WorldWideScience

Sample records for ultrasonic testing system

  1. An advanced system for automated ultrasonic testing

    International Nuclear Information System (INIS)

    Dressler, K.

    1989-01-01

    As the main component of the AUP system, an ALOK ultrasonic unit has been chosen as it allows for testing of large component areas both search for defects and description of defect geometries. All data required for fault analysis can be obtained by one measuring run. For inspection of primary circuit components in nuclear power stations, the manipulator control and the ultrasonic probe are installed behind the first sufficient shielding. (orig./HP) [de

  2. Ultrasonic Testing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeong Jun; Kuk, Jeong Han

    2002-02-15

    This book introduces ultrasonic testing, which tells of outline of ultrasonic testing, principle of ultrasonic testing, prosperities of ultrasonic waves, radiographic test and ultrasonic test, basic theory on ultrasonic testing, mode conversion, transmission and diffraction, ultrasonic flaw detection and probe, standard test piece and reference test piece, like KS(JIS) ASME and ASTM, classification and properties of ultrasonic testing, straight beam method, angle beam method, ASME SEC.V.Art.5 ASTMA 388 and KS B 0817 Korean industrial standard.

  3. Characterization methods for ultrasonic test systems

    International Nuclear Information System (INIS)

    Busse, L.J.; Becker, F.L.; Bowey, R.E.; Doctor, S.R.; Gribble, R.P.; Posakony, G.J.

    1982-07-01

    Methods for the characterization of ultrasonic transducers (search units) and instruments are presented. The instrument system is considered as three separate components consisting of a transducer, a receiver-display, and a pulser. The operation of each component is assessed independently. The methods presented were chosen because they provide the greatest amount of information about component operation and were not chosen based upon such conditions as cost, ease of operation, field implementation, etc. The results of evaluating a number of commercially available ultrasonic test instruments are presented

  4. Ultrasonic testing

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sung Jin [Sungkwunkwan Univ., Seoul (Korea, Republic of); Jeong, Hyun Jo [Wonkwang Univ., Iksan (Korea, Republic of)

    2004-02-15

    For the proper performance of ultrasonic testing of steel welded joints, and anisotropic material it is necessary to have sound understanding on the underlying physics. To provide such an understanding, it is beneficial to have simulation tools for ultrasonic testing. In order to address such a need, we develop effective approaches to simulate angle beam ultrasonic testing with a personal computer. The simulation is performed using ultrasonic measurement models based on the computationally efficient multi-Gaussian beams. This reach will describe the developed ultrasonic testing models together with the experimental verification of their accuracy.

  5. Development of automatic ultrasonic testing system and its application

    International Nuclear Information System (INIS)

    Oh, Sang Hong; Matsuura, Toshihiko; Iwata, Ryusuke; Nakagawa, Michio; Horikawa, Kohsuke; Kim, You Chul

    1997-01-01

    The radiographic testing (RT) has been usually applied to a nondestructive testing, which is carried out on purpose to detect internal defects at welded joints of a penstock. In the case that RT could not be applied to, the ultrasonic testing (UT) was performed. UT was generally carried out by manual scanning and the inspections data were recorded by the inspector in a site. So, as a weak point, there was no objective inspection records correspond to films of RT. It was expected that the automatic ultrasonic testing system by which automatic scanning and automatic recording are possible was developed. In this respect, the automatic ultrasonic testing system was developed. Using newly developed the automatic ultrasonic testing system, test results to the circumferential welded joints of the penstock at a site were shown in this paper.

  6. Development of prototype virtual testing system for ultrasonic examination engineers

    International Nuclear Information System (INIS)

    Shohji, Hajime; Hide, Koichiro

    2015-01-01

    The reliability of inspection results is affected by the skill of examination personnel, particularly with regard to manual ultrasonic testing (UT). The number and design of test specimens are among the most important points to be considered during training or assessing the qualification of UT examination personnel. For training, a simulated UT training system using a computer mouse or touch sensor was proposed. However, this system proved to be inadequate as a replacement with for actual UT work. In this study, we have developed a novel virtual UT system that simulates actual UT work for piping welds. This system (Tool for Realistic UltraSound Testing) consists of a dummy UT probe, dummy piping, a computer system, and a 3D position detection system. It can detect the state of the dummy probe (3D position, skewing angle), and displays recorded A-scan data corresponding to the dummy probe status with random noise. Furthermore, it does not display A-scan data if the dummy probe is not in contact with the pipe. Thus, in this way, the system simulates actual UT work. Using this system, it is possible to significantly reduce the number of test specimens being utilized for training or assessing the qualification of UT examination personnel. Additionally, highly efficient training and certification will be achieved through this system. (author)

  7. Ultrasonic tests. Pt. 2

    International Nuclear Information System (INIS)

    Goebbels, K.

    1980-01-01

    After a basic treatment of ultrasonic wave propagation, of the state-of-the-art methods and the technical background in the preceeding part, advanced ultrasonic NDT techniques are presented here. The discussion of new development includes - manipulation systems, - automation of ultrasonic testing methods, documentation and evaluation. In the middle of this part the main problem areas will be discussed: - detection of defects (e.g. in coarse grained structures and welds), - classification of defects (e.g. discrimination between crack-like and volumetric faults), - sizing of defects. Research in the field of acoustical holography, development of probes and phased arrays, electromagnetic acoustic transducers and signal enhancement are the main contributing parts to the report. (orig./RW)

  8. Uncertainty management in knowledge based systems for nondestructive testing-an example from ultrasonic testing

    International Nuclear Information System (INIS)

    Rajagopalan, C.; Kalyanasundaram, P.; Baldev Raj

    1996-01-01

    The use of fuzzy logic, as a framework for uncertainty management, in a knowledge-based system (KBS) for ultrasonic testing of austenitic stainless steels is described. Parameters that may contain uncertain values are identified. Methodologies to handle uncertainty in these parameters using fuzzy logic are detailed. The overall improvement in the performance of the knowledge-based system after incorporating fuzzy logic is discussed. The methodology developed being universal, its extension to other KBS for nondestructive testing and evaluation is highlighted. (author)

  9. Performance testing of a system for remote ultrasonic examination of the Hanford double-shell waste storage tanks

    International Nuclear Information System (INIS)

    Pfluger, D.C.; Somers, T.; Berger, A.D.

    1995-02-01

    A mobile robotic inspection system is being developed for remote ultrasonic examination of the double wall waste storage tanks at Hanford. Performance testing of the system includes demonstrating robot mobility within the tank annulus, evaluating the accuracy of the vision based navigation process, and verifying ultrasonic and video system performance. This paper briefly describes the system and presents a summary of the plan for performance testing of the ultrasonic testing system. Performance test results will be presented at the conference

  10. Ultrasonic testing X gammagraphy

    International Nuclear Information System (INIS)

    Mello Campos, A.M. de

    1989-01-01

    The experience of 10 years for substituting gammagraphy tests by ultrasonic tests is related. A comparative evaluation of data obtained from both techniques applied to welded butt joints is presented. (author)

  11. Case studies in ultrasonic testing

    International Nuclear Information System (INIS)

    Prasad, V.; Satheesh, C.; Varde, P.V.

    2015-01-01

    Ultrasonic testing is widely used Non Destructive Testing (NDT) method and forms the essential part of In-service inspection programme of nuclear reactors. Main application of ultrasonic testing is for volumetric scanning of weld joints followed by thickness gauging of pipelines and pressure vessels. Research reactor Dhruva has completed the first In Service Inspection programme in which about 325 weld joints have been volumetrically scanned, in addition to thickness gauging of 300 meters of pipe lines of various sizes and about 24 nos of pressure vessels. Ultrasonic testing is also used for level measurements, distance measurements and cleaning and decontamination of tools. Two case studies are brought out in this paper in which ultrasonic testing is used successfully for identification of butterfly valve opening status and extent of choking in pipe lines in Dhruva reactor systems

  12. Experience with automatic ultrasonic testing with the P-scan system

    International Nuclear Information System (INIS)

    Edelmann, X.; Pfister, O.; Allidi, F.

    1989-01-01

    In this contribution, there is a report on experience in the automated ultrasonic testing of Austenitic components with the P-scan system. Examples of testing Austenitic joints and mixed joints on pipeline systems in the primary circuit of nuclear powerstations are discussed. Further, the mechanised measurement of wall thickness of pipelines endangered by erosion and corrosion is dealt with. (MM) [de

  13. Development of the Automated Ultrasonic Testing System for Inspection of the flaw in the Socket Weldment

    International Nuclear Information System (INIS)

    Lee, Jeong Ki; Park, Moon Ho; Park, Ki Sung; Lee, Jae Ho; Lim, Sung Jin

    2004-01-01

    Socket weldment used to change the flow direction of fluid nay have flaws such as lack of fusion and cracks. Liquid penetrant testing or Radiography testing have been applied as NDT methods for flaw detection of the socket weldment. But it is difficult to detect the flaw inside of the socket weldment with these methods. In order to inspect the flaws inside the socket weldment, a ultrasonic testing method is established and a ultrasonic transducer and automated ultrasonic testing system are developed for the inspection. The automated ultrasonic testing system is based on the portable personal computer and operated by the program based Windows 98 or 2000. The system has a pulser/receiver, 100MHz high speed A/D board, and basic functions of ultrasonic flaw detector using the program. For the automated testing, motion controller board of ISA interface type is developed to control the 4-axis scanner and a real time iC-scan image of the automated testing is displayed on the monitor. A flaws with the size of less than 1mm in depth are evaluated smaller than its actual site in the testing, but the flaws larger than 1mm appear larger than its actual size on the contrary. This tendency is shown to be increasing as the flaw size increases. h reliable and objective testing results are obtained with the developed system, so that it is expected that it can contribute to safety management and detection of repair position of pipe lines of nuclear power plants and chemical plants

  14. Ultrasonic weld testing.

    Science.gov (United States)

    1970-12-01

    The study was broken down into two phases. Phase I consisted of a laboratory investigation of test specimens to determine the reliability of the ultrasonic equipment and testing procedure. Phase II was a field study where the knowledge, skills and ab...

  15. Design, fabrication, and testing of an ultrasonic de-icing system for helicopter rotor blades

    Science.gov (United States)

    Palacios, Jose Luis

    A low-power, non-thermal ultrasonic de-icing system is introduced as a possible substitute for current electro-thermal systems. The system generates delaminating ultrasonic transverse shear stresses at the interface of accreted ice. A PZT-4 disk driven at 28.5 KHz (radial resonance of the disk) instantaneously de-bonds 2 mm thick freezer ice layers. The ice layers are accreted to a 0.7 mm thick, 30.4 cm x 30.4 cm steel plate at an environment temperature of -20°C. A power input of 50 Watts is applied to the actuator (50 V, 19.6 KV/m), which translates to a de-icing power of 0.07 W/cm2. A finite element model of the actuator bonded to the isotropic plate is used to guide the design of the system, and predicts the transverse shear stresses at the ice interface. Wind tunnel icing tests were conducted to demonstrate the potential use of the proposed system under impact icing conditions. Both glaze ice and rime ice were generated on steel and composite plates by changing the cloud conditions of the wind tunnel. Continuous ultrasonic vibration prevented impact ice formation around the actuator location at an input power not exceeding 0.18 W/cm 2 (1.2 W/in2). As ice thickness reached a critical thickness of approximately 1.2 mm, shedding occurred on those locations where ultrasonic transverse shear stresses exceeded the shear adhesion strength of the ice. Finite element transverse shear stress predictions correlate with observed experimental impact ice de-bonding behavior. To increase the traveling distance of propagating ultrasonic waves, ultrasonic shear horizontal wave modes are studied. Wave modes providing large modal interface transverse shear stress concentration coefficients (ISCC) between the host structure (0.7 mm thick steel plate) and accreted ice (2.5 mm thick ice layer) are identified and investigated for a potential increase in the wave propagation distance. Ultrasonic actuators able to trigger these optimum wave modes are designed and fabricated. Despite

  16. Five years of testing using the simi-automated ultrasonic time of flight diffraction system

    International Nuclear Information System (INIS)

    Webber, S.A.

    2002-01-01

    This paper provides a brief description of the Time of Flight Diffraction (TOFD) test system and also describes a couple of case histories where the system has been successfully applied. The T.O.F.D. system has been contrasted with the conventional manual ultrasonic technique. Whilst the T.O.F.D. system has proven potential, and is without doubt a valuable tool that will continue to gain market share in the inspection industry, conventional manual ultrasonics still has its part to play and will survive for some time to come. One of the outstanding issues facing the T.O.F.D. systems is the question of acceptance testing which is still the predominant convention specified in most standards. Training for a T.O.F.D. system technician is particularly important and the author suggests there are more traps for the unwary than with the conventional manual ultrasonic systems. The overall judgement of the T.O.F.D. system is that it is a most welcome and powerful tool in the hands of the right operator and will do much to boost the prominence of Non-Destructive Testing

  17. Remote inspection of a buried pipeline using a mobile ultrasonic testing system

    Energy Technology Data Exchange (ETDEWEB)

    Muralidhar, S; Ghosh, J K [Bhabha Atomic Research Centre, Bombay (India). Radiometallurgy Div.; Rajendran, S; Ramakumar, M S [Bhabha Atomic Research Centre, Mumbai (India). Division of Remote Handling and Robotics

    1994-12-31

    The nuclear reactor, Cirus, has now been in operation for three decades. As part of a programme to ascertain the integrity and safety of the various reactor parts in-service inspection of the embedded portion of the main coolant pipeline will be carried out. A mobile ultrasonic testing system has been developed and tested in the laboratory to measure the wall thickness of an underground pipe from the inner corroded surface using a water-bubbler technique. 3 figs.

  18. Field testing and applications of the Ultrasonic Ranging and Data (USRAD) System

    International Nuclear Information System (INIS)

    Dickerson, K.S.; Pickering, D.A.; Blair, M.S.; Espegren, M.L.; Nyquist, J.E.

    1989-01-01

    The Ultrasonic Ranging and Data (USRAD) System is a patented, computerized data acquisition system developed to relate the radiological surveyor's precise physical location to instantaneous radiation data taken during walk-on surveys. The USRAD System incorporates three technologies: radio frequency communications, ultrasonics, and microcomputers. Initial field testing of the USRAD System has resulted in several improvements to walk-on radiological surveys including real-time position data, reproducible survey results, on-site verification of survey coverage, on-site data reduction and graphics, and permanent data storage on magnetic media. Although the USRAD System was developed specifically for use with a gamma-ray detector, it is adaptable to other instruments. Applications of the USRAD System may include verification of remediated and uncontaminated areas, emergency response in mapping pollutant locations after accidents, and characterization of hazardous waste areas. 2 refs., 8 figs

  19. Development of evaluation system of ultrasonic testing data

    International Nuclear Information System (INIS)

    Takeuchi, Iwao; Morimoto, Kazuo; Hamana, Michio; Taniguchi, Masaru; Hiraga, Seiji

    1996-01-01

    Mitsubishi Heavy Industries, Ltd. performs non-destructive inspections on water pipes and construction in power stations and various plants. For countermeasures concerning efficient operating with extra safety for long time operating of plants, our customers have asked us for detection with more accurate inspections and improvements on evaluation skills for sizing defects. For these requirements we have adopted noise removal methods such as split-spectrum processing(SSP) and sizing technique for detects such as time of flight diffraction(TOFD). We developed accurate and easily operating evaluation systems which made detection for defects and sizing of defects which are highly developed. We have become possible to perform non-destructive inspections efficiently and effectively. (author)

  20. Research on Automatic Positioning System of Ultrasonic Testing of Wind Turbine Blade Flaws

    Science.gov (United States)

    Liu, Q. X.; Wang, Z. H.; Long, S. G.; Cai, M.; Cai, M.; Wang, X.; Chen, X. Y.; Bu, J. L.

    2017-11-01

    Ultrasonic testing technology has been used essentially in non-destructive testing of wind turbine blades. However, it is fact that the ultrasonic flaw detection method has inefficiently employed in recent years. This is because the testing result will illustrate a small deviation due to the artificial, environmental and technical factors. Therefore, it is an urgent technical demand for engineers to test the various flaws efficiently and quickly. An automatic positioning system has been designed in this paper to record the moving coordinates and the target distance in real time. Simultaneously, it could launch and acquire the sonic wave automatically. The ADNS-3080 optoelectronic chip is manufactured by Agilent Technologies Inc, which is also utilized in the system. With the combination of the chip, the power conversion module and the USB transmission module, the collected data can be transmitted from the upper monitor to the hardware that could process and control the data through software programming. An experiment has been designed to prove the reliability of automotive positioning system. The result has been validated by comparing the result collected form LABVIEW and actual plots on Perspex plane, it concludes that the system possesses high accuracy and magnificent meanings in practical engineering.

  1. Development of a Multi-Channel Ultrasonic Testing System for Automated Ultrasonic Pipe Inspection of Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lee, Hee Jong; Cho, Chan Hee; Cho, Hyun Joon

    2009-01-01

    Currently almost all in-service-inspection techniques, applied in domestic nuclear power plants, are partial to field inspection technique. These kinds of techniques are related to managing nuclear power plants by the operation of foreign-produced inspection devices. There have been so many needs for development of native in-service-inspection device because there is no native diagnosis device for nuclear power plant inspection yet in Korea. In this research, we developed several core techniques to make an automated ultrasonic pipe inspection system for nuclear power plants. A high performance multi-channel ultrasonic pulser/receiver module, an A/D converter module and a digital main CPU module were developed and the performance of the developed modules was verified. The S/N ratio, noise level and signal acquisition performance of the developed modules showed proper level as we designed in the beginning.

  2. Ultrasonic testing device

    International Nuclear Information System (INIS)

    Lawrie, W.E.

    1978-01-01

    The ultrasonic transmitter made of polarized ferroelectric ceramic material (lead zirconate titanate) is arranged in a strip carrier which allows it to be introduced between the fuel elements of a fuel subassembly in a water cooled nuclear reactor. The ultrasonic transmitter is insulated relative to the carrier. The echo of the ra dal ultrasonic pulse is recorded which changes as faulty water filled fuel elements are detected. (RW) [de

  3. Imaging techniques for ultrasonic testing

    International Nuclear Information System (INIS)

    2013-01-01

    These seminar proceedings contain 16 lectures on the following topics: 1. From imaging to quantification - ultrasound methods in medical diagnostics; 2. SAFT, TOFD, Phased Array - classical applications and recent developments in ultrasonic imaging; 3. Innovative ultrasonic imaging methods in research and application; 4. Industrial ultrasonic testing of fibre-reinforced structures of complex geometry; 5. Visualisation of crack tips in the inspection of wheel set shafts with longitudinal boreholes as a means of avoiding unnecessary wheel set changes; 6. Areal analysis of the propagation of Lamb waves on curved, anisotropic structures; 7. High-resolution representation in immersion technique testing; 8. Variants in generating images from phased array measurement data - practical examples involving copper, carbon-fibre reinforced plastic and other materials; 9. GIUM - an unconventional method of microstructure imaging using ultrasonic stimulation and laser vibrometry scanning; 10. Innovative air-ultrasonic testing concepts for improved imaging; 11. Use of imaging methods for improving the quality of test results from nondestructive testing; 12. Modelling and visualisation of EMUS stimulation for transducer optimisation; 13. Use of SAFT in the manufacture of energy conversion machines; 14. Ultrasonic imaging tests for improved defect characterisation during weld seam inspection on longitudinally welded large-diameter pipes; 15. SAFT reconstruction for testing austenitic weld seams and dissimilar metal weld seams for transverse cracks; 16. Imaging-based optimisation method for quantitative ultrasonic testing of anisotropic inhomogeneous austenitic welded joints with determination and utilisation of their elastic properties. One contribution has been abstracted separately. [de

  4. Computer control in nondestructive testing illustrated by an automatic ultrasonic tube inspection system

    International Nuclear Information System (INIS)

    Gundtoft, H.E.; Nielsen, N.

    1976-06-01

    In Risoe's automatic tube inspection system, data (more than half a million per tube) from ultrasonic dimension measurements and defect inspections are fed into a computer that simultaneously calculates and evaluates the results. (author)

  5. The Design Of The Ultrasonic Nondestructive Testing System Based On The EMAT

    Directory of Open Access Journals (Sweden)

    Cheng Huan Xin

    2016-01-01

    Full Text Available This paper introduces a kind of based on the electromagnetic acoustic transducer (EMAT metal pipeline detection system, fusion of two dimensional orientation, shape unique technological innovation, implementation of various metal pipe wall corrosion situation of rapid, accurate, fully automated non-destructive testing.In the aspect of hardware design, single-chip microcomputer control was achieved by C language programming the launch of the pulse signal. Pulse signal was sent to launch circuit, ultrasonic signal. Design of preamplifier, controllable gain amplifier two-stage amplifier circuit for receiving signal is amplified. Including data acquisition circuit detection circuit and A/D conversion circuit, single chip microcomputer and the LabVIEW platform via A serial port communication agreement. In the aspect of software design, the design of the EMAT pipe nondestructive testing system based on LabVIEW human-computer interaction interface.

  6. Irradiation Testing of Ultrasonic Transducers

    International Nuclear Information System (INIS)

    Daw, J.; Rempe, J.; Palmer, J.; Tittmann, B.; Reinhardt, B.; Kohse, G.; Ramuhalli, P.; Montgomery, R.; Chien, H.T.; Villard, J.F.

    2013-06-01

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of numerous parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 10 21 n/cm 2 (E> 0.1 MeV). This test will be an instrumented lead test; and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. By characterizing magnetostrictive and piezoelectric transducer survivability during irradiation, test results will enable the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. (authors)

  7. System for ultrasonic testing of welded seams. Einrichtung zur Ultraschallpruefung von Schweissnaehten

    Energy Technology Data Exchange (ETDEWEB)

    Bondarenko, J K; Troizkij, V A; Agronskaja, E V; Vasiliev, L N; Orel, V G; Naida, V L; Baldakov, V F; Ustjusanin, J V; Litvinenko, V A; Petrovskij, S N

    1984-07-12

    The invention concerns a device for the ultrasonic testing of welded joints which can be used in particular for quality control of multi-layer weldments. The testing equipment consists of probe, material testing device, amplitude discriminator, recording device, up and down counters and threshold value stages. (GSCH).

  8. Standard guide for evaluating performance characteristics of phased-Array ultrasonic testing instruments and systems

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This guide describes procedures for evaluating some performance characteristics of phased-array ultrasonic examination instruments and systems. 1.2 Evaluation of these characteristics is intended to be used for comparing instruments and systems or, by periodic repetition, for detecting long-term changes in the characteristics of a given instrument or system that may be indicative of impending failure, and which, if beyond certain limits, will require corrective maintenance. Instrument characteristics measured in accordance with this guide are expressed in terms that relate to their potential usefulness for ultrasonic examinations. Other electronic instrument characteristics in phased-array units are similar to non-phased-array units and may be measured as described in E 1065 or E 1324. 1.3 Ultrasonic examination systems using pulsed-wave trains and A-scan presentation (rf or video) may be evaluated. 1.4 This guide establishes no performance limits for examination systems; if such acceptance criteria ar...

  9. The state of the art in non destructive testing of nuclear fuel cladding tubes using ultrasonic rotary systems; on line computer and statistics

    International Nuclear Information System (INIS)

    Rauscher, Rudolf

    Nondestructive evaluation of nuclear fuel cladding by ultrasonic tests is described. Ultrasonic transducers for detection of flaws and dimensions are built in a rotary system with a speed of 8000 rpm. The testing system is adapted to a configuration consisting of two microcomputers connected to each other

  10. Ultrasonic dip seal maintenance system

    International Nuclear Information System (INIS)

    Poindexter, A.M.; Ricks, H.E.

    1978-01-01

    Disclosed is a system for removing impurities from the surfaces of liquid dip seals and for wetting the metal surfaces of liquid dip seals in nuclear components. The system comprises an ultrasonic transducer that transmits ultrasonic vibrations along an ultrasonic probe to the metal and liquid surfaces of the dip seal thereby loosening and removing those impurities

  11. A new multiple channel data recording system for mechanised ultrasonic testing of pipes and nozzles by A-scan processing

    International Nuclear Information System (INIS)

    Heumueller, R.; Rathgeb, W.; Szafarska, E.; Bertus, N.; Erhard, A.; Montag, H.J.; Wuestenberg, H.

    1989-01-01

    A system of equipment for ultrasonic testing in nuclear technique is introduced. This is a four channel ultrasonic equipment, which consists of a manipulator suitable for components, up to four conventional test heads, a test head connection box connected with them via 20 metres of coaxial cable, a documentation unit for signal detection and conversion, a data collection computer for parametricising the equipment, measurement display and representation and a disc memory. The advantages of this test system lie in its easy use because of the compact equipment dimensions, in the data collection of the complete A picture by the documentation unit and in the flexible evaluation of the collected data by the computer. (MM) [de

  12. Under sodium ultrasonic imaging system for PFBR

    International Nuclear Information System (INIS)

    Patankar, V.H.; Lalwani, S.K.; Agashe, A.A.

    2014-01-01

    Under Sodium UltraSonic Scanner (USUSS) has been developed to detect the growth and protrusion of fuel sub-assemblies of PFBR, submerged in liquid sodium by using the ultrasonic imaging technique during reactor shut-down when liquid sodium is at 180 ℃. The imaging is carried out prior to every Fuel handling operation. Electronics Division, BARC has designed and developed an 8-Channel Ultrasonic Imaging System (UIS) which consists of 4 downward viewing and 4 side viewing ultrasonic transducers alongwith pulser-receiver, signal processing electronics hardware and software. An automated mechanical scanner developed by IGCAR houses sodium immersible transducers to image the fuel sub assemblies. The system has been successfully tested with dummy protruding and grown FSAs, submerged under liquid sodium. Such ultrasonic imaging systems are not available to India from international market. The USUSS developed indigenously has all the features available in similar systems developed by other countries. After every imaging campaign, the mechanical scanner containing ultrasonic transducers is stored in the Argon filled storage-pit. Before every campaign of USUSS, it is necessary to check the healthiness of the sodium immersible and contaminated ultrasonic transducers, as the under-sodium scanner is decontaminated once in five years. For this purpose, a novel Non Contact Ultrasonic Inspection System (NCUIS) has been designed and developed by Electronics Division, BARC to check the functionality of the high-temperature and contaminated transducers of USUSS, using air-coupled ultrasonic technique. (author)

  13. Ultrasonic-testing method

    International Nuclear Information System (INIS)

    Thome, Paul.

    1973-01-01

    Description is given of a device adapted to the detection, by means of ultrasonic waves, of all the flaws and defects included in workpieces when only one face of the latter is accessible. A beam is directed towards the rear-face of the workpiece (e.g. a plate) on which it is reflected. The image thus reflected is fed into a receiver. The latter is under the control of the displacement of that image; simultaneously a transducer checks the condition of the mirror at the places where the beam is reflected. Whenever a flow or defect comes between, a silent zone is formed. By recording the silent zones with respect to the positions of several emitters, it is possible to locates a flaw and to define the outline thereof. The apparatus comprises several ''emitter-receiver'' groups intersecting over the emitter used in order to check the good conditions of the mirror. The invention can be used for searching and identifying flaws and defects in buildings which have to be of top quality (e.g., cofferdams, nuclear devices, shipbuilding yards, aeronautics) [fr

  14. Applications of the automatic ultrasonic testing system ALOK combined with a phased array system

    International Nuclear Information System (INIS)

    Stanger, H.K.; Kappes, W.; Licht, R.; Bohn, H.; Barbian, O.A.

    1987-01-01

    The combination of the automatic testing system ALOK with a controlled probe in the form of a phased array device is a possibility to meet the high requirements on the test method with regard to the statements of the test as well as the requirements on the reduction of operation and preparation times. The system's applications are not limited to the testing of reactors in nuclear technology (basic tests and recurring tests of the RPV and other primary circuit components); they are also of great importance in the non-nuclear sector e.g. the testing of pipelines, of reactors in the chemical field and of offshore structures as well as tests of components in the field of production. The modularity of the system permits an adaptation to the particular testing task with the possibility of using different manipulation and hardware systems. (orig./DG) [de

  15. Proposed new ultrasonic test bed

    International Nuclear Information System (INIS)

    Maxfield, B.W.

    1978-01-01

    Within the last four or five years, a great deal of progress has been made both here and in a number of other laboratories in developing techniques that will enable considerably more information to be obtained from the ultrasonic examination of an object. Some of these recent developments relate to information contained within the diffracted beam which does not return along the incident path. An ultrasonic examination based upon an evaluation of diffracted energy must use at least two transducers, one for transmission and the other for reception. Current indications are that even more reliable test results will be achieved using a receiving transducer that can scan a significant portion of the diffracted field including that portion which is back-reflected. In general, this scan can be interpreted most accurately if it follows a path related to the surface shape. If more than one region within the object is to be interrogated, then the transmitting transducer must also be scanned, again along a path related to the surface shape. The large quantity of information obtained as the result of such an examination must be subjected to sophisticated computer analysis in order to be displayed in a meaningful and intelligible manner. Although one motivation for building such an instrument is to explore new ultrasonic test procedures that are evolving from current laboratory research, this is neither the sole motivation nor the only use for this instrument. Such a mechanical and electronic device would permit conventional ultrasonic tests to be performed on parts of complex geometry without the expensive and time-consuming special fixturing that is currently required. May possible test geometries could be explored in practice prior to the construction of a specialized test apparatus. Hence, it would be necessary to design much, if any, flexibility into the special test apparatus

  16. Development and Certification of Ultrasonic Background Noise Test (UBNT) System for use on the International Space Station (ISS)

    Science.gov (United States)

    Prosser, William H.; Madaras, Eric I.

    2011-01-01

    As a next step in the development and implementation of an on-board leak detection and localization system on the International Space Station (ISS), there is a documented need to obtain measurements of the ultrasonic background noise levels that exist within the ISS. This need is documented in the ISS Integrated Risk Management System (IRMA), Watch Item #4669. To address this, scientists and engineers from the Langley Research Center (LaRC) and the Johnson Space Center (JSC), proposed to the NASA Engineering and Safety Center (NESC) and the ISS Vehicle Office a joint assessment to develop a flight package as a Station Development Test Objective (SDTO) that would perform ultrasonic background noise measurements within the United States (US) controlled ISS structure. This document contains the results of the assessment

  17. Automated ultrasonic testing--capabilities, limitations and methods

    International Nuclear Information System (INIS)

    Beller, L.S.; Mikesell, C.R.

    1977-01-01

    The requirements for precision and reproducibility of ultrasonic testing during inservice inspection of nuclear reactors are both quantitatively and qualitatively more severe than most current practice in the field can provide. An automated ultrasonic testing (AUT) system, which provides a significant advancement in field examination capabilities, is described. Properties of the system, its application, and typical results are discussed

  18. Pulsed ultrasonic stir welding system

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    An ultrasonic stir welding system includes a welding head assembly having a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. During a welding operation, ultrasonic pulses are applied to the rod as it rotates about its longitudinal axis. The ultrasonic pulses are applied in such a way that they propagate parallel to the longitudinal axis of the rod.

  19. System for ultrasonic examination

    International Nuclear Information System (INIS)

    Lund, S.A.; Kristensen, W.D.

    1987-01-01

    A computerized system for the recording of flaw images by ultrasonic examination according to the pulse-echo method includes at least one ultrasonic probe which can be moved in steps over the surface of an object along a rectilinear scanning path. Digital signals containing information on the successive positions of the sound beam, on echo amplitudes, and on the lengths of sound paths to reflectors inside the object, are processed and used for the accumulated storage of circular patterns of echo amplitude data in a matrix memory associated with a sectional plane through the object. A video screen terminal controls the system and transforms the accumulated data into displays of sectional flaw images of greatly improved precision and sharpness of definition. A gradual transfer of filtered data from a number of parallel sectional planes to three further matrix memories associated with projection planes at right angles to each other permits presentation in three dimensions of equally improved projection flaw images. (author) 2 figs

  20. Computer automation of ultrasonic testing. [inspection of ultrasonic welding

    Science.gov (United States)

    Yee, B. G. W.; Kerlin, E. E.; Gardner, A. H.; Dunmyer, D.; Wells, T. G.; Robinson, A. R.; Kunselman, J. S.; Walker, T. C.

    1974-01-01

    Report describes a prototype computer-automated ultrasonic system developed for the inspection of weldments. This system can be operated in three modes: manual, automatic, and computer-controlled. In the computer-controlled mode, the system will automatically acquire, process, analyze, store, and display ultrasonic inspection data in real-time. Flaw size (in cross-section), location (depth), and type (porosity-like or crack-like) can be automatically discerned and displayed. The results and pertinent parameters are recorded.

  1. Reproducibility of ultrasonic testing

    International Nuclear Information System (INIS)

    Lecomte, J.-C.; Thomas, Andre; Launay, J.-P.; Martin, Pierre

    The reproducibility of amplitude quotations for both artificial and natural reflectors was studied for several combinations of instrument/search unit, all being of the same type. This study shows that in industrial inspection if a range of standardized equipment is used, a margin of error of about 6 decibels has to be taken into account (confidence interval of 95%). This margin is about 4 to 5 dB for natural or artificial defects located in the central area and about 6 to 7 dB for artificial defects located on the back surface. This lack of reproducibility seems to be attributable first to the search unit and then to the instrument and operator. These results were confirmed by analysis of calibration data obtained from 250 tests performed by 25 operators under shop conditions. The margin of error was higher than the 6 dB obtained in the study [fr

  2. Reproducibility of the results in ultrasonic testing

    International Nuclear Information System (INIS)

    Chalaye, M.; Launay, J.P.; Thomas, A.

    1980-12-01

    This memorandum reports on the conclusions of the tests carried out in order to evaluate the reproducibility of ultrasonic tests made on welded joints. FRAMATOME have started a study to assess the dispersion of results afforded by the test line and to characterize its behaviour. The tests covered sensors and ultrasonic generators said to be identical to each other (same commercial batch) [fr

  3. Ultrasonic monitoring system

    International Nuclear Information System (INIS)

    McLain, R.E.

    1975-01-01

    The ultrasonic monitoring system is used in LMFBR's, BWR's or PWR's. A remotely controlled, movable instrument carrier may be used which contains the piezo-electric transducer and is connected to the main control console by a transmission cable. An excitation pulse coming from a pulse generator is used to excite the transducer with a maximum of energy, independent of the length of the transmission line. Pulse width and pulse amplitude can be set without any direct interference into the transducer. For this purpose, a resistor whose impedance has been matched to that of the transmission line is connected to the input of the transmission line. Moreover, a capacitor for generation of the excitation pulse is coupled with the transmission line by means of a four-layer switching diode and is discharged. For termination of the excitation and the control pulses, respectively, another four-layer switching diode connected parallel to the capacitor quickly discharges the capacitor. The capacitor and the capacitance of the line constitute a voltage divider. In this way it is possible to change the length of the transmission line and, to safeguard the generation of a pulse of the desired amplitude, only vary the capacitance of the capacitor. (DG/RF) [de

  4. Ultrasonic tests on materials with protective coatings

    International Nuclear Information System (INIS)

    Whaley, H.L.

    1977-01-01

    Protective coatings are applied to some nuclear components such as reactor vessels to inhibit surface corrosion. Since in-service ultrasonic inspection is required for such components, a study was performed to determine whether the use of protective coatings can affect ultrasonic tests. Two 2 in. thick steel plates were uniformly machined, sandblasted, and used as bases for two types of protective coatings. The type and thickness of the coating and the presence of contamination, such as fingerprints or mild oxidation under the paint, were the independent variables associated with the coating. Tests were run to determine the effects of the protective coatings on ultrasonic tests conducted on the steel plates. Significant variations in ultrasonic test sensitivity occurred as a function of the type and thickness of protective coating, couplant (material that conducts the ultrasound from the transducer into the test part, normally water or some type of oil), transducer wear plate, and ultrasonic test frequency. Ultrasonic tests can be strongly affected by a protective coating on the component to be inspected. As compared to the test sensitivity for an uncoated reference sample, the sensitivity may be dramatically shifted up or down on the coated surface. In certain coating thickness ranges, the sensitivity can fluctuate widely with small changes in coating thickness. If a coating is chosen properly, however, components with protective coatings can be tested ultrasonically with valid results. These results are for the case of ultrasonic input on the coated surface. It is not expected that an ultrasonic test conducted from the front surface would be appreciably affected by a coating on the rear surface

  5. Standard practice for evaluating performance characteristics of ultrasonic Pulse-Echo testing instruments and systems without the use of electronic measurement instruments

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This practice describes procedures for evaluating the following performance characteristics of ultrasonic pulse-echo examination instruments and systems: Horizontal Limit and Linearity; Vertical Limit and Linearity; Resolution - Entry Surface and Far Surface; Sensitivity and Noise; Accuracy of Calibrated Gain Controls. Evaluation of these characteristics is intended to be used for comparing instruments and systems or, by periodic repetition, for detecting long-term changes in the characteristics of a given instrument or system that may be indicative of impending failure, and which, if beyond certain limits, will require corrective maintenance. Instrument characteristics measured in accordance with this practice are expressed in terms that relate to their potential usefulness for ultrasonic testing. Instrument characteristics expressed in purely electronic terms may be measured as described in E1324. 1.2 Ultrasonic examination systems using pulsed-wave trains and A-scan presentation (rf or video) may be ev...

  6. Ultrasonic testing of materials at level 2

    International Nuclear Information System (INIS)

    1988-06-01

    Ultrasonic inspection is a nondestructive method in which high frequency sound waves are introduced into the material being inspected. Ultrasonic testing has a superior penetrating power to radiography and can detect flaws deep in the test specimen (say up to about 6 to 7 meters of steel). It is quite sensitive to small flaws and allows the precise determination of the location and size of the flaws. Basic ultrasonic test methods such as the through transmission method and the resonance method, sensors and testing techniques are described. Pulse echo type flaw detectors and their applications for inspection of welds are surveyed. Ultrasonic standards, calibration of the equipment and evaluation methods are presented. Examples of practical applications in welding, casting and forging processes are given. Figs and tabs

  7. Nondestructive control of materials by ultrasonic tests

    International Nuclear Information System (INIS)

    Mercier, Noelle.

    1974-01-01

    A bibliographic study of nondestructive control methods of solids by ultrasonic tests, and of the ultrasonic emission of a transducer of finite dimension, is first presented. The principle of two of these methods is verified experimentally; they should permit the measurement of various physical parameters of solids, and the detection of local inhomogeneities. The first method calls upon the analysis of the ultrasonic signal (amplitude and phase), after it has crossed a constant thickness of a metallic specimen. This analysis reveals variations of attenuation and of ultrasonic propagation velocity within the specimen. A good spatial resolution is obtained by using 1mm-diameter probes. The second method leads, thanks to a test rig equipped with broad frequency band electrostatic transducers, to the knowledge of the attenuation law of the specimens as a function of frequency (present range: 5 to 15MHz); from this a classification of these specimens as regards their granulometry is deduced [fr

  8. 21 CFR 882.1925 - Ultrasonic scanner calibration test block.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic scanner calibration test block. 882... Ultrasonic scanner calibration test block. (a) Identification. An ultrasonic scanner calibration test block is a block of material with known properties used to calibrate ultrasonic scanning devices (e.g., the...

  9. Ultrasonic testing using time of flight diffraction technique (TOFD)

    International Nuclear Information System (INIS)

    Khurram Shahzad; Ahmad Mirza Safeer Ahmad; Muhammad Asif Khan

    2009-04-01

    This paper describes the ultrasonic testing using Time Flight Diffraction (TOFD) Technique for welded samples having different types and sizes of defects. TOFD is a computerized ultrasonic system, able to scan, store and evaluate indications in terms of location, through thickness and length in a more easy and convenient. Time of Flight Diffraction Technique (TOFD) is more fast and easy technique for ultrasonic testing as we can examine a weld i a single scan along the length of the weld with two probes known as D-scan. It shows the image of the complete weld with the defect information. The examinations were performed on carbon steel samples used for ultrasonic testing using 70 degree probes. The images for different type of defects were obtained. (author)

  10. Tone burst generator for a Non-Destructive Testing system based on ultrasonic guided waves

    OpenAIRE

    Jiménez Sánchez, Daniel

    2011-01-01

    English: This PFC provides a design of a tested and specific tone-burst generator circuit for a Non-Destructive System based on ultrasonid guided waves. This circuit includes a complementary protection circuit for the NDT system working in a pulse-echo configuration. In this paper, a brief state f art about different driving circuits employed in distinct NDE systems is presented. Castellano: El PFC proporciona un diseño electrónico específico y probado de un circuito excitador de salvas (C...

  11. Development of ultrasonic testing DSP inspection technique for class 1 system piping in nuclear power plants

    International Nuclear Information System (INIS)

    Ku, Kil Mo; Lee, Ik Whan; Jeong, Hyun Kyu; Park, Moon Ho; Heo, Hyung; Kong, Un Sik

    1996-01-01

    The purpose of this study is to explore the utilization of new constant-Q SSP in ultrasonic NDE. Various engineering problems are reviewed, and suggestions for implementation of the technique are provided. The filters of new Constant-Q SSP centered on frequency points, and normalized type of the filtered signals was not nromalized. The new Constant-Q SSP uses the frequency-dependant response of the interfering coherent noise produced by unresolvable scatters in the resolution range cell of a transducer. It is implemented by splitting the frequency spectrum of the received signal with gaussian bandpass filters. The principles of the SSP and the various optimization algorithms are recalled, and the conventional decomposition method for the SSP was presented

  12. Development of ultrasonic testing DSP inspection technique for class 1 system piping in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ku, Kil Mo; Lee, Ik Whan; Jeong, Hyun Kyu; Park, Moon Ho; Heo, Hyung; Kong, Un Sik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-01-01

    The purpose of this study is to explore the utilization of new constant-Q SSP in ultrasonic NDE. Various engineering problems are reviewed, and suggestions for implementation of the technique are provided. The filters of new Constant-Q SSP centered on frequency points, and normalized type of the filtered signals was not nromalized. The new Constant-Q SSP uses the frequency-dependant response of the interfering coherent noise produced by unresolvable scatters in the resolution range cell of a transducer. It is implemented by splitting the frequency spectrum of the received signal with gaussian bandpass filters. The principles of the SSP and the various optimization algorithms are recalled, and the conventional decomposition method for the SSP was presented.

  13. The Design Of The Ultrasonic Nondestructive Testing System Based On The EMAT

    OpenAIRE

    Cheng Huan Xin; Meng Xiang Yong; Li Jing; Cheng Li

    2016-01-01

    This paper introduces a kind of based on the electromagnetic acoustic transducer (EMAT) metal pipeline detection system, fusion of two dimensional orientation, shape unique technological innovation, implementation of various metal pipe wall corrosion situation of rapid, accurate, fully automated non-destructive testing.In the aspect of hardware design, single-chip microcomputer control was achieved by C language programming the launch of the pulse signal. Pulse signal was sent to launch circu...

  14. The SAFT-UT (synthetic aperture focusing technique for ultrasonic testing) real-time inspection system: Operational principles and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Hall, T. E.; Reid, L. D.; Doctor, S. R.

    1988-06-01

    This document provides a technical description of the real-time imaging system developed for rapid flaw detection and characterization utilizing the synthetic aperture focusing technique for ultrasonic testing (SAFT-UT). The complete fieldable system has been designed to perform inservice inspection of light-water reactor components. Software was written on a DEC LSI 11/23 computer system to control data collection. The unprocessed data is transferred to a VAX 11/730 host computer to perform data processing and image display tasks. A parallel architecture peripheral to the host computer, referred to as the Real-Time SAFT Processor, rapidly performs the SAFT processing function. From the host's point of view, this device operates on the SAFT data in such a way that one may consider it to be a specialized or SAFT array processor. A guide to SAFT-UT theory and conventions is included, along with a detailed description of the operation of the software, how to install the software, and a detailed hardware description.

  15. Performance demonstration experience for reactor pressure vessel shell ultrasonic testing

    International Nuclear Information System (INIS)

    Zado, V.

    1998-01-01

    The most ultrasonic testing techniques used by many vendors for pressurized water reactor (PWR) examinations were based on American Society of Mechanical Engineers 'Boiler and Pressurized Vessel Code' (ASME B and PV Code) Sections XI and V. The Addenda of ASME B and PV Code Section XI, Edition 1989 introduced Appendix VIII - 'Performance Demonstration for Ultrasonic Examination Systems'. In an effort to increase confidence in performance of ultrasonic testing of the operating nuclear power plants in United States, the ultrasonic testing performance demonstration examination of reactor vessel welds is performed in accordance with Performance Demonstration Initiative (PDI) program which is based on ASME Code Section XI, Appendix VIII requirements. This article provides information regarding extensive qualification preparation works performed prior EPRI guided performance demonstration exam of reactor vessel shell welds accomplished in January 1997 for the scope of Appendix VIII, Supplements IV and VI. Additionally, an overview of the procedures based on requirements of ASME Code Section XI and V in comparison to procedure prepared for Appendix VIII examination is given and discussed. The samples of ultrasonic signals obtained from artificial flaws implanted in vessel material are presented and results of ultrasonic testing are compared to actual flaw sizes. (author)

  16. Microcomputer-controlled ultrasonic data acquisition system

    International Nuclear Information System (INIS)

    Simpson, W.A. Jr.

    1978-11-01

    The large volume of ultrasonic data generated by computer-aided test procedures has necessitated the development of a mobile, high-speed data acquisition and storage system. This approach offers the decided advantage of on-site data collection and remote data processing. It also utilizes standard, commercially available ultrasonic instrumentation. This system is controlled by an Intel 8080A microprocessor. The MCS80-SDK microcomputer board was chosen, and magnetic tape is used as the storage medium. A detailed description is provided of both the hardware and software developed to interface the magnetic tape storage subsystem to Biomation 8100 and Biomation 805 waveform recorders. A boxcar integrator acquisition system is also described for use when signal averaging becomes necessary. Both assembly language and machine language listings are provided for the software

  17. The digital ultrasonic test unit for automatic equipment

    International Nuclear Information System (INIS)

    Hiraoka, T.; Matsuyama, H.

    1976-01-01

    The operations and features of the ultrasonic test unit used and the digital data processing techniques employed are described. This unit is used for a few hundred multi-channel automatic ultrasonic test equipment

  18. Ultrasonic system for hyperthermia

    International Nuclear Information System (INIS)

    Seppi, E.J.; Shapiro, E.G.; Zitelli, L.T.

    1985-01-01

    A system using ultrasound has been developed for hyperthermia application. It consists of a water bed containing a large ultrasound transducer array for heat application, an annular imaging transducer for alignment and treatment monitoring, and a 30-channel monitoring system for invasive temperature measurements. The heat applicator array contains 30 transducers mounted in a hexagonal configuration. Four subsets of transducers in the array can be remotely mechanically driven in such a way as to allow control of the distribution and diameter of ultrasound power at the effective focus of the array. The array can be remotely translated in three dimensions and can be rotated about its axis of symmetry. These motions allow positioning of the focal area of the array at the desired location. Each transducer of the array is powered by an individual amplifier and can be controlled in intensity and phase. The system can operate at variable ultrasound frequencies. An imaging transducer located at the center of the heat applicator array is used to collect data for ultrasound imaging and other purposes. Ultrasound images are displayed along with marks indicating the location of the heat applicator focal region for setup and for monitoring during treatment. The entire system is under computer control. This allows for operator ease in the control of the numerous parameters involved in the operation of the system

  19. Mid-IR laser ultrasonic testing for fiber reinforced plastics

    Science.gov (United States)

    Kusano, Masahiro; Hatano, Hideki; Oguchi, Kanae; Yamawaki, Hisashi; Watanabe, Makoto; Enoki, Manabu

    2018-04-01

    Ultrasonic testing is the most common method to detect defects in materials and evaluate their sizes and locations. Since piezo-electric transducers are manually handled from point to point, it takes more costs for huge products such as airplanes. Laser ultrasonic testing (LUT) is a breakthrough technique. A pulsed laser generates ultrasonic waves on a material surface due to thermoelastic effect or ablation. The ultrasonic waves can be detected by another laser with an interferometer. Thus, LUT can realize instantaneous inspection without contacting a sample. A pulse laser with around 3.2 μm wavelength (in the mid-IR range) is more suitable to generate ultrasonic waves for fiber reinforced plastics (FRPs) because the light is well absorbed by the polymeric matrix. On the other hand, such a laser is not available in the market. In order to emit the mid-IR laser pulse, we came up with the application of an optical parametric oscillator and developed an efficient wavelength conversion device by pumping a compact Nd:YAG solid-state laser. Our mid-IR LUT system is most suitable for inspection of FRPs. The signal-to-noise ratio of ultrasonic waves generated by the mid-IR laser is higher than that by the Nd:YAG laser. The purpose of the present study is to evaluate the performance of the mid-IR LUT system in reflection mode. We investigated the effects of the material properties and the laser properties on the generated ultrasonic waves. In addition, C-scan images by the system were also presented.

  20. STADUS - Ultrasonic data acquisition and processing system

    International Nuclear Information System (INIS)

    Saglio, Robert; Birac, A.M.; Frappier, J.C.

    1982-05-01

    The CEA (Commissariat a l'Energie Atomique) has developed a system for the acquisition and analysis of data recorded during ultrasonic testing. Initially this system was designed and built for the needs of in-service inspection of PWR type power reactors. It is in far wider use today for miscellaneous automatic ultrasonic inspection procedures. This system records, in digital form, the ultrasonic data supplied by the transducers (maximum 16 simultaneous channels), and the geometric coordinates defining the position of the inspection tool. Based on these data, which are recorded on floppy disk, this system helps to display data in the form of A SCAN, B SCAN and C SCAN images. In addition, processing programs of data transfer from the STADUS floppy disks have been developed and inserted on computers more powerful than the one used in the STADUS system. These programs serve to obtain different fault charts on an adjustable scale, as well as listings concerning the defect positions and dimensions [fr

  1. Signal Compression in Automatic Ultrasonic testing of Rails

    Directory of Open Access Journals (Sweden)

    Tomasz Ciszewski

    2007-01-01

    Full Text Available Full recording of the most important information carried by the ultrasonic signals allows realizing statistical analysis of measurement data. Statistical analysis of the results gathered during automatic ultrasonic tests gives data which lead, together with use of features of measuring method, differential lossy coding and traditional method of lossless data compression (Huffman’s coding, dictionary coding, to a comprehensive, efficient data compression algorithm. The subject of the article is to present the algorithm and the benefits got by using it in comparison to alternative compression methods. Storage of large amount  of data allows to create an electronic catalogue of ultrasonic defects. If it is created, the future qualification system training in the new solutions of the automat for test in rails will be possible.

  2. Ultrasonic flow-meter test in sodium

    International Nuclear Information System (INIS)

    Ishii, Y.; Uno, O.; Kamei, M.

    1978-01-01

    As a part of the R and D programme for the prototype fast breeder reactor MONJU, an ultrasonic flow-meter (USFM) test is being carried out in sodium in the O-Arai Engineering Center of PNC. Prior to the present test, an in-water test was done at the manufacturer's as a preliminary investigation. The results reported here are the results up to the present. Calibration tests using the actual fluid were conducted on a 12-inch ultrasonic flow-meter with guide rods fabricated for sodium flow measurement. The test conditions in sodium were a temperature of 200 approximately 400 0 C and flow-rates of 0 approximately 6m/s. The main results are: (1) The linearity of output signal was good and accuracy was within 1%; (2) The alternating type of the USFM was much better than the fixed type in temperature change; (3) 2MHz of transducer frequency was better than 3MHz in sodium; (4) The S/N ratio of the ultrasonic signal and the length/diameter effect in a wide range in sodium surpassed the in-water test. (author)

  3. Optimization of ultrasonic tube testing with concentric transducers

    International Nuclear Information System (INIS)

    Dufayet, J.-P.; Gambin, Raymond.

    1978-01-01

    In order to test tubes by ultrasonics without rotation, concentric transducers can be used with conical mirrors to detect transverse defects and with helical shaped mirrors to detect longitudinal defects. Further optimization studies have been carried out in order to bring the system highly operational. The respective advantages brought by the rotating screen or by our especially designed sectorial transducers are discussed [fr

  4. Ultrasonic testing of austenitic stainless steel welds

    International Nuclear Information System (INIS)

    Nishino, Shunichi; Hida, Yoshio; Yamamoto, Michio; Ando, Tomozumi; Shirai, Tasuku.

    1982-05-01

    Ultrasonic testing of austenitic stainless steel welds has been considered difficult because of the high noise level and remarkable attenuation of ultrasonic waves. To improve flaw detectability in this kind of steel, various inspection techniques have been studied. A series of tests indicated: (1) The longitudinal angle beam transducers newly developed during this study can detect 4.8 mm dia. side drilled holes in dissimilar metal welds (refraction angle: 55 0 from SUS side, 45 0 from CS side) and in cast stainless steel welds (refraction angle: 45 0 , inspection frequency: 1 MHz). (2) Cracks more than 5% t in depth in the heat affected zones of fine-grain stainless steel pipe welds can be detected by the 45 0 shear wave angle beam method (inspection frequency: 2 MHz). (3) The pattern recognition method using frequency analysis technology was presumed useful for discriminating crack signals from spurious echoes. (author)

  5. Development of Hardware and Software for Automated Ultrasonic Testing

    International Nuclear Information System (INIS)

    Choi, Sung Nam; Lee, Hee Jong; Yang, Seung Ok

    2012-01-01

    Nondestructive testing (NDT) for the construction and operating of NPPs plays an important role in confirming the integrity of the NPPs. Especially, Automated ultrasonic testing (AUT) is one of the primary nondestructive examination methods for in-service inspection of the welding parts in major components in NPPs. AUT is a reliable nondestructive testing because the data of AUT are saved and reviewed with other examiners. Korea Hydro and Nuclear Power-Central Research Institute (KHNP-CRI) has developed an automated ultrasonic testing (AUT) system based on a high speed pulser-receiver. In combination with the designed software and hardware architecture, this new system permits user configurations for a wide range of user-specific applications through fully automated inspections using compact portable systems with up to eight channels. This paper gives an overview of hardware (H/W) and software (S/W) for the AUT system to inspect welds in NPPs

  6. Updated Results of Ultrasonic Transducer Irradiation Test

    Energy Technology Data Exchange (ETDEWEB)

    Daw, Joshua; Palmer, Joe [Idaho National Laboratory, P.O. Box 1625, MS 4112, Idaho Falls, ID, 38415-3840 (United States); Ramuhalli, Pradeep; Keller, Paul; Montgomery, Robert [Pacific Northwest National Laboratory, 902 Battelle Blvd. Richland, WA, 99354 (United States); Chien, Hual-Te [Argonne National Laboratory, 9700 S. Cass Avenue Argonne, IL, 60439 (United States); Tittmann, Bernhard; Reinhardt, Brian [Pennsylvania State University, 212 Earth and Engr. Sciences Building, University Park, PA, 16802 (United States); Kohse, Gordon [Massachusetts Institute of Technology, 77 Massachusetts Ave. Cambridge, MA 02139 (United States); Rempe, Joy [Rempe and Associates, LLC, 360 Stillwater, Idaho Falls, ID 83404 (United States); Villard, J.F. [Commissariat a l' energie atomique et aux energies alternatives, Centre d' etudes de Cadarache, 13108 Saint-Paul-lez-Durance (France)

    2015-07-01

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 10{sup 21} n/cm{sup 2}. A multi-National Laboratory collaboration funded by the Nuclear Energy Enabling Technologies Advanced Sensors and Instrumentation (NEET-ASI) program also provided initial support for this effort. This irradiation, which started in February 2014, is an instrumented lead test and real-time transducer performance data are collected along with temperature and neutron and gamma flux data. The irradiation is ongoing and will continue to approximately mid-2015. To date, very encouraging results have been attained as several transducers continue to operate under irradiation. (authors)

  7. New generation of digitized electronics in ultrasonic testing

    International Nuclear Information System (INIS)

    Rauschev, R.

    1985-01-01

    A fully digitized system of ultrasonic test electronics is described. Directly behind the transducer itself the instrumentation is operating completely digitally in order to obtain both higher accuracy and reproducibility and easier handling by the operator. Parameters can be stored and recalled for testing under equal conditions at a later date. As an example the application for high quality nuclear tube testing is explained in detail

  8. C-Scan Performance Test of Under-Sodium ultrasonic Waveguide Sensor in Sodium

    International Nuclear Information System (INIS)

    Joo, Young Sang; Bae, Jin Ho; Kim, Jong Bum

    2011-01-01

    Reactor core and in-vessel structures of a sodium-cooled fast (SFR) are submerged in opaque liquid sodium in the reactor vessel. The ultrasonic inspection techniques should be applied for observing the in-vessel structures under hot liquid sodium. Ultrasonic sensors such as immersion sensors and rod-type waveguide sensors have developed in order to apply under-sodium viewing of the in-vessel structures of SFR. Recently the novel plate-type ultrasonic waveguide sensor has been developed for the versatile application of under-sodium viewing in SFR. In previous studies, the ultrasonic waveguide sensor module was designed and manufactured, and the feasibility study of the ultrasonic waveguide sensor was performed. To improve the performance of the ultrasonic waveguide sensor in the under-sodium application, a new concept of ultrasonic waveguide sensors with a Be coated SS304 plate is suggested for the effective generation of a leaky wave in liquid sodium and the non-dispersive propagation of A 0 -mode Lamb wave in an ultrasonic waveguide sensor. In this study, the C-scan performance of the under-sodium ultrasonic waveguide sensor in sodium has been investigated by the experimental test in sodium. The under-sodium ultrasonic waveguide sensor and the sodium test facility with a glove box system and a sodium tank are designed and manufactured to carry out the performance test of under-sodium ultrasonic waveguide sensor in sodium environment condition

  9. Contact-free ultrasonic testing: applications to metrology and NDT

    International Nuclear Information System (INIS)

    Le Brun, A.

    1988-01-01

    In some cases classical ultrasonic testing is impossible because of adverse environment (high temperature, ionizing radiations, etc). Ultrasonic waves are created by laser impact and detected by electromagneto-acoustic transducers or laser interferometry. Association of ultrasonics generation by photoacoustic effect and reception by heterodyne interferometer is promising for the future [fr

  10. Ultrasonic Testing of NIF Amplifier FAU Top Plates

    International Nuclear Information System (INIS)

    Chinn, D.J.; Huber, R.D.; Haskins, J.J.; Rodriguez, J.A.; Souza, P.R.; Le, T.V.

    2002-01-01

    A key component in the National Ignition Facility (NIF) laser optic system is the amplifier frame assembly unit (FAU). The cast aluminum top plate that supports the FAU is required to withstand loads that would occur during an earthquake with a recurrence period of 1000 years. The stringent seismic requirements placed on the FAU top plate induced a study of the cast aluminum material used in the top plate. Ultrasonic testing was used to aid in characterizing the aluminum material used in the plates. This report documents the work performed using contact ultrasonic testing to characterize the FAU top plate material. The ultrasonic work reported here had 3 objectives: (1) inspect the plate material before cyclic testing conducted at the Pacific Earthquake Engineering Research Center (PEER); (2) determine the overall quality of individual plates; and (3) detect large defects in critical areas of individual plates. Section III, ''Pre-cyclic test inspection'', describes work performed in support of Objective 1. Section IV, ''Ultrasonic field measurements'', describes work performed in support of Objectives 2 and 3

  11. Research of the ultrasonic testing parts reconditioned by welding

    Directory of Open Access Journals (Sweden)

    C. Petriceanu

    2016-07-01

    Full Text Available The paper presents the results obtained following the nondestructive ultrasonic testing of crankpin shaft of a crankshaft that were reconditioned by welding. After the ultrasonic testing, the reconditioned samples were cut and subjected to visual testing and microstructure examination. When the results obtained following the nondestructive tests were analyzed, it was observed that the ultrasonic nondestructive testing method is an efficient way to determine the conformity of the areas that were reconditioned by welding.

  12. Mechanisation of ultrasonic testing in nuclear power plants

    International Nuclear Information System (INIS)

    Seifert, W.

    1979-01-01

    Mechanical ultrasonic testing devices should meet the following requirements: Remote-controlled or automatic guidance of the US test systems at the test site according to given test parameters; exact positioning of the test system at the test site; high start-up accuracy and reproducibility; access to test regions that are hardly accessible or inaccessible for manual inspection; reduction of the radiation exposure of the operating personnel, and short assembling and testing time. The manipulators developed according to these requirements permit meandering test courses of the US test system on the pressure vessel surface or circular or semicircular courses around the nozzles or pipes in order to test welds and pipe joints. Every movement of the test system is taken up by a transmitting apparatus. (orig./HP) [de

  13. A study on the development of a real-time intelligent system for ultrasonic flaw classification

    International Nuclear Information System (INIS)

    Song, Sung Jin; Kim, Hak Joon; Lee, Hyun; Lee, Seung Seok

    1998-01-01

    In spite of significant progress in research on ultrasonic pattern recognition it is not widely used in many practical field inspection in weldments. For the convenience of field application of this methodology, following four key issues have to be suitably addressed; 1) a software where the ultrasonic pattern recognition algorithm is efficiently implemented, 2) a real-time ultrasonic testing system which can capture the digitized ultrasonic flaw signal so the pattern recognition software can be applied in a real-time fashion, 3) database of ultrasonic flaw signals in weldments, which is served as a foundation of the ultrasonic pattern recognition algorithm, and finally, 4) ultrasonic features which should be invariant to operational variables of the ultrasonic test system. Presented here is the recent progress in the development of a real-time ultrasonic flaw classification by the novel combination of followings; an intelligent software for ultrasonic flaw classification in weldments, a computer-base real-time ultrasonic nondestructive evaluation system, database of ultrasonic flaw signals, and invariant ultrasonic features called 'normalized features.'

  14. A pressure core ultrasonic test system for on-board analysis of gas hydrate-bearing sediments under in situ pressures.

    Science.gov (United States)

    Yang, Lei; Zhou, Weihua; Xue, Kaihua; Wei, Rupeng; Ling, Zheng

    2018-05-01

    The enormous potential as an alternative energy resource has made natural gas hydrates a material of intense research interest. Their exploration and sample characterization require a quick and effective analysis of the hydrate-bearing cores recovered under in situ pressures. Here a novel Pressure Core Ultrasonic Test System (PCUTS) for on-board analysis of sediment cores containing gas hydrates at in situ pressures is presented. The PCUTS is designed to be compatible with an on-board pressure core transfer device and a long gravity-piston pressure-retained corer. It provides several advantages over laboratory core analysis including quick and non-destructive detection, in situ and successive acoustic property acquisition, and remission of sample storage and transportation. The design of the unique assembly units to ensure the in situ detection is demonstrated, involving the U-type protecting jackets, transducer precession device, and pressure stabilization system. The in situ P-wave velocity measurements make the detection of gas hydrate existence in the sediments possible on-board. Performance tests have verified the feasibility and sensitivity of the ultrasonic test unit, showing the dependence of P-wave velocity on gas hydrate saturation. The PCUTS has been successfully applied for analysis of natural samples containing gas hydrates recovered from the South China Sea. It is indicated that on-board P-wave measurements could provide a quick and effective understanding of the hydrate occurrence in natural samples, which can assist further resource exploration, assessment, and subsequent detailed core analysis.

  15. A pressure core ultrasonic test system for on-board analysis of gas hydrate-bearing sediments under in situ pressures

    Science.gov (United States)

    Yang, Lei; Zhou, Weihua; Xue, Kaihua; Wei, Rupeng; Ling, Zheng

    2018-05-01

    The enormous potential as an alternative energy resource has made natural gas hydrates a material of intense research interest. Their exploration and sample characterization require a quick and effective analysis of the hydrate-bearing cores recovered under in situ pressures. Here a novel Pressure Core Ultrasonic Test System (PCUTS) for on-board analysis of sediment cores containing gas hydrates at in situ pressures is presented. The PCUTS is designed to be compatible with an on-board pressure core transfer device and a long gravity-piston pressure-retained corer. It provides several advantages over laboratory core analysis including quick and non-destructive detection, in situ and successive acoustic property acquisition, and remission of sample storage and transportation. The design of the unique assembly units to ensure the in situ detection is demonstrated, involving the U-type protecting jackets, transducer precession device, and pressure stabilization system. The in situ P-wave velocity measurements make the detection of gas hydrate existence in the sediments possible on-board. Performance tests have verified the feasibility and sensitivity of the ultrasonic test unit, showing the dependence of P-wave velocity on gas hydrate saturation. The PCUTS has been successfully applied for analysis of natural samples containing gas hydrates recovered from the South China Sea. It is indicated that on-board P-wave measurements could provide a quick and effective understanding of the hydrate occurrence in natural samples, which can assist further resource exploration, assessment, and subsequent detailed core analysis.

  16. Ultrasonic system for NDE of fruits and vegetables

    International Nuclear Information System (INIS)

    Jhang, Kyung Young; Jung, Gyoo Hong; Kim, Man Soo

    1999-01-01

    The nondestructive internal quality evaluation of agricultural products has been strongly required from the needs for individual inspection. In recent, ultrasonic wave has been considered as a solution for this problem. This study is to construct the ultrasonic inspection system for fruits and vegetables on the basis of pre-knowledge that general frequency band(higher than 100 kHz) ultrasonic waves do not transmitted well due to severe attenuation. Our system includes ultrasonic pulser and receiver, transducers(50 kHz), acoustic hem, pneumatic controller and signal processing units (PC). In order to confirm the performance, several samples (apple, pear, persimmon, kiwi fruit, potato and radish) were tested, and the results showed sufficient possibility to apply to NDE of fruits and vegetables.

  17. Stand for visual ultrasonic testing of spent fuel

    International Nuclear Information System (INIS)

    Czajkowski, W.; Borek-Kruszewska, E.

    2001-01-01

    A stand for visual and ultrasonic testing of spent fuel, constructed under Strategic Governmental Programme for management of spent fuel and radioactive waste, is presented in the paper. The stand, named 'STEND-1', built up at the Institute of Atomic Energy in Swjerk, is appointed for underwater visual testing of spent fuel elements type MR6 and WWR by means of TV-CCD camera and image processing system and for ultrasonic scanning of external surface of these elements by means of video scan immersion transducer and straight UHT connector. 'STEND-1' is built using flexible in use, high-tensile, anodized aluminum profiles. All the profiles feature longitudinal grooves to accommodate connecting elements and for the attachment of accessories at any position. They are also characterised by straight-through core bores for use with standard fastening elements and to accommodate accessory components. Stand, equipped with automatic control and processing system based on personal computer, may be manually or automatically controlled. Control system of movements of the camera in the vertical axis and rotational movement of spent fuel element permits to fix chosen location of fuel element with accuracy better than 0.1 mm. High resolution of ultrasonic method allows to record damages of outer surface of order 0.1 mm. The results of visual testing of spent fuel are recorded on video tape and then may be stored on the hard disc of the personal computer and presented in shape of photo or picture. Only selected damage surfaces of spent fuel elements are tested by means of ultrasonic scanning. All possibilities of the stand and results of visual testing of spent fuel type WWR are presented in the paper. (author)

  18. Improvement of Ultrasonic Distance Measuring System

    Directory of Open Access Journals (Sweden)

    Jiang Yu

    2018-01-01

    Full Text Available This paper mainly introduces a kind of ultrasonic distance measuring system with AT89C51 single chip as the core component. The paper expounds the principle of ultrasonic sensor and ultrasonic ranging, hardware circuit and software program, and the results of experiment and analysis.The hardware circuit based on SCM, the software design adopts the advanced microcontroller programming language.The amplitude of the received signal and the time of ultrasonic propagation are regulated by closed loop control. [1,2]The double closed loop control technology for amplitude and time improves the measuring accuracy of the instrument. The experimental results show that greatly improves the measurement accuracy of the system.

  19. Computer simulation of ultrasonic testing for aerospace vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Yamawaki, H [National Institute for Materials Science, 1-2-1, Sengen, 305-0047 Tsukuba (Japan); Moriya, S; Masuoka, T [Japan Aerospace Exploration Agency, 1 Koganesawa, Kimigawa, 981-1525 Kakuda (Japan); Takatsubo, J, E-mail: yamawaki.hisashi@nims.go.jp [Advanced Industrial Science and Technology, AIST Tsukuba Central 2, 1-1-1 Umezono, 305-8568 Tsukuba (Japan)

    2011-01-01

    Non-destructive testing techniques are developed to secure reliability of aerospace vehicles used repetitively. In the case of cracks caused by thermal stress on walls in combustion chambers of liquid-fuel rockets, it is examined by ultrasonic waves visualization technique developed in AIST. The technique is composed with non-contact ultrasonic generation by pulsed-laser scanning, piezoelectric transducer for the ultrasonic detection, and image reconstruction processing. It enables detection of defects by visualization of ultrasonic waves scattered by the defects. In NIMS, the condition of the detection by the visualization is investigated using computer simulation for ultrasonic propagation that has capability of fast 3-D calculation. The simulation technique is based on finite-difference method and two-step elastic wave equations. It is reported about the investigation by the calculation, and shows availability of the simulation for the ultrasonic testing technique of the wall cracks.

  20. Methodic recommendations on ultrasonic testing of pipeline austenitic butt joints

    International Nuclear Information System (INIS)

    Grebennik, V.S.; Lantukh, V.M.; Tajts, M.Z.; Ermolov, I.N.; Volkov, A.S.; Vyatskov, I.A.; Kesler, N.A.; Shchedrin, I.F.

    1989-01-01

    Recommendations for the application of ultrasonic testing of austenitic welded joints of the Du 500 pipelines with the walls 32-34 mm thick made of steel Kh18N10T are developed. The optimal values of the main parameters of ultrasonic testing are determined experimentally. Principles of calculation of the optimal parameters are considered. 1 ref.; 4 figs

  1. Real-time ultrasonic weld evaluation system

    Science.gov (United States)

    Katragadda, Gopichand; Nair, Satish; Liu, Harry; Brown, Lawrence M.

    1996-11-01

    Ultrasonic testing techniques are currently used as an alternative to radiography for detecting, classifying,and sizing weld defects, and for evaluating weld quality. Typically, ultrasonic weld inspections are performed manually, which require significant operator expertise and time. Thus, in recent years, the emphasis is to develop automated methods to aid or replace operators in critical weld inspections where inspection time, reliability, and operator safety are major issues. During this period, significant advances wee made in the areas of weld defect classification and sizing. Very few of these methods, however have found their way into the market, largely due to the lack of an integrated approach enabling real-time implementation. Also, not much research effort was directed in improving weld acceptance criteria. This paper presents an integrated system utilizing state-of-the-art techniques for a complete automation of the weld inspection procedure. The modules discussed include transducer tracking, classification, sizing, and weld acceptance criteria. Transducer tracking was studied by experimentally evaluating sonic and optical position tracking techniques. Details for this evaluation are presented. Classification is obtained using a multi-layer perceptron. Results from different feature extraction schemes, including a new method based on a combination of time and frequency-domain signal representations are given. Algorithms developed to automate defect registration and sizing are discussed. A fuzzy-logic acceptance criteria for weld acceptance is presented describing how this scheme provides improved robustness compared to the traditional flow-diagram standards.

  2. Evaluation of computer-based ultrasonic inservice inspection systems

    International Nuclear Information System (INIS)

    Harris, R.V. Jr.; Angel, L.J.; Doctor, S.R.; Park, W.R.; Schuster, G.J.; Taylor, T.T.

    1994-03-01

    This report presents the principles, practices, terminology, and technology of computer-based ultrasonic testing for inservice inspection (UT/ISI) of nuclear power plants, with extensive use of drawings, diagrams, and LTT images. The presentation is technical but assumes limited specific knowledge of ultrasonics or computers. The report is divided into 9 sections covering conventional LTT, computer-based LTT, and evaluation methodology. Conventional LTT topics include coordinate axes, scanning, instrument operation, RF and video signals, and A-, B-, and C-scans. Computer-based topics include sampling, digitization, signal analysis, image presentation, SAFI, ultrasonic holography, transducer arrays, and data interpretation. An evaluation methodology for computer-based LTT/ISI systems is presented, including questions, detailed procedures, and test block designs. Brief evaluations of several computer-based LTT/ISI systems are given; supplementary volumes will provide detailed evaluations of selected systems

  3. Internal ultrasonic testing of steam generator tubes

    International Nuclear Information System (INIS)

    Furlan, J.; Soleille, G.; Chalaye, H.

    1983-01-01

    The ''in situ'' inspection of steam generator tubes uses generally Foucault currents before starting and along its life. This inspection aims at searching cracks and corrosion defects. The Foucault current method is quite badly adapted to ''closed crack'' detection, for it doesn't introduce neither resistivity or magnetic permeability variation, or lack of matter. More, it is sensible to the magnetic properties of the tube itself and to its environment (tubular or support plates). It is why, this first systematic inspection has to be completed by an ultrasonic one allowing to bring new elements in the uncertain cases. A device with an internal probe has been developed. It ''lights'' the tube wall with the aid of a transducer of which beam reflects on a mirror. Operating conditions are the same as for Foucault current testing, that is to say the probe moves inside the tube without rotation of the device (bent parts are excluded) [fr

  4. System Performance Testing of the Pulse-Echo Ultrasonic Instrument for Critical Velocity Determination during Hanford Tank Waste Transfer Operations - 13584

    Energy Technology Data Exchange (ETDEWEB)

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy W.J.; Hopkins, Derek F. [Pacific Northwest National Laboratory, Richland, Washington 99354 (United States); Thien, Michael G.; Kelly, Steven E.; Wooley, Theodore A. [Washington River Protection Solutions, Richland, Washington 99354 (United States)

    2013-07-01

    The delivery of Hanford double-shell tank waste to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is governed by specific Waste Acceptance Criteria that are identified in ICD 19 - Interface Control Document for Waste Feed. Waste must be certified as acceptable before it can be delivered to the WTP. The fluid transfer velocity at which solid particulate deposition occurs in waste slurry transport piping (critical velocity) is a key waste acceptance parameter that must be accurately characterized to determine if the waste is acceptable for transfer to the WTP. Washington River Protection Solutions and the Pacific Northwest National Laboratory have been evaluating the ultrasonic PulseEcho instrument since 2010 for its ability to detect particle settling and determine critical velocity in a horizontal slurry transport pipeline for slurries containing particles with a mean particle diameter of =14 micrometers (μm). In 2012 the PulseEcho instrument was further evaluated under WRPS' System Performance test campaign to identify critical velocities for slurries that are expected to be encountered during Hanford tank waste retrieval operations or bounding for tank waste feed. This three-year evaluation has demonstrated the ability of the ultrasonic PulseEcho instrument to detect the onset of critical velocity for a broad range of physical and rheological slurry properties that are likely encountered during the waste feed transfer operations between the Hanford tank farms and the WTP. (authors)

  5. Requirements to be met by recurrent ultrasonic inspection of reactor components using collimator-free testing systems

    International Nuclear Information System (INIS)

    Csapo, G.; Just, T.

    1997-01-01

    The paper is intended as an initial contribution to establishing concrete definitions and requirements for digital, collimator-free US testing systems. The objective is to warrant the quality of information derived and reproducibility of test results of recurrent inspections of nuclear components, as well as to achieve a reduction of testing and evaluation time. (orig./CB) [de

  6. Advanced ultrasonic field system: a status report

    International Nuclear Information System (INIS)

    Mikesell, C.R.; Beller, L.S.

    1984-02-01

    An advanced ultrasonic system was developed to obtain highly reproducible inspection data and to overcome certain limitations encountered with the manual scanning method. Experience from field operations from 1976 through 1980 is discussed. The scope includes a description of the computer controlled system, personnel training, inservice inspections, data analysis, and current upgrading of the system

  7. Ultrasonic Ranging System With Increased Resolution

    Science.gov (United States)

    Meyer, William E.; Johnson, William G.

    1987-01-01

    Master-oscillator frequency increased. Ultrasonic range-measuring system with 0.1-in. resolution provides continuous digital display of four distance readings, each updated four times per second. Four rangefinder modules in system are modified versions of rangefinder used for automatic focusing in commercial series of cameras. Ultrasonic pulses emitted by system innocuous to both people and equipment. Provides economical solutions to such distance-measurement problems as posed by boats approaching docks, truck backing toward loading platform, runway-clearance readout for tail of airplane with high angle attack, or burglar alarm.

  8. Ultrasonic testing device having an adjustable water column

    Science.gov (United States)

    Roach, Dennis P.; Neidigk, Stephen O.; Rackow, Kirk A.; Duvall, Randy L.

    2015-09-01

    An ultrasonic testing device having a variable fluid column height is disclosed. An operator is able to adjust the fluid column height in real time during an inspection to to produce optimum ultrasonic focus and separate extraneous, unwanted UT signals from those stemming from the area of interest.

  9. Development of phased-array ultrasonic testing probe

    International Nuclear Information System (INIS)

    Kawanami, Seiichi; Kurokawa, Masaaki; Taniguchi, Masaru; Tada, Yoshihisa

    2001-01-01

    Phased-array ultrasonic testing was developed for nondestructive evaluation of power plants. Phased-array UT scans and focuses an ultrasonic beam to inspect areas difficult to inspect by conventional UT. We developed a highly sensitive piezoelectric composite, and designed optimized phased-array UT probes. We are applying our phased-array UT to different areas of power plants. (author)

  10. Laser-Ultrasonic Testing and its Applications to Nuclear Reactor Internals

    Science.gov (United States)

    Ochiai, M.; Miura, T.; Yamamoto, S.

    2008-02-01

    A new nondestructive testing technique for surface-breaking microcracks in nuclear reactor components based on laser-ultrasonics is developed. Surface acoustic wave generated by Q-switched Nd:YAG laser and detected by frequency-stabilized long pulse laser coupled with confocal Fabry-Perot interferometer is used to detect and size the cracks. A frequency-domain signal processing is developed to realize accurate sizing capability. The laser-ultrasonic testing allows the detection of surface-breaking microcrack having a depth of less than 0.1 mm, and the measurement of their depth with an accuracy of 0.2 mm when the depth exceeds 0.5 mm including stress corrosion cracking. The laser-ultrasonic testing system combined with laser peening system, which is another laser-based maintenance technology to improve surface stress, for inner surface of small diameter tube is developed. The generation laser in the laser-ultrasonic testing system can be identical to the laser source of the laser peening. As an example operation of the system, the system firstly works as the laser-ultrasonic testing mode and tests the inner surface of the tube. If no cracks are detected, the system then changes its work mode to the laser peening and improves surface stress to prevent crack initiation. The first nuclear industrial application of the laser-ultrasonic testing system combined with the laser peening was completed in Japanese nuclear power plant in December 2004.

  11. Double-shell tank integrity assessments ultrasonic test equipment performance test

    Energy Technology Data Exchange (ETDEWEB)

    Pfluger, D.C.

    1996-09-26

    A double-shell tank (DST) inspection (DSTI) system was performance tested over three months until August 1995 at Pittsburgh, Pennsylvania, completing a contract initiated in February 1993 to design, fabricate, and test an ultrasonic inspection system intended to provide ultrasonic test (UT) and visual data to determine the integrity of 28 DSTs at Hanford. The DSTs are approximately one-million-gallon underground radioactive-waste storage tanks. The test was performed in accordance with a procedure (Jensen 1995) that included requirements described in the contract specification (Pfluger 1995). This report documents the results of tests conducted to evaluate the performance of the DSTI system against the requirements of the contract specification. The test of the DSTI system also reflects the performance of qualified personnel and operating procedures.

  12. Frequency-domain imaging algorithm for ultrasonic testing by application of matrix phased arrays

    Directory of Open Access Journals (Sweden)

    Dolmatov Dmitry

    2017-01-01

    Full Text Available Constantly increasing demand for high-performance materials and systems in aerospace industry requires advanced methods of nondestructive testing. One of the most promising methods is ultrasonic imaging by using matrix phased arrays. This technique allows to create three-dimensional ultrasonic imaging with high lateral resolution. Further progress in matrix phased array ultrasonic testing is determined by the development of fast imaging algorithms. In this article imaging algorithm based on frequency domain calculations is proposed. This approach is computationally efficient in comparison with time domain algorithms. Performance of the proposed algorithm was tested via computer simulations for planar specimen with flat bottom holes.

  13. Automatic ultrasonic testing and the LOFT in-service inspection program

    International Nuclear Information System (INIS)

    Hunter, J.A.

    1980-01-01

    An automatic ultrasonic testing system has been developed which significantly improves the flaw indication detection and characterization capability over the capability of conventional volumetric examination techniques. The system utilizes an accurately located ultrasonic sensor to generate the examination data. A small computer performs and integrates control and data input/output functions. Computer software has been developed to provide a rigorous method for data analysis and ultrasonic image interpretation. The system has been used as part of an in-service inspection program to examine welds in thich austenitic stainless steel pipes in a small experimental nuclear reactor

  14. Steady reconstruction process - development, testing and comparison in ultrasonic testing

    International Nuclear Information System (INIS)

    Langenberg, K.J.; Schmitz, V.

    1986-01-01

    The fault parameters can be extracted from a few data of high quality in steady test procedures. The boundary conditions for the successful use of such a process were researched and found, so that by using theoretical models for the elasto-dynamic interaction of fault and ultrasonics, a concentration of wavefronts instead of resonances and a wide band careful collection of data makes a physical interpretation in the form of specific geometry torques possible. Models of the interaction of ultrasonics and faults for two fault geometries (cracks and pores) were developed which permit the calculation of A scans of any bandwidth and with any angle of scatter for the direct and mode converted parts of the elastic ultrasonic scatter wave. The curved pressure and shear waves including the mode converted bending fields over an angular range of 360deg were experimentally recorded. Their agreement including the additional wavefronts caused by the close field of the crack bending field is close. Classification of torques is done on two examples (crack, cylinder) for evaluation purposes. It was found that a classification was possible according to the sign of the a 1 polynomial coefficient. (orig./HP) [de

  15. P-scan, a new system for ultrasonic weld inspection

    International Nuclear Information System (INIS)

    Lund, S.A.; Iversen, S.E.; Holst, H.

    1978-01-01

    The P-scan method is explained. It is described how the new P-scan system improves the ultrasonic method by adding means for visualization, data storage and documentation. Three different scanners are described: One designed for manual operation, another for automatic operation and a third for semiautomatic operation. The p'scan image of an ultrasonically examined test plate is presented and discussed. The variable Display Level (i.e. the inspection sensitivity) facility is described. The main advantage of this facility is the fact that the level can be varied at any time after the inspection. (orig.) [de

  16. Development of automatic ultrasonic testing equipment for reactor pressure vessel

    International Nuclear Information System (INIS)

    Jang, Kee Ok; Park, Dae Yung; Park, Moon Hoh; Koo, Kil Mo; Park, Kwang Heui; Kang, Sang Sin; Bang, Heui Song; Noh, Heui Choong; Kong, Woon Sik

    1994-08-01

    The selected weld areas of reactor pressure vessel and adjacent piping are examined by remote mechanized ultrasonic testing(MUT) equipment. Since the MUT equipment was purchased from Southwest Research Institute (SwRI) in April 1985, we have performed 15 inservice inspections and 5 preservice inspections. However, the reliability of examination was recently decreased rapidly as the problems which results from the old age of equipment and the frequent movement to plant site to site have occurred frequently. Therefore, the 3-axis control system hardware in occurring many problems among the equipments of mechanized ultrasonic testing (MUT) was designed and developed to cover the examination areas of nozzle-shell weld as specified in ASME Code Section XI and to improve the examination reliability. The new 3-axis control system hardware with the performance of this project was developed to be compatible with the old one and it was used as dual system or spare parts of the old system. Furthermore, the established technologies are expected to be applied to the similar control systems in nuclear power plant. 17 figs, 2 pix, 2 tabs, 10 refs. (Author)

  17. Development of automatic ultrasonic testing equipment for reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Kee Ok; Park, Dae Yung; Park, Moon Hoh; Koo, Kil Mo; Park, Kwang Heui; Kang, Sang Sin; Bang, Heui Song; Noh, Heui Choong; Kong, Woon Sik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-08-01

    The selected weld areas of reactor pressure vessel and adjacent piping are examined by remote mechanized ultrasonic testing(MUT) equipment. Since the MUT equipment was purchased from Southwest Research Institute (SwRI) in April 1985, we have performed 15 inservice inspections and 5 preservice inspections. However, the reliability of examination was recently decreased rapidly as the problems which results from the old age of equipment and the frequent movement to plant site to site have occurred frequently. Therefore, the 3-axis control system hardware in occurring many problems among the equipments of mechanized ultrasonic testing (MUT) was designed and developed to cover the examination areas of nozzle-shell weld as specified in ASME Code Section XI and to improve the examination reliability. The new 3-axis control system hardware with the performance of this project was developed to be compatible with the old one and it was used as dual system or spare parts of the old system. Furthermore, the established technologies are expected to be applied to the similar control systems in nuclear power plant. 17 figs, 2 pix, 2 tabs, 10 refs. (Author).

  18. Rail flaw sizing using conventional and phased array ultrasonic testing.

    Science.gov (United States)

    2012-12-01

    An approach to detecting and characterizing internal defects in rail through the use of phased array ultrasonic testing has shown the potential to reduce the risk of missed defects and improve transverse defect characterization. : Transportation Tech...

  19. Ultrasonic inspection for testing the PWR fuel rod endplug welds

    International Nuclear Information System (INIS)

    Pillet, C.; Destribats, M.T.; Papezyk, F.

    1976-01-01

    A method of ultrasonic testing with local immersion and transversal waves was developed. It is possible to detect defects as the lacks of fusion and penetration and porosity in the PWR fuel rod endplug welds [fr

  20. Auto-positioning ultrasonic transducer system

    Science.gov (United States)

    Buchanan, Randy K. (Inventor)

    2010-01-01

    An ultrasonic transducer apparatus and process for determining the optimal transducer position for flow measurement along a conduit outer surface. The apparatus includes a transmitting transducer for transmitting an ultrasonic signal, said transducer affixed to a conduit outer surface; a guide rail attached to a receiving transducer for guiding movement of a receiving transducer along the conduit outer surface, wherein the receiving transducer receives an ultrasonic signal from the transmitting transducer and sends a signal to a data acquisition system; and a motor for moving the receiving transducer along the guide rail, wherein the motor is controlled by a controller. The method includes affixing a transmitting transducer to an outer surface of a conduit; moving a receiving transducer on the conduit outer surface, wherein the receiving transducer is moved along a guide rail by a motor; transmitting an ultrasonic signal from the transmitting transducer that is received by the receiving transducer; communicating the signal received by the receiving transducer to a data acquisition and control system; and repeating the moving, transmitting, and communicating along a length of the conduit.

  1. A computer-controlled electronic system for the ultrasonic NDT of components for nuclear power stations

    International Nuclear Information System (INIS)

    Rehrmann, M.; Harbecke, D.

    1987-01-01

    The paper describes an automatic ultrasonic testing system combined with a computer-controlled electronics system, called IMPULS I, for the non-destructive testing of components of nuclear reactors. The system can be used for both in-service inspection and for inspection during the manufacturing process. IMPUL I has more functions and less components than conventional ultrasonic systems, and the system gives good reproducible test results and is easy to operate. (U.K.)

  2. Reproducibility problems of in-service ultrasonic testing results

    International Nuclear Information System (INIS)

    Honcu, E.

    1974-01-01

    The reproducibility of the results of ultrasonic testing is the basic precondition for its successful application in in-service inspection of changes in the quality of components of nuclear power installations. The results of periodic ultrasonic inspections are not satisfactory from the point of view of reproducibility. Regardless, the ultrasonic pulse-type method is suitable for evaluating the quality of most components of nuclear installations and often the sole method which may be recommended for inspection with regard to its technical and economic aspects. (J.B.)

  3. Inspection system performance test procedure

    International Nuclear Information System (INIS)

    Jensen, C.E.

    1995-01-01

    This procedure establishes requirements to administer a performance demonstration test. The test is to demonstrate that the double-shell tank inspection system (DSTIS) supplied by the contractor performs in accordance with the WHC-S-4108, Double-Shell Tank Ultrasonic Inspection Performance Specification, Rev. 2-A, January, 1995. The inspection system is intended to provide ultrasonic (UT) and visual data to determine integrity of the Westinghouse Hanford Company (WHC) site underground waste tanks. The robotic inspection system consists of the following major sub-systems (modules) and components: Mobile control center; Deployment module; Cable management assembly; Robot mechanism; Ultrasonic testing system; Visual testing system; Pneumatic system; Electrical system; and Control system

  4. A study on the repeatability of ultrasonic testing data

    International Nuclear Information System (INIS)

    Yoshimura, Seiichi; Fukumoto, Hiroshi

    1980-01-01

    Reliability improvement of ultrasonic testing data is strongly desired in ultrasonic testing working of nuclear power plants. This paper deals with the problems of the testing by the manual and the remote control apparatus, and with the factors which influence the repeatability of ultrasonic testing data. Following results are found in it. (1) In the testing by the manual, working time and posture influence the repeatability of testing data. (2) Glycerin in suitable for the couplant in the respect of the repeatability of testing data. In the case of using machine oil, the pressure to the probe necessitates to be over 0.2 kg/cm 2 . (3) In the testing by the remote control apparatus, working time, working environment and defect position does not influence the repeatability of testing data. (author)

  5. Ultrasonic nondestructive evaluation systems industrial application issues

    CERN Document Server

    Callegari, Sergio; Montisci, Augusto; Ricci, Marco; Versaci, Mario

    2015-01-01

    This book covers the practical implementation of ultrasonic NDT techniques in an industrial environment, discussing several issues that may emerge and proposing strategies for addressing them successfully.  It aims to bridge advanced academic research results and their application to industrial procedures. The topics covered in the text range from the basic operation of an ultrasonic NDT system to the simulation of the measurement operations; from the choice and generation of the signals energizing the system to the different ways of exploiting the probes and their output signals; and from quality assessment evaluation to the use of soft computing techniques for classification. Throughout the text, an effort is made to embrace a system view where the physical and technological aspects of sensing are addressed together with higher abstraction levels, such as signal and information processing. Consequently, the book aims at guiding the reader through the various tasks requested for developing a complete ultras...

  6. Ultrasonic NDE and mechanical testing of fiber placement composites

    Science.gov (United States)

    Liu, Zhanjie; Fei, Dong; Hsu, David K.; Dayal, Vinay; Hale, Richard D.

    2002-05-01

    A fiber placed composite, especially with fiber steering, has considerably more complex internal structure than a laminate laid up from unidirectional prepreg tapes. In this work, we performed ultrasonic imaging of ply interfaces of fiber placed composite laminates, with an eye toward developing a tool for evaluating their quality. Mechanical short-beam shear tests were also conducted on both nonsteered and steered specimens to examine their failure behavior and its relationship to the structural defects indicated by ultrasonic imaging.

  7. Ultrasonic sectional imaging for crack identification. Part 1. Confirmation test of essential factors for ultrasonic imaging

    International Nuclear Information System (INIS)

    Sasahara, Toshihiko

    2008-01-01

    Since the first reports of inter-granular stress corrosion crack (IGSCC) in boiling water reactor (BWR) pipe in the 1970s, nuclear power industry has focused considerable attention on service induced crack detection and sizing using ultrasonic examination. In recent years, phased array systems, those reconstruct high quality flaw images at real time are getting to apply for crack detection and sizing. But because the price of phased array systems are expensive for inspection vendors, field application of phased array systems are limited and reliable ultrasonic imaging systems with reasonable price are expected. This paper will discuss cost effective ultrasonic equipment with sectional image (B-scan) presentation as the simplified imaging system for assisting ultrasonic examination personnel. To develop the simplified B-scan imaging system, the frequency characteristics of IGSCC echoes and neighboring geometry echoes such as base-metal to weld interface and inner surface of a pipe are studied. The experimental study confirmed the reflectors have different frequency characteristics and 2MHz is suitable to visualize IGSCC and 5MHz and higher frequency are suitable to reconstruct geometry images. The other study is the amplifier selection for the imaging system. To reconstruct images of IGSCC and geometry echoes, the ultrasonic imaging instrument with linear amplifier has to adjust gain setting to the target. On the other hand, the ultrasonic imaging instrument with logarithmic amplifier can collect and display wider dynamic range on a screen and this wider dynamic range are effective to visualize IGSCC and geometry echoes on a B-scan presentation at a time. (author)

  8. Ultrasonic Sensors in Urban Traffic Driving-Aid Systems

    Directory of Open Access Journals (Sweden)

    Teresa de Pedro

    2011-01-01

    Full Text Available Currently, vehicles are often equipped with active safety systems to reduce the risk of accidents, most of which occur in urban environments. The most prominent include Antilock Braking Systems (ABS, Traction Control and Stability Control. All these systems use different kinds of sensors to constantly monitor the conditions of the vehicle, and act in an emergency. In this paper the use of ultrasonic sensors in active safety systems for urban traffic is proposed, and the advantages and disadvantages when compared to other sensors are discussed. Adaptive Cruise Control (ACC for urban traffic based on ultrasounds is presented as an application example. The proposed system has been implemented in a fully-automated prototype vehicle and has been tested under real traffic conditions. The results confirm the good performance of ultrasonic sensors in these systems.

  9. Ultrasonic sensors in urban traffic driving-aid systems.

    Science.gov (United States)

    Alonso, Luciano; Milanés, Vicente; Torre-Ferrero, Carlos; Godoy, Jorge; Oria, Juan P; de Pedro, Teresa

    2011-01-01

    Currently, vehicles are often equipped with active safety systems to reduce the risk of accidents, most of which occur in urban environments. The most prominent include Antilock Braking Systems (ABS), Traction Control and Stability Control. All these systems use different kinds of sensors to constantly monitor the conditions of the vehicle, and act in an emergency. In this paper the use of ultrasonic sensors in active safety systems for urban traffic is proposed, and the advantages and disadvantages when compared to other sensors are discussed. Adaptive Cruise Control (ACC) for urban traffic based on ultrasounds is presented as an application example. The proposed system has been implemented in a fully-automated prototype vehicle and has been tested under real traffic conditions. The results confirm the good performance of ultrasonic sensors in these systems.

  10. Considerations for ultrasonic testing application for on-orbit NDE

    Science.gov (United States)

    Koshti, Ajay M.

    2015-04-01

    The paper addresses some on-orbit nondestructive evaluation (NDE) needs of NASA for International Space Station (ISS). The presentation gives NDE requirements for inspecting suspect damage due to micro-meteoroids and orbital debris (MMOD) impact on the pressure wall of the ISS. This inspection is meant to be conducted from inside of the ISS module. The metallic wall of the module has a fixed wall thickness but also has integral orthogrid ribs for reinforcement. Typically, a single MMOD hit causes localized damage in a small area causing loss of material similar to pitting corrosion, but cracks may be present too. The impact may cause bulging of the wall. Results of the ultrasonic and eddy current demonstration scans on test samples are provided. The ultrasonic technique uses shear wave scans to interrogate the localized damage area from the surrounding undamaged area. The scanning protocol results in multiple scans, each with multiple "vee" paths. A superimposition and mosaic of the three-dimensional ultrasonic data from individual scans is desired to create C-scan images of the damage. This is a new data reduction process which is not currently implemented in state-of-art ultrasonic instruments. Results of ultrasonic scans on the simulated MMOD damage test plates are provided. The individual C-scans are superimposed manually creating mosaic of the inspection. The resulting image is compared with visibly detected damage boundaries, X-ray images, and localized ultrasonic and eddy current scans for locating crack tips to assess effectiveness of the ultrasonic scanning. The paper also discusses developments needed in improving ergonomics of the ultrasonic testing for on-orbit applications.

  11. Ultrasonic identity data storage and archival system

    International Nuclear Information System (INIS)

    Mc Kenzie, J.M.; Self, B.G.; Walker, J.E.

    1987-01-01

    Ultrasonic seals are being used to determine if an underwater stored spent fuel container has been compromised and can be used to determine if a nuclear material container has been compromised. The Seal Pattern Reader (SPAR) is a microprocessor controlled instrument which interrogates an ultrasonic seal to obtain its identity. The SPAR can compare the present identity with a previous identity, which it obtains from a magnetic bubble cassette memory. A system has been developed which allows an IAEA inspector to transfer seal information obtained at a facility by the SPAR to an IAEA-based data storage and retrieval system, using the bubble cassette memory. Likewise, magnetic bubbles can be loaded at the IAEA with seal signature data needed at a facility for comparison purposes. The archived signatures can be retrieved from the data base for relevant statistical manipulation and for plotting

  12. Ultrasonic creeping wave test technique for dissimilar metal weld

    International Nuclear Information System (INIS)

    Yuan Jianzhong; Shang Junmin; Yan Zhi; Yuan Guanghua; Zhang Guofeng

    2009-01-01

    To solve the problem encountered in the defect inspection of the surface and near-surface of dissimilar metal weld effectively, a new ultrasonic creeping wave test technique is developed. In this paper, the test technique and its experimental verification are mainly described. The verification results show that linear defect, which is similar to the defect found in liquid penetrant test, on the surface and near-surface of dissimilar metal weld can be detected effectively, by using ultrasonic creeping wave test technique. And the depth, length and height of the defect can be determined easily. The effective covering depth of ultrasonic creeping wave test technique will reach 0-9 mm. Meanwhile, the planar defect, with equivalent area more than 3 mm 2 , existed in welds can be detected efficiently. So, accurate measurement, which self height dimension of planar defect is above 2 mm, will be realized. (authors)

  13. Accelerated ultrasonic fatigue testing applications and research trends

    Energy Technology Data Exchange (ETDEWEB)

    Cho, In Sik; Shin, Choongshig; Kim, Jong Yup; Jeon, Yongho [Ajou Univ., Gyeonggi (Somalia)

    2012-06-15

    Very high cycle fatigue (VHCF) behavior of aerospace components has emerged much attention due to their long service life. In this study, a piezoelectric ultrasonic fatigue testing (UFT) system has been developed by Mbrosiatec Co., Ltd. to study the high cycle fatigue (HCF) strength of Ti 6Al 4V alloy. Hourglass shaped specimens have been investigated in the range from 10'6' to 10'9' cycles at room temperature under completely reversed R=-1 loading conditions, Scanning electron microscopy (SEM) analysis revealed that failures occurred in the entire range up to the gigacycle regime, and the fractures have been found to be initiated from the surface, unlike in steels. However, it was found from the SEM microgprahs that microcracks transformed into intergranular fractures. Thus, it can be concluded from according to the results that this test method can be applicable to commercialized automotive and railroad parts that require high cycle fatigue strength.

  14. Accelerated ultrasonic fatigue testing applications and research trends

    International Nuclear Information System (INIS)

    Cho, In Sik; Shin, Choongshig; Kim, Jong Yup; Jeon, Yongho

    2012-01-01

    Very high cycle fatigue (VHCF) behavior of aerospace components has emerged much attention due to their long service life. In this study, a piezoelectric ultrasonic fatigue testing (UFT) system has been developed by Mbrosiatec Co., Ltd. to study the high cycle fatigue (HCF) strength of Ti 6Al 4V alloy. Hourglass shaped specimens have been investigated in the range from 10'6' to 10'9' cycles at room temperature under completely reversed R=-1 loading conditions, Scanning electron microscopy (SEM) analysis revealed that failures occurred in the entire range up to the gigacycle regime, and the fractures have been found to be initiated from the surface, unlike in steels. However, it was found from the SEM microgprahs that microcracks transformed into intergranular fractures. Thus, it can be concluded from according to the results that this test method can be applicable to commercialized automotive and railroad parts that require high cycle fatigue strength

  15. Relationship between ultrasonic pulse velocity test result and ...

    African Journals Online (AJOL)

    Ultrasonic Pulse Velocity test result showed an inverse relationship (of -0.935) with the crushed concrete compressive strength. Correlation test, multiple regression analysis, graphs and visual inspection were used to analyze the results. The conclusion drawn is that there exists a relationship between UPV test results and ...

  16. A study on the couplant effects in contact ultrasonic testing

    International Nuclear Information System (INIS)

    Lee, J. K.; Kim, H. C.; Lee, S. S.; Kim, Young H.

    1997-01-01

    The amplitude of the back-wall echoes depend on the reflection coefficient on the interface between transducer and test material in the contact pulse-echo ultrasonic testing. The couplant is used to transmit the ultrasonic energy through the interface, and has an influence on the amplitude of the pulse-echo signal. To investigate the couplant effect on the pulse-echo ultrasonic testing, the back-wall echoes are measured by using various couplants made of water and glycerine in a carbon and an austenitic stainless steel specimens. The amplitude of the first back-wall echo and the apparent attenuation coefficient increase with the acoustic impedance of couplant. The couplant having higher value of transmission coefficient is more effective for flaws detection, and the reflection coefficient should be known to measure the attenuation coefficient of test material.

  17. Microcomputer-controlled ultrasonic data acquisition system. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, W.A. Jr.

    1978-11-01

    The large volume of ultrasonic data generated by computer-aided test procedures has necessitated the development of a mobile, high-speed data acquisition and storage system. This approach offers the decided advantage of on-site data collection and remote data processing. It also utilizes standard, commercially available ultrasonic instrumentation. This system is controlled by an Intel 8080A microprocessor. The MCS80-SDK microcomputer board was chosen, and magnetic tape is used as the storage medium. A detailed description is provided of both the hardware and software developed to interface the magnetic tape storage subsystem to Biomation 8100 and Biomation 805 waveform recorders. A boxcar integrator acquisition system is also described for use when signal averaging becomes necessary. Both assembly language and machine language listings are provided for the software.

  18. Imperfection detection probability at ultrasonic testing of reactor vessels

    International Nuclear Information System (INIS)

    Kazinczy, F. de; Koernvik, L.Aa.

    1980-02-01

    The report is a lecture given at a symposium organized by the Swedish nuclear power inspectorate on February 1980. Equipments, calibration and testing procedures are reported. The estimation of defect detection probability for ultrasonic tests and the reliability of literature data are discussed. Practical testing of reactor vessels and welded joints are described. Swedish test procedures are compared with other countries. Series of test data for welded joints of the OKG-2 reactor are presented. Future recommendations for testing procedures are made. (GBn)

  19. Testing of electron beam welding by ultrasonic transducers

    International Nuclear Information System (INIS)

    Touffait, A.-M.; Roule, M.; Destribats, M.-T.

    1978-01-01

    Focalized ultrasonic testing is well adapted to the study of electron beam welding. This type of welding leads to narrow weld beads and to small dimension testing zones. Focalized transducers can be used enabling very small defects to be detected [fr

  20. Development status of ultrasonic test techniques for cast stainless steel

    International Nuclear Information System (INIS)

    Nishikawa, Yoshito

    2015-01-01

    Ultrasonic testing has been thought to be difficult to apply to cast stainless steel which is used as the material for the main coolant pipes in pressurized water reactors (PWRs). An ultrasonic testing technique using large aperture twin crystal transducers was developed in INSS for application to inspection of the main coolant pipes. The method was evaluated in an application to detect circumferential and axial defects in the cast stainless steel pipes. It was found that (1) the defects could be detected which had a depth that was so small that their evaluation was not required; and (2) depth sizing and length sizing of detected defects were also possible. (author)

  1. Phased array ultrasonic testing of dissimilar metal pipe weld joints

    International Nuclear Information System (INIS)

    Rajeev, J.; Sankaranarayanan, R.; Sharma, Govind K; Joseph, A.; Purnachandra Rao, B.

    2015-01-01

    Dissimilar metal weld (DMW) joints made of stainless steel and ferritic steel is used in nuclear industries as well as oil and gas industries. These joints are prone to frequent failures which makes the non-destructive testing of dissimilar metal weld joints utmost important for reliable and safe operation of nuclear power plants and oil and gas industries. Ultrasonic inspection of dissimilar metal weld joints is still challenging due to the inherent anisotropic and highly scattering nature. Phased array ultrasonic testing (PAUT) is an advanced technique and its capability has not been fully explored for the inspection of dissimilar metal welds

  2. Development of coaxial ultrasonic probe for fatty liver diagnostic system using ultrasonic velocity change

    Science.gov (United States)

    Hori, Makoto; Yokota, Daiki; Aotani, Yuhei; Kumagai, Yuta; Wada, Kenji; Matsunaka, Toshiyuki; Morikawa, Hiroyasu; Horinaka, Hiromichi

    2017-07-01

    A diagnostic system for fatty liver at an early stage is needed because fatty liver is linked to metabolic syndrome. We have already proposed a fatty liver diagnosis method based on the temperature coefficient of ultrasonic velocity. In this study, we fabricated a coaxial ultrasonic probe by integrating two kinds of transducers for warming and signal detection. The diagnosis system equipped with the coaxial probe was applied to tissue-mimicking phantoms including the fat area. The fat content rates corresponding to the set rates of the phantoms were estimated by the ultrasonic velocity-change method.

  3. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Science.gov (United States)

    2010-04-01

    ... system. (a) Identification. An ultrasonic pulsed doppler imaging system is a device that combines the... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic pulsed doppler imaging system. 892.1550... include signal analysis and display equipment, patient and equipment supports, component parts, and...

  4. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Science.gov (United States)

    2010-04-01

    ... system. (a) Identification. An ultrasonic pulsed echo imaging system is a device intended to project a... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic pulsed echo imaging system. 892.1560... receiver. This generic type of device may include signal analysis and display equipment, patient and...

  5. Development of automatic Ultrasonic testing equipment for reactor pressure vessel

    International Nuclear Information System (INIS)

    Kim, Kor R.; Kim, Jae H.; Lee, Jae C.

    1996-06-01

    The selected weld areas of a reactor pressure vessel and adjacent piping are examined by the remote mechanized ultrasonic testing (MUT) equipment. Since the MUT equipment was purchased from southwest Research Institute (SwRI) in April 1985, 15 inservice inspections and 5 preservice inspections are performed with this MUT equipment. However due to the old age of the equipment and frequent movements to plant sites, the reliability of examination was recently decreased rapidly and it is very difficult to keep spare parts. In order to resolve these problems and to meet the strong request from plant sites, we intend to develop a new 3-axis control system including hardware and software. With this control system, we expect more efficient and reliable examination of the nozzle to shell weld areas, which is specified in ASME Code Section XI. The new 3-axis control system hardware and software were designed and development of our own control system, the advanced technologies of computer control mechanism were established and examination reliability of the nozzle to shell weld area was improved. With the development of our 3-axis control system for PaR ISI-2 computer control system, the reliability of nozzle to shell weld area examination has been improved. The established technologies from the development and detailed analysis of existing control system, are expected to be applied to the similar control systems in nuclear power plants. (author). 12 refs., 4 tabs., 33 figs

  6. Development of automatic Ultrasonic testing equipment for reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kor R.; Kim, Jae H.; Lee, Jae C.

    1996-06-01

    The selected weld areas of a reactor pressure vessel and adjacent piping are examined by the remote mechanized ultrasonic testing (MUT) equipment. Since the MUT equipment was purchased from southwest Research Institute (SwRI) in April 1985, 15 inservice inspections and 5 preservice inspections are performed with this MUT equipment. However due to the old age of the equipment and frequent movements to plant sites, the reliability of examination was recently decreased rapidly and it is very difficult to keep spare parts. In order to resolve these problems and to meet the strong request from plant sites, we intend to develop a new 3-axis control system including hardware and software. With this control system, we expect more efficient and reliable examination of the nozzle to shell weld areas, which is specified in ASME Code Section XI. The new 3-axis control system hardware and software were designed and development of our own control system, the advanced technologies of computer control mechanism were established and examination reliability of the nozzle to shell weld area was improved. With the development of our 3-axis control system for PaR ISI-2 computer control system, the reliability of nozzle to shell weld area examination has been improved. The established technologies from the development and detailed analysis of existing control system, are expected to be applied to the similar control systems in nuclear power plants. (author). 12 refs., 4 tabs., 33 figs.

  7. Automation of ultrasonic testing of turbine disk billets

    International Nuclear Information System (INIS)

    Gorodkov, V.E.; Domashevskij, B.N.; Pron', N.I.; Tkachenko, V.A.

    1984-01-01

    cations of ultrasonic facility for automation of testing turbine disk billets of 25Kh2PMFA and 34KhM1A steels are considered. The operating principle and the design of ''Disk-1'' facility are described, its test results are presented. It is shown that the facility increases the test efficiency five times, enables to estimate dimensions of revealed defect with regard to the quality of acoustic contact, thus facilitating the work of personnel and improving the test quality

  8. Device for ultrasonic and eddy current testing of bolts

    International Nuclear Information System (INIS)

    Hromek, J.; Kaspar, P.

    1989-01-01

    The device provides pivoting fitting of the bolt of a WWER reactor steam generator while ultrasonic and eddy current probes are brought near. The bolt under study is clamped between a drive funnel and a securing cone. The eddy current probes are adjusted using guide arms to the point requested and are fitted over the bolt such as for their thread segments to engage the bolt thread. The ultrasonic transducers are then adjusted to the required point. The device can be used for testing bolts of a thread size from M54x5 and a maximum length of 600 mm. (J.B.). 1 fig

  9. Benefits of the Multiple Echo Technique for Ultrasonic Thickness Testing

    Energy Technology Data Exchange (ETDEWEB)

    Elder, J.; Vandekamp, R.

    2011-02-10

    Much effort has been put into determining methods to make accurate thickness measurements, especially at elevated temperatures. An accuracy of +/- 0.001 inches is typically noted for commercial ultrasonic thickness gauges and ultrasonic thickness techniques. Codes and standards put limitations on many inspection factors including equipment, calibration tolerance and temperature variations. These factors are important and should be controlled, but unfortunately do not guarantee accurate and repeatable measurements in the field. Most technicians long for a single technique that is best for every situation, unfortunately, there are no 'silver bullets' when it comes to nondestructive testing. This paper will describe and discuss some of the major contributors to measurement error as well as some advantages and limitations of multiple echo techniques and why multiple echo techniques should be more widely utilized for ultrasonic thickness measurements.

  10. Imaging techniques for ultrasonic testing; Bildgebende Verfahren fuer die Ultraschallpruefung

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    These seminar proceedings contain 16 lectures on the following topics: 1. From imaging to quantification - ultrasound methods in medical diagnostics; 2. SAFT, TOFD, Phased Array - classical applications and recent developments in ultrasonic imaging; 3. Innovative ultrasonic imaging methods in research and application; 4. Industrial ultrasonic testing of fibre-reinforced structures of complex geometry; 5. Visualisation of crack tips in the inspection of wheel set shafts with longitudinal boreholes as a means of avoiding unnecessary wheel set changes; 6. Areal analysis of the propagation of Lamb waves on curved, anisotropic structures; 7. High-resolution representation in immersion technique testing; 8. Variants in generating images from phased array measurement data - practical examples involving copper, carbon-fibre reinforced plastic and other materials; 9. GIUM - an unconventional method of microstructure imaging using ultrasonic stimulation and laser vibrometry scanning; 10. Innovative air-ultrasonic testing concepts for improved imaging; 11. Use of imaging methods for improving the quality of test results from nondestructive testing; 12. Modelling and visualisation of EMUS stimulation for transducer optimisation; 13. Use of SAFT in the manufacture of energy conversion machines; 14. Ultrasonic imaging tests for improved defect characterisation during weld seam inspection on longitudinally welded large-diameter pipes; 15. SAFT reconstruction for testing austenitic weld seams and dissimilar metal weld seams for transverse cracks; 16. Imaging-based optimisation method for quantitative ultrasonic testing of anisotropic inhomogeneous austenitic welded joints with determination and utilisation of their elastic properties. One contribution has been abstracted separately. [German] Dieser Seminarband enthaelt 16 Vortraege mit folgenden Themen: 1. Von der Bildgebung bis zur Quantifizierung - Ultraschallverfahren in der medizinischen Diagnostik; 2. SAFT, TOFD, Phased Array

  11. Through Thickness Ultrasonic Testing and Its Use in Characterising ...

    African Journals Online (AJOL)

    The stiffness coefficients of different types of limestone were determined using the through thickness ultrasonic test and measurements of size and weight, and the results obtained verified using aluminium specimens of known mechanical properties. The values of density and stiffness coefficients obtained for the various ...

  12. Improvement of defect characterization in ultrasonic testing by adaptative learning network

    International Nuclear Information System (INIS)

    Bieth, M.; Adamonis, D.C.; Jusino, A.

    1982-01-01

    Numerous methods exist now for signal analysis in ultrasonic testing. These methods give more or less accurate information for defects characterization. In this paper is presented the development of a particular system based on a computer Signal processing: the Adaptative Learning Network (ALN) allowing the discrimination of defects in function of their nature. The ultrasonic signal is sampled and characterized by parameters amplitude-time and amplitude-frequency. The method was tested on stainless steel tubes welds showing fatigue cracks. The ALN model developed allows, under certain conditions, the discrimination of cracks from other defects [fr

  13. Determination of elastic modulus of ceramics using ultrasonic testing

    Science.gov (United States)

    Sasmita, Firmansyah; Wibisono, Gatot; Judawisastra, Hermawan; Priambodo, Toni Agung

    2018-04-01

    Elastic modulus is important material property on structural ceramics application. However, bending test as a common method for determining this property require particular specimen preparation. Furthermore, elastic modulus of ceramics could vary because it depends on porosity content. For structural ceramics industry, such as ceramic tiles, this property is very important. This drives the development of new method to improve effectivity or verification method as well. In this research, ultrasonic testing was conducted to determine elastic modulus of soda lime glass and ceramic tiles. The experiment parameter was frequency of probe (1, 2, 4 MHz). Characterization of density and porosity were also done for analysis. Results from ultrasonic testing were compared with elastic modulus resulted from bending test. Elastic modulus of soda-lime glass based on ultrasonic testing showed excellent result with error 2.69% for 2 MHz probe relative to bending test result. Testing on red and white ceramic tiles were still contained error up to 41% and 158%, respectively. The results for red ceramic tile showed trend that 1 MHz probe gave better accuracy in determining elastic modulus. However, testing on white ceramic tile showed different trend. It was due to the presence of porosity and near field effect.

  14. Focused ultrasonic wave testing, in immersion of spent fuel cans

    International Nuclear Information System (INIS)

    Poinboeuf, P.; Furlan, J.

    1984-10-01

    To detect weak and very weak damage of the fuel can, ultrasonic testing has been used. For that, a simple mechanical device, allowing to maintain an optimal ultrasonic focussing on irradiated cans, is presented. Its aim is to correct the variation of the incidence angle due to the possible ovalization of pins. After a description of the device, the results obtained with tests carried out on non-irradiated cans, including artificial ovalized regions, standard defects, are presented. After the description of the adaptation of this mechanism on a test bench which allows an helicoidal exploration of pins, some results obtained in hot cell during examinations experimental pins and previously tested by Foucault current [fr

  15. System of acquisition and analysis of ultrasonic data

    International Nuclear Information System (INIS)

    Vaubert, Y.; Birac, A.M.; Saglio, R.

    1982-08-01

    An original system of acquisition and analysis of ultrasonic data collected during examinations named STADUS-PRODUS has been developed by C.E.A. in Saclay. First developed for the needs of in-service inspection of PWR vessels, it is now used for the different automatic ultrasonic controls with various tools

  16. Design and performance testing of an ultrasonic linear motor with dual piezoelectric actuators.

    Science.gov (United States)

    Smithmaitrie, Pruittikorn; Suybangdum, Panumas; Laoratanakul, Pitak; Muensit, Nantakan

    2012-05-01

    In this work, design and performance testing of an ultrasonic linear motor with dual piezoelectric actuator patches are studied. The motor system consists of a linear stator, a pre-load weight, and two piezoelectric actuator patches. The piezoelectric actuators are bonded with the linear elastic stator at specific locations. The stator generates propagating waves when the piezoelectric actuators are subjected to harmonic excitations. Vibration characteristics of the linear stator are analyzed and compared with finite element and experimental results. The analytical, finite element, and experimental results show agreement. In the experiments, performance of the ultrasonic linear motor is tested. Relationships between velocity and pre-load weight, velocity and applied voltage, driving force and applied voltage, and velocity and driving force are reported. The design of the dual piezoelectric actuators yields a simpler structure with a smaller number of actuators and lower stator stiffness compared with a conventional design of an ultrasonic linear motor with fully laminated piezoelectric actuators.

  17. Very high cycle fatigue testing of concrete using ultrasonic cycling

    Energy Technology Data Exchange (ETDEWEB)

    Karr, Ulrike; Schuller, Reinhard; Fitzka, Michael; Mayer, Herwig [Univ. of Natural Resources and Life Sciences, Vienna (Austria). Inst. of Physics and Materials Science; Denk, Andreas; Strauss, Alfred [Univ. of Natural Resources and Life Sciences, Vienna (Austria)

    2017-06-01

    The ultrasonic fatigue testing method has been further developed to perform cyclic compression tests with concrete. Cylindrical specimens vibrate in resonance at a frequency of approximately 20 kHz with superimposed compressive static loads. The high testing frequency allows time-saving investigations in the very high cycle fatigue regime. Fatigue tests were carried out on ''Concrete 1'' (compressive strength f{sub c} = 80 MPa) and ''Concrete 2'' (f{sub c} = 107 MPa) under purely compressive loading conditions. Experiments at maximum compressive stresses of 0.44 f{sub c} (Concrete 1) and 0.38 f{sub c} (Concrete 2) delivered specimen failures above 109 cycles, indicating that no fatigue limit exists for concrete below one billion load cycles. Resonance frequency, power required to resonate the specimen and second order harmonics of the vibration are used to monitor fatigue damage in situ. Specimens were scanned by X-ray computed tomography prior to and after testing. Fatigue cracks were produced by ultrasonic cycling in the very high cycle fatigue regime at interfaces of grains as well as in cement. The possibilities as well as limitations of ultrasonic fatigue testing of concrete are discussed.

  18. Babcock experience of automated ultrasonic non-destructive testing of PWR pressure vessels during manufacture

    International Nuclear Information System (INIS)

    Dikstra, B.J.; Farley, J.M.; Scruton, G.

    1990-01-01

    Major developments in ultrasonic techniques, equipment and systems for automated inspection have lead, over a period of about ten years, to the regular application of sophisticated computer-controlled systems during the manufacture of nuclear reactor pressure vessels. Ten years ago the use of procedures defined in a code such as ASME XI might have been considered sufficient, but it is now necessary, as was demonstrated by the results of the UKAEA defect detection trials and the PISC II trials, to apply more comprehensive arrays of probes and higher test sensitivities. The ultrasonic techniques selected are demonstrated to be adequate by modelling or test-block exercises, the automated systems applied are subject to stringent quality assurance testing, and very rigorous inspection procedures are used in conjunction with a high degree of automation to ensure reproducibility of inspection quality. The state-of-the-art in automated ultrasonic testing of pressure vessels by Babcock is described. Current developments by the company, including automated flaw recognition, integrated modelling of inspection capability, and the use of electronically scanned variable-angle probes are reviewed. Examples quoted include the automated ultrasonic inspections of the Sizewell B pressurized water reactor vessel. (author)

  19. A feasiblity study of an ultrasonic test phantom arm

    Science.gov (United States)

    Schneider, Philip

    This thesis is a feasibility study for the creation of a test phantom that replicates the physiological features, from an acoustic and mechanical standpoint, of that of a human arm. Physiological feature set includes; Heart, Arteries, Veins, Bone, Muscle, Fat, Skin, and Dermotographic Features (finger prints). Mechanical Aspects include, vascular compression and distention, elasticity of tissue layers, mechanics of human heart. The end goal of which to have a working understanding of each component in order to create a controllable, real time, physiologically accurate, test phantom for a wide range of ultrasonic based applications. These applications can range from devices like wearable technologies to medical training, to biometric "Liveness" detection methods. The proposed phantom would allow for a number of natural bodily functions to be measured including but not limited to vascular mapping, blood pressure, heart rate, subdermal imaging, and general ultrasonic imaging.

  20. Assessment of Aluminum FSW Joints Using Ultrasonic Testing

    Directory of Open Access Journals (Sweden)

    Adamus K.

    2017-12-01

    Full Text Available The paper concerns aluminum joints made using friction stir welding. Although in the aerospace industry there is a tendency to replace metal components with composites, aluminum continues to be a valuable material. Its share in the aircraft structures is the biggest among all structural metals. Lots of aluminum components are made of sheets and most of them require joining. Friction stir welding is a relatively new joining technology, particularly with regard to the sheets having a thickness of 1 mm or lower. The paper is dedicated to non-destructive testing of such joints using ultrasonic inspection. It was found that ultrasonic testing allows for distinguishing between joints without material discontinuities, joint with material discontinuities at the advancing side and joint with discontinuities extending through the whole width of the stir zone. During research only horizontally aligned defects were taken into account.

  1. Ultrasonic testing technique for users in practical application. Pt. 8

    International Nuclear Information System (INIS)

    Corsepius, H.W.

    1978-01-01

    In the present, eighth part of ultrasonic testing technique for users in practical application, the two methods 1) testing by gap coupling and 2) testing by the dipping technique are treated. By the first method the probe is clamped in a holding device in such manner that a water-filled gap remains between probe and surface. Through this gap the sonic signal gets into the specimen without mechanical contact between probe and specimen taking place. By the dipping technique testing is performed in a tank filled with water, the probe being guided over the specimen under water. (RW) [de

  2. Ultrasonic testing of electron beam closure weld on pressure vessel

    International Nuclear Information System (INIS)

    Andrews, R.W.

    1975-01-01

    One of the special products manufactured at the General Electric Neutron Devices Department (GEND) is a small stainless steel vessel designed to hold a component under high pressure for long periods. The vessel is a thick-walled cylinder with a threaded receptacle into which a plug is screwed and welded after receiving the unit to be tested. The test cavity is then pressurized through a small diameter opening in the bottom and that opening is welded closed. When x-ray inspection techniques did not reveal defective welds at the threaded plug in a pressured vessel, occasional ''leakers'' occurred. With normal equipment tolerances, the electron beam spike tends to wander from the desired path, particularly at the root of the weld. Ultrasonic techniques were used to successfully inspect the weld. The testing technique is based on the observation that ultrasonic energy is reflected from the unwelded screw threads and not from the regions where the threads are completely fused together by welding. Any gas pore or any threaded region outside the weld bead can produce an echo. The units are rotated while the ultrasonic transducer travels in a direction parallel to the axis of rotation and toward the welded end. This produces a helical scan which is converted to a two-dimensional presentation in which incomplete welds can be noted. (U.S.)

  3. Analysis of CFRP Joints by Means of T-Pull Mechanical Test and Ultrasonic Defects Detection.

    Science.gov (United States)

    Casavola, Caterina; Palano, Fania; De Cillis, Francesco; Tati, Angelo; Terzi, Roberto; Luprano, Vincenza

    2018-04-18

    Defects detection within a composite component, with the aim of understanding and predicting its mechanical behavior, is of great importance in the aeronautical field because the irregularities of the composite material could compromise functionality. The aim of this paper is to detect defects by means of non-destructive testing (NDT) on T-pull samples made by carbon fiber reinforced polymers (CFRP) and to evaluate their effect on the mechanical response of the material. Samples, obtained from an industrial stringer having an inclined web and realized with a polymeric filler between cap and web, were subjected to ultrasonic monitoring and then to T-pull mechanical tests. All samples were tested with the same load mode and the same test configuration. An experimental set-up consisting of a semiautomatic C-scan ultrasonic mapping system with a phased array probe was designed and developed, optimizing control parameters and implementing image processing software. The present work is carried out on real composites parts that are characterized by having their intrinsic defectiveness, as opposed to the previous similar results in the literature mainly obtained on composite parts with artificially produced defects. In fact, although samples under study were realized free from defects, ultrasonic mapping found defectiveness inside the material. Moreover, the ultrasonic inspection could be useful in detecting both the location and size of defects. Experimental data were critically analyzed and qualitatively correlated with results of T-pull mechanical tests in order to better understand and explain mechanical behavior in terms of fracture mode.

  4. Sizing of cracks by ultrasonic testing - Diffraction methods

    International Nuclear Information System (INIS)

    Hoegberg, K.; Sattari-Far, I.; Pers-Anderson, E.B.

    1989-01-01

    The work has been concentrated on manual ultrasonic testing of plates in carbon and austenitic steel with thicknesses of 10-40 mm. Evaluation of data was performed by studying the amplitude, accuracy (crack depth) and visibility. The experience from the project showed that identification of the weak signals from the crack tips requires well-trained personnel. Besides that, the following can be recommended: Estimate if the crack has compressive stresses. Especially shallow cracks are exposed for compressive stresses. Chose a refraction angle ≥ 60 degrees if the crack is deep. Try both low (approx equivalent to 2MHz) and high (approx equivalent to 4-5MHz) frequency. Lower frequencies often increase amplitude response. Avoid the combination of refraction angle greater than 60 degrees and low frequency. Inspect with half as well as full skip. Sometimes a stronger signal is received for full skip, because the amplitude of the diffracted signal is higher from the cracked side. Use complementary measurements with mode conversion techniques. Focused probes can improve the results, especially for complicated geometries. Do not use reference reflectors of EDM-notch type for verification of signal amplitude. No correlation between amplitude from an EDM-notch tip and a crack tip exists. Reference reflectors of EDM-notch type can be used to verify the resolution of the system. A shallow EDM-notch can show if the probe can separate the tip and corner. It is our experience that general solutions does not exist, and each case needs an individual solution

  5. Ultrasonically-assisted Thermal Stir Welding System

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A welding head assembly has a work piece disposed between its containment plates' opposing surfaces with the work piece being maintained in a plastic state thereof at least in a vicinity of the welding head assembly's stir rod as the rod is rotated about its longitudinal axis. The welding head assembly and the work piece experience relative movement there between in a direction perpendicular to the rod's longitudinal axis as the work piece is subjected to a compressive force applied by the containment plates. A first source coupled to the first containment plate applies a first ultrasonic wave thereto such that the first ultrasonic wave propagates parallel to the direction of relative movement. A second source coupled to the second containment plate applies a second ultrasonic wave thereto such that the second ultrasonic wave propagates parallel to the direction of relative movement.propagates parallel to the direction of relative movement.

  6. Method and system having ultrasonic sensor movable by translation device for ultrasonic profiling of weld samples

    Science.gov (United States)

    Panyard, James; Potter, Timothy; Charron, William; Hopkins, Deborah; Reverdy, Frederic

    2010-04-06

    A system for ultrasonic profiling of a weld sample includes a carriage movable in opposite first and second directions. An ultrasonic sensor is coupled to the carriage to move over the sample as the carriage moves. An encoder determines the position of the carriage to determine the position of the sensor. A spring is connected at one end of the carriage. Upon the carriage being moved in the first direction toward the spring such that the carriage and the sensor are at a beginning position and the spring is compressed the spring decompresses to push the carriage back along the second direction to move the carriage and the sensor from the beginning position to an ending position. The encoder triggers the sensor to take the ultrasonic measurements of the sample when the sensor is at predetermined positions while the sensor moves over the sample between the beginning and positions.

  7. Ultrasonic test of highly stressed gear shafts

    Energy Technology Data Exchange (ETDEWEB)

    Schreiner, T. [Siemens AG, Power Generation, KWU, Muelheim (Germany); Heinrich, W. [Siemens AG, Power Generation, KWU, Berlin (Germany); Achtzehn, J. [Siemens AG, Power Generation, ICVW, Erlangen (Germany); Hensley, H. [Siemens Power Generation (Germany)

    1998-12-31

    In the power plant industry, gears are used for increasingly higher turbine capacities. Efficiency enhancements, particularly for the combined gas and steam turbine process, lead to an increase in stresses, even for high-performance gears. Consequently, the requirements for non-destructive material testing are on the increase as well. At Siemens KWU, high-performance gears are used so far only for gas turbines with lower rating (65 MW) to adapt the gas turbine speed (5413 rpm) to the generator speed (3000 rpm/ 50 Hz or 3600 rpm/60 Hz). The gear train consists of a forged and case-hardened wheel shaft and pinion shaft made of material 17 CrNiMo 6, where the wheel shaft can be either a solid or a hollow shaft. Dimensions are typically 2.3 m length and 1 m diameter. As a rule, pinion shafts are solid. The gear design, calling for an additional torsion shaft turning inside the hollow wheel shaft, can absorb more torsional load surges and is more tolerant of deviations during gear train alignment. This design requires two additional forgings (torsion shaft and hub) and an additional bearing 2 refs.

  8. Ultrasonic test of highly stressed gear shafts

    Energy Technology Data Exchange (ETDEWEB)

    Schreiner, T [Siemens AG, Power Generation, KWU, Muelheim (Germany); Heinrich, W [Siemens AG, Power Generation, KWU, Berlin (Germany); Achtzehn, J [Siemens AG, Power Generation, ICVW, Erlangen (Germany); Hensley, H [Siemens Power Generation (Germany)

    1999-12-31

    In the power plant industry, gears are used for increasingly higher turbine capacities. Efficiency enhancements, particularly for the combined gas and steam turbine process, lead to an increase in stresses, even for high-performance gears. Consequently, the requirements for non-destructive material testing are on the increase as well. At Siemens KWU, high-performance gears are used so far only for gas turbines with lower rating (65 MW) to adapt the gas turbine speed (5413 rpm) to the generator speed (3000 rpm/ 50 Hz or 3600 rpm/60 Hz). The gear train consists of a forged and case-hardened wheel shaft and pinion shaft made of material 17 CrNiMo 6, where the wheel shaft can be either a solid or a hollow shaft. Dimensions are typically 2.3 m length and 1 m diameter. As a rule, pinion shafts are solid. The gear design, calling for an additional torsion shaft turning inside the hollow wheel shaft, can absorb more torsional load surges and is more tolerant of deviations during gear train alignment. This design requires two additional forgings (torsion shaft and hub) and an additional bearing 2 refs.

  9. Enhancement of the automatic ultrasonic signal processing system using digital technology

    International Nuclear Information System (INIS)

    Koo, In Soo; Park, H. Y.; Suh, Y. S.; Kim, D. Hoon; Huh, S.; Sung, S. H.; Jang, G. S.; Ryoo, S. G.; Choi, J. H.; Kim, Y. H.; Lee, J. C.; Kim, D. Hyun; Park, H. J.; Kim, Y. C.; Lee, J. P.; Park, C. H.; Kim, M. S.

    1999-12-01

    The objective of this study is to develop the automatic ultrasonic signal processing system which can be used in the inspection equipment to assess the integrity of the reactor vessel by enhancing the performance of the ultrasonic signal processing system. Main activities of this study divided into three categories such as the development of the circuits for generating ultrasonic signal and receiving the signal from the inspection equipment, the development of signal processing algorithm and H/W of the data processing system, and the development of the specification for application programs and system S/W for the analysis and evaluation computer. The results of main activities are as follows 1) the design of the ultrasonic detector and the automatic ultrasonic signal processing system by using the investigation of the state-of-the-art technology in the inside and outside of the country. 2) the development of H/W and S/W of the data processing system based on the results. Especially, the H/W of the data processing system, which have both advantages of digital and analog controls through the real-time digital signal processing, was developed using the DSP which can process the digital signal in the real-time, and was developed not only firmware of the data processing system in order for the peripherals but also the test algorithm of specimen for the calibration. The application programs and the system S/W of the analysis/evaluation computer were developed. Developed equipment was verified by the performance test. Based on developed prototype for the automatic ultrasonic signal processing system, the localization of the overall ultrasonic inspection equipment for nuclear industries would be expected through the further studies of the H/W establishment of real applications, developing the S/W specification of the analysis computer. (author)

  10. Contribution of phased array technique to automation in ultrasonic testing

    International Nuclear Information System (INIS)

    Erhard, A.; Schenk, G.; Moehrle, W.; Wuestenberg, H.; Rathgeb, W.

    1989-01-01

    Ultrasonic tests on complicated geometries often require expensive manipulator technique. To guarantee certain information from tests, the control of the manipulator must be matched to the acoustic boundary conditions. In the past and today, complex manipulators were and are being developed and used with tests on such geometries. The results of the measurements with group radiator technique in the bottom hole area or on ducts, showed that the manipulators can be simplified, particularly with regard to their degrees of freedom, e.g.: doing without the axis of rotation to set the angle of squint in testing ducts, without thereby narrowing the test area. In the bottom hole test, it was found that by using the group radiator technique, the test area is expanded, evaluation is simplified and coupling can be ensured. (orig.) [de

  11. Technique for ultrasonic testing of austenitic steel weldments of NPP components

    International Nuclear Information System (INIS)

    Lantukh, V.M.; Grebennik, V.S.; Kordinov, E.V.; Kesler, N.A.; Shchedrin, I.F.

    1987-01-01

    Special literature on ultrasonic testing of weldments of austenitic steel is analysed. Technique for ultrasonic testing of the ring and longitudinal butt welded joints of NPP components without reinforcing bead removal is described. Special converter design and fabrication practice are described. Results of experimental check of the developed testing technology and its application during NNPs' mounting and operation are presented. Results of ultrasonic and X-ray testing are compared

  12. Phased array UT (Ultrasonic Testing) used in electricity production plants

    International Nuclear Information System (INIS)

    Kodaira, Takeshi

    2012-01-01

    Phased Array-Ultrasonic testing techniques widely used for detection and quantitative determination of the lattice defects which have been formed from fatigues or stress corrosion cracking in the materials used in the electricity production plants are presented with particular focus on the accurate determination of the defects depth (sizing) and defects discrimination applicable to weld metals of austenite stainless steels and Ni base alloys. The principle of this non-destructive analysis is briefly explained, followed by point and matrix focus phased array methods developed by Mitsubishi Heavy Industries, Ltd are explained rather in detail with illustration and the evaluated results. (S. Ohno)

  13. Maintenance of immersion ultrasonic testing on the water tube boiler

    International Nuclear Information System (INIS)

    Ishiyama, Toru; Kawasaki, Ichio; Miura, Hirohito

    2014-01-01

    There are 4-boiler in nuclear fuel cycle engineering laboratories (NCL). These boilers have been operated in the long term over 20 years. One of them, the leakage of boiler water was found at one of the generating tubes, and 2 adjoining generating tubes were corroded in Dec, 2011. These generating tubes were investigated by immersion ultrasonic testing (UT) for measure thickness of the tube. As a result, thinner tube was found in a part of a bend and near the water drum. These parts are covered with sulfide deposit, it seems that the generating tubes were corroded by sulfide. (author)

  14. Hardware Developments of an Ultrasonic Tomography Measurement System

    Directory of Open Access Journals (Sweden)

    Hudabiyah ARSHAD AMARI

    2010-01-01

    Full Text Available This research provides new technique in ultrasonic tomography by using ultrasonic transceivers instead of using separate transmitter-receiver pair. The numbers of sensors or transducers used to acquire data plays an important role to generate high resolution tomography images. The configuration of these sensors is a crucial factor in the efficiency of data acquisition. Instead of using common separated transmitter – receiver, an alternative approach has been taken to use dual functionality ultrasonic transceiver. A prototype design of sensor’s jig that will hold 16 transceivers of 14.1mm has been design. Transmission-mode approach with fan beam technique has been used for sensing the flow of gas, liquid and solid. This paper also explains the circuitry designs for the Ultrasonic Tomography System.

  15. Training methods in non-destructive examination with ultrasonic testing

    International Nuclear Information System (INIS)

    Walte, F.

    1986-01-01

    German concept for inspection of LWR, leak before break, basic safety; General inspection methods; Ultrasonic inspection - basic principle, generation of ultrasound, bulk and surface waves, piezo electric and electromagnetic transducers, energy balance, scattering and adsorption, divergence; Ultra techniques in compliance with KTA-rules - pulse-echo, tandem, throughtransmission; Valuation of ultrasonic indications; Pre- and in-service inspection; Practical part - ultrasonic equipment, ultrasonic piezo electric transducers, wall thickness measurement, crack depth measurement with potential drop technique. (orig.)

  16. Studies of the ultrasonic testing scheme on bonding quality in shield blanket of ITER

    International Nuclear Information System (INIS)

    Shi Sichao; Shen Jingling; He Fengqi; Jin Wanping

    2007-01-01

    International Thermonuclear Experimental Reactor (ITER) is an international cooperative item. One of its components, the First Wall (FW) functioning as neutron shielding and cooling, is an important part. According to the component materials, structural features, testing requirements of the FW, and the ultrasonic propagation characteristics, it is suggested that Broad-band ultrasonic can be used to test the bonding quality of the FW. According to the case mentioned above, the Broad-band Ultrasonic Testing scheme was presented, and the ultrasonic testing feasibility was analyzed theoretically in this paper. (authors)

  17. Review of P-scan computer-based ultrasonic inservice inspection system. Supplement 1

    International Nuclear Information System (INIS)

    Harris, R.V. Jr.; Angel, L.J.

    1995-12-01

    This Supplement reviews the P-scan system, a computer-based ultrasonic system used for inservice inspection of piping and other components in nuclear power plants. The Supplement was prepared using the methodology described in detail in Appendix A of NUREG/CR-5985, and is based on one month of using the system in a laboratory. This Supplement describes and characterizes: computer system, ultrasonic components, and mechanical components; scanning, detection, digitizing, imaging, data interpretation, operator interaction, data handling, and record-keeping. It includes a general description, a review checklist, and detailed results of all tests performed

  18. Parallelization of ultrasonic field simulations for non destructive testing

    International Nuclear Information System (INIS)

    Lambert, Jason

    2015-01-01

    The Non Destructive Testing field increasingly uses simulation. It is used at every step of the whole control process of an industrial part, from speeding up control development to helping experts understand results. During this thesis, a fast ultrasonic field simulation tool dedicated to the computation of an ultrasonic field radiated by a phase array probe in an isotropic specimen has been developed. During this thesis, a simulation tool dedicated to the fast computation of an ultrasonic field radiated by a phased array probe in an isotropic specimen has been developed. Its performance enables an interactive usage. To benefit from the commonly available parallel architectures, a regular model (aimed at removing divergent branching) derived from the generic CIVA model has been developed. First, a reference implementation was developed to validate this model against CIVA results, and to analyze its performance behaviour before optimization. The resulting code has been optimized for three kinds of parallel architectures commonly available in workstations: general purpose processors (GPP), many-core co-processors (Intel MIC) and graphics processing units (nVidia GPU). On the GPP and the MIC, the algorithm was reorganized and implemented to benefit from both parallelism levels, multithreading and vector instructions. On the GPU, the multiple steps of field computing have been divided in multiple successive CUDA kernels. Moreover, libraries dedicated to each architecture were used to speedup Fast Fourier Transforms, Intel MKL on GPP and MIC and nVidia cuFFT on GPU. Performance and hardware adequation of the produced codes were thoroughly studied for each architecture. On multiple realistic control configurations, interactive performance was reached. Perspectives to address more complex configurations were drawn. Finally, the integration and the industrialization of this code in the commercial NDT platform CIVA is discussed. (author) [fr

  19. Ultrasonic instrument for continuous measurement of liquid levels in sodium systems

    International Nuclear Information System (INIS)

    Boehmer, L.S.

    1975-01-01

    An ultrasonic level measurement system which provides a continuous digital readout over a range of 3-180 inches, was tested in 500 0 F liquid sodium. The system proved to be accurate and reliable, required no initial warm-up period and experienced no long term drift. Modifications can extend the present operating temperatures to greater than 1200 0 F

  20. Digital signal processing in ultrasonic based navigation system for mobile robots

    Directory of Open Access Journals (Sweden)

    Stączek Paweł

    2017-01-01

    Full Text Available A system for estimating the coordinates of automated guided vehicles (AGV was presented in this article. Ultrasonic waves for distance measurement were applied. Used hardware was characterised, as well as signal processing algorithms. The system was tested on wheeled mobile robot in model 2D environment. The results of working range and errors of position estimation were discussed.

  1. Scanning Ultrasonic Spectroscopy System Developed for the Inspection of Composite Flywheels

    Science.gov (United States)

    Martin, Richard E.; Baaklini, George Y.

    2002-01-01

    Composite flywheels are being considered as replacements for chemical batteries aboard the International Space Station. A flywheel stores energy in a spinning mass that can turn a generator to meet power demands. Because of the high rotational speeds of the spinning mass, extensive testing of the flywheel system must be performed prior to flight certification. With this goal in mind, a new scanning system has been developed at the NASA Glenn Research Center for the nondestructive inspection of composite flywheels and flywheel subcomponents. The system uses ultrasonic waves to excite a material and examines the response to detect and locate flaws and material variations. The ultrasonic spectroscopy system uses a transducer to send swept-frequency ultrasonic waves into a test material and then receives the returning signal with a second transducer. The received signal is then analyzed in the frequency domain using a fast Fourier transform. A second fast Fourier transform is performed to examine the spacing of the peaks in the frequency domain. The spacing of the peaks is related to the standing wave resonances that are present in the material because of the constructive and destructive interferences of the waves in the full material thickness as well as in individual layers within the material. Material variations and flaws are then identified by changes in the amplitudes and positions of the peaks in both the frequency and resonance spacing domains. This work, conducted under a grant through the Cleveland State University, extends the capabilities of an existing point-by-point ultrasonic spectroscopy system, thus allowing full-field automated inspection. Results of an ultrasonic spectroscopy scan of a plastic cylinder with intentionally seeded flaws. The result of an ultrasonic spectroscopy scan of a plastic cylinder used as a proof-of-concept specimen is shown. The cylinder contains a number of flat bottomed holes of various sizes and shapes. The scanning system

  2. New contributions to granite characterization by ultrasonic testing.

    Science.gov (United States)

    Cerrillo, C; Jiménez, A; Rufo, M; Paniagua, J; Pachón, F T

    2014-01-01

    Ultrasound evaluation permits the state of rocks to be determined quickly and cheaply, satisfying the demands faced by today's producers of ornamental stone, such as environmental sustainability, durability and safety of use. The basic objective of the present work is to analyse and develop the usefulness of ultrasound testing in estimating the physico-mechanical properties of granite. Various parameters related to Fast Fourier Transform (FFTs) and attenuation have been extracted from some of the studies conducted (parameters which have not previously been considered in work on this topic, unlike the ultrasonic pulse velocity). The experimental study was carried out on cubic specimens of 30 cm edges using longitudinal and shear wave transducers and equipment which extended the normally used natural resonance frequency range up to 500 kHz. Additionally, a validation study of the laboratory data has been conducted and some methodological improvements have been implemented. The main contribution of the work is the analysis of linear statistical correlations between the aforementioned new ultrasound parameters and physico-mechanical properties of the granites that had not previously been studied, i.e., resistance to salt crystallization and breaking load for anchors. Being properties that directly affect the durability and safety of use of granites, these correlations consolidate ultrasonics as a nondestructive method well suited to this type of material. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Automated ultrasonic inspection system for nuclear power stations

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The automated system of ultrasonic inspection which was used to conduct weld inspections of the complex primary system of the Borselle PWR station is described. It relies upon mechanically traversing purpose designed multi-crystal ultrasonic probes along the welds. A number of probes are switched sequentially to provide a continuous scan. A typical scan rate of 120 scan/sec is achieved by a multiplexer capable of switching transmitter and receiver individually. The system has wide applications in other industries. (U.K.)

  4. Development of an intelligent system for ultrasonic flaw classification in weldments

    International Nuclear Information System (INIS)

    Song, Sung-Jin; Kim, Hak-Joon; Cho, Hyeon

    2002-01-01

    Even though ultrasonic pattern recognition is considered as the most effective and promising approach to flaw classification in weldments, its application to the realistic field inspection is still very limited due to the crucial barriers in cost, time and reliability. To reduce such barriers, previously we have proposed an intelligent system approach that consisted of the following four ingredients: (1) a PC-based ultrasonic testing (PC-UT) system; (2) an effective invariant ultrasonic flaw classification algorithm; (3) an intelligent flaw classification software; and (4) a database with abundant experimental flaw signals. In the present work, for performing the ultrasonic flaw classification in weldments in a real-time fashion in many real word situations, we develop an intelligent system, which is called the 'Intelligent Ultrasonic Evaluation System (IUES)' by the integration of the above four ingredients into a single, unified system. In addition, for the improvement of classification accuracy of flaws, especially slag inclusions, we expand the feature set by adding new informative features, and demonstrate the enhanced performance of the IUES with flaw signals in the database constructed previously. And then, to take care of the increased redundancy in the feature set due to the addition of features, we also propose two efficient schemes for feature selection: the forward selection with trial and error, and the forward selection with criteria of the error probability and the linear correlation coefficients of individual features

  5. Application of Phased Array Ultrasonic Testing (PAUT) on Single V-Butt Weld Integrity Determination

    International Nuclear Information System (INIS)

    Amry Amin Abas; Mohd Kamal Shah Shamsudin; Norhazleena Azaman

    2015-01-01

    Phased Array Ultrasonic Testing (PAUT) utilizes arrays of piezoelectric elements that are embedded in an epoxy base. The benefit of having such kind of array is that beam forming such as steering and focusing the beam front possible. This enables scanning patterns such as linear scan, sectorial scan and depth focusing scan to be performed. Ultrasonic phased array systems can potentially be employed in almost any test where conventional ultrasonic flaw detectors have traditionally been used. Weld inspection and crack detection are the most important applications, and these tests are done across a wide range of industries including aerospace, power generation, petrochemical, metal billet and tubular goods suppliers, pipeline construction and maintenance, structural metals, and general manufacturing. Phased arrays can also be effectively used to profile remaining wall thickness in corrosion survey applications. The benefits of PAUT are simplifying inspection of components of complex geometry, inspection of components with limited access, testing of welds with multiple angles from a single probe and increasing the probability of detection while improving signal-to-noise ratio. This paper compares the result of inspection on several specimens using PAUT as to digital radiography. The specimens are welded plates with single V-butt weld made of carbon steel. Digital radiography is done using blue imaging plate with x-ray source. PAUT is done using Olympus MX2 with 5 MHz probe consisting of 64 elements. The location, size and length of defect is compared. (author)

  6. Mechanized ultrasonic inspection of austenitic pipe systems

    International Nuclear Information System (INIS)

    Dressler, K.; Luecking, J.; Medenbach, S.

    1999-01-01

    The contribution explains the system of standard testing methods elaborated by ABB ZAQ GmbH for inspection of austenitic plant components. The inspection tasks explained in greater detail are basic materials testing (straight pipes, bends, and pipe specials), and inspection of welds and dissimilar welds. The techniques discussed in detail are those for detection and sizing of defects. (orig./CB) [de

  7. Analysis of CFRP Joints by Means of T-Pull Mechanical Test and Ultrasonic Defects Detection

    Directory of Open Access Journals (Sweden)

    Caterina Casavola

    2018-04-01

    Full Text Available Defects detection within a composite component, with the aim of understanding and predicting its mechanical behavior, is of great importance in the aeronautical field because the irregularities of the composite material could compromise functionality. The aim of this paper is to detect defects by means of non-destructive testing (NDT on T-pull samples made by carbon fiber reinforced polymers (CFRP and to evaluate their effect on the mechanical response of the material. Samples, obtained from an industrial stringer having an inclined web and realized with a polymeric filler between cap and web, were subjected to ultrasonic monitoring and then to T-pull mechanical tests. All samples were tested with the same load mode and the same test configuration. An experimental set-up consisting of a semiautomatic C-scan ultrasonic mapping system with a phased array probe was designed and developed, optimizing control parameters and implementing image processing software. The present work is carried out on real composites parts that are characterized by having their intrinsic defectiveness, as opposed to the previous similar results in the literature mainly obtained on composite parts with artificially produced defects. In fact, although samples under study were realized free from defects, ultrasonic mapping found defectiveness inside the material. Moreover, the ultrasonic inspection could be useful in detecting both the location and size of defects. Experimental data were critically analyzed and qualitatively correlated with results of T-pull mechanical tests in order to better understand and explain mechanical behavior in terms of fracture mode.

  8. Contributions regarding calculus and design of an ultrasonic system used in plasma metallization

    Science.gov (United States)

    Amza, G.

    2015-11-01

    Paper presents the calculus elements and construction for the ultrasonic system used in reconditioning process by metallization. A series of necessary elements used in ultrasonic system dimensioning are given and an ultrasonic system used in reconditioning process by plasma and grain metallization are presented. Also, a calculated ultrasonic system is modelled to work in resonance regime at the frequency f = 22Khz. Stress map inside material, internal energy variation, lost energy variation on length and volume unit are presented.

  9. Evaluation of Suitability of Non-Standardized Test Block for Ultrasonic Testing

    International Nuclear Information System (INIS)

    Kwon, Ho Young; Lim, Jong Ho; Kang, Sei Sun

    2000-01-01

    Standard Test Block(STB) for UT(Ultrasonic Testing) is a block approved by authoritative for material, shape and quality. STB is used for characteristic tests, sensitivity calibration and control of the time base range of UT inspection devices. The material, size and chemical components of STB should be strictly controlled to meet the related standards such as ASTM and JIS because it has an effect upon sensitivity, resolution and reproductivity of UT. The STBs which are not approved are sometimes used because the qualified STBs are very expensive. So, the purpose of this study is to survey the characteristics, quality and usability of Non-Standardized Test Blocks. Non-Standardized Test Blocks did not meet the standard requirements in size or chemical components, and ultrasonic characteristics. Therefore if the Non-Standardized Test Blocks are used without being tested, it's likely to cause errors in detecting the location and measuring the size of the defects

  10. Designing an in-situ ultrasonic nondestructive evaluation system for ultrasonic additive manufacturing

    Science.gov (United States)

    Nadimpalli, Venkata K.; Nagy, Peter B.

    2018-04-01

    Ultrasonic Additive Manufacturing (UAM) is a solid-state layer by layer manufacturing process that utilizes vibration induced plastic deformation to form a metallurgical bond between a thin layer and an existing base structure. Due to the vibration based bonding mechanism, the quality of components at each layer depends on the geometry of the structure. In-situ monitoring during and between UAM manufacturing steps offers the potential for closed-loop control to optimize process parameters and to repair existing defects. One interface that is most prone to delamination is the base/build interface and often UAM component height and quality are limited by failure at the base/build interface. Low manufacturing temperatures and favorable orientation of typical interface defects in UAM make ultrasonic NDE an attractive candidate for online monitoring. Two approaches for in-situ NDE are discussed and the design of the monitoring system optimized so that the quality of UAM components is not affected by the addition of the NDE setup. Preliminary results from in-situ ultrasonic NDE indicate the potential to be utilized for online qualification, closed-loop control and offline certification of UAM components.

  11. A fully automated system for ultrasonic power measurement and simulation accordingly to IEC 61161:2006

    International Nuclear Information System (INIS)

    Costa-Felix, Rodrigo P B; Alvarenga, Andre V; Hekkenberg, Rob

    2011-01-01

    The ultrasonic power measurement, worldwide accepted, standard is the IEC 61161, presently in its 2nd edition (2006), but under review. To fulfil its requirements, considering that a radiation force balance is to be used as ultrasonic power detector, a large amount of raw data (mass measurement) shall be collected as function of time to perform all necessary calculations and corrections. Uncertainty determination demands calculation effort of raw and processed data. Although it is possible to be undertaken in an old-fashion way, using spread sheets and manual data collection, automation software are often used in metrology to provide a virtually error free environment concerning data acquisition and repetitive calculations and corrections. Considering that, a fully automate ultrasonic power measurement system was developed and comprehensively tested. A 0,1 mg of precision balance model CP224S (Sartorius, Germany) was used as measuring device and a calibrated continuous wave ultrasound check source (Precision Acoustics, UK) was the device under test. A 150 ml container filled with degassed water and containing an absorbing target at the bottom was placed on the balance pan. Besides the feature of automation software, a routine of power measurement simulation was implemented. It was idealized as a teaching tool of how ultrasonic power emission behaviour is with a radiation force balance equipped with an absorbing target. Automation software was considered as an effective tool for speeding up ultrasonic power measurement, while allowing accurate calculation and attractive graphical partial and final results.

  12. Monitoring of PHWR end cap weld quality by ultrasonic testing

    International Nuclear Information System (INIS)

    Laxminarayana, B.

    1996-01-01

    In Pressurized Heavy Water Reactor fuel fabrication, the end cap welding is an important process. Till date about 16,000 welds have been studied ultrasonically. This paper discusses the experimental results and the design of a semi automatic ultrasonic equipment incorporating features for both backward and forward integration. (author)

  13. Electromagnetic ultrasonic guided waves

    CERN Document Server

    Huang, Songling; Li, Weibin; Wang, Qing

    2016-01-01

    This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author’s intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.

  14. A New Servo Control Drive for Electro Discharge Texturing System Industrial Applications Using Ultrasonic Technology

    Directory of Open Access Journals (Sweden)

    M. Shafik

    2013-07-01

    Full Text Available This paper presents a new ultrasonic servo control drive for electro discharge texturing system industrial applications. The new drive is aiming to overcome the current teething issues of the existing electro discharge texturing system, servo control drive level of precision, processing stability, dynamic response and surface profile of the machined products. The new ultrasonic servo control drive consists of three main apparatuses, an ultrasonic motor, electronic driver and control unit. The ultrasonic motor consists of three main parts, the stator, rotor and sliding element. The motor design process, basic configuration, principles of motion, finite element analysis and experimental examination of the main characteristics is discussed in this paper. The electronic driver of the motor consists of two main stages which are the booster and piezoelectric amplifier. The experimental test and validation of the developed servo control drive in electro discharge texturing platform is also discussed and presented in this paper. The initial results showed that the ultrasonic servo control drive is able to provide: a bidirectional of motion, a resolution of <50μm and a dynamic response of <10msec. The electron microscopic micro examination into the textured samples showed that: a clear improvement in machining stability, products surface profile, a notable reduction in the processing time, arcing and short-circuiting teething phenomena.

  15. Acceptance Test Report for the 241-AZ-101 Ultrasonic Interface Level Analyzer

    International Nuclear Information System (INIS)

    ANDREWS, J.E.

    2000-01-01

    This document comprises the Acceptance Test Report for the 241-AZ-101 Ultrasonic Interface Level Analyzer. This document presents the results of Acceptance Testing of the 241-AZ-101 Ultrasonic Interface Level Analyzers (URSILLAs). Testing of the URSILLAs was performed in accordance with ATP-260-001, ''URSILLA Pre-installation Acceptance Test Procedure''. The objective of the testing was to verify that all equipment and components function in accordance with design specifications and original equipment manufacturer's specifications

  16. Performance investigation on the ultrasonic atomization liquid desiccant regeneration system

    International Nuclear Information System (INIS)

    Yang, Zili; Zhang, Kaisheng; Hwang, Yunho; Lian, Zhiwei

    2016-01-01

    Highlights: • We applied ultrasonic atomization technology to boost liquid desiccant regeneration. • We established a novel UARS and made a thorough study on its performance. • We developed a performance prediction model for UARS and validated its accuracy. • The necessary regeneration temperature dropped significantly (4.4 °C) in UARS. • Energy consumption for regenerating desiccant was reduced greatly (60.4%) in UARS. - Abstract: Liquid desiccant dehumidification systems have accumulated considerable research interest in recent years for their great energy saving potential in buildings. Within the system, the regenerator recovering liquid desiccant plays a major role in its performance. When the ultrasonic atomization technology is applied to atomize the desiccant solution into numerous tiny droplets with diameters around 50 μm, the regeneration process could be greatly enhanced. To validate this approach, a novel ultrasonic atomization liquid desiccant regeneration system (UARS) was studied in this work. An Ideal Regeneration Model (IRM) was developed to predict the regeneration performance of the UARS. Additionally, thorough experiments were carried out to validate the model under different operating conditions of the desiccant solution and air stream. The model predicted values and the experimental results coincided, with the average deviation less than 7.9%. The performance of UARS was compared with other regeneration systems from the open literature, while a case study was conducted for the power consumption and energy saving potential of UARS. It was found that the ultrasonic atomization technology enabled utilization of lower-grade energy for desiccant regeneration with the regeneration temperature lowered as much as 4.4 °C. In addition, a considerable energy saving potential of up to 23.4% could be achieved by the UARS for regenerating per unit mass flow of desiccant solution, while the power consumption of the ultrasonic atomization system

  17. Further Experiments with Lok-Test and Ultrasonic Test in Relation to Fresh and Hardened Concrete

    DEFF Research Database (Denmark)

    Jensen, Jens Kristian Jehrbo

    Lok-test is mainly a non-destructive pull-out test for determination of concrete strength. The method is deseribed in (l) and it is detailed discussed in theory (2). The method is welknown in practice. Ultrasonic is commonly used for investigations of several materials, especially concrete. In a ....... In a project (3) about non-destructive testing of concrete different methods and the relations to concrete are discussed in theory and practice. This paper point out some interesting results from further experiments in this area.......Lok-test is mainly a non-destructive pull-out test for determination of concrete strength. The method is deseribed in (l) and it is detailed discussed in theory (2). The method is welknown in practice. Ultrasonic is commonly used for investigations of several materials, especially concrete...

  18. Establishment and implementation of performance demonstration system for ultrasonic examination in Korea

    International Nuclear Information System (INIS)

    Kim, Yong-sik

    2007-01-01

    Korea Electric Power Research Institute (KEPRI) and Korea Hydro and Nuclear Power Company (KHNP) developed Korean Performance Demonstration (KPD) system for ultrasonic examination applicable to pressurized light-water reactor and pressurized heavy-water reactor power plants in accordance with ASME Sec. XI App. VIII. In order to develop the KPD system following works were completed. 1) Surveying the welds on piping of all nuclear power plants in Korea, 2) Surveying the bolting configuration of all nuclear power plant in Korea, 3) Determining the number and type of test specimens, 4)Designing the test and the practice specimens, 5) Developing quality assurance procedures for the fabrication of test specimens and system management, 6) Developing generic procedures for manual ultrasonic test, 7) Fabrication and fingerprint of test specimen. After establishing the KPD system, round robin tests were conducted to evaluate the accuracy and reliability of examination results by comparing traditional ASME code and performance demonstration method. KEPRI/KHNP had successfully developed the KPD system to fulfill the performance demonstration requirements of ASME Sec. XI, Appendix VIII, and are executing the performance demonstration test for ultrasonic examination system. (author)

  19. Mid-infrared pulsed laser ultrasonic testing for carbon fiber reinforced plastics.

    Science.gov (United States)

    Kusano, Masahiro; Hatano, Hideki; Watanabe, Makoto; Takekawa, Shunji; Yamawaki, Hisashi; Oguchi, Kanae; Enoki, Manabu

    2018-03-01

    Laser ultrasonic testing (LUT) can realize contactless and instantaneous non-destructive testing, but its signal-to-noise ratio must be improved in order to measure carbon fiber reinforced plastics (CFRPs). We have developed a mid-infrared (mid-IR) laser source optimal for generating ultrasonic waves in CFRPs by using a wavelength conversion device based on an optical parametric oscillator. This paper reports a comparison of the ultrasonic generation behavior between the mid-IR laser and the Nd:YAG laser. The mid-IR laser generated a significantly larger ultrasonic amplitude in CFRP laminates than a conventional Nd:YAG laser. In addition, our study revealed that the surface epoxy matrix of CFRPs plays an important role in laser ultrasonic generation. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Development of a multi-beam laser ultrasonic inspection system and its application on flaw sizing

    International Nuclear Information System (INIS)

    Chivavibul, Pornthep; Lin, Shan; Fukutomi, Hiroyuki; Higuchi, Sadao; Ogata, Takashi; Fukuchi, Tetsuo

    2006-01-01

    Laser ultrasonic technique is a powerful tool for non-contact, nondestructive testing of materials. It is expected to apply to where the conventional ultrasonic technique is not applicable. However, this technique suffers from low sensitivity. In order to overcome this shortcoming, a multi-beam laser ultrasonic system was developed to increase signal-to-noise ratio (SNR) and steer beam direction. The system consisted of eight pulsed Nd:YAG lasers used for ultrasonic generation, and a two-wave mixing interferometer with a long-pulsed Nd:YAG used for ultrasonic detection. Spatial and temporal control of the firing of the individual lasers permitted the generation of both phased array single pulse and narrow-band ultrasonic signals. The performance of developed system was verified using aluminum specimens with the wave generation in a slight ablation mode. A significant increase in sensitivity was obtained, with an increase in signal amplitude with no change in noise level. In the narrow band case, tone bursts were successfully generated in both surface and bulk waves. Beam steering of bulk waves was also performed, and the directivity was confirmed by visualization using a conventional transducer. The developed system was applied to flaw sizing using two techniques: shadow and short-path of diffraction (SPOD), using aluminum specimens with 2-mm, 5-mm, 8-mm slit depths. The shadow technique accurately measured the 5- and 8-mm slits, but not the 2-mm slit. The SPOD technique, carried out using a 5-MHz normal longitudinal transducer as a detector instead of TWN interferometer, accurately measured slits in all specimens with an error less than 0.5 mm. (author)

  1. Directivity measurements in aluminum using a laser ultrasonics system

    International Nuclear Information System (INIS)

    Sakamoto, J M S; Pacheco, G M; Tittmann, B R; Baba, A

    2011-01-01

    A laser ultrasonics system was setup to measure the directivity (angular dependence pattern) of the amplitude of ultrasonic waves generated in aluminum samples. A pulsed Nd:YAG laser operating at 1064 nm optical wavelength, with typical pulse width (FWHM) of 8 ns, and energy per pulse of 450 mJ, was used to generate the ultrasound waves in the samples. The laser detection system was a Mach-Zehnder interferometer with typical noise-limited resolution of 0.25 nm (rms), frequency range from 50 kHz to 20 MHz, and measurement range from -75 nm/V to +75 nm/V. Two different optical spot sizes of the Nd:YAG laser were used to generate waves in the ablation regime: one was focused and the other was unfocused. Using the obtained data, the directivity graphics were drawn and compared with the theoretical curves, showing a good agreement. The experiments showed the directivity as a function of the optical spot size. For a point ultrasonic source (or focused optical spot), the directivity shows that the longitudinal waves present considerable amplitude in all directions. For a larger ultrasonic source (or an unfocused optical spot) the directivity shows that the longitudinal waves are generated with the higher amplitudes inside angles around ±10 0 .

  2. High speed ultrasonic system to measure bubbles velocities in a horizontal two-phase flow

    International Nuclear Information System (INIS)

    Cunha Filho, Jurandyr S.; Jian Su; Farias, Marcos S.; Faccini, Jose L.H.; Lamy, Carlos A.

    2009-01-01

    In this work, a non invasive technique consisting of a high speed ultrasonic multitransducer pulse-echo system was developed to characterize gas-liquid two-phase flow parameters that are important in the study of the primary refrigeration circuit of nuclear reactors. The high speed ultrasonic system consists of two transducers (10 MHz/φ 6.35 mm), a generator/multiplexer board, and software that selects and has a data acquisition system of the ultrasonic signals. The resolutions of the system and the pulse time generated from each transducer are, respectively, 10 ns and 1.06 ms. The system initially was used in the local instantaneous measurement of gas-liquid interface in a circular horizontal pipe test section made of a 5 m long stainless steel pipe of 51.2 mm inner diameter, where the elongated bubbles velocity was measured (Taylor bubbles). The results show that the high speed ultrasonic pulse-echo system provides good results for the determination of elongated bubbles velocities. (author)

  3. Development of ultrasonic testing equipment incorporating electromagnetic acoustic transducer

    International Nuclear Information System (INIS)

    Sato, Michio; Kimura, Motohiko; Okano, Hideharu; Miyazawa, Tatsuo; Nagase, Koichi; Ishikawa, Masaaki

    1989-01-01

    An ultrasonic testing equipment for use in in-service inspection of nuclear power plant piping has been developed, which comprises an angle-beam electromagnetic acoustic transducer mounted on a vehicle for scanning the piping surface to be inspected. The transducer functions without direct contact with the piping surface through couplant, and the vehicle does not require a guide track installed on the piping surface, being equipped with magnetic wheels that adhere to the piping material, permitting it to travel along the circumferential weld joint of a carbon steel pipe. The equipment thus dispenses with the laborious manual work involved in preparing the piping for inspection, such as removal of protective coating, surface polishing and installation of guide track and thereby considerably reduces the duration of inspection. The functioning principle and structural features of the transducer and vehicle are described, together with the results of trial operation of a prototype unit, which proved a 1mm deep notch cut on a test piece of 25mm thick carbon steel plate to be locatable with an accuracy of ±2mm. (author)

  4. The automotive anti-collision system based on Ultrasonic

    Directory of Open Access Journals (Sweden)

    Qi Qinqin

    2017-08-01

    Full Text Available In the existing system of automobile anti-collision,the radar is mainly used for ranging.However,it can't be widely used because of its high cost.In this paper,based on the existing system of automobile anti-collision,the ultrasonic sensor is used to measure the distance and establish relevant anti-collision model.The experimental results show that the alarming information is accurate within a certain range.

  5. Development of ultrasonic high temperature system for severe accidents research

    International Nuclear Information System (INIS)

    Koo, Kil Mo; Kang, Kyung Ho; Kim, Young Ro and others

    2000-07-01

    The aims of this study are to find a gap formation between corium melt and the reactor lower head vessel, to verify the principle of the gap formation and to analyze the effect of the gap formation on the thermal behavior of corium melt and the lower plenum. This report aims at suggesting development of a new high temperature measuring system using an ultrasonic method which overcomes the limitations of the present thermocouple method used for severe accident experiments. Also, this report describes the design and manufacturing method of the ultrasonic system. At that time, the sensor element is fabricated to a reflective element using 1mm diameter and 50 mm and 80 mm long tungsten alloy wires. This temperature measuring system is intended to measure up to 2800 deg C

  6. Study of a system devoted for ultrasonic non destructive testing of complex geometry pieces using smart contacts transducers; Etude d'un systeme de controle par ultrasons des pieces de geometrie conplexe a l'aide de traducteurs contacts intelligents

    Energy Technology Data Exchange (ETDEWEB)

    Chatillon, S

    2000-07-01

    This work is devoted to the enhancement of the ultrasonic non destructive testing in contact of nuclear components with complex geometry. In service inspections of such components performed with conventional probes present limited performances: variations in sensitivity, due to unmatched contact, incorrect characterization of the defect, because of the disorientations of the transducer during its displacement, and uncovered scan area when the geometry of the components disturbs the displacement of the transducer. We propose a new concept of smart transducer to improve the performances of such inspections. The radiating surface is flexible to optimize the sensitivity of the testing. Using the measure of the radiating surface distortion, performed by a specific instrumentation, phased array techniques allow the control of the transmitted beam to optimize the defect localization and characterization. Thus, this system is self-contained. We present the different steps involved to develop this system and its experimental validation. A computing model is extended to predict the field transmitted by a flexible contact transducer. This model is used to optimize the radiating surface of a jointed transducer. A delay law optimizing algorithm is developed to ensure the control of the transmitted beam. At last, a method and the associated instrumentation designed to measure the radiating surface distortion are proposed. Experimental Measures in the through-transmission mode validate the ability of this system to control the field transmitted through complex interfaces. At last, inspections in the pulse-echo mode are performed on a specimen with an irregular profile, representative of a real component inspected on site, and artificial embedded reflectors. Two control configurations are used. In the first one, the transducer is displaced along the surface, in the second one, the transducer is fixed and the region of interest is scanned using beam steering. The results show that

  7. More recent developments for the ultrasonic testing of light water reactor pressure vessels

    International Nuclear Information System (INIS)

    Seiger, H.; Engl, G.

    1976-01-01

    The development of an ultrasonic testing method for the inspection from the outside of the areas close to the cladding of the spherical fields of holes of light water reactor pressure vessels is described

  8. Enhancing reliability of ultrasonic testing of welds of nuclear power plant equipment

    International Nuclear Information System (INIS)

    Shcherbinskij, V.G.

    1981-01-01

    Results of investigation of factors influencing the reliability of manual ultrasonic testing of welded joints and weld deposited metal power-generating equipment are presented. Recommendations on the enhancing of reliability are given [ru

  9. Trans-skull ultrasonic Doppler system aided by fuzzy logic

    Science.gov (United States)

    Hata, Yutaka; Nakamura, Masato; Yagi, Naomi; Ishikawa, Tomomoto

    2012-06-01

    This paper describes a trans-skull ultrasonic Doppler system for measuring the blood flow direction in brain under skull. In this system, we use an ultrasonic array probe with the center frequency of 1.0 MHz. The system determines the fuzzy degree of blood flow by Doppler Effect, thereby it locates blood vessel. This Doppler Effect is examined by the center of gravity shift of the frequency magnitudes. In in-vitro experiment, a cow bone was employed as the skull, and three silicon tubes were done as blood vessels, and bubble in water as blood. We received the ultrasonic waves through a protein, the skull and silicon tubes in order. In the system, fuzzy degrees are determined with respect to the Doppler shift, amplitude of the waves and attenuation of the tissues. The fuzzy degrees of bone and blood direction are calculated by them. The experimental results showed that the system successfully visualized the skull and flow direction, compared with the location and flow direction of the phantom. Thus, it detected the flow direction by Doppler Effect under skull, and automatically extracted the region of skull and blood vessel.

  10. A novel ultrasonic phased array inspection system to NDT for offshore platform structures

    Science.gov (United States)

    Wang, Hua; Shan, Baohua; Wang, Xin; Ou, Jinping

    2007-01-01

    A novel ultrasonic phased array detection system is developed for nondestructive testing (NDT). The purpose of the system is to make acquisition of data in real-time from 64-element ultrasonic phased array transducer, and to enable real- time processing of the acquired data. The system is composed of five main parts: master unit, main board, eight transmit/receive units, a 64-element transducer and an external PC. The system can be used with 64 element transducers, excite 32 elements, receive and sample echo signals form 32 elements simultaneously at 62.5MHz with 8 bit precision. The external PC is used as the user interface showing the real time images and controls overall operation of the system through USB serial link. The use of Universal Serial Bus (USB) improves the transform speed and reduces hardware interface complexity. The program of the system is written in Visual C++.NET and is platform independent.

  11. Artificial intelligence and ultrasonic tests in detection of defects

    International Nuclear Information System (INIS)

    Barrera Cardiel, G.; Fabian Alvarez, M. a.; Velez Martinez, M.; Villasenor, L.

    2001-01-01

    One of the most serious problems in the quality control of welded unions is the location, identification and classification of defects. As a solution to this problem, a technique for classification, applicable to welded unions done by electric arc welding as well as by friction, is proposed; it is based on ultrasonic signals. The neuronal networks proposed are Kohonen and Multilayer Percept ron, all in a virtual instrument environment. Currently the techniques most used in this field are: radiological analysis (X-rays) and ultrasonic analysis (ultrasonic waves). The X-ray technique in addition to being dangerous requires highly specialized personnel and equipment, therefore its use is restricted. The ultrasonic technique, in spite of being one of the most used for detection of discontinuities, requires personnel with wide experience in the interpretation of ultrasonic signals, this is a time-consuming process which necessarily increases its operation cost. The classification techniques that we propose turn out to be safe, reliable, inexpensive and easy to implement for the solution of this important problem. (Author) 8 refs

  12. Flood Monitoring and Early Warning System Using Ultrasonic Sensor

    Science.gov (United States)

    Natividad, J. G.; Mendez, J. M.

    2018-03-01

    The purpose of this study is to develop a real-time flood monitoring and early warning system in the northern portion of the province of Isabela, particularly the municipalities near Cagayan River. Ultrasonic sensing techniques have become mature and are widely used in the various fields of engineering and basic science. One of advantage of ultrasonic sensing is its outstanding capability to probe inside objective non-destructively because ultrasound can propagate through any kinds of media including solids, liquids and gases. This study focuses only on the water level detection and early warning system (via website and/or SMS) that alerts concern agencies and individuals for a potential flood event. Furthermore, inquiry system is also included in this study to become more interactive wherein individuals in the community could inquire the actual water level and status of the desired area or location affected by flood thru SMS keyword. The study aims in helping citizens to be prepared and knowledgeable whenever there is a flood. The novelty of this work falls under the utilization of the Arduino, ultrasonic sensors, GSM module, web-monitoring and SMS early warning system in helping stakeholders to mitigate casualties related to flood. The paper envisions helping flood-prone areas which are common in the Philippines particularly to the local communities in the province. Indeed, it is relevant and important as per needs for safety and welfare of the community.

  13. Digitising of ultrasonic pulse echo devices as a means for automation of ultrasonic testing

    International Nuclear Information System (INIS)

    Rosenberg, R.

    1989-01-01

    A universal multi-purpose test equipment - EPOCH 2002 - with a 12.5 cm picture tube and a digitally generated echo pulse representation with a format of 80x57 mm is introduced. The content of the screen and the equipment adjustment data can be passed on to external units via a video or RS 232 interface. These parameters favour the use of equipment in part-automated test systems, such as, for example, level monitoring with difficult geometries, continuous testing of shrinkage during profile extrusion and testing for cracks around bolts and rivets with a rotor scanner in aircraft construction. (orig./MM) [de

  14. Beat frequency ultrasonic microsphere contrast agent detection system

    Science.gov (United States)

    Pretlow, III, Robert A. (Inventor); Yost, William T. (Inventor); Cantrell, Jr., John H. (Inventor)

    1997-01-01

    A system for and method of detecting and measuring concentrations of an ultrasonically-reflective microsphere contrast agent involving detecting non-linear sum and difference beat frequencies produced by the microspheres when two impinging signals with non-identical frequencies are combined by mixing. These beat frequencies can be used for a variety of applications such as detecting the presence of and measuring the flow rates of biological fluids and industrial liquids, including determining the concentration level of microspheres in the myocardium.

  15. High repetition ration solid state switched CO2 TEA laser employed in industrial ultrasonic testing of aircraft parts

    Science.gov (United States)

    von Bergmann, Hubertus; Morkel, Francois; Stehmann, Timo

    2015-02-01

    Laser Ultrasonic Testing (UT) is an important technique for the non-destructive inspection of composite parts in the aerospace industry. In laser UT a high power, short pulse probe laser is scanned across the material surface, generating ultrasound waves which can be detected by a second low power laser system and are used to draw a defect map of the part. We report on the design and testing of a transversely excited atmospheric pressure (TEA) CO2 laser system specifically optimised for laser UT. The laser is excited by a novel solid-state switched pulsing system and utilises either spark or corona preionisation. It provides short output pulses of less than 100 ns at repetition rates of up to 1 kHz, optimised for efficient ultrasonic wave generation. The system has been designed for highly reliable operation under industrial conditions and a long term test with total pulse counts in excess of 5 billion laser pulses is reported.

  16. Progress and Challenges of Ultrasonic Testing for Stress in Remanufacturing Laser Cladding Coating

    Directory of Open Access Journals (Sweden)

    Xiao-Ling Yan

    2018-02-01

    Full Text Available Stress in laser cladding coating is an important factor affecting the safe operation of remanufacturing components. Ultrasonic testing has become a popular approach in the nondestructive evaluation of stress, because it has the advantages of safety, nondestructiveness, and online detection. This paper provides a review of ultrasonic testing for stress in remanufacturing laser cladding coating. It summarizes the recent research outcomes on ultrasonic testing for stress, and analyzes the mechanism of ultrasonic testing for stress. Remanufacturing laser cladding coating shows typical anisotropic behaviors. The ultrasonic testing signal in laser cladding coating is influenced by many complex factors, such as microstructure, defect, temperature, and surface roughness, among others. At present, ultrasonic testing for stress in laser cladding coating can only be done roughly. This paper discusses the active mechanism of micro/macro factors in the reliability of stress measurement, as well as the impact of stress measurement on the quality and safety of remanufacturing components. Based on the discussion, this paper proposes strategies to nondestructively, rapidly, and accurately measure stress in remanufacturing laser cladding coating.

  17. Ultrasonic immersion probes characterization for use in nondestructive testing according to EN 12668-2:2001

    International Nuclear Information System (INIS)

    Silva, C E R; Alvarenga, A V; Costa-Felix, R P B

    2011-01-01

    Ultrasound is often used as a Non-Destructive Testing (NDT) technique to analyze components and structures to detect internal and surface flaws. To guarantee reliable measurements, it is necessary to calibrate instruments and properly assess related uncertainties. An important device of an ultrasonic instrument system is its probe, which characterization should be performed according to EN 12668-2. Concerning immersion probes beam profile, the parameters to be assessed are beam divergence, focal distance, width, and zone length. Such parameters are determined by scanning a reflector or a hydrophone throughout the transducer beam. Within the present work, a methodology developed at Inmetro's Laboratory of Ultrasound to evaluate relevant beam parameters is presented, based on hydrophone scan. Water bath and positioning system to move the hydrophone were used to perform the scan. Studied probes were excited by a signal generator, and the waterborne signals were detected by the hydrophone and acquired using an oscilloscope. A user-friendly virtual instrument was developed in LabVIEW to automate the system. The initial tests were performed using 1 and 2.25 MHz-ultrasonic unfocused probes (Oe 1.27 cm), and results were consistent with the manufacturer's specifications. Moreover, expanded uncertainties were lower than 6% for all parameters under consideration.

  18. Ultrasonic immersion probes characterization for use in nondestructive testing according to EN 12668-2:2001

    Science.gov (United States)

    Silva, C. E. R.; Alvarenga, A. V.; Costa-Felix, R. P. B.

    2011-02-01

    Ultrasound is often used as a Non-Destructive Testing (NDT) technique to analyze components and structures to detect internal and surface flaws. To guarantee reliable measurements, it is necessary to calibrate instruments and properly assess related uncertainties. An important device of an ultrasonic instrument system is its probe, which characterization should be performed according to EN 12668-2. Concerning immersion probes beam profile, the parameters to be assessed are beam divergence, focal distance, width, and zone length. Such parameters are determined by scanning a reflector or a hydrophone throughout the transducer beam. Within the present work, a methodology developed at Inmetro's Laboratory of Ultrasound to evaluate relevant beam parameters is presented, based on hydrophone scan. Water bath and positioning system to move the hydrophone were used to perform the scan. Studied probes were excited by a signal generator, and the waterborne signals were detected by the hydrophone and acquired using an oscilloscope. A user-friendly virtual instrument was developed in LabVIEW to automate the system. The initial tests were performed using 1 and 2.25 MHz-ultrasonic unfocused probes (Ø 1.27 cm), and results were consistent with the manufacturer's specifications. Moreover, expanded uncertainties were lower than 6% for all parameters under consideration.

  19. An application of ultrasonic inspection system (INER-SCAN) inspecting generator retaining rings

    International Nuclear Information System (INIS)

    Chen, L.C.; Hwang, S.C.

    1994-01-01

    The performances of the automatic ultrasonic inspecting and imaging system (INER-SCAN) developed by the NDT laboratory of the Institute of Nuclear Energy Research have been enhanced and much more improved to commercial level. With appropriate rearrangements of software libraries, it is used to inspect generator retaining rings which are critical structural rotor components that support the end-turn regions of the rotor wingings against centrifugal forces. The use of the INER-SCAN provides distinct advantages over other systems in terms of the reliability of inspection and the flexibility of system performance modifications. The INER-SCAN system assists users to select and modify ultrasonic parameters under computer-aided environment. In addition, the INER-SCAN system contains the necessary software functions to image the ultrasonic data (A-SCAN, B-SCAN, B'-SCAN, C-SCAN). The use of the imaging system makes it quite easy to evaluate various test parameters and their effects on the discrimination between geometric and IGSCC reflectors. Through experimental test, it is recognized that the system has powerful detectable capability which can find 0.2mm-depth slight scratch on the inner surface of retaining rings. This system can also be used on different generator retaining rings (different in terms of hidden design features) without the need for access to the dimension of retaining ring

  20. Development of computer-controlled ultrasonic image processing system for severe accidents research

    International Nuclear Information System (INIS)

    Koo, Kil Mo; Kang, Kyung Ho; Kim, Jong Tai; Kim, Jong Whan; Cho, Young Ro; Ha, Kwang Soon; Park, Rae Jun; Kim, Sang Baik; Kim, Hee Dong; Sim, Chul Moo

    2000-07-01

    In order to verify in-vessel corium cooling mechanism, LAVA(Lower-plenum Arrested Vessel Attack) experiment is being performed as a first stage proof of principle test. The aims of this study are to find a gap formation between corium melt and reactor lower head vessel, to verify the principle of the gap formation and to analyze the effect of the gap formation on the thermal behavior of corium melt and the lower plenum. This report aims at developing a computer controlled image signal processing system which is able to improve visualization and to measure the gap distribution with 3-dimensional planar image using a time domain signal analysis method as a part of the ultrasonic pulse echo methods and a computerized position control system. An image signal processing system is developed by independently developing an ultrasonic image signal processing technique and a PC controlled position control system and then combining both systems

  1. Development of computer-controlled ultrasonic image processing system for severe accidents research

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Kil Mo; Kang, Kyung Ho; Kim, Jong Tai; Kim, Jong Whan; Cho, Young Ro; Ha, Kwang Soon; Park, Rae Jun; Kim, Sang Baik; Kim, Hee Dong; Sim, Chul Moo

    2000-07-01

    In order to verify in-vessel corium cooling mechanism, LAVA(Lower-plenum Arrested Vessel Attack) experiment is being performed as a first stage proof of principle test. The aims of this study are to find a gap formation between corium melt and reactor lower head vessel, to verify the principle of the gap formation and to analyze the effect of the gap formation on the thermal behavior of corium melt and the lower plenum. This report aims at developing a computer controlled image signal processing system which is able to improve visualization and to measure the gap distribution with 3-dimensional planar image using a time domain signal analysis method as a part of the ultrasonic pulse echo methods and a computerized position control system. An image signal processing system is developed by independently developing an ultrasonic image signal processing technique and a PC controlled position control system and then combining both systems.

  2. The STADUS ultrasonic data acquisition and processing system

    International Nuclear Information System (INIS)

    Frappier, J.C.; Birac, A.M.; Saglio, R.

    1983-01-01

    The use of the PRODUS software for real-time system management results in definitely improved date acquisition, although signal arrival is, of course, a random process. As regards data processing and display; the STADUS-PRODUS combination provides the operator with a high degree of flexibility in changing the parameters from which the three standard A-SCAN, B-SCAN, and C-SCAN displays are generated. STADUS effectivity has been demonstrated in the field through the many reactor vessel inspections performed to date. The system has been a key element in the success of underclad cracking detection and evaluation methods. The STADUS equipment, designed and built by CEA, has the advantage of being capable of acquiring a large number of ultrasonic date simultaneously generated by several transducers (up to sixteen), and to immediately process the date for creating pictures of the zone under examination, as required by the operator. Through these improvements in ultrasonic data acquisition and interpretation, the STADUS system helps enhance the quality of automatic ultrasonic examinations

  3. Method of case hardening depth testing by using multifunctional ultrasonic testing instrument

    International Nuclear Information System (INIS)

    Salchak, Y A; Sednev, D A; Ardashkin, I B; Kroening, M

    2015-01-01

    The paper describes usability of ultrasonic case hardening depth control applying standard instrument of ultrasonic inspections. The ultrasonic method of measuring the depth of the hardened layer is proposed. Experimental series within the specified and multifunctional ultrasonic equipment are performed. The obtained results are compared with the results of a referent method of analysis. (paper)

  4. Measurements of the gap/displacement and development of the ultrasonic temperature measuring system applied to severe accidents research

    International Nuclear Information System (INIS)

    Koo, Kil Mo; Kang, Kyung Ho; Cho, Young Ro; Park, Rae Jun; Kim, Sang Baik; Sim, Chul Moo

    2001-02-01

    This report, in order to measure quantitative LAVA experimental results, focuses on measuring the gap formed on the lower head vessel using a ultrasonic pulse echo method and neutron radiography, measuring displacement of the lower head vessel using capacitance method, building a measuring system and developing high temperature measurement system using ultrasonic method. The scope of gap measurement and system development using the ultrasonic method is 2-dimensional image processing using tomographical B scan method and 2- and 3-dimensional image processing using C scan methods based on the one dimensional time domain A scan signal. For some test specimen, the gap size is quantitative represented apply C scan methods. The important ultrasonic image processing technique is on the development of accurate position control system. The requirements of the position control system are a contact technique on the test specimen and a fine moving technique. Since the specimen is hemispherical, the contact technique is very difficult. Therefore, the gap measurement using the ultrasonic pulse echo method was applied developing the position controlling scanner system. Along with the ultrasonic method, neutron radiography method using KAERI's neutron source was attempted 4 times and the results are compared. The fine displacement of the hemispherical specimen was measured using a capacitive displacement sensor. The requirements for this measuring technique are fixing of the capacitance sensor to the experimental facilities and a remote control position varying system. This remote control position varying system was manufactured with a electrical motor. The development of a high temperature measuring system using a ultrasonic method the second year plan, is performed with developing a sensor which can measure up to 2300 deg C

  5. Modelling of ultrasonic nondestructive testing in anisotropic materials - Rectangular crack

    International Nuclear Information System (INIS)

    Bostroem, A.

    2001-12-01

    Nondestructive testing with ultrasound is a standard procedure in the nuclear power industry when searching for defects, in particular cracks. To develop and qualify testing procedures extensive experimental work on test blocks is usually required. This can take a lot of time and therefore be quite costly. A good mathematical model of the testing situation is therefore of great value as it can reduce the experimental work to a great extent. A good model can be very useful for parametric studies and as a pedagogical tool. A further use of a model is as a tool in the qualification of personnel. In anisotropic materials, e.g. austenitic welds, the propagation of ultrasound becomes much more complicated as compared to isotropic materials. Therefore, modelling is even more useful for anisotropic materials, and it in particular has a greater pedagogical value. The present project has been concerned with a further development of the anisotropic capabilities of the computer program UTDefect, which has so far only contained a strip-like crack as the single defect type for anisotropic materials. To be more specific, the scattering by a rectangular crack in an anisotropic component has been studied and the result is adapted to include transmitting and receiving ultrasonic probes. The component under study is assumed to be anisotropic with arbitrary anisotropy. On the other hand, it is assumed to be homogeneous, and this in particular excludes most welds, where it is seldom an adequate approximation to assume homogeneity. The anisotropy may be arbitrarily oriented and the same is true of the rectangular crack. The crack may also be located near a backside of the component. To solve the scattering problem for the crack an integral equation method is used. The probe model has been developed in an earlier project and to compute the signal response in the receiving probe an electromechanical reciprocity argument is employed. As a rectangle is a truly 3D scatterer the sizes of the

  6. Automated ultrasonic examination of light water reactor systems

    International Nuclear Information System (INIS)

    Walter, J.H.

    1975-01-01

    An automated ultrasonic examination system has been developed to meet the pre- and inservice inspection requirements of light water reactors. This system features remotely-controlled travelling instrument carriers, computerized collection and storage or inspection data in a manner providing real time comparison against code standards, and computer control over the positioning of the instrument carriers to provide precise location data. The system is currently being utilized in the field for a variety of reactor inspections. The principal features of the system and the recent inspection experience are discussed. (author)

  7. Automated phased array ultrasonic inspection system for rail wheel sets

    International Nuclear Information System (INIS)

    Grosser, Paul; Weiland, M.G.

    2013-01-01

    This paper covers the design, system automation, calibration and validation of an automated ultrasonic system for the inspection of new and in service wheel set assemblies from diesel-electric locomotives and gondola cars. This system uses Phased Array (PA) transducers for flaw detection and Electro-Magnetic Acoustic Transducers (EMAT) for the measurement of residual stress. The system collects, analyses, evaluates and categorizes the wheel sets automatically. This data is archived for future comparison and trending. It is also available for export to a portal lathe for increased efficiency and accuracy of machining, therefore allowing prolonged wheel life.

  8. Ultrasonic in-service testing of pressure vessel bodies of nuclear power reactors

    International Nuclear Information System (INIS)

    Obraz, J.

    1978-01-01

    In-service ultrasonic testing of reactor pressure vessels is described using a system of probes for simultaneous testing of material or weld joint thicknesses. The signal is transmitted from a common output via a 30 m long cable to electronic evaluation equipment. The methods are described of ultrasonic detection of fatigue cracks. The static calculation of the dependence of echo amplitudes on crack orientation and the dynamic calculation of the crack orientation effect are described for the indirect reflection technique. In testing, angular probes with gap-type acoustic coupling operating at a frequency of 2 MHz were preferably used. For detecting planar defects of more than 10 mm in size inclined by more than +-10deg probes operating at a frequency of 1 MHz were more advantageous. The direct reflection technique is suitable for detecting defects near the surface (10 to 20 mm) and for cases when the indirect reflection technique cannot be used. For this technique a focusing probe operating at a frequency of 2 MHz is suitable. The strong dependence of the echo amplitude on the crack depth is a disadvantage of the technique. Defects near the surface, i.e., immediately under cladding are best detected by means of a double probe transmitting transversal waves at an angle of 60deg. Experimental measurements were carried out on materials with artificial defects of the type of bores with flat bottom. (J.P.)

  9. Ultrasonic and advanced methods for nondestructive testing and material characterization

    National Research Council Canada - National Science Library

    Chen, C. H

    2007-01-01

    ... and physics among others. There are at least two dozen NDT methods in use. In fact any sensor that can examine the inside of material nondestructively is useful for NDT. However the ultrasonic methods are still most popular because of its capability, flexibility, and relative cost effectiveness. For this reason this book places a heavy emphasis...

  10. Recording length criteria as applied in ultrasonic testing

    International Nuclear Information System (INIS)

    Fischer, E.; Kroening, M.; Schober, H.; Fischdick, H.

    1983-01-01

    An appreciable method used to assess the quality and integrity of safety-related components in light water reactors is the ultrasonic examination, in which case great importance is attributed to the criteria pertaining to recording length and permissible defect size. The development of the recording length criteria as applied when employing this method of examination is portrayed, the latter being based on the criteria which have proven themselves throughout long years of practice in the examination of conventional components. When taking these criteria into account the application of conventional ultrasonic techniques often leads to problems in the case of thick-walled components the reason being that indications are overrated. Taking the design of reactor components as the basic point of consideration, modified criteria are derived particularly when the size of discontinuities calculated by fracture mechanics analyses is taken into account. The introduction of new ultrasonic examination techniques such as, for example, focussed probes revealed that a considerably more realistic assessment is possible and consequently results in a reduction of unnecessary repairs. A comparison of the size of indications determined using conventional and analytical technqiues renders possible the anchoring of an intermediate stage in the evaluation of indications which is encompassed in the consideration of the bundle divergence. Thus a new concept is realized for the evaluation of ultrasonic indications detected in reactor components, which in the meantime has found its way into the associated regulatory guides. (orig.)

  11. Ultrasonic testing with the phased array method at the pipe connection inner edges in pipings

    International Nuclear Information System (INIS)

    Brekow, G.; Wuestenberg, H.; Hesselmann, H.; Rathgeb, W.

    1991-01-01

    Ultrasonic testing with the phased array method at the pipe connection inner edges in pipings. The pipe connection inner corner tests in feedwater lines to the main coolant pipe were carried out by Preussen-Elektra in cooperation with Siemens KWU and the BAM with the ultrasonic phased array method. The testing plan was developed by means of a computed model. For a trial of the testing plan, numerous ultrasonic measurements with the phased array method were carried out using a pipe test piece with TH-type inner edges, which was a 1:1 model of the reactor component to be tested. The data measured at several test notches in the pipe connection inner edge area covered by a plating of 6 mm were analyzed. (orig./MM) [de

  12. Evaluation of Effect by Internal Flow on Ultrasonic Testing Flaw Sizing in Piping

    International Nuclear Information System (INIS)

    Lee, Jeong Seok; Yoon, Byung Sik; Kim, Yong Sik

    2013-01-01

    In this study, the ultrasonic amplitude difference between air filled and water filled piping in nuclear power plant is compared by modeling approach. In this study, ultrasonic amplitude differences between air and water filled pipe are evaluated by modeling approach. Consequently, we propose the following results. The ultrasonic amplitude difference between air and water filled condition is measured by lower than 1 dB in modeling calculation. The flaw length sizing error between air and water filled condition shows same results based on 12 dB drop method even thought the amplitude difference is 1 dB. Most of the piping welds in nuclear power plants are inspected periodically using ultrasonic techniques to detect service-induced flaws such as IGSCC cracking. The inspection results provide information such as location, maximum amplitude response, ultrasonic length, height and finally the nature or flaw pattern. The founded flaw in ultrasonic inspection is accepted or rejected based on these information. Specially, the amplitude of flaw response is very important to estimate the flaw size. Currently the ultrasonic inspections in nuclear power plant components are performed by specific inspection procedure which describing inspection technique include inspection system, calibration methodology and flaw characterizing methodology. To perform ultrasonic inspection during in-service inspection, reference gain should be established before starting ultrasonic inspection by requirement of ASME code. This reference gain used as basic criteria to evaluate flaw sizing. Sometimes, a little difference in establishing reference gain between calibration and field condition can lead to deviation in flaw sizing. Due to this difference, the inspection result may cause flaw sizing error

  13. Acceptance Test Report for the 241-AZ-101 Ultrasonic Interface Level Analyzer

    Energy Technology Data Exchange (ETDEWEB)

    ANDREWS, J.E.

    2000-01-27

    This document comprises the Acceptance Test Report for the 241-AZ-101 Ultrasonic Interface Level Analyzer. This document presents the results of Acceptance Testing of the 241-AZ-101 Ultrasonic Interface Level Analyzers (URSILLAs). Testing of the URSILLAs was performed in accordance with ATP-260-001, ''URSILLA Pre-installation Acceptance Test Procedure''. The objective of the testing was to verify that all equipment and components function in accordance with design specifications and original equipment manufacturer's specifications.

  14. An ultrasonic system for weed detection in cereal crops.

    Science.gov (United States)

    Andújar, Dionisio; Weis, Martin; Gerhards, Roland

    2012-12-13

    Site-specific weed management requires sensing of the actual weed infestation levels in agricultural fields to adapt the management accordingly. However, sophisticated sensor systems are not yet in wider practical use, since they are not easily available for the farmers and their handling as well as the management practice requires additional efforts. A new sensor-based weed detection method is presented in this paper and its applicability to cereal crops is evaluated. An ultrasonic distance sensor for the determination of plant heights was used for weed detection. It was hypothesised that the weed infested zones have a higher amount of biomass than non-infested areas and that this can be determined by plant height measurements. Ultrasonic distance measurements were taken in a winter wheat field infested by grass weeds and broad-leaved weeds. A total of 80 and 40 circular-shaped samples of different weed densities and compositions were assessed at two different dates. The sensor was pointed directly to the ground for height determination. In the following, weeds were counted and then removed from the sample locations. Grass weeds and broad-leaved weeds were separately removed. Differences between weed infested and weed-free measurements were determined. Dry-matter of weeds and crop was assessed and evaluated together with the sensor measurements. RGB images were taken prior and after weed removal to determine the coverage percentages of weeds and crop per sampling point. Image processing steps included EGI (excess green index) computation and thresholding to separate plants and background. The relationship between ultrasonic readings and the corresponding coverage of the crop and weeds were assessed using multiple regression analysis. Results revealed a height difference between infested and non-infested sample locations. Density and biomass of weeds present in the sample influenced the ultrasonic readings. The possibilities of weed group discrimination were

  15. Ultrasonic treatment for microbiological control of water systems

    International Nuclear Information System (INIS)

    Broekman, S.; Pohlmann, O.; Beardwooden, E. S.; Cordemans de Meulenaer, E.

    2010-01-01

    A combination treatment of shear, micro-bubbles, and high-frequency low-power ultrasound introduced via side-stream treatment of industrial water systems has shown excellent results in controlling bacteria and algae; Through the physical, high-stress environment created by ultrasonic waves, sessile and planktonic biological populations, some of which may undergo programmed cell death (PCD), can be controlled. Additionally, the instability and reduction of biofilm have been observed in systems treated by ultrasound and may be attributed to starvation-stress and lack of available cross-linking cations in the biofilm. (authors)

  16. Ultrasonic treatment for microbiological control of water systems

    Energy Technology Data Exchange (ETDEWEB)

    Broekman, S.; Pohlmann, O.; Beardwooden, E. S.; Cordemans de Meulenaer, E. [Ashland Hercules Water Technologies, Krefeld (Germany)

    2010-08-15

    A combination treatment of shear, micro-bubbles, and high-frequency low-power ultrasound introduced via side-stream treatment of industrial water systems has shown excellent results in controlling bacteria and algae; Through the physical, high-stress environment created by ultrasonic waves, sessile and planktonic biological populations, some of which may undergo programmed cell death (PCD), can be controlled. Additionally, the instability and reduction of biofilm have been observed in systems treated by ultrasound and may be attributed to starvation-stress and lack of available cross-linking cations in the biofilm. (authors)

  17. Nonlinear NDT: A Route to Conventional Ultrasonic Testing

    OpenAIRE

    Igor Solodov

    2016-01-01

    The bottleneck problem of nonlinear NDT is a low efficiency of conversion from fundamental frequency to nonlinear frequency components. In this paper, it is proposed to use a combination of nonlinearity with Local Defect Resonance (LDR) to enhance substantially the input-output conversion. Since LDR is an efficient resonance “amplifier” of the local vibrations, it manifests a profound nonlinearity even at moderate ultrasonic excitation level. As the driving frequency matches the LDR-frequency...

  18. System and process for ultrasonic characterization of deformed structures

    Science.gov (United States)

    Panetta, Paul D [Williamsburg, VA; Morra, Marino [Richland, WA; Johnson, Kenneth I [Richland, WA

    2011-11-22

    Generally speaking, the method of the present invention is performed by making various ultrasonic scans at preselected orientations along the length of a material being tested. Data from the scans are then plotted together with various calculated parameters that are calculated from this data. Lines or curves are then fitted to the respective plotted points. Review of these plotted curves allows the location and severity of defects within these sections to be determined and quantified. With this information various other decisions related to how, when or whether repair or replacement of a particular portion of a structure can be made.

  19. Numeric ultrasonic image processing method: application to non-destructive testing of stainless austenitic steel welds

    International Nuclear Information System (INIS)

    Corneloup, G.

    1988-09-01

    A bibliographic research on the means used to improve the ultrasonic inspection of heterogeneous materials such as stainless austenitic steel welds has shown, taking into account the first analysis, a signal assembly in the form of an image (space, time) which carries an original solution to fault detection in highly noisy environments. A numeric grey-level ultrasonic image processing detection method is proposed based on the research of a certain determinism, in the way which the ultrasonic image evolves in space and time in the presence of a defect: the first criterion studies the horizontal stability of the gradients in the image and the second takes into account the time-transient nature of the defect echo. A very important rise in the signal-to-noise ratio obtained in welding inspections evidencing defects (real and artificial) is shown with the help of a computerized ultrasonic image processing/management system, developed for this application [fr

  20. Development of Abnormality Detection System for Bathers using Ultrasonic Sensors

    Science.gov (United States)

    Ohnishi, Yosuke; Abe, Takehiko; Nambo, Hidetaka; Kimura, Haruhiko; Ogoshi, Yasuhiro

    This paper proposes an abnormality detection system for bather sitting in bathtub. Increasing number of in-bathtub drowning accidents in Japan draws attention. Behind this large number of bathing accidents, Japan's unique social and cultural background come surface. For majority of people in Japan, bathing serves purpose in deep warming up of body, relax and enjoyable time. Therefore it is the custom for the Japanese to soak in bathtub. However overexposure to hot water may cause dizziness or fainting, which is possible to cause in-bathtub drowning. For drowning prevention, the system detects bather's abnormal state using an ultrasonic sensor array. The array, which has many ultrasonic sensors, is installed on the ceiling of bathroom above bathtub. The abnormality detection system uses the following two methods: posture detection and behavior detection. The function of posture detection is to estimate the risk of drowning by monitoring bather's posture. Meanwhile, the function of behavior detection is to estimate the risk of drowning by monitoring bather's behavior. By using these methods, the system detects bathers' different state from normal. As a result of experiment with a subject in the bathtub, the system was possible to detect abnormal state using subject's posture and behavior. Therefore the system is useful for monitoring bather to prevent drowning in bathtub.

  1. Modelling of ultrasonic nondestructive testing of cracks in claddings

    International Nuclear Information System (INIS)

    Bostroem, Anders; Zagbai, Theo

    2006-05-01

    noted that this is treated as an internal crack that approaches the surface. This means that the crack mouth remains closed in the limit, contrary to what is to be expected of a real surface-breaking crack. At least in pulse-echo testing and not too low frequencies (a crack that is smaller than a wavelength), the experience from previous projects is that the difference between the cracks with closed and open mouths is very minor, so that the crack with closed mouth can be used as a good approximation for a real surface-breaking crack. In two dimensions there is a decoupling of ultrasonic waves in SH and coupled P-SV waves with polarization out of the plane or in the plane, respectively. These two subproblems have both been investigated with a hypersingular integral equation technique. In this method the integral equation contains a Green's function that takes care of all the structure except the crack. This Green's function is determined with the null field approach, which in itself is a type of integral method. Probe modelling is performed in the usual way by prescribing its traction vector on the component and the action as a receiver is modelled by a reciprocity argument. Some numerical results are given for a case with an isotropic ferritic base material and an anisotropic austenitic cladding. Only a pulse-echo situation is considered with a line scan showing the amplitude at a fixed frequency. The presence of the cladding and the interface corrugation has a strong influence in most cases. The amplitude can both increase and decrease due to the corrugations and the peak response can be moved sideways

  2. Modelling of ultrasonic nondestructive testing of cracks in claddings

    Energy Technology Data Exchange (ETDEWEB)

    Bostroem, Anders; Zagbai, Theo [Calmers Univ. of Technology, Goeteborg (Sweden). Dept. of Applied Mechanics

    2006-05-15

    noted that this is treated as an internal crack that approaches the surface. This means that the crack mouth remains closed in the limit, contrary to what is to be expected of a real surface-breaking crack. At least in pulse-echo testing and not too low frequencies (a crack that is smaller than a wavelength), the experience from previous projects is that the difference between the cracks with closed and open mouths is very minor, so that the crack with closed mouth can be used as a good approximation for a real surface-breaking crack. In two dimensions there is a decoupling of ultrasonic waves in SH and coupled P-SV waves with polarization out of the plane or in the plane, respectively. These two subproblems have both been investigated with a hypersingular integral equation technique. In this method the integral equation contains a Green's function that takes care of all the structure except the crack. This Green's function is determined with the null field approach, which in itself is a type of integral method. Probe modelling is performed in the usual way by prescribing its traction vector on the component and the action as a receiver is modelled by a reciprocity argument. Some numerical results are given for a case with an isotropic ferritic base material and an anisotropic austenitic cladding. Only a pulse-echo situation is considered with a line scan showing the amplitude at a fixed frequency. The presence of the cladding and the interface corrugation has a strong influence in most cases. The amplitude can both increase and decrease due to the corrugations and the peak response can be moved sideways.

  3. Ultrasonic inspection experience of steam generator tubes at Ontario Hydro and the TRUSTIE inspection system

    International Nuclear Information System (INIS)

    Choi, E.I.; Jansen, D.

    1998-01-01

    Ontario Hydro have been using ultrasonic test (UT) technique to inspect steam generator (SG) tubes since 1993. The UT technique has higher sensitivity in detecting flaws in SG tubes and can characterize the flaws with higher accuracy. Although an outside contractor was used initially, Ontario Hydro has been using a self-developed system since 1995. The TRUSTIE system (Tiny Rotating UltraSonic Tube Inspection Equipment) was developed by Ontario Hydro Technologies specifically for 12.7 mm outside diameter (OD) tubes, and later expanded to larger tubes. To date TRUSTIE has been used in all of Ontario Hydro's nuclear generating stations inspecting for flaws such as pitting, denting, and cracks at top-of-tubesheet to the U-bend region. (author)

  4. Nondestructive evaluation of adhesive joints by C-scan ultrasonic testing

    International Nuclear Information System (INIS)

    Zeighami, Mehdi; Honarvar, Farhang

    2009-01-01

    Evaluation of the quality of adhesive bonding is an important issue in many industries who incorporate adhesive joints in their products. Over the past few decades, numerous acoustical techniques have been developed for nondestructive testing (NDT) of adhesively bonded joints. Among these techniques, the ultrasonic pulse-echo method is the most promising means for inspection of adhesive bonds. In practice, due to low impedance matching between adhesive and metal, the discrimination of a good bond from a bad bond is difficult. The low impedance matching also results in low contrast between perfect and disbanded zone in a C-scan image. In this paper, the quality of the interface between aluminum and epoxy is investigated by using an in-house built ultrasonic C-scan system. Two adhesion indices are proposed for producing C-scan images. To verify the capability of these indices, an adhesively bonded sample was fabricated using aluminum plates and epoxy. An artificial defect was implanted in the first interface of the specimens. The C-scan measurement prepared based on the proposed indices was able to reveal the defect much better than the C-scan image prepared by conventional approach. (author)

  5. Ultrasonic testing of installed low-pressure turbine shafts

    International Nuclear Information System (INIS)

    Hildmann, I.; Voelker, J.; Ewald, J.

    1987-01-01

    Transverse defects in the admission area of double-flow LP turbine shafts with shrink-on wheel disks can be detected during the onset of crack growth by means of a newly developed test concept with slightly oblique longitudinal US wave incidence, and crack size estimates can be made. For process development and system adjustment a large reference specimen with circular and circular segment-type test reflectors was used. The results of comparative measurements with different types of devices and probes of different transducer size, test frequency and pulse length are presented, and the choice of the technical testing details is substantiated. (orig./DG) [de

  6. Development Of Ultrasonic Testing Based On Delphi Program As A Learning Media In The Welding Material Study Of Detection And Welding Disables In The Environment Of Vocational Education

    Science.gov (United States)

    Dwi Cahyono, Bagus; Ainur, Chandra

    2018-04-01

    The development of science and technology has a direct impact on the preparation of qualified workers, including the preparation of vocational high school graduates. Law Number 20 the Year 2003 on National Education System explains that the purpose of vocational education is to prepare learners to be ready to work in certain fields. One of the learning materials in Vocational High School is welding and detecting welding defects. Introduction of welding and detecting welding defects, one way that can be done is by ultrasonic testing will be very difficult if only capitalize the book only. Therefore this study aims to adopt ultrasonic testing in a computer system. This system is called Delphi Program-based Ultrasonic Testing Expert System. This system is used to determine the classification and type of welding defects of the welded defect indicator knew. In addition to the system, there is a brief explanation of the notion of ultrasonic testing, calibration procedures and inspection procedures ultrasonic testing. In this system, ultrasonic input data testing that shows defects entered into the computer manually. This system is built using Delphi 7 software and Into Set Up Compiler as an installer. The method used in this research is Research and Development (R & D), with the following stages: (1) preliminary research; (2) manufacture of software design; (3) materials collection; (4) early product development; (5) validation of instructional media experts; (6) product analysis and revision; (8) media trials in learning; And (9) result of end product of instructional media. The result of the research shows that: (1) the result of feasibility test according to ultrasonic material testing expert that the system is feasible to be used as instructional media in welding material subject and welding defect detection in vocational education environment, because it contains an explanation about detection method of welding defect using method Ultrasonic testing in detail; (2

  7. Improvement of remote control system of automatic ultrasonic equipment for inspection of reactor pressure vessel

    International Nuclear Information System (INIS)

    Cheong, Yong Moo; Jung, H. K.; Joo, Y. S.; Koo, K. M.; Hyung, H.; Sim, C. M.; Gong, U. S.; Kim, S. H.; Lee, J. P.; Rhoo, H. C.; Kim, M. S.; Ryoo, S. K.; Choi, C. H.; Oh, K. I.

    1999-12-01

    One of the important issues related to the nuclear safety is in-service inspection of reactor pressure vessel (RPV). A remote controlled automatic ultrasonic method is applied to the inspection. At present the automatic ultrasonic inspection system owned by KAERI is interrupted due to degradation of parts. In order to resume field inspection new remote control system for the equipment was designed and installed to the existing equipment. New ultrasonic sensors and their modules for RPV inspection were designed and fabricated in accordance with the new requirements of the inspection codes. Ultrasonic sensors were verified for the use in the RPV inspection. (author)

  8. Improvement of remote control system of automatic ultrasonic equipment for inspection of reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Yong Moo; Jung, H. K.; Joo, Y. S.; Koo, K. M.; Hyung, H.; Sim, C. M.; Gong, U. S.; Kim, S. H.; Lee, J. P.; Rhoo, H. C.; Kim, M. S.; Ryoo, S. K.; Choi, C. H.; Oh, K. I

    1999-12-01

    One of the important issues related to the nuclear safety is in-service inspection of reactor pressure vessel (RPV). A remote controlled automatic ultrasonic method is applied to the inspection. At present the automatic ultrasonic inspection system owned by KAERI is interrupted due to degradation of parts. In order to resume field inspection new remote control system for the equipment was designed and installed to the existing equipment. New ultrasonic sensors and their modules for RPV inspection were designed and fabricated in accordance with the new requirements of the inspection codes. Ultrasonic sensors were verified for the use in the RPV inspection. (autho0008.

  9. Chaos and Beyond in a Water Filled Ultrasonic Resonance System

    Science.gov (United States)

    Lazlo, Adler; Yost, W.; Cantrell, John H.

    2013-01-01

    Finite amplitude ultrasonic wave resonances in a one-dimensional liquid-filled cavity, formed by a narrow band transducer and a plane reflector, are reported. The resonances are observed to include not only the expected harmonic and subharmonic signals (1,2) but chaotic signals as well. The generation mechanism requires attaining a threshold value of the driving amplitude that the liquid-filled cavity system becomes sufficiently nonlinear in response. The nonlinear features of the system were recently investigated via the construction of an ultrasonic interferometer having optical precision. The transducers were compressional, undamped quartz and lithium niobate crystals having the frequency range 1-10 MHz, driven by a high power amplifier. Both an optical diffraction system to characterize the diffraction pattern of laser light normally incident to the cavity and a receiving transducer attached to an aligned reflector with lapped flat and parallel surfaces were used to assess the generated resonance response in the cavity. At least 5 regions of excitation are identified.

  10. Improvement of ultrasonic examination using the Spartacus system

    International Nuclear Information System (INIS)

    Benoist, P.; Chapuis, N.; Cartier, F.; Pincemaille, G.

    1992-01-01

    Improved computer technology and technical advances in data analysis have significantly modified the methods employed to perform ultrasonic inspections. The SPARTACUS system developed by the CEA (French Atomic Agency) in an example of this progress. The nerve center of the system is a graphic workstation. The system permits full digitization of waveform while retaining high data acquisition rates of conventional system. In addition, it enables ultra fast analysis with comprehensive interactive imaging including signal processing (filtering, correlation, deconvolution...), image processing, spectrum analysis, automatic edition of report, 3D presentation. This system is now use during In-Service Inspection with MIS (In-Service Inspection Machine). Some examples of applications are shown: improvement in sizing capabilities, examination of austenitic weldments; thickness measurement (tube applications...), automatic detection

  11. The ultrasonic testing of austenitic welds and claddings as described in the handbooks of the IIW

    International Nuclear Information System (INIS)

    Neumann, E.; Wuestenberg, H.

    1991-01-01

    The handbooks of the International Institute of Welding (IIW) are to give guidance in the use of ultrasonic testing techniques developed for austenitic welded joints and platings, and serve as a pattern for working out testing instructions for these special tests. Basically these handbooks consist of the metallurgical description of the test subjects; sound propagation in acoustically anisotropic structures; description of testing techniques, and guidance in preparing testing instructions. (orig./DG) [de

  12. A study of PC-based ultrasonic goniometer system of surface properties and characterization of materials

    Science.gov (United States)

    Sani, S.; Saad, M. H. Md; Jamaludin, N.; Ismail, M. P.; Mohd, S.; Mustapha, I.; Masenwat, N. A.; Tengku Amran, T. S.; Megat Ahmad, M. H. A.

    2018-01-01

    This paper discussed the design and development of a portable PC-based ultrasonic goniometer system that can be used to study material properties using ultrasonic wave. The system utilizes an ultrasonic pulse-receiver card model attached to computer notebook for signal display. A new specific software package (GoNIO) was developed to control the operation of the scanner, displaying the data and analyze characteristics of materials. System testing was carried out using samples with cubic dimension of about 10 mm x 20 mm x 30 mm. This size allows the sample to be fitted into the goniometer specimen holder and immersed in a liquid during measurement. The sample was rotated from incident angle of 0° to 90° during measurement and the amplitude reflected signals were recorded at every one degree of rotation. Immersion transducers were used to generate and receive the ultrasounds that pass through the samples. Longitudinal, shear and Rayleigh wave measurements were performed on the samples to determine the Dynamic Young’s Modulus. Results of measurements are explained and discussed.

  13. Microcontroller based multi-channel ultrasonic level monitoring system

    International Nuclear Information System (INIS)

    Ambastha, K.P.; Chaudhari, Y.V.; Singh, Inder Jeet; Chadda, V.K.

    2004-01-01

    Microcontroller based Multi-channel Ultrasonic Level Monitoring System developed by Computer Division is based on echo ranging techniques to monitor level. The transmitter directs an ultrasonic burst towards the liquid, which gets reflected from the top of the liquid surface. The time taken for ultrasound to travel from the transmitter to the top of liquid surface is measured and used to calculate the liquid level. The system provides for temperature compensation for accurate measurement as the ultrasound velocity depends on the ambient temperature. It can measure liquid level up to 5 meters. A single monitor can be used to measure level in 6 tanks. PC connectivity has been provided via RS 232 and RS 485 for remote operation and data logging of level. A GUI program developed using LABVIEW package displays level on PC monitor. The program provides for pictorial as well as numerical display for level and temperature in the front panel on the PC monitor. A user can monitor level for any or all tanks from the PC. One unit is installed at CIRUS for measuring level in Acid/ Alkali tanks and one is installed at APSARA for measuring water level in the reactor pool. (author)

  14. Standard practice for ultrasonic testing of wrought products

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2013-01-01

    1.1 Purpose—This practice establishes the minimum requirements for ultrasonic examination of wrought products. Note 1—This standard was adopted to replace MIL-STD-2154, 30 Sept. 1982. This standard is intended to be used for the same applications as the document which it replaced. Users should carefully review its requirements when considering its use for new, or different applications, or both. 1.2 Application—This practice is applicable for examination of materials such as, wrought metals and wrought metal products. 1.2.1 Wrought Aluminum Alloy Products—Examination shall be in accordance with Practice B 594. 1.3 Acceptance Class—When examination is performed in accordance with this practice, engineering drawings, specifications, or other applicable documents shall indicate the acceptance criteria. Five ultrasonic acceptance classes are defined in Table 1. One or more of these classes may be used to establish the acceptance criteria or additional or alternate criteria may be specified. 1.4 Ord...

  15. Current status of automated ultrasonic pipe inspection systems - ISI of stainless steel piping systems in BWR power plants

    International Nuclear Information System (INIS)

    Jeong, P.

    1985-01-01

    The field of ultrasonics nondestructive testing is constantly expanding its ability of acquiring data and its speed by implementing a computer into the testing system. The computer made it possible to store massive test data into a compact magnetic hard disk for permanent records. The data outputs are displayed on the color CRT screen, and varieties of image display methods, such as A-scan, B-scan, C-scan, P-scan, or many other 3 dimensional isometric views and the modified display techniques are available to an operator. Various hardcopy machines are now a part of the testing system so that the displayed data outputs can be easily copied and filed for permanent documentation. The faster and more accurate mechanized scanners are gradually being substituted for the conventional manual scanning method which has been a major time consuming part of the testing operation. When all such improvements are combined into an integral unit, a reliable, fully automated ultrasonic testing system can by made. The fully automated ultrasonic testing system is needed not only for fast data acquisition, processing, and reliable data display, but also, even more importantly, for considerable reduction of human intervention, which could be a critical factor under the severely limited field environment. Obviously, in the past several years, tremendous accomplishments have been made in automating the test system, and many such systems are being used in the field. However, most of the existing automated systems are still bulky in size and the displayed data is often difficult to interpret to the field operators. Major effect should, therefore, be directed to size reduction of the system as well as improvement on the system reliability

  16. Requirements Relating To Manufacturing Constructions In The Aspect Of Conducting Ultrasonic Testing

    Directory of Open Access Journals (Sweden)

    Kaczmarek R.

    2015-09-01

    Full Text Available Basic factors which have an influence on conducting manual ultrasonic testing of joints in the welded constructions are presented in the following article. These factors are specified on the base of the guidelines referring to conditions and methods of carrying out examinations which are currently in force in the following standards PN-EN ISO 17640 and PN-EN ISO 22825. Due to the vastness of subject of ultrasonic testing the main aim of the following article is to collect all important information which relates to design and manufacture of constructions and has a key influence on the following examinations.

  17. An efficient ultrasonic SAFT imaging for pulse-echo immersion testing

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Hong Wei [Changsha University of Science and Technology, Changsha (China); Jeong, Hyun Jo [Div. of Mechanical and Automotive Engineering, Wonkwang University, Iksan (Korea, Republic of)

    2017-04-15

    An ultrasonic synthetic aperture focusing technique (SAFT) using a root mean square (RMS) velocity model is proposed for pulse-echo immersion testing to improve the computational efficiency. Considering the immersion ultrasonic testing of a steel block as an example, three kinds of imaging were studied (B-Scan, SAFT imaging based on ray tracing technology and RMS velocity). The experimental results show that two kinds of SAFT imaging have almost the same imaging performance, while the efficiency of RMS velocity SAFT imaging is almost 25 times greater than the SAFT based on Snell's law.

  18. An efficient ultrasonic SAFT imaging for pulse-echo immersion testing

    International Nuclear Information System (INIS)

    Hu, Hong Wei; Jeong, Hyun Jo

    2017-01-01

    An ultrasonic synthetic aperture focusing technique (SAFT) using a root mean square (RMS) velocity model is proposed for pulse-echo immersion testing to improve the computational efficiency. Considering the immersion ultrasonic testing of a steel block as an example, three kinds of imaging were studied (B-Scan, SAFT imaging based on ray tracing technology and RMS velocity). The experimental results show that two kinds of SAFT imaging have almost the same imaging performance, while the efficiency of RMS velocity SAFT imaging is almost 25 times greater than the SAFT based on Snell's law

  19. Standard practice for digital imaging and communication in nondestructive evaluation (DICONDE) for ultrasonic test methods

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This practice facilitates the interoperability of ultrasonic imaging equipment by specifying image data transfer and archival storage methods in commonly accepted terms. This document is intended to be used in conjunction with Practice E 2339 on Digital Imaging and Communication in Nondestructive Evaluation (DICONDE). Practice E 2339 defines an industrial adaptation of the NEMA Standards Publication titled Digital Imaging and Communications in Medicine (DICOM, see http://medical.nema.org), an international standard for image data acquisition, review, transfer and archival storage. The goal of Practice E 2339, commonly referred to as DICONDE, is to provide a standard that facilitates the display and analysis of NDE test results on any system conforming to the DICONDE standard. Toward that end, Practice E 2339 provides a data dictionary and set of information modules that are applicable to all NDE modalities. This practice supplements Practice E 2339 by providing information object definitions, information ...

  20. Advancements in the technologies for mechanized ultrasonic testing

    International Nuclear Information System (INIS)

    Sterke, A. de.

    1976-01-01

    Review is given of the techniques applied, with an accent on weld testing and examination of nuclear pressure vessels during fabrication and periodically. The use of multiprobe systems, the merits of data recording, the present restrictions, the requirements and the trends are examined

  1. Ultrasonic test application in geothermal heat exchangers and civil works to monitor the grout integrity (TUC)

    Science.gov (United States)

    Mandrone, Giuseppe; Comina, Cesare; Giuliani, Andrea

    2013-04-01

    The working of a vertical geothermal probe, realized with a pipe U-tubes of high-density-polyethylene (HDPE) inserted in a grouted boreholes, is linked to the possibility to exchange heat with the surrounding soil. The concrete material useful for the borehole heat exchangers allows to satisfy a double purpose: sealing the polyethylene pipes from groundwater in the event of loss and increasing the thermal properties of the whole probe to provide a greater interaction with the underground. If this operation is not performed properly, the complete system may not satisfy the required heat demand, even with a well dimensioned installation, wasting the value of the entire carried out work. This paper offers to a wide group of professional actors a possible ultrasonic method of a draft and economically sustainable investigation for the identification of defects that could be present in the cementation realized inside a geothermal probe, but also in the realization of sonic piles. The instrument used for this type of test (TUC - Test Ultrasonic Cementation) has been designed and tested by the technicians of AG3, a Spin Off Company of Torino University, in collaboration with 3DM Electric and PASI companies, then subjected to patenting procedure (Patent Pending TO2011A000036). The main innovative feature of this approach has been the miniaturization of the equipment, able to investigate the geothermal probes with U-tubes with standard dimension (the maximum overall dimensions of the instruments detectors is 26 mm), maintaining a sampling rate appropriate to investigate the cementation and the early centimetres of the surrounding soil. The processing of the recorded data was performed by a dedicated Matlab software. In the first part of the article is presented the calibration process, that it was carried out through ad hoc creation of two situations likely to be investigated, while in the second part the paper reports the results obtained by the application of the TUC

  2. Improvement of ultrasonic testing by use of phased arrays

    International Nuclear Information System (INIS)

    Gebhardt, W; Bonitz, F.; Woll, H.

    1983-01-01

    The paper examines the applicability of phased-array technology in non-destructive material testing for quality control, basic inspection and in-service inspections of the primary containment of nuclear power plants. Initial experiments on sonic aigrette control, defect margin reconstruction and the classification of defects have been carried out using medical equipment as commercially available which had been modified for non-destructive applications. At the same time, a for more flexible microcomputer-controlled phased-array system was developed, particularly designed for material testing. (orig./RW) [de

  3. Ultrasonic testing of fatigue cracks under various conditions

    International Nuclear Information System (INIS)

    Jessop, T.J.; Cameron, A.G.B.

    1983-01-01

    Reliable detection of the fatigue cracks was possible under all conditions studied. Applied load affected the ultrasonic response in a variety of ways but never more than by 20dB and generally considerably less. Material variations affected the response under applied load by up to 20dB. Oxide in the crack and crack morphology affected the response by up to 9dB (12dB under load). Crack size variations and presence of water had little effect. Sizing accuracy was generally within 2mm although there was a tendency to undersize. The time of flight sizing technique gave the best accuracy if a tensile load was applied

  4. Radiographic and ultrasonic testings of welded joints of 6063 aluminium alloy

    International Nuclear Information System (INIS)

    Oliveira e Silva Mury, A.G. de.

    1980-05-01

    A study on evaluation of weld defects in aluminium butt joints was made in a comparative way through the radiographic and ultrasonic testing. This work was conducted with pipes 5 IPS (6,35 mm thickness) of 6063 aluminium alloy, circumferential TIG welded, due to the difficulty on performing non-destructive testing with this schedule. It was concluded thta ultrasonic testing has adequate sensitivity when setting gain adjustment is made with aid of a reference curve constructed by using a Reference Block (among others studied) with 1,5 mm dia. Hole as reference reflector, and a 5 MHz angle beam search-unit. In this case the ultrasonic testing is more accurate than radiographic testing to detect planar defects like lack of fusion and lack of penetration. Defect sizing by ultrasonic methods employed were 6 and 20 dB drop methods. In spite of your observed limitations concerning the establishment of the real size of defects, the procedure applied was precise for locate and define the weld defects that where found in this study. (author) [pt

  5. System and technique for ultrasonic characterization of settling suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, Margaret S [Richland, WA; Panetta, Paul D [Richland, WA; Bamberger, Judith A [Richland, WA; Pappas, Richard A [Richland, WA

    2006-11-28

    A system for determining properties of settling suspensions includes a settling container, a mixer, and devices for ultrasonic interrogation transverse to the settling direction. A computer system controls operation of the mixer and the interrogation devices and records the response to the interrogating as a function of settling time, which is then used to determine suspension properties. Attenuation versus settling time for dilute suspensions, such as dilute wood pulp suspension, exhibits a peak at different settling times for suspensions having different properties, and the location of this peak is used as one mechanism for characterizing suspensions. Alternatively or in addition, a plurality of ultrasound receivers are arranged at different angles to a common transmitter to receive scattering responses at a variety of angles during particle settling. Angular differences in scattering as a function of settling time are also used to characterize the suspension.

  6. System and technique for ultrasonic determination of degree of cooking

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Leonard J [Richland, WA; Diaz, Aaron A [W. Richland, WA; Judd, Kayte M [Richland, WA; Pappas, Richard A [Richland, WA; Cliff, William C [Richland, WA; Pfund, David M [Richland, WA; Morgen, Gerald P [Kennewick, WA

    2007-03-20

    A method and apparatus are described for determining the doneness of food during a cooking process. Ultrasonic signal are passed through the food during cooking. The change in transmission characteristics of the ultrasonic signal during the cooking process is measured to determine the point at which the food has been cooked to the proper level. In one aspect, a heated fluid cooks the food, and the transmission characteristics along a fluid-only ultrasonic path provides a reference for comparison with the transmission characteristics for a food-fluid ultrasonic path.

  7. Comparison of three flaw-location methods for automated ultrasonic testing

    International Nuclear Information System (INIS)

    Seiger, H.

    1982-01-01

    Two well-known methods for locating flaws by measurement of the transit time of ultrasonic pulses are examined theoretically. It is shown that neither is sufficiently reliable for use in automated ultrasonic testing. A third method, which takes into account the shape of the sound field from the probe and the uncertainty in measurement of probe-flaw distance and probe position, is introduced. An experimental comparison of the three methods indicates that use of the advanced method results in more accurate location of flaws. (author)

  8. Applicability of gamma radiography and ultrasonic testing in welds and castings

    International Nuclear Information System (INIS)

    Krishnamurthy, K.; Wamorkar, R.R.; Jayakumar, T.K.

    1977-01-01

    Technical limitations and advantages of gamma radiography and ultrasonic techniques for flow detection in welds and castings, have been discussed. Limitations of both the testing methods due to orientation, shape and location of defects have been analysed and a few experimental results are presented. Dependence of inspection sensitivity of both the techniques for different types of targets and defects has been indicated. (author)

  9. NDE reliability gains from combining eddy-current and ultrasonic testing

    International Nuclear Information System (INIS)

    Horn, D.; Mayo, W.R.

    1999-01-01

    We investigate statistical methods for combining the results of two complementary inspection techniques, eddy-current and ultrasonic testing. The reliability of rejection/acceptance decisions based on combined information is compared with that based on each inspection technique individually. The measured reliability increases with the amount of information incorporated in the decision. (author)

  10. Contribution of the ultrasonic simulation to the testing methods qualification process

    International Nuclear Information System (INIS)

    Le Ber, L.; Calmon, P.; Abittan, E.

    2001-01-01

    The CEA and EDF have started a study concerning the simulation interest in the qualification of nuclear components control by ultrasonic methods. In this framework, the simulation tools of the CEA, as CIVA, have been tested on real control. The method and the results obtained on some examples are presented. (A.L.B.)

  11. Examples for simple solutions in using manual ultrasonic testing with partial mechanisation

    International Nuclear Information System (INIS)

    Prestel, W.; Meyer, H.J.; Weiss, M.

    1989-01-01

    Fully automatic ultrasonic testing regarding test technique, manipulation and evaluation can only be used economically if one is either testing large number of parts or if manual testing of safety-related components is impossible because of inaccessibility, e.g.: for primary circuit components of nuclear powerstations. The described examples (multi-layer ceramic condensers, turbine rotors, cast steel components, central holes in forged shafts, weld seams and piston bolts) show that by individually designed and, where necessary, computer-aided part-mechanisation, ultrasonic testing is able to combine high probability of finding faults in the interests of the greatest possible operating safety and the requirement for the description or documentation of the fault suitable for the required case with the necessity for economical testing. (orig./MM) [de

  12. Design and Manufacture an Ultrasonic Dispersion System with Automatic Frequency Adjusting Property

    Directory of Open Access Journals (Sweden)

    Herlina ABDUL RAHIM

    2011-03-01

    Full Text Available This paper a novel ultrasonic dispersion system for the cleaning application or dispersing of particles which are mixed in liquid has been proposed. The frequency band of designed system is 30 kHz so that the frequency of ultrasonic wave sweeps from 30 kHz to 60 kHz with 100 Hz steps. One of the superiority of manufactured system in compare with the other similar systems which are available in markets is that this system can transfer the maximum and optimum energy of ultrasonic wave inside the liquid tank with the high efficiency in the whole of the usage time of the system. The used ultrasonic transducers in this system as the generator of ultrasonic wave is the type of air coupled ceramic ultrasonic piezoelectric with the nominal maximum power 50 Watt. The frequency characteristic of applied piezoelectric is that it produces the maximum amplitude of ultrasonic wave on the resonance frequency, so this system is designed to work on resonance frequency of piezoelectric, continuously. This is done by the use of control system which is consisted of two major parts, sensing part and controlling part. The manufactured ultrasonic dispersion system is consisted of 9 piezoelectrics so that it can produce 450 watt ultrasonic energy, totally. The main purpose of this project is to produce a safety system especially for fatigue car driver so as to prevent from accidents. The statistic on road fatality shows that human error constitute of 64.84 % road accidents fatality and 17.4 % due to technical factors. These systems encompassed the approach of hand pressure applied on the steering wheel. The steering will be installed with pressure sensors. At the same time these sensors can be used to measure gripping force while driving.

  13. Advanced ultrasonic techniques for nondestructive testing of austenitic and dissimilar welds in nuclear facilities

    Science.gov (United States)

    Juengert, Anne; Dugan, Sandra; Homann, Tobias; Mitzscherling, Steffen; Prager, Jens; Pudovikov, Sergey; Schwender, Thomas

    2018-04-01

    Austenitic stainless steel welds as well as dissimilar metal welds with nickel alloy filler material, used in safety relevant parts of nuclear power plants, still challenge the ultrasonic inspection. The weld material forms large oriented grains that lead, on the one hand, to high sound scattering and, on the other hand, to inhomogeneity and to the acoustic anisotropy of the weld structure. The ultrasonic wave fronts do not propagate linearly, as in ferritic weld joints, but along the curves, which depend on the specific grain structure of the weld. Due to the influence of these phenomena, it is difficult to analyze the inspection results and to classify the ultrasonic indications, which could be both from the weld geometry and from the material defects. A correct flaw sizing is not possible. In an ongoing research project, different techniques to improve the reliability of ultrasonic testing at these kinds of welds are investigated. In a first step (in the previous research project) two ultrasonic inspection techniques were developed and validated on plane test specimens with artificial and realistic flaws. In the ongoing project, these techniques are applied to circumferential pipe welds with longitudinal and transverse flaws. The technique developed at the Federal Institute for Materials Research and Testing (BAM) in Germany uses a combination of ray tracing and synthetic aperture focusing technique (SAFT). To investigate the unknown grain structure, the velocity distribution of weld-transmitting ultrasound waves is measured and used to model the weld by ray tracing. The second technique, developed at the Fraunhofer Institute for Nondestructive Testing (IZFP) in Germany, uses Sampling Phased Array (Full Matrix Capture) combined with the reverse phase matching (RPM) and the gradient elastic constant descent algorithm (GECDM). This inspection method is able to estimate the elastic constants of the columnar grains in the weld and offers an improvement of the

  14. Updating of actual technique for ultrasonic testing of austenitic stainless materials and welds

    International Nuclear Information System (INIS)

    Lindholm, P.O.; Pers-Anderson, E.B.

    1982-01-01

    The technique for ultrasonic testing of stainless austenitic steels and weldings has been studied and it has been brought to the latest standard. Many problems exist when testing, the most serious being the occurence of false indications and the damping of energy. Laboratory tests show that the detectors with transversal sound waves should be used for plane defects. Best results were achieved with a 45 degrees detector. (GB)

  15. Development of ultrasonic testing scanner for NPP steam generator tubes (I)

    International Nuclear Information System (INIS)

    Shin, J. I.; Huh, H.

    1998-12-01

    Testing tubes are designed and fabricated to investigate the optimum test conditions through the various experiments. The proto-type P/C-controlled automatic rotating scanner is fabricated to obtain the ultrasonic data automatically from test tubes. It was attempted to visualize the shape of defects presented inside the specimen using peak amplitude at each point. However, further research works will be needed to be applied at the plant site as a more reliable technology

  16. Ultrasonic testing of pre-turned contours for large components made of ductile iron

    International Nuclear Information System (INIS)

    Schmitte, Till; Chichkov, Nikolai; Nemitz, Oliver; Orth, Thomas; Hocks, Heinrich Jr.; Rusche, Sascha; Opalla, Dirk; Frank, Joerg

    2015-01-01

    In the ultrasonic testing of large, thick-walled components made of ductile iron partial acoustic paths of several meters are needed. Considered here are cylindrical components such as the body of CASTOR containers with diameters 2-3 m, a height of up to 6 m and a wall thickness of 500 mm. So far, an automated technique for this is not available, therefore such components are checked in a complex and lengthy process by manual ultrasonic testing. The development and design of the testing by means of simulations and the realization as a mobile testing device are topics of this paper. Measurements on a reference body with test reflectors in different depths are presented and discussed. [de

  17. Interactive ultrasonic field simulations for complex non-destructive testing configurations

    International Nuclear Information System (INIS)

    Chouh, Hamza

    2016-01-01

    In order to fulfill increasing reliability and safety requirements, non-destructive testing techniques are constantly evolving and so does their complexity. Consequently, simulation is an essential part of their design. We developed a tool for the simulation of the ultrasonic field radiated by any planar probes into non-destructive testing configurations involving meshed geometries without prominent edges, isotropic and anisotropic, homogeneous and heterogeneous materials, and wave trajectories that can include reflections and transmissions. We approximate the ultrasonic wave fronts by using polynomial interpolators that are local to ultrasonic ray pencils. They are obtained using a surface research algorithm based on pencil tracing and successive subdivisions. Their interpolators enable the computation of the necessary quantities for the impulse responses on each point of a sampling of the transducer surface that fulfills the Shannon criterion. By doing so, we can compute a global impulse response which, when convolved with the excitation signal of the transducer, results in the ultrasonic field. The usage of task parallelism and of SIMD instructions on the most computationally expensive steps yields an important performance boost. Finally, we developed a tool for progressive visualization of field images. It benefits from an image reconstruction technique and schedules field computations in order to accelerate convergence towards the final image. (author) [fr

  18. Radiometric and ultrasonic testing of vibrating roller compacting effects

    International Nuclear Information System (INIS)

    Prikryl, F.; Habarta, J.; Kovarikova, E.

    1977-01-01

    A hole was filled with two layers of concrete mixture. Each layer was compacted using a Dynapac CA 25 vibrating roller 10,000 kg in weight, operating with a frequency of 30 Hz. A concrete block thus produced had dimensions of 11.0x2.5 m and a height of 1.6 m. After the concrete block hardening (roughly 120 days) drill cores were bored and bulk density was determined using nondestructive methods. Bulk density determination of the concrete between the drill cores was conducted using a 137 Cs emitter of an activity of 89 GBq, a FHZ-88b Geiger-Mueller counter was used as the detector. The emitter and detector were placed to touch the bore wall and were lowered to different depths in 10 cm increments. 10 count rate values were measured in each depth. The measurement time was chosen such that the decay statistical error did not exceed 1;. Bulk density of the individual segments of the drill cores was determined using 60 Co of an activitBy of 55 Mq as the radiation source and a TESLA 20/100 GWl GM counter as the detector. The detector operating voltage was 1240 V. Ultrasonic measurements were conducted using the USME-5 instrument. The measured bulk density values show that the compacting of a concrete layer 80 cm in thickness using a vibrating roller is sufficiently efficient. Both nondestructive methods were well proven, the results show that bulk density values in different depths differ due to concrete moisture content. (J.P.)

  19. Experimental testing facilities for ultrasonic measurements in heavy liquid metal

    International Nuclear Information System (INIS)

    Cojocaru, V.; Ionescu, V.; Nicolescu, D.; Nitu, A.

    2016-01-01

    The thermo-physical properties of Heavy Liquid Metals (HLM), like lead or its alloy, Lead Bismuth Eutectic (LBE), makes them attractive as coolant candidates in advanced nuclear systems. The opaqueness, that is common to all liquid metals, disables all optical methods. For this reason ultrasound waves are used in different applications in heavy liquid metal technology, for example for flow and velocity measurements and for inspection techniques. The practical use of ultrasound in heavy liquid metals still needs to be demonstrated by experiments. This goal requires heavy liquid metal technology facility especially adapted to this task. In this paper is presented an experimental testing facility for investigations of Heavy Liquid Metals acoustic properties, designed and constructed in RATEN ICN. (authors)

  20. Visualization of flaws within heavy section ultrasonic test blocks using high energy computed tomography

    International Nuclear Information System (INIS)

    House, M.B.; Ross, D.M.; Janucik, F.X.; Friedman, W.D.; Yancey, R.N.

    1996-05-01

    The feasibility of high energy computed tomography (9 MeV) to detect volumetric and planar discontinuities in large pressure vessel mock-up blocks was studied. The data supplied by the manufacturer of the test blocks on the intended flaw geometry were compared to manual, contact ultrasonic test and computed tomography test data. Subsequently, a visualization program was used to construct fully three-dimensional morphological information enabling interactive data analysis on the detected flaws. Density isosurfaces show the relative shape and location of the volumetric defects within the mock-up blocks. Such a technique may be used to qualify personnel or newly developed ultrasonic test methods without the associated high cost of destructive evaluation. Data is presented showing the capability of the volumetric data analysis program to overlay the computed tomography and destructive evaluation (serial metallography) data for a direct, three-dimensional comparison

  1. Measurement and analysis. Ultrasonic testing. Study of the attenuation of ultrasonic beams through steels

    International Nuclear Information System (INIS)

    Canella, G.

    1977-01-01

    Anisotropy, inclusions, segregations and grain size are factors affecting the mechanical properties of steel and determining, at the same time, attenuation of an untrasonic beam crossing it. A system was developed, which offers guarantees of good reproducibility (within 5%) obtained with a device applying a constant and uniform pressure on the probe and using oil with very low viscosity and surface tension as couplant liquid. This oil, generally used as penetrant, is excellent by the rapidity of its constant response and by the thin layer formed which is free from air bubbles between probe and piece. Measurements of reflection loss were also carried out and investigated about the influence on such loss of: couplant liquid; type of transducer; type of piezoelectric protection. For transducers whose surface is protected by an hard coat loss by reflection (about 1 dB) varies within the measuring error, for the different couplant liquids. For transducers with unprotected sensitive surface, loss depends on the type of crystal and is significantly reduced (from 3 dB to 0,5 dB approximately) with an appropriate rubber layer. In both cases; loss proved to be independent of frequency. The samples were subjected to different heat treatments and, for each measurement of amplitude and frequency attenuation and structure micrographies were carried out. These methods of inspections can be applied in industry without any great difficulty

  2. Evaluation of Ultrasonic Waves System in Repellency of Red Beetle of Flour (Tribolium castaneum Herbs

    Directory of Open Access Journals (Sweden)

    P. Ahmadi Moghaddam

    2016-06-01

    , Perry amplifier, amplifier, keyboard, and step motor. In this system, all parts are connected with each other. After doing pretests at different frequencies and times, frequencies of 30, 35, 40, 45, and 50 kHz and radiation times of 3, 6, 12, and 24 h were selected as the most appropriate levels of variables. So these levels were used for doing the main tests on red beetle samples of flour. to study the effect of ultrasonic waves on red beetles, a factorial experiment was done based on completely randomized block design with three replications. To study the repellent and absorbent effects of ultrasonic waves, 20 red beetles were placed in 150 g flour into plastic tubes. The tubes have 10 cm diameter and 50 cm length. The odorless and flavourless oil was rubbed to the beginning and end of tubes in order to count the number of beetles. Because they trap into oil while exiting the tubes. The insects, which go toward the radiation source of waves, were as absorbent effect of waves. On the contrary, the insects that go against the radiation source and try to get out of flour were considered as repellent effect of waves. Results and Discussion: The results of this research showed that ultrasonic waves can give red beetles away from the flour. It showed that insects tend very much to escape from the environment So they use all directions to get out of the environment. Analysis of variance showed that the frequency variable with the level of 95% probability independently had a significant effect on the pests escape. The results showed that in frequency of 35 kHz during 6 hours radiation intervals have highest repellency and escaping of pest from the nutrient medium with less energy consumption. The study showed that the application of ultrasonic waves in pests control can reduce the fumigant pesticides which are an important factor in environmental, food storage and consumers pollution. Conclusions: The present study indicates that physically control method with ultrasonic wave

  3. Hardware Developments of an Ultrasonic Tomography Measurement System

    OpenAIRE

    Hudabiyah ARSHAD AMARI; Ruzairi ABDUL RAHIM; Mohd Hafiz FAZALUL RAHIMAN; Herlina ABDUL RAHIM; Muhammad Jaysuman PUSPPANATHAN

    2010-01-01

    This research provides new technique in ultrasonic tomography by using ultrasonic transceivers instead of using separate transmitter-receiver pair. The numbers of sensors or transducers used to acquire data plays an important role to generate high resolution tomography images. The configuration of these sensors is a crucial factor in the efficiency of data acquisition. Instead of using common separated transmitter – receiver, an alternative approach has been taken to use dual functionality ul...

  4. Design and development of Pc-based TOFD ultrasonic scanning system for welds inspection

    International Nuclear Information System (INIS)

    Suhairy Sani; Mohamad Pauzi Ismai; Muhammad Faiz Mohd Shukri; Amry Amin Abas

    2010-01-01

    This paper describes the design and development of a portable PC-based ultrasonic scanning system for industrial applications. The system which is called TOFD Ultrasonic Scanning System (TOFUSS) is used to create a gray scale imaging techniques are applied to the RF (AC) signal phase and enables weld integrity to be observed in real time. TOFD consists of a separate ultrasonic transmitter and receiver. The Probes are aimed at the same point in the weld volume. The entire weld is flooded with ultrasound allowing inspection of the weld. With a time of flight path, the ultrasonic velocity and the spatial relationship of the two probes, location and height of the defects can be very accurately calculated. The algorithm and complete system were implemented in a computer software developed using Microsoft Visual BASIC 6.0. (author)

  5. Focussed probes ultrasonic follow-up of actual flaw growth during fatigue testing

    International Nuclear Information System (INIS)

    Cinotti, C.; Dufresne, J.; Prot, A.C.; Touffait, A.M.; Saglio, R.

    1979-01-01

    A programme was undertaken to follow-up the growth of actual flaws purposely introduced during the welding process of five test specimens. The aim of this programme is to measure the actual size of the cracks which develop from the known defects during the fatigue testing. The sizing method is based on the use of focussed probes, which allow good accuracy and repeatability, as well as good sensitivity. Examples are given of the first results: sizing before testing, then step by step during the fatigue testing and also under compression. This last point is very important in view of the ultrasonic testing during periodic in-service inspection

  6. Tests of the Royce ultrasonic interface level analyzer

    International Nuclear Information System (INIS)

    WITWER, K.S.

    1999-01-01

    This document describes testing carried out in 1995 on the Royce Interface Level Analyzer. The testing was carried out in the 305 Bldg., Engineering Testing Laboratory, 300 Area. The Level Analyzer was shown to be able to effectively locate the solid liquid interface layer of two different simulants under various conditions and was able to do so after being irradiated with over 5 million RADS gamma from a Cobalt 60 source

  7. Measurements of the acoustic field on austenitic welds: a way to higher reliability in ultrasonic tests

    International Nuclear Information System (INIS)

    Kemnitz, P.; Richter, U.; Klueber, H.

    1997-01-01

    In nuclear power plants many of the welds in austenitic tubes have to be inspected by means of ultrasonic techniques. If component-identical test pieces are available, they are used to qualify the ultrasonic test technology. Acoustic field measurements on such test blocks give information whether the beam of the ultrasonic transducer reaches all critical parts of the weld region and which transducer type is best suited. Acoustic fields have been measured at a bimetallic, a V-shaped and a narrow gap weld in test pieces of wall thickness 33, 25 and 17 mm, respectively. Compression wave transducers 45, 60 and 70 and 45 shear wave transducers have been included in the investigation. The results are presented: (1) as acoustic C-scans for one definite probe position, (2) as series of C-scans for the probe moving on a track perpendicular to the weld, (3) as scan along the weld and (4) as effective beam profile. The influence of the scanning electrodynamic probe is also discussed. (orig.)

  8. Certain strength test of concrete with ultrasonic waves by better evaluation

    International Nuclear Information System (INIS)

    Roethig, H.

    1978-01-01

    As a result of the increasing demands put to the quality control of buildings and concrete assembly units, ultrasonic testing has found an internationally ever wider application in building industries and facilities in recent years. The ultrasonic method is in its nature analogous to the application with metallic materials, particularly suitable for recognizing defects and poor quality concrete and an increased application in this direction is most promising. However, it is equally important for concrete plants and building sites to certify the specified concrete quality or a required degree of hardness which can be determined by the pressure resistance of a test cube according to the valid specifications. Therefore the non-destructive pressure resistance determination of concrete is of great practical interest and ultrasonic testing is at present, above all being used for this purpose. It is very suitable in many cases for calibration on cubes of the same concrete as the assembly units or buildings to be tested. The quality of the calibration gives a ruling determination of the accuracy and reliability of the non-destructively determined pressure resistance values. (orig./RW) [de

  9. Research on Fatigue Damage of Compressor Blade Steel KMN-I Using Nonlinear Ultrasonic Testing

    Directory of Open Access Journals (Sweden)

    Pengfei Wang

    2017-01-01

    Full Text Available The fatigue damage of compressor blade steel KMN-I was investigated using nonlinear ultrasonic testing and the relation curve between the material nonlinearity parameter β and the fatigue life was obtained. The results showed that the nonlinearity parameter increased first and then decreased with the increase of the fatigue cycles. The microstructures were observed by scanning electron microscopy (SEM. It was found that some small defects like holes and pits appeared in the material matrix with the increase of the fatigue cycles, and the nonlinearity parameter increased correspondingly. The nonlinearity parameter reached the peak value when the microcracks initiated, and the nonlinearity parameter began to decrease when the microcracks further propagated to macrocracks. Therefore, it is proved that the nonlinearity parameter can be used to characterize the initiation of microcracks at the early stage of fatigue, and a method of evaluating the fatigue life of materials by nonlinear ultrasonic testing is proposed.

  10. Application of acoustical holography for construction shadow images in ultrasonic testing

    International Nuclear Information System (INIS)

    Kutzner, J.; Zimpfer, J.

    1977-01-01

    The full-scale, three-dimensional presentation of material defects by means of acoustical holography is limited on the one hand by an insufficient resolving power in depth of the procedure and, on the other hand, by the fact that the defects of the material to be examined often reflect mirror-like. Examined is the possible range of reducing these limitations by means of constructing shadow images of defects in ultrasonic testing without - as it is usually done - reconstructing the sonic field reflected by the flow but reconstructing the sonic field diffracted at the flow by means of acoustical holography. It has been shown that acoustical holography, during which the amplitude information is always analyzed as well as - on principle - the phase information, improves the efficiency of ultrasonic testing to a large extent. (orig.) [de

  11. Characterization of Heat Treated Titanium-Based Implants by Nondestructive Eddy Current and Ultrasonic Tests

    Science.gov (United States)

    Mutlu, Ilven; Ekinci, Sinasi; Oktay, Enver

    2014-06-01

    This study presents nondestructive characterization of microstructure and mechanical properties of heat treated Ti, Ti-Cu, and Ti-6Al-4V titanium-based alloys and 17-4 PH stainless steel alloy for biomedical implant applications. Ti, Ti-Cu, and 17-4 PH stainless steel based implants were produced by powder metallurgy. Ti-6Al-4V alloy was investigated as bulk wrought specimens. Effects of sintering temperature, aging, and grain size on mechanical properties were investigated by nondestructive and destructive tests comparatively. Ultrasonic velocity in specimens was measured by using pulse-echo and transmission methods. Electrical conductivity of specimens was determined by eddy current tests. Determination of Young's modulus and strength is important in biomedical implants. Young's modulus of specimens was calculated by using ultrasonic velocities. Calculated Young's modulus values were compared and correlated with experimental values.

  12. Applications research in ultrasonic testing of carbon fiber composite based on an optical fiber F-p sensor

    Science.gov (United States)

    Shan, Ning

    2016-10-01

    Carbon fiber composite is widely applied to the field of aerospace engineering because of its excellent performance. But it will be able to form more defects in the process of manufacturing inevitably on account of unique manufacturing process. Meanwhile it has sophisticated structure and services in the bad environment long time. The existence of defects will be able to cause the sharp decline in component's performance when the defect accumulates to a certain degree. So the reliability and safety test demand of carbon fiber composite is higher and higher. Ultrasonic testing technology is the important means used for characteristics of component inspection of composite materials. Ultrasonic information detection uses acoustic transducer generally. It need coupling agent and is higher demand for the surface of sample. It has narrow frequency band and low test precision. The extrinsic type optical fiber F-P interference cavity structure is designed to this problem. Its optical interference model is studied. The initial length of F-P cavity is designed. The realtime online detection system of carbon fiber composite is established based on optical fiber F-P Ultrasound sensing technology. Finally, the testing experiment study is conducted. The results show that the system can realize real-time online detection of carbon fiber composite's defect effectively. It operates simply and realizes easily. It has low cost and is easy to practical engineering.

  13. Seminar of the expert committee ultrasonic testing. Abstracts

    International Nuclear Information System (INIS)

    2017-01-01

    This seminar volume contains 13 papers focusing on the following topics: 1. Test methods in the automotive sector, 2. Characterization of metallic and non-metallic materials, 3. Industrial test approaches, 4. Fiber composite materials and structures, and 5. Defect characterization using imaging techniques. One paper was separately analyzed for this database. [de

  14. Development of ultrasonic testing technique to inspect containment liners embedded in concrete on nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, H.; Kurozumi, Y. [Inst. of Nuclear Safety System, Incorporated, Mihama, Fukui (Japan); Kaneshima, Y. [The Kansai Electric Power Company, Inc., Mihama, Fukui (Japan)

    2004-07-01

    The purpose of this study is development of ultrasonic testing technique to inspect containment liners embedded in concrete on nuclear power plants. Integrity of containment liners on nuclear power plants can be secured by suitable present operation and maintenance. Furthermore, non-destructive testing technique to inspect embedded liners will ensure the integrity of the containment further. In order to develop the non-destructive testing technique, ultrasonic transducers were made newly and ultrasonic testing data acquisition and evaluation were carried out by using a mock-up. We adopted the surface shear horizontal (SH) wave, low frequency (0.3-0.5MHz), to be able to detect an echo from a defect against attenuation of ultrasonic waves due to long propagation in the liners and dispersion into concrete. We made transducers with three large active elements (40mm x 40mm) in a line which were equivalent to a 120mm width active element. Artificial hollows, {phi}200mm - 19mm depth (1/2thickness) and {phi}200mm - 9.5mm depth (1/4thickness), were made on a surface of a mock-up: carbon steel plate, 38mm thickness, 2,000mm length, 1000mm width. The surfaces of the plate were covered with concrete in order to simulate liners embedded in concrete. As a result of the examinations, the surface SH transducers could detect clearly the echo from the hollows at a distance of 1500mm. We evaluate that the newly made surface SH transducers with three elements have ability of detection of defects such as corrosion on the liners embedded in concrete. (author)

  15. Improved ultrasonic nondestructive testing of pressure vessels. Annual progress report, August 1, 1975--July 31, 1976

    International Nuclear Information System (INIS)

    Frederick, J.R.; Fairchild, R.C.; Anderson, B.H.

    1977-07-01

    A synthetic aperture focusing technique for ultrasonic testing (SAFT UT) is described. The technique employs a single scanned transducer operating in pulse-echo mode with digital data acquisition and synthetic aperture post-processing to provide high lateral and longitudinal resolution. The extension of previously developed algorithms to provide volumetric processing and display is described. The design of a refreshed grey-scale display to provide interactive display of SAFT UT data is described

  16. Quality evaluation of PHWR fuel element end cap weld joints by ultrasonic testing technique

    Energy Technology Data Exchange (ETDEWEB)

    Singh, J L; Nair, V R; Ramadasan, E; Majumdar, S; Sahoo, K C [Bhabha Atomic Research Centre, Bombay (India). Radiometallurgy Div.; Kumar, Arun [Atomic Fuel Fabrication Facility, Tarapur (India)

    1994-12-31

    An ultrasonic testing technique has been developed for effective quality evaluation of Pressurised Heavy Water Reactor (PHWR) fuel end plug welds. A focused high frequency shear wave is directed to the weld zone from half skip distance to detect lack of fusion, porosities and wall cracks in the weld zone. A tentative select/reject level has been evolved to sort out the defective weld by examining more than 700 PHWR fuel pin welds. (author). 5 refs., 5 figs.

  17. Ultrasonic testing of large blocks for prestressed cast iron pressure vessels

    International Nuclear Information System (INIS)

    Stelling, H.A.

    1979-01-01

    Ultrasonic tests were made on plate specimen and large blocks of perlit cast iron with lamellar graphite. Aims of the investigations were the control of material porperties, the flaw detection and flaw classification. The material properties were classified by sound velocity and attenuation measurements. Flaw detection and flaw size estimation methods were modified with regard to the acoustic properties, the microstructure and the reflectivity of typical flaws in castings. Special localisation and flaw size estimation techniques are discussed. (orig.)

  18. Newly developed non-destructive testing method for evaluation of irradiation brittleness of structural materials using ultrasonic

    International Nuclear Information System (INIS)

    Ishii, Toshimitsu; Ooka, Norikazu; Kato, Yoshiaki; Saito, Junichi; Hoshiya, Taiji; Shibata, Saburo; Kobayashi, Hideo

    1999-01-01

    Surveillance testing is important to evaluate neutron irradiation embrittlement of reactor pressure vessel material for long life operation. An alternative test method for evaluating the irradiation embrittlement of the pressure vessel material will have to be proposed to support the limited number of surveillance test specimens in order to manage the plant life to be extended. In this study, ultrasonic testing for irradiated A533B-1 steel and weld metal was applied to examine material degradation nondestructively. With increasing the shift of Charpy 41 J transition temperature, ultrasonic velocity decreased and attenuation coefficient of ultrasonic wave increased. Especially, the difference of ultrasonic velocity for 5 MHz shear wave between as-received and irradiated material is corresponding to the shift of transition temperature showing material degradation. (author)

  19. Gating techniques for ultrasonic thickness testing using flaw detectors

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, P., E-mail: paul@hollowayndt.com [Holloway NDT & Engineering Inc., Georgetown, Ontario (Canada)

    2016-05-15

    The purpose of this article is to provide guidance on settings and methods, in particular the careful use of gating, to ensure accuracy of thickness testing on corroded steel and other metallic components. Specific applications include boiler tubes, tank floors, piping and vessels where the testing is performed from the OD or top surfaces, inspecting for metal loss due to corrosion on the opposite side. (author)

  20. Mechanized ultrasonic examination of piping systems in nuclear power plants

    International Nuclear Information System (INIS)

    Edelmann, X.; Pfister, O.; Allidi, F.

    1988-01-01

    The success of mechanized ultrasonic examination applied on welds in piping systems in nuclear power plants is highly dependent on its careful preparation. From the development of an adequate examination technique to its implementation on site, many problems are to be solved. This is especially the case when dealing with austenitic welds or dissimilar metal welds. In addition to the specific needs for examination technique based on material properties and requirements for minimum flaw size detection, accessibility and radiation aspects have to be considered. A crew of skilled and highly trained examination personnel is required. Experience in various nuclear power plants, - BWR's and PWR's of different designs - has shown, that even difficult examination problems can be successfully solved, provided that there is a good preparation. The necessary step by step proceeding is illustrated by examples concerning mechanized examination. Preservice inspections and in-service inspections with specific requirements, due to the types of flaws to be found or the type of material concerned, are discussed

  1. Ultrasonic inspection method and system for detection of steeple cracking in turbine disk rims

    International Nuclear Information System (INIS)

    Birring, A.S.; Lamping, G.A.; Van der Veer, W.R.; Hanley, J.J.

    1990-01-01

    Steam turbine disks which operate under high cyclic stress in a moist environment can develop cracks in the disk-rim steeples. Detection of these cracks using nondestructive testing methods is necessary to assure safe operation and avoid unnecessary disk replacement. Both magnetic particle (MT) and ultrasonic testing (UT) can be used to inspect the steeples; however, UT can be used without removing the blades. A system for inspecting bladed steeples has been developed that can be applied on a range of disks including those in Westinghouse, General Electric, and Allis Chalmers turbines. The system performs an inspection as the turbine is rotated at slow speeds over turning rolls. This procedure greatly reduces inspection time because the inspection can be done without deblading the disk or resetting the inspection equipment for different rim segments

  2. A Monte Carlo approach applied to ultrasonic non-destructive testing

    Science.gov (United States)

    Mosca, I.; Bilgili, F.; Meier, T.; Sigloch, K.

    2012-04-01

    Non-destructive testing based on ultrasound allows us to detect, characterize and size discrete flaws in geotechnical and architectural structures and materials. This information is needed to determine whether such flaws can be tolerated in future service. In typical ultrasonic experiments, only the first-arriving P-wave is interpreted, and the remainder of the recorded waveform is neglected. Our work aims at understanding surface waves, which are strong signals in the later wave train, with the ultimate goal of full waveform tomography. At present, even the structural estimation of layered media is still challenging because material properties of the samples can vary widely, and good initial models for inversion do not often exist. The aim of the present study is to combine non-destructive testing with a theoretical data analysis and hence to contribute to conservation strategies of archaeological and architectural structures. We analyze ultrasonic waveforms measured at the surface of a variety of samples, and define the behaviour of surface waves in structures of increasing complexity. The tremendous potential of ultrasonic surface waves becomes an advantage only if numerical forward modelling tools are available to describe the waveforms accurately. We compute synthetic full seismograms as well as group and phase velocities for the data. We invert them for the elastic properties of the sample via a global search of the parameter space, using the Neighbourhood Algorithm. Such a Monte Carlo approach allows us to perform a complete uncertainty and resolution analysis, but the computational cost is high and increases quickly with the number of model parameters. Therefore it is practical only for defining the seismic properties of media with a limited number of degrees of freedom, such as layered structures. We have applied this approach to both synthetic layered structures and real samples. The former contributed to benchmark the propagation of ultrasonic surface

  3. Design and development of an ultrasonic pulser-receiver unit for non-destructive testing of materials

    International Nuclear Information System (INIS)

    Patankar, V.H.; Joshi, V.M.

    2002-11-01

    The pulser/receiver constitutes the most vital part of an ultrasonic flaw detector or an ultrasonic imaging system used for inspection of materials. The ultrasonic properties of the material and resolution requirements govern the choice of the frequency of ultrasound that can be optimally used. The pulser/receiver in turn decides the efficiency of excitation of the transducer and the overall signal to noise ratio of the system for best sensitivity and resolution. A variety of pulsers are used in the ultrasonic instruments employed for materials inspection. This report describes a square wave type of an ultrasonic pulser-receiver unit developed at Ultrasonic Instrumentation Section, Electronics Division, BARC. It has been primarily designed for excitation of the transducer that is used with a multi-channel ultrasonic imaging system ULTIMA 100M targeted for inspection of SS403 billets, which are in turn used as the base material for fabrication of end fittings for coolant channels of pressurized heavy water nuclear reactors (PHWRs). The design of the pulser is based upon very fast MOSFETs, configured as electronic switches. The pulser is operated with a linear bipolar H.V. supply (+/- 500V max.). The receiver provides a 60 dB gain with a -3 dB BW of 40 MHz. This pulser/receiver unit has been successfully interfaced with a 4 channel ULTIMA 100 M4 multichannel ultrasonic C-scan imaging system, also designed and developed by the authors at Ultrasonic Instrumentation Section (Electronics Division, BARC) and supplied to Centre for Design and Manufacturer - CDM, BARC. This system is being regularly used in C-scan imaging mode for volumetric inspection of SS403 billets for end fittings of 500 MWe PHWRs. (author)

  4. Study of different ultrasonic focusing methods applied to non destructive testing

    International Nuclear Information System (INIS)

    El Amrani, M.

    1995-01-01

    The work presented in this thesis concerns the study of different ultrasonic focusing techniques applied to Nondestructive Testing (mechanical focusing and electronic focusing) and compares their capabilities. We have developed a model to predict the ultrasonic field radiated into a solid by water-coupled transducers. The model is based upon the Rayleigh integral formulation, modified to take account the refraction at the liquid-solid interface. The model has been validated by numerous experiments in various configurations. Running this model and the associated software, we have developed new methods to optimize focused transducers and studied the characteristics of the beam generated by transducers using various focusing techniques. (author). 120 refs., 95 figs., 4 appends

  5. Laser ultrasonics for civil engineering : some applications in development for concrete non destructive testing

    International Nuclear Information System (INIS)

    Abraham, O; Cottineau, L-M; Durand, O; Popovics, J S

    2011-01-01

    Non destructive testing of civil engineering infrastructures is becoming of primary importance for their diagnosis, residual time life estimation and/or structural health monitoring. A particularity of civil engineering application is the large size of the survey zones and the expected low cost of inspection. In this context non contact ultrasonics may offer the possibility to built robots that can automatically scan large areas (or eventually be integrated in moving vehicles) to recover mechanical properties of material or to perform imagery for geometrical information recovery. In this paper we present two possible applications of in situ laser ultrasonics : one is the detection of voids in tendon duct with the impact echo method, the other is the use of surface waves to recover mechanical properties of the first centimetres of concrete structures (here after called cover concrete).

  6. Image based EFIT simulation for nondestructive ultrasonic testing of austenitic steel

    International Nuclear Information System (INIS)

    Nakahata, Kazuyuki; Hirose, Sohichi; Schubert, Frank; Koehler, Bernd

    2009-01-01

    The ultrasonic testing (UT) of an austenitic steel with welds is difficult due to the acoustic anisotropy and local heterogeneity. The ultrasonic wave in the austenitic steel is skewed along crystallographic directions and scattered by weld boundaries. For reliable UT, a straightforward simulation tool to predict the wave propagation is desired. Here a combined method of elastodynamic finite integration technique (EFIT) and digital image processing is developed as a wave simulation tool for UT. The EFIT is a grid-based explicit numerical method and easily treats different boundary conditions which are essential to model wave propagation in heterogeneous materials. In this study, the EFIT formulation in anisotropic and heterogeneous materials is briefly described and an example of a two dimensional simulation of a phased array UT in an austenitic steel bar is demonstrated. In our simulation, a picture of the surface of the steel bar with a V-groove weld is scanned and fed into the image based EFIT modeling. (author)

  7. Investigation with automatic ultrasonic equipment to trace flaws in a large test piece, and experience gained in carrying out inspections

    International Nuclear Information System (INIS)

    Lindner, J.P.

    1975-01-01

    Based on the FRG codes providing guide lines for the Reactor Safety Commission regarding the size and location of flaws to be detected during in-service inspections, investigations were carried out into the possibility of detecting defects in thick-walled reactor pressure vessel components with the aid of ultrasonic inspection systems. A large test rig was used and, in a similar manner to the in-service inspections on a reactor, the tests were carried out with remote-controlled, automatically guided inspection equipment. For this purpose, a test specimen weighing about 10 tons was produced and provided with two weld seams having a large number of artificial defects. Essential parameters for the various reflectors in the test specimen were the size, location, angle and roughness or structure of the reflecting surfaces. As it is known that austenitic cladding has a considerable influence on flaw detection, the tests were undertaken first without cladding and then with cladding. A manipulator was designed for automatic remote-controlled inspection with which the inspection system travels on a meandering route over the area to be inspected. The inspection system employed was of the same type as the one used for baseline tests during external inspections of reactor vessel walls with parallel surfaces. Digital data collection was by a magnetic tape recorder designed to store both the data of the ultrasonic inspection system as well as the allied position data. The data stored on the tape are evaluated with electronic data processing programmes especially developed for this purpose. These programmes allow locally coherent indication patterns to be prepared, thus simplifying the interpretation of the data obtained. The author initially describes the equipment with the aid of which the studies were undertaken. A detailed discussion is then presented on the design of the test specimen and the inspection systems employed. Following this, the results obtained are explained and

  8. New equipment for the needs of mobile automatic ultrasonic testing

    International Nuclear Information System (INIS)

    Cost, H.; Vogt, M.

    1989-01-01

    A newly designed system of equipment - ECHOGRAPH 1030 MULTI - for multiplex operation is introduced. The frequency control unit which can distribute a pulse sequency frequency from a maximum of 8 KHz to up to 8 cycles and the monitor evaluation, are described. (MM) [de

  9. Design of signal reception and processing system of embedded ultrasonic endoscope

    Science.gov (United States)

    Li, Ming; Yu, Feng; Zhang, Ruiqiang; Li, Yan; Chen, Xiaodong; Yu, Daoyin

    2009-11-01

    Embedded Ultrasonic Endoscope, based on embedded microprocessor and embedded real-time operating system, sends a micro ultrasonic probe into coelom through the biopsy channel of the Electronic Endoscope to get the fault histology features of digestive organs by rotary scanning, and acquires the pictures of the alimentary canal mucosal surface. At the same time, ultrasonic signals are processed by signal reception and processing system, forming images of the full histology of the digestive organs. Signal Reception and Processing System is an important component of Embedded Ultrasonic Endoscope. However, the traditional design, using multi-level amplifiers and special digital processing circuits to implement signal reception and processing, is no longer satisfying the standards of high-performance, miniaturization and low power requirements that embedded system requires, and as a result of the high noise that multi-level amplifier brought, the extraction of small signal becomes hard. Therefore, this paper presents a method of signal reception and processing based on double variable gain amplifier and FPGA, increasing the flexibility and dynamic range of the Signal Reception and Processing System, improving system noise level, and reducing power consumption. Finally, we set up the embedded experiment system, using a transducer with the center frequency of 8MHz to scan membrane samples, and display the image of ultrasonic echo reflected by each layer of membrane, with a frame rate of 5Hz, verifying the correctness of the system.

  10. Characterization of water absorption by CFRP using air-coupled ultrasonic testing

    International Nuclear Information System (INIS)

    Lee, Joo Min; Lee, Joo Sung; Park, Ik Keun; Kim, Yong Kwon

    2014-01-01

    Carbon-fiber-reinforced plastic (CFRP) composites are increasingly being used in a variety of industry applications, such as aircraft, automobiles, and ships because of their high specific stiffness and high specific strength. Aircraft are exposed to high temperatures and high humidity for a long duration during flights. CFRP materials of the aircraft can absorb water, which could decrease the adhesion strength of these materials and cause their volumes to change with variation in internal stress. Therefore, it is necessary to estimate the characteristics of CFRP composites under actual conditions from the viewpoint of aircraft safety. In this study air-coupled ultrasonic testing (ACUT) was applied to the evaluation of water absorption properties of CFRP composites. CFRP specimens were fabricated and immersed in distilled water at 75 degree C for 30, 60, and 120 days, after which their ultrasonic images were obtained by ACUT. The water absorption properties were determined by quantitatively analyzing the changes in ultrasonic signals. Further, shear strength was applied to the specimens to verify the changes in their mechanical properties for water absorption.

  11. Application of Neuro-Wavelet Algorithm in Ultrasonic-Phased Array Nondestructive Testing of Polyethylene Pipelines

    Directory of Open Access Journals (Sweden)

    Reza Bohlouli

    2012-01-01

    Full Text Available Polyethylene (PE pipelines with electrofusion (EF joining is an essential method of transportation of gas energy. EF joints are weak points for leakage and therefore, Nondestructive testing (NDT methods including ultrasonic array technology are necessary. This paper presents a practical NDT method of fusion joints of polyethylene piping using intelligent ultrasonic image processing techniques. In the proposed method, to detect the defects of electrofusion joints, the NDT is applied based on an ANN-Wavelet method as a digital image processing technique. The proposed approach includes four steps. First an ultrasonic-phased array technique is used to provide real time images of high resolution. In the second step, the images are preprocessed by digital image processing techniques for noise reduction and detection of ROI (Region of Interest. Furthermore, to make more improvement on the images, mathematical morphology techniques such as dilation and erosion are applied. In the 3rd step, a wavelet transform is used to develop a feature vector containing 3-dimensional information on various types of defects. In the final step, all the feature vectors are classified through a backpropagation-based ANN algorithm. The obtained results show that the proposed algorithms are highly reliable and also precise for NDT monitoring.

  12. Characterization of water absorption by CFRP using air-coupled ultrasonic testing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joo Min; Lee, Joo Sung; Park, Ik Keun [Seoul National University of Science and Technology, Seoul (Korea, Republic of); Kim, Yong Kwon [Technology Research and Development Institute, KEPCO Plant Service and Engineering Co., Ltd, Naju (Korea, Republic of)

    2014-04-15

    Carbon-fiber-reinforced plastic (CFRP) composites are increasingly being used in a variety of industry applications, such as aircraft, automobiles, and ships because of their high specific stiffness and high specific strength. Aircraft are exposed to high temperatures and high humidity for a long duration during flights. CFRP materials of the aircraft can absorb water, which could decrease the adhesion strength of these materials and cause their volumes to change with variation in internal stress. Therefore, it is necessary to estimate the characteristics of CFRP composites under actual conditions from the viewpoint of aircraft safety. In this study air-coupled ultrasonic testing (ACUT) was applied to the evaluation of water absorption properties of CFRP composites. CFRP specimens were fabricated and immersed in distilled water at 75 degree C for 30, 60, and 120 days, after which their ultrasonic images were obtained by ACUT. The water absorption properties were determined by quantitatively analyzing the changes in ultrasonic signals. Further, shear strength was applied to the specimens to verify the changes in their mechanical properties for water absorption.

  13. Dynamic tensile tests with superimposed ultrasonic oscillations for stainless steel type 321 at room temperature

    International Nuclear Information System (INIS)

    Schinke, B.; Malmberg, T.

    1987-01-01

    In recent years various containment codes for Fast Breeder Reactor accidents have been assessed by comparison with explosion tests in water-filled vessels (COVA experiments). Common to the various codes, a systematic underestimation of the circumferential vessel strains was found. In the COVA tests high frequency pressure oscillations in the ultrasonic range were observed and thus it has been conjectured that the phenomenon of ''acoustic softening'' might be relevant in explaining the discrepancies in the strains. To validate this conjecture a hydro-pneumatic tensile test apparatus was developed which allows dynamic tensile testing at room temperature with and without superimposed ultrasonic oscillations. The dynamic tensile tests on the COVA sheet material (stainless steel AISI 321) without ultrasonic insonation show a linear dependence of the flow stress on the logarithm of the strain rate. The results at low strain rates (10 -3 s -1 ) agree favourably with previous measurements but at high rates (50 s -1 ) at 20% lower flow stress is observed. The dynamic tensile tests with continuous and intermittent insonation show the phenomenon of ''acoustic softening'': The average flow stress is reduced by an amount of about half the oscillating amplitude. At high strain rates the reduction is less. A severe ''acoustic softening'' observed by several authors for various metals at low strain rates was not observed. The experimental results were compared with the theory of the superpositon mechanism assuming a rate-independent elastic-plastic and an elastic-viscoplastic constitutive model. Although the rate-independent model is capable to predict qualitatively some of the observed effects, a better description is obtained with the viscoplastic model. The conclusion is that the ''acoustic softening'' of the COVA material is far too small to explain the discrepancies between measured and computed strains found in the containment code validation studies. (orig.)

  14. A universal piezo-driven ultrasonic cell microinjection system.

    Science.gov (United States)

    Huang, Haibo; Mills, James K; Lu, Cong; Sun, Dong

    2011-08-01

    Over the past decade, the rapid development of biotechnologies such as gene injection, in-vitro fertilization, intracytoplasmic sperm injection (ICSI) and drug development have led to great demand for highly automated, high precision equipment for microinjection. Recently a new cell injection technology using piezo-driven pipettes with a very small mercury column was proposed and successfully applied in ICSI to a variety of mammal species. Although this technique significantly improves the survival rates of the ICSI process, shortcomings due to the toxicity of mercury and damage to the cell membrane due to large lateral tip oscillations of the injector pipette may limit its application. In this paper, a new cell injection system for automatic batch injection of suspended cells is developed. A new design of the piezo-driven cell injector is proposed for automated suspended cell injection. This new piezo-driven cell injector design relocates the piezo oscillation actuator to the injector pipette which eliminates the vibration effect on other parts of the micromanipulator. A small piezo stack is sufficient to perform the cell injection process. Harmful lateral tip oscillations of the injector pipette are reduced substantially without the use of a mercury column. Furthermore, ultrasonic vibration micro-dissection (UVM) theory is utilized to analyze the piezo-driven cell injection process, and the source of the lateral oscillations of the injector pipette is investigated. From preliminary experiments of cell injection of a large number of zebrafish embryos (n = 200), the injector pipette can easily pierce through the cell membrane at a low injection speed and almost no deformation of the cell wall, and with a high success rate(96%) and survival rate(80.7%) This new injection approach shows good potential for precision injection with less damage to the injected cells.

  15. Development and applications of a computer-aided phased array assembly for ultrasonic testing

    International Nuclear Information System (INIS)

    Schenk, G.; Montag, H.J.; Wuestenberg, H.; Erhard, A.

    1985-01-01

    The use of modern electronic equipment for programmable signal delay increasingly allows transit-time controlled phased arrays to be applied in non-destructive, ultrasonic materials testing. A phased-array assembly is described permitting fast variation of incident angle of acoustic wave and of sonic beam focus, together with numerical evaluation of measured data. Phased arrays can be optimized by adding programmable electronic equipment so that the quality of conventional designs can be achieved. Applications of the new technical improvement are explained, referring to stress corrosion cracking, turbine testing, echo tomography of welded joints. (orig./HP) [de

  16. An Advanced Multi-Sensor Acousto-Ultrasonic Structural Health Monitoring System: Development and Aerospace Demonstration.

    Science.gov (United States)

    Smithard, Joel; Rajic, Nik; van der Velden, Stephen; Norman, Patrick; Rosalie, Cedric; Galea, Steve; Mei, Hanfei; Lin, Bin; Giurgiutiu, Victor

    2017-07-20

    A key longstanding objective of the Structural Health Monitoring (SHM) research community is to enable the embedment of SHM systems in high value assets like aircraft to provide on-demand damage detection and evaluation. As against traditional non-destructive inspection hardware, embedded SHM systems must be compact, lightweight, low-power and sufficiently robust to survive exposure to severe in-flight operating conditions. Typical Commercial-Off-The-Shelf (COTS) systems can be bulky, costly and are often inflexible in their configuration and/or scalability, which militates against in-service deployment. Advances in electronics have resulted in ever smaller, cheaper and more reliable components that facilitate the development of compact and robust embedded SHM systems, including for Acousto-Ultrasonics (AU), a guided plate-wave inspection modality that has attracted strong interest due mainly to its capacity to furnish wide-area diagnostic coverage with a relatively low sensor density. This article provides a detailed description of the development, testing and demonstration of a new AU interrogation system called the Acousto Ultrasonic Structural health monitoring Array Module⁺ (AUSAM⁺). This system provides independent actuation and sensing on four Piezoelectric Wafer Active Sensor (PWAS) elements with further sensing on four Positive Intrinsic Negative (PIN) photodiodes for intensity-based interrogation of Fiber Bragg Gratings (FBG). The paper details the development of a novel piezoelectric excitation amplifier, which, in conjunction with flexible acquisition-system architecture, seamlessly provides electromechanical impedance spectroscopy for PWAS diagnostics over the full instrument bandwidth of 50 KHz-5 MHz. The AUSAM⁺ functionality is accessed via a simple hardware object providing a myriad of custom software interfaces that can be adapted to suit the specific requirements of each individual application.

  17. Determination of Flaw Type and Location Using an Expert Module in Ultrasonic Nondestructive Testing for Weld Inspection

    Science.gov (United States)

    Shahriari, D.; Zolfaghari, A.; Masoumi, F.

    2011-01-01

    Nondestructive evaluation is explained as nondestructive testing, nondestructive inspection, and nondestructive examination. It is a desire to determine some characteristic of the object or to determine whether the object contains irregularities, discontinuities, or flaws. Ultrasound based inspection techniques are used extensively throughout industry for detection of flaws in engineering materials. The range and variety of imperfections encountered is large, and critical assessment of location, size, orientation and type is often difficult. In addition, increasing quality requirements of new standards and codes of practice relating to fitness for purpose are placing higher demands on operators. Applying of an expert knowledge-based analysis in ultrasonic examination is a powerful tool that can help assure safety, quality, and reliability; increase productivity; decrease liability; and save money. In this research, an expert module system is coupled with ultrasonic examination (A-Scan Procedure) to determine and evaluate type and location of flaws that embedded during welding parts. The processing module of this expert system is implemented based on EN standard to classify welding defects, acceptance condition and measuring of their location via echo static pattern and image processing. The designed module introduces new system that can automate evaluating of the results of A-scan method according to EN standard. It can simultaneously recognize the number and type of defects, and determine flaw position during each scan.

  18. Development and performance of a new prosthesis system using ultrasonic sensor for wrist movements: a preliminary study

    Science.gov (United States)

    2014-01-01

    Background The design and performance of a new development prosthesis system known as biomechatronics wrist prosthesis is presented in this paper. The prosthesis system was implemented by replacing the Bowden tension cable of body powered prosthesis system using two ultrasonic sensors, two servo motors and microcontroller inside the prosthesis hand for transradial user. Methods The system components and hand prototypes involve the anthropometry, CAD design and prototyping, biomechatronics engineering together with the prosthetics. The modeler construction of the system develop allows the ultrasonic sensors that are placed on the shoulder to generate the wrist movement of the prosthesis. The kinematics of wrist movement, which are the pronation/supination and flexion/extension were tested using the motion analysis and general motion of human hand were compared. The study also evaluated the require degree of detection for the input of the ultrasonic sensor to generate the wrist movements. Results The values collected by the vicon motion analysis for biomechatronics prosthesis system were reliable to do the common tasks in daily life. The degree of the head needed to bend to give the full input wave was about 45° - 55° of rotation or about 14 cm – 16 cm. The biomechatronics wrist prosthesis gave higher degree of rotation to do the daily tasks but did not achieve the maximum degree of rotation. Conclusion The new development of using sensor and actuator in generating the wrist movements will be interesting for used list in medicine, robotics technology, rehabilitations, prosthetics and orthotics. PMID:24755242

  19. Ultra-sonic testing for brittle-ductile transition temperature of ferritic steels

    International Nuclear Information System (INIS)

    Nomakuchi, Michiyoshi

    1979-01-01

    The ultra-sonic testing for the brittle-ductile transition temperature, the USTB test for short, of ferritic steels is proposed in the present paper. And also the application of the USTB test into the nuclear pressure vessel surveillance is discussed. The USTB test is based upon the experimental results in the present work that the ultrasonic pressure attenuation coefficient of a ferritic steel has the evident transition property with its temperature due to the nature from which the brittle-ductile fracture transition property of the steel come and for four ferritic steels the upper boundary temperatute of the region in which the transition of the attenuation coefficient of a steel takes place is 4 to 5 0 C higher than the sub(D)T sub(E), i.e. the transition temperature of the fracture absorption energy of the steel by the DWTT test. The USTB test estimates the crack arrest temperature which is defined to be the fracture transition elastic temperature by the upper boundary temperature. (author)

  20. Development and Application of an Ultrasonic Gas Flowmeter

    International Nuclear Information System (INIS)

    Hwang, Won Ho; Jeong, Hee Don; Park, Sang Gug; Jhang, Kyung Young

    2002-01-01

    This paper describes the development and the field application of the ultrasonic gas flowmeter for accurate measurement of the volumetric flow rate of gases in a harsh environmental conditions in iron and steel making company. This ultrasonic flowmeter is especially suited for measuring LDG, COG, BFG gases produced in iron and steel making process. This is a transit time type ultrasonic flowmeter. We have developed the transmitting and receiving algorithm of ultrasonic wave and the ultrasonic signal processing algorithm to develope a transit time type ultrasonic flowmeter. We have evaluated the performance of ultrasonic flowmeter by the calibration system with Venturi type standard flowmeter. We has confirmed its reliability by extensive field tests for a year in POSCO, iron and steel making company. Now we have developed the commercial model of ultrasonic flowmeter and applied to the POSCO gas line

  1. Study on electrical impedance matching for broadband ultrasonic transducer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon Woo [University of Science and Technology, Daejeon (Korea, Republic of); Kim, Ki Bok [Korea Research Institute of Standards and Science, Center for Safety Measurement, Daejeon (Korea, Republic of); Baek, Kwang Sae [Elache Co., Busan (Korea, Republic of)

    2017-02-15

    Ultrasonic transducers with high resolution and resonant frequency are required to detect small defects (less than hundreds of μm) by ultrasonic testing. The resonance frequency and resolution of an ultrasonic transducer are closely related to the thickness of piezo-electric materials, backing materials, and the electric impedance matching technique. Among these factors, electrical impedance matching plays an important role because it can reduce the loss and reflection of ultrasonic energy differences in electrical impedance between an ultrasonic transducer and an ultrasonic defects detecting system. An LC matching circuit is the most frequently used electric matching method. It is necessary for the electrical impedance of an ultrasonic transducer to correspond to approximately 50 Ω to compensate the difference in electrical impedance between both connections. In this study, a 15 MHz immersion ultrasonic transducer was fabricated and an LC electrical impedance circuit was applied to that for having broad-band frequency characteristic.

  2. Defect detection and sizing in ultrasonic imaging

    International Nuclear Information System (INIS)

    Moysan, J.; Benoist, P.; Chapuis, N.; Magnin, I.

    1991-01-01

    This paper introduces imaging processing developed with the SPARTACUS system in the field of ultrasonic testing. The aim of the imaging processing is to detect and to separate defects echoes from background noise. Image segmentation and particularities of ultrasonic images are the base of studied methods. 4 figs.; 6 refs [fr

  3. Compact and air-transportable ultrasonic turbine disc bore inspection system

    International Nuclear Information System (INIS)

    Larsen, R.E.; Leon-Salamanca, T.

    1990-01-01

    A compact, lightweight, air-transportable ultrasonic inspection system for bore and keyway regions of shrunk-on turbine discs has been developed. The system utilizes a proprietary ultrasound liquid coupling technique in conjunction with a single pair of gimballed search units to achieve rapid and thorough coverage of bores and keyways in both heavy nuclear and standard fossil discs of nearly any size and having any conceivable web surface contour. Search unit positioning and angulation parameter settings are established in near real-time through a computation algorithm based on a compact vector ray tracing protocol. Modular construction and the use of lightweight, stiff materials throughout facilitates air shipment of the system and its rapid deployment at continental and overseas field sites. Mechanical and ultrasonic features of the system are described. Development and application of the computation algorithm to the ultrasonic inspection of heavy discs at an overseas power station is discussed

  4. Development and set-up of a test system for non-destructive acoustic and ultrasonic testing of silicon nitride ceramics valves; Entwicklung und Aufbau eines Pruefsystems zur zerstoerungsfreien Klang- und Ultraschallpruefung von Ventilen aus Siliciumnitrid-Keramik

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, H.A.; Caspers, B.; Hennicke, J.; Feuer, H.; Petzenhauser, I. [Cremer Forschungsinstitut GmbH und Co. KG, Roedental (Germany)

    1999-07-01

    Valves made of silicon nitrice ceramics have advantages over metal valves owing to their low density, high wear resistance, low thermal conductivity and high termperature resistance. Reciprocating piston engines with ceramic valves have a lower fuel consumption, lower noise, and lower exhaust emissions. On the other hand, ceramic materials have the disadvantage of being brittele, i.e. mechanical stress concentrations at crack tips cannot be removed by plastic deformation. In order to ensure safe application in piston engines, all ceramic valves must therefore be tested by nondestructive methods in order to detect and replace defective valves. [German] Ventile aus Siliciumnitrid-Keramik haben infolge ihrer geringen Dichte, hohen Verschleissfestigkeit, niedrigen Waermeleitfaehigkeit und hohen Temperaturfestigkeit gegenueber Ventilen aus metallischen Werkstoffen ganz entscheidende Vorteile. So haben Hubkolbenmotoren mit Keramikventilen einen deutlich geringeren Treibstoffbedarf und zeigen bei einem erheblich reduzierten Geraeuschpegel eine schadstoffaermere Abgasentwicklung. Diesen Vorteilen steht die allen keramischen Werkstoffen gemeinsame Eigenschaft der Sproedigkeit gegenueber. So koennen mechanische Spannungskonzentrationen an Rissspitzen nicht durch plastische Verformung abgebaut werden. Fuer den sicheren Einsatz im Hubkolbenmotor muessen daher die Keramikventile einer zerstoerungsfreien Bewertung unterzogen werden, um fehlerhafte Ventile zu erkennen und auszuscheiden. (orig.)

  5. Crack initiation and propagation on the polymeric material ABS (Acrylonitrile Butadiene Styrene, under ultrasonic fatigue testing

    Directory of Open Access Journals (Sweden)

    G. M. Domínguez Almaraz

    2015-10-01

    Full Text Available Crack initiation and propagation have been investigated on the polymeric material ABS (Acrylonitrile Butadiene Styrene, under ultrasonic fatigue testing. Three controlled actions were implemented in order to carry out fatigue tests at very high frequency on this material of low thermal conductivity, they are: a The applying load was low to limit heat dissipation at the specimen neck section, b The dimensions of testing specimen were small (but fitting the resonance condition, in order to restraint the temperature gradient at the specimen narrow section, c Temperature at the specimen neck section was restrained by immersion in water or oil during ultrasonic fatigue testing. Experimental results are discussed on the basis of thermo-mechanical behaviour: the tail phenomenon at the initial stage of fatigue, initial shear yielding deformation, crazed development on the later stage, plastic strain on the fracture surface and the transition from low to high crack growth rate. In addition, a numerical analysis is developed to evaluate the J integral of energy dissipation and the stress intensity factor K, with the crack length

  6. Inspection device for external examination of pressure vessels, preferably for ultrasonic testing of reactor vessels

    International Nuclear Information System (INIS)

    Figlhuber, D.; Gallwas, J.; Weber, R.; Weber, J.

    1978-01-01

    The inspection device is placed in the annular gap between pressure vessel and biological shield of the BWR. In the annulus there is arranged at least one longitudinal rail which has got vertical guideways. Along it there can be moved on testing paths a manipulator with the ultrasonic search unit. The manipulator drive is outside of the inspection annulus. It is coupled to the manipulator by means of a tension member being guided over a reversing unit mounted at the upper end of the longitudinal rail. As a tension member there may be used a drag chain; the drive and the reversing unit are provided with corresponding chain wheels. (DG) [de

  7. Optical Production and Detection of Ultrasonic Waves in Metals for Nondestructive Testing

    Science.gov (United States)

    Morrison, R. A.

    1972-01-01

    Ultrasonic waves were produced by striking the surface of a metal with the focused one-joule pulse of a Q-switched ruby laser. Rayleigh (surface) waves and longitudinal waves were detected with conventional transducers. Optical methods of detection were tested and developed. Rayleigh waves were produced with an oscillator and transducer. They were optically detected on curved polished surfaces, and on unpolished surfaces. The technique uses a knife edge to detect small angle changes of the surface as the wave pulse passes the illuminated spot. Optical flaw detection using pulse echo and attenuation is demonstrated.

  8. Realtime identification of the propagation direction of received echoes in long range ultrasonic testing

    International Nuclear Information System (INIS)

    Choi, Myoung Seon; Heo, Won Nyoung

    2013-01-01

    In long range ultrasonic testing, a phased array probe composed of multiple identical transducers with an uniform interval of one quarter wavelength is usually used for the transmission or reception directivity control. This paper shows that the propagation directions of individual echoes can be identified in real time by displaying the inputs of a process for summing the constitution reception signals after compensating the phase difference due to the transducer interval, together with the output of the process. A constructive interference of the constitution echoes indicates a forward direction echo propagating along an intended direction while a destructive interference implies a reverse direction echo propagating along the direction opposite to the intended one

  9. Ultrasonic mammography

    International Nuclear Information System (INIS)

    Hueneke, B.

    1982-01-01

    608 women are examined by means of ultrasonic mammography during the period of 1 year. 432 patients were examined with the compound method with the U.I. Octoson, a water tank scanner, and 176 patients with the real time method with a directly connected linear-array-scanner. The following results were obtained at the end of the examination period: In the ultrasonic and also in the X-ray mammogram tumour diameters can be determined with an error rate of +- 30%. In the diagnosing of carcinomas, a significant dependence of the exactness on the sice of the tumour is found for the combination of the five methods tested (clinical examination, X-ray mammography, ultrasonic mammography, thermography, cytology). Classifying the individual methods with regard to their exactness, X-ray mammography ranks in front of ultrasonic mammography. Mastopathic changes in the breast can be screened by means of ultrasonic mammography. The structure of the changes can be determined more exactly than with an X-ray picture which is due to the possibility of differentiating solid and cystic structures. In diagnosing fibro-adenomas and establishing diagnoses on young women with dense gland bodies, ultrasonic mammography is superior to radiology both in the ability of screening a finding of a fibro-adenoma (US=88%, X-ray=75%) and in the possibility of classifying it as ''more benign than malignant''. (orig./MG) [de

  10. Fast Lamb wave energy shift approach using fully contactless ultrasonic system to characterize concrete structures

    Science.gov (United States)

    Ham, Suyun; Popovics, John S.

    2015-03-01

    Ultrasonic techniques provide an effective non-destructive evaluation (NDE) method to monitor concrete structures, but the need to perform rapid and accurate structural assessment requires evaluation of hundreds, or even thousands, of measurement datasets. Use of a fully contactless ultrasonic system can save time and labor through rapid implementation, and can enable automated and controlled data acquisition, for example through robotic scanning. Here we present results using a fully contactless ultrasonic system. This paper describes our efforts to develop a contactless ultrasonic guided wave NDE approach to detect and characterize delamination defects in concrete structures. The developed contactless sensors, controlled scanning system, and employed Multi-channel Analysis of Surface Waves (MASW) signal processing scheme are reviewed. Then a guided wave interpretation approach for MASW data is described. The presence of delamination is interpreted by guided plate wave (Lamb wave) behavior, where a shift in excited Lamb mode phase velocity, is monitored. Numerically simulated and experimental ultrasonic data collected from a concrete sample with simulated delamination defects are presented, where the occurrence of delamination is shown to be associated with a mode shift in Lamb wave energy.

  11. Computer based ultrasonic system for mechanical and acoustical characterization of materials

    International Nuclear Information System (INIS)

    Rosly Jaafar; Mohd Rozni Mohd Yusof; Khaidzir Hamzah; Md Supar Rohani; Rashdi Shah Ahmad; Amiruddin Shaari

    2001-01-01

    Propagation of both modes of ultrasonic waves velocity i.e. longitudinal (compressional) and transverse (shear), propagating in a material are closely linked with the material's physical and mechanical properties. By measuring both velocity modes, materials' properties such as Young's, bulk and shear moduli, compressibility, Poisson ratio and acoustic impedance can be determined. This paper describes the development of a system that is able to perform the above tasks and is known as Computer Based Ultrasonic for Mechanical and Acoustical Characterisation of Materials (UMC). The system was developed in the NDT Instrumentation and Signal Processing (NDTSP) laboratory of the Physics Department, Universiti Teknologi Malaysia. Measurements were made on four solid samples, namely, glass, copper, mild steel and aluminium. The results of measurements obtained were found to be in good agreement with the values of measurements made using standard methods. The main advantage of using this system over other methods is that single measurement of two ultrasonic velocity modes yields six material's properties. (Author)

  12. Ultrasonic test of carbon composite/copper joints in the ITER divertor

    International Nuclear Information System (INIS)

    Roccella, S.; Cacciotti, E.; Candura, D.; Mancini, A.; Pizzuto, A.; Reale, A.; Tatì, A.; Visca, E.

    2013-01-01

    Highlights: • ENEA developed and tested a specimen for the simulation of defects at the interface between CFC and copper. • The use of an ultrasonic technique properly set permitted to highlight and size with high accuracy the defects. • The technology developed could be employed successfully in the production of these components for high heat flux applications. -- Abstract: The vertical targets of the ITER divertor consist of high flux units (HFU) actively cooled: CuCrZr tubes armoured by tungsten and carbon/carbon fibre composite (CFC). The armour is obtained with holed parallelepiped blocks, called monoblocks, previously prepared and welded onto the tubes by means diffusion bonding. The monoblock preparation consists in the casting of a layer of copper oxygen free (Cu OFHC) inside the monoblock hole. Each HFU is covered with more than 100 monoblocks that have to be joined simultaneously to the tube. Therefore, it is very important to individuate any defects present in the casting of Cu OFHC or at the interface with the CFC before the monoblocks are installed on the units. This paper discusses the application of non-destructive testing by ultrasound (US) method for the control of the joining interfaces between CFC monoblocks and Cu OFHC, before the brazing on the CrCrZr tube. In ENEA laboratory an ultrasonic technique (UT) suitable for the control of these joints with size and geometry according to the ITER specifications has been developed and widely tested. Real defects in this type of joints are, however, still hardly detected by UT. The CFC surface has to be machined to improve the mechanical strength of the joint. This results in a surface not perpendicular to the ultrasonic wave. Moreover, CFC is characterized by high acoustic attenuation of the ultrasonic wave and then it is not easy to get information regarding the Cu/CFC bonding. Nevertheless, the UT sharpness and simplicity pushes to perform some further study. With this purpose, a sample with

  13. Ultrasonic test of carbon composite/copper joints in the ITER divertor

    Energy Technology Data Exchange (ETDEWEB)

    Roccella, S., E-mail: selanna.roccella@enea.it [Associazione ENEA-Euratom sulla Fusione, C.R. Frascati, 00044 Frascati, RM (Italy); Cacciotti, E. [Associazione ENEA-Euratom sulla Fusione, C.R. Frascati, 00044 Frascati, RM (Italy); Candura, D. [Ansaldo Nucleare S.p.A., C. so F.M. Perrone 25, 16152 Genoa (Italy); Mancini, A.; Pizzuto, A.; Reale, A. [Associazione ENEA-Euratom sulla Fusione, C.R. Frascati, 00044 Frascati, RM (Italy); Tatì, A. [Associazione Euratom-ENEA sulla Fusione, C.R. Casaccia, Via Anguillarese 301, 00123 Santa Maria di Galeria, RM (Italy); Visca, E. [Associazione ENEA-Euratom sulla Fusione, C.R. Frascati, 00044 Frascati, RM (Italy)

    2013-10-15

    Highlights: • ENEA developed and tested a specimen for the simulation of defects at the interface between CFC and copper. • The use of an ultrasonic technique properly set permitted to highlight and size with high accuracy the defects. • The technology developed could be employed successfully in the production of these components for high heat flux applications. -- Abstract: The vertical targets of the ITER divertor consist of high flux units (HFU) actively cooled: CuCrZr tubes armoured by tungsten and carbon/carbon fibre composite (CFC). The armour is obtained with holed parallelepiped blocks, called monoblocks, previously prepared and welded onto the tubes by means diffusion bonding. The monoblock preparation consists in the casting of a layer of copper oxygen free (Cu OFHC) inside the monoblock hole. Each HFU is covered with more than 100 monoblocks that have to be joined simultaneously to the tube. Therefore, it is very important to individuate any defects present in the casting of Cu OFHC or at the interface with the CFC before the monoblocks are installed on the units. This paper discusses the application of non-destructive testing by ultrasound (US) method for the control of the joining interfaces between CFC monoblocks and Cu OFHC, before the brazing on the CrCrZr tube. In ENEA laboratory an ultrasonic technique (UT) suitable for the control of these joints with size and geometry according to the ITER specifications has been developed and widely tested. Real defects in this type of joints are, however, still hardly detected by UT. The CFC surface has to be machined to improve the mechanical strength of the joint. This results in a surface not perpendicular to the ultrasonic wave. Moreover, CFC is characterized by high acoustic attenuation of the ultrasonic wave and then it is not easy to get information regarding the Cu/CFC bonding. Nevertheless, the UT sharpness and simplicity pushes to perform some further study. With this purpose, a sample with

  14. Identification of the Quality Spot Welding used Non Destructive Test-Ultrasonic Testing: (Effect of Welding Time)

    Science.gov (United States)

    Sifa, A.; Endramawan, T.; Badruzzaman

    2017-03-01

    Resistance Spot Welding (RSW) is frequently used as one way of welding is used in the manufacturing process, especially in the automotive industry [4][5][6][7]. Several parameters influence the process of welding points. To determine the quality of a welding job needs to be tested, either by damaging or testing without damage, in this study conducted experimental testing the quality of welding or identify quality of the nugget by using Non-Destructive Test (NDT) -Ultrasonic Testing (UT), in which the identification of the quality of the welding is done with parameter thickness of worksheet after welding using NDT-UT with use same material worksheet and have more thickness of worksheet, the thickness of the worksheet single plate 1mm, with the capability of propagation Ultrasonic Testing (UT) standard limited> 3 mm [1], welding process parameters such as the time difference between 1-10s and the welding current of 8 KV, visually Heat Affected Zone ( HAZ ) have different results due to the length of time of welding. UT uses a probe that is used with a frequency of 4 MHz, diameter 10 mm, range 100 and the couplant used is oil. Identification techniques using drop 6dB, with sound velocity 2267 m / s of Fe, with the result that the effect of the Welding time affect the size of the HAZ, identification with the lowest time 1s show results capable identified joined through NDT - UT.

  15. Ultrasonic non-destructive testing of pieces of complex geometry with a flexible phased array transducer

    Science.gov (United States)

    Chatillon; Cattiaux; Serre; Roy

    2000-03-01

    Ultrasonic non-destructive testing of components of complex geometry in the nuclear industry faces several difficulties: sensitivity variations due to unmatched contact, inaccurate localization of defects due to variations of transducer orientation, and uncovered area of the component. To improve the performances of such testing and defect characterization, we propose a new concept of ultrasonic contact phased array transducer. The phased array transducer has a flexible radiating surface able to fit the actual surface of the piece to optimize the contact and thus the sensitivity of the test. To control the transmitted field, and therefore to improve the defect characterization, a delay law optimizing algorithm is developed. To assess the capability of such a transducer, the Champ-Sons model, developed at the French Atomic Energy Commission for predicting field radiated by arbitrary transducers into pieces, has to be extended to sources directly in contact with pieces of complex geometry. The good behavior of this new type of probe predicted by computations is experimentally validated with a jointed transducer positioned on pieces of various profiles.

  16. A quality control method by ultrasonic vibration energy and diagnosis system at trimming process

    International Nuclear Information System (INIS)

    Suh, Chang Min; Song, Gil Ho; Pyoun, Young Shik

    2007-01-01

    In this paper, the characteristics in mechanical properties of ultrasonic cold forging treatment (UCFT) used for the trimming knife and the effects of ultrasonic vibration energy (UVE) into the trimming process on the state of the strip cutting face were studied. And a diagnosis system to quality control for trimming knife and strip cutting face was developed and installed in plant. By the plant application of UCFT, service life of knife was more increased over 100% than that of conventional knife and using the developed diagnosis system, the knife breakage and saw ear have been perfectly detected and quality control of trimming face is effectively obtained

  17. The Ontario hydro low pressure turbine disc inspection program automated ultrasonic inspection systems - an overview

    International Nuclear Information System (INIS)

    Huggins, J.W.; Chopcian, M.; Grabish, M.

    1990-01-01

    An overview of the Ontario Hydro Low Pressure Turbine Disc Inspection Program is presented. The ultrasonic inspection systems developed in-house to inspect low pressure turbine discs at Pickering and Bruce Nuclear Generating stations are described. Three aspects of the program are covered: PART I - Background to inspection program, disc cracking experience, and development of an in-house inspection capability: PART II - System development requirements; ultrasonic equipment, electromechanical subsystems and instrumentation console: PART III - Customized software for flaw detection, sizing, data acquisition/storage, advanced signal processing, reports, documentation and software based diagnostics

  18. Ultrasonic testing of austenitic welds and its dependency on the welding process

    International Nuclear Information System (INIS)

    Tabatabaeipour, S.M.; Honarvar, F.

    2009-01-01

    This paper describes the ultrasonic testing of austenitic welds prepared by two different welding processes. The tests were carried out by the ultrasonic Time-of-Flight Diffraction (ToFD) technique. Shielded Metal Arc Welding (SMAW) and Gas Tungsten Arc Welding (GTAW) are the welding processes used for preparing the specimens. Identical artificial defects were implanted in both welds during the welding process. Both specimens were examined by the ToFD technique under similar conditions. Metallographic images were also obtained from the cross sectional plane of both the SMA and GTA welds. These images show that the grain orientation in the two welded specimens are different. D-scan images obtained by the ToFD technique from these welds indicates that inspecting the specimens prepared by the SMAW process is easier than the one made by the GTAW process. The results also show that the D-scan images cannot reveal the small vertical drilled holes implanted in the specimens. (author)

  19. Ultrasonic, Molecular and Mechanical Testing Diagnostics in Natural Fibre Reinforced, Polymer-Stabilized Earth Blocks

    Directory of Open Access Journals (Sweden)

    C. Galán-Marín

    2013-01-01

    Full Text Available The aim of this research study was to evaluate the influence of utilising natural polymers as a form of soil stabilization, in order to assess their potential for use in building applications. Mixtures were stabilized with a natural polymer (alginate and reinforced with wool fibres in order to improve the overall compressive and flexural strength of a series of composite materials. Ultrasonic pulse velocity (UPV and mechanical strength testing techniques were then used to measure the porous properties of the manufactured natural polymer-soil composites, which were formed into earth blocks. Mechanical tests were carried out for three different clays which showed that the polymer increased the mechanical resistance of the samples to varying degrees, depending on the plasticity index of each soil. Variation in soil grain size distributions and Atterberg limits were assessed and chemical compositions were studied and compared. X-ray diffraction (XRD, X-ray fluorescence spectroscopy (XRF, and energy dispersive X-ray fluorescence (EDXRF techniques were all used in conjunction with qualitative identification of the aggregates. Ultrasonic wave propagation was found to be a useful technique for assisting in the determination of soil shrinkage characteristics and fibre-soil adherence capacity and UPV results correlated well with the measured mechanical properties.

  20. Effects of operator time pressure and noise on manual ultrasonic testing

    International Nuclear Information System (INIS)

    Enkvist, J.; Edland, A.; Svenson, O.

    2002-01-01

    In earlier studies of manual ultrasonic testing, great variations have been found in operator performance, often attributed to operator fatigue. However, no conclusive findings have been reported. In the present study, twenty operators performed manual ultrasonic inspections of six test-pieces with manufactured flaws. The operators performed the inspections under stress (high arousal - time pressure and noise) and no-stress conditions; one condition the first day and the other the second and last day. According to the Yerkes-Dodson Law there is an optimal arousal level where performance is highest. It was hypothesised that the stress condition led to a level of arousal so high that it would affect the results negatively. However, contrary to the hypotheses it was found that the manipulation increased operator performance. Operators with the stress condition day 1 performed better than the other operators (under the no-stress condition). This was interpreted as the 'stress first' (group 1) operators had established efficient performance patterns the first day - affecting also the second day. Operators beginning with stress condition also tended to be more motivated. It was concluded that operator performance is affected by arousal. (author)

  1. Pipeline defect prediction using long range ultrasonic testing and intelligent processing

    International Nuclear Information System (INIS)

    Dino Isa; Rajprasad Rajkumar

    2009-01-01

    This paper deals with efforts to improve nondestructive testing (NDT) techniques by using artificial intelligence in detecting and predicting pipeline defects such as cracks and wall thinning. The main emphasis here will be on the prediction of corrosion type defects rather than just detection after the fact. Long range ultrasonic testing will be employed, where a ring of piezoelectric transducers are used to generate torsional guided waves. Various defects such as cracks as well as corrosion under insulation (CUI) will be simulated on a test pipe. The machine learning algorithm known as the Support Vector Machine (SVM) will be used to predict and classify transducer signals using regression and large margin classification. Regression results show that the SVM is able to accurately predict future defects based on trends of previous defect. The classification performance was also exceptional showing a facility to detect defects at different depths as well as for distinguishing closely spaced defects. (author)

  2. Ultrasonic Bat Deterrent Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kinzie, Kevin; Rominger, Kathryn M.

    2017-12-14

    The project objective was to advance the development and testing of an Near commercial bat-deterrent system with a goal to increase the current GE deterrent system effectiveness to over 50% with broad species applicability. Additionally, the research supported by this program has provided insights into bat behavior and ultrasonic deterrent design that had not previously been explored. Prior research and development had demonstrated the effectiveness of a commercial-grade, air-powered, ultrasonic bat deterrent to be between 30-50% depending upon the species of bat. However, the previous research provided limited insight into the behavioral responses of bats in the presence of ultrasonic deterrent sound fields that could be utilized to improve effectiveness. A unique bat flight room was utilized to observe the behavioral characteristics of bats in the presence of ultrasonic sound fields. Behavioral testing in the bat flight facility demonstrated that ultrasonic sounds similar to those produced by the GE deterrent influenced the activities and behaviors, primarily those associated with foraging, of the species exposed. The study also indicated that continuous and pulsing ultrasonic signals had a similar effect on the bats, and confirmed that as ultrasonic sounds attenuate, their influence on the bats’ activities and behavior decreases. Ground testing at Wolf Ridge Wind, LLC and Shawnee National Forest assessed both continuous and pulsing deterrent signals emitted from the GE deterrent system and further enhanced the behavioral understanding of bats in the presence of the deterrent. With these data and observations, the existing 4-nozzle continuous, or steady, emission ultrasonic system was redesigned to a 6-nozzle system that could emit a pulsing signal covering a larger air space around a turbine. Twelve GE 1.6-100 turbines were outfitted with the deterrent system and a formal three-month field study was performed using daily carcass searches beneath the 12

  3. Experimental POD measurement using ultrasonic phased arrays for incorporating nondestructive testes in probabilistic failure analyses

    International Nuclear Information System (INIS)

    Kurz, Jochen H.; Dobmann, Gerd; Juengert, Anne; Dugan, Sandra; Roos, Eberhard

    2011-01-01

    In nuclear facilities, nondestructive tests are carried out during construction and during inspections. The type and extent of the tests are specified in the KTA rules. All tests must be qualified. In the past, the qualifications were made by extensive performance demonstrations of the test teams and equipment, which were judged by experts. This provided primarily pragmatic information on fault detection performance. In the USA, qualification of EPRI test teams also includes testing of test pieces with hidden (unknown) defects, of which a certain percentage must be detected. There is still a lack of information on the probability of detection (POD), in the form of POD curves, of specific defects in given test situations, using specifically selected testing techniques. Quantification of POD and the integration of relevant data in the probabilistic evaluation chain is one of the key goals of a research project whose first results are presented here. The concept of the project and first results of ultrasonic tests are presented. Defect distributions in the test pieces, experiment planning, and test specifications are gone into more closely. One of the most important goals is the specification of the residual uncertainty of components failure on the basis of the investigations. An outlook is presented for this.

  4. High-speed biometrics ultrasonic system for 3D fingerprint imaging

    Science.gov (United States)

    Maev, Roman G.; Severin, Fedar

    2012-10-01

    The objective of this research is to develop a new robust fingerprint identification technology based upon forming surface-subsurface (under skin) ultrasonic 3D images of the finger pads. The presented work aims to create specialized ultrasonic scanning methods for biometric purposes. Preliminary research has demonstrated the applicability of acoustic microscopy for fingerprint reading. The additional information from internal skin layers and dermis structures contained in the scan can essentially improve confidence in the identification. Advantages of this system include high resolution and quick scanning time. Operating in pulse-echo mode provides spatial resolution up to 0.05 mm. Technology advantages of the proposed technology are the following: • Full-range scanning of the fingerprint area "nail to nail" (2.5 x 2.5 cm) can be done in less than 5 sec with a resolution of up to 1000 dpi. • Collection of information about the in-depth structure of the fingerprint realized by the set of spherically focused 50 MHz acoustic lens provide the resolution ~ 0.05 mm or better • In addition to fingerprints, this technology can identify sweat porous at the surface and under the skin • No sensitivity to the contamination of the finger's surface • Detection of blood velocity using Doppler effect can be implemented to distinguish living specimens • Utilization as polygraph device • Simple connectivity to fingerprint databases obtained with other techniques • The digitally interpolated images can then be enhanced allowing for greater resolution • Method can be applied to fingernails and underlying tissues, providing more information • A laboratory prototype of the biometrics system based on these described principles was designed, built and tested. It is the first step toward a practical implementation of this technique.

  5. Redesigning axial-axial (biaxial) cruciform specimens for very high cycle fatigue ultrasonic testing machines.

    Science.gov (United States)

    Montalvão, Diogo; Wren, Andrew

    2017-11-01

    The necessity to increase performances in terms of lifetime and security in mechanical components or structures is the motivation for intense research in fatigue. Applications range from aeronautics to medical devices. With the development of new materials, there is no longer a fatigue limit in the classical sense, where it was accepted that the fatigue limit is the stress level such that there is no fracture up to 1E7 cycles. The recent development of ultrasonic testing machines where frequencies can go as high as 20 kHz or over enabled tests to be extended to ranges larger than 1E9 in just a few days. This area of studies is now known as Very High Cycle Fatigue (VHCF). On the other hand, most of the existing test equipment in the market for both classical and VHCF are uniaxial test machines. However, critical components used in Engineering applications are usually subjected to complex multi-axial loading conditions. In this paper, it is presented the methodology to redesigning existing cruciform test specimens that can be used to create an in-plane biaxial state of stress when used in 'uniaxial' VHCF ultrasonic testing machines (in this case, the term 'uniaxial' is used not because of the state of stress created at the centre of the specimen, but because of the direction at which the load is applied). The methodology is explained in such a way that it can be expanded to other existing designs, namely cruciform designs, that are not yet used in VHCF. Also, although the approach is presented in simple and logical terms, it may not be that obvious for those who have a more focused approach on fatigue rather than on modal analysis. It is expected that by contributing to bridging the gap between the sciences of modal analysis and fatigue, this research will help and encourage others exploiting new capabilities in VHCF.

  6. Ultrasonic thermometry system for measuring very high temperatures in reactor safety experiments

    International Nuclear Information System (INIS)

    Carlson, G.A.; Sullivan, W.H.; Plein, H.G.; Kerley, T.M.

    1979-06-01

    Ultrasonic thermometry has many potential applications in reactor safety experiments, where extremely high temperatures and lack of visual access may preclude the use of conventional diagnostics. This report details ultrasonic thermometry requirements for one such experiment, the molten fuel pool experiment. Sensors, transducers, and signal processing electronics are described in detail. Axial heat transfer in the sensors is modelled and found acceptably small. Measurement errors, calculations of their effect, and ways to minimize them are given. A rotating sensor concept is discussed which holds promise of alleviating sticking problems at high temperature. Applications of ultrasonic thermometry to three in-core experiments are described. In them, five 10-mm-length sensor elements were used to measure axial temperatures in a UO 2 or UO 2 -steel system fission-heated to about 2860 0 C

  7. A Portable Ultrasonic Nondestructive Inspection System for Metal Matrix Composite Track Shoes

    International Nuclear Information System (INIS)

    Mi Bao; Zhao Xiaoliang; Qian Tao; Stevenson, Mark; Kwan, Chiman; Owens, Steven E.; Royer, Roger L. Jr.; Tittmann, Bernhard R.; Raju, Basavaraju B.

    2007-01-01

    Cast aluminum track shoes reinforced with metal matrix composite (MMC) inserts at heavy loading areas such as center splines and sprocket windows are light in weight, and can resist high temperature and wear. Various defects such as disbonds at the insert-substrate interface, cracks and porosity in the MMC layer, etc. can be introduced during the manufacturing process and/or in service. This paper presents a portable ultrasonic system to automatically inspect tank track shoes for disbond. Ultrasonic pulse/echo inspection has shown good reliability for disbond detection. A prototype sensor array fixture has been designed and fabricated to prove the feasibility. Good agreements between the sensor fixture results and ultrasonic C-scan images were obtained

  8. An ultrasonic sensor controller for mapping and servo control in robotic systems

    International Nuclear Information System (INIS)

    Drotning, W.D.; Garcia, P. Jr.

    1993-03-01

    An ultrasonic sensor controller has been developed and applied in a variety of robotic systems for operation in hazardous environments. The controller consists of hardware and software that control multiple ultrasonic range sensors and provide workspace information to robot controllers for rapid, safe, and reliable operation in hazardous and remote environments. The hardware consists of a programmable multichannel controller that resides on a VMEbus for high speed communication to a multiprocessor architecture. The sensor controller has been used in a number of applications, which include providing high precision range information for proximity servo control of robots, and performing surface and obstacle mapping functions for safe path planning of robots in unstructured environments

  9. DEVELOPMENT AND RESEARCH OF ULTRASONIC OSCILLATORY SYSTEM FOR HARDENING OF SPRING PLATE BILLETS

    Directory of Open Access Journals (Sweden)

    V. A. Tomilo

    2015-01-01

    Full Text Available Various schemes of ultrasonic oscillatory system are developed: with a «force nonsensitive» support, with a «force sensitive» support, with the deforming steel balls in bulk. Results of the ultrasonic treatment showed that hardening of a surface of the samples took place when the vibration amplitude of a radiator exceeds a certain level. The level of hardening increases with increase in amplitude of fluctuations of a radiator. Higher level of hardening is registered when the surface is treated by steel balls.

  10. Modelling welded material for ultrasonic testing using MINA: Theory and applications

    Science.gov (United States)

    Moysan, J.; Corneloup, G.; Chassignole, B.; Gueudré, C.; Ploix, M. A.

    2012-05-01

    Austenitic steel multi-pass welds exhibit a heterogeneous and anisotropic structure that causes difficulties in the ultrasonic testing. Increasing the material knowledge is a long term research field for LCND laboratory and EDF Les Renardières in France. A specific model has been developed: the MINA model (Modelling an Isotropy from Notebook of Arc welding). Welded material is described in 2D for flat position arc welding with shielded electrode (SMAW) at a functional scale for UT modeling. The grain growth is the result of three physical phenomena: epitaxial growth, influence of temperature gradient, and competition between the grains. The model uses phenomenological rules to combine these three phenomena. A limited number of parameters is used to make the modelling possible from the information written down in a notebook of arc welding. We present all these principles with 10 years' hindsight. To illustrate the model's use, we present conclusions obtained with two recent applications. In conclusion we give also insights on other research topics around this model : inverse problem using a F.E.M. code simulating the ultrasonic propagation, in position welding, 3D prospects, GTAW.

  11. Quantitative sensing of corroded steel rebar embedded in cement mortar specimens using ultrasonic testing

    Science.gov (United States)

    Owusu Twumasi, Jones; Le, Viet; Tang, Qixiang; Yu, Tzuyang

    2016-04-01

    Corrosion of steel reinforcing bars (rebars) is the primary cause for the deterioration of reinforced concrete structures. Traditional corrosion monitoring methods such as half-cell potential and linear polarization resistance can only detect the presence of corrosion but cannot quantify it. This study presents an experimental investigation of quantifying degree of corrosion of steel rebar inside cement mortar specimens using ultrasonic testing (UT). A UT device with two 54 kHz transducers was used to measure ultrasonic pulse velocity (UPV) of cement mortar, uncorroded and corroded reinforced cement mortar specimens, utilizing the direct transmission method. The results obtained from the study show that UPV decreases linearly with increase in degree of corrosion and corrosion-induced cracks (surface cracks). With respect to quantifying the degree of corrosion, a model was developed by simultaneously fitting UPV and surface crack width measurements to a two-parameter linear model. The proposed model can be used for predicting the degree of corrosion of steel rebar embedded in cement mortar under similar conditions used in this study up to 3.03%. Furthermore, the modeling approach can be applied to corroded reinforced concrete specimens with additional modification. The findings from this study show that UT has the potential of quantifying the degree of corrosion inside reinforced cement mortar specimens.

  12. Timelapse ultrasonic tomography for measuring damage localization in geomechanics laboratory tests.

    Science.gov (United States)

    Tudisco, Erika; Roux, Philippe; Hall, Stephen A; Viggiani, Giulia M B; Viggiani, Gioacchino

    2015-03-01

    Variation of mechanical properties in materials can be detected non-destructively using ultrasonic measurements. In particular, changes in elastic wave velocity can occur due to damage, i.e., micro-cracking and particles debonding. Here the challenge of characterizing damage in geomaterials, i.e., rocks and soils, is addressed. Geomaterials are naturally heterogeneous media in which the deformation can localize, so that few measurements of acoustic velocity across the sample are not sufficient to capture the heterogeneities. Therefore, an ultrasonic tomography procedure has been implemented to map the spatial and temporal variations in propagation velocity, which provides information on the damage process. Moreover, double beamforming has been successfully applied to identify and isolate multiple arrivals that are caused by strong heterogeneities (natural or induced by the deformation process). The applicability of the developed experimental technique to laboratory geomechanics testing is illustrated using data acquired on a sample of natural rock before and after being deformed under triaxial compression. The approach is then validated and extended to time-lapse monitoring using data acquired during plane strain compression of a sample including a well defined layer with different mechanical properties than the matrix.

  13. Review and discussion of the development of synthetic aperture focusing technique for ultrasonic testing (SAFT-UT)

    International Nuclear Information System (INIS)

    Busse, L.J.; Collins, H.D.; Doctor, S.R.

    1984-03-01

    The development and capabilities of synthetic aperture focusing techniques for ultrasonic testing (SAFT-UT) are presented. The purpose of SAFT-UT is to produce high-resolution images of the interior of opaque objects. The goal of this work is to develop and implement methods which can be used to detect and to quantify the extent of defects and cracks in critical components of nuclear reactors (pressure vessels, primary piping systems, and nozzles). This report places particular emphasis upon the practical experimental results that have been obtained using SAFT-UT as well as the theoretical background that underlies synthetic aperture focusing. A discussion regarding high-speed and real-time implementations of two- and three-dimensional synthetic aperture focusing is also presented

  14. Research towards ultrasonic systems to assist in-vessel manipulations in liquid metal cooled reactors

    International Nuclear Information System (INIS)

    Dierckx, Marc; Van-Dyck, Dries

    2013-06-01

    We describe the state of the art of the research towards ultrasonic measurement methods for use in lead-bismuth cooled liquid metal reactors. Our current research activities are highly focused on specific tasks in the MYRRHA system, which is a fast spectrum research reactor cooled with the eutectic mixture of lead and bismuth (LBE) and is conceived as an accelerator driven system capable of operating in both sub-critical and critical mode. As liquid metal is opaque to light, normal visual feedback during fuel manipulations in the reactor vessel is not available and must therefore be replaced by a system that is not hindered by the opacity of the coolant. In this respect ultrasonic measurement techniques have been proposed and even developed in the past for operation in sodium cooled reactors. To our knowledge, no such systems have ever been deployed in lead based reactors and we are the first to have a research program in this direction as will be detailed in this paper. We give an overview of the acoustic properties of LBE and compare them with the properties of sodium and water to theoretically show the feasibility of ultrasonic systems operating in LBE. In the second part of the paper we discuss the results of the validation experiments in water and LBE. A typical scene is ultrasonically probed by a mechanical scanning system while the signals are processed to render a 3D visualization on a computer screen. It will become clear that mechanical scanning is capable of producing acceptable images but that it is a time consuming process that is not fit to solve the initial task to providing feedback during manipulations in the reactor vessel. That is why we propose to use several dedicated ultrasonic systems each adapted to a specific task and capable to provide real-time feedback of the ongoing manipulations, as is detailed in the third and final part of the paper. (authors)

  15. Laser ablated micropillar energy directors for ultrasonic welding of microfluidic systems

    DEFF Research Database (Denmark)

    Poulsen, Carl Esben; Kistrup, Kasper; Andersen, Nis Korsgaard

    2016-01-01

    We present a new type of energy director (ED) for ultrasonic welding of microfluidic systems. These micropillar EDs are based on the replication of cone like protrusion structures introduced using a pico-second laser and may therefore be added to any mould surface accessible to a pico-second laser...

  16. Ultrasonic motion analysis system - measurement of temporal and spatial gait parameters

    NARCIS (Netherlands)

    Huitema, RB; Hof, AL; Postema, K

    The duration of stance and swing phase and step and stride length are important parameters in human gait. In this technical note a low-cost ultrasonic motion analysis system is described that is capable of measuring these temporal and spatial parameters while subjects walk on the floor. By using the

  17. Ultrasonic inspection development at HEDL

    International Nuclear Information System (INIS)

    Day, C.K.; Mech, S.J.; Michaels, T.E.; Dixon, N.E.

    1978-01-01

    Ultrasonic testing methods and equipment are being developed to support preservice and in-service inspection of selected FFTF welds. A digital computer system is employed in the analysis of both simulated FFTF pipe sections and plate specimens containing fatigue cracks. It is anticipated that test evaluation standards containing fatigue cracks will partially eliminate questions formerly associated with weld test calibration producers by providing natural cracks which follow grain boundaries and stress patterns resembling piping situ conditions. Studies have revealed that commercial transducers may satisfy LMFBR ultrasonic pipe inspection applications: The test system evaluation included transducers and wedge coupling and fluid coupling materials which exhibited acceptable performance at temperatures to 2300C. Results are presented that demonstrate the feasibility of ultrasonic inspection of components immersed in sodium at temperatures to 2600C. (UK)

  18. Ultrasonic flowmeters

    International Nuclear Information System (INIS)

    Wittekind, W.D.

    1979-01-01

    A prototype ultrasonic flowmeter was assembled and tested. The theoretical basis of this prototype ultrasonic flowmeter is reviewed; the equipment requirements for a portable unit are discussed; the individual electronic modules contained in the prototype are described; the operating procedures and configuration are explained; and the data from preliminary calibrations are presented. The calibration data confirm that the prototype operates according to theoretical predictions and can indeed provide nonintrusive flow measurements to predicted accuracies for pipes larger than two inches, under single phase stable flow conditions

  19. Combination tomographic and cardiographic ultrasonic imaging method and system

    International Nuclear Information System (INIS)

    Yano, T.; Fukukita, H.; Fukumoto, A.; Hayakawa, Y.; Irioka, K.

    1984-01-01

    Ultrasonic echo signals are successively sampled and converted to digital echo data which are written into a first digital memory column by column and then read out row by row into a first buffer memory. The digital echo data which are derived in response to beams successively transmitted in a predetermined direction are written into columns of a second digital memory and read out of the memory in rows into a second buffer memory. The data stored in the first and second buffer memories are read out for digital-to-analog conversion and selectively applied within a television ''frame'' interval to control electron beam intensity of a single cathode ray tube so as to present tomographic and cardiographic images in different display areas of the tube

  20. Ultrasonic testing of a sealing construction made of salt concrete in an underground disposal facility for radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Martin; Effner, Ute Antonie; Milmann, Boris; Voelker, Christoph; Wiggenhauser, Herbert [Federal Institute for Materials Research and Testing (BAM), Berlin (Germany); Mauke, Ralf [The Federal Office for Radiation Protection, Salzgitter (Germany)

    2015-07-01

    For the closure of radioactive waste disposal facilities engineered barriers- so called ''drift seals'' are used. The purpose of these barriers is to constrain the possible infiltration of brine and to prevent the migration of radionuclides into the biosphere. In a rock salt mine a large scale in-situ experiment of a sealing construction made of salt concrete was set up to prove the technical feasibility and operability of such barriers. In order to investigate the integrity of this structure, non-destructive ultrasonic measurements were carried out. Therefore two different methods were applied at the front side of the test-barrier: 1 Reflection measurements from boreholes 2 Ultrasonic imaging by means of scanning ultrasonic echo methods This extended abstract is a short version of an article to be published in a special edition of ASCE Journal that will briefly describe the sealing construction, the application of the non-destructive ultrasonic measurement methods and their adaptation to the onsite conditions -as well as parts of the obtained results. From this a concept for the systematic investigation of possible contribution of ultrasonic methods for quality assurance of sealing structures may be deduced.

  1. A study on an object transport system using ultrasonic wave excitation

    International Nuclear Information System (INIS)

    Jeong, Sang Hwa; Kim, Gwang Ho; Choi, Suk Bong; Park, Jun Ho; Cha, Kyoung Rae

    2007-01-01

    The development of information and telecommunication industries leads to the development of semiconductor and optical industries. In recent years, the demand of optical components is growing due to the demand of faster network. On the other hand, conventional transport systems are not adequate for transporting precision optical components and semiconductors. Because the conveyor belt can damage precision optical components with contact force and a magnetic system would destroy the inner structure of semiconductor with magnetic field, a new system for transporting optical components and semiconductors is required. One of the alternatives to the existing systems is a transport system using ultrasonic wave excitation since it can transport precision components such as semiconductors and optical components without damage. In this paper, a transport system using 2-mode ultrasonic wave excitation was developed for transporting optical components and semiconductor, and its performance was evaluated. The relationship between transporting characteristics and flexural beam shapes were evaluated

  2. Ultrasonic neuromodulation

    Science.gov (United States)

    Naor, Omer; Krupa, Steve; Shoham, Shy

    2016-06-01

    Ultrasonic waves can be non-invasively steered and focused into mm-scale regions across the human body and brain, and their application in generating controlled artificial modulation of neuronal activity could therefore potentially have profound implications for neural science and engineering. Ultrasonic neuro-modulation phenomena were experimentally observed and studied for nearly a century, with recent discoveries on direct neural excitation and suppression sparking a new wave of investigations in models ranging from rodents to humans. In this paper we review the physics, engineering and scientific aspects of ultrasonic fields, their control in both space and time, and their effect on neuronal activity, including a survey of both the field’s foundational history and of recent findings. We describe key constraints encountered in this field, as well as key engineering systems developed to surmount them. In closing, the state of the art is discussed, with an emphasis on emerging research and clinical directions.

  3. Resolution improvement of ultrasonic echography methods in non destructive testing by adaptative deconvolution

    International Nuclear Information System (INIS)

    Vivet, L.

    1989-01-01

    The ultrasonic echography has a lot of advantages which make it attractive for nondestructive testing. But the important acoustic energy useful to go through very attenuating materials can be got only with resonant translators, that is a limit for the resolution on measured echograms. This resolution can be improved by deconvolution. But this method is a problem for austenitic steel. Here is developed a method of time deconvolution which allows to take in account the characteristics of the wave. A first step of phase correction and a second step of spectral equalization which gives back the spectral contents of ideal reflectivity. The two steps use fast Kalman filters which reduce the cost of the method

  4. Ultrasonic signal processing and B-SCAN imaging for nondestructive testing. Application to under - cladding - cracks

    International Nuclear Information System (INIS)

    Theron, G.

    1988-02-01

    Crack propagation under the stainless steel cladding of nuclear reactor vessels is monitored by ultrasonic testing. This work study signal processing to improve detection and sizing of defects. Two possibilities are examined: processing of each individual signal and simultaneous processing of all the signals giving a B-SCAN image. The bibliographic study of time-frequency methods shows that they are not suitable for pulses. Then decomposition in instantaneous frequency and envelope is used. Effect of interference of 2 close echoes on instantaneous frequency is studies. The deconvolution of B-SCAN images is obtained by the transducer field. A point-by-point deconvolution method, less noise sensitive, is developed. B-SCAN images are processed in 2 phases: interface signal processing and deconvolution. These calculations improve image accuracy and dynamics. Water-stell interface and ferritic-austenitic interface are separated. Echoes of crack top are visualized and crack-hole differentiation is improved [fr

  5. Method and system of measuring ultrasonic signals in the plane of a moving web

    Science.gov (United States)

    Hall, Maclin S.; Jackson, Theodore G.; Wink, Wilmer A.; Knerr, Christopher

    1996-01-01

    An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like. In addition to velocity measurements of ultrasonic signals in the plane of the web in the machine direction, MD, and a cross direction, CD, generally perpendicular to the direction of the traveling web, therefor, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web.

  6. Comparative antibacterial efficacies of hydrodynamic and ultrasonic irrigation systems in vitro.

    Science.gov (United States)

    Cachovan, Georg; Schiffner, Ulrich; Altenhof, Saskia; Guentsch, Arndt; Pfister, Wolfgang; Eick, Sigrun

    2013-09-01

    To ensure root canal treatment success, endodontic microbiota should be efficiently reduced. The in vitro bactericidal effects of a hydrodynamic system and a passive ultrasonic irrigation system were compared. Single-rooted extracted teeth (n = 250) were contaminated with suspensions of Enterococcus faecalis ATCC 29212, mixed aerobic cultures, or mixed anaerobic cultures. First, the antibacterial effects of the hydrodynamic system (RinsEndo), a passive ultrasonic irrigation system (Piezo smart), and manual rinsing with 0.9% NaCl (the control) were compared. Colony-forming units were counted. Second, the 2 systems were used with 1.5% sodium hypochlorite (NaOCl) alone or NaOCl + 0.2% chlorhexidine (CHX). The colony-forming units in the treated and untreated roots were determined during a period of 5 days. Both irrigation systems reduced bacterial numbers more effectively than manual rinsing (P irrigation reduced bacterial counts significantly better than hydrodynamic irrigation (P = .042). The NaOCl + CHX combination was more effective than NaOCl alone for both systems (P irrigation was more effective with NaOCl + CHX than the passive ultrasonic irrigation system. Both irrigation systems, when combined with NaOCl + CHX, removed bacteria from root canals. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Design and installation of high-temperature ultrasonic measuring system and grinder for nuclear fuel containing trans-uranium elements

    International Nuclear Information System (INIS)

    Serizawa, Hiroyuki; Kikuchi, Hironobu; Iwai, Takashi; Arai, Yasuo; Kurosawa, Makoto; Mimura, Hideaki; Abe, Jiro

    2005-07-01

    A high-temperature ultrasonic measuring system had been designed and installed in a glovebox (711-DGB) to study a mechanical property of nuclear fuel containing trans-uranium (TRU) elements. A figuration apparatus for the cylinder-type sample preparation had also been modified and installed in an established glovebox (142-D). The system consists of an ultrasonic probe, a heating furnace, cooling water-circulating system, a cooling air compressor, vacuum system, gas supplying system and control system. An A/D converter board and an pulsar/receiver board for the measurement of wave velocity were installed in a personal computer. The apparatus was modified to install into the glovebox. Some safety functions were supplied to the control system. The shape and size of the sample was revised to minimize the amount of TRU elements for the use of the measurement. The maximum sample temperature is 1500degC. The performance of the installed apparatuses and the glovebox were confirmed through a series of tests. (author)

  8. Ultrasonic testing and inspection of steel castings for use in elevated temperatures acc. to DIN 17245

    International Nuclear Information System (INIS)

    Christianus, D.; Fischer, K.H.

    1978-01-01

    Up to present, the non-destructive testing in german steel castings and delivery conditions has hardly been described. DIN 17245 was an exception for heat-resistant ferrite cast steel (July 1967 version) which for the first time contained data on maximum permissible defects in irradiation testing. The US (ultrasonic) method to find internal defects was named together with irradiation, the error limits however were also valid for this method according to the reference picture series of ASTM (American Society for Testing and Materials). It is clear to every practician that especially in the case of steel, due to the numerous possible defects and their unpredictable orientation, it is not always possible to determine the true type of defects based on reflection behaviour of an inhomogenity. In any case one cannot directly compare two physically different methods. If one considers foreign cast steel norms, then one finds somewhat more about non-destructive testing. The set standard measures mostly however take after the irradiation testing guidelines according to ASTM. A Westinghouse regulation, norm ASTM-A-609 and the ASME (Am. Soc. of Mech. Engineers) regulations for components of nuclear reactors are the exception. (orig.) [de

  9. Development of the ultrasonic fatigue testing machine due to study on giga-cycle fatigue at elevated temperature. 2001 annual report. Document on collaborative study

    International Nuclear Information System (INIS)

    Hattori, Shuji; Itoh, Takamoto

    2002-03-01

    An ultrasonic fatigue testing machine was developed to obtain the giga-cycle fatigue life at elevated temperature for safety and reliability of structural components in the faster breeder reactor (FBR). This testing machine consists of an amplifier, booster, horn and the equipments such as a system controller and data acquisition. The test specimen is attached at the end of the horn. The electric power generated in the amplifier is transformed into the mechanical vibration in the converter and is magnified in the booster and horn. The vibration was enough to fatigue the specimen. Since the test frequency is set at a resonant frequency, the shape and dimensions of specimen were designed so as to vibrate itself resonantly. However, the maximum amplitudes of stress and strain in the specimen can be calculated easily by measuring the amplitude of displacement at the end of the specimen. The developed ultrasonic fatigue testing machine enables to carry out the fatigue tests at 20 kHz so that it can perform the giga-cycle fatigue test within a very short time as compared with the regular fatigue testing machines such as a hydraulic fatigue testing machine. By clarifying the material strength characteristics in giga-cycle region, the life evaluation, design and examination of components will be more suitable than ever. This study will contribute to improve the safety and reliability of components in FBR. In this technical report, the specification and characteristics of the testing machine were described along with the several experimental results. (author)

  10. Investigation of PVC physical ageing in field test specimens using ultrasonic and dielectric measurements

    NARCIS (Netherlands)

    Demcenko, A.; Ravanan, M.; Visser, Roy; Loendersloot, Richard; Akkerman, Remko

    2013-01-01

    Physical ageing in PVC is studied using two techniques: a) non-linear ultrasonic measurements based on the non-collinear wave interaction theory and b) dielectric measurements. The ultrasonic measurement results are compared with dielectric measurement results. The comparison shows that the used

  11. Test and Evaluation of Ultrasonic Additive Manufacturing (UAM) for a Large Aircraft Maintenance Shelter (LAMS) Baseplate

    Science.gov (United States)

    2015-03-26

    37  Figure 16. Offsetting Grain Orientation ............................................................................ 46  Figure 17. LAMS...selectively dispensed through a nozzle or orifice (ASTM International, 2012: 1). Fused deposition modeling (FDM) is an example of material extrusion and...gains as a result of ultrasonic welding. Proper ultrasonic welding results in uniformity, reduction in void space, and optimal grain orientation

  12. Evaluation of endcap welds in thin walled fuel elements of pressurised heavy water reactor by ultrasonic testing

    International Nuclear Information System (INIS)

    Subramanian, C.V.; Thavasimuthu, M.; Kalyansundaram, P.; Bhattacharya, D.K.; Raj, Baldev

    1992-01-01

    In the pressurised heavy water reactor systems of India, the fuel is encapsulated in thin-walled tubes (0.342 mm) closed with endcaps by resistance welding. The integrity of these fuel elements should be such that no fission gas leakage takes place during reactor operation. The quality control of the endcap welds needed to satisfy this requirement includes helium leak test and destructive metallographic test (on sample basis). This paper discusses the feasibility study that has been carried out in the author's laboratory to develop an immersion ultrasonic test method for evaluating the integrity of the endcap weld region. Through holes of various sizes (0.15mm, 0.2mm, 0.4mm diameter and 0.185mm and 0.342mm deep) were machined by spark erosion machining at the weld joints to simulate defects of various sizes. Line focussed probe of 10 MHz frequency was used for the testing. It was possible to detect clearly all the machined holes. Based on the above standardised procedure, further testing was done on endcap welds which were rejected during fabrication on account of showing leak rate of 3 x 10 -6 std. c.c/sec. or more during helium leak test. Though it was possible to get echoes from the natural defects in the rejected tubes with echo amplitude of 70%, the signal was accompanied by the geometrical reflection (noise) giving an amplitude of 20% from the weld region, giving rise to the problem of resolving the defect indication from the geometric indications. Therefore, signal analysis approach was adopted. The signal obtained from the weld zone were subjected to various analysis procedures like a) autopower spectrum, b) total energy content and c) demodulated auto correlation function. It was possible by all the three methods to differentiate the defect signal from those due to weld geometry or due to noise. Subsequently, metallography was carried out to characterise the type of defects observed during the ultrasonic testing. (author). 4 figs

  13. On-line ultrasonic inside-diameter control system for Zircaloy

    International Nuclear Information System (INIS)

    Tanaka, Y.; Fujii, N.; Komatsu, M.; Kubota, H.

    1984-01-01

    An ultrasonic inside-diameter (ID) control system was used during the final etching process for producing Zircaloy nuclear fuel cladding tubes. This results in establishing automatic inside-diameter control during etching with an automatic etching system. In this system, the inside-diameter at the center point in the length of each tube is continuously measured with the ultrasonic inside-diameter measuring equipment during the etching process and the etching is automatically stopped by a signal from the control equipment when the inside-diameter reaches the target value. This made the final etching process economical and suitable for large-scale production, having an equal or better level at the inside-diameter of tubes etched with this system than those made by a process controlled by an air-micrometer

  14. Beryllium mock-ups development and ultrasonic testing for ITER divertor conditions

    International Nuclear Information System (INIS)

    Barabash, V.R.; Bykov, V.A.; Giniyatulin, R.N.; Gervash, A.A.; Gurieva, T.M.; Egorov, K.E.; Komarov, V.L.; Korolkov, M.D.; Mazul, I.V.; Gitarsky, L.S.; Strulia, I.L.; Sizenev, V.S.; Pronyakin, V.T.

    1995-01-01

    At the present time beryllium is considered as the most suitable armour material for the ITER divertor application. Different types of Be-divertor mock-up construction are compared in the report. Two different technologies of beryllium tiles joining to a heat sink body are analysed: high temperature brazing and thermodiffusion bonding. The comparative analysis of different constructions has been performed on the basis of 2-D finite element calculation for temperatures and stresses. The main parameters and diagnostic capabilities of electron beam facility for HHF testing of beryllium mock-ups are described. The first results of HHF tests of ''beryllium-copper saddle-MAGT tube'' and ''beryllium-copper plate-SS body'' mock-ups are presented. The reasons of the damages during the HHF are analysed. The technique of ultrasonic testing of the thermodifussion bonding and brazing quality for beryllium-copper joints is presented. The recorded results are prepared in the form of ultrasound grams. The testing results are compared with the metallographic analysis. (orig.)

  15. Ultrasonic Measurement of Erosion/corrosion Rates in Industrial Piping Systems

    Science.gov (United States)

    Sinclair, A. N.; Safavi, V.; Honarvar, F.

    2011-06-01

    Industrial piping systems that carry aggressive corrosion or erosion agents may suffer from a gradual wall thickness reduction that eventually threatens pipe integrity. Thinning rates could be estimated from the very small change in wall thickness values measured by conventional ultrasound over a time span of at least a few months. However, measurements performed over shorter time spans would yield no useful information—minor signal distortions originating from grain noise and ultrasonic equipment imperfections prevent a meaningful estimate of the minuscule reduction in echo travel time. Using a Model-Based Estimation (MBE) technique, a signal processing scheme has been developed that enables the echo signals from the pipe wall to be separated from the noise. This was implemented in a laboratory experimental program, featuring accelerated erosion/corrosion on the inner wall of a test pipe. The result was a reduction in the uncertainty in the wall thinning rate by a factor of four. This improvement enables a more rapid response by system operators to a change in plant conditions that could pose a pipe integrity problem. It also enables a rapid evaluation of the effectiveness of new corrosion inhibiting agents under plant operating conditions.

  16. A development of an automated ultrasonic TOFD inspection system using an welding line tracing robot

    International Nuclear Information System (INIS)

    Cho, Hyun; Song, Sung Jin; Lee, Kang Won; Kim, Young Jin; Woo, Jong Sik

    2006-01-01

    Large scaled ships, manufactured inside of the country, should be passed welding inspection and painting film inspection. Normally, these kind of inspections are conducted by human inspectors manually, although it cause industrial disasters such as falling accidents and diving accidents frequently. In addition, Ship makers are not to give a full trust to shipowners because manual inspections cannot be conducted all over the welding parts. So, in this study we developed an automated ultrasonic TOFD inspection system using an welding line tracing robot. This system, controlled by an inspector at a remote field, can inspect welding parts of ship outer panel both under water and in air. In this paper we present the developed robot and ultrasonic TOFD inspection system and the inspection result.

  17. A development of an automated ultrasonic TOFD inspection system using an welding line tracing robot

    International Nuclear Information System (INIS)

    Cho, Hyun; Song, Sung Jin; Lee, Kang Won; Kim, Young Jin; Woo, Jong Sik

    2006-01-01

    Large scaled ships, manufactured inside of the country, should be passed welding inspection and painting film inspection. Normally, these kind of inspections are conducted by human inspectors manually, although it cause industrial disasters such as falling accidents and diving accidents frequently. In addition, Ship makers are not to give a full trust to ship owners because manual inspections cannot be conducted all over the welding parts. So, in this study we developed an automated ultrasonic TOFD inspection system using an welding line tracing robot. This system, controlled by an inspector at a remote field, can inspect welding parts of ship outer panel both under water and in air. In this paper we present the developed robot and ultrasonic TOFD inspection system and the inspection result.

  18. Modelling the attenuation in the ATHENA finite elements code for the ultrasonic testing of austenitic stainless steel welds.

    Science.gov (United States)

    Chassignole, B; Duwig, V; Ploix, M-A; Guy, P; El Guerjouma, R

    2009-12-01

    Multipass welds made in austenitic stainless steel, in the primary circuit of nuclear power plants with pressurized water reactors, are characterized by an anisotropic and heterogeneous structure that disturbs the ultrasonic propagation and makes ultrasonic non-destructive testing difficult. The ATHENA 2D finite element simulation code was developed to help understand the various physical phenomena at play. In this paper, we shall describe the attenuation model implemented in this code to give an account of wave scattering phenomenon through polycrystalline materials. This model is in particular based on the optimization of two tensors that characterize this material on the basis of experimental values of ultrasonic velocities attenuation coefficients. Three experimental configurations, two of which are representative of the industrial welds assessment case, are studied in view of validating the model through comparison with the simulation results. We shall thus provide a quantitative proof that taking into account the attenuation in the ATHENA code dramatically improves the results in terms of the amplitude of the echoes. The association of the code and detailed characterization of a weld's structure constitutes a remarkable breakthrough in the interpretation of the ultrasonic testing on this type of component.

  19. Mathematical modelling of ultrasonic testing of components with defects close to a non-planar surface

    International Nuclear Information System (INIS)

    Westlund, Jonathan; Bostroem, Anders

    2011-05-01

    Nondestructive testing with ultrasound is a standard procedure in the nuclear power industry. To develop and qualify the methods extensive experimental work with test blocks is usually required. This can be very time-consuming and costly and it also requires a good physical intuition of the situation. A reliable mathematical model of the testing situation can, therefore, be very valuable and cost-effective as it can reduce experimental work significantly. A good mathematical model enhances the physical intuition and is very useful for parametric studies, as a pedagogical tool, and for the qualification of procedures and personnel. The aim of the present report is to describe work that has been performed to model ultrasonic testing of components that contain a defect close to a nonplanar surface. For nuclear power applications this may be a crack or other defect on the inside of a pipe with a diameter change or connection. This is an extension of the computer program UTDefect, which previously only admits a planar back surface (which is often applicable also to pipes if the pipe diameter is large enough). The problems are investigated in both 2D and 3D, and in 2D both the simpler anti-plane (SH) and the in-plane (P-SV) problem are studied. The 2D investigations are primarily solved to get a 'feeling' for the solution procedure, the discretizations, etc. In all cases an integral equation approach with a Green's function in the kernel is taken. The nonplanar surface is treated by the boundary element method (BEM) where a division of the surface is made in small elements. The defects are mainly cracks, strip-like (in 2D) or rectangular (in 3D), and these are treated with more analytical methods. In 2D also more general defects are treated with the help of their transition (T) matrix. As in other parts of UTDefect the ultrasonic probes in transmission and reception are included in the model. In 3D normalization by a side drilled hole is possible. Some numerical results

  20. Non-contact test of coating by means of laser-induced ultrasonic excitation and holographic sound representation

    International Nuclear Information System (INIS)

    Crostack, H.A.; Pohl, K.Y.; Radtke, U.

    1991-01-01

    In order to circumvent the problems of introducing and picking off sound, which occur in conventional ultrasonic testing, a completely non-contact test process was developed. The ultrasonic surface wave required for the test is generated without contact by absorption of laser beams. The recording of the ultrasound also occurs by a non-contact holographic interferometry technique, which permits a large scale representation of the sound. Using the example of MCrAlY and ZrO 2 layers, the suitability of the process for testing thermally sprayed coatings on metal substrates is identified. The possibilities and limits of the process for the detection and description of delamination and cracks are shown. (orig.) [de

  1. Ultrasonic non-destructive testing on CFC monoblock divertor mock-up

    International Nuclear Information System (INIS)

    Ezato, K.; Taniguchi, M.; Sato, K.; Araki, M.; Akiba, M.

    2001-01-01

    Non-destructive ultrasonic testing has been applied for the characterization of joints by means of a polymer transducer. One of the advantages of the polymer transducer is flexibility in its shape and the possibility to install multiple transducers in one probe, which can reduce the time for inspection. As a first step, the size effect of the transducer on the resolution and sensitivity was examined to detect the joint flaw. Transducers with circumferential angles of 5 , 10 and 30 were tested. For this test a small divertor element with a driller hole was prepared, which simulates a joint defect. The transducers with angles of 30 could not characterize the size of the artificial joint flaw. On the contrary, the size of the artificial defect was successfully detected with an accuracy of 90% by means of the transducers with angles of 5 and 10 . From the viewpoint of the sensitivity of the detection of the joint flaw, the transducer with the angle of 10 is appropriate because it could detect the largest intensity of the reflected signal caused by the same artificial defect of the joint interface. (orig.)

  2. Non-contact transportation system of small objects using Ultrasonic Waveguides

    International Nuclear Information System (INIS)

    Nakamura, K; Koyama, D

    2012-01-01

    A transportation system for small object or fluid without contact is investigated being based on ultrasonic levitation. Small objects are suspended against gravity at the nodal points in ultrasonic pressure field due to the sound radiation force generated as the gradient of the energy density of the field. In this study, the trapped object is transported in the horizontal plane by introducing the spatial shift of the standing waves by the switching the lateral modes or travelling waves. The goal of the study is to establish a technology which can provide a total system with the flexibility in composing various transportation paths. Methods for linear/rotary stepping motions and continuous linear transportation are explained in this report. All the transportation tracks are composed of a bending vibrator and a reflector. The design for these acoustic cavity/waveguide is discussed.

  3. Simulation and Optimization of Contactless Power Transfer System for Rotary Ultrasonic Machining

    Directory of Open Access Journals (Sweden)

    Wang Xinwei

    2016-01-01

    Full Text Available In today’s rotary ultrasonic machining (RUM, the power transfer system is based on a contactless power system (rotary transformer rather than the slip ring that cannot cope with high-speed rotary of the tool. The efficiency of the rotary transformer is vital to the whole rotary ultrasonic machine. This paper focused on simulation of the rotary transformer and enhancing the efficiency of the rotary transformer by optimizing three main factors that influence its efficiency, including the gap between the two ferrite cores, the ratio of length and width of the ferrite core and the thickness of ferrite. The finite element model of rotary transformer was built on Maxwell platform. Simulation and optimization work was based on the finite element model. The optimization results compared with the initial simulation result showed an approximate 18% enhancement in terms of efficiency, from 77.69% to 95.2%.

  4. The development of PC-based real time ultrasonic metal thickness inspection system

    International Nuclear Information System (INIS)

    Suhairy Sani; Mohd Hanif Md Saad; Mohamad Pauzi Ismail; Ab Razak Hamzah; Abd Nassir Ibrahim; Amri Amin Abas

    2006-01-01

    This paper discusses the development of a PC-Based Real Time Ultrasonic Thickness Measurement system (UTMS) for metallic components such as pipes, pressure vessels and metal slabs. Metal thickness measurement for these components is crucial in industrial plants with dangerous environment, such as in oil and gas industry. From the measured metal thickness, a number of deductions could be made, for example the state and the rate of corrosion propagation inside a pipe or pressure vessel, etc. One of the most widely used methods in assessing metal thickness in industry is through the use of Ultrasonic technology. The benefits of using UTMS lies in the flexibility of data analysis, which includes signal processing, feature extraction, visualization capability and intelligent diagnosis. Data can be acquired in real-time and stored for future usage and application. The system was developed as a standalone computer software using Microsoft Visual-BASIC 6. (Author)

  5. Small test SDHW systems

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1999-01-01

    Three small test SDHW systems was tested in a laboratory test facility.The three SDHW systems where all based on the low flow principe and a mantle tank but the design of the systems where different.......Three small test SDHW systems was tested in a laboratory test facility.The three SDHW systems where all based on the low flow principe and a mantle tank but the design of the systems where different....

  6. Experimental Setup for Ultrasonic-Assisted Desktop Fused Deposition Modeling System

    OpenAIRE

    Maidin, S.; Muhamad, M. K.; Pei, Eujin

    2014-01-01

    Fused deposition modeling (FDM) is an additive manufacturing (AM) process that has been used in various manufacturing fields. However, the drawback of FDM is poor surface finish of part produced, leading to surface roughness and requires hand finishing. In this study, ultrasonic technology will be integrated into a desktop FDM system. Ultrasound has been applied in various conventional machining process and shows good machined surface finish. However, very little research regarding the applic...

  7. A Compound Detection System Based on Ultrasonic Flow Rate and Concentration

    OpenAIRE

    Qing-Hui WANG; Fang MU; Li-Feng WEI

    2014-01-01

    This paper proposes a new detection system for monitoring gas concentration and flow rate. Velocity difference of ultrasonic wave in bi-directional propagation in measured gas is recorded and utilized for computing the online gas concentration and flow rate. Meanwhile, the temperature compensation, return signal processing and error analysis algorithms are applied to improve the accuracy. The experimental results show that, compared with the single sensor measurement of gas flow rate or conce...

  8. Ultrasonic Welding of Thermoplastic Composite Coupons for Mechanical Characterization of Welded Joints through Single Lap Shear Testing.

    Science.gov (United States)

    Villegas, Irene F; Palardy, Genevieve

    2016-02-11

    This paper presents a novel straightforward method for ultrasonic welding of thermoplastic-composite coupons in optimum processing conditions. The ultrasonic welding process described in this paper is based on three main pillars. Firstly, flat energy directors are used for preferential heat generation at the joining interface during the welding process. A flat energy director is a neat thermoplastic resin film that is placed between the parts to be joined prior to the welding process and heats up preferentially owing to its lower compressive stiffness relative to the composite substrates. Consequently, flat energy directors provide a simple solution that does not require molding of resin protrusions on the surfaces of the composite substrates, as opposed to ultrasonic welding of unreinforced plastics. Secondly, the process data provided by the ultrasonic welder is used to rapidly define the optimum welding parameters for any thermoplastic composite material combination. Thirdly, displacement control is used in the welding process to ensure consistent quality of the welded joints. According to this method, thermoplastic-composite flat coupons are individually welded in a single lap configuration. Mechanical testing of the welded coupons allows determining the apparent lap shear strength of the joints, which is one of the properties most commonly used to quantify the strength of thermoplastic composite welded joints.

  9. The influence of tested body size upon longitudinal ultrasonic pulse velocity

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2001-01-01

    Low ultrasonic frequencies are used in nondestructive testing of heterogeneous materials,such as concrete,rocks and timber.When frequencies are low enough,size and shape of tested bodies may influence measured longitudinal pulse velocities(geometric dispersion).A simplified mathematical model is developed from known experimental and theoretical results obtained for elastic wave propagation in rods of uniform circular cross section.Wave propagation is described by a spatial averaged dilatational field in an approach which is named quasi fluid.A formula is obtained which relates group velocity with an effective lateral size of the body,with transducers a frequency,with a non-dimensional parameter and with asymptotic P-wave velocity.In principle it can be applied to bars of any uniform cross section.The limitations of this formula are discussed in relation to path length,threshold of detection,patterns of radiation and reception and other variables.A more general formula is proposed.Practical application of this formula is briefly exemplified using some experimental data obtained by the author.The problem of longitudinal pulse propagation in reinforcing steel bars embedded in concrete is briefly considered

  10. Proceedings of the specialists' meeting on reliability of the ultrasonic inspection of austenitic materials

    International Nuclear Information System (INIS)

    1980-01-01

    The contributions of this meeting addressed several topics: the fundamentals of ultrasonic examination of austenitic materials (effect of anisotropy on propagation, improvement of ultrasonic testing to thick bimetallic welds, aspects of the ultrasonic testing of austenitic steel structures, utilization of a Fisher linear discriminant function in intergranular stress corrosion cracking or IGSCC detection, case of coarse grain austenitic welds, efforts of the Argonne National Laboratory), instruments and methods (longitudinal wave ultrasonic inspection, Grass echo suppression technique during the ultrasonic inspection of fuel cladding tubes, inspections of fillet and butt welds, improvement by signal averaging techniques, multiple bearing angle crack detector for cladded pipes examinations, flow-to-grain echo enhancement by split-spectrum processing, ultrasonic imaging techniques, ultrasonic inspection of pipe weldments for IGSCC), industrial practice (ultrasonic testing techniques for fabrication and in-service inspection, experiences in ultrasonic examination of austenitic steel components, experience and practice on nuclear piping in Spain, detection of underclad defects, sizing of cracks perpendicular to stainless overlay), and reliability (survey of ultrasonic testing in austenitic weld material, examination of electron beam welds, factors affecting the reliability of ultrasonic examination, detectability of IGSCC, ultrasonic inspection reliability for primary piping systems)

  11. Proceedings of the specialists' meeting on reliability of the ultrasonic inspection of austenitic materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-07-01

    The contributions of this meeting addressed several topics: the fundamentals of ultrasonic examination of austenitic materials (effect of anisotropy on propagation, improvement of ultrasonic testing to thick bimetallic welds, aspects of the ultrasonic testing of austenitic steel structures, utilization of a Fisher linear discriminant function in intergranular stress corrosion cracking or IGSCC detection, case of coarse grain austenitic welds, efforts of the Argonne National Laboratory), instruments and methods (longitudinal wave ultrasonic inspection, Grass echo suppression technique during the ultrasonic inspection of fuel cladding tubes, inspections of fillet and butt welds, improvement by signal averaging techniques, multiple bearing angle crack detector for cladded pipes examinations, flow-to-grain echo enhancement by split-spectrum processing, ultrasonic imaging techniques, ultrasonic inspection of pipe weldments for IGSCC), industrial practice (ultrasonic testing techniques for fabrication and in-service inspection, experiences in ultrasonic examination of austenitic steel components, experience and practice on nuclear piping in Spain, detection of underclad defects, sizing of cracks perpendicular to stainless overlay), and reliability (survey of ultrasonic testing in austenitic weld material, examination of electron beam welds, factors affecting the reliability of ultrasonic examination, detectability of IGSCC, ultrasonic inspection reliability for primary piping systems)

  12. Design and fabrication of liner-arroy ultrasonic transducer using KLM and FEM simulation for non-destructive testing

    International Nuclear Information System (INIS)

    Park, Chan Yuk; Sung, Jin Ho; Jeong, Jong Seob

    2015-01-01

    In this paper, a linear-array transducer capable of overcoming the faults of a single element and phased array transducers with convex shape for non-destructive ultrasonic testing was designed and fabricated. A 5.5 MHz linear-array transducer was designed using the PiezoCAD program based on the KLM analysis and the PZFlex program based on the FEM analysis. A 2-2 composite structure was employed to achieve broad-band characteristics. A 128 element linear-array transducer was fabricated and its performance was compared with the simulation results. The center frequency of the fabricated transducer was 5.5 Mhzand the -6 dB frequency bandwidth was 70 %. Thus, we expect that the designed transducer can provide an effective inner image of the test material during non-destructive ultrasonic testing.

  13. Design and fabrication of liner-arroy ultrasonic transducer using KLM and FEM simulation for non-destructive testing

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Yuk; Sung, Jin Ho; Jeong, Jong Seob [Dept. of Medical Biotechnology, Dongguk University Biomedi Campus, Goyang (Korea, Republic of)

    2015-04-15

    In this paper, a linear-array transducer capable of overcoming the faults of a single element and phased array transducers with convex shape for non-destructive ultrasonic testing was designed and fabricated. A 5.5 MHz linear-array transducer was designed using the PiezoCAD program based on the KLM analysis and the PZFlex program based on the FEM analysis. A 2-2 composite structure was employed to achieve broad-band characteristics. A 128 element linear-array transducer was fabricated and its performance was compared with the simulation results. The center frequency of the fabricated transducer was 5.5 Mhzand the -6 dB frequency bandwidth was 70 %. Thus, we expect that the designed transducer can provide an effective inner image of the test material during non-destructive ultrasonic testing.

  14. Application of CUSA Excel ultrasonic aspiration system in resection of skull base meningiomas.

    Science.gov (United States)

    Tang, Hailiang; Zhang, Haishi; Xie, Qing; Gong, Ye; Zheng, Mingzhe; Wang, Daijun; Zhu, Hongda; Chen, Xiancheng; Zhou, Liangfu

    2014-12-01

    Here, we introduced our short experience on the application of a new CUSA Excel ultrasonic aspiration system, which was provided by Integra Lifesciences corporation, in skull base meningiomas resection. Ten patients with anterior, middle skull base and sphenoid ridge meningioma were operated using the CUSA Excel ultrasonic aspiration system at the Neurosurgery Department of Shanghai Huashan Hospital from August 2014 to October 2014. There were six male and four female patients, aged from 38 to 61 years old (the mean age was 48.5 years old). Five cases with tumor located at anterior skull base, three cases with tumor on middle skull base, and two cases with tumor on sphenoid ridge. All the patents received total resection of meningiomas with the help of this new tool, and the critical brain vessels and nerves were preserved during operations. All the patients recovered well after operation. This new CUSA Excel ultrasonic aspiration system has the advantage of preserving vital brain arteries and cranial nerves during skull base meningioma resection, which is very important for skull base tumor operations. This key step would ensure a well prognosis for patients. We hope the neurosurgeons would benefit from this kind of technique.

  15. Getting the most out of your new plant with a chordal ultrasonic feedwater flow measurement system

    International Nuclear Information System (INIS)

    Estrada, Herb; Hauser, Ernie

    2007-01-01

    The economic advantages of a chordal ultrasonic feedwater flow measurement system over conventional (flow nozzle-based) feedwater instrumentation are analyzed for new plants having ratings ranging from 1100 MWe to 1600 MWe. Specifically, each of the following topics is considered: The value of a 1.7% increase in the rating of the new plant, made possible by the reduced uncertainty in the determination of thermal power. The value of reduced startup time owing to enhanced steam supply water level control. The value of the reduced feedwater pumping power brought about by the elimination of flow nozzles. The value of the reduced calibration burden owing to the elimination of the feedwater flow differential pressure transmitters and resistance thermometers. The net difference in the acquisition costs of the ultrasonic system versus conventional feedwater flow instrumentation. The net savings in installation costs of the ultrasonic system vis-a-vis conventional feedwater flow instrumentation. The potential savings in outage time due to the reduced frequency of low steam supply water level trips (scrams) of the reactor. (author)

  16. A PC-based expert system for nondestructive testing

    International Nuclear Information System (INIS)

    Shankar, R.; Williams, R.; Smith, C.; Selby, G.

    1991-01-01

    Rule-based decision logic which can emulate problem-solving expertise of humans is being explored for power plant nondestructive evaluation (NDE) applications. This paper describes an effort underway at the EPRI NDE Center to assist in the interpretation of NDE data acquired by automatic systems during ultrasonic weld examination of boiling-water reactors (BWRs). A personal computer (PC) -based expert system shell was used to encode rules and assemble knowledge to address the discrimination of intergranular stress corrosion cracking (IGSCC) from benign reflectors in the inspection of pipe-to-component welds. The rules attempt to factor in plant inspection history, ultrasonic examination data nd, if available, radiography testing data; a majority of them deal with specific ultrasonic signal temporal and spatial behavior during automatic scanning. The paper describes the efforts in the development of the expert system

  17. Automated ultrasonic testing of nuclear reactor welds and overlays in pre-service and in-service inspections

    International Nuclear Information System (INIS)

    Sladky, J.

    1988-01-01

    Since 1982, automatic pre-service and in-service checks are being made of welded joints and overlays on pressure vessels of WWER-440 nuclear reactors in Czechoslovakia. This is being done using the SKODA REACTORTEST TRC facility which is used for checking peripheral welded joints on the pressure vessel, neck joints, overlays in other selected areas of the cylindrical section of the pressure vessel, on radius transitions of the pressure vessel and of necks, and on the cylindrical part of necks, and also for checking the base material in selected parts of the pressure vessel and the base material of the neck extension piece. The tests are of two types, namely tests of peripheral welds and overlays of the cylindrical parts of the pressure vessel, and tests of the necks. Different ultrasonic probe holders are used for the tests, with totally different design. Ultrasonic probes which were initially used were of foreign make while at present, those of Czechoslovak make are used. For each pressure vessel a set of ultrasonic probes is used which should suffice for the life of the vessel. Experience gained so far is being used in work on the project of a new device for testing nuclear reactor presure vessels from the inside. (Z.M.)

  18. A Laser-based Ultrasonic Inspection System to Detect Micro Fatigue Cracks

    International Nuclear Information System (INIS)

    Park, Seung Kyu; Baik, Sung Hoon; Park, Moon Cheol; Lim, Chang Hwan; Cha, Hyung Ki

    2005-01-01

    Laser-based ultrasonic techniques have been established as a viable non-contact alternative to piezoelectric transducers for generating and receiving ultrasound. Laser-based ultrasonic inspection system provides a number of advantages over the conventional generation by piezoelectric transducers, especially a non-contact generation and detection of ultrasonic waves, high spatial scanning resolution, controllable narrow-band and wide-band spectrum, absolute measurements of the moving distance, use of fiber optics, and an ability to operate on curved and rough surfaces and at hard-to-access locations like a nuclear power plant. Ochiai and Miura used the laser-based ultrasound to detect micro fatigue cracks for the inspection of a material degradation in nuclear power plants. This widely applicable laser-based ultrasonic inspection system is comparatively expensive and provides low signal-to-noise ratio to measure ultrasound by using the laser interferometer. Many studies have been carried out to improve the measuring efficiency of the laser interferometer. One of the widely used laser interferometer types to measure the ultrasound is the Confocal Fabry-Perot Interferometer(CFPI). The measurement gain of the CFPI is slightly and continually varied according to the small change of the cavity length and the fluctuations of the measuring laser beam frequency with time. If we continually adjust the voltage of a PZT which is fixed to one of the interferometer mirrors, the optimum working point of the CFPI can be fixed. Though a static stabilizer can fix the gain of the CFPI where the CW laser beam is targeted at one position, it can not be used when the CW laser beam is scanned like a scanning laser source(SLS) technique. A dynamic stabilizer can be used for the scanning ultrasonic inspection system. A robust dynamic stabilizer is needed for an application to the industrial inspection fields. Kromine showed that the SLS technique is effective to detect small fatigue cracks

  19. Research on Single Base-Station Distance Estimation Algorithm in Quasi-GPS Ultrasonic Location System

    International Nuclear Information System (INIS)

    Cheng, X C; Su, S J; Wang, Y K; Du, J B

    2006-01-01

    In order to identify each base-station in quasi-GPS ultrasonic location system, a unique pseudo-random code is assigned to each base-station. This article primarily studies the distance estimation problem between Autonomous Guide Vehicle (AGV) and single base-station, and then the ultrasonic spread-spectrum distance measurement Time Delay Estimation (TDE) model is established. Based on the above model, the envelope correlation fast TDE algorithm based on FFT is presented and analyzed. It shows by experiments that when the m sequence used in the received signal is as same as the reference signal, there will be a sharp correlation value in their envelope correlation function after they are processed by the above algorithm; otherwise, the will be no prominent correlation value. So, the AGV can identify each base-station easily

  20. Research on Single Base-Station Distance Estimation Algorithm in Quasi-GPS Ultrasonic Location System

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, X C; Su, S J; Wang, Y K; Du, J B [Instrument Department, College of Mechatronics Engineering and Automation, National University of Defense Technology, ChangSha, Hunan, 410073 (China)

    2006-10-15

    In order to identify each base-station in quasi-GPS ultrasonic location system, a unique pseudo-random code is assigned to each base-station. This article primarily studies the distance estimation problem between Autonomous Guide Vehicle (AGV) and single base-station, and then the ultrasonic spread-spectrum distance measurement Time Delay Estimation (TDE) model is established. Based on the above model, the envelope correlation fast TDE algorithm based on FFT is presented and analyzed. It shows by experiments that when the m sequence used in the received signal is as same as the reference signal, there will be a sharp correlation value in their envelope correlation function after they are processed by the above algorithm; otherwise, the will be no prominent correlation value. So, the AGV can identify each base-station easily.

  1. A New Low-frequency Sonophoresis System Combined with Ultrasonic Motor and Transducer

    Science.gov (United States)

    Zhu, Pancheng; Peng, Hanmin; Yang, Jianzhi; Mao, Ting; Sheng, Juan

    2018-03-01

    Low frequency sonophoresis (LFS) is currently being attempted as a transdermal drug delivery method in clinical areas. However, it lacks both an effective control method and the equipment to satisfy the varying drug dosage requirements of individual patients. Herein, a novel method aimed at controlling permeability is proposed and developed, using a pressure control strategy which is based on an accurate, adjustable and non-invasive ultrasound transdermal drug delivery system in in vitro LFS. The system mainly consists of a lead screw linear ultrasonic motor and an ultrasonic transducer, in which the former offers pressure and the latter provides ultrasound wave in the liquid. The ultrasound can enhance non-invasive permeation and the pressure from the motor can control the permeability. The calculated and experimental results demonstrate that the maximum pressure on artificial skin is under the area with the maximum vibration amplitude of the ultrasonic transducer, and the total pressure consists of acoustic pressure from the transducer and approximate static pressure from the motor. Changing the static pressure from the ultrasonic motor can effectively control the non-invasive permeability, by adjusting the duty ratio or the amplitude of the motor’s driving voltage. In addition, the permeability control of calcein by thrust control is realized in 15 min, indicating the suitability of this method for application in accurate medical technology. The obtained results reveal that the issue of difficult permeability control can be addressed, using this control method in in vitro LFS to open up a route to the design of accurate drug delivery technology for individual patients.

  2. Comparison between sensitivities of quality control methods using ultrasonic waves, radiography and acoustic emission for the thick welded joint testing

    International Nuclear Information System (INIS)

    Asty, Michel; Birac, Claude

    1981-09-01

    The testing of the thick welded joints of the nuclear industry is carried out by radiography and ultrasonics on completion of welding. When a fault is found, its repair requires a sometimes deep cut down to the position of the fault, then filling in of the cut by hand welding with a coated electrode. This very costly operation also involves the risk of causing new defects when building up by hand. Listening to the acoustic emission during the welding has been considered in order to seek the possibility of detecting defects when they appear, or soon after. The industrial use of this method would make an instant repair of the defective areas possible at less cost and with greater reliability. The study presented concerns the comparison between the results of the various non-destructive testing methods: radiography, ultrasonics and acoustic emission, for a thick welded joint in which the defects have been brought about [fr

  3. Standard practice for ultrasonic testing of the Weld Zone of welded pipe and tubing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice describes general ultrasonic testing procedures for the detection of discontinuities in the weld and adjacent heat affected zones of welded pipe and tubing by scanning with relative motion between the search unit and pipe or tube. When contact or unfocused immersion search units are employed, this practice is intended for tubular products having specified outside diameters ≥2 in. (≥50 mm) and specified wall thicknesses of 1/8to 11/16 in. (3 to 27 mm). When properly focused immersion search units are employed, this practice may also be applied to material of smaller diameter and thinner wall. Note 1—When contact or unfocused immersion search units are used, precautions should be exercised when examining pipes or tubes near the lower specified limits. Certain combinations of search unit size, frequency, thin–wall thicknesses, and small diameters could cause generation of unwanted sound waves that may produce erroneous examination results. 1.2 All surfaces of material to be examined in ...

  4. Nondestructive testing of thin films using surface acoustic waves and laser ultrasonics

    Science.gov (United States)

    Jenot, Frédéric; Fourez, Sabrina; Ouaftouh, Mohammadi; Duquennoy, Marc

    2018-04-01

    Thin films are widely used in many fields such as electronics, optics or materials science. For example, they find applications in thermal or mechanical sensors design. They are also very useful as protective or reinforcement layers for many structures. However, some coating defects such as thickness variations, microfissuring or poor adhesion are common problems. Therefore, nondestructive testing of these structures using acoustic waves generated and detected by lasers represents a major interest. Indeed, in comparison with conventional methods based on the use of piezoelectric transducers, laser ultrasonics leads to non-contact investigations with a large bandwidth. Usually, bulk acoustic waves are used and a pulse-echo technique is considered that needs high frequencies and implies local measurements. In order to avoid this limitation, we propose to use surface acoustic waves in a frequency range up to 45 MHz. The samples consist of a micrometric gold layer deposited on silicon substrates. In a first part, using dispersion analysis, theoretical and experimental results clearly reveal that the first Rayleigh mode allows the detection of film thickness variations and open cracks. In a second part, a localized adhesion defect is introduced in a similar sample. The effects of such a flaw on the Rayleigh modes dispersion curves are theoretically described. Finally, we experimentally show that the first Rayleigh mode allows the defect detection only under specific conditions.

  5. Community survey on reference blocks and transducers for non-destructive ultrasonic testing

    International Nuclear Information System (INIS)

    Vinche, C.; Borloo, E.; Jehenson, P.

    1978-01-01

    In the frame of the European programmes 'Standards and Reference Substances' and 'Reference Materials and Methods' (BCR) the Commission of the European Communities, in conjunction with National experts launched in 1975 an inquiry on reference blocks and transducers for non-destructive ultrasonic testing. This inquiry which is complementary to a general survey made in 1971-1972 by the Commission on Reference Materials (Ref. EUR Report 1973. EUR 4886. d,f,i,n,e) was felt necessary and prepared by a specialists group from the Community Countries and the Joint Research Centre (JRC), Ispra Establishment (the list of these specialists is indicated on p. 2 of the questionnaire). The results of this survey, collated by the JRC Ispra Members have been discussed by the group of specialists and form the subject of this report. On bases of mailing lists submitted by national specialists, 215 organizations have been contacted; the fields of activity of these organizations are mainly: metallurgy, machine parts, technical assistance, aeronautics, power stations and research, 73 organizations have replied to the questionnaire. Most answers were obained from organizations dealing with metallurgy, machine parts manufacturers and technical consultants. The annexes supply a detailed analysis of the results given, on a national basis

  6. Ultrasonic test results for the reactor pressure vessel of the HTTR. Longitudinal welding line of bottom dome

    International Nuclear Information System (INIS)

    Nojiri, Naoki; Ohwada, Hiroyuki; Kato, Yasushi

    2008-06-01

    This paper describes the inspection method, the measured area, etc. of the ultrasonic test of the in-service inspection (ISI) for welding lines of the reactor pressure vessel of the HTTR and the inspection results of the longitudinal welding line of the bottom dome. The pre-service inspection (PSI) results for estimation of occurrence and progression of defects to compare the ISI results is described also. (author)

  7. Innovative Ultrasonic Testing (UT) of nuclear components by sampling phased array with 3D visualization of inspection results

    OpenAIRE

    Pudovikov, Sergey; Bulavinov, Andrey; Pinchuk, Roman

    2011-01-01

    Unlike other industrial branches, nuclear industry - when performing UT- is not only asking for a reliable detection, but also for an exact sizing of material defects. Under these objectives ultrasonic imaging plays an important role in practical testing of nuclear components in the data evaluation process as well as for documentation of the inspection results. 2D and 3D sound-field steering by means of phased array technology offers great opportunities for spatially correct visualization of ...

  8. Ultrasonic propulsion of kidney stones.

    Science.gov (United States)

    May, Philip C; Bailey, Michael R; Harper, Jonathan D

    2016-05-01

    Ultrasonic propulsion is a novel technique that uses short bursts of focused ultrasonic pulses to reposition stones transcutaneously within the renal collecting system and ureter. The purpose of this review is to discuss the initial testing of effectiveness and safety, directions for refinement of technique and technology, and opinions on clinical application. Preclinical studies with a range of probes, interfaces, and outputs have demonstrated feasibility and consistent safety of ultrasonic propulsion with room for increased outputs and refinement toward specific applications. Ultrasonic propulsion was used painlessly and without adverse events to reposition stones in 14 of 15 human study participants without restrictions on patient size, stone size, or stone location. The initial feasibility study showed applicability in a range of clinically relevant situations, including facilitating passage of residual fragments following ureteroscopy or shock wave lithotripsy, moving a large stone at the ureteropelvic junction with relief of pain, and differentiating large stones from a collection of small fragments. Ultrasonic propulsion shows promise as an office-based system for transcutaneously repositioning kidney stones. Potential applications include facilitating expulsion of residual fragments following ureteroscopy or shock wave lithotripsy, repositioning stones prior to treatment, and repositioning obstructing ureteropelvic junction stones into the kidney to alleviate acute renal colic.

  9. On line ultrasonic integrated backscatter

    International Nuclear Information System (INIS)

    Landini, L.; Picano, E.; Mazzarisi, A.; Santarelli, F.; Benassi, A.; De Pieri, G.

    1988-01-01

    A new equipment for on-line evaluation of index based on two-dimensional integrated backscatter from ultrasonic images is described. The new equipment is fully integrated into a B-mode ultrasonic apparatus which provides a simultaneous display of conventional information together with parameters of tissue characterization. The system has been tested with a backscattering model of microbubbles in polysaccharide solution, characterized by a physiological exponential time decay. An exponential fitting to the experimental data was performed which yielded r=0.95

  10. An evaluation of detection ability of ultrasonic testing with a large aperture transducer for axial cracks in cast stainless steel pipe welds

    International Nuclear Information System (INIS)

    Nishikawa, Yoshito; Ishida, Hitoshi; Kurozumi, Yasuo

    2013-01-01

    Ultrasonic testing is difficult to apply to cast stainless steel which is the material of the main coolant pipes in pressurized water reactors, because of the large attenuation and scattering of ultrasonic waves caused by its macro structure. In this study, ultrasonic testing for progression of axial fatigue cracks of a welded area in the test piece of cast stainless steel pipe was performed using double big-size ultrasonic probes which were formerly developed in INSS. It was found that detection of defects that were over 6% of the target depth for the specimen thickness of 69mm is possible, and detection of defects with over 10% of the target depth is possible for all test conditions. (author)

  11. Characterization of the alumina-zirconia ceramic system by ultrasonic velocity measurements

    International Nuclear Information System (INIS)

    Carreon, Hector; Ruiz, Alberto; Medina, Ariosto; Barrera, Gerardo; Zarate, Juan

    2009-01-01

    In this work an alumina-zirconia ceramic composites have been prepared with α-Al 2 O 3 contents from 10 to 95 wt.%. The alumina-zirconia ceramic system was characterized by means of precise ultrasonic velocity measurements. In order to find out the factors affecting the variation in wave velocity, the ceramic composite have been examined by X-ray diffraction (XRD) and (SEM) scanning electron microscopy. It was found that the ultrasonic velocity measurements changed considerably with respect to the ceramic composite composition. In particular, we studied the behavior of the physical material property hardness, an important parameter of the ceramic composite mechanical properties, with respect to the variation in the longitudinal and shear wave velocities. Shear wave velocities exhibited a stronger interaction with microstructural and sub-structural features as compared to that of longitudinal waves. In particular, this phenomena was observed for the highest α-Al 2 O 3 content composite. Interestingly, an excellent correlation between ultrasonic velocity measurements and ceramic composite hardness was observed.

  12. Resolution enhancement for ultrasonic echographic technique in non destructive testing with an adaptive deconvolution method

    International Nuclear Information System (INIS)

    Vivet, L.

    1989-01-01

    The ultrasonic echographic technique has specific advantages which makes it essential in a lot of Non Destructive Testing (NDT) investigations. However, the high acoustic power necessary to propagate through highly attenuating media can only be transmitted by resonant transducers, which induces severe limitations of the resolution on the received echograms. This resolution may be improved with deconvolution methods. But one-dimensional deconvolution methods come up against problems in non destructive testing when the investigated medium is highly anisotropic and inhomogeneous (i.e. austenitic steel). Numerous deconvolution techniques are well documented in the NDT literature. But they often come from other application fields (biomedical engineering, geophysics) and we show they do not apply well to specific NDT problems: frequency-dependent attenuation and non-minimum phase of the emitted wavelet. We therefore introduce a new time-domain approach which takes into account the wavelet features. Our method solves the deconvolution problem as an estimation one and is performed in two steps: (i) A phase correction step which takes into account the phase of the wavelet and estimates a phase-corrected echogram. The phase of the wavelet is only due to the transducer and is assumed time-invariant during the propagation. (ii) A band equalization step which restores the spectral content of the ideal reflectivity. The two steps of the method are performed using fast Kalman filters which allow a significant reduction of the computational effort. Synthetic and actual results are given to prove that this is a good approach for resolution improvement in attenuating media [fr

  13. New method to enhance the extraction yield of rutin from Sophora japonica using a novel ultrasonic extraction system by determining optimum ultrasonic frequency.

    Science.gov (United States)

    Liao, Jianqing; Qu, Baida; Liu, Da; Zheng, Naiqin

    2015-11-01

    A new method has been proposed for enhancing extraction yield of rutin from Sophora japonica, in which a novel ultrasonic extraction system has been developed to perform the determination of optimum ultrasonic frequency by a two-step procedure. This study has systematically investigated the influence of a continuous frequency range of 20-92 kHz on rutin yields. The effects of different operating conditions on rutin yields have also been studied in detail such as solvent concentration, solvent to solid ratio, ultrasound power, temperature and particle size. A higher extraction yield was obtained at the ultrasonic frequency of 60-62 kHz which was little affected under other extraction conditions. Comparative studies between existing methods and the present method were done to verify the effectiveness of this method. Results indicated that the new extraction method gave a higher extraction yield compared with existing ultrasound-assisted extraction (UAE) and soxhlet extraction (SE). Thus, the potential use of this method may be promising for extraction of natural materials on an industrial scale in the future. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Detection of delamination defects in plate type fuel elements applying an automated C-Scan ultrasonic system

    International Nuclear Information System (INIS)

    Katchadjian, P.; Desimone, C.; Ziobrowski, C.; Garcia, A.

    2002-01-01

    For the inspection of plate type fuel elements to be used in Research Nuclear Reactors it was applied an immersion pulse-echo ultrasonic technique. For that reason an automated movement system was implemented according to the axes X, Y and Z that allows to automate the test and to show the results obtained in format of C-Scan, facilitating the immediate identification of possible defects and making repetitive the inspection. In this work problems found during the laboratory tests and factors that difficult the inspection are commented. Also the results of C-Scans over UMo fuel elements with pattern defects are shown. Finally, the main characteristics of the transducer with the one the better results were obtained are detailed. (author)

  15. Development of pulse-echo ultrasonic propagation imaging system and its delivery to Korea Air Force

    Science.gov (United States)

    Ahmed, Hasan; Hong, Seung-Chan; Lee, Jung-Ryul; Park, Jongwoon; Ihn, Jeong-Beom

    2017-04-01

    This paper proposes a full-field pulse-echo ultrasonic propagation imaging (FF-PE-UPI) system for non-destructive evaluation of structural defects. The system works by detection of bulk waves that travel through the thickness of a specimen. This is achieved by joining the laser beams for the ultrasonic wave generation and sensing. This enables accurate and clear damage assessment and defect localization in the thickness with minimum signal processing since bulk waves are less susceptible to dispersion during short propagation through the thickness. The system consists of a Qswitched laser for generating the aforementioned waves, a laser Doppler vibrometer (LDV) for sensing, optical elements to combine the generating and sensing laser beams, a dual-axis automated translation stage for raster scanning of the specimen and a digitizer to record the signals. A graphical user interface (GUI) is developed to control all the individual blocks of the system. Additionally, the software also manages signal acquisition, processing, and display. The GUI is created in C++ using the QT framework. In view of the requirements posed by the Korean Air Force(KAF), the system is designed to be compact and portable to allow for in situ inspection of a selected area of a larger structure such as radome or rudder of an aircraft. The GUI is designed with a minimalistic approach to promote usability and adaptability while masking the intricacies of actual system operation. Through the use of multithreading the software is able to show the results while a specimen is still being scanned. This is achieved by real-time and concurrent acquisition, processing, and display of ultrasonic signal of the latest scan point in the scan area.

  16. Application of ultrasonic testing technique to detect gas accumulation in important pipings for pressurized water reactors safety

    Energy Technology Data Exchange (ETDEWEB)

    Fushimi, Yasuyuki [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2002-09-01

    Since 1988, the USNRC has pointed out that gas-binding events might occur at high head safety injection (HHSI) pumps of pressurized water reactors (PWRs). In Japanese PWR plants, corrective actions were taken in response to gas-binding events that occurred on HHSI pumps in the USA, so no gas accumulation event has been reported so far. However, when venting frequency is prolonged with operating cycle extension, the probability of gas accumulation in pipings may increase as in the USA. The purpose of this study was to establish a technique to identify gas accumulation and to measure the gas volume accurately. Taking dominant causes of the gas-binding events in the USA into consideration, we pointed out the following sections in the Japanese PWRs where gas srtipping and/or gas accumulation might occur: residual heat removal system pipings and charging/safety injection pump minimum flow line. Then an ultrasonic testing technique, adopted to identify gas accumulation in the USA, was applied to those sections of the typical Japanese PWR. Consequently, no gas accumulation was found in those pipings. (author)

  17. Artificial Intelligence Assists Ultrasonic Inspection

    Science.gov (United States)

    Schaefer, Lloyd A.; Willenberg, James D.

    1992-01-01

    Subtle indications of flaws extracted from ultrasonic waveforms. Ultrasonic-inspection system uses artificial intelligence to help in identification of hidden flaws in electron-beam-welded castings. System involves application of flaw-classification logic to analysis of ultrasonic waveforms.

  18. Head waves in ultrasonic testing. Physical principle and application to welded joint testing

    International Nuclear Information System (INIS)

    Wustenberg, H.; Erhard, A.

    1984-01-01

    A head wave sensor is developed from distinct emitter and receiver sensors using longitudinal waves under a 70 0 incidence. These heat wave sensors present a high sensitivity for underlying cracks and are not influenced by surface accidents like liquid drops or welding projection. They are multi mode sensors emitting simultaneously longitudinal head waves, a main longitudinal lobe and a transverse wave with a maximum at about 38 0 . This wave combination can be used for automatic testing of welded joints even with austenitic materials for defect detection near internal or external surfaces. This process can substitute or complete liquid penetrant inspection or magnetic inspection for testing pipes (13 references are given) [fr

  19. A Compound Detection System Based on Ultrasonic Flow Rate and Concentration

    Directory of Open Access Journals (Sweden)

    Qing-Hui WANG

    2014-02-01

    Full Text Available This paper proposes a new detection system for monitoring gas concentration and flow rate. Velocity difference of ultrasonic wave in bi-directional propagation in measured gas is recorded and utilized for computing the online gas concentration and flow rate. Meanwhile, the temperature compensation, return signal processing and error analysis algorithms are applied to improve the accuracy. The experimental results show that, compared with the single sensor measurement of gas flow rate or concentration, the proposed detection system with lower cost and higher accuracy can be applied in the occasion which needs simultaneous monitoring of gas concentration and flow rate.

  20. Ultrasonic test data acquisition and defect verification of stainless-steel welds at 4000F

    International Nuclear Information System (INIS)

    Mech, S.J.

    1983-01-01

    This paper describes techniques developed to characterize the features found during ultrasonic examination of stainless steel welds which are indicative of defects. Feature inspection technology allows reliable discrimination weld signals and other noise under remote, automatic, high temperature conditions. Ultrasonic feature inspection techniques have been successfully implemented under 400 0 F (200 0 C) flowing sodium pipe welds. The challenge is to develop techniques which find defects, but ignore variations associated with the normal cast type microstructure of the weld zone. This study was directed at gathering data on a welded pipe section with notches used to simulate defects and is an example of computer acquisition and analysis techniques of ultrasonic data. Various analysis methods were compared to find signal analysis algorithms sensitive to these simulated defects

  1. Utilization of radiographic and ultrasonic testing for an evaluation of plate type fuel elements during manufacturing stages

    International Nuclear Information System (INIS)

    Brito, Mucio Jose Drummond de; Silva Junior, Silverio Ferreira da; Messias, Jose Marcos; Braga, Daniel Martins; Paula, Joao Bosco de

    2005-01-01

    Structural discontinuities can be introduced in the plate type fuel elements during the manufacturing stages due to mechanical processing conditions. The use of nondestructive testing methods to monitoring the fuel elements during the manufacturing stages presents a significant importance, contributing for manufacturing process improvement and cost reducing. This paper describes a procedure to be used detection and evaluation of structural discontinuities in plate type fuel elements during the manufacturing stages using the ultrasonic testing method and the radiographic testing method. The main results obtained are presented and discussed. (author)

  2. Ensemble Empirical Mode Decomposition based methodology for ultrasonic testing of coarse grain austenitic stainless steels.

    Science.gov (United States)

    Sharma, Govind K; Kumar, Anish; Jayakumar, T; Purnachandra Rao, B; Mariyappa, N

    2015-03-01

    A signal processing methodology is proposed in this paper for effective reconstruction of ultrasonic signals in coarse grained high scattering austenitic stainless steel. The proposed methodology is comprised of the Ensemble Empirical Mode Decomposition (EEMD) processing of ultrasonic signals and application of signal minimisation algorithm on selected Intrinsic Mode Functions (IMFs) obtained by EEMD. The methodology is applied to ultrasonic signals obtained from austenitic stainless steel specimens of different grain size, with and without defects. The influence of probe frequency and data length of a signal on EEMD decomposition is also investigated. For a particular sampling rate and probe frequency, the same range of IMFs can be used to reconstruct the ultrasonic signal, irrespective of the grain size in the range of 30-210 μm investigated in this study. This methodology is successfully employed for detection of defects in a 50mm thick coarse grain austenitic stainless steel specimens. Signal to noise ratio improvement of better than 15 dB is observed for the ultrasonic signal obtained from a 25 mm deep flat bottom hole in 200 μm grain size specimen. For ultrasonic signals obtained from defects at different depths, a minimum of 7 dB extra enhancement in SNR is achieved as compared to the sum of selected IMF approach. The application of minimisation algorithm with EEMD processed signal in the proposed methodology proves to be effective for adaptive signal reconstruction with improved signal to noise ratio. This methodology was further employed for successful imaging of defects in a B-scan. Copyright © 2014. Published by Elsevier B.V.

  3. Ultrasonic testing of canning tubes in stainless steel of the EL 4 reactor

    International Nuclear Information System (INIS)

    Prot, A.; Monnier, P.

    1964-01-01

    From all the methods possible for controlling thin cans the one chosen, for numerous reasons, vas that making use of ultrasonic techniques. A method has been developed which should make it possible to carry out a rapid and efficient industrial control of canning tubes, The reasons for the choice of the ultrasonic method are given in detail, together with the principles of the method and the actual control parameters. In the present state of our research, it should be possible to control at least 50 000 tubes a year. Improvements brought about in the details of the control technique itself should make it possible to increase this rate considerably. (authors) [fr

  4. An ultrasonic-based localization system for underground mines

    CSIR Research Space (South Africa)

    Jordaan, JP

    2017-07-01

    Full Text Available -based localization system for underground mines 2017 IEEE 15th International Conference on Industrial Informatics (INDIN), 24-26 July 2017, Emden, Germany JP Jordaan, CP Kruger, BJ Silva and GP Hancke Abstract: Localization is important for a wide range...

  5. Design and characterization of an ultrasonic lamb-wave power delivery system.

    Science.gov (United States)

    Kural, Aleksander; Pullin, Rhys; Holford, Karen; Lees, Jonathan; Naylon, Jack; Paget, Christophe; Featherston, Carol

    2013-06-01

    In this paper, a novel design for an ultrasonic power transmission system designed for use in aircraft structural monitoring systems is described. The prototype system uses ultrasonic Lamb waves to carry energy along plates, such as those used in aircraft structures, and commercially available piezoelectric patch transducers as the transmitter and receiver. This sets it apart from other acoustic power transmission systems reported to date. The optimum configuration transmitted 12.7 mW of power across a distance of 54 cm in a 1.5-mm-thick aluminum plate, while being driven by a 20-Vpp, 35-kHz sinusoidal electric signal. This is in the same order of magnitude as the power required by the wireless sensors nodes of a structural health monitoring system currently being developed by Cardiff University and its partners. Thus, the power transmission system can be considered a viable component of the power source combination considered for the sensor nodes, which will also include vibration and thermal energy harvesting. The paper describes the design and optimization of the transmission and reception circuits with the use of inductive compensation. The use of laser vibrometry to characterize the transducers and to understand the signal propagation between them is also reported.

  6. The Mechatronic System Design Of Ultrasonic Scanner For Inservice Inspection Of Research Reactor

    Science.gov (United States)

    Handono, Khairul; Kristedjo, K.; Awwaluddin, M.; Shobary, Ihsan

    2018-02-01

    The mechatronic system design of ultrasonic scanner for inservices inspection of Research Reactor has been conducted. The requirement designed must be reliable operated, safety to personnel and equipments, ease of maintenance and operation, protection of equipment mechanically, interchangeability of equipments and addition of the several model of probe immersion ultrasonic tranducer. In order to achieve the above goals and obtain the desired results, a mechatronic design based on mechanical and electronic practical experiences will be needed. In this paper consist of the mechanical design and the system mechanical movement using stepper motor control. The criteria and the methods of designs of mechanical and electronic equipments of the system have been discussed and investigated. A mechanical and instrumentation control system drawing and requirement of design will be presented as the outcome of the design. The designed of mechanical system is consequently simulated by solidwork software. The intention of the above research is to create solutions in different ways of inservice inspection of integrity of Reactor.

  7. SIIA: a knowledge-based assistant for the SAFT ultrasonic inspection system(a)

    International Nuclear Information System (INIS)

    Melton, R.B.; Doctor, S.R.; Taylor, T.T.; Badalamente, R.V.

    1987-01-01

    SIIA(b) is a knowledge-based system designed to assist in making the operation of the Synthetic Aperture Focussing Technique (SAFT) Ultrasonic Inspection System more reliable and efficient. This paper reports on their effort to develop a prototype version of SIIA to demonstrate the feasibility of using knowledge-based systems in nondestructive evaluation (NDE). The first section of the paper describes the structure of the problem and their conceptual design of the knowledge-based system. The next section describes the current state of the prototype SIIA system and relates some of their experiences in developing the system. The final section discusses their plans for future development of SIIA and the implications of this type of system for other NDE techniques and applications

  8. Testing of wooden construction elements with ultrasonic echo technique and x-ray

    International Nuclear Information System (INIS)

    Hasenstab, A.; Krause, M.; Osterloh, K.

    2008-01-01

    Damages inside of wooden construction components (e.g. interior rot) or at inaccessible surfaces represent a special problem, since they are difficult to recognize from the outside, they can even cause a sudden failure of the component. As a result the research, it could be proved that ultrasonic echo technique can be used on wood both with longitudinal and transverse waves. Further more the different influences of the wood fibres on the sound velocity of the longitudinal and transverse waves is pointed out on the basis results of measurements. The efficiency of the ultrasonic echo technique is shown on wooden specimens. The combination of ultrasonic echo technique and radiography resulted in a very substantial reduction of possible misinterpretations of damage. There it is possible to detect the damage from the undamaged side of the specimen by ultrasound echo. The spread of the damage can be obtained with mobile x-ray measurements. Finally the results show, that ultrasonic methods are more sensitive starting decay and cracks parallel to the surface.

  9. Evaluation of Creep-Fatigue Damage in 304 Stainless Steel using Ultrasonic Non-Destructive Test

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Sik [Safetech Co. Ltd., Kimhae (Korea, Republic of); Oh, Yong Jun [Hanbat National Univ., Daejon (Korea, Republic of); Nam, Soo Woo [KISTI ReSEAT Program, Seoul (Korea, Republic of)

    2011-12-15

    It is well known that grain boundary cavitation is the main failure mechanism in austenitic stainless steel under tensile hold creep-fatigue interaction conditions. The cavities are nucleated at the grain boundary during cyclic loading and grow to become grain boundary cracks. The attenuation of ultrasound depends on scattering and absorption in polycrystalline materials. Scattering occurs when a propagation wave encounters microstructural discontinuities, such as internal voids or cavities. Since the density of the creepfatigue cavities increases with the fatigue cycles, the attenuation of ultrasound will also be increased with the fatigue cycles and this attenuation can be detected nondestructively. In this study, it is found that individual grain boundary cavities are formed and grow up to about 100 cycles and then, these cavities coalesce to become cracks. The measured ultrasonic attenuation increased with the cycles up to cycle 100, where it reached a maximum value and then decreased with further cycles. These experimental measurements strongly indicate that the open pores of cavities contribute to the attenuation of ultrasonic waves. However, when the cavities develop, at the grain boundary cracks whose crack surfaces are in contact with each other, there is no longer any open space and the ultrasonic wave may propagate across the cracks. Therefore, the attenuation of ultrasonic waves will be decreased. This phenomenon of maximum attenuation is very important to judge the stage of grain boundary crack development, which is the indication of the dangerous stage of the structures.

  10. Evaluation of an Ultrasonic Insulin Delivery System in Hyperglycemic Rabbits

    Directory of Open Access Journals (Sweden)

    Ameneh Sazgarnia

    2010-03-01

    Full Text Available Introduction: Sonophoresis has been assessed as a novel approach to create skin permeability and drug delivery using low frequencies of ultrasound waves in the range of 20 kHz to 3 MHz. In this study, a system including seven 40 kHz piezoelectric transducers and an insulin chamber designed by the Medical Physics Research Center has been evaluated on hyperglycemic rabbits. Materials and Methods: Thirty five rabbits became hyperglycemic through Alloxan monohydrate injection and were divided into five groups. The rabbits were treated in two main groups (with insulin and ultrasound radiation in two radiation periods, one main control group and two further control groups (one group with ultrasound radiation with longer radiation period in absence of insulin and presence of normal saline; and the other group without ultrasound radiation in presence of insulin. By filling the system chamber with insulin and placing it on the skin of the abdomen and activating the piezoelectric transducers, blood samples were drawn from the animals before ultrasound irradiation and after it in specified intervals. The glucose level was measured using a glucometer and the serum insulin level was determined using a radioimmunoassay method. Results: Maximum decrease in glucose level was recorded for a 20 minute irradiation in a 180 minute period, and the highest increase in insulin level was recorded for the10 minute radiation group in a 60 minute period. Discussion and Conclusion: Because rapid uptake and reaching a peak in a short time and its swift decrease make a good scheme for controlling glucose level after meals, the 10 minute radiation seems to be more suitable. Also, it is predicted that irradiation time in the interval between food consumption and use of the instrument is critical.

  11. Ultrasonic reduction of excess sludge from the activated sludge system

    International Nuclear Information System (INIS)

    Zhang Guangming; Zhang Panyue; Yang Jinmei; Chen Yanming

    2007-01-01

    Sludge treatment has long become the most challenging problem in wastewater treatment plants. Previous studies showed that ozone or chlorine effectively liquefies sludge into substrates for bio-degradation in the aeration tank, and thus reduces the excess sludge. This paper employs ultrasound to reduce the excess sludge from the sequential batch reactor (SBR) system. Partial sludge was disintegrated into dissolved substrates by ultrasound in an external sono-tank and was then returned to the SBR for bio-degradation. The results showed that ultrasound (25 kHz) effectively liquefied the sludge. The most effective conditions for sludge reduction were as following: sludge sonication ratio of 3/14, ultrasound intensity of 120 kW/kgDS, and sonication duration of 15 min. The amount of excess sludge was reduced by 91.1% to 17.8 mg/(L d); the organic content and settleability of sludge in the SBR were not impacted. The chemical oxygen demand (COD) removal efficiency was 81.1%, the total nitrogen (TN) removal efficiency was 17-66%, and high phosphorus concentration in the effluent was observed

  12. Programmable Ultrasonic Sensing System for Targeted Spraying in Orchards

    Directory of Open Access Journals (Sweden)

    Marko Hočevar

    2012-11-01

    Full Text Available This research demonstrates the basic elements of a prototype automated orchard sprayer which delivers pesticide spray selectively with respect to the characteristics of the targets. The density of an apple tree canopy was detected by PROWAVE 400EP250 ultrasound sensors controlled by a Cypress PSOC CY8C29466 microcontroller. The ultrasound signal was processed with an embedded computer built around a LPC1343 microcontroller and fed in real time to electro-magnetic valves which open/close spraying nozzles in relation to the canopy structure. The analysis focuses on the detection of appropriate thresholds on 15 cm ultrasound bands, which correspond to maximal response to tree density, and this was selected for accurate spraying guidance. Evaluation of the system was performed in an apple orchard by detecting deposits of tartrazine dye (TD on apple leaves. The employment of programmable microcontrollers and electro-magnetic valves decreased the amount of spray delivered by up to 48.15%. In contrast, the reduction of TD was only up to 37.7% at some positions within the tree crown and 65.1% in the gaps between trees. For all these reasons, this concept of precise orchard spraying can contribute to a reduction of costs and environmental pollution, while obtaining similar or even better leaf deposits.

  13. Programmable Ultrasonic Sensing System for Targeted Spraying in Orchards

    Science.gov (United States)

    Stajnko, Denis; Berk, Peter; Lešnik, Mario; Jejčič, Viktor; Lakota, Miran; Štrancar, Andrej; Hočevar, Marko; Rakun, Jurij

    2012-01-01

    This research demonstrates the basic elements of a prototype automated orchard sprayer which delivers pesticide spray selectively with respect to the characteristics of the targets. The density of an apple tree canopy was detected by PROWAVE 400EP250 ultrasound sensors controlled by a Cypress PSOC CY8C29466 microcontroller. The ultrasound signal was processed with an embedded computer built around a LPC1343 microcontroller and fed in real time to electro-magnetic valves which open/close spraying nozzles in relation to the canopy structure. The analysis focuses on the detection of appropriate thresholds on 15 cm ultrasound bands, which correspond to maximal response to tree density, and this was selected for accurate spraying guidance. Evaluation of the system was performed in an apple orchard by detecting deposits of tartrazine dye (TD) on apple leaves. The employment of programmable microcontrollers and electro-magnetic valves decreased the amount of spray delivered by up to 48.15%. In contrast, the reduction of TD was only up to 37.7% at some positions within the tree crown and 65.1% in the gaps between trees. For all these reasons, this concept of precise orchard spraying can contribute to a reduction of costs and environmental pollution, while obtaining similar or even better leaf deposits. PMID:23202220

  14. A Portable Ultrasound System for Non-Invasive Ultrasonic Neuro-Stimulation.

    Science.gov (United States)

    Qiu, Weibao; Zhou, Juan; Chen, Yan; Su, Min; Li, Guofeng; Zhao, Huixia; Gu, Xianyi; Meng, De; Wang, Congzhi; Xiao, Yang; Lam, Kwok Ho; Dai, Jiyan; Zheng, Hairong

    2017-12-01

    Fundamental insights into the function of the neural circuits often follows from the advances in methodologies and tools for neuroscience. Electrode- and optical- based stimulation methods have been used widely for neuro-modulation with high resolution. However, they are suffering from inherent invasive surgical procedure. Ultrasound has been proved as a promising technology for neuro-stimulation in a non-invasive manner. However, no portable ultrasound system has been developed particularly for neuro-stimulation. The utilities used currently are assembled by traditional functional generator, power amplifier, and general transducer, therefore, resulting in lack of flexibility. This paper presents a portable system to achieve ultrasonic neuro-stimulation to satisfy various studies. The system incorporated a high voltage waveform generator and a matching circuit that were optimized for neuro-stimulation. A new switching mode power amplifier was designed and fabricated. The noise generated by the power amplifier was reduced (about 30 dB), and the size and weight were smaller in contrast with commercial equipment. In addition, a miniaturized ultrasound transducer was fabricated using Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 (PMN-PT) 1-3 composite single crystal for the improved ultrasonic performance. The spatial peak temporal average pressure was higher than 250 kPa in the range of 0.5-5 MHz. In vitro and in vivo studies were conducted to show the performance of the system.

  15. Semi-continuous ultrasonic sounding and changes of ultrasonic signal characteristics as a sensitive tool for the evaluation of ongoing microstructural changes of experimental mortar bars tested for their ASR potential

    Czech Academy of Sciences Publication Activity Database

    Lokajíček, Tomáš; Kuchařová, A.; Petružálek, Matěj; Šachlová, Š.; Svitek, Tomáš; Přikryl, R.

    2016-01-01

    Roč. 71, September (2016), s. 40-50 ISSN 0041-624X R&D Projects: GA ČR(CZ) GAP104/12/0915 Institutional support: RVO:67985831 Keywords : alkali-silica reaction * accelerated test * thermal heating * mortar bar * ultrasonic sounding Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.327, year: 2016

  16. Experience with an ultrasonic sealing system for nuclear safeguards in irradiated fuel bay demonstrations

    International Nuclear Information System (INIS)

    White, B.F.; Smith, M.T.

    1985-07-01

    The development of the irradiated fuel safeguards containment assembly for CANDU nuclear generating stations has stimulated the development of the AECL Random Coil Sealing System. The ARC seal combines the identity and integrity elements in an ultrasonically-determined signature. This is verified in situ, in real time with the seal reading system. The maturation of this technology has been facilitated with demonstration trials in the NRU and NPD irradiated fuel bays. The NPD demonstration includes operation of the systems tooling by Ontario Hydro staff. It provides the opportunity for IAEA inspectors from Toronto and Vienna to direct the operational procedures and to perform the data acquisition. The procedures and systems developed in these trials are reviewed. The estimation of the system performance characteristics from the observations is presented. A minimum frequency of reading for individual seals is recommended to be once per annum following initial deployment

  17. SHAPE EFFECT OF ANNULAR CONCENTRATOR IN ULTRASONIC SYSTEM ON AMPLIFICATION FACTOR OF VIBRATIONS AMPLITUDE

    Directory of Open Access Journals (Sweden)

    D. A. Stepanenko

    2016-01-01

    Full Text Available The paper contains a theoretical underpinning on creation of ultrasonic vibration concentrators based on annular elastic elements with non-circular (ellipse-like eccentric shape of internal contour. Shape of internal contour in polar coordinates is described by Fourier series relative to angular coordinate that consists of a constant term and first and second harmonics. An effect of geometric parameters of the concentrator on amplification factor and natural vibration frequencies has been investigated with the help of a finite element method. The paper reveals the possibility to control an amplification factor of annular concentrators while varying eccentricity of internal contour and mean value of cross-section thickness. The amplification factor satisfies a condition K < N, where N is thickness ratio of amplifier input and output sections, and it is decreasing with increase of vibration mode order. The similar condition has been satisfied for conical bar concentrator with the difference that in the case of bar concentrators an amplification is ensured due to variation of diameter and N will represent ratio of diameters. It has been proved that modification of internal contour shape makes it possible to carry out a wide-band tuning of natural frequencies of concentrator vibrations without alteration of its overall dimensions and substantial change of amplification factor, which is important for frequency matching of the concentrator and ultrasonic vibratory system. Advantages of the proposed concentrators include simplicity of design and manufacturing, small overall dimensions, possibility for natural frequency tuning by means of static load variation. The developed concentrators can find their application in ultrasonic devices and instruments for technological and medical purposes.

  18. Investigation of geometric design in piezoelectric microelectromechanical systems diaphragms for ultrasonic energy harvesting

    Science.gov (United States)

    Shi, Qiongfeng; Wang, Tao; Kobayashi, Takeshi; Lee, Chengkuo

    2016-05-01

    Acoustic energy transfer (AET) has been widely used for contactless energy delivery to implantable devices. However, most of the energy harvesters (ultrasonic receivers) for AET are macro-scale transducers with large volume and limited operation bandwidth. Here, we propose and investigate two microelectromechanical systems diaphragm based piezoelectric ultrasonic energy harvesters (PUEHs) as an alternative for AET. The proposed PUEHs consist of micro-scale diaphragm array with different geometric parameter design. Diaphragms in PUEH-1 have large length to width ratio to achieve broadband property, while its energy harvesting performance is compromised. Diaphragms in PUEH-2 have smaller length to width ratio and thinner thickness to achieve both broadband property and good energy harvesting performance. Both PUEHs have miniaturized size and wide operation bandwidth that are ideally suitable to be integrated as power source for implantable biomedical devices. PUEH-1 has a merged -6 dB bandwidth of 74.5% with a central frequency of 350 kHz. PUEH-2 has two separate -6 dB bandwidth of 73.7%/30.8% with central frequencies of 285 kHz/650 kHz. They can adapt to various ultrasonic sources with different working frequency spectrum. Maximum output power is 34.3 nW and 84.3 nW for PUEH-1 and PUEH-2 at 1 mW/cm2 ultrasound intensity input, respectively. The associated power density is 0.734 μW/cm2 and 4.1 μW/cm2, respectively. Better energy harvesting performance is achieved for PUEH-2 because of the optimized length to width ratio and thickness design. Both PUEHs offer more alignment flexibility with more than 40% power when they are in the range of the ultrasound transmitter.

  19. The effect of non-uniform temperature and velocity fields on long range ultrasonic measurement systems in MYRRHA

    Energy Technology Data Exchange (ETDEWEB)

    Van de Wyer, Nicolas; Schram, Christophe [von Karman Institute For Fluids Dynamic (Belgium); Van Dyck, Dries; Dierckx, Marc [Belgian Nuclear Research Center (Belgium)

    2015-07-01

    SCK.CEN, the Belgian Nuclear Research Center, is developing MYRRHA, a generation IV liquid metal cooled nuclear research reactor. As the liquid metal coolant is opaque to light, normal visual feedback during fuel manipulations is not available and must therefore be replaced by a system that is not hindered by the opacity of the coolant. In this respect ultrasonic based instrumentation is under development at SCK.CEN to provide feedback during operations under liquid metal. One of the tasks that will be tackled using ultrasound is the detection and localization of a potentially lost fuel assembly. In this application, the distance between ultrasonic sensor and target may be as large as 2.5 m. At these distances, non uniform velocity and temperature fields in the liquid metal potentially influence the propagation of the ultrasonic signals, affecting the performance of the ultrasonic systems. In this paper, we investigate how relevant temperature and velocity gradients inside the liquid metal influence the propagation of ultrasonic waves. The effect of temperature and velocity gradients are simulated by means of a newly developed numerical ray-tracing model. The performance of the model is validated by dedicated water experiments. The setup is capable of creating velocity and temperature gradients representative for MYRRHA conditions. Once validated in water, the same model is used to make predictions for the effect of gradients in the MYRRHA liquid metal environment. (authors)

  20. Ultrasonic measurement of gap between calandria tube and liquid injection shutdown system tube in PHWR

    International Nuclear Information System (INIS)

    Kim, Tae Ryong; Sohn, Seok Man; Lee, Jun Shin; Lee, Sun Ki; Lee, Jong Po

    2001-01-01

    Sag of CT or liquid injection shutdown system tubes in pressurized heavy water reactor is known to occur due to irradiation creep and growth during plant operation. When the sag of CT is big enough, the CT tube possibly comes in contact with liquid injection shutdown system tube (LIN) crossing beneath the CT, which subsequently may prevent the safe operation. It is therefore necessary to check the gap between the two tubes in order to confirm no contacts when using a proper measure periodically during the plant life. An ultrasonic gap measuring probe assembly which can be fed through viewing port installed on the calandria was developed and utilized to measure the sags of both tubes in a pressurized heavy water reactor in Korea. It was found that the centerlines of CT and LIN can be precisely detected by ultrasonic wave. The gaps between two tubes were easily obtained from the relative distance of the measured centerline elevations of the tubes. But the measured gap data observed at the viewing port were actually not the data at the crossing point of CT and LIN. To get the actual gap between two tubes, mathematical modeling for the deflection curves of two tubes was used. The sags of CT and LIN tubes were also obtained by comparison of the present centerlines with the initial elevations at the beginning of plant operation. The gaps between two tubes in the unmeasurable regions were calculated based on the measurement data and the channel power distribution

  1. Development of an ultrasonic flow and temperature measurement system for pressurized water reactors

    International Nuclear Information System (INIS)

    James, R.W.; Lubnow, T.; Baumgart, G.; Ravetti, D.

    1996-01-01

    In U.S. nuclear plants, primary coolant flow and reactor thermal power are calculated from a measurement of feedwater flow to the steam generator combined with knowledge of steam generator heat transfer characteristics nd measurement of hot leg temperature by resistance temperature detectors (RTDs). The calculation of plant thermal output is complicated by an indirect measurement of primary coolant mass flow rate and thermal streaming in the region where hot leg temperature is typically measured. Uncertainty in the thermal output calculation results from uncertainties in steam generator characteristics, in the hot leg temperature due to thermal streaming, and in fouling of venturi nozzles used for feedwater flow measurement. This in turn leads to operation of power plants ar lower levels of efficiency. The Electric Power Research Institute (EPRI) has on ongoing project to develop a prototype system to directly measure primary coolant flow rate and bulk average temperature using ultrasonic transducers externally mounted on the pipe. The topic of this paper is a summary of the project experience in developing this system. The technology being developed in this project is based in part upon previously existing ultrasonic feedwater flow measurement technology developed by MPR Associates and Caldon, Inc EPRI is a non-profit company performing research for U.S. and international electric power utilities. (authors)

  2. Verification of an interaction model of an ultrasonic oscillatory system with periodontal tissues

    Directory of Open Access Journals (Sweden)

    V. A. Karpuhin

    2014-01-01

    Full Text Available Verification of an interaction model of an ultrasonic oscillatory system with biological tissues which was developed in COMSOL Multiphysics was carried out. It was shown that calculation results in COMSOL Multiphysics obtained using the “Finer” grid (the ratio of the grid step to a minimum transversal section area of the model ≤ 0.3 mm-1 best of all qualitatively and quantitatively corresponded to practical results. The average relative error of the obtained results in comparison with the experimental ones did not exceed 4.0%. Influence of geometrical parameters (thickness of load on electrical admittance of the ultrasonic oscillatory system interacting with biological tissues was investigated. It was shown that increase in thickness of load within the range from 0 to 95 mm led to decrease in calculated values of natural resonance frequency of longitudinal fluctuations and electrical admittance from 26,58 to 26,35 kHz and from 0,86 to 0,44 mS.

  3. The ultrasonic ranging and data system for radiological surveys in the UMTRA [Uranium Mill Tailings Remedial Action] Project

    International Nuclear Information System (INIS)

    Little, C.A.; Berven, B.A.; Blair, M.S.; Dickerson, K.S.; Pickering, D.A.

    1988-01-01

    The Ultrasonic Ranging and Data System (USRADS) was developed to allow radiation exposure data and positional information to be collected, stored and analyzed in a more efficient manner than currently employed on the (Uranium Mill Tailings Remedial Action (UMTRA) project. USRADS is a portable unit which employs ultrasonics, radio frequency transmissions, and a personal computer. Operational experience indicates that the system results in increased information about the property with decreased data analysis and transcription effort and only slightly more field effort. 5 refs., 3 figs., 2 tabs

  4. Spatially resolved ultrasonic attenuation in resistance spot welds: implications for nondestructive testing.

    Science.gov (United States)

    Mozurkewich, George; Ghaffari, Bita; Potter, Timothy J

    2008-09-01

    Spatial variation of ultrasonic attenuation and velocity has been measured in plane parallel specimens extracted from resistance spot welds. In a strong weld, attenuation is larger in the nugget than in the parent material, and the region of increased attenuation is surrounded by a ring of decreased attenuation. In the center of a stick weld, attenuation is even larger than in a strong weld, and the low-attenuation ring is absent. These spatial variations are interpreted in terms of differences in grain size and martensite formation. Measured frequency dependences indicate the presence of an additional attenuation mechanism besides grain scattering. The observed attenuations do not vary as commonly presumed with weld quality, suggesting that the common practice of using ultrasonic attenuation to indicate weld quality is not a reliable methodology.

  5. Determination of Focal Laws for Ultrasonic Phased Array Testing of Dissimilar Metal Welds

    International Nuclear Information System (INIS)

    Jing, Ye; Kim, Hak Joon; Song, Sung Jin; Song, Myung Ho; Kang, Suk Chull; Kang, Sung Sik; Kim, Kyung Cho

    2008-01-01

    Inspection of dissimilar metal welds using phased array ultrasound is not easy at all, because crystalline structure of dissimilar metal welds cause deviation and splitting of the ultrasonic beams. Thus, in order to have focusing and/or steering phased array beams in dissimilar metal welds, proper time delays should be determined by ray tracing. In this paper, we proposed an effective approach to solve this difficult problem. Specifically, we modify the Oglivy's model parameters to describe the crystalline structure of real dissimilar metal welds in a fabricated specimen. And then, we calculate the proper time delay and incident angle of linear phased array transducer in the anisotropic and inhomogeneous material for focusing and/or steering phased array ultrasonic beams on the desired position

  6. Ultrasonic signature

    International Nuclear Information System (INIS)

    Borloo, E.; Crutzen, S.

    1974-12-01

    The unique and tamperproof identification technique developed at Ispra is based on ultrasonic Non-Destructive-Techniques. Reading fingerprints with ultrasonic requires high reproducibility of standard apparatus and transducers. The present report gives an exhaustive description of the ultrasonic technique developed for identification purposes. Different applications of the method are described

  7. A study on the ultrasonic measurement for damage evaluation of power plant bearing

    International Nuclear Information System (INIS)

    Lee, Sang Guk

    2004-01-01

    For the purpose of monitoring by ultrasonic test of the ball bearing conditions in rotating machinery, a system for their diagnosis was developed. Ultrasonic technique is used to detect abnormal conditions in the bearing system. And various data such as frequency spectrum, energy and amplitude of ultrasonic signals, and ultrasonic parameters were acquired during experiments with the simulated ball bearing system. Based on the above results and practical application for power plant, algorithms and judgement criteria for diagnosis system was established. Bearing diagnosis system is composed of four parts as follows : sensing part for ultrasonic sensor and preamplifier, signal processing part for measuring frequency spectrum, energy and amplitude, interface part for connecting ultrasonic signal to PC using A/D converter, graphic display and software part for display of bearing condition and for managing of diagnosis program

  8. Measurement system of bubbly flow using ultrasonic velocity profile monitor and video data processing unit

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Zhou, Shirong; Nakajima, Makoto; Takeda, Yasushi; Mori, Michitsugu; Yoshioka, Yuzuru.

    1996-01-01

    The authors have been developing a measurement system for bubbly flow in order to clarify its multi-dimensional flow characteristics and to offer a data base to validate numerical codes for multi-dimensional two-phase flow. In this paper, the measurement system combining an ultrasonic velocity profile monitor with a video data processing unit is proposed, which can measure simultaneously velocity profiles in both gas and liquid phases, a void fraction profile for bubbly flow in a channel, and an average bubble diameter and void fraction. Furthermore, the proposed measurement system is applied to measure flow characteristics of a bubbly countercurrent flow in a vertical rectangular channel to verify its capability. (author)

  9. Ultrasonic sensor system to detect solids in a milk pasteurization process

    Science.gov (United States)

    Barroeta Z., Carlos; Sanchez M., Fernando L.; Fernando R., G. Moreno; Montes P., Laura

    2002-11-01

    In the food industry, many products require a specific process. In the milk industry, the raw milk passes through several process stages before reaching the end user in a very qualitative and healthy way. One of the problems of the milk is that it can contain solids in suspension, result of contamination of the milk, or inherent to the pasteurization process itself. In order to control these solids, a solid detection system is being developed, which will detect the solids by the reflection and refraction of ultrasonic waves. The sensor must be set in the upper part of the milk containers, and with a grid array to allow the control system to prevent these solids from entering into the pipes of the processing plant. The sensing system may activate an acoustic alarm to indicate that a solid has been detected, and a visual one to indicate the affected part of the process. (To be presented in Spanish.)

  10. Ultrasonic examination of ceramics and composites for porosities in an automatic scanning system

    Energy Technology Data Exchange (ETDEWEB)

    Gundtoft, H.E.

    1988-05-01

    Using a very precise scanning system and computer evaluation, we can get quantitative results from automatic ultrasonic examination. In this paper two examples dealing with nonmetallic materials are presented. In a ceramic plate (>1 inch thick) small spherical prorosities (down to 0.1 mm) would harm the final product. Several artificial defects made in the plate were used for calibration and optimisation of the technique. Areas with with a microscope. Good agreement with the predicted values from the ultrasonic examination was found. From the NDT-examination the exact position of a porosity is known in all 3 coordinates (x, y and z). The size of the defect can also be measured. A single porosity with a diameter of 0.1 mm can be detected. Carbon-reinforced composites were examined. 8 prepregs were stacked and hardened in an autoclave to form a sheet (1 mm thick). Air trapped in the material resulted in porosities in the final product. A double trough transmission-scanning technique was used for the examination. The porosity percentages were determined by the NDT-technique, and agreement with destructivly determined values on samples from the same sheet was found.

  11. Implementation of an ultrasonic instrument for simultaneous mixture and flow analysis of binary gas systems

    Energy Technology Data Exchange (ETDEWEB)

    Alhroob, M.; Boyd, G.; Hasib, A.; Pearson, B.; Srauss, M.; Young, J. [Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019, (United States); Bates, R.; Bitadze, A. [School of Physics and Astronomy, University of Glasgow, G12 8QQ, (United Kingdom); Battistin, M.; Berry, S.; Bonneau, P.; Botelho-Direito, J.; Bozza, G.; Crespo-Lopez, O.; DiGirolamo, B.; Favre, G.; Godlewski, J.; Lombard, D.; Zwalinski, L. [CERN, 1211 Geneva 23, (Switzerland); Bousson, N.; Hallewell, G.; Mathieu, M.; Rozanov, A. [Centre de Physique des Particules de Marseille, 163 Avenue de Luminy, 13288 Marseille Cedex 09, (France); Deterre, C.; O' Rourke, A. [Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg, (Germany); Doubek, M.; Vacek, V. [Czech Technical University, Technick 4, 166 07 Prague 6, (Czech Republic); Degeorge, C. [Physics Department, Indiana University, Bloomington, IN 47405, (United States); Katunin, S. [B.P. Konstantinov Petersburg Nuclear Physics Institute (PNPI), 188300 St. Petersburg, (Russian Federation); Langevin, N. [Institut Universitaire de Technologie of Marseille, University of Aix-Marseille, 142 Traverse Charles Susini, 13013 Marseille, (France); McMahon, S. [Rutherford Appleton Laboratory - Science and Technology Facilities Council, Harwell Science and Innovation Campus, Didcot OX11 OQX, (United Kingdom); Nagai, K. [Department of Physics, Oxford University, Oxford OX1 3RH, (United Kingdom); Robinson, D. [Department of Physics and Astronomy, University of Cambridge, (United Kingdom); Rossi, C. [INFN - Genova, Via Dodecaneso 33, 16146 Genova, (Italy)

    2015-07-01

    Precision ultrasonic measurements in binary gas systems provide continuous real-time monitoring of mixture composition and flow. Using custom micro-controller-based electronics, we have developed an ultrasonic instrument, with numerous potential applications, capable of making continuous high-precision sound velocity measurements. The instrument measures sound transit times along two opposite directions aligned parallel to - or obliquely crossing - the gas flow. The difference between the two measured times yields the gas flow rate while their average gives the sound velocity, which can be compared with a sound velocity vs. molar composition look-up table for the binary mixture at a given temperature and pressure. The look-up table may be generated from prior measurements in known mixtures of the two components, from theoretical calculations, or from a combination of the two. We describe the instrument and its performance within numerous applications in the ATLAS experiment at the CERN Large Hadron Collider (LHC). The instrument can be of interest in other areas where continuous in-situ binary gas analysis and flowmetry are required. (authors)

  12. Laser ultrasonic receivers based on photorefractive materials in non-destructive testing

    International Nuclear Information System (INIS)

    Zamiri Hosseinzadeh, S.

    2014-01-01

    The field of laser ultrasonics is one of the most interesting topics in which laser light is used for the generation and the detection of ultrasound waves in materials. This contactless method is extremely useful for materials inspection being nondestructive and contactless, especially for hazardous environments. In this method a pulsed laser with a short pulse length of e.g. nano- or even picoseconds is focused on the surface of a specimen and then ultrasonic waves, nanometer vibrations, such as surface and bulk waves are generated and propagate in all directions on to the material. For contactless detection of ultrasonic waves several interferometers such as confocal Fabry-Perot, Michelson, and long path difference interferometers have been applied. Each of them has its individual advantages and disadvantages concerning, e.g., frequency responses and sensitivity. However, most of these interferometers work best on mirror-like surfaces and exhibit reduced sensitivity on rough surfaces. Also these kinds of interferometer are sensible to external noise as air fluctuations, sample vibrations or thermal deformations, thus requiring relatively complex stabilization techniques. This hinders their applicability in industrial applications with harsh environmental conditions. As an alternative to the before mentioned techniques interferometers based on photorefractive materials (PR) have been established. A typical two wave mixing interferometer (TWMI) configuration enables broadband ultrasonic measurements on rough surfaces. These types of interferometers have a good sensitivity up to 3e-7 nm(W/Hz) 1/2 spatially for samples with a high rough surface unlike the Michelson interferometer. By using ferroelectric photorefractive crystals such as LiNbO:Fe+2, sensitivity even is enhanced to 4e-8 nm(W/Hz) 1/2 but response time in these crystals is slower. In this work, contactless interferometer set ups based on photorefractive materials such as BSO (Bismuth Silicon Oxide: Bi 12

  13. System Performance and Testing

    NARCIS (Netherlands)

    Frei, U.; Oversloot, H.

    2004-01-01

    This chapter compares and contrasts the system performance of two widely used solar thermal systems using testing and simulation programs. Solar thermal systems are used in many countries for heating domestically used water. In addition to the simple thermosiphon systems, better designed pumped

  14. FAILURE MODE EFFECTS AND CRITICALITY ANALYSIS (FMECA AS A QUALITY TOOL TO PLAN IMPROVEMENTS IN ULTRASONIC MOULD CLEANING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Cristiano Fragassa

    2016-12-01

    Full Text Available Inside the complex process used for tire production, ultrasonic cleaning treatment probably represents the best solution to preserve the functionality of tire moulds, by removing residuals from moulds and keeping an unaltered quality for their surfaces. Ultrasonic Mould Cleaning Systems (UMCS is, however, a complicated technology that combines ultrasonic waves, high temperature and a succession of acid and basic attacks. At the same time, an UMCS plant, as part of a long productive chain, has to guarantee the highest productivity reducing failures and maintenances. This article describes the use of Failure Mode Effects and Criticality Analysis (FMECA as a methodology for improving quality in cleaning process. In particular, FMECA was utilized to identify potential defects in the original plant design, to recognize the inner causes of some failures actually occurred during operations and, finally, to suggest definitive re-design actions. Changes were implemented and the new UMCS offers a better quality in term of higher availability and productivity.

  15. Laser ablated micropillar energy directors for ultrasonic welding of microfluidic systems

    International Nuclear Information System (INIS)

    Poulsen, Carl Esben; Kistrup, Kasper; Andersen, Nis Korsgaard; Taboryski, Rafael; Hansen, Mikkel Fougt; Wolff, Anders

    2016-01-01

    We present a new type of energy director (ED) for ultrasonic welding of microfluidic systems. These micropillar EDs are based on the replication of cone like protrusion structures introduced using a pico-second laser and may therefore be added to any mould surface accessible to a pico-second laser beam. The technology is demonstrated on an injection moulded microfluidic device featuring high-aspect ratio ( h   ×   w   =  2000 μ m  ×  550 μ m) and free-standing channel walls, where bonding is achieved with no detectable channel deformation. The bonding strength is similar to conventional EDs and the fabricated system can withstand pressures of over 9.5 bar. (technical note)

  16. Ultrasonic testing of canning tubes in stainless steel of the EL 4 reactor; Controle par ultrasons des tubes de gaine en acier inoxydable du reacteur EL 4

    Energy Technology Data Exchange (ETDEWEB)

    Prot, A; Monnier, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    From all the methods possible for controlling thin cans the one chosen, for numerous reasons, vas that making use of ultrasonic techniques. A method has been developed which should make it possible to carry out a rapid and efficient industrial control of canning tubes, The reasons for the choice of the ultrasonic method are given in detail, together with the principles of the method and the actual control parameters. In the present state of our research, it should be possible to control at least 50 000 tubes a year. Improvements brought about in the details of the control technique itself should make it possible to increase this rate considerably. (authors) [French] Parmi toutes les methodes possibles de controle des gaines minces, le procede retenu pour de multiples raisons a ete celui faisant appel a la technique des ultrasons. Une methode a ete mise au point qui doit permettre un controle industriel rapide et efficace des tubes de gaine. Sont exposes en detail, les raisons du choix de la methode par ultrasons, les principes de cette methode et les parametres du controle proprement dit. Dans l'etat actuel de nos etudes la cadence devrait permettre le controle de 50000 tubes par an au minimum. Des ameliorations de detail portant sur la technique de controle elle-meme, doivent permettre d'accelerer tres notablement cette cadence. (auteurs)

  17. PROSPECTS FOR APPLICATION OF FLEXIBLE ULTRASONIC WAVEGUIDE SYSTEMS IN MEDICINE AND ENGINEERING

    Directory of Open Access Journals (Sweden)

    V. T. Minchenya

    2010-01-01

    Full Text Available The article presents comprehensive review of current and possible future applications of flexible ultrasonic waveguides in medicine and engineering. Issues of design, modelling and manufacturing of flexible waveguides are considered. The article also presents some results of the authors in this field, particularly modelling techniques developed for the design of flexible waveguides and ultrasonic technologies and equipment for ultrasonic thromboectomy, heating of frozen fuel and ultrasonic drilling of brittle materials. Novel technology for manufacturing flexible waveguides based on electrolytic-plasma machining is also described

  18. The use of simulation in the development of ultrasonic testing; Simuloinnin hyoedyntaeminen ultraaeaenitestauksen kehittaemisessae

    Energy Technology Data Exchange (ETDEWEB)

    Sandlin, S. [VTT Manufacturing Technology, Espoo (Finland)

    1997-12-01

    The report focuses on the principles of modelling the ultrasonic inspection, the possibilities of modelling and the its limitations. Some of the existing models have been extensively validated and are in routine use. Efforts has also been put on modelling the inspection of anisotropic media, such as austenitic welds, but these models presuppose that the texture of the weld is known and this is usually not the case in practice. This fact restricts the usefulness of modelling to a more qualitative description of the beam bending phenomena in the case of austenitic welds. 23 refs.

  19. Estimation of the defect detection probability for ultrasonic tests on thick sections steel weldments. Technical report

    International Nuclear Information System (INIS)

    Johnson, D.P.; Toomay, T.L.; Davis, C.S.

    1979-02-01

    An inspection uncertainty analysis of published PVRC Specimen 201 data is reported to obtain an estimate of the probability of recording an indication as a function of imperfection height for ASME Section XI Code ultrasonic inspections of the nuclear reactor vessel plate seams and to demonstrate the advantages of inspection uncertainty analysis over conventional detection/nondetection counting analysis. This analysis found the probability of recording a significant defect with an ASME Section XI Code ultrasonic inspection to be very high, if such a defect should exist in the plate seams of a nuclear reactor vessel. For a one-inch high crack, for example, this analysis gives a best estimate recording probability of .985 and a 90% lower confidence bound recording probabilty of .937. It is also shown that inspection uncertainty analysis gives more accurate estimates and gives estimates over a much greater flaw size range than is possible with conventional analysis. There is reason to believe that the estimation procedure used is conservative, the estimation is based on data generated several years ago, on very small defects, in an environment that is different from the actual in-service inspection environment

  20. System and technique for characterizing fluids using ultrasonic diffraction grating spectroscopy

    Science.gov (United States)

    Greenwood, Margaret S [Richland, WA

    2008-07-08

    A system for determining property of multiphase fluids based on ultrasonic diffraction grating spectroscopy includes a diffraction grating on a solid in contact with the fluid. An interrogation device delivers ultrasound through the solid and a captures a reflection spectrum from the diffraction grating. The reflection spectrum exhibits peaks whose relative size depends on the properties of the various phases of the multiphase fluid. For example, for particles in a liquid, the peaks exhibit dependence on the particle size and the particle volume fraction. Where the exact relationship is know know a priori, data from different peaks of the same reflection spectrum or data from the peaks of different spectra obtained from different diffraction gratings can be used to resolve the size and volume fraction.

  1. Modeling the ultrasonic testing echoes by a combination of particle swarm optimization and Levenberg–Marquardt algorithms

    International Nuclear Information System (INIS)

    Gholami, Ali; Honarvar, Farhang; Moghaddam, Hamid Abrishami

    2017-01-01

    This paper presents an accurate and easy-to-implement algorithm for estimating the parameters of the asymmetric Gaussian chirplet model (AGCM) used for modeling echoes measured in ultrasonic nondestructive testing (NDT) of materials. The proposed algorithm is a combination of particle swarm optimization (PSO) and Levenberg–Marquardt (LM) algorithms. PSO does not need an accurate initial guess and quickly converges to a reasonable output while LM needs a good initial guess in order to provide an accurate output. In the combined algorithm, PSO is run first to provide a rough estimate of the output and this result is consequently inputted to the LM algorithm for more accurate estimation of parameters. To apply the algorithm to signals with multiple echoes, the space alternating generalized expectation maximization (SAGE) is used. The proposed combined algorithm is robust and accurate. To examine the performance of the proposed algorithm, it is applied to a number of simulated echoes having various signal to noise ratios. The combined algorithm is also applied to a number of experimental ultrasonic signals. The results corroborate the accuracy and reliability of the proposed combined algorithm. (paper)

  2. Combined laser ultrasonics, laser heating, and Raman scattering in diamond anvil cell system

    Science.gov (United States)

    Zinin, Pavel V.; Prakapenka, Vitali B.; Burgess, Katherine; Odake, Shoko; Chigarev, Nikolay; Sharma, Shiv K.

    2016-12-01

    We developed a multi-functional in situ measurement system under high pressure equipped with a laser ultrasonics (LU) system, Raman device, and laser heating system (LU-LH) in a diamond anvil cell (DAC). The system consists of four components: (1) a LU-DAC system (probe and pump lasers, photodetector, and oscilloscope) and DAC; (2) a fiber laser, which is designed to allow precise control of the total power in the range from 2 to 100 W by changing the diode current, for heating samples; (3) a spectrometer for measuring the temperature of the sample (using black body radiation), fluorescence spectrum (spectrum of the ruby for pressure measurement), and Raman scattering measurements inside a DAC under high pressure and high temperature (HPHT) conditions; and (4) an optical system to focus laser beams on the sample and image it in the DAC. The system is unique and allows us to do the following: (a) measure the shear and longitudinal velocities of non-transparent materials under HPHT; (b) measure temperature in a DAC under HPHT conditions using Planck's law; (c) measure pressure in a DAC using a Raman signal; and (d) measure acoustical properties of small flat specimens removed from the DAC after HPHT treatment. In this report, we demonstrate that the LU-LH-DAC system allows measurements of velocities of the skimming waves in iron at 2580 K and 22 GPa.

  3. Contactless ultrasonic energy transfer for wireless systems: acoustic-piezoelectric structure interaction modeling and performance enhancement

    International Nuclear Information System (INIS)

    Shahab, S; Erturk, A

    2014-01-01

    There are several applications of wireless electronic components with little or no ambient energy available to harvest, yet wireless battery charging for such systems is still of great interest. Example applications range from biomedical implants to sensors located in hazardous environments. Energy transfer based on the propagation of acoustic waves at ultrasonic frequencies is a recently explored alternative that offers increased transmitter-receiver distance, reduced loss and the elimination of electromagnetic fields. As this research area receives growing attention, there is an increased need for fully coupled model development to quantify the energy transfer characteristics, with a focus on the transmitter, receiver, medium, geometric and material parameters. We present multiphysics modeling and case studies of the contactless ultrasonic energy transfer for wireless electronic components submerged in fluid. The source is a pulsating sphere, and the receiver is a piezoelectric bar operating in the 33-mode of piezoelectricity with a fundamental resonance frequency above the audible frequency range. The goal is to quantify the electrical power delivered to the load (connected to the receiver) in terms of the source strength. Both the analytical and finite element models have been developed for the resulting acoustic-piezoelectric structure interaction problem. Resistive and resistive–inductive electrical loading cases are presented, and optimality conditions are discussed. Broadband power transfer is achieved by optimal resistive-reactive load tuning for performance enhancement and frequency-wise robustness. Significant enhancement of the power output is reported due to the use of a hard piezoelectric receiver (PZT-8) instead of a soft counterpart (PZT-5H) as a result of reduced material damping. The analytical multiphysics modeling approach given in this work can be used to predict and optimize the coupled system dynamics with very good accuracy and

  4. Analysis of Ultrasonic Resonance Signal in Multi-Layered Structure

    International Nuclear Information System (INIS)

    Kim, Jae Hoon; Kim, Dong Ryun

    2012-01-01

    Ultrasonic testing are far superior to other nondestructive tests for detecting the disbond interface which occurred in adhesive interface. However, a solid rocket motor consisting of a steel case, rubber insulation, liner, and propellant poses many difficulties for analyzing ultrasonic waves because of the superposition of reflected waves and large differences in acoustic impedance of various materials. Therefore, ultrasonic tests for detecting the disbond interface in solid rocket motor have been applied in very limited areas between the steel case and rubber insulation using an automatic C-scan system. The existing ultrasonic test cannot detect the disbond interface between the liner and propellant of a solid rocket motor because most of the ultrasonic waves are absorbed in the rubber material which has low acoustic impedance. This problem could be overcome by analyzing the resonance frequency from the frequency spectrum using the ultrasonic resonance method. In this paper, a new technique to detect the disbond interface between the liner and propellant using ultrasonic resonance characteristics is discussed in detail.

  5. Analysis of Ultrasonic Resonance Signal in Multi-Layered Structure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hoon [Dept. of Mechanical Design Engineering, Chungnam National University, Daejeon (Korea, Republic of); Kim, Dong Ryun [Agency for Defense Development, Daejeon (Korea, Republic of)

    2012-08-15

    Ultrasonic testing are far superior to other nondestructive tests for detecting the disbond interface which occurred in adhesive interface. However, a solid rocket motor consisting of a steel case, rubber insulation, liner, and propellant poses many difficulties for analyzing ultrasonic waves because of the superposition of reflected waves and large differences in acoustic impedance of various materials. Therefore, ultrasonic tests for detecting the disbond interface in solid rocket motor have been applied in very limited areas between the steel case and rubber insulation using an automatic C-scan system. The existing ultrasonic test cannot detect the disbond interface between the liner and propellant of a solid rocket motor because most of the ultrasonic waves are absorbed in the rubber material which has low acoustic impedance. This problem could be overcome by analyzing the resonance frequency from the frequency spectrum using the ultrasonic resonance method. In this paper, a new technique to detect the disbond interface between the liner and propellant using ultrasonic resonance characteristics is discussed in detail.

  6. ELECTROFORCE 3330 TEST SYSTEM

    Data.gov (United States)

    Federal Laboratory Consortium — The Bose Electroforce 3330 is a test system with an axial electromagnetic linear motor, a torsional motor, and an environmental chamber for high and low temperature...

  7. Automatic Test Systems Aquisition

    National Research Council Canada - National Science Library

    1994-01-01

    We are providing this final memorandum report for your information and use. This report discusses the efforts to achieve commonality in standards among the Military Departments as part of the DoD policy for automatic test systems (ATS...

  8. A fully automated system for ultrasonic power measurement and simulation accordingly to IEC 61161:2006

    NARCIS (Netherlands)

    Costa-Felix, R.P.B.; Alvarenga, A.V.; Hekkenberg, R.

    2011-01-01

    The ultrasonic power measurement, worldwide accepted, standard is the IEC 61161, presently in its 2nd edition (2006), but under review. To fulfil its requirements, considering that a radiation force balance is to be used as ultrasonic power detector, a large amount of raw data (mass measurement)

  9. Ultrasonic data acquisition installation for basis and in-service testing of nuclear pressure vessels

    International Nuclear Information System (INIS)

    Gutmann, G.; Engl, G.

    1976-01-01

    The safety of nuclear installations requires continuous safety inspections during construction and operation. Essential parts of this safety inspection are the basis and in-line inspections. For this purpose installation systems are used which allow an optimal statement to be made regarding the conditions of tested components

  10. Effect of ultrasonic, sonic and rotating-oscillating powered toothbrushing systems on surface roughness and wear of white spot lesions and sound enamel: An in vitro study.

    Science.gov (United States)

    Hernandé-Gatón, Patrícia; Palma-Dibb, Regina Guenka; Silva, Léa Assed Bezerra da; Faraoni, Juliana Jendiroba; de Queiroz, Alexandra Mussolino; Lucisano, Marília Pacífico; Silva, Raquel Assed Bezerra da; Nelson Filho, Paulo

    2018-04-01

    To evaluate the effect of ultrasonic, sonic and rotating-oscillating powered toothbrushing systems on surface roughness and wear of white spot lesions and sound enamel. 40 tooth segments obtained from third molar crowns had the enamel surface divided into thirds, one of which was not subjected to toothbrushing. In the other two thirds, sound enamel and enamel with artificially induced white spot lesions were randomly assigned to four groups (n=10) : UT: ultrasonic toothbrush (Emmi-dental); ST1: sonic toothbrush (Colgate ProClinical Omron); ST2: sonic toothbrush (Sonicare Philips); and ROT: rotating-oscillating toothbrush (control) (Oral-B Professional Care Triumph 5000 with SmartGuide). The specimens were analyzed by confocal laser microscopy for surface roughness and wear. Data were analyzed statistically by paired t-tests, Kruskal-Wallis, two-way ANOVA and Tukey's post-test (α= 0.05). The different powered toothbrushing systems did not cause a significant increase in the surface roughness of sound enamel (P> 0.05). In the ROT group, the roughness of white spot lesion surface increased significantly after toothbrushing and differed from the UT group (Pspot lesion compared with sound enamel, and this group differed significantly from the ST1 group (Pspot lesion increased surface roughness and wear. None of the powered toothbrushing systems (ultrasonic, sonic and rotating-oscillating) tested caused significant alterations on sound dental enamel. However, conventional rotating-oscillating toothbrushing on enamel with white spot lesion increased surface roughness and wear. Copyright©American Journal of Dentistry.

  11. Ultrasonic Digital Communication System for a Steel Wall Multipath Channel: Methods and Results

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Timothy L. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2005-12-01

    As of the development of this thesis, no commercially available products have been identified for the digital communication of instrumented data across a thick ({approx} 6 n.) steel wall using ultrasound. The specific goal of the current research is to investigate the application of methods for digital communication of instrumented data (i.e., temperature, voltage, etc.) across the wall of a steel pressure vessel. The acoustic transmission of data using ultrasonic transducers prevents the need to breach the wall of such a pressure vessel which could ultimately affect its safety or lifespan, or void the homogeneity of an experiment under test. Actual digital communication paradigms are introduced and implemented for the successful dissemination of data across such a wall utilizing solely an acoustic ultrasonic link. The first, dubbed the ''single-hop'' configuration, can communicate bursts of digital data one-way across the wall using the Differential Binary Phase-Shift Keying (DBPSK) modulation technique as fast as 500 bps. The second, dubbed the ''double-hop'' configuration, transmits a carrier into the vessel, modulates it, and retransmits it externally. Using a pulsed carrier with Pulse Amplitude Modulation (PAM), this technique can communicate digital data as fast as 500 bps. Using a CW carrier, Least Mean-Squared (LMS) adaptive interference suppression, and DBPSK, this method can communicate data as fast as 5 kbps. A third technique, dubbed the ''reflected-power'' configuration, communicates digital data by modulating a pulsed carrier by varying the acoustic impedance at the internal transducer-wall interface. The paradigms of the latter two configurations are believed to be unique. All modulation methods are based on the premise that the wall cannot be breached in any way and can therefore be viably implemented with power delivered wirelessly through the acoustic channel using ultrasound. Methods

  12. Assessing ultrasonic examination results

    International Nuclear Information System (INIS)

    Deutsch, V.; Vogt, M.

    1977-01-01

    Amongst nondestructive examination methods, the ultrasonic examination plays an important role. The reason why its scope of application is so wide is because the sound conducting capacity is the only property the material of a test specimen has to have. As the fields are so manifold, only main aspects can be described briefly. The list of references, however, is very extensive and gives plenty of information of all the problems concerning the assessment of ultrasonic examination results. (orig./RW) [de

  13. Ultrasonic physics

    CERN Document Server

    Richardson, E G

    1962-01-01

    Ultrasonic Physics, Second Edition, provides an introduction to the fundamental principles of ultrasonic physics. The book opens with a discussion of the sources of ultrasound. This is followed by separate chapters on the properties and detection of ultrasonic radiation; measurement of propagation constants, i.e., the velocity and absorption, of ultrasound; ultrasound propagation in gases, liquids, and solids; and ultrasound propagation in aerosols, suspensions, and emulsions. The final chapter covers miscellaneous physical and physico-chemical actions, including dispersion and coagulation of

  14. The Analysis of the Field Application Methodology of Electromagnetic Ultrasonic Testing for Piping in Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chi Seung; Joo, Keum Jong; Choi, Jung Kweun; Um, Byung Kook; Park, Jea Suk [Korea Advanced Ispection Technology Co., Daejeon (Korea, Republic of)

    2008-08-15

    Nuclear plant piping is classified as the safety class and non-safety class piping in usual. Safety class piping has been examined in accordance with ASME Section XI and V during PSI/ISI using RT, UT, PT, ECT, etc and evaluated periodically for integrity. But failures in piping had reported at non-welded parts and non-safety class pipings as well as the safety class pipings. The existing NDT methods are suitable for the specific parts for instance weldments to inspect but difficult to examine all parts (total coverage) of pipe line and very expensive in cost and consume the time. And also inspection using those methods is difficult and limited for the parts which are complex configuration, embedded under ground and installed at high radiation area in nuclear power plants. In order to inspect all parts of long range piping systems and reduce the inspection time and cost, the electromagnetic ultrasonic inspection technology is suitable and effective. The electromagnetic ultrasonic method can cover more than 50 m apart from sensor at one time without moving the sensor and examined the parts which are in difficulties for accessibility, for example, high radiation area, insulated components and embedded under ground.

  15. Comparison of the samples injection systems with ultrasonic nebulizer and with pneumatic nebulizer for the metal determination in water by inductively coupled plasma optical emission spectrometry

    International Nuclear Information System (INIS)

    Marin, Sergio R; Pismante, Paola A

    2005-01-01

    The natural waters, depending on their use, must fulfill the exigencies and requirements that fix national and international norms. These establish conditions with respect to the concentration levels that must be some metals. In this work the development of inductively coupled plasma emission optical spectrometry with ultrasonic injection system is presented. The determination of aluminum, arsenic, barium, cadmium, zinc, cobalt, chromium, copper, iron, manganese, molybdenum, nickel, lead, strontium and vanadium, at levels of ultra-trace in water samples is studied by this technique. The wavelengths that represented better sensitivity and minors spectral interferences, were selected from the Literature specialized in the analysis of this type of material. Also the conditions of work for the ultrasonic nebulization: temperature, pressure, flow speed of argon, and flow speed of sample was determined. The greater sensitivity of the injection system by ultrasonic nebulization forehead to the injection system by pneumatic nebulization, is verified when comparing the spectral intensity of the selected wavelengths. Also the limits of detection and quantification was obtained by both systems. The validity of the results obtained in this method is verified applying the test of Fisher, who determines the degree of homogeneity of the variances, and the test of Student, to determine the trazability obtained with these values. For these studies, the certified material of reference TM-24.2 of National Water Research Institute Environment Canada (NWRI), was used. The positive answer to the criteria of evaluation E and Z-Score, obtained by this technique, allows to verify that it fulfills the exigencies to be used in the determination of metals at the required levels (au)

  16. Ultrasonic Low-Friction Containment Plate for Thermal and Ultrasonic Stir Weld Processes

    Science.gov (United States)

    Graff, Karl; Short, Matt

    2013-01-01

    The thermal stir welding (TSW) process is finding applications in fabrication of space vehicles. In this process, workpieces to be joined by TSW are drawn, by heavy forces, between "containment plates," past the TSW tool that then causes joining of the separate plates. It is believed that the TSW process would be significantly improved by reducing the draw force, and that this could be achieved by reducing the friction forces between the workpieces and containment plates. Based on use of high-power ultrasonics in metal forming processes, where friction reduction in drawing dies has been achieved, it is believed that ultrasonic vibrations of the containment plates could achieve similar friction reduction in the TSW process. By applying ultrasonic vibrations to the containment plates in a longitudinal vibration mode, as well as by mounting and holding the containment plates in a specific manner such as to permit the plates to acoustically float, friction between the metal parts and the containment plates is greatly reduced, and so is the drawing force. The concept was to bring in the ultrasonics from the sides of the plates, permitting the ultrasonic hardware to be placed to the side, away from the equipment that contains the thermal stir tooling and that applies clamping forces to the plates. Tests demonstrated that one of the major objectives of applying ultrasonics to the thermal stir system, that of reducing draw force friction, should be achievable on a scaled-up system.

  17. Using bedding in a test environment critically affects 50-kHz ultrasonic vocalizations in laboratory rats.

    Science.gov (United States)

    Natusch, C; Schwarting, R K W

    2010-09-01

    Rats utter distinct classes of ultrasonic vocalizations depending on their developmental stage, current state, and situational factors. One class, comprising the so-called 50-kHz calls, is typical for situations where rats are anticipating or actually experiencing rewarding stimuli, like being tickled by an experimenter, or when treated with drugs of abuse, such as the psychostimulant amphetamine. Furthermore, rats emit 50-kHz calls when exposed to a clean housing cage. Here, we show that such vocalization effects can depend on subtle details of the testing situation, namely the presence of fresh rodent bedding. Actually, we found that adult males vocalize more in bedded cages than in bare ones. Also, two experiments showed that adult rats emitted more 50-kHz calls when tickled on fresh bedding. Furthermore, ip amphetamine led to more 50-kHz vocalization in activity boxes containing such bedding as compared to bare ones. The analysis of psychomotor activation did not yield such group differences in case of locomotion and centre time, except for rearing duration in rats tested on bedding. Also, the temporal profile of vocalization did not parallel that of behavioural activation, since the effects on vocalization peaked and started to decline again before those of psychomotor activation. Therefore, 50-kHz calls are not a simple correlate of psychomotor activation. A final experiment with a choice procedure showed that rats prefer bedded conditions. Overall, we assume that bedded environments induce a positive affective state, which increases the likelihood of 50-kHz calling. Based on these findings, we recommend that contextual factors, like bedding, should receive more research attention, since they can apparently decrease the aversiveness of a testing situation. Also, we recommend to more routinely measure rat ultrasonic vocalization, especially when studying emotion and motivation, since this analysis can provide information about the subject's status, which may

  18. Signal processing for ultrasonic testing of stainless steel with coarse structure

    International Nuclear Information System (INIS)

    Dahlgren, Sven; Ericsson, Lars

    2000-03-01

    Ultrasonic testing of materials with coarse grains often gives poor signal-to-noise-ratio due to backscattering from the grain boundaries. The influence of the back-scattering, being strongly dependent on the size of the grains and the wavelength used, can be reduced by suitable choice of inspection frequencies used. The actual choice can be made flexible using broad band probes in combination with digital signal processing. Furthermore, with such an approach it might be possible both to detect and size defects from the same scan. One well-known signal processing method is Split Spectrum Processing (SSP). This method can significantly reduce grain noise, but finding the optimal choice of parameters involved is difficult. The introduction of the Consecutive Polarity Coincidence (CPC) as SSP target extraction algorithm more or less solved this problem but other draw-backs such as reduced temporal resolution is inherent in SSP. Based on the experiences with SSP a new approach to grain noise reduction, based on non coherent detection (NCD), was developed at Uppsala University. The technique is evaluated, in this investigation. The NCD algorithm has for a long time been used within the field of telecommunication and is based upon detection of bandpass signals in additive Gaussian noise. To adapt the algorithm for use in NDE a two parameter transient model is used. The construction of an NCD filter includes three steps: estimation of the autocorrelation of the noise; specification of the two parameters, lower and upper frequency, of the signal prototype; computation of the filter. During the project two algorithms, based on signal entropy and signal-to-noise-ratio enhancement (SNRE), have been developed to determine the two parameters in an automated procedure. UTdata to evaluate the NCD algorithm were collected in three phases: Phase 1: Manual scanning was performed on CSS-block with ideal reflectors (laboratory environment). Tuning of the two NCD parameters was done

  19. Development of Automatic Ultrasonic Testing Equipment for Pressure-Retaining Studs and Bolts in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Suh, D. M.; Park, M. H.; Hong, S. S.

    1989-01-01

    Bolting degradation problems in primary coolant pressure boundary applications have become a major concern in the nuclear industry. In the bolts concerned, the failure mechanism was either corrosion wastage(loss of bolt diameter) or stress-corrosion cracking. Here the manual ultrasonic testing of RPV(Reactor Pressure Vessel) and RCP(Reactor Coolant Pump) stud has been performed. But it is difficult to detect indications because examiner can not exactly control the rotation angle and can not distinguish the indication from signals of bolt. In many cases, the critical sizes of damage depth are very small(1-2 mm order). At critical size, the crack tends to propagatecompletly through the bolt under stress, Resulting in total fracture. Automatic stud scanner for studs(bolts) was developed because the precise measurement of bolt diameter is required in this circumstance. By use of this scanner, the rotation angle of probe was exactly controlled and the exposure time of radiations was reduced

  20. MODELLING OF RING-SHAPED ULTRASONIC WAVEGUIDES FOR TESTING OF MECHANICAL PROPERTIES AND THERAPEUTIC TREATMENT OF BIOLOGICAL TISSUES

    Directory of Open Access Journals (Sweden)

    V. T. Minchenya

    2011-01-01

    Full Text Available The article presents results of modelling of ring-shaped waveguide tool for ultrasonic treatment of biological materials, particularly malignant tumours, and testing of their mechanical properties. Harmonic analysis of forced flexural vibration of the waveguide using ANSYS software and APDL programming language was implemented for determination of waveguide geometric parameters providing its resonance for the given excitation frequency. The developed finite element model accounts for interaction between the waveguide and tumour tissue as well as initial prestressing of tissue radially compressed by the waveguide. Resonant curves of the waveguide in terms of its thickness and diameter are calculated and presented. Principle of application of the developed modeling technique for extraction of diagnostic data on mechanical properties of biological tissues is described.

  1. Use of modeling and simulation in the planning, analysis and interpretation of ultrasonic testing

    International Nuclear Information System (INIS)

    Algernon, Daniel; Grosse, Christian U.

    2016-01-01

    Acoustic testing methods such as ultrasound and impact echo are an important tool in building diagnostics. The range includes thickness measurements, the representation of the internal component geometry as well as the detection of voids (gravel pockets), delaminations or possibly locating grouting faults in the interior of metallic cladding tubes of tendon ducts. Basically acoustic method for non-destructive testing (NDT) is based on the excitation of elastic waves that interact with the target object (e.g. to detect discontinuity in the component) at the acoustic interface. From the signal received at the component surface this interaction shall be detected and interpreted to draw conclusions about the presence of the target object, and optionally to determine its size and position (approximately). Although the basic underlying physical principles of the application of elastic waves in NDT are known, it can be complicated by complex relationships in the form of restricted access, component geometries, or the type and form of reflectors. To estimate the chances of success of a test is already often not trivial. These circumstances highlight the importance of using simulations that allow a theoretically sound basis for testing and allow easy optimizing test systems. The deployable simulation methods are varied. Common are in particular the finite element method, the Elasto Finite Integration Technique and semi-analytical calculation methods. [de

  2. Ultrasonic testing of core baffle former bolts of the core tanks of pressurised water reactors; Ultraschallpruefung von Kernumfassungsschrauben der Kernbehaelter von Druckwasserreaktoren

    Energy Technology Data Exchange (ETDEWEB)

    Bies, Christian M.; Alaerts, Louis; Bonitz, Frank W. [Westinghouse Electric Germany GmbH, Mannheim (Germany); Devlin, Russell S.; Minogue, Patrick [WesDyne International, Madison, PA (United States)

    2013-07-01

    This article presents the MIDAS VI testing robot used by Westinghouse / WesDyne. This is a remotely operated underwater vehicle which positions ultrasonic probes under camera control. This vehicle makes it possible to substantially reduce the time required for setting up and preparing ultrasonic tests on core baffle former bolts. It has also accelerated the test procedure itself. Test methods have also been developed for bolt types which were hitherto considered incapable of being tested. One of these methods is based on a phased array probe. The article also reports on experiences gained over the course of years in testing core baffle former bolts in European nuclear power plants using the SUPREEM testing robot.

  3. Impact Dynamics of a Percussive System Based on Rotary-Percussive Ultrasonic Drill

    Directory of Open Access Journals (Sweden)

    Yinchao Wang

    2017-01-01

    Full Text Available This paper presents an impact dynamic analysis of a percussive system based on rotary-percussive ultrasonic drill (RPUD. The RPUD employs vibrations on two sides of one single piezoelectric stack to achieve rotary-percussive motion, which improves drilling efficiency. The RPUD’s percussive system is composed of a percussive horn, a free mass, and a drill tool. The percussive horn enlarges longitudinal vibration from piezoelectric stack and delivers the vibration to the drill tool through the free mass, which forms the percussive motion. Based on the theory of conservation of momentum and Newton’s impact law, collision process of the percussive system under no-load condition is analyzed to establish the collision model between the percussive horn, the free mass, and the drill tool. The collision model shows that free mass transfers high-frequency small-amplitude vibration of percussive horn into low-frequency large-amplitude vibration of drill tool through impact. As an important parameter of free mass, the greater the weight of the free mass, the higher the kinetic energy obtained by drill tool after collision. High-speed camera system and drilling experiments are employed to validate the inference results of collision model by using a prototype of the RPUD.

  4. Early Warning System of Flood Disaster Based on Ultrasonic Sensors and Wireless Technology

    Science.gov (United States)

    Indrasari, W.; Iswanto, B. H.; Andayani, M.

    2018-04-01

    A flood disaster provides considerable losses to the people who live around the river. To mitigate losses of material due to flood disaster required an early warning system of flood disaster. For that reason, it necessary to design a system that provide alert to the people prior the flood disaster. And this paper describes development of a device for early detection system of flood disasters. This device consists of two ultrasonic sensors as a water level detector, and a water flow sensor as a water flow velocity sensor. The wireless technology and GSM is used as an information medium. The system is designed based on water level conditions in the Katulampa Dam, Bogor. Characterization of water level detector showed that the device effectively works in a range of water level of 14-250 cm, with a maximum relative error of 4.3%. Meanwhile the wireless works properly as far as 75 m, and the SMS transmission time is 8.20 second.

  5. Contribution to the improved ultrasonic testing of glass fiber-reinforced polymers based on analytic modeling; Beitrag zur Verbesserung der Ultraschallpruefung glasfaserverstaerkter Polymere auf der Grundlage analytischer Modellierung

    Energy Technology Data Exchange (ETDEWEB)

    Gripp, S.

    2001-04-01

    The non-destructive testing of acoustic anisotropic materials like fiber composites has been evaluated. Modelling enabled predictions about wave deflection, direction of wave propagation, and refractive angle of ultrasonic waves in these media. Thus, measurements could be carried out using unidirectional glass-fiber composites.

  6. Contribution of the ultrasonic simulation to the testing methods qualification process; Contribution de la modelisation ultrasonore au processus de qualification des methodes de controle

    Energy Technology Data Exchange (ETDEWEB)

    Le Ber, L.; Calmon, P. [CEA/Saclay, STA, 91 - Gif-sur-Yvette (France); Abittan, E. [Electricite de France (EDF-GDL), 93 - Saint-Denis (France)

    2001-07-01

    The CEA and EDF have started a study concerning the simulation interest in the qualification of nuclear components control by ultrasonic methods. In this framework, the simulation tools of the CEA, as CIVA, have been tested on real control. The method and the results obtained on some examples are presented. (A.L.B.)

  7. Process and device for the ultrasonic testing of slotted screws screwed into a head of a nuclear reactor fuel element for cracks

    International Nuclear Information System (INIS)

    Scharpenberg, R.

    1986-01-01

    To achieve correct echo signals, a test head is set separately on each area limited by a slot of the top of the slotted screw and the screw head is ultrasonically sounded in the direction of the suspected cracks. (orig./HP) [de

  8. Evaluation of Manual Ultrasonic Examinations Applied to Detect Flaws in Primary System Dissimilar Metal Welds at North Anna Power Station

    International Nuclear Information System (INIS)

    Anderson, Michael T.; Diaz, Aaron A.; Doctor, Steven R.

    2012-01-01

    During a recent inservice inspection (ISI) of a dissimilar metal weld (DMW) in an inlet (hot leg) steam generator nozzle at North Anna Power Station Unit 1, several axially oriented flaws went undetected by the licensee's manual ultrasonic testing (UT) technique. The flaws were subsequently detected as a result of outside diameter (OD) surface machining in preparation for a full structural weld overlay. The machining operation uncovered the existence of two through-wall flaws, based on the observance of primary water leaking from the DMW. Further ultrasonic tests were then performed, and a total of five axially oriented flaws, classified as primary water stress corrosion cracking (PWSCC), were detected in varied locations around the weld circumference.

  9. Using field programmable gate array hardware for the performance improvement of ultrasonic wave propagation imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Jaffry Syed [Hamdard University, Karachi (Pakistan); Abbas, Syed Haider; Lee, Jung Ryul [Dept. of Aerospace Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kang, Dong Hoon [Advanced Materials Research Team, Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2015-12-15

    Recently, wave propagation imaging based on laser scanning-generated elastic waves has been intensively used for nondestructive inspection. However, the proficiency of the conventional software based system reduces when the scan area is large since the processing time increases significantly due to unavoidable processor multitasking, where computing resources are shared with multiple processes. Hence, the field programmable gate array (FPGA) was introduced for a wave propagation imaging method in order to obtain extreme processing time reduction. An FPGA board was used for the design, implementing post-processing ultrasonic wave propagation imaging (UWPI). The results were compared with the conventional system and considerable improvement was observed, with at least 78% (scanning of 100x100mm{sup 2} with 0.5 mm interval) to 87.5% (scanning of 200x200mm{sup 2} with 0.5 mm interval) less processing time, strengthening the claim for the research. This new concept to implement FPGA technology into the UPI system will act as a break-through technology for full-scale automatic inspection.

  10. Using field programmable gate array hardware for the performance improvement of ultrasonic wave propagation imaging system

    International Nuclear Information System (INIS)

    Shan, Jaffry Syed; Abbas, Syed Haider; Lee, Jung Ryul; Kang, Dong Hoon

    2015-01-01

    Recently, wave propagation imaging based on laser scanning-generated elastic waves has been intensively used for nondestructive inspection. However, the proficiency of the conventional software based system reduces when the scan area is large since the processing time increases significantly due to unavoidable processor multitasking, where computing resources are shared with multiple processes. Hence, the field programmable gate array (FPGA) was introduced for a wave propagation imaging method in order to obtain extreme processing time reduction. An FPGA board was used for the design, implementing post-processing ultrasonic wave propagation imaging (UWPI). The results were compared with the conventional system and considerable improvement was observed, with at least 78% (scanning of 100x100mm 2 with 0.5 mm interval) to 87.5% (scanning of 200x200mm 2 with 0.5 mm interval) less processing time, strengthening the claim for the research. This new concept to implement FPGA technology into the UPI system will act as a break-through technology for full-scale automatic inspection

  11. Comparative testing of radiographic testing, ultrasonic testing and phased array advanced ultrasonic testing non destructive testing techniques in accordance with the AWS D1.5 bridge welding code.

    Science.gov (United States)

    2014-02-01

    A comprehensive body of non-destructive testing data was collected from steel bridge welds under real-world conditions in a fabricators shop. Three different non-destructive testing (NDT) techniques were used on each weld inspection, these being R...

  12. Development of injection moulded, ultrasonically welded immiscible phase filtration devices

    DEFF Research Database (Denmark)

    Kistrup, Kasper

    for ultrasonic welding, suitable for microfluidic systems. A methodology has been established where energy directors can be quickly added to existing mould inserts, using laser micromachining. The produced device was performance tested by isolating methicillin-resistant Staphylococcus aureus from bovine whole....... The device appliesmagnetic bead-based solid-phase extraction for nucleic acid extraction from biological samples, using the immiscible phase filtration (IPF) approach. Device development has employed injection moulding for part fabrication and ultrasonic welding for bonding. Rapid prototyping...

  13. Automated Damage Assessment System for Ballistic Protective Inserts Using Low Frequency Ultrasonics

    National Research Council Canada - National Science Library

    Godinez-Azcuaga, Valery F; Ozevin, Didem; Finlayson, Richard D; Colanto, David

    2006-01-01

    .... Radiography and low frequency ultrasonics are two methods that can provide information about the condition of a BPI, with respect to cracking and porosity in the ceramic plate and debonding between layers...

  14. Ultrasonic Guided Waves-Based Monitoring of Rail Head: Laboratory and Field Tests

    Directory of Open Access Journals (Sweden)

    Piervincenzo Rizzo

    2010-01-01

    The first part of the paper shows the prototype in action on a railroad track mock-up built at the University of California, San Diego. The mock-up contained surface and internal defects. The results from three experiments are presented. The importance of feature selection to maximize the sensitivity of the inspection system is demonstrated here. The second part of the paper shows the results of field testing conducted in south east Pennsylvania under the auspices of the U.S. Federal Railroad Administration.

  15. The Round robin test of the PISC-2 programme: plates and ultrasonic procedures used PISC 2 report N.2. Final issue

    International Nuclear Information System (INIS)

    1986-09-01

    Ultrasonic testing is widely used for detecting, locating and sizing defects in primary circuit elements at various stages of plant life. The successive PISC projects have together made up a most notable sustained international effort to assess the effectiveness of these inspection techniques. The Plate Inspection Steering Committee (PISC-I) programme (1976-1980) was intended to establish the capabilities of manual ultrasonic procedure based on the 1974 ASME Code Section XI Procedure. The Programme for the Inspection of Steel Components (PISC-II, 1981-1986) constitutes a broader based evaluation of the best performance obtainable by modern ultrasonic techniques under optimal conditions. The present paper is the second in a series of reports currently being issued which describe the results of the PISC-II studies. Included are descriptions of the four round robin test plates and of the ultrasonic procedures applied to them by the participating inspection teams. The report also lists the participating organisations and gives the time schedule of the tests and an indication of the costs incurred

  16. Geometrical Feature Extraction from Ultrasonic Time Frequency Responses: An Application to Nondestructive Testing of Materials

    Directory of Open Access Journals (Sweden)

    Naranjo Valery

    2010-01-01

    Full Text Available Signal processing is an essential tool in nondestructive material characterization. Pulse-echo inspection with ultrasonic energy provides signals (A-scans that can be processed in order to obtain parameters which are related to physical properties of inspected materials. Conventional techniques are based on the use of a short-term frequency analysis of the A-scan, obtaining a time-frequency response (TFR, to isolate the evolution of the different frequency-dependent parameters. The application of geometrical estimators to TFRs provides an innovative way to complement conventional techniques based on the one-dimensional evolution of an A-scan extracted parameter (central or centroid frequency, bandwidth, etc.. This technique also provides an alternative method of obtaining similar meaning and less variance estimators. A comparative study of conventional versus new proposed techniques is presented in this paper. The comparative study shows that working with binarized TFRs and the use of shape descriptors provide estimates with lower bias and variance than conventional techniques. Real scattering materials, with different scatterer sizes, have been measured in order to demonstrate the usefulness of the proposed estimators to distinguish among scattering soft tissues. Superior results, using the proposed estimators in real measures, were obtained when classifying according to mean scatterer size.

  17. Designing and Evaluating an Ultrasonic System for Identification of Weed Species

    Directory of Open Access Journals (Sweden)

    danial gandomzadeh

    2016-09-01

    Full Text Available Introduction: Considering the importance of healthy and inexpensive agricultural production, it is necessary to seek ways for precisely discrimination of weeds in the field to minimize the use of herbicides. In this research the feasibility of weed detection due to the reflected ultrasonic waves from some common weeds including Portulacaceae, Chenopodium album L, Tribulus terrestris L, Amaranthus retroflexus L and Salsola iberica, was investigated. Materials and Methods: An electronic circuit with several parts such as a microcontroller, a power supply (5 DC volts, a RS-232 output port, and an ultrasonic wave generator and detector was constructed. It emits a 40 KHz ultrasonic wave and receives the recursive wave which is reflected from the weed canopy. It can be mounted on an adjustable tripod that is aligned along the three main directions (X, Y, and Z and can also be turned around the X axis. The data acquisition was accomplished in the research field of the College of Agriculture, Ferdowsi University of Mashhad. The experiments were performed by mounting the system at constant height of 4 cm from the crop canopy. To avoid interfering of the recursive wave with the emitted wave, the generator and the detector were placed far apart. For each experiment the temperature and the relative humidity were recorded in a check list. For the Neural Network the so called BDLRF algorithm was used for training the network and started with a relatively constant large step size of learning rate and momentum term . Before destabilizing the network or when the convergence is slowed down, these values are decreased monotonically (22. In this study Double Sequential Classification Method was used for weed discrimination. This classification method can better simulate the human procedure for classification of different objects, from each other. The human being at the first stage, and based on some distinguishable criteria classifies the things into some main

  18. Measuring the photodetector frequency response for ultrasonic applications by a heterodyne system with difference- frequency servo control.

    Science.gov (United States)

    Koch, Christian

    2010-05-01

    A technique for the calibration of photodiodes in ultrasonic measurement systems using standard and cost-effective optical and electronic components is presented. A heterodyne system was realized using two commercially available distributed feedback lasers, and the required frequency stability and resolution were ensured by a difference-frequency servo control scheme. The frequency-sensitive element generating the error signal for the servo loop comprised a delay-line discriminator constructed from electronic elements. Measurements were carried out at up to 450 MHz, and the uncertainties of about 5% (k = 2) can be further reduced by improved radio frequency power measurement without losing the feature of using only simple elements. The technique initially dedicated to the determination of the frequency response of photodetectors applied in ultrasonic applications can be transferred to other application fields of optical measurements.

  19. New Ultrasonic Controller and Characterization System for Low Temperature Drying Process Intensification

    Science.gov (United States)

    Andrés, R. R.; Blanco, A.; Acosta, V. M.; Riera, E.; Martínez, I.; Pinto, A.

    Process intensification constitutes a high interesting and promising industrial area. It aims to modify conventional processes or develop new technologies in order to reduce energy needs, increase yields and improve product quality. It has been demonstrated by this research group (CSIC) that power ultrasound have a great potential in food drying processes. The effects associated with the application of power ultrasound can enhance heat and mass transfer and may constitute a way for process intensification. The objective of this work has been the design and development of a new ultrasonic system for the power characterization of piezoelectric plate-transducers, as excitation, monitoring, analysis, control and characterization of their nonlinear response. For this purpose, the system proposes a new, efficient and economic approach that separates the effect of different parameters of the process like excitation, medium and transducer parameters and variables (voltage, current, frequency, impedance, vibration velocity, acoustic pressure and temperature) by observing the electrical, mechanical, acoustical and thermal behavior, and controlling the vibrational state.

  20. Humidification of unwrapped chilled meat on retail display using an ultrasonic fogging system.

    Science.gov (United States)

    Brown, Tim; Corry, Janet E L; Evans, Judith A

    2007-12-01

    The effects of an ultrasonic humidification system on unwrapped meat in a chilled retail display cabinet were assessed. Humidification raised the relative humidity of the cabinet air from a mean of 76.7% to just below saturation at 98.8%. This reduced the mean evaporative weight loss from whole samples of meat after 14h from 1.68% to 0.62% of their initial weight. The rate of deterioration in the appearance of the meat due to dehydration was reduced to the extent that while the unhumidified trial was terminated after 14h because all samples were judged to be unacceptable, the humidified trial was continued for 24h without any major changes in appearance. Levels of presumptive pseudomonas bacteria were relatively high in water samples taken from the humidification system and defrost water during the humidified trial, but Legionella spp. were not isolated. Significant increases in the numbers of bacteria on the meat during either trial were only found in one case, that of humidified minced beef. However, some of the samples had high counts even before display, and this may have masked any effect due to humidification. Differences in levels of air-borne contamination were small and inconsistent. Air temperatures were raised by humidification by between 1 and 2°C and this was reflected in similarly raised product temperatures. Temperatures of air leaving the evaporator indicated that this was due to icing of the evaporator in the periods leading up to defrosts.

  1. Linear Array Ultrasonic Testing Of A Thick Concrete Specimens For Non-Destructive Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dwight A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Khazanovich, Lev [Univ. of Minnesota, Minneapolis, MN (United States); Zammerachi, Mattia [Univ. of Minnesota, Minneapolis, MN (United States); Ezell, N. Dianne Bull [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    The University of Minnesota and Oak Ridge National Laboratory are collaborating on the design and construction of a concrete specimen with sufficient reinforcement density and cross-sectional size to represent a light water reactor (LWR) containment wall with various defects. The preliminary analysis of the collected data using extended synthetic aperture focussin technique (SAFT) reconstruction indicated a great potential of the ultrasound array technology for locating relatively shallow distresses. However, the resolution and reliability of the analysis is inversely proportional to the defect depth and the amount of reinforcement between the measurement point and the defect location. The objective of this round of testing is to evaluate repeatability of the obtained reconstructions from measurements with different frequencies as well as to examine the effect of the duration of the sending ultrasound signal on the resulting reconstructions. Two series of testing are performed in this study. The objective of the first series is to evaluate repeatability of the measurements and resulting reconstructed images. The measurements use three center frequencies. Five measurements are performed at each location with and without lifting the device. The analysis of the collected data suggested that a linear array ultrasound system can produce reliably repeatable reconstructions using 50 kHz signals for relatively shallow depths (less than 0.5 m). However, for reconstructions at the greater depths the use of lower frequency and/or signal filtering to reduce the effect of signal noise may be required. The objective of the second series of testing is to obtain measurements with various impulse signal durations. The entire grid on the smooth surface is tested with four different various impulse signal durations. An analysis of the resulting extended SAFT reconstructions suggested that Kirchhoff-based migration leads to easier interpreting reconstructions when shorter duration

  2. Uncertainty Margin of Void Packet Determination for Ultrasonic Test in NPP

    International Nuclear Information System (INIS)

    Lee, Seungchan; Sung, Jejung; Lee, Jongchan; Kim, Jonguk

    2014-01-01

    In this study, the uncertainty of the void packet determination is estimated and the conservatism is reviewed by comparing with realistic uncertainty of Heckle's uncertainty. The methodology of ISO GUM is fully applied to calculate uncertainty, combined uncertainty and effective degree of freedom. Here some results are achieved as below: Combined uncertainty(UT) : 4.98%, Combined uncertainty(Heckle) : 1.44%, Degree of freedom: 5 ∼ 15, Effective degree of freedom(UT): 24.11, Effective degree of freedom(Heckle): 28.54, K value of t-distribution(UT): 2.042, K value of t-distribution(Heckle): 2.04, The uncertainty of this study using UT is enough in the case of achieving conservatism when the void packet determination of the safety related system is determined. As result of this study, UT uncertainty is more conservative than the Heckle's realistic uncertainty. From these results, it is shown that UT method has the great safety margin in determining the void packet. In comparing UT uncertainty with realistic uncertainty, this study (UT) has the conservatism of more than 3.4 times. UT method is good method to determine the void packet of ECCS pipe and to achieve the safety margin. In a safety related system, a void packet determination is issued by US NRC through the Generic Letter 2008-01. In case of the safety function, ECCS, CSS, and RHR systems are affected by the void packet. The related study has been being carried out by KHNP since 2012. In this study, the void packet determination using a ultra sonic test method has been carried out in some sites. This paper shows the uncertainty of the method using the ultra sonic test. The key parameters are introduced and estimated. Specially, the measurement conservatism for NPP is introduced to show the uncertainty margin

  3. Uncertainty Margin of Void Packet Determination for Ultrasonic Test in NPP

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seungchan; Sung, Jejung [Korea Hydro Nuclear Power Electricity Co., Daejeon (Korea, Republic of); Lee, Jongchan; Kim, Jonguk [FNC Technology Co., LTD., Yongin (Korea, Republic of)

    2014-05-15

    In this study, the uncertainty of the void packet determination is estimated and the conservatism is reviewed by comparing with realistic uncertainty of Heckle's uncertainty. The methodology of ISO GUM is fully applied to calculate uncertainty, combined uncertainty and effective degree of freedom. Here some results are achieved as below: Combined uncertainty(UT) : 4.98%, Combined uncertainty(Heckle) : 1.44%, Degree of freedom: 5 ∼ 15, Effective degree of freedom(UT): 24.11, Effective degree of freedom(Heckle): 28.54, K value of t-distribution(UT): 2.042, K value of t-distribution(Heckle): 2.04, The uncertainty of this study using UT is enough in the case of achieving conservatism when the void packet determination of the safety related system is determined. As result of this study, UT uncertainty is more conservative than the Heckle's realistic uncertainty. From these results, it is shown that UT method has the great safety margin in determining the void packet. In comparing UT uncertainty with realistic uncertainty, this study (UT) has the conservatism of more than 3.4 times. UT method is good method to determine the void packet of ECCS pipe and to achieve the safety margin. In a safety related system, a void packet determination is issued by US NRC through the Generic Letter 2008-01. In case of the safety function, ECCS, CSS, and RHR systems are affected by the void packet. The related study has been being carried out by KHNP since 2012. In this study, the void packet determination using a ultra sonic test method has been carried out in some sites. This paper shows the uncertainty of the method using the ultra sonic test. The key parameters are introduced and estimated. Specially, the measurement conservatism for NPP is introduced to show the uncertainty margin.

  4. A Low-Power High-Dynamic-Range Receiver System for In-Probe 3-D Ultrasonic Imaging.

    Science.gov (United States)

    Attarzadeh, Hourieh; Xu, Ye; Ytterdal, Trond

    2017-10-01

    In this paper, a dual-mode low-power, high dynamic-range receiver circuit is designed for the interface with a capacitive micromachined ultrasonic transducer. The proposed ultrasound receiver chip enables the development of an in-probe digital beamforming imaging system. The flexibility of having two operation modes offers a high dynamic range with minimum power sacrifice. A prototype of the chip containing one receive channel, with one variable transimpedance amplifier (TIA) and one analog to digital converter (ADC) circuit is implemented. Combining variable gain TIA functionality with ADC gain settings achieves an enhanced overall high dynamic range, while low power dissipation is maintained. The chip is designed and fabricated in a 65 nm standard CMOS process technology. The test chip occupies an area of 76[Formula: see text] 170 [Formula: see text]. A total average power range of 60-240 [Formula: see text] for a sampling frequency of 30 MHz, and a center frequency of 5 MHz is measured. An instantaneous dynamic range of 50.5 dB with an overall dynamic range of 72 dB is obtained from the receiver circuit.

  5. Study on the development of ultrasonic gas flowmeter

    International Nuclear Information System (INIS)

    Hwang, Won Ho; Park, Sang Gug; Yang, Kyu Hong; Jhang, Kyung Young

    2001-01-01

    Ultrasonic flowmeters have more advantages than the conventional method using pressure-difference. In these reasons, many advanced nations are already selling the commercial model. In RIST, we have been developed ultrasonic gas flow meter for the localization since a project was been contracted with POSCO in 1997. This paper describes a new ultrasonic gas flowmeter. This ultrasonic gas flowmeter is developed for accurate measurement of gases in a harsh environmental conditions. It is especially suited for measuring LDG, COG, BFG gases produced in iron and steel making process. In this study, we had developed the commercial model about the first tested model and applied a completed system to the POSCO gas line. Its performance has already well been proven by extensive field tests for several months in POSCO, iron and steel making company

  6. ULTRASONIC ASSEMBLY [REVIEW

    Directory of Open Access Journals (Sweden)

    PORAV Viorica

    2015-05-01

    Full Text Available The paper exposes the possibility of machine producesers to optimize the costs of clothes assembling. Ultrasonic systems being frequently utilized have many advantages on semi products of synthetic textile and technical textile. First of all, sewing – cutting process can be accomplished under high speeds and rate of losses can be minimized. Cutting seal applications are frequently used for underwear and sportswear. Slicing and unit cutting machines, as well as portable sealing machines are available for labeling sector. Products such as bag, pocket and cover can be sewed in a seamless manner for promotion purposes. All objects in terms of accessories are obtained in same standard. Our quilting machines are preferred in worldwide due to its threadless, high quality sealing. An alternative to the classic sewing assembly, with thread and needles is ultrasonic seaming. In ultrasonic welding, there are no connective bolts, nails, soldering materials, or adhesives necessary to bind the materials together. Ultrasonic is defined as acoustic frequencies above the range audible to the human ear. Ultrasonic frequencies are administered to the fabric from the sonotrode of bonding machine. The high frequency and powerful energy produced, when is release in one special environment, the ultrasound heating this environment. The ability to ultrasonic weld textiles and films depend on their thermoplastic contents and the desired end results. The paper defines the weld ability of more common textiles and films. The welding refers to all types of bonding and sealing, as in point bonding of fabric, or continuous sealing of film.

  7. Vehicle brake testing system

    Science.gov (United States)

    Stevens, Samuel S [Harriman, TN; Hodgson, Jeffrey W [Lenoir City, TN

    2002-11-19

    This invention relates to a force measuring system capable of measuring forces associated with vehicle braking and of evaluating braking performance. The disclosure concerns an invention which comprises a first row of linearly aligned plates, a force bearing surface extending beneath and beside the plates, vertically oriented links and horizontally oriented links connecting each plate to a force bearing surface, a force measuring device in each link, a transducer coupled to each force measuring device, and a computing device coupled to receive an output signal from the transducer indicative of measured force in each force measuring device. The present invention may be used for testing vehicle brake systems.

  8. Non-contact test of coating by means of laser-induced ultrasonic excitation and holographic sound representation. Beruehrungslose Pruefung von Beschichtungen mittels laserinduzierter Ultraschallanregung und holographischer Schallabbildung

    Energy Technology Data Exchange (ETDEWEB)

    Crostack, H A; Pohl, K Y [QZ-DO Qualitaetszentrum Dortmund GmbH und Co. KG (Germany); Radtke, U [Dortmund Univ. (Germany). Fachgebiet Qualitaetskontrolle

    1991-01-01

    In order to circumvent the problems of introducing and picking off sound, which occur in conventional ultrasonic testing, a completely non-contact test process was developed. The ultrasonic surface wave required for the test is generated without contact by absorption of laser beams. The recording of the ultrasound also occurs by a non-contact holographic interferometry technique, which permits a large scale representation of the sound. Using the example of MCrAlY and ZrO[sub 2] layers, the suitability of the process for testing thermally sprayed coatings on metal substrates is identified. The possibilities and limits of the process for the detection and description of delamination and cracks are shown. (orig.).

  9. Measuring time-of-flight in an ultrasonic LPS system using generalized cross-correlation.

    Science.gov (United States)

    Villladangos, José Manuel; Ureña, Jesús; García, Juan Jesús; Mazo, Manuel; Hernández, Alvaro; Jiménez, Ana; Ruíz, Daniel; De Marziani, Carlos

    2011-01-01

    In this article, a time-of-flight detection technique in the frequency domain is described for an ultrasonic local positioning system (LPS) based on encoded beacons. Beacon transmissions have been synchronized and become simultaneous by means of the DS-CDMA (direct-sequence code Division multiple access) technique. Every beacon has been associated to a 255-bit Kasami code. The detection of signal arrival instant at the receiver, from which the distance to each beacon can be obtained, is based on the application of the generalized cross-correlation (GCC), by using the cross-spectral density between the received signal and the sequence to be detected. Prior filtering to enhance the frequency components around the carrier frequency (40 kHz) has improved estimations when obtaining the correlation function maximum, which implies an improvement in distance measurement precision. Positioning has been achieved by using hyperbolic trilateration, based on the time differences of arrival (TDOA) between a reference beacon and the others.

  10. Light scattering by ultrasonically-controlled small particles: system design, calibration, and measurement results

    Science.gov (United States)

    Kassamakov, Ivan; Maconi, Göran; Penttilä, Antti; Helander, Petteri; Gritsevich, Maria; Puranen, Tuomas; Salmi, Ari; Hæggström, Edward; Muinonen, Karri

    2018-02-01

    We present the design of a novel scatterometer for precise measurement of the angular Mueller matrix profile of a mm- to µm-sized sample held in place by sound. The scatterometer comprises a tunable multimode Argon-krypton laser (with possibility to set 1 of the 12 wavelengths in visible range), linear polarizers, a reference photomultiplier tube (PMT) for monitoring the beam intensity, and a micro-PMT module mounted radially towards the sample at an adjustable radius. The measurement angle is controlled by a motor-driven rotation stage with an accuracy of 15'. The system is fully automated using LabVIEW, including the FPGA-based data acquisition and the instrument's user interface. The calibration protocol ensures accurate measurements by using a control sphere sample (diameter 3 mm, refractive index of 1.5) fixed first on a static holder followed by accurate multi-wavelength measurements of the same sample levitated ultrasonically. To demonstrate performance of the scatterometer, we conducted detailed measurements of light scattered by a particle derived from the Chelyabinsk meteorite, as well as planetary analogue materials. The measurements are the first of this kind, since they are obtained using controlled spectral angular scattering including linear polarization effects, for arbitrary shaped objects. Thus, our novel approach permits a non-destructive, disturbance-free measurement with control of the orientation and location of the scattering object.

  11. Self-calibration method for rotating laser positioning system using interscanning technology and ultrasonic ranging.

    Science.gov (United States)

    Wu, Jun; Yu, Zhijing; Zhuge, Jingchang

    2016-04-01

    A rotating laser positioning system (RLPS) is an efficient measurement method for large-scale metrology. Due to multiple transmitter stations, which consist of a measurement network, the position relationship of these stations must be first calibrated. However, with such auxiliary devices such as a laser tracker, scale bar, and complex calibration process, the traditional calibration methods greatly reduce the measurement efficiency. This paper proposes a self-calibration method for RLPS, which can automatically obtain the position relationship. The method is implemented through interscanning technology by using a calibration bar mounted on the transmitter station. Each bar is composed of three RLPS receivers and one ultrasonic sensor whose coordinates are known in advance. The calibration algorithm is mainly based on multiplane and distance constraints and is introduced in detail through a two-station mathematical model. The repeated experiments demonstrate that the coordinate measurement uncertainty of spatial points by using this method is about 0.1 mm, and the accuracy experiments show that the average coordinate measurement deviation is about 0.3 mm compared with a laser tracker. The accuracy can meet the requirements of most applications, while the calibration efficiency is significantly improved.

  12. Automated ultrasonic pipe weld inspection. Part 1

    International Nuclear Information System (INIS)

    Karl Deutsch, W.A.; Schulte, P.; Joswig, M.; Kattwinkel, R.

    2006-01-01

    This article contains a brief overview on automated ultrasonic welded inspection for various pipe types. Some inspection steps might by carried out with portable test equipment (e.g. pipe and test), but the weld inspection in all internationally relevant specification must be automated. The pipe geometry, the production process, and the pipe usage determine the number of required probes. Recent updates for some test specifications enforce a large number of ultrasonic probes, e.g. the Shell standard. Since seamless pipes are sometimes replaced by ERW pipes and LSAW pipes (in both cases to save production cost), the inspection methods change gradually between the various pipe types. Each testing system is unique and shows its specialties which have to be discussed by supplier, testing system user and final customer of the pipe. (author)

  13. Simulator testing system (STS)

    International Nuclear Information System (INIS)

    Miller, V.N.

    1990-01-01

    In recent years there has been a greater demand placed on the capabilities and time usage of real-time nuclear plant simulators due to NRC, INPO and utilities requirements. The requirements applied to certification, new simulators, upgrades, modifications, and maintenance of the simulators vary; however, they all require the capabilities of the simulator to be tested whether it is for NRC 10CFR55.45b requirements, ATP testing of new simulators, ATP testing of upgrades with or without panels, adding software/hardware due to plant modifications, or analyzing software/hardware problems on the simulator. This paper describes the Simulator Testing System (STS) which addresses each one of these requirements placed on simulators. Special attention will be given to ATP testing of upgrades without the use of control room panels. The capabilities and applications of the four parts of STS which are the Display Control Software (DCS), Procedure Control Software (PCS), Display Generator Software (DGS) and the Procedure Generator Software (PGS) will be reviewed

  14. Nightly Test system migration

    CERN Document Server

    Win-Lime, Kevin

    2013-01-01

    The summer student program allows students to participate to the Cern adventure. They can follow several interesting lectures about particle science and participate to the experiment work. As a summer student, I had worked for LHCb experiment. LHCb uses a lot of software to analyze its data. All this software is organized in packages and projects. They are built and tested during the night using an automated system and the results are displayed on a web interface. Actually, LHCb is changing this system. It is looking for a replacement candidate. So I was charged to unify some internal interfaces to permit a swift migration. In this document, I will describe shortly the system used by LHCb, then I will explain what I have done in detail.

  15. A Delay Time Measurement of ULTRAS (Ultra-high Temperature Ultrasonic Response Analysis System) for a High Temperature Experiment

    International Nuclear Information System (INIS)

    Koo, Kil Mo; Kim, Sang Baik

    2010-01-01

    The temperature measurement of very high temperature core melt is of importance in a high temperature as the molten pool experiment in which gap formation between core melt and the reactor lower head, and the effect of the gap on thermal behavior are to be measured. The existing temperature measurement techniques have some problems, which the thermocouple, one of the contact methods, is restricted to under 2000 .deg. C, and the infrared thermometry, one of the non-contact methods, is unable to measure an internal temperature and very sensitive to the interference from reacted gases. In order to solve these problems, the delay time technique of ultrasonic wavelets due to high temperature has two sorts of stage. As a first stage, a delay time measurement of ULTRAS (Ultra-high Temperature Ultrasonic Response Analysis System) is suggested. As a second stage, a molten material temperature was measured up to 2300 .deg. C. Also, the optimization design of the UTS (ultrasonic temperature sensor) with persistence at the high temperature was suggested in this paper. And the utilization of the theory suggested in this paper and the efficiency of the developed system are performed by special equipment and some experiments supported by KRISS (Korea Research Institute of Standard and Science)

  16. Ultrasonic inspection

    International Nuclear Information System (INIS)

    Satittada, Gannaga

    1984-01-01

    Ultrasonic inspection is one of the most widely used methods for nondestructive inspection. The beam of high-frequency sound wave, ultrasonic wave, is introduced into the material. It travels through the material with some attendant loss of energy and can be reflected at interfaces. The reflected beam is detected and analyzed. Ultrasonic inspection is used to detect flaws in metal parts as well as in welded, brazed and bonded joints during research work and developing production and service. It is also used to detect and locate porosity, pipe, and flakes. In addition, it can be used for the measurement of metal thickness. Ultrasonic inspection is therefore used for quality control and material inspection in all major industries

  17. DELPHIN - a new system for testing reactor pressure vessels

    International Nuclear Information System (INIS)

    Dressler, K.

    1999-01-01

    The author discusses the question of whether a new concept for testing RPVs is necessary. He concentrates his exposition upon the RPV testing system DELPHIN recently developed by ABB, which has been successfully employed in vessel-interior tests since 1998. The new system reduces both the time required and the financial costs for RPV tests. The tests have become more efficient particularly as a result of new developments in the fields of handling machinery and microelectronics. As an example of the improved quality, the author quotes the ultrasonic system ZAQUS: thanks to the high quality of the ultrasonic data, rapid comparison with the results of earlier repreated tests on the RPV is now possible. Since problems of interpretation did not arise, the overall results in an initial application were available only two hours after the last data recording. The author's verdict: DELPHIN has successfully undergone its 'baptism by fire'; still in need of improvement, he states, is the occupany time of the pond, which is not yet as short as targeted. (orig.) [de

  18. Tritium Systems Test Facility

    International Nuclear Information System (INIS)

    Cafasso, F.A.; Maroni, V.A.; Smith, W.H.; Wilkes, W.R.; Wittenberg, L.J.

    1978-01-01

    This TSTF proposal has two principal objectives. The first objective is to provide by mid-FY 1981 a demonstration of the fuel cycle and tritium containment systems which could be used in a Tokamak Experimental Power Reactor for operation in the mid-1980's. The second objective is to provide a capability for further optimization of tritium fuel cycle and environmental control systems beyond that which is required for the EPR. The scale and flow rates in TSTF are close to those which have been projected for a prototype experimental power reactor (PEPR/ITR) and will permit reliable extrapolation to the conditions found in an EPR. The fuel concentrations will be the same as in an EPR. Demonstrations of individual components of the deuterium-tritium fuel cycle and of monitoring, accountability and containment systems and of a maintenance methodology will be achieved at various times in the FY 1979-80 time span. Subsequent to the individual component demonstrations--which will proceed from tests with hydrogen (and/or deuterium) through tracer levels of tritium to full operational concentrations--a complete test and demonstration of the integrated fuel processing and tritium containment facility will be performed. This will occur near the middle of FY 1981. Two options were considered for the TSTF: (1) The modification of an existing building and (2) the construction of a new facility

  19. Measurement of a 3D Ultrasonic Wavefield Using Pulsed Laser Holographic Microscopy for Ultrasonic Nondestructive Evaluation

    Directory of Open Access Journals (Sweden)

    Xing Wang

    2018-02-01

    Full Text Available In ultrasonic array imaging, 3D ultrasonic wavefields are normally recorded by an ultrasonic piezo array transducer. Its performance is limited by the configuration and size of the array transducer. In this paper, a method based on digital holographic interferometry is proposed to record the 3D ultrasonic wavefields instead of the array transducer, and the measurement system consisting of a pulsed laser, ultrasonic excitation, and synchronization and control circuit is designed. A consecutive sequence of holograms of ultrasonic wavefields are recorded by the system. The interferograms are calculated from the recorded holograms at different time sequence. The amplitudes and phases of the transient ultrasonic wavefields are recovered from the interferograms by phase unwrapping. The consecutive sequence of transient ultrasonic wavefields are stacked together to generate 3D ultrasonic wavefields. Simulation and experiments are carried out to verify the proposed technique, and preliminary results are presented.

  20. Ultrasonic testing of materials at level 2. Manual for the syllabi contained in IAEA-TECDOC-628, training guidelines in non-destructive testing techniques

    International Nuclear Information System (INIS)

    1999-01-01

    updated version of the older document. An effort has been made to bring it as close as possible to the syllabus requirements of IAEA-TECDOC-628. This has been done by putting in additional material wherever needed and then rearranging the whole in accordance with the format of Level 2 Ultrasonic Testing syllabus in IAEA-TECDOC-628. A new Section on Special Techniques has been added in which the present status of development of various new techniques of ultrasonic testing, automated ultrasonic inspection and the basic concepts of data processing have been introduced. An extensive bibliography at the end covers all the references which have been used in the compilation as well as those which can be consulted for further information on ultrasonic testing of materials