrasonic on the densification of AA1100 aluminum powder under constant applied stress. The effects of particle size and process temperature on the densification behavior are discussed. The results show that applying ultrasonic vibration leads to an improved homogeneity and a higher relative density. Also, it is found that the effect of ultrasonic vibration is greater for finer particles. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Hand Gesture Recognition Using Ultrasonic Waves

    KAUST Repository

    AlSharif, Mohammed Hussain

    2016-01-01

    estimation of the moving hand and received signal strength (RSS). These two factors are estimated using two simple methods; channel impulse response (CIR) and cross correlation (CC) of the reflected ultrasonic signal from the gesturing hand. A customized

  2. Ultrasonic Morphological Analyzers for Breast Cancer Diagnosis

    National Research Council Canada - National Science Library

    Lizzi, Frederic

    1999-01-01

    The goal of this research is to improve ultrasonic classification of breast lesions and guide decisions regarding biopsy requirements, especially for small lesions and those in young, dense breasts...

  3. Rail inspection using noncontact laser ultrasonics

    International Nuclear Information System (INIS)

    Kim, Nak Hyeon; Sohn, Hoon; Han, Soon Woo

    2012-01-01

    In this study, a noncontact laser ultrasonic system is proposed for rail defect detection. An Nd Yag pulse laser is used for generation of ultrasonic waves, and the corresponding ultrasonic responses are measured by a laser Doppler vibrometer. For the detection of rail surface damages, the shape of the excitation laser beam is transformed into a line. On the other hand, a point source laser beam is used for the inspection of defects inside a rail head. Then, the interactions of propagating ultrasonic waves with defects are examined using actual rail specimens. Amplitude attenuation was mainly observed for a surface crack, and reflections were most noticeable from an internal damage. Finally, opportunities and challenges associated with real time rail inspection from a high speed train are discussed

  4. Improvement of Ultrasonic Distance Measuring System

    Directory of Open Access Journals (Sweden)

    Jiang Yu

    2018-01-01

    Full Text Available This paper mainly introduces a kind of ultrasonic distance measuring system with AT89C51 single chip as the core component. The paper expounds the principle of ultrasonic sensor and ultrasonic ranging, hardware circuit and software program, and the results of experiment and analysis.The hardware circuit based on SCM, the software design adopts the advanced microcontroller programming language.The amplitude of the received signal and the time of ultrasonic propagation are regulated by closed loop control. [1,2]The double closed loop control technology for amplitude and time improves the measuring accuracy of the instrument. The experimental results show that greatly improves the measurement accuracy of the system.

  5. Ultrasonic Generation and Optimization for EMAT

    International Nuclear Information System (INIS)

    Jian, X.; Dixon, Steve; Edwards, Rachel S.

    2005-01-01

    A model for transient ultrasonic wave generation by EMATs in non-magnetic metals is presented. It combines analytical solutions currently available and FEM to calculate ultrasonic bulk and Rayleigh waves generated by the EMAT. Analytical solutions are used as they can be calculated quickly on a standard mathematical computer package. Calculations agree well with the experimental measurement. The model can be used to optimize EMAT design, and has explained some of the results from our previous published measurements

  6. Extrinsic Fabry-Perot ultrasonic detector

    Science.gov (United States)

    Kidwell, J. J.; Berthold, John W., III

    1996-10-01

    We characterized the performance of a commercial fiber optic extrinsic Fabry-Perot interferometer for use as an ultrasonic sensor, and compared the performance with a standard lead zirconate titanate (PZT) detector. The interferometer was unstabilized. The results showed that the fiber sensor was about 12 times less sensitive than the PZT detector. Ultrasonic frequency response near 100 kHz was demonstrated. We describe the design of the fiber sensor, the details of the tests performed, and potential applications.

  7. An advanced system for automated ultrasonic testing

    International Nuclear Information System (INIS)

    Dressler, K.

    1989-01-01

    As the main component of the AUP system, an ALOK ultrasonic unit has been chosen as it allows for testing of large component areas both search for defects and description of defect geometries. All data required for fault analysis can be obtained by one measuring run. For inspection of primary circuit components in nuclear power stations, the manipulator control and the ultrasonic probe are installed behind the first sufficient shielding. (orig./HP) [de

  8. Ultrasonic flow measurements for irrigation process monitoring

    Science.gov (United States)

    Ziani, Elmostafa; Bennouna, Mustapha; Boissier, Raymond

    2004-02-01

    This paper presents the state of the art of the general principle of liquid flow measurements by ultrasonic method, and problems of flow measurements. We present an ultrasonic flowmeter designed according to smart sensors concept, for the measurement of irrigation water flowing through pipelines or open channels, using the ultrasonic transit time approach. The new flowmeter works on the principle of measuring time delay differences between sound pulses transmitted upstream and downstream in the flowing liquid. The speed of sound in the flowing medium is eliminated as a variable because the flowrate calculations are based on the reciprocals of the transmission times. The transit time difference is digitally measured by means of a suitable, microprocessor controlled logic. This type of ultrasonic flowmeter will be widely used in industry and water management, it is well studied in this work, followed by some experimental results. For pressurized channels, we use one pair of ultrasonic transducer arranged in proper positions and directions of the pipe, in this case, to determine the liquid velocity, a real time on-line analysis taking account the geometries of the hydraulic system, is applied to the obtained ultrasonic data. In the open channels, we use a single or two pairs of ultrasonic emitter-receiver according to the desired performances. Finally, the goals of this work consist in integrating the smart sensor into irrigation systems monitoring in order to evaluate potential advantages and demonstrate their performance, on the other hand, to understand and use ultrasonic approach for determining flow characteristics and improving flow measurements by reducing errors caused by disturbances of the flow profiles.

  9. Fundamentals and Applications of Ultrasonic Waves

    CERN Document Server

    Cheeke, J David N

    2012-01-01

    Designed specifically for newcomers to the field, this fully updated second edition begins with fundamentals and quickly advances beyond general wave concepts into an in-depth treatment of ultrasonic waves in isotropic media. Focusing on the physics of acoustic waves, their propagation, technology, and applications, this accessible overview of ultrasonics includes accounts of viscoelasticity and multiple scattering. It examines new technologies, including atomic force acoustic microscopy, lasers, micro-acoustics, and nanotechnology. In addition, it highlights both direct and indirect applicati

  10. Longitudinal ultrasonic waves dispersion in bars

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2001-01-01

    The exhibition intends to review some aspects of the propagation of the longitudinal ultrasonic pulses shortly in bars of traverse section uniform.Aspects they are part of the denominated geometric dispersion of the pulses.This phenomenon It can present like an additional complication in the ultrasonic essay of low frequency of thin pieces in structures and machines but takes place former ex professed in some applications of the wave guides been accustomed to in the prosecution of signs

  11. A novel sidestream ultrasonic flow sensor for multiple breath washout in children.

    Science.gov (United States)

    Fuchs, Susanne I; Sturz, J; Junge, S; Ballmann, M; Gappa, M

    2008-08-01

    Inert gas multiple breath washout (MBW) for measuring Lung Clearance Index using mass spectrometry and 4% sulfur hexafluoride (SF(6)) as the tracer gas has been shown to be sensitive for detecting early Cystic Fibrosis (CF) lung disease. However, mass spectrometry requires bulky equipment and is expensive to buy and maintain. A novel sidestream ultrasonic device may overcome this problem. The aims of this study were to assess the feasibility and clinical validity of measuring lung volume (functional residual capacity, FRC) and the LCI using the sidestream ultrasonic flow sensor in children and adolescents with CF in relation to spirometry and plain chest radiographs. MBW using the sidestream ultrasonic device and conventional spirometry were performed in 26 patients with CF and 22 healthy controls. In the controls (4.7-17.7 years) LCI was similar to that reported using mass spectrometry (mean (SD) 6.7 (0.5)). LCI was elevated in 77% of the CF children (6.8-18.9 years), whereas spirometry was abnormal in only 38.5%, 61.5%, and 26.9% for FEV(1), MEF(25), and FEV(1)/FVC, respectively. This was more marked in children ultrasonic MBW is a valid and simple alternative to mass spectrometry for assessing ventilation homogeneity in children. (c) 2008 Wiley-Liss, Inc.

  12. Effect of ultrasonic stimulation on particle transport and fate over different lengths of porous media

    Science.gov (United States)

    Chen, Xingxin; Wu, Zhonghan; Cai, Qipeng; Cao, Wei

    2018-04-01

    It is well established that seismic waves traveling through porous media stimulate fluid flow and accelerate particle transport. However, the mechanism remains poorly understood. To quantify the coupling effect of hydrodynamic force, transportation distance, and ultrasonic stimulation on particle transport and fate in porous media, laboratory experiments were conducted using custom-built ultrasonic-controlled soil column equipment. Three column lengths (23 cm, 33 cm, and 43 cm) were selected to examine the influence of transportation distance. Transport experiments were performed with 0 W, 600 W, 1000 W, 1400 W, and 1800 W of applied ultrasound, and flow rates of 0.065 cm/s, 0.130 cm/s, and 0.195 cm/s, to establish the roles of ultrasonic stimulation and hydrodynamic force. The laboratory results suggest that whilst ultrasonic stimulation does inhibit suspended-particle deposition and accelerate deposited-particle release, both hydrodynamic force and transportation distance are the principal controlling factors. The median particle diameter for the peak concentration was approximately 50% of that retained in the soil column. Simulated particle-breakthrough curves using extended traditional filtration theory effectively described the experimental curves, particularly the curves that exhibited a higher tailing concentration.

  13. Babcock experience of automated ultrasonic non-destructive testing of PWR pressure vessels during manufacture

    International Nuclear Information System (INIS)

    Dikstra, B.J.; Farley, J.M.; Scruton, G.

    1990-01-01

    Major developments in ultrasonic techniques, equipment and systems for automated inspection have lead, over a period of about ten years, to the regular application of sophisticated computer-controlled systems during the manufacture of nuclear reactor pressure vessels. Ten years ago the use of procedures defined in a code such as ASME XI might have been considered sufficient, but it is now necessary, as was demonstrated by the results of the UKAEA defect detection trials and the PISC II trials, to apply more comprehensive arrays of probes and higher test sensitivities. The ultrasonic techniques selected are demonstrated to be adequate by modelling or test-block exercises, the automated systems applied are subject to stringent quality assurance testing, and very rigorous inspection procedures are used in conjunction with a high degree of automation to ensure reproducibility of inspection quality. The state-of-the-art in automated ultrasonic testing of pressure vessels by Babcock is described. Current developments by the company, including automated flaw recognition, integrated modelling of inspection capability, and the use of electronically scanned variable-angle probes are reviewed. Examples quoted include the automated ultrasonic inspections of the Sizewell B pressurized water reactor vessel. (author)

  14. Ultrasonic Characterization of Superhard Material: Osmium Diboride

    International Nuclear Information System (INIS)

    Yadawa, P K

    2012-01-01

    Higher order elastic constants have been calculated in hexagonal structured superhard material OsB 2 at room temperature following the interaction potential model. The temperature variation of the ultrasonic velocities is evaluated along different angles with unique axis of the crystal using the second order elastic constants. The ultrasonic velocity decreases with the temperature along particular orientation with the unique axis. Temperature variation of the thermal relaxation time and Debye average velocities are also calculated along the same orientation. The temperature dependency of the ultrasonic properties is discussed in correlation with elastic, thermal and electrical properties. It has been found that the thermal conductivity is the main contributor to the behaviour of ultrasonic attenuation as a function of temperature and the responsible cause of attenuation is phonon-phonon interaction. The mechanical properties of OsB 2 at low temperature are better than at high temperature, because at low temperature it has low ultrasonic velocity and ultrasonic attenuation. Superhard material OsB 2 has many industrial applications, such as abrasives, cutting tools and hard coatings.

  15. Cooling of electronic equipment

    DEFF Research Database (Denmark)

    A. Kristensen, Anders Schmidt

    2003-01-01

    Cooling of electronic equipment is studied. The design size of electronic equipment decrease causing the thermal density to increase. This affect the cooling which can cause for example failures of critical components due to overheating or thermal induced stresses. Initially a pin fin heat sink...

  16. Capital Equipment Replacement Decisions

    OpenAIRE

    Batterham, Robert L.; Fraser, K.I.

    1995-01-01

    This paper reviews the literature on the optimal replacement of capital equipment, especially farm machinery. It also considers the influence of taxation and capital rationing on replacement decisions. It concludes that special taxation provisions such as accelerated depreciation and investment allowances are unlikely to greatly influence farmers' capital equipment replacement decisions in Australia.

  17. Remediation of Diesel Fuel Contaminated Sandy Soil using Ultrasonic Waves

    Directory of Open Access Journals (Sweden)

    Wulandari P.S.

    2010-01-01

    Full Text Available Ultrasonic cleaning has been used in industry for some time, but the application of ultrasonic cleaning in contaminated soil is just recently received considerable attention, it is a very new technique, especially in Indonesia. An ultrasonic cleaner works mostly by energy released from the collapse of millions of microscopic cavitations near the dirty surface. This paper investigates the use of ultrasonic wave to enhance remediation of diesel fuel contaminated sandy soil considering the ultrasonic power, soil particle size, soil density, water flow rate, and duration of ultrasonic waves application.

  18. Ultrasonic cleaning of conveyor belt materials using Listeria monocytogenes as a model organism.

    Science.gov (United States)

    Tolvanén, Riina; Lunden, Janne; Korkeala, Hannu; Wirtanen, Gun

    2007-03-01

    Persistent Listeria monocytogenes contamination of food industry equipment is a difficult problem to solve. Ultrasonic cleaning offers new possibilities for cleaning conveyors and other equipment that are not easy to clean. Ultrasonic cleaning was tested on three conveyor belt materials: polypropylene, acetal, and stainless steel (cold-rolled, AISI 304). Cleaning efficiency was tested at two temperatures (30 and 45 degrees C) and two cleaning times (30 and 60 s) with two cleaning detergents (KOH, and NaOH combined with KOH). Conveyor belt materials were soiled with milk-based soil and L. monocytogenes strains V1, V3, and B9, and then incubated for 72 h to attach bacteria to surfaces. Ultrasonic cleaning treatments reduced L. monocytogenes counts on stainless steel 4.61 to 5.90 log units; on acetal, 3.37 to 5.55 log units; and on polypropylene, 2.31 to 4.40 log units. The logarithmic reduction differences were statistically analyzed by analysis of variance using Statistical Package for the Social Sciences software. The logarithmic reduction was significantly greater in stainless steel than in plastic materials (P conveyor belt materials.

  19. Ultrasonic imaging in liquid sodium

    Energy Technology Data Exchange (ETDEWEB)

    Lubeigt, E. [CEA Cadarache, DEN/DTN/STCP/LIET, 13108 Saint-Paul-Lez-Durance Cedex (France); Laboratoire de Mecanique et d' Acoustique, CNRS UPR 7051, 13402 Marseille Cedex 20 (France); Mensah, S.; Chaix, J.F.; Rakotonarivo, S. [Laboratoire de Mecanique et d' Acoustique, CNRS UPR 7051, 13402 Marseille Cedex 20 (France); Gobillot, G. [CEA Cadarache, DEN/DTN/STCP/LIET, 13108 Saint-Paul-Lez-Durance Cedex (France)

    2015-07-01

    The fourth generation of nuclear reactor can use liquid sodium as the core coolant. When the reactor is operating, sodium temperatures can reach up to 600 deg. C. During maintenance periods, when the reactor is shut down, the coolant temperature is reduced to 200 deg. C. Because molten sodium is optically opaque, ultrasonic imaging techniques are developed for maintenance activities. Under-sodium imaging aims at i) checking the health of immersed structures. It should also allow ii) to assess component degradation or damage as cracks and shape defects as well as iii) the detection of lost objects. The under-sodium imaging system has to sustain high temperature (up to 300 deg. C) and hostility of the sodium environment. Furthermore, specific constraints such as transducers characteristics or the limited sensor mobility in the reactor vessel have to be considered. This work focuses on developing a methodology for detecting damages such as crack defects with ultrasound devices. Surface-breaking cracks or deep cracks are sought in the weld area, as welds are more subject to defects. Traditional methods enabled us to detect emerging cracks of submillimeter size with sodium-compatible high-temperature transducer. The presented approach relies on making use of prior knowledge about the environment through the implementation of differential imaging and time-reversal techniques. Indeed, this approach allows to detect a change by comparison with a reference measurement and by focusing back to any change in the environment. It is a means of analysis and understanding of the physical phenomena making it possible to design more effective inspection strategies. Difference between the measured signals reveals the acoustic field scattered by a perturbation (a crack for instance), which may occur between periodical measurements. The imaging method relies on the adequate combination of two computed ultrasonic fields, one forward and one adjoint. The adjoint field, which carries the

  20. Ultrasonic imaging in liquid sodium

    International Nuclear Information System (INIS)

    Lubeigt, E.; Mensah, S.; Chaix, J.F.; Rakotonarivo, S.; Gobillot, G.

    2015-01-01

    The fourth generation of nuclear reactor can use liquid sodium as the core coolant. When the reactor is operating, sodium temperatures can reach up to 600 deg. C. During maintenance periods, when the reactor is shut down, the coolant temperature is reduced to 200 deg. C. Because molten sodium is optically opaque, ultrasonic imaging techniques are developed for maintenance activities. Under-sodium imaging aims at i) checking the health of immersed structures. It should also allow ii) to assess component degradation or damage as cracks and shape defects as well as iii) the detection of lost objects. The under-sodium imaging system has to sustain high temperature (up to 300 deg. C) and hostility of the sodium environment. Furthermore, specific constraints such as transducers characteristics or the limited sensor mobility in the reactor vessel have to be considered. This work focuses on developing a methodology for detecting damages such as crack defects with ultrasound devices. Surface-breaking cracks or deep cracks are sought in the weld area, as welds are more subject to defects. Traditional methods enabled us to detect emerging cracks of submillimeter size with sodium-compatible high-temperature transducer. The presented approach relies on making use of prior knowledge about the environment through the implementation of differential imaging and time-reversal techniques. Indeed, this approach allows to detect a change by comparison with a reference measurement and by focusing back to any change in the environment. It is a means of analysis and understanding of the physical phenomena making it possible to design more effective inspection strategies. Difference between the measured signals reveals the acoustic field scattered by a perturbation (a crack for instance), which may occur between periodical measurements. The imaging method relies on the adequate combination of two computed ultrasonic fields, one forward and one adjoint. The adjoint field, which carries the

  1. The Mechatronic System Design Of Ultrasonic Scanner For Inservice Inspection Of Research Reactor

    Science.gov (United States)

    Handono, Khairul; Kristedjo, K.; Awwaluddin, M.; Shobary, Ihsan

    2018-02-01

    The mechatronic system design of ultrasonic scanner for inservices inspection of Research Reactor has been conducted. The requirement designed must be reliable operated, safety to personnel and equipments, ease of maintenance and operation, protection of equipment mechanically, interchangeability of equipments and addition of the several model of probe immersion ultrasonic tranducer. In order to achieve the above goals and obtain the desired results, a mechatronic design based on mechanical and electronic practical experiences will be needed. In this paper consist of the mechanical design and the system mechanical movement using stepper motor control. The criteria and the methods of designs of mechanical and electronic equipments of the system have been discussed and investigated. A mechanical and instrumentation control system drawing and requirement of design will be presented as the outcome of the design. The designed of mechanical system is consequently simulated by solidwork software. The intention of the above research is to create solutions in different ways of inservice inspection of integrity of Reactor.

  2. Development and evaluation of a novel low power, high frequency piezoelectric-based ultrasonic reactor for intensifying the transesterification reaction

    Directory of Open Access Journals (Sweden)

    Mortaza Aghbashlo

    2016-12-01

    Full Text Available In this study, a novel low power, high frequency piezoelectric-based ultrasonic reactor was developed and evaluated for intensifying the transesterification process. The reactor was equipped with an automatic temperature control system, a heating element, a precise temperature sensor, and a piezoelectric-based ultrasonic module. The conversion efficiency and specific energy consumption of the reactor were examined under different operational conditions, i.e., reactor temperature (40‒60 °C, ultrasonication time (6‒10 min, and alcohol/oil molar ratio (4:1‒8:1. Transesterification of waste cooking oil (WCO was performed in the presence of a base-catalyst (potassium hydroxide using methanol. According to the obtained results, alcohol/oil molar ratio of 6:1, ultrasonication time of 10 min, and reactor temperature of 60 °C were found as the best operational conditions. Under these conditions, the reactor converted WCO to biodiesel with a conversion efficiency of 97.12%, meeting the ASTM standard satisfactorily, while the lowest specific energy consumption of 378 kJ/kg was also recorded. It should be noted that the highest conversion efficiency of 99.3 %, achieved at reactor temperature of 60 °C, ultrasonication time of 10 min, and alcohol/oil molar ratio of 8:1, was not favorable as the associated specific energy consumption was higher at 395 kJ/kg. Overall, the low power, high frequency piezoelectric-based ultrasonic module could be regarded as an efficient and reliable technology for intensifying the transesterification process in terms of energy consumption, conversion efficiency, and processing time, in comparison with high power, low frequency ultrasonic system reported previously. Finally, this technology could also be considered for designing, developing, and retrofitting chemical reactors being employed for non-biofuel applications as well.

  3. Hand Gesture Recognition Using Ultrasonic Waves

    KAUST Repository

    AlSharif, Mohammed Hussain

    2016-04-01

    Gesturing is a natural way of communication between people and is used in our everyday conversations. Hand gesture recognition systems are used in many applications in a wide variety of fields, such as mobile phone applications, smart TVs, video gaming, etc. With the advances in human-computer interaction technology, gesture recognition is becoming an active research area. There are two types of devices to detect gestures; contact based devices and contactless devices. Using ultrasonic waves for determining gestures is one of the ways that is employed in contactless devices. Hand gesture recognition utilizing ultrasonic waves will be the focus of this thesis work. This thesis presents a new method for detecting and classifying a predefined set of hand gestures using a single ultrasonic transmitter and a single ultrasonic receiver. This method uses a linear frequency modulated ultrasonic signal. The ultrasonic signal is designed to meet the project requirements such as the update rate, the range of detection, etc. Also, it needs to overcome hardware limitations such as the limited output power, transmitter, and receiver bandwidth, etc. The method can be adapted to other hardware setups. Gestures are identified based on two main features; range estimation of the moving hand and received signal strength (RSS). These two factors are estimated using two simple methods; channel impulse response (CIR) and cross correlation (CC) of the reflected ultrasonic signal from the gesturing hand. A customized simple hardware setup was used to classify a set of hand gestures with high accuracy. The detection and classification were done using methods of low computational cost. This makes the proposed method to have a great potential for the implementation in many devices including laptops and mobile phones. The predefined set of gestures can be used for many control applications.

  4. Development of a spherically focused phased array transducer for ultrasonic image-guided hyperthermia

    OpenAIRE

    Liu, Jingfei; Foiret, Josquin; Stephens, Douglas N.; Le Baron, Olivier; Ferrara, Katherine W.

    2016-01-01

    A 1.5 MHz prolate spheroidal therapeutic array with 128 circular elements was designed to accommodate standard imaging arrays for ultrasonic image-guided hyperthermia. The implementation of this dual-array system integrates real-time therapeutic and imaging functions with a single ultrasound system (Vantage 256, Verasonics). To facilitate applications involving small animal imaging and therapy the array was designed to have a beam depth of field smaller than 3.5 mm and to electronically steer...

  5. Artificial intelligence and ultrasonic tests in detection of defects; Inteligencias artificiales y ensayos ultrasonicos para la deteccion de defectos

    Energy Technology Data Exchange (ETDEWEB)

    Barrera Cardiel, G.; Fabian Alvarez, M. a.; Velez Martinez, M.; Villasenor, L.

    2001-07-01

    One of the most serious problems in the quality control of welded unions is the location, identification and classification of defects. As a solution to this problem, a technique for classification, applicable to welded unions done by electric arc welding as well as by friction, is proposed; it is based on ultrasonic signals. The neuronal networks proposed are Kohonen and Multilayer Percept ron, all in a virtual instrument environment. Currently the techniques most used in this field are: radiological analysis (X-rays) and ultrasonic analysis (ultrasonic waves). The X-ray technique in addition to being dangerous requires highly specialized personnel and equipment, therefore its use is restricted. The ultrasonic technique, in spite of being one of the most used for detection of discontinuities, requires personnel with wide experience in the interpretation of ultrasonic signals, this is a time-consuming process which necessarily increases its operation cost. The classification techniques that we propose turn out to be safe, reliable, inexpensive and easy to implement for the solution of this important problem. (Author) 8 refs.

  6. Ultrasonic monitoring of pitting corrosion

    Science.gov (United States)

    Jarvis, A. J. C.; Cegla, F. B.; Bazaz, H.; Lozev, M.

    2013-01-01

    Exposure to corrosive substances in high temperature environments can cause damage accumulation in structural steels, particularly in the chemical and petrochemical industries. The interaction mechanisms are complex and varied; however initial damage propagation often manifests itself in the form of localized areas of increased material loss. Recent development of an ultrasonic wall thickness monitoring sensor capable of withstanding temperatures in excess of 500°C has allowed permanent monitoring within such hostile environments, providing information on how the shape of a pulse which has reflected from a corroding surface can change over time. Reconstructing localized corrosion depth and position may be possible by tracking such changes in reflected pulse shape, providing extra information on the state of the backwall and whether process conditions should be altered to increase plant life. This paper aims to experimentally investigate the effect certain localized features have on reflected pulse shape by `growing' artificial defects into the backwall while wall thickness is monitored using the sensor. The size and complexity of the three dimensional scattering problem lead to the development of a semi-analytical simulation based on the distributed point source method (DPSM) which is capable of simulating pulse reflection from complex surfaces measuring approximately 17×10λ Comparison to experimental results show that amplitude changes are predicted to within approximately 1dB and that pulse shape changes are accurately modelled. All experiments were carried out at room temperature, measurements at high temperature will be studied in the future.

  7. HVAC systems and equipment

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, S.T. (Linford Air and Refrigeration Company, Oakland, CA (US))

    1990-02-01

    The author discusses the section of the ASHRAE Standard 90.1-1989 which addresses HVAC systems and equipment. New features of HVAC systems mandatory general requirements are described. New prescriptive requirements are detailed.

  8. Personal Protective Equipment

    National Research Council Canada - National Science Library

    1998-01-01

    ... of personal protective equipment A safety program for new employees is a necessary part of any orientation program An on-going safety program should be used to motivate employees to continue to use...

  9. Electronic equipment packaging technology

    CERN Document Server

    Ginsberg, Gerald L

    1992-01-01

    The last twenty years have seen major advances in the electronics industry. Perhaps the most significant aspect of these advances has been the significant role that electronic equipment plays in almost all product markets. Even though electronic equipment is used in a broad base of applications, many future applications have yet to be conceived. This versatility of electron­ ics has been brought about primarily by the significant advances that have been made in integrated circuit technology. The electronic product user is rarely aware of the integrated circuits within the equipment. However, the user is often very aware of the size, weight, mod­ ularity, maintainability, aesthetics, and human interface features of the product. In fact, these are aspects of the products that often are instrumental in deter­ mining its success or failure in the marketplace. Optimizing these and other product features is the primary role of Electronic Equipment Packaging Technology. As the electronics industry continues to pr...

  10. CV equipment responsibilities

    CERN Document Server

    Pirollet, B

    2008-01-01

    This document describes the limits of the responsibilities of the TS/CV for fire fighting equipment at the LHC. The various interfaces, providers and users of the water supply systems and clean water raising systems are described.

  11. Equipment for hydraulic testing

    International Nuclear Information System (INIS)

    Jacobsson, L.; Norlander, H.

    1981-07-01

    Hydraulic testing in boreholes is one major task of the hydrogeological program in the Stripa Project. A new testing equipment for this purpose was constructed. It consists of a downhole part and a surface part. The downhole part consists of two packers enclosing two test-sections when inflated; one between the packers and one between the bottom packer and the bottom of the borehole. A probe for downhole electronics is also included in the downhole equipment together with electrical cable and nylon tubing. In order to perform shut-in and pulse tests with high accuracy a surface controlled downhole valve was constructed. The surface equipment consists of the data acquisition system, transducer amplifier and surface gauges. In the report detailed descriptions of each component in the whole testing equipment are given. (Auth.)

  12. Ultrasonic inspection experience of steam generator tubes at Ontario Hydro and the TRUSTIE inspection system

    International Nuclear Information System (INIS)

    Choi, E.I.; Jansen, D.

    1998-01-01

    Ontario Hydro have been using ultrasonic test (UT) technique to inspect steam generator (SG) tubes since 1993. The UT technique has higher sensitivity in detecting flaws in SG tubes and can characterize the flaws with higher accuracy. Although an outside contractor was used initially, Ontario Hydro has been using a self-developed system since 1995. The TRUSTIE system (Tiny Rotating UltraSonic Tube Inspection Equipment) was developed by Ontario Hydro Technologies specifically for 12.7 mm outside diameter (OD) tubes, and later expanded to larger tubes. To date TRUSTIE has been used in all of Ontario Hydro's nuclear generating stations inspecting for flaws such as pitting, denting, and cracks at top-of-tubesheet to the U-bend region. (author)

  13. Adaptive ultrasonic imaging with the total focusing method for inspection of complex components immersed in water

    Science.gov (United States)

    Le Jeune, L.; Robert, S.; Dumas, P.; Membre, A.; Prada, C.

    2015-03-01

    In this paper, we propose an ultrasonic adaptive imaging method based on the phased-array technology and the synthetic focusing algorithm Total Focusing Method (TFM). The general principle is to image the surface by applying the TFM algorithm in a semi-infinite water medium. Then, the reconstructed surface is taken into account to make a second TFM image inside the component. In the surface reconstruction step, the TFM algorithm has been optimized to decrease computation time and to limit noise in water. In the second step, the ultrasonic paths through the reconstructed surface are calculated by the Fermat's principle and an iterative algorithm, and the classical TFM is applied to obtain an image inside the component. This paper presents several results of TFM imaging in components of different geometries, and a result obtained with a new technology of probes equipped with a flexible wedge filled with water (manufactured by Imasonic).

  14. Ultrasonic-assisted manufacturing processes: Variational model and numerical simulations

    KAUST Repository

    Siddiq, Amir; El Sayed, Tamer

    2012-01-01

    We present a computational study of ultrasonic assisted manufacturing processes including sheet metal forming, upsetting, and wire drawing. A fully variational porous plasticity model is modified to include ultrasonic softening effects

  15. Method and apparatus to characterize ultrasonically reflective contrast agents

    Science.gov (United States)

    Pretlow, Robert A., III (Inventor)

    1993-01-01

    A method and apparatus for characterizing the time and frequency response of an ultrasonically reflective contrast agent is disclosed. An ultrasonically reflective contrast agent is injected, under constant pressure, into a fluid flowing through a pump flow circuit. The fluid and the ultrasonically reflective contrast agent are uniformly mixed in a mixing chamber, and the uniform mixture is passed through a contrast agent chamber. The contrast agent chamber is acoustically and axially interposed between an ultrasonic transducer chamber and an acoustic isolation chamber. A pulse of ultrasonic energy is transmitted into the contrast agent chamber from the ultrasonic transducer chamber. An echo waveform is received from the ultrasonically reflective contrast agent, and it is analyzed to determine the time and frequency response of the ultrasonically reflective contrast agent.

  16. Automated electronic intruder simulator for evaluation of ultrasonic intrusion detectors

    International Nuclear Information System (INIS)

    1979-01-01

    An automated electronic intruder simulator for testing ultrasonic intrusion detectors is described. This simulator is primarily intended for use in environmental chambers to determine the effects of temperature and humidity on the operation of ultrasonic intrusion detectors

  17. Development and Application of an Ultrasonic Gas Flowmeter

    International Nuclear Information System (INIS)

    Hwang, Won Ho; Jeong, Hee Don; Park, Sang Gug; Jhang, Kyung Young

    2002-01-01

    This paper describes the development and the field application of the ultrasonic gas flowmeter for accurate measurement of the volumetric flow rate of gases in a harsh environmental conditions in iron and steel making company. This ultrasonic flowmeter is especially suited for measuring LDG, COG, BFG gases produced in iron and steel making process. This is a transit time type ultrasonic flowmeter. We have developed the transmitting and receiving algorithm of ultrasonic wave and the ultrasonic signal processing algorithm to develope a transit time type ultrasonic flowmeter. We have evaluated the performance of ultrasonic flowmeter by the calibration system with Venturi type standard flowmeter. We has confirmed its reliability by extensive field tests for a year in POSCO, iron and steel making company. Now we have developed the commercial model of ultrasonic flowmeter and applied to the POSCO gas line

  18. Study on electrical impedance matching for broadband ultrasonic transducer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon Woo [University of Science and Technology, Daejeon (Korea, Republic of); Kim, Ki Bok [Korea Research Institute of Standards and Science, Center for Safety Measurement, Daejeon (Korea, Republic of); Baek, Kwang Sae [Elache Co., Busan (Korea, Republic of)

    2017-02-15

    Ultrasonic transducers with high resolution and resonant frequency are required to detect small defects (less than hundreds of μm) by ultrasonic testing. The resonance frequency and resolution of an ultrasonic transducer are closely related to the thickness of piezo-electric materials, backing materials, and the electric impedance matching technique. Among these factors, electrical impedance matching plays an important role because it can reduce the loss and reflection of ultrasonic energy differences in electrical impedance between an ultrasonic transducer and an ultrasonic defects detecting system. An LC matching circuit is the most frequently used electric matching method. It is necessary for the electrical impedance of an ultrasonic transducer to correspond to approximately 50 Ω to compensate the difference in electrical impedance between both connections. In this study, a 15 MHz immersion ultrasonic transducer was fabricated and an LC electrical impedance circuit was applied to that for having broad-band frequency characteristic.

  19. Ultrasonic extraction of flavonoids and phenolics from loquat ...

    African Journals Online (AJOL)

    Administrator

    2011-06-08

    Jun 8, 2011 ... ultrasonic pharmaceutical managing machine (Sinobest electronic. Co. Ltd., Jining, Shangdong ... During the ultrasonic treatment, the temperature ..... essential oil extraction by a hydrodistillation process using a 2(4) complete ...

  20. Electrocautery causes more ischemic peritoneal tissue damage than ultrasonic dissection.

    NARCIS (Netherlands)

    Broek, R.P.G ten; Wilbers, J.; Goor, H. van

    2011-01-01

    BACKGROUND: Minimizing peritoneal tissue injury during abdominal surgery has the benefit of reducing postoperative inflammatory response, pain, and adhesion formation. Ultrasonic dissection seems to reduce tissue damage. This study aimed to compare electrocautery and ultrasonic dissection in terms

  1. Non-destructive testing of a NPP's metallic equipment during operation

    International Nuclear Information System (INIS)

    Brodskij, B.R.; Monina, Eh.F.

    1977-01-01

    Some nondestructive testing methods and facilities currently used in the USSR and overseas to remotely control the quality of a NPPs metallic equipment during operation are reviewed. The ultrasonic and γ scanning devices designed to verify the integrity of nuclear reactor pressure vessels and piping weldments are considered. The acoustic emission techniques, ultrasonic holography and routine ultrasonic fault detection are acknowledged the most promising and safe when applied to reactor vessels. On the other hand, the radiographic methods are pointed out not to quarantee the identification of a flaw. There is also a description of a container designed to maintain and repair a nuclear reactor in the highly radioactive environment. The increased interest of foreign firms towards acoustic emission techniques is stressed

  2. Standard practice for leaks using ultrasonics

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 Practice A, Pressurization—This practice covers procedures for calibration of ultrasonic instruments, location, and estimated measurements of gas leakage to atmosphere by the airborne ultrasonic technique. 1.2 In general practice this should be limited to leaks detected by two classifications of instruments, Class I and Class II. Class I instruments should have a minimum detectable leak rate of 6.7 × 10−7 mol/s (1.5 × 10−2 std. cm3/s at 0°C) or more for the pressure method of gas leakage to atmosphere. Class II instruments should have a minimal detectable leak rate of 6.7 × 10−6 mol/s (1.5 × 10−1 std. cm3/s at 0°C) or more for the pressure method of gas leakage to atmosphere. Refer to Guide E432 for additional information. 1.3 Practice B, Ultrasonic Transmitter—For object under test not capable of being pressurized but capable of having ultrasonic tone placed/injected into the test area to act as an ultrasonic leak trace source. 1.3.1 This practice is limited to leaks producing leakage o...

  3. Ultrasonic imaging in LMFBRs using digital techniques

    International Nuclear Information System (INIS)

    Fothergill, J.R.; McKnight, J.A.; Barrett, L.M.

    Ultrasonic technology for providing images of components immersed in the opaque sodium of LMFBRs is being developed at RNL. For many years the application has been restricted by the unavailability of convenient ultrasonic sources and receivers capable of withstanding the reactor environment. Until recently, for example, important ultrasonic instrument design, such as for future sweep arms, had to be based on waveguided ultrasonics. RNL have developed an economic immersible transducer that can be deployed during reactor shut-down, when many demands for ultrasonic imaging are made. The transducer design is not suited at present to the sophisticated techniques of phased arrays; consequently image formation must depend on the physical scanning of a target using one or more transducers in pulse-echo mode. The difficulties of access into a fast reactor impose further restrictions. Some applications may involve easy scanning sequences, thus the sweep arm requires only a rotation to provide a map of the reactor core area. For a more detailed examination of the same area, however, special engineering solutions are needed to provide a more satisfactory scanning sequence. A compromise solution involving the rotating shield movement is being used for a PFR experiment to examine a limited area of the core. (author)

  4. Uncertainty estimation of ultrasonic thickness measurement

    International Nuclear Information System (INIS)

    Yassir Yassen, Abdul Razak Daud; Mohammad Pauzi Ismail; Abdul Aziz Jemain

    2009-01-01

    The most important factor that should be taken into consideration when selecting ultrasonic thickness measurement technique is its reliability. Only when the uncertainty of a measurement results is known, it may be judged if the result is adequate for intended purpose. The objective of this study is to model the ultrasonic thickness measurement function, to identify the most contributing input uncertainty components, and to estimate the uncertainty of the ultrasonic thickness measurement results. We assumed that there are five error sources significantly contribute to the final error, these sources are calibration velocity, transit time, zero offset, measurement repeatability and resolution, by applying the propagation of uncertainty law to the model function, a combined uncertainty of the ultrasonic thickness measurement was obtained. In this study the modeling function of ultrasonic thickness measurement was derived. By using this model the estimation of the uncertainty of the final output result was found to be reliable. It was also found that the most contributing input uncertainty components are calibration velocity, transit time linearity and zero offset. (author)

  5. Pneumatic Muscle Actuated Rehabilitation Equipment of the Upper Limb Joints

    Science.gov (United States)

    Deaconescu dr. eng. habil., Andrea, Prof.

    2017-06-01

    Rehabilitation equipment of the upper limb joints holds a key role in passive physical therapy. Within this framework, the paper presents two such pieces of equipment developed for the rehabilitation of elbow and of wrist and knuckles, respectively. The presented and discussed equipment is actuated by pneumatic muscles, its benefits being a low cost, simple and robust construction, as well as short response time to commands.

  6. Ultrasonic scanner for stainless steel weld inspections. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Kupperman, D. S.; Reimann, K. J.

    1978-09-01

    The large grain size and anisotropic nature of stainless steel weld metal make conventional ultrasonic testing very difficult. A technique is evaluated for minimizing the coherent ultrasonic noise in stainless steel weld metal. The method involves digitizing conventional ''A-scan'' traces and averaging them with a minicomputer. Results are presented for an ultrasonic scanner which interrogates a small volume of the weld metal while averaging the coherent ultrasonic noise.

  7. Ultrasonic Cleaning of Nuclear Steam Generator by Micro Bubble

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Woo Tae [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of); Kim, Sang Tae; Yoon, Sang Jung [Sae-An Engineering Co., Seoul (Korea, Republic of)

    2012-05-15

    In this paper, we present ultrasonic cleaning technology for a nuclear steam generator using micro bubble. We could extend the boundary of ultrasonic cleaning by using micro bubbles in water. Ultrasonic energy measured was increased about 5 times after the generation of micro bubbles in water. Furthermore, ultrasound energy was measured to be strong enough to create cavitation even though the ultrasound sensor was about 2 meters away from the ultrasonic transducer

  8. Ultrasonic pretreatment for enhanced saccharification and fermentation of ethanol production from corn

    Science.gov (United States)

    Montalbo-Lomboy, Melissa T.

    sonicated samples in terms of ethanol conversion based on theoretical yield. Furthermore, statistical analysis confirmed that there was no significant difference (pcost of installing ultrasonics was higher compared to jet cooker equipment. However, due to the energy needs of jet cooking, a typical 189 million liters (50 million gallon) per year ethanol plant ethanol plant would save about 16% in pretreatment cost by using ultrasonics. Based on these results, ultrasonication is a promising pretreatment method in corn ethanol production, as an alternative to jet cooking.

  9. Contact-free ultrasonic testing: applications to metrology and NDT

    International Nuclear Information System (INIS)

    Le Brun, A.

    1988-01-01

    In some cases classical ultrasonic testing is impossible because of adverse environment (high temperature, ionizing radiations, etc). Ultrasonic waves are created by laser impact and detected by electromagneto-acoustic transducers or laser interferometry. Association of ultrasonics generation by photoacoustic effect and reception by heterodyne interferometer is promising for the future [fr

  10. Experiences in using ultrasonic holography with numerical and optical reconstruction

    International Nuclear Information System (INIS)

    Schmitz, V.; Wosnitza, M.

    1978-01-01

    At present, ultrasonic holography can resolve and image faults of 1 mm and more and with distances of one ultrasonic wavelength. The main field of application is for thick-walled structural components. Depending on the expected orientation, test probe arrangements as in standard ultrasonic testing are chosen. (orig./RW) [de

  11. Numerical shaping of the ultrasonic wavelet

    International Nuclear Information System (INIS)

    Bonis, M.

    1991-01-01

    Improving the performance and the quality of ultrasonic testing requires the numerical control of the shape of the driving signal applied to the piezoelectric transducer. This allows precise shaping of the ultrasonic field wavelet and corrections for the physical defects of the transducer, which are mainly due to the damper or the lens. It also does away with the need for an accurate electric matching. It then becomes feasible to characterize, a priori, the ultrasonic wavelet by means of temporal and/or spectral specifications and to use, subsequently, an adaptative algorithm to calculate the corresponding driving wavelet. Moreover, the versatility resulting from the numerical control of this wavelet allows it to be changed in real time during a test

  12. Method of noncontacting ultrasonic process monitoring

    Science.gov (United States)

    Garcia, Gabriel V.; Walter, John B.; Telschow, Kenneth L.

    1992-01-01

    A method of monitoring a material during processing comprising the steps of (a) shining a detection light on the surface of a material; (b) generating ultrasonic waves at the surface of the material to cause a change in frequency of the detection light; (c) detecting a change in the frequency of the detection light at the surface of the material; (d) detecting said ultrasonic waves at the surface point of detection of the material; (e) measuring a change in the time elapsed from generating the ultrasonic waves at the surface of the material and return to the surface point of detection of the material, to determine the transit time; and (f) comparing the transit time to predetermined values to determine properties such as, density and the elastic quality of the material.

  13. Determine bond strength by ultrasonic measurement

    International Nuclear Information System (INIS)

    Brown, C.M.

    1978-01-01

    Application of ultrasonic methods for the evaluation and measurement of bond strength has been the object of numerous investigations in the last fifteen years. Some investigators have reported good success (in limited application) while others have experienced dismal failure. One problem common to all investigations was the difficulty in extracting and isolating the many components which comprise the ultrasonic signal reflected from a bonded interface. Part of this problem was due to manually extracting individual parameters from large volumes of raw data. However, with the vast technology now available in the field of signal analysis and computerized data processing, it is feasible to isolate and analyze individual parameters within the ultrasonic signal for great volumes of raw data

  14. Ultrasonic filtration of industrial chemical solutions

    Science.gov (United States)

    Cosma, T.

    1974-01-01

    The practical results obtained as a result of filtering industrial chemical solutions under continuous flow conditions with the aid of an ultrasonic filter are presented. The main part of the assembly consists of an ultrasonic generator with an output power of about 400 W and the filtration assembly, in which there is a magnetostrictive amplifier constructed for 20.5 kHz. In addition to ensuring a continuous flow of filtered solution, ultrasonic filters can be replaced or cleaned at intervals of time that are 8-10 times greater than in the case of mechanical filters. They yield considerably better results as far as the size of the filtered particles is concerned. The parameters on which filtration quality depends are also presented.

  15. Ultrasonic grinding of optical materials

    Science.gov (United States)

    Cahill, Michael; Bechtold, Michael; Fess, Edward; Stephan, Thomas; Bechtold, Rob

    2017-10-01

    Hard ceramic optical materials such as sapphire, ALON, Spinel, PCA, or Silicon Carbide can present a significant challenge in manufacturing precision optical components due to their tough mechanical properties. These are also the same mechanical properties that make them desirable materials when used in harsh environments. Slow processing speeds, premature tool wear, and poor surface quality are common results of the tough mechanical properties of these materials. Often, as a preparatory stage for polishing, the finish of the ground surface greatly influences the polishing process and the resulting finished product. To overcome these challenges, OptiPro Systems has developed an ultrasonic assisted grinding technology, OptiSonic, which has been designed for the precision optics and ceramics industry. OptiSonic utilizes a custom tool holder designed to produce oscillations, in microns of amplitude, in line with the rotating spindle. A software package, IntelliSonic, is integral to the function of this platform. IntelliSonic can automatically characterize tooling during setup to identify and select the ideal resonant peak which to operate at. Then, while grinding, IntelliSonic continuously adjusts the output frequency for optimal grinding efficiency while in contact with the part. This helps maintain a highly consistent process under changing load conditions for a more precise surface. Utilizing a variety of instruments, tests have proven to show a reduction in force between tool and part by up to 50%, while increasing the surface quality and reducing tool wear. This paper will present the challenges associated with these materials and solutions created to overcome them.

  16. Ultrasonic sludge pretreatment under pressure.

    Science.gov (United States)

    Le, Ngoc Tuan; Julcour-Lebigue, Carine; Delmas, Henri

    2013-09-01

    The objective of this work was to optimize the ultrasound (US) pretreatment of sludge. Three types of sewage sludge were examined: mixed, secondary and secondary after partial methanisation ("digested" sludge). Thereby, several main process parameters were varied separately or simultaneously: stirrer speed, total solid content of sludge (TS), thermal operating conditions (adiabatic vs. isothermal), ultrasonic power input (PUS), specific energy input (ES), and for the first time external pressure. This parametric study was mainly performed for the mixed sludge. Five different TS concentrations of sludge (12-36 g/L) were tested for different values of ES (7000-75,000 kJ/kgTS) and 28 g/L was found as the optimum value according to the solubilized chemical oxygen demand in the liquid phase (SCOD). PUS of 75-150 W was investigated under controlled temperature and the "high power input - short duration" procedure was the most effective at a given ES. The temperature increase in adiabatic US application significantly improved SCOD compared to isothermal conditions. With PUS of 150 W, the effect of external pressure was investigated in the range of 1-16 bar under isothermal and adiabatic conditions for two types of sludge: an optimum pressure of about 2 bar was found regardless of temperature conditions and ES values. Under isothermal conditions, the resulting improvement of sludge disintegration efficacy as compared to atmospheric pressure was by 22-67% and 26-37% for mixed and secondary sludge, respectively. Besides, mean particle diameter (D[4,3]) of the three sludge types decreased respectively from 408, 117, and 110 μm to about 94-97, 37-42, and 36-40 μm regardless of sonication conditions, and the size reduction process was much faster than COD extraction. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Advances in ultrasonic fuel cleaning

    International Nuclear Information System (INIS)

    Blok, J.; Frattini, P.; Moser, T.

    2002-01-01

    The economics of electric generation is requiring PWR plant operators to consider higher fuel duty and longer cycles. As a result, sub-cooled nucleate boiling is now an accepted occurrence in the upper spans of aggressively driven PWR cores. Thermodynamic and hydraulic factors determine that the boiling surfaces of the fuel favor deposition of corrosion products. Thus, the deposits on high-duty fuel tend to be axially distributed in an inhomogeneous manner. Axial offset anomaly (AOA) is the result of axially non-homogeneous distribution of boron compounds in these axially variable fuel deposits. Besides their axial asymmetry, fuel deposits in boiling cores tend to be qualitatively different from deposits on non-boiling fuel. Thus, deposits on moderate-duty PWR fuel are generally iron rich, predominating in nickel ferrites. Deposits on cores with high boiling duty, on the other hand, tend to be rich in nickel, with sizeable fractions of NiO or elemental nickel. Other unexpected compounds such as m-ZrO 2 and Ni-Fe oxy-borates have been found in significant quantity in deposits on boiling cores. This paper describes the ultrasonic fuel cleaning technology developed by EPRI. Data will be presented to confirm that the method is effective for removing fuel deposits from both high-duty and normal-duty fuel. The report will describe full-core fuel cleaning using the EPRI technology for Callaway Cycle 12 reload fuel. The favorable impact of fuel cleaning on Cycle 12 AOA performance will also be presented. (authors)

  18. Ultrasonic unit for line-by-line ultrasonic scanning of bodies

    International Nuclear Information System (INIS)

    Soldner, R.

    1978-01-01

    The ultrasonic unit for medical diagnostics operates by the sectorial scanning principle, which avoids direct coupling of the transducer head to the surface of the body. For this purpose, several transmitter/receiver units (approx. 100) are arranged on a partial ring of a circular arc and the ultrasonic beams, which can be triggered sequentially in time, are directed at a common intersection behind the ultrasonic window of the unit, i.e., outside the unit. A mechanical system is employed to set and adjust the partial ring carrying the transmitter/receiver units. (DG) [de

  19. Ultrasonic histogram assessment of early response to concurrent chemo-radiotherapy in patients with locally advanced cervical cancer: a feasibility study.

    Science.gov (United States)

    Xu, Yan; Ru, Tong; Zhu, Lijing; Liu, Baorui; Wang, Huanhuan; Zhu, Li; He, Jian; Liu, Song; Zhou, Zhengyang; Yang, Xiaofeng

    To monitor early response for locally advanced cervical cancers undergoing concurrent chemo-radiotherapy (CCRT) by ultrasonic histogram. B-mode ultrasound examinations were performed at 4 time points in thirty-four patients during CCRT. Six ultrasonic histogram parameters were used to assess the echogenicity, homogeneity and heterogeneity of tumors. I peak increased rapidly since the first week after therapy initiation, whereas W low , W high and A high changed significantly at the second week. The average ultrasonic histogram progressively moved toward the right and converted into more symmetrical shape. Ultrasonic histogram could be served as a potential marker to monitor early response during CCRT. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Equipment abnormality monitoring device

    International Nuclear Information System (INIS)

    Ando, Yasumasa

    1991-01-01

    When an operator hears sounds in a plantsite, the operator compares normal sounds of equipment which he previously heard and remembered with sounds he actually hears, to judge if they are normal or abnormal. According to the method, there is a worry that abnormal conditions can not be appropriately judged in a case where the number of objective equipments is increased and in a case that the sounds are changed gradually slightly. Then, the device of the present invention comprises a plurality of monitors for monitoring the operation sound of equipments, a recording/reproducing device for recording and reproducing the signals, a selection device for selecting the reproducing signals among the recorded signals, an acoustic device for converting the signals to sounds, a switching device for switching the signals to be transmitted to the acoustic device between to signals of the monitor and the recording/reproducing signals. The abnormality of the equipments can be determined easily by comparing the sounds representing the operation conditions of equipments for controlling the plant operation and the sounds recorded in their normal conditions. (N.H.)

  1. Prioritizing equipment for replacement.

    Science.gov (United States)

    Capuano, Mike

    2010-01-01

    It is suggested that clinical engineers take the lead in formulating evaluation processes to recommend equipment replacement. Their skill, knowledge, and experience, combined with access to equipment databases, make them a logical choice. Based on ideas from Fennigkoh's scheme, elements such as age, vendor support, accumulated maintenance cost, and function/risk were used.6 Other more subjective criteria such as cost benefits and efficacy of newer technology were not used. The element of downtime was also omitted due to the data element not being available. The resulting Periop Master Equipment List and its rationale was presented to the Perioperative Services Program Council. They deemed the criteria to be robust and provided overwhelming acceptance of the list. It was quickly put to use to estimate required capital funding, justify items already thought to need replacement, and identify high-priority ranked items for replacement. Incorporating prioritization criteria into an existing equipment database would be ideal. Some commercially available systems do have the basic elements of this. Maintaining replacement data can be labor-intensive regardless of the method used. There is usually little time to perform the tasks necessary for prioritizing equipment. However, where appropriate, a clinical engineering department might be able to conduct such an exercise as shown in the following case study.

  2. Characterization methods for ultrasonic test systems

    International Nuclear Information System (INIS)

    Busse, L.J.; Becker, F.L.; Bowey, R.E.; Doctor, S.R.; Gribble, R.P.; Posakony, G.J.

    1982-07-01

    Methods for the characterization of ultrasonic transducers (search units) and instruments are presented. The instrument system is considered as three separate components consisting of a transducer, a receiver-display, and a pulser. The operation of each component is assessed independently. The methods presented were chosen because they provide the greatest amount of information about component operation and were not chosen based upon such conditions as cost, ease of operation, field implementation, etc. The results of evaluating a number of commercially available ultrasonic test instruments are presented

  3. Absorption and dispersion of ultrasonic waves

    CERN Document Server

    Herzfeld, Karl F; Massey, H S W; Brueckner, Keith A

    1959-01-01

    Absorption and Dispersion of Ultrasonic Waves focuses on the influence of ultrasonics on molecular processes in liquids and gases, including hydrodynamics, energy exchange, and chemical reactions. The book first offers information on the Stokes-Navier equations of hydrodynamics, as well as equations of motion, viscosity, formal introduction of volume viscosity, and linearized wave equation for a nonviscous fluid. The manuscript then ponders on energy exchange between internal and external degrees of freedom as relaxation phenomenon; effect of slow energy exchange on sound propagation; differe

  4. Ultrasonic methods in solid state physics

    CERN Document Server

    Truell, John; Elbaum, Charles

    1969-01-01

    Ultrasonic Methods in Solid State Physics is devoted to studies of energy loss and velocity of ultrasonic waves which have a bearing on present-day problems in solid-state physics. The discussion is particularly concerned with the type of investigation that can be carried out in the megacycle range of frequencies from a few megacycles to kilomegacycles; it deals almost entirely with short-duration pulse methods rather than with standing-wave methods. The book opens with a chapter on a classical treatment of wave propagation in solids. This is followed by separate chapters on methods and techni

  5. Ultrasonic process for detoxification of groundwater

    International Nuclear Information System (INIS)

    Wu, Jiann M.; Huang, H.S.; Livengood, C.D.

    1991-01-01

    In this paper, we present the results of an investigation of the ultrasonic irradiation of carbon tetrachloride at various pH values, temperatures, and power intensities. Kinetic data and selected chemical mechanism are discussed and proposed. To study oxidant efficiency, chemical oxidants, such as hydrogen peroxide, are also considered. This work is part of a project entitled ''Ultrasonic Process for Detoxification of Groundwater and Soil,'' sponsored by the US Department of Energy, Office of Technology Development, to develop an innovative process for the effective destruction of chlorinated organics in soil and groundwater

  6. Control of hydrodynamic cavitation using ultrasonic

    Science.gov (United States)

    Chatterjee, Dhiman; Arakeri, Vijay H.

    2003-11-01

    Hydrodynamic cavitation is known to have many harmful effects like surface damage and generation of noise. We investigated the use of ultrasonics to control traveling bubble cavitation. Ultrasonic pressure field, produced by a piezoelectric crystal, was applied to modify the nuclei size distribution. Effects of continuous-wave (CW) and pulsed excitations were studied. At low dissolved gas content the CW-mode performed better than the pulsed one, whereas for high gas content the pulsed one was more effective. The dominant mechanisms were Bjerknes force and rectified diffusion in these two cases. Simultaneous excitation by two crystals in CW and pulsed modes was seen to control cavitation better.

  7. Radioactive decontamination of equipment

    International Nuclear Information System (INIS)

    1982-03-01

    After a recall of some definitions relating to decontamination techniques and of the regulation into effect, the principles to be respected to arrange rationally work zones are quoted while insisting more particularly on the types of coatings which facilitate maintenance operations and the dismantling of these installations. Then, the processes and equipments to use in decontamination units for routine or particular operations are described; the list of recommended chemical products to decontaminate the equipment is given. The influence of these treatments on the state and the duration of life of equipments is studied, and some perfectible methods are quoted. In the appendix, are given: the limits of surface contamination accepted in the centers; a standard project which defines the criteria of admissible residual contamination in wastes considered as cold wastes; some remarks on the interest that certain special ventilation and air curtain devices for the protection of operators working on apparatus generating contaminated dusts [fr

  8. Equipment Operational Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Greenwalt, B; Henderer, B; Hibbard, W; Mercer, M

    2009-06-11

    The Iraq Department of Border Enforcement is rich in personnel, but poor in equipment. An effective border control system must include detection, discrimination, decision, tracking and interdiction, capture, identification, and disposition. An equipment solution that addresses only a part of this will not succeed, likewise equipment by itself is not the answer without considering the personnel and how they would employ the equipment. The solution should take advantage of the existing in-place system and address all of the critical functions. The solutions are envisioned as being implemented in a phased manner, where Solution 1 is followed by Solution 2 and eventually by Solution 3. This allows adequate time for training and gaining operational experience for successively more complex equipment. Detailed descriptions of the components follow the solution descriptions. Solution 1 - This solution is based on changes to CONOPs, and does not have a technology component. It consists of observers at the forts and annexes, forward patrols along the swamp edge, in depth patrols approximately 10 kilometers inland from the swamp, and checkpoints on major roads. Solution 2 - This solution adds a ground sensor array to the Solution 1 system. Solution 3 - This solution is based around installing a radar/video camera system on each fort. It employs the CONOPS from Solution 1, but uses minimal ground sensors deployed only in areas with poor radar/video camera coverage (such as canals and streams shielded by vegetation), or by roads covered by radar but outside the range of the radar associated cameras. This document provides broad operational requirements for major equipment components along with sufficient operational details to allow the technical community to identify potential hardware candidates. Continuing analysis will develop quantities required and more detailed tactics, techniques, and procedures.

  9. Charging equipment. Ladegeraet

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, E

    1981-09-17

    The invention refers to a charging equipment, particularly on board charging equipment for charging traction batteries of an electric vehicle from the AC mains supply, consisting of a DC converter, which contains a controlled power transistor, a switching off unloading circuit and a power transmitter, where the secondary winding is connected in series with a rectifier diode, and a smoothing capacitor is connected in parallel with this series circuit. A converter module is provided, which consists of two DC voltage converters, whose power transistors are controlled by a control circuit in opposition with a phase displacement of 180/sup 0/.

  10. Analysis of Ultrasonic Transmitted Signal for Apple using Wavelet Transform

    International Nuclear Information System (INIS)

    Kim, Ki Bok; Lee, Sang Dae; Choi, Man Yong; Kim, Man Soo

    2005-01-01

    This study was conducted to analyze the ultrasonic transmitted signal for apple using wavelet transform. Fruit consists of nonlinear visco-elastic properties such as flesh, an ovary and rind and lienee most ultrasonic wave is attenuated and its frequency is shifted during passing the fruit. Thus it is not easy to evaluate the internal quality of the fruit using typical ultrasonic parameters such as wave velocity, attenuation, and frequency spectrum. The discrete wavelet transform was applied to the ultrasonic transmitted signal for apple. The magnitude of the first peak frequency of the wavelet basis from the ultrasonic transmitted signal showed a close correlation to the storage time of apple

  11. Thumb-size ultrasonic-assisted spectroscopic imager for in-situ glucose monitoring as optional sensor of conventional dialyzers

    Science.gov (United States)

    Nogo, Kosuke; Mori, Keita; Qi, Wei; Hosono, Satsuki; Kawashima, Natsumi; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro

    2016-03-01

    We proposed the ultrasonic-assisted spectroscopic imaging for the realization of blood-glucose-level monitoring during dialytic therapy. Optical scattering and absorption caused by blood cells deteriorate the detection accuracy of glucose dissolved in plasma. Ultrasonic standing waves can agglomerate blood cells at nodes. In contrast, around anti-node regions, the amount of transmitted light increases because relatively clear plasma appears due to decline the number of blood cells. Proposed method can disperse the transmitted light of plasma without time-consuming pretreatment such as centrifugation. To realize the thumb-size glucose sensor which can be easily attached to dialysis tubes, an ultrasonic standing wave generator and a spectroscopic imager are required to be small. Ultrasonic oscillators are ∅30[mm]. A drive circuit of oscillators, which now size is 41×55×45[mm], is expected to become small. The trial apparatus of proposed one-shot Fourier spectroscopic imager, whose size is 30×30×48[mm], also can be little-finger size in principal. In the experiment, we separated the suspension mixed water and micro spheres (Θ10[mm) into particles and liquid regions with the ultrasonic standing wave (frequency: 2[MHz]). Furthermore, the spectrum of transmitted light through the suspension could be obtained in visible light regions with a white LED.

  12. An equipment for the dimensional characterization of irradiated fuel channels

    International Nuclear Information System (INIS)

    Cederquist, H.

    1985-01-01

    The reuse of irradiated fuel channels in BWRs is highly beneficial. However, one prerequisite for reuse of a fuel channel is the detailed knowledge of its dimensions, which are affected by irradiation and pressure drop during operation. Therefore an equipment for fast and accurate dimensional measurement of irradiated fuel channels has been developed. The measurements are carried out when the fuel assembly is supported in the same manner as in the reactor core. The equipment utilizes stationary ultrasonic transducers that measure the fuel channel at a number of predetermined axial levels. Measurement data are fed into a computer which calculates the requested dimensional characteristics such as transversal flatness, bow, twist, side perpendicularity etc. Data are automatically printed for subsequent evaluation. Measurements can be performed both when the fuel channel is placed on a fuel bundle and on an empty fuel channel

  13. Effect of ultrasonic treatment on the physico-chemical parameters of kvass

    Directory of Open Access Journals (Sweden)

    V. A. Demchenko

    2016-01-01

    Full Text Available In this paper, for the intensification of production kvass process are encouraged to use the installation "Wave-M" UZTA-1/22-OM sonication product. The aim of the experiment was to study the effect of treatment of process water and the yeast suspension with ultrasound in the production of kvass. To achieve its objectives for the Department of technological machinery and equipment ITMO University experimental setup was designed. In the course of the experiment we studied the effect of ultrasonic treatment on the physico-chemical characteristics of the finished beverage, made in different formulations, depending on the tiered effect of ultrasound. Organoleptic evaluation of the product was carried out, and active acidity measured amount of dry matter in the finished beverage. When processing kvass ultrasound power of 60 and 90 W at a tasting in the product became noticeable pleasant caramel flavor. Due to this effect may be replaced in the production of soft drinks expensive equipment used for cooking in sugar syrup tinting siropovarochnyh, kolerovarochnyh boilers cheaper ultrasonic unit. The acidity of the samples increased within acceptable limits. On the amount of solids in kvass ultrasonic treatment did not significantly affected. To increase the shelf life of the beverage used microfiltration. Anticipated acceleration of the process of obtaining fermented kvass 2 times. It is shown that the filtration using the dosing of ultrasound in the production of kvass not only reduce the cost of the equipment and remove some of the tra-ditional processes, but also provide with the cold sterilization of kvass with higher quality indicators.

  14. Ultrasonic Tomography Imaging for Liquid-Gas Flow Measurement

    Directory of Open Access Journals (Sweden)

    Muhammad Jaysuman PUSPPANATHAN

    2013-01-01

    Full Text Available This research was carried out to measure two-phase liquid – gas flow regime by using a dual functionality ultrasonic transducer. Comparing to the common separated transmitter–receiver ultrasonic pairs transducer, the dual functionality ultrasonic transceiver is capable to produce the same measurable results hence further improvises and contributes to the hardware design improvement and system accuracy. Due to the disadvantages and the limitations of the separated ultrasonic transmitter–receiver pair, this paper presents a non-invasive ultrasonic tomography system using ultrasonic transceivers as an alternative approach. Implementation of ultrasonic transceivers, electronic measurement circuits, data acquisition system and suitable image reconstruction algorithms, the measurement of a liquid/gas flow was realized.

  15. Radial vibration and ultrasonic field of a long tubular ultrasonic radiator.

    Science.gov (United States)

    Shuyu, Lin; Zhiqiang, Fu; Xiaoli, Zhang; Yong, Wang; Jing, Hu

    2013-09-01

    The radial vibration of a metal long circular tube is studied analytically and its electro-mechanical equivalent circuit is obtained. Based on the equivalent circuit, the radial resonance frequency equation is derived. The theoretical relationship between the radial resonance frequency and the geometrical dimensions is studied. Finite element method is used to simulate the radial vibration and the radiated ultrasonic field and the results are compared with those from the analytical method. It is concluded that the radial resonance frequency for a solid metal rod is larger than that for a metal tube with the same outer radius. The radial resonance frequencies from the analytical method are in good agreement with those from the numerical method. Based on the acoustic field analysis, it is concluded that the long metal tube with small wall thickness is superior to that with large wall thickness in producing radial vibration and ultrasonic radiation. Therefore, it is expected to be used as an effective radial ultrasonic radiator in ultrasonic sewage treatment, ultrasonic antiscale and descaling and other ultrasonic liquid handling applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Experimental equipment, ch. 6

    International Nuclear Information System (INIS)

    Boomstra, F.; Hoogenboom, A.M.; Prins, C.M.; Strasters, B.A.; Vermeer, A.; Wit, P. de; Zwol, N.A. van.

    1977-01-01

    The experimental equipment in use at Utrecht university is discussed. Attention is paid to the tandem Van de Graaff accelerator and the 4MV and 1MV accelerators. The detection systems for gamma-ray spectroscopy are reviewed with emphasis on the compton-suppression spectrometer. The data-handling system used for experiments with the tandem is also briefly discussed

  17. Equipment gift to Monaco

    International Nuclear Information System (INIS)

    1970-01-01

    Research work at the Agency's Laboratory of Marine Radioactivity in Monaco, including that concerned with pollution of the sea, has been made more effective by its latest acquisition of equipment. This is a spectrophotometer donated by the Federal Republic of Germany. (author)

  18. Lifetime of Mechanical Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Leland, K.

    1999-07-01

    The gas plant at Kaarstoe was built as part of the Statpipe gas transport system and went on stream in 1985. In 1993 another line was routed from the Sleipner field to carry condensate, and the plant was extended accordingly. Today heavy additional supply- and export lines are under construction, and the plant is extended more than ever. The main role of the factory is to separate the raw gas into commercial products and to pump or ship it to the markets. The site covers a large number of well-known mechanical equipment. This presentation deals with piping, mechanical and structural disciplines. The lifetime of mechanical equipment is often difficult to predict as it depends on many factors, and the subject is complex. Mechanical equipment has been kept in-house, which provides detailed knowledge of the stages from a new to a 14 years old plant. The production regularity has always been very high, as required. The standard of the equipment is well kept, support systems are efficient, and human improvisation is extremely valuable.

  19. Safeguards techniques and equipment

    International Nuclear Information System (INIS)

    1997-01-01

    The current booklet is intended to give a full and balanced description of the techniques and equipment used for both nuclear material accountancy and containment and surveillance measures, and for the new safeguards measure of environmental sampling. As new verification measures continue to be developed, the material in the booklet will be periodically reviewed and updated versions issued. (author)

  20. Equipping tomorrow's fire manager

    Science.gov (United States)

    Christopher A. Dicus

    2008-01-01

    Fire managers are challenged with an ever-increasing array of both responsibilities and critics. As in the past, fire managers must master the elements of fire behavior and ecology using the latest technologies. In addition, today’s managers must be equipped with the skills necessary to understand and liaise with a burgeoning group of vocal stakeholders while also...

  1. Electrical equipment design library

    International Nuclear Information System (INIS)

    1994-01-01

    This book guides the design supervision, construction order for electrical equipment. The contents of this library are let's use electricity like this, leading-in-pole and casual power, electric pole install below 300KVA, electric pole install below 301∼1000KVA, electric pole install exceed 1000KVA, rooftop install exceed 1000KVA, CUBICLE type, 154KV services. It adds an appendix.

  2. Orphee reactor experimental equipment

    International Nuclear Information System (INIS)

    1987-01-01

    Experimental equipment around the ORPHEE reactor is presented. The neutron source; and the spectrometers and sample environment (inelastic and quasi-elastic scattering, elastic scattering, spread scattering, small angle scattering) are described. An experiment proposal and reports guide is supplied [fr

  3. Seismic qualification of equipment

    International Nuclear Information System (INIS)

    Heidebrecht, A.C.; Tso, W.K.

    1983-03-01

    This report describes the results of an investigation into the seismic qualification of equipment located in CANDU nuclear power plants. It is particularly concerned with the evaluation of current seismic qualification requirements, the development of a suitable methodology for the seismic qualification of safety systems, and the evaluation of seismic qualification analysis and testing procedures

  4. Underground coal equipment

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, J.

    2002-12-01

    This paper reports on increasing automation and enhanced productivity on longwalls, new development cutting and bolting technologies and haulage systems. Amongst equipment discussed is DBT's Electra series EL3000 shearer, the Dosco LH1400 roadheader with onboard bolters, and Joy 12 CM30 continuous miners. 4 photos.

  5. Ultrasonic sensor for sodium perspective device

    International Nuclear Information System (INIS)

    Ogawa, Fujio; Onuki, Koji.

    1995-01-01

    The present invention concerns an ultrasonic wave sensor for a sodium perspective device disposed in an FBR type reactor, which can change the directing angle of the ultrasonic sensor irrespective of the external conditions in liquid sodium. Namely, the sensor comprises (1) a sensor main body, (2) a diaphragm disposed on an oscillating surface of ultrasonic waves generated from the sensor main body, (3) a pressurizing and depressurizing nozzle connected to the sensor main body, and (4) a pressure detector disposed to these nozzles. A gas is charged/discharged to and from the sensor main body to control a gas pressure in the main body. If the gas pressure is made higher, the diaphragm is deformed convexly. If the gas pressure is lowered, the diaphragm is deformed concavely. The directing angle is greater when it is deformed a convexly, and it is smaller when it is deformed concavely. Accordingly, ultrasonic wave receiving/sending range in the sodium can be varied optionally by controlling the gas pressure in the main body. (I.S.)

  6. Ultrasonic attenuation in rare-earth monoarsenides

    Indian Academy of Sciences (India)

    2015-11-27

    Home; Journals; Pramana – Journal of Physics; Volume 86; Issue 6. Ultrasonic attenuation in rare-earth monoarsenides .... Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science (IWCCMP-2015). Posted on November 27, 2015. Guest Editors: Anurag ...

  7. An ultrasonic waveguide for nuclear power plants

    International Nuclear Information System (INIS)

    Watkins, R.D.; Gillespie, A.B.; Deighton, M.O.; Pike, R.B.

    1983-01-01

    The value of ultrasonic techniques in nuclear plants is well established. However, in most cases nuclear power plants present an extremely hostile environment for an ultrasonic transducer. The paper presents a novel technique for introducing an ultrasound into hostile liquid environments using a new form of ultrasonic waveguide. Using this approach, a standard transducer arrangement is sited in a hospitable area and conveys the ultrasound along the guide to the required beam-emission collection position. The design of a single-mode ultrasonic waveguide is described. The ultrasound is conveyed along a stainless steel strip of rectangular cross-section. The transference of energy between the strip and the liquid is achieved through a highly efficient mode-conversion process. This process overcomes the usual problems of mis-match of acoustic impedances of stainless steel and liquids, and also produces a highly collimated beam of ultrasound. Tests of a 10-m-long waveguide using these techniques are described, achieving signal-to-noise ratios in the region of 40 dB. (author)

  8. Coded ultrasonic remote control without batteries

    International Nuclear Information System (INIS)

    Gerhardy, C; Burlage, K; Schomburg, W K

    2009-01-01

    A concept for battery-less remote controls has been developed based on mechanically actuated beams and micro whistles generating ultrasound signals. These signals need to be frequency or time coded to increase the number of signals which can be distinguished from each other and environmental ultrasound. Several designs for generating coded ultrasonic signals have been investigated

  9. Automated ultrasonic inspection of nuclear plant components

    International Nuclear Information System (INIS)

    Baron, J.A.; Dolbey, M.P.

    1982-01-01

    For reasons of safety and efficiency, automated systems are used in performing ultrasonic inspection of nuclear components. An automated system designed specifically for the inspection of headers in a nuclear plant is described. In-service inspection results obtained with this system are shown to correlate with pre-service inspection results obtained by manual methods

  10. Applications of precision ultrasonic thickness gauging

    International Nuclear Information System (INIS)

    Fowler, K.A.; Elfbaum, G.M.; Husarek, V.; Castel, J.G.

    1976-01-01

    Pulse-echo ultrasonic thickness gauging is now recognized as an accurate method of measuring thickness of a product from one side when the velocity of ultrasound in the material is known. The advantages and present limitation of this gauging technique are presented, together with several applications of industrial interest [fr

  11. Auto-positioning ultrasonic transducer system

    Science.gov (United States)

    Buchanan, Randy K. (Inventor)

    2010-01-01

    An ultrasonic transducer apparatus and process for determining the optimal transducer position for flow measurement along a conduit outer surface. The apparatus includes a transmitting transducer for transmitting an ultrasonic signal, said transducer affixed to a conduit outer surface; a guide rail attached to a receiving transducer for guiding movement of a receiving transducer along the conduit outer surface, wherein the receiving transducer receives an ultrasonic signal from the transmitting transducer and sends a signal to a data acquisition system; and a motor for moving the receiving transducer along the guide rail, wherein the motor is controlled by a controller. The method includes affixing a transmitting transducer to an outer surface of a conduit; moving a receiving transducer on the conduit outer surface, wherein the receiving transducer is moved along a guide rail by a motor; transmitting an ultrasonic signal from the transmitting transducer that is received by the receiving transducer; communicating the signal received by the receiving transducer to a data acquisition and control system; and repeating the moving, transmitting, and communicating along a length of the conduit.

  12. Ferroelectret non-contact ultrasonic transducers

    Czech Academy of Sciences Publication Activity Database

    Bovtun, Viktor; Döring, J.; Bartusch, J.; Beck, U.; Erhard, A.; Yakymenko, Y.

    2007-01-01

    Roč. 88, č. 4 (2007), s. 737-743 ISSN 0947-8396 R&D Projects: GA ČR(CZ) GA202/06/0403 Institutional research plan: CEZ:AV0Z10100520 Keywords : ferroelectrets * polymers * ultrasonic transducers Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.857, year: 2007

  13. Experimental development of an ultrasonic linear motor

    CSIR Research Space (South Africa)

    M'Boungui, G

    2010-01-01

    Full Text Available the stator structure. In contrast to traditional travelling wave ultrasonic motors, which require two modes to be driven 90° out of phase, only one amplifier is required to drive the proposed device. A prototype device was characterised experimentally...

  14. Ultrasonic Diagnosis of Fetal Ascites and Toxoplasmosis

    DEFF Research Database (Denmark)

    Blaakær, Jan

    1986-01-01

    The ultrasonic diagnosis of fetal ascites caused by Toxoplasma Gondii is presented. When a diagnosis of fetal ascites without obvious etiological malformation is established, toxoplasmosis should be suspected. A serological test should be performed, in view of the possibility of antenatal treatme...

  15. Repartition of ultrasonic energies at the interfaces

    International Nuclear Information System (INIS)

    Deleuze, M.; Bourdarios, M.; Lepoutre, M.

    1983-06-01

    Energy repartition of ultrasonic waves at the interfaces is studied as a function of incidence angle of the acoustic beam in immersion testing. For each interface type mathematical relations give the ratio of incident energy and energy of the wave reemitted by the interface. As an example curves for the interfaces water-uranium are given [fr

  16. Advanced ultrasonic field system: a status report

    International Nuclear Information System (INIS)

    Mikesell, C.R.; Beller, L.S.

    1984-02-01

    An advanced ultrasonic system was developed to obtain highly reproducible inspection data and to overcome certain limitations encountered with the manual scanning method. Experience from field operations from 1976 through 1980 is discussed. The scope includes a description of the computer controlled system, personnel training, inservice inspections, data analysis, and current upgrading of the system

  17. Ultrasonic thermometry for nuclear power plants

    International Nuclear Information System (INIS)

    Saravana Kumar, S.; Arunraj, A.L.R.; Swaminathan, K.

    2013-01-01

    Ultrasonic transducer provides a method of measurement of temperature in industrial tanks and boilers containing different liquids with varied salt content. This method is used to measure the average temperature continuously where other traditional methods available do not offer. Traditional methods used for temperature measurement like infrared thermometers, thermocouples, measures temperature at a single location. Numerous thermocouples are to be fixed at various part of the boiler in order to measure the temperature of the entire boiler, which incurs high cost. Reliability of the system decreases, with increasing number of thermocouples. When they fail at a point, the time incurred in finding the faulty part or faulty thermocouple is high. Ultrasonic transducer provides continuous measurement for all different characteristic liquids with higher accuracy and lesser response time. Fault location and clearance time is also less in ultrasonic measurement method, since only a couple of transducers used for the entire boiler structure. Additionally ultrasonic thermometry along support measuring electronic system can be built of low cost. (author)

  18. Reduction of aerosols produced by ultrasonic scalers.

    Science.gov (United States)

    Harrel, S K; Barnes, J B; Rivera-Hidalgo, F

    1996-01-01

    There is concern with decreased air quality and potential aerosol contamination in the dental operatory. This problem has been addressed by the Centers for Disease Control and Prevention, which recommends that all sources of blood-contaminated splatter and aerosols be minimized. One of the major sources of potential aerosol contamination in the dental setting is the ultrasonic scaler. This study looks at the use of a high volume evacuator attachment for the ultrasonic scaler handpiece. Artificial teeth were mock-scaled for 1 minute with and without the evacuator attachment. The mock scaling was performed within a plastic enclosure that had a 1 cm grid laid out on 4 sides. Scaling was performed 10 times each by 2 operators. An erythrosin solution was used for the ultrasonic scaler coolant with a coolant volume of 17.5 ml/min. The number of squares containing a red erythrosin spot were counted and considered to represent aerosol contamination. The high volume evacuator attachment produced a 93% reduction in the number of contaminated squares (chi squared significant at P < 0.05). There was no increase in heat transfer to a tooth analogue when the high volume evacuator attachment was used with the ultrasonic scaler as compared to the scaler without the evacuator attachment. It is felt that the high volume evacuator attachment is capable of significantly reducing the amount of aerosol contamination produced within the test system without increased heat transfer to the tooth.

  19. Mammary carcinoma diagnostics and therapy; Diagnostik und Therapie des Mammakarzinoms

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Uwe; Baum, Friedemann (eds.) [Diagnostisches Brustzentrum Goettingen BZG, Goettingen(Germany)

    2014-11-01

    The book on mammary carcinoma diagnostics and therapy covers the following issues: development, anatomy and physiology of the mammary glands, pathology of benign and malign mammary gland changes, non-imaging diagnostics; mammography; ultrasonic mammography; magnetic resonance tomography of the mammary glands; imaging diagnostics findings; mammary interventions; examination concepts; operative therapy of the mammary carcinoma; chemotherapy of the mammary carcinoma; radio-oncological therapy of the mammary carcinoma; logistics in a medical center for mammary gland diseases; logistics in an interdisciplinary center for mammary diseases; dialogue conduction and psycho-social attendance.

  20. Ultrasonic Communication Project, Phase 1, FY1999

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, H.D.; Akerman, M.A.; Baylor, V.M.

    2000-06-01

    This Phase 1 project has been successful in identifying, exploring, and demonstrating methods for ultrasonic-based communication with an emphasis on the application of digital signal processing techniques. During the project, at the direction of the agency project monitor, particular attention was directed at sending and receiving ultrasonic data through air and through pipes that would be commonly found in buildings. Efforts were also focused on development of a method for transmitting computer files ultrasonically. New methods were identified and evaluated for ultrasonic communication. These methods are based on a technique called DFS. With DFS, individual alphanumeric characters are broken down into a sequence of bits, and each bit is used to generate a discrete ultrasonic frequency. Characters are then transmitted one-bit-at-a-time, and reconstructed by the receiver. This technique was put into practice through the development of LabVIEW{trademark}VIs. These VIs were integrated with specially developed electronic circuits to provide a system for demonstrating the transmission and reception/reconstruction of typed messages and computer files. Tests were performed to determine the envelope for ultrasound transmission through pipes (with and without water) versus through air. The practical aspects of connections, efficient electronics, impedance matching, and the effect of damping mechanisms were all investigated. These tests resulted in a considerable number of reference charts that illustrate the absorption of ultrasound through different pipe materials, both with and without water, as a function of distance. Ultrasound was found to be least attenuated by copper pipe and most attenuated by PVC pipe. Water in the pipe provides additional damping and attenuation of ultrasonic signals. Dramatic improvements are observed, however, in ultrasound signal strength if the transducers are directly coupled to the water, rather than simply attaching them to the outside of

  1. Automated ultrasonic inspection of IGSCC in DOE production reactor process water piping

    International Nuclear Information System (INIS)

    Harrison, J.M.; Sprayberry, R.; Ehrhart, W.

    1987-01-01

    Inspection of nuclear power components has always presented difficulties to the nondestructive testing (NDT) industry from a time consumption and radiation exposure standpoint. Recent advances in computerized NDT equipment have improved the situation to some extent; however, the need for high reliability, precision, reproducibility, and clear permanent documentation are indispensable requirements that can only be met by automatic inspection and recording systems. The Savannah River Plant's inspection program of over 1000 IGSCC-susceptible welds is one of the most complete in the country and offers educational insight into ultrasonic examination technology of thin-wall stainless steel pipe welds

  2. Mammary carcinoma diagnostics and therapy

    International Nuclear Information System (INIS)

    Fischer, Uwe; Baum, Friedemann

    2014-01-01

    The book on mammary carcinoma diagnostics and therapy covers the following issues: development, anatomy and physiology of the mammary glands, pathology of benign and malign mammary gland changes, non-imaging diagnostics; mammography; ultrasonic mammography; magnetic resonance tomography of the mammary glands; imaging diagnostics findings; mammary interventions; examination concepts; operative therapy of the mammary carcinoma; chemotherapy of the mammary carcinoma; radio-oncological therapy of the mammary carcinoma; logistics in a medical center for mammary gland diseases; logistics in an interdisciplinary center for mammary diseases; dialogue conduction and psycho-social attendance.

  3. An intelligent stand-alone ultrasonic device for monitoring local structural damage: implementation and preliminary experiments

    International Nuclear Information System (INIS)

    Pertsch, Alexander; Kim, Jin-Yeon; Wang, Yang; Jacobs, Laurence J

    2011-01-01

    Continuous structural health monitoring has the potential to significantly improve the safety management of aged, in-service civil structures. In particular, monitoring of local damage growth at hot-spot areas can help to prevent disastrous structural failures. Although ultrasonic nondestructive evaluation (NDE) has proved to be effective in monitoring local damage growth, conventional equipment and devices are usually bulky and only suitable for scheduled human inspections. The objective of this research is to harness the latest developments in embedded hardware and wireless communication for developing a stand-alone, compact ultrasonic device. The device is directed at the continuous structural health monitoring of civil structures. Relying on battery power, the device possesses the functionalities of high-speed actuation, sensing, signal processing, and wireless communication. Integrated with contact ultrasonic transducers, the device can generate 1 MHz Rayleigh surface waves in a steel specimen and measure response waves. An envelope detection algorithm based on the Hilbert transform is presented for efficiently determining the peak values of the response signals, from which small surface cracks are successfully identified

  4. Experimental study of defoaming by air-borne power ultrasonic technology

    Science.gov (United States)

    Rodríguez, Germán; Riera, Enrique; Gallego-Juárez, Juan A.; Acosta, Víctor M.; Pinto, Alberto; Martínez, Ignacio; Blanco, Alfonso

    2010-01-01

    Foam is a dispersion of gas in a liquid in which the distances between the gas bubbles are very small. Foams are frequently generated in the manufacture of many products as result from the aeration and agitation of liquids, from the vaporization of the liquid and also from biological or chemical reactions. Foams are generally an unwanted product in industrial processes because they cause difficulties in process control and in equipment operation. The most efficient conventional method for defoaming is the use of chemical agents but they contaminate the product. High-intensity ultrasonic waves offer a clean procedure to break foam bubbles. The potential use of ultrasound for foam breaking that was known since many years has been recently reinforced by the application of a new type of ultrasonic defoamer based on the stepped-plate high-power transducers to generate air-borne ultrasound. This defoamer has been successfully applied in several industrial problems such as the control of excess foam produced during the filling operation of bottles and cans on high-speed canning lines and in fermenting vessels and other reactors of great dimensions. The treatment of such industrial problems requires the proper characterization and quantification of the main parameters involved in the mechanisms of the defoaming effect. This paper deals with an experimental study about the separate influence of such parameters with the aim of improving the application of the stepped-plate power ultrasonic generators for the production of the defoaming action on industrial processes

  5. Field deployable processing methods for stay-in-place ultrasonic transducers

    Science.gov (United States)

    Malarich, Nathan; Lissenden, Cliff J.; Tittmann, Bernhard R.

    2018-04-01

    Condition monitoring provides key data for managing the operation and maintenance of mechanical equipment in the power generation, chemical processing, and manufacturing industries. Ultrasonic transducers provide active monitoring capabilities by wall thickness measurements, elastic property determination, crack detection, and other means. In many cases the components operate in harsh environments that may include high temperature, radiation, and hazardous chemicals. Thus, it is desirable to have permanently affixed ultrasonic transducers for condition monitoring in harsh environments. Spray-on transducers provide direct coupling between the active element and the substrate, and can be applied to curved surfaces. We describe a deposition methodology for ultrasonic transducers that can be applied in the field. First, piezoceramic powders mixed into a sol-gel are air-spray deposited onto the substrate. Powder constituents are selected based on the service environment in which the condition monitoring will be performed. Then the deposited coating is pyrolyzed and partially densified using an induction heating system with a custom work coil designed to match the substrate geometry. The next step, applying the electrodes, is more challenging than might be expected because of the porosity of the piezoelectric coating and the potential reactivity of elements in the adjacent layers. After connecting lead wires to the electrodes the transducer is poled and a protective coating can be applied prior to use. Processing of a PZT-bismuth titanate transducer on a large steel substrate is described along with alternate methods.

  6. Use of an ultrasonic device for the determination of elastic modulus of dentin.

    Science.gov (United States)

    Miyazaki, Masashi; Inage, Hirohiko; Onose, Hideo

    2002-03-01

    The mechanical properties of dentin substrate are one of the important factors in determining bond strength of dentin bonding systems. The purpose of this study was to determine the elastic modulus of dentin substrate with the use of an ultrasonic device. The dentin disks of about 1 mm thickness were obtaining from freshly extracted human third molars, and the dentin disk was shaped in a rectangular form with a line diamond point. The size and weight of each specimen was measured to calculate the density of the specimen. The ultrasonic equipment employed in this study was composed of a Pulser-Receiver (Model 5900PR, Panametrics), transducers (V155, V156, Panametrics) and an oscilloscope. The measured two-way transit time through the dentin disk was divided by two to account for the down-and-back travel path, and then multiplied by the velocity of sound in the test material. Measuring the longitudinal and share wave sound velocity determine elastic modulus. The mean elastic modulus of horizontally sectioned specimens was 21.8 GPa and 18.5 GPa for the vertically sectioned specimens, and a significant difference was found between the two groups. The ultrasonic method used in this study shows considerable promise for determination of the elastic modulus of the tooth substrate.

  7. Study of ultrasonic characterization and propagation in austenitic welds: The MOSAICS project

    Energy Technology Data Exchange (ETDEWEB)

    Chassignole, Bertrand, E-mail: bertrand.chassignole@edf.fr [EDF R and D, MMC department, Les Renardières, 77818 Moret sur Loing (France); Recolin, Patrick, E-mail: patrick.recolin@dcnsgroup.com [DCNS CESMAN, 44620 La montagne (France); Leymarie, Nicolas, E-mail: nicolas.leymarie@cea.fr [CEA LIST, 91191 Gif-sur-Yvette (France); Gueudré, Cécile, E-mail: cecile.gueudre@univ-amu.fr [LMA, Aix Marseille Université, CNRS, UPR 7051, F-13402 Marseille Cedex 20 (France); Guy, Philippe, E-mail: philippe.guy@insa-lyon.fr [INSA Lyon, LVA laboratory, 69621 Villeurbanne (France); Elbaz, Deborah, E-mail: deborah.elbaz@extende.com [Extende, 91400 Orsay (France)

    2015-03-31

    Regulatory requirements enforce a volumetric inspection of welded components of nuclear equipments. However, the multi-pass austenitic welds are characterized by anisotropic and heterogeneous structures which lead to numerous disturbances of the ultrasonic beam. The MOSAICS project supported by the ANR (French National Research Agency) aims at matching various approaches to improve the prediction of the ultrasonic testing in those welds. The first stage consists in characterizing the weld structure (determination of the columnar grain orientation and measurements of elastic constants and attenuation coefficients). The techniques of characterization provide input data for the modeling codes developed in another task of the project. For example, a 3D version of the finite elements code ATHENA is developed by EDF R and D to take into account anisotropic texture in any direction. Semi-analytical models included in CIVA software are also improved to better predict the ultrasonic propagation in highly anisotropic and heterogeneous structures. The last stage deals with modeling codes validation based on experimental inspections on representative mock-ups containing calibrated defects. The objective of this paper is to give an overview of the MOSAICS project and to present specific results illustrating the various tasks.

  8. Usuários de drogas injetáveis e terapia anti-retroviral: percepções das equipes de farmácia Injecting drug users and antiretroviral therapy: perceptions of pharmacy teams

    Directory of Open Access Journals (Sweden)

    Chizuru Minami Yokaichiya

    2007-12-01

    Full Text Available OBJETIVO: Compreender as percepções das equipes de farmácia sobre seu papel nos desafios assistenciais e adesão aos anti-retrovirais de usuários de drogas injetáveis vivendo com HIV/Aids. MÉTODOS: Estudo qualitativo por grupos focais e análise temática das falas produzidas com farmacêuticos, técnicos e auxiliares com experiência superior a seis meses na dispensação de medicamentos, de 15 unidades assistenciais de DST/Aids do município de São Paulo, em 2002. RESULTADOS: Formaram-se três grupos, totalizando 29 participantes, provenientes de 12 dos 15 serviços existentes, com 12 universitários e 17 profissionais de nível médio. Os grupos concluíram que a farmácia tem importante papel na dispensação de anti-retrovirais, o que se reflete na adesão ao tratamento, pois por meio de seus procedimentos podem ser construídas relações de confiança. Avaliam, porém, que tal construção não ocorra pela excessiva burocratização de suas atividades. Isso repercute negativamente para todos os pacientes, em especial sobre usuários de drogas injetáveis, concebidos como "pessoas difíceis". Tal concepção essencializa seus comportamentos: seriam confusos, com limites de compreensão e sem possibilidades de adesão ao tratamento. Os profissionais, porém, afirmam que tratam esses pacientes tal como os demais, igualando-os. Não percebem neste proceder, uma invisibilização das necessidades específicas dos usuários de drogas injetáveis no serviço, bem como a possibilidade de gerarem estereótipos estigmatizantes com barreira adicional ao trabalho da adesão. CONCLUSÕES: Embora a farmácia seja indicada como espaço potencialmente favorável para escuta e construção de vínculos com os usuários, os resultados mostram obstáculos objetivos e subjetivos para torná-la propícia para trabalhar a adesão.OBJECTIVE: To understand the perceptions of pharmacy teams about their role in the healthcare assistance challenges and

  9. Visual communication and terminal equipment

    International Nuclear Information System (INIS)

    Kang, Cheol Hui

    1988-06-01

    This book is divided two parts about visual communication and terminal equipment. The first part introduces visual communication, which deals with foundation of visual communication, technique of visual communication, equipment of visual communication, a facsimile and pictorial image system. The second part contains terminal equipment such as telephone, terminal equipment for data transmission on constitution and constituent of terminal equipment for data transmission, input device and output device, terminal device and up-to-date terminal device.

  10. Visual communication and terminal equipment

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Cheol Hui

    1988-06-15

    This book is divided two parts about visual communication and terminal equipment. The first part introduces visual communication, which deals with foundation of visual communication, technique of visual communication, equipment of visual communication, a facsimile and pictorial image system. The second part contains terminal equipment such as telephone, terminal equipment for data transmission on constitution and constituent of terminal equipment for data transmission, input device and output device, terminal device and up-to-date terminal device.

  11. Equipment cost optimization

    International Nuclear Information System (INIS)

    Ribeiro, E.M.; Farias, M.A.; Dreyer, S.R.B.

    1995-01-01

    Considering the importance of the cost of material and equipment in the overall cost profile of an oil company, which in the case of Petrobras, represents approximately 23% of the total operational cost or 10% of the sales, an organization for the optimization of such costs has been established within Petrobras. Programs are developed aiming at: optimization of life-cycle cost of material and equipment; optimization of industrial processes costs through material development. This paper describes the methodology used in the management of the development programs and presents some examples of concluded and ongoing programs, which are conducted in permanent cooperation with suppliers, technical laboratories and research institutions and have been showing relevant results

  12. X-ray equipment

    International Nuclear Information System (INIS)

    Redmayne, I.G.B.

    1988-01-01

    The patent concerns a warning and protection system for mobile x-ray equipment used for 'on site' radiography, so that workers in the vicinity of such a working unit can be alerted to its presence. The invention is a local repeater warning system which gives a preliminary warning that energisation of the tubehead is imminent, as well as a switch near the tubehead to abort or inhibit energisation. The latter switch allows personnel caught in the vicinity of the tubehead to prevent energisation. The preliminary warning may be flashing lamps or by a klaxon. The control unit for the equipment may include a monitoring circuit to detect failure of the warning light or klaxon. (U.K.)

  13. X-ray equipment

    Energy Technology Data Exchange (ETDEWEB)

    Redmayne, I.G.B.

    1988-01-06

    The patent concerns a warning and protection system for mobile x-ray equipment used for 'on site' radiography, so that workers in the vicinity of such a working unit can be alerted to its presence. The invention is a local repeater warning system which gives a preliminary warning that energisation of the tubehead is imminent, as well as a switch near the tubehead to abort or inhibit energisation. The latter switch allows personnel caught in the vicinity of the tubehead to prevent energisation. The preliminary warning may be flashing lamps or by a klaxon. The control unit for the equipment may include a monitoring circuit to detect failure of the warning light or klaxon. (U.K.).

  14. Tube for irradiation equipment

    International Nuclear Information System (INIS)

    Goehrich, K.; Vogt, H.

    1979-01-01

    This patent describes a tube for irradiation equipment for limiting an emergent beam, with a baseplate, possessing a central aperture, intended for attaching to the equipment, as well as four carrier plates, each of which possesses a limiting edge and a sliding edge located at right angles thereto. The carrier plates are located parallel to the baseplate, the limiting edge of each carrier plate resting against the sliding edge of the adjacent carrier plate and each of the two mutually opposite pairs of carrier plates being displaceable, parallel to the direction of its sliding edges and symmetrically to the center of the transmission aperture, for the purpose of continuously varying the transmission aperture defined by the limiting edges, during which displacement each of the displaced carrier plates carries with it the carrier plate, resting against the limiting edge of the former plate, parallel to the direction of the limiting edge of the latter plate. 8 claims

  15. Equipment for isotope diagnostics

    International Nuclear Information System (INIS)

    Platz, W.

    1976-01-01

    The invention concerns an improvement of equipment for isotope diagnostics allowing to mark special intensity ranges of the recorded measurements by means of different colors. For undisturbed operation it is of advantage to avoid electric circuits between movable and unmovable parts of the color recorder. According to the invention, long gear wheels of glass fiber-reinforced polyamide are used for these connections. (ORU) [de

  16. Soviet equipment flies in

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    End of February 1977 a Soviet Ilyushin-76 heavy freight aircraft landed at Cointrin airport having on board fifty large wire proprtional chambers and associated apparatus, together weighing 10 tons, supplied by the Joint Institute for Nuclear Research, Dubna, USSR. The equipment was for the CERN- Dubna-Munich-Saclay experiment NA4 on deep inelastic muon scattering being set up in the North Area of SPS. See Weekly Bulletin 11/78.

  17. Labelling of equipment dispensers.

    Science.gov (United States)

    Gray, D C

    1993-01-01

    A new labelling system for use on medical equipment dispensers is tested. This system uses one of the objects stored in each unit of the dispenser as the 'label', by attaching it to the front of the dispenser with tape. The new system was compared to conventional written labelling by timing subjects asked to select items from two dispensers. The new system was 27% quicker than the conventional system. Images Fig. 1 PMID:8110335

  18. [Effects of ultrasonic pretreatment on drying characteristics of sewage sludge].

    Science.gov (United States)

    Li, Run-Dong; Yang, Yu-Ting; Li, Yan-Long; Niu, Hui-Chang; Wei, Li-Hong; Sun, Yang; Ke, Xin

    2009-11-01

    The high water content of sewage sludge has engendered many inconveniences to its treatment and disposal. While ultrasonic takes on unique advantages on the sludge drying because of its high ultrasonic power, mighty penetrating capability and the ability of causing cavitations. Thus this research studies the characteristics influences of ultrasonic bring to the sludge drying and effects of the exposure time, ultrasonic generator power, temperatures of ultrasonic and drying temperature on the drying characteristics of dewatered sludge. Results indicate that ultrasonic pretreatment could speed up evaporation of the free water in sludge surface and help to end the drying stage with constant speed. In addition, ultrasonic treatment can effectively improve the sludge drying efficiency which could be more evident with the rise of the ultrasonic power (100-250 W), ultrasonic temperature and drying temperature. If dried under low temperature such as 105 degrees C, sludge will have premium drying characteristics when radiated under ultrasound for a shorter time such as 3 min. In the end, the ultrasonic treatment is expected to be an effective way to the low-cost sludge drying and also be an important reference to the optimization of the sludge drying process because of its effects on the increase of sludge drying efficiency.

  19. Equipment Obsolescence Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Redmond, J.

    2014-07-01

    Nuclear Power Plant (NPP) Operators are challenged with securing reliable supply channels for safety related equipment due to equipment obsolescence. Many Original Equipment Manufacturers (OEMs) have terminated production of spare parts and product life-cycle support. The average component life cycles are much shorter than the NPP design life, which means that replacement components and parts for the original NPP systems are not available for the complete design life of the NPPs. The lack or scarcity of replacement parts adversely affects plant reliability and ultimately the profitability of the affected NPPs. This problem is further compounded when NPPs pursue license renewal and approval for plant-life extension. A reliable and predictable supply of replacement co components is necessary for NPPs to remain economically competitive and meet regulatory requirements and guidelines. Electrical and I and C components, in particular, have short product life cycles and obsolescence issues must be managed pro actively and not reactively in order to mitigate the risk to the NPP to ensure reliable and economic NPP operation. (Author)

  20. Personal protective equipment

    International Nuclear Information System (INIS)

    2004-01-01

    This Practical Radiation Technical Manual is one of a series that has been designed to provide guidance on radiological protection for employers, radiation protection officers, managers and other technically competent persons who have responsibility for ensuring the safety of employees working with ionizing radiation. The Manual may be used with the appropriate IAEA Practical Radiation Safety Manuals to provide training, instruction and information for all employees engaged in work with ionizing radiation. Personal protective equipment (PPE) includes clothing or other special equipment that is issued to individual workers to provide protection against actual or potential exposure to ionizing radiations. It is used to protect each worker against the prevailing risk of external or internal exposure in circumstances in which it is not reasonably practicable to provide complete protection by means of engineering controls or administrative methods. Adequate personal protection depends on PPE being correctly selected, fitted and maintained. Appropriate training for the users and arrangements to monitor usage are also necessary to ensure that PPE provides the intended degree of protection effectively. This Manual explains the principal types of PPE, including protective clothing and respiratory protective equipment (RPE). Examples of working procedures are also described to indicate how PPE should be used within a safe system of work. The Manual will be of most benefit if it forms part of a more comprehensive training programme or is supplemented by the advice of a qualified expert in radiation protection. Some of the RPE described in this Manual should be used under the guidance of a qualified expert

  1. A New Low-frequency Sonophoresis System Combined with Ultrasonic Motor and Transducer

    Science.gov (United States)

    Zhu, Pancheng; Peng, Hanmin; Yang, Jianzhi; Mao, Ting; Sheng, Juan

    2018-03-01

    Low frequency sonophoresis (LFS) is currently being attempted as a transdermal drug delivery method in clinical areas. However, it lacks both an effective control method and the equipment to satisfy the varying drug dosage requirements of individual patients. Herein, a novel method aimed at controlling permeability is proposed and developed, using a pressure control strategy which is based on an accurate, adjustable and non-invasive ultrasound transdermal drug delivery system in in vitro LFS. The system mainly consists of a lead screw linear ultrasonic motor and an ultrasonic transducer, in which the former offers pressure and the latter provides ultrasound wave in the liquid. The ultrasound can enhance non-invasive permeation and the pressure from the motor can control the permeability. The calculated and experimental results demonstrate that the maximum pressure on artificial skin is under the area with the maximum vibration amplitude of the ultrasonic transducer, and the total pressure consists of acoustic pressure from the transducer and approximate static pressure from the motor. Changing the static pressure from the ultrasonic motor can effectively control the non-invasive permeability, by adjusting the duty ratio or the amplitude of the motor’s driving voltage. In addition, the permeability control of calcein by thrust control is realized in 15 min, indicating the suitability of this method for application in accurate medical technology. The obtained results reveal that the issue of difficult permeability control can be addressed, using this control method in in vitro LFS to open up a route to the design of accurate drug delivery technology for individual patients.

  2. Evolution of the Ultrasonic Inspection of Heavy Rotor Forgings Over the Last Decades

    Science.gov (United States)

    Zimmer, A.; Vrana, J.; Meiser, J.; Maximini, W.; Blaes, N.

    2010-02-01

    All types of heavy forgings that are used in energy machine industry, rotor shafts as well as discs, retaining rings or tie bolts are subject to extensive nondestructive inspections before they are delivered to the customer. Due to the availability of the parts in simple shapes, these forgings are very well suited for full volmetric inspections using ultrasound. In the beginning, these inspections were carried out manually, using straight beam probes and analogue equipment. Higher requirements in reliability, efficiency, safety and power output in the machines have lead to higher requirements for the ultrasonic inspection in the form of more scanning directions, higher sensitivity demands and improved documentation means. This and the increasing use of high alloy materials for ever growing parts, increase the need for more and more sophisticated methods for testing the forgings. Angle scans and sizing technologies like DGS have been implemented, and for more than 15 years now, mechanized and automated inspections have gained importance since they allow better documentation as well as easier evaluation of the recorded data using different views (B- C- or D-Scans), projections or tomography views. The latest major development has been the availability of phased array probes to increase the flexibility of the inspection systems. Many results of the ongoing research in ultrasonic's have not been implemented yet. Today's availability of fast computers, large and fast data storages allows saving RF inspection data and applying sophisticated signal processing methods. For example linear diffraction tomography methods like SAFT offer tools for 3D reconstruction of inspection data, simplifying sizing and locating of defects as well as for improving signal to noise ratios. While such methods are already applied in medical ultrasonic's, they are still to be implemented in the steel industry. This paper describes the development of the ultrasonic inspection of heavy forgings

  3. Establishment for Nuclear Equipment -Overview

    International Nuclear Information System (INIS)

    Pracz, J.

    2006-01-01

    Research and development works conducted in the Establishment for Nuclear Equipment (ZdAJ) were focused around 3 subject areas: an accelerator for cancer treatment, therapeutical tables, systems and methods for controlling objects that cross international borders. The new, medium energy accelerator for cancer therapy cases is being designed in the Establishment for several years. In 2005 progress was achieved. A physical part, containing an electron beam has been completed and the parameters of that beam make it useful for therapeutical purposes. Consequently, the work on designing and testing of beam control systems, ensuring its high stability, repetition of irradiation parameters and accuracy of dosage have been started. Results of these tests make it very probable that 2006 will be the final year of scientific works and in 2007 the new apparatus will be ready for sales. Therapeutical tables have become a leading product of ZdAJ IPJ. Their technical parameters, reliability and universality in uses are appreciated by many customers of ZdAJ. In 2005, the table Polkam 16 was registered by the national Office for Registration of Medical Equipment as the first product of ZdAJ that meets all technical and formal requirements of the safety mark CE. This allows sales of the product on the market of the European Union. The research and development part of designing a therapeutical table for uses in the total body irradiation technique was also concluded in 2005. After the September 11 terrorist attacks on WTC a matter of controlling international borders have become a priority for many countries. In 2005 in ZdAJ IPJ, we conducted many preliminary calculations and experiments analyzing systems of irradiation sources, both photon and neutron as well as systems of detection and designing of signals triggered by controlling objects crossing the border. The results so far have enabled us to formulate a research project which has been positively evaluated by experts and found

  4. Dosimetric characterization of a 2-D array of 223 solid state detectors for daily morning checks in Tomo Therapy equipment; Caracterizacion dosimetrica de un arreglo 2D de 223 detectores de estado solido para verificaciones matutinas diarias en un equipo de Tomo Terapia

    Energy Technology Data Exchange (ETDEWEB)

    Reyes S, U.; Sosa A, M. [Universidad de Guanajuato, Division de Ciencias e Ingenieria, Lomas del Bosque No. 103, Col. Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Vega C, H. R., E-mail: uvaldoreyes@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)

    2015-10-15

    Tomo Therapy is a new technique for the cancer treatment; however, the equipment must meet nearly all mechanical and dosimetric characteristics of a conventional linear accelerator for medical use. Daily quality controls are vital to the good operation of the equipment and thus guarantee excellent quality in the daily delivery of treatments. This paper presents the procedure of the dosimetric characterization of a two-dimensional array of 223 solid state detectors, called TomoDose of the Sun Nuclear Company. Dosimetric important criteria are established to perform these checks quickly and accurately. Dosimetric tests proposed are: repeatability, linearity, dependence of Sad and SSD. Some results are compared with readings of the ionization chamber Exradim A1SL. Finally the results of 30 consecutive days are presented to establish criteria for evidence of dose, field size, symmetry and flattening of the radiation beam on Tomo Therapy equipment. Expected values for daily verification are: Dose constancy of 194.89 c Gy, σ= 1.31 c Gy, symmetry in the X axis of -0.19 %, σ=0.08 %, symmetry in the Y axis of 1.66 %, σ= 0.05 %, flattened in the X axis of 25.71 %, σ= 0.05 % and flattened in the Y axis of 6.41 %, σ= 10.23 %. Field sizes obtained were 40.45 cm in the X axis and 5.10 on the Y axis, with standard deviations of 0.02 cm and 0.01 cm, respectively. TomoDose dosimetric values, compared to the values obtained with ionization chamber, presented differences smaller than 2%. (Author)

  5. Computer simulation of ultrasonic testing for aerospace vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Yamawaki, H [National Institute for Materials Science, 1-2-1, Sengen, 305-0047 Tsukuba (Japan); Moriya, S; Masuoka, T [Japan Aerospace Exploration Agency, 1 Koganesawa, Kimigawa, 981-1525 Kakuda (Japan); Takatsubo, J, E-mail: yamawaki.hisashi@nims.go.jp [Advanced Industrial Science and Technology, AIST Tsukuba Central 2, 1-1-1 Umezono, 305-8568 Tsukuba (Japan)

    2011-01-01

    Non-destructive testing techniques are developed to secure reliability of aerospace vehicles used repetitively. In the case of cracks caused by thermal stress on walls in combustion chambers of liquid-fuel rockets, it is examined by ultrasonic waves visualization technique developed in AIST. The technique is composed with non-contact ultrasonic generation by pulsed-laser scanning, piezoelectric transducer for the ultrasonic detection, and image reconstruction processing. It enables detection of defects by visualization of ultrasonic waves scattered by the defects. In NIMS, the condition of the detection by the visualization is investigated using computer simulation for ultrasonic propagation that has capability of fast 3-D calculation. The simulation technique is based on finite-difference method and two-step elastic wave equations. It is reported about the investigation by the calculation, and shows availability of the simulation for the ultrasonic testing technique of the wall cracks.

  6. Development of an intelligent ultrasonic welding defect classification software

    International Nuclear Information System (INIS)

    Song, Sung Jin; Kim, Hak Joon; Jeong, Hee Don

    1997-01-01

    Ultrasonic pattern recognition is the most effective approach to the problem of discriminating types of flaws in weldments based on ultrasonic flaw signals. In spite of significant progress in the research on this methodology, it has not been widely used in many practical ultrasonic inspections of weldments in industry. Hence, for the convenient application of this approach in many practical situations, we develop an intelligent ultrasonic signature classification software which can discriminate types of flaws in weldments based on their ultrasonic signals using various tools in artificial intelligence such as neural networks. This software shows the excellent performance in an experimental problem where flaws in weldments are classified into two categories of cracks and non-cracks. This performance demonstrates the high possibility of this software as a practical tool for ultrasonic flaw classification in weldments.

  7. Reconstruction from gamma radiography and ultrasonic images

    International Nuclear Information System (INIS)

    Gautier, S.; Lavayssiere, B.; Idier, J.; Mohammad-Djafari, A.

    1998-02-01

    This work deals with the three-dimensional reconstruction from gamma radiographic and ultrasonic images. Such an issue belongs to the field of data fusion since the data provide complementary information. The two sets of data are independently related to two sets of parameters: gamma ray attenuation and ultrasonic reflectivity. The fusion problem is addressed in a Bayesian framework; the kingpin of the task is then to define a joint a priori model for both attenuation and reflectivity. Thus, the developing of this model and the entailed joint estimation constitute the principal contribution of this work. The results of real data treatments demonstrate the validity of this method as compared to a sequential approach of the two sets of data

  8. Embedded fiber optic ultrasonic sensors and generators

    Science.gov (United States)

    Dorighi, John F.; Krishnaswamy, Sridhar; Achenbach, Jan D.

    1995-04-01

    Ultrasonic sensors and generators based on fiber-optic systems are described. It is shown that intrinsic fiber optic Fabry-Perot ultrasound sensors that are embedded in a structure can be stabilized by actively tuning the laser frequency. The need for this method of stabilization is demonstrated by detecting piezoelectric transducer-generated ultrasonic pulses in the presence of low frequency dynamic strains that are intentionally induced to cause sensor drift. The actively stabilized embedded fiber optic Fabry-Perot sensor is also shown to have sufficient sensitivity to detect ultrasound that is generated in the interior of a structure by means of a high-power optical fiber that pipes energy from a pulsed laser to an embedded generator of ultrasound.

  9. Ultrasonic examination of JBK-75 strip material

    International Nuclear Information System (INIS)

    Cook, K.V.; Cunningham, R.A. Jr.; Lewis, J.C.; McClung, R.W.

    1982-12-01

    An ultrasonic inspection system was assembled to inspect the JBK-75 stainless steel sheath material (for the Large Coil Project) for the Westinghouse-Airco superconducting magnet program. The mechanical system provided for handling the 180-kg (400-lb) coils of strip material [1.6 mm thick by 78 mm wide by 90 to 120 m long (0.064 by 3.07 in. by 300 to 400 ft)], feeding the strip through the ultrasonic inspection and cleaning stations, and respooling the coils. We inspected 54 coils of strip for both longitudinal and laminar flaws. Simulated flaws were used to calibrate both inspections. Saw-cut notches [0.28 mm deep (0.011 in., about 17% of the strip thickness)] were used to calibrate the longitudinal flaw inspections; 1.59-mm-diam (0.063-in.) flat-bottom holes drilled halfway through a calibration strip were used to calibrate the laminar flaw tests

  10. Ultrasonic characterization of single drops of liquids

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Dipen N. (Los Alamos, NM)

    1998-01-01

    Ultrasonic characterization of single drops of liquids. The present invention includes the use of two closely spaced transducers, or one transducer and a closely spaced reflector plate, to form an interferometer suitable for ultrasonic characterization of droplet-size and smaller samples without the need for a container. The droplet is held between the interferometer elements, whose distance apart may be adjusted, by surface tension. The surfaces of the interferometer elements may be readily cleansed by a stream of solvent followed by purified air when it is desired to change samples. A single drop of liquid is sufficient for high-quality measurement. Examples of samples which may be investigated using the apparatus and method of the present invention include biological specimens (tear drops; blood and other body fluid samples; samples from tumors, tissues, and organs; secretions from tissues and organs; snake and bee venom, etc.) for diagnostic evaluation, samples in forensic investigations, and detection of drugs in small quantities.

  11. Ultrasonic identity data storage and archival system

    International Nuclear Information System (INIS)

    Mc Kenzie, J.M.; Self, B.G.; Walker, J.E.

    1987-01-01

    Ultrasonic seals are being used to determine if an underwater stored spent fuel container has been compromised and can be used to determine if a nuclear material container has been compromised. The Seal Pattern Reader (SPAR) is a microprocessor controlled instrument which interrogates an ultrasonic seal to obtain its identity. The SPAR can compare the present identity with a previous identity, which it obtains from a magnetic bubble cassette memory. A system has been developed which allows an IAEA inspector to transfer seal information obtained at a facility by the SPAR to an IAEA-based data storage and retrieval system, using the bubble cassette memory. Likewise, magnetic bubbles can be loaded at the IAEA with seal signature data needed at a facility for comparison purposes. The archived signatures can be retrieved from the data base for relevant statistical manipulation and for plotting

  12. Ultrasonic examination of stainless steel weldments

    International Nuclear Information System (INIS)

    Mullan, J.V.

    1976-01-01

    Atomic Energy of Canada Ltd. have specified a combination of liquid penetrant, radiography and ultrasonic examination of welds in austenitic stainless steel. In the past, angle wedges attached to ultrasonic transducers have been designed so that only shear waves are propagated in the medium. Shear waves, however, do not penetrate one half inch of weld metal without high transmission losses, so that the signal-to-noise ratio is poor. Canadian Vickers have therefore developed a method using longitudinal waves at 45 deg in the material. The presence also of a shear wave at an angle of 19 deg does not cause confusion, because the shear wave travels slower, and has farther to travel. Some considerations for the design of transducers and wedges are outlined. (N.D.H.)

  13. Ultrasonic nondestructive evaluation systems industrial application issues

    CERN Document Server

    Callegari, Sergio; Montisci, Augusto; Ricci, Marco; Versaci, Mario

    2015-01-01

    This book covers the practical implementation of ultrasonic NDT techniques in an industrial environment, discussing several issues that may emerge and proposing strategies for addressing them successfully.  It aims to bridge advanced academic research results and their application to industrial procedures. The topics covered in the text range from the basic operation of an ultrasonic NDT system to the simulation of the measurement operations; from the choice and generation of the signals energizing the system to the different ways of exploiting the probes and their output signals; and from quality assessment evaluation to the use of soft computing techniques for classification. Throughout the text, an effort is made to embrace a system view where the physical and technological aspects of sensing are addressed together with higher abstraction levels, such as signal and information processing. Consequently, the book aims at guiding the reader through the various tasks requested for developing a complete ultras...

  14. Microcomputer-controlled ultrasonic data acquisition system

    International Nuclear Information System (INIS)

    Simpson, W.A. Jr.

    1978-11-01

    The large volume of ultrasonic data generated by computer-aided test procedures has necessitated the development of a mobile, high-speed data acquisition and storage system. This approach offers the decided advantage of on-site data collection and remote data processing. It also utilizes standard, commercially available ultrasonic instrumentation. This system is controlled by an Intel 8080A microprocessor. The MCS80-SDK microcomputer board was chosen, and magnetic tape is used as the storage medium. A detailed description is provided of both the hardware and software developed to interface the magnetic tape storage subsystem to Biomation 8100 and Biomation 805 waveform recorders. A boxcar integrator acquisition system is also described for use when signal averaging becomes necessary. Both assembly language and machine language listings are provided for the software

  15. Nondestructive evaluation ultrasonic methods for construction materials

    International Nuclear Information System (INIS)

    Chilibon, I.; Zisu, T.; Raetchi, V.

    2002-01-01

    The paper presents some ultrasonic methods for evaluation of physical-mechanical properties of construction materials (bricks, concrete, BCA), such as: pulse method, examination methods, and direct measurement of the propagation velocity and impact-echo method. Utilizing these nondestructive evaluation ultrasonic methods it can be determined the main material parameters and material characteristics (elasticity coefficients, density, propagation velocity, ultrasound attenuation, etc.) of construction materials. These method are suitable for construction materials because the defectoscopy methods for metallic materials cannot be utilized, due to its rugged and non-homogeneous structures and grate attenuation coefficients of ultrasound propagation through materials. Also, the impact-echo method is a technique for flaw detection in concrete based on stress wave propagation. Studies have shown that the impact-echo method is effective for locating voids, honeycombing, delaminating, depth of surface opening cracks, and measuring member thickness

  16. An ultrasonic inspection tool for production tubulars

    Energy Technology Data Exchange (ETDEWEB)

    Newton, K; Martin, R; Ravenscroft, F [AEA Technology, Harwell (United Kingdom)

    1994-06-01

    Advances in ultrasonic technology, high temperature techniques and remote processing power are enabling a new generation of inspection tools to be developed. This paper describes a particular new ultrasonic caliper system, developed by AEA Technology, with the aim of providing improved information about the condition of production tubulars of oil and gas wells. The system is designed to provide enhanced surface area coverage compared to the current devices, which are typically mechanical 'finger' calipers. It also provides a non-contacting measure of corrosion and wear together with direct on-line output and automated data analysis. The new tool is designed to operate in oil and gas, vertical or deviated wells and has the potential for modification to inspect small diameter pipes in topside or other plant. (author)

  17. Ultrasonic testing of austenitic stainless steel welds

    International Nuclear Information System (INIS)

    Nishino, Shunichi; Hida, Yoshio; Yamamoto, Michio; Ando, Tomozumi; Shirai, Tasuku.

    1982-05-01

    Ultrasonic testing of austenitic stainless steel welds has been considered difficult because of the high noise level and remarkable attenuation of ultrasonic waves. To improve flaw detectability in this kind of steel, various inspection techniques have been studied. A series of tests indicated: (1) The longitudinal angle beam transducers newly developed during this study can detect 4.8 mm dia. side drilled holes in dissimilar metal welds (refraction angle: 55 0 from SUS side, 45 0 from CS side) and in cast stainless steel welds (refraction angle: 45 0 , inspection frequency: 1 MHz). (2) Cracks more than 5% t in depth in the heat affected zones of fine-grain stainless steel pipe welds can be detected by the 45 0 shear wave angle beam method (inspection frequency: 2 MHz). (3) The pattern recognition method using frequency analysis technology was presumed useful for discriminating crack signals from spurious echoes. (author)

  18. Process monitoring using optical ultrasonic wave detection

    International Nuclear Information System (INIS)

    Telschow, K.L.; Walter, J.B.; Garcia, G.V.; Kunerth, D.C.

    1989-01-01

    Optical ultrasonic wave detection techniques are being developed for process monitoring. An important limitation on optical techniques is that the material surface, in materials processing applications, is usually not a specular reflector and in many cases is totally diffusely reflecting. This severely degrades the light collected by the detection optics, greatly reducing the intensity and randomly scattering the phase of the reflected light. A confocal Fabry-Perot interferometer, which is sensitive to the Doppler frequency shift resulting from the surface motion and not to the phase of the collected light, is well suited to detecting ultrasonic waves in diffusely reflecting materials. This paper describes the application of this detector to the real-time monitoring of the sintering of ceramic materials. 8 refs., 5 figs

  19. Ultrasonic cleaning of electrodes of wire chambers

    International Nuclear Information System (INIS)

    Krasnov, V.A.; Kurepin, A.B.; Razin, V.I.

    1980-01-01

    A technological process of cleaning electrodes and working volume surfaces of wire chambers from contaminations by the simultaneous mechanical action of the energy of ultrasonic oscillations and the chemical action of detergents is discussed. A device for cleaning wire electrodes of proportional chambers of 0.3x0.4 m is described. The device uses two ultrasonic generators with a total power of 0.5 kW. As a detergent use is made of a mixture of ethyl alcohol, gasoline and freon. In the process of cleaning production defects can be detected in the wire chambers which makes it possible to timely remove the defects. Measurements of the surface resistance of fiberglass laminate of printed drift chamber electrodes at a voltage of 2 kV showed that after completing the cleaning process the resistance increases 15-20%

  20. Scientific Equipment Division - Overview

    International Nuclear Information System (INIS)

    Halik, J.

    2001-01-01

    Full text: The Scientific Equipment Division consists of the Design Group and the Mechanical Workshop. The activity of the Division includes the following: - designing of devices and equipment for experiments in physics, their mechanical construction and assembly. In particular, there are vacuum chambers and installations for HV and UHV; - maintenance and upgrading of the existing installations and equipment in our Institute; - participation of our engineers and technicians in design works, equipment assembly and maintenance for experiments in foreign laboratories. The Design Group is equipped with PC-computers and AutoCAD graphic software (release 2000 and Mechanical Desktop 4.0) and a AO plotter, what allows us to make drawings and 2- and 3-dimensional mechanical documentation to the world standards. The Mechanical Workshop can offer a wide range of machining and treatment methods with satisfactory tolerances and surface quality. It offers the following possibilities: - turning - cylindrical elements of a length up to 2000 mm and a diameter up to 400 mm, and also disc-type elements of a diameter up to 600 mm and a length not exceeding 300 mm; - milling - elements of length up to 1000 mm and gear wheels of diameter up to 300 mm; - grinding - flat surfaces of dimensions up to 300 mm x 1000 mm and cylindrical elements of a diameter up to 200 mm and a length up to 800 mm; - drilling - holes of a diameter up to 50 mm; - welding - electrical and gas welding, including TIG vacuum-tight welding; - soft and hard soldering; - mechanical works including precision engineering; - plastics treatment - machining and polishing using diamond milling, modelling, lamination of various shapes and materials, including plexiglas, scintillators and light-guides; - painting - paint spraying with possibility of using furnace-fred drier of internal dimensions of 800 mm x 800 mm x 800 mm. Our workshop posses CNC milling machine which can be used for machining of work-pieces up to 500 kg

  1. Operational aspects of the Calder Hall and Chapelcross pressure vessel ultrasonic inspections

    International Nuclear Information System (INIS)

    Bithell, S.J.; Howard, S.R.

    1993-01-01

    As a consequence of the NII's assessment of the Calder Hall and Chapelcross Long Term Safety Review, BNFplc were required to demonstrate the integrity of the Reactor Pressure Vessels through a programme of volumetric seam weld inspection. Existing equipment proved to be inadequate and necessitated the design and manufacture of a remote power manipulator and ultrasonic scanning package. Calder Hall Operations Department and Sellafield Technical Department, working closely with contract staff, completed the first stage of this technically demanding task within 14 months of the project's initiation, resulting in the first deployment of ''REDIMAN'' in March 1991. The design of the new equipment, and the technical and operational difficulties which were overcome by the Inspection Team are outlined. (author)

  2. Updated Results of Ultrasonic Transducer Irradiation Test

    Energy Technology Data Exchange (ETDEWEB)

    Daw, Joshua; Palmer, Joe [Idaho National Laboratory, P.O. Box 1625, MS 4112, Idaho Falls, ID, 38415-3840 (United States); Ramuhalli, Pradeep; Keller, Paul; Montgomery, Robert [Pacific Northwest National Laboratory, 902 Battelle Blvd. Richland, WA, 99354 (United States); Chien, Hual-Te [Argonne National Laboratory, 9700 S. Cass Avenue Argonne, IL, 60439 (United States); Tittmann, Bernhard; Reinhardt, Brian [Pennsylvania State University, 212 Earth and Engr. Sciences Building, University Park, PA, 16802 (United States); Kohse, Gordon [Massachusetts Institute of Technology, 77 Massachusetts Ave. Cambridge, MA 02139 (United States); Rempe, Joy [Rempe and Associates, LLC, 360 Stillwater, Idaho Falls, ID 83404 (United States); Villard, J.F. [Commissariat a l' energie atomique et aux energies alternatives, Centre d' etudes de Cadarache, 13108 Saint-Paul-lez-Durance (France)

    2015-07-01

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 10{sup 21} n/cm{sup 2}. A multi-National Laboratory collaboration funded by the Nuclear Energy Enabling Technologies Advanced Sensors and Instrumentation (NEET-ASI) program also provided initial support for this effort. This irradiation, which started in February 2014, is an instrumented lead test and real-time transducer performance data are collected along with temperature and neutron and gamma flux data. The irradiation is ongoing and will continue to approximately mid-2015. To date, very encouraging results have been attained as several transducers continue to operate under irradiation. (authors)

  3. Ultrasonic characterization of pork meat salting

    International Nuclear Information System (INIS)

    García-Pérez, J V; De Prados, M; Pérez-Muelas, N; Cárcel, J A; Benedito, J

    2012-01-01

    Salting process plays a key role in the preservation and quality of dry-cured meat products. Therefore, an adequate monitoring of salt content during salting is necessary to reach high quality products. Thus, the main objective of this work was to test the ability of low intensity ultrasound to monitor the salting process of pork meat. Cylindrical samples (diameter 36 mm, height 60±10 mm) of Biceps femoris were salted (brine 20% NaCl, w/w) at 2 °C for 1, 2, 4 and 7 days. During salting and at each experimental time, three cylinders were taken in order to measure the ultrasonic velocity at 2 °C. Afterwards, the cylinders were split in three sections (height 20 mm), measuring again the ultrasonic velocity and determining the salt and the moisture content by AOAC standards. In the whole cylinders, moisture content was reduced from 763 (g/kg sample) in fresh samples to 723 (g/kg sample) in samples salted for 7 days, while the maximum salt gain was 37.3 (g/kg sample). Although, moisture and salt contents up to 673 and 118 (g/kg sample) were reached in the sections of meat cylinders, respectively. During salting, the ultrasonic velocity increased due to salt gain and water loss. Thus, significant (p 2 = 0.975) and moisture (R 2 = 0.863) contents. In addition, the change of the ultrasonic velocity with the increase of the salt content showed a good agreement with the Kinsler equation. Therefore, low intensity ultrasound emerges as a potential technique to monitor, in a non destructive way, the meat salting processes carried out in the food industry.

  4. Cavitation occurrence around ultrasonic dental scalers

    OpenAIRE

    Felver, Bernhard; King, David C; Lea, Simon C; Price, Gareth J; Damien Walmsley, A

    2009-01-01

    Ultrasonic scalers are used in dentistry to remove calculus and other contaminants from teeth. One mechanism which may assist in the cleaning is cavitation generated in cooling water around the scaler. The vibratory motion of three designs of scaler tip in a water bath has been characterised by laser vibrometry, and compared with the spatial distribution of cavitation around the scaler tips observed using sonochemiluminescence from a luminol solution. The type of cavitation was confirmed by a...

  5. Ultrasonic flotational separation of syrup with polyacrylamide

    International Nuclear Information System (INIS)

    Zeng SiXian; Qiu TaiQiu; Xie XiongFei; Hu SongQing

    1998-01-01

    A 60 degrees Bx solution of Australian raw sugar was treated at 80 degrees C with 300 ppm phosphoric acid and neutralized to pH 7 with Ca(OH)2. The resulting syrup (as model cane syrup rather than phosphatated liquor?) was subjected to flotational separation with and without ultrasonic vibration (16.5-33 kHz, 20-300 W) and/or addition of polyacrylamide (PAM; dose not stated)

  6. Ultrasonic imaging with a fixed instrument configuration

    Energy Technology Data Exchange (ETDEWEB)

    Witten, A.; Tuggle, J.; Waag, R.C.

    1988-07-04

    Diffraction tomography is a technique based on an inversion of the wave equation which has been proposed for high-resolution ultrasonic imaging. While this approach has been considered for diagnostic medical applications, it has, until recently, been limited by practical limitations on the speed of data acquisition associated with instrument motions. This letter presents the results of an experimental study directed towards demonstrating tomography utilizing a fixed instrument configuration.

  7. Ultrasonic evaluation of local human skin anisotropy

    Czech Academy of Sciences Publication Activity Database

    Tokar, Daniel; Převorovský, Zdeněk; Hradilová, Jana

    2014-01-01

    Roč. 19, č. 12 (2014) ISSN 1435-4934. [European Conference on Non-Destructive Testing (ECNDT 2014) /11./. Praha, 06.10.2014-10.10.2014] Institutional support: RVO:61388998 Keywords : anisotropy * ultrasonic testing * human skin in-vivo * fabric-fiber composite * signal processing Subject RIV: BI - Acoustics http://www.ndt.net/events/ECNDT2014/app/content/Paper/324_Tokar.pdf

  8. Capacitor discharges, magnetohydrodynamics, X-rays, ultrasonics

    CERN Document Server

    Früngel, Frank B A

    1965-01-01

    High Speed Pulse Technology, Volume 1: Capacitor Discharges - Magnetohydrodynamics - X-Rays - Ultrasonics deals with the theoretical and engineering problems that arise in the capacitor discharge technique.This book discusses the characteristics of dielectric material, symmetrical switch tubes with mercury filling, and compensation conductor forms. The transformed discharge for highest current peaks, ignition transformer for internal combustion engines, and X-ray irradiation of subjects in mechanical motion are also elaborated. This text likewise covers the transformed capacitor discharge in w

  9. Ewe: a computer model for ultrasonic inspection

    International Nuclear Information System (INIS)

    Douglas, S.R.; Chaplin, K.R.

    1991-11-01

    The computer program EWE simulates the propagation of elastic waves in solids and liquids. It has been applied to ultrasonic testing to study the echoes generated by cracks and other types of defects. A discussion of the elastic wave equations is given, including the first-order formulation, shear and compression waves, surface waves and boundaries, numerical method of solution, models for cracks and slot defects, input wave generation, returning echo construction, and general computer issues

  10. On multiple crack identification by ultrasonic scanning

    Science.gov (United States)

    Brigante, M.; Sumbatyan, M. A.

    2018-04-01

    The present work develops an approach which reduces operator equations arising in the engineering problems to the problem of minimizing the discrepancy functional. For this minimization, an algorithm of random global search is proposed, which is allied to some genetic algorithms. The efficiency of the method is demonstrated by the solving problem of simultaneous identification of several linear cracks forming an array in an elastic medium by using the circular Ultrasonic scanning.

  11. Ultrasonication and food technology: A review

    OpenAIRE

    Ishrat Majid; Gulzar Ahmad Nayik; Vikas Nanda

    2015-01-01

    With increasing consumers demand and tightening of food and environmental regulations, traditional food-processing techniques have lost their optimum performance which gave rise to new and powerful technologies. Ultrasonic is a one of the fast, versatile, emerging, and promising non-destructive green technology used in the food industry from last few years. The ultrasound is being carried out in various areas of food technology namely crystallization, freezing, bleaching, degassing, extractio...

  12. Mining face equipment

    Energy Technology Data Exchange (ETDEWEB)

    G, Litvinskiy G; Babyuk, G V; Yakovenko, V A

    1981-01-07

    Mining face equipment includes drilling advance wells, drilling using explosives on the contour bore holes, loading and transporting the crushed mass, drilling reinforcement shafts, injecting reinforcement compounds and moving the timber. Camouflet explosives are used to form relaxed rock stress beyond the mining area to decrease costs of reinforcing the mining area by using nonstressed rock in the advance well as support. The strengthening solution is injected through advanced cementing wells before drilling the contour bores as well as through radial cementing wells beyond the timbers following loading and transport of the mining debris. The advance well is 50-80 m.

  13. Coal ash monitoring equipment

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, C G; Wormald, M R

    1978-10-02

    The monitoring equipment is used to determine the remainder from combustion (ash slack) of coal in wagons designed for power stations. Next to the rails, a neutron source (252 Cf, 241 Am/Be) is situated, which irradiates the coal with neutrons at a known dose, which produces the reaction 27 Al (n ..gamma..) Al 28. The aluminium content is a measure of the remainder. The 1.78 MeV energy is measured downstream of the rail with a detector. The neutron source can only act in the working position of a loaded wagon.

  14. Management of Transportation Equipment.

    Science.gov (United States)

    1982-11-01

    Record% % %. "jP -M -. M LIh TRANSPORTATION MAENTKENAI4CE SHOP WORKLOAD CONTROL WORK CENTER SADR A-OR .a’* tLR 4.,R53 8114LM 0 o 251 50 75 100 125 ISO ...PDBP 06 7 4892 TRACTOR, WHEEL, INDUST, 14001-20000 PDBP 06 7 4893 TRACTOR, WHEEL, INDUST, 20001-27000 PDBP 06 7 4894 TRACTOR, WHEEL, INDUST, 27001 PDBP...27K TRACTOR, WHEEL, INDUST, 27001 PDBP & UP P-i LINE ITEM 07 LIGHTING AND POWER GENERATION EQUIPMENT 5110 T FLOODLIGHT ELEC FLOODLIGHT, ELEC, TRUCK

  15. Research of the ultrasonic testing parts reconditioned by welding

    Directory of Open Access Journals (Sweden)

    C. Petriceanu

    2016-07-01

    Full Text Available The paper presents the results obtained following the nondestructive ultrasonic testing of crankpin shaft of a crankshaft that were reconditioned by welding. After the ultrasonic testing, the reconditioned samples were cut and subjected to visual testing and microstructure examination. When the results obtained following the nondestructive tests were analyzed, it was observed that the ultrasonic nondestructive testing method is an efficient way to determine the conformity of the areas that were reconditioned by welding.

  16. Bulk viscosity and ultrasonic attenuation in liquid metals

    International Nuclear Information System (INIS)

    Awasthi, O.N.; Murthy, B.V.S.

    1984-11-01

    Ultrasonic attenuation in simple liquid metals has been investigated using the thermodynamic theory of relaxation processes incorporating the concept of a two state model for the liquid near the melting point. Agreement of the results with the experimental values of the ultrasonic attenuation and bulk viscosity indicates that this might be an appropriate approach to explain the excess attenuation of ultrasonic waves in liquid metals. (author)

  17. Manufacturing technologies for ultrasonic transducers in a broad frequency range

    OpenAIRE

    Gebhardt, Sylvia; Hohlfeld, Kai; Günther, Paul; Neubert, Holger

    2018-01-01

    According to the application field, working frequency of ultrasonic transducers needs to be tailored to a certain value. Low frequency ultrasonic transducers with working frequencies of 1 kHz to 1 MHz are especially interesting for sonar applications, whereas high frequency ultrasonic transducers with working frequencies higher than 15 MHz are favorable for high-resolution imaging in biomedical and non-destructive evaluation. Conventional non-destructive testing devices and clinical ultrasoun...

  18. Ultrasonic guided wave for monitoring corrosion of steel bar

    Science.gov (United States)

    Liu, Xi; Qin, Lei; Huang, Bosheng

    2018-01-01

    Steel corrosion of reinforced concrete structures has become a serious problem all over the word. In this paper, the work aims at monitoring steel corrosion using ultrasonic guided wave (UGW). Ultrasonic guided wave monitoring is a dynamic and non-destructive testing technology. The advantages of ultrasonic guided wave monitoring for reinforcement corrosion are real-time, online and continuous. In addition, it can judge the different stages of steel bar corrosion, which achieved non-destructive detection.

  19. Miniaturized and general purpose fiber optic ultrasonic sources

    International Nuclear Information System (INIS)

    Biagi, E.; Fontani, S.; Masotti, L.; Pieraccini, M.

    1997-01-01

    Innovative photoacoustic sources for ultrasonic NDE, smart structure, and clinical diagnosis are proposed. The working principle is based on thermal conversion of laser pulses into a metallic film evaporated directly onto the tip of a fiber optic. Unique features of the proposed transducers are very high miniaturization and potential easy embedding in smart structure. Additional advantages, high bedding in smart structure. Additional advantages, high ultrasonic frequency, large and flat bandwidth. All these characteristics make the proposed device an ideal ultrasonic source

  20. Wireless power transmission using ultrasonic guided waves

    International Nuclear Information System (INIS)

    Kural, A; Pullin, R; Featherston, C; Holford, K; Paget, C

    2011-01-01

    The unavailability of suitable power supply at desired locations is currently an important obstacle in the development of distributed, wireless sensor networks for applications such as structural health monitoring of aircraft. Proposed solutions range from improved batteries to energy harvesting from vibration, temperature gradients and other sources. A novel approach is being investigated at Cardiff University School of Engineering in cooperation with Airbus. It aims to utilise ultrasonic guided Lamb waves to transmit energy through the aircraft skin. A vibration generator is to be placed in a location where electricity supply is readily available. Ultrasonic waves generated by this device will travel through the aircraft structure to a receiver in a remote wireless sensor node. The receiver will convert the mechanical vibration of the ultrasonic waves back to electricity, which will be used to power the sensor node. This paper describes the measurement and modelling of the interference pattern which emerges when Lamb waves are transmitted continuously as in this power transmission application. The discovered features of the pattern, such as a large signal amplitude variation and a relatively high frequency, are presented and their importance for the development of a power transmission system is discussed.

  1. Wireless power transmission using ultrasonic guided waves

    Energy Technology Data Exchange (ETDEWEB)

    Kural, A; Pullin, R; Featherston, C; Holford, K [School of Engineering, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 2AA (United Kingdom); Paget, C, E-mail: kurala@cardiff.ac.uk [Airbus Operations Ltd, New Filton Road, BS99 7AR Bristol (United Kingdom)

    2011-07-19

    The unavailability of suitable power supply at desired locations is currently an important obstacle in the development of distributed, wireless sensor networks for applications such as structural health monitoring of aircraft. Proposed solutions range from improved batteries to energy harvesting from vibration, temperature gradients and other sources. A novel approach is being investigated at Cardiff University School of Engineering in cooperation with Airbus. It aims to utilise ultrasonic guided Lamb waves to transmit energy through the aircraft skin. A vibration generator is to be placed in a location where electricity supply is readily available. Ultrasonic waves generated by this device will travel through the aircraft structure to a receiver in a remote wireless sensor node. The receiver will convert the mechanical vibration of the ultrasonic waves back to electricity, which will be used to power the sensor node. This paper describes the measurement and modelling of the interference pattern which emerges when Lamb waves are transmitted continuously as in this power transmission application. The discovered features of the pattern, such as a large signal amplitude variation and a relatively high frequency, are presented and their importance for the development of a power transmission system is discussed.

  2. Linear ultrasonic motor for absolute gravimeter.

    Science.gov (United States)

    Jian, Yue; Yao, Zhiyuan; Silberschmidt, Vadim V

    2017-05-01

    Thanks to their compactness and suitability for vacuum applications, linear ultrasonic motors are considered as substitutes for classical electromagnetic motors as driving elements in absolute gravimeters. Still, their application is prevented by relatively low power output. To overcome this limitation and provide better stability, a V-type linear ultrasonic motor with a new clamping method is proposed for a gravimeter. In this paper, a mechanical model of stators with flexible clamping components is suggested, according to a design criterion for clamps of linear ultrasonic motors. After that, an effect of tangential and normal rigidity of the clamping components on mechanical output is studied. It is followed by discussion of a new clamping method with sufficient tangential rigidity and a capability to facilitate pre-load. Additionally, a prototype of the motor with the proposed clamping method was fabricated and the performance tests in vertical direction were implemented. Experimental results show that the suggested motor has structural stability and high dynamic performance, such as no-load speed of 1.4m/s and maximal thrust of 43N, meeting the requirements for absolute gravimeters. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Radiation damage of polymers in ultrasonic fields

    Energy Technology Data Exchange (ETDEWEB)

    Anbalagan, Poornnima

    2008-07-01

    Radiation damage has always been a topic of great interest in various fields of sciences. In this work, an attempt is made to probe into the effect of subthreshold ultrasonic waves on the radiation damage created by irradiation of deuterons in polymer samples wherein the polymer samples act as model systems. Two equal volumes of radiation damage were produced in a single polymer sample wherein a standing wave of ultrasound was introduced into one. Three polymers namely, Polycarbonate, Polymethylmethacrylate and Polyvinyl chloride were used in this work. Four independent techniques were used to analyze the irradiated samples and visualize the radiation damage. Interferometric measurements give a measure of the refractive index modulation in the irradiated sample. Polymers, being transparent, do not absorb in the visible region of the electromagnetic spectrum. UV-Vis absorption spectroscopy shows absorption peaks in the visible region in irradiated polymer samples. Ion irradiation causes coloration of polymers. The light microscope is used to measure the absorption of white light by the irradiated polymers. Positron annihilation spectroscopy is used to obtain a measure of the open volume created by irradiation in polymers. A comparison between the irradiated region and the region exposed to ultrasonic waves simultaneously with irradiation in a polymer sample shows the polymer specific influence of the ultrasonic standing wave. (orig.)

  4. Ultrasonic NDE Simulation for Composite Manufacturing Defects

    Science.gov (United States)

    Leckey, Cara A. C.; Juarez, Peter D.

    2016-01-01

    The increased use of composites in aerospace components is expected to continue into the future. The large scale use of composites in aerospace necessitates the development of composite-appropriate nondestructive evaluation (NDE) methods to quantitatively characterize defects in as-manufactured parts and damage incurred during or post manufacturing. Ultrasonic techniques are one of the most common approaches for defect/damage detection in composite materials. One key technical challenge area included in NASA's Advanced Composite's Project is to develop optimized rapid inspection methods for composite materials. Common manufacturing defects in carbon fiber reinforced polymer (CFRP) composites include fiber waviness (in-plane and out-of-plane), porosity, and disbonds; among others. This paper is an overview of ongoing work to develop ultrasonic wavefield based methods for characterizing manufacturing waviness defects. The paper describes the development and implementation of a custom ultrasound simulation tool that is used to model ultrasonic wave interaction with in-plane fiber waviness (also known as marcelling). Wavefield data processing methods are applied to the simulation data to explore possible routes for quantitative defect characterization.

  5. Underwater detection by using ultrasonic sensor

    Science.gov (United States)

    Bakar, S. A. A.; Ong, N. R.; Aziz, M. H. A.; Alcain, J. B.; Haimi, W. M. W. N.; Sauli, Z.

    2017-09-01

    This paper described the low cost implementation of hardware and software in developing the system of ultrasonic which can visualize the feedback of sound in the form of measured distance through mobile phone and monitoring the frequency of detection by using real time graph of Java application. A single waterproof transducer of JSN-SR04T had been used to determine the distance of an object based on operation of the classic pulse echo detection method underwater. In this experiment, the system was tested by placing the housing which consisted of Arduino UNO, Bluetooth module of HC-06, ultrasonic sensor and LEDs at the top of the box and the transducer was immersed in the water. The system which had been tested for detection in vertical form was found to be capable of reporting through the use of colored LEDs as indicator to the relative proximity of object distance underwater form the sensor. As a conclusion, the system can detect the presence of an object underwater within the range of ultrasonic sensor and display the measured distance onto the mobile phone and the real time graph had been successfully generated.

  6. Micromachined capacitive ultrasonic immersion transducer array

    Science.gov (United States)

    Jin, Xuecheng

    Capacitive micromachined ultrasonic transducers (cMUTs) have emerged as an attractive alternative to conventional piezoelectric ultrasonic transducers. They offer performance advantages of wide bandwidth and sensitivity that have heretofore been attainable. In addition, micromachining technology, which has benefited from the fast-growing microelectronics industry, enables cMUT array fabrication and electronics integration. This thesis describes the design and fabrication of micromachined capacitive ultrasonic immersion transducer arrays. The basic transducer electrical equivalent circuit is derived from Mason's theory. The effects of Lamb waves and Stoneley waves on cross coupling and acoustic losses are discussed. Electrical parasitics such as series resistance and shunt capacitance are also included in the model of the transducer. Transducer fabrication technology is systematically studied. Device dimension control in both vertical and horizontal directions, process alternatives and variations in membrane formation, via etch and cavity sealing, and metalization as well as their impact on transducer performance are summarized. Both 64 and 128 element 1-D array transducers are fabricated. Transducers are characterized in terms of electrical input impedance, bandwidth, sensitivity, dynamic range, impulse response and angular response, and their performance is compared with theoretical simulation. Various schemes for cross coupling reduction is analyzed, implemented, and verified with both experiments and theory. Preliminary results of immersion imaging are presented using 64 elements 1-D array transducers for active source imaging.

  7. STADUS - Ultrasonic data acquisition and processing system

    International Nuclear Information System (INIS)

    Saglio, Robert; Birac, A.M.; Frappier, J.C.

    1982-05-01

    The CEA (Commissariat a l'Energie Atomique) has developed a system for the acquisition and analysis of data recorded during ultrasonic testing. Initially this system was designed and built for the needs of in-service inspection of PWR type power reactors. It is in far wider use today for miscellaneous automatic ultrasonic inspection procedures. This system records, in digital form, the ultrasonic data supplied by the transducers (maximum 16 simultaneous channels), and the geometric coordinates defining the position of the inspection tool. Based on these data, which are recorded on floppy disk, this system helps to display data in the form of A SCAN, B SCAN and C SCAN images. In addition, processing programs of data transfer from the STADUS floppy disks have been developed and inserted on computers more powerful than the one used in the STADUS system. These programs serve to obtain different fault charts on an adjustable scale, as well as listings concerning the defect positions and dimensions [fr

  8. Radiation damage of polymers in ultrasonic fields

    International Nuclear Information System (INIS)

    Anbalagan, Poornnima

    2008-01-01

    Radiation damage has always been a topic of great interest in various fields of sciences. In this work, an attempt is made to probe into the effect of subthreshold ultrasonic waves on the radiation damage created by irradiation of deuterons in polymer samples wherein the polymer samples act as model systems. Two equal volumes of radiation damage were produced in a single polymer sample wherein a standing wave of ultrasound was introduced into one. Three polymers namely, Polycarbonate, Polymethylmethacrylate and Polyvinyl chloride were used in this work. Four independent techniques were used to analyze the irradiated samples and visualize the radiation damage. Interferometric measurements give a measure of the refractive index modulation in the irradiated sample. Polymers, being transparent, do not absorb in the visible region of the electromagnetic spectrum. UV-Vis absorption spectroscopy shows absorption peaks in the visible region in irradiated polymer samples. Ion irradiation causes coloration of polymers. The light microscope is used to measure the absorption of white light by the irradiated polymers. Positron annihilation spectroscopy is used to obtain a measure of the open volume created by irradiation in polymers. A comparison between the irradiated region and the region exposed to ultrasonic waves simultaneously with irradiation in a polymer sample shows the polymer specific influence of the ultrasonic standing wave. (orig.)

  9. Ultrasonic Study of Dislocation Dynamics in Lithium -

    Science.gov (United States)

    Han, Myeong-Deok

    1987-09-01

    Experimental studies of dislocation dynamics in LiF single crystals, using ultrasonic techniques combined with dynamic loading, were performed to investigate the time evolution of the plastic deformation process under a short stress pulse at room temperature, and the temperature dependence of the dislocation damping mechanism in the temperature range 25 - 300(DEGREES)K. From the former, the time dependence of the ultrasonic attenuation was understood as resulting from dislocation multiplication followed by the evolution of mobile dislocations to immobile ones under large stress. From the latter, the temperature dependence of the ultrasonic attenuation was interpreted as due to the motion of the dislocation loops overcoming the periodic Peierls potential barrier in a manner analogous to the motion of a thermalized sine-Gordon chain under a small stress. The Peierls stress obtained from the experimental results by application of Seeger's relaxation model with exponential dislocation length distribution was 4.26MPa, which is consistent with the lowest stress for the linear relation between the dislocation velocity and stress observed by Flinn and Tinder.

  10. Ultrasonic flow-meter test in sodium

    International Nuclear Information System (INIS)

    Ishii, Y.; Uno, O.; Kamei, M.

    1978-01-01

    As a part of the R and D programme for the prototype fast breeder reactor MONJU, an ultrasonic flow-meter (USFM) test is being carried out in sodium in the O-Arai Engineering Center of PNC. Prior to the present test, an in-water test was done at the manufacturer's as a preliminary investigation. The results reported here are the results up to the present. Calibration tests using the actual fluid were conducted on a 12-inch ultrasonic flow-meter with guide rods fabricated for sodium flow measurement. The test conditions in sodium were a temperature of 200 approximately 400 0 C and flow-rates of 0 approximately 6m/s. The main results are: (1) The linearity of output signal was good and accuracy was within 1%; (2) The alternating type of the USFM was much better than the fixed type in temperature change; (3) 2MHz of transducer frequency was better than 3MHz in sodium; (4) The S/N ratio of the ultrasonic signal and the length/diameter effect in a wide range in sodium surpassed the in-water test. (author)

  11. Reactor Coolant Temperature Measurement using Ultrasonic Technology

    Energy Technology Data Exchange (ETDEWEB)

    Jung, JaeCheon [KEPCO International Nuclear graduate School, Ulsan (Korea, Republic of); Seo, YongSun; Bechue, Nicholas [Krohne Messtechnik GmbH, Duisburg (Germany)

    2016-10-15

    In NPP, the primary piping temperature is detected by four redundant RTDs (Resistance Temperature Detectors) installed 90 degrees apart on the RCS (Reactor Coolant System) piping circumferentially. Such outputs however, if applied to I and C systems would not give balanced results. The discrepancy can be explained by either thermal stratification or improper arrangement of thermo-wells and RTDs. This phenomenon has become more pronounced in the hot-leg piping than in the cold-leg. Normally, the temperature difference among channels is in the range of 1°F in Korean nuclear power Plants. Consequently, a more accurate pipe average temperate measurement technique is required. Ultrasonic methods can be used to measure average temperatures with relatively higher accuracy than RTDs because the sound wave propagation in the RCS pipe is proportional to the average temperature around pipe area. The inaccuracy of RCS temperature measurement worsens the safety margin for both DNBR and LPD. The possibility of this discrepancy has been reported with thermal stratification effect. Proposed RCS temperature measurement system based on ultrasonic technology offers a countermeasure to cope with thermal stratification effect on hot-leg piping that has been an unresolved issue in NPPs. By introducing ultrasonic technology, the average internal piping temperature can be measured with high accuracy. The inaccuracy can be decreased less than ±1℉ by this method.

  12. Ultrasonic boiler inspection and economic analysis guidelines

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Boiler tube failures cause approximately 6% availability loss of large fossil-fired power generating plants. This loss can be reduced by systematic approaches using ultrasonic examination and root cause failure analysis methods. Two projects sponsored by EPRI have provided utility engineers with guidelines for performing ultrasonic examinations and with details on 22 types of tube failure mechanisms. A manual has been published that provides descriptions of typical locations, superficial appearances, damage mechanisms, metallurgy, microstructural changes, likely root causes, and potential corrective actions. Application of the principles in the manual is being demonstrated in an EPRI-funded project at 10 electric utilities over the next two years. Guidelines have been published that prescribe the activities necessary for ultrasonic examinations of boiler tubes. Eight essential elements of a boiler examination should be performed to assure that possible economic benefits are obtained. Work was supported by EPRI under RP 1890 and RP 1865. A software package has been developed for effectively planning inspections for wall thinning in fossil-fired boiler tubing. The software assists in minimizing costs associated with maintenance, such as inspection and repair, while the life of the boiler is maximized

  13. Method and system having ultrasonic sensor movable by translation device for ultrasonic profiling of weld samples

    Science.gov (United States)

    Panyard, James; Potter, Timothy; Charron, William; Hopkins, Deborah; Reverdy, Frederic

    2010-04-06

    A system for ultrasonic profiling of a weld sample includes a carriage movable in opposite first and second directions. An ultrasonic sensor is coupled to the carriage to move over the sample as the carriage moves. An encoder determines the position of the carriage to determine the position of the sensor. A spring is connected at one end of the carriage. Upon the carriage being moved in the first direction toward the spring such that the carriage and the sensor are at a beginning position and the spring is compressed the spring decompresses to push the carriage back along the second direction to move the carriage and the sensor from the beginning position to an ending position. The encoder triggers the sensor to take the ultrasonic measurements of the sample when the sensor is at predetermined positions while the sensor moves over the sample between the beginning and positions.

  14. Mechanochemical degradation of potato starch paste under ultrasonic irradiation

    Institute of Scientific and Technical Information of China (English)

    LI Jian-bin; LI Lin; LI Bing; CHEN Ling; GUI Lin

    2006-01-01

    In the paper, changes in the molecular weight, the intrinsic viscosity and the polydispersity (molecular mass distribution) of treated potato starch paste were studied under different ultrasonic conditions which include irradiation time, ultrasonic intensity, potato starch paste concentration, and distance from probe tip on the degradation of potato starch paste. Intrinsic viscosity of potato starch paste was determined following the ASTM (American Society for Testing and Materials) standard practice for dilute solution viscosity of polymers. Molecular mass and polydispersity of potato starch paste were measured on GPC (Gel Permeation Chromatography). The results showed that the average molecular mass and the intrinsic viscosity of starch strongly depended on irradiation time. Degradation increased with prolonged ultrasonic irradiation time, and the increase of ultrasonic intensity could accelerate the degradation, resulting in a faster degradation rate, a lower limiting value and a higher degradation extent. Starch samples were degraded faster in dilute solutions than in concentrated solutions. The molecular mass and the intrinsic viscosity of starch increased with the increase of distance from probe tip. Our results also showed that the polydispersity decreased with ultrasonic irradiation under all ultrasonic conditions. Ultrasonic degradation of potato starch paste occured based on the mechanism of molecular relaxation of starch paste. In the initial stage, ultrasonic degradation of potato starch paste was a random process, and the molecular mass distribution was broad. After that, ultrasonic degradation of potato starch paste changed to a nonrandom process, and the molecular mass distribution became narrower. Finally, molecular mass distribution tended toward a saturation value.

  15. Ultrasonic-assisted manufacturing processes: Variational model and numerical simulations

    KAUST Repository

    Siddiq, Amir

    2012-04-01

    We present a computational study of ultrasonic assisted manufacturing processes including sheet metal forming, upsetting, and wire drawing. A fully variational porous plasticity model is modified to include ultrasonic softening effects and then utilized to account for instantaneous softening when ultrasonic energy is applied during deformation. Material model parameters are identified via inverse modeling, i.e. by using experimental data. The versatility and predictive ability of the model are demonstrated and the effect of ultrasonic intensity on the manufacturing process at hand is investigated and compared qualitatively with experimental results reported in the literature. © 2011 Elsevier B.V. All rights reserved.

  16. Characterization of nuclear graphite elastic properties using laser ultrasonic methods

    Science.gov (United States)

    Zeng, Fan W.; Han, Karen; Olasov, Lauren R.; Gallego, Nidia C.; Contescu, Cristian I.; Spicer, James B.

    2015-05-01

    Laser ultrasonic methods have been used to characterize the elastic behaviors of commercially-available and legacy nuclear graphites. Since ultrasonic techniques are sensitive to various aspects of graphite microstructure including preferred grain orientation, microcrack orientation and porosity, laser ultrasonics is a candidate technique for monitoring graphite degradation and structural integrity in environments expected in high-temperature, gas-cooled nuclear reactors. Aspects of materials texture can be assessed by studying ultrasonic wavespeeds as a function of propagation direction and polarization. Shear wave birefringence measurements, in particular, can be used to evaluate elastic anisotropy. In this work, laser ultrasonic measurements of graphite moduli have been made to provide insight into the relationship between the microstructures and the macroscopic stiffnesses of these materials. In particular, laser ultrasonic measurements have been made using laser line sources to produce shear waves with specific polarizations. By varying the line orientation relative to the sample, shear wave birefringence measurements have been recorded. Results from shear wave birefringence measurements show that an isostatically molded graphite, such as PCIB, behaves isotropically, while an extruded graphite, such as H-451, displays significant ultrasonic texture. Graphites have complicated microstructures that depend on the manufacturing processes used, and ultrasonic texture in these materials could originate from grain orientation and preferred microcrack alignment. Effects on material isotropy due to service related microstructural changes are possible and the ultimate aim of this work is to determine the degree to which these changes can be assessed nondestructively using laser ultrasonics measurements.

  17. System and technique for ultrasonic determination of degree of cooking

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Leonard J [Richland, WA; Diaz, Aaron A [W. Richland, WA; Judd, Kayte M [Richland, WA; Pappas, Richard A [Richland, WA; Cliff, William C [Richland, WA; Pfund, David M [Richland, WA; Morgen, Gerald P [Kennewick, WA

    2007-03-20

    A method and apparatus are described for determining the doneness of food during a cooking process. Ultrasonic signal are passed through the food during cooking. The change in transmission characteristics of the ultrasonic signal during the cooking process is measured to determine the point at which the food has been cooked to the proper level. In one aspect, a heated fluid cooks the food, and the transmission characteristics along a fluid-only ultrasonic path provides a reference for comparison with the transmission characteristics for a food-fluid ultrasonic path.

  18. An intelligent software approach to ultrasonic flaw classification in weldments

    International Nuclear Information System (INIS)

    Song, Sung Jin; Kim, Hak Joon; Lee, Hyun

    1997-01-01

    Ultrasonic pattern recognition is the most effective approach to the problem of discriminating types of flaws in weldments based on ultrasonic flaw signals. In spite of significant progress on this methodology, it has not been widely used in practical ultrasonic inspection of weldments in industry. Hence, for the convenient application of this approach in many practical situations, we develop an intelligent ultrasonic signature classification software which can discriminate types of flaws in weldments using various tools in artificial intelligence such as neural networks. This software shows excellent performances in an experimental problem where flaws in weldments are classified into two categories of cracks and non-cracks.

  19. Californium-252 Program Equipment Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Chattin, Fred Rhea [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Kenton [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ezold, Julie G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-12-01

    To successfully continue the 252Cf production and meet the needs of the customers, a comprehensive evaluation of the Building 7920 processing equipment was requested to identify equipment critical to the operational continuity of the program.

  20. Evaluation of the safety and efficiency of novel metallic ultrasonic scaler tip on titanium surfaces.

    Science.gov (United States)

    Baek, Seung-Ho; Shon, Won-Jun; Bae, Kwang-Shik; Kum, Kee-Yeon; Lee, Woo-Cheol; Park, Young-Seok

    2012-11-01

    To evaluate the safety and efficiency of novel ultrasonic scaler tips, conventional stainless-steel tips, and plastic tips on titanium surfaces. Mechanical instrumentation was carried out using conventional ultrasonic scalers (EMS, Nyon, Switzerland) with novel metallic implant tip (BS), a plastic-headed tip (ES), a plastic tip (PS) and a conventional stainless-steel tip (CS) on 10 polished commercially pure titanium disks (Grade II) per group. Arithmetic mean roughness (R(a) ) and maximum height roughness (R(y) ) of titanium samples were measured and dissipated power of the scaler tip in the tip-surface junction was estimated to investigate the scaling efficiency. The instrumented surface morphology of samples was viewed with a scanning electron microscope (SEM) and surface profile of the each sample was investigated using contact mode with a commercial atomic force microscope (AFM). There were no significant differences in surface roughness (R(a) and R(y) ) among BS, ES, and PS group. However, CS group showed significant higher surface roughness (R(a) and R(y) ). The efficiency of CS tip is twice as much higher than that of BS tip, the efficiency of BS tip is 20 times higher than that of PS tip, and the efficiency of BS tip is 90 times higher than that of ES tip. Novel metallic copper alloy ultrasonic scaler tips may minimally influence the titanium surface, similar to plastic tip. Therefore, they can be a suitable instrument for implant maintenance therapy. © 2011 John Wiley & Sons A/S.

  1. Proton therapy

    International Nuclear Information System (INIS)

    Jongen, Y.

    1995-01-01

    Ideal radiotherapy deposits a large amount of energy in the tumour volume, and none in the surrounding healthy tissues. Proton therapy comes closer to this goal because of a greater concentration of dose, well defined proton ranges and points of energy release which are precisely known - the Bragg peak1. In the past, the development of clinical proton therapy has been hampered by complexity, size, and cost. To be clinically effective, energies of several hundred MeV are required; these were previously unavailable for hospital installations, and pioneering institutions had to work with complex, inadequate equipment originally intended for nuclear physics research. Recently a number of specialist organizations and commercial companies have been working on dedicated systems for proton therapy. One, IBA of Belgium, has equipment for inhouse hospital operation which encompasses a complete therapy centre, delivered as a turnkey package and incorporating a compact, automated, higher energy cyclotron with isocentric gantries. Their system will be installed at Massachusetts General Hospital, Boston. The proton therapy system comprises: - a 235 MeV isochronous cyclotron to deliver beams of up to 1.5 microamps, but with a hardware limitation to restrict the maximum possible dose; - variable energy beam (235 to 70 MeV ) with energy spread and emittance verification; - a beam transport and switching system to connect the exit of the energy selection system to the entrances of a number of gantries and fixed beamlines. Along the beam transport system, the beam characteristics are monitored with non-interceptive multiwire ionization chambers for automatic tuning; - gantries fitted with nozzles and beamline elements for beam control; both beam scattering and beam wobbling techniques are available for shaping the beam;

  2. Neutron therapy

    International Nuclear Information System (INIS)

    Riesler, Rudi

    1995-01-01

    Standard radiotherapy uses Xrays or electrons which have low LET (linear energy transfer); in contrast, particles such as neutrons with high LET have different radiobiological responses. In the late 1960s, clinical trials by Mary Catterall at the Hammersmith Hospital in London indicated that fast neutron radiation had clinical advantages for certain malignant tumours. Following these early clinical trials, several cyclotron facilities were built in the 1980s for fast neutron therapy, for example at the University of Washington, Seattle, and at UCLA. Most of these newer machines use extracted cyclotron proton beams in the range 42 to 66 MeV with beam intensities of 15 to 60 microamps. The proton beams are transported to dedicated therapy rooms, where neutrons are produced from beryllium targets. Second-generation clinical trials showed that accurate neutron beam delivery to the tumour site is more critical than for photon therapy. In order to achieve precise beam geometries, the extracted proton beams have to be transported through a gantry which can rotate around the patient and deliver beams from any angle; also the neutron beam outline (''field shape'') must be adjusted to extremely irregular shapes using a flexible collimation system. A therapy procedure has to be appropriately organized, with physicians, radiotherapists, nurses, medical physicists and other staff in attendance; other specialized equipment, such as CT or MRI scanners and radiation simulators must be made available. Neutron therapy is usually performed only in radiation oncology departments of major medical centres

  3. Ultrasonic/Sonic Rotary-Hammer Drills

    Science.gov (United States)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Kassab, Steve

    2010-01-01

    Ultrasonic/sonic rotary-hammer drill (USRoHD) is a recent addition to the collection of apparatuses based on ultrasonic/sonic drill corer (USDC). As described below, the USRoHD has several features, not present in a basic USDC, that increase efficiency and provide some redundancy against partial failure. USDCs and related apparatuses were conceived for boring into, and/or acquiring samples of, rock or other hard, brittle materials of geological interest. They have been described in numerous previous NASA Tech Briefs articles. To recapitulate: A USDC can be characterized as a lightweight, lowpower, piezoelectrically driven jackhammer in which ultrasonic and sonic vibrations are generated and coupled to a tool bit. A basic USDC includes a piezoelectric stack, an ultrasonic transducer horn connected to the stack, a free mass ( free in the sense that it can bounce axially a short distance between hard stops on the horn and the bit), and a tool bit. The piezoelectric stack creates ultrasonic vibrations that are mechanically amplified by the horn. The bouncing of the free mass between the hard stops generates the sonic vibrations. The combination of ultrasonic and sonic vibrations gives rise to a hammering action (and a resulting chiseling action at the tip of the tool bit) that is more effective for drilling than is the microhammering action of ultrasonic vibrations alone. The hammering and chiseling actions are so effective that unlike in conventional twist drilling, little applied axial force is needed to make the apparatus advance into the material of interest. There are numerous potential applications for USDCs and related apparatuses in geological exploration on Earth and on remote planets. In early USDC experiments, it was observed that accumulation of cuttings in a drilled hole causes the rate of penetration of the USDC to decrease steeply with depth, and that the rate of penetration can be increased by removing the cuttings. The USRoHD concept provides for

  4. Characterization equipment essential drawing plan

    International Nuclear Information System (INIS)

    WILSON, G.W.

    1999-01-01

    The purpose of this document is to list the Characterization equipment drawings that are classified as Essential Drawings. Essential Drawings: Are those drawings identified by the facility staff as necessary to directly support the safe operation of the facility or equipment (HNF 1997a). The Characterization equipment drawings identified in this report are deemed essential drawings as defined in HNF-PRO-242, Engineering Drawing Requirements (HNF 1997a). These drawings will be prepared, revised, and maintained per HNF-PRO-440, Engineering Document Change Control (HNF 1997b). All other Characterization equipment drawings not identified in this document will be considered Support drawings until the Characterization Equipment Drawing Evaluation Report is completed

  5. Coal mining equipment

    International Nuclear Information System (INIS)

    Stein, R.R.; Martin, T.W.

    1991-01-01

    The word in longwall components is big, and these larger components have price tags to match. The logic behind the greater investment is that it will yield high production rates and good uptime statistics. This is true in most cases. More important than single-shift tonnage records, average shift production continues to climb upwards. This paper reports on the quality, and more significantly, the quantity of service supplied for long-wall equipment, which has reached levels that would have been seen as unachievable when longwall mining was first introduced in the U.S. The school of thought then was that longwall would increase productivity in part by reducing the number of production units and thus reducing the number of personnel employed underground. The expectation of fewer employees turned out to be unrealistic. That was probably one reason that some early attempts to install longwall system looked more like failures than vision of the future

  6. Reactor fuel charging equipment

    International Nuclear Information System (INIS)

    Wade, Elman.

    1977-01-01

    In many types of reactor fuel charging equipment, tongs or a grab, attached to a trolley, housed in a guide duct, can be used for withdrawing from the core a selected spent fuel assembly or to place a new fuel assembly in the core. In these facilities, the trolley may have wheels that roll on rails in the guide duct. This ensures the correct alignment of the grab, the trolley and fuel assembly when this fuel assembly is being moved. By raising or lowering such a fuel assembly, the trolley can be immerged in the coolant bath of the reactor, whereas at other times it can be at a certain level above the upper surface of the coolant bath. The main object of the invention is to create a fuel handling apparatus for a sodium cooled reactor with bearings lubricated by the sodium coolant and in which the contamination of these bearings is prevented [fr

  7. Overview of the ultrasonic instrumentation research in the MYRRHA project

    Energy Technology Data Exchange (ETDEWEB)

    Dierckx, M.; Leysen, W.; Van Dyck, D. [Belgian Nuclear Research Center SCK.CEN (Belgium)

    2015-07-01

    The Belgian Nuclear Research Centre SCK.CEN is in the process of developing MYRRHA, a new generation IV fast flux research reactor to replace the aging BR2. MYRRHA is conceptualized as an accelerator driven system cooled with lead bismuth eutectic mixture (LBE). As LBE is opaque to visual light, ultrasonic measurement techniques are employed as the main technology to provide feedback where needed. This paper we will give an overview of the R and D at SCK.CEN with respect to ultrasonic instrumentation in heavy liquid metals. High temperature ultrasonic transducers are deployed into the reactor to generate and receive the required ultrasonic signals. The ultrasonic waves are generated and sensed by means of a piezo-electric disc at the heart of the transducer. The acoustic properties of commonly used piezo-electric materials match rather well with the acoustic properties of heavy liquid metals, simplifying the design and construction of high bandwidth ultrasonic transducers for use in heavy liquid metals. The ultrasonic transducers will operate in a liquid metal environment, where radiation and high temperature limit the choice of materials for construction. Moreover, the high surface tension of the liquid metal hinders proper wetting of the transducer, required for optimal transmission and reception of the ultrasonic waves. In a first part of the paper, we will discuss the effect of these parameters on the performance of the overall ultrasonic system. In the second part of the paper, past, present and future ultrasonic experiments in LBE will be reviewed. We will show the results of an experiment where a transducer is scanned near the free surface of an LBE pool to render ultrasonic images of objects submerged in the heavy liquid metal. Additionally, the preliminary results of an ongoing experiment that measures the evolution of LBE wetting on different types of metals and various surface conditions will be reported. The evolution of wetting is an important

  8. Procedure Development and Qualification of the Phased Array Ultrasonic Testing for the Nuclear Power Plant Piping Weld

    International Nuclear Information System (INIS)

    Yoon, Byung Sik; Yang, Seung Han; Kim, Yong Sik; Lee, Hee Jong

    2010-01-01

    The manual ultrasonic examination for the nuclear power plant piping welds has been demonstrated by using KPD(Korean Performance Demonstration) generic procedure. For automated ultrasonic examination, there is no generic procedure and it should be qualified by using applicable automated equipment. Until now, most of qualified procedures used pulse-echo technique and there is no qualified procedure using phased array technique. In this study, data acquisition and analysis software were developed and phased-array transducer and wedge were designed to implement phased array technique for nuclear power plant in-service inspection. The developed procedure are qualified for performance demonstration for the flaw detection, length sizing and depth sizing. The qualified procedure will be applied for the field examination in the nuclear power plant piping weld inspection

  9. A Laser-based Ultrasonic Inspection System to Detect Micro Fatigue Cracks

    International Nuclear Information System (INIS)

    Park, Seung Kyu; Baik, Sung Hoon; Park, Moon Cheol; Lim, Chang Hwan; Cha, Hyung Ki

    2005-01-01

    on the surface. We can detect small fatigue cracks by finding the abrupt changing of the amplitude of the ultrasound and its center frequency in the SLS technique. It means that the scanning laser beam is located in the vicinity of the cracks. In this paper, we developed a stable laser-based ultrasonic inspection system using a pulse laser, a CFPI with a dynamic stabilizer and a computer. The computer is equipped with a GHz high speed A/D converter, three A/D converters, one D/A converter and one digital output port. The configured dynamic stabilizer generates the laser-based ultrasound by triggering a pulse laser at the maximum gain time by continually observing the gain of the CFPI. The computer acquires the laser-based ultrasound by using the GHz high-speed A/D converter and processes the ultrasonic signal in real time. We experimentally confirmed that the developed laser-based ultrasonic inspection system is stable and can detect cracks using the SLS technique

  10. Preparations for a major overhaul with equipment for semiautomtic operation on pipework in regions of high radiation dose in nuclear power stations

    International Nuclear Information System (INIS)

    Hoch, G.

    1979-01-01

    This paper presents equipment which can be used in the field of high radiation dose on pipeline. This comprises either semi or fully automatic operating machines for the segregation of pipeline, for the treatment of pipeline terminations (weld edges attachments, internal bores), for plating and welding, and also for the testing (ultrasonic and eddy-current testing) of pipelines. (orig./HP) [de

  11. Chapter 12. Space Heating Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin D.

    1998-01-01

    The performance evaluation of space heating equipment for a geothermal application is generally considered from either of two perspectives: (a) selecting equipment for installation in new construction, or (b) evaluating the performance and retrofit requirements of an existing system. With regard to new construction, the procedure is relatively straightforward. Once the heating requirements are determined, the process need only involve the selection of appropriately sized hot water heating equipment based on the available water temperature. It is important to remember that space heating equipment for geothermal applications is the same equipment used in non-geothermal applications. What makes geothermal applications unique is that the equipment is generally applied at temperatures and flow rates that depart significantly from traditional heating system design. This chapter presents general considerations for the performance of heating equipment at non-standard temperature and flow conditions, retrofit of existing systems, and aspects of domestic hot water heating.

  12. Ultrasonic irradiation enhanced the ability of Fluorescein-DA-Fe(III) on sonodynamic and sonocatalytic damages of DNA molecules.

    Science.gov (United States)

    Wu, Qiong; Chen, Xia; Jia, Lizhen; Wang, Yi; Sun, Ying; Huang, Xingjun; Shen, Yuxiang; Wang, Jun

    2017-11-01

    The interaction of DNA with Bis [N,N-bis (carboxymethyl) aminomethyl] fluorescein-Ferrous(III) (Fluorescein-DA-Fe(III)) with dual functional (sonodynamic and sonocatalytic) activity was studied by UV-vis spectroscopy, fluorescence spectroscopy, FT-IR spectroscopy, circular dichroism (CD) spectroscopy and viscosity measurements. And then, the damage of DNA caused by Fluorescein-DA-Fe(III) under ultrasonic irradiation (US) was researched by agarose gel electrophoresis and cytotoxicity assay. Meanwhile, some influenced factors such as ultrasonic irradiation time and Fluorescein-DA-Fe(III) concentration on the damage degree of DNA molecules were also examined. As a control, for Bis [N,N-bis (carboxymethyl) aminomethyl] fluorescein (Fluorescein-DA), the same experiments were carried out. The results showed that both Fluorescein-DA-Fe(III) and Fluorescein-DA can interact with DNA molecules. Under ultrasonic irradiation, Fluorescein-DA shows sonodynamic activity, which can damage DNA molecules. While, in the presence of Fe(III) ion, the Fluorescein-DA-Fe(III) displays not only sonodynamic activity but also sonocatalytic activity under ultrasonic irradiation, which injures DNA more serious than Fluorescein-DA. The researches confirmed the dual function (sonodynamic activity and sonocatalytic activity) of Fluorescein-DA-Fe(III) and expanded the usage of Fluorescein-DA-Fe(III) as a sonosensitizer in sonodynamic therapy (SDT). Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Which cartilage is regenerated, hyaline cartilage or fibrocartilage? Non-invasive ultrasonic evaluation of tissue-engineered cartilage.

    Science.gov (United States)

    Hattori, K; Takakura, Y; Ohgushi, H; Habata, T; Uematsu, K; Takenaka, M; Ikeuchi, K

    2004-09-01

    To investigate ultrasonic evaluation methods for detecting whether the repair tissue is hyaline cartilage or fibrocartilage in new cartilage regeneration therapy. We examined four experimental rabbit models: a spontaneous repair model (group S), a large cartilage defect model (group L), a periosteal graft model (group P) and a tissue-engineered cartilage regeneration model (group T). From the resulting ultrasonic evaluation, we used %MM (the maximum magnitude of the measurement area divided by that of the intact cartilage) as a quantitative index of cartilage regeneration. The results of the ultrasonic evaluation were compared with the histological findings and histological score. The %MM values were 61.1 +/- 16.5% in group S, 29.8 +/- 15.1% in group L, 36.3 +/- 18.3% in group P and 76.5 +/- 18.7% in group T. The results showed a strong similarity to the histological scoring. The ultrasonic examination showed that all the hyaline-like cartilage in groups S and T had a high %MM (more than 60%). Therefore, we could define the borderline between the two types of regenerated cartilage by the %MM.

  14. Automation and mechanization of in-service inspection of selected equipment in FRG's nuclear power plants

    International Nuclear Information System (INIS)

    Metke, E.

    1988-01-01

    The procedures and equipment are described for the automation and mechanization of in-service inspection in nuclear power plants in the FRG, used by the KWU company. Checks of the pressure vessel are done by visual means using a colour tv camera, the method of eddy currents and the ultrasonic method. An analysis is made of the time schedule of ultrasonic inspections, and the central column manipulator is described which allows to check all internal regions of the pressure vessel. Attention is also devoted to other devices, e.g., those for prestressing shanks, cleaning shanks, cleaning thread apertures, etc. A combined probe using the ultrasonic method and the eddy current method serves the inspection of heat exchange tubes in the steam generator. For inspecting the primary circuit the KWU company uses devices for checking and working the inner surface of pipes. Briefly described are examples of using KWU equipment in nuclear power plants in CMEA countries. (Z.M.). 11 figs., 6 refs

  15. Enhancement of ultrasonic disintegration of sewage sludge by aeration.

    Science.gov (United States)

    Zhao, He; Zhang, Panyue; Zhang, Guangming; Cheng, Rong

    2016-04-01

    Sonication is an effective way for sludge disintegration, which can significantly improve the efficiency of anaerobic digestion to reduce and recycle use of sludge. But high energy consumption limits the wide application of sonication. In order to improve ultrasonic sludge disintegration efficiency and reduce energy consumption, aeration was introduced. Results showed that sludge disintegration efficiency was improved significantly by combining aeration with ultrasound. The aeration flow rate, gas bubble size, ultrasonic density and aeration timing had impacts on sludge disintegration efficiency. Aeration that used in later stage of ultrasonic irradiation with low aeration flow rate, small gas bubbles significantly improved ultrasonic disintegration sludge efficiency. At the optimal conditions of 0.4 W/mL ultrasonic irradiation density, 30 mL/min of aeration flow rate, 5 min of aeration in later stage and small gas bubbles, ultrasonic sludge disintegration efficiency was increased by 45% and one third of ultrasonic energy was saved. This approach will greatly benefit the application of ultrasonic sludge disintegration and strongly promote the treatment and recycle of wastewater sludge. Copyright © 2015. Published by Elsevier B.V.

  16. Methodic recommendations on ultrasonic testing of pipeline austenitic butt joints

    International Nuclear Information System (INIS)

    Grebennik, V.S.; Lantukh, V.M.; Tajts, M.Z.; Ermolov, I.N.; Volkov, A.S.; Vyatskov, I.A.; Kesler, N.A.; Shchedrin, I.F.

    1989-01-01

    Recommendations for the application of ultrasonic testing of austenitic welded joints of the Du 500 pipelines with the walls 32-34 mm thick made of steel Kh18N10T are developed. The optimal values of the main parameters of ultrasonic testing are determined experimentally. Principles of calculation of the optimal parameters are considered. 1 ref.; 4 figs

  17. [The use of ultrasonic files in canal preparation].

    Science.gov (United States)

    Calas, P; Terrie, B

    1990-01-01

    The continuous high volume of irrigating solution delivered by the ultrasonic system facilitates the root canal debridement. An excellent cleaning of dentin wall is obtained even on surfaces unreached by the mechanical instrumentation. In order to obtain an efficacious preparation, the use of ultrasonic files were combined with instrumentation. This new technique is described in this article.

  18. Degradation of acephate using combined ultrasonic and ozonation method

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2015-07-01

    Full Text Available The degradation of acephate in aqueous solutions was investigated with the ultrasonic and ozonation methods, as well as a combination of both. An experimental facility was designed and operation parameters such as the ultrasonic power, temperature, and gas flow rate were strictly controlled at constant levels. The frequency of the ultrasonic wave was 160 kHz. The ultraviolet-visible (UV-Vis spectroscopic and Raman spectroscopic techniques were used in the experiment. The UV-Vis spectroscopic results show that ultrasonication and ozonation have a synergistic effect in the combined system. The degradation efficiency of acephate increases from 60.6% to 87.6% after the solution is irradiated by a 160 kHz ultrasonic wave for 60 min in the ozonation process, and it is higher with the combined method than the sum of the separated ultrasonic and ozonation methods. Raman spectra studies show that degradation via the combined ultrasonic/ozonation method is more thorough than photocatalysis. The oxidability of nitrogen atoms is promoted under ultrasonic waves. Changes of the inorganic ions and degradation pathway during the degradation process were investigated in this study. Most final products are innocuous to the environment.

  19. Ultrasonic testing device having an adjustable water column

    Science.gov (United States)

    Roach, Dennis P.; Neidigk, Stephen O.; Rackow, Kirk A.; Duvall, Randy L.

    2015-09-01

    An ultrasonic testing device having a variable fluid column height is disclosed. An operator is able to adjust the fluid column height in real time during an inspection to to produce optimum ultrasonic focus and separate extraneous, unwanted UT signals from those stemming from the area of interest.

  20. A Comparative Analysis of the Rebound Hammer and Ultrasonic ...

    African Journals Online (AJOL)

    This work presents a study on the comparison between some non-destructive testing tech-niques (Rebound Hammer and Ultrasonic Pulse Velocity). Tests were performed to com-pare the accuracy between the rebound hammer and the ultrasonic pulse velocity methodin estimating the strength of concrete. Eighty samples ...